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Abstract

Human skin provides numerous inspirations for robots, supplying the whole body surface with
multi-modal tactile sensitivity. Unlike a robot purely relying on joint information or vision,
a robot equipped with artificial skin has a much richer information set. Challenges to effi-
ciently deploy, organize and utilize a high number of distributed multi-modal sensors have so
far prevented an effective utilization of artificial skin technology in robotics. In this thesis,
we introduce a novel approach to create multi-modal artificial skin and a novel approach to
self-organize the body representation of a robot. Our modular artificial skin is built by placing
similar skin cells side-by-side into a flexible carrier material. Every skin cell is a self-contained
system with a variety of sensors, signal conversion, processing and communication capabili-
ties. The advantage of our modular approach is its robustness, scalability and transferability
to various robotic systems. We developed various self-organizing features to automatically
handle a potentially high number of skin cells on a large surface area. Automatic network-
ing algorithms explore available skin cells and connections, distribute unique identifiers and
provide robust and adaptive real-time communication. Mounted on a robot, our framework
systematically explores and models the robot’s body schema – inferring the robot’s own kine-
matic and volumetric model from an egocentric perspective. In order to speed up the process,
and to omit potentially harmful contacts, we only utilize low-range, open-loop motions of the
robot and accelerometers embedded in our skin cells. A first algorithm explores the kinematic
dependencies of body parts and joints, allocating actuators to joints and skin cells to body
parts. A 3D reconstruction algorithm then computes the volumetric surface model of each
body part, utilizing relative rotation estimates based on gravity and a topographic map in-
ferred from the cell-2-cell connections. Turning skin patches into active visual markers, those
distributed surface models can be visually combined into one homogeneous body representa-
tion – additionally joining tactile and visual space. A kinematic calibration algorithm finally
estimates the parameters of the self-assembled kinematic model. In completion, we show ex-
emplary applications of the prototype skin on industrial robot arms and the upper body of a
humanoid robot. These examples demonstrate the benefits of an artificial skin for human robot
interaction, multi-modal contact control, safety and object manipulation.
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Kurzfassung

Die Berührungsempfindlichkeit der menschlichen Haut, liefert zahlreiche Inspirationen für die
Robotik. Robotern, die bisher lediglich mit Gelenksensoren und Kameras ausgestattet sind,
kann eine künstliche Haut eine Fülle von neuen Informationen zur Verfügung stellen. Die Her-
ausforderungen eine hohe Anzahl unterschiedlicher Sensoren effizient zu verteilen, zu organ-
isieren und zu verwenden, verhinderten bisher einen nennenswerten Einsatz künstlicher Haut
in der Robotik. In dieser Doktorarbeit wurden neue Ansätze erarbeitet, um eine multi-modale
künstliche Haut für Roboter zu realisieren und das Körperschema eines Roboters selbständig
zu organisieren. Hierfür wurde ein neuartiges, modulares System aus Hautzellen entwickelt,
die nebeneinander platziert und vernetzt werden können. Jede Hautzelle ist ein eigenständi-
ges System und verfügt über eine Reihe unterschiedlicher Sensoren, Signalverarbeitungs-
und Kommunikationsfähigkeiten. Durch diese Modularität erreichen wir eine hohe Flexi-
bilität, Robustheit und Skalierbarkeit, und können unsere künstliche Haut sehr schnell auf
neuen Robotern einsetzen. Weiterhin entwickelten wir Methoden um eine hohe Anzahl an
Hautzellen auf großen Oberflächen automatisch zu organisieren. Netzwerkalgorithmen stellen
automatisch die Anzahl der zu Verfügung stehenden Zellen und Verbindungen fest, verteilen
neue Identifikationsnummern und leiten Informationen robust und in Echtzeit zum Computer-
Gehirn des Roboters weiter. Im nächsten Schritt benützen wir unser System um das Kör-
perschema des Roboters, sein volumetrisches und kinematisches Modell, aus einer egozen-
trischen Perspektive zu erlangen. Um diesen Prozess zu beschleunigen und sicherer zu gestal-
ten, benützen wir lediglich minimale Bewegungen des Roboters im freien Raum und Beschle-
unigungssensoren in den Hautzellen. Zuerst analysiert ein Algorithmus die kinematische
Abhängigkeit zwischen Gelenken mit Drehachsen und Körperteilen mit Hautzellen. An-
schließend benutzen wir das Erdgravitationsfeld und die Netzwerktopologie um die Ober-
fläche der Körperteilen in 3D zu rekonstruieren. Diese lokalen Rekonstruktionen können
dann in optische Marker überführt und mit Hilfe einer monokularen Kamera in einer ho-
mogene 3D Darstellung des Körpers vereint werden. Zuletzt schätzt ein Algorithmus die
Parameter eines automatisch erzeugten kinematischen Models. Abschließend präsentieren
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wir beispielhafte Anwendungen unserer künstlichen Haut auf industriellen Roboterarmen und
einem humanoiden Roboter. Diese Beispiele verdeutlichen den Vorteil einer künstlichen Haut
hinsichtlich Mensch-Maschine Interaktion, Kontaktregelung, Sicherheit und Objektmanipula-
tion.
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CHAPTER 1

