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Lehrstuhl für Realzeit-Computersysteme

Power Management for Closed-Source Interactive
Games on Mobile Devices

Benedikt Dietrich
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Prüfer der Dissertation: 1. Univ.-Prof. Dr. sc. (ETH Zürich) Samarjit Chakraborty
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Abstract

On mobile devices like smartphones and tablet PCs, games account for the class of most
popular, but at the same time most power hungry applications. The processor of such de-
vices is one of the main contributors to the total power consumption when games are being
played. A common technique to reduce the processor’s power consumption is dynamic
voltage and frequency scaling. Power managers of modern operating systems reduce the
processor’s power consumption by scaling the processing frequency and voltage merely
based on the processor’s current utilization and without considering the requirements of
running applications. Since high frame rates are commonly attributed to a good gam-
ing experience, most games process as many frames as possible resulting in a high system
utilization. Traditional power managers in turn select constantly high processing frequen-
cies resulting in a high power consumption. Studies have shown that frame rates above a
particular point don’t improve the gaming experience. Hence today’s gaming platforms
perform not required computations and thereby waste a significant amount of energy.

In this thesis a power manager is presented that is aware of the game application, predicts
its future computing requirements and efficiently selects the processor’s clock frequency
that guarantees the desired frame rate and at the same time provides optimal power
savings. Core of this power manager is the workload prediction which is based on statis-
tical relationships between processing times of past frames and the current frame. While
predictors like the PID controller-based predictor have been widely studied for video de-
coding applications in the past, there is only little work on workload prediction for games.
We systematically evaluate workload predictors and identify that techniques such as PID
controller-based workload predictors lack the robustness to accurately predict the highly
dynamic game workloads and result in poor power savings and a deteriorated user expe-
rience. Our results show that autoregressive model-based predictors – the most general
form of linear models – provide significant power savings for all considered games (up
to 32.4 % compared to Android’s default power manager) while maintaining the quality
perceived by the user.
While many multimedia applications like video decoders are open-source and can be di-
rectly instrumented to measure frame timings, which are required as input to the workload
prediction, most modern games are closed-source. In this work we for the first time present
a technique that does not only allow measuring the frame timings of any closed-source
game, but as well can be used to identify a game’s current state, e.g., if the game is view-
ing a menu, the loading screen or is in the actual gaming state. This state information
is leveraged to implement a state-specific power management that exploits state-specific
workload characteristics and requirements and thereby further reduces the power con-
sumption by up to 43.2 % compared to Android’s default power manager.
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The discussed techniques have been successfully verified for modern closed-source games
from different genres. We have developed measurement setups that allow detailed mea-
surements of system parameters and the power consumption for three different operating
systems (Linux, Windows and Android). For all platforms highly portable and widely
applicable solutions have been found and significant power savings were obtained. Based
on a user study we verified that developed methods don’t deteriorate the gaming quality
experienced by the user. By investigating the theoretical limits of power savings and
modeling an optimal workload predictor, we reveal the remaining gap of our approach to
the theoretical optimal power manager and thereby motivate future research endeavors.

In summary, the main contributions of this thesis are: i) We identified a suitable work-
load prediction technique for highly variable game workloads which guarantees significant
power savings while maintaining the gaming quality. ii) We present a technique which
for the first time allows not only applying the developed power management scheme to
closed-source games, but as well identifying the game’s current state. iii) The devel-
oped measurement setups provide detailed insight into the current state of the systems
and their power consumption. Based on these setups, we verified the described algorithms
and showed significant power savings of up to 43.2 % compared to Android’s default power
manager. iv) We determined the theoretical limits of power savings, revealed the gap be-
tween our approach and the theoretical optimum and thereby motivate future research in
the domain of game power management.
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Kurzfassung

Spiele zählen auf mobilen Endgeräten wie Smartphones und Tablet PCs zu den be-
liebtesten Anwendungen, weisen allerdings auch den größten Energiebedarf auf. Im
Falle von Spielanwendungen wird der größte Teil der Energie vom Prozessor verbraucht.
Power Manager heutiger Betriebssysteme passen die Rechenfrequenz und Versorgungss-
pannung dynamisch an die aktuellen Rechenanforderungen an, um den Energieverbrauch
des Prozessors zu reduzieren. In der Regel wählt der Power Manager hierzu die benötigte
Rechenfrequenz allein basierend auf der momentanen Auslastung des Prozessors aus,
ohne die realen Anforderungen laufender Anwendungen zu berücksichtigen. Üblicherweise
berechnen Spiele so viele Bilder pro Sekunde wie möglich, da eine hohe Bildwiederhol-
rate generell mit einem guten Spielerlebnis assoziiert wird. Dies resultiert in einer hohen
Systemauslastung, auf Grund welcher herkömmliche Power Manager durchgehend hohe
Rechenfrequenzen verwenden, die wiederum in einem hohen Energieverbrauch resultieren.
Studien haben hingegen gezeigt, dass sehr hohe Bildwiederholraten das Spielerlebnis nicht
verbessern. Somit werden auf heutigen Spieleplattformen unnötig viele Bilder berechnet
und Energie verschwendet.

Im Rahmen dieser Arbeit wurde ein Power Manager entwickelt, der sich der laufenden
Spielanwendung bewusst ist, die zukünftig benötigte Rechenzeit der Anwendung vorher-
sagt und die Rechenfrequenz so skaliert, dass eine gewünschte Bildwiederholrate auf en-
ergieeffiziente Art und Weise garantiert wird. Herz des Power Managers ist die Vorhersage
künftiger Rechenzeitanforderungen, welche auf statistischen Abhängigkeiten zwischen ak-
tuellen und vergangenen Rechenzeiten basiert. Während Prädiktoren, wie PID Controller-
basierte Prädiktoren, in der Vergangenheit umfassend für die Rechenzeit-Vorhersage von
Videodekodern untersucht wurden, gibt es nur wenige Arbeiten, die sich mit der Vorher-
sage von Spieleanforderungen beschäftigen. Diese Arbeit evaluiert Rechenzeit-Prädiktoren
systematisch und zeigt auf, dass Techniken, wie etwa der PID Controller-basierte Prädik-
tor, nicht für die Vorhersage von stark variierenden Rechenzeiten von Spielen geeignet
sind. Unsere Analyse zeigt weiterhin, dass Prädiktoren, die auf autoregressiven Modellen
basieren – die allgemeinste Form linearer Modelle – für alle getesteten Spiele erhebliche
Energieersparnisse von bis zu 32.4 % im Vergleich zu Android’s eigenem Power Manager
erzielen, ohne die Spielqualität zu beeinträchtigen.
Während der Quelltext vieler Multimediaanwendungen, wie etwa Videodekodern, frei
erhältlich ist und direkt instrumentiert werden kann, um die Rechenzeit einzelner Bilder
zu messen, ist der Quelltext der meisten aktuellen Spieletitel nicht erhältlich. In dieser
Arbeit wird eine Methode präsentiert, die es nicht nur erlaubt, diese Rechenzeiten für be-
liebige Closed-Source Spiele zu messen, sondern auch die Möglichkeit bietet, den aktuellen
Zustand des Spiels zu ermitteln. Es wird zum Beispiel erkannt, ob das Spiel momentan
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einen Ladebildschirm, ein Menü oder den tatsächlichen Spielinhalt anzeigt. Dieses Wis-
sen wird verwendet, um für jeden Zustand eine spezifische Power Management Strategie
anzuwenden und somit den Energiebedarf weiter zu senken (um bis zu 43.2 % im Vergleich
zu Android’s eigenem Power Manager).
Beschriebene Methoden wurden erfolgreich für aktuelle Closed-Source Spiele verschiedener
Genres getestet. Im Zuge dessen wurden für drei verschiedene Betriebssysteme (Linux,
Windows und Android) Messplattformen entwickelt, die das detaillierte Aufzeichnen von
Systemeigenschaften und des Energieverbrauchs ermöglichen. Für alle Plattformen wur-
den leicht portierbare, flexible Lösungen entwickelt und erhebliche Energieersparnisse
erzielt. Basierend auf einer Nutzerstudie wurde verifiziert, dass der entwickelte Power
Manager keinen Einfluss auf die Spielqualität hat. Zusätzlich wurden theoretische Gren-
zen analysiert, um das noch bestehende Potential an möglichen Energieersparnissen zu
ermitteln und somit weiterführende Forschungsarbeiten in diesem Bereich zu motivieren.

Die wesentlichen Beiträge dieser Disseratation können wie folgt zusammengefasst wer-
den: i) Es wurden Prädiktoren identifiziert, die für die Vorhersage von stark variieren-
den Rechenzeitanforderungen geeignet sind. Diese garantieren in Verbindung mit dem
entwickelten Power Manager erhebliche Energieersparnisse ohne das Spielerlebnis zu be-
einträchtigen. ii) Es wurde zum ersten mal eine Ansatz aufgezeigt, der es nicht nur
erlaubt, entwickelte Power Management Methoden für Closed-Source Spiele anzuwenden,
sondern es auch ermöglicht, den aktuellen Zustand des Spiels zu detektieren und dieses
Wissen auszunutzen, um den Energiebedarf weiter zu senken. iii) Die entwickelten Mess-
plattformen erlauben einen detaillierten Einblick in den aktuellen Zustand des Systems
und dessen Energieverbrauch. Mittels dieser Plattformen wurden die beschriebenen Al-
gorithmen verifiziert und erhebliche Energieersparnisse von bis zu 43.2 % im Vergleich zu
klassischen Ansätzen aufgezeigt. iv) Es wurde das verbleibende Potential an theoretisch
bestmöglichen Energieersparnissen ermittelt und hierdurch weiterführende Forschung mo-
tiviert.
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1
Introduction

The popularity of powerful mobile devices like smartphones and tablet PCs has signif-
icantly increased over the last years. In 2013 alone, 1 billion smartphones have been
sold worldwide [45]. On such devices, power consumption is a major design concern and
heavily influences the purchasing decision of customers. According to a study performed
by Qualcomm [1], the key factors price and promotion are closely followed by battery life
when customers are asked about their buying decision. In the German study by the Insti-
tut für Demoskopie Allensbach in 2013 [2], 75.8 % of interviewed persons named battery
life as one of the key criteria when buying a new smartphone.

On such devices, compute-intensive games are one of the most popular class of applica-
tions. Among all categories of applications available in the iTunes store, games have the
largest share with 16.49 % [3]. On an average, 137 new games have been submitted per
day to the iTunes store in October 2012. Games account for 67 % of time spent using
tablets and 39 % for smartphones [47].

At the same time, graphics intensive games are highly demanding applications in terms
of processing time resulting in a significant amount of power being consumed by the
processor. Operating systems like Android or Windows implement techniques to reduce
the processor’s power consumption. These techniques, however, are completely unaware
of the running applications and their requirements. Figure 1.1 shows the normalized
power consumption using Android’s default power manager and the theoretically optimal
power manager. The optimal power manager provides the theoretical minimum possible
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Figure 1.1: Normalized power consumption using Android’s default and the theoretical
minimum possible power consumption

power consumption while maintaining the best possible user experience. Clearly, there is
a huge gap between currently employed power managers and the theoretically achievable
optimum. This work targets to close the existing gap and thereby prolong the battery life
of mobile devices.

The rest of this chapter is organized as follows. We first describe different components of a
processor’s energy consumption and a popular technique that allows reducing the energy
consumption, namely dynamic voltage and frequency scaling (DVFS). While DVFS is
widely used and an integral part of the Linux Kernel, current techniques are not suited to
efficiently reduce the power consumption of the processor when games are being played.
We explain the basic structure of games, point out the weaknesses of currently employed
power managers to then describe the basic idea of game power management which this
work is based on. Next, we detail challenges of our approach, the contributions of this
work and the organization of the remainder of this thesis.

1.1 Dynamic voltage and frequency scaling

A CMOS circuit’s power consumption is given by the dynamic and static (or leakage)
power:

P = Pdynamic + Pstatic ≈ CfV 2
dd + Pshort−circuit + VddIleak, (1.1)

where C is the load capacitance, f is the operating frequency, Vdd is the supply voltage,
Pshort−circuit is the short-circuit power and Ileak is the leakage current.

The static power Pstatic is independent of the transistors’ switching activities and is
always consumed when the circuit is powered. While static power consumption could
be neglected in the past, the leakage current significantly increased with the continuing
technology scaling. One popular technique to reduce the static power consumption is
power gating. Here, currently not required parts of the circuit are cut off from the supply
voltage.
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1.1 Dynamic voltage and frequency scaling

The dynamic power Pdynamic is required to charge up the load capacitance and thereby
change the logic state of CMOS transistors. In addition, state changes consume short-
circuit power Pshort−circuit which is caused by a direct current flow from supply to ground
due to NMOS and PMOS transistors being active at the same time when switching. The
short-circuit power only contributes a small amount to the total power consumption and
can be neglected [151]. With clock gating, a significant amount of dynamic power can
be saved. The clock supply to unused logic parts of the circuit is simply disconnected.
Alternatively, the clock frequency of the circuit can be lowered to reduce the dynamic
power consumption. Slowing down, e.g., a processor, however, prolongs the processing
time and hence might, due to leakage power, even increase the total amount of energy
consumed to finish a particular task. Since a lower frequency results in larger circuit
delays, the supply voltage can be lowered, too (Vdd ∝ f), resulting in an approximately
cubic reduction of the dynamic power. Hence, dynamic voltage and frequency scaling
(DVFS) is a very attractive choice to reduce a processor’s power consumption.

Most modern mobile processors, as well as desktop and server architectures, support all
of the above described features, viz., DVFS, clock gating and power gating, to lower the
power consumption. Interfaces are provided to control the hardware features in software.
The Advanced Configuration and Power Interface (ACPI) specification standardized these
interfaces [59] providing an OS-independent power management and configuration inter-
face. For dynamic voltage and frequency scaling (DVFS) so-called P-states have been
defined, i.e., valid voltage-frequency settings (operating points), where P0 defines the op-
erating point at which the processor is running at the highest frequency and voltage. The
voltage and frequency, as well as the power consumption decreases with an increasing P-
state number. Besides the P-states, most modern hardware provides several C-states, i.e.,
CPU idle states. While the CPU is fully operational in state C0, deeper C-states (higher
C-state numbers) halt and switch off parts of the CPU (using clock- and power-gating).
Deeper C-states consume less power, but have a larger target residency, i.e., the time the
system should at least spend in the corresponding state to save energy. Further, waking
up from deeper C-states takes longer and hence impacts the response time of the system.

The above described power management techniques are an integral part of the Linux
Kernel since version 2.6.0 (released in December 2003). The cpufreq and cpuidle Kernel
subsystems are responsible for the P-state selection and potential C-state transitions.
The so-called governors decide about future transitions based on system metrics like the
processor utilization and forward the requests to hardware-specific drivers which then
perform the actual voltage and frequency scaling and C-state transition. Since different
types of processors and workloads might benefit from different scaling and idling strategies,
Linux allows choosing among different governors.

The widely used ondemand governor [110] has been introduced in October 2004 with Ker-
nel version 2.6.9. The original version shown in Algorithm 1 profiles the system utilization
on a configurable millisecond basis. Once the utilization is larger than UP THRESHOLD,
the processor’s frequency is increased to the maximum. If the system utilization falls below
DOWN THRESHOLD, the frequency is steadily decreased by 20 % until the utilization
is again larger than the DOWN THRESHOLD. This approach was later changed to jump
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1 Introduction

Algorithm 1 Original Linux ondemand governor

1: for all CPU in the system do
2: every X milliseconds do
3: Get utilization since last check
4: if Utilization > UP THRESHOLD then
5: Increase frequency to MAX
6: end if
7: if Utilization < DOWN THRESHOLD then
8: Decrease frequency by 20 %
9: end if
10: end every
11: end for

directly to the lowest frequency that keeps the CPU at 80 % utilization instead of reducing
the frequency steadily. Further, for multi-core processors that do not support the individ-
ual scaling of each core’s frequency, the ondemand governor was changed to consider only
the core with the highest utilization for the frequency decision. On Android-based mobile
platforms the interactive governor is commonly used, which was designed for latency-
sensitive, interactive workloads. Similar to ondemand, this governor selects the operating
frequency based on the system’s current utilization, but more aggressively scales to higher
frequencies.
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Figure 1.2: CPU processing frequencies that are used during a game play of Jetpack
Joyride to maintain 58 frames per second

The described Linux governor significantly reduces the power consumption for most ap-
plications compared to running the processor always at the highest frequency. In the case
of gaming applications, however, the utilization-based frequency selection turns out to be
highly inefficient. As shown in Figure 1.2, the Android’s interactive governor in many
cases chooses frequencies that are too high compared to the theoretical optimal power
manager. Reasons for this inefficiency, the general structure of games, and the solution
proposed by this work are detailed in the following.
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Figure 1.3: Typical execution flow of a game

1.2 General game architecture

A game typically consists of three main components [101]:

• The game logic forms the core of each game. It defines the game world, its objects
and how they interact with each other. It takes external stimuli such as user input
and elapsed time to recompute object positions in the virtual world, updates the
artificial intelligence (AI), performs collision detection and simulates physics and
particles.

• The game view communicates with the game logic to translate the game state
into a rendered scene. Towards this, it typically issues commands to the graphics
processing unit (GPU) which eventually renders the scene to the so-called back-
buffer, i.e., a region in the memory that stores the final color values of a frame.
Once the scene is composed, the current back-buffer becomes front-buffer (this is
commonly referred to as buffer swap) and at the next display refresh, the memory
content is read and shown on the display.

• Since most games are developed not only for one device, but should run on versatile
hardware platforms and operating systems, the application layer abstracts hard-
and software-specific implementation details to the upper layers such as the game
logic and game view. Ideally, when porting a game from one platform to another,
only the application layer has to be replaced.

The typical execution flow of a game is depicted in Figure 1.3. When a game is started, the
game data is first initialized and the corresponding content loaded. The game logic reads
the user input, computes the time ∆t that has passed since the last frame, updates the
game state accordingly and eventually, the game view draws the scene. Since high frame
rates are typically attributed to a good gaming experience, most games are programmed
such that they execute this game loop as often as possible and without any frame rate
control. This in turn leads to a high system utilization and consequently prevents the
Linux governor from lowering the frequency.

As it has been shown in [28], frame rates beyond a certain point do not improve the
user experience. Hence, game applications that are programmed in the classical infinite
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loop approach waste energy by computing frames that actually do not contribute to the
user experience. Especially, on mobile devices with small displays this approach can be
questioned. In this work, we present a governor that does not only take DVFS decisions
based on the system utilization, but is as well aware of the gaming application and
considers the game’s timing and its requirements.

1.3 Power management for games

Figure 1.4: Basic structure of the game power management algorithm

As described, games are made up of a sequence of frames. To reduce the power consump-
tion, we measure each frame’s processing requirements, predict the future requirement
and scale the frequency based on this prediction (see Figure 1.4). Here, the workload c[i]
of the i-th frame is measured in terms of processing cycles resulting in

c = [c[i], c[i− 1], . . . , c[i− n+ 1]]T

and past estimation errors

e = [e[i], e[i− 1], . . . , e[i− n+ 1]]T .

Using this data and exploiting statistical relationships, the quantitative prediction of
i+ 1-th frame’s workload is given by:

c̃[i+ 1] = predictor(c, e).

How exactly these relationships are exploited and what types of predictors are suited will
be discussed in Chapter 3 of this work. Based on the prediction and desired frame rate,
the required clock frequency of the processor is computed. The processor’s frequency
is scaled accordingly, the frame is processed (involving AI, physics-related computations,
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etc.) and eventually rendered. Finally, we measure the real workload c[i+1] and compute
the estimation error

e[i+ 1] = c̃[i+ 1]− c[i+ 1].

Both, c[i + 1] and e[i + 1], are fed back to the workload predictor to forecast the next
frame’s workload.

While the described scheme can as well be applied to other frame-based applications,
there are several differences between games and applications like video decoders which
will be described in Section 2.3.4. The general challenges of the approach, as well as the
challenges that are specific to games will be detailed in the following.

1.4 Challenges of game power management

The key to efficient power management, but as well one of the main challenges, is an ac-
curate workload prediction. If the future workload is correctly predicted, the processing
frequency can be selected such that the energy consumption is optimized under consid-
eration of timing constraints, e.g., defined by a target frame rate. An over-estimation
of future workloads, however, wastes energy by running the processor at unnecessarily
high processing speeds. On the other hand, if the future workload is under-estimated, the
processing of frames might not finish in time which in turn might lead to a deteriorated
user experience. Hence, core of the described game power manager is the quantitative
forecast of the future workload:

“Quantitative forecasting techniques make formal use of historical data and a
forecasting model. The model formally summarizes patterns in the data and
expresses a statistical relationship between previous and current values of the
variable. Then the model is used to project the patterns in the data into the
future.” [106]

There is a vast number of forecasting models (predictors), ranging from simple PID
controller-based predictors with low computational overhead to complex non-linear pre-
diction techniques. For any kind of workload prediction, the most important requirements
to the predictor are as follows:

• Accuracy: As discussed, the predictor’s accuracy directly impacts the performance
of the power management governor and hence should be as high as possible. How-
ever, in case of DVFS, the prediction result is quantized by the power manager to
one of the finite number of available processing frequencies and therefore prediction
errors can be tolerated to a particular extent.

• Low overhead: Workload is predicted based on historical data, model parame-
ters and using a prediction algorithm. Since we perform an online prediction on a
frame-by-frame basis the computational effort of this prediction should be as low
as possible. Determining suitable model parameters can as well be a very time

7



1 Introduction

consuming task, especially in the case of, e.g., complex non-linear models. Here,
it has to be differed if the parameters are determined offline or updated using an
online self-learning algorithm. For the latter, the algorithm should as well impose
only a small overhead, while offline tuning typically is less time critical. In case of
very complex offline tuning algorithms it can be considered to offload the tuning to
servers and thereby save resources on the mobile platform.

While these two criterias are of great importance for any workload prediction, there are
several aspects that are specific to game workload prediction:

• Robustness: Specific to games is the fact that game workloads are of interactive
and hence very versatile nature, e.g., while an exploration phase of a player walk-
ing through a virtual world might only impose small workload variations, within
a couple of frames this might change to a highly variable workload due to enemy
contact. Hence, the predictor’s robustness, i.e., its sensitivity to workload variations
to changes in workload characteristics, is of great importance. Ideally, a one-time
offline tuning based on recorded sample workloads should be sufficient for the pre-
dictor to provide a good experience and optimal power savings throughout the game.
This makes it deployable in real setups, where all game plays cannot be known in
advance. Robustness as well includes that the predictor should not become unstable
due to to large workload variations (see Chapter 3).

• Flexibility: Due to the enormous amount of available games, it is desirable that
the predictor is not only capable of modeling one game correctly, but as well allows
adaptations, e.g., changing parameter values, such that it is applicable to a large
variety of games.

• Portability: Considering the large number of games entering the market on a daily
basis, the solution should not only work for one game, but be portable to many games
and even across platforms. In order to predict future processing requirements of a
game, the workload needs to be accurately measured on a frame-by-frame basis.
In previous work [50–54], id Software’s Quake II was used as reference since this
game is open-source and hence, the code could be directly instrumented. Quake II
is from 1997 and based on software rendering, i.e., the graphics are computed by
the CPU and without GPU-support. This graphics workload, which amounts up
to 90 % of the total workload, typically shows a high inter-frame correlation. As
will be shown in this work, this statistical dependency can be exploited in case of
Quake II. However, with the advent of powerful GPUs the rendering workload was
mostly offloaded in modern games and the freed CPU processing time was used to
significantly increase the complexity of physics and AI engines. The physics and AI
computations are not necessarily performed on a frame-by-frame basis and hence,
the inter-frame correlation of modern game workloads is typically less compared
to older games like Quake II. An important question that was left unanswered by
previous work is if the techniques that have been successfully applied to Quake II
are still applicable to popular modern games. Modern games, however, are closed-
source and a direct instrumentation of the game’s source code is not possible. To
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still measure required statistics such as frame timing information, a technique is
required to instrument closed-source games or the operating system.

• Game states: Specific to games is as well the fact that most games consist of
different states, like the level selection, the menu and the level loading states (see
Chapter 4). For Android-based games, we observed that up to 50.8 % of the gaming
time and hence a significant amount of total energy is not spent in the actual gaming
state. Each game state has its individual workload characteristics and requirements
in terms of target frame rates. For example, in the level selection menu the frame
rate can be reduced due to lower interaction and less animations. To exploit these
state-specific requirements and characteristics, the game’s current state has to be
detected and forwarded to the power manager. Such a detection algorithm should
have a low overhead, be applicable to modern closed-source games and again should
not be game-specific. Further, for each of the game states a power management
strategy has to be found that guarantees an optimal power consumption without
negatively impacting the user experience.

In summary, a suitable workload predictor has to be carefully chosen, considering above
requirements. If the selection is not done in a systematical manner this might lead to
inferior performance or even an unstable prediction, possibly resulting in a high power
consumption and a low user satisfaction.

To evaluate the performance of new approaches, measurement results are typically com-
pared to existing work to show efficiency of the methods in terms of reduced power
consumptions or for example diminished computational impact. An important question
often remains unanswered: How much power could be theoretically saved considering an
optimal algorithm? The knowledge of the gap between existing and optimal algorithms
helps to direct future research efforts. There are several challenges one has to overcome
in order to answer this question: Games are highly non-deterministic and the impact of
changing a parameter, e.g., the processing frequency for a particular frame of a game,
can be never compared between two runs of a game since the content and workload will
completely differ. This highly complicates deriving frame and cycle-accurate workload
models. Further, the processing time of a frame does not only depend on the CPU fre-
quency and the workload in cycles, but is a result of an interplay between the CPU and
various components such as the memory, GPU, display and touch sensors. Hence, the
workload in terms of CPU cycles does not scale linearly with the processing frequency and
an accurate scaling model is required in addition to a game workload model. Identifying
and measuring metrics that allow modeling these interdependencies requires a heavy in-
strumentation of the operating system which in turn might lead to false results due to
the instrumentation overhead.

