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Abstract

Vine copulas are highly flexible models for high-dimensional dependence. So far,
the vast majority of the literature focuses on parametric modeling, but most of the
time parametric assumptions are made solely for practical convenience. In many
situations this will lead to a misspecified model and consistency of estimators is lost.
We present a novel, fully nonparametric approach for the estimation of a vine copula
density which is a hybrid of kernel density estimation and kernel regression.

After laying the theoretical foundations, the performance of the parametric and
kernel estimators will be compared in simulation examples. We find that in some
situations the kernel approach leads to a significant improvement in performance
and can serve as a powerful tool for exploratory data analysis. Lastly, we present a
real-data application in biomedical sciences and discuss possible directions for future
research.

Zusammenfassung

Vine Copulas sind flexible Modelle für hochdimensionale Abhängigkeit. Der Großteil
der Forschung hat sich bisher auf parametrische Modelle beschränkt, allerdings
sind parametrische Annahmen meist nur durch Bequemlichkeit motiviert. Oftmals
führt dies zu fehlerhaft spezifizierten Modellen und die resultierenden Schätzer sind
inkonsistent. Wir stellen einen neuartigen, gänzlich nichtparametrischen Ansatz zur
Schätzung von Vine Copula Dichten vor, welcher sich aus Kerndichteschätzung und
Kernel-Regression zusammensetzt.

Nach einer Einführung der theoretischen Grundlagen vergleichen wir parametrische
und nichtparametrische Methoden anhand von Simulationen. Diese zeigen, dass die
Kernel-Methode in manchen Situationen zu signifikanten Verbesserungen führt und
darÃĳber hinaus ein nützliches Werkzeug für die explorative Datenanalyse ist. Als
Abschluss zeigen wir eine Anwendung der Methode in der Biomedizin und geben
einen Ausblick auf zuküftige Forschungsgebiete.
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Chapter 1

Introduction

Since the seminal work of Sklar (1959) copula modeling for multivariate stochastic
dependence has been extensively studied in mathematical statistics. In the last two
decades, copulas became a standard tool in many fields, such as finance, insurance
and hydrology. However, classical copula models turned out to lack flexibility in
higher dimensional settings. More recently, Aas et al. (2009) introduced the flexible
class of vine copulas building upon the earlier work of Joe (1997) and Bedford and
Cooke (2001, 2002). Here, copulas of arbitrary dimension are constructed using only
bivariate blocks — so-called pair-copulas.

The vast majority of the literature on vine copulas focuses on parametric mod-
eling, but most of the time parametric assumptions are made solely for practical
convenience. In many situation this will lead to a misspecified model and consistency
of estimators is lost. This becomes a major issue when one or more of the pair-copulas
do not conform with any of the popular parametric copula families. A nonparametric
approach can overcome this, but usually involves more complex and computationally
intensive methods.

Hobæk Haff and Segers (2012) analyze a nonparametric estimator of the cdf of
a vine copula based on empirical copulas. Other authors developed nonparametric
estimators of the vine copula density. Weiß and Scheffer (2012) build on the popular
Bernstein estimator, Schellhase (2012) develops a penalized maximum likelihood
approach for Bernstein polynomials and hierarchical B-splines. Another very com-
mon nonparametric method is kernel density estimation. Despite its popularity in
estimation of general densities, so far only Lopez-Paz et al. (2013) utilized a kernel
estimator for vine copula densities.

In this thesis, we will thoroughly investigate kernel estimators of a vine copula
density. Generally speaking, the estimation procedure can be split in two parts:
Estimation of bivariate copula densities, and estimation of h-functions, i.e. conditional
cdfs corresponding to a pair of uniformly distributed random variables. In parametric
models as well as the mentioned nonparametric estimators, the h-function can
be obtained as an immediate byproduct of the density estimate. In contrast, we
will present kernel estimators for both parts separately and join them to get fully
nonparametric kernel estimators of vine copula densities.

The remainder of this thesis is organized as follows. Chapter 2 gives a review

1



2

of the statistical concepts our work builds on. Section 2.1 introduces copulas in
general, and vine copulas in particular; Section 2.2 focuses on bivariate kernel density
estimation. In Chapter 3, we investigate a variety of kernel estimators for bivariate
copula densities and close with a comparison of all presented methods by means of a
simulation study. Chapter 4 deals with kernel estimation of h-functions. In Chapter
5, we put the pieces together to a general kernel estimation approach for vine copula
densities. The abilities of this method are illustrated with two simulation examples
and a real-data application stemming from biomedical research. Furthermore, possible
directions for future research are discussed. Chapter 6 concludes.



Chapter 2

Theoretical background

In this chapter we will present the necessary theoretical background for the remainder
of this thesis. This includes the basic theory of copulas, dependence measures and
Vine copula models as well as the foundations of bivariate kernel density estimation.
The following pages will mainly give definitions and address particular issues that will
reappear in later chapters. They are not at all meant as a comprehensive overview
of any of the topics. For a more extensive treatment the reader is advised to consult
the references given in the respective sections.

2.1 Dependence modeling with copulas
Copulas are objects that contain all information on the dependence in a multivariate
random vector. In a copula model, a multivariate distribution is split into two parts:
the marginal distributions and the dependency structure. This approach allows to
separate the effects coming from one or the other part, which is impossible in classical
multivariate models. It facilitates estimation of multivariate distributions and also
allows for much more flexibility regarding their shape. As of today, copulas are widely
used in many fields that call for multivariate modeling, such as finance, insurance,
geostatistics and hydrology. Recommended readings are the excellent texts of Nelsen
(2006) and Embrechts et al. (2003).

Throughout this thesis, we will assume that all random variables are continuous.
From a statistical viewpoint, a copula is defined as the distribution function of a
d-dimensional random vector with uniform margins.

Definition 2.1. A function C : [0, 1]d → [0, 1] is called a d-dimensional copula
if there exists a random vector (U1, . . . , Ud), with Uj ∼ U [0, 1], j = 1, . . . , d, such
that

P(U1 ≤ u1, . . . , Ud ≤ ud) = C(u1, . . . , ud),

i.e. C is the cumulative distribution function of (U1, . . . , Ud).

3



4 2.1 Dependence modeling with copulas

The following theorem is the core of copula theory. It is due to Abe Sklar (1959) and
states that any multivariate distribution can be split into its margins and a copula.

Theorem 2.1 (Sklar’s Theorem). Let F be a continuous d-dimensional distribu-
tion function with marginal distributions F1, . . . , Fd. Then there exists a unique
d-dimensional copula C such that for all (x1, . . . , xd) ∈ Rd it holds

F (x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
. (2.1)

Conversely, if C is a d-dimensional copula and F1, . . . Fd are univariate distribution
functions, F as defined in (2.1) is a d-dimensional distribution function.

The idea of Sklar’s theorem is simple. Take (X1, . . . , Xd) as a random vector with
marginal distributions F1, . . . , Fd and let F be its joint distribution. Recall also the
well known fact that Fj(Xj) ∼ U [0, 1], for all j = 1, . . . , d. The corresponding copula
C is then defined as the distribution function of (F1(X1), . . . , Fd(Xd)). This explains
why we define a copula as the distribution of uniformly distributed random variables.
The most trivial examples of a copula correspond to the cases of independence and
perfect positive and negative dependence.

Example 2.1 (Independence copula). For U1, . . . , Ud
iid∼ U [0, 1], we have

P (U1 ≤ u1, . . . , Ud ≤ ud) =
d∏
j=1

uj = Π(u1, . . . , ud),

where we call Π the independence copula.

Example 2.2 (Comonotonicity copula). Perfect positive dependence is meant as
follows. Let U ∼ U [0, 1], then the random vector (U1, . . . , Ud) = (U, . . . , U) exhibits
perfect positive dependence. In this case,

P (U1 ≤ u1, . . . , Ud ≤ ud) = P (U ≤ u1, . . . , U ≤ ud) = min{u1, . . . , ud}
= M(u1, . . . , ud),

where we call M the comonotonicity copula.

Example 2.3 (Countermontonicity copula). Perfect negative dependence is meant
as follows. Let U ∼ U [0, 1], then the random vector (U1, U2) = (U, 1 − U) exhibits
perfect negative dependence. In this case,

P (U1 ≤ u1, U2 ≤ u2) = P (U ≤ u1, 1− U ≤ u2) = max{u1 + u2 − 1, 0}
= W (u1, . . . , ud),

where we call W the countermonotonicity copula. Note that it is only defined for a
bivariate random vector, since perfect negative dependence is not possible in higher
dimensions.
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2.1.1 Parametric copula families
Sklar’s theorem gives us a simple way to construct copula functions. By inversion of
(2.1), we get

C(u1, . . . , ud) = F
(
F−1

1 (u1), . . . , F−1
d (ud)

)
.

From this formula, we can also directly obtain a representation of the corresponding
copula density c(u1, . . . , ud) = ∂dC(u1, . . . , ud)/(∂u1 · · · ∂ud). Denote f, f1, . . . , fd as
the densities corresponding to F, F1, . . . Fd respectively. Then,

c(u1, . . . , ud) =
f
(
F−1

1 (u1), . . . , F−1
d (ud)

)
∏d
j=1 fi

(
F−1
j (uj)

) .

In the above expressions, we can use arbitrary parametric distribution functions F
to construct parametric copula families.

Example 2.4 (Gaussian and t-copulas). Let ΦΓ, be the cdf of a d-dimensional vector
following a multivariate normal distribution with zero means, unit variances and
correlation matrix Γ. Further, denote Φ as the univariate standard normal cdf . The
Gaussian copula with parameter matrix Γ is given by

CGauss
Γ (u1, . . . , ud) = ΦΓ

(
Φ−1(u1), . . . ,Φ−1(ud)

)
.

Similarly, let tν,Γ, be the cdf of a d-dimensional vector following a multivariate
t-distribution with zero mean and association matrix Γ and degrees-of-freedom param-
eter ν. Denote further tν the univariate cdf of a t-distribution with degrees-of-freedom
parameter ν. The Student or t-copula with parameters ν,Γ is given by

Ct
Γ(u1, . . . , ud) = tν,Γ

(
t−1
ν (u1), . . . , t−1

ν (ud)
)
.

In both cases, it can be shown that the use of non-zero means and non-unit variances
does not change the copula. In the bivariate case a single parameter ρ is sufficient,
since the correlation matrix is fully determined by one off-diagonal entry. The Gauss
and t-copulas are the most prominent instances of the class of elliptical copulas. This
class arises as the dependency structure underlying elliptical multivariate distribu-
tions.

Example 2.5 (Gaussian mixture copulas). The same procedure also works for more
complicated distributions such as mixtures. For instance, let us consider a two-fold
Gaussian mixture distribution with mean vectors µ, µ̊ and covariance matrices Σ, Σ̊.
Denote Φµ,Σ,Φµ̊,Σ̊ as the corresponding cdfs. For a mixing probability α ∈ (0, 1), we
can write the Gaussian mixture cdf as

Ψ(x1, . . . , xd) = αΦµ,Σ(x1, . . . , xd) + (1− α)Φµ̊,Σ̊(x1, . . . , xd).
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By defining Φµ,σ2 as the univariate Gaussian cdf with mean µ and variance σ2, also
the univariate margins are normal mixture distributions given by

Ψi(xi) = αΦµi,Σii
(xi) + (1− α)Φµ̊i,Σ̊ii

(xi), for all i = 1, . . . , d.

Now we have everything we need to define the Gaussian mixture copula with parame-
ters µ, µ̊,Σ, Σ̊, α via

CGM(u1, . . . , ud) = Ψ
(
Ψ−1

1 (u1), . . . ,Ψ−1
d (ud)

)
.

The Gaussian mixture copula allows for very irregular shapes. Its construction will
be illustrated in more detail after introducing some tools for visualization in Section
2.1.3. It is a highly flexible family, but also has a lot of parameters. The simplest case
of a bivariate two-fold mixture already has eleven parameters. This makes it prone
to overfitting the data when estimating copulas on small or moderate sample sizes.

Archimedean copulas

A second important and rich collection of copula families is the class of so-called
Archimedean copulas. For simplicity, we will only consider the bivariate case here and
refer the reader to Nelsen (2006) for a more general treatment. Let φ : [0, 1]→ [0,∞]
be continuous, strictly monotonic decreasing, convex and satisfy φ(1) = 0. Define
further φ− as the generalized inverse of φ, i.e.

φ−(y) := inf{x ∈ [0,∞] : φ(x) ≥ y}, y ∈ [0, 1].

Then,

C(u1, u2) = φ−
(
φ(u1) + φ(u2)

)
is a proper copula function and called an Archimedean copula.

Example 2.6 (Frank copula). For φθ(x) = − log
(

exp(−θx)−1
exp(−θ)−1

)
, with θ ∈ R \ {0}, we

get

CFrank
θ (u1, u2) = −1

θ
log
(

1 +

(
exp(−θu1)− 1

)(
exp(−θu2)− 1

)
exp(−θ)− 1

)
.

Example 2.7 (Gumbel copula). For φθ(x) =
(
− log(x)

)θ
, with θ ∈ [1,∞), we get

CGumbel
θ (u1, u2) = exp

{
−
[(
− log(u1)

)θ
+
(
− log(u2)

)θ]1/θ}
.

Example 2.8 (Clayton copula). For φθ(x) =
(
x−θ − 1)/θ, with θ ∈ (0,∞), we get

CClayton
θ (u1, u2) =

(
u−θ1 + u−θ2 − 1

)−1/θ
.
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Example 2.9 (Joe copula). For φθ(x) = − log
(
1 − (1 − x)θ

)
, with θ ∈ [1,∞), we

get

CJoe
θ (u1, u2) = 1−

(
(1− u1)θ + (1− u2)θ − (1− u1)θ(1− u2)θ

)1/θ
.

Extreme value copulas

Another class of parametric copula families arises naturally in the context of multi-
variate extreme value theory (see e.g. Salvadori et al., 2007). “Being the limits of
copulas of componentwise maxima in independent random samples, extreme-value
copulas can be considered to provide appropriate models for the dependence structure
between rare events” (Gudendorf and Segers, 2009). Formally, a copula C is called
extreme-value copula when there exists another copula C∗, such that

C∗
(

n
√
u1, . . . , n

√
ud
)n
→ C(u1, . . . , ud), as n→∞.

More information on extreme-value copulas can be found in the two references given
above. We will just consider one particular example.

Example 2.10 (Tawn copula). The Tawn copula family was created as an exten-
sion of the Gumbel copula allowing for asymmetry in its components. It is a three-
parameter family defined as

CTawn
(θ,α1,α2) = exp

{(
log(u1) + log(u2)

)
A

(
log(u2)

log(u1u2)

)}
,

where

A(x) = (1− α1)x+ (1− α2)(1− x) +
(
(α1(1− x))θ + (α2x)θ

)1/θ
,

and (θ, α1, α2) ∈ (1,∞) × [0, 1]2. For α1 = α2 = 1, we recover the Gumbel copula;
whenever α1 6= α2 it will be asymmetric in its components.

2.1.2 Dependence measures
In this section we present some of the most popular dependence measures for bivariate
random vectors (X, Y ). Their goal is to summarize the strength (and direction) of
dependence in just one number.

The dependence measure that is most widely used is the Pearson correlation
coefficient

Corr(X, Y ) = Cov(X, Y )
σXσY

, provided σXσY 6= 0,

where σX and σY are the standard deviations of X and Y respectively. We have
Corr(X, Y ) ∈ [−1, 1], and Corr(X, Y ) = 0 in case of independence. Generally speak-
ing, it measures the strength of linear dependence. Its popularity is caused by the
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widespread use of multivariate normal models, where dependence is strictly linear and
all information on dependence is contained in this number. For general multivariate
distributions however, it reveals some unfavorable features. Foremost, the Pearson
correlation depends on the marginal distributions and is thus not scale-free. As a
consequence, random vectors (X, Y ) whose copula corresponds to perfect depen-
dence do not necessarily have Corr(X, Y ) ∈ {−1, 1}. Embrechts (2009) gives a nice
example, where he shows that the correlation of two log-normal random variables
X ∼ LN (0, 1) and Y ∼ LN (0, 16) is restricted to the interval [−0.00025, 0.01372]. A
naive view on these numbers would lead to very misleading conclusions with possibly
horrendous consequences in application.

Concordance measures

A more adequate concept to measure dependence is concordance. Let (xi, yi)i=1,...,n
be iid observations of a random vector (X, Y ). We call the couple (xi, yi) and (xj, yj)
for i 6= j concordant if

(xi − xj)(yi − yj) > 0

and discordant if

(xi − xj)(yi − yj) < 0.

Concordance means that either xi > xj and yi > yj or xi < xj and yi < yj. Hence,
it describes a type of conformable behavior of the observations xi and yi. A similar
characterization for discordance shows that it describes opposing behavior.

There are several ways to construct dependence measures based on the idea of
concordance and discordance. These measures are usually directly related to the
copula of a random vector and do not depend on its marginal distributions. One such
measure was introduced by Kendall (1938) and is called Kendall’s rank correlation
coefficient or simply Kendall’s τ . It is defined as the probability of concordance
minus the probability of discordance.

Definition 2.2. Let (X̃, Ỹ ) be an independent copy of the random vector (X, Y ).
Then, Kendall’s τ is defined as

τ(X, Y ) = P
(
(X − X̃)(Y − Ỹ ) > 0

)
−P

(
(X − X̃)(Y − Ỹ ) < 0

)
.

In the following Lemma, we summarize the most important properties of Kendall’s
τ (c.f. Embrechts et al., 2003).

Lemma 2.2 (Properties of Kendall’s τ). Let C be the copula of an arbitrary random
vector (X, Y ).

• τ(X, Y ) ∈ [−1, 1].

• C = M ⇔ τ(X, Y ) = 1, i.e. Kendall’s τ is one if and only if X and Y are
perfectly positively dependent.
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Family Kendall’s τ
Gaussian 2/π arcsin(ρ)
Student 2/π arcsin(ρ)
Frank 1 + 4(D(θ)− 1)/θ, with D(θ) =

∫ θ
0

x/θ
ex−1dx

Gumbel 1− 1/θ
Clayton θ/(θ + 2)

Joe 1 +
(
−2 + 2γ + 2 log(2) + Ψ(1

θ
) + Ψ(2+θ

2θ ) + θ

)
/(θ − 2),

with Euler’s constant γ ≈ 0.57721 and Digamma-function Ψ
Tawn

∫ 1
0
x(1−x)
A(x) dA

′(x)

Table 2.1: Kendall’s τ in terms of the copula parameters of selected families.

• C = W ⇔ τ(X, Y ) = −1, i.e. Kendall’s τ is minus one if and only if X and
Y are perfectly negatively dependent.

• C = Π ⇒ τ(X, Y ) = 0, i.e. Kendall’s τ is zero when X and Y are indepen-
dent.

• τ(X, Y ) = 4
∫ 1
0
∫ 1

0 C(u, v)dC(u, v). Hence, Kendall’s τ does only depend on the
copula and not on the marginal distributions.

For many copula families, there is a one-to-one correspondence between the copula
parameter and Kendall’s τ (c.f. Table 2.1).

A non-parametric estimator of Kendall’s τ can be obtained by estimating the prob-
abilities of concordance and discordance by the empirical proportions of concordant
and discordant pairs in a sample.

Definition 2.3. Let
(
x(i), y(i)

)
, i = 1, . . . , n, be iid samples of a continuous ran-

dom vector (X, Y ). The empirical Kendall’s τ is given by

τ̂n(X, Y ) = NC −ND

NC +Nd

,

where NC is the number of concordant and ND the number of discordant pairs
amongst all realizations of

(
x(i), y(i)

)
i=1,...,n

.

There are other popular dependence measures based on the concept of concordance
like Spearman’s ρ (Spearman, 1904) or Blomqvist’s β (Blomqvist, 1950). They will
not be used in the remainder of this thesis, so we omit definitions and proceed to a
different type of dependence.

Tail dependence

Another interesting question regards the dependence between extreme values of two
random variables. Let X ∼ F and Y ∼ G and assume we are interested in the
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Family λU λL
Gaussian 0 0

Student 2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
Frank 0 0
Gumbel 2− 21θ 0
Clayton 0 2−1/θ

Joe 2− 21θ 0
Tawn (α1 + α2)− (αθ1 + αθ2)1/θ 0

Table 2.2: Coefficients of upper and lower tail-dependence in terms of the copula
parameters of selected families.

dependence between extremely high values of them. We could look at the probability
that X is big conditional on Y being big, i.e.

P
(
X > F−1(u)|Y > G−1(u)

)
,

for some value u close to but less than one. The upper tail-dependence coefficient
λU (X, Y ) is defined as the limit of the above probability as u↗ 1, provided it exists.
Similarly, we can define the lower tail-dependence coefficient λL(X, Y ) as

λL(X, Y ) = lim
u↘0

P
(
X < F−1(u)|Y < G−1(u)

)
.

It can be shown that tail-dependence is a property of the copula and independent of
marginal distributions. A definition in terms of the copula is the following (c.f. Joe,
1997).

Definition 2.4. Let C be the copula of a random vector (X, Y ). Then the coef-
ficients of upper and lower tail-dependence are given by

λU(X, Y ) = lim
u↗1

1− 2u+ C(u, u)
1− u ,

λL(X, Y ) = lim
u↘0

C(u, u)
u

.

We say that X and Y are upper/lower tail-dependent whenever λU resp. λL exceeds
zero. For many parametric families, there is an explicit relationship between the
copula parameter and the tail-dependence coefficients (see Table 2.2).

Rotated copulas

Note that some of the presented parametric families have a restricted parameter
space and only allow for positive dependence. Also, some of them only allow for
either upper or lower tail dependence. Rotation of the copula is a convenient way
to extend those families to give more flexibility. In the following definition we use
counter-clockwise rotation.
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Definition 2.5. Let c(u, v) be a copula density. The densities of rotated versions
of this copula are given as follows:

• 90 degrees rotation: c90(u, v) := c(1− u, v)

• 180 degrees rotation: c180(u, v) := c(1− u, 1− v)

• 270 degrees rotation: c270(u, v) := c(u, 1− v).

2.1.3 Visualization
In statistics it is often very helpful to have a good visualization of the objects of
interest. In the following we will explain common methods that proved beneficial for
the visualization of bivariate copulas.

The first and most popular tool is the scatter plot of copula samples where each
observation is represented by a point in the unit square. In Figure 2.1 this is shown
for simulated data of selected parametric families. Parameters were chosen to give
scenarios of weak (τ = 0.3) and strong (τ = 0.7) dependence. The sample size is
n = 500. The strength of dependence is clearly distinguishable and asymmetries can
be detected for the Clayton, Gumbel and Tawn copulas. In data analysis scatter
plots often give a first indication about the appropriateness of a parametric model —
despite the difficulties one might have to distinguish between some of the families.

The most obvious way to visualize a bivariate copula density on the other hand,
is to plot it as a surface in the three-dimensional space. In Figure 2.2 we give these
so-called perspective plots for the copulas considered in Figure 2.1. We can identify
the general shape of the densities as well as high- and low density regions. Still,
some of the families (e.g. Gaussian and t-copula) are very hard to distinguish. There
is also one problem with some of the copulas as we see tails extending over the
bounds of the plots. In fact, the density values of many copula families tend to
infinity at some corner of the unit square. Unfortunately, this constitutes a rule
rather than an exception and the problem becomes even more prominent when
the strength of dependence is increased. In those cases, the perspective plot is a
somewhat inconvenient tool for visualization.

A very powerful tool that overcomes this issue is the marginal normal contour
plot. Instead of looking at the original copula density with uniform margins, the
copula is coupled with standard normal margins resulting in a meta-copula density
defined as

f(x, y) = c
(
Φ(x),Φ(y)

)
φ(x)φ(y).

The contours of this transformed density form the marginal normal contour plot.
It is given for all the previous examples in Figure 2.3. Each copula family shows a
characteristic shape. Furthermore, the strength of dependence is identifiable by the
width of the contours, and tail-dependence is usually indicated by a spiky shape in
the tail.
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0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

v

(k) Gumbel, τ = 0.7
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Figure 2.1: Scatter plots of simulated copula data for weak (τ = 0.3) and strong
(τ = 0.7) dependence. Sample size is n = 500.



