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Abstract

Advances in adjoint sensitivity analysis and high performance
computing have moved the tendency in the field of shape op-
timization towards node-based methods due to their extremely
rich geometrical design space. Moreover, acting directly on
the discretization, the node-based technique has a great ad-
vantage over classical CAD-based methods which require an
extra parametrization tool. However, a robust methodology to
transform the nodal sensitivity values to a meaningful shape
deformation for general industrial applications is still missing.
This work tries to take a step towards overcoming this deficiency.

In this work, Vertex Morphing, a novel node-based parameteriz-
ation method for shape optimization is developed. This method
introduces in addition to the geometry field, a design control
field in which the mathematical optimization problem is defined.
The linear mapping relating the geometry and the control field
is a kernel-based explicit filtering operator. In this way, the
regularization of the ill-posed shape optimization problem is
included in the definition of the design variables. Furthermore,
the problem of mesh regularization is tackled by including a
projection step in the same mapping operator, which enforces
the mesh quality criterion through a dimension reduction. This
consistent formulation of the smoothing closes the gap between
the sensitivity filtering techniques and the standard optimization
theory.

Vertex Morphing is developed to be integrated in mechanical
software frameworks in order to assist the engineering design
process. As such, the method is successfully implemented in
an optimization workflow for Computational Fluid Dynamics
problems. The workflow is tested on several real size engineering
applications in fields of automotive and wind engineering. The
method shows to be very efficient and robust even for highly
complex geometries and large problems with up to 3.3 million
design variables.
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Chapter 1

Introduction

In this thesis, a parametrization methodology for shape optimal design
is proposed. Most of the topics covered in this text are one-to-one us-
able for discrete shape optimization in any numerical simulation. Here
however, the target application is shape optimization of wall-bounded
flows with additional focus on wind-exposed structures. As inherited
from the nature of numerical design optimization, there are two major
lines to be investigated: the numerical analysis and the design bet-
terment. The numerical analysis includes modeling of the physics of
the problem as well as evaluation of the design sensitivity. Design
betterment involves the geometrical and algorithmic actions required
for transforming the design sensitivity information into an improved
geometry. Despite the tight relation of the mentioned elements, they
can be studied as two more or less separate modules forming the design
optimization process. Even though the text contains a chapter about
the numerical simulation, the emphasis is on the shape related aspects.
The design optimization workflow presented at the end binds those two
modules in a CFD shape optimization software, which is applicable to
real engineering applications.



1. Introduction

1.1 Node-based parametrization

Talking about “shape improvement” of an existing geometry, one should
first answer the following question: “how should be the shape variation
described?”. The most intuitive answer might be: “in the same way that
the shape itself is described!”. This answer is the basis of Computer
Aided Geometrical Design (CAGD) optimization, in which the CAD
parameters used for the construction of the initial shape are selected as
the design variables of the optimization problem. CAD-based optimiz-
ation is a robust method which has shown success, and is widely used
in various fields, such as structural optimization [11, 28, 64] and CFD
optimization [55, 106, 110, 113] . The resulting shape always sustains
the geometrical quality of the initial one, as it is built based on the
same set of geometrical objects.

In numerical mechanics, the geometry is approximated by a set of dis-
cretization elements, and from the numerical viewpoint, after meshing,
there is no connection between the discrete geometry and the “real”
shape. Having that in mind, an alternative answer to the question
arisen in the previous paragraph would be: “through the nodes of the
discretized geometry.”. This is what we refer to as the “node-based”
method. In some texts, the term “parameter-free” is chosen for this
shape representation method which is an inaccurate abbreviation for
“free of CAD parameters”. In node-based shape optimization position
of the discretization nodes are the design variables.

Advantages of node-based parametrization can be summarized in two
main aspects, i.e. geometrical and algorithmic. The node-based para-
meters provide the largest possible design space for a discrete model.
Unlike in CAD and “morphing box” techniques, the design improve-
ment contains all the shape modes and the free evolution of the form
can lead to any non-intuitive shape. From the algorithmic point of
view, the node-based method brings shape optimization closer to the
“standard simulation process” in industrial applications, by removing
the parametrization module from the workflow, as the parametrization
is defined directly on the mesh used for the simulation. The need to
include an additional parametrization software, and more importantly
the extremely time consuming process of manual geometry paramet-
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1.2. Adjoint optimization

rization, prevents the use of automatic shape optimization in many
industrial designs.

There are however some challenges to be tackled before using node-
based parametrization, i.e. shape irregularity, mesh dependency, mesh
distortion and large number of design variables. The appearance of
shape irregularities is due to the large number of unknowns in the inverse
problem of shape optimization which makes it from a mathematical
viewpoint an ill-posed problem. Smoothing of the sensitivities is an
effective means to regularize the shape morphing problem and is applied
in structural shape optimization [33, 70], CFD shape optimal design
[51, 55, 85, 115, 130, 131], and topology optimization [10, 15, 143]. A
major part of developments in smooth shape morphing is done in the
field of computer graphics [7, 69, 87]. Moreover, filtering is used also
as a design tool to cut off the higher shape modes, independent of the
discretization [12]. There are different formulations for the filtering
operator. Explicit filters use a distance-based function [32, 51, 131]
similar to signal processing. Implicit filters define a PDE, whose in-
verse discrete operator acts as the smoother. This PDE can be based
on geometrical definitions such as curvature [57, 60, 86], or defined
by an imaginary solid domain [5, 7, 125]. The numerical solution of
the PDE (or in simple words inverting the PDE operator) is sensitive
to the mesh quality and can limit the robustness in complex geometries.

If the shape variation is not limited to a small amount, the problem of
mesh quality arises quickly, which is even more pronounced for complex
geometries. Some suggest including a mesh regularization step in the
optimization process [70, 129]. Alternatively the mesh quality criteria
can be added to the optimization problem as constraint [114].

1.2 Adjoint optimization

Although zero order optimization methods remain the most commonly
applied tool in engineering design, they reach their limit of usability
and efficiency for moderately complex 3D geometries, considering the
required number of design variables. In contrary, first order algorithms
show a great performance and speed, even for many design variables
[2, 137]. However, the sensitivity information, i.e. the gradient of the
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1. Introduction

response surface is required, which is usually a challenging task.

Design sensitivity is the rate of dependency of each system response
(objective or constraint) to all the design parameters, and can be con-
structed as a matrix that has as many columns as the system responses
and as many rows as the design variables. In order to evaluate the
sensitivity matrix, one can first study ”how does each design variable
influence the physical model“ and then based on that to calculate the
sensitivity for ”every system response“. As an alternative one can first
find out ”how does the physical model influence each system response“
and then to evaluate the sensitivity for ”every design variable“. The
first approach is the direct, and the second one is the adjoint sensitivity
analysis [8, 18, 58, 73, 134]. The computational effort in direct sensitiv-
ity analysis scales with the number of design variables and in adjoint by
the number of responses. Therefore when there are more responses than
design variables (fat sensitivity matrix) the direct method is preferred,
and in the opposite situation (tall matrix) the adjoint one. Thus for
node-based optimization only adjoint can be sensibly used.

Adjoint methods provide the sensitivity value for every node almost by
the same cost as the original problem [30, 98]. They are relatively easy
to be implemented for structural optimization and therefore they have
been for many years an established technique [19, 45, 135]. In CFD, in
contrast to structural mechanics, the state equations are not self-adjoint
which makes evaluation of the adjoint fields more demanding. However,
in the past two decades, there has been a rapid development of CFD
adjoint sensitivities as well [41, 53, 56, 103, 123]. Adjoint methods
have been developed for both compressible [57] and incompressible
[58, 90, 93] problems. The applications aimed in this work, such as
automotive and wind engineering require the adjoint sensitivity of the
incompressible Navier-Stokes equations, whose solution can be more
involved, because unlike compressible equations, the pressure is not
present in the continuity equation through the density term.

One of the main difficulties in adjoint sensitivity analysis is that the
adjoint inertial momentum for time-dependent equations is defined
backwards in time. Therefore, the solution must start from the end-
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1.3. Goal of thesis

time, marching back towards the start-time, which causes extensive
memory requirements. Some remedies to overcome this issue can be
found in [43].

For shape optimization of flexible structures interacting with a fluid
flow, e.g. light weight structures in wind, the fluid-structure coupling
shall be considered both in state as well as the sensitivity equations
[1, 23, 74, 78, 80, 122].

1.3 Goal of thesis

Out of the many publications about filtered node-based shape optimiz-
ation, there are only few which arise discussions on consistent merging
of the filtering operator into the standard optimization technology
[15, 70, 120]. Moreover, being driven by aeronautics, turbomachinery
and hydraulic applications, most of the works done for node-based
adjoint optimization deal with smooth surfaces with relatively low
curvatures and more importantly very limited design variation. This is
not at all the case in applications aimed here, e.g. automotive industry.

This work tries to overcome those deficiency by introducing the Vertex
Morphing method, which is an explicit node-based parametrization for
shape optimization. The suggested notation combines both filtering
and mesh improvement operators into a ”parametrization piece“ in the
chain rule of differentiation. In addition to the geometry, a control
field is introduced and linked to the geometry through a linear map.
Similar to the geometry itself, the control field is discretized and the
optimization problem is formulated in the discrete control space which
is the set of all control parameters. Having a coarser discretization for
the design control field appears to be identical to the procedure of the
subdivision surface technology to generate geometry [16, 65, 72, 144].
This definition establishes also a link between node-based and spline-
based parametrization since what is introduced here as the control field
is equivalent to the control polygon of splines.

In Vertex Morphing, normal and tangential surface directions are
treated simultaneously and therefore large design variations can be
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1. Introduction

performed without any extra in-plane regularization. The method is
designed to be applied on engineering problems and therefore is robust
w.r.t. the shape complexity and can be used for non-smooth surfaces
with kinks, mesh irregularities, etc. Combination of this explicit shape
control method and adjoint sensitivity analysis forms an efficient and
strong optimization tool which can be used for shape optimization of
very large problems with millions of design variables.

1.4 Outline

The remaining of the text is organized as follows:

Chapter 2 introduces first the mathematical optimization problem and
reviews different classes of design optimization w.r.t the choice of the
solution strategy and the shape parametrization. Shape and mesh
regularization as the key aspect of node-based shape optimization is
also discussed.

In chapter 3, first the continuous 1D formulation of the Vertex Morph-
ing method is shown, and then its discretized form is derived. At the
end the 3D version of the method is presented which combines shape
and mesh regularization operators. The method is positioned among
the others and some properties are compared and discussed.

Chapter 4 is about the governing state equations and their physical in-
terpretation. Since the sensitivity analysis for the shape optimization is
closely related to the state equations, it is explained in the same chapter.

Chapter 5 includes algorithmic and implementation aspects of the
optimization workflow and wraps up the single features into a software
framework.

In chapter 6 the method is applied on several test cases ranging from
small 2D examples to complex industrial ones. The selection of the
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1.4. Outline

test cases is such that each of them rises a certain characteristics of
such a type of optimization.

At the end, concluding remarks as well as suggestions for potential
future work are mentioned in chapter 7.
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Chapter 2

Shape optimization

Design optimization is a very common practice almost in every engin-
eering process. The decision about “what is the best design within
the feasible ones” can be taken in various ways. e.g. trial and error,
parameter study, etc. "Design" itself can also have different meanings,
e.g. material. Here we interpret "design" as the "shape" of the object to
be improved. Shape optimal design is often classified into the following
groups, even though their definitions can have overlaps in some cases:
sizing, shape and topology optimization. In sizing optimization, the
design parameters do not change the geometry, but design properties
such as thickness of different elements. Shape optimization, which is
the topic of discussion in this work, tries to find the optimal shape
of an object while preserving the topology (or the main geometrical
characteristics) of the initial design. Topology optimization goes one
step further and aims in proposing the best topology and shape among
all possible geometries.

This work is about shape optimization of structures and industrial parts
that are either exposed to fluid flow, or are supposed to guide the fluid
flow. The shape optimization problem is seen as the evolution of the
shape in several improvement steps towards the optimum. Therefore,



2. Shape optimization

the presented workflow can be put under the category of “nested
analysis and design”, NAND, in contrast to “simultaneous analysis and
design”, SAND [3]. This choice fulfills the modularity condition of the
presented process in section 5.

In this chapter, first the mathematical optimization problem is stated.
Different solution strategies are briefly named and the method of choice
is presented. Next, the shape representation as the key feature in
shape optimization is explained. The common shape parametrization
techniques are reviewed in order to prepare the basis for introducing
the proposed shape representation method, presented in chapter 3.

2.1 Optimization problem

The shape optimization problem has to be formulated in terms of a
standard mathematical optimization problem in order to be solved.
This step seems to be straightforward. However, in many engineering
optimization applications a clear goal and definition of the problem
is missing. Basically, the first step is to decide about an optimization
scenario. Then based on a solution strategy, the already defined
optimization problem will be solved. The target of the optimization is
to improve one or some properties of a system, e.g. efficiency, weight,
cost, etc. by suitable choice of one or some characteristics of the system,
such as the shape, material, etc. The objective function represents the
system property to be improved, while the design variables are the
characteristics to be modified.

2.1.1 Formulation

The goal is to find the suitable value of the optimization variable s ∈ V,
for which the objective functional J(s) ∈ R has its minimum value. V
is the design space and can have different definitions depending on the
problem. There can be also some constraints limiting the choice of s
directly or indirectly.

J(s)→ min (2.1)
hi(s) ≤ 0, hi ∈ R (2.2)
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2.1. Optimization problem

For an unconstrained optimization, the optimality condition follows

∇J(so) = 0, (2.3)
|∇2J(so)| > 0. (2.4)

The first condition indicates that so is a local extremum of the objective
function, and the second one shows that this extremum is a minimum.
If J is a convex function, there exist only one so, which is the solution
of the optimization problem. Otherwise, the solution is the smallest
local minimum.

In this work, the focus is on unconstrained optimization. However,
since the state mechanical equations are treated as a constraint to the
problem in adjoint sensitivity analysis, there are few sentences spent
on explanation of constrained problems. In constrained optimization,
the objective function and constraints are combined in a Lagrangian
function L ∈ R, so that the solution of the original constrained problem
can be found by solving an unconstrained optimization over L. In order
to do so, a suitable Lagrangian multiplier λi for each constraint has to
be found.

L(s, λi) = J(s) + λihi(s) (2.5)
λi > 0 (2.6)

Note that at the optimum, independent of the values of λi, L(so) =
J(so), because active constraints are zero: hi(so) = 0. L has saddle
point properties and the optimization problem is reformulated as the
saddle point search on L. The Dual function is defined as the minimum
of the Lagrangian function w.r.t s, for a given λi:

D(λi) = m
s
inL(s, λi) (2.7)

To find the optimum, the Lagrangian multiplier λo which maximizes
the Dual function has to be found. There exist various ways to find

11



2. Shape optimization

the optimal solution (so, λoi ), most of which are based on staggered
consequent minimization and maximization of the Lagrangian and the
dual function respectively. In each step, either λi or s is kept fixed
and the extremum of the other variable is found. Furthermore, the
solution of the constrained optimization problem (so, λoi ) satisfies the
Karush-Kuhn-Tucker (KKT) necessary conditions:

∂L

∂s

∣∣∣
so,λo

= ∂J

∂s

∣∣∣
so

+ λoi
∂hi
∂s

∣∣∣
so

= 0 (2.8)

∂L

∂λi

∣∣∣
so

= hi(so) = 0 (2.9)

Constrained solution strategies are not further discussed in this text.

2.1.2 Solution algorithm
Once the optimization problem is defined, the strategy to find the
optimum (improved) so should be selected. Decision of the suitable
strategy depends on several aspects such as the problem size, com-
plexity of the governing equations, software availability, computation
time, convexity of the response surface, etc. Solution methods can be
classified based on the order of derivatives of the objective function
required. In this work, a first order optimization is presented. However,
for the sake of comparison, there is a short explanation of the other
algorithms in the following paragraphs.

Zero order methods Zero order methods have perhaps the widest
range of usage, particularly in engineering applications, due to their
robustness and generality. The optimizer performs multiple evaluations
of the objective function and no further information is required. Even
a simple trial and error or parameter study (design of experiments, as
the most common industrial optimization) can be called a zero order
optimization. Though, there has been enormous amount of theoretical
and algorithmic work on zero order methods [4, 42].

A group of zero order methods approximate the response surface by a
function, and find the solution which minimizes this substitute function.
This is usually done in multiple levels, in order to efficiently spend

12



2.1. Optimization problem

the function evaluations close to the minimum while examining the
full design space for potential regions where the minimum can lay.
Thus, in each level, a better approximation of the response surface is
available. Stochastic methods can help finding the best distribution of
the evaluation points within the design space.

The other zero order solution strategy is based on the evolution theory
of biological system, which states that the chance of survival for spe-
cies depends on their fitness compared to the rest of the population.
Engineering optimization has made use of this theory and different
design alternatives are treated as a biological population in which some
individuals are fitter than the others. In every evolution generation,
the individual designs with higher fitness get the chance to have a
larger contribution to the next generation population [4]. In such a
way, those characteristics which lead to a higher fitness are preserved
and those which exist in less fit individuals are gradually vanished.

Zero order methods can be applied in optimization of problems of
any degree of complexity. They perform their search over the entire
design space and aim in finding the global optimum without getting
trapped in local optima. From the algorithmic view point, they are
easily applicable to every engineering process. The main drawback is
that usually many objective evaluations are required. Even though
there are various improvements and enhancements proposed in order
to increase efficiency of these methods, generally speaking, they are all
computationally costly. Moreover, their usability is usually limited to a
relatively small number of design parameters. As the number of optim-
ization parameters increases, they get more and more computationally
demanding and the convergence rate gets more poor. Therefore, in the
context of the current work, in which a shape optimization with many
design geometrical parameters is desired, use of zero order methods is
not a choice.

Gradient based methods Gradient based methods use the deriv-
ative information of the objective function w.r.t. the optimization
parameters (∂J∂s and ∂2J

∂s2 and ...) in order to find the optimum. The
order of the gradient based method depends on the order of the de-
rivative information used. So, a first order method uses only the the
gradient ∂J

∂s . The optimization is usually done in several consecutive
iterations. In each iteration, an improvement update step is added to

13



2. Shape optimization

the design variable. So the design variable in the (n+ 1)’th iteration
sn+1, is calculated based on the value of the previous step sn and the
update value δsn+1:

sn+1 = sn + δsn+1 (2.10)

The update step can be decomposed to two components, the search
direction bn+1 ∈ V and the step length αn+1 ∈ R.

δsn+1 = αn+1bn+1 (2.11)

Once the search direction is found, the optimization problem is reduced
to a one dimensional one, in which the optimal value of the step
length has to be found. This one dimensional problem is called the
“line search”. In this work, the simplest first order algorithm, “steepest
descent” is used. In steepest descent the search direction is the negative
gradient vector:

bn+1 = −∇sJ(sn)⇒ δsn+1 = −αn+1∇sJ(sn) (2.12)

The Newton’s method, as a second order optimization algorithm in-
cludes the second order derivative in calculation of the update step:

δs = −(∇2
sJ(sn))−1∇sJ(sn) (2.13)

In order to demonstrate the performance of this optimization method,
let us consider a 2D quadratic optimization problem.

V = R2 (2.14)
J = J(s1, s2) = a1s

2
1 + a2s

2
2 + a3s1s2 (2.15)

a1, a2, a3 ≥ 0 (2.16)

14



2.1. Optimization problem

if a3 = 0 and a1 = a2, the response surface is a circular paraboloid
with its minimum at the origin (s1, s2) = (0, 0). For such a case the
negative of the gradient vector always points toward the minimum:

−∇sJ = −(2a1s1, 2a2s2) = −2a1(s1, s2) (2.17)

Therefore, updating the design with a single steepest descent iteration
with a step length of α = 1/(2a1) brings us to the optimum in a single
step (figure 2.1 top). Now, we assume that a1 < a2, and still a3 = 0.
This would stretch the paraboloid in the direction of s1, and as plotted
in the middle graph of figure 2.1, the steepest descent search direction
of equation (2.17) does not point to the optimum anymore. Therefore
one should perform multiple iterations in order to decrease the objective
value. The Newton’s methods however offers a better search direction:

−∇2
sJ = −

(
2a1 a3
a3 2a2

)
(2.18)

a3 = 0⇒ b = −
(

2a1 0
0 2a2

)−1(2a1s1
2a2s2

)
= −

(
s1
s2

)
(2.19)

This search direction brings us to the optimum with a single step. This is
no surprise as the optimization problem is quadratic itself. One can still
bring the good performance of the steepest descent method back to the
optimization problem, by a suitable variable transformation. If instead
of (s1, s2), we solve the problem for (s̃1, s̃2) where s̃1 = (1/√a1)s1 and
s̃2 = (1/√a2)s2. The objective function in terms of the transformed
variables is

J(s̃) = s̃2
1 + s̃2

2 (2.20)

Similar to the case in which a1 = a2, the transformed optimization can
be solved by steepest descent in a single step. This transformation is
called “scaling of the design variables”. Note that the adjusted search
direction in the "conjugate gradient" method can also be seen as a
re-parametrization which is done in an iterative manner.