In this thesis, approaches will be presented to systematically answer open questions and
develop techniques that help to solve above described challenges. The structure and the
contribution of this thesis will be elaborated in the following.
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1.5 Contributions and organization

The main contributions of this work are summarized as follows:

• Analysis and identification of real-life game workload prediction techniques

• Development of techniques that allow applying game power management not only
to open-source, but as well to closed-source Windows and Android games by DLL
injection and library instrumentation respectively

• Development of a smartphone-based measurement setup that allows detailed profil-
ing of closed-source Android games

• Game state detection and game state-specific power management of closed-source
games resulting in significant power savings of up to 43.2 % compared to Android’s
default power manager

• User study-based confirmation that no difference is noticed between the our ap-
proach and Android’s default power manager

• Theoretical modeling of the optimal power manager and identification of future
research directions

The thesis is organized in 6 chapters. This chapter gives an overview, motivates the work
and introduces the reader to the basic architecture of games and power management
techniques. The remainder of the thesis is structured as follows:

Chapter 2 gives an overview of related work. We discuss general approaches to save power
on mobile devices by leveraging processor- and as application-specific techniques. Here,
we outline techniques which have been developed for video applications, point out the
main differences to gaming applications and show why these techniques cannot directly
be applied to games. Existing work in the context of game applications and on power
management for peripherals like display, GPU and network interfaces are as well discussed
in detail in this chapter.

Accurate and robust workload prediction is the key to efficient power management. In
Chapter 3 we evaluate and identify suitable prediction techniques for gaming applications.
First, we study PID controller-based predictors which have been successfully applied to
video decoding as well as to gaming applications in the past. In previous work, the gain
values of the PID-based predictor have been tuned manually and only for one game play
of Quake II. We systematically explore the predictor’s robustness to variations, observing
inferior performance and even an unstable controller if PID gain values, that have been
tuned for one game play, are used for different game plays. Due to the highly interactive
nature of games and required individual tuning of parameters, the PID controller-based
approach turns out to be inappropriate for game workload prediction.
To overcome the need for an individual tuning of parameters, we introduced the least
mean squares (LMS) linear predictor which learns its weights automatically and thereby
adapts itself to workload changes. We observe a similar prediction performance, but with-
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out the need of a per-game play tuning, making the LMS linear predictor a suitable choice
for Quake II workload prediction.
All previous work was based on old open-source games like Quake II from 1997, since
the game source code had to be modified to gather timing information for the workload
prediction. To answer questions towards applicability of developed methods to modern
games, which are commonly closed-source, we present a technique that allows collecting
frame timings without a direct instrumenting of the game. Using this method, we re-
veal that modern games like Call of Duty and Crysis show significantly higher workload
variations compared to Quake II, resulting in an unstable LMS linear predictor. For
both, Quake II as well as modern game workload characteristics, we identify models from
the time series analysis domain like the autoregressive moving average (ARMA) to be a
perfect choice, guaranteeing a high accuracy, robust prediction and imposing a minimal
prediction overhead on the system. The results of this chapter have appeared in [34,39].

Chapter 4 presents a light-weight graphics instrumentation that allows detecting game
states and performing game state-specific power management. Each game consists of
several states, like the main menu state, the level menu, the level loading state and
the actual gaming state. Each of these states has different workload characteristics and
requirements. For example, the main menu is typically less interactive than the gaming
state and hence the target frame rate can be significantly reduced and power be saved
without affecting the user experience. Further, the loading state of a game commonly
is memory-bound, i.e., the CPU is mostly waiting for data. Thus, the CPU processing
frequency can be lowered without considerably prolonging loading times. We present an
instrumentation technique that allows a reliable detection of different game states based
on textures being used in the game. Using this technique, we first analyze the power
consumption of individual states using the different governors. Next, we developed a
state-specific power management that considers a game state’s processing requirement
and target frame rate. We show how the power consumption of each individual state can
be significantly lowered. We evaluate the time players typically spend in particular game
states depending on their playing skills and for three popular Android games, namely Cut
the Rope, Temple Run and Jetpack Joyride. For all of the games, we could show that
players spend a large amount of time not only in the gaming state, but as well in states
like the menu and loading state. In a final comparison we show overall power savings
of up to 43.2 % obtained by the game state specific governor in comparison to the
default Android governor. With the help of a user study we investigate if users notice
any difference between the two governors. The work presented in this chapter has been
published in [35–38] and received the MobiSys 2013 Best Demo Award.

In Chapter 5, a statistical model is presented that allows answering an important question.
How much power could theoretically be saved if the future workload of a game was known?
This so-called oracle predictor is a theoretical construct and cannot be implemented on
a real device. We discuss the difficulties in deriving an oracle model that is accurate on a
frame-by-frame basis. Next, we present an accurate statistical model and for the first time
compare state-of-the-art game power managers not only to other existing power managers
like Android’s interactive governor, but as well to the optimal power manager. Based
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on these results, we reveal the remaining gap and weaknesses of current power managers
and motivate future research in the domain of game workload prediction. In addition, we
show that a popular alternative to DVFS, namely race-to-halt, is not a suitable option
for the processor used in this study. The results of this chapter have been submitted to
IEEE Transactions on Computers in July, 2014.
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Figure 1.5: Distribution of time spent on video games in the United States in 2011 and
2012 by platform [107,108]

The distribution of time players spent on video games in the United States by platform is
depicted in Figure 1.5 (see [107,108] for more details). The amount of time is almost evenly
distributed between console, casual, PC/Mac, Mobile and Massively Multiplayer Online
(MMO) games. From 2011 to 2012, the time players spent on mobile devices significantly
increased from 12 % to 16 % showing the current trend of smartphone-based gaming. As
part of this work, we present three different hardware platforms which will be detailed
and discussed in the chapters where they are used. Each of the setups represents a gaming
platform that is found in the real world. The software-based rendering setup introduced
in Chapter 3 represents cheap mobile devices without any GPU support. Games that are
emulated typically do not leverage the hardware-based rendering pipelines and therefore
are as well represented by this setup. Most gaming platforms today have a graphics
accelerator or a dedicated graphics processing unit. In this work, we present results for
both, desktop PC based gaming platforms (see Chapter 3) as well as mobile devices like
smartphones or tablet PCs (as used in Chapter 4 and 5). For each of the setups, we detail
the software instrumentations and eventual hardware modifications that are required and
thereby open the possibility to the research community to develop and test own algorithms
and power management strategies.
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In Chapter 6 we summarize the results and conclude this work. We motivate future
research endeavors towards power efficient gaming and point out promising directions
and possible improvements that might be investigated. Note that [37] contains details
from all the chapters.

1.6 List of publications

Parts of the contributions presented in this thesis have appeared in the following publi-
cations:

• Benedikt Dietrich, Samarjit Chakraborty, Forget the Battery, Let’s Play Games!,
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Delhi, India, 2014.

• Benedikt Dietrich, Samarjit Chakraborty, Estimating the Limits of CPU Power
Management for Mobile Games, submitted to IEEE Transactions on Computers,
July 2014.

• Benedikt Dietrich, Samarjit Chakraborty, Lightweight Graphics Instrumentation for
Game-State specific Power Management in Android, Multimedia Systems Journal
(MMSJ), 20(5):563–578, 2014.

• Benedikt Dietrich, Dip Goswami, Samarjit Chakraborty, Apratim Guha, Matthias
Gries, Time Series Characterization of Gaming Workload for Runtime Power Man-
agement, due to appear in IEEE Transactions on Computers.

• Benedikt Dietrich, Samarjit Chakraborty, DEMO: Power Management using Game
State Detection on Android Smartphones, in International Conference on Mobile
Systems (MobiSys), Taipei, Taiwan, 2013 (Received Best Demo Award).

• Martin Geier, Martin Becker, Daniel Yunge, Benedikt Dietrich, Reinhard Schneider,
Dip Goswami, Samarjit Chakraborty, Let’s put the Car in your Phone!, in Design
Automation Conference (DAC), Austin, USA, 2013.

• Benedikt Dietrich, Samarjit Chakraborty, Managing Power for Closed-Source An-
droid OS Games by Lightweight Graphics Instrumentation, in NETGAMES, Venice,
Italy, 2012.

• Benedikt Dietrich, Swaroop Nunna, Dip Goswami, Samarjit Chakraborty, Matthias
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2010.
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2
Related work

Power management is a topic that has received a lot of attention in literature over the past
years. In this chapter we provide an overview of work on power management for mobile
devices and CPUs in particular. The first part discusses where in a smartphone energy is
consumed. We then outline low-power CMOS design techniques that are used in today’s
mobile processors. Section 2.3 focuses on CPU power management where we describe
related work on generic and application-specific DVFS algorithms. Closely related game
power management techniques for CPUs are discussed in Section 2.3.4. While DVFS
reduces the power consumption of an active CPU, idling power can be reduced using
dynamic power management (DPM). Related DPM work is discussed in Section 2.4. The
fifth part of this chapter (Section 2.5) presents related work that targets to reduce the
power consumption of mobile device peripherals such as the display, memory, GPU and
network interface. In this context, we focus on work that has been specifically developed
for or can be applied to game applications.

2.1 Smartphone power consumption

The power consumption of a mobile device is composed of the power consumed by all
its components such as CPU, Wifi and GSM module, GPU and display. Literature has
investigated the main contributors to the total power consumption of mobile devices: [17]
states that the display and the GSM module consume most of a smartphone’s energy. This
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Table 2.1: Power consumption for different applications running on a Samsung Galaxy
Nexus. The phone has been modified to measure the CPU and total power
consumption separately

Application CPU [mW] Total [mW] CPU power [%]

Facebook 237.8 1226.0 19.4
Temple Run 377.3 1605.9 23.5
Jetpack Joyride 376.3 1481.6 25.4
Cut the Rope 349.2 1449.2 24.1
Shadowgun 467.9 1615.6 28.9

study was performed in 2010 and is based on three, by now, relatively old smartphones:
The HTC One, the Openmoko Neo Freerunner and the Google Nexus One. While many
people still attribute short battery life-time to the display’s high power consumption,
for modern smartphones this does not hold true any longer due to advances in display
technology and the steady increase of mobile processing power. In a study from 2013,
Chen et al. [20] reported for five modern smartphones that the AMOLED displays only
consumed between 15 % and 22 % of the total power consumption when games were played.
Up to 40 % of the total power was consumed by the CPU. Similar results were obtained on
one of our measurement platforms, used in this thesis: While the CPU’s share of the total
power consumption was only 19.4 % for applications like Facebook, the CPU consumed
up to 28.9 % when complex and graphics-intensive games like Shadowgun were played
(see Table 2.1). These results clearly show that the CPU is one of the main contributors
to the total power consumption. In the following, we give a brief overview on low-level
techniques that have been developed to reduce a mobile processor’s power consumption.

2.2 Low-power CMOS design

Various techniques have been developed to reduce the static and dynamic power con-
sumption of CMOS circuits. Most important techniques, which as well find application
in today’s processors, will be discussed in the following. For a more detailed descrip-
tion on the different techniques we would like to refer to [112], while details about their
implementation can be found in [77].

Typically, CMOS circuits can be split in critical and less time-critical blocks. Static
voltage scaling (SVS) leverages this fact and operates the less time-critical blocks, e.g.,
peripherals of a processor, with a lower supply voltage and frequency, resulting in a re-
duced dynamic and static power. Multi-level voltage scaling (MVS) extends the idea of
SVS by providing a choice among two or more operating points (voltage and frequency
settings). In case it is dynamically switched between several voltage and frequency levels
to follow workload changes, the term dynamic voltage and frequency scaling (DVFS) is
used [77].
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A major contributor to the leakage power, the sub-threshold leakage current can be ap-
proximated by:

Isub = µCoxV
2
θ

W

L
e
VGS−VT
nVθ , (2.1)

where µ is the carrier mobility, Cox is the gate capacitance, Vθ is the thermal voltage
given by kT/q (25.9 mV at room temperature), W and L are gate width and length re-
spectively, VGS is the gate-source voltage and n is a function of the device fabrication
process (ranging from 1.0 to 2.5) [77]. The threshold voltage VT is the gate-source volt-
age that is at least required to allow a current flow between source and drain of a MOS
transistor. The leakage current depends exponentially on the difference between VGS and
VT . MOS devices with higher VT have lower leakage current, but are slower since a higher
VGS is required for switching. To reduce the power consumption, circuits are built with
different MOS devices: Less time-critical parts are built using MOS devices with a larger
VT , whereas performance critical blocks are built with low-VT MOS devices. This design
method is commonly referred to as multiple threshold voltage design.
Another circuit level optimization is the use of long-channel devices. According to Equa-
tion (2.1) the sub-threshold leakage current is proportional to 1/L, where L is the gate
length of the transistor. Hence, by using devices with longer gates the leakage current
can be reduced. However, longer gates are less performant, require more space and have
an increased dynamic power consumption. A careful optimization has to be performed to
successfully reduce the total power consumption using this technique [77].
Adaptive body biasing allows changing the threshold voltage dynamically, by applying a
reverse bias to the NMOS/PMOS bodies. For example, by applying a voltage to the
NMOS body that is lower than ground, the threshold voltage can be increased and leak-
age current decreased. Thereby, circuit blocks can be put into low leakage modes when
idling [76].
As discussed in Chapter 1, clock gating reduces the dynamic power consumption of a
circuit by cutting off the clock supply to parts of the circuit that are currently not re-
quired [116, 143, 155]. Power gating cuts off the supply voltage, thereby reducing both,
the static and the dynamic power consumption. While power gating was first introduced
to dynamically resize caches [122], it was soon used to put other functional units of a
processor to sleep [27,43,64,126]. Both, clock and power gating are used for DPM.

Using DPM and DVFS, developers can dynamically change the state of a system to
reduce its power consumption according to workload characteristics. In the following we
first discuss DVFS to later present related work on DPM.

2.3 Dynamic voltage and frequency scaling

Most of today’s processors provide the possibility to dynamically scale the voltage and fre-
quency. Instead of running the processor always at the maximum frequency, the processing
speed is adapted to the requirements of applications being executed on the processor. In
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the following we first discuss choices that have to be made during the design time of the
processor to provide efficient DVFS.

2.3.1 Design time considerations

Ideal DVFS assumes that a continuous scaling of operating voltage and frequency is in-
stantaneously possible [26]. In real circuits, however, the number of voltage and frequency
levels (operating points) is limited to a discrete number due to additionally required hard-
ware causing increased design complexity, cost, area, delay and power penalties [65]. The
decision about the exact operating points, which should be offered by the circuit to op-
timize the energy consumption, has to be made during design time of the circuit and
is referred to as voltage setup problem. The minimum possible supply voltage Vdd of a
CMOS circuit is investigated in [102]. It is shown that Vdd can even be decreased be-
low the threshold voltage VT . Zhai et al. [160] showed that a decrease to this extend is
only beneficial in rare cases since circuit delays are growing exponentially if Vdd < VT
and consequently leakage power starts dominating the circuit’s total power consumption.
Hua and Qu [65] propose a method for finding the optimal operating points for a dual-
voltage and an analytical approach for the multi-voltage level design. It is shown, that
the practical multiple-voltage DVFS can reach the full potential of an ideal DVFS system,
assuming immediate voltage and frequency transitions. The work is extended in [157] by
considering the transition overhead.

Once operating points of a circuit are defined, hardware designers typically add safety mar-
gins to avoid timing errors due to variations in the manufacturing process. To avoid an
increase of power consumption due to these margins, in [31] an automatic post-production
algorithm is suggested to determine minimum possible operating voltages for each fre-
quency level and the chip at hands: The operating voltage is automatically reduced until
the point of failure which is checked by an error detection and correction mechanism.
Thereby, safety margins are eliminated and operating points are optimized. All of the
processors used in this work provide a fixed number of operating frequency levels. How-
ever, in case of the OMAP4460 mobile processor (see Chapter 4) the voltage can be set
for each individual frequency level in the corresponding kernel module, allowing a voltage
optimization for the processor at hands. Towards this, the operating voltage has to be
step-wise reduced as suggested in [31] and the functionality checked leading to the lowest
valid voltage setting for the specific frequency. Since we want our work to be comparable
and experiments to be repeatable we decided against this chip-specific tuning and used
the default Android settings.

2.3.2 Run-time implications of DVFS

The choice of operating points during design time leads to a set of operating points among
which the power manager can choose to adapt the processor speed according to the future
workload. In many scenarios, tasks being executed on a processor, need to finish within a
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given hard or soft deadline. In order to guarantee that no deadlines are violated it needs
to be known how long a task will take at the different processing frequencies.

Relative performance

Assuming that the workload C of a task in cycles is known or can be accurately predicted,
one simple assumption is that the execution time t linearly scales with the processing
frequency:

t(f) =
C

f
. (2.2)

However, the computational workload C does not only include on-chip CPU computations,
but as well cycles during which the CPU has to wait for components like the memory or
bus operations. In [24–26,138] the workload of a task is partitioned into on- and off-chip
workload. The on-chip workload scales linearly with the CPU frequency, while the off-chip
workload is independent of the scaling:

t(fCPU) =
Con−chip
fCPU

+
Cmemory
fmemory

+
Cbus
fbus

+ . . .

It is shown that the ratio of on- to off-chip workload can be approximated by performance
counters of the CPU. These counters can be configured to gather statistics about cache
misses, number of instructions being executed, ALU operations, etc. and therefore reflect
a tasks’s workload composition. Snowdon et al. [138] introduced the so-called relative
performance, which describes the CPU-boundedness of a workload and is defined by

s(f) =
fmax
f
× c(fmax)

c(f)
=
t(fmax)

t(f)
, (2.3)

where fmax is the maximum available CPU frequency, f is a valid operating frequency
of the processor, c(f) is the number of cycles and t(f) the amount of time required
at frequency f . Snowdon et al. [138] as well leverage the CPU performance counters
to compute the relative performance of currently running tasks. The impact on future
workloads is then predicted assuming a strong correlation between the past and near-
future relative performance. Based on this relative performance and Equation (2.3),
the required frequency to finish workload C in time can be computed more accurately
compared to the pessimistic assumption in Equation (2.2).

Above work is based on benchmark applications without the need of user interaction or
graphical interfaces. Boundedness by GPU or user I/O, which is very likely for gaming
applications, is not considered. In Chapter 5 we elaborate why considering this impact is
very difficult in case of games.
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Critical speed

The choice of CPU frequency does not only influence the processing time, but as well the
total energy consumption. In general, it cannot be assumed that the slowest operating
point will always yield maximum energy savings for the completion of a task running
on the processor: The total energy consumed by a computing system is composed of
the CPU’s power consumption and the power consumed by other devices like memory
or GPU. While reducing the CPU’s frequency lowers the processor’s power consumption,
other components will still consume the same power over a possibly prolonged execution
time. Thereby, the total energy consumed for completion of a task might even increase
by lowering the CPU frequency.

The critical speed is defined as the frequency that minimizes the system’s energy consump-
tion for a given task and considering described factors [75]. The work considers a set of
periodic real-time tasks which are scheduled using earliest deadline first (EDF) schedul-
ing and whose deadlines, power consumption and slowdown factors at each frequency are
known. For this setup it is shown that the power consumption can be significantly de-
creased if the critical speed of tasks is considered. In [137] it is shown that this holds as
well true for real benchmarks running on a PXA255-based measurement setup. Further,
the critical speed’s dependency on the type of workload is demonstrated: For the given
system and memory-bound workloads the critical speed was observed to be significantly
lower than for CPU-bound workloads. Lowering the processing speed for CPU-bound
workloads will significantly increase the processing time and thereby as well the static
energy consumed during the prolonged processing time. The execution of memory-bound
workloads, in contrast, is nearly independent of the CPU speed and hence always a sim-
ilar amount of static energy is consumed while the dynamic energy can be significantly
lowered by running the processor at a low processing speed.

In [86] a Linux-based power management governor has been developed that considers the
critical speed and memory-boundedness of running tasks. Towards this, the memory-
access rate (MAR) is computed, based on the number of instruction and data cache
misses per instruction. The governor then scales the processor’s frequency based on the
utilization under consideration of the current MAR and critical speed. An Android-based
implementation of this governor is presented in [87]. This governor targets to optimize the
energy consumption for a given task without considering timing constraints. As described
in Chapter 1 this leads to a high utilization and energy consumption in the case of games.
In addition, the governor only considers the waiting time for memory. It has to be taken
into consideration that graphics intensive games can as well be I/O- or GPU-bound.

In this work, we investigate implications of the slow down and show in Chapter 4 that for
all games used in this study the total energy consumption of the smartphone continuously
decreases with the CPU frequency. The critical speed was always observed to equal to
the lowest available frequency.

To successfully apply DVFS on a processor the future workload has to be known in
advance such that the correct processing frequency can be chosen. Otherwise, energy is
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wasted by running the processor at too high processing frequencies or tasks finish not in
time if too low frequencies are used. For hard real-time systems it is often assumed that
workloads, deadlines, periods and energy consumptions of tasks are known, forming an
offline optimization problem and resulting in a static schedule [62, 74,123,156].

On real platforms like smartphones, in contrast, characteristics of future workloads can-
not be known and need to be predicted. Existing work can be divided into generic
and application-specific methods. In the following, we are going to discuss generic ap-
proaches which only leverage information that is provided by the OS and hardware met-
rics. Application-specific approaches are then discussed in Section 2.3.4.

2.3.3 Generic DVFS

The first generic operating system-based solution to improve the energy consumption has
been proposed by Weiser et al. [153]. Here, the utilization of the processor, i.e., the
percentage of time the processor is idling, is monitored on an interval-basis. If the uti-
lization exceeds an upper threshold during the last interval, the power manager increases
the processing frequency, while the frequency is lowered in case the utilization drops be-
low a lower threshold. In [49] this approach is compared to other schemes, for example
leveraging a weighted average of past utilizations as prediction. As detailed in Chapter 1
and [110], the utilization-based approach is still used in the Linux power manager. The
success of this type of power manager can be explained by its simplicity, which allows
easy porting to various platforms, an important aspect for a Linux Kernel Module (LKM).
Main drawback of these kind of power managers is that they are completely unaware of
the running applications and their requirements.

In [24–26,138,139] it is shown that the performance of power managers can be significantly
increased if effects like memory-boundness are considered by decomposing workloads in
on- and off-chip workloads as described in Section 2.3.2. The decomposition is performed
based on performance counter values and a very fine-grained offline analysis of measure-
ment data. Performance counters that allow a decomposition first have to be identified to
then tune linear models describing the decomposition. In [32] the workload is decomposed
based on cycles per instruction (CPI) used by the CPU and CPI of caches and stalls. To
estimate the future ratio between these two, an online learning algorithm is used and
thereby the offline analysis and tuning required in previously mentioned work is avoided.
Similarly, in [72,73] workload phases and durations are predicted by exploiting statistical
correlations between the past and near future. Workload phase, here refers to an interval
during which, e.g., the instruction per cycle (IPC) count is below average. Predicting
such phases and their durations allows the power manager to take decisions if a frequency
transition is beneficial under consideration of the transition overhead and the next phase’s
duration. Experiments are based on 25 single-threaded SPEC2000 benchmarks exposing
workload phase durations of up to several seconds. Applicability of presented methods to
gaming applications can be questioned since games are typically highly mutli-threaded.
The scheduler switches rapidly between different threads and therefore fast phase changes
are likely. Another drawback of all above described performance counter based methods
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is that the implementation is highly processor and architecture specific. The models need
to be tuned to determine correlations between performance counter readings and future
workload characteristics. This tuning is time consuming and makes proposed solutions
less attractive.

Discussed power managers have the advantage of being generically applicable (once pro-
cessor specific parameters are identified) making them a good choice for operating system-
based power management. Compared to running the processor at highest processing
speed, significant power savings can be obtained with neglectable performance impli-
cations. For in Chapter 1 discussed reasons these utilization-based approaches are not
efficient for gaming applications. As will be shown in the following, knowledge about
running applications typically allows developers to further improve power managers by
exploiting application-specific details.

2.3.4 Application-aware DVFS

Various approaches have been suggested in the past to improve power managers by making
them aware of running applications. In this context, the a class of applications that has
been studied most are video applications.

Video applications

Most common video codecs like H.264 encode image information using three different
frame types: I-, P- and B-frames. The I-frame can be decoded on its own, while for
a P-frame information from previous I- or P-frames is required. Decoding a B-frame
requires information from surrounding I- and P-frames. The resulting encoded video
stream consists of a repeating sequence (named group of pictures) of these frames, e.g.,
I-B-B-P-B-B-P-B-B.

To decode such a stream, several tasks have to be performed on a frame basis: Variable
length decoding (VLD), inverse discrete cosine transformation (IDCT) and motion com-
pensation (MC). The exact composition of the workload depends on the type and the
content of the frame. Frames should be decoded at a particular playout rate to provide
a good user experience without stuttering in the playback. Hence, if DVFS is applied,
application-aware governors should choose the processing frequency such that the three
tasks are processed in time for each frame guaranteeing the desired playout rate. Towards
this, an accurate workload prediction is required: If the workload is under-predicted,
frames might not be decoded in time, resulting in a deteroriated user experience due to
stuttering. Over-prediction, on the contrary, wastes energy since the frames could have
been decoded with a lower frequency. Sufficient workload variability is one important
premise for the applicability of DVFS and has been shown for H.263 decoders in [67,121].
Various methods have been discussed in literature to exploit this variability and reduce
the energy consumption while preserving the quality based on an accurate video workload
prediction.
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History-based approaches assume correlation between decoding workloads of consecutive
frames: Frame content usually changes slowly unless of scene changes happening. In [68]
the instruction count (IC) is predicted for each frame based on the maximum IC of the
last 5 frames of the same type. Based on the instructions per cycle (IPC) of the last
frame of the same type and the predicted IC, the workload is predicted and the frequency
chosen. Choi et al. [23] divide the workload of a MPEG decoder into two parts: The
frame dependent and the frame independent workload. The frame dependent workload
is predicted based on three moving averages over past frame workloads (for each frame
type one moving average). The frame independent workload is constant and, in case a
misprediction was made during the frame dependent part, the timing is corrected by scal-
ing the frequency again for the frame independent workload such that the misprediction
is corrected. The scheme presented in [118] filters past variations using an exponential
weighted moving average of previous frames as prediction. In [93,158] the future frequency
is predicted using probability distributions of workloads. While in [93] these distributions
are computed using offline analysis of tracing data, in [158] they are dynamically gen-
erated during run-time. In the latter work, multiple tasks are supported by integrating
scheduling and DVFS. Both approaches outperform the generic utilization-based predic-
tion presented in [153]. In this thesis we develop and evaluate DVFS algorithms for games.
Similar to videos, games are frame based and their workload shows significant variations
making them amenable to DVFS. The applicability of statistical approaches as discussed
above will be in detail elaborated in Chapter 3 of this thesis.