Chapter 2 Theoretical background 13

0.2
0.4

0.6
0.80.2

0.4

0.6

0.8

0

2

4

6

8

u

v

c

(a) Gaussian, τ = 0.3

0.2
0.4

0.6
0.80.2

0.4

0.6

0.8

0

2

4

6

8

u

v

c

(b) Student, τ = 0.3

0.2
0.4

0.6
0.80.2

0.4

0.6

0.8

0

2

4

6

8

u

v

c

(c) Frank, τ = 0.3

0.2
0.4

0.6
0.80.2

0.4

0.6

0.8

0

2

4

6

8

u

v

c

(d) Gaussian, τ = 0.7
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(k) Gumbel, τ = 0.7
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Figure 2.2: Perspective plots of copula densities for weak (τ = 0.3) and strong
(τ = 0.7) dependence.
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Figure 2.3: Marginal normal contour plots of copula densities for weak (τ = 0.3)
and strong (τ = 0.7) dependence.
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Example 2.11 (Gaussian mixture copula, continued). Let us shed some light on
the construction and appearance of Gaussian mixture copulas. We will illustrate
two specific scenarios that will be used in a simulation study in Section 3.6. The
parameters give a scenario with weak (τ = 0.3) and one with strong (τ = 0.7)
dependence and are specified as follows:

τ Parameters
0.3 µ = ( 2

2 ), µ̊ = ( 6
1.6 ),Σ = ( 1 0.9

0.9 1 ), Σ̊ = ( 4 2
2 4 ), α = 0.65

0.7 µ = ( 2
2 ), µ̊ = ( 6

6 ),Σ = ( 1.35 0.8
0.8 1 ), Σ̊ = ( 2.1 1.4

1.4 2.1 ), α = 0.65
In Figure 2.4 (a) there are scatter-, perspective and contour plots of the Gaussian
mixture distribution with weak dependence. The distribution is bimodal with each
mode being centered at µ and µ̊ respectively. When going to the copula level in (b),
the two-part structure remains. Although, the locations of the centers as well as the
overall structure of the density change. Analogue observations can be made for the
scenario with strong dependence in Figures 2.4 (c) and (d). Note also that in both
scenarios the tails of the mixture copula appear to be bounded. We want to stress,
however, that this does not hold for every Gaussian mixture copula.

2.1.4 Parametric copula estimation

Assume we are given iid samples
(
u

(i)
1 , . . . , u

(i)
d

)
, i = 1, . . . , n, of a random vector

(U1, . . . , Ud) ∼ C and want to estimate the copula C. The most popular approach in
parametric models is to assume a particular family and estimate its parameter(s) by
maximum likelihood.

Definition 2.6. Let (U1, . . . , Ud) ∼ C
(·)
θ , where θ ∈ Θ, and Θ ⊂ Rp, p ∈ N,

is the family’s parameter space. Denote further c(·)
θ as the density of C(·)

θ . The
maximum likelihood estimator of the parameter vector θ is defined as

θ̂MLE
n = arg max

θ∈Θ

n∏
i=1

c
(·)
θ

(
u

(i)
1 , . . . , u

(i)
d

)
.

For bivariate estimation of one-parametric families, an alternative estimation ap-
proach is motivated by the one-to-one relationship of Kendall’s τ and the parameter
for some families. By exploiting this relationship we can obtain a parameter estimate
based on the empirical Kendall’s τ .

Definition 2.7. Let (U1, U2) ∼ C
(·)
θ , where θ ∈ Θ, where Θ ⊂ R is the family’s

parameter space. Assume further that there exists a bijective function ψ : Θ →
[−1, 1], such that ψ(θ) = τ(U1, U2). An estimator of θ obtained by inversion of
empirical Kendall’s τ is defined as

θ̂itaun = ψ−1
(
τ̂n(U1, U2)

)
.



16 2.1 Dependence modeling with copulas

0 2 4 6 8 10 12

-4
-2

0
2

4
6

8

u

v

−2
0

2
4

6
8

−2

0

2

4

6

8

0.05

0.10

0.15

0.20

x

y

f

-2 0 2 4 6 8

-2
0

2
4

6
8

(a) Gaussian mixture distribution, τ = 0.3. Scatter (left), perspective (middle)
and contour plot (right).
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and contour plot (right).
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Figure 2.4: Exploratory plots for the Gaussian mixture distribution and the corre-
sponding Gaussian mixture copula (see Example 2.11).
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Whenever the parametric assumption is true, i.e. the true copula C belongs to the
chosen family, both of the presented estimators are consistent and give very good
convergence rates. One should be careful, however, since consistency is lost, when
the model is misspecified.

Model selection

There is an immediate question arising from this issue: How to choose the parametric
family? Usually, the parameter is estimated for several different parametric families
and the best model is selected by considering information criteria. The most popular
criteria are Akaike’s information criterion (AIC) (Akaike, 1974)

AIC(·)
n := −2

n∑
i=1

ln
(
c

(·)
θ̂n

(
u

(i)
1 , . . . , u

(i)
d

))
+ 2p,

and the Bayesian information criterion (BIC) (Schwarz, 1978)

BIC(·)
n := −2

n∑
i=1

ln
(
c

(·)
θ̂n

(
u

(i)
1 , . . . , u

(i)
d

))
+ log(n)p,

where p is the number of parameters of the family and θ̂n is a parameter estimate.
The ‘best’ model is the one that minimizes the information criterion. When the
number of parameters across the considered models is the same, both criteria select
the model that gives the highest likelihood. Otherwise, both models give a penalty
for increasing the number of parameters in order to avoid overfitting. For n ≥ 8, BIC
employs a higher penalty than AIC.

Pseudo-observations

In basically all real-life problems, we are not provided with samples (u(i)
1 , . . . , u

(i)
d )

from a copula directly, but with samples (x(i)
1 , . . . , x

(i)
d ) from some general multivariate

distribution. In the spirit of Sklar’s Theorem we can use the distribution function Fj
of Xj and define the copula sample as Fj(x(i)

j ) =: u(i)
j for all j = 1, . . . , d, i = 1, . . . , n.

The true marginal distributions Fj are usually unknown and have to be estimated
first. A popular method in this context is to use the empirical distribution as an
estimator of Fj. Copula samples that are obtained in this manner are usually called
pseudo-samples or pseudo-observations. The attribute ‘pseudo’ comes from the fact
that they aren’t truly samples from the copula, but estimated copula samples instead.
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Definition 2.8. Let (X1, . . . , Xd) be a random vector with marginal distributions
F1, . . . , Fd. Provided an iid sample (x(i)

1 , . . . , x
(i)
d )i=1,...,n of this random vector, we

take the empirical distribution

F̂j,n(xj) = 1
n+ 1

n∑
i=1
1
(
x

(i)
j ≤ xj

)
,

as an estimator of Fj for all j = 1, . . . , d. Pseudo-observations of the random
vector (U1, . . . , Ud) =

(
F1(X1), . . . , Fd(Xd)

)
are then defined as

(
û

(i)
1 , . . . , û

(i)
d

)
=
(
F̂1,n

(
x

(i)
1

)
, . . . , F̂d,n

(
x

(i)
d

))
, for all i = 1, . . . , n.

2.1.5 Vine copulas
Vine copula models follow the idea that any d-dimensional copula density can be
decomposed into a product of d(d − 1)/2 bivariate (conditional) copula densities
(Bedford and Cooke, 2001). Equivalently, we can build arbitrary d-dimensional copula
densities by using only bivariate building blocks. Therefore, vine copulas are also
called pair-copula construction (PCC). Recommended readings are Aas et al. (2009),
Kurowicka and Joe (2010) and Stöber and Czado (2012).

An exemplary PCC of a 3-dimensional copula density corresponding to a random
vector (U1, U2, U3) ∼ C is

c(u1, u2, u3) = c1,2(u1, u2) · c1,3(u2, u3) · c1,3;2
(
C1|2(u1|u2), C3|2(u3|u2);u2

)
.

Here, C1,2 is the copula of (U1, U2), C2,3 is the copula of (U2, U3) and C1,3;2(·, ·;u2)
is the copula of

(
C1|2(U1|u2), C3|2(U3|u2)

)
, where C1|2(·|u2) and C3|2(·|u2) are the

conditional distribution functions of U1|U2 = u2 and U3|U2 = u2 respectively. Note
that, in general, the conditional copula C1,3;2 may be different for each value u2. As
such a model can be very complex, one often assumes that the dependence on the
conditioning variables (here u2) can be ignored and, thus, only unconditional copulas
are involved. In this case we speak of the simplifying assumption or a simplified PCC.
However, the arguments C1|2(u1|u2) and C3|2(u3|u2) may still depend on the specific
value of u2. A discussion of the appropriateness of this assumption can be found
in Hobæk Haff et al. (2010), classes of copulas where the simplifying assumption
is satisfied are given in Stöber et al. (2012), estimation of non-simplified PCCs is
tackled by Acar et al. (2012). In this thesis we will always assume that the simplifying
assumption is valid.

Regular vine trees

A crucial observation is that the decomposition of the density is not unique. In higher
dimensions a myriad of different decompositions is possible. Bedford and Cooke (2002)
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Figure 2.5: Example of a regular vine tree sequence.

discuss a graphical method to organize the structure of a d-dimensional vine copula
in terms of linked trees Tk = (Vk, Ek), k = 1, . . . , d− 1. In this representation Vk is
the set of nodes and Ek is the set of edges in tree Tk (for fundamentals of graph
theory, see e.g. Gross and Yellen, 2005).

Definition 2.9. A sequence V := (T1, . . . , Td−1) of trees is called a regular vine
(R-vine) tree sequence on d elements if the following conditions are satisfied:

(i) T1 is a tree with nodes V1 = {1, . . . , d} and edges E1.

(ii) For k ≥ 2, Tk is a tree with nodes Vk = Ek−1 and edges Ek.

(iii) (Proximity condition) Whenever two nodes a, b of Tk+1 are joined by an
edge, the edges a, b in tree Tk must share a common node.

An example of an R-vine tree sequence for d = 5 is given in Figure 2.5. For the
annotation of the edges in each tree we use a specific scheme. For each e ∈ Ek,
k = 1, . . . , d− 1 we define the complete union of e as

Q(e) :=
{
i ∈ N|∃e1 ∈ E1, . . . ek−1 ∈ Ek−1 : i ∈ e1 ∈ . . . ,∈ ek−1 ∈ e

}
.

We define the conditioning set of an edge e = {a, b} as De := Qa ∩ Qb and the
conditioned sets as ae := Q(a) \De, be := Q(b) \De. Finally, we annotate each edge
by {ae, be;De}. Note that ae and be consist of just a single element each.

In layman’s terms this can be understood as follows: To annotate an edge e ∈ Tk,
k ≥ 2, we look at all the numbers appearing in the annotation of the two nodes in Tk
that are joined by e. All numbers that appear in both nodes will be the conditioning
set and the two numbers that appear in just one of the nodes will give the two
conditioned sets.
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Regular vine copulas

To relate such a sequence of trees to a PCC, we identify each edge in the sequence
with a bivariate copula.

Definition 2.10. A copula C corresponding to a random vector (U1, . . . , Ud),
where Uj ∼ U [0, 1], j = 1, . . . , d, is called a regular vine (R-vine) copula, if
there is a tuple (V , C) such that

(i) V is a regular vine tree sequence on d elements.

(ii) C =
{
Ce|e ∈ Ek, k = 1, . . . , d− 1

}
, where Ce is a bivariate copula.

(iii) Each e ∈ Ek, k = 1, . . . , d − 1, can be identified as {ae, be;De}, and Ce is
the copula corresponding to (Uae , Ube)|(Ul)l∈De = (ul)l∈De.

Note that the set notation e = {a, b} does not induce any ordering of its elements.
Therefore, the order of the indices ae, be is not uniquely determined and can be
chosen arbitrarily. We should, however, pay attention to this order when the copula
Cae,be;De is not symmetric in its arguments. In this case it would be more appropriate
to use directed graphs, but we will stay with our notation for simplicity.

Proposition 2.3. Let C be an R-vine copula corresponding to the tuple (V , C). If
all copulas in C admit a density, the density of C can be written as

c(u) =
d−1∏
k=

∏
e∈Ek

cae,be;De

(
Cae|De(uae|uDe), Cbe|De(ube|uDe)

)
,

where uDe = (uj)j∈De is a subvector of u = (u1, . . . , ud) and Cje|De is the conditional
distribution of Uje|UDe = uDe, for je ∈ {1, . . . , d}.

In order to explicitly write down the full density of a regular vine copula it is often
convenient to introduce the short notation

uje|De := Cje|De(uje|uDe).

Example 2.12. The density of an R-vine copula corresponding to the tree sequence
in Figure 2.5 is

c(u1, . . . , u5) = c1,2(u1, u2) · c1,3(u1, u3) · c3,4(u3, u4) · c3,5(u3, u5)
· c2,3;1(u2|1, u3|1) · c1,4;3(u1|3, u4|3) · c1,5;3(u1|3, u5|3)
· c2,4;1,3(u2|1,3, u4|1,3) · c4,5;1,3(u4|1,3, u5|1,3)
· c2,5;1,3,4(u2|1,3,4, u5|1,3,4).

The density of a regular vine copula involves conditional distributions of the form
Cje|De , where je ∈ {ae, be}. WhenDe has more than one element, it is not immediately
clear how to get those functions. Fortunately, they can be expressed as a recursive
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application of conditional distributions corresponding to bivariate copulas contained
in C. Because of the frequent appearance of such functions, they are given an own
name.

Definition 2.11. Let U1, U2 ∼ U [0, 1] and C be the copula of (U1, U2). The
h-functions corresponding to C are defined as

h1|2(u1|u2) = C1|2(u1|u2) = ∂C(u1, u2)
∂u2

= P (U1 ≤ u1|U2 = u2),

h2|1(u2|u1) = C2|1(u2|u1) = ∂C(u1, u2)
∂u1

= P (U2 ≤ u2|U1 = u1).

Now let j′e ∈ De be another index such that Cje,j′e;De\j′e ∈ C and define D′e := De \ j′e.
Then, we can write

Cje|De(uje|uDe) = Cje|j′e;D′e

(
Cje|D′e(uje|uD′e)|Cj′e|D′e(uj′e|uD′e)

)
= hje|j′e;D′e

(
Cje|D′e(uje|uD′e)|Cj′e|D′e(uj′e|uD′e)

)
, (2.2)

where hje|j′e;D′e is the h-function corresponding to the random vector

(
Cje|D′e(Uje|uD′e)|Cj′e|D′e(Uj′e|uD′e)

)
. (2.3)

Subsequently, the conditional distributions Cje|D′e and Cj′e|D′e appearing in the ar-
guments can be rewritten in an equal manner, then their arguments, and so on.
Eventually, we end up with a chain of h-functions.

Example 2.13. Consider an R-vine copula corresponding to the R-vine tree sequence
given in Figure 2.5. We have

C3|1,2(u3|u1, u2) = h3|2;1
(
h3|1(u3|u1)

∣∣∣h2|1(u2|u1)
)
.

Estimation

Next, we want to discuss the estimation of a regular vine copula. In parametric
models, estimates can be obtained by maximization of the full likelihood. As the
number of parameters increases drastically with dimension, a sequential estimation
approach is often used to find good starting values for the optimization. In this
approach, only bivariate estimations are conducted. This method will later prove
valuable for nonparametric estimation as well.
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Definition 2.12. Let C be an R-vine copula corresponding to the tuple (V , C)
and assume we are given iid samples (u(i)

1 , . . . , u
(i)
d )i=1,...,n from C. A sequential

estimate of an R-vine copula density is obtained as follows:

1. For all e ∈ E1, obtain estimates for cae,be.

2. For k = 2, . . . , d− 1:

For all e ∈ Ek and j = ae, be:

(i) Let j′ ∈ De be another index such that Cj,j′;De\j′ ∈ C and define
D′e := De \ j′.

(ii) Based on the sample
(
u

(i)
j|D′e

, u
(i)
j′|D′e

)
i=1,...,n

, obtain an estimate of the
h-function hj|j′;D′e which we will denote ĥj|j′;D′e.

(iii) Define u(i)
j|De

:= ĥj|j′;D′e

(
u

(i)
j|D′e

∣∣∣u(i)
j′|D′e

)
, i = 1, . . . , n.

(iv) Based on
(
u

(i)
ae|De

, u
(i)
be|De

)
i=1,...,n

obtain an estimate of the copula density
cae,be;De.

In plain words, sequential estimation works as follows: In the first tree, each node
corresponds to one random variable. We use samples of these random variables to
obtain estimates of all pair-copulas that correspond to the edges of the tree. The
nodes of the second tree can be identified with random variables (c.f. equation
(2.3)), but we are not directly provided with samples from them. Thus, we first
estimate the h-functions involved in (2.3) and apply them to obtain pseudo-samples
corresponding to each node. Based on the pseudo-samples, we can then estimate
the copulas corresponding to edges in the second tree, and so on. At the end of the
procedure we have estimates for all copula densities and all h-functions that are
required to evaluate the density of the full R-vine copula.

Structure selection

In order to tell an estimation algorithm which pair-copulas and h-functions have to
be estimated, we always have to specify an R-vine tree sequence in advance. The
tree sequence corresponding to an R-vine copula model is also called the structure of
the vine. The structure can have a notable influence on the estimator’s performance.
Sometimes a priori expert knowledge in the field of application is available and gives
some intuition about a good structure. In other cases, automatic structure selection
procedures are available. Czado et al. (2013) give a review over recent developments.

The most popular procedure is Dißmann et al. (2013)’s heuristic which sequentially
selects the tree with the highest cumulative strength of dependence between the
corresponding variables. To do that, all possible h-functions of a selected tree have
to be estimated, before we can advance to the next higher level. Although a variety
of dependence measures can be used, we will focus on Kendall’s τ for convenience.
The heuristic is summarized in the following definition.



Chapter 2 Theoretical background 23

Definition 2.13. Assume we are given iid samples (u(i)
1 , . . . , u

(i)
d )i=1,...,n from a

random vector (U1, . . . , Ud) ∼ C. The sequential structure selection method
works as follows:

1. For all possible pairs {a, b}, 1 ≤ a < b ≤ d, calculate τ̂a,b as the empirical
Kendall’s τ of the corresponding variables.

2. Define E1 as the edges of the spanning tree that maximizes∑
e={ae,be}∈E1

τ̂ae,be .

3. For all e ∈ E1, obtain estimates ĥae|be and ĥbe|ae. Then define pseudo-
observations

u
(i)
ae|be

:= ĥae|be

(
u(i)
ae

∣∣∣u(i)
be

)
, u

(i)
be|ae

:= ĥbe|ae

(
u

(i)
be

∣∣∣u(i)
ae

)
, i = 1, . . . , n.

4. For all k = 2, . . . , d− 1:

(i) For all conditional pairs {a, b;D} that fulfill the proximity condition,
calculate τ̂a,b;D as the empirical Kendall’s τ of the corresponding pseudo
observations.

(ii) Define Ek as the edges of the spanning tree that maximizes∑
e={ae,be;De}∈Ek

τ̂ae,be;De .

(iii) For all e ∈ Ek, obtain estimates ĥae|be;De and ĥbe|ae;De. Then define
pseudo-observations

u
(i)
ae|be,De

:= ĥae|be;De

(
u

(i)
ae|De

∣∣∣u(i)
be|De

)
, u

(i)
be|ae,De

:= ĥbe|ae;De

(
u

(i)
be|De

∣∣∣u(i)
ae|De

)
,

for i = 1, . . . , n.

2.2 Bivariate kernel density estimation

In the remainder of this chapter, we will introduce kernel density estimation (KDE)
as a non-parametric method for the estimation of probability densities. Univariate
KDE was introduced by Rosenblatt (1956) and Parzen (1962). Wand (1992) and
Wand and Jones (1993) elaborately discuss a natural extension to the multivariate
case. For a more extensive introduction, the reader is referred to Wand and Jones
(1994) and Simonoff (1996). We will put our focus on the bivariate case directly, as
this will be our main interest in the next chapter.
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2.2.1 The estimator

Let (X, Y ) ∈ R2 be a random vector with density f and assume we are given iid
copies (Xi, Yi)i=1,...,n.1 Recall that the density can be defined as

f(x, y) = ∂2F (x, y)
∂x∂y

= lim
εx→0

lim
εy→0

F (x+ εx, y + εy)− F (x− εx, y − εy)
4εxεy

, (2.4)

where F is the cdf corresponding to f . A natural estimator of the density could be
obtained by fixing values for εx, εy in (2.4) and using the empirical cdf , F̂n, as an
estimator for F . For simplicity, take εx = εy = b, for some small b > 0. The resulting
estimator is

f̂n(x, y) = F̂n(x+ b, y + b)− F̂n(x− b, y − b)
4b2

=
#
{

(Xi, Yi) ∈ [x− b, x+ b]× [y − b, y + b]
}
/n

4b2 . (2.5)

The estimator calculates the fraction of all (Xi, Yi) that lie in a (rectangular) neigh-
borhood around the point (x, y) and divides it by the neighborhood’s area. The
parameter b controls the size of the neighborhood and is usually called the bandwidth
of the estimator.

Note that the estimator in (2.5) can also be rewritten as

f̂n(x, y) = 1
nb2

n∑
i=1

K

(
x−Xi

b

)
K

(
x− Yi
b

)
, (2.6)

where the kernel K is defined as

K(z) :=

1/2 if − 1 ≤ z ≤ 1
0 else.

An estimator of the form (2.6) is called a bivariate kernel density estimator. In the
above case, the kernel K corresponds to the uniform probability density on [−1, 1].
In general, one could use any probability density function as the kernel K and the
resulting estimator will be a proper probability density function. However, it is usually
assumed that the kernel is bounded, i.e. K(z) <∞ for z ∈ R, and symmetric. This
gives the resulting estimator nice properties and facilitates its theoretical analysis.

Let us subsume our considerations with a formal definition. Take K as any
symmetric, bounded probability density function. For b > 0, we will use the short
notation Kb(x) = K(x/b)/b.

1In the literature on nonparametric estimation, often iid copies are considered rather than iid
observations. This way, one wants to emphasize that the estimator is a random variable itself. We
will follow this convention in the larger part of this thesis. It is, however, a mere technicality and
should not cause any confusion.
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Figure 2.6: Illustration of the kernel density estimator. (a) 100 samples of two
independent standard normal random variables. Five observations are marked as
filled circles. (b) Kernel density estimator applied to the marked samples. (c) Kernel
density estimator applied to the full sample. Bandwidths were set equally (bn = 2)
in both cases.

Definition 2.14. The kernel density estimator with bandwidth parameter
bn > 0 is given by

f̂n(x, y) = 1
n

n∑
i=1

Kbn

(
x−Xi

)
Kbn

(
y − Yi

)
, for all (x, y) ∈ R2.

There are two ways to interpret the kernel density estimator — from a local and global
point of view. The local view essentially corresponds to our previous considerations.
Here, we see a point estimate as a weighted average of frequencies in a neighborhood
of that point. The weighting is conducted according to the kernel function K and
the size of the neighborhood is controlled by the bandwidth bn.

From a global point of view, an estimate of the density is constructed as follows:
Centered upon each observation, a ‘bump’ in the shape of a scaled kernel, K(·/bn)/bn,
is placed and all the bumps are averaged to give the whole surface of the density.
This is illustrated in Figure 2.6. In (a) we see simulated data of two independent
standard normal random variables. Five observations are marked as thick, filled
circles. In (b) the kernel density estimator was applied to the marked samples only.
We can clearly see distinct bumps. They have the shape of a Gaussian density, since
it was used as the kernel function. One of the bumps appears to be higher which is
caused by an overlap between two bumps that add up to give a higher peak. In the
(c) the kernel density estimator was applied to the full sample. The single bumps
are not distinguishable any longer and the estimate looks approximately like the
bivariate density of independent standard normal random variables.

Note that the bandwidth bn in the above definition is annotated to depend on n.
This is done in order to facilitate asymptotic analysis of the estimator to which we
turn next.
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2.2.2 Properties
An important tool to analyze the behavior of a kernel estimator is to consider
asymptotic approximations of bias and variance. In the following, we state and prove
those for the kernel density estimator. We will not need this particular result in the
remainder of the thesis, but the proof may be instructive. It makes use of the basic
techniques that are also a key tool for the derivation of asymptotic approximations
for more complicated estimators.

Proposition 2.4. Let f be supported on R2, twice continuously differentiable and
let bn → 0 and nb2

n →∞ as n→∞. Denote further, fx := ∂f/∂x, fxx := ∂2f/∂x2,
and so forth. Then for all (x, y) ∈ R2,

Bias
[
f̂n(x, y)

]
= σ2

Kb
2
n

2
[
fxx(x, y) + fyy(x, y)

]
+ o

(
b2
n

)
Var

[
f̂n(x, y)

]
= d2

K

nb2
n

f(x, y) + o

(
1
nb2

n

)
,

where

σ2
K =

∫
R
s2K(s)ds and dK =

∫
R
K2(s)ds.