15



2. Shape optimization

Figure 2.1: Gradient direction for a quadratic function with three
sets of coefficients (left). Schematic sketch of the ideally "regularized"
coordinate system for each case (right)
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2.1. Optimization problem

If a3 6= 0 only scaling the variable would not be enough, as the cross
term s1s2 would add skewness (rotation) to the response surface. In
such a case the variable transformation should include cross terms as
well. This transformation tries to bring the second order information
to the problem by establishing a link between the variables. This
is equivalent to using the Newton’s method, which includes ∇2

sJ in
the update step. Once the update vector for the new variables δs̃
is calculated, one should calculate the update vector of the original
problem δs based on that:

s̃(1×2) = A(2×2)s(1×2) ⇒ δs = A−1δs̃ (2.21)

A is the transformation (scaling) matrix, and (2 × 2) indicates the
dimensions of the matrix. In general, the gradient vector and the
Hessian matrix of the objective function J w.r.t. s̃ are the following:

∇s̃J = A−T∇sJ (2.22)

∇2
s̃J = A−T∇2

sJA−1 (2.23)

To find the best variable transformation for the steepest descent, one
would need to have the Hessian ∇2

sJ . Therefore, the problem has to
be reformulated such that by applying the variable transformation of
equation (2.21), the steepest descent update step δsSD with α = 1 is
the same as the Newton’s step δsN :

δsSD = δsN
⇒ A−1δs̃ = δsN

⇒ −A−1∇s̃J = −(∇2
sJ)−1∇sJ

⇒ −A−1A−T∇sJ = −(∇2
sJ)−1∇sJ

⇒ ATA = ∇2
sJ

(2.24)

The transformation matrix A will be further related to the regulariza-
tion and parametrization operator in sections 2.3 and 3, respectively.
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2. Shape optimization

As it will be discussed in section 3.1.2, when the Newton’s method is
applied, this variable transformation does not affect the search direc-
tion:

bN =A−1b̃N
=−A−1(∇2

s̃J)−1∇s̃J

=−A−1(A−T∇2
sJA−1)−1A−T∇sJ

(2.25)

The inverse of the Hessian matrix can be calculated based on equa-
tion (2.23) as:

(∇2
s̃J)−1 = A(∇2

sJ)−1AT (2.26)

Substituting (2.26) in equation (2.25) gives:

bN =−A−1A(∇2
sJ)−1ATA−T∇sJ

=− (∇2
sJ)−1∇sJ,

(2.27)

which is the original Newton’s search direction.

2.2 Geometry parametrization

In order to perform shape optimization, we should describe the geo-
metry of the object in terms of the optimization variables. This is
because the mathematical problem is defined with abstract and di-
mensionless numbers without any geometrical interpretation. The
transformation from the design variables s to the geometry x is called
”shape parametrization“ or ”geometry representation“. Note that the
word ”parametrization“ does not necessarily mean that there is always
a finite set of parameters describing the shape and as it will be seen
in the following sections, s can be a continuous field. Here, we use a
general notation for the shape parametrization operator:

x = A(s),A : V→W (2.28)
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2.2. Geometry parametrization

x ∈W describes the geometry of the object and as before, s ∈ V is the
design variable of the optimization problem. For example, a meaningful
way to control (describe) the shape of a circle in a 2D plane is to
parametrize its geometry by its shape and its center coordinates:

s = (s1, s2, s3) = (cx, cy, r) ∈ V = (R,R,R+)
x = {(xx, xy, xz) ∈W = R2|(xx − cx)2 + (xy − cy)2 − r2 = 0}

(2.29)

where cx, cy and r represent the x and y coordinates of the center and
the radius of the circle respectively. Another example would be the
description of a 2D curve by use of quadratic Bézier interpolation with
three ”control points” (P1, P2, P3). Coordinates of the control points
can be the design variables of the optimization problem:

s = (s1, s2, ..., s6)
= (P1,x, P1,y, P2,x, P2,y, P3,x, P3,y), s ∈ R6

x = x(ξ) = (xx(ξ), xy(ξ)),
(2.30)

where

xx(ξ) = (1− ξ)2s1 + 2(1− ξ)ξs3 + ξ2s5

xy(ξ) = (1− ξ)2s2 + 2(1− ξ)ξs4 + ξ2s6, ξ ∈ {0, 1}.
(2.31)

In this case the geometry is parametrized by 6 design variables as
coordinates of the control points. There exists a “tracing parameter”
or “local coordinate” ξ as a helping variable. If one wants to march
on the entire shape (the 2D curve in this case), it is enough to vary
ξ from 0 to 1. Moreover, all the coefficients multiplied by the design
variables of equation (2.30) can be collected in a matrix operator A:

x(ξ) = A(ξ)s (2.32)

where

A =
(

(1− ξ)2 0 2(1− ξ)ξ 0 ξ2 0
0 (1− ξ)2 0 2(1− ξ)ξ 0 ξ2

)
(2.33)
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2. Shape optimization

In the sequence, the geometry representation methods are classified
into two general categories, implicit and explicit. In the implicit
representation, the geometry is related to the design variables through
an implicit equation, with the following general form:

x = {x|A(x, s) = 0} (2.34)

In explicit representation, the geometry is explicitly expressed as a
function of the design variables, with the general form:

x = A(s) (2.35)

Note that this classification is rather a notation-dependent definition,
as basically the implicit functions can be written in explicit form and
the other way around. Based on this definition, the example of the
circle (equation (2.29)) is an implicit shape representation and the
example of the 2D Bézier curve (equation (2.30)) is an explicit one. It
is often the case that the A function of the equation (2.35) depends on
the geometry x itself, and a linearization of the geometry representation
function is required. In the following sections some key methods of
shape parametrization are reviewed. More information about different
parametrization techniques can be found in [36, 112].

2.2.1 Implicit representation

As any shape representation method, the goal is to describe and control
the shape of an object in the 3D space with a set of variables. Usually it
is enough if the boundary surface of the object as the interface between
the region filled with the material and the void region is known. Many
implicit representation methods introduce a scalar field in the 3D space,
which has the value zero at the interface, and non-zero in the rest of the
space. There are plenty of suggestions how to construct and vary this
field. The “level set” method [91] and the “phase-field” method [132]
are examples of implicit shape representation. In topology optimization
the geometry is described implicitly, for instance by use of a material
density field which indicates the material-filled or void regions in the
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2.2. Geometry parametrization

space.

Implicit shape representation is used successfully in numerical compu-
tation with complex interfaces and varying geometries. For example, in
the “Volume of Fluid” method (VOF) [49] which deals with multiphase
fluid simulations, the interface of different fluids is defined through a
phase variable. If a free surface water calculation is performed, the
phase variable has the value 1 in the regions filled with water and the
value 0 for the air. The interface is where the inter-phase forces interact
is the surface on which the phase variable switches from 1 to 0. The
"immersed boundary" method is an other example of usage of implicit
shape definition in numerical simulations [83, 100].

2.2.2 CAD

The word CAD stands for Computer Aided Design, which includes any
computer-related technique for geometrical design. However, in the
current document this term refers only to the surface (shape) repres-
entation methods which describe the shape (continuous or discrete) as
a function of coordinates of a finite set of points in the space, called
control points. Since every point on the surface inherits its location
from some control points, changing the position of each control point
would change the shape. CAD functions are defined often piecewise,
which means that the “influence radius” of every control point is limited
to a certain part of the surface.

In industrial computer aided design, Beziér and Spline curves are
standard means and are very well established. NURBS (Non-uniform
rational B-spline) as a generalization of this class of curves is used in
many CAD software as well. In the parametric space, a NURBS (or
spline or B-spline) patch is a rectangular surface with k rows and l
columns of control points. The position of every surface point with
surface coordinates ξ̄ = (ξ1, ξ2) is generated as a weighted sum of the
coordinates of the control points:

x(ξ1, ξ2) = Ai,j(ξ1, ξ2)Pi,j (2.36)
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2. Shape optimization

where Pi,j is the coordinate vector of the control point in the ith row
and jth column. Similar to the shape functions in the Finite Element
Method, the rational basis functions Ai,j are the influence weights of
the control points at every (ξ1, ξ2). These functions are calculated
recursively and as a tensor product of the one dimensional base func-
tions for each parametric coordinate. Depending on the type of curve
(NURBS, etc.) the construction of the basis functions varies. Here, no
deeper formulation of these patches is shown since it is not directly
relevant to this work.

A widely used way to control and change the shape of objects is to
use “morphing boxes”. This technique is also referred to as “free-form
deformation” [75, 117] and is been explored intensively, mainly due
to its applicability in computer graphics [62]. The space around the
optimization surface is spanned by some boxes, e.g. hexahedra. Again
there are some basis functions defined for each box which interpolate
the coordinates of the box corners inside the box (or in the neighboring
boxes in case of higher order shape functions). For shape optimiza-
tion, one can morph different parts of the geometry by deforming the
morphing boxes built around it. Unlike NURBS (or in general CAD)
functions which are used for both defining and morphing the geometry,
morphing boxes are constructed around an already existing geometry
in order to modify its shape. Construction of these boxes, as well as
enforcing a desired level of geometrical continuity at the interface of
two boxes are challenging and there exist morphing packages for shape
optimization of CFD problems e.g. ANSA [94], Fluent, Hyperworks. It
should be noted that construction of the morphing boxes for complex
geometries requires a lot of manual work. Alternatively morphing
boxes can be built as a Cartesian grid over a large domain containing
the whole geometry. Cartesian morphing boxes provide a very poor
parametrization and limited design freedom.

The limited number of CAD (or morphing box) design parameters
allows for the use of zero order optimization algorithms, as well as
direct sensitivity evaluation for gradient based algorithms e.g. finite
differences [50]. The generated geometries inherit the properties of
the initial design, with respect to the order of continuity, etc. as they
are built by the same set of piecewise defined functions. From the
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2.2. Geometry parametrization

mathematical point of view, the optimization problem with CAD para-
metrization does not need regularization since the number of design
parameters is usually relatively small.

In order to do CAD-based shape optimization, a CAD system (or
software, or toolbox) should be included into the optimization process.
The role of this system is to transform the movement of control points
to the surface of the shape at every optimization step. Additionally,
and in the case of gradient based algorithms, the control point sens-
itivities need to be calculated based on the surface sensitivity. Small
numbers of design parameters lead to a restricted design space and the
resulting shape has always the same geometrical characteristics as of
the initial design. Furthermore, the CAD parametrization used for the
geometrical design does not necessarily contain the shape modes which
are influential to the optimization objective. For instance, in order to
design a rectangular surface, it is enough to build a first order (linear)
B-spline surface with four control points. Let us assume that while
optimizing the shape, this surface needs to undergo some curvature
in order to improve the objective function. This curvature cannot be
made by changing the position of the four control points. In such a
case one needs either to deal with the shape modes offered by the
initial CAD model which can restrict the amount of improvement, or
to modify and enrich the CAD functions e.g. by knot insertion, which
requires a manual and probably non-trivial process. The same holds
for the influence of the morphing boxes (their positions, their number,
etc.) in the resulting shapes.

2.2.3 Node-based

An alternative approach for shape definition is to see the geometry
as a continuous surface in the space which has to deform through a
continuous deformation field in order to get to its optimal shape. Here,
compared to previously introduced methods, the shape deformation is
not described by means of a finite set of parameters, but by a continu-
ous spatial field, the "shape deformation" field. The same idea applies
for discrete geometries, which represent the shape by a finite set of
points in the space. In that case the deformation field is defined on the
same discrete space as of the geometry. In other words, the coordinates
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Figure 2.2: Node-based shape definition for continuous and discrete
geometries

of each surface point in the discrete geometry are the design paramet-
ers (figure 2.2). The present work can be categorized as a node-based
method, and therefore the formulation and the properties of node-based
shape optimization are presented in the following paragraphs. Note
that we use the term node-based even for the continuous case (as in
figure 2.2), because every arbitrary point in the continuous surface can
be seen as a "node" as well.

We introduce the following surface curvilinear coordinates system with
ḡ1 and ḡ2 being its base vectors in the 3D case(figure 2.3).

ḡ1 = dx̄

dξ1
, ḡ2 = dx̄

dξ2
(2.37)

Here, vectors defined in 2D or 3D space are noted with an upper
bar. In every optimization iteration, the design surface undergoes a
deformation towards its optimal shape. In such a way, the optimization
iterations can be seen as a pseudo time dimension through which the
design evolves. In other words, every surface particle travels in the
optimization pseudo time on its η(ξ1, ξ2) trajectory curve. The normal
to surface direction ḡ3 = ḡ1×ḡ2 is the “shape relevant” direction because
moving the surface in that direction changes the shape. Neglecting
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Figure 2.3: 2D and 3D surface curvilinear coordinates

the discretization (linearization) error, the tangential directions, ξ1, ξ2
have no influence on the shape, but they affect the surface mesh. Using
the surface curvilinear base vectors instead of the Cartesian coordinate
system, the geometry at every surface point can be decomposed into a
normal and two tangential components:

x̄ = xxī+ xy j̄ + xz k̄ = xt1
ḡ1

|ḡ1|
+ xt2

ḡ2

|ḡ2|
+ xn

ḡ3

|ḡ3|
(2.38)

ī, j̄ and k̄ are the unit base vectors of the 3D Cartesian coordinate sys-
tem in x, y and z direction, respectively. In this work, the calculation
of the surface coordinate system for discrete surfaces is done through a
piece-wise linear interpolation of the nodal coordinates.

Node-based methods offer the largest design space possible for the
optimization of a discrete geometry, since the design space is as large
as the geometry space. However, the very large number of design vari-
ables makes the solution of the optimization problem more demanding.
For instant, zero order methods are almost never applicable, as their
computational cost (number of function evaluations) increases expo-
nentially by the number of design variables. This motivates the use of
gradient-based optimization. Evaluation of the full gradient vector for
a problem with many variables can be challenging as well. The required
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2. Shape optimization

number of function evaluations for calculation of the gradient vector by
use of a direct method such as finite difference is proportional to the
number of design parameters . As the result, sensitivity calculation in
node-based optimization is almost always done by adjoint methods.

Employing the position of discretization points as optimization design
variables not only broadens the space of possible designs, but also brings
practical and procedural advantage to the optimization process. This is
because the discretized problem which is used for numerical calculation
can be directly used for shape optimization as well. Therefore, there
is no need for a CAD tool to be integrated in the optimization loop.
Similar to topology optimization, the optimal design is not influenced
by the way the initial design is produced, and hence the designer does
not need to predict the final shape while setting up the optimization.

Despite all mentioned advantages, node-based methods suffer from
mesh dependency, mesh irregularity and non-smooth shape derivatives
[17, 70, 86]. The reason is that the shape optimization problem is
not well-posed (section 2.3) and therefore the problem needs to be
“regularized”. The next section discusses the regularization more in
depth. Another shortcoming of node-based shape representation is
that the optimal shape, as the solution of the problem, is available
only as a discrete surface. This causes difficulties for inclusion of such
methods in industrial design and production chains, because there is
usually a CAD definition required. Building a CAD geometry based
on the optimal discrete surface should be done either manually, or
by some curve fitting techniques. Note that this problem exists in
geometries produced by topology optimization, morphing boxes or any
other technique with discrete shape functions as well.

2.3 Regularization

It is known from statistics and mathematics that “ill-posed” problems
need to be regularized. Inverse problems are typically ill-posed, par-
ticularly when they have many variables. In mechanics, an inverse
problem is the process of finding the system characteristics, for which
a given response is to be expected. Optimization problems, including
shape optimization are examples of inverse problems in engineering.
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There exists various articles and books on the mathematical analysis of
regularization of ill-posed problems w.r.t. to uniqueness, condition of
stability, etc. Here we present the regularization process from a more
practical and engineering point of view with the focus on node-based
shape optimization problems. Usually CAD parametrized shapes do
not require regularization, because of their limited number of para-
meters. In a node-based optimization problem which deals with many
design parameters an additional regularization treatment is needed [85].

Let us assume the following abstract inverse problem. The operator G
maps x ∈ V onto y ∈W, where both V and W are Hilbert spaces.

Gx = y (2.39)

According to Jacques Hadamard [44], equation (2.39) is well-posed if:

• there exists a solution x for every y

• the solution is unique

• the solution is stable (G−1 is continuous)

The equation is ill-posed (unstable) if it is not well-posed. Regular-
ization methods try to stabilize the solution of an ill-posed equation
system by approximating the inverse operator G−1 by a regularized
operator Rε. ε is called the regularization parameter and in this work
is referred to as regularization intensity. The response y is decomposed
to the response of the regularized solution G(xr) and a noise yn.

y = Gxr + yn (2.40)

The regularization operator should be defined such that for y → 0, one
can find a regularization intensity ε for which

xr = Rεy → x (2.41)
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A natural way to solve an inverse problem is to formulate it as a minim-
ization problem. An example is the least square fit for a series of given
statistical data which uses the minimization of the Euclidean distance.
The solution of equation (2.39) by minimization of an arbitrary norm
of the residual would be:

argm
x
in‖Gx− y‖ (2.42)

Note that transforming the inverse problem to an optimization problem
does not make it well-posed. It is also known from literature that
instabilities exist very often in least square fitting. In general, there
are two possibilities for regularizing equation (2.42): reducing the di-
mensions of the problem to a "small" finite number of variables (section
2.2.2), or adding a penalizing term to the equation. Having in mind
that here the goal is to regularize the node-based shape optimization
problem (without applying extra parametrization), we naturally choose
the second option.

Regularization methods are categorized by the type of the norm they
use in order to penalize the minimization problem of equation (2.42).
A well-known regularization method is Tikhonov regularization based
on the L2 norm. This method is known as ridge regression in statistics
and is commonly used in fields such as image filtering, etc. (e.g. [25]).
In Tikhonov method, the second norm of an operator Λ applied on
the variable x is added to the minimization problem (equation (2.42)).
The solution of the Tikhonov regularized problem in its general form
follows this formula:

argm
x
in(‖Gx− y‖2 + ‖Λx‖2) (2.43)

Construction of a suitable Tikhonov operator Λ can be complicated,
and therefore in a simplified notation, it is replaced by the identity
operator I, and the effect of Λ is compressed in a single scalar value,
the regularization parameter ε.
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argm
x
in(‖Gx− y‖2 + ε‖x‖2) (2.44)

This notation is in fact a constrained minimization problem, which
is formulated by use of the Lagrangian multiplier ε. ε controls how
intensively the solution should be "regularized". So, it cannot be chosen
very small, because then the regularizing effect is very small and the
problem remains ill-posed. On the other hand, when ε is selected to
be very large, the objective function to be minimized is dominated by
the regularization term. In the limit ε→∞, the problem reduces to
minimization of ‖x‖2 with the trivial solution x = 0. It can be shown
that when G is compact 2.44 has a unique solution [63]:

x = Rεy = (GTG+ εI)−1GT y (2.45)

where Rε is the regularized inverse operator with the regularization
intensity ε. The T superscript indicates the adjoint (transpose) operator.
Rε smooths the solution by penalizing large values of the norm ε‖x‖.
The role of the regularization term can be understood more clearly by
Singular Value Decomposition SVD of the Tikhonov operator. Here
the finite dimensional inverse problem is assumed:

Gx = y,G = UΣVT (2.46)

where U and V are unitary matrices (UUT = I) and Σ is a diagonal
matrix. Known from SVD, for a square matrix, the influence of operator
G is decomposed into three sequential operations: a rotation by U,
a scaling by Σ and a second rotation by V. Another geometrical
interpretation of this decomposition is the coordinate transformation
from a basis with base vectors defined by the rows of U (reference
basis) to a basis whose base vectors are defined by the rows of V (target
basis). The entities of the diagonal matrix Σ are responsible for scaling
between the two spaces. Note that the basis are orthogonal since U
and V are unitary. Substituting the decomposition in the Tikhonov
regularized operator leads to:
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Rε = (GTG + εI)−1GT

= (VΣTUTUΣVT + εVIVT )−1VΣTUT

= V(ΣTΣ + εI)−1ΣTUT = VΣ−1
ε UT

(2.47)

The non-regularized inverse operator would have the following single
value decomposition:

R = (UΣVT )−1 = VΣ−1UT (2.48)

Comparing equations (2.47) and (2.48), the regularized inverse operator
Rε has identical rotation operators U and V as the original problem.
The only difference is that the entities of Σ−1 are scaled by a factor as
the following:

Σ−1
εij =

(
Σ2
ij

Σ2
ij + ε

)
Σ−1
ij (2.49)

Scaling the entities of the diagonal matrix Σ is equivalent to the vari-
able transformation discussed in section 2.1.2. There, the optimization
problem was regularized by assuming non-uniform weighting factors
for different dimensions of the domain (design space) V. This process
formulates the inverse problem on a new domain (say Vreg instead
of the original domain, V) so that it is well-posed. Note that a main
source of instability in the solution of an ill-posed problem is that some
coefficients of the operator Σ have extremely small magnitudes (one
would say because G is badly conditioned). This disturbs convergence
of the numerical scheme in prediction of the unknown vector x = G−1y
as Σ would contain entities which are orders of magnitudes greater
than the others. The scaling factor of equation (2.49) which results
from the penalty term ε‖x‖2 in equation (2.44) has a value close to one
when the diagonal term has a large absolute value compared to the reg-
ularization constant Σ2

ij � ε. But when Σ2
ij is very small, adding the

non-zero ε to the denominator prevents Σε to have very large entities.
One can clearly see in equation (2.49) how the regularization intensity
ε modifies the original problem to assure stability. The question of
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what is the ideal ε depends on the specific problem. In most of the
engineering applications of regularization it is not possible to calculate
the optimal ε and therefore it is treated as a solution parameter (input
value) evaluated by trial and error and the experience from similar
problems.

2.3.1 Shape regularization
Similar to many other inverse problems, Tikhonov type regularization
based on equation (2.43) is used for optimization problems as well. The
cost function of the problem is penalized by the regularization term
which is usually presented as a norm:

Jr(x) = J(x) + ε‖Λx‖2 (2.50)

In shape optimization the unknown variable is the geometry x. The
gradient is calculated by differentiation of the original cost function
together with the regularization term. In [85] it is stated that for a
second order problem anything related to the second derivative would
likely work. The Tikhonov shape regularization (penalty) term ‖Λx‖2
can be constructed based on geometrical meanings, e.g. curvature. In
gradient-based shape optimization, an alternative way is to regularize
the problem by filtering directly the shape derivatives (spatial gradient
vector) instead of adding the penalty term into the objective functional.
An example of this type, is the regularization method proposed by
Jameson [57] and later on studies by many others, e.g. [86] and [116].
This method suggests penalizing high curvatures (large second spatial
derivatives) of the shape derivative which can be directly included into
the gradient calculation as a preconditioning operator. This operator
enforces the regularity (smoothness) by letting the shape derivative be
the solution of an elliptic equation, with a given coefficient ε. This type
of filters are "implicit" regularization operators as they act directly on
the gradient operator, and not on its inverse. This method performs
very well and is widely used, particularly in aerodynamic shape optimal
design. This regularization is further discussed in section 3.1.5. In an
other implicit formulation, [125] and [5], assume a pseudo elasticity for
the optimization surface in order to regularize the optimization problem.
In this case, the regularization operator would be the stiffness matrix of
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the 2D structure (i.e. shell) describing the design surface. There is no
principal difference between this method and the later, as the stiffness
of the structure is nothing but a geometrical derivative (curvature in
case of shells in bending) multiplied by the material tensor. Since the
structure is fictional, the material quantities (elasticity modulus, etc.)
are to be set as regularization parameters, equivalent to ε. In [114] the
regularity is imposed as a surface smoothness constraint to the optim-
ization problem. Despite the good control on the mesh quality, the
resulting constrained problem has a higher complexity compared to the
original unconstrained problem, as it is the case for any optimization
problem with inequality constraints.