Introduction

Brave men are all vertebrates; they have their softness on the surface and
their toughness in the middle.

(Gilbert K. Chesterton)

In this chapter, we would like to motivate the reader with the potential impacts of artificial
skin. We continue with an introduction of the challenges to create and organize a whole-
body, multi-modal artificial skin. Then, we state the contribution of this thesis, solving those
challenges with our novel self-organizing, cellular skin approach. We conclude this chapter
with an outline of the thesis.
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SECTION 1.1 Motivation

1.1. Motivation

1.1.1. Skin for Robots

Visual Presence Social InteractionWhole Body Interaction

Body Monitoring Contact ControlClassification
picture-alliance

www.abovetopsecrets.com www.backcountry.com Kerstin Viola

blog.babsib.atwww.planet-schule.de

FIGURE 1.1. The figure visualizes the utilization of sensitive skin in everyday life.

Biological skin provides numerous inspirations for robots, deploying high resolution and
multi-modal sensitivity over the whole (soft/compliant) body surface. Due to its localization
on the body surface, sensitive skin provides a rich and direct feedback of all close-contact
interactions with the world. Sensitive skin delivers locatable, qualitative and quantitative
measurements of all these close encounters. Additionally, skin provides information about
contacts with the own physical body. Those self-sensations help to create knowledge about
the own sensory-motor embodiment – the body schema. Along with the proprioceptive, the
tactile sense is a key component to self-acquire a kinematic and volumetric body model. In
comparison to a robot purely relying on joint information (position/currents/torques) and vi-
sual feedback (2D/3D), a robot equipped with sensitive skin has a much richer and more direct
information set. Joint level sensing looses information in multi-contact scenarios and requires
precise kinematic and dynamic robot models to separate internal from external effects. Vision
reaches its limit in occlusive environments and close contact. Future robots sharing our en-
vironment, or taking over close contact tasks, must be enhanced with artificial skin. Skin’s
multi-modal capability is beneficial for classifying or controlling various contact properties,
while willingly or accidentally touching surfaces. Different receptors modalities measure light
contact, normal and shear forces, vibration, temperature and nociception. Multi-modal skin
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CHAPTER 1 Introduction

can be applied for a variety of tasks, like for body monitoring, for contact control and for
object/touch classification (see Fig. 1.1). Although sensitive skin is one of the most important
sensors for vertebrate life, lack of tactile sensing often results in severe injuries, it is not yet
well-represented in robotics (refer to Sec. 2). In this thesis, we provide an easy to use, modular
solution to equip robots with artificial skin, along with algorithms to automatically acquire the
complete kinematic and volumetric body model without any a-priori knowledge.

1.1.2. Potential Impacts

Disney Research Zürichwww.factory-in-a-day.eu

Industrial Robots Entertainment Health Care
FIGURE 1.2. The figure visualizes potential impacts of artificial skin across multiple domains.

Providing low-cost, reliable and easy to use artificial skin would have major technical, eco-
nomical and societal impacts. Potential application scenarios range across multiple domains,
from industrial environments to health care and entertainment (see Fig. 1.2).