Proof. Let us start with derivation the of the bias. First, we calculate the expectation
of the estimator:

E
[
f̂n(x, y)

]
= E

[
1
n

n∑
i=1

Kbn

(
x−Xi

)
Kbn

(
y − Yi

)]

= E
[
Kbn

(
x−X

)
Kbn

(
y − Y

)]

=
∫
R

∫
R
Kbn

(
x− s

)
Kbn

(
y − t

)
f(s, t)dsdt

= 1
b2
n

∫
R

∫
R
K

(
x− s
bn

)
K

(
y − t
bn

)
f(s, t)dsdt, (2.7)

where the second equality holds because (Xi, Yi)i=1,...,n are iid copies of the random
vector (X, Y ). Next, we will use the change of variables s = x− bnw, t = y− bnz and
a second-order Taylor approximation for f in the point (x, y):

(2.7) =
∫
R

∫
R
K
(
w
)
K
(
z
)
f(x− bnw, y − bnz)dwdz

=
∫
R

∫
R
K
(
w
)
K
(
z
)[
f(x, y)− fx(x, y)bnw − fy(x, y)bnz

+ 1
2fxx(x, y)b2

nw
2 + 1

2fyy(x, y)b2
nz

2 + o
(
b2
n

)]
dwdz. (2.8)

Now recall that K is a symmetric probability density on R. In particular,∫
R
K(w)dw = 1,

∫
R
wK(w)dw = 0,
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and the second and third terms in brackets in (2.8) vanish. This gives

(2.8) = f(x, y) + b2
n

2

[
fxx(x, y)

∫
R
w2K(w)dw + fyy(x, y)

∫
R
z2K(z)dz

]
+ o

(
b2
n

)
= f(x, y) + σ2

Kb
2
n

2
[
fxx(x, y) + fyy(x, y)

]
+ o

(
b2
n

)
, (2.9)

and finally

Bias
[
f̂n(x, y)

]
= E

[
f̂n(x, y)

]
− f(x, y)

= σ2
Kb

2
n

2
[
fxx(x, y) + fyy(x, y)

]
+ o

(
b2
n

)

as claimed.
For the variance we have that

Var
[
f̂n(x, y)

]
= E

[
f̂ 2
n(x, y)

]
− E

[
f̂n(x, y)

]2
,

Using independence of the copies, the first part can be calculated as

E
[
f̂ 2
n(x, y)

]
= E

[
1
n2

n∑
i=1

n∑
j=1

Kbn(x−Xi)Kbn(y − Yi)Kbn(x−Xj)Kbn(y − Yj)
]

= 1
n2

[∑
i=j

E
[
K2
bn

(x−X)K2
bn

(y − Y )
]

+
∑
i 6=j

E
[
Kbn(x−X)Kbn(y − Y )

]2]

= 1
n2

[
nE
[
K2
bn

(x−X)K2
bn

(y − Y )
]

+ n(n− 1)E
[
Kbn(x−X)Kbn(y − Y )

]2]
.

We have already seen that E
[
f̂n(x, y)

]
= E

[
Kbn(x−X)Kbn(y − Y )

]
. Together, this

gives

Var
[
f̂n(x, y)

]
= E

[
f̂ 2
n(x, y)

]
− E

[
f̂n(x, y)

]2
= 1
n

E
[
Kbn(x−X)2Kbn(y − Y )2

]
︸ ︷︷ ︸

=:V1

− 1
n

E
[
Kbn(x−X)Kbn(y − Y )

]2
︸ ︷︷ ︸

=:V2

.

(2.10)

Now put again s = x − bnw, t = y − bnz and expand the first part of (2.10) by a
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first-order Taylor approximation.

V1 = 1
nb2

n

∫
R

∫
R
K2
(
w
)
K2
(
z
)
f(x− bnw, y − bnz)dwdz

= 1
nb2

n

∫
R

∫
R
K2
(
w
)
K2
(
z
)[
f(x, y)− fx(x, y)bnw − fy(x, y)bnz + o(bn)

]
dwdz

= 1
nb2

n

∫
R

∫
R
K2
(
w
)
K2
(
z
)
f(x, y)dwdz

− 1
nbn

∫
R

∫
R
K2
(
w
)
K2
(
z
)[
fx(x, y)w + fy(x, y)z + o

(
1
nbn

)]
dwdz︸ ︷︷ ︸

= o

(
1
nb2

n

)

= 1
nb2

n

∫
R

∫
R
K2
(
w
)
K2
(
z
)
f(x, y)dwdz + o

(
1
nb2

n

)
.

The second part of (2.10) can be easily approximated by recalling that we already
calculated the expectation to be of order O(b2

n), see (2.9). Thus,

V2 = 1
n

E
[
Kbn(x−X)Kbn(y − Y )

]2 (2.9)= 1
n

(
O(b2

n)
)2

= O

(
b4
n

n

)
= o

(
1
nb2

n

)
,

where the last equality holds due to
b4
n/n

1/(nb2
n) = b6

n → 0.

Taking both things together we finally get

Var
[
f̂n(x, y)

]
= V1 + V2

= 1
nb2

n

∫
R

∫
R
K2
(
w
)
K2
(
z
)
f(x, y)dwdz + o

(
1
nb2

n

)

= d2
K

nb2
n

f(x, y) + o

(
1
nb2

n

)
.

The mean integrated squared error (MISE) is a measure of the estimator’s accuracy
and is given by the sum of squared bias and variance, integrated over all (x, y) ∈ R2.
An asymptotic approximation can easily be given with the above results.

Corollary 2.5. Under the assumptions of Proposition 2.4, an asymptotic approxi-
mation of the mean integrated squared error can be given as

MISE
[
f̂n(x, y)

]
= σ4

Kb
4
n

4

∫
R

∫
R

[
fxx(x, y) + fyy(x, y)

]2
dxdy + d2

K

nb2
n

+ o

(
1
nb2

n

)
+ o

(
b2
n

)
,

where

σ2
K =

∫
R
s2K(s)ds and dK =

∫
R
K2(s)ds.
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(c) bn = 4

Figure 2.7: The effect of the bandwidth parameter in kernel density estimation. (a)
True density of a bimodal distribution. (b) Undersmoothed kernel density estimate
on simulated data (n = 100). (c) Oversmoothed kernel density estimate on simulated
data (n = 100).

All derived expressions depend on the bandwidth bn as well as the kernel K. Thus,
their choice affects the properties of the estimator. Their role will be discussed in
more detail in the next sections.

2.2.3 The bandwidth
In this section we want to shed some light on the role of the bandwidth in kernel
density estimation. To do so, let us assume that we have fixed a kernel function K.
Recall the asymptotic approximations of bias and variance were given as

Bias
[
f̂n(x, y)

]
= σ2

Kb
2
n

2
[
fxx(x, y) + fyy(x, y)

]
+ o

(
b2
n

)
Var

[
f̂n(x, y)

]
= d2

K

nb2
n

f(x, y) + o

(
1
nb2

n

)
,

with some constants σK and dK . In general, it is desirable to have a small bias as
well as a small variance. However, the bias is decreasing in bn whereas the variance
is increasing in bn.

This phenomenon is usually called the bias-variance trade-off. and is illustrated
in Figure 2.7. Figure 2.7a shows the density of a Gaussian mixture distribution
with equal mixing probabilities, identity covariance matrices and means at (−1,−1)
and (1, 1). It has two distinct modes at the means of the two parts of the mixture.
Figure 2.7b shows a kernel density estimate on simulated data (n = 100) from this
distribution, where we used bn = 1 as the bandwidth. We can recognize the two true
modes of the distribution, but it actually seems as if there were more than just the
two. Overall, the estimated density is very wiggly and appears to have overfit the
data, i.e. that it shows features of the sample that are due to random variation. Such
an estimate is called undersmoothed and is a consequence of a too small bandwidth.
In this case, the estimator has high variance and small bias. Figure 2.7c shows
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Kernel name K(x) σ2
K dK

Uniform 1
21[−1,1]

1
2

1
3

Gaussian 1√
2πe
−x2/2 1 1

2π

Epanechnikov 3
4(1− x2)1[−1,1]

1
5

3
5

Biweight 15
16(1− x2)21[−1,1]

1
7

5
7

Triweight 35
32(1− x2)31[−1,1]

1
9

350
429

Cosine π
4 cos(πx/2)1[−1,1] 1− 8

π2
π2

16

Table 2.3: Commonly used kernel functions and the resulting constants σ2
K and dK .

another kernel density estimate, where this time we used bn = 4. The estimate is
extremely smooth but important features of the density were ‘smoothed away’. In
particular, the two modes are not distinguishable any longer. Such an estimate is
called oversmoothed and is a consequence of a too large bandwidth. In this case, the
estimator has small variance and large bias.

A good choice of the bandwidth should balance the two opposing forces. In theory,
it is often possible to derive an asymptotically optimal bandwidth by minimizing the
leading terms of the asymptotic approximation of the MISE, commonly referred to as
asymptotic mean integrated squared error (AMISE). However, this involves a priori
knowledge (or approximation) of the true density. Popular data-driven selection
strategies are based on cross-validation, but are computationally intensive. The most
popular instances are least-squares cross-validation (Rudemo, 1982) and biased cross
validation (Scott and Terrell, 1987).

2.2.4 The kernel
In Proposition 2.4 we found that bias and variance also depend on the kernel
function through the constants σ2

K and dK respectively. Epanechnikov (1969) derived
an optimal kernel in the AMISE sense, which was subsequently named for him. This
and other commonly used kernel functions as well as their respective values for σ2

K

and dK are listed in Table 2.3. All of these kernels are symmetric and bounded
probability density functions.

In univariate kernel density estimation one can explicitly calculate the asymptotic
efficiency of the estimator for a given kernel (assuming optimal choice of the band-
width). It turns out that the relative loss in efficiency compared with the optimal
Epanechnikov kernel is less than 2% for Biweight, Triweight and Cosine kernels, and
less than 8% for Uniform and Gaussian kernels (c.f. Silverman, 1986). Hence, the
choice of kernel has a rather small impact on the overall accuracy of kernel density
estimators, especially compared with the choice of bandwidth. As a consequence,
kernel selection is usually ignored, as each of the presented kernel functions consti-
tutes a viable choice. In this thesis, we used Epanechnikov or Gaussian kernels which
are the two most popular choices.



Chapter 3

Kernel estimation of bivariate copula
densities

This chapter deals with the estimation of an unknown bivariate copula density using
kernel techniques. We will see that the boundedness of the support of a copula
density creates the need for more advanced techniques than the one considered in
Section 2.2. In particular, we will consider three different ways to cope with this
problem: With data augmentation in the mirror-reflection technique, with the use
of beta kernels to directly match the bounded support, and by a transformation
technique.

In the remainder of this chapter, we consider the following general setup. Let
U, V ∼ U [0, 1] be random variables with joint distribution C and corresponding
density c : [0, 1]2 → R. We assume to have iid copies (Ui, Vi)i=1,...,n from the copula
C and our interest is in estimating the density c.

3.1 A naive estimator

Recall the bivariate kernel density estimator (see Definition 2.14) which when applied
to a copula sample, we will denote by ĉn:

ĉn(u, v) = 1
n

n∑
i=1

Kbn

(
u− Ui

)
Kbn

(
v − Vi

)
, for all (u, v) ∈ [0, 1]2,

where we again used the notation Kb(·) = 1/bK(·/b), K is a symmetric, bounded
probability density function on R2 and bn > 0. Now consider a data point close to a
boundary of the unit square. For such a point, the estimator will put a considerable
amount of probability mass outside the unit square. This in turn implies that ĉn is
not a density function on [0, 1]2, since it no longer integrates to one over the unit
square. In addition, the estimator will have a severe bias on the boundaries. Due to
these unsatisfying properties there is a need for other, more advanced estimation
techniques that overcome these problems.

31
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Figure 3.1: The data augmentation process. The set in (b) is obtained by reflecting
all original data points w.r.t to all corners and edges.

3.2 Mirror-reflection estimator
There is an intuitive way of adapting ĉn to make sure that it is a density on [0, 1]2.
Just gather all the probability mass that was put outside of the unit square, and
redistribute it back to [0, 1]2. Following this idea, the so called mirror-reflection tech-
nique was introduced to the estimation of copula densities by Gijbels and Mielniczuk
(1990). It requires the reflection of all data points w.r.t. to all corners and edges of
the unit square. When ĉn is applied to this augmented data set, all probability mass
that was initially put outside of the square is reflected back in.

3.2.1 The basic estimator
Formally, the augmented data is defined by

(
Ũik, Ṽik

)
k=1,...,9

=
{

(Ui, Vi), (−Ui, Vi), (Ui,−Vi), (−Ui,−Vi), (Ui, 2− Vi),

(−Ui, 2− Vi), (2− Ui, Vi), (2− Ui,−Vi), (2− Ui, 2− Vi)
}
,

for all i = 1, . . . , n. This set contains the original observation itself, and all new data
points that were generated by reflecting the original observation w.r.t to all four
corners and all four edges. A visualization of the augmented data set is given in
Figure 3.1. A kernel will now be placed on top of each of these points and all the
probability mass inside the unit square is collected. This procedure is illustrated in
Figure 3.2. In the left picture, we see a data point with a contour line of the kernel
that is placed on top of it. Some of the probability mass in the interior of the contour
line is not inside the unit square. On the right, the point is reflected w.r.t. to all
corners and edges and a kernel is placed on top of each point (some of the new points
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Figure 3.2: Left: A data point and a contour of its kernel. Some of the probability
mass is outside the unit square. Right: The data point is reflected w.r.t to all edges
and corners. The missing probability mass is reflected back inside.

are not in this picture, because they are too far away). Thereby, also the probability
mass that was missing on the left is reflected back into the unit square.

The described estimator can be written formally as follows.

Definition 3.1. The mirror-reflection estimator of a copula density c(u, v)
with bandwidth parameter bn > 0 is given by

ĉ(MR)
n (u, v) = 1

n

n∑
i=1

9∑
k=1

Kbn

(
u− Ũik

)
Kbn

(
v − Ṽik

)
, for all (u, v) ∈ [0, 1]2.

Gijbels and Mielniczuk (1990) proved strong consistency and asymptotic normality of
this estimator. We can see that due to the boundedness of K, the estimate ĉ(MR)

n (u, v)
will always be bounded. This is not a very pleasant feature, since most of the popular
copula families are unbounded near some of the corners. Another interesting issue is
revealed when looking at the asymptotic bias of this estimator. Later on, we will see
that

ABias[ĉ(MR)
n (u, v)] = σ2

K

2 b2
n

[
cuu(u, v)− cvv(u, v)

]
,

where cww = ∂2C/∂2w denotes the second order partial derivative of the copula
density and σ2

K =
∫ 1
−1 t

2K(t)dt is a constant depending on the kernel. As soon we
have chosen a kernel K and a bandwidth bn the magnitude of this quantity will only
depend on the second order partial derivatives of the true copula density c. Again,
for many popular parametric copula families, the second order partial derivatives
cuu and cvv are unbounded near some of the corners of the unit square, leading to
an unbounded bias in these regions.

Omelka et al. (2009) faced a similar issue when looking at a mirror-reflection
estimate of the copula C. The bias term in this case is similar to the one above, but
depending on the second order partial derivatives of C instead.
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Figure 3.3: The shrinkage factor r(w) for different values of α. The functions were
normalized so that their maximum is one.

3.2.2 An improved estimator
Motivated by this issue, Omelka et al. (2009) suggest an improved version of the
presented mirror-reflection estimator. The idea is to ‘shrink’ the bandwidth bn when
coming closer to the corners. If the shrinking is fast enough, the procedure will result
in a bounded asymptotic bias of Ĉ(MR)

n (u, v). We will now use the same technique
for a density estimate.

Definition 3.2. The improved mirror-reflection estimator of a copula den-
sity c(u, v) with bandwidth parameter bn > 0 and shrinkage function r : [0, 1]→ R
is given by

ĉ(MRS)
n (u, v) = 1

n

n∑
i=1

9∑
k=1

Kr(u)bn

(
u− Ũik

)
Kr(v)bn

(
v − Ṽik

)
, for all (u, v) ∈ [0, 1]2.

We can see that the usual bandwidth parameter bn is multiplied by factors r(u) and
r(v) respectively. These factors contrive that the effective bandwidths r(u)bn, r(v)bn
adapt to the point (u, v) at which the estimation takes place. Omelka et al. (2009)
showed that for their copula estimator, using

r(w) = min(wα, (1− w)α), α ≥ 1/2,

is sufficient for Gaussian, Gumbel, Clayton and Student copulas. The behavior of
r(w) is illustrated in Figure 3.3. Note that the actual maximum of the functions is
decreasing in α. In practice, one would compensate this by using a bigger bandwidth
parameter bn. We therefore normalized the functions r(w) to make them comparable.
We see that the higher the value of α the faster the function r(w) tends to zero
towards the boundaries. This also means that the effective bandwidth r(w)bn will
approach zero more quickly.
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3.2.3 Properties

In this section, we will discuss the asymptotic properties of the estimator. For this
and the following estimators, we will focus on the interior of the unit square, since
the edges have zero measure, but complicate analysis. It should be noted, however,
that asymptotic behavior may be different in these cases.

In the following proposition, we give asymptotic expressions for bias and variance.
For simplicity, assume that K is supported on [−1, 1], sufficiently smooth and a
symmetric probability density function.

Proposition 3.1. Let c(u, v) be twice continuously differentiable on (0, 1)2, bn → 0
and nb2

n →∞ as n→∞. Then for all (u, v) ∈ (0, 1)2,

Bias[ĉ(MRS)
n (u, v)] = σ2

K

2 b2
n

[
r2(u)cuu(u, v)− r2(v)cvv(u, v)

]
+ o

(
b2
n),

Var[ĉ(MRS)
n (u, v)] = d2

K

r(u)r(v)nb2
n

c(u, v) + o

(
1
nb2

n

)
,

where

σ2
K =

∫ 1

0
s2K(s)ds and dK =

∫ 1

0
K2(s)ds.

Proof. Note that for a fixed point (u, v) the bandwidth is fixed, too. The fact that, we
use different bandwidths in each direction does not complicate the analysis. We can
therefore rely on results obtained for the basic mirror-reflection estimator obtained
by (Gijbels and Mielniczuk, 1990, Theorem 3.2). The variance is then equal to the
expression given above. They also showed that the bias is asymptotically equivalent
to

∫ 1

−1

∫ 1

−1
Khnr(u)(u− x)Khnr(v)(u− y)c(x, y)dxdy − c(u, v),

which is the same expression that would appear, when no reflection is conducted.
This is due to the fact that for large n the bandwidth gets so small that the
probability mass put outside the unit square goes to zero. The expression can be
further approximated via a Taylor expansion. Denote cu = ∂c/∂u,cuu = ∂2c/∂u2 and
so on. Assuming w ∈ [bnr(w), 1 − bnr(w)], for w = u, v, and using the change of
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variables x = u− r(u)bns, y = v − r(v)bnt gives∫ 1

−1

∫ 1

−1
Kbnr(u)(u− x)Kbnr(v)(u− y)c(x, y)dxdy − c(u, v)

=
∫ 1

−1

∫ 1

−1
K(s)K(t)

[
c
(
u− r(u)bns, v − r(v)bnt

)
− c(u, v)

]
dsdt

=
∫ 1

−1

∫ 1

−1
K(s)K(t)

[
−cu(u, v)r(u)bns− cv(u, v)r(v)bnt

+ 1
2cuu(u, v)r2(u)b2

ns
2 + 1

2cvv(u, v)r2(v)b2
nt

2

+ cuv(u, v)r(u)r(v)b2
nst+ o(b2

n)
]
dsdt.

When we expand the brackets we obtain six terms of the form
∫ 1

0
∫ 1
0 K(s)K(t) . . . dsdt.

Recall that we assumed that K is a symmetric probability density. Thus, we have
that∫ 1

−1

∫ 1

−1
K(s)K(t)s dsdt =

∫ 1

−1

∫ 1

−1
K(s)K(t)t dsdt =

∫ 1

−1

∫ 1

−1
K(s)K(t)st dsdt = 0,

and the corresponding terms in the approximation of the bias vanish. Note also that∫ 1

−1

∫ 1

−1
K(s)K(t)s2 dsdt =

∫ 1

−1

∫ 1

−1
K(s)K(t)t2 dsdt = σ2

K .

So we are left with

σ2
K

2 b2
n

[
r2(u)cuu(u, v)− r2(v)cvv(u, v)

]
+ o(b2

n).

Clearly, the bias and variance terms explicitly depend on the true copula density
c. In particular, we see that the bias is only bounded when b decreases fast enough
towards the boundaries in order to offset a possible increase in cuu and cvv. From the
findings in Figure 3.3 we can conclude that increasing the value of α will decrease
the bias near the boundaries. When we do not shrink the bandwidth, i.e. b ≡ 1, there
will be no offsetting effect and the bias will only be small if the second order partial
derivatives are. The asymptotic variance on the other hand will certainly explode
towards the boundaries if c does. This is true for both the simple and improved
mirror-reflection estimators. It is also revealed that reducing the bias by shrinking
the bandwidth towards the boundaries comes at a cost. Since b tends to zero at the
boundaries, it will even further inflate the variance. This inconvenience will be even
more pronounced when α is big.

An exemplary finite sample comparison of the mirror-reflection estimators was
conducted on simulated data from a Frank copula with parameter θ = 5. Figure 3.4
provides perspective plots of the resulting density estimates ĉ(·)

n and the true density
c. The basic mirror-reflection estimator notably underestimates the density close to



Chapter 3 Kernel estimation of bivariate copula densities 37

0.2
0.4

0.6
0.80.2

0.4

0.6

0.8

0

1

2

3

4

5

6

u

v

c

(a) True density c

0.2
0.4

0.6
0.80.2

0.4

0.6

0.8

0

1

2

3

4

5

6

u

v

c

(b) Basic mirror-
reflection estimator
(MR)

0.2
0.4

0.6
0.80.2

0.4

0.6

0.8

0

1

2

3

4

5

6

u

v

c

(c) Improved mirror-
reflection estimator
(MRS) (α = 1/2)

Figure 3.4: Perspective plots of the true density and estimates on simulated data
(n = 1 000) of a Frank copula with parameter θ = 5 (Kendall’s τ ≈ 0.46). Bandwidths
were selected based on AMISE-optimality.

the corners due to the discussed bias issues. Finally, the improved mirror-reflection
estimator quite accurately estimates the whole density. It can also be observed that
the shrinking of the bandwidth makes the estimate more wiggly near the borders.

Note that the Frank copula model provides a bounded density. The simple mirror-
reflection estimator will fail to imitate the tail behavior of unbounded densities such
as for the Gaussian copula or any copula with tail dependence. We can see this by
estimates on simulated data from the Clayton copula. Since unbounded functions are
hard to visualize in a 3d-plot, we will make use of another exploratory tool. Marginal
normal contour plots of the true density and the two estimates are given in Figure
3.5. It is known that the Clayton density grows very fast towards the corner (0, 0),
which gives the spiky shape in the bottom left. The basic mirror reflection estimator
is not able to adapt to this feature. The contour lines stay quite broad and have no
spike at all. If anything, the contours end very flatly, which is a direct effect of the
boundedness of the estimate. The improved version does a little better. The contours
get narrower towards the corner, although not as strong as the true density.

3.2.4 Bandwidth selection
A direct approach to find a good bandwidth for a given kernel and sample size is to
consider one of the error measures mean squared error (MSE) or mean integrated
squared error (MISE) for a local or global bandwidth choice respectively. In most
cases, asymptotic approximations of these quantities are available to make things
easier. However, they depend on the unknown density, so we can not minimize them
directly. A popular resolution is to create a rule-of-thumb by making reference to a
particular parametric family. In what follows, we will derive such a rule of thumb
for the mirror-reflection density estimators.
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Figure 3.5: Normal contour plots of the true density and mirror-reflection estimates
on simulated data (n = 1 000) of a Clayton copula with parameter θ = 3 (Kendall’s
τ = 0.6). Bandwidths were selected based on AMISE-optimality w.r.t to the Frank
copula.

Since we are interested in density estimates on the whole unit square, we want to
focus on a global bandwidth choice. Hence, we will follow the strategy to minimize
an asymptotic approximation of the MISE. If the leading terms in the asymptotic
expression of squared bias and variance are integrable, the AMISE is just the integral
over the sum of them. We have

AMISE[ĉ(MRS)
n ] = σ4

K

4 b4
n

∫ 1

0

∫ 1

0

[
b2(u)cuu(u, v)− b2(v)cvv(u, v)

]2
dudv︸ ︷︷ ︸

=:β(b,c)

+ d2
Kn
−1b−2

n

∫ 1

0

∫ 1

0

c(u, v)
b(u)b(v)dudv︸ ︷︷ ︸
=:γ(b,c)

= σ4
K

4 β(b, c)b4
n + d2

Kγ(b, c)n−1b−2
n ,

provided that both β(b, c) and γ(b, c) are finite. From this, we can easily deduce that
the AMISE-optimal bandwidth is given by

boptn =
(

2d2
K

σ4
K

γ(b, c)
β(b, c)

)1/6

n−1/6.