Alternatively, one can apply the regularization operator directly on
the inverse operator G−1 of equation (2.39) or equivalently on the
right hand side, y. This type of operator is referred to as "explicit"
in contrast to the described "implicit" operators. Clearly the inverse
of an explicit regularization operator can be used as an implicit one.
Explicit filters are used in statistics e.g. for estimation of probability
density function. As one of the most famous techniques, Parzen window
[27, 37, 99] uses a kernel function in order to estimate the unknown
"smooth" distribution, based on a given "non-smooth" distribution (or
data set, or function). Parzen window is a non-parametric technique
and therefore there is no assumption about the unknown variable
following a particular distribution. In [142] it is proven that Parzen
window (explicit smoother) is an approximation of the Least Squares
regularization (implicit smoother). Similar to implicit filtering, one can
use explicit filters for smoothing the sensitivity field. The suggested
method of this work is a kernel-based regularization method based on
Parzen window, and therefore more discussion is followed in chapter 3.

2.3.2 Mesh regularization

As mentioned in 2.2.3, neglecting the discretization error, only the
normal-to-surface movement of the nodes can change the geometry.
Therefore usually the normal-to-surface coordinate of each point ḡ3
is considered as the design variable. The regularization approaches
mentioned in the previous section were also meant to provide a stable
shape optimization, independent of the surface discretization. However,
modifying the coordinates of the nodes in the normal direction affects
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the surface mesh. This can be a limiting factor in varying the design,
as the discretization quality is necessary for a stable, and accurate
numerical scheme. Therefore, the surface discretization shall be regu-
larized within the optimization as well. This section first explores the
problem of mesh distortion in shape evolution and then reviews the
common treatments. The proposed remedy is presented in chapter 3.

In this section, for the sake of simplicity, the shape optimization of a
curve in the 2D space is studied (figure 2.3). As the surface deforms
within the optimization loop, its discretization elements deform as well.
This can easily lead to badly distributed mesh density, distorted and
even overlapping elements. The attempt to bring the surface discretiz-
ation back to its initial situation is often called in-plane regularization
[57, 128].

The major source of mesh distortion in shape optimization is the change
of (determinant of) the Jacobian dx̄

dξ
. A non-uniform change of the

Jacobian leads to a non-uniform change in the mesh density. For the
case of a surface in the 3D space, in addition to the mesh density the
element shapes vary as well, since the variation of Jacobian takes place
in both directions.

Generally speaking, moving the curve towards its positive (negative)
curvature direction makes dx̄

dξ
smaller (larger). This phenomenon is

observed in shape derivative calculation of surface defined objectives
as well, where the normal vector (ḡ2 in 2D and ḡ3 for 3D) has to be
differentiated [115]. Figure 2.4 shows shrinking of the shape, as it is
moved uniformly in the direction of positive curvature. This shrinkage
depends on the curvature κ and the step length |∆x̄|. The Jacobian in
this case is the following:

dx̄k+1

dξ
= dx̄k

dξ

(
1− |∆xn|

Rk

)
, Rk = 1

|κ̄|
=
∣∣∣∣dḡkdξ

∣∣∣∣−1

(2.51)

where x̄k and x̄k+1 correspond to the geometry at pseudo time instances
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Figure 2.4: Demonstration of surface mesh density variation within an
update step
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Figure 2.5: Top: change in the mesh density by a non-uniform update
length, bottom: considering the in-plane direction can maintain the
mesh quality
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Figure 2.6: Top: change in the mesh density in regions of varying
curvature, bottom: considering the in-plane direction can maintain the
mesh quality

k and k + 1. As curvature and the step length are the parameters
changing the determinant, there exist two scenarios in which the mesh
density (and the element shape) is deteriorated. First, when the shape
update takes place at regions with varying curvature, and second, when
non-uniform shape updates are applied on curved surfaces. Simple
sketches of figures 2.5 and 2.6 visualize the mentioned phenomena.
The issue of surface mesh quality urges a targeted motion of the
surface mesh in the tangential directions, so that the mesh quality is
preserved, but the original shape optimization problem is not affected.
Preserving the mesh quality after shape variation can be regarded
as an additional optimization problem to be solved in parallel to the
main shape optimization problem. Therefore, one can enhance the
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2. Shape optimization

optimization problem by an augmented cost function Ja which includes
the mesh quality term Jm as a function of the tangential coordinates.
As mentioned before, the original optimization functional depends only
on the normal component. Therefore:

Ja (xt1 , xt2 , xn) = J (xn) + Jm (xt1 , xt2) , (2.52)

∂Jm

∂xn
= 0⇒ ∂Ja

∂xn
= ∂J

∂xn
. (2.53)

This is a penalty notation similar to the one used in Tikhonov regular-
ized cost function (equation (2.50)). However, the big difference here is
that the original cost function and the mesh cost function are defined
on different domains. As the result, two different problems for the mesh
and the optimality need to be solved. These solutions are done either
simultaneously or in a staggered manner. Note that for large shape
variations the linearity assumption of the surface coordinate system
is not accurate anymore and the coupling between xn and xt shall be
considered. A meaningful example for the regularity indicator Jm can
be the relative mesh density.

In a staggered approach, after each update step (or few steps) an
in-plane mesh regularization step is performed [33, 70, 127, 128, 143].
The aim of mesh regularization is to modify the surface coordinates of
the points ξ̄ = (ξ1, ξ2), such that a mesh quality functional formulated
in the physical space is minimized. Even though sequential use of in-
and out-plane regularization forms a strong shape update strategy,
separate treatment of normal and tangential directions requires an ac-
curate definition of the surface normal, which is generally not available
in discrete free-form geometries. This is an important drawback of
this method, as the approximated tangential coordinates are highly
sensitive to noisiness or curvature of the discrete surface. This limits
the robustness of this staggered approach, particularly in complex geo-
metries with sharp corners, etc. Moreover, the in-plane regularization
adds to the computational cost, particularly if a strong regularization
with implicit mesh correction procedure is applied [46, 127, 128].
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As an alternative, one can define both functions J and Jm on the
complete set of variables (normal and tangential directions), and to
apply the Jm as an inequality constraint to the minimization of the
original cost function J , similar to the mentioned process for shape
regularization in section 2.3.1. This formulation triples the size of the
optimization problem and makes it more complex due to the additional
constraint. However the method has shown success in 3D structural
optimization [114].

The proposed method in chapter 3 performs the mesh regularization step
simultaneously with the shape optimal design, since by construction
the design variables take into account the mesh regularity condition.
The update direction includes a tangential direction which provides an
almost constant mesh density.
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Chapter 3

Vertex Morphing

In this chapter, a novel node-based formulation for shape optimization,
The Vertex Morphing Method, is presented. The essence of the method
is the filtering of the sensitivity field as well as the shape update vector
by help of a suitable parametrization. Unlike most of the previous
works on node-based shape optimization, the filtering (regularization)
operations are derived consistently from the chain rule of differentiation.
This formulation is nothing but an elaborate variable transformation
(explained in section 2.1.2) enhanced with a suitable dimensional reduc-
tion for mesh quality regularization. In terms of the methods described
in section 2.3, the regularization approach is an explicit kernel-based
filtering (Parzen) which aims in suitable scaling of the parameters in
each optimization iteration in order to avoid numerical instability.

The method is explained first in a one dimensional formulation, so that
the complexity of the expressions does not distract the attention from
the main idea. Moreover, the mesh quality problem does not appear in
one dimensional shape optimization which allows for separate analysis
of the shape regularization. After that, some characteristics of the
method are presented and the proposed method is compared to other
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alternatives, w.r.t. the filtering, etc. At the end, the three dimensional
formulation is presented, in which the mesh regularization operator is
merged into the Vertex Morphing parametrization.

3.1 1D Vertex Morphing

The goal is to find the optimal design surface field x(ξ) ∈ V and
V : (−1, 1)→ R, for which the state equation F (x,w) = 0 is satisfied
and the objective function J(x,w) is minimized. ξ is the surface
coordinate and w is the state variable. The surface is controlled by a
field s(ξ), s ∈ V (figure 3.1) through a functional, A(s, ξ) = x(ξ),A :
V→ V. So the surface geometry at ξ = ξ0 is found as,

x(ξ0) = A(s, ξ0). (3.1)

Here, we assume that A is linear and formulate it as the inner product
(kernel):

A(s, ξ0) =
∫ 1

−1
A(ξ0, ξ)s(ξ)dξ,A : R̄2 → R. (3.2)

Having in mind this relation, the geometry and its variation at ξ = ξ0
are:

x(ξ0) =
∫ 1

−1
A(ξ0, ξ)s(ξ)dξ (3.3)

δx(ξ0) =
∫ 1

−1
A(ξ0, ξ)δs(ξ)dξ (3.4)

In fact A(ξ0, ξ) is the derivative of x(ξ0) w.r.t. s(ξ), because,

δx(ξ0) =
∫ 1

−1

dx(ξ0)
ds(ξ) δs(ξ)dξ (3.5)

and comparing equation (3.4) and (3.6), it is clear that

A(ξ0, ξ) = dx(ξ0)
ds(ξ) (3.6)

For gradient based shape optimization, one needs to calculate the
sensitivity of the objective w.r.t. the design:

dJ

ds
= ∂J

∂s
+
∫ 1

−1

∂J

∂x(ξ)
dx(ξ)
ds

dξ. (3.7)

40



3.1. 1D Vertex Morphing

����

����

�1 1

�

��

��

�1 1

�

1 2 3 	.. .

Figure 3.1: Top: the geometry x and design control field s as functions
of surface coordinates ξ, bottom: the discrete geometry vector x and
the design vector s

As s is the shape control field, ∂J
∂s

= 0. ∂J

∂x(ξ) is the sensitivity of

the objective to the shape variation. Considering equation (3.7), the
sensitivity of the objective w.r.t. the design at ξ = ξ0 can be written
as,

dJ

ds(ξ0) =
∫ 1

−1

∂J

∂x(ξ)
dx(ξ)
ds(ξ0)dξ. (3.8)

Replacing equation (3.6) in (3.8) the sensitivity is calculated as

dJ

ds(ξ0) =
∫ 1

−1

∂J

∂x(ξ)A(ξ, ξ0)dξ. (3.9)

There are several possibilities to interpret the procedures of equa-
tion (3.4) and (3.8) together with the kernel function A. The most
obvious is to see it as a smoothing operation for stabilizing the nu-
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merical optimization (section 2.3). Also, one can see it as a filtering
procedure in order to suppress higher oscillating geometrical modes
when generating the geometry from the control field. That is the point
of view which is favored here by Vertex Morphing and also by others
as e.g. [10] following the idea of dealing with non-convex optimization
problems. Then the filtering operation is used to steer the optimizer
to local minima which are characterized by the selected modes of the
applied filter. Finally, when the control field s and the geometry x
are of the same dimension, equations (3.4) and (3.8) represent nothing
more than a re-parametrization of the original problem by a variable
transformation from x to s, in which the inverse optimization problem
(more precisely the gradient operator) is better conditioned. That view
tells that by the filtering operations presented in equations (3.4) and
(3.8) all optimal solutions (local and global) will not be modified and,
indeed, filtering (or smoothing) is a procedural mean as indicated just
before.

3.1.1 Discretization

In numerical shape optimization, usually one deals with discretized
geometries. Therefore, we seek the vector of nodal coordinates x =
[x1, x2, ..., xn],x ∈ Rn which defines the discretized design surface
(figure 3.1). Here, the control field has the same discretization as the
geometry. So there exist n design parameters s as well. Also, one can
choose different discretizations for x and s. For instance, using a coarse
grid for s is equivalent to having a CAD control polygon defined by
some few control nodes. This will be later presented in this chapter
through an example. Again, J(x,w, s) has to be minimized with the
discrete state equation as equality constraint F (x,w, s) = 0, where w
is the vector of state variables. Equivalent to equation (3.2), applying
the A operator function to a discretized control field, the operator
matrix A is defined which linearly maps s onto x:

x(ξi) = xi = Aijsj (3.10)

δxi = Aijδsj (3.11)

dJ

dsi
= dJ

dxj

dxj
dsi

= Aji
dJ

dxj
= ATb. (3.12)
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The transpose of the operator matrix AT , maps the nodal sensitivities
bj = dJ

dxj
back onto the control parameters. To conclude, A is used

twice. In the context of the filtering idea, first, for forward filtering of
the control parameters s or their variations δs to generate the geometry
x or its variation δx

δx = Aδs (3.13)

and, second, for backward filtering of the nodal sensitivities from the
geometry to the design control using the transpose of A:

dJ

ds = ATb (3.14)

Some details about the construction of A can be found in [12]. It
appears that the operator matrix A is symmetric for most of the
reasonable kernel functions which explains the forward filtering of sens-
itivities as an alternative. Also, for those cases the matrix A can be
proven to be of full rank and invertible.

As a final observation one can see from the combination of equa-
tion (3.13) and (3.14) that the design control field must not be resolved
because it cancels out, obviously. As a matter of fact, the design
control field s and its discrete parameters s deal as a mean to establish
the theory of Vertex Morphing. This is a big advantage regarding
the implementation compared with standard CAD and other shape
morphing methods because the explicit treatment of control parameters
and the related data structures can be omitted by applying the Vertex
Morphing method.

3.1.2 Optimal shape
In order to study the effect of the geometry description in terms of s
on the solution of the shape optimization problem, let us look at the
second order Taylor series expansion of the objective function,

J̃ = J + (∇sJ)T δs + 1
2δs

THsδs (3.15)

∇sJ and Hs are the gradient vector and the Hessian matrix respect-
ively. The s subscripts show that the operators act w.r.t the control

43



3. Vertex Morphing

parameters s. Solving the stationary condition ∇sJ̃ = 0 for δs gives,

δs = −H−1
s ∇sJ (3.16)

Now we reformulate equation (3.16) in terms of x. Assuming A to be
invertible and using δs = A−1δx,

δs =
(
−ATHxA

)−1 AT∇xJ
⇒ δx = A

(
−A−1H−1

x A−T
)
AT∇xJ = −H−1

x ∇xJ .
(3.17)

As it can be seen, solving the shape optimization for the design para-
meters s results exactly to the solution of the problem with x as design
variable. Assuming the problem to be convex, there is no influence from
the choice of A on the optimal design, and the design space is as broad
as the discrete geometry allows for. In other words and as mentioned
before, the role of the full rank matrix A is just to re-parametrize the
geometry by a variable transformation (scaling). It is clear that this
effect can only be exploited by first order or quasi-Newton optimization
algorithms, as it cancels out if the full second order information is used.
As a matter of fact for the applications reported in chapter 6, very
good experience had been made with simple steepest descent techniques
using the filter to converge to intentional selected local minima.

3.1.3 Path to optimum

Independence of the optimal solution of the filtering can be seen in the
simple shape optimization example of figure 3.2. The objective is to
minimize the difference between the shape and a discrete target curve
xtarget,

J = ‖xtarget − x‖1 =
40∑
i=1

∣∣xtargeti − xi
∣∣ (3.18)

The steepest descent method with an adaptive step size is used. A is
constructed based on a piecewise linear hat filter function (equation
3.19). The problem is solved for two filter radii r = 3 and r = 6.
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Figure 3.2: Evolution of the design curve throughout the optimization
with two filter radii, 3 (top) and 6 (bottom)

Nij =


1
r
−
|i− j|
r2 , |i− j| ≤ r

0 , otherwise
(3.19)

In the first few iterations of the optimization, the variation of the
geometry takes place in shape modes with wavelengths equal or lar-
ger than the filter radius. That is the reason why the case with the
smaller filter radius gets closer to the sharp edges of the target curve
in less iterations. Of course, as one proceeds iterating, both methods
monotonically reduce their difference to the target shape. Moreover,
after many iterations, independent of the choice of filter, the design
curve lays perfectly on the target curve despite its sharp edges. As
a conclusion, the node-based methods preserve the dimension of the
design space and the optimal solution, but affects the treatment of
basic shape modes during the design evolution.
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3.1.4 Selected local minimum
As explained in section 3.1.3, filtering affects the evolution history, but
not the solution of convex optimization problems. However, almost
all engineering optimization problems are non-convex. In this case,
the established relation between the mesh points (filtering) guides the
solution towards a desired local minimum which contains wavelengths
larger or in the same range as the influence size of the filter function.
This phenomenon is repeatedly seen in engineering node-based shape
optimization and since is not the major topic of focus in this paper, we
suffice to illustrate it with the following one dimensional example.

Consider a shape optimization problem with the same design space
as the previous examples. This time, there exist two target curves.
The objective is to get as close as possible to either of those curves
(figure 3.3). Let us define the objective function as following:

J =
40∑
i=1

∣∣∣xtarget1i − xi
∣∣∣ ∣∣∣xtarget2i − xi

∣∣∣ (3.20)

This is a simple way to bring the non-convexity nature to this basic
one-dimensional example. The existence of two local minima for each
design variable xi can be seen in figure 3.4. In this figure, the objective
function values are plotted over different values of x for i = 13, 19, 20.
The objective of the optimization problem is the sum of contributions
of all the sections.

By performing steepest descent optimization with adaptive step size as
in the previous example, one can direct the solution to a certain local
optimum by the choice of the filter radius (figure 3.3). Smaller filters
lead to locally optimal shapes with smaller features and high curvatures,
whereas large filter radii seek for shapes with large geometrical modes.

3.1.5 Explicit and implicit filters
As discussed in section 2.3, solving ill-posed problems requires regular-
ization (filtering). Dealing with many design variables, almost every
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Figure 3.3: Three local minima captured by filter radii from top to
bottom: r = 1, r = 2 and r ≥ 4
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Figure 3.4: Contribution of three sample sections to the objective, each
section has two minima

47
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node-based shape optimal design requires a filtering step [57, 70, 86].
From the geometrical view point, filtering prevents non-smooth geomet-
ries and mesh dependency in design [104, 131]. Moreover, the filter size
is used as a design handle in order to control the minimum curvature
or wave length in the shape update vector. In section 2.3 regularization
for shape optimization was classified in two general types, explicit and
implicit. As the names imply, the explicit filtering operator is applied
on the raw (known, noisy) field, whereas the implicit operator is applied
on the smoothed (unknown) field.

A well established and commonly used implicit filtering method in
adjoint shape optimization is Sobolev-gradient smoothing [57, 60, 86,
116]. This method suggests the filtered shape variations to be the
solution of an elliptic equation,

(I − ε∆)δx̃ = δx. (3.21)

δx̃ is the filtered shape variation, δx is the raw shape variation and
ε is an arbitrary scalar penalizing high curvature in shape variation.
Applying the same idea to the shape derivatives of a node-based shape
optimization leads to a similar equation. Calculation of the “curvature
operator” ∆, which is the second derivative of the geometry w.r.t.
to surface coordinates, requires knowing the topology of the surface
mesh and results in a "smoothing tensor" which can be used as a
pre-conditioner to the sensitivity equations. As discussed before, this
filtering can be mechanically interpreted as well, as the elliptic equation
solved is similar to a linear elasticity problem.

In explicit filtering, the regular field is obtained by convolution of
the raw field x with a kernel (section 2.3). In the discrete case, the
integral converts to a weighted summation which can be represented
as a matrix vector multiplication. That matrix is the filtering operator.
The fact that this operator is constructed directly (explicitly), and
not implicitly by inverting an other operator (e.g. curvature) is from
the computational and implementation point of view advantageous.
Similar to the prove about the equivalency of the kernel regularization
and the least squares Tikhonov regularization in the field of statistics
[142], Stück and Rung [131] show that explicit filtering with a Gaussian
kernel (equation (3.27)) is first order equivalent to the implicit Sobolev-
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gradient filter for shape optimization. The standard deviation of the
kernel σ (which can be seen equivalent to the filter radius) corresponds
to ε in equation (3.21).

Implicit and explicit filters are very similar, as they both provide
smoothness by establishing a distance-based relation between the indi-
vidual nodal values. The inverse of the implicit filtering operator of
equation (3.21), (I−ε∆)−1 can be regarded as an explicit filter ((I−ε∆)
must be invertible). In Vertex Morphing, the A matrix plays almost
the same role as the explicit filtering operator. The only difference is
that in addition to the shape derivative filtering, the transpose of that
matrix is used to filter the geometry variation.

It was demonstrated by the simple optimization problem of section 2.1.2
that ideally the Hessian matrix should be used as the filtering operator,
which upgrades the solution strategy to a second order one. However,
finding such a filtering operator requires evaluation of the Hessian mat-
rix itself. Some of the proposed filters try to provide an approximation
of that ideal operator by analyzing the sensitivity equations, e.g. in
[116], which is possible only if the physical equations are very simple.
As a result, the effectiveness of the filtering operator strongly depends
on the nature of the governing equations and a general comparison of
different filtering operators is not possible.

The common point in all mentioned filtering methods is that they
are tuned by a single scalar value, “filtering coefficient” (ε in equa-
tion (3.21), standard deviation σ of the Gaussian kernel, filter radius r
of a hat function, penalization factor ε in Tichonov regularization of
equation (2.43), etc.) which indicates the “filtering intensity”. Practic-
ally, the choice of the filtering method itself (implicit, explicit or Vertex
Morphing) is not as decisive as the choice of the filtering coefficient.
This is demonstrated in the following 1D example. Here, the goal is
again to reach the target curve from an initially flat geometry. The
objective function is the sum of squares of the distance of each point
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Figure 3.5: Improved shape after 25 optimization iterations. Influence
of ε for implicit filtering (bottom) and the standard deviation σ for
Vertex Morphing (top)

to the target curve:

J =
40∑
i=1

(
xtargeti − xi

)2 (3.22)

The target curve is selected such that it includes 3 different geometrical
modes. The objective is a quadratic equation withHx = I and therefore
the solution can be predicted with a single descent step together with a
line search. The purpose of this study is to observe the resulting shapes
by different smoothing methods and filtering coefficients. Otherwise,
in such a problem, filtering would decelerate the solution as it changes
the ideally scaled initial Hessian.