Offline watermarking-based methods typically have a higher accuracy and lower prediction
and instrumentation overheads compared to history-based approaches. In [121] a H.263
video encoder is changed to annotate frames with complexity information. A strong
correlation between the frame size, type and the decoding time is leveraged by simply
providing the frame size as metadata. Based on the frame size metadata and three linear
regression models (one for each frame type), the frame decoding time could be accurately
predicted to apply DVFS on the decoder side. This approach outperformed the static
fixed-frequency as well as the utilization-based power manager. As described above, the
workload of a MPEG-2 decoder can be split in three main tasks: VLD, IDCT and MC.
Huang et al. [66] demonstrate that for each of the tasks the workload can be predicted
based on characteristics of the stream, for example exploiting the strong linear correlation
between the VLD task’s workload and the number of non-zero coefficients in a stream.
For all three tasks, accurate models are found, videos are analyzed and watermarked
with corresponding information by a fast transcoder, before being streamed. The decoder
extracts the information, predicts the workload based on developed models and scales
the frequency accordingly. Main advantage of this approach over [121] is the fact that
the encoder does not need to be changed. The need to change the decoder and pre-
analyze videos is one of the main drawbacks of offline watermarking based approaches.
Watermarking is not applicable to games since the game content is dynamically generated
based on the user input and hence cannot be annotated in advance.

While videos and games are both frame based, they are different in several aspects: Videos
share a basic underlying structural information that can be exploited which is not the
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case for most games. Games are interactive which means that the content and workload
characteristics depend on the user. A professional user might run through levels quickly
imposing a possibly larger workload on the CPU compared to a beginner player who
slowly explores levels. Hence, the power manager might have to adapt its settings in
accordance to the person playing which is not the case for videos. Further, due to the
interactive nature, game frames cannot be buffered or pre-computed as it is possible
for video frames. While most modern games are closed-source, many video decoders are
open-source and can be easily instrumented to provide information to the power manager.
These differences complicate the direct applicability of methods that have been developed
for videos. In the following we describe work on game power management that is closely
related to this thesis.

2.3.5 DVFS for game applications

There is only little work that focuses on reducing the processor’s power consumption
while games are being played. In [88, 97] a user-driven voltage and frequency scaling is
presented. As long as the user does not provide negative feedback to the power manager
using keyboard shortcuts, the operating frequency is steadily decreased at a particular
decrease rate (initially at a 10 seconds interval). Negative feedback will increase the
current operating frequency and update the decrease rate of the algorithm. The approach
was evaluated using a group of 20 users and based on the soccer game FIFA. Power savings
of 22.1 % compared to Windows XP’s power manager are reported. Considering the large
workload variations that can be observed for modern game applications an update rate
of 10 seconds appears suboptimal and might lead to a deteriorated user experience and
non-optimal power savings. Further, frequently required user feedback appears highly
unattractive for action-rich gaming applications and is likely to annoy the user.

The work of Yan Gu [51–54] focuses on reducing the power consumption of games, using
Quake II as a reference game. The interested reader is referred to the full version of Yan
Gu’s thesis [50]. In [54] it is shown that the frame workload of Quake II exhibits significant
variations making the game amenable to DVFS. In [52] it is shown that substantial power
savings can be obtained if a PID controller-based predictor is used to forecast future
workloads. A manual tuning of the PID controller gain values is suggested. This work
left open questions about the robustness of the suggested predictor and the applicability
to modern games (Quake II was released in 1997). A detailed discussion of mentioned
work is presented in Chapter 3 of this work. There we will discuss related work, analyze
the approach in detail, point out weaknesses and suggest a better suited and generally
applicable solution to game workload prediction.

As discussed in Chapter 1, the game workload in general is composed of AI, physics
and rendering computations. In case of Quake II, the rendering, which is performed in
software and without GPU support, constitutes the largest part to the total workload.
As shown in [53], this workload is composed of 5 different workloads of which each can
be approximated as follows:
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• Brush models are used to construct the world of Quake II, e.g., to draw solids
like walls, floors and ceiling. The rasterization workload of brush models strongly
correlates with the number of polygons of the brush model. Hence, once the number
of polygons is known, the workload can be approximated.

• Alias models are used to rasterize entities like monsters, soldiers, weapons and
collectible items, all composed of triangles. The workload can be predicted from the
number of pixels of the alias models’ triangles.

• Textures are graphics applied to brush models to give a realistic impression of
bricks, floor, etc.. The texturing workload is with up to 65 % the main contributor
to the total rasterization workload. It can be approximated using the number of
surfaces in textures. Since computing the number of surfaces in advance requires
rasterizing the brush models which is costly, the texture workload is approximated
using a history-based prediction.

• Rasterizing Light in Quake II is performed using pre-computed light maps that are
rendered as multiple surfaces. This rasterization workload is already included in the
texture workload.

• Particles are used to animate blood or splintering caused by gun shots. Again, the
workload can be approximated by the number of constituting pixels.

Using above relations, the workload of each individual object in the view frustum of the
user can be computed. Accordingly, the total workload is approximated in [53] from the
workload sum of all objects. Main advantage of this game structure-based approach is the
accuracy that can be obtained using above described models. However, there are several
drawbacks of this method: Predicting the workload from structural information comes
with a large computational overhead, since a lot of information has to be pre-computed
to be able to evaluate the models. This problem has been tackled in [51] where a hybrid
scheme is presented. During phases with low variation, the control-theoretic approach is
used since it imposes a negligible overhead and even outperforms the structural approach
in terms of prediction performance. For game phases with high variations, the structural
outperforms the control-theoretic approach, but comes at the cost of a significantly larger
overhead. The hybrid scheme switches between both approaches, depending on the current
workload variation phase, thereby optimizing the overhead and prediction error at the
same time. The greatest disadvantage of the structural and hybrid approach is that
both are highly optimized for one specific game. In order to port the approach to a new
game, first the game’s source code has to be heavily instrumented. Second, workload
models have to be derived which is a highly time consuming task. Most modern games
are closed-source and hence this is only possible for the game developers. This, in turn,
makes the solution unattractive since the gaming market is of a rapidly changing and
highly competitive nature with short time to market intervals. Further, it is not clear, if
methods that have been evaluated using Quake II from 1997, are still viable for modern
games with hardware-based rendering. In this work, we avoid leveraging information that
requires a direct instrumentation of the game’s source code. Thereby, applicability and
portability are guaranteed even for modern closed-source games.
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DVFS reduces the power consumption of active CPUs. In the following we present related
work on DPM which reduces the power consumption of idling components and processing
cores.

2.4 Dynamic power management

Dynamic power management (DPM) dynamically puts circuit blocks, e.g., idling compo-
nents of a system-on-chip (SoC), into low-power states and wakes them up again once
they are required. Switching between different power states consumes energy and time
during which the component is not operable. Hence, a greedy switching to low-power
states once a component is idling, is not a viable option. Towards optimal power savings,
well-grounded decisions have to be made about when and to which state it is worth to
switch. In [14] several prediction techniques are surveyed that have been discussed in
literature in the past. It is shown that simple timeout mechanisms, commonly used for
laptop displays or harddrives, waste energy by waiting for the expiration of timeouts. Pre-
dictive shutdown and wakeup policies try to solve this by forecasting future idle times and
activity events based on observations of the past. Further, Markov chain-based schemes
are introduced that model stochastic properties of the system, providing the possibility
to choose among not only one, but several idle states.

While [14] focuses on system components like harddrives, same techniques can be applied
to the CPU. As discussed in Chapter 1 most modern CPUs provide several C-states, i.e.,
idling states of different depths. In Linux the cpuidle module takes care of switching
between C-states. The structure, interfaces and governors of this module are described
in [111]. Most interesting to this work is the menu governor which is the default governor
used in the Android setup of this work. The menu governor analyzes expected parameters
like sleep times, latency requirements, etc. and switches to the most beneficial C-state
[111]. In this work, we as well rely on the Linux default menu governor for idle state
management.

Due to transition costs it is important to keep the processor in the idle state as long
as possible. In Linux the scheduler is typically executed periodically at a fixed rate,
namely the tick rate. Hence, idling CPUs are woken up periodically resulting in short idle
times and an increased power consumption. To avoid these periodic wake-ups, the tickless
Kernel has been introduced [48,131,140]: In case the next scheduled timer event is further
away than the next tick, the tick interrupt is changed to that of the next timer event.
Thereby, unnecessary periodic interrupts are avoided and the CPU can stay longer in the
idle state. The Linux Kernel versions used for the Android-based hardware platforms of
this thesis are tickless.

A popular alternative to above described DVFS techniques that leverages DPM is race-
to-halt. Slack is defined as the processing time not used in a system. While the traditional
DVFS chooses a frequency that minimizes the slack between the processing time of a task
and its deadline, race-to-halt executes the task at the maximum frequency to maximize
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the slack. Once the task is processed, the CPU is put into a sleep state where it remains
until the next task arrives. This makes a workload prediction redundant and at the same
time guarantees that the task, if possible, finishes in time. In [141] the effectiveness of
DVFS and sleep states is analyzed for server, desktop and mobile processors. Experiments
are based on Java benchmarks, MPEG playback and Apache-based web-page servicing
and show that a combination of both, DVFS and idle states is most efficient, especially
for workloads where the CPU is under-utilized. As will be shown in Chapter 5, the power
consumption of race-to-halt is significantly higher compared to traditional DVFS when
being applied to games.

2.5 Power management for peripherals

While the CPU is one of the main power consumers in modern mobile devices, there
are several other peripherals such as the display and GPU which as well consume a
substantial amount of power. In the following we present related work that focuses on
reducing the power consumption of such components. We restrict the overview to work
that has been done or is applicable in the context of games. All of the in the following
discussed work is orthogonal to the CPU power management techniques presented in this
work. Hence, described techniques can be combined with our schemes to obtain an overall
energy-optimized system.

Wireless network

The work presented in [6,7,149] focuses on reducing the power consumption of the wireless
communication of online multiplayer games. In [6] several approaches are evaluated to
reduce the power consumption of the wireless network interface card (WNIC) during
game plays of Quake II. First, it is shown that a simple reduction of the data rate is
not beneficial in terms of power due to the small packet size of Quake II. The second
approach switches off the WNIC whenever the player’s interaction level with the game is
low. In addition, the player’s actions (e.g., hiding, walking, shooting) are classified during
the game play and considered in the decision when to switch off the WNIC. It has been
shown that the power consumed by the WNIC can be reduced by up to 21 %. Since the
classification of the player’s action requires a heavy instrumentation of the game’s source
code, which in most cases is not publicly available, [7] proposes an API, allowing game
programmers to report positions of interactive objects (e.g., enemies) and their vision
range. This data is used by the resource controller running on the server to compute the
velocity and direction of the objects. Further, current game states and their importance
for the game play can be reported. Based on this data, the server decides about power
state transitions of the clients’ wireless modules. This work is extended in [149] with a
technique that looks ahead and predicts the player’s future position, allowing to power
down the WNIC more efficiently.

27



2 Related work

Display

Another main contributor to the total power consumption of mobile devices is the display.
Today, two different types of display technologies are commonly used in smartphones
and tablet PCs: LCD panels and OLED displays. While LCD panels are cheap, their
main drawback is the need for bright backlight illumination which consumes a significant
amount of power. One popular technique to reduce backlight power is based on increasing
the luminance of the image to be displayed while dimming the LCD backlight accordingly
[18, 22, 70, 71, 85, 129]. In [8] it has been shown that this technique can be successfully
applied to highly dynamic first person shooter games like Quake III without impacting
the by the user perceived quality.

Especially in the high-end smartphone market, OLED technology started to replace LCDs.
OLED displays consume significantly less power, have an increased brightness level and
provide possibilities for thinner form factors, but are more expensive than LCD panels.
The total power consumption of an OLED display is given by the sum of power consumed
by each pixel. In [142] parts of the OLED display are dimmed which are currently not in
the focus of the user, for example the lower part of a news article. While this approach is
applicable to applications with low update rates like news reading or browsing, the user
experience will be clearly affected in the case of highly dynamic game applications during
which the user changes his focus quickly. Similar to backlight scaling of LCDs, the supply
voltage of OLED displays can be scaled down to reduce the power loss. To compensate
reduced luminance the image data has to be modified. In [130] it has been shown that
this method is applicable to still images without visible distortion. This work has been
extended in [21] to make it applicable to video streaming applications. Studies on the
applicability of this method on games have not been performed, yet.

In [90] it has been shown that not all pixel value changes are perceivable by the human
visual system (HVS). Further, not all regions of images receive the same amount of at-
tention. This is exploited in the work of [89] where pixel values are changed to reduce the
total power consumption of OLED displays, but without impacting the perceived quality.
In [42, 125] it is shown that significant amount of power can be saved if user interface
colors are chosen under consideration of the displays power consumption.

The display reads and updates its content at a particular rate, namely the refresh rate.
On Android devices, this rate is configured to be constant (typically at 60 Hz). In [80] it
is shown that for most applications the content does not change that quickly. A scheme
is proposed that changes the refresh rate in accordance with the content rate, i.e., the
rate at which the displayed content really changes. Thereby, unnecessary display updates
are avoided and significant amount of energy is saved. Similar approaches are followed
by NVIDIA’s G-Sync technology [109] and the recently standardized VESA Adaptive-
Sync [152]. While the first goal was to lower display energy required for refreshes, the
adaptive synchronization improved as well display effects like tearing and stuttering. The
game power management scheme introduced in Chapter 1 maintains constant target frame
rates during different phases of the game and hence it could directly adapt the display
refresh rate.
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GPU

To enable advanced 3D graphics on mobile devices, GPU architectures have been highly
optimized to reduce their power consumption. A popular alternative to the traditional
immediate mode rendering followed by NVIDIA and AMD, is a technique called deferred
(or tiled) rendering found in Imagination Technologies’ and Qualcomm’s Adreno GPUs.
This technique targets to minimize GPU off-chip memory accesses which are expensive in
terms of time and energy. Further, the so-called overdraw is reduced, i.e., computations
for vertices or pixels which are not visible in the final picture due to occlusion by objects
in front. Main drawback of the technique over the traditional approach is an increased
rendering latency and hardware complexity. We would like to refer to [4, 69] for more
details.

Besides architectural modifications from the manufacturer’s side several techniques have
been proposed in literature to further reduce the GPU’s power consumption. In [46] HVS
characteristics are exploited to dynamically switch between Gouraud and Phong shading
algorithms whenever the graphics content allows it. While Phong provides preciser shad-
ing it consumes significantly more power and is not required for highly dynamic scenes.
It is shown that instead the low-precision and less-power hungry Gouraud shading algo-
rithm can be used. Thereby the overall power consumption of the shading stage could
be significantly reduced. Hosseini et al. [63] suggest omitting selected lighting effects to
reduce the power consumption. While in this work the effects are omitted for all objects
a selective application to objects with higher relevance is suggested for the future. The
thesis of Pool [120] focuses on reducing the energy consumption by reducing the compu-
tational precision of graphics processing stages. In addition, methods are presented to
enhance current compression algorithms and thereby reduce the off-chip bandwidth and
resulting energy consumption.

Another possibility to reduce the GPU’s power consumption is the application of dynamic
voltage and frequency scaling. In [104] an OpenGL ES software library is executed on
the target platform to gather traces of individual stages of the graphics pipeline. Based
on these traces the performance and the power consumption are then analyzed using an
ARM instruction-level simulator. Results indicate that the graphics workload exposes
sufficient variations making the different stages of the GPU amenable to DVFS. It is
shown that already a simple history-based predictor obtains significant power savings for
the used simulation setup with tolerable prediction errors. The work motivates special-
ized prediction techniques to avoid performance impacts due to miss-predictions of the
coarse history-based predictor. In [105] a signature-based prediction of GPU workloads
is suggested. Signatures are created based on the average triangle area, count and height
as well as the vertex count. For each signature the workload is recorded and an entry
to a signature-workload table is made. If a similar signature is found in the table the
corresponding workload is used as prediction for dynamic voltage and frequency scaling.
Both of the above described works are based on ARM performance and power models.
The validity of these models can be questioned since graphics pipeline are highly paral-
lelized and optimized and hence are likely to behave very different from the used ARM
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processing core models. The work presented in [132] shows that the high workload cor-
relation between tiles of consecutive frames can be effectively exploited to apply DVFS
for deferred rendering architectures. In addition to a simple tile-history based predictor,
so-called tile ranks are computed based on information extracted from the geometry and
tiling stage. The rank indicates whether the workload of the current tile increased, de-
creased or approximately remained the same in comparison to the previous frame. If the
rank of the current tile deviates by more than a particular threshold from the same tile
of the previous frame, it is rendered with the maximum frequency to avoid that the tile
misses its deadline. Using this technique and dynamically correcting miss-prediction er-
rors by recomputing the remaining slack, the number of frames missing their deadline was
minimized while significant power savings could be shown. The results of this work are
obtained with the ATTILA simulator [13] which has been modified to simulate a deferred
rendering architecture.

Ma et al. [95] investigated the performance bottleneck and the power consumption of the
graphics pipeline when games are being played on three different smartphones. Towards
this, the pipeline was logically separated into 5 stages: The application stage, including
all work performed by the CPU, the geometry stage, computing vertex attributes and
3D transformations, texture fetching, fragment shading, executing pixel shaders and pixel
processing, responsible for post-fragment shading pixel processing and writing of color,
depth, stencil buffers and alpha blending. By disabling individual stages directly in the
Quake III and XRacer source code, differences in terms of performance and consumed
power could be directly measured on the smartphones. It is shown that the geometry
stage requires most power (up to 35 % of the GPU’s total power) and processing time (up
to 40 %). Further, it is pointed out that in case of mobile devices the game logic being
executed on the CPU consumes significantly more power than the same logic being exe-
cuted on a desktop architecture (only 15.12 %). While for Quake III the GPU consumed
more power than the CPU, this was observed to be the opposite for the game XRacer,
highly motivating CPU power management.

The work of Pathania et al. [115] suggests an integrated CPU-GPU power management
for 3D mobile games. First, the relationship between different frequency settings, the
resulting power consumption and frame rate is analyzed for the game Asphalt 7: Heat.
Similar to our findings presented in Chapter 4, it is shown that the game has typical
phases during which it is CPU- or GPU-bound. An algorithm is developed that targets
to maintain a frame rate within a particular hysteresis (e.g., 30-35 FPS) over a sliding
window of 5 seconds. Towards this, the algorithm first starts at the lowest CPU and GPU
frequency and extrapolates, based on the current CPU and GPU costs, what frequency
is required to maintain the target FPS. This is repeated until the target frame rate
is achieved. Since it has been observed that the frame rate is highly sensitive to the
GPU frequency, in this state only the CPU frequency is adapted to guarantee that the
FPS stays within the defined hysteresis. During scene transitions, the CPU frequency
is raised to a maximum, while the GPU frequency is lowered to the minimum possible
frequency. The proposed scheme is purely reactive: The frame rate is averaged over a
5 seconds interval and once a drop of this averaged frame rate is observed, the proposed
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scheme reacts. For the games we used in this work, we observed that the workload can
significantly vary on a very fine-grained frame to frame-basis. Coarsely averaging over an
interval of 5 seconds would result in a high percentage of frames missing their deadline
and consequently in a deteriorated user experience. To avoid frame rate drops at the first
place, the power manager proposed in this work is based on a workload predictor. The
prediction and scaling is performed on a frame-by-frame basis, guaranteeing that already
small frame workload variations are quickly detected and compensated by scaling the
processor’s frequency.

Memory

While a significant amount of work focuses on techniques to lower the memory system’s
power consumption [40, 56, 60, 96, 112, 133], only little work investigated memory power
management for in the context of mobile computing. In general, memory is considered
as a minor contributor to the total power consumption of a smartphone. In [81] it has
been shown that a smartphone’s memory can have significant performance implications
and might prolong loading times for interactive applications like web browsing. According
to the study, slower storages not only increase the I/O-waiting time of the CPU, but as
well the duration during which the CPU is active and thereby might have a direct impact
on the processor’s power consumption. As part of future work, it would be interesting
to investigate implications of different memories on the performance in the context of
games. In [44] a hybrid memory system for mobile devices is proposed that consists of
Mobile RAM and Phase Change Memory (PCM). While Mobile RAM has a lower access
latency it requires significant amount of energy for refreshes during idle states. PCM
on the contrary has longer access times, but does not require refreshes while idling. In
proposed work, the advantages of both memory types are exploited by keeping frequently
accessed applications in the Mobile RAM and the others in PCM. For the hardware
platforms considered in this work, the memory sub-system cannot be changed and hence
is considered as given.

2.6 Summary

In this chapter, we have discussed work that is related to this thesis. We first illustrated
a mobile phone’s architecture and showed that the processor is one of the main contrib-
utors to total power consumption. We presented low-level techniques which have been
developed and are nowadays common in mobile processors to lower their power consump-
tion. Related work of two famous approaches which use these low-level techniques, namely
DVFS and DPM, have been discussed in detail. We pointed out why approaches that have
been developed for video applications cannot directly be applied to gaming applications.
Work that focuses on application-specific power management for games was discussed in
detail and weaknesses of the different approaches have been pointed out: Developed ap-
proaches are either too coarse to guarantee a good gaming experience and power savings
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at the same time or are highly optimized for a particular game. Due to the huge number
of games being published on a daily basis, however, such game-specific approaches that
require the game’s source code are not suitable. How these drawbacks can be overcome
will be presented in the following chapter. Besides work that is related to CPU power
management, we in addition gave an overview on work that has been performed to reduce
the power consumption of peripherals like the display, GPU and memory. All of this
work discussed is orthogonal to the techniques that are presented in the remainder of this
thesis and can be combined with our methods to provide an overall optimized system
power consumption.
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Game workload prediction

Accurate workload prediction is the key to efficient dynamic voltage and frequency scaling.
In this chapter we will systematically analyze PID controller-based workload prediction
for games which has been proposed in the past [52], identify weaknesses of the approach
and present prediction techniques, like autoregressive model-based predictors, that are
better suited to accurately predict the highly dynamic game workload.

3.1 Contributions and related work

Control-theoretic techniques have been successfully applied to predict the future workload
of video applications [124,154] and games [51,52]. It was shown that proportional-integral-
derivative (PID) controllers can be leveraged to predict the workload of future frames of
a game, based on the timing of previously processed frames and past prediction errors.
However, for both, video applications and games the PID gain values had to be hand-
tuned. In other words, the proportional, integral and derivative gain values had to be
carefully chosen in order to maximize both power savings and the quality of the game play
(measured by the percentage of frames missing the deadline). Some important questions
were left open by this line of work.

First, if the PID gain values are tuned on the basis of one game application or a selec-
tion of game plays, then how robust or sensitive is the resulting controller to new game
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applications or to a different selection of game plays in the same application? Here, a
game play refers to particular sequences of scenes in the game or inputs provided by the
user. Second, the PID controller-based prediction was evaluated on a relatively old game
Quake II from id Software (because it is an open-source game), and in particular with
it set to the software rendering mode. In other words, it was assumed that the mobile
device did not have a graphics processing unit (GPU) and all the graphics processing
had to be done in software on the CPU. Since the introduction of Quake II in 1997, the
workload characteristics of games underwent substantial changes, GPUs are now avail-
able on mobile devices and the CPU increasingly processes complex physics or AI related
tasks. Hence, how does the PID-based prediction scheme work for more modern games
with higher workload variation and less inter-frame correlation? Finally, is it possible
to design workload prediction schemes that do not require game-specific manual tuning
of parameters, so that they work on game plays or even games that are not a priori known?

The contributions of the work presented in this chapter are as follows:

• We study the influence of PID gain values on the quality of game play (i.e., the
number of frame deadline misses) and the achieved power savings for Quake II as well
as for more recent games with hardware-based graphics rendering. Our results reveal
that if PID gain values are not individually tuned for each game play, the controller
might become unstable, resulting in a significant performance degradation. This
shows that such PID-based prediction mechanisms, while extensively studied in the
power management literature, cannot be practically applied to games, especially
when the game play or game is not a priori known.

• In order to avoid this hand-tuning of PID gain values, we propose a self-tuning least
mean squares (LMS) linear predictor. It achieves power savings and frame deadline
misses that are comparable to those from a carefully hand-tuned PID controller,
while the parameters of the LMS linear predictor do not necessarily need to be
tuned for each play individually to provide an overall good performance.

• When we evaluated the LMS linear predictor on a set of recent games, we observed
higher workload variations and reduced inter-frame correlation for games utilizing
hardware-accelerated rendering. This diminished correlation affects the self-tuning
process of the LMS linear predictor, which now might become unstable and provide
inaccurate prediction results. To solve this problem, we next study autoregressive
moving average (ARMA) models for workload prediction. Our results show that
an ARMA model, that is tuned offline, performs well for a variety of games with
both software-based and hardware-assisted rendering. Runtime power management
techniques based on such prediction models show significant power savings, with
very little perceived deterioration in the game quality.

We introduce a Microsoft DirectX-based DVFS framework to investigate different power
management policies for more recent games for which, unlike Quake II, the source code
is not available. Hence, they cannot be instrumented to record the processing times of
individual frames. In this chapter, we leverage a lightweight dynamic-link library (DLL)
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injection [103] technique to acquire required timing informations of closed-source DirectX
games, while techniques that can be applied to Android-based systems will be described
in detail in the next chapter.