This expression still depends on the unknown density c. In practice we will choose a
parametric reference copula family instead, and properly adjust the parameter to
the strength of dependence apparent in the data, e.g. by inversion of Kendall’s τ .
For this reference model, the optimal bandwidth can then be computed numerically.
We emphasize that this is only possible when the values for β(b, c) and γ(b, c) are
finite. Note that r(w) = wα for w ≤ 1/2 and r(w) = (1− w)α otherwise. We have
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that

∫ 1/2

0

1
wα

dw =
∫ 1

1/2

1
(1− w)αdw = w1−α

1− α

∣∣∣∣∣∣
1/2

0

,

which is finite if and only if α < 1. Therefore a necessary condition for the finiteness
of γ is that α < 1. Provided this holds true, we can easily ensure a finite value for γ
by choosing a bounded reference density (e.g. the Frank copula density). In practice
α = 1/2 proved to be a good choice.

By looking at the perspective and contour plots in Figures 3.4 and 3.5, we can
conclude that the bandwidth selection rules are appropriately functioning on our
finite samples. If we would use smaller bandwidths, the estimates would get even more
wiggly, which is quite unlikely to be the case for the true density. In addition, it makes
a visualization very unpleasant. Since in the upper right part the contour plots are a
little wiggly, one could also argue to make the estimates more smooth by increasing
the bandwidth. This however will immediately increase the bias. Furthermore, we
can see that in the lower left part the estimates already seem to be oversmoothed.
This discrepancy is caused by the asymmetry of the Clayton density and can not be
solved by a global bandwidth rule. Here, it seems as if a good balance between all
these factors was found.

3.3 Beta kernels

An alternative approach follows the ideas of Chen (1999) for kernel density estimation
on the unit line. The intuition is to use kernels whose support matches the bounded
support of the density we want to estimate. Consequently, we will not use a different
location for each data point, but rather vary the kernel shape for each point we want to
estimate. An estimator of the copula density based on this idea (see also Charpentier
et al., 2006) will be presented and a rule-of-thumb for bandwidth selection based on
AMISE-optimality will be derived.

3.3.1 The estimator

For estimation on the unit square, we can simply use a product of such kernels. Chen
(1999) suggests to use a family of densities corresponding to Beta(p, q)-distributed
random variables as kernels, where the shape parameters vary with each data point.
The resulting estimator of the copula density c can then be written as follows.
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Figure 3.6: The shape of beta product kernels for different estimation points (u, v)
for a fixed bandwidth.

Definition 3.3. The beta kernel estimator of copula density c(u, v) with
bandwidth parameter bn is given by

c(β)(u, v) = 1
n

n∑
i=1

K

(
Ui,

u

bn
+ 1, 1− u

bn
+ 1

)
K

(
Vi,

v

bn
+ 1, 1− v

bn
+ 1

)
,

where K(x, p, q) is the density of a Beta(p, q)-distributed random variable evaluated
at x, for all (u, v) ∈ [0, 1]2.

Charpentier et al. (2006) claim (without proof) consistency and asymptotic normality
for this type of estimator. From the boundedness of the beta density for this shape
parameterization, it follows that this estimator will also produce bounded estimates.

Shapes of the product beta kernel for various points of estimation (u, v) are
plotted in Figure 3.6. One can clearly see, how the shape adapts to the point, where
the copula density should be estimated. For example, in panel (a) the density in
the corner (0, 0) should be estimated. Accordingly, observations that are not near
this corner will have (almost) no contribution to the estimate, since the product
kernel takes values close to zero in other regions apart from this corner. Similar
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conclusions can be drawn from the other panels. It is interesting to note that the size
of the contribution of a particular data point to the estimate ĉ(β)

n (u, v) does not only
depend on the distance between the data point to (u, v), but also on the point (u, v)
itself. This effect is similar to a decrease in bandwidth and leads to an increasing
variance as the point of estimation comes closer to the boundaries. We will see this
effect more clearly in the asymptotic expressions for bias and variance below.

3.3.2 Properties
First, we give asymptotic expressions for the bias and variance.

Proposition 3.2. Let c(u, v) be twice continuously differentiable on (0, 1)2, bn → 0
and nbn →∞ as n→∞. Then for all (u, v) ∈ (0, 1)2,

Bias[ĉ(β)
n (u, v)

]
= bn

[
(1− 2u)cu(u, v) + (1− 2v)cv(u, v)

+ 1
2u(1− u)cuu(u, v) + 1

2v(1− v)cvv(u, v)
]

+ o
(
bn
)

Var[ĉ(β)
n (u, v)

]
= 1

4nbnπ
c(u, v)√

u(1− u)v(1− v)
+ o

(
1
nbn

)
.

Proof. We will follow some ideas developed by Chen (2000) for the analysis of
univariate beta kernel smoothers for non-parametric regression. For sake of brevity
we will not make the shape specifications of the kernel (which depend on u and v)
explicit.

First, we consider the bias. We start by noting that due to independence of the
samples the expectation of the beta kernel estimator can be written as

E[ĉ(β)
n (u, v)

]
= E

[
1
n

n∑
i=1

K(Ui)K(Vi)
]

= E[K(U)K(V )
]

=
∫ 1

0

∫ 1

0
K(s)K(t)c(s, t)dsdt

= E[c(Mu,Mv)
]
,

where Mx ∼ Beta(x/bn + 1, (1− x)/bn + 1), for x = u, v, are independent random
variables. Next we take the Taylor series expansions of the mean and variance of Mx

from (Chen, 2000, Appendix I) stating that uniformly in (u, v) ∈ (0, 1)2

E[Mx] = x+ bn(1− 2x) +O(b2
n) (3.1)

Var[Mx] = bnx(1− x) +O(b2
n). (3.2)
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Denote cu = ∂c/∂u,cuu = ∂2c/∂u2 and so on. Another Taylor expansion of the term
c(Mu,Mv) around (u, v) leads us to

c(Mu,Mv) = c(u, v) + cu(u, v)(Mu − u) + cv(u, v)(Mv − v)+

+ 1
2
[
cuu(u, v)(Mu − u)2 + cvv(u, v)(Mv − v)2

]
+R,

(3.3)

where, as usual, the remainder term is given by

R =
∫ Mu−u

0

∫ Mv−v

0

[
(Mu − u− s)

[
cuu(u+ s, v + t)− cuu(u, v)

]
+ (Mv − v − s)

[
cvv(u+ s, v + t)− cvv(u, v)

]]
dsdt.

Now define ψx as the density of the random variable (Mx − x)/
√
bn. This gives

E[R] =
∫ ∫

ψu(p)ψv(q)

·
∫ √bnp

0

∫ √bnq

0

[
(
√
bnp− s)

[
cuu(u+ s, v + t)− cuu(u, v)

]
+ (

√
bnq − s)

[
cuu(u+ s, v + t)− cuu(u, v)

]]
dsdt dpdq

= bn

∫ ∫
ψu(p)ψv(q)

·
∫ p

0

∫ q

0

[
(p− s)

[
cuu(u+

√
bns, v +

√
bnt)− cuu(u, v)

]
+ (q − s)

[
cuu(u+

√
bns, v +

√
bnt)− cuu(u, v)

]]
dsdt dpdq

=: bnεn(u, v).

When cuu and cvv are uniformly continuous on (0, 1)2, the differences in small brackets
tend to zero uniformly, and εn(u, v) converges to zero uniformly. Thus, E[R] = o(bn)
uniformly. Further, note that using the approximations (3.1) and (3.2), we have

E
[
(Mu − u)

]
= bn(1− 2u) +O(b2

n)
= bn(1− 2u) + o(bn),

E
[
(Mu − u)2

]
= E

[(
Mu − E[Mu] + E[Mu]− u

)2]
= E

[
(Mu − E[Mu])2

]
+ E

[
(E[Mu]− u)2

]
+ 2 E

[
Mu − E[Mu]

]
︸ ︷︷ ︸

=0

E
[
E[Mu]− u

]
(3.1)= Var[Mu] + b2

n(1− 2u)2 +O(b4
n)

(3.2)= bnu(1− u) + o(bn).
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These expressions can now be plugged into the expectation of (3.3), yielding

E[c(Mu,Mv)] = c(u, v) + cu(u, v)E
[
(Mu − u)

]
+ cv(u, v)E

[
(Mv − v)

]
+ 1

2
[
cuu(u, v)E

[
(Mu − u)2

]
+ cvv(u, v)E

[
(Mv − v)2

]]
+ E[R]

= c(u, v) + cu(u, v)bn(1− 2u) + cv(u, v)bn(1− 2v)

+ 1
2
[
cuu(u, v)bnu(1− u) + cvv(u, v)bnv(1− v)

]
+ o(bn)

uniformly on (0, 1). By recalling that E[ĉ(β)
n (u, v)

]
= E[c(Mu,Mv)

]
, this concludes

the proof for the bias.
Let us turn to the proof for the variance. In the following we writeKw(s) shorthand

for K
(
s, w/bn + 1, (1 − w)/bn + 1

)
and denote B as the beta function. First note

that by the definition of the beta density it holds

K2
w(s) =

(
1

B
(
w/bn + 1, (1− w)/bn + 1

)xw/bn(1− x)(1−w)/bn

)2

= 1
B2
(
w/bn + 1, (1− w)/bn + 1

)x2w/bn(1− x)2(1−w)/bn

=
B
(
2w/bn + 1, 2(1− w)/bn + 1

)
B2
(
w/bn + 1, (1− w)/bn + 1

)
︸ ︷︷ ︸

=:A(w)

K
(
s, 2w/bn + 1, 2(1− w)/bn + 1

)
.

Let us introduce the notation K∗w(s) := K
(
s, 2w/bn + 1, 2(1 − w)/bn + 1

)
and

write M∗
u ,M

∗
v for two independent random variables with distributions K∗u and K∗v

respectively. Then

Var[ĉ(β)
n (u, v)

]
= E

[
K2
w(U)K2

v (V )
]
− E

[
Kw(U)Kv(V )

]2
= A(u)A(v)E

[
K∗u(U)K∗v (V )

]
+ o(bn)

= A(u)A(v)E
[
c(M∗

u ,M
∗
V )
]

+ o(bn)

= A(u)A(v)
[
c(u, v) +O(bn)

]
+ o(bn)

= A(u)A(v)c(u, v) +O(bn)
Lastly, we use the following result derived in Chen (2000): If w/bn → ∞ and
(1− w)/bn →∞ for w = u, v, it holds that

A(u)A(v) = 1
4bnπ

1√
u(1− u)v(1− v)

+ o
(
b−1
n

)
for (u, v) ∈ (0, 1)2.

Then the variance can be written as
Var

[
ĉ(β)
n (u, v)

]
= n

n2 Var
[
Ku(U)Kv(V )

]
= 1

4nbnπ
c(u, v)√

u(1− u)v(1− v)
+ o

(
1
nbn

)
.
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Figure 3.7: Perspective plots of the true density and a beta kernel estimate on
simulated data (n = 1 000) of a Frank copula with parameter θ = 5 (Kendall’s
τ ≈ 0.46). The AMISE optimal bandwidth was used.

For the beta kernel estimator, the bias depends on the first and second order partial
derivatives of the copula density. We can see that if all of them are bounded, the
asymptotic bias will be bounded and actually tend to zero near the boundaries. As
we already pointed out, the variance increases when u or v get closer to zero or one.
The behavior here is very similar to the one we saw for the improved mirror-reflection
estimator, c.f. Section 3.2.3.

In Figure 3.7 we compare the beta kernel estimator against the true density for
the same sample from a Frank copula as in the previous section. The estimator is
competitive with the estimators seen in Figure 3.4. It underestimates the upper tail
a little and overestimates the upper tail a little. But since bias and variance are
symmetric this is just a single sample effect and not a systematic flaw.

One should however be mindful of the fact that the Frank copula model is in
a sense the best case scenario for the beta kernel estimator. This is because the
true density in this case is bounded and has bounded first and second order partial
derivatives, which is always the case for beta kernel estimates. Just as the simple
mirror-reflection estimator, it will not adequately imitate the tail behavior in many
other cases. A contour plot of the beta kernel estimate for the simulated Clayton
data is shown in Figure 3.8. The shape of the estimate in the lower tail is too broad
and the end too flat, although it notably improves over the basic mirror-reflection
estimator.

3.3.3 Bandwidth selection

Our goal is again to find a rule-of-thumb for the choice of the bandwidth parameter
bn. Just as before, we will do this by minimizing the AMISE for a reference copula.
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Figure 3.8: Normal contour plots of the true density and the beta kernel estimate
on simulated data (n = 1 000) of a Clayton copula with parameter θ = 3 (Kendall’s
τ = 0.6). The bandwidth was selected based on AMISE-optimality w.r.t to the Frank
copula.

Define

g(u, v) := (1− 2u)cu(u, v) + (1− 2v)cv(u, v)

+ 1
2u(1− u)cuu(u, v) + 1

2v(1− v)cvv(u, v).

Then the expressions of the previous section lead to

AMISE[ĉ(β)
n

]
= b2

n

∫ 1

0

∫ 1

0
gc(u, v)2dudv︸ ︷︷ ︸

=:ξ(c)

+ 1
4nbnπ

∫ 1

0

∫ 1

0

c(u, v)√
u(1− u)v(1− v)

dudv

︸ ︷︷ ︸
=:ζ(c)

,

whenever the integrals exist. To ensure integrability of asymptotic squared bias and
variance, we have to fulfill severals conditions. These are met in particular when the
density c is bounded. In practice, a rule-of-thumb for the beta kernel estimator ĉ(β)

n

can therefore be given by

bn =
(

1
8π

ζ(c)
ξ(c)

)1/3

n−1/3,

where we take c as the Frank copula. Also here it seems as if this rule provides a
good balance between the factors discussed at the end of Section 3.2.4.

3.4 Transformation estimator
Another approach is inspired by the early work of Devroye and Györfi (1985) and
was used in the context of copula density estimation in Charpentier et al. (2006). It
tackles the problems rising from the boundedness of the support by transforming
the data so that its distribution is supported on the full R2. On the transformed
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data we can apply standard kernel estimation methods and then have to adequately
back-transform the estimate to the original support. The most popular choice for
the transformation is to apply the inverse of standard normal cdf , as it is established
that the standard kernel estimator works well for approximately normally distributed
random variables. It will therefore, be used from here on. In the following, we will
systematically develop this idea in the simplest case and discuss extensions as well
as the choice of smoothing parametrization.

3.4.1 The basic estimator
Let Φ be the standard normal cdf and φ its density. Then the random vector
(X, Y ) =

(
Φ−1(U),Φ−1(V )

)
has normally distributed margins and is, in particular,

supported on the full R2. By Sklar’s Theorem (Theorem 2.1) its density f can be
written as

f(x, y) = c
(
Φ(x),Φ(x)

)
φ(x)φ(y). (3.4)

To estimate this density, we need a sample of the random vector (X, Y ). Hence, put
(Xi, Yi) =

(
Φ−1(Ui),Φ−1(Vi)

)
for i = 1, . . . , n. To this transformed sample, we can

now apply the standard estimator described in Section 2.2, which is

f̂n(x, y) = 1
n

n∑
i=1

Kbn(x−Xi)Kbn(y − Yi), for all (x, y) ∈ R2.

By isolating c in (3.4) and using the estimator f̂n instead of f , we can then define
an estimator for the copula density c.

Definition 3.4. The transformation estimator of a copula density c(u, v)
with bandwidth parameter bn is given by

ĉ(T )
n (u, v) =

∑n
i=1Kbn

(
Φ−1(u)− Φ−1(Ui)

)
Kbn

(
Φ−1(v)− Φ−1(Vi)

)
nφ(Φ−1(u))φ(Φ−1(v)) ,

for all (u, v) ∈ [0, 1]2.

By construction, this estimator of a copula density inherits all the pleasant properties
of the usual kernel density estimator f̂n.

An illustration of the process is given in Figure 3.9. We begin in the outer left
panel with the sample of the copula, (Ui, Vi)i=1,...,n. In the next step the data was
transformed by the standard normal quantile function Φ−1. From the transformed
samples, we obtain the usual kernel density estimate f̂ , which is then divided by
φ(Φ−1(u))φ(Φ−1(v)) to obtain the copula density estimate ĉ(T )

n .
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Figure 3.9: The transformation estimator. From left to right: Data sample, trans-
formed sample, kernel density estimate for transformed sample and kernel density
estimate for data sample.

3.4.2 Full bandwidth parameterization
Up until now, we just used the simplest form of bandwidth parameterization, namely
one smoothing parameter for both components of the random vector (U, V ). Of
course, we can also specify two different bandwidths b1n, b2n > 0, one for each
dimension. Now, define Bn as the diagonal matrix having b1n as the upper and
b2n as the lower diagonal entries. By noting that det(Bn) = b1nb2n and putting
w = (u, v) and Wi = (Ui, Vi) for all i = 1, . . . , n, we can write this extension of the
transformation estimator as

ĉ(T ′)
n (w) =

∑n
i=1KBn

(
Φ−1(w)− Φ−1(Wi)

)
nφ(Φ−1(u))φ(Φ−1(v)) ,

where Φ−1 is applied componentwise to vectors and we used the short notation

KBn(w) =
K

((
B−1
n [Φ−1(w)− Φ−1(Wi)]

)
1

)
K

((
B−1
n [ Φ−1(w)− Φ−1(Wi)]

)
2

)
det(Bn)

Now there is no reason to restrict ourselves to diagonal bandwidth matrices Bn.
In fact, we will use any 2× 2 matrix such that BnB

>
n is a symmetric and positive

definite matrix. This gives us a third parameter b3n ≥ 0, which we put below the
diagonal Bn, yielding a fully parameterized version of the transformed estimator.

Definition 3.5. The fully parametrized transformation estimator of a
copula density c(u, v) with bandwidth matrix

Bn =
(
b1n 0
b3n b2n

)

is given by

c(TB)(w) =
∑n
i=1KBn

(
Φ−1(w)− Φ−1(Wi)

)
nφ(Φ−1(u))φ(Φ−1(v)) ,

for all w = (u, v) ∈ [0, 1]2.
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(a) Bn =
(

1 0
0 1

)
(b) Bn =

(
1 0
0 0.5

)
(c) Bn =

(
1 0

0.5 0.5

)
Figure 3.10: The effect of using different bandwidth parameterizations for the
Gaussian product kernel.

The effect of using more than one bandwidth parameter is most easily studied
(following Wand and Jones, 1993) by reference to the Gaussian product kernel

Kp(x) = 1√
2π

exp
{
−1

2x
2
1

}
· 1√

2π
exp

{
−1

2x
2
2

}

= 1
2π exp

{
−1

2x
>x

}

⇒ KBn(x) = 1
2π det(Bn) exp

{
−1

2x
>(BnB

>
n )−1x

}
.

So the kernel KBn with bandwidth matrix Bn will simply be a bivariate Gaussian
distribution with covariance matrix C = BnB

>
n . Plots of this kernel for the use of

one, two and three different smoothing parameters respectively are given in Figure
3.10. Just one parameter will always give a kernel that is spherically symmetric; two
different bandwidths, one for each dimension, will result in elliptical contours, but
with elliptical axes parallel to the coordinate axes. Lastly, the inclusion of a third
parameter will allow for elliptical kernels with arbitrary orientation.

3.4.3 Properties

Since the fully parameterized transformation estimator ĉ(TB)
n is a generalization of

the basic transformation estimator, let us state the more general expressions first.

Proposition 3.3. Let c(u, v) be twice continuously differentiable on (0, 1)2 and
det(Bn)→ 0, n det(Bn)→∞ as n→∞. Then for all (u, v) ∈ (0, 1)2,

Bias[ĉ(TB)
n (u, v)

]
= σ2

K

2 T
(
Φ−1(u),Φ−1(v)

)
+ o

(
det(Bn)

)
,

Var[ĉ(TB)
n (u, v)] = d2

K

n det(Bn)
c(u, v)

φ(Φ−1(u))φ(Φ−1(v)) + o

(
1

n det(Bn)

)
,
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where

T
(
Φ−1(u),Φ−1(b)

)
=

b2
1n

[
cuu
(
u, v

)
φ2
(
Φ−1(u)

)
− 3cu

(
u, v

)
Φ−1(u)φ

(
Φ−1(u)

)
+ c

(
u, v

)
(Φ−1(u)2 − 1)

]

+ (b2
2n + b2

3n)
[
cvv
(
u, v

)
φ2
(
Φ−1(b)

)
− 3cv

(
u, v

)
Φ−1(b)φ

(
Φ−1(b)

)
+ c

(
u, v

)
(Φ−1(b)2 − 1)

]

+ 2b1nb3n

[
c
(
u, v

)
Φ−1(u)Φ−1(b)− cu

(
u, v

)
φ
(
Φ−1(u)

)
Φ−1(b)− cv

(
u, v

)
φ
(
Φ−1(b)

)
Φ−1(u)

+ cuv
(
u, v

)
φ
(
Φ−1(u)

)
φ
(
Φ−1(b)

)]
,

and

σ2
K =

∫ 1

0
s2K(s)ds and dK =

∫ 1

0
K2(s)ds,

Proof. We will use results obtained by Wand (1992) for the asymptotic bias and
variance of the standard kernel estimator with full parameterization

f̂ (H)
n (x) = 1

n detBn

n∑
i=1

Kp(B−1
n (x−Xi)),

with Kp being the product kernel of K. It states that if f is the true density,

Bias
[
f̂ (H)
n (x, y)

]
= σ2

K

2 tr{BnB
>
nHess[f(x, y)]}+ o

(
det(Bn)

)
and

Var
[
f̂ (H)
n (x, y)

]
= d2

K

n det(Bn)f(x, y) + o

(
1

n det(Bn)

)
.

By construction of the transformation estimator, we have

ĉ(TB)
n

(
Φ(x),Φ(y)

)
= f̂ (H)

n (x, y)
φ(x)φ(y) .

We will exploit this relationship in the following. The variance can easily be derived
as

Var
[
ĉ(TB)
n

(
Φ(x),Φ(y)

)]
= 1
φ2(x)φ2(y)Var[f̂(x, y)]

= 1
φ2(x)φ2(y)

[
d2
K

n det(Bn)f(x, y) + o

(
1

n det(Bn)

)]

= d2
K

n det(Bn)
c
(
Φ(x),Φ(y)

)
φ(x)φ(y) + o

(
1

n det(Bn)

)
.
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The bias is more complicated. Similarly, we start with

E
[
ĉ(TB)
n

(
Φ(x),Φ(y)

)]
= 1
φ(x)φ(y)E

[
f̂ (H)
n (x, y)

]

=
f
(
x, y

)
φ(x)φ(y) + σ2

K

2
tr{BnB

>
nHess[f(x, y)]}
φ(x)φ(y) + o

(
det(Bn)

)
≈ c

(
Φ(x),Φ(y)

)
+ σ2

K

2
tr{BnB

>
nHess[f(x, y)]}
φ(x)φ(y)︸ ︷︷ ︸
T (x,y)

.

Next, we want to make the expression for the trace more explicit. This will be done
in several steps.