Similar to the 3D examples presented in chapter 6, the steepest descent
algorithm with a fixed step size is used. The shape optimization is per-
formed for 25 iterations, once with an implicit filtering (equation (3.21)),
and once with Vertex Morphing based on a Gaussian kernel. The reason
to select a Gaussian filter function is for the sake of consistency with
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Figure 3.6: Optimization convergence history with fixed step steepest
descent. Influence of ε in implicit filtering (left) and the standard
deviation σ in Vertex Morphing (right)

the function used in chapter 6. Otherwise for example a hat filter
would qualitatively perform similar to the selected Gaussian one. As
it can be seen in figure 3.5, depending on the choice of the filtering
coefficient, the resulting shape includes either one, two, or all three
modes of the target curve. This is the case for both filtering techniques,
and the slight difference seen in the geometries is due to the selection
of different filtering operators. Figure 3.6 shows in semi-logarithmic
diagrams the objective value in every iteration step for different filter
coefficients (here ε and σ). Again, what rules the optimization history
is the choice of the coefficient. Due to the optimization algorithm and
the fixed update step, in both methods, after the convergence in shape
modes larger than a certain size, the improvement gets very slow. This
would help to restrict appearance of smaller shape modes in the design.
For further convergence of the optimization problem, the choice of
the filter function is decisive and has to be done according to the the
governing state equation.
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Figure 3.7: Design features of the initial geometry are preserved until
late stages of shape optimization and will vanish as the the latest

3.1.6 Design features

A substantial aspect in industrial shape optimization is preservation of
design features. These features usually consist of sudden transitions
in the geometry, such as sharp corners at the intersection of different
patches. It is often desired to morph the shape smoothly as a whole,
respecting those features, rather than smearing them out, even though
those features usually do not exist in the optimal shape.

In node-based optimization with filtering, the feature lines are preserved
in the early shape updates since in those steps the update takes place
only in large wavelengths. This can be seen in the example of figure 3.6,
in which for every filtering coefficient, the curve has a clear slope reduc-
tion at a certain iteration. At this point the large scale shape modes
are resolved. After that, due to the chosen optimization algorithm, the
small wavelengths are resolved in a slower rate compared to the one of
the large scales. This brings the feature keeping property to the method.

The mentioned property is visualized in the example of figure 3.7. Here,
the goal is again to get as close as possible to the smooth target curve.
There exists a kink at i = 20 as a design feature. In the first iterations,
the shape gradually evolves towards the target curve, with almost
untouched design feature. At iteration 24, although the whole shape
nearly lies on the target curve, the feature is still perfectly preserved.
This shape, which is of course slightly away from the optimum, is
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usually the industrially preferred geometry. Evidently, if one continues
iterating, the feature would eventually disappear and the curve would
perfectly lie on the target.

3.1.7 Topology filtering

The shape (or sensitivity) filtering in shape optimization is equivalent
to the density filtering used in topology optimization. In the context
of topology optimization, filtering is discussed in even further details
which is motivated by the fact that clear separation fronts between
the material phases should be generated. The original approach was
proposed by Sigmund [118] which performs a “sensitivity filtering“ as it
filters the gradient of the objective functional w.r.t. the material density.
That technique is one-to-one equivalent to the shape derivative filtering
in shape optimization. Some years later, [15, 70] and Sigmund himself
[119] suggested to filter the material density instead of the sensitivity
field. Writing the modified Sigmund filter in terms of equation (3.4)
would be:

ρ(ξ0) = exp
(∫ 1

−1
A(ξ0, ξ) ln(s(ξ))dξ

)
(3.23)

3.1.8 Link to CAD

The proposed shape control method assumes a design space with the
same dimension as the space of geometrical parameters. Each design
entity influences linearly all (or some) of the geometrical parameters.
This is very similar to the CAD parametrization. The only difference
is that CAD parametrization of discrete surfaces has often much fewer
parameters compared to the geometrical quantities. This is equivalent
to a non-square A matrix, which reflects the dimension reduction from
the number of geometry to control parameters and where the spline
base functions take the role of the filter defining the minimum wave
lengths of the generated shape. In such a case, equation (3.17) is
not valid anymore, and the final result is clearly dependent on the
choice of parametrization. Having that in mind, one can see the CAD
parametrization as the case in which the control field s of figure 3.1 is
discretized with a coarser mesh compared to the one of the geometry
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Figure 3.8: 1D example, with four different grid sizes for the control
field

field x. In this way, each column of the non-square A matrix is con-
structed depending on the desired CAD function, e.g. NURBS.

In order to study the influence of the discretization of the control field,
the following simple example is presented. Similar to the previous
examples of this chapter, a 1D best fit optimization problem is solved.
This time a very fine discretization for the geometry is selected, so
that the influence of the discretization of the control field is better
observed. Four different grid sizes are tested for the s field. The target
curve is designed such that it can be produced by piecewise linear
interpolations of coordinates at the discretization points of the finest
grid, ”grid 0“ (figure 3.8). The filtering is done by a hat function whose
radius is chosen to be equal to the size of the mesh length for s. For
all four cases the optimization was performed by steepest descent until
convergence. Figure 3.9 shows the optimal geometry generated in each
case. The solution of grid 0 resembles exactly the target curve, as the
number of control points is the same as the number of points used
to build the piecewise linear target curve. The solution of the other
cases is the best cubic B-Spline fit for the target curve with the given
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3.1. 1D Vertex Morphing

Figure 3.9: The converged best fit optimization, with 17, 9, 5 and 3
discretization points for s

number of control points, 9, 5 and 3.

Except CAD-based and node-based approaches, there exist in shape
(and topology) optimization other methods which make use of an ad-
ditional field in order to describe the geometry, e.g. level set [91] and
phase field [132]. Those methods implicitly represent the geometry of
the optimization surface by use of a background field which is defined on
the 3D space. However, in Vertex Morphing the geometry is explicitly
represented by the control field which is defined on the optimization
surface itself.
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3. Vertex Morphing

3.2 3D Vertex Morphing

In this section, an enhanced version of the shape control method dis-
cussed in section 3.1 is introduced. As explained before, the main idea
of the Vertex Morphing method is to formulate the shape optimization
problem in the control space instead of the geometric space. The
smooth shape transition (section 2.3.1) and surface mesh regularization
(section 2.3.2) are tackled simultaneously. The out-plane update is
dictated by the optimizer based on the gradient vector and shall be
smoothed (filtered). In parallel to that and for the in-plane regular-
ization problem, finding the tangential update component requires
prediction of the mesh density distribution after applying the out-plane
update. It is desired that the regularizing term is included directly
in the shape control operator A for sake of consistency, efficiency and
robustness. In other words, instead of including the surface mesh
quality criterion as a supplementary optimization problem into the cost
functional, the optimum tangential design velocity is predicted as a
function of the current geometry and current shape derivative, through
the shape control operator.

3.2.1 Dimensional reduction

The control field s is discretized by the same discretization as that of
the geometry x. However, unlike the one dimensional case, in 3D, s and
x do not have the same dimension. The A operator projects the three
dimensional geometry field (vector field) onto the one-dimensional con-
trol field (scalar field). This dimensional reduction (projection) enforces
weakly the mesh density conservation to the shape variation problem.
Hence, for the discrete problem, A of equation (3.10) is not a square
matrix anymore. Note that the original shape optimization problem
has as many design variables as surface points (and not 3D surface
coordinates), since the shape derivative itself is a scalar field. Therefore
there is no restricting constraint enforced to the shape optimization
problem.

Similar to equations (3.4) the 3D geometry variation at every point
δx̄(ξ̄0) is related to the variation of the control field δs through an
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integral over the optimization surface Γ:

δx̄(ξ̄0) =
∫

Γ
Ā(ξ̄0, ξ̄)

∣∣∣ dξ̄
dx̄t

∣∣∣δs(ξ̄)dΓ (3.24)

where

Ā(ξ̄0, ξ̄) = N
(
‖x̄(ξ̄0)− x̄(ξ̄)‖2

) ḡ1 × ḡ2

|ḡ1 × ḡ2|
(3.25)

and

x̄t = (xt1 , xt2), ξ̄ = (ξ1, ξ2), x̄ = (xx, xy, xz) (3.26)∣∣∣ dξ̄dx̄t ∣∣∣ is the determinant of dξ̄
dx̄t

. Unlike in equation (3.4), the Ā operator
of equation (3.24) is a 3D vector with one component for each spatial
coordinate. In equation (3.25) the base vectors are evaluated at the
second parameter of the Ā operator, i.e. at ξ̄. N is an arbitrary filter
function, here motivated by the probability density function:

N(γ) = 1√
2πσ

e−( γ
2

2σ2 ) (3.27)

σ is the filtering intensity (filter radius) and assumed to be constant,
and γ is the Euclidean distance to the center of the filter. Including
the surface normal direction in Ā of equation (3.25) is equivalent to
averaging the normal surface direction scaled by the shape derivative.
This makes the shape transition to take place smoothly in all three
spatial directions without enlarging the optimization problem by a
factor of 3. The integral of equation (3.24) is approximated using the
same discretization as of the surface geometry.

In the discrete geometries, the most efficient and robust way to calculate
the integral of equation (3.24) is to express it as a sum over the weighted
nodal values i.e. trapezoidal rule, as it is done in most of explicit filtering
techniques in shape and topology optimization. In other words, the
integration is done in absence of δs, which is further multiplied to the
approximated integral. This method is referred to as "post-scaling" and
is explained in [12].
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3.2.2 Normal and tangential components
One can study the behavior of the method by decomposing the shape
variation vector into in-plane and out-plane components. We present
this decomposition only to compare the method with the ones with
separate in- and out-plane regularization steps. For the implementation
it is enough to construct the discretized Ā operator which includes
both normal and tangential directions.

δxn(ξ̄0) =
∫

Γ

ḡ3(ξ̄0)∣∣ḡ3(ξ̄0)
∣∣ · ḡ3(ξ̄)∣∣ḡ3(ξ̄)

∣∣δs(ξ̄)N (‖x̄(ξ̄0)− x̄(ξ̄)‖2
) ∣∣∣ dξ̄
dx̄t

∣∣∣dΓ

(3.28)

δxti(ξ̄0) =
∫

Γ

ḡi(ξ̄0)∣∣ḡi(ξ̄0)
∣∣ · ḡ3(ξ̄)∣∣ḡ3(ξ̄)

∣∣δs(ξ̄)N (‖x̄(ξ̄0)− x̄(ξ̄)‖2
) ∣∣∣ dξ̄
dx̄t

∣∣∣dΓ , i = 1, 2

(3.29)
This decomposition shows that the shape relevant (normal) component
is evaluated by convolution of δs with a kernel N and additional con-
sideration of surface curvature through a multiplier ḡ3(ξ̄)ḡ3(ξ̄0). In the
case of a constant curvature and uniform δs, the in-plane term δx̄t is
zero as the contributions of all the surrounding points around ξ0 cancel
out each other. However, if the surface curvature varies in the vicinity
of ξ0, the term ḡi(ξ̄0)

|ḡi(ξ̄0)| ·
ḡ3(ξ̄)
|ḡ3(ξ̄)| amplifies the contribution of the regions

of higher curvature to the tangential direction. This leads to a δx̄t in
the opposite direction of the curvature gradient. As the result, mesh
points are pushed away from the higher to lower curvature regions.
Parallel to that, regions with smaller δs in a positive curvature would
attract the surface points from the regions with larger δs due to their
higher contribution to δx̄t. The length of the tangential update com-
ponent δx̄t(ξ̄0) is proportional to the variation of the surface curvature
and the design update field δs. Therefore, in the prediction of the
tangential update term, both mesh deterioration parameters mentioned
in section 2.3.2 are considered. Here, compared to the equation (2.51),
it is not possible to predict the exact mesh density change as δxn is
not known. We assume that δxn and δs fields have comparable large
scale distributions. This is not a very poor approximation as here the
δxn is nothing but the filtered δs. To summarize, in Vertex Morphing
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3.2. 3D Vertex Morphing

the suitable tangential update component is predicted such that the
updated surface x̄k+1 has a similar dx̄

dξ̄
distribution as of the previous

step x̄k. This leads to an indirect preservation of the mesh density for
shape optimization of discrete surfaces, as it is practically proven by
various challenging applications solved by this method.

The sensitivity vector is similarly calculated based on equation (3.8)
as:

dJ

ds(ξ̄0)
=
∫

Γ
Ā(ξ̄, ξ̄0) dξ̄

dx̄

∂J

∂x̄(ξ̄)
dΓ (3.30)

One should notice that in contrast to equation (3.24), this time the
second parameter of the A operator is ξ̄0 and therefore the base vectors
of equation (3.25) have to be evaluated at ξ̄0.

Basically, the shape sensitivity matrix A is a large and dense matrix.
However, one can localize the radius of influence in equation (3.27) by
applying a top-hat filter function on N , which leads to a sparse A.
For calculation of the shape derivative, there is no need to calculate
and store the matrix at once and individual rows can be sequentially
calculated and used in a matrix-free algorithm.

3.2.3 Example
The performance of the method in real industrial examples is shown
in section 6. Here, in order to evaluate the proposed method only
w.r.t. the surface mesh quality, a simple shape optimization example
of a 2D ducted flow is presented (figure 3.10). The objective is the
power loss (explained in section 4.3, equation (4.27)) and the curved
part of the upper wall is the design surface. As one can guess, the
optimization tries to clear the clogged section of the duct by moving the
curved part upward. In node-based shape optimization reduction of the
surface curvature is a challenge as it easily leads to overlapping elements.

Three different cases were studied. The first case is a “standard” node-
based procedure with explicit filtered shape derivatives and no in-plane
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Figure 3.10: 2D example, ducted flow

treatment. The second case is similar to the first one, but with an
additional surface mesh in-plane regularization [128] after each optim-
ization step. The third case is solved by Vertex Morphing. Figure 3.11
compares the mesh density conservation in the first 25 optimization
iterations, at which the duct wall is almost flat. The graphs visualize
the worst ratio of the surface element to the initial mesh normalized
by the length of the optimization surface, as an indicator of the worst
mesh density. Therefore the value 1 indicates the perfect mesh density
conservation and 0 is the collapse of the surface mesh.

In the first case, the mesh gets distorted after a few steps and the
optimization cannot be continued. Adding in-plane regularization of
the surface mesh would keep the surface mesh density (and quality)
almost at its best. However, a linearized PDE on the optimization
surface has to be solved at every iteration. This brings computational
cost and possibly lack of robustness if the surface is not smooth or
the mesh quality is low (as it is the case in many industrial examples).
Vertex Morphing offers a relatively good mesh density preservation
by including the in-plane update prediction in the link between the
design variables and the geometry. The computational cost is the
same as the case without any in-plane treatment, and it can perform
well for non-smooth surfaces and low quality meshes. The in-plane
term approximation is more accurate for larger filters as it is seen in
figure 3.11. It should be added that neither Vertex Morphing, nor the
proposed in-plane regularization methods can unconditionally guaran-
tee that the surface mesh always stays admissible through the complete
optimization procedure.
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Figure 3.11: Comparison of the surface mesh density conservation for
two filter radii (the filter of the bottom graph is 1.6 times larger of the
top one.)
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Chapter 4

Numerical flow simulation

This chapters discusses the other module in the shape optimization pro-
cess, the numerical simulation of the physical phenomenon. It is clear
that node-based shape optimization can be done only in combination
with a gradient-based algorithm because of the large number of design
variables. For the same reason, evaluation of the sensitivities in a black
box manner, e.g. finite differences is not possible, and one should
numerically solve the adjoint state equations. Therefore, in order to
develop an adjoint based shape optimization workflow, a good insight
to the physical equations and modeling details is needed. Although the
proposed shape control method, Vertex Morphing, is purely geometrical
and can be used in combination with any numerical simulation, the
target application of this work is Computational Fluid Dynamics (CFD)
with the focus on numerical wind simulations.

In order to optimize a transient system such as a wind flow problem,
one should first define time-independent objective functions, unless the
design can adapt itself to the instantaneous boundaries (automatic
control). The straightforward choice is to work with averaged, peak,
or other statistical quantities. Since objective functions defined by



4. Numerical flow simulation

minimum or maximum quantities are not differentiable, here we focus
on optimizing the mean values, e.g. averaged flow forces applied on a
structure. There are two ways to calculate the sensitivity vector of the
averaged objective. The first way is to solve the transient equations and
their adjoints, and then average the sensitivity values. This requires
solution of the transient adjoint problem in the time domain with
backward time stepping, which is requires an extremely high amount
of memory. The state of the art approach for overcoming this issue is
the check-pointing method [43], in which the memory requirement is
reduced by introducing some additional processing (recalculation of the
primal solution in certain intervals). The second way is to solve the fluid
equations and their adjoints directly for the averaged quantities (steady
RANS). Of course the latter way is computationally cheaper, but the
level of accuracy in the averaged equation can be poor. Thanks to some
decades of research, equivalent steady CFD models designed for specific
applications are able to deliver a relatively good order of accuracy. This
is shown in this chapter as well through a simple example. The main
question however is that if a shape optimization based on the averaged
adjoint equations can have the same level of accuracy. This question is
discussed in section 6.3, for which the theoretical background of this
chapter is needed.

In the following sections the key equations of turbulent flow simulations
are firstly presented. Then, the basics of adjoint sensitivity calculation
for this type of problems are discussed. At the end, the challenges in
extending the work into an aeroelasticity optimization workflow, with
consideration of the Fluid-Structure Interaction are mentioned.

4.1 Wind engineering

Prediction of wind loads on man-made structures has been a hot topic
in engineering since many years. The well known Davenport Wind
Loading Chain shown in Figure 4.1, nicely breaks down the design
of wind-exposed structures into few steps [20]. Box ’a’ is fed as the
input condition to boxes ’b’, ’c’ and ’d’. Box ’e’ uses the result of the
previous step to evaluate (and in the case of this work to improve) the
worthiness of the design. Here, by wind engineering simulations we
refer to the three middle boxes, which describe the physical behavior of
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4.2. Computational wind

the wind-structure system. It should be added that in a realistic wind
model, there is a both-way interaction between boxes ’c’ and ’d’, as the
deformation of the structure changes the surrounding wind field. Here,
we focus on prediction of the wind effects on the structure, for a given
wind scenario. This analysis is further used for shape optimization.

Computational Wind Engineering CWE is a relatively young sub-field in
wind engineering which aims at numerically simulating the atmospheric
wind flow around structures. Large computational effort and complexity
of the atmospheric turbulence are the restricting factors in CWE
simulations. However, as the computational power and parallelization
techniques rapidly improve, CWE receives more and more attention
due to its potentials. Classical wind load calculations are based on
available standards and norms. These standards are the result of
several experimental measurements in wind tunnels, etc. Despite the
wide range of applicability of the standards, there are cases in which
a more enhanced wind simulation is required. For example, when the
shape of the structure is not a standard shape (square, cylinder, etc.)
usually a size-reduced wind tunnel experiment is performed, which is
time consuming, expensive, and has its owns complexities. But even a
wind tunnel experiment cannot always accurately describe the realistic
wind flow around the structure, for two main reasons. First of all,
wind tunnel experiments are almost always performed with reduced
wind speed together with correction factors, which includes inaccuracy.
Secondly, in case of light-weight flexible structures, aeroelastic behavior
of the wind-structure system is extremely difficult to be captured in the
reduced experimental model. The mentioned aspects, together with
many other advantages of numerical models, motivates the use of CFD
in prediction of wind effects on structures.

4.2 Computational wind

CWE has several applications ranging from climate modeling and air
pollution simulation in urban areas to wind turbines. Here we focus
only on modeling of wind effects on structures, including the wind
loads and the interaction between the structure and the wind. We also
assume that all the required input parameters such as wind velocity,
roughness information, etc. mentioned in boxes ’a’ and ’b’ of figure 4.1

65



4. Numerical flow simulation

wind input 
wind velocity 
wind profile 

local wind field 
train modification 
roughness change 

aerodyn. response 
forces, pressures, 

modified wind field 

system response 
deflection, stress 

concentration, dosage 

design criteria 
structural safety 

health, annoyance 

a 

b c d 

e 

Figure 4.1: The event chain of wind effects (adapted from Davenport
1982 [20])

are provided. Having in mind the low viscosity of air and typical wind
speed (which can reach up to multiple tens of meters per second) it is
obvious that the wind flow has a large Reynolds number and is highly
turbulent. There are some comments on turbulent modeling for CWE
in the next section 4.2.1. In the aimed application, it is necessary to
consider the viscosity of the air, and therefore inviscid Euler equations
are not adequate to describe the wind field. This is due to the nature of
the atmospheric boundary layer which is formed as a shear interaction
of the air flow and the rough surface of the earth. Despite the high
Reynolds number, the wind speed is yet much bellow the propagation
speed of acoustic waves in air, which results in a relatively low Mach
number and allows us to assume the flow to be incompressible. Based
on the mentioned aspects, the incompressible set of Navier-Stokes
equations for momentum and continuity are employed:

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ ∂

∂xk
2νSik

∂ui
∂xi

= 0
(4.1)

where
Sij = 1

2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (4.2)

Sij is the symmetric strain rate tensor. ui and xi represent the three
components of the velocity and position vector in the Cartesian co-
ordinates. ν is the kinematic viscosity of the fluid, ρ the fluid density
and p the pressure. Note that the indexes follow summation (Einstein)
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convention. The rest of this chapter is spent on how to setup a CWE
simulation and how to achieve the design sensitivities of a system
governed by Navier-Stokes equations.

4.2.1 Steady and transient turbulence simulations

This chapter introduces basics of steady RANS and LES turbulence
models, and their accuracy and applicability for CWE and shape optim-
ization. Although in both methods the flow equations are solved based
on averaging, the fact that RANS equations are steady makes it less
accurate particularly in case of bluff body simulation. Considering that
in shape optimization only averaged RANS equations can be applied,
here (and in chapter 6) we verify the RANS results through a high
fidelity flow simulation with transient LES.