Related work: PID controllers are commonly used in industry for system control [10,
161]. In the context of mobile computing PID controllers have been successfully applied
to dynamic thermal management (DTM) [41, 136]. DTM aims to limit a processor’s
temperature by throttling or scaling the processing frequency to, e.g., avoid emergency
shutdowns. It is shown that the CPU’s temperature can be effectively stabilized using PID
controllers. In [94], the processor’s speed is adapted using a PID controller to regulate
the fill-level of a MPEG decoder’s play-out buffer. Marchesan et al. [98] leverage PID
controllers to stabilize the task throughput on a multi-processor system-on-chip (MPSoC)
by scaling the frequency of each core individually. In [150], the workload prediction
required for DVFS is treated as a classical control theoretic problem, where the future
load on a processor is predicted based on a discrete PID controller. The load estimate is
then used to scale the processing frequency. It is shown that choosing the PID controller’s
weights is straight forward due to its low sensitivity to gain variations. The approach
outperforms history-based approaches like simple averaging for benchmarks taken from
the Media-Bench suite [84]. In [51, 52] a discrete PID-based predictor is used to forecast
the workload of game frames. As discussed above, the PID gains were tuned manually and
only for one game play of Quake II. In Section 3.4 we will show that in the case of gaming
workloads, the PID controller is highly sensitive to gain variations. This complicates
choosing correct gain values and makes the PID controller, despite its simple and well-
studied nature, unattractive for game workload prediction.
In the work of Sinha et al. [134,135] significant power savings were obtained using a LMS-
based workload prediction for DVFS. Akyol et al. [5] estimate the future complexity of
video decoding tasks based on normalized LMS (NLMS) linear predictors. Similar to PID
controllers, LMS linear predictors have as well been studied in the context of dynamic
thermal management [19].
Coskun et al. [29] use an ARMA model to predict core temperatures on a MPSoC. The
forecast allows a proactive reaction by migrating tasks to lower the utilization of individual
cores. Liu et al. [91] interpret the sampled utilization of hard discs as time series and
test different autoregressive (AR) and moving average (MA) models to predict the future
utilization. It is shown that already an AR(1), i.e., a model of order n = 1, yields
significant power savings with a minimal prediction overhead. In [30] an ARMA(1,1)
model is successfully used to model the network traffic of Quake IV.

In order to predict the future workload, for example using ARMA-based predictors, tim-
ing information is required from the game which is commonly not available since most
modern games are closed-source. To still get insight into modern closed source games,
we leverage a technique called DLL-injection [103]. When applied to the DirectX library
used by games, DLL-injection allows intercepting all graphics calls issued by the game
(see Section 3.3.2). In the gaming context, DLL-injection has been mostly used for cheat-
ing: A famous cheat called wall-hacking [61,83] changes rendering commands of the game
such that wall textures, e.g., the brick structures, are replaced by simple color schemes
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while enemies are brightly colored. Thereby, the contrast is dramatically increased and
players can aim easier and quicker. To the best of our knowledge, this is the first time
that DLL-injection is leveraged for game power management.

Organization of the chapter: In the next section we briefly outline the main fea-
tures of DVFS schemes for games. This is followed by a description of software- and the
hardware-rendering schemes in games. Our simulation setup for tuning PID gain values is
presented in Section 3.3.3. Next, the PID-based power management scheme is described in
Section 3.4. Results using the PID controller for both software- and hardware-based ren-
dering are then discussed. Next, we introduce the LMS linear predictor (see Section 3.5)
and present the evaluation results in Section 3.5.2. We show the improvements over the
PID controller, together with its limitations when used for games that leverage hardware
acceleration for rendering. In Section 3.6 we discuss how time series analysis may be
useful for modeling gaming workloads. Our results obtained from time series modeling, in
particular from AR and ARMA models are then presented. Finally, in Section 3.7 power
measurements are outlined before concluding with a summary.

3.2 DVFS for game applications

DVFS schemes for games primarily depend on estimating future game frame workloads.
We evaluate several workload prediction techniques in terms of their performance and
suitability. All the discussed techniques consist of two parts, an offline and an online
phase.

Each predictor has a set of parameters, e.g., the predictor gains and the prediction order,
which need to be determined during the offline phase before the predictor can provide
a good performance in the online phase. Towards this, we record a sample game play
based on which we tune the predictor’s parameters. Such a sample game play can only
resemble a small part of the game since not all future game plays of an interactive game
application can be a priori known. Hence, the robustness of the predictor, i.e., its sensi-
tivity to changes in workload characteristics, is of great importance. The ideal predictor
should be tuned only once and then provide good performance for all future game plays.
As the parameter tuning is done offline, it is not time critical.

The online phase of the DVFS scheme has the following structure (as described in
Chapter 1): (i) The workload of the i+ 1-th frame is predicted from the workloads c and
estimation errors e of previous frames:

c̃[i+ 1] = predictor(c, e)

(ii) based on prediction results and the desired frame rate, the required clock frequency
of the processor is computed, (iii) the processor’s frequency is scaled accordingly, and
(iv) the frame is eventually processed (involving game AI, physics-related computations,
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etc.) and rendered, and finally (v) based on cycle-accurate measurements of the workload
c[i+ 1] the estimation error e[i+ 1] is computed

e[i+ 1] = c̃[i+ 1]− c[i+ 1]

and fed back to the workload predictor. Since the online phase is time critical, the
overhead of the different steps will be discussed in Section 3.7.1.

DVFS performance metrics: We introduce two metrics to evaluate the prediction
quality and the performance of the resulting DVFS scheme. The first metric is the average
power P consumed during a game play. The power consumption depends on the processing
frequencies fi chosen from the set of available frequencies F . P is measured as described
in Section 3.7 or estimated as described in Section 3.3.3.

The second metric is the percentage of frames missing their deadlines, d. If the i-th frame’s
processing time t[i] is greater than the deadline d = 1/fpsdesired the frame is said to have
missed its deadline, where fpsdesired is the desired frame rate. Note that unlike in video
processing applications, a frame that misses its deadline is not dropped; it only leads to
a possibly poor gaming experience. Further, there is a clear dependency between the two
metrics: Always using the smallest available processing frequency fmin will minimize P ,
but will lead to the maximum number of frames missing their deadline (dmax). Using the
largest available processing frequency instead will lead to a high power consumption, but
will result in the minimum number of frames missing their deadline (dmin). An optimal
predictor (using an oracle) would allow optimizing d, P or a combination of both.

Choosing a target frame rate: An important decision is the choice of the target frame
rate fpsdesired as it influences both, the percentage of frames missing their deadline d and
the average power consumption P . Lowering fpsdesired will result in a lower workload, and
therefore it is more likely that the frame can be processed in time with a lower frequency.
This in turn will lead to higher power savings, but might lead to poor gaming experience.
User perception studies reported by Claypool et al. [28] show that the game frame rate
has a high impact on the perceived game quality. The perception varies from game to
game, i.e., a strategy game’s frames per second (fps) demand is likely to be lower than
the desired fps in case of a fast first person shooter game. For this work we have chosen
the target frame rate for each game such that the perceived game quality appeared to be
optimal for us, e.g., for Quake II this was a frame rate of 30. This implies that each frame
has a deadline of 1/30-th of a second.

3.3 Architectural setup

The correct choice of a prediction technique highly depends on the underlying architectural
setup. Therefore, we will first describe the two hardware setups used in this chapter,
before we introduce the different prediction techniques. Note that in this chapter we use
desktop game applications and setups to allow comparability to previous work [54]. In
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Figure 3.1: Experimental setup for software-based rendering DVFS

Chapter 4 it is shown how the implementations presented in the following can be ported
to Android-based mobile platforms. Further, it is verified that all results presented in this
chapter for desktop games as well hold true for mobile games.

The first setup consists of a software-based rendering setup similar to the one used in
[54]. Low-cost mobile devices without hardware accelerated rendering will fall under
this category. The second setup uses a graphics processing unit (GPU) to render the
game’s graphics. This setup is now typically found in most high-end mobile devices like
smartphones and tablet PCs.

3.3.1 Software-based rendering setup

We employed the Quake II game engine which forms the core of some of the most popular
first person shooter games like Raven Software’s Soldier of Fortune, Anachronox from
EIDOS and Activision’s Heretic II. Quake II was chosen for two reasons: i) We could
compare our results to other related work that studied Quake II [6, 50, 54]. ii) Quake II
uses software-based rendering and its engine forms the core of a variety of other games
as mentioned above. The source code of Quake II is available under GNU public license
and has been modified to incorporate the proposed DVFS power management algorithms
(see Figure 3.1). This modification can be applied to any open-source game.

The software video mode of the game was set to mode 5 which corresponds to a frame
resolution of 960 × 720 pixels. The desired frame rate was set to 30 fps for all Quake II
related experiments. The modified source code was compiled in release mode with proces-
sor specific optimizations and the game plays were run on Ubuntu 9.10 operating system
with Linux kernel version 2.6.31-20-generic.
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Table 3.1: Workload statistics for the used Quake II game plays

Quake II
Game Play

Avg.
workload

Deviation Target
FPS

Frames missing
their deadline %

C
[
cycles
frame

]
σ
[
cycles
frame

]
dmax dmin

Explore-1 3.7e+07 3.7e+06 30 0.7 0.0
Explore-2 3.8e+07 3.2e+06 30 3.3 0.0
Shooting-1 4.1e+07 4.9e+06 30 71.8 0.0
Shooting-2 4.1e+07 4.1e+06 30 67.5 0.0
Level-2 4.0e+07 6.4e+06 30 66.6 0.2
Massive-1 4.5e+07 7.7e+06 30 86.5 1.8

The experiments were performed on a laptop equipped with a 1.86 GHz Intel R© Pentium R©

M Processor and 1.5 GB RAM. This processor supports Enhanced Intel SpeedStep R© Tech-
nology and offers frequency scaling between five different frequency levels that correspond
to 800 MHz, 1066 MHz, 1333 MHz, 1600 MHz and 1866 MHz. In order to obtain a precise
processor cycle count, the cycle measurements were performed with the help of the RDTSC
(read-time stamp counter) instruction. The RDTSC instruction to log each frame’s cycle
count was incorporated into the source code of Quake II, along with the DVFS algorithms.

Selection of game plays: Quake II allows recording of game plays. These recordings
include everything that is required (e.g., user input) to re-run exactly the same game play
similar to a video, along with performing exactly the same computations. This allowed us
to reproduce the measurements for different runs of the same game play under identical
settings, but with different power management policies.

We recorded four short game plays among which two (i.e., Shooting-1 and Shooting-
2) included highly dynamic scenarios involving events like enemy contact. The other
two short game plays resembled an exploration phase of the game with comparatively low
workload (i.e., Explore-1 and Explore-2). Additionally, we recorded a long game play (i.e.,
Level-2) with average workload and dynamics. The dynamic behavior of the predictor was
also examined using Massive-1 which is a well-known Quake II benchmarking demo with
relatively high CPU demand and workload variation. Several runs were recorded for each
game play to take the variations caused by the underlying OS into account. The resulting
statistics of all game plays are shown in Table 3.1, where the average workload C and its
standard deviation σ are given in terms of processor cycles per frame. It is obvious that
Massive-1 has the highest average workload and standard deviation caused by the highly
dynamic nature of this game play. On the other hand, Explore-1 and Explore-2 show
the lowest C and σ. The minimum (dmin) and the maximum (dmax) percentage of frames
missing their deadlines were obtained by running the processor at the highest (1600 MHz)
and the lowest (800 MHz) frequency respectively. A certain percentage of frames miss their
deadline even when the processor runs at the highest frequency, because the processor
cannot support the maximum possible workload generated.
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Figure 3.2: Experimental setup for hardware-based rendering DVFS

3.3.2 Hardware-based rendering setup

In the following, the hardware-based rendering setup is described, which is used to evaluate
the prediction performance of games running on a HW-accelerated rendering system.
Previously, rendering made up the major part of the total workload (in case of Quake II
up to 90 percent). The advent of GPUs allowed game developers to offload most of the
rendering workload from the CPU. Instead, the CPU is now increasingly used for complex
artificial intelligence computations and realistic physics engines. Thereby, the workload
characteristics of games have significantly changed.

The main advantage of the setup presented below over the previously presented approach
is that (i) we can evaluate modern games that use hardware-accelerated rendering, and
(ii) that we are no longer restricted to open-source games. The current implementation
allows applying our DVFS algorithm to any DirectX 9 based application and can be easily
adapted to support DirectX 10/11, OpenGL or OpenGL ES (see Chapter 4). To incor-
porate our power management into recent closed-source games, we utilized the interface
between the application and Microsoft’s DirectX rendering API. As shown in Figure 3.2,
a game performs API calls to the Microsoft Direct3D run-time library to initiate the ren-
dering of the scene. We intercepted all calls made by the game to the Direct3D run-time
library. This was done using a technique called dynamic link library (DLL) injection
provided by the Microsoft Detours Library [103]. When the game starts up, it loads the
Direct3D library. The DLL injection inhibits the loading of the original DLL and instead
forces the game to load our own library into its context. Consequently, instead of the
original Direct3D functions, our code is executed. This enabled us to profile the game,
to run our workload prediction and DVFS scheme and to render a visualization on top of
the game (see Figure 3.3).

A game signals the beginning of a new frame to the GPU with the DirectX command
BeginScene. At the end of the frame, the EndScene together with the Present command
is called, thereby informing the GPU that the frame can be shown. The interarrival time
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Figure 3.3: Screenshot from Crysis with integrated visualization of frame rate (top left) and
processor’s frequency (middle left)

between Present commands gives us the frame execution time. Based on these execution
times the predictor estimates the workload of the next frame and computes the required
processor’s frequency. To actually scale the frequency of the processor, the processor’s
model specific registers (MSRs) have to be set accordingly. As this is only allowed in kernel
mode, a driver is loaded at creation time of the DirectX device which allows setting the
MSRs from user space (see Figure 3.2). Additionally, this interception-based approach
allowed us to add an online visualization of e.g., the power savings and a user interface,
which enables the user to influence the DVFS algorithm and modify parameters like the
desired frame rate.

For the experiments we used a desktop PC with an Intel R© Core
TM

2 Quad QX6700 with
2.66 GHz, 2048 MB of RAM and a NVIDIA Geforce 8800 FX graphics card and running
Microsoft Windows XP. The processor supports five different frequency levels that corre-
spond to 1.6 GHz, 1.86 GHz, 2.1 GHz, 2.4 GHz and 2.66 GHz. We used the Windows sys-
tem API functions QueryPerformanceCounter() and QueryPerformanceFrequency() to
measure the frame execution times. In this work the frequency and voltage of the four
cores was always scaled equally as the focus of this chapter is on the evaluation of suitable
workload predictors for game applications.

Selection of games: We have chosen three popular games, each from a different genre, to
evaluate the performance of our power management scheme: A first person shooter named
Crysis from Crytek, a racing game named Need for Speed - Shift (NFS) from Electronic
Arts and Ubisoft’s strategy game World in Conflict (WIC). The average workload C, the
workload’s standard deviation σ, dmin and dmax are given in Table 3.2 for six recorded
game plays (two for each game). The workloads’ standard deviation for games that
use hardware rendering are significantly higher compared to the one’s in Quake II. The
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Table 3.2: Workload statistics for the used DirectX game plays

DirectX
Game Play

Avg.
workload

Deviation Target
FPS

Frames missing
their deadline %

C
[
cycles
frame

]
σ
[
cycles
frame

]
dmax dmin

NFS-1 5.5e+07 1.0e+07 30 50.22 0.67
NFS-2 6.0e+07 1.1e+07 30 68.83 1.56
Crysis-1 3.8e+07 1.4e+07 40 33.92 0.66
Crysis-2 4.6e+07 3.7e+07 40 70.51 1.89
WIC-1 3.3e+07 8.0e+06 40 15.78 0.10
WIC-2 4.0e+07 8.4e+06 40 65.20 0.15

1.60 1.86 2.12 2.40 2.66
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Figure 3.4: Average frame rate under varying CPU speed in Crysis

major difference between the two architectural setups is the composition of the workloads.
A game’s workload is in general composed of rendering, AI, physics and game logic.
Computations like AI or physics are not necessarily frame-based and therefore can change
more abruptly if measured in cycles per frame. The rendering workload on the other hand
is of course frame-based, and therefore changes are likely to be slower. In case of Quake
II, up to 90 percent of the CPU’s time is spent for rendering. For games with hardware-
rendering the CPU time is instead used for complex AI or physics computations. As these
computations are not necessarily done on a frame basis, the workload no longer changes
in a continuous manner. This explains the observed difference between the workload’s
standard deviations, and this will later influence the choice of appropriate predictors.

This work targets power management schemes for the CPU. If a game is mainly GPU-
bound for the available CPU frequencies, then it could always be run with the lowest
available frequency and no DVFS or workload prediction would be required. To present
meaningful results, we have chosen realistic graphics settings for each game and verified
that the games are not always GPU-bound. Figure 3.4 shows the resulting average frame
rate of Crysis for the available processor speeds. It can clearly be seen that the game is
not GPU-bound for the chosen settings (Resolution 1024×768, no Anti-Aliasing, all detail
levels set to medium). Note that there still might be scenes for which a game becomes
GPU-bound in-between. Here, it would be beneficial to come up with an additional power
management scheme for the GPU.
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Table 3.3: Run-times for varying number of simulation runs

No. of Simulation Runs tsim [s] tgame [s] Speedup

400 116.4 78.7e+03 676

1600 206.3 31.2e+04 1515

442401 15650 86.3e+06 5512

3.3.3 Simulation setup

The highly dynamic nature of game workloads and additional variations introduced by the
underlying OS necessitate an exhaustive exploration of the space of workload predictor
parameters, as will be elaborated later in this chapter. Towards this, we developed a sim-
ulation environment for a systematic evaluation of the performance of the PID controller,
the LMS and the ARMA-based workload predictor.

The algorithm for DVFS (see Section 3.2) is replicated in the simulation, where the
processing of frames and the workload measurement is replaced by a workload model.
This workload model is based on recorded workload profiles.

In contrast to video applications, in games the content of every frame and its workload
depends on the user action and the processor frequency that was used to render the
past frames: Let the ith frame at time t[i] require c[i] clock cycles and fj[i] ∈ F =
{f1, f2, . . . , fn} be the corresponding processor frequency used to render the ith frame. The
time ∆t[i] taken for rendering the ith frame is then approximated by c[i]/fj[i]. Further,
the next frame will be rendered at time t[i+ 1] = t[i] + ∆t[i]. After the ith frame has been
rendered, the physics engine calculates the player’s new position based on the player’s
speed and ∆t[i] (which is the real passage of time). The position of the player and the
next frame’s content therefore depends on ∆t[i] and hence on the frequency fj[i] (when
the frequency is higher, more frames are used to “fill” a certain time interval).

This dependency prohibits the direct usage of recorded workload profiles. To get around
this, we assume “linear” behavior of the workload profiles. Our experiments showed that
this assumption is valid over small time scales, as considered in our case. Thus, for each
available processor frequency fj ∈ F , the corresponding workload profile Cfj is recorded
and transformed from the frame number to the time domain by interpolating the missing
values. For each frame that is pseudo-processed in simulation with frequency fj, the
corresponding workload profile Cfj is evaluated.

This workload model together with the replicated steps of the DVFS scheme now allows
accurate approximation of the system behavior and an evaluation of different controller
settings for DVFS in terms of the performance metrics (see Section 3.2). The runtimes of
the simulation compared to concrete runtimes of the games are given for different runs in
Table 3.3. A speedup of 5512× is achieved with a Mathworks MATLAB implementation,
which clearly shows the advantage of using a simulation-based approach for tuning the
controller parameters (gain values) of our workload predictors, as will be explained later.
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3.4 PID controller-based prediction

Now that we have explained our experimental setup, in what follows we describe vari-
ous workload predictors and their evaluations. We start with the PID controller-based
workload prediction which has been successfully applied to various power management
problems. In the following, we are going to describe the theoretical background and
challenges of using PID controllers for game workload prediction.

The input signal computed by a PID controller consists of three components,

1. Proportional: Pcomp(t) = KP · e(t)

2. Integral: Icomp(t) = 1
KI
·
∑

TI
e(t)

3. Derivative: Dcomp(t) = KD · e(t) − e(t−TD)
TD

where e(t) is the error signal, KP , KI , KD are proportional, integral, derivative gains
respectively. TI and TD are intervals for integral and derivative components respectively.

The output of the PID controller is given by

PIDoutput(t) = Pcomp(t) + Icomp(t) + Dcomp(t).

Let c[i] and c̃[i] be the respective actual and estimated workload values for the ith frame
in terms of clock cycles. Here, the goal is to predict the workload c̃[i+ 1] of the (i+ 1)th

frame by utilizing the actual workload c[i] of the ith frame and the PID control signal
PIDoutput(t), i.e., c̃[i + 1] = c[i] + PIDoutput[i]. Towards this, we compute PIDoutput[i]
with e[i] = c[i] − c̃[i] being the error signal and

PIDoutput[i] = KP · e[i]

+ 1
KI
·
∑n

j=0 e[i− j]

+ KD · e[i] − e[i−1]
∆t[i−1]

3.4.1 PID controller’s stability

The choice of PID controller gains KP , KI and KD is crucial for the performance of the
predictor. The predictor directly influences the choice of the processor’s frequency. Ide-
ally, it will choose a frequency sufficient to complete the frame just in time and therefore
with the lowest possible power consumption. If the predictor’s parameters are chosen
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Figure 3.5: Prediction error in case of an unstable predictor

incorrectly the predictor may become unstable. A typical plot of a prediction using an
unstable controller is shown in Figure 3.5. The prediction error and hence the predicted
workload starts to oscillate and becomes infinitely large over time. In terms of processor
frequency settings, this results in a periodic switching between highest and lowest fre-
quency. This of course is highly inefficient in terms of power consumption and will also
lead to a considerable loss in game quality.

Figure 3.6 shows the distribution of stable controller gains for a particular game play (i.e.,
Shooting-2). It may be noted that only a small portion of the entire space of the controller
gains ensures the predictor’s stability. The controller gains with reasonable prediction
quality (i.e., smaller than 10 % frame deadline miss) are indicated by the points. Note
that the number of such points is limited and distributed over the entire space of stable
controller gains. Hence, identifying gain values that lead to a controller with acceptable
performance is a non-trivial task. In the following subsection we show how suitable gain
values may be chosen.

3.4.2 PID performance space

As mentioned in Section 3.2, the performance of the PID controller and all other workload
predictors is quantified using two metrics, the percentage of frames missing their deadline
and the average power consumption. We obtain a performance space by plotting the
values of the metrics corresponding to various sets of PID controller gains. For example,
Figure 3.7 shows the resulting performance space of the PID controller for the Quake II
game play Level-2. Every point corresponds to results obtained with a specific choice of
PID controller gains. The Pareto-front marks the optimal choice of points. These are the
points of interest and are found by an exhaustive simulation. It may be noted that the
average power consumption, here given for the laptop, is in the range of 22 to 23 Watts
resulting in maximum possible savings of 35 % (compared to the maximum power con-
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Figure 3.6: PID controller gains in the range of interest for Shooting-2. Each plane indi-
cates a stable choice of PID gains (with KD = constant and KI , KP varied)

sumption of the laptop, which is 34 Watts). However, reducing the power consumption
to 22 Watts comes at the cost of an unreasonably high number of frames missing their
deadline (i.e., over 25 %). Moreover, the variation in power consumption is small com-
pared to the maximum average power consumption in a laptop. The same behavior has
been observed for the desktop PC. It may also be observed that the percentage of frames
missing their deadlines is highly influenced by the choice of the gain values. Hence, we
chose the gain values with the lowest percentage of frame deadline misses (to maximize
game quality). Clearly, a systematic identification of suitable controller gains is necessary
for each game play.

Software-based rendering: To investigate the influence of workload variations, we ran
exhaustive simulations for the Quake II game plays listed in Table 3.2. For each game
play, we used our simulation setup to explore the effect of the controller gain values. Such
exhaustive search results in performance spaces similar to the one shown in Figure 3.7. For
each game play we selected the set of gains resulting in the lowest rate of frame deadline
misses, i.e., setExplore−1( ) is the optimal set for game play Explore-1 (see Figure 3.8).

In a complex game it is very unlikely that a player generates the same workload twice.
Hence, an important issue is the predictor’s robustness to changes in the workload char-
acteristics. To evaluate this robustness we used the PID gains, which were optimized for
one game play, for the workload prediction of the remaining game plays. As shown in
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Figure 3.7: Performance space for different choices of PID controller gains for the Quake II
gameplay Level-2
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the gain set tuned for all game plays (with software rendering setup)
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Figure 3.9: Performance evaluation of game-play-optimized PID gain sets (with hardware
rendering setup)

Figure 3.8, we observed inferior performance if we used gain values that were optimized
for one game play for other game plays. For example, using setExplore−1( ) for Level-2
will increase the percentage of frame deadline misses by 7.3 %.

The PID gains can also be optimized with all the game plays taken together, i.e., setALL( )
in Figure 3.8. This set has been computed by merging the performance spaces of all game
plays. Nevertheless, the controller gains again need re-optimization in case a new game
play is considered. For example, we optimized the PID gains by considering all the game
plays listed in Table 3.2 except for the game play Level-2. These PID gains were then
used for Level-2, which resulted in an unstable predictor for Level-2.

Hardware-based rendering: The same measurements were also repeated for hardware
rendering. Unfortunately, the option to record game plays like in Quake II is not offered
by any recent games that use hardware rendering. To address this issue of reproducibility,
the predictor’s performance was simulated, first using very long pre-recorded workloads.
Once a good setting was found the gains were evaluated online in the game and results
were thereby verified.

Figure 3.9 shows the resulting percentages of frames missing their deadlines for the Di-
rectX games listed in Table 3.2. The gains have been tuned individually for six game
plays in total (two per game). A cross-validation was performed with the other game
plays. As can be seen in the figure, the performance drops significantly when a set of PID
gains, which has been tuned for one particular game play, is used for a different game or
game play, e.g., using setWIC−1( ) for NFS-1 increased the number of frame drops by
12.6 %. Further, for all games the controller became unstable after a particular number
of frames.
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Based on the measurement results from both, the software- and hardware-rendering setup,
we conclude that the PID-based predictor’s performance depends on the nature of the
game play and hence the controller gains should be optimized for each game play indi-
vidually. Since all game plays cannot be known in advance (because they depend on the
player), we conclude that PID-based prediction, which was successfully applied to video
power management, is not suitable for game applications in real-life settings. Instead, a
robust predictor is required, that needs to be calibrated only once, and that thereafter
provides good performance for a priori unknown game plays. These outcomes motivate
the use of a self-tuning algorithm.