We start with the calculation of the terms in the Hessian matrix of f(x, y). We
define cu = ∂c(u, v)/∂u, cv = ∂c(u, v)/∂v, cuu = ∂2c(u, v)/∂2u, . . . as the partial
derivatives of the copula density c w.r.t. to its arguments and denote the derivative
of φ by φ′. Note that

φ′(x) = −xφ(x),
φ′′(x) = (x2 − 1)φ(x),

∂c
(
Φ(x),Φ(y)

)
∂x

= cu
(
Φ(x),Φ(y)

)
φ(x),

∂2c
(
Φ(x),Φ(y)

)
∂2x

= cuu
(
Φ(x),Φ(y)

)
φ2(x) + cu

(
Φ(x),Φ(y)

)
φ′(x)

= cuu
(
Φ(x),Φ(y)

)
φ2(x)− cu

(
Φ(x),Φ(y)

)
xφ(x).

and recall that f(x, y) = c
(
Φ(x),Φ(y)

)
φ(x)φ(y). By the product rule for differentia-

tion we can then obtain the first order derivative

∂f(x, y)
∂x

= φ(y)
[
cu
(
Φ(x),Φ(y)

)
φ2(x) + c

(
Φ(x),Φ(y)

)
φ′(x)

]

= φ(y)
[
cu
(
Φ(x),Φ(y)

)
φ2(x)− c

(
Φ(x),Φ(y)

)
xφ(x)

]
.

and the second order partial derivative

∂2f(x, y)
∂x2 = φ(y)

[
cuu
(
Φ(x),Φ(y)

)
φ3(x) + 3cu

(
Φ(x),Φ(y)

)
φ(x)φ′(x)

+ c
(
Φ(x),Φ(y)

)
φ′′(x)

]

= φ(y)
[
cuu
(
Φ(x),Φ(y)

)
φ3(x)− 3cu

(
Φ(x),Φ(y)

)
xφ2(x)x

+ c
(
Φ(x),Φ(y)

)
(x2 − 1)φ(x)

]
.
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The corresponding derivatives w.r.t the second argument, y, are analogue. The mixed
partial derivatives can be calculated as

∂2f(x, y)
∂x∂y

= c
(
Φ(x),Φ(y)

)
φ′(x)φ′(y) + cuv

(
Φ(x),Φ(y)

)
φ2(x)φ2(y)

+ cu
(
Φ(x),Φ(y)

)
φ2(x)φ′(y) + cv

(
Φ(x),Φ(y)

)
φ2(y)φ′(x)

= c
(
Φ(x),Φ(y)

)
xyφ(x)φ(y) + cuv

(
Φ(x),Φ(y)

)
φ2(x)φ2(y)

− cu
(
Φ(x),Φ(y)

)
φ2(x)yφ(y)− cv

(
Φ(x),Φ(y)

)
φ2(y)xφ(x)

As a next step we calculate

BnB
>
n =

(
b1n 0
b3n b2n

)(
b1n b3n
0 b2n

)
=
(

b2
1n b1nb3n

b1nb3n b2
2n + h2

3n

)
.

Altogether this results in

T (x, y) = tr{BnB
>
nHess[f(x, y)]}
φ(x)φ(y)

= 1
φ(x)φ(y)

[
b2

1n
∂2f(x, y)
∂2x

+ (b2
2n + b2

3n)∂
2f(x, y)
∂2y

+ 2b1nb3n
∂2f(x, y)
∂x∂y

]

= b2
1n

[
cuu
(
Φ(x),Φ(y)

)
φ2(x)− 3cu

(
Φ(x),Φ(y)

)
xφ(x) + c

(
Φ(x),Φ(y)

)
(x2 − 1)

]

+ (b2
2n + b2

3n)
[
cvv
(
Φ(x),Φ(y)

)
φ2(y)− 3cv

(
Φ(x),Φ(y)

)
yφ(y)

+ c
(
Φ(x),Φ(y)

)
(y2 − 1)

]

+ 2b1nb3n

[
c
(
Φ(x),Φ(y)

)
xy − cu

(
Φ(x),Φ(y)

)
φ(x)y − cv

(
Φ(x),Φ(y)

)
φ(y)x

+ cuv
(
Φ(x),Φ(y)

)
φ(x)φ(y)

]
.

The change of variables u = Φ(x), v = Φ(y) finally gives the result.

As a direct consequence we also get asymptotic expressions for the one-parameter
transformation estimator.

Corollary 3.4. Let c(u, v) be twice continuously differentiable on (0, 1)2 and bn → 0,
nb2

n →∞ as n→∞. Then for all (u, v) ∈ (0, 1)2,
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Bias[ĉ(T )
n (u, v)

]
= σ2

K

2 b2
n

[
cuu
(
u, v

)
φ2
(
Φ−1(u)

)
+ cvv

(
u, v

)
φ2
(
Φ−1(v)

)
− 3cu

(
u, v

)
φ
(
Φ−1(u)

)
Φ−1(u)− 3cv

(
u, v

)
φ
(
Φ−1(v)

)
Φ−1(v)

+ c
(
u, v

)[(
Φ−1(u)

)2
+
(
Φ−1(v)

)2
− 2

]]
+ o

(
b2
n

)
,

Var[ĉ(T )
n (u, v)] = d2

K

nb2
n

c(u, v)
φ(Φ−1(u))φ(Φ−1(v)) + o

(
1
nb2

n

)
,

where

σ2
K =

∫ 1

0
s2K(s)ds and dK =

∫ 1

0
K2(s)ds.

Proof. Follows directly from Proposition 3.3 by noting that for the case of just a
single bandwidth parameter, bn = b1n = b2n, b3n = 0 and det(Bn) = b2

n.

In this case the bias expression is much simpler and transparent. Hence, we will illus-
trate the asymptotic behavior on the basis of the simplest transformation-estimator
with just a single bandwidth parameter bn. The effects we discuss will carry over to
the fully parameterized estimator.

Let us first look at an asymptotic approximation of the bias, which is still quite
complex. To simplify matters, let us assume that c and its second order partial
derivatives are bounded, which is one of the more convenient situations in practice.
Note that, if u tends to zero or one, φ(Φ−1(u)) → 0 and φ(Φ−1(u))Φ−1(u) → 0.
This will make all terms in the first and second line of the brackets vanish near the
boundaries. The term in the last line, however, will explode towards the boundaries
even if c is bounded. This reveals that the bias is always unbounded near the
boundaries of the unit square.

The asymptotic variance will also grow unboundedly, even when c is bounded,
since φ(Φ−1(u))→ 0 at the boundaries. Actually, it is not even integrable making
bandwidth selection based on AMISE-optimality infeasible. This can easily be seen
by substituting u = Φ(x) in the following integral:

∫ 1

0

1
φ(Φ−1(u))du =

∫ ∞
−∞

φ(x)
φ(Φ−1(Φ(x)))dx =

∫ ∞
−∞

φ(x)
φ(x)dx =∞.

In contrast, when estimating the density of the transformed sample by f̂ (H)
n , the

asymptotic variance tends to zero when moving to the outer regions. This indicates
that the transformation is to be blamed for the exploding variances. To see why, let
us consider the Taylor approximation of Φ−1(Ui) in u:

Φ−1(Ui) ≈ Φ−1(u) + (Ui − u)(Φ−1(u))′

= Φ−1(u) + (Ui − u)
φ(Φ−1(u)) .
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(c) Fully parameterized
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Figure 3.11: Perspective plots of the true density and the transformation estimator
on simulated data (n = 1 000) of a Frank copula with parameter θ = 5 (Kendall’s
τ ≈ 0.46). The bandwidth was selected based on the reference-rules discussed in
Section 3.4.4.

Using this approximation in the formula of the estimator yields

ĉ(T )
n (u, v) ≈ 1

nφ(Φ−1(u))φ(Φ−1(v))

n∑
i=1

Kbn

(
Ui − u

φ(Φ−1(u))

)
Kbn

(
Vi − v

φ(Φ−1(v))

)

= 1
n

n∑
i=1

Kbnφ(Φ−1(u))
(
Ui − u

)
Kbnφ(Φ−1(v))

(
Vi − v

)
.

The transformation is therefore approximately equivalent to improving the naive
estimator by imposing a bandwidth that adapts to the location of the estimate. This
effective bandwidth will decrease towards the boundaries, since here φ(Φ−1(w)) tends
to zero. This is similar to the improvement of the mirror-reflection estimator.

Evidence of the discussed effects can be observed on the simulated sample of the
Frank copula (see Figure 3.11). Both transformation estimators tend to overestimate
the true density in the corners (0, 0) and (1, 1). Actually, the plot only contains
estimates for (1/26, 1/26) and (25/26, 25/26) as the corner points. In fact, both
estimators grow unboundedly when coming closer to (0, 0) and (1, 1). There is a hint
that the use of a full bandwidth matrix helps the estimator adapting to the true
shape in the inner regions, although this effect is quite small.

More insight can be gained from marginal normal contour plots corresponding
to estimates on the Clayton sample (see Figure 3.12). The estimate with just a
single bandwidth parameter is not able to properly imitate the narrow shape of
the true contours. The fully parameterized version on the other hand is strikingly
good. It imitates the shape of the true model very well — even in the lower tail.
In both types of plots, we can also observe that both estimators show a little more
spurious fluctuation on the boundaries. This is because the effective bandwidth in
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Figure 3.12: Marginal normal contour of the true density and the beta kernel
estimate on simulated data (n = 1 000) of a Clayton copula with parameter θ = 3
(Kendall’s τ = 0.6). The bandwidth was selected based on a scale rule for the
bivariate normal distribution (see next section for details).

these regions is very small, which gives the estimates a higher variance due to the
high peak of the kernel.

3.4.4 Bandwidth selection
Since the asymptotic expressions do not allow for bandwidth choice by minimization
of the AMISE, a practical approach is to consider the AMISE on the level of the
transformed data instead. Elegant results can be obtained considering the Gaussian
copula as a reference copula. For using just one bandwidth parameter bn, we can
then use the optimal bandwidth for estimating the bivariate normal distribution
with no correlation derived in Henderson and Parmeter (2011). In our setting this
results in

bn = cKn
−1/6, with cK :=

[
4πd2

K

σ4
K

]1/6

.

This rule does not adapt to the strength of dependence in any way. As we have
seen in Figure 3.12, this may lead to an oversmoothed estimate when the data is
dependent. Note that for the Gaussian kernel the constant cK equals one. Hence,
it can be interpreted as the ratio of optimal bandwidths for the kernel K and the
Gaussian kernel.

When we want to use a fully parameterized bandwidth matrix instead, a very
appealing and elegant result can be found in Wand and Jones (1993). It states that, if
K is a Gaussian kernel and f is a bivariate Gaussian density with covariance matrix
Σ, the AMISE-optimal bandwidth matrix is Bn = Σ1/2n−1/6, where Σ1/2 involves
the matrix root defined via Σ1/2(Σ1/2)> = Σ. This is very intuitive, as it simply
states that the covariance matrix of the kernel should be the same as the covariance
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matrix of the Gaussian density we want to estimate. Since we transform the margins
to be standard normal, the ‘true’ variance of the data will be exactly one in each
direction and the covariance matrix coincides with the correlation matrix Γ. For the
use of other kernels, we suggest to multiply the resulting bandwidth matrix by the
constants cK defined above. This results in the rule-of-thumb

Bn = cKΓ1/2n−1/6.

We see that, in case Γ is not the identity matrix, det(Bopt
n ) < (boptn )2 and notice

that these two quantities play the same role in their respective estimators. Equality
between them implies that for a fixed kernel K, also the height of the ‘bumps’ placed
on a particular sample point as well as the area of their contours will be equal for both
estimators. A smaller value on the left hand side implies that there is less smoothing
for the fully parameterized version. This is because the bandwidth rule adapts to
the strength of dependence in the data and makes the estimates less smooth when
the dependence in the data is stronger.

It should be stressed that, although Bn implicitly made reference to a Gaussian
copula, it does not mean that it gives an AMISE-optimal bandwidth for the Gaussian
copula density. The optimization is carried out on a density with normally distributed
margins. Nonetheless, it worked very well for the two exemplary samples discussed
in the last section (see Figures 3.11 and 3.12).

3.5 Local likelihood transformation estimator
An extension of the transformation estimator was recently suggested by Geenens et al.
(2014). Instead of applying the standard kernel estimator, they locally fit a polynomial
to the log-density of the transformed sample. This is in fact a generalization of the
standard kernel estimator, since the latter emerges when fitting a polynomial of
order zero. Furthermore, a nearest-neighbor type bandwidth will be used.

3.5.1 The estimator
The idea behind the local likelihood method (c.f. Loader, 1999) is to assume that the
log-density log f(x, y) of the random vector Z = (X, Y ) =

(
Φ−1(U),Φ−1(V )

)
can

locally be approximated by a polynomial Pa(x,y),p of some order p. Here, a(x, y) ∈
R(p+1)(p+2)/2 is the coefficient vector of the polynomial, where (p+ 1)(p+ 2)/2 is just
the number of terms (including a constant) of a two-dimensional polynomial of order
p. We can then write

log f(x′, y′) ≈ Pa(x,y),p

= a1(x, y) + a2(x, y)(x− x′) + a3(x, y)(y − y′)
+ a4(x, y)(x− x′)2 + a5(x, y)(x− x′)(y − y′) + a6(x, y)(y − y′)2

+ . . .

+ a(p+1)(p+2)/2(x, y)(y − y′)p,
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for (x′, y′) in the neighborhood of (x, y). In order to fit the local coefficients to
the log-density around z = (x, y), we can solve the weighted maximum likelihood
problem

â(x, y) = arg max
a∈R(p+1)(p+2)/2

{
n∑
i=1

KB

(
z −Zi

)
Pa,p(z −Zi)

− n
∫
R2
KB

(
z − s

)
exp

(
Pa,p(z − s)

)
ds

}
,

where similar to the last section,

KB(x) := K
((
B−1(x)

)
1

)
K
((
B−1(x)

)
2

)
,

with some symmetric probability density K and bandwidth matrix B. As a result,
we obtain â1(x, y) as an estimate for log f(x, y) and, consequently, exp

(
â1(x, y)

)
as

an estimate for f(x, y).
The definition of the likelihood function above is a bit unusual. While the kernel

functions enter the formula in order to localize the estimation problem, the integral
term serves as a penalty which becomes necessary due to the fact that, in general,
the polynomial is not a density (see Loader, 1999, for a more thorough motivation).
Since we known that the distributions of X and Y are standard normal, we might
want our density estimates to behave locally like the bivariate Gaussian density
φ(x) = (2π)−1 exp(−1

2x
>Σ−1x). But this is equivalent to letting the log-density

behave like a (constrained) polynomial of order two. Therefore, we will always use
the order p = 2 from here on.

An estimate of the copula density can be obtained by rescaling the estimates just
as we did in the previous section. As we have seen, this back-transformation causes
the variance to explode near the boundaries. Geenens et al. (2014) suggest to use
a variable bandwidth of nearest-neighbor type to stabilize the variance. The only
difference here is that a constant bandwidth matrix B is multiplied by a quantity
∆kn(x, y), which is defined as the Euclidean distance between (x, y) and its knth
closest sample point (Xi, Yi) (w.r.t. the Euclidean norm). More formally, define
di(x, y) := ‖(x, y)− (Xi, Yi)‖ and let d(k)(x, y) be the k-smallest amongst all di(x, y),
i = 1, . . . , n. Then,

∆kn(x, y) = d(kn)(x, y).

When the kernel function is supported on [−1, 1] and B = Id, this means that exactly
the kn closest samples (Xi, Yi) are used for estimation. Note that ∆kn(x, y) is random
and gives a large bandwidth in areas of low density and a small bandwidth in areas
of high density. Recall that Xi, Yi ∼ N (0, 1) and, thus, the density of the underlying
samples (Xi, Yi) looks roughly like a bivariate normal density. As a consequence, the
bandwidth will increase when moving away from (0, 0). When back-transformed to
the unit square this corresponds to an increased bandwidth when approaching the
boundaries. This will help to stabilize the variance in these regions, as we will see in
the next section.
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Remark 3.1. It is reasonable to ask why we did not use nearest-neighbor bandwidths
for the previous estimators. It is a well known fact that nearest-neighbor bandwidths
do not work well with regular kernel estimators. The resulting estimates are usually
too rough and the bandwidth does not adapt properly to the local conditions. When
imposing a nearest-neighbor bandwidth in the context of local likelihood fitting however,
these pitfalls disappear as the bandwidth is incorporated only indirectly through the
local likelihood (see e.g. Simonoff, 1996, Section 3.4).

Let us subsume the previously developed ideas in a formal definition.

Definition 3.6. Define Wi = (Ui, Vi) and ∆kn(x, y) as the euclidean distance
between (x, y) and its knth closest observation amongst all

(
Φ−1(Wi)

)
i=1,...,n

:=(
Φ−1(Ui),Φ−1(Vi))

)
i=1,...,n

. For all (u, v) ∈ [0, 1]2, the local likelihood trans-
formation estimator of a copula density c(u, v) with nearest-neighbor factor
∆kn and bandwidth matrix B is given by

ĉ(TLL)
n (u, v) =

exp
{
â1
(
Φ−1(u),Φ−1(v)

)}
φ(Φ−1(u))φ(Φ−1(v)) ,

where â1
(
Φ−1(u),Φ−1(v)

)
can be found via

â(x, y) =

arg max
a∈R6

{
n∑
i=1

K∆kn (x,y)B
(
(x, y)− Φ−1(Wi)

)
Pa,2

(
(x, y)− Φ−1(Wi)

)
− n

∫
R2
K∆kn (x,y)B

(
(x, y))− Φ−1(z)

)
exp

{
Pa,2

(
(x, y)− Φ−1(z)

)}
dz

}
,

with

Pa(x,y),2(x′, y′) = a1(x, y) + a2(x, y)(x− x′) + a3(y − y′)
+ a4(x− x′)2 + a5(x− x′)(y − y′) + a6(y − y′)2.

Note that we used a constant bandwidth matrix in this case, since the ultimate
amount of smoothing is determined by the nearest-neighbor term ∆kn(x, y), which
already depends on n.

3.5.2 Properties
For the local likelihood transformation estimator the bias gets even more complicated,
so we will restrict ourselves directly to the case of just one bandwidth parameter.

Proposition 3.5. Let c(u, v) be four times continuously differentiable on (0, 1)2 and
let kn →∞, kn/n→ 0 and, more specifically, kn = O(n4/5) as n→∞. Then for all
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(u, v) ∈ (0, 1)2,

Bias[ĉ(TLL)
n (u, v)

]
= − σ2

K(kn/n)2

8π2c
(
u, v

)
φ2
(
Φ−1(u)

)
φ2
(
Φ−1(v)

)
·
{
∂4g

∂x4 + ∂4g

∂y4 + 2 ∂4g

∂x2∂y2

+ 4
(
∂3g

∂x3
∂g

∂x
+ ∂3g

∂y3
∂g

∂y
+ ∂3g

∂x2∂y

∂g

∂y
+ ∂3g

∂x∂y2
∂g

∂x

)}
(x, y)

+ o

(
k2
n

n2

)
,

Var
[
ĉ(TLL)
n (u, v)

]
= 5d2

Kπ

2kn
c2(u, v) + o

(
k−1
n

)
,

where

σ2
K =

∫ 1

0
s2K(s)ds and dK =

∫ 1

0
K2(s)ds,

x = Φ−1(u), y = Φ−1(v) and g(x, y) = log c
(
Φ(x),Φ(y)

)
+ log φ(x) + log φ(y).

For the proof, we will need a result from (Geenens et al., 2014, Theorem 3.3). Denote
ĉ(TLL∗)
n as the local likelihood transformation estimator without nearest-neighbor
bandwidth and let us again assume that we work with just one parameter bn, i.e.
∆kn ≡ 1 and B = bn.

Proposition 3.6. Let c(u, v) be be four times continuously differentiable on (0, 1)2

and let bn → 0, nb6
n →∞ as n→∞. Then for all (u, v) ∈ (0, 1)2,

Bias
[
ĉ(TLL∗)
n (u, v)

]
= −σ

2
Kb

4
n

8 c
(
u, v

)
·
{
∂4g

∂x4 + ∂4g

∂y4 + 2 ∂4g

∂x2∂y2 (3.5)

+ 4
(
∂3g

∂x3
∂g

∂x
+ ∂3g

∂y3
∂g

∂y
+ ∂3g

∂x2∂y

∂g

∂y
+ ∂3g

∂x∂y2
∂g

∂x

)}
(x, y)

+ o
(
b4
n

)
,

Var
[
ĉ(TLL∗)
n (u, v)

]
= 5d2

K

2nb2
n

c(u, v)
φ
(
Φ−1(u)

)
φ
(
Φ−1(v)

) + o

(
1
nb2

n

)
, (3.6)

where

σ2
K =

∫ 1

0
s2K(s)ds and dK =

∫ 1

0
K2(s)ds,

x = Φ−1(u), y = Φ−1(v) and g(x, y) = log c
(
Φ(x),Φ(y)

)
+ log φ(x) + log φ(y).
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Under additional conditions, (Geenens et al., 2014) show that the same expressions
hold even if we are not provided with iid copies (Ui, Vi) of the copula and they have
to be estimated in the sense of a transformation to pseudo-samples (c.f. Definition
2.8). This can be achieved by making of use of asymptotic theory for the empirical
copula process (see e.g. Segers, 2012).

Proof of Proposition 3.5. Thanks to Proposition 3.6, it only remains to show how
the use of a nearest-neighbor bandwidth affects the expressions (3.5) and (3.6). We
utilize a version of the asymptotic approximation of ∆kn(x, y)’s moments derived in
Mack and Rosenblatt (1979). In our setting we can write

E
[
∆λ
kn

(x, y)
]

=
(

kn/n

πc
(
Φ(x),Φ(y)

)
φ(x)φ(y)

)λ/2
+ o

(
(kn/n)λ/2

)
, (3.7)

for all λ ∈ Z. In the following we will omit the arguments of ∆kn for notational
convenience.

Let us start with the bias. First, note that

Bias
[
ĉ(TLL)
n (u, v)

]
= E

[
ĉ(TLL)
n (u, v)− c(u, v)

]
= E

[
E
[
ĉ(TLL)(u,v)
n

∣∣∣∆kn

]
− c(u, v)

]

= E
[
Bias

[
ĉ(TLL)(u,v)
n

∣∣∣∆kn

]]

and that Bias
[
ĉ(TLL)
n (u, v)

∣∣∣∆kn

]
is exactly (3.5) where we replace bn by ∆kn . Using

formula (3.7) we can therefore write,

Bias
[
ĉ(TLL)
n (u, v)

]
= −

σ2
KE

[
∆4
kn

]
8 c

(
u, v

)
·
{
∂4g

∂x4 + ∂4g

∂y4 + 2 ∂4g

∂x2∂y2

+ 4
(
∂3g

∂x3
∂g

∂x
+ ∂3g

∂y3
∂g

∂y
+ ∂3g

∂x2∂y

∂g

∂y
+ ∂3g

∂x∂y2
∂g

∂x

)}
(x, y)

+ o
(
E
[
∆4
kn

])
(3.7)= − σ2

K(kn/n)2

8π2c
(
u, v

)
φ2
(
Φ−1(u)

)
φ2
(
Φ−1(v)

)
·
{
∂4g

∂x4 + ∂4g

∂y4 + 2 ∂4g

∂x2∂y2

+ 4
(
∂3g

∂x3
∂g

∂x
+ ∂3g

∂y3
∂g

∂y
+ ∂3g

∂x2∂y

∂g

∂y
+ ∂3g

∂x∂y2
∂g

∂x

)}
(x, y)

+ o

(
k2
n

n2

)
.
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For the variance we make use of the formula

Var
[
ĉ(TLL∗)
n (u, v)

]
= E

[
Var

[
ĉ(TLL∗)
n (u, v)

∣∣∣∆kn

]]
+ Var

[
E
[
ĉ(TLL∗)
n (u, v)

∣∣∣∆kn

]]
.

Now, Var
[
ĉ(TLL∗)
n (u, v)

∣∣∣∆kn

]
is exactly (3.6), where we replace bn by ∆kn . Hence, we

can write the first summand in the above formula as

E
[
Var

[
ĉ(TLL∗)
n (u, v)

∣∣∣∆kn

]]
= 5d2

K

2nE
[
∆2
kn

] c(u, v)
φ
(
Φ−1(u)

)
φ
(
Φ−1(v)

) + o
(
n−1E

[
∆2
k

])
(3.7)= 5d2

Kπ

2kn
c2(u, v) + o

(
k−1
n

)
.

The second summand can be written as

Var
[
E
[
ĉ(TLL∗)
n (u, v)

∣∣∣∆kn

]]
= Var

[
Bias

[
ĉ(TLL∗)
n (u, v)

∣∣∣∆kn

]
+ c(u, v)

]

= Var
[
Bias

[
ĉ(TLL∗)
n (u, v)

∣∣∣∆kn

]]
.

Recall that the only random quantity in the expression for Bias
[
ĉ(TLL∗)
n (u, v)

∣∣∣∆kn

]
is

∆4
kn
. By application of formula (3.7) we can infer

Var
[
∆4
kn

]
= E

[
∆8
kn

]
− E

[
∆4
kn

]2
= o

(
(kn/n)4

)
= o

(
k−1
n

)
,

where the last equality follows from the assumption that kn = O(n4/5). This gives

Var
[
Bias

[
ĉ(TLL∗)
n (u, v)

∣∣∣∆kn

]]
= o

(
k−1
n

)
and, altogether,

Var
[
ĉ(TLL)
n (u, v)

]
= 5d2

Kπ

2kn
c2(u, v) + o

(
k−1
n

)
.