In fluids engineering, the majority of the flows are turbulent (or non-
laminar). Turbulent motion is governed by many vortices of different
size and orientation. These vortices are called eddies and their be-
havior appears random. A large spectrum of length and time scales
exists, with the largest scales referring to the scale of the bounding
flow and the smallest scales referring to the influence of viscosity. The
energy dissipation mechanism in turbulent flows can be described as
the following. The large scale eddies transfer the energy to smaller ones,
and so on, until the viscous characterized scales (Kolmogorov scale)
dissipate the energy. The transmission of large scales to smaller scales
can be described using the periodic behavior of an eddy. For illustration
purpose, let us assume the simplified case in which the velocity of an
eddy at a certain point and time instance follows the simple sinusoidal
equation u = u0 sin(ωt+ kx), where ω is the angular frequency, k the
wave number and u0 the velocity amplitude. Although the temporal
and the viscous terms of the Navier Stokes equations would produce
momentum oscillations with the same frequency as of the velocity field,
the non-linear convective term uj

∂ui
∂xj

includes momentum oscillations
with the angular frequency twice as big as ω, since the convective
momentum of that velocity is: − 1

2u
2
0k

2 sin(2ωt+ 2kx).

Modeling turbulent flows with Direct Numerical Simulation (DNS)
requires a mesh resolution which can capture the eddies in Kolmogorov
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scale. This leads to an extremely fine mesh and small time step. The
required number of grid points scales with Re

9
4 , which means that

with the current computing power, DNS is possible only for turbulent
flows with small Reynolds numbers. Therefore, for engineering flows
- whose Reynolds numbers can reach up to 109 - turbulence “models”
(in contrast to turbulence simulations) are used. Those models make
use of the fact that the behavior of the small scale eddies are almost
independent of the larger scales which follow the bulk structure of the
flow field. This makes it possible to assume a predictable effect of
the smaller scales on the larger ones in form of an analytical relation.
Turbulence modeling is based on averaging of the fluctuating flow fields,
such as velocity and pressure. The averaging can be an ensemble
averaging as in Reynolds Averaged Navier Stokes (RANS) equations,
or a filtering in space as in Large Eddy Simulation (LES).

In RANS, each field is decomposed into an average field and a fluctuat-
ing term. Representing different samples of the ensemble averaging as
instances of a time dependent system, the averaged field for example
for the pressure would follow:

p(x, t) = p̃(x) + p̀(x, t) (4.3)

p̃(x) = lim
T→∞

∫
T

p(x, t)dt (4.4)

where t is time and T is the total averaging time, p̀ the pressure
fluctuation and p̃ the averaged pressure field. Note that the time
derivatives of the time averaged values are zero. Deriving the Navier
Stokes equations (equation 4.1) based on equation (4.3) would lead to:

ũj
∂ũi
∂xj

= −1
ρ

∂p̃

∂xi
+ ∂

∂xk
2νS̃ik −

∂(̃ùiùj)
∂xj

∂ũi
∂xi

= 0
(4.5)

68



4.2. Computational wind

with the averaged symmetric strain rate tensor:

S̃ij = 1
2

(
∂ũi
∂xj

+ ∂ũj
∂xi

)
(4.6)

˜̀uiùj is the Reynolds stress tensor normalized by the fluid density. Sim-
ilarly, in spatial filtering (LES equations), the filtered field is obtained
by convolution of the field with a kernel function N(γ, x):

p̃(x, t) =
∫
Γ

N(γ, x)p(x− γ, t)dγ

∫
Γ

N(γ, x)dγ = 1
(4.7)

This time, according to the definition stated in equation 4.7, the Navier
Stokes equation are filtered in space.

∂ũi
∂t

+ ũj
∂ũi
∂xj

= −1
ρ

∂p̃

∂xi
+ ∂

∂xk
2νS̃ik + ∂ũiũj

∂xj
− ∂(̃uiuj)

∂xj
∂ũi
∂xi

= 0
(4.8)

Note that unlike RANS equations, the temporal derivative is present
in the LES equations. In both RANS and LES, equations are solved
for the smooth fields ũi and p̃ as the unknowns, and the term ∂(̃uiuj)

∂xj

is modeled (approximated) based on some assumptions. The volu-
metric component of the turbulent stress tensor ˜̀uiùi appears as a
modification of the pressure and can be included in p̃. The deviatoric
(shear) component ˜̀uiùj , i 6= j has to be modeled by a turbulence model.

Many RANS models replace the Reynolds stress tensor by a single
scalar value, the eddy viscosity νT , and add it to the molecular viscosity.
This assumption is known as Boussinesq eddy-viscosity hypothesis. All
RANS simulations presented in this work, as well as the sensitivity
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analysis explained in section 4.3 belong to this family of RANS mod-
els. The eddy viscosity is estimated based on the averaged stress rate
tensor S̃ij , equation (4.6). There are usually some turbulence related
quantities which help predicting the eddy viscosity. The propagation
of this quantities are described by a transport equation, similar to the
momentum equations.

LES resolves the time domain as well and restricts the modeling to
the small scales which are not captured by the mesh size (subgrid
scales). This is a reasonable assumption, as those eddies behave more
or less independent of the large scale flow field. The large eddies are
problem specific and have larger characteristic time scales compared to
the smaller ones and therefore their transient resolving can be done by
"large" time steps.

In wind engineering, LES is preferred to RANS, because the transi-
ent effects are not negligible. However, LES simulations are much
more expensive, because they firstly are time-dependent, and secondly
they require a finer discretization at the wall boundaries. The grid
requirement for an accurate wall-bounded LES scales with Re 9

5 , and
therefore in most of wind engineering simulations, a certain amount
of error is inevitable and LES is solved on very coarse meshes, which
subsequently increases the time step. In such a case a mesh dependency
study, similar to the one performed in section 6.3.2 can predict the
order of sub-grid modeling error.

Here we study the performance of RANS in comparison to LES in
an experimental benchmark designed for validation of the presented
optimization process. Since the experimental results are not available
yet, only the CFD verification is briefly shown as a qualitative demon-
stration. The water flow in a bend with bulk velocity around 1ms is
modeled, and further optimized (not presented here) This benchmark
can be seen as an extension of the low Reynolds number S-duct ex-
amples shown in chapter 6. The aim of the benchmark is to verify
the capabilities of the optimization by measuring the pressure loss in
the initial pipe as well as the "optimized" one. Therefore not only the
accuracy of the numerical scheme in prediction of the pressure loss
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Figure 4.2: Comparison of the 3D transient LES flow and steady RANS
for the water S-duct experimental benchmark. Top: RANS velocity
contour, middle: LES instantaneous velocity contour, bottom: LES
pressure instantaneous isosurfaces

is tested, but also the approximation level in the prediction of the
improvement by the optimization loop can be quantified. In order to
achieve a more general (non-tuned) comparison, the Spalart Almaras
RANS model is selected, which is not designed for this type of applic-
ations. The LES model is solved on a finer mesh using Smagorinsky
method. Figure 4.2 compares the velocity magnitude distribution in a
section of the pipe for RANS and a time instant of LES. Moreover, the
pressure isosurface of the bottom picture in the same figure indicate the
three dimensional structure of the flow. According to the diagram of
figure 4.3, the disagreement between the steady and averaged transient
results is around 5%, which is perfectly acceptable for this type of
problems. Having an accurate enough RANS solution, the shape of
the pipe is successfully optimized for pressure loss. The optimization
results are not presented here for the sake of briefness and in order to
avoid repeated comments as the ones in chapter 6.
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Figure 4.3: Comparison of the pressure drop for the water S-duct
experimental benchmark, simulated by LES and steady RANS

4.2.2 Atmospheric boundary layer

As explained in section 4.1, reliable data about the wind flow such as
the velocity profile, spatial fluctuation intensity, etc. (box ’a’ in fig-
ure 4.1) is an essential input for wind simulation. This section discusses
the physics of the air flow close to the earth surface and describes a
meaningful wind flow modeling strategy for numerical simulation.

The temperature difference in earth’s atmosphere caused by the solar
radiation results in wind. The lowest part of the atmospheric wind,
close to the earth, is called the atmospheric boundary layer ABL. This
region is highly influenced by the objects on the earth surface, as well
as the temperature, air humidity, etc. This tight interaction between
the air and the earth makes the (ABL) a turbulent flow field with
vertical and horizontal motion of the air particles. In order to analyze
the physics of ABL, we model the flow field as a half space bounded
from the bottom by a rough wall. The air travels mainly parallel to
the wall where the velocity is zero. Furthermore, we assume that the
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region far from the wall (higher elevations) are not influenced by the
wall.

In turbulent boundary flows, the friction between the flow particles
and the surface of the wall causes the wall shear stress, τw. This stress
is transmitted through the flow domain. Very close to the wall, the
flow particles cannot freely move and hence the turbulence intensity
is low. In this region (the viscose sublayer) the shear force caused by
the molecular viscosity appears as the reaction to the wall shear stress.
Assuming a Newtonian flow, the horizontal velocity gradient in the
height direction y at the wall has a slope proportional to the wall shear
stress:

τw = ρν
du

dy

∣∣∣∣
y

(4.9)

ρ is the fluid density and ν the kinematic viscosity. Note that in
equation (4.9) y direction is normal to the wall boundary. Within
the viscous sublayer the horizontal velocity increases linearly with the
distance to the wall. The height of the viscous sub-layer depends on
the wind speed. However, normalizing the height dimension by the
viscous length scale δν makes it possible to have a problem independent
statement about the height of this layer, i.e. y+ . 5 [105], where y+ is
defined as:

y+ = y

δν
= uτy

ν
(4.10)

and friction velocity uτ describes the wall shear stress in velocity
dimensions in accordance to the magnitude of the wall shear stress:

uτ ≡
√
τw
ρ
. (4.11)

Similarly, the dimensionless velocity is defined as:

u+ = u

uτ
(4.12)
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In wind engineering practice which deals with Reynolds numbers of
above 106, y+ = 5 usually does not exceed few millimeters and therefore
the viscous layer of ABL does not have a considerable effect on the
wind loads. However, in CFD it is very important to correctly resolve
the viscous region close to the wall, because the influence of the wall
boundary is transferred to the flow domain through this thin region.
Moreover, the shear stress applied on the wall boundary is proportional
to the velocity gradient (equation 4.9) and hence accuracy of evaluation
of the fluid force on the structure depends on the quality of the near
wall flow resolution.

In 5 . y+ . 30, the buffer layer, the flow particles are more free, and
thus the molecular and the turbulent viscosity have the same order
of magnitude. Further from the wall (y+ & 5), the turbulence plays
a significant role in transmission of the shear stress compared to the
molecular viscosity. This region is called the log-low region as the mean
velocity profile has an almost logarithmic profile. The vast portion of
the objects studied in wind engineering exist in this layer and therefore
its modeling is of high importance. In the case of a smooth wall, the
logarithmic mean velocity profile follows this distribution:

u+ = 1
κ

ln y+ +B (4.13)

or
ũ = uτ

(
1
κ

ln y+ +B

)
(4.14)

where B is a universal constant and κ is known as von Karman constant.

κ = 0.41 , B = 5.2 (4.15)

In numerical simulation of the wall boundaries, instead of refining the
discretization to the level that the viscous sublayer can be captured
by the first row of discretization elements, one can analytically predict
the velocity gradient at the wall by using equation (4.14). In such a
case the so-called “low of the wall” or the “wall function” replaces the
equation 4.9. This can save a tremendous amount of computation time
by reducing the problem size, as well as increasing the time step. It
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should be mentioned that equation (4.14) is valid only for a infinitely
large and flat wall. Therefore using wall functions in curved geometries
specially where flow separation takes place can lead to inaccuracy.

Roughness of the wall changes the friction force between the flow and
the wall and hence the velocity profile. Rough walls are classified based
on the size of the roughness elements on them. If the roughness exists
only in the viscous sublayer, the wall is called hydraulically smooth.
In transmission walls the roughness exceeds the viscous layer, but does
not reach the logarithmic region, in contrast to a fully rough wall. In
almost every wind simulation, the roughness elements existing on the
earth surface are very large. Therefore, we focus on the boundary layer
in the vicinity of a fully rough wall. Similar to the smooth wall, rough
walls produce an almost logarithmic profile. Considering the fact that
the roughness of the wall cannot influence the mean velocity in high
elevations, one can conclude that the multiplier of the ln y+ ( uτ in
equation (4.14)) should be the same for both smooth and rough walls.

y+ →∞, urough
usmooth

→ 1 (4.16)

This means that the roughness just shifts the logarithmic velocity
profile with a constant value, which is added to B in equation (4.14).
This value can be analytically calculated as a function of the roughness
quantities, e.g. the roughness length z0. Including the constant inside
the ln as a division, [107] suggested the following profile to be used for
ABL applications:

ũ = uτ
κ

ln
(
y + z0

z0

)
. (4.17)

In reference literature and tables, for example in [121], the values for
surface roughness length z0 in different landscapes can be found. equa-
tion (4.17) is used as function for rough wall bounded flows. However
the friction velocity uτ remains an unknown. A common practice
to obtain the friction velocity is to use a reference height in which
the mean velocity is known from regional measurements. Fitting the
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logarithmic function to the reference mean velocity uref at the height
yref would result to:

uτ = κuref

ln
(
yref
z0

) (4.18)

Consequently, the turbulent kinetic energy k and the dissipation rate ε,
which are necessary boundary conditions for many RANS simulations
are calculated.

k = uτ
2√
Cµ

, Cµ = 0.09 (4.19)

ε = uτ
3

k(y + z0) (4.20)

As it can be seen in equation (4.19), the turbulent kinetic energy is
assumed to have a constant value over the height. Moreover, based on
equations (4.19) and (4.20), the turbulent frequency ω which is used in
turbulence models such as k − ω and k − ω SST [82] is calculated as:

ω = ε

k
(4.21)

When a transient simulation (like in LES) is desired, the mean velocity
value is not enough and one has to model the oscillatory wind field,
at least for the large scales. Such a field should satisfy not only
the mean value quantities mentioned above, but also the statistical
characteristics of the ABL. As mentioned before, the turbulent wind
is a three dimensional oscillatory field and therefore a main statistical
characteristic of it is the energy content of each frequency (or wave
number) in each direction. For this purpose, it is desired that the wind
model used for numerical simulation has more or less similar Power
Spectral Density (PSD) distribution as the atmospheric wind. There
exist different analytic functions that approximate the wind PSD, the
most famous of which are the von Karman/Harris and the Kaimal
functions. Here we do not discuss more detailed about spectral models
since it is not on the main track of this document.
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4.2.3 Numerical wind tunnel

In this section we review some modeling aspects used in the numerical
example of chapter 6. The structure for which the fluid loads have
to be evaluated is put in a virtual wind tunnel, which has bounding
walls at the sides as well as wind input and output, similar to a real
wind tunnel. The numerical modeling of the Silsoe cube [108] is used
for demonstration. The Silsoe cube is a cubic structure with 6m edge
length, built in a flat field in England together with various measure-
ment devices for the evaluation of the loads on the cube as well as
the characteristics of the approaching wind. The size of the cube is
in the same scale as real engineering structures and the wind flow is
a natural ABL, which has made it an interesting benchmark for both
experimental and numerical wind models [109, 139].

It is crucial to have the computational domain large enough in order
to prevent the boundaries to artificially influence the flow over the
obstacle. For instance, for simulation of the Silsoe cube a minimum
required distance to the wall is found to be 5, 10, 7 and 15 times
the cube height, for sides, upstream, top and downstream directions,
respectively. The lower boundary of the virtual wind tunnel is a no-slip
wall, usually treated with wall function. The side walls and the top wall
are sliding or symmetry planes. For the side walls it is also possible to
apply periodic boundary conditions in order to reduce their influence
on the turbulence. If the height of the domain is not large enough
such that the velocity profile gets almost uniform, it is recommended
to consider the shear stress at the roof boundary in order to prevent
disturbance on the velocity profile [14]. The possiblity of using sliding
or periodic bondary condition is an advantage compared to a real wind
tunnel in which the fixed bounding walls form unwanted boundary
layers. In this work a uniform constant pressure is used for the outlet
boundary. The most challenging task however is the proper modeling
of the inlet wind. If a steady simulation is aimed, the distributions of
equations (4.17)-(4.21) are used. Figure 4.5 shows the comparison of
the logarithmic mean velocity profile based on equation (4.17) with
some measurement points at different heights. The distribution of the
turbulence dissipation rate and the uniform kinetic turbulent energy
are also plotted. Considering that the Silsoe cube has the typical height
scale of wind engineering problems, it is clearly concluded from the
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Figure 4.4: Use of rough objects for generating turbulence and their
refinement requirement

figure that assuming a uniform mean velocity profile is an inaccurate
assumption. Specifying the correct inlet boundary conditions is not
adequate, because the quantities can change dramatically as they are
transported through the wind channel. The numerical schemes used
for solution of the discrete Navier Stokes equation, the mesh size, and
the treatment of the boundary conditions (particularly the rough walls)
are some influential parameters in how well the prescribed fields are
preserved within the computational domain. Some practical recom-
mendation for CFD wind simulations can be found in [35].

Transient modeling of the wind field involves more complexity since
in addition to the mean fields, the vortices have to be modeled ex-
plicitly and as a function of time. A way to do so, is to use a very
long numerical wind channel such that the velocity field develops itself
towards a realistic turbulent wind. Inspired from the experimental
wind tunnels, one can place roughness objects upstream of the obstacle
to generate the desired amount of turbulence (figure 4.4). In general,
modeling the process of turbulence generation numerically requires an
extremely long computational domain, a high resolution throughout
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Figure 4.5: Comparison of the ABL profile in wind simulation with
measurements [108]

the channel, accurate and non-dissipative numerical schemes, as well as
a well tuned rough wall boundary condition. The difficulty in achieving
such a model, motivates the use of so called numerical wind generators.
[77] has proposed a wind generator based on the superposition of spa-
tial velocity waves with different frequencies. This method is further
applied in the numerical application presented in section 6.3. In the
following paragraphs, the main idea of the method is presented. More
details about numerical simulation of the wind field can be found in
[24, 54, 111]. The numerical results of the Silsoe cube simulations are
not reported here for the sake of briefness. A detailed report on the
results can be found in [50]

The method is developed based on Taylor’s frozen turbulence hypothesis
since the time dimension is replaced by the space dimension in the mean
stream direction. Taylor’s hypothesis states that the time variation
of a field variable φ (here velocity) is equal to the transport velocity
multiplied by the space derivative of the field:
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∂φ

∂t
= ũx

∂φ

∂x
(4.22)

The aim is to produce a turbulent velocity field which has similar second
order statistics (e.g. variance) as the ABL. The wind field is generated
in a virtual domain and in every time instance of the simulation t, the
velocity at a cross section of the virtual wind domain at the position
x = ũt is prescribed to the inlet boundary. The waves are generated in
frequency domain and then Fourier-transformed to the space domain.
Evaluation of the velocity components for each discretization point in
the virtual wind domain is computationally not affordable, and hence
three dimensional Fast Fourier Transform FFT should be used. For the
wind generation in chapter 6.3.2 a very efficient FFT library is used,
the details of which can be found in [61]. Note that FFT can efficiently
be applied only for grids which are equidistant in all three dimensions.
The contribution of each wave vector k̄ = (kx, ky, kz)T to the velocity
field is evaluated as a product of the C(k̄) tensor calculated based on
the atmospheric spectral density and a Gaussian stochastic complex
vector m̄(k̄) bringing the randomness. The velocity vector ū at each
discrete location x̄ = (x, y, z) on the wind domain mesh is calculated
by the following Fourier transform [77]:

ui(x̄) =
∑
k̄

e(ik̄.x̄)Cij(k̄)mj(k̄) (4.23)

∑
k̄ denotes the sum over all wave vectors. The C tensor is constructed

as a function of wind bulk velocity, friction velocity, turbulence length
scale, anisotropy ratios, etc. Details about estimation of the coefficients
of C for isotropic as well as shear turbulence are described in [77].
This method is an effective means to produce transient atmospheric
wind as the inlet condition for numerical wind simulations (figure 4.6).
However, as mentioned, no matter how exact the properties of the
wind at the inlet condition are, they changed through the CFD domain
due to the discretization in time and space. Particularly, sustaining
the high frequency oscillations throughout the domain requires a fine
mesh and consequently small time step. Even tough accuracy of the
wind velocity field at the inlet increases by the number of wave num-
bers considered in equation (4.23), using a finer mesh for the wind
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Figure 4.6: 3D structure of the generated transient atmospheric wind
approaching the structure in the numerical wind channel (stucture size
is exaggerated for demonstration

generation domain compared to the CFD domain would just waste the
computation recourse, as the smaller waves will not be captured by the
CFD mesh. Practically, one can tune the intensity of the generated
turbulence in order to have the desired characteristics at the position
of the obstacle in the CFD domain.

For the example shown in section 6.3 an in-house implementation of
this method is used for generating the wind inlet boundary condition.

4.3 Sensitivity analysis

Surface sensitivity values form the gradient vector of the optimiza-
tion problem and must be evaluated on every discretization point in
node-based optimization. Dealing with many design variables, here
the adjoint sensitivity analysis is preferred. Obtaining the surface
sensitivity is often the most complicated part in CFD node-based shape
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optimization. Unlike black-box sensitivity calculation methods such as
finite differences, the adjoint method requires getting involved in the
state equations and the numerical technique of solving them. Therefore,
although sensitivity calculation is not the main topic of this project,
its basic equations are introduced.

There are two general ways of numerically solving the adjoint of any
"physical" state equation. The first way is to analytically derive the
continuous adjoint equations based on the state equations, and then
to discretize the adjoint equation for numerical solution. This way is
the continuous adjoint method [56, 96, 131] . In the second way, the
discrete adjoint method, discrete adjoint equations are directly obtained
from the discrete state equations [6, 84, 89, 90]. The advantage of
discrete adjoint is that the adjoint equations are always consistent with
the state equations w.r.t. the numerical scheme, turbulence modeling,
boundary treatments, etc. with almost no extra effort. On the other
hand, since the adjoint equations have many similarities to the state
equations, the CFD numerical framework can be easily adopted for
solution of the continuous adjoint equations, whereas construction
of the transpose state tangent Jacobian for discrete adjoint involves
algorithmic and computational challenges which have to be tackled by
techniques such as Automatic Differentiation (AD). Unlike structural
optimization in which the discrete adjoint is almost always accepted as
the method of choice, the discussion of continuous and discrete adjoint
is still an ongoing topic between different scientific communities [88].
Here, opening this topic is avoided as it is not relevant. In the following
paragraphs only the method used in this work, which is the continuous
adjoint is described. Note that the implementation of the adjoint solver
in the CFD code is provided by project partners as mentioned in section
sec:software and is not done within this thesis.