3.5 LMS linear predictor

The least mean squares (LMS) linear predictor [58] is a statistical approach mainly used for
parameter identification of various dynamical systems. Such approaches are suitable for
systems that are linear-in-parameters (LIP), i.e., the output of the system can be modeled
as a linear combination of system inputs and (unknown) system parameters. The LMS
linear predictor learns the system parameters by recursively updating its weights over
several iterations.

We used it to estimate the workload c̃[i+ 1] of the (i+ 1)th frame by utilizing the actual
workloads of the previous frames. Towards this, we represented the predictor’s output
as a linear combination of known workloads of previous frames and unknown predictor
coefficients. If c[i] represents the workload value of the ith frame, then according to
the general structure of a one-step LMS Linear Predictor, the predicted workload of the
(i+ 1)th frame is given by

c̃[i+ 1] =
n−1∑
k=0

wk[i] c[i− k] = W [i]TC[i], (3.1)

where n is the predictor’s order, wk, for k = 0, . . . , n−1, are unknown predictor coefficients
and

W [i] = [w0[i], w1[i], . . . , wn−1[i]]T

C[i] = [c[i], c[i− 1], . . . , c[i− n+ 1]]T

The goal is to learn W [i] adaptively such that c̃[i + 1] in Equation (3.1) results in the
minimum error e[i] = c̃[i+ 1] − c[i+ 1]. Therefore, from Equation (3.1) we have, e[i] =
c[i+ 1]−W [i]TC[i]. The unknown predictor coefficients are initialized to 0 and after each
prediction step, the coefficients are updated according to Equation (3.2)

W [i+ 1] = W [i] + µ · e[i] · C[i], (3.2)

where µ is the learning rate.
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In order to reduce the sensitivity of the learning process to the choice of the learning rate
µ, we used a normalized LMS (NLMS) predictor that is given by

W [i+ 1] = W [i] +
µ · e[i]
||C[i]||2

· C[i], (3.3)

with µ being between 0 and 2.

For an accurate modeling of the system and prediction of the workload, the coefficients
W [i] should converge after a sufficient number of iterations. However, this convergence is
not guaranteed.

3.5.1 LMS weight convergence

The LMS Linear Predictor models the system accurately if the coefficients W [i] converge
to the statistical mean after a sufficient number of iterations. In the following we derive
a bound which should not be violated repeatedly if convergence is desired.

According to Equation (3.1) and (3.3) the individual weights get updated by

wk[i+ 1] = wk[i] +
µ · e[i]
||C[i]||2

· c[i− k].

The above can be reshaped as follows,

wk[i+ 1] = wk[i] + (α− 1)wk[i] = αwk[i].

α is a scalar given by,

wk[i](α− 1) =
µ · e[i]
||C[i]||2

· c[i− k]

⇒ α = 1 +
µ · c[i− k]

||C[i]||2
· e[i]
wk[i]

Clearly, for stable convergence of weights, we need |α| ≤ 1 which further implies

−2 ≤ µ·c[i−k]
||C[i]||2 ·

e[i]
wk[i]
≤ 0

⇒ −2||C[i]||2
µ·c[i−k]

≤ e[i]
wk[i]
≤ 0

⇒ |e[i]| ≤ 2||C[i]||2
µ·c[i−k]

· |wk[i]| .
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It is evident that there is an upper bound on the prediction error |e[i]|, given by

2||C[i]||2

µ · c[i− k]
· |wk[i]| . (3.4)

If e[i] repeatedly goes above this bound, the LMS weights might not converge. Not con-
verging and therefore continuously growing weights will result in an unstable predictor
and thus high prediction error. Convergence, on the other hand, implies accurate approx-
imation of the system using a LMS linear predictor.

Table 3.4: Percentage of frames for which at least one of the weights did not satisfy the
convergence boundary

Quake II DirectX
Game play Percentage Game play Percentage

Explore-1 0.06 NFS-1 64.08
Explore-2 0.04 NFS-2 0.02
Level-2 13.12 Crysis-1 87.29

Massive-1 0.03 Crysis-2 77.54
Shooting-1 0.05 WIC-1 44.39
Shooting-2 0.06 WIC-2 0.01

We have evaluated this equation for all game plays of both, the soft- and hardware render-
ing based setup. The results are presented in Table 3.4. As can be seen, for the Quake II
game plays the bound is only seldom violated whereas for nearly all DirectX game plays
violations to a large extend have been observed. From this we conclude that the LMS
linear predictor models the Quake II game play’s workload behavior correctly, but is not
a suitable choice for the highly dynamic hardware rendering based workloads.

3.5.2 Performance evaluation

Software-based rendering: The performance of LMS linear prediction is determined
by two parameters, the prediction order n and the learning rate µ. The order n of the
predictor indicates the number of workload values of the previous frames being utilized
to model its output (see Equation (3.1)). If the order of the predictor is too low, e.g.
n = 1, then its coefficients will not be able to accurately model the output and will not
converge. This in turn results in a significant reduction of the predictor’s performance
(see Figure 3.10). However, an unnecessarily high order, i.e., n ≥ 11, does not improve
the performance any further. We experimentally found that an order of 10 guarantees a
good performance for all Quake II game plays.
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Figure 3.10: Impact of the order n and learning rate µ on the percentage of missed dead-
lines using LMS linear predictor for the game play Massive-1
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Figure 3.11: Convergence of LMS-weights W [i] with varying game dynamics (µ = 0.074,
n = 10)

Using this order, the boundaries given by Equation (3.4) were seldom violated (at maxi-
mum by 13.12% for Level-2) thereby indicating a convergence of the weights. Figure 3.11
depicts the variations of the weights over a sequence of frames. It is clear that the weights
converge after 6000 frames. As indicated in the figure, we initiated switches between
Quake II game plays during the simulation to verify that convergence is preserved un-
der changing system dynamics. Therefore, Quake II system dynamics can be accurately
approximated by a LMS linear predictor.
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Figure 3.12: Comparison of resulting error using different learning rates µ for the Quake II
gameplay Level-2
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Figure 3.13: Performance evaluation of game-play-optimized LMS learning rates µ (with
software rendering setup)

The second parameter that affects the quality of prediction is the learning rate µ. As seen
in Figures 3.10 and 3.12, a very small learning rate µ results in a high prediction error as
the learning process is too slow for appropriate adaptation of the weights. On the other
hand, a high learning rate results in overdrive effects, i.e., the weights also learn noise.
This especially affects dynamic scenes for which the resulting processor frequency varies
abruptly.
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Figure 3.14: LMS-weights W [i] over time for game play Crysis-1 (µ = 0.074, n = 10)

To evaluate the performance of LMS, we determined the µ that resulted in the optimal
performance for each game play (see Figure 3.13). Compared to the PID-based approach,
the percentage of frames missing their deadlines is slightly increased if the LMS predictor
was used (at maximum by 1.8% for game play Massive-1). In order to evaluate the
robustness of LMS, we then used these game-specific µ’s for the prediction of the other
game plays. Compared to the PID-based predictor, the robustness of LMS is significantly
better, as (i) the maximum deviation from the optimal performance was observed to be
3.99%, whereas for the PID-based approach a deviation of 7.3% was observed, and more
importantly, (ii) for no combination of game plays the predictor became unstable. Based
on these results we conclude that the LMS predictor is an improved choice for modeling
Quake II workloads.

Hardware-based rendering: For Quake II workloads it was possible to observe con-
vergence of the LMS weights. However, evaluating Equation (3.4) for hardware-rendering
based workloads revealed that for nearly all game plays a significant percentage of weights
did not satisfy this condition. Figure 3.14 shows how the weights evolved over time for
the game play Crysis-1. Clearly, convergence of the weights cannot be observed in this
case, though the search space of the learning rate and the predictor’s order has been
exhaustively evaluated.

As convergence is required for an accurate and stable workload prediction, the LMS
Linear predictor is not the correct choice for highly varying workloads as in the case of
hardware-based rendering. Using the predictor would lead to instability and ultimately
our DVFS algorithm would only select the highest and lowest processing frequencies (see
Section 3.4.1). To overcome this problem we now introduce a generalization of the LMS
linear predictor, the autoregressive moving average model.

54



3.6 Autoregressive model-based prediction

3.6 Autoregressive model-based prediction

In literature, an autoregressive moving average (ARMA) model is a generalization of
the LMS linear predictor given by Equation (3.1). Note that another generalization of
LMS Linear Predictor could have been to use a non-linear model or a linear model with
non-linear functions of past workloads as predictors. However, fitting such models is
complicated and time consuming and in the following we will show that already the much
simpler ARMA model and even a sub-class named AR models suffices to accurately and
efficiently predict game workloads.

The ARMA(n, m) model is given by the following equation:

c[i+ 1] =
∑n−1

k=0 wk c[i− k]

+
∑m−1

j=0 vjε[i− j]

+ ε[i+ 1],

where ε[i] are the white noise error terms and ε[i + 1] is the error in the linear ARMA
representation of the current frame’s workload c[i+1]. We can compute a prediction based
on the workloads c[i], the previous prediction errors ε[i] and the model parameters: The
autoregressive coefficients wk, the autoregressive order n, the moving average coefficients
vj and the moving average order m.

An autoregressive (AR) process is a special case of an ARMA process where the model does
not account for past pulses i.e., all vj’s are equal to zero. AR processes are sometimes
preferable as they are easier to interpret. Also, using AR models is not as restrictive
(compared to using ARMA models) as it might seem, as a large class of ARMA models
can be expressed as infinite order AR models, which are known as invertible ARMA
models [15].

The ARMA model is appropriate when the system under consideration can be thought of
as a stationary time series process whose output depends linearly on past values, as well
as on independent inputs introduced to the system.

3.6.1 Stationarity tests

There is no test that allows directly testing data for stationarity. A common approach is
to test for the existing types of non-stationarity using the tests described in the following.

The Dickey-Fuller test [33] is well known for testing time series data represented by an
autoregressive model. The test checks for the existence of unit roots, a type of linear non-
stationarity. Towards this the test assumes the process to be AR(1), and checks whether
there is an unit root, which for an AR(1) process equivalent of being non-stationary. This
is the simplest test of non-stationarity, but is very limited in nature because of the AR(1)
assumption.
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The Augmented Dickey-Fuller test [33] is a generalization of Dickey-Fuller as it ac-
commodates ARMA(p,q) processes of unknown orders. The differences data ∆c[i] of the
time series is decomposed by fitting the parameters (using ordinary least squares) of the
following equation:

∆c[i] = µ+ k · i+ βc[i− 1]

+ α1∆c[i− 1] + α2∆c[i− 2] + . . .

+ αp∆c[i− p] + ε[i]

where ∆c[i] = c[i] − c[i − 1]. The parameters are estimated by performing a linear
regression. Under the null hypothesis H0 that there is an unit root, i.e., the model is
non-stationary, all parameters except for µ, i.e., k, β, α1, α2, . . . , αp, will be zero. In case
the process is not linear non-stationary one or more of the other parameters are non-zero.
Said and Dickey proved in [127] that the same test works not only when c[i]s have AR
models, but also for ARMA models. We have tested our data as suggested by Said and
Dickey for a large value of P to ensure that the data are actually stationary.

In the KPSS test [82] it is assumed that time series data c[1], c[2], . . . , c[T ] can be
decomposed as the sum of a deterministic linear trend, a random walk, and a stationary
error:

c[i] = k · i+ r[i] + ε[i],

where k is a constant, r[i] is a possible random walk (non-stationary) component

r[i] = r[i− 1] + u[i],

where u[i]s are white noise with constant variance σ2 and i = 1, 2, . . . , T . In case σ2 = 0
and k = 0 the process is stationary. The KPSS test therefore has the null hypothesis
σ2 = 0 and k = 0 which it tests against the alternative σ2 > 0 or k 6= 0. The test
considers residuals e[i] from a simple linear regression of c[i] against i, and rejects the

null hypothesis for large values of
∑T

t=1

(∑t
i=1 e[i]

)2
/σ̂2

ó , where σ̂2
ó is a suitable estimate

of variance of the stationary part εt.

This test happens to be robust against other non-stationary alternatives as well. The
alternative hypothesis of this test is a generalization of the null hypothesis Dickey-Fuller
and the augmented Dickey-Fuller tests.

All of the tests were applied on the twelve game workloads (both, software- and hardware-
rendering based). No test showed any evidence of non-stationary trend in the game
workload data. Hence, we conclude that the data are stationary and ARMA and AR
models can be applied.

In the case of the LMS linear predictor, the gains wk change over time as they are learned
online based on the learning rate µ and Equation (3.2). Under high workload variations,
such online systems might adapt to the data too quickly and therefore can be misled
(resulting in unstable behavior). In contrast, for ARMA and AR, the set of parameters
is fitted offline only once as described in the following, and does not change over time.
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Figure 3.15: Percentage of missed deadlines for different orders n of AR(n)

3.6.2 Fitting ARMA and AR models

Before the ARMA and AR models can be used to predict the game’s workload, suitable
model parameters (w0, . . . , wn−1, v0, . . . , vm−1) and model orders n and m have to be
determined that guarantee a good prediction performance.

Model parameters: The ARMA model parameters can be fitted using a maximum like-
lihood method that maximizes the joint probability function of the model given the data.
We chose to perform this maximization through a subspace method using an iterative
Gauss-Newton algorithm (using the system identification toolbox from MATLAB) [92].
For large data sets this approach is usually slower in implementation compared to the
steepest gradient method employed by the LMS filter. However, determining these pa-
rameters needs to be done only once and is done offline based on pre-recorded game
workloads. As we discuss later, once these parameters are determined, they remain con-
stant not only across game plays, but also across different games.

A common approach to tune parameters of AR models is the non-iterative, least-squares
method [99] which is as well used by the MATLAB System Identification Toolbox. All
results presented in this work are based on models which have been tuned using this
toolbox.

Model order: Using the methods described above, we trained the model parameters
for each DirectX-based game/game play individually with n, m ≤ 100. Figure 3.15
shows the gained results for an AR(n) model. We observed that an order greater than
10 for both, n and m only slightly improved the predictor’s performance. Hence, for
the sake of simplicity and to avoid an increased algorithm’s complexity, we restricted the
remainder to orders n,m ≤ 10. The best performance for n, m ≤ 10 was achieved with
an ARMA(10, 9) model. It could be observed that the performance of an AR(10) model
provides a very good fit which is close to the ARMA(10, 9) model, and their forecasts are
also close. Hence, for the sake of simplicity and in view of the previous discussion, we
restrict the remainder of our analysis in this work to AR processes of order 10.
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Figure 3.16: Performance evaluation of game-play-optimized AR(10) model parameter
sets (with software rendering setup)

3.6.3 Evaluating AR models

Figures 3.16 and 3.17 depict the performance of the AR(10) models for the software and
hardware-rendering approaches respectively. For each game and game play, a model was
individually derived with the MATLAB toolbox. The model was then tested with the
corresponding game play and with other games and game plays. It can be seen that
the best performance achieved with AR(10) is approximately the same as when using an
individually tuned PID controller. In case of an AR model, however, no instability has
been observed as it can happen for the PID controller. As can be seen in Figure 3.17, only a
small performance difference (at maximum 0.68 %) can be noticed when the model, tuned
using the workload from one game or game play, is used for the workload prediction of a
different game or game play. In comparison, with the PID-based prediction a significant
difference of up to 12.6 % of more frames missing their deadline is observed (see Figure 3.9).
The performance difference is close to zero if the models are tuned on a per game basis,
i.e., using the individually tuned NFS-2( ) for NFS-2 itself results in 10.3 % of deadline
misses. Using NFS-1( )-based models for NFS-2 results in 10.5 %.

We conclude that game workloads are accurately and efficiently represented by the AR
models we have fitted and no further generalization (e.g., to non-linear models) as de-
scribed at the beginning of Section 3.6 is required. We conclude that AR models are
robust enough to workload variations such that the model can be fitted only based on one
sample game play. As shown, the resulting model will provide a good performance, even
if used for game plays which it has not been optimized for. A further generalization (e.g.,
to non-linear models) as described at the beginning of Section 3.6 is not required.
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Figure 3.17: Performance evaluation of game-play-optimized AR(10) model parameter
sets (with hardware rendering setup)

3.7 Power measurement results

So far, the evaluation of the predictors’ performances focused on the prediction quality
in terms of percentage of frames missing their deadline. The evaluation suggests the
suitability of autoregressive models for game workload prediction. In addition to game
quality i.e., minimizing the number of frame deadline misses, we are also concerned with
minimizing the average power consumption of the processor. In this section we present
the experimental setup and results of the overhead and power measurements based on the
proposed DVFS algorithms. We show that power savings of up to 35.8 % can be achieved
while maintaining a desired gaming quality.

3.7.1 Power management overhead

Any power management technique involves overhead, which in our case consists of the time
consumed for the application profiling, the computation time for the workload prediction
and the settling time of the voltage and frequency regulator. In case of the software-
rendering based setup, the source code has been directly instrumented and the profiling
overhead merely consists of reading the time stamp counter (TSC) values. This overhead
can be completely neglected when compared with a game frame’s workload. For the
hardware-rendering based setup, all DirectX calls are intercepted. On an average we
observed an overhead of 2.34 ms per frame. With a target frame rate of 40 fps this equals
to 9.3 % of the available time per frame. As we will show in the following, despite this
overhead we can achieve considerable power savings. The overhead is mostly caused by
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3 Game workload prediction

the interception itself as every Direct3D command first calls our proxy library before
being forwarded to the original Direct3D library. It could be reduced to negligible levels
if the DVFS algorithm was incorporated directly into the DirectX graphics API or if the
API offered an interface. As a consequence the power savings could be even higher.

Table 3.5: Overhead of the four different workload predictors

Predictor # of Cycles

PID 15.0
LMS(10) 323.9
AR(10) 26.3
ARMA(10,10) 52.8

The overhead for the different workload prediction techniques is given in Table 3.5. Com-
pared to the number of cycles that are at least available to the CPU per frame this
overhead can be completely neglected.

The overhead for scaling an Intel R© Core
TM

2 Duo E6850 processor is available from lit-
erature with 30.3µs at maximum [114]. If we assume frequency switches at 40 Hz this
scaling overhead makes up 0.12 % of a frames processing time.

3.7.2 Power savings with software rendering

In the software-based rendering setup (used in Quake II), the power measurements were
performed at the output of the laptop’s AC Adaptor. A Texas Instruments MSP430
microcontroller was employed to measure both, the DC voltage v(t) and the current i(t)
with the help of a shunt resistor and an amplifier. The average power consumption P was
then calculated according to

P =
1

l

t=l∑
t=0

v(t)i(t)T ,

where l is the duration of the game and 1/T corresponds to the sampling rate, which was
set to 1kHz. The microcontroller was operated via a serial connection from the laptop
and the power measurements were logged for every game play. The control interface
for operating the microcontroller was also integrated into the Quake II source code in a
way that the measurements through the controller could be started and stopped at the
beginning and the end of a game play. In this manner, we ensured synchronization between
the start and the stop of the game play and its corresponding power measurements.

This setup provides measurements corresponding to the power consumption of the entire
laptop. During the measurements the battery was removed from the laptop to avoid mea-
suring the power consumed for re-charging the battery as well. Additionally, we ensured
that the laptop settings remained constant during all measurements (i.e., we maintained
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Table 3.6: Average power consumption for available frequencies

Frequency [MHz] 800 1066 1333 1600 1866

Power [Watt] 21.1 23.3 25.8 29.1 33.0

Table 3.7: Power consumption of PID-based workload predictor and LMS linear predictor
for different game plays. The savings are given in percent compared to running
the CPU at highest frequency

Game Play Average Power
Consumption [W]

Savings using
AR [%]

P PID PLMS PAR

Explore-1 21.42 21.6 21.2 35.8
Explore-2 21.71 21.9 21.6 34.6
Shooting-1 23.1 23.6 23.0 30.4
Shooting-2 25.2 24.8 25.1 24.0
Massive-1 25.1 23.9 25.9 21.8

Level-2 23.7 23.2 23.7 28.3

the same settings for display brightness, switched off the wireless LAN and removed all
the devices connected to the laptop except the microcontroller used for measuring power
consumption).

Table 3.6 shows the laptop’s average power consumption for all available frequencies of
the processor. In our simulation, these recordings were used to approximate actual power
consumption. As we measured the system’s total power consumption, our measurements
included the power consumption of, for example, memory or front-side bus, which highly
depends on the load of the system [137]. Therefore, we acquired power measurements for
each utilized Quake II demo and all available frequencies together with the corresponding
workload profiles. A maximum variation of 2.4 % in average power consumption was
observed. We conclude from this data that 36 % of the total power (compared to maximum
power consumption of the laptop) may be saved at the maximum by running the system
at the lowest frequency at all times. This, however, will result in an unreasonably high
percentage of deadline misses, significantly reducing the game’s quality.

We incorporated all the proposed predictors into the Quake II source code. Table 3.7 gives
the measured average power consumption for each game play using the individually tuned
PID-based predictor (P PID), the LMS Linear Predictor (PLMS) with a µ of 0.074 and
individually tuned AR(10) models (PAR). The observed difference among the different
predictors in terms of average power consumptions is negligible. The last column shows
the achieved power savings of AR(10) compared to the power consumed if the laptop is
clocked at the highest frequency. It may be noted that between 24.0 % and 35.8 % of
power is saved depending on the characteristics of the game play.
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3 Game workload prediction

Note that as presented in Section 3.4.2 and depicted in Figure 3.7, a non-optimal choice
of PID gains affects the percentage of frames missing their deadline significantly more
than the average power consumption. The cross-validation for PID and AR(10)-based
predictors experimentally confirmed this behavior. Only small variations in respect to
the optimal average power consumption were observed: 2.53 % and 1.34 % for PID and
AR(10) respectively. For each game play, not only the power savings were similar, but
also the game quality which can be seen from Figures 3.8 and 3.16. However, as shown
in Section 3.6 it is sufficient to tune the AR model only once, whereas the PID gains
need to be tuned for each game play individually to avoid large performance drops. This
individual tuning is not practical in a real-life scenario.
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Figure 3.18: Frequency histogram of Need for Speed, Crysis and World in Conflict using
autoregressive models AR(10) and an oracle predictor (perfect prediction)
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3.7.3 Default Linux power management

Linux is equipped with a widely-used Ondemand Governor [110] for power management.
We ran the Quake II game plays with the Ondemand Governor (with default settings)
enabled and logged the current frequencies, workload profiles and average power con-
sumption. We observed that with the Ondemand Governor, it is possible to obtain
approximately 7 % power savings (for all game plays), whereas the AR-based Predic-
tor achieves power savings of up to 35.8 %. As Quake II is programmed as an endless
loop, the Ondemand Governor will always detect high system utilization. Consequently,
voltage/frequency scaling cannot be enabled during most of the time.

3.7.4 Power savings in case of DirectX-based games

For the DirectX-based approach we incorporated the proposed predictors into the proxy
DLL (see Section 3.3.2). As both, the PID-based Predictor and the LMS linear predictor
were not stable the measurement results are not shown here. Figure 3.18 gives the ratio
at which the available frequencies of the processor were used for the three games Need for
Speed, Crysis and World in Conflict. The results are given for the autoregressive model
and an oracle predictor. The oracle predictor is a purely theoretical construct and is
assumed to know the full future (see Chapter 5). Hence, it gives the maximum possible
power savings with the smallest possible number of frames missing their deadlines. The
AR(10) model in comparison selects the frequencies with almost the same distribution.
This establishes that these policies result in a close to optimal energy consumption of the
processor.

3.8 Summary

With the aim of DVFS-based power management, in this work we have proposed workload
prediction schemes for game applications whose parameters need to be tuned once during
an offline phase and may then be used for both – game plays, as well as new games that
are not a priori known. Hence, our focus has more been on the robustness of the prediction
scheme, rather than its optimality. In other words, occasionally, a predictor that is hand-
tuned for a particular game play might outperform our proposed offline-tuned predictor.
However, the overall prediction quality of the offline-tuned predictor was comparable to
a hand-tuned predictor.

Towards this, we studied several games – Quake II, whose source code is available, as
well as more modern closed-source games like Crysis, Need for Speed (NFS) and World
in Conflict (WIC). We showed that concerns about stability and tedious hand-tuning of
parameters make known PID-based workload prediction schemes unsuitable for any of
the considered games. We next studied a LMS linear predictor, which worked well for
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Quake II with software rendering, but not for Crysis, NFS or WIC that rely on hardware-
rendering support. For these games, we showed that the autoregressive moving average
(ARMA) model and its simplified version, the AR model, address the concerns that arise
in a real-life power management setup, viz., that not all game plays and game applications
are a priori known. Our results are consistent across all evaluated games and particularly
attractive because parameters of an AR-model, tuned using a set of game plays, provide
good gaming quality as well as power savings when applied not only to different game
plays, but also different game applications. The similarity between results obtained using
AR and ARMA also show that more complex non-linear models or linear models with
non-linear functions of past workloads are not required.

Further, we have exploited the software (in particular the graphics processing) architec-
tures of modern games by intercepting API calls made by the game application to the
graphics library. These were used to estimate the execution times of game frames, which
were then used for workload prediction. This enabled us to apply our power management
scheme to a variety of modern closed-source games, whereas all previously known tech-
niques required modifications of the game’s source code which is not available for most
modern games. The applicability of our scheme to closed-source games ensures its practi-
cal relevance. Further, our techniques differ from workload prediction and DVFS schemes
known for video processing in two major ways. First, we showed that PID controllers
that were successfully used for video applications, are not practical for game applications,
which require different workload prediction schemes, such as the ones proposed in this
chapter. Second, we exploited the graphics processing architectures of games (through
API call interception), that do not arise in video processing. It is possible to combine
our results with frame-workload prediction schemes that analyze the contents/structure
of game frames as proposed in [51], where a PID-based scheme was combined with frame
structure analysis. However, workload prediction based on analyzing the contents of a
frame is mostly relevant for software-based rendering schemes. This is because only the
rendering (and not AI or game physics) workload may be estimated based on the contents
of a frame. Hence, such schemes will not be relevant for more modern games that rely on
hardware support for rendering.