Of course, we could further expand the above expressions of Bias[ĉ(TLL)
n (u, v)] and

Bias[ĉ(TLL∗)
n (u, v)], but ∂4g/∂x4 alone consists of more than ten different terms

involving the first four partial derivatives of c as well as multiple powers of φ. Alas,
this makes any further effort for interpretation in the general case hopeless. We
should notice, though, that compared with the regular transformation estimator
ĉ(T )
n , the order of the bias in Proposition 3.6 is reduced from O(b2

n) to O(b4
n). This
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Figure 3.13: Perspective plots of the true density and the local likelihood transfor-
mation estimator on simulated data (n = 1 000) of a Frank copula with parameter
θ = 5 (Kendall’s τ ≈ 0.46). The bandwidth was selected based on the method
described in Section 3.5.3.

fortunate effect is common when transitioning from standard kernel estimates to
quadratic local likelihood estimation (see e.g. Loader, 1999).

An interesting special case is to take c as a Gaussian copula with association
parameter ρ. In this case we have that

g(x, y) = logϕρ(x, y) = − log(2π)− 1
2(1− ρ2)

(
x2 + y2 − 2ρxy

)
,

where ϕρ is a bivariate normal distribution with zero means, unit variances and
correlation ρ. We immediately see that all the derivatives needed in the above
formula of the bias are zero and, hence, the asymptotic bias is zero. This is not
surprising when we recall why we chose quadratic polynomials to approximate the
log-density. These polynomials enable us to perfectly resemble the log-density of a
Gaussian distribution. Hence, the estimator ĉTLL is even more flexible than local
parametric (Gaussian) fitting, which, as usual, is unbiased when the model is correctly
specified (for more on local parametric density estimation see Hjort and Jones, 1996).

By contrast, asymptotic analysis of the variance is more transparent. We have
that

AVar
[
ĉ(TLL∗)
n (u, v)

]
= 5d2

K

2nb2
n

c(u, v)
φ
(
Φ−1(u)

)
φ
(
Φ−1(v)

) ,
which is the same as AVar

[
ĉ(T )
n (u, v)

]
, except that it was inflated by the factor 5/2.

Also this effect is common in quadratic local likelihood estimation. By contrast,

AVar
[
ĉ(TLL)
n (u, v)

]
= 5d2

Kπ

2kn
c2(u, v).
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Figure 3.14: Marginal normal contour plot of the true density and the local likelihood
transformation estimate on simulated data (n = 1 000) of a Clayton copula with
parameter θ = 3 (Kendall’s τ = 0.6). The bandwidth was selected based on the
method described in Section 3.5.3.

Compared with AVar
[
ĉ(TLL∗)
n (u, v)

]
the destabilizing factors φ

(
Φ−1(u)

)
φ
(
Φ−1(v)

)
in

the denominator of the variance disappear. This does not ensure boundedness due
to the influence of c2(u, v) and the variance will be unbounded wherever c(u, v) is.
At a first glance, we don’t even know if the variance is reduced near the boundaries
after all, so let us investigate the effect in more detail. By comparing the two
asymptotic variances, we can conclude that, asymptotically, imposing a nearest-
neighbor bandwidth has the effect of replacing 1/b2

n by a factor

m(u, v) = πn

kn
c(u, v)φ

(
Φ−1(u)

)
φ
(
Φ−1(v)

)
.

Note that with the change of variables x = Φ−1(u), y = Φ−1(u), we have

m(x, y) = πn

kn
c(Φ(x),Φ(y))φ(x)φ(y) = πn

kn
f(x, y),

where f(x, y) is a density with standard normal margins. It follows that m(u, v)→ 0
when (u, v) approaches the boundaries of the unit square. This argument shows that
we actually decrease the variance near the boundaries.

In Figures 3.13 and 3.14 two things are striking. First, the estimates seem to be
very accurate and even the sharp tail of the Clayton copula (Figure 3.14) is almost
perfectly resembled in the estimated contours. Second, the estimates are very smooth
and pleasant to look at. This can be explained by the reduced order of the bias, which
allows us to make the estimates more smooth compared with the other estimators.
Clearly, we could have made the estimates in the previous sections equally smooth by
increasing the bandwidth, but this would have come at the cost of ‘smoothing away’
important features of the density. For example, increasing the bandwidth would
make the estimated contours in the lower tail of the Clayton density less sharp.

Moreover, we do not see the effect of an oversmoothed lower and undermoothed
upper tail of the Clayton density. This stands in contrast to the other estimation
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methods and is due to the adaptive bandwidth. To see how it works, we also included
a scatterplot of the transformed sample in Figure 3.14c. In the lower left part, there
are many observations in a small neighborhood of a point and, therefore, the distance
to the knth closest observation is very small. This leads to a small bandwidth which
allows the estimator to appropriately resemble the spiky shape. In the upper right
region on the other hand, the distance to the knth closest observation and, as a result,
the bandwidth become much larger. This leads to very smooth contours, which all
the previous estimators failed to provide. Overall, the local likelihood transformation
estimator seems to give the best results for the two exemplary models.

3.5.3 Bandwidth selection

A bandwidth selection rule for the local likelihood transformation estimator calls
for a bit of creativity. In general, optimization of the AMISE is impracticable due
to the very complex asymptotic representation of bias. We could simplify matters
by considering the Gaussian as a reference copula, but also this is inadequate. The
reason can be found in Section 3.5.2 where we saw that in this scenario the asymptotic
bias will be zero. Therefore, one of the opposing forces in the AMISE is missing
and minimization of the remaining variance-term would always suggest to use an
infinitely large bandwidth. This is equivalent to a full maximum likelihood fit and
we lose the local character of the estimator. A practicable alternative was suggested
in Geenens et al. (2014) who use univariate least-squares cross-validation on the
transformed domain. We will use an approach very similar to theirs and give a
heuristic motivation in the following.

Consider the transformed samples (Xi, Yi)i=1,...,n = (Φ−1(Ui),Φ−1(UVi))i=1,...,n. In
the analysis of the regular transformation estimator, we already noticed that using
a bandwidth proportional to the correlation matrix of the transformed sample, Γ,
is advisable. Recall that the distribution of the samples (Xi, Yi) is approximately
bivariate normal with covariance matrix Σ = Γ. For the moment, let us assume
that this holds exactly. By another transformation of the data, namely (Qi, Ri) =
Γ−1(Xi, Yi), we obtain samples from two iid standard normal random variables. This
situation is very convenient and would allow us to optimize the parameter kn in a
univariate setting and then rescale the result to the optimal order in the bivariate
case. It should be stressed that this argument is only heuristic and, theoretically,
we are walking on thin ice. In reality the distribution of the transformed samples
(Xi, Yi) deviates from being bivariate normal precisely through the copula c. But
this is what we wanted to estimate in the first place. Nevertheless, it provides a
convenient practical approach to select the bandwidth.

We still have to provide a method to select the parameter kn in a univariate
setting. A conceptually easy and popular method is the least-squares cross-validation
bandwidth selector and will be explained in the following. Assume f̂n is an estimator
for the density fQ of a random variable Q supported on the real line. We can write
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the mean integrated squared error of this estimator as

MISE
[
f̂n
]

=
∫
R

E
[(
f̂n(x)− fQ(x)

)2
]
dx

= E
[∫

R

(
f̂n(x)− fQ(x)

)2
dx

]

= E
[∫

R
f̂ 2
n(x)dx

]
− 2E

[∫
R
f̂n(x)fQ(x)dx

]
+
∫
R
f 2
Q(x)dx

= E
[∫

R
f̂ 2
n(x)dx

]
− 2E

[
f̂n(Q)

]
+
∫
R
f 2
Q(x)dx.

The goal is now to estimate the terms in the last line. Since the third term does not
depend on the estimate fn it can be ignored when optimizing the MISE. An obvious
(and unbiased) estimator for the first term is

∫
R f̂

2
n(x)dx. The second term can be

estimated via leave-one-out cross-validation (e.g. Rizzo, 2008) by

− 2
n

n∑
i=1

f̂−i(Xi),

where f̂−i is the estimator f̂n−1 applied to the data set (X1, . . . , Xi−1, Xi+1, . . . , Xn).
Altogether minimizing the MISE is therefore approximately equivalent to choosing

kLSCVQ,n = arg min
kn∈N

{∫
R
f̂ 2
n(x)dx− 2

n

n∑
i=1

f̂−i(Xi)
}
.

The result will be a good estimate for the optimal bandwidth in the univariate
case. The optimal orders of kn are different for one- and two-dimensional kernel
estimation, though. They can be derived from optimizing AMISE expressions of the
corresponding estimators. In the case of quadratic local likelihood density estimation,
the difference in orders is a factor n−4/45 and we should therefore multiply kLSCVn

with n−4/45 to take account of that fact (see Geenens et al., 2014).
In practice, the distributions of the samples Qi and Ri will not be exactly equal.

It turned out as a good solution to apply least-squares cross-validation on both
samples and take the minimum of the two parameters as the final choice. Let us
summarize the whole procedure:

1. Choose Bn as the empirical correlation matrix of (Xi, Yi)i=1,...,n.

2. Construct samples (Qi, Ri)i=1,...,n =
(
B−1
n (Xi, Yi)

)
i=1,...,n

.

3. Find kLSCVQn
and kLSCVR,n by univariate least-squares cross-validation on the samples

(Qi)i=1,...,n and (Ri)i=1,...,n respectively.

4. Choose kn =
⌊
min

{
kLSCVQn

, kLSCVR,n

}
n−4/45

⌋
.
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Since this approach is only heuristically motivated, it is important to validate its
results. In Figures 3.13 and 3.14 we saw that both estimates are very smooth on the
whole unit square. If anything, we could use a smaller value for kn which would result
in a less smooth estimate and a decreased bias. On the other hand, the estimates
were also almost perfectly resembling the shape of the true density and we did not
see important features being ‘smoothed away’. All in all, the bandwidth selection
rule seems to work appropriately.

3.6 Simulation study
In the following we will discuss the performance of the presented estimators on the
basis of an extensive simulation study and compare the presented estimators with
the popular parametric approach.

3.6.1 Methods
For conducting the study, all estimators were implemented in R (R Core Team, 2013).
Let us mention the specific settings for each estimation method. In parentheses we
give short handles with which each estimator can be identified in plots and tables.

• Mirror reflection estimators (MR/MRS) Both the basic (MR) and
improved version of this estimator (MRS) are considered. We used an Epanech-
nikov kernel and the bandwidths were chosen according to the rule-of-thumb
discussed in Section 3.2.4. It optimizes the AMISE for a reference copula den-
sity, for which we used the Frank family. The parameter of the reference density
was set by inversion of the empirical Kendall’s τ . The shrinkage intensity of
the MRS estimator was set to α = 1/2.

• Beta kernels (beta) We used an Epanechnikov kernel and the bandwidths
were chosen according to the rule-of-thumb discussed in Section 3.3.3. Again,
we choose the Frank copula as reference density and its parameter was set by
inversion of the empirical Kendall’s τ .

• Transformation estimators (T/TB) The one-parameter (T) and fully
parameterized (TB) versions are considered. We used an Epanechnikov kernel
and the bandwidths were chosen according to the rule-of-thumbs discussed
in Section 3.4.4. They optimize the AMISE on the transformed level w.r.t
to a bivariate normal distribution. The empirical correlation matrix of the
transformed sample was used as an estimate for Γ.

• Local-likelihood transformation estimator (TLL) The implementation
employs the locfit R-package (Loader, 2013) for local likelihood estimation.
For this estimator, we used a Gaussian kernel due to numerical difficulties with
the Epanechnikov kernel. This should be a disadvantage, if there is any notable
difference at all. The bandwidth matrix B and nearest-neighbor parameter kn
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were selected according to the cross-validation procedure described in Section
3.5.3.

• Parametric estimators (par/par-) Parametric estimation was imple-
mented via the BiCopSelect function of the VineCopula package (Schepsmeier
et al., 2013). The function fits several one- and two- parameter copula fami-
lies including the Gaussian, t- and Tawn copulas as well as the most popular
Archimedean family such as Clayton, Joe, Gumbel, BB1, etc. and rotations
thereof (see package description for a full list). The parameter is estimated
by maximum likelihood and the model with the highest AIC is selected (par).
Since we simulated data from parametric models, but in general there is no
reason to assume that a known parametric model is underlying real data, we
also included a reduced version, where the estimation procedure is prohibited
from choosing a family that contains the true model (par-).

To get a broad view over the performance in different situation, we considered various
scenarios:

• Sample size We simulated data for two different sample sizes, n = 250 and
n = 1000.

• Copula families We considered three different copula families to simulate
the data: the Gumbel copula, Tawn copula and a Gaussian mixture copula (c.f.
Sections 2.1.1 and 2.1.3).

• Dependence For each family, there is one scenario with weak and one with
strong dependence. For each family this corresponds (approximately) to a
Kendall’s τ of 0.3 and 0.7 respectively. In the following table, we give the
chosen parameters for each scenario.

τ Gumbel Tawn Gaussian mixture
0.3 1.43 (2.7, 0.4, 1) µ = ( 2

2 ), µ̊ = ( 6
1.6 ),Σ = ( 1 0.9

0.9 1 ), Σ̊ = ( 4 2
2 4 ), α = 0.65

0.7 3.33 (6.5, 0.8, 1) µ = ( 2
2 ), µ̊ = ( 6

6 ),Σ = ( 1.35 0.8
0.8 1 ), Σ̊ = ( 2.1 1.4

1.4 2.1 ), α = 0.65

In total we have six simulation models which we compare on two sample sizes.
Marginal normal contour plots of the true density underlying each simulation model
are given in Figure 3.15. The two Gumbel models are the ‘most regular’ cases,
since the copula density is symmetric in its components. They also have a spike
in the upper right part of the contours, which may constitute a difficulty for the
kernel estimators especially for τ = 0.7. The Tawn copula models give an additional
asymmetry w.r.t. to the copula’s arguments. Lastly, the two Gaussian mixture
copula models (c.f. Examples 2.5 and 2.11) are seemingly ‘odd’ cases with two modes
of different height. This will be impossible to capture for the popular parametric
models, but is also difficult for the kernel estimators, since the optimal amount of
smoothing varies substantially in different areas of the density. For each scenario
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Figure 3.15: Marginal normal contour plots of the true densities underlying the
considered simulation models.

and sample size, N = 500 samples were simulated and estimates were obtained for
each estimation method. The performance of the estimators on a particular sample
is then measured by three performance measures: the integrated squared error (ISE),
integrated absolute error (IAE) and the Hellinger distance (HD). They all describe
a distance in the space of continuous functions and are defined as

ISE
[
ĉ(·)
n

]
=
∫ 1

0

∫ 1

0

(
ĉ(·)
n (u, v)− c(u, v)

)2
dudv

IAE
[
ĉ(·)
n

]
=
∫ 1

0

∫ 1

0

∣∣∣ĉ(·)
n (u, v)− c(u, v)

∣∣∣dudv
HD

[
ĉ(·)
n

]
=

√√√√1
2

∫ 1

0

∫ 1

0

(√
ĉ

(·)
n (u, v)−

√
c(u, v)

)2

dudv.
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τ n MR MRS beta T TB TLL par- par
Gumbel 0.3 250 0.12 0.06 0.09 0.06 0.06 0.04 0.03 0.02

1 000 0.10 0.03 0.06 0.03 0.03 0.02 0.01 0.00
0.7 250 0.98 0.53 0.74 1.03 0.25 0.20 0.23 0.07

1 000 0.82 0.35 0.54 0.74 0.11 0.10 0.13 0.01
Tawn 0.3 250 0.32 0.24 0.24 0.20 0.15 0.12 0.30 0.02

1 000 0.28 0.19 0.18 0.12 0.08 0.07 0.26 0.04
0.7 250 2.25 1.71 1.90 2.79 1.12 0.56 1.91 0.12

1 000 1.95 1.30 1.49 2.32 0.69 0.26 1.71 0.04
Gaussian 0.3 250 1.03 0.96 0.76 0.88 0.75 0.58 1.13 1.15
mixture 000 0.86 0.81 0.60 0.67 0.56 0.41 1.10 1.11

0.7 250 0.24 0.28 0.25 0.66 0.45 0.26 0.29 0.30
1 000 0.17 0.21 0.17 0.46 0.28 0.19 0.26 0.26

Table 3.1: Estimated MISE over N = 500 simulations (rounded on two decimals).
The best kernel estimator in each scenario is highlighted in bold.

For numerical convenience, all measures were estimated on a grid of 100× 100
points. More specifically, we used

ÎSE
[
ĉ(·)
n

]
= 1

1002

100∑
i=1

100∑
j=1

(
ĉ(·)
n

(
i

101 ,
j

101

)
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(
i

101 ,
j

101

))2

dudv

ÎAE
[
ĉ(·)
n

]
= 1
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∣∣∣∣∣ĉ(·)
n
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j
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i
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j
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−

√√√√c( i

101 ,
j

101

))2

.

3.6.2 Analysis
It was found that the results essentially lead to the same conclusions across all three
performance measures. For illustrational purposes in this section, we will therefore
only use the integrated squared error (ISE). The interested reader can find boxplots
of the full results accompanied by marginal normal contour plots of exemplary
estimates for each method in Appendix A.

In Table 3.1 the mean of the ISE for a each model and estimator is given and the
best kernel estimator is highlighted in bold. We will focus on the Gumbel and Tawn
models first. Clearly, the TLL estimator is the best of all kernel estimators in all
situations. Mostly, the improvement over the other estimation methods is substantial.
It is also apparent, that the kernel estimators have more trouble in case of strong
dependence. That is because of the more rapidly exploding tails in the upper right
corner in both models. As we have seen in the asymptotic analysis of the estimators,
the magnitude of the MISE is related to the magnitude of the copula density and
its partial derivatives. When the tails explode more rapidly, these terms get bigger.
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The TB and TLL estimators perform much better than the competitors in these
situations. The performance of the two estimators is quite comparable in the first
six rows of Table 3.1, the margin becomes larger for the Tawn model with strong
dependence. Here, the TLL estimator is profiting of the adaptive bandwidth. This is
illustrated in Figure 3.16. In the low density regions in the lower right part of the
contours, the TB estimates get too wiggly, whereas the TLL estimate is very smooth
due to the increased bandwidth. In addition, the high density region in the center
of the contours are underestimated by the TB estimator, whereas the decreased
bandwidth of the TLL estimator allows for higher peaks.

Not surprisingly, the full parametric estimator (par) outperforms all competitors
for the Gumbel and Tawn models. In these cases, the true copula model is likely to be
selected by the estimation procedure. Then, the estimator is consistent and provides
a better convergence rate than non-parametric estimators (see e.g. Wand and Jones,
1994). Note that this is not the case for the reduced estimator (par-), since here the
parametric model will always be misspecified. In this case, the estimator is not even
consistent and is outperformed by the best nonparametric estimator in all but the
Gumbel model with weak dependence. This finding is an excellent illustration of
how important it is that a parametric model is correctly specified. Most of the time,
parametric assumptions for copulas are made purely for practical convenience, as it
allows to reduce an essentially infinite-dimensional problem to just a few parameters.
Clearly, there are huge benefits such as simple implementation and further use of
the estimate. Still, one should be very careful when making parametric assumptions
and it is advisable to at least cross-check against a non-parametric estimate.

For the Gaussian mixture models, the picture is a little different. First of all, the
range of parametric families in our implementation does not include Gaussian mixture
copulas. In this case, both parametric estimators are always misspecified and almost
equivalent. The estimators MR, MRS, beta and TLL outperform the parametric
versions in all cases. In case of weak dependence the TLL estimator gives again the
best results, whereas the basic mirror-reflection estimator performs best in case of
strong dependence. This comes a little surprising judging by the poor performance
for the Gumbel and Tawn models. Also the close second’s (beta) performance was
just average before. There are two features of the density to be held accountable for
this phenomenon. One is that the tails of the Gaussian mixture densities are bounded
(c.f. Example 2.11). In such cases the beta and MR estimators seem to be reputable
competitors. The second issue is the multi-modality of the densities. In such cases
Wand and Jones (1993) showed that using the full bandwidth parameterization is
likely to decrease the performance of kernel estimators. This fact is underlined by
the marginal normal contour plots of estimates on an exemplary sample in Figure
3.17. Recall that the full bandwidth parameterization of the TLL estimator leads to
elliptical kernels resembling the covariance structure of the data. As a result, the
kernels will stretch over the gap between the two modes and the bimodal feature gets
‘smoothed away’. In contrast, the MR and beta estimators (beta not shown here) are
able to capture this feature. This explains why these two estimators can compete
with the TLL in this scenario while being substantially worse in others. However,
even in case of strong dependence the edge over the TLL estimator is very thin. In
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Figure 3.16: Tawn copula model, τ = 0.7. Contour plots of the true density as well
as TB and TLL estimates on a samples of size n = 1 000.
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Figure 3.17: Gaussian mixture copula model, τ = 0.7. Contour plots of the true
density as well as MR and TLL estimates on a samples of size n = 1 000.
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Figure 3.18: Mean computation time of selected estimators for varying sample size.

case of weak dependence the kernel shapes are not drastically different and, hence,
the harm caused by the full bandwidth parameterization is not as detrimental.

Sample size did hardly play any role in the ranking of the estimators, so we can
expect our findings to be valid over a wide range of sample sizes. Overall, the TLL
estimator seems to be the best choice amongst all kernel estimators. It may also
improve notably over parametric estimators, when the data is not generated by a
known parametric model.

A note on computation time

The whole simulation study was carried out on a computing cluster, but this setup and
the computations conducted in the study might not be of much interest in practice.
To get a more realistic view of the computation time in practical applications, we
compare the aggregate time needed for bandwidth selection and obtaining estimates
on a grid of 30 × 30 points (which was the typical grid for producing the plots in
this thesis). The computations are conducted on a customary Windows 7 Lenovo
laptop with Intel Core Duo i3-3120 CPU @ 2.50 GHz and 8 GB RAM.

The mean computation times over 100 simulated samples from a Gaussian copula
(τ = 0.5) of different size can be found in Figure 3.18. We did not include the MR
and T estimators as the computation time is almost identical to the MRS and TB
estimators respectively.

The time needed for the bandwidth selection can be observed by the vertical
shift across the different estimators for very small sample size. The steepness of the
lines correspond to the marginal cost of evaluating the estimator when sample size
is increased. First of all, we see that the computation times of the TB estimator
are significantly smaller compared with the others. This is facilitated by the much
simpler bandwidth selection rule that requires neither numerical integration nor
cross-validation. The other estimators are quite comparable whereas the marginal
cost of increasing sample size is highest for the MRS and TLL estimators. The
reasons are that the size of the augmented data is nine times as large as the actual
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sample size for the MR estimators, and that we used the computationally more
demanding Gaussian kernel for the TLL estimator. An interesting observation is that
for all estimators computation time grows approximately linear in sample size. This
is a fortunate feature if one is interested in estimation on very large data sets. Even
for sample sizes as big as 5 000, all estimators provide results in a matter of seconds.
Judging from computation time, all estimators certainly qualify for application in
practice.



Chapter 4

Kernel estimation of h-functions

There is a second ingredient we need to estimate a full vine copula model: the
h-function. In parametric models, the h-function is readily obtained by using the
copula family and parameters of a density estimate. In a nonparametric setting the
issue calls for further considerations.

The h-function is defined as the conditional probability h(u|v) = P(U ≤ u|V = v)
and can be expressed as

h(u|v) = ∂

∂v
C(u, v) =

∫ u

0
c(s, v)ds, (4.1)

provided c(u, v) is a copula density. An obvious estimator ĥn(u|v) could be obtained
by plugging a density estimate ĉ(·)

n (u, v) into (4.1). This would result in the estimator

ĥ(·)
n (u|v) =

∫ u

0
ĉ(·)
n (s, v)ds.

Whenever ĉ(·)
n (u, v) is a consistent estimator of c(u, v), this estimator will be consistent

for h(u|v). However, it is not a proper distribution function in general. This is due
to the fact that the estimates ĉ(·)

n (u, v) are usually not a proper copula density and
formula (4.1) does not hold exactly. This is a serious problem since we cannot assure
that the pseudo samples ĥn(Ui|Vi) needed for estimation in higher trees of a vine
copula, are contained in [0, 1] for all i = 1, . . . , n. Consequently, they cannot be
considered as samples from a copula and estimation on higher trees may fail.

To overcome this problem we can simply rescale the integral by the estimate of
ĥ(·)
n (1|v) as in

ĥ(·),scale
n (u|v) =

∫ u
0 ĉ

(·)
n (s, v)ds∫ 1

0 ĉ
(·)
n (s, v)ds

,

By consistency of ĉ(·)
n (u, v), the denominator converges to one in probability and the

above estimator is consistent for h(u|v). Furthermore, the fact that ĉ(·)
n (u, v) ≥ 0

implies that

0 ≤
∫ u

0
ĉ(·)
n (s, v)ds ≤

∫ 1

0
ĉ(·)
n (s, v)ds, (4.2)
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which is equivalent to 0 ≤ ĥ(·)
n (Ui|Vi) ≤ 1.