According to the Boussinesq eddy-viscosity hypothesis, the incompress-
ible steady-state RANS equations 4.8 can be written in the residual
form as follows

Rui = ũj
∂ũi
∂xj

+ 1
ρ

∂p̃

∂xi
− ∂

∂xj
2ν̃S̃ij

Rp = ∂ũi
∂xi

= 0,
(4.24)
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where
ν̃ = ν + νT . (4.25)

ν̃ is the effective viscosity which is the sum of molecular ν and turbulent
viscosity νT [105]. For what follows the tildes used to define the
turbulence quantities are omitted for sake of simplicity.

Generally, the objective function depends on the state variables (u, p)
and on the normal to surface component η (figure 2.3). Note that η is
not the design variable of the Vertex Morphing parametrization. The
objective function is decomposed in two integrals, one over the fluid
domain Ω and one over its boundary Γ = ∂Ω as follows

J =
∫

Γ
JΓ +

∫
Ω
JΩ. (4.26)

In the applications presented in chapter sec:applications the following
two objective functions are used: the power loss described in [92, 96]
and the total drag. The power loss functional describes the difference
in the energy flux between the inlet and the outlet of an internal flow
and is formulated as:

J = −
∫

Γ
njuj(p+ 1

2ρu
2
i )dΓ, (4.27)

where njuj is the normal component of the velocity. This functional
is defined only on the boundary Γ which results to contributions of
the response function only on the boundary conditions of the adjoint
equations [130].

The drag functional is the sum of pressure and viscose forces applied
on a wall boundary in a certain direction di (with unit length), and is
evaluated as:

J = −
∫

Γw
(2νSij − pδij)njdidΓ, (4.28)

where Γw is the portion of the boundary on which the drag force has to
be minimized. δij is a three dimensional matrix with diagonal entities
equal to one and off-diagonal ones equal to zero. Similar to the power
loss function, the drag is defined only on the boundary.
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In order to calculate the sensitivities of the response function w.r.t.
the design variables, the Lagrange method is applied with the state
equations as constraints. Initially the response function is augmented
as follows

L = J +
∫

Ω
(viRui + qRp)dΩ. (4.29)

The variables (vi, q) are the adjoint variables of the problem with vi
being the adjoint velocity and q the adjoint pressure.

The total variation of the above functional L = L(η,u, p) should be
zero which yields

δL = δηL+ δuL+ δpL

= δηJ +
∫

Ω
(viδηRui + qδηRp)

+ δuJ +
∫

Ω
(viδuRui + qδuRp) + δpJ +

∫
Ω

(viδpRui + qδpRp) = 0
(4.30)

Choosing (vi, q) such that

δuL+δpL = δuJ+
∫

Ω
(viδuRui+qδuRp)+δpJ+

∫
Ω

(viδpRui+qδpRp) = 0,
(4.31)

the sensitivity of the response functional with respect to the surface
normal direction η can be computed as

δL = ∂J

∂η
δη +

∫
Ω
vi
∂Rvi
∂η

δη +
∫

Ω
q
∂Rq
∂η

δη. (4.32)

After substitution of the variation of the Navier-Stokes in equation
(4.31) and integration by parts, the volume integral of the resulting
equation results to the following adjoint equations

−∂vj
∂xi

uj − uj
∂vi
∂xj

= ∂

∂xj
2νSij(v) + ∂q

∂xi
− ∂JΩ

∂ui
(4.33a)

∂vi
∂xi

= ∂JΩ

∂p
δp. (4.33b)

In case there is no volume contribution to the objective function,
the partial derivatives ∂JΩ/∂ui and ∂JΩ/∂p cancel out. This is the
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case for most objective functions used in industrial applications like
power dissipation and drag reduction. From the boundary terms of the
resulting equation the adjoint boundary conditions are derived. The
boundary conditions for the power dissipation objective function can
be found in [92], while the respective boundary conditions for drag
reduction are detailed in [123, 124].

Having computed the adjoint fields (vi, p) the sensitivities are computed
from equation (4.32) with further simplification detailed in [92] from
the following relation

∂J

∂η
= −ν ∂vi

∂n

∂ui
∂n

, (4.34)

4.4 Fluid-Structure Interaction

Fluid-Structure Interaction FSI is a young topic in computational engin-
eering whose goal is to model coupled systems involving both fluid and
solid. The term FSI is used often when a both way interaction between
the solid and the structure is considered in the model. Numerical FSI
has various applications in biomedical engineering [34], aeronautics
[40], sea structures [38], wind energy machines [9], etc. Light weight
structures such as shells and membranes, when exposed to the wind
loads, usually undergo large deformations. This deformation not only
raises the need for the geometrical nonlinear modeling of the structure,
but also changes the flow around the structure and, therefore, the fluid
loads on the structure (non linear loading).

Despite the importance of consideration of the interaction between the
light-weight structure and the fluid flow, the main reason for including
this section in the text is that the workflow proposed in this work is
built based on an FSI tool. The algorithmic similarities of these two
problems will be discussed in chapter 5.

4.4.1 Partitioned FSI

The governing equations of the FSI problem are the same as the single
field equations, i.e. Navier Stokes equations (equation 4.8) for fluid and
the conservation of structural momentum. These equations are coupled
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at the interface of fluid and structure through the interface stress tensor
and the interface displacement z (or velocity) of the boundary:

ūf,i = ∂z̄i
∂t

(4.35)

Υf n̄f = Υsn̄s (4.36)

ūf is the velocity vector at the interface (fluid boundary) Γ, z is the
geometry vector at the interface as the unknown of the structural
equation, Υf and Υs are the stress tensors at the interface for the fluid
and structure field respectively, n̄f and n̄s the surface normal vectors
of the fluid and structure field. The stress tensor is found by solving
the flow equation. For instance, for a RANS turbulence viscosity model
with Boussinesq’s assumption, the interface fluid stress tensor is:

Υf,ij = p̃I + ν̃

(
∂ũi
∂x̃j

+ ∂ũj
∂x̃i

)
(4.37)

where I is the unit tensor. Note that the pressure p̃ contains both
the hydraulic pressure as well as the volumetric part of the Reynolds
turbulent tensor. Writing both state equations of the fluid F and the
structural S in the residual form, the coupled FSI system of equation
would be:

{
F (w, z) = 0
S(w, z) = 0

(4.38)

where w refers to all fluid related variables, i.e. velocity, pressure and
the turbulence related fields. The above nonlinear system of equations
can be solved e.g. by Newton-Raphson iterations:


∂F

∂w

∂F

∂z

∂S

∂w

∂S

∂z


δwn+1

δzn+1

 =

F (wn, zn)

S(wn, zn)

 (4.39)
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This approach of solving coupled problems is called monolithic and
shown to be robust and efficient [39, 48, 52, 133], particularly in
strongly coupled problems [68]. However, both structure and fluid
equations should be solved in the same software, and also the dis-
cretization schemes should allow for forming the coupled system of
equation. Furthermore, the coupling coefficients (off diagonal terms
in equation (4.39)) have to be explicitly modeled, which is usually
not straightforward. The alternative is the fixed point iterations in
which the single field equations are solved separately and consecutively.
The fluid quantities provide a Neumann boundary condition for solu-
tion of S(z) = 0 and interface motion is given to the flow equation
F (w) = 0 as a Dirichlet boundary condition. This is called partitioned
approach for solving FSI problems [29, 31, 101, 102, 141]. In many
real size engineering examples the partitioned approach is preferred
as it gives more freedom to the modeling decisions in the single field
solvers. The partitioned FSI method is much easier to be applied on
general engineering problems, and therefore it has received a lot of
industrial attention lately, aiming to solve the FSI ptoblem by the use
of black-box single field software. For the same reason, and in order to
tackle FSI problems with strongly coupled fields there have been many
coupling algorithms suggested with improved stability and efficiency
[21, 22, 67, 136].

In general there is no necessity for single field spatial discretizations to
coincide at the interface. In such a case a mapping operator between the
non-matching interface meshes is required. Note that almost never an
analytic description of the interface surface is available, and therefore
the discrete approximated surfaces of the two fields should directly
communicate with each other. In chapter 5 this communication and the
mapping operator for non-matching grids is compared to the mapping
between the geometry and control field in Vertex Morphing.

4.4.2 FSI shape optimization

If the flexibility of the object exposed to fluid flow cannot be neg-
lected, the influence of FSI should be considered in the optimization as
well. [126] shows that neglecting the coupling effects can even cause
a wrong direction in the surface sensitivity. No mater what definition
the objective function has, as long as it is a function of state variables
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(almost always), a coupled optimization framework is required. This
is because the state equations and consequently the state variables
are coupled, thus naturally the response surface is the result of the
interaction between those two fields.

Of course, the geometrical aspects of shape optimization of coupled
system are the same as of single field optimization, and therefore the
Vertex Morphing can be used as shape control in FSI as well. However,
what makes gradient based optimization of FSI very difficult is the
sensitivity analysis for the coupled state equations. If the adjoint
method is desired the adjoint coupled equation system including the
off-diagonal coupling terms has to be constructed:


∂F

∂w

∂F

∂z

∂S

∂w

∂S

∂z


T

Ψ =


[
∂F

∂w

]T [
∂S

∂w

]T
[
∂F

∂z

]T [
∂S

∂z

]T

Ψw

Ψz

 =


∂J

∂w

∂J

∂z

 (4.40)

Ψ is the adjoint variable of the coupled FSI problem and Ψw and Ψz

the adjoint variables related to the fluid and structure fields respect-
ively. Looking at the left matrix in equation (4.40) one understands
that if the monolithic coupled Jacobian matrix of equations (4.39) is
available, calculation of the FSI adjoint is not very complicated. Out
of the few successful implementations of FSI adjoint problem, most
of them applied the monolithic formulation and used the transpose of

the full matrix including the cross terms,
∂F

∂z
and

∂S

∂w
. However, in a

partitioned FSI framework which is usually the only choice for general
industrial size cases the solution of equation (4.40) is not anymore

trivial. The diagonal terms of the middle matrix,
[
∂S

∂z

]T
and

[
∂F

∂w

]T
are the single field adjoint operators which can be available in many
software. The problematic parts are the off-diagonal terms which are in
a fixed-point iteration solution never evaluated. Their effect is modeled
by exchanging boundary conditions (force and boundary motion) in

every iteration. Particularly calculation of
∂F

∂z
which indicates the

88



4.4. Fluid-Structure Interaction

effect of boundary motion on the residuals of the flow equations is
very complicated, as it includes the mixture of the grid motion and
Navier-Stokes equations in a typical ALE-based FSI [26]. Therefore the
black-box coupling algorithms of FSI cannot be extended to adjoint FSI,
and more elaborate coupling techniques is required [23, 30, 78, 79, 81].
A successful FSI adjoint optimization work based on the same workflow
presented in this project can be found in [126].

As an alternative to the adjoint method, one can perform direct sensit-
ivity analysis. This can be done for instance by global finite differences.
The other approach would be to solve the direct coupled sensitivity
equation system:


∂F

∂w

∂F

∂z

∂S

∂w

∂S

∂z



∂w

∂si

∂z

∂si

 =


∂F

∂si

∂S

∂si

 (4.41)

The advantage compared to the adjoint system is that the tangent
matrix of equation (4.41) is the same as the original FSI problem, and
not transposed. Therefore the same coupling approach as of the FSI

can be used for coupling the sensitivity fields
∂w

∂si
and

∂z

∂si
. However,

for every design variable si a separate coupled sensitivity equation has
to be solved.

In this section shape optimization of a coupled wind-structure interac-
tion problem is presented. The geometry of a membrane roof subject
to wind loads has to be improved, for a lift-drag combination objective
function [50]. As shown in figure 4.7 the roof is supported by two stiff
frames at the sides. Wind blows with the ABL profile described in
section 4.2.2 at a speed of 9.6ms at the tip of the roof. The simulation is
done by steady RANS k−ω SST model on a tetrahedral mesh. The side
frames are modeled as rigid beams and the roof itself by pre-stressed
membrane elements. the two ends of the roof are connected to two
pre-stressed cables.
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4. Numerical flow simulation

Figure 4.7: Parametrization steps for design and sensitivity analysis

The geometry is parametrized through a chain of design parameters,
such that there exist only two design variables for the optimization
problem. The side frames are described by NURBS functions and the
location of the control points are the design variables. Note that the
height of the middle control point is kept constant so that the overall
height of the structure remains almost constant. Moreover, considering
the symmetry in two directions as well as restricting the motion of the
control points to the same plane as of the curved frame, the shape of
the frames can be controlled by a few design variables. The pre-stress
is kept constant throughout the optimization and therefore the doubly
curved membrane surface is found by Form-Finding [13, 71, 140]. In
order not to limit the design space to small shape variations, an in-plane
shape regularization step is included in the design chain [129]. In such
a parameterization, the whole geometry and the mesh follow variations
of the design parameters "smoothly", even for very large amplitudes.

The gradient vector is evaluated by solving the coupled direct sensitivity
equations (4.41) using fixed point iterations (partitioned). The single
field sensitivities are evaluated decoupled and by finite differences. As
seen in figure 4.8, the coupled shape optimization successfully reaches
the minimum by applying a slight geometry modification.
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Chapter 5

Optimization workflow

The workflow shall provide the software platform as well as the data
management for CFD shape optimization of large problems. A dis-
cretized (external or internal) CFD case is given to this workflow as
the input. A part or the whole wall boundary of the flow domain is
considered as the design surface. This surface is parametrized by the
Vertex Morphing and shall be improved. In this section, some details
of the shape optimization work flow are explained.

Figure 5.1 shows the different modules and their sequence in the optim-
ization loop. In the right box which represents the CFD environment,
first the state primal equations are calculated, ’c’. Based on that solu-
tion and in ’d’ first the adjoint equations are solved, and then the
surface sensitivity is evaluated in the design surface. Following the
chain rule of sensitivity, in the middle box the gradient vector of the
optimization problem is found. The design update is transformed to
surface deformation, again through the chain rule. The updated surface
mesh of ’a’ is further sent to the volume mesh motion module, ’d’. At
this stage the new geometry and discretization are ready to be passed
to the CFD box for the next optimization iteration.
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sensitivity analysis

discrete state analysis

d

cshape 

parameterization

optimizer

mesh update

shape update

b

a

updated geometry

Figure 5.1: Design optimization modules and their algorithmic sequence

5.1 FSI and optimization algorithms

The optimization workflow used for this work has been build upon a
Fluid-Structure Interaction workflow, due to their similarity, as men-
tioned briefly in section 4.4. Additionally, this decision makes extending
the software environment for optimization of coupled problems easier
[126]. In fact many of the optimization routines are taken one to one
from the FSI code, even though at the first glance they seem totally
different problems. Indeed from the physical view point there is almost
no relation between these two problem types, because the shape optim-
ization is the inverse problem of finding the optimal shape whereas FSI
deals with the direct numerical modeling of a physical phenomenon.
However from the algorithmic view point, in both problems, the un-
known is the surface of the fluid domain which keeps it in equilibrium
with an external interaction module. This external module, which is
the solid domain in the case of FSI and is the optimizer in the case
of shape optimization, sends out a response, in the form of boundary
deflection, and as a function of fluid quantities. This change in the
shape of the fluid domain changes the fluid quantities and therefore the
response of the external module. The goal is to find the equilibrium
state between these interacting domains, which would mean the force
equilibrium for FSI and zero gradient for optimization. Although the
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Figure 5.2: Comparison of data flow in shape optimization (left) and
FSI (right)

flow quantities exchanged at the interface are different, the response
of a filtered node based optimizer to the surface sensitivity values is
very similar similar to the response of a structure to the surface stress.
As mentioned in chapter 2.3, even in some node-based optimization
methods, exactly the stiffness matrix of an imaginary structure at the
design surface is used as the filtering operator. This subject fits very
well with the design dynamics interpretation of shape optimization [66]

If we carefully observe, the role of the control field in Vertex morphing
has again a large algorithmic similarity to the non-matching structural
mesh in an FSI problem. The data exchange for non-matching grids
in FSI takes place through a mapping operator. This operator, which
plays the role of the A operator in Vertex morphing can be based on

95



5. Optimization workflow

linear interpolation, NURBS functions, Radial Basis Functions (RBF),
etc. The mentioned fact is visualized in figure 5.2.

In some references [66, 70] design optimization is compared to a dy-
namic process, in which the time dimension is replaced by the design
evolution dimension. Based on that the term “design velocity“ is intro-
duced, which indicates the rate of change in the design for each design
parameter. Similarly, other shape optimization quantities can be seen
equivalent to structural dynamic quantities such as inertial, damping
and internal forces. Even though the type of design optimization in
the current project is well suited to this interpretation, we intentionally
do not mention the equivalent interpretations to avoid verbosity and
confusion.

5.2 Software

The workflow is designed completely modular and with clearly defined
interfaces. This eases exchanging the current CFD and/or adjoint
solver with an alternative software more suitable for the specific ap-
plication, even for other physical simulations such as structural and
thermal analysis. There exist two separate executables which run in
parallel. The inter-code communication is done by Message Passing
Interface (MPI). Note that due to the large problem size, the CFD
and adjoint code run always in several processors which communicate
through MPI as well. As it can be seen in figure 5.3, the interface
between the optimization and the CFD codes are only the scalar vectors
of surface sensitivity and surface deflection. In order to avoid extensive
unnecessary communication costs, the volume mesh motion is done
internally in the fluid code, in every processor. Since the two modules
treat the other one as a total black box, reprogramming of the interface
communication logic for a new CFD solver is straightforward.

The optimization core is programmed in C++ and based on the in-
house research code Carat (Technische Universität München, Lehrstuhl
für Statik). The implemented optimization code in this work is object-
oriented and enhancing new algorithms and techniques would require
a small programming effort. Shape control and optimization modules
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Figure 5.3: Software packages for the optimization loop and their
interaction

are implemented matrix-free and vector containers are treated with
sparsity consideration. A considerable challenge in evaluation of design
variables is the neighbor search and distance evaluation. Here, the
neighbor search is done by use of octrees for the sake of efficiency [76].

For the flow simulation, a finite volume based continuous Navier-Stokes
adjoint solver, implemented in OpenFOAM [138] is used [92, 96]. The
adjoint solvers are implemented and provided by the project partners
ICON Ltd and Engys Ltd, and in collaboration with Volkswagen. The
adjoint codes and the examples used in this work are partly developed
within the "7th Framework Programme" EU-project, FLOWHEAD
(Fluid Optimisation Workflows for Highly Effective Automotive Devel-
opment Processes). For the turbulent S-duct test case (section 6.2.1)
a fully adjoint evaluation of the Reynolds averaged Navier-Stokes
equations with Spalart-Almaras turbulence model is used [145], which
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is provided by ICON Ltd. The main developments in OpenFOAM
were done on the interfacing and geometrical aspects such as mesh
deformation. Therefore we avoid getting deeper in the details of CFD
implementation.

The surface sensitivity is calculated normal to the surface for each face
on the design surface. These face values shall be interpolated on the
surface points. The point surface sensitivity is the scalar product of the
interpolated sensitivity value and the unit normal vector. Calculation
of the normal vector requires an interpolation of the neighboring face
normal vectors as well. Here, the sensitivity value and normal vector
are both linearly interpolated with a weighting proportional to the
inverse face area of the neighboring faces.

After updating the fluid surface mesh based on the displacement field
sent by Carat to OpenFOAM, the volume cells are adapted by solution
of a Laplace equation with non-uniform diffusivity [59]. In this mesh
motion method, the boundary displacement is diffused through the
fluid domain with a diffusion coefficient proportional to the inverse of
the distance to the wall boundary. A key aspect of this implementation
is the use of flow fields from the previous optimization iteration. This
means that despite the modified geometry and discretization, the finite
volume cells are initialized by the flow quantities of the last iteration
which leads to a much faster convergence of the equations. Starting
the solution from a constant initial field e.g. due to remeshing in each
optimization iteration, would increase the computational cost one or
even two orders of magnitude.

5.3 Optimization algorithm

Defining the shape optimization problem as a geometrical evolution
of the design in several small increments, here the steepest descent
algorithm is selected. However, in Vertex Morphing the optimization is
solved in the design space, and the search direction is already enhanced
by some approximation of the Hessian matrix. The response surface of
the type of problem aimed in this work includes many non-convexities.
This is due to the physics of the problem and nature of the PDEs.
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On the other hand, the large number of design variables makes the
evaluation or even approximation of the Hessian very expensive [97].
From the geometrical point of view and as explained before, during
the optimization, the surface coordinate system on which the design
variables are defined varies. Hence, usage of optimization history in-
formation for the calculation of the new design step would require
evaluation and storage of the deformation gradient of every surface
coordinate, in each step. The choice of steepest descent makes the
optimization simple, history independent and needless of higher order
gradient information. Combination of small step size and many design
variables (design modes), allows the optimization process to explore the
design space fast and freely. But if desired, a line search can be used
in order to reduce the number of optimization iterations. Note that
almost the whole computation time is spent on the iterative solution
of the primal and adjoint equations, and since the solution of every
optimization step is used as the starting point of the next step, smal-
ler perturbation in the geometry results in smaller computation time.
Therefore, the optimization cost is proportional to the total length of
geometry change and is almost independent of optimization iterations.
So, an elaborate line search or more complex optimization algorithm
does not improve the performance much.

The accurate calculation of the state and the adjoint variables can re-
quire many iterations of the solution algorithms. However, the general
surface sensitivity pattern is obtained much before the total conver-
gence of the primal and adjoint fields. Considering the fact that the
gradient vector of the optimization is normalized for calculation of
the update step, one does not need to perform the solution iterations
until a perfect convergence, and a reasonable approximation of the
gradient vector is good enough to find the search direction for the small
increment of each optimization step. Note that taking several small
progressive steps towards the optimum gradually corrects the slight
inadequacies existing in the sensitivity calculation. Performing the
shape update before the total convergence of the equations can speed
up the optimization significantly [47, 95]. Note that in typical industrial
CFD optimization applications, evaluation of adjoint sensitivities takes
up to 2 (or even 3) orders of magnitude more time than the shape
control.
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Chapter 6

Applications

The shape parametrization method and the optimization workflow
presented in the previous chapters are designed to work for very large
3D examples robustly and efficiently. This claim is tested through sev-
eral applications in this chapter. First some basic conceptual examples
in 2D and 3D are studied, so that the feasibility of the results and the
quality of the improved shape can be easily judged. After that, a series
of large size 3D applications are presented. In order to give an order to
this chapter, those examples are divided into two sections, automotive
industry and structural design, even though from the optimization view
point there is no difference in their treatments.