For popular mobile Android games we have observed that a significant amount of time of
the total gaming time is not spent in the actual gaming phase, but for example in level
selection or highscore menus. In the next chapter, we first show how game power manage-
ment can be implemented on Android-based platforms to then describe a mechanism for
the detection of different gane states. Based on this game state detection we develop game
state-specific power management strategies that allow a significant reduction in terms of
total power consumption.
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State-specific power management for
closed-source games

In the previous chapter, we have described a power manager that predicts the future
workload of games and scales the processors voltage and frequency with the goal to re-
duce the power consumption while maintaining a constant target frame rate. While in
the previous chapter we used DLL injection to apply the developed power management
techniques to closed-source Windows games, this chapter details, how this approach can
be extended to Android-based mobile platforms and popular closed-source mobile games
like Cut the Rope and Temple Run.

Games have different states like the loading, main menu, level selection menu, movie and
gaming state. Particularly for mobile games, we observed that a substantial amount of
time is not spent in the actual gaming state, e.g., 50.8 % of the time for a typical five
minute game play of Cut the Rope were spent in other states. This results in a substantial
amount of energy that is consumed not only during the highly interactive gaming state,
but as well during the loading, movie and menu state. Each of these states has different
requirements and shows different workload characteristics, e.g., the loading state is likely
to be memory bound and the menu state, due to lower interaction, is likely to require
only a lower frame rate compared to the gaming state to satisfy the user. In this chapter
we introduce a technique that allows detecting the current state of a game. Using this
knowledge, we employ state-specific power management that exploits game state-specific
workload characteristics.
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Figure 4.1: System architecture overview

The contributions of the work presented in this chapter are as follows:

• The experimental setup of this chapter is based on the Samsung Galaxy Nexus
smartphone as for this phone it was possible to change the Android OS to our
needs. The phone has been physically modified to allow detailed profiling and
accurate CPU power measurements. This, for the first time, allowed to accurately
analyze the CPU power consumption for highly interactive game applications on
a frame-by-frame basis. The results are presented for three of the most popular
Android games, namely Jetpack Joyride, Cut the Rope and Temple Run.

• While in the previous chapter, DLL injection was used to intercept the communica-
tion of the game with the GPU on Windows-based platforms, here we describe the
interception of graphics calls in more detail and explain how this approach can be
implemented on Android-based platforms by intercepting graphics calls to Android’s
graphics libraries, namely EGL [78] and OpenGL ES [79]. Based on this setup, we
developed the generic game governor, following the principle described in Chap-
ter 3. It receives the frame timing information (see Figure 4.1) and predicts the
game’s future workload using an autoregressive model-based predictor (see Chap-
ter 3). This governor is not state-specific and maintains the same constant frame
rate for all states and for any game. We show that substantial power savings of up
to 32.4 % are possible compared to the default Android interactive governor.

• We propose a technique that allows to accurately detect the current state of a game
such as the loading, menu, gaming and movie state. The developed technique is
widely applicable as it does not require to modify the game’s source code. Using
this detection, we for the first time present a detailed analysis of CPU power con-
sumption during different states of popular Android games. We show that, contrary
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to expectations, a significant amount of time and energy is spent in states other than
the actual gaming state. This motivates a game state-specific power management
strategy.

• To reduce the power consumption of individual states, we propose a state-specific
power management that, amongst others, exploits memory bound phases and main-
tains state-specific target frame rates. We extended the generic game governor
with the game state detection technique and for example reduce the target frame
rate during the menu state or select a constant processing frequency during memory-
bound loading phases. Using this game state specific governor, we achieved
power savings of up to 26.9 % compared to the generic game governor and 43.2 %
compared to the interactive governor.

• Both, the generic game and the game state specific governor significantly re-
duce the smartphone’s power consumption, but at the same time increase the per-
centage of frames missing the deadline. To clarify if the observed increases can
be actually noticed by the user, we have performed a user study. The results of
the study indicate that there is no perceivable difference between Android’s default
governor and the power managers suggested by us.

Related work: Only few work leverages detection of game internal states for power
management. As described in Chapter 2, the work presented in [6,7,149] uses information
about the player’s position and velocity to switch the power state of a wireless network
interface card (WNIC). All of the work is based on Quake III, due to its source code being
freely available. While in [6, 149] the game’s source code has directly been modified, [7]
proposes an API that could be used in future by game developers to forward relevant
information to the WNIC power manager. The work of Pathania et al. [115] detects
different game states of the game Asphalt 7 based on CPU and GPU utilization transitions:
During the loading state of the game, it has been observed that the GPU utilization is
significantly lower compared to the gaming state, while for the CPU the opposite was true.
For the games used in this work, we could as well observe significant CPU utilization
changes between loading and gaming state. However, such changes were not observed
during the menu and gaming state. In this chapter, we will present a texture-based
algorithm that allows to differ on a fine-grained basis between gaming, menu, loading and
movie state and hence allows applying a finer-grained state-specific power management.
Pathania et al. further suggest to raise the CPU frequency to the maximum during loading
states to shorten the loading time to the minimum possible. In Section 4.5 we will show
that, for the games used in this study, such increase of the processor’s frequency should
be avoided since it shortens the loading time only to a small extent while exponentially
increasing the power consumption.

Organization of the chapter: Section 4.1 presents the Android-based system archi-
tecture, explains details about Android’s graphics architecture and our Android-specific
modifications. Section 4.2 briefly recaps the generic game power manager and the au-
toregressive model-based prediction. Section 4.3 describes how a detailed profiling of the
game’s communication with the OS allows identifying the game states. This is followed by
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a description of the experimental setup in Section 4.4. Here, we present details about the
required modifications to the Samsung Galaxy Nexus, the experimental setup on which
our measurement results are based on, the selection of games used for this study and
the experimental methodology. In Section 4.5, we present the power measurement results
obtained using both, the generic and the game state specific governor. We confirm,
based on a user study, that there is no noticeable difference between the power manager
proposed by us and Android’s default governor. In Section 4.6, we propose an API that
might be used by the game developer in future for state-specific game power management.
Section 4.7 concludes this chapter and gives an outlook for future work.

4.1 Proposed system architecture

Figure 4.2 gives an overview of the proposed system architecture towards game state-
specific power management. We illustrate the architecture using OpenGL ES and the
Android operating system. The technique can as well be applied to systems that use the
DirectX (see Chapter 3) or OpenGL API to render game content, as the basic mechanisms,
we leverage for our power management, exist in these APIs as well.

4.1.1 Android graphics architecture

Typically, Android games are written in Java and executed in their own Dalvik Virtual
Machine. Besides computations like AI, physics and game logic, a game needs to render
the game scene onto the screen. Dalvik provides the Java Native Interface (JNI) to allow
games making calls to native C/C++ libraries. The game uses this interface to call native
OpenGL ES and EGL functions. Calls are then forwarded to the GPU driver and finally
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to the GPU where the content is rendered to the so-called back buffer. Similar to DirectX,
the game calls a particular function, (i.e., eglSwapBuffers()in the case of OpenGL ES),
once the game finished all computations for the current frame and issued all the required
render calls. This will cause the GPU to swap between the front and back buffer.

The Windows-based presented in Chapter 3 was configured such that a continuous pro-
cessing of frames was performed by the game. In Android the processing of frames is syn-
chronized to the display refresh. A typical timing diagram of this is shown in Figure 4.3.
The processing of Frame 1 starts with the vertical synchronization signal (VSYNC) signal
from the display. As described, at some point OpenGL calls are issued by the game view
and the GPU starts rendering. After eglSwapBuffers() has been issued, the CPU waits
for the next VSYNC signal. Once the monitor reads the buffer content and signaled this
to the CPU, the processing of Frame 2 starts. The total processing time of a frame is
directly influenced by the processing speed of the CPU and GPU. In some cases, the pro-
cessing time might be longer than the display’s refresh interval like shown in Figure 4.3
for Frame 2. As a result, the previous frame is shown twice (in this case Frame 1).

Due to this display synchronization, an upper bound of the frame rate is given by the
display’s refresh rate which is 58 Hz for most mobile devices. All results shown in this
chapter are based on a target frame rate of 58 frames per second except otherwise specified.
We show that even for this frame rate considerable power savings are possible. Note, that
for many games a lower frame rate might already be sufficient and hence even more power
could be saved. In future, each application could specify its desired target frame rate itself
using the later proposed interface.

It may be noted that in our work we assume that the game does not perform any frame
rate control itself, but instead calls eglSwapBuffers() as often as possible in order to
maximize the frame rate, because a higher frame rate is directly associated with a better
game experience for most games. This behavior has been observed for all the games used
for evaluating our technique. In future, a game induced throttling could be detected by
additionally taking the game’s idle time into account by, for example, detecting sleep-
related calls.
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4.1.2 Power management-specific modifications

To predict the future workload and apply power management schemes as described in
Chapter 3, the frame timing needs to be measured. In Android, we leveraged the above
described OpenGL ES interface and instrumented the eglSwapBuffers() function di-
rectly in the source code of the EGL library. Each time this function is called, we recorded
an accurate time stamp which then was used as input to our workload prediction. Scaling
the processor’s frequency is only allowed in kernel mode. Towards this, we have modified
the Linux cpufreq module and extended it with our own Android power management
governor. At the load time, the modified cpufreq kernel module populates a character
device to the system and creates a device node to allow user to kernel space communica-
tion. The first time a game issues an eglSwapBuffers() call, this device node is opened.
All of the following calls use the opened node to send the recorded time stamps to the
governor via ioctl syscalls. The governor receives the time stamps and performs the
workload prediction like described in Section 4.2 and shown in Figure 4.2. Based on the
prediction result and the desired target frame rate, the required frequency is computed.
The frequency is quantized to one of the available CPU frequencies and the scaling is
initiated. The desired target frame rate can be configured using the device node to the
cpufreq module.

Our prediction algorithm is optimized for game applications. As not only game applica-
tions run on Android, we detect the current application’s type. This is done by comparing
the entry in /proc/pid/status with a provided list of known games. If the current ap-
plication is found in the list, a game identification number is sent to the kernel module.
Otherwise, the governor is notified that currently not a game has the focus. Depending on
the application’s type the governor will either perform game optimized power management
or behave as interactive governor.

For the second part of this work we have instrumented and redirected specific calls of the
OpenGL library. The information, gathered from these calls, was used to determine the
current game state (see Section 4.3). State change events and state-specific details like
the target frame rate were forwarded using the above described device node interface to
the cpufreq module.

In addition to the interfaces required for the online phase of the power management,
we have implemented several stages to log required game timing data and OpenGL call
parameters. This allowed us, amongst others, to analyze timings and tune the prediction
mechanisms offline using MATLAB as described in the following chapter.

4.2 Generic game power management

As described in Chapter 3, the workload of a game’s next frame is predicted based on the
workload of previous frames. We have carried out experiments using several closed-source
Android games and confirmed the findings of Chapter 3: An AR model of order n = 10
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Table 4.1: AR weights scaled by a factor of 1000

Game w0 w1 w2 w3 w4 w5 w6 w7 w8 w9

Cut the Rope 109 142 90 80 82 81 92 67 136 102
Jetpack Joyride 160 112 125 129 107 93 63 79 70 24
Temple Run 159 185 121 106 99 89 72 81 49 18

which is tuned offline and once per game was found to provide an accurate workload
prediction. Table 4.1 gives the resulting AR weights for the three games used in this
chapter. Despite significant differences between optimal weights per game, the AR model-
based predictor was observed to be robust accross different games. For our experiments,
we still used weights that have been tuned per game to guarentee the best prediction
performance. If the game and hence optimal weights are not known, one possible approach
could be to tune the weights of the autoregressive model based on timing information that
is recorded during an initialization run. During this run, Android’s default interactive
governor or default weights could be used. Once the optimal weights are derived based
on the recordings, Android could switch to the generic game governor.

4.3 Game state-specific power management

The generic game governor presented in the previous section targets to maintain a con-
stant frame rate during the whole duration of the game. All games consist of typical
states, like the gaming state, the state during which the user navigates through the game
menu or the loading state of the game. Each of those states might benefit from state-
specific power management strategies. For example, the memory bound phase during
the loading state can be exploited by reducing the CPU’s frequency without impacting
the performance. Due to differences in terms of the user interaction rate, in other states
a reduced frame rate might already be sufficient to satisfy the user. In the following,
we propose four different power management schemes, describe the observed game states
and how they are mapped to the corresponding schemes. Note that the proposed schemes
are only one possibility of power management for the corresponding states and different
schemes could as well be applied.

4.3.1 Definition of game states and power management schemes

Figure 4.4 shows an example of a possible game state transition diagram. Not all games
considered in this work have all of the states or have the same transition possibilities. For
example, the games Jetpack Joyride and Cut the Rope have no movie scene. Further, we
define four basic power management schemes: Loading, No Interaction, Low Interaction
and High Interaction. Each state of a game is mapped to one of these power management
schemes as described in the following.
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Figure 4.4: Example of possible state transitions and the mapping of the states to their
corresponding power management strategies

Loading: During a game typically two loading states occur, the initial loading of the
game and the loading of the game level. During the initial loading state the application
pre-loads textures, audio and other objects relevant for the main menu scene. Typically,
there is only a very light-weight graphics representation in order to finish this state as
quickly as possible. After the player has selected a level, the level loading state might be
entered during which level-specific data is loaded. Here, often a more complex graphics
representation is used to shorten the user’s impression of the loading times. Both, the
initial and the level loading state are likely to be memory bound which means the CPU
is waiting to a large extend for data. As will be shown in the experimental section, it is
therefore possible to lower the processor’s frequency without prolonging the loading time.

No Interaction: Many games have states during which movies are replayed, e.g., Tem-
ple Run shows an animation after the initial loading state. This movie state does not
allow any user interaction (except from skipping the movie) and is therefore mapped to
the No Interaction scheme. We reduced the target frame rate from 58 to 20 frames per sec-
ond which still gave the impression of a smooth video playback in the case of Temple Run.

Low Interaction: Once the required objects have been loaded, the game enters the main
menu state. This state allows the user to walk through the menu to, e.g., change options,
show the game help or the credits. Further, this state typically includes a view that al-
lows the level selection. We expect this state’s processing requirements to be rather low
as mostly only graphics animations of intermediate complexity are used and no complex
AI or physics computations are required. The main menu state is mapped to the Low
Interaction scheme as no fast interaction is required like during the gaming state. Similar
to the main menu, the in-game menu has low requirements in terms of responsiveness and
can be mapped to the Low Interaction scheme. However, the in-game menu might be ren-
dered on top of the current scene (like in the case of Cut the Rope). Therefore, the scene
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Figure 4.5: Number of OpenGL calls made per frame and the corresponding game states

complexity might be similar to the gaming state. As the degree of interaction is lower
during a menu, it is possible to reduce the target frame rate without impacting the gam-
ing quality. We have chosen a target frame rate of 30 frames per second, as in this case,
for none of the used games a difference compared to 58 frames per second could be noticed.

High Interaction: Once a level is selected and the game is loaded, the game enters the
gaming state. This state typically has the most critical requirements in terms of CPU and
GPU processing time and responsiveness. It is therefore mapped to the High Interaction
scheme. During this state we set the target frame rate to the maximum possible 58 frames
per second to guarantee a good gaming experience.

Before the presented power management schemes can be applied, a mechanism is required
to detect the game states during the run-time of the game.

4.3.2 Detection of game states

As the source code of the games used in this study is not available, we developed a detec-
tion mechanism which is based on the communication of the game with its environment.
First experiments were based on the number of OpenGL calls made per frame. Clearly,
rendering a frame of a complex game scene is likely to require more calls than a simple
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Figure 4.6: Steps required for loading and using a texture including the data flow

loading or main menu screen. First experiments were based on the assumption that com-
plex in-game frames are likely to require a higher number of OpenGL calls than simple
loading or main menu frames. In this case, the number of OpenGL calls per frame could
be used to differentiate between the game states. We have modified the OpenGL library
to count the total number of OpenGL calls made during processing a frame. Figure 4.5
depicts a resulting graph visualizing the number of OpenGL calls on a frame basis and the
corresponding game states. For the games Cut the Rope and Jetpack Joyride a correla-
tion between the number of OpenGL calls and the current game state can be noticed. As
expected, during the loading phase only a low number of calls can be observed whereas
the number of calls made during the gaming phase is significantly higher for Cut the
Rope. However, in the case of Cut the Rope the in-game menu state cannot be told apart
from the gaming state as there is no significant difference in the number of OpenGL calls
made. For the game Temple Run, it is only possible to detect the loading state with its
very large number of OpenGL calls made during the first three frames. A more detailed
analysis revealed that a large number of texture loading calls are issued while only a very
simple texture is shown as visualization of the loading state. For the other states no clear
correlation could be noticed. A more detailed analysis of state-specific OpenGL or system
call patterns might allow to distinguish between game states. However, for this approach
it is required to perform a feature extraction and pattern matching which is extremely
time consuming and has to be repeated for each game individually as it highly depends
on how the game is programmed. Instead of this approach, we in the following describe a
texture-based state detection that is easy to tune, extremely accurate and highly portable.

Each game uses particular textures for its states, like textures of menu buttons in the
menu state or a sand watch texture during the loading state. If one can therefore identify
which textures have been used during the frame, the game’s state can be detected. In
order to draw an object in OpenGL using a particular texture, first a texture object has
to be created (see Figure 4.6). This is done by calling glGenTextures which returns a
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unique id identifying the texture object. Next, the generated texture object is bound using
glBind- Texture(id). This informs the driver that the next calls relate to that particular
object. Before the texture can be used for drawing, the object has to be filled with content.
For this, e.g., glTexImage2D is called, handing over the format in which the texture resides
in memory (size, pixel format, etc.) and a pointer to the texture’s location in memory.
The content from this location is then copied into the object’s texture buffer and the
texture is ready to be used. Typically, the described initialization of texture objects is
done during the loading state of a game. If the game later wants to draw objects using the
texture it simply binds the texture object by calling glBindTexture(id) before setting
the texture drawing attributes and issuing OpenGL drawing calls like glDrawElements.

The only parameters handed over to the OpenGL driver related to the texture itself are
the texture format and its address in the memory. Both parameters, same as the loading
order and the id of textures may vary from game run to game run and therefore cannot
be used for a distinct identification of the texture. The only constant in this process
of texture loading and usage is the image data of the texture itself. To avoid storing
large amounts of data for a later comparison we computed an unique hash key according
to [128] for each texture getting loaded.

To identify which texture belongs to which state we need to assign states to the computed
hash keys. Towards this, we have modified the OpenGL library to store all textures to
the mobile phone’s flash memory if a particular flag was enabled. This allowed us to view
the textures offline and assign states to the corresponding texture hashes. The thereby
created <hash,state> map is stored to the mobile phone and loaded at load time of the
game. If now a texture gets loaded e.g., using glTexImage2D, the hash key is recomputed
over the data of the texture and looked up in the <hash,state> map. If the hash key is
found, an entry in a dynamic <id,state> map is created. When the game later binds a
texture using glBindTexture(id) we look up the corresponding state in the <id,state>

map using the id. Note that the <hash,state> map only consists of texture entries that
clearly identify states. All other textures can be ignored. Hence, the amount of textures
that need to be marked during the offline phase reduced to only a small number (in the
case of Cut the Rope, only 15 textures were required). The hash key has to be computed
for all texture loading calls (like glTexImage2D), but not every time a texture is used.
Using this method, an extremely robust state detection can be created for a game within
minutes.

Note that the above described method for detecting game states requires identifying
textures for each game and game state. With the large number of games available in the
different stores, this might be not possible for all games. In case the game is unknown,
the generic game governor described in Section 4.2 could be used. Another solution to
this problem might be an API which allows the game developer himself to provide the
game state information (see Section 4.6).

In the following, we present the experimental setup and methodology including the mea-
surement setup, the selection of games used for the study, details on texture identification
and the workload characteristics of the games.
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Figure 4.7: Schmatic of the measurement setup

4.4 Experimental setup

For all our experiments presented in this chapter we used the popular Samsung Galaxy
Nexus smartphone as for this phone it was possible to customize the Android operating
system. The phone hosts a Texas Instruments OMAP4460 [147], a dual core ARM Cortex-
A9 1.2 GHz mobile processor. The core of the OMAP4460 processor is the microprocessor
unit (MPU) subsystem. It consists of the two Cortex A9 cores, each with a dedicated
L1 instruction and data cache, a NEON and a VFPv3 (floating point) unit. The two
cores share a 1 MByte L2 cache, general purpose timers, watchdogs, and an interrupt
controller. The MPU clock domain can be configured to run at four different frequencies:
350 MHz, 700 MHz, 920 MHz and 1.2 GHz. The frequency of both cores is scaled equally.
The frequency of the memory subsystem is constant and independent of the MPU clock
domain (200 MHz for the L3 Cache, 100 MHz for the L4 Cache and 400 MHz for the
LP-DDR2).

The supply voltage of the MPU subsystem is provided by a Texas Instruments TPS62361
voltage regulator [144]. A low-pass filter is attached to this voltage regulator to suppress
noise generated by the switching regulator. To measure the supply current of the CPU we
inserted a shunt resistor after this low-pass filter (see Figure 4.7). The voltage dropping
at this shunt was amplified using an INA199 shunt monitor [146] and then sampled using
the 12bit analog digital converter of a MSP430 microcontroller [145]. The CPU’s supply
voltage at the output of the TPS62361 depends on the selected operating frequency of the
processor and hence needs to be measured, too. As the low-pass filter is very sensitive to
variations of the impedance, we first decoupled the filtered supply voltage using a voltage
follower before connecting it to our measurement unit. Both, the voltage drop at the
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Figure 4.8: Experimental setup consisting of the modified Galaxy Nexus (modification see
lower right), the amplification unit and the MSP430 measurement board

Table 4.2: Workload characteristics of the used games

Game Avg. Workload Deviation Utilization [%]

[ cycles
frame

] σ [ cycles
frame

] Min Max

Cut the Rope 5.87e+06 6.89e+03 13 96
Jetpack Joyride 6.67e+06 8.92e+03 12 57
Temple Run 1.07e+07 9.55e+03 24 91

shunt and the CPU supply voltage were sampled at a rate of 20 kHz. The measurement
unit was calibrated using a high resolution National Instruments measurement setup.

To allow reproducible measurements we ensured that the start and end of the measure-
ment phase were synchronized with the start and end of the game. For this purpose,
we removed the smartphone’s front facing camera and attached the MSP430 to the cor-
responding I2C bus using a bi-directional voltage level-translator. This bi-directional
communication between the phone and the measurement unit allowed us to perform syn-
chronized measurements and to read the power measurements back to the phone which
will be used in Section 4.5. Figure 4.8 illustrates the complete hardware setup.

Selection of games: For our experiments we used three of the most popular Android
games: ZeptoLab’s Cut the Rope which is a puzzle game, the highly interactive end-
less running game Temple Run from Imangi Studios and the side-scrolling game Jetpack
Joyride from Halfbrick Studios. The workload characteristics and the utilization of the
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CPU at 1.2 GHz are given in Table 4.2. Clearly, Temple Run with its advanced 3D graph-
ics imposes the highest workload on the CPU and shows the highest variation of the
workload in terms of cycles per frame. The large utilization range shows that all of the
games are amenable to DVFS.

Experimental methodology: When comparing the different power managers, it is of
great importance to guarantee the repeatability of the experiments. None of the used
games allowed to record and replay game plays as it is possible in Quake II. Moreover,
the content of Temple Run and Jetpack Joyride changes from game run to game run.
Hence, it was not possible to record and replay touch events using frameworks like Mon-
key Runner [9]. To still guarantee validity and significance of the experimental results,
we performed the experiment as follows: We have put the phone into airplane mode to
avoid distortions by pop-up advertisement and background synchronization services. For
each measurement, the games were played for 5 minutes by the same player. The patterns
of calling menus and selecting levels were kept constant if possible. For the game Cut
the Rope, always the same levels have been played, i.e., Season 1, Level 1 to 18. Each
experiment was repeated 5 times to guarantee that the results can be replicated and to
capture possible variations. All the experimental results reported in the remainder were
obtained following this scheme unless otherwise noted.

We have identified textures for all three games that allowed detecting the different game
states. Figure 4.9 shows examples of such textures together with the screenshots of the
corresponding states. A correct identification of the different states is of great importance
as a wrong identification can either lead to a decreased gaming quality (e.g., if a gaming
state is classified as a no interaction state and hence is only rendered with 20 frame per
second) or to an increased power consumption (e.g., if for a menu state 58 frames per
second instead of 30 are chosen as target frame rate). Since the games are all closed source
and do not provide insight into their current state, we used visual inspection to verify the
accuracy of the game state detection. For this purpose, the EGL library was modified to
store all game frames and identified states on the SD card. This was done for all three
games using game plays of 10 minutes each. A following visual inspecting allowed us to
verify that the frames were classified correctly. For all the experiments performed, we did
not observe any wrong classification of game states.

The game state detection allowed to perform a detailed workload analysis of the different
states. Memory and CPU boundedness are of great interest when applying DVFS. If a
game is highly memory bound, the CPU frequency can be reduced and hence power be
saved without impacting the performance. If a game is CPU bound, the performance
will be directly affected when the processing speed is reduced. A common way to deter-
mine the boundedness is to leverage the performance counters of the processor [25]. The
processor of the Samsung Galaxy Nexus, however, is configured such that the CPU per-
formance counters can not be read. To overcome this limitation, we have ran the games
at all available processing frequencies and measured the frame rate as well as the time
spent in the loading state. The results including the observed variations are presented in
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Loading Main Menu Sub Menu Gaming

Initial Loading Level Loading Main Menu Gaming

Figure 4.9: Screenshot of different states of the games Temple Run and Cut the Rope.
The red boxes mark regions that allow an unique state identification based on
the underlying texture

Figure 4.10. It can be seen that for all games the high interaction state becomes CPU
bound when reducing the frequency below 700 MHz. For all games, the low interaction
state has higher performance requirements compared to the high interaction state. The
loading time increases exponentially when decreasing the processing frequency. In the
case of Jetpack Joyride, it can be seen that increasing the frequency from 920 MHz to
1.2 GHz resulted in a reduction of the frame rate. This is due to the internal overheat
protection of the OMAP4460 which forced the processor during the game plays to scale
down to 350 MHz several times.

In the following we present the results based on the described setup and obtained with
both, the generic game and the game state specific governor.
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Figure 4.10: Loading times and frame rates for the available processing frequencies

4.5 Experimental results

We have modified Android according to Section 4.1 and implemented both governors
described in Section 4.2 and 4.3. Each DVFS power management scheme includes an
overhead in terms of required computations, instrumentation overhead and switching
overhead which will be presented first. By presenting a detailed quantitative evaluation of
the different overheads, we allow a direct comparison to other existing power management
techniques.