This estimator has two appealing properties. First of all, there is no bandwidth
parameter we need to select. This keeps the estimation process simple and makes
implementation very easy. Secondly, the use of the preceding density estimates
preserves some level of consistency in view of the estimation process of a whole vine
copula. It favors the possibility to compensate errors on lower levels of the tree by
corrected estimates in higher trees.

But there is also one severe practical drawback. If the density estimator does not
allow for an analytic expression of the integral

∫ u
0 ĉ

(·)
n (s, v)ds, we have to perform a

substantial number of numerical integrations for the estimation and evaluation of a
vine copula. In addition, the precision of the numerical integrations has to be very high
to ensure that (4.2) holds in practice. This becomes time consuming very quickly
and renders the integration approach almost infeasible. Unfortunately, analytic
expressions are only available for the basic mirror-reflection and transformation
estimators. In general, it is not a practicable approach and we have to look for
alternatives.

In the remainder of this chapter, we will introduce a numerically attractive
alternative, discuss its properties and give advice for bandwidth selection.

4.1 A kernel regression estimator
There is no necessity to use the a density estimates in order to estimate an h-function.
We could also use an individual estimation approach. One promising way is to relate
the estimation problem to a regression equation. First, let us fix a value u ∈ [0, 1]
and note that we can write

h(u|v) = P(Ui ≤ u|Vi = v) = E
[
1(Ui ≤ u)

∣∣∣Vi = v
]
.

By the properties of conditional expectation we get

1
(
U ≤ u

∣∣∣V = v
)

= E
[
1(U ≤ u)

∣∣∣V = v] + ε,

where ε has zero mean and variance γ2(u, v) conditional on V . The variance of ε
has two arguments u and v to emphasize that it is different for each (u, v) ∈ [0, 1]2.
More specifically, we have γ2(u, v) = h(u|v)(1− h(u|v)), since 1

(
U ≤ u

∣∣∣V = v
)
is a

Bernoulli random variable with success probability P(U ≤ u|V = v) = h(u|v). The
equation

1
(
U ≤ u

∣∣∣V = v
)

= h(u|v) + εu,

can thus be interpreted as a classic non-parametric regression with predictor variable
V and response 1(U ≤ u|V ). In this context, h(u|v) serves as the mean regression
function and is to be estimated. As a consequence, we can rely on kernel regression
techniques to estimate the h-function.

Just as for density estimation, we have to take care that the estimator deals well
with the bounded support of the random variable V . One estimator that is known
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to do particularly well on bounded support is the local-linear estimator of Fan and
Gijbels (1992). Let us sketch the basic idea. Assume that h(u|v) is differentiable
in v, and u is fixed. Taylor’s theorem states that we can locally approximate the
regression function h(u|v) by a straight line, i.e.

h(u|v′) ≈ a1(u, v) + a2(u, v) (v′ − v),

for all v′ in a neighborhood of v. Provided we are given iid copies (Ui, Vi)i=1,...,n of
the random vector (U, V ), the local coefficients can be estimated by minimizing the
weighted least squares problem

arg min
a1(u,v),a2(u,v)∈R

n∑
i=1

(
1
(
Ui ≤ u

∣∣∣Vi)− a1(u, v)− a2(u, v) (v − Vi)
)2

Kbn(v − Vi),

where Kbn(·) = K(·/bn)/bn, K is a symmetric and bounded probability density, and
bn is a sequence of bandwidths tending to zero as n→∞. An estimate of h(u|v) is
then given by the coefficient â1(u, v) obtained as solution of the above problem. It
can be given in closed form (c.f. Fan and Gijbels, 1992) as

â1(u, v) =
n∑
i=1

wi(v)1(Ui ≤ u)∑n
i=1wi(v) ,

where

wi(v) := Kbn(v − Vi)
(
sn,2 − (v − Vi)sn,1

)
, i = 1, . . . , n,

with sn,j := ∑n
i Kbn(v − Vi)

(
v − Vi

)j
, for j = 1, 2.

There is, however, one further issue we have to take care of. When some of
the weights wi are negative, there is no guarantee that the resulting estimates of
h(u|v) are contained in [0, 1], nor can we be sure that they are increasing in u. This
means that h(u|v) is not a proper distribution function. Hall et al. (1999) proposed a
method to guarantee positive weights wi(v) by modifying the weighting in the least
squares problem. Let pi(v) ≥ 0, ∑n

i=1 pi(v) = 1 and more specifically

pi(v) = 1
n

1
1 + λ(v)(v − Vi)Kbn(Vi − v) , i = 1, . . . , n, (4.3)

where λ(v) solves the equation1

n∑
i=1

pi(v)(Vi − v)Kbn(Vi − v) = 0, (4.4)

We can then obtain an estimate of h(u|v) by solving the modified weighted least
squares problem

arg min
a1(u,v),a2(u,v)∈R

n∑
i=1

(
1
(
Ui ≤ u

∣∣∣Vi)− a1(u, v)− a2(u, v) (v − Vi)
)2

pi(v)Kbn(v − Vi).

1In practice the λ(v) will have to be computed numerically, but this can be achieved comparably
fast with just a few steps of a Newton-Raphson algorithm.
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Figure 4.1: The local linear estimator. (a) Scatterplot of samples from a Frank
copula. We fix a value u = 0.6 (dashed line). (b) Regression plot of 1

(
Ui ≤ 0.6

∣∣∣Vi)
against Vi. Samples are indicated as circles, the estimated regression function as solid
line and the weights wi(v) for v = 0.1, 0.6 as dotted lines.

The solution of this modified problem is

â1(u, v) =
n∑
i=1

wi(v)1(Ui ≤ u)∑n
i=1wi(v) ,

where

wi(v) := pi(v)Kbn(v − Vi)
(
sn,2 − (v − Vi)sn,1

)
, i = 1, . . . , n,

with sn,j := ∑n
i pi(v)Kbn(v−Vi)

(
v−Vi

)j
, for j = 1, 2. By (4.4), we have that sn,1 = 0

and the remaining terms in wi(v) are all non-negative by definition. So overall, wi(v)
will always be non-negative. Let us subsume this in a definition.

Definition 4.1. For all u, v in [0, 1]2, the local linear estimator of an h-
function h(u|v) with bandwidth parameter bn > 0 is defined as

ĥ(LL)
n (u|v) =

n∑
i=1

wi(v)1(Ui ≤ u)∑n
i=1 wi(v) ,

where

wi(v) := pi(v)Kbn(v − Vi)
n∑
j=1

pj(v)(v − Vj)2Kbn(v − Vj), i = 1, . . . , n,

and the pi(v) are defined in (4.3) and (4.4).
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Figure 4.2: Mean computation time of the local linear estimator for varying sample
size.

To get a better understanding of what is happening in the estimation process, let
us take a look at Figure 4.1. In (a) we see a scatterplot of a sample from a Frank
copula (note the interchanged u- and v-axes). We fix a value u = 0.6 which is
indicated by the dashed horizontal line. In a regression plot of the response variables
1
(
Ui ≤ 0.6

∣∣∣Vi) against the predictor variables Vi, every sample point that is below
the horizontal line in (a) will be represented by a one and every sample point that is
above this line will be represented as a zero. This plot can be seen in (b). Note that
the lower the value of v, the more points lie below the horizontal line resulting in a
large number of ones in (b) (and the other way around). To obtain the regression
function ĥ(LL)

n (0.6|v) (solid line), the points in (b) are locally averaged according to
the weights defined as wi(v)/∑n

i=1wi(v) (see Definition 4.1). For v = 0.1, 0.6 these
weights are shown as dotted lines (multiplied by 20 for better visibility). The local
weighting scheme adapts to the location of the estimate by getting asymmetric close
to the boundary. We also see that the influence of an individual observation Vi on
the estimate h(u|Vi) increases when approaching the boundaries.

A note on computation time

Clearly, h(u|v) is not a distribution function in v but in u, but by performing
several separate regressions for different values of u we can also obtain an estimate
of the distribution function h(u|v) = P (U ≤ u|V = v) for fixed v. This might
sound time-consuming at first, but actually the estimator is quite fast thanks to
the (almost) closed form solution given above. There is a numerical optimization
involved in finding the weights pi (hence the ‘almost’). However, as noted earlier, a
Newton-Raphson algorithm usually requires just a few steps so that the computation
time is negligible. In fact, the computational demands are very much comparable
to the kernel density estimators presented in the last chapter. This can be seen in
Figure 4.2 where we conducted the same experiment as at the end of the last chapter
(see Section 3.6.1 for details on the setup). The time consumed for evaluating the
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estimator on a grid of 30× 30 points is in the range of a few seconds for moderate
sample sizes. Again, the computation time appears to grow linearly in the sample
size making the estimator well scalable to estimation on large samples.

4.2 Properties
We start with discussing asymptotic approximations of bias and variance of the
estimator.

Proposition 4.1. Let (u, v) ∈ (0, 1)2 such that h(u|v) ∈ (0, 1) and let h(u|v) be
twice continuously differentiable w.r.t. v in a neighborhood of these points. Denote
again hvv(u|v) = ∂2h(u|v)/∂v2. For bn → 0 with nbn →∞ as n→∞ it holds

Bias
[
ĥ(LL)
n (u|v)

]
= b2

nσ
2
K

2 hvv(u|v) + o
(
b2
n

)
,

Var
[
ĥ(LL)
n (u|v)

]
=
dKh(u|v)

(
1− h(u|v)

)
nbn

+ o

(
1
nbn

)
,

where

σ2
K =

∫ 1

0
s2K(s)ds and dK =

∫ 1

0
K2(s)ds.

Proof. Under the given conditions, Theorem 1 in Hall et al. (1999) gives us the
first-order approximation

ĥ(LL)
n (u|v)− h(u|v) = b2

nσ
2
K

2 hvv(u|v) +

√
dK

√
h(u|v)

(
1− h(u|v)

)
√
nbn

Z + o

(
b2
n + 1√

nbn

)
,

where Z ∼ N (0, 1) and the claim follows immediately.

The reason why we excluded points where h(u|v) ∈ {0, 1} is simply that in this case
asymptotic bias and variance will be zero. It is interesting to note that the bias
and variance approximations are equivalent to those of the unmodified local linear
estimator of Fan and Gijbels (1992). So at least asymptotically, there is no cost of
modifying the weights to ensure that h(u|v) is a distribution function.

The asymptotic approximations already reveal situations in which the estimator
could get into trouble. When the absolute value of hvv(u|v) is large, the bias will be
large as well. This corresponds to points where the h-function has high curvature
in v-direction (the conditional variable). Furthermore, the asymptotic variance is
maximal when h(u|v) = 1/2 and decreases monotonically until h(u|v) approaches
zero or one.

Let us also point out some finite sample phenomena that are not reflected in
the asymptotic approximations. We estimated the h-function on simulated data of a
Frank copula with sample size n = 250 and values for Kendall’s τ of 0.3 and 0.7. The



Chapter 4 Kernel estimation of h-functions 79

(a) τ = 0.3 (b) τ = 0.7

Figure 4.3: Estimation of h(0.5|v), v ∈ [0, 1], for simulated data (n = 250) of a
Frank copula with Kendall’s τ = 0.3, 0.7. True function (solid line), mean of 500
estimates (dashed line) and estimated pointwise 90%-confidence bands (dotted lines).
Bandwidths were selected by the reference rule discussed in Section 4.3.

procedure was repeated N = 500 times and mean estimates and estimated pointwise
90%-confidence bands were obtained. Since the estimation is conducted for a fixed
u, we will also fix the value of u to gain better insights.

In Figure 4.3a we see h(0.5|v), v ∈ [0, 1], of a Frank copula with Kendall’s τ = 0.3
(solid line). The mean estimates are drawn as dashed line and confidence bands
as dotted lines. Most notably, we seem to have a strongly increased variance close
to the boundaries which is not reflected in the asymptotic approximation. In the
discussion of Figure 4.1 we already brought up the cause of this effect: the adaptive
weighting increases the influence of an observation to the estimate in this observation.
Furthermore, the second derivative w.r.t. v is almost constantly zero in this model, so,
asymptotically, there is almost no bias. We can, however, observe a small bias as the
mean estimate lies above the true function at the left boundary and below it at the
right boundary. This effect is again due to the asymmetric shape of the weightings we
mentioned in the discussion of Figure 4.1. Close to the boundary, the proportion of
observations entering an estimate is unequally distributed to the right and left of the
location of the estimate. At the left boundary for instance, an increased proportion
of observations right from the estimation point enter the estimate and lead to a
negative bias. Asymptotically, the effect of the weights disappears as the bandwidth
vanishes and can therefore not be found in asymptotic approximations. For a larger
sample size, these effects will mostly disappear.

In Figure 4.3b we see h(0.5|v) in the case of strong dependence (τ = 0.7). In
contrast to the previous situation, we see neither bias nor variance at the boundary
regions. Here, the true f-function attains zero and one respectively, so bias and
variance tend to zero. We do observe bias and variance in points where the curvature
is high, though. Whereas the bias is reflected in the asymptotic approximation by
means of the second-order derivative, the effect of the curvature to the variance is
hidden in the o

(
1/(nb2

n)
)
term. Overall, we can conclude that the finite-sample effects

seem to outweigh the issues detected in the asymptotic analysis of the estimators
for moderate sample size.
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(b) ĥ(LL)
250 (u|v)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6
0.8

1.0

0.2

0.4

0.6

0.8

u

v

h

(c) ĥ(LL)
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Figure 4.4: Estimation of the h-function for simulated data of a Frank copula with
Kendall’s τ = 0.7. True function (a) as well as estimates based on samples of size
250 (b) and 1 000 (c). Bandwidths were selected by the reference rule discussed in
Section 4.3.

In Figure 4.4 we see exemplary estimates of the whole h-function on simulated data
from a Frank copula with Kendall’s τ = 0.7 based on samples of size 250 (a) and
1 000 (b). Overall, we can conclude that the estimator is appropriately functioning
and gives reasonably accurate results.

4.3 Bandwidth selection
Bandwidth selection for kernel regression estimators is a well studied field. Usually,
it is advised to use data-driven criteria such as Akaike’s (corrected) information
criterion (see Hurvich et al., 1998) or the generalized cross-validation of Craven and
Wahba (1978). Our problem is a little different though, since we do not have to
perform a single, but a high number of separate regressions. While an averaging
approach over criteria computed on several distinct regressions is certainly possible,
the computation time is severely increased and the methods provided quite unstable
results in numerical experiments.

A stable and computationally appealing alternative can be established by consid-
ering an asymptotic approximation of the MISE. With Proposition 4.1 we obtain

AMISE
[
ĥ(LL)
n

]
=
∫ 1

0

∫ 1

0

[
b4
nσ

4
K

4 h2
vv(u|v) +

dKh(u|v)
(
1− h(u|v)

)
nbn

]
dudv

= b4
nσ

4
K

4

∫ 1

0

∫ 1

0
h2
vv(u|v)dudv︸ ︷︷ ︸
:=α

+ dK
nbn

∫ 1

0

∫ 1

0
h(u|v)

(
1− h(u|v)

)
dudv︸ ︷︷ ︸

:=β

,

provided the integrals exist. It is minimized by

bn =
(

4dKβ
σ4
Kα

)1/5

n−1/5.
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The above expression depends on the unknown h-function h(u|v). In practice we can
choose a parametric copula family that ensures integrability (e.g. the Frank copula)
and fix its parameter by matching the theoretical and empirical Kendall’s τ . The
optimal bandwidth for this reference copula can be easily computed by numerical
integration which is usually a matter of tenths of a second.

This bandwidth selection rule was applied in all estimates in Figures 4.3 and 4.4.
The rule seems to give approximately adequate bandwidths. However, the estimator
may have a slight tendency to undersmooth. This is caused by the finite-sample
variance effects that are neglected by asymptotic approximations (see discussion
in Section 4.2). Improved selection rules based on theoretical considerations or
computational attractive data-driven methods may be an interesting topic for further
research, but are beyond the scope of this thesis. A practitioner could just increase
the bandwidth obtained by the above procedure by a small factor greater than one.





Chapter 5

Kernel estimation of vine copulas

This chapter deals with kernel estimation of a full vine copula density in arbitrary
dimensions. Having introduced the necessary bivariate estimation techniques in the
previous chapters, it just remains to put the pieces together. After a short description
of the estimation procedure, we will demonstrate its abilities by means of two small
simulation examples and a real data application. As the close of this chapter, possible
directions for future research will be discussed.

5.1 The estimation procedure
In the notation of Section 2.1.5, the density of a d-dimensional R-vine copula C is
given as

c(u) =
d−1∏
k=

∏
e∈Ek

cae,be;De

(
Cae|De(uae|uDe), Cbe|De(ube|uDe)

)
.

Recall further that the arguments of the bivariate copula densities can be expressed
as a recursive application of h-functions related to pairs in the vine (c.f. equation
(2.2)). We can therefore focus solely on bivariate objects in order to estimate all
required components of the density.

To obtain estimates of all bivariate densities and h-functions, we will make use of
the sequential estimation approach (see Definition 2.12), where we can use any of the
kernel estimators for bivariate copula densities and h-functions we have introduced
in the previous two chapters. As the result, we get a fully nonparametric kernel
estimate of the R-vine copula density.

Example 5.1. To clarify the estimation procedure, we will go through the steps of
the sequential kernel estimation of a four-dimensional R-vine copula corresponding to
the tree sequence given in Figure 5.1. Assume we are given iid samples (u1, . . . ,u4) :=
(u(i)

1 , . . . , u
(i)
4 )i=1,...,n from the R-vine copula.

1. Estimation in T1:

83
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Figure 5.1: R-vine tree sequence for Example 5.1.

(i) Based on the samples (u1,u2) ∼ C1,2, (u1,u3) ∼ C1,3, (u3,u4) ∼ C3,4, ob-
tain kernel estimates of the bivariate copula densities. For all u1, u2, u3, u4 ∈
[0, 1], this gives us

ĉ1,2(u1, u2), ĉ1,3(u1, u3), ĉ3,4(u3, u4).

2. Transition to T2:

(i) Based on the samples (u1,u2) ∼ C1,2, (u1,u3) ∼ C1,3, (u3,u4) ∼ C3,4,
obtain kernel estimates of the required h-functions. For all u1, u2, u3, u4 ∈
[0, 1], this gives us

ĥ2|1(u2|u1), ĥ3|1(u3|u1), ĥ1|3(u1|u3), ĥ4|3(u4|u3).

(ii) Define the pseudo-samples

u
(i)
2|1 := ĥ2|1(u(i)

2 |u
(i)
1 ), u

(i)
3|1 := ĥ3|1(u(i)

3 |u
(i)
1 ),

u
(i)
1|3 := ĥ1|3(u(i)

1 |u
(i)
3 ), u

(i)
4|3 := ĥ4|3(u(i)

4 |u
(i)
3 ),

for all i = 1, . . . n.

3. Estimation in T2:

(i) Based on the pseudo-samples (u2|1,u3|1) ∼ C2,3;1, (u1|3,u4|3) ∼ C1,4;3,
obtain kernel estimates of the bivariate copula densities. For all
u2|1, u3|1, u1|3, u4|3 ∈ [0, 1], this gives us

ĉ2,3;1(u2|1, u3|1), ĉ1,4;3(u1|3, u4|3).

4. Transition to T3:
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(i) Based on the pseudo-samples (u2|1,u3|1) ∼ C2,3;1, (u1|3,u4|3) ∼ C1,4;3, ob-
tain kernel estimates of the required h-functions. For all u2|1, u3|1, u1|3, u4|3 ∈
[0, 1], this gives us

ĥ2|3;1(u2|1|u3|1), ĥ4|1;3(u4|3|u1|3).

(ii) Define the pseudo-samples

u
(i)
2|3;1 := ĥ2|3;1(u(i)

2|1|u
(i)
3|1), u

(i)
4|1;3 := ĥ4|1;3(u(i)

4|3|u
(i)
1|3),

for all i = 1, . . . n.

5. Estimation in T3:

(i) Based on the pseudo-samples (u2|3;1,u4|1;3) ∼ C2,4;1,3, obtain a kernel
estimate of the bivariate copula density. For all u2|3;1, u4|1;3,∈ [0, 1], this
gives us

ĉ2,4;1,3(u2|3;1, u4|1;3).

Finally, the kernel density estimate of the full R-vine is given by the product of the
estimated bivariate copula densities. For all (u1, u2, u4, u4) ∈ [0, 1]4,

ĉ(u1, u2, u3, u4) = ĉ1,2(u1, u2) · ĉ1,3(u1, u3) · ĉ3,4(u3, u4)
· ĉ2,3;1(u2|1, u3|1) · ĉ1,4;3(u1|3, u4|3)
· ĉ2,4;1,3(u2|3;1, u4|1;3)

= ĉ1,2(u1, u2) · ĉ1,3(u1, u3) · ĉ3,4(u3, u4)
· ĉ2,3;1

(
ĥ2|1(u2|u1), ĥ3|1(u3|u1)

)
· ĉ1,4;3

(
ĥ1|3(u1|u3), ĥ4|3(u4|u3)

)
· ĉ2,4;1,3

(
ĥ2|3;1

(
ĥ2|1(u2|u1)

∣∣∣ĥ3|1(u3|u1)
)
, ĥ4|1;3

(
ĥ4|3(u4|u3)

∣∣∣ĥ1|3(u1|u3)
))
.

We can expect consistency of this estimator when the density and h-function estima-
tors are consistent. Furthermore, the accuracy of the R-vine density estimator will
be directly related to the accuracy of these two components. However, a duly inves-
tigation of the theoretical properties of such an estimator seems quite cumbersome,
if not infeasible.

5.2 Simulations
In the following, we will illustrate the estimator’s ability in two small simulation exam-
ples. For demonstrative purposes, both examples will just involve three-dimensional
vines. Afterwards we give a short discussion of the computational demands of the
estimator.
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Figure 5.2: R-vine tree sequences of the true (V) and alternative (Ṽ) structures used
in the simulation examples.

The setup

The general setup in both examples is as follows: We specify a vine copula model with
tree sequence V (see Figure 5.2a) and a set of bivariate copulas C (see Table 5.1). We
simulate from this model and obtain parametric and kernel estimates using structure
V . Clearly, the parametric estimator will perform better in this case, because all the
bivariate copula families we try to estimate belong to known parametric families.
In practice, this does not have to be the case and also the true structure is usually
unknown. So we will also obtain estimates using an alternative structure Ṽ (Figure
5.2b). The pair-copulas in this alternative model do not necessarily conform with
parametric models anymore. Of course, the parameters in the two examples will be
set in a way that enables us to illustrate the advantages of the kernel estimators.
Our view will therefore be a little biased.

Family Kendall’s τ Parameter
c1,2 Joe 0.35 θ = 2
c2,3 Joe 0.35 θ = 2
c1,3;2 90◦ rotated Gumbel -0.85 θ = 8

(a) Example 1

Family Kendall’s τ Parameter(s)
c1,2 Joe 0.51 θ = 3
c2,3 Clayton 0.6 θ = 3
c1,3;2 Tawn 0.74 (θ, α1, α2) = (12, 0.8, 1)

(b) Example 2

Table 5.1: Specifications of the simulation models in the two examples.
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Figure 5.3: Example 1: Box plots of the estimated integrated squared error, inte-
grated absolute error, and Hellinger distance for parametric and kernel estimators.
Data was simulated with structure V and pair-copulas given in Table 5.1a. Results
are based on estimates using structure V (top row) and Ṽ (bottom row).

The performance of both estimation approaches was measured as follows. For each
scenario:

• Simulate samples of size n = 500.

• Measure distance between true and estimated density by integrated squared
error (ISE), integrated absolute error (IAE) and Hellinger distance (HD) (de-
fined analogous to Section 3.6). For numerical convenience, all measures are
estimated on an equally spaced grid of 253 points.

• The experiment is repeated 500 times.

For parametric estimation, we use the RVineCopSelect function of the VineCopula
package (Schepsmeier et al., 2013) allowing for the full set of implemented families
(including all families used in this thesis and more; for details see package description).
The function estimates each pair-copula (and thereby h-function) by maximum-
likelihood for a large variety of families and chooses the best model with the best
AIC. For kernel estimation we employ the approach described in the last section
where we use the transformation local likelihood (TLL) estimator for the densities
and the local linear (LL) estimator for h-functions.
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Figure 5.4: Example 1: Pairwise scatter plots of simulated data (above diagonal) and
corresponding marginal normal contour plots of kernel estimates (below diagonal)
for the simulation model (n = 500).