In all the presented test cases the computational time for the geometry
control (interpolation of shape derivatives, neighbor search, construc-
tion of design variables, calculation of design and geometry update
vectors, inter-code communication, mesh motion, etc.) is below 5% of
the computational time for the solution of CFD (primal and adjoint).
Note that the simple 2D examples can be successfully optimized with
other filtering techniques as mentioned in the text. However, the large
examples are more difficult to be compared to other works, since there
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is no available node-based publication for this type of problem, with
large shape variations and high geometry complexity.

In all the application a Gaussian filter is used. The filter radius is
defined as the distance of the center of the kernel to the point where
the magnitude of the Gaussian function is 10% of the center peak.
The value of the filter function is set to zero outside the filter radius.
Moreover, the integral under the filter function is set to 1 by suitable
scaling.

There are several examples shown and in order to avoid repeating
explanations about all parameters for every example, in each group
of applications the discussion is focused on a certain aspect and other
factors are not outlined. In the conceptual examples, section 6.1,
where the goal is to demonstrate the node based optimization by
use of Vertex Morphing, the details of the physical analysis or the
shape optimization are not mentioned. In the automotive applications,
section 6.2, the effectiveness of the method on industrial examples is
to be studied. However, the CFD calculation has been treated almost
as a black box, which is provided by the simulation experts of that
field. Therefore the focus is put on the optimization aspects, such
as smoothing, objective improvement rate, influence of the filter size,
influence of the design space, preservation of the feature lines, quality
of the mesh, etc. Discussions about the details of CFD modeling,
such as the near-wall treatment, turbulence model and steadiness
assumption are left for the last section, 6.3, in which the whole design
and optimization chain is presented in details with no black box. That
section contains comments about the structural design, wind simulation,
adjoint calculation, optimization and physical analysis of the improved
shape.

6.1 Conceptual examples

Three conceptual examples are presented. The first two are 2D with
a single wall boundary in an infinity large space. The third example
is a 3D shape optimization in a half space boundary flow. In these
examples, except the regions that the design surface is connected to
other boundaries, the whole surface is subject to shape variation.
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Figure 6.1: The circular cylinder transforms to a flat plate for drag
minimization. Top left: initial design, top right step 35, bottom left:
step 70 and bottom right step 100.

6.1.1 Drag on circular cylinder

The drag force caused by the laminar flow around on a circular cylin-
der has to be minimized by modifying the shape of the cylinder. In
OpenFOAM, 2D geometries are modeled as one layer of finite volume
cells. The thickness of this cell layer is chosen to be larger than the
filter radius, so that there is no interaction between the nodes of the
two layers. This setup is perfectly equivalent to a 2D simulation and
the model remains homogeneous in the third dimension until the end
of the optimization.

Since no geometrical nor physical constraints exist, the optimal solu-
tion is trivial. The cylinder should disappear so that the drag force
is reduced to zero. However, representing such a large change in the
geometry variation requires a proper treatment of the geometry as well
as the mesh. Otherwise, the irregularity caused by the large number of
design variables deviates the process to divergence. The optimization is
performed in about 100 small steps and with a filter, 10 times smaller
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Figure 6.2: Geometry update mechanism for Reynolds number 1000
(top) and 100 (bottom)

than the diameter of the cylinder. As seen in figure 6.1 the cylinder
collapses to a flat plate smoothly and with no geometry nor mesh
irregularity.

Ideally, the flat plate should also shrink in the stream direction and
disappear in order to vanish the viscous forces on the object as well.
However, when the geometry is flat, the normal to surface shape update
does not lead to the shrinkage of the plate. In such a case the geomet-
rical sensitivities as the partial (no total) derivative of the objective
function w.r.t. the geometry ∂J

∂x̄ play the main role. The geometrical
sensitivities are present when the objective functional is defined on the
optimization surface [115]. The physical interpretation is straightfor-
ward as well. Assuming the pressure and velocity fields to be frozen,
changing the area in a surface element changes the drag force, as the
integral of normal and shear stresses applied on the surface. This part
of the gradient vector is neglected in the adjoint CFD solver used in this
work. The influence of geometrical sensitivity to the shape derivative
is proportional to the inverse of the curvature radius (equation (2.51)),
which is very large at the two ends of the flattened curve.
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Figure 6.3: Normalized drag (objective) history for cylinder drag
minimization

Despite the fact that the optimal shape for minimization of drag is
trivial, there are interesting aspects about the evolutionary steps that
the geometry undergoes towards this optimum. Depending on the flow
regimes around the cylinder, different surface sensitivity distributions
are to be expected and hence different behaviors in the optimization
process. Figure 6.2 compares the update pattern on the surface of the
cylinder for two different Reynolds numbers, i.e. 100 and 1000. Due
to the symmetry half of the domain is presented. In figure 6.3, the
optimization history of the first 60 steps for those two cases can be seen.
The high Reynolds number case, which contains more non-linearity and
complexity in the flow behavior, has a more non-linear improvement
curve as well. Consequently, a proper modification in its geometry can
cause a larger improvement in the objective. It should be mentioned
that if a CAD-based shape optimization was used, in contrast to the
presented results of figure 6.2, the limited number of shape parameters
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would prevent the detailed shape modes in the update vector. As
the result, the shape changes would take place in more or less similar
manner for both flow regimes.

6.1.2 Lift on airfoil

The lift maximization in a symmetric airfoil (NACA 0020) is studied.
Note that shape optimization of airfoils is an old, well establish and
complex field in aerospace engineering. The presented simple test
case does not contain the necessary considerations of a realistic airfoil
design, and is not intended to represent a complete and industrially
usable shape optimization of airfoils. The only purpose is to demon-
strate the usability of Vertex Morphing in the aeronautical applications.

After availability of flow adjoint solvers, node-based shape optimization
of airfoils was studied extensively as an alternative to the classical spline
parametrized airfoils which could be optimized by zero-order methods.
The large design space makes it possible to achieve more and more
efficient geometries which cannot be captured by polynomials. The fact
that node-based methods can represent sharp edges in the geometry is
an other positive property for this type of optimization. The shape and
curvature variations in such problems are usually limited. Therefore,
there is a high chance that the optimizer finds the same optimal design
independent of the filtering coefficient. Unlike the large size examples
presented in this work, aerodynamic optimization is usually performed
until the perfect convergence of the design. For such a case, it is import-
ant to choose an optimal value for the filtering coefficient, such that the
solution is found in as least steps as possible. Alternatively, the filtering
coefficient can be included as a design variable in the optimization
problem. The step size is usually chosen by an approximated Newton
line search. In contrast to this work, most of published works on airfoil
shape optimal design use implicit smoothing. Moreover, considering
the limited geometry variation, in-plane regularization has a smaller
importance compared to other applications.

The optimization is performed in 36 constant steps, and zero angle of
attack. As seen in figure 6.4, the lower edge of the airfoil is gradually
flattened and the upper edge is curved. This produces a higher total
force in the upward angle. In parallel, the whole body is rotated
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Figure 6.4: Shape evolution of an airfoil with lift maximization as
objective

clockwise, so that the streamwise momentum of the flow produces lift
force. The lift is zero at the beginning due to the symmetry (figure 6.5).
As the lift increases, the increase of the effective area increases the drag
force. Note that there is no constraint on drag enforced and therefore
continuing the optimization until the convergence would not lead to a
meaningful airfoil.

6.1.3 Drag on 3D Ahmed body
The main advantage of topology optimization is that one can get an
optimal design without having a deep insight to the physics of the
problem and the response of the system. In many cases the solution of
a topology optimization is not predictable due to its enormously large
design freedom. By use of node-based shape optimization, together
with a strong shape control technique, one can partially create the
mentioned advantage in a shape optimal design as well. Considering
the fact that compared to topology optimization, shape optimization
has a lower computational cost and a better definition of the geometry,
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Figure 6.5: Drag and lift history for the airfoil case. Both drag and lift
values are normalized by the drag value of the initial geometry

its combination with a large and free design space forms the most
robust and efficient tool for very large problems [12].

The shape of the 3D Ahmed body, which is a well known benchmark
geometry for bluff body simulation (specially car aerodynamics) is
subject to change, in order to reduce the total drag on it. The geometry
is just a box with a fillet round edges in front (figure 6.6 right) and
a chamfer at the upper edge of the back side. The box is connected
to the ground by four small vertical cylindrical stands (reminding of
the wheels of a car). The object is located on the slip boundary of a
half space. Since the body is slightly lifted by the stands, the fluid can
flow in all 4 sides of it. This is an extremely simplified version of an
external aerodynamic simulation of a vehicle.
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Figure 6.6: Drag reduction on 3D Ahmed body (top left: initial shape)

Here we try to explore the possibility of moving towards the goal men-
tioned in the first paragraph of this section. The edges of the Ahmed
body, including the round ones in front, are the design features which
shall remain sharp (section 3.1.6) and the large flat surfaces between
those lines are supposed to deform in order to lower the drag. There is
no external constraint applied on the feature lines and as mentioned
in section 3.1.6 they are treated as the other surface points. The only
constraint is that the four connections to the stands shall stay in their
position. An octree automatically generated volume mesh is used and
the surface mesh contains all sort of elements (triangle, quadrilateral,
and polygons). There exist around 275000 surface coordinates in the
design space.
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The optimization is performed intentionally with a relatively large filter
radius (around on sixth of the width), so that no small scale details are
formed. The improved shape after some steps can be seen in fig 6.6, top-
right and bottom. As expected, the sharp corners stay in the geometry
and the flat surfaces deform such that the effective area is reduced and
also the shape is aerodynamically smoother. The fixed parts at the
bottom are connected with a smooth transition to the rest of the body.
It is interesting that there is a small bump formed at the top and also
a much smaller one at the bottom. The curvature around and behind
the stands also gives an organic sense to the structure. All in all, it
can be concluded that this method has the capacity of transforming
very basic geometries to physically efficient and aesthetically valuable
industrial designs. Obviously a more realistic example would require
more elaborate considerations.

6.2 Automotive applications

This section verifies the usability and applicability of the method in real
size automotive problems with 3D complex geometries. The geometries
are chosen from a series of test cases provided by Volkswagen AG in
the framework of a collaboration project, as well as the "7th Framework
Programme" EU-project, FLOWHEAD (Fluid Optimisation Workflows
for Highly Effective Automotive Development Processes). Therefore,
they reflect the up to date challenges and needs in CFD shape optimal
design in vehicle industry. The first series of examples is power loss re-
duction for an internal flow, and the second series is the drag reduction
for external aerodynamic of a full car model. Table 6.1 shows some
information about these cases.

6.2.1 S-duct
This example is a part of an air duct of the car air conditioning system.
The shape of the bend has to be modified in order to reduce the air
power loss, which is described in equation (4.27).

The geometry and the boundaries are not symmetric and the flow
structure inside the duct has a fully 3D form (figure 6.7). Shape
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case volume cell type surface coordinates
(3× design variables)

laminar S-duct tet 25K
turbulent S-duct hex 226K

side mirror, scenario 1 tet 32K
side mirror, scenario 2 tet 20K
side mirror, scenario 3 tet 11K
upper body Passat tet 780K

full body Polo poly 3.3M

Table 6.1: Key information about the automotive examples

Figure 6.7: Initial geometry of the S-duct. The design surface is plotted
darker.

optimization is performed in two flow regimes, a laminar case with
Re ∼ 300 and a turbulent case with Re ∼ 3000 (table 6.1).

Laminar 3D S-duct

Shape optimization was performed for forty iterations. After that
the sensitivities are very small and the objective does not vary much.
Evolution of design can be seen in figure 6.8 and diagram 6.9. The
shape is smooth throughout the optimization and each design instance
can be used as an improved shape. Until step 20, at which around 25%
of improvement is achieved, the shape variation is mainly due to the
proper reduction of curvature at the bend, which would be expected by
an experienced designer. However, further improvement of the design,
which leads to a non-intuitive free-form shape (figure 6.8) can be done
only by applying the surface sensitivity to a rich shape parametrization
together with mesh regularity consideration.
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Figure 6.8: Evolution of the S-duct shape from the initial design, at
top-left, to top-right, bottom-left and bottom-right

Figure 6.10 compares a cross section of the initial design with the one
of the improved shape. During the second half of the optimization
process, as the optimizer is exploring innovative design updates for
non-trivial further refinements, several update patterns and even con-
secutive changes in the curvature sign happen. Considering the large
spatial gradients of surface sensitivity, combined with the curved geo-
metry of the duct, in-plane treatment of the mesh plays a key role, to
the extent that a normal to surface update strategy would not survive
more than few steps. Figure 6.11 compares the surface mesh of the
initial design with the improved shape, and as it can be seen, despite
the large design variation, the mesh is almost as good as the initial
one, according to the OpenFOAM mesh quality measures.

Turbulent 3D S-duct

Compared to the laminar duct, the air flows faster in this test case.
Hence, a relatively large separation region is formed, which dissipates
energy. This is a common phenomenon in many engineering CFD
problems. At the separation point, there is a sudden transition of
surface sensitivity, from a large positive value to a large negative value,
streamwise. This means that pulling out the wall boundary before the
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Figure 6.9: Optimization history for the laminar S-duct case

separation and pushing it in at the separated region can reduce the
dissipated power. In the case of flow over a curved boundary, this is
equivalent to flattening the curvature, on which the flow detaches from
the wall. Update vectors of the surface points at the first optimization
step are seen in figure 6.12. The sudden change of surface sensitivity
sign has been transformed to the smooth change of the update direction
by the use of Vertex Morphing method. This update pattern would
not be feasible in a simple CAD parametrization of the bend geometry.
The advantage of the proposed method becomes more clear as the
optimization loop goes on. Updating the shape by the vectors shown
in figure 6.12 reduces the sharpness of the curve and moves it slightly
to the right. In the next optimization step, there will be a similar
update pattern on the moved curve, and thus further movement of
the curve. This procedure produces a “design wave” from upstream
to downstream, as the shape evolves towards removing the separation.
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Figure 6.10: Cross sectional plot of the laminar S-duct geometry before
and after shape optimization

Representation of this design wave requires an enormous number of
shape modes, which is well provided by the presented method.

Additionally, as it can be seen in figure 6.12, the in-plane component of
the update vector explained in chapter 3 prevents any mesh distortion
within the complex shape evolution.

In 60 optimization steps, an improvement of 70% in power loss has
been achieved. After the first 50% of improvement, the geometry looks
very similar to the initial design, with some improvement on the curved
parts. For the last 20% of improvement however, the shape undergoes
considerable free-form modifications, as in the laminar case.
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Figure 6.11: Preservation of the surface mesh density and quality after
large shape and curvature variation of the laminar S-duct

Figure 6.12: Smooth in and out plane update vectors (scaled) at flow
separation regions at a longitudinal cross section of the turbulent S-
duct. The design surface is larger compared to the laminar case. The
fluid flows from left to right.
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Figure 6.13: Optimization history for the inlet manifold

6.2.2 Practical aspects

Here we review some practical aspects which have been frequently
observed in automotive optimization cases. The optimization history
of a ducted flow is used for demonstration. The case is a shape optimal
design for an inlet manifold, with a relatively limited design surface
compared to the S-duct. We do not present more details about the
description of the case, for the sake of briefness.

In steady CFD simulations, it is common to set the solution tolerance
according to the level of accuracy required by the specific study. When
tolerance is not small enough, the objective value shows an oscillation
with domains up to few percents of its value. Of course these oscillations
do not have any physical meaning and are result of the poor level of
convergence in the non linear solution procedure. This simulation might
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be further used for shape optimization. Having in mind that in real life
industrial optimization, the order of improvement is very often only
few percents, building up the optimization loop upon such a simulation
might seem senseless. However, as practically proven by several test
cases, it is possible to start the optimization even with a poor level of
convergence. As mentioned in section 5.3, since the overall distribution
of the surface sensitivities is formed much before the final convergence
of the primal and adjoint fields, the update pattern would not be much
different compared to a perfectly converged case. This approximate
update strategy is absolutely enough for the first optimization steps.
If a more precise and detailed optimization is needed, one can achieve
the better level of convergence during the optimization by choosing a
smaller tolerance for the sub-step CFD iterations. This would save a
considerable amount of computation and set-up time. The diagram of
figure 6.13 clearly shows the mentioned process. Despite the oscillatory
objective value at the beginning, the optimization is moving to the
right direction. Further on, the oscillations gradually disappear as the
tolerance of the optimization process is smaller than the one set for
the initial simulation.

As discussed in the example of figure 3.2, smaller filters allow for faster
approaching to the optimal geometry, specially if the optimum includes
high curvatures. This is also observed in real test cases, e.g. figure 6.13.
Usually due to production limits, aesthetics, etc. a more smooth design
with less geometrical details is desired. This can be fulfilled by applying
a large filter. But even if there is no limitation about the minimum
curvature and detail size, the filter cannot be smaller than a certain
limit for stability reasons. Practically, the filter should encircle "enough"
surface points, in order to guarantee the regularity. Therefore, despite
the fast rate of convergence, a very small filter might end up to diver-
gence, before the desired level of improvement is achieved. A practical
solution to overcome the question of the smallest possible filter size, is
to define the filter size based on the surface element size, rather than a
fixed distance.

Due to packaging and dimension restrictions, it is often the case that
the part subject to optimal design cannot get bigger (smaller in case of
external flows). Many parts of the car exterior as well as some interior
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parts should strictly remain withing the initial design dimensions. The
proposed optimization technique uses surface coordinates, so it is not
possible to directly impose the packaging as a constraint. Furthermore,
solving the problem by a constrained optimization algorithm would
dramatically decrease the efficiency and robustness, and hence it would
not be anymore usable for the presented challenging cases. A pragmatic
way to impose the dimension constraint is to penalize the outward
movement of the surface points. In fact, instead of the normal motion,
the positive values of the control parameter s are penalized, which leads
to a smooth design. Note that there is no guarantee that a non-positive
value for s would not cause any outward motion of the geometry x.
However, practically it is almost never the case that a point moves
outward and even if it does, it will be extremely small and perfectly
negligible. It is clear that such a restriction would strongly decrease
the improvement level (figure 3.2). However, it is still very valuable
to gain few percents of improvement by making a duct smaller or an
external object larger.

6.2.3 Car body

In this section, the shape optimization for a car body model is desired.
Although in all presented cases the full car body is modeled, in each
case a different region of the car exterior is allowed to deform, as
the design surface. In the first test case, the whole upper body of a
Volkswagen Passat (figure 6.14) is regarded as the design space. Next,
the entire body of a Volkswagen Polo, including the under body is
optimized. Further on, the geometry of the side mirror of Volkswagen
Passat (figure 6.14) is improved in three different scenarios based on
the design surface. In all the cases the objective is the total drag on
the full car body. Table 6.1 contains some information about these cases.

Compared to the ducted flow, this problem is much larger in computa-
tional size and includes more geometrical complexity. One important
aspect in shape optimization of the car body (and many similar in-
dustrial designs) is preserving the main features of the design. More
precisely, changing the shape should not affect the “design character”,
aesthetic and geometrical features, such as sharp edges must be kept
during the optimization. To this end, it is desired to use large enough
filters such that the improvement pattern is smooth, and the overall
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Figure 6.14: Side mirror geometry and discretization (bottom). Car
body geometry (top)
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Figure 6.15: Update length distribution on Passat upper body. Blue
indicates zero update length and red the maximum step size in each
optimization iteration, here 2mm.

shape of the vehicle is not disturbed. Note that the oscillations seen in
the optimization history diagrams of this example are numerical and
due to the large tolerance in solution of flow equations (section 6.2.2)
and have nothing to do with the shape optimization.

Passat upper body

Even though optimization of the whole upper body of a car is not of
practical interest, it is chosen as a challenge for the Vertex Morph-
ing method and the designed workflow. Here, there exists a large
number of design variables and various geometrical complexities, such
as high curvatures, trimmed surfaces, sharp corners, regions of low
quality mesh, etc. Gray regions in figure 6.15 (bottom left and bot-
tom right) are the fixed regions. The optimization has been run for
several steps without any smoothness or mesh regularity problems
and within 20 steps, with maximum update length of 2mm per step,
1.6% improvement in drag has been achieved (figure 6.16). Fig 6.15

120



6.2. Automotive applications

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  5  10  15  20

%
 d

ra
g 

ch
an

ge

optimization step

full body

Figure 6.16: Optimization history for the upper body

shows the update vector length distribution on the surface of the car
for one of the first optimization steps. In this case a filter radius of
10cm is used which is 20 times larger than the surface mesh edge length.

More important than the trivial drag reduction by lowering the size of
the car, is the preservation of the car feature lines, which is provided
automatically by Vertex Morphing. All the features smaller than the
radius of influence are only subject to a bulk and rigid motion, without
considerable shape deformation. Even after several design updates, the
car body has all the design characteristics of the original one. Another
crucial aspect in problems of this size is the computational time. Due
to the explicit nature of the method and the efficient data exchange,
the whole optimization time for the 20 steps has been almost the same
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Figure 6.17: Surface mesh of an automatically generated mesh for small
geometrical details

as the CFD and adjoint computation time. Note that in such a problem
talking about the optimum is not meaningful and as mentioned before
the aim is to apply limited geometrical improvements to the shape.
The aerodynamic efficiency is one of the many important factors in
designing the car body, and hence it is not possible to directly use the
result of this type of optimization in car body design. However, the
deformation patterns in individual regions can provide the designers
with a very valuable guideline in improving the physics of their design.

Polo entire body

In a more extreme test case, the full car body, including the under
body, suspension system, etc. is subject to shape optimization. The
mesh is an automatically generated octree based polyhedral mesh which
includes severe distortions. Particularly at the under body where the
CAD model contains tiny objects, various kinds of mesh irregularities
exits, for instance, elements laying on each other, highly skewed poly-
gons, edges with almost zero length, etc. In such a case, in contrast to
the smooth surface of an airfoil, the poor definition of the surface makes
it practically impossible to use a topology based implicit smoothing.
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Applying separate in-plane mesh regularization would immediately fail
as well.