4.5.1 Overhead measurements

After each frame, the kernel is notified of the swap event by the game power manage-
ment library (see Figure 4.2). The overhead for this notification was measured to be
989.7 cycles per ioctl in average. This overhead is considered as negligible compared to
the computation time of a frame (see Table 4.2).
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Figure 4.11: Frequency scaling overhead in terms of time and energy measured for the TI
- OMAP4460

The prediction given by Equation (3.6) has been implemented using fixed point arithmetic
as there was no floating point unit (FPU) support in the kernel by the compiler used.
One prediction of the order n = 10 consumed in average 207.4 cycles which is considered
as completely negligible compared to the processing time of a frame.

Switching the voltage and frequency of a processor always involves costs in terms of
energy and time. Figure 4.11 gives the overhead in terms of time and energy it takes
to switch from the current processing frequency to a particular target frequency. This
overhead includes the whole pre-scaling notification process implemented in the Linux
kernel, the time consumed by the scaling of the voltage, the settle time of the PLL,
updating the jiffy counter, as well as the post-scaling notification. To measure these
time and energy overheads, the cpufreq Kernel driver has been instrumented to toggle
general-purpose I/O (GPIO) pins of the phone at entry and exit points of related functions.
The voltage at the shunt (see Section 5.2) and the logic states of the GPIO Pins were
sampled using a National Instruments PXI-6124 card and a sampling rate of 2 MS/s. The
frequency transitions were initiated using the userspace governor. The measurements
were repeated 10 times for each frequency step to avoid any imprecisions. As one can
tell from Figure 4.11, the average switching overhead highly depends on the current and
the target frequency. Switching directly to the lowest processing speed of 350 MHz is
most expensive with up to 893.9µs. With a target frame rate of 58 frames per second
resulting in a deadline of 17.24 ms this switching duration cannot be neglected. Hence,
the governor has been programmed in a way that it takes the overhead into account
when making the decision about the next frequency. Further, we have implemented a lazy
switching algorithm which delays the frequency switches to the lowest frequency by one
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Table 4.3: Overhead caused by the computation of hash keys over the texture data for all
occurring glTexImage2D calls

Game
Number of

textures
Data

[kbyte]
Time

[s]
Overhead

[%]

Jetpack Joyride 448 75601 0.45 5.93
Temple Run 45 13326 0.12 1.85
Cut the rope 94 84481 0.50 5.75

frame and switches only if the lowest frequency is requested again. A comparison between
the generic game governor with and without the lazy switching enabled is presented in
Section 4.5.3.

For the game state specific governor we have to additionally compute a hash key
for each texture being loaded. All of the used games make use of compressed and un-
compressed textures which are loaded using different OpenGL calls. We observed that
instrumenting only the OpenGL call that is responsible for loading uncompressed tex-
tures, i.e., glTexImage2D, is already sufficient for a robust state detection. For the used
games, nearly all glTexImage2D calls were made during the loading phase. Table 4.3
reports the number of calls made in total, the amount of data over which hashes had to
be computed, the computation time and the overhead in ratio to the loading time without
the hash computation. The total loading time of the game was prolonged by 5.93 % in
the worst case. Considering the achieved energy savings reported in the following this
overhead is considered as tolerable. Note that this overhead could be completely avoided
if Android provided an API allowing the game developer to directly inform the operating
system about state changes.

4.5.2 Critical speed

The described generic game and game state specific governors are allowed to choose
among all available processing frequencies of the CPU. Slowing down the CPU, however,
might prolong computations and the time other smartphone components, like the GPU
or the memory, are active. Hence, decreasing the CPU frequency and power consump-
tion, might lead to an increase of the smartphone’s overall average power consumption.
As described in Chapter 2, the critical speed is defined as the processing frequency that
minimizes the system’s overall energy consumption for a given task. We have measured
the mobile phone’s total average power consumption for all available CPU processing
frequencies to confirm that in our case the critical speed is actually the lowest available
processing frequency. Figure 4.12 clearly shows that the phone’s average power consump-
tion continuously decreases when lowering the CPU processing frequency. Hence, it can
be concluded that the critical speed for our setup and type of applications is the mini-
mum processing speed of the CPU, enabling the governors to choose among all available
processing frequencies.
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Figure 4.12: Average CPU and smartphone’s total power consumption for all available
processing frequencies

4.5.3 Generic game power management results
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Figure 4.13: Comparison of the average power consumption and percentage of frame
deadline misses between interactive and the generic game governor (im-
mediate and lazy switching)

We have tuned the weights of the auto-regressive model based predictor offline for each
game individually like described in Section 4.2. At the beginning of a game the generic

game governor is notified about the current game’s name and automatically chooses the
corresponding weights. Figure 4.13 depicts the average power measurement results includ-
ing the observed variations obtained for the three different games described in Section 4.4.
Clearly, it can be seen that if using the generic game governor in combination with im-
mediate switching the average power consumption can be reduced significantly compared
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Figure 4.14: Breakdown of state power consumption in ratio to total power consumption
using the interactive governor

to the interactive governor. In case of Cut the Rope a reduction by 32.4 % of the con-
sumed power was possible whereas the percentage of frames missing their deadline was
only increased by 1.45 %. Similar savings could be achieved for Jetpack Joyride (28.8 %).
In the case of Temple Run only 2.8 % could be saved. For Jetpack Joyride and Temple Run
the amount of frames that missed their deadline was 22.3 % and 12.5 % respectively. This
percentage, however, could be be drastically reduced to 10.7 % and 7.9 % respectively by
using the lazy switching algorithm while only increasing the average power consumption
by 1 % for Temple Run and 12.2 % for Jetpack Joyride. With the generic game governor
and lazy switching enabled no difference in terms of playing quality could be perceived
for any of the three games as will be shown in Section 4.5.5. Hence, all results presented
in the following use the lazy switching algorithm. In Section 4.5.5, we investigate if these
percentages of frame deadline misses have any impact on the by the player perceived
quality.

All used games have different states (like the loading and menu state) which might require
different power management strategies. In the following, we will first detail the state
specific power consumptions and show how the above presented power savings can be
even further increased using the game state specific governor.

4.5.4 State-specific power management

We have incorporated the state detection described in Section 4.3 into the OpenGL li-
brary, identified prominent textures for all games and states as described in Section 4.4
and thereby generated the <hash,state> map required for the detection algorithm. This,
in turn, allowed us a detailed analysis of the power consumption of each individual game
state. For each frame we requested the accumulated power consumption and the num-
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Table 4.4: Analysis of processor’s energy consumption during the initial loading phase of
Cut the Rope for fixed frequencies, the interactive and the generic governor

Frequency Time [s] Power [mW] Energy [mJ]

350 MHz 21.9 131.4 2877.7
700 MHz 11.5 355.6 4089.4
920 MHz 10.3 557.5 5742.3
1200 MHz 8.7 896.4 7798.7
interactive 8.8 781.0 6716.6
generic 9.6 668.7 6419.5
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Figure 4.15: Comparison of the generic and the game state specific governor for
each state individually

ber of samples taken from the MSP430 measurement unit. These samples were again
accumulated for each game state individually. Once the game was exited we computed
the average power consumption for each state. Figure 4.14 depicts a breakdown of the
average power consumption in ratio to the total average power consumption and includ-
ing the variations for the different states and games using the interactive governor. It
can be seen that the CPU consumes a considerable amount of power during the loading
state. For all games the low interaction phase consumed more power than the playing
phase itself. The largest variation between the individual experiments was observed for
the loading state. For the other states nearly no variation could be observed. In the
following, we are going to detail the individual power measurement results using the game

state specific governor.

Loading: As described in Section 4.3, during this state mostly data is loaded into the
main memory and objects are initialized. This phase is very likely to be memory bound
which means that the CPU spends a lot of time on waiting for the memory. As a con-
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sequence, the default interactive governor will detect a high system utilization and
therefore is likely to use high processing frequencies. The generic game governor will
detect a low frame rate and will as well use high frequencies to increase the frame rate to
the target frame rate set. In order to determine the optimal frequency to be used dur-
ing the loading state, we measured the loading time and the average power consumption
during the initial loading phase for all available processing frequencies. Table 4.4 gives
the energy consumed during the initial loading phase of Cut the Rope for the different
fixed processing frequencies, the interactive and the generic governor. The presented
measurement results include only the initial loading phase during which always the same
content is loaded. By this we avoid variations in terms of loading time and consumed
power due to varying content like level specific data. Hence, the power measurement
results in Table 4.4 differ from the results shown in Figure 4.10 and 4.14.

It can be seen that reducing the processing speed from 1200 MHz to 700 MHz increases the
loading time only by 2.8 seconds, but reduces the amount of consumed energy by 47.6 %.
If the frequency gets reduced further to 350 MHz, the loading state becomes CPU bound
and the loading time is significantly increased by 13.2 seconds compared to the shortest
possible loading time. The same behavior was observed for the other two games: For
Jetpack Joyride the energy consumed during the loading phase was reduced by 23.8 % (if
the processing speed is lowered from highest to 920 MHz) while the loading time was only
increased by 1.9 seconds. With an even more aggressive power manager it was possible to
reduce the energy consumption by 41.9 % (using 700 Mhz) if a loading time increase from
8.5 to 12.4 seconds is considered as tolerable. For Temple Run the loading energy could
be reduced by 30.8 % and 43.4 % while the loading time increased from 5.9 seconds to
6.9 and 9.5 seconds respectively. For all three games reducing the frequency to 350 MHz
resulted in the best energy savings, but increased the loading time by an intolerable
amount of time. Hence, for the three games using a processing constant frequency of
700 MHz was considered as optimal solution for the loading state and is therefore used by
our game state specific governor. Compared to the default interactive governor,
this resulted in power savings of 39.1 % while the loading time was only increased by
2.7 seconds in the case of Cut the Rope. A possible extension of the manual tuning could
be to take the processor’s performance counters into consideration on smartphones where
this is possible and thereby automatically determine the optimal frequency.

No Interaction: The game Temple Run has a non-interactive movie scene directly after
the initial loading state. As shown in Figure 4.15, a reduction of the target frame rate to
20 frames per second during this state led to power savings of 50.8 % in case of Temple Run
and compared to the generic game governor. The other two games used for this study
have no movie scenes and therefore no results can be presented.

Low Interaction: This includes all menu scenes where the user can interact, but typi-
cally in a slower fashion. Again, we reduced the target frame rate, this time to 30 frames
per second as this did not impact the perceived quality for any of the games. In case of
Temple Run the average power was reduced by 28.6 %, for Jetpack Joyride by 34.5 % and
for Cut the Rope by 22.3 %.
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Figure 4.16: Percentage of time spent in the different states by experienced players and
beginners

High Interaction: The target frame rate for this state was set to the monitor refresh
rate of 58 Hz to guarantee maximum gaming quality. As this is the same as used by
the generic governor during all states, the game state specific governor consumes the
same amount of power during this state. The results are therefore omitted in Figure 4.15.

It has been shown that the power consumption can be significantly reduced for each
state individually. The overall power savings, however, will as well depend on how much
time the player spends in the different game states. Time, again highly depends on the
playing skills and the type of game as shown in the following. To evaluate this impact,
we have performed the following experiment: For each game, we asked 4 beginners and
4 experienced players to play the game for 3 times 5 minutes. Beginners, in contrast
to experienced players, have never played the game before. The players were not aware
of the intention of our measurements. We recorded the time the players spent in the
different states. Figure 4.16 shows the average percentage of time the players spent in
the corresponding states during the 3 runs, including the variation. It can be seen that
especially for the game Cut the Rope, the level of experience highly influences the amount
of time spent in the menu and gaming states. As described in Section 4.4, Cut the Rope is
a puzzle game. After a puzzle is solved, the game enters a low interaction state where the
score is shown and the player has to press continue to start the next puzzle. Experienced
players were able to solve the puzzles quickly and hence spent a significant amount of time
in the menu state (37.2 % in average). Beginners, on the other hand, spent only 14.2 %
of the total time in the menu state and 76.2 % in the gaming state as it took them longer
to solve the puzzles. In contrast, for the endless running games Temple Run and Jetpack
Joyride, skilled players were able to run longer and hence spent less time in the menu
state. In the case of Temple Run, experienced players only spent 4.4 % of the total time
in the menu state whereas beginners spent in average 10.5 % in this state. The loading
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Figure 4.17: Comparison of the average power consumption for the different governors
and different type of players

time was identical for all players. The time that was spent in the no interaction state of
Temple Run differed between less than 1 second to 8.2 seconds since some players were
aware of the possibility to skip the movie scene.

The implications of these results on the possible power savings are visualized in Fig-
ure 4.17. The game state specific governor reduced the average power consumption
compared to Android’s interactive governor in average by 43.2 % for the game Cut the
Rope, by 31.9 % for Jetpack Joyride and by 13.8 % for Temple Run. For all games, the
average power consumption differed between beginners and experienced players only to a
small extent (up to 4 % for Temple Run). However, the variation intervals indicated in
Figure 4.17 clearly show that the amount of time a player spends in the different states will
have a large influence on the power consumption. For the game Cut the Rope, variations
of up to 25.3 % could be observed.

Besides the time spent in the different states, the way the player interacts with the game
might as well directly impact the power consumption. For example, an aggressive player
might cause more input events, in particular during the gaming state, than a relaxed
player. If such variations affect the power consumption depends completely on the way
the game processes, e.g., input events. When comparing the power consumption of all
8 players to each other (for each game individually), the maximum variation occurred
during the gaming state of Jetpack Joyride with 17.2 %. In comparison, the maximum
variation observed when comparing only the 3 different runs of each player was 6.5 % for
Jetpack Joyride. On the contrary, during the gaming state of Temple Run the maximum
variation among all 8 players was only 5.4 % while the variation between the runs of the
single players was 3.6 %.
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From the measurement results presented in this section we can conclude that significant
power savings can be obtained if the game state specific governor is used instead of
Android’s default interactive governor. However, as it has been shown in Figure 4.13,
using the game state specific governor results in a higher percentage of frame deadline
misses. We have performed a user study to answer the question if these frame deadline
misses impact the by the user perceived quality.

4.5.5 User study

Table 4.5: Results of the user study

Game interactive state specific t-value p-value
x σx SEx x σx SEx

Cut the Rope 4.92 0.28 0.08 4.92 0.28 0.08 0.00 1.00
Jetpack Joyride 4.85 0.38 0.10 4.62 0.87 0.24 0.87 0.37
Temple Run 4.85 0.38 0.10 4.69 0.48 0.13 0.91 0.40

In the work presented in [38,39], it has been assumed that users don’t notice any difference
between Android’s default governor and the developed approaches. We have performed
a user study to test if this assumption holds true. The study is based on three games,
namely Cut the Rope, Jetpack Joyride and Temple Run. We asked 13 users to play each
game for 3 minutes with two different settings: Once with Android’s default interactive
and once with the game state specific governor. After each game play the users were
asked to rate the game quality of the current setting on a range from 1 to 5. We randomly
selected the order in which governors were presented to the users to avoid any influences
on the results. In total each user played games for approximately 18 minutes (6 game
plays of 3 minutes each). Based on the user ratings, Table 4.5 was derived which shows
the average rating x, the standard deviation σx, the standard error SEx, the t-value and
the p-value for all three games.

It is hypothesized that

H0: Users do not notice any difference between the interactive and the
game state specific governor.

From Table 4.5 it can be seen that the interactive governor in average has been rated
better in case of the games Jetpack Joyride and Temple Run (see Table 4.5). We have
performed the one-tailed t-test to analyze if the difference between the two means is
statistically significant or not, i.e., if the difference can be contributed to a real difference
in terms of quality between the two governors or to natural variations due to the low
number of participants. From the small t-values of 0.0, 0.87 and 0.91 determined for the
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Figure 4.18: Game power management API

three games (Cut the Rope, Jetpack Joyride and Temple Run) one can conclude that the
null-hypothesis cannot be rejected with a confidence of 95 %. Further, the high p-values
of 1.00, 0.37 and 0.40 support this fact and strongly indicate that the observed difference
can very likely be contributed to natural variations. This in turn indicates that both
governors perform equally well in terms of provided user experience. As detailed in the
previous section, using the game state specific governor results in a significantly lower
power consumption and hence should be preferred over Android’s default governor.

4.6 Game power management API

We have shown how the game’s timing information and the knowledge about the game’s
current state can be leveraged to significantly reduce the power consumption. The infor-
mation was obtained by intercepting the game’s communication interface to the underlying
OS. This data, however, could be directly provided by the game developer if there was
an API provided by Android. Thereby, the overhead described in Section 4.5.1 could be
significantly reduced and the identification of state-specific textures for each game would
no longer be required.

A possible layout of such an API is given in Figure 4.18. Before the game power manage-
ment can be used, the developer needs to register the game with the power management
module. This will either create a new entry in the game database or load existing set-
tings. Additionally, all of the game’s states together with the desired power management
policies need to be configured. In this work, we have applied two different power manage-
ment policies: The first policy targets to maintain a state-specific frame rate. This target
frame rate should be provided by the game developer for all existing states. The second
policy optimizes the power consumption during memory bound phases. To determine the
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optimal frequency for this state, the performance counters of the CPU can be leveraged
as reported in [25]. Besides configuring the game power management library, the game
developer needs only to instrument the game’s source code to report state changes and the
beginning of new frames. As described in Section 4.2, a possible choice for predicting the
next frame’s workload are auto-regressive models. Since such models require the model
parameters to be tuned, the API should provide the possibility to record the frame timing
information and perform the tuning, e.g., based on Marple’s least squares algorithm [100].
Once the weights are determined, the game power management library can forward the
prediction results, the current policy and attributes like the target frame rate to the game

state specific governor which performs the scaling of the frequency.

4.7 Summary

This has proposed a technique to detect a game’s current state based on its communication
with the underlying operating system. The state-specific power management scheme uses
the knowledge of the game’s current state to significantly reduce the power consumption
of the processor. The savings are achieved by scaling the voltage and the frequency of the
processor dynamically depending on the future workload of frames. We showed how the
timing information, which is required by the workload predictor, can be gathered by the
proposed graphics library instrumentation. The technique does not require the game’s
source code and is not specific to a game, nor the operating system, nor the processor. By
this we achieve great portability and open up the possibility for the research community
to experiment with different games, game states and workload prediction techniques.

To prove the efficiency of the concept, we implemented this technique on an Android-based
Samsung Galaxy Nexus smartphone. We modified the phone to allow detailed measure-
ments of the CPU’s power consumption. Based on this setup, we for the first time gave
insight into the processor’s power consumption during the different states of a game and
revealed that not only during the highly interactive gaming state, but as well during the
loading and menu states a significant amount of power is consumed. In the experimen-
tal section, we showed significant power savings: Compared to the default interactive

governor coming with Android we were able to reduce the power consumption by up to
43.2 % using our game state specific governor.

We have confirmed, based on a user study, that our governors do not impact the gaming
experience. Towards this, we have asked users to rate both, Android’s interactive

and our game state specific governor. No significant statistical difference could be
observed between the average ratings of the governors.

The results presented in this chapter point out the need for a game power management
API on mobile devices. Such an API would allow game developers to provide information
to the operating system, which is currently only available inside the game: (i) the game’s
current state, (ii) timing measurements and (iii) the desired frame rate for the current
state. Moreover, the game developer has in many cases insight in future workloads that
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might arise due to particular game events. Based on that, it might even be possible for
the game developer to provide an accurate workload prediction to the power manager
and by that highly increase the prediction accuracy. In addition to the power savings
that might be possible based on the provided information, such an API would completely
remove the current overhead imposed by the state detection algorithm.

We have shown how to intercept the communication of the game with the graphics library
OpenGL to gain information about the game’s current state and the frame timing infor-
mation. There are several other interfaces like the audio library OpenAL, system calls
issued by the game and touch events reported to the game that might be leveraged in fu-
ture to perform an even finer-grained power management. This work focuses on reducing
the power consumption of the CPU. However, the presented game state detection might
as well be used to perform game state-specific power management for other components
such as the GPU, the display and sensors like accelerometers.

We have shown how to further improve the power manager, presented in Chapter 3 by
introducing an awareness of a game’s current state. One important question, however, has
not been answered, yet: How much power savings are theoretically possible if the power
manager exactly knew future requirements of a game and therefore could optimally scale
the voltage and frequency of the processor. In the next chapter, we describe a model that
allows answering this question and thereby motivate continuing research in the domain
of game power management.
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In the previous chapters, we have shown how the CPU’s power consumption can be consid-
erably reduced by up to 43.2 % compared to Android’s default power manager. Towards
this, we have evaluated different workload predictors in respect to their suitability to
forecast game workloads. We have shown that the autoregressive model-based predictor,
the most general form of linear models, provides a good performance in terms of power
savings and does not affect the by the user perceived quality. Further, we have developed
techniques to identify different game states and perform state-specific power management.
While AR model-based prediction significantly outperformed Android’s default governor,
it is not clear if more complex workload predictors, e.g., non-linear models, provided a
significantly better performance or not. In this chapter we present a method to accu-
rately approximate a perfect game workload predictor, in the following referred to as
oracle predictor, and its resulting power consumption. Thereby, we reveal the remaining
gap between current and optimal techniques and motivate future research endeavors.

The contributions of the work presented in this chapter are as follows:

• We present a technique that allows to accurately model the optimal game power
manager. Towards this, we have investigated two different approaches. First, we
consider a frame-based model which simulates the behavior of the CPU at the
different processing frequencies for each individual frame. We disclose that the
non-deterministic nature of games and the high inter-dependency of computations
with, e.g., GPU, memory and I/O, does not allow such frame-accurate modeling.
Hence, we introduce a statistical model, which does not allow deriving the optimal
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performance of each individual game frame, but accurately provides the performance
in terms of power and percentage of frame deadline misses for a full game play.

• We introduce a power model that allows approximating the power consumption of
the CPU based on the extent to which each individual frequency is used and the av-
erage power consumption of frames at a particular frequency. We validate the model
observing a maximum deviation of 6 % from the real measured power consumption.
Based on the statistical and the power model, we present results of the optimal
game power manager. Even though the AR-based governor outperforms Android’s
default governor, we show that there is still a significant gap to the performance of
the optimal power manager. For the game Temple Run we for example observed up
to 54.37 % of additionally possible power savings compared to the AR-model based
approach.

• Ultimately, the real limits of game power management depend on the individual
game, the by the user desired number of frames per second during the individual
states and the tolerable frames missing the deadline. These factors can highly
vary between users and games. To evaluate these differences and provide concrete
numbers a detailed user study has to be performed which is not the scope of this
work. In this work we provide the full picture by presenting purely quantitative
results for three games, each from a different genre, the full range of viable frame
rates ranging from 20 to 50 frames per second and for the individual game states.

• Our detailed analysis reveals reasons for the remaining gap, provides future direc-
tions and strongly motivates future research endeavors towards power efficient gam-
ing. We illustrate possible approaches that might further increase the performance
of current power managers.

• Race-to-halt is a popular alternative to DVFS. In case of gaming applications, the
frequency is set to the maximum at the beginning of the frame and, as soon as the
processing is completed, the CPU is put into a sleep mode until the beginning of
the next frame. We show that race-to-halt consumes significantly more power than
the AR-based governor and consequently cannot be considered as an alternative.

Related work: Optimal power manager models have been widely discussed in literature.
Especially in the real-time domain, schedules are derived that optimize the performance
and power consumption of processors under given real-time constraints [11, 12, 117, 119,
159]. Models of optimal power managers have as well been proposed for multimedia
applications. In [16], the performance of the minimum possible energy consumption of a
video decoder is derived by formulating the optimal DVFS as a linear program. Pering
et al. [118] simulate the performance of different power managers for video decoding
applications and compare them to the theoretical optimum. An approximation of the
optimum is obtained by a brute-force approach, i.e., traces are generated for all frequencies
and, based on post-simulation analysis, the optimal voltage and frequency settings are
determined. As will be explained in Section 5.1, this approach cannot be applied to game
workloads due to their non-deterministic nature.
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All of above work is based on simple task models, like purely periodic tasks, or simplified
processor models, e.g., assuming linear scaling of the processing time with the frequency.
Inter-dependencies of CPU computations with other peripheral components like the GPU,
memory or I/O are not considered. This makes proposed models inappropriate to model
the optimal game power manager.

Organization of the chapter: Section 5.1 describes two different approaches to ac-
curately model the optimal power manager: A frame-based and a statistical approach.
We show why a frame-based approach is not applicable for games and detail the statis-
tical model. Section 5.2 describes the hard- and software setup used for this study. In
Section 5.3 we present the experimental results and compare the performance of exist-
ing techniques to the optimal power manager. Section 5.4 concludes this chapter and
highlights the implications of the results.

5.1 Optimal power manager model

Games are, similar to videos, frame based. To optimize the power consumption, for each
frame i the minimum possible frequency f [i] should be used that just avoids violating the
deadline 1/FPS. To determine the theoretical limits of power management, we assume
an oracle predictor, i.e., a purely theoretical predictor that exactly knows the future
and hence can choose the optimal frequency for each frame. This predictor provides the
optimal sequence of frequencies S = (f [0], f [1], . . . , f [n]) that minimizes the power
consumption. In the following we are going to discuss the challenges of a frame-based
model that accurately provides this optimal sequence.

5.1.1 Frame-based model

In the case of videos the frame content and the corresponding workload for de/encoding is
deterministic. Hence, each frame can be simply de/encoded on the real hardware using all
available frequencies and thereby the optimal sequence of frequencies can be determined
for all frames of the clip [118]. As described in Section 3.3.3, for games, on the contrary,
the content depends on the user actions as well as the time it takes to process each frame:
At the beginning of each frame a game typically computes the time ∆t that has passed
since the last frame. ∆t is then used to update object positions, the physics engine and the
artificial intelligence (AI). Hence, what exactly will be computed during the next frame,
heavily depends on ∆t. If a game is now played at different frequencies the processing
time of individual frames, ∆t and consequently the game content will completely differ
from the previous run. This prevents a brute-force solution that is viable in case of video
de/encoding.