Example 1

Let us start with a look on the performance and later investigate what caused the
outcome. Figure 5.3 shows boxplots of the three performance measures, one in each
column. They were obtained from estimates using the true structure V (first row), as
well as the alternative structure Ṽ (second row). Box plots for a particular measure
are kept on the same scale for better comparability.

Not surprisingly, the parametric estimator outperforms the kernel estimator, when
the true structure (V) is used. It is interesting to see the variability in the performance,
though. Occasionally, the parametric estimator performs just ‘as bad’ as the kernel
estimator. This occurs when the parametric model selection procedure chooses the
wrong family for one or more of the three pair-copulas. This becomes an even bigger
issue in higher dimensions, as the number of pairs one has to estimate increases very
fast, thereby increasing the probability of misspecification. For estimates based on
the ‘wrong’ structure, Ṽ, the picture is reversed. For all three measures, the kernel
estimator does significantly better. Also, there is very little variability in the accuracy
of the parametric estimator which indicates a systematic failure.

To explain what is going on in this example, it is important to recall that there
are different pair-copulas to be estimated for structures V resp. Ṽ . For example, in
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Figure 5.5: Example 1: Estimated marginal normal contours using structure Ṽ. A
kernel estimate based on 105 samples (‘true’, top row) as well as parametric (middle
row) and kernel (bottom row) estimates based on 500 samples.

the first tree of V we estimate the copulas of the pairs {1, 2} and {2, 3}, whereas
in the first tree of Ṽ we estimate the copulas of the pairs {1, 2} and {1, 3}. In the
specification of the simulation model, we use structure V and thereby specify the
copulas for pairs {1, 2} and {2, 3}, while the copula corresponding to {1, 3} is not
given explicitly. With the parameters we chose in this examples, the latter turns out
to be very hard to capture by a parametric model. This can be seen in Figure 5.4,
where pairwise scatter plots for all pairs and marginal normal contour plots of kernel
density estimates are shown. The copula of the pair {1, 3} reveals asymmetry in its
components and does not conform with any of the parametric families introduced in
Chapter 2.

Figure 5.5 shows parametric and kernel estimates of all the pair-copulas corre-
sponding to structure Ṽ, based on an exemplary sample of size 500 (second and
third row). We compare them with a kernel estimate based on a sample of size
105 which should pretty accurately resemble the true copula densities (first row).
The density c1,2 is estimated reasonably well by both estimation techniques, the
parametric approach performing a little better. In contrast, the parametric estimate
is quite off for c1,3. The estimated density corresponds to a Tawn copula which indeed
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Figure 5.6: Example 2: Pairwise scatter plots of simulated data (above diagonal)
and corresponding marginal normal contour plots of kernel density estimates (below
diagonal) for the simulation model (n = 500).

reflects the asymmetry in the copula’s arguments, but also features asymmetry w.r.t.
upper and lower tails as well as tail dependence in the lower tail. Neither of these
features seem to be present in the true density. This drastically reduces the accuracy
of the whole estimate. The kernel estimator on the other hand seems quite accurate.

In the second tree, copula estimates are based on pseudo-samples that depend
on estimates (of h-functions) in the first tree. Systematic errors in the first tree,
will therefore result in systematic errors the second tree. This could be one reason,
why the kernel estimator appears to give a much more accurate estimate for c2,3;1
compared with the parametric estimator. The more obvious reason is that, again,
the true copula density is not well approximated by any of the parametric families.

Example 2

In the previous example, a simple exploratory analysis of the pairwise scatter plots
would have indicated that a parametric estimator will run into trouble. In the second
example, we want to illustrate that this is not necessarily the case.

Figure 5.6 shows pairwise scatter plots of the three variables. The plot corre-
sponding to the unspecified pair {1, 3} does look a little suspicious. There might be
a slight asymmetry in the components and the observations appear to be a little
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Figure 5.7: Example 2: Box plots of the estimated integrated squared error, inte-
grated absolute error and Hellinger distance for parametric and kernel estimators.
Data was simulated with structure V and pair-copulas given in Table 5.1b. Results
are based on estimates using structure V (top row) and Ṽ (bottom row).

narrower clustered in the upper right corner compared with the lower left. But this
is usually not something to worry about as it could very well be just a result of
random variation. It can, in particular, not explain the severe drop in the paramet-
ric estimator’s performance when comparing estimates based on structure V with
estimates based on structure Ṽ (see Figure 5.7). Just as in the previous example also
the variability in the performance of the parametric estimator is strongly reduced
indicating a severe systematic failure. This also holds true for the kernel estimator,
but a little less pronounced.

The cause for all of that is not revealed until we look at the kernel estimate
of the pair-copula in the second tree. Figure 5.8 shows marginal normal contour
plots of exemplary parametric and kernel estimates based on structure Ṽ. While
both parametric and kernel estimators appear to provide reasonable estimates of
the copulas in the first tree (first two columns), the parametric estimator basically
collapses in the second tree (third column). When we look at the ‘true’ contours
it becomes clear that a) none of the parametric families is even rudimentarily
adequate, and b) the complex shape of the copula is also very hard to estimate for
a nonparametric estimator. This explains the poor performance of both estimation
techniques. Nevertheless, the kernel estimate at least indicates that something unusual
is going on in the second tree, which would have never come to light when only a
parametric estimate would have been considered.
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Figure 5.8: Example 2: Estimated marginal normal contours using structure Ṽ. A
kernel estimate based on 105 samples (‘true’, top row) as well as parametric (middle
row) and kernel estimates based on 500 samples (bottom row).
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Figure 5.9: Mean computation time over 20 runs of the kernel (solid line) and
parametric (dashed line) estimators.

A note on computation time

One of the major disadvantages of the kernel estimator is that it is computationally
quite expensive. In the following we give the results of a small experiment illustrating
the influence of the sample size n as well as the dimension d on the computation
time.

The computations are conducted on a customary Windows 7 Lenovo laptop with
Intel Core Duo i3-3120 CPU @ 2.50 GHz and 8 GB RAM. We simulate data from
a Gaussian copula with correlation parameter ρ = 0.4 and run both parametric
and kernel estimation algorithms (including bandwidth selection for the latter). The
structure specified before running the algorithm is a so-called D-Vine, that is an
R-Vine where each tree consists of a single path. The particular structure should play
a minor role, however. The mean computation time over 20 repetitions is reported.

Figure 5.9a shows the computation time for varying dimension where we fixed the
sample size to n = 500. We can see that the time grows approximately quadratically
in the dimension. That is because the number of pair copulas in the vine is d(d−1)/2
and, thus, grows quadratically. The picture is similar for varying n and fixed d = 3
(Figure 5.9b). Now, that might be surprising at first, since in the last to chapters we
saw that the computation time of both the density and h-function estimators grew
linearly in the sample size. When estimating a vine copula however, there is a second
effect coming in. Increasing the sample size also leads to an increasing number
of required evaluations of the h-function when defining the pseudo-observations
in higher trees. The aggregation of both effects leads to the non-linear growth in
computational expense.

Compared with the parametric estimator, the kernel estimator takes considerably
more time. While the difference is negligible for small n and d, the gap widens
quickly as sample size and dimension increase. Because of the nonlinear growth of
computation time, it is also less scalable to huge data sets. Using a kernel estimator
in high dimensions and/or on a large number of samples requires patience, but is
still tolerable in most practical situations. For extremely large data sets or many
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variables, truncation of the vine as in Brechmann et al. (2012) is advisable.

Summary

To start of with, it should be said once more that we chose the parameterization of
the examples in order to illustrate the advantages of a nonparametric approach. In
many other cases, the easier parametric approach is sufficient and will lead to more
accurate estimates. Nevertheless, we learned two important lessons:

Firstly, when some of the pair-copulas have an unusual shape (in the sense that
no parametric family conforms with it), the kernel estimator can give significantly
better estimates. Despite the increased complexity of the estimator, the increased
accuracy can be of high value in applications, e.g. the estimation of tail probabilities
etc.

Secondly, even in cases where the performance is not increased, the nonparametric
estimator can help to reveal anomalies in higher trees that a parametric estimator
would conceal. At the very least, it can serve as a warning signal that a more careful
modeling approach is necessary. Often, the pitfalls can easily be avoided by changing
the structure of the model. In general, the kernel estimator was shown to be a very
powerful tool for exploratory analysis of higher-dimensional data.

In practice time is an important factor. In this regard, the kernel estimator has a
clear disadvantage over the computationally more simple parametric approach. Still,
the time required for computing the kernel estimate is in the order of minutes in
most practical situations and, therefore, a viable tool for estimation and exploratory
analysis.

5.3 Real data application: Breast cancer diagnosis
Despite many years of intensive research and preventative measures, breast cancer
continues to be the second largest cause of cancer death amongst women in the
developed world (Stewart and Wild, 2014). An attractive diagnostic alternative to
the popular mammography or surgical biopsy is fine-needle aspiration (FNA) biopsy.
It is a minimally invasive technique that allows to extract tissue from suspicious
lumps. Extracted cells can be analyzed subsequently either histologically or by digital
imaging. In what follows, we will consider data of measurements taken on fine-needle
aspirates. After a short description of the data, we will model the dependence between
selected variables by a vine copula and obtain kernel estimates of its density.

The data

The data under consideration are from the Wisconsin Breast Cancer Database. They
were collected at the University of Wisconsin Hospitals, Madison, from Dr. William H.
Wolberg and provided by the UCI Machine Learning Repository (Bache and Lichman,
2013). It contains measurements taken on nuclei of fine-needle aspirates from 569
women. 357 masses turned out to be benign, the remaining 212 as malignant tumors.
The measurements were obtained by digital imaging and contain information on size,
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shape and texture of the cells. In total, there are a number of 30 features computed for
each individual. For more details on measures and methodology we refer to Wolberg
et al. (1994). To keep things ostensive, we will restrict our analysis to the mean (over
the cells of one individual) measurements of the six shape variables: smoothness,
compactness, concavity, concave points, symmetry, and fractal dimension.

Analysis of dependence

The main interest is the diagnosis of cancer, that is discriminating between benign and
malignant mass. We will therefore split the data and treat the two cases separately.
Note that there are more observations for benign masses than for malignant tumors,
so the statistical significance of our estimates is higher in that case. Again, we will
use the TLL estimator for densities and the LL estimator for h-functions.

To assess the dependence between the variables, all measurements are transformed
by application of the empirical marginal cdfs to pseudo-copula data as in Definition
2.8. Figures 5.10 and 5.11 show pairwise scatter plots of the variables as well as
marginal normal contour plots of kernel density estimates with empirical Kendall’s
τ superimposed. In the benign samples, the strength of dependence ranges from
very weak dependence (e.g. symmetry/concave points) over medium dependence (e.g.
concave points/smoothness) to strong dependence (e.g. concave points/concavity).
Furthermore, we observe a variety of shapes, some of which indicate a slight asym-
metry (e.g. smoothness/compactness).

Considering the malignant samples, we find evidence for an increase in the
strength of dependence for almost all pairs. The pair compactness/concave points
is the only exception, but the small drop in Kendall’s τ by just 0.02 is negligible.
The strength of dependence for other pairs, e.g. compactness/symmetry, increases
drastically. Moreover, the asymmetries have mostly disappeared. This could, however,
also be a consequence of the smaller sample size (and larger bandwidth) in this case.
Nevertheless, we can conclude that there is evidence that pairwise dependence
between the measurements contains some information on whether the mass is benign
or malignant.

Now assume that the joint copula density of the six variables can be captured
by a simplified vine copula model. As a first step, we have to specify the structure.
Since we do not have any prior information, we will utilize the sequential selection
heuristic (c.f. Definition 2.13). To make the models for benign and malignant masses
comparable, we will use the same structure for both cases for now. As there are more
observations for the benign masses, we will apply the algorithm to these observations
and use the resulting structure (see Figure 5.14) for the malignant samples as well.

Figures 5.12 shows marginal normal contour plots of all estimated pair-copulas
for benign samples. Although some of the copulas in higher trees might as well
correspond to independence, others reveal weak, but notable dependence, especially
those corresponding to {1, 3; 2}, {1, 6; 2}, and {4, 6; 1, 2, 3, 5}. This implies that there
is more going on than just the simple pairwise dependence seen before. For example,
the negative dependence for the copula corresponding to {1, 3; 2} indicates that
when the effect of variable 2 (compactness) is removed, variables 1 (smoothness)
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Figure 5.10: Benign samples: Pairwise scatter plots (above diagonal) and marginal
normal contour plots of kernel density estimates of corresponding bivariate copulas
with empirical Kendall’s τ superimposed (below diagonal).
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Figure 5.11:Malignant samples: Pairwise scatter plots (above diagonal) and marginal
normal contour plots of kernel density estimates of corresponding bivariate copulas
with empirical Kendall’s τ superimposed (below diagonal).
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Figure 5.12: Benign samples: Marginal normal contour plots of all estimated pair-
copulas in the vine copula model with empirical Kendall’s τ superimposed. Variables
are: 1 – smoothness, 2 – compactness, 3 – concavity, 4 – concave points, 5 – symmetry,
6 – fractal dimension.
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Figure 5.13: Malignant samples: Marginal normal contour plots of all estimated
pair-copulas in the vine copula model with empirical Kendall’s τ superimposed.
Variables are: 1 – smoothness, 2 – compactness, 3 – concavity, 4 – concave points, 5
– symmetry, 6 – fractal dimension.
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Figure 5.14: Structure obtained by the sequential selection approach assuming a vine
copula model for benign observations. Variables are: 1 – smoothness, 2 – compactness,
3 – concavity, 4 – concave points, 5 – symmetry, 6 – fractal dimension.

and 3 (concavity) are negatively dependent. This stands in contrast to the positive
pairwise dependence between the two variables seen in Figure 5.10. The ability to
gain such insights constitutes one of the advantages of vine copula models, since
such complex patterns of dependence are hard to capture and assess in standard
multivariate models.

Next, we want to compare these patterns with the estimated copula densities for
the malignant samples (see Figure 5.13). We observe that some of the pair-copulas
are approximately the same as in the benign case, for example the pair-copulas in the
fourth and fifth trees. There are some differences, though. The copula corresponding
to {1, 3; 2} does not feature negative dependence anymore. In fact, the estimated
copula for the malignant samples gives slight positive dependence. On the other hand,
the copula corresponding to {2, 4; 3} changes from positive to negative dependence.
Furthermore, dependence in the copulas corresponding to {2, 5; 1} and {1, 6; 2}
notably increases, whereas dependence in the whole third tree decreases. Overall, we
can infer that also the joint dependence of multiple variables could be informative
about the malignancy of the cells. Actually, the differences in the second and third
tree are more prominent than the differences in pairwise dependence. Hence, it should
be worthwhile to take joint dependence into account.

Another interesting question is whether the structure selected by the algorithm
differs between benign and malignant samples. In order to address that, we apply
the structure selection procedure to the malignant samples as well. The resulting
structure is shown in Figure 5.15. We find that every tree is different compared with
the previous structure. Now, there is no reason to believe that the algorithm selects
the true structure. However, our observation once more indicates that there is a
notable difference in the dependency of measurements on benign and malignant cells.

In summary, we found evidence that the dependence between the considered
features contains information about the malignancy of the cells. In fact, dissimilar
dependence patterns were found for all features. This is true for both pairwise and
joint dependence. This information could prove useful in building a statistical model
for the diagnosis of breast cancer based on fine-needle aspirates.
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Figure 5.15: Structure obtained by the sequential selection approach assuming a
vine copula model for malignant observations. Variables are: 1 – smoothness, 2 –
compactness, 3 – concavity, 4 – concave points, 5 – symmetry, 6 – fractal dimension.

5.4 Further discussion
The presented approach gives a highly flexible way to estimate dependence in high-
dimensional settings. It can furthermore serve as the foundation of more advanced
methods which we will discuss in the following paragraphs. Some of them will be
subject to the author’s future research.

Combining parametric and nonparametric estimation

Throughout this thesis, we repeatedly pointed out the differences between parametric
and kernel estimators. It became clear that both approaches have their right to exist
and it depends on the particular data at hand which is to be preferred. A natural
idea is to combine the strengths of both philosophies in one estimation approach.
Within our estimation procedure it is certainly possible to estimate some of the
pair-copulas parametrically and the others nonparametrically.

The difficulty is to know a priori which of the two philosophies is more appropriate
for a particular pair. The issue calls for criteria that tell the estimator which of
the estimators will be more accurate without knowing the true density. Cross-
validation techniques are some kind of all-purpose solutions to such a problem, but are
computationally expensive. For practical purposes, we would also like the criterion to
be computationally efficient. In this regard, AIC and BIC (see Section 2.1.4) are most
common for checking parametric models against each other. Nonparametric analogues
can be obtained by interchanging the number of parameters in their formulas by a
nonparametric analogue, the effective number of parameters (c.f. Hastie et al., 2001,
Section 7.6). For example, a bias-corrected version of the nonparametric AIC was
studied in a regression context by Hurvich et al. (1998) and shown to perform well.
Despite all that, it is not at all clear how these criteria perform when checking a
parametric against a nonparametric model. An attempt to tackle the parametric vs.
nonparametric model selection problem directly was taken by Liu and Yang (2012)
who introduced a parametricness index for regression models. Its performance relies



102 5.4 Further discussion

heavily on asymptotics of the index, though, and its usefulness for finite samples or
density estimation in general has yet to be established.

Kernel estimation of general multivariate densities

Although the estimator was built to estimate dependence between random variables,
it can be valuable for estimation of high-dimensional densities in general. In practice,
nonparametric density estimation is usually restricted to two- or three-dimensional
settings.

The reason can be understood as follows: Assume we want to estimate a high-
dimensional (d > 3) density at a particular point in the d-dimensional space. A non-
parametric estimate usually gathers information from data in a local neighborhood
of that point. The size of this neighborhood is usually controlled by a bandwidth
parameter (or equivalent), which also balances the bias-variance trade-off (c.f. Section
2.2.3). A good balance usually means, that the neighborhood is as small (local)
as possible and as large (global) as necessary to give a sufficiently informative
estimate. In higher dimensions, chances are that there is not a single observation in a
small neighborhood. When we extend the size neighborhood such that it contains a
reasonable amount of observations, it can usually not be considered ‘local’ anymore
and the huge bias renders the estimate useless. This issue is well known in statistics
and usually referred to as the curse of dimensionality (see e.g. Scott, 2008).

Combining univariate estimation of the marginal densities and the presented
kernel estimation approach of the copula density may overcome this issue. The
possibility to separately estimate marginals and copula of a multivariate distribution
is one of the benefits of Sklar’s theorem. Univariate kernel density estimation is
known to work extremely well and has been thoroughly studied in the last decades.
It remains to estimate a high-dimensional copula density. But here, the curse of
dimensionality can be mitigated by a vine copula model, since it builds of just
two-dimensional blocks. So overall, the estimation reduces to several one- and two-
dimensional tasks. A possible issue is the aggregation or multiplication of errors
across the distinct estimation tasks. It should be interesting to investigate, whether
such an estimator can improve over the existing multivariate nonparametric density
estimators.

Estimation of non-simplified vine copulas

Another field that is yet to be explored is the nonparametric estimation of non-
simplified vines. As mentioned in Section 2.1.5, so far we always assumed that the
simplifying assumption is valid, i.e. that a pair-copula does not depend on realizations
in lower trees (although its value might). The most urging task in this context is
to develop kernel estimators of conditional copulas and h-functions. Gijbels et al.
(2011) took a first step in this direction. They presented two estimators that are
essentially based on an empirical copula that smoothes w.r.t. to the conditional
variable. They do, however, not deal with the estimation of densities, but the copula
function directly. Nevertheless, a similar approach could be used to construct an
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estimator of conditional copula densities and h-functions.
The mathematics underlying the analysis of such estimators are quite involved and

the resulting estimators would be considerably more complex and computationally
intensive than the ones presented in this thesis. A related question is therefore how
to decide whether such a complex estimation procedure is necessary for a particular
data set, or if a simplified model is sufficient. Hence, it should also be interesting to
develop tests for constancy of the conditional copula.





Chapter 6

Conclusion

This thesis is concerned with kernel estimation of vine copula densities. We presented
a novel approach that splits the estimation in two parts: estimation of bivariate
copula densities, and estimation of h-functions.

For the first part, we discussed asymptotic properties and bandwidth selection
for a variety of kernel density estimators. All proposed methods were compared in a
simulation study where we found the transformation local likelihood (TLL) estimator
of Geenens et al. (2014) to perform best overall. The second part was tackled by
relating the problem of h-function estimation to a regression equation. We proposed
to use the modified local-linear kernel regression of Hall et al. (1999) as a solution
and gave advise for bandwidth selection. Finally, we put the two pieces together
resulting in a fully nonparametric sequential estimation method for regular vine
copula densities.

In simulations, our method was shown to be superior to the parametric approach
in situations where some of the pair-copulas do not conform with any of the popular
parametric families. Furthermore, it serves as a powerful tool for exploratory analysis
of dependence in high-dimensional data. However, all that comes at the expense of
increased computational demands. Lastly, the estimator’s abilities were demonstrated
with a real-data application in breast cancer research where we found evidence that
both pairwise and joint dependence between selected variables contains information
on the malignancy of cells.
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Appendix A

Simulation study results

On the following pages we give more detailed results of the simulation study discussed
in Section 3.6. Odd-numbered figures show marginal normal contour plots of the true
density as well as exemplary estimates of this density for all considered methods.
Even-numbered figures show boxplots of the estimators’ performance measured
by integrated squared error (ISE), integrated absolute error (IAE), and Hellinger
distance (HD). Measures are reported for sample sizes n = 250 and n = 1 000. For
details on methodology see Section 3.6.1.
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Figure A.1: Gumbel copula, τ = 0.3. Marginal normal contour plots of true density
and estimates on an exemplary sample of size n = 1 000.
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Figure A.2: Gumbel copula, τ = 0.3. Boxplots of integrated squared error (ISE),
integrated absolute error (IAE), and Helling distance (HD) for sample sizes n = 250
and n = 1 000. For details on methodology see Section 3.6.1.
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Figure A.3: Gumbel copula, τ = 0.7. Marginal normal contour plots of true density
and estimates on an exemplary sample of size n = 1 000.
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Figure A.4: Gumbel copula, τ = 0.7. Boxplots of integrated squared error (ISE),
integrated absolute error (IAE), and Helling distance (HD) for sample sizes n = 250
and n = 1 000. For details on methodology see Section 3.6.1.
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Figure A.5: Tawn copula, τ = 0.3. Marginal normal contour plots of true density
and estimates on an exemplary sample of size n = 1 000.
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Figure A.6: Tawn copula, τ = 0.3. Boxplots of integrated squared error (ISE),
integrated absolute error (IAE), and Helling distance (HD) for sample sizes n = 250
and n = 1 000. For details on methodology see Section 3.6.1.
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Figure A.7: Tawn copula, τ = 0.7. Marginal normal contour plots of true density
and estimates on an exemplary sample of size n = 1 000.
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Figure A.8: Tawn copula, τ = 0.7. Boxplots of integrated squared error (ISE),
integrated absolute error (IAE), and Helling distance (HD) for sample sizes n = 250
and n = 1 000. For details on methodology see Section 3.6.1.
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Figure A.9: Gaussian mixture copula, τ = 0.3. Marginal normal contour plots of
true density and estimates on an exemplary sample of size n = 1 000.
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Figure A.10: Gaussian mixture copula, τ = 0.3. Boxplots of integrated squared error
(ISE), integrated absolute error (IAE), and Helling distance (HD) for sample sizes
n = 250 and n = 1 000. For details on methodology see Section 3.6.1.
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Figure A.11: Gaussian mixture copula, τ = 0.7. Marginal normal contour plots of
true density and estimates on an exemplary sample of size n = 1 000.



Appendix A Simulation study results 119

n = 250 n = 1 000

MR MRS beta T TB TLL par- par

0.
2

0.
6

1.
0

1.
4

ISE

MR MRS beta T TB TLL par- par
0.
2

0.
3

0.
4

0.
5

ISE

MR MRS beta T TB TLL par- par

0.
2

0.
3

0.
4

0.
5

0.
6

IAE

MR MRS beta T TB TLL par- par

0.
20

0.
30

0.
40

IAE

MR MRS beta T TB TLL par- par0.
10

0.
15

0.
20

0.
25

0.
30

HD

MR MRS beta T TB TLL par- par

0.
10

0.
15

0.
20

HD

Figure A.12: Gaussian mixture copula, τ = 0.3. Boxplots of integrated squared error
(ISE), integrated absolute error (IAE), and Helling distance (HD) for sample sizes
n = 250 and n = 1 000. For details on methodology see Section 3.6.1.
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