There exist more than 3.3 million shape coordinates which are con-
trolled during the optimization. This is a very large number compared
to the typical shape optimization problems. The only fixed region is the
bottom of the tires where the road surface is touched. Similar to the
upper body case, many optimization steps are performed successfully
and the objective value decreases monotonically. Having efficiently
solved such a problem, optimization of specific regions of the car body
would be only a simplified version of this one, w.r.t. size and complexity.

Side mirrors

In a more industrially relevant case, the geometry of side mirrors has
been improved to reduce the drag of the complete car body, in three
different scenarios. In scenario 1 and as the first study, the shape of
the whole mirror, including the glass part is optimized. In scenario 2
and 3, the cover of the mirror is subject to shape changes, with the
difference that the scenario 3 has a more limited design surface. The
design surface of each scenario can be seen in figures 6.18-6.22. More
information about these cases can be found in table 6.1. In all three
scenarios, the shape of both side mirrors is improved simultaneously,
but individually, and since the geometry of the upper body is almost
symmetric, the shape optimization has resulted in symmetric shapes.

The optimization of the whole mirror, scenario 1, was performed in 16
steps, with a maximum update length of 1mm per step. A relatively
slight modification in the geometry of the side mirror reduces the drag
on the mirror by 7% (figure 6.18). However, the objective function of
the optimization problem is the total drag (and not only the mirror
drag). Therefore, the shape modification aims in reducing the overall
drag, which includes the effects on the downstream flow around the
rest of the car as well. In this case, the wind load on the rest of the
car body is also reduced by 0.2%, which brings a total drag reduction
of 0.6% (figure 6.18).
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Figure 6.18: Optimization history for the side mirror, scenario 1. The
design surface is plotted in dark green.

In scenario 1, the glass part was allowed to deform, but due to its small
surface sensitivity it remains almost flat. However, a large portion
of improvement is obtained by the shrinkage of the object, which is
obviously favorable for drag reduction. By excluding the glass part and
its frame from the design surface (scenario 2), automatically the size of
the glass is constrained. With such a constraint, simply shrinking the
mirror cover would worsen the aerodynamic behavior and hence the
shape optimization is not trivial at all. The front view of the initial
design compared to the improved one can be seen in figure 6.20. The
top part of the mirror is reduced in size and a small valley shape is
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Figure 6.19: Optimization history for the side mirror, scenario 2. The
design surface is plotted in dark green.

formed at the neck of the mirror. The improved shape has an organic
flavor and is elegant, which is maybe the most important requirement
for car body design.

The diagram of figure 6.19 has a very interesting message about this
case. The improved mirror covers cause a higher drag value on the side
mirrors (around 4%), although the objective value of the optimization
problem, the total drag is lowered by more than 0.2%.
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Figure 6.20: Side mirror, the intial geometry (transsparent blue) vs.
the improved one (solid yellow), scenario 2
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Figure 6.21: A cross section of the car side mirror geometry before and
after shape optimization, scenario 2

126



6.2. Automotive applications

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 0  5  10  15  20  25

dr
ag

 c
ha

ng
e

optimization step

mirror
10x full body

Figure 6.22: Optimization history for the side mirror, scenario 3. The
design surface is plotted in dark green.

Figure 6.21 compares a cross section of the mirror at the initial design
and the improved shape. In this figure, at around (x, y) = (1.4, 0.3), a
design feature line of the mirror is seen. According to the same figure,
this feature line is perfectly preserved in the improved geometry, and
is not smoothed out.

In scenario 3, the design surface is a narrow patch with fixed boundaries,
which gives a limited space for improvement. The only region that
the shape can deform a bit is the part close to the car body. Because
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of that, the influence of the downstream effects on the rest of the
car is even more pronounced and is actually the main improvement
mechanism (figure 6.22).

6.3 Structural design

The final example is shape optimization of a large structure, subject to
atmospheric wind. The purpose of the example is to explore applicab-
ility of the workflow to wind engineering problems. First, there will
be some brief remarks on computational modeling of the case. Second,
the shape is optimized for two different objectives and various aspects
about the physics as well as the geometry are discussed.

The structure is an imaginary thin and light weight roof over a tennis
stadium (figure 6.23). The roof has a simple geoemtry and is used only
as a demonstrating example. However, it has been tried to include some
of the key features in its design both from architectural and structural
point of view. The CAD modeling is done by use of NURBS surfaces in
the toolbox Rhino. Each layer of the roof (top and bottom) consists of
left and right high order NURBS surfaces with C0 continuity at their
junction in the middle. Lower and upper faces are connected at the
sides by flat surfaces. The lower surfaces are trimmed by the intruding
cylindrical columns.

The structure has a free form doubly curved geometry for efficient load
carrying. It stands on four thick columns at the corners which span a
distance of 140m and 50m in width and 40m in depth. The highest
point of the roof is 35m above the ground and the lowest elevation
which is at the position of the columns is around 6.5m. In order to
hold the bending moments, the middle front part of the roof is the
thickest region with 5m. The thickness is gradually reduced toward
the side edges down to 1.3m.

Such a light weight structure has a big capacity for structural shape
optimization due to its size and free form geometry, which is out of
our main focus in this work. However, the wind force is certainly the
largest load applied on this structure and plays an important role in
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Figure 6.23: CAD design of the tennis stadium roof
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Figure 6.24: Fine mesh region from the inlet to the obstacle for simula-
tions with turbulent wind generator (top). Velocity at the lateral mid
section, pressure on the wall surfaces (bottom)

its design. Therefore having a computational framework for tackling
shape optimal design w.r.t wind loading for this type of structures is
highly demanded.

6.3.1 Wind flow around the roof
For simulation of the wind flow around the roof, the mentioned as-
pects of chapter 4 are considered. Unlike the automotive cases, the
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CAD design, meshing and case setup has been done internally. The
NURBS surface is exported to the software ICEM CFD for volume
mesh generation. The computational domain is 500m long, 400m wide
and 200m high, which has been chosen according to the dimensions
of the structure and based on an estimation of the bulk flow behavior
(section 4.2.3). It has been tried to design the mesh as efficient as
possible using the experience of similar simulations, in order to have
accurate enough results with the smallest problem size possible, es-
pecially to avoid very long times for the optimization. The volume
is meshed by tetrahedral cells and at the wall boundaries four prism
layers are built. Close to the surface and in regions with high gradients
(e.g. the vortices at the wake) the mesh is refined. For simulations
with transient inlet wind boundary condition (equation (4.23)), it is
necessary to have a fine mesh in the region between the inlet and the
obstacle (figure 6.24) so that the generated vortices are captured by the
mesh and transferred to the obstacle with least amount of dissipation.
This increases the problem size dramatically.

A boundary layer wind with the mean velocity of 10ms at the reference
height 10m is blown to the roof. A roughness length of 0.1m for the
earth surface upstream is considered which is a realistic value for such
a case based on [121]. The details about boundary conditions, wall
treatment, inlet wind etc. can be found in chapter 4.2.3.

For adjoint optimization a steady RANS simulation with k − ω SST
turbulence model [82], with adjoint frozen turbulence is used. The mesh
has around 8 million finite volume cells. For the initial convergence
of the fields 2000 iterations were performed (each primal and adjoint).
This step takes about 8 hours using 36 processors, almost 5 of which is
spent on the primal calculation and the rest on adjoint.

As known from literature, RANS simulations of bluff buddies can be
inaccurate. Therefore, a series of LES simulations was performed in
order to evaluate the quality of the RANS solution. In addition to
the mesh used for the RANS case, two other meshes were generated
for the LES calculations. The first mesh is around the roof structure
identical to the coarse mesh described in the previous paragraph. The
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Figure 6.25: Velocity around the roof simulated by LES in two elevations

difference is the refined region between inlet and obstacle which allows
for transient wind inlet. The second mesh has about 26 million cells and
in addition to finer boundary cells, has a better resolution for capturing
the down stream flow structures. LES simulations were done for the
physical duration of 200s. After 100s the field averaging starts. The
time step is 0.001 which leads to a total number of 2× 105 time steps.
LES simulation with the same mesh as of the RANS takes about 175
hours on 36 processors. Note that there is no adjoint calculation in case
of LES. Therefore, the coarsest LES performed (which has a way coarse
mesh for an accurate LES simulation) is 35 times more computationally
costly compared to steady RANS. The total simulation time for the
large case is about 740 hours on 36 processors. Due to some restriction
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Figure 6.26: Comparison of the average drag for different simulations
(top). Objective history for drag reduction on the roof (bottom)
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Figure 6.27: Normal to stream roof cross section, initial shape (red) vs.
improved for drag (black)

Figure 6.28: The existence of the roof has a big influence on the air
flux at the seats location

in domain decomposition algorithm, forced by the implementation of
the wind generator, the simulation with transient wind takes much
longer and a fair computational time comparison is not possible.

6.3.2 Drag reduction

Shape optimization of this structure is similar to the examples shown in
section 6.2.3. Therefore, the focus of this section is not on the optimiz-
ation itself, but on the physical worthiness of its results. The outcome
of a verification study of the wind loads on the roof is presented and
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at the end of the section some important and critical conclusions are
drawn. The drag force on the roof has been chosen as the objective
for sake of simplicity. Note that there might exist objectives which are
more relevant to the design of this structure, such as the moment at
the supports.

A comparison between the averaged drag forces shown in figure 6.26
indicates that the LES simulations have approximately equal average
drag values. This can mean that the mesh is capable of estimating the
average loads. For instance, the difference between the small and large
model is bellow 1%. Moreover, the mean drag value is not influenced
much by the steadiness of the inlet condition, as the average drag of
the model with transient inlet is very close to the ones with mean
velocity boundary condition. More importantly, the RANS simulation
reports a relatively close value to the LES simulations. The difference
is bellow 15% which is a good enough accuracy for shape optimization
of such a complex flow, specially considering the computational cost.
Note that comparison of the averaged values does not prove the quality
of the simulation as different errors might be balancing each other
out. However, the experience from other test cases (e.g. the pipe
flow presented in section 4.2.1) approves the mentioned conclusion. It
should be added that in a more realistic design optimization, values
such as peak wind load are more critical compared to average values.
In such a case a fully transient simulation is required. Moreover, the
role of having a realistic wind inlet condition will be more pronounced,
since the simultaneous values strongly depend on the inlet condition.
For instance, in the presented simulations, the standard deviation of
the drag force is 2.5 times larger when a transient wind model is used.
Similarly, the ratio of the peak-to-mean ratio of the drag force is about
4 times larger compared to the mean velocity inlet condition.

The roof has around 237000 surface coordinates and can freely move
in all regions, except the connection to the columns. Figure 6.26 shows
the objective history for 25 optimization steps, with maximum 25cm
update length per step. As it is seen in figure 6.27, the optimization
tries to lift the corners of the roof such that the wind can pass through
easier. Moreover, this deformation flattens the roof so it receives less
force in mean wind direction.
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The volume mesh is deformed during the optimization to adapt to the
deformed geometry. If this deformation changes the objective calcula-
tion accuracy, the correctness of the optimization would be questioned.
In order to study the possibility of this deficiency, a new volume mesh
was generated for the resulting improved shape. The drag force of the
deformed mesh and the newly generated mesh have a negligible differ-
ence. This means that there is no error introduced by the optimizer in
the solution of the discretized RANS model.

The next question is if the acceptable level of agreement for the RANS
model compared to the reference model (LES) would be extendable to
the variation of the objective function, i.e. drag improvement. To find
an answer to this question, a new LES simulation was performed on the
improved geometry. The LES simulation of the improved shape shows
about 5% of change in drag whereas the RANS calculation claims the
improvement to be around 11% (figure 6.26). From the view point of
error analysis it is not a surprise, since the improvement in the RANS
model ( 11%) is in the same order of magnitude as the difference of
RANS and LES models ( 14%). This mismatch between the "delta
values" indicates that the improvement mechanism (or the gradient
vector) of the simplified model, RANS, is not necessarily as effective
for the reference model, LES. In other words, there is no guarantee
that the variation of the objective can be approximated by a reduced
model as accurate as the objective value itself.

A remedy to overcome the explained shortage is to calculate the sensit-
ivities of the transient simulation which is not computationally feasible
as explained in chapter 4. Further discussions in this direction would
be out of the concept of this work and is a current field of research in
adjoint optimization.

6.3.3 Passive cooling

Wind engineering is a wide research field and of course is not limited
to force evaluation of structures. Consequently, optimization of wind
engineering related structures deals with other type of problems as well.
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Figure 6.29: Objective weighting for different seat regions

In this section we define a new problem definition on the same struc-
ture, i.e. improvement of wind passive cooling. Unlike the previous
section, here the main focus is on the geometrical capabilities of Vertex
morphing.

As visualized in figure 6.28 construction of the roof over the stadium
seats does not only protect the fans from sun and rain, but also changes
heavily the wind flow around the seats. The roof traps the air under
it which causes a high pressure region. As the result, the roof acts an
obstacle and large portion of approaching wind elevates at the upstream
and passes over the roof. This worsens the cooling and ventilation
conditions at the seat positions. The goal of the shape optimization
is to modify the roof geometry such that a mild wind can ventilate
the seats effectively. Therefore the integral over the parallel to surface
wind velocity close to the seat locations is chosen as the objective
function. In order to study a weighted multi-objective case, and also
for the sake of change, the objective is prioritized (weighted) in three
categories based on the ticket price in each region, shown in figure 6.29.
Note that there might be other objective alternatives such as flow rate
under the roof, but the exact definition of the target function does not
matter here, as it does not change the aspects discussed in this section.
Moreover, clearly it is not sufficient to study only one wind direction
and velocity, and a robust shape optimal design should consider various
wind scenarios.
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Figure 6.30: The improvement rate for each priority region

The outcome of the optimization seen in figure 6.30 shows that the
improvement rate is more or less proportional to the priority factor
specified for different seat categories. In general, it cannot be always
expected, since the objective functions can be highly correlated in such
a problem. Despite the deep curving of the structure the mesh stays
almost as good as the initial mesh (figure 6.24) and if needed, even
much larger shape deformation would be possible.

The process increases the parallel to surface velocity at the seat posi-
tions by two mechanisms (figure 6.32): First opening the narrow gap
between the roof and the lower structure by pulling the roof upward,
which increases the flux passing under the roof, and second, pushing
the roof down towards the seats slightly upstream of the narrow gap so
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Figure 6.31: The surface mesh of the roof before and after optimziation
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Figure 6.32: Pressure field in a lateral section for initial and improved
roof

that the air passage is smaller, which leads to a higher velocity. The
mixture of these two mechanisms creates an interesting challenge that
how would the roof deform in order to make use of both improvement
mechanisms. In other words, the improved shape shall bring a smooth
transition between the increased height at the edge of the lower struc-
ture and the decreased height right before that. Node-based shape
optimization provides a good basis for generation of such forms.

The filter size is the parameter which decides how smooth or sharp the
transition should be. Figure 6.34 clearly shows that the evolution of the
shape when a small filter is used is more local, and mainly close to the
narrow gap. In contrast, the large filter results in a "smoother" shape
with larger curvature radius, which means that the deformation is trans-
formed to further parts of the roof as well. Similar to the example of
section 6.2.2, a smaller filter size would make a faster shape transition in
the direction of the gradient and hence a faster decrease of the objective
value is to be expected. This can be observed in the graph of figure 6.33.

In the section plots of figure 6.35, it can be seen that when the filter
size is smaller or in the same range as the thickness of the roof, the
roof thickness is also modified. Considering the fact that the sensitivity
of the upper surface is much smaller than the lower one, changing the
thickness is a logical path towards the optimum. It should be men-
tioned that the thickness reduction takes place only in ticker regions of
the roof (figure 6.35). More importantly, thinning almost stops at a
certain stage, and both upper and lower faces deform synchronously.
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Figure 6.33: Influence of the filter size on improvement rate

Therefore, the roof does not get thinner than a limit, unless many
optimization iterations are performed, which is not the case, in such a
problem, as the roof looses its form completely.

This observation shows an other application of the feature preservation,
discussed in section 3.1.6 as a positive and important property of
this method. Here, the features are not only a design element, but
also a means to keep the resulting shape of the optimization physically
meaningful. This property does not exist, when the smoothing operator
is defined based on the surface topology, e.g. the implicit curvature
based smoothing of equation (3.21). Note that this property is not
related to the formulation of the filtering problem (implicit or explicit),
but to the way the filtering operator is constructed. Example of
figure 6.36 compares the update pattern on a section of the roof for
two different cases, in both of which an explicit smoothing is used. In
the first case (top), the node distances are evaluated by the help of
mesh topology, whereas the second case (bottom) uses a global distance
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Figure 6.34: Shape development modes for filter sizes 5 (top) and 16
(bottom)

evaluation (section 5.2), as all other presented examples in this chapter.
Nodes of the lower surface have a large topological distance to the nodes
of the upper surface. Therefore, in the first case, the large sensitivities
of the lower surface result in deformation only in nodes of the lower
surface. This means that the and upper faces stays almost fixed, and
the lower surface moves upwards. The optimization continues iterating
even when the lower surface has deeply penetrated the upper one.
Although this has no realistic meaning, but for the CFD calculation,
there is no problem to solve the Navier-Stokes equations on overlapping
spaces. This is not the case for the global distance evaluation. In the
second case, the wall thickness is seen as a design feature. In other
words, the surface points which are close to each other sense each other,
no matter to which side of the wall they belong. As the result and
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Figure 6.35: Normal to stream (top) and lateral (bottom) sections of
the initial roof geometry (first row) and improved ones with filter sizes
from top to bottom 3, 5, 7, 11 and 16 meters
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Figure 6.36: Performance of a surface-based smoothing (top) vs. global
smoothing (bottom)

from the beginning, the two surface of the roof move together. Still,
the thick regions of the wall can freely change thickness as it is the
case in the bottom plot of figure 6.36 where the upstream part of the
roof starts moving down to further tighten the air passage.
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Chapter 7

Conclusions and outlook

This contribution tried to observe the numerical shape optimization as
an engineering tool that can be used within the design process, rather
than an effort to replace the designer by an intelligent algorithm which
finds the "best possible" design. Based on this interpretation, the shape
optimization tool shall effectively transform the result of the numerical
analysis (physical and sensitivity) into a meaningful geometrical im-
provement. To this end, a novel node-based parametrization, Vertex
Morphing was developed which takes into account the geometrical
requirements of a general industrial design. The mathematical inter-
pretation of the technique was analyzed through a consistent notation,
so that the reader can establish the link to the theory of optimization
and regularization.

A design control field as the essence of Vertex Morphing method was
introduced and the optimization problem was formulated in the control
space, instead of the geometry. This notation makes it possible to
see the CAD objects or subdivision surfaces as a coarse discretization
of the control field. It was proven as well that the optimal solution
is independent of the parametrization when the standard version of
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the method is used in which the control and geometry fields share the
same discretization. Furthermore, it was stated that one can guide the
optimization path towards a desired local minimum by selecting the
right filter radius. This property is very important since most of the
engineering applications of shape optimization deal with highly non-
convex response surfaces, with many local minima. Vertex Morphing
leaves the decision of "which local minimum fits the design requirements
(manufacturing, aesthetics, etc.) the best?", to the user, by providing
a comprehensible physical variable as the input parameter: the filter
radius. In other words, by using a spatial low-pass filter, the designer
can decide about the minimum geometrical wavelengths existing in the
shape variation pattern. This matches well the goal of this project,
mentioned at the beginning of this section.

Advantages and challenges of node-based compared to the other para-
metrization techniques were discussed. The need for regularization in
the ill-posed node-based shape optimization problem was explained.
Different remedies were reviewed and the filtering approach of the
proposed parametrization was compared to other known techniques in
shape and topology optimization. It was concluded that for the type of
optimization aimed here, more decisive than the smoothing formulation
is the filtering intensity, which is a common input variable in all the
reviewed methods. Moreover, the problem of mesh distortion and its
main causes were explored. Simultaneous treatment of the shape and
mesh regularity in Vertex Morphing was studied and demonstrated by
a test case.

State equations of the target problem (CFD) were presented and some
comments on turbulence modeling with focus on wind engineering were
followed. Some modeling remarks about wind simulations including
generation of the turbulent wind inflow were stated. Evaluation of the
surface sensitivities by a continuous adjoint formulation of Naver-Stokes
equation was explained. Furthermore, the coupled fluid-structure in-
teraction problem and its solution techniques were introduced and the
challenges in optimization of this type of problems were investigated.

The developed method was put into a numerical shape optimization
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workflow and successfully tested through several examples. First, simple
conceptual test cases were examined for the sake of verification and
comparison with other works. The second group of applications were
from automotive industry, including internal flows (air channel and
intake manifold) as well as external aerodynamics (car body and side
mirrors). Despite the high level of geometrical complexity, low mesh
quality and large number of design variables, the method showed sig-
nificant success in improving the design. At the end, the shape of a
large structure exposed to wind flow was optimized in two different
scenarios. The first scenario, which was a drag minimization, analyzed
the level of error to be expected by steady assumption in the adjoint
equation. It was seen that the error in estimation of the improvement
(sometimes called "delta value") can be remarkably larger than the
error in evaluation of the absolute objective value, caused by the steady
solution of the primal equations. This is an inadequacy in resolving the
correct physics of the phenomenon and is not related to the proposed
method. The objective of the second optimization scenario was to
increase the wind passive cooling. The special set up of the problem
provided the basis to analyze some geometrical aspects of the method.

To sum up, it was observed that the Vertex Morphing method, together
with the adjoint sensitivity analysis form a strong combination which
offers a great performance for shape optimization of very large prob-
lems. The simultaneous treatment of normal and tangential directions
shows a significant advantage over previously published decoupled tech-
niques. The choice of algorithms for neighbor-search, optimization
and integration are influential features in efficiency of the implementa-
tion. Simplicity of the notation and generality of the method makes
it possible to be applied on various fields of engineering as a "solver-
independent" shape control tool.

A worthwhile continuation of the presented work would be to apply
the morphing module to other computational programs, particularly
in solid mechanics, and as a further step to fluid-structure interaction.
Moreover, in order to increase the usability of the developed method
in industries, it is necessary to include typical engineering constraints
such as packaging. To the author’s opinion, upgrading to a higher order
approximation of the surface, more accurate integration or applying
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more advanced optimization algorithms would remove the simplicity
and the explicit nature of the method, and thus the observed level of
robustness and efficiency could not be expected.
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