Starting from Android 4.1, Project Butter [57] introduced the synchronization between
the processing of frames and the vertical synchronization signal (VSYNC) of the display.
As depicted in Figure 5.1, the processing of the next frame i always starts with the arrival
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Figure 5.1: Ideal frame timing (all frames are processed in time)

Table 5.1: Average frame duration at different processing frequencies and workloads in
ratio to the average frame processing time at the highest processing frequency
(1200 MHz)

Workload 350 MHz 700 MHz 920 MHz 1.2 GHz

Temple Run 2.25 1.31 1.08 1.00
Cut the Rope 1.77 1.26 1.14 1.00
Jetpack Joyride 2.69 1.53 1.01 1.00
Purely CPU-bound 3.43 1.71 1.30 1.00

of a VSYNC signal. Due to this synchronization, in the ideal case the above described ∆t
will always equal to 1/rV SY NC , where rV SY NC is the refresh rate of the display (typically
60 Hz). Based on this observation, we investigated the possibility to derive the optimal
sequence from a single, fixed frequency recording of a game play. We instrumented the
operating system (see Section 5.2) and recorded the number of cycles c[i] required for
each frame of a game play at the highest processing frequency. A simplified assumption
is that the processing time linearly scales with the CPU’s processing frequency. Hence,
the optimal sequence of processing frequencies can be chosen by selecting the smallest
frequency f [i] ∈ F for each frame, where F is the set of all available frequencies, that
guarantees

c[i]

f [i]
<

1

rV SY NC
. (5.1)

Assuming, that we never violate this deadline it should be possible to determine the
optimal frequency for each frame. As described in Section 2.3.2, the linear relationship
in Equation 5.1 typically does not hold true and in most cases is highly pessimistic. The
frame computation time is amongst others composed of the CPU computation time and
the time the CPU waits for GPU, memory and I/O given by the following [138]:

tframe[i] =
cCPU
fCPU

+
cMem

fMem

+
cIO
fIO

+
cGPU
fGPU

+ . . . ,

where cCPU , cMem, cIO and cGPU are the workload in cycles and fCPU , fMem, fIO and
fGPU are the frequency of CPU, memory, I/O and GPU respectively. Increasing the
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Figure 5.2: Workload of two identical 3D Benchmark runs

processor’s frequency will only decrease the time it takes to process the CPU workload,
given by the term cCPU/fCPU without affecting the times required for memory accesses,
I/O operations and GPU processing. The linear Equation 5.1 only holds true for purely
CPU-bound workloads. The relative performance

s =
fCPU
f ′CPU

× c′[i+ 1]

c[i+ 1]
=
t′[i+ 1]

t[i+ 1]

describes the CPU-boundedness of an application (see Section 2.3.2). As can be seen
in Table 5.1, the relative performance of games differs significantly from the relative
performance of a purely CPU-bound workload. While the pessimistic purely CPU-bound
model from Equation 5.1 would for example assume a slow-down of 3.43 if the frequency
is scaled from 1.2 GHz to 350 GHz, in average the processing is only slowed down by a
factor of 1.77 in the case of Cut the Rope. Hence, a power manager that has predicted
the next frame’s workload and has to choose among the available frequencies, can scale
the frequency more aggressively if it as well considers the relative performance. Table 5.1
only provides the average factor by which the duration of a frame is being prolonged if
a smaller than the highest frequency is used. In reality, s will highly vary from frame to
frame, since some frames might be GPU or memory bound, i.e., the CPU has to wait for
a non-negligible amount of time for the GPU or memory, whereas other frames might be
highly CPU-bound.

Several approaches have been presented in the literature to determine the relative perfor-
mance factor based on CPU performance counters [24, 25, 138]. These counters capture
CPU events, like the number of cache misses, the number of cycles the CPU has to wait
for memory, etc.. For benchmarks, taken amongst others from MiBench [55], a relation
between performance counter values of the CPU used in this study and the relative per-
formance factor could be found according to [138]. The model, however, neglects GPU-
and I/O-bound phases, resulting in substantial errors if applied to gaming applications.
To the best of our knowledge, all existing work only leverages benchmarks which utilize
the CPU and memory, but does not consider GPU or I/O workload.

To develop such a model, it is required to replay the same workload at different CPU
processing frequencies and compare the performance counters. We have developed our
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Figure 5.3: Workload histogram of two game plays of Temple Run at 920 MHz each

own gaming benchmark, which animates a knight walking through a 3D landscape, to
derive more accurate models that include I/O and GPU waiting times. The input events
to this benchmark are generated automatically to guarantee the reproducibility of the
workload. Figure 5.2 shows the frame-based workload of two consecutive benchmark runs
using a constant CPU processing frequency. Even though, the benchmark has always been
started exactly one second after Android has been booted, significant differences can be
observed already after 100 frames. Computations of the Android OS and other processes
running in Android, which are not necessarily synchronized with the game, heavily disturb
the reproducibility. Clearly, variations to this extent do not allow us to accurately tune a
model describing the relative performance factor.

Above described difficulties can be avoided using a statistical model. This model does
not allow determining the exact optimal sequence of frequencies, but still provides an
accurate estimation of the optimal power manager’s performance and hence is sufficient
for our purposes.

5.1.2 Statistical model

This work targets to determine the minimum possible power consumption that can theo-
retically be obtained when for each frame the minimum possible frequency is used (con-
sidering the target frame rate). In Section 5.1.3, we will show that the power consumption
can already be determined, once it is known to what percentage P (f = fx) each process-
ing frequency fx ∈ F has to be used for processing a game play under consideration of
timing constraints. In the following, we describe how it is possible to determine these
percentages P (f = fx) based on game workload recordings.

We have recorded the frame processing times of different game plays using fixed frequen-
cies fx. From these recordings, we computed probability distributions Pfx(X = t) of the
frame processing time. Even though Temple Run randomly generates its game scenarios
and hence the content significantly differs between consecutive runs, the two histograms
depicted in Figure 5.3 are nearly identical. This could be observed for all available process-
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Figure 5.4: Probability distribution of frame-based workloads for two different processing
frequencies f1 and f2

ing frequencies and games under test (Cut the Rope, Temple Run and Jetpack Joyride) if
the games were played long enough (game plays of 10 minutes turned out to be sufficient).

Figure 5.4 shows two examples of probability distributions Pf1(X = t) and Pf2(X = t)
recorded at the frequencies f1 and f2, respectively. Here, f1 represents the smallest and
f2 the next higher of all available CPU clock frequencies.

The probability P (f = f1) that a frame can be finished within the deadline 1/FPS if
frequency f1 is used is given by

P (f = f1) = Pf1(X < 1/FPS) =

∫ 1/FPS

0

Pf1(X = t) dX.

Further, it can be said that the percentage of frames that will require a higher frequency
than f1 is given with Pf1(X ≥ 1/FPS).

Like for Pf1 , the probability that a frame can be complete execution in time using f2 is
given with Pf2(X < 1/FPS). Frames that can be completed within time using f1 will
certainly finish if f2 is being used since increasing the frequency will never increase the
processing time. Hence, the area defined by Pf1(X < 1/FPS) is included in Pf2(X <
1/FPS). Consequently, the percentage of frames that will exactly require f2 is given by

P (f = f2) = Pf2(X < 1/FPS)− Pf1(X < 1/FPS).

The remaining percentages P (f = f3), . . . , P (f = fi) can be computed accordingly, once
the probability distributions of all processing frequencies have been determined. Note,
that in Figure 5.4 the area defined by Pf1(X < 1/FPS) is depicted as leftmost area for
visualization purposes. The workload composition and the relative performance factor of
the frames determine how this area is distributed within Pf2(X < 1/FPS). In the fol-
lowing we explain, how these probabilities can be used to compute the minimum possible
power consumption of the theoretical optimal power manager.
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5.1.3 Power consumption model

The average power consumption P can be approximated as follows: In addition to the
frame processing time t[i], we measure the power consumption P fx [i] of each individual
frame. Based on these recordings, the average power consumption of frames at frequency
fx is given by

P fx =
1

N

∑
P fx [i].

The overall average power consumption can then be approximated by

P =
∑
∀fi∈F

P fi · P (f = fi), (5.2)

where P (f = fi) is the extent to which the frequency fi has to be used to satisfy the
processing deadline 1/FPS. The accuracy of this approximation will be discussed in
Section 5.3.

To compare the quality of game power managers, typically two metrics are used: The aver-
age power consumption P and the percentage of framesD missing their deadline. Based on
determined probability distributions, D can be simply determined, since D = Pfmax(X ≥
1/FPS), i.e., the percentage of frames that cannot be processed in time, even though the
highest processing frequency fmax is used.

5.1.4 DVFS overhead

The overhead for dynamic voltage and frequency scaling has to be considered in terms of
the time and energy that the voltage frequency transition costs. As shown in Section 4.5.1,
the overhead highly depends on the current and the target frequency of the processor.
However, using the statistical model presented in Section 5.1.2 it is only possible to
estimate the percentage of frames that require a particular frequency and not the exact
order of the processing frequencies, i.e., the optimal frequency sequence S. Hence, it is
not possible to consider the exact scaling overhead. In the worst case, we switch at each
frame from the current frequency to the frequency which will cause the largest overhead
in terms of switching time. This worst case can be modeled by reducing the deadline of
1/FPS by the corresponding scaling time. On the contrary, the best case assumes that
only a minimum number of frequency switches occur. As will be shown in Section 5.3,
there is only a small difference between the best and worst case. Before above described
models are verified and applied, we will first explain the experimental setup.

5.2 Experimental setup

Since the phone’s processor is configured such that the performance counter values cannot
be read, the experimental results of this chapter are based on a different platform. In the
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Figure 5.5: Schematic of the measurement setup

following we are first going to describe the details about the hardware platform used for
this study before explaining the software modifications.

As a reference board, we used the PandaBoard ES [113] running a Linaro Android 4.3
distribution which uses a 3.2.0 Kernel. Attached to the board is a 10” multitouch LCD
display. The PandaBoard hosts the same processor as the Galaxy Nexus, which has
been used in Chapter 4, namely the OMAP4460 processor. The CPU subdomain of the
OMAP4460 processor is powered by the TPS62361 switching regulator [144]. Due to
differences in the PCB layout between the PandaBoard and the Samsung Galaxy Nexus,
we could not directly insert the shunt after the TSP62361, but instead placed the shunt
before the voltage regulator (see Figure 5.5). Hence, power measurements presented in
this section include losses generated by the voltage regulator. Further, the PandaBoard
runs a Linaro Android from an external SD card, while the Galaxy Nexus runs an original
Android Open Source Project (AOSP) Android from the internal flash storage. Due to
these differences, the results presented in this chapter cannot be directly compared to
results presented in the previous chapter, even though both platforms are based on the
same processor. Same as for the Galaxy Nexus setup, the voltage drop at the shunt and
the supply voltage are sampled by a microcontroller (in this case a Texas Instruments
Stellaris LM4F120H5QR microcontroller [148]) and can be read by the processor using
the I2C interface.

We have instrumented the Linaro Android and Kernel to measure frame timings, to detect
different game states and ported the game state specific governor to the PandaBoard.
Using the state detection, we cannot only provide power management limits for different
target frame rates, but as well for individual game states (see Section 5.3). In addition
to the power measurement interface, we have extended the Kernel with a performance
counter driver, since the used Kernel version did not support this. We have implemented
a driver that allows resetting, reading and configuring the performance monitoring unit
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(PMU) from the user space. To avoid large overheads, the interface has been implemented
such that power and performance counter values could be read using a single ioctl call
(see Figure 5.6). For each frame, the acquired information could be stored in a log file on
the SD card.

5.3 Experimental results

Before presenting the results using the statistical model, we first discuss overheads and
validate the power model presented in Section 5.1.

5.3.1 Frequency scaling overhead

As described in Section 5.1.4, the overhead for dynamic voltage and frequency scaling has
to be considered in terms of the time that is spent on scaling and the energy that the
voltage frequency transition costs. The switching overhead of the OMAP4460 has already
been presented and discussed in Section 4.5.1. As discussed, based on the statistical model,
it is impossible to determine the exact overhead since it does not provide the exact order
in which processing frequencies are chosen. However, the resulting power consumption
assuming worst and best case (maximum and minimum number of scalings) differed at
maximum only by 4.93 % for the game Cut the Rope. The percentage of frames missing
the deadline at maximum deviated by 0.69 %. We consider this difference as negligible
and hence do not account for ranges in the following, but instead only provide the worst
case results. Instrumenting Android, performing the workload prediction, logging data
and detecting game states comes with an additional overhead. As has been shown in
Section 4.5.1, these overheads can be neglected compared to the workload of a game
frame.
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Table 5.2: Power consumption of the AR- and oracle-based power manager at different
frame rates including the savings that theoretically are possible

20 FPS 30 FPS
Game State AR

[mW]
Oracle
[mW]

Savings
[%]

AR
[mW]

Oracle
[mW]

Savings
[%]

Temple Run
Menu 295.0 255.4 13.4 323.3 257.9 20.2
Gaming 268.3 265.7 1.0 263.3 272.3 -3.4

Jetpack Joyride
Menu 330.1 308.9 6.4 343.1 322.7 5.9
Gaming 309.1 305.2 1.3 301.7 315.1 -4.4

Cut the Rope
Menu 282.9 287.4 -1.6 317.3 298.8 5.8
Gaming 256.9 251.7 2.0 273.7 262.4 4.1

40 FPS 50 FPS
Game State AR

[mW]
Oracle
[mW]

Savings
[%]

AR
[mW]

Oracle
[mW]

Savings
[%]

Temple Run
Menu 397.8 269.5 32.3 541.1 350.5 35.2
Gaming 339.9 319.6 6.0 615.8 434.5 29.4

Jetpack Joyride
Menu 566.8 456.7 19.4 672.2 504.8 24.9
Gaming 349.5 373.6 -6.9 551.7 449.2 18.6

Cut the Rope
Menu 613.8 507.8 17.3 640.6 542.3 15.3
Gaming 371.0 302.7 18.4 464.4 369.3 20.5

5.3.2 Power model validation

We have performed the following experiment to evaluate the power model described in
Section 5.1.3. We first played each game using the userspace governor at every available
frequency and computed the average power consumption P fx based on these recordings.
Next, we played each of the three games using the game state specific governor de-
scribed in Chapter 4 and recorded the frequencies chosen, as well as the real average power
consumption of each frame. Based on these recordings, we computed the probability for
each frequency to be used during the game play P (f = fi) and the resulting average
power consumption according to Equation 5.2. The maximum deviation of the estimated
from the measured power consumption was observed for the game Cut the Rope in the
gaming state with 6.01 %. For Jetpack Joyride the maximum deviation was observed in
the menu state with 2.96 % and for Temple Run in the gaming state with 1.26 %. We
have assumed that these estimation errors are tolerable.

5.3.3 Performance of the optimal power manager

As described in Section 5.1, the optimal power manager chooses for each frame the lowest
possible processing frequency that still guarantees the frame computations to complete in
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Figure 5.7: Average power consumption and frame deadline misses for different target
frame rates using the oracle predictor
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time, resulting in a minimum power consumption. The optimal power manager only exists
in theory. In practice, the future workload and required processing frequency for a frame
have to be predicted, e.g., using AR-based prediction. To determine the gap between
practice and theoretical optimum, we played each game using the AR-based predictor
and evaluated the statistical model described in Section 5.1.2.

Table 5.2 gives the power consumption for both, the optimal power manager, using the
oracle predictor and the power consumption obtained with the AR-based predictor at dif-
ferent frame rates. Further, it provides the theoretically possible power savings expressed
as percentage compared to the power consumption obtained with the AR-based power
manager. In addition, Figure 5.7 visualizes the power consumption and percentage of
frame deadline misses for both approaches. Note that as pointed out in Section 5.2, the
power measurement results cannot be compared to measurements presented in Chapter 4,
since the results of this chapter are based on the PandaBoard, which, in contrast to the
Samsung Galaxy Nexus, allowed reading the performance counter values.

The possible savings in percent were computed according to

Savings = 100× PAR − POracle
PAR

,

where PAR and POracle are the average power consumptions obtained with the AR-based
predictor and the oracle predictor respectively. For example, at 50 frames per second in
Temple Run’s Menu state the AR-based predictor consumed 541.1 mW, while the oracle
predictor theoretically consumes 350.5 mW resulting in possible savings of 35.2 %.

Clearly, it can be seen that especially for high frame rates, there is a significant perfor-
mance gap between the AR-based predictor and the theoretical optimum. Up to 35.2 %
power could be saved if the predictor exactly knew the future. This considerable poten-
tial in terms of power savings points out the need for more research directed to accurate
game workload predictors. Note that in some cases the AR-based predictor outperforms
the optimal power manager in terms of power consumption, e.g., in the case of Jetpack
Joyride (at 40 frames per seond) the AR-based governor saves 6.9 % more power in the
gaming state than the optimal power manager. However, in all of these cases the number
of frames missing their deadline is higher compared to the optimal power manager. It
can as well be seen that in some cases there are frame deadline misses, even if the oracle
predictor is used. Here, the maximum possible processing frequency is still not sufficient
to guarantee the desired frame rate. As discussed in Chapter 4, for some games the menu
is drawn directly on top of the gaming scene, explaining why for these games the menu
consumes more power than the actual gaming scene. We assume that the increase of frame
deadline misses for the games Temple Run and Cut the Rope in case the target frame
rate is reduced from 50 to 40 frames per second is due to the enforced synchronization to
the display and a resulting unfortunate timing for these two games, but we were not able
to exactly pin-point this issue.

Reducing the target frame rate has a considerable impact on the power consumption for
both, the AR-based and the optimal power manager. For example, a reduction from 50 to
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Table 5.3: Average power consumption of race-to-halt and the autoregressive model-based
power manager

Game Race-to-halt AR-based PM
Menu
[mW]

Gaming
[mW]

Menu
[mW]

Gaming
[mW]

Temple Run 816.7 852.8 332.33 577.71
Jetpack Joyride 1101.9 934.9 343.44 501.43
Cut the Rope 931.36 703.21 342.00 432.53

40 frames per second already reduces the power consumption by 44.9 % for the AR-based
predictor in the case of Temple Run, while further reducing the frame rate to 30 frames
per second yields power savings of 23.5 % for the AR-based predictor. This finding highly
motivates a user study to identify the actually required target frame rates that satisfy the
user.

5.3.4 Race-to-halt

Race-to-halt is popularly believed to be an efficient power management strategy and
alternative to DVFS. While DVFS tries to minimize the idle time of the CPU, race-to-halt
maximizes this time by running the processor at the maximum speed and putting it into a
sleep state once a task is processed. In the case of game power management, this approach
can be applied on a frame-by-frame-basis: Frames are processed at the highest frequency.
Once the processing is done, i.e., when eglSwapBuffers() is called, the processor is put
into a sleep state until the next VSYNC. The main advantages of this method are that
i) no prediction is required and ii) the number of frames missing the deadline is minimized
since the frames are processed at the highest frequency. To analyze the resulting power
consumption of this approach, we have instrumented Android to measure the energy
consumption from the beginning of a frame to the entry point of eglSwapBuffers().
Table 5.3 shows the average power consumption of the three games using the race-to-halt
approach in comparison to DVFS using AR-based power management. Even though we
assume that the processor does not consume any energy in the sleep state, the power
consumption of race-to-halt significantly exceeds the power consumption obtained with
dynamic voltage and frequency scaling. Hence, we conclude that for the processor model
used in this study race-to-halt is not a suitable choice for game power management.

5.4 Summary

DVFS is a widely used approach to reduce a processor’s power consumption. Key to an
effective power management is an accurate prediction of future workloads. While related
work and the work presented in this thesis could show significant savings over existing
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methods, an important question was left open: How much power could theoretically be
saved, assuming a perfect predictor that exactly knows the future workload of a game. In
this work, we answer this important question based on a statistical model and not only
provide results for games from different genres and frame rates, but as well for different
game states. The results of this work have several implications:

Race-to-halt is not a viable alternative to DVFS on current mobile processors due to
significantly higher power consumption, even when neglecting the processor’s power con-
sumption while idling.

Even though existing work [38, 39] showed considerable power savings compared to An-
droid’s default power manager, there is still a substantial gap between AR-based predic-
tors and the theoretical optimum (up to 35.2 % of savings are still possible). This points
towards future research endeavors to investigate how current workload prediction can be
further improved. More complex statistical models such as non-linear models might be
one option to increase the prediction accuracy. Another possible solution might be the
classification of frame workloads based on detailed information about the game’s internal
state obtained from OpenGL and syscall patterns. A standardized interface in Android
would, in addition, allow game developers to provide valuable information that could be
leveraged by the power manager to further decrease the gap.

The relative performance factor describes the CPU-boundedness of applications. We have
shown that for gaming applications the average relative performance factor considerably
differs from the worst case, i.e., a purely CPU-bound workload. Hence, current power
manager could scale the frequency more aggressively if the relative performance factor
was known. Towards this, benchmarks have to be designed that allow identifying the
relationship between the relative performance factor and system metrics like the CPU
performance counter values or information from the Kernel’s process file system entries
(like /proc/pid/io).

We have shown that already a minor reduction of the frame rate can yield significant power
savings for the AR-based predictor. This fact highly motivates a user study, investigating
to what extent frame rates can be lowered without deteriorating the by the user perceived
quality. Here, aspects like the device’s display size, game genre, game state and the
player’s experience should be taken into consideration.
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6
Conclusions and future work

This thesis proposes a power manager that is specific to game applications and lever-
ages dynamic scaling of the mobile processor’s voltage and and frequency. Traditional
approaches, like the Linux ondemand or interactive governor, as well use DVFS to
reduce the power consumption, but select future frequencies merely based on the past
utilization of the processor. These governors are completely unaware of running applica-
tions and their requirements, resulting in a highly inefficient power management scheme
when games are being played. In this work, we instead propose a power manager that is
aware of the game application and considers frame timing requirements as well as the user
requirements such as the target frame rate when taking the decision about future pro-
cessing frequencies. The main contributions and results of this work can be summarized
as follows.

• Workload prediction

Key to an efficient power management is the knowledge of future workloads. In
Chapter 3, we have formulated requirements for a workload predictor and system-
atically analyzed different prediction techniques. Using this technique, we reveal
that the PID controller-based prediction, which has been successfully applied to
video and game applications in the past, is not suitable for game workload predic-
tion since it requires to tune the parameters of the predictor for each individual
game play to avoid a diminished prediction performance, resulting in increased
power consumption and a deteriorated user experience. Due to the interactive and
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non-deterministic nature of games, such tuning on a game play basis is not practi-
cal and hence two other approaches are investigated: The least mean squares linear
predictor was found to perform well for Quake II workloads, but not for modern
games with higher workload variations. We show that the most general form of lin-
ear models, namely autoregressive models, provide accurate prediction results, not
only when tuned for individual game plays, but as well across game plays and even
games. Based on this highly robust prediction scheme we have achieved significant
power savings over Linux default governors.

• Graphics API instrumentation

To overcome past restrictions to old closed-source games like Quake II, we have
developed a graphics API-based technique that allows applying game power man-
agement to modern closed-source games. On Windows-based platforms we leverage
DLL injection to intercept the game’s communication with the DirectX rendering
API. For mobile Android platforms, we presented a direct lightweight instrumenta-
tion of the OpenGL ES libraries to obtain the same statistical data, based on which
the power manager predicts future workloads.

• Game state detection

Games typically consist of several states like the initial loading, the main menu,
level selection menu and the actual gaming states. Each of these states has its char-
acteristic workload and performance requirements. For example, the loading state
is likely to be memory-bound, allowing a frequency reduction without prolonging
loading times while during menu states, lower target frame rates are likely to be
tolerated by the user. We have developed a technique to detect different states.
The technique is again only based on the graphics API calls the game issues and
hence can be applied to any closed-source game on various platforms.

• Game state-specific power management

Using the game state detection, we have analyzed the power consumption of games
during different states. We reveal that players spend a significant amount of time
and energy in states like the menu state. We consequently proposed state-specific
power management schemes that efficiently reduced the power consumption in the
individual states. Compared to Android’s default interactive governor, we have
obtained up to 43.2 % of savings.

• Limits of game power management

In the last part of this work, we analyze the theoretical potential of power savings.
We derive a statistical model and reveal the remaining gap between results proposed
in this work and the so-called oracle predictor, a predictor that exactly knows the
future. The results highly motivate future research endeavors to further decrease
the gap between current techniques and the optimal.
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6.1 Future work

While proposed techniques significantly outperform default OS power managers, Chap-
ter 5 revealed a substantial gap to the theoretical optimal power manager. To further
close the gap we believe that approaches described in the following are promising future
directions:

• The instrumentation of the graphics API provides a vast amount of information
which indirectly describes the game’s current state and is likely to be correlated to
future processing requirements. For example, rendering calls related to a particular
object might allow predicting AI workload related to that object. Due to the large
number of calls per frame and the fact that these calls are very game-specific, it
should be investigated if automatized learning techniques from the machine learn-
ing or data mining domain can be applied to correlate call patterns to workloads.
Thereby, the accuracy of current workload predictors could be further increased.

• All of the presented approaches performed a frame-by-frame workload prediction
and frequency scaling. A question that has not been answered, yet, is if game power
managers might benefit from an intra-frame prediction. If the governor for example
detects particular game events it might be beneficial to reconsider the frequency de-
cision, taken at the beginning of the frame by increasing the frequency to guarantee
timing constraints or to lower the frequency due to remaining processing time. In
this context, a trade-off between the granularity of frequency scaling and the scaling
overhead has to be found to optimize the power savings.

• We have shown significant power savings for the CPU, which is one of the main
contributors to the total power consumption. Using our techniques in combination
with related approaches for other smartphone components, like the GPU, the display
and network interfaces as presented in Chapter 2 of this work, would allow a global
optimization of the device’s energy consumption when games are being played.

• Finally, we believe that a detailed user study would allow considerable optimization
of current techniques. While we have shown that our power management does not
impact the perceived gaming quality, it is not clear what exact frame rates and
percentage of frames missing their deadline are tolerated by the player. In a user
study several aspects and their influence on the perceived quality should be taken
into consideration: Display size, game genre, touch latency and for example the
user’s playing experience. Once the relation between frame rate, frame deadline
misses and the quality perceived by the user is known, the power manager can be
optimized to a guarantee minimal power consumption while maintaining a good
gaming experience.
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