Industrial Robots: Industrial robots equipped with a safety-rated artificial skin could work
in close contact with humans. Collaborative robots are essential for the next generation of
factory automation, where skilled workers are working in assistance with robots e.g. to lower
unhealthy manipulation forces, speed up tasks or enhance quality. The benefit of an artificial
skin, in comparison to e.g. joint level force sensing, is that existing robots can be easily up-
graded with a clip-on solution and the size/weight of the robot does not interfere with the skin
sensation – even allowing powerful robots to safely help humans. Artificial skin also does
not require precise kinematic and dynamic models in order to separate internal from external
forces. In comparison to vision, sensitive skin does not suffer from occlusion and provides
direct multi-modal contact measurements. The multi-modality of skin, and the large area that
can be covered with skin, offer novel ways of human-robot interaction. Expert teach pendants
could be replaced with direct tactile interaction e.g. tactile gestures and tactile kinesthetic
teaching. Active visual elements in the skin could serve as full body touch screens, and visu-
alize the state and motion intention of the robot. Industrial robots equipped with sensitive skin
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could also manipulate objects with their whole body instead of limiting contacts to the end-
effectors, e.g. in order to handle large and heavy objects by distributing the load. In summary,
artificial skin is a prerequisite for the coming robotic age, introducing robots into everyday
life.

Health Care: Medical applications for artificial skin are numerous. In the same form as with
industrial scenarios, medical robots should be equipped with sensitive skin to enhance and
simplify their interaction with the environment and human. Surgical robots could use touch
sensitivity to omit collisions between staff and robots in the constrained operative workspace,
while direct tactile interaction could reduce the required robot control panels to a minimum.
Endoscopic robots could automatically avoid tissue damages, automatically avoiding high
forces or delivering feedback about potential harm to the operator. Care-taking robots must
be equipped with sensitive skin to be able to deal with unstructured environments and handle
close contacts with patients. Physical contact could also play an important role in the emo-
tional acceptance of those robots. Besides robots, prosthetic devices could be equipped with
artificial skin. The skin could give patients or the prosthesis control feedback of distributed
contacts on the artificial body part. For a prosthetic controller, the demand for tactile feed-
back will grow, in order to adequately react in a variety of situations. Feedback to the patient
could be delivered via a neuronal implant or rerouted with tactile displays to other areas of
the body. This could help the patients to better incorporate the artificial limb into their own
body schema (refer to Sec. 6.3). Tactile feedback could also be applied to patients with tactile
impairments, e.g. to prevent that patients are harming themselves. Another cost intensive ap-
plication area is rehabilitation. Currently trained staff is mainly visually monitoring exercises,
e.g. hip stabilization while sitting. An artificial skin could monitor those exercises, provide
staff and patients with additional information and deliver extended autonomous training for
patients. Tactile monitoring of patient behavior could also be used for enhanced diagnosis,
e.g. in order to trace back the cause for a severe back pain to wrong sitting positions at work.
Artificial skin could be enhanced with additional sensors, e.g. skin resistivity, EEG/EMG or
biomedical probes. Those sensors could be embedded into sensing suits, plasters (see Fig. 1.2)
or hospital beds, offering novel ways of real-time monitoring of patients.
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Object Monitoring The ability of an artificial skin to monitor the surface of objects could be
another interesting application for industry and consumer products. Prototypes equipped with
distributed sensors could be utilized to enhance the performance of a product design, e.g. the
air resistance of cars with a real-time measurement of the force profile. Monitoring products
on the market could be used for event logging and emergency prevention, e.g. the surveillance
of the integrity of an airplane surface or car frame for damages. Insurances could make use of
event logging to analyze liabilities, e.g. the responsibility for damages on a shared car.

Sports: Applications for artificial skin technology in sport range from quantify-yourself-
movements to professional athletes. Artificial skin on sports equipment could be used to ini-
tially fit equipment to the user, as well as monitoring the proper utilization during the product
life. This would not only serve the demands of the growing quantify-yourself-community, but
also have medical benefits when preventing mis-utilization, e.g. providing on-line feedback
about a wrong running style with sensitive shoes. Contact monitoring in close or non-contact
sports, could be utilized to support referee judgment and automated statistics, e.g. fouls in
soccer or punch strength in boxing.

Entertainment: Artificial skin could largely be utilized in entertainment. In theme parks,
robots equipped with artificial skin could be involved in close contact interaction with visitors.
For those type of robots contact safety, as well as the ability to respond to tactile stimuli is
important. Inadequate contacts or pain should be avoided by those robots, while pleasant
interaction should be fostered. Surface sensation could enhance the interactivity of toys in
general, providing visual feedback and tactile input on large surface areas.

1.2. Challenges

The challenges of artificial skin are due to its decentralized nature – covering large and arbi-
trary 3D surfaces with multi-modal sensitivity. On the one hand, the efficient implementation
of a high number of multi-modal sensors on large surface areas poses technological challenges.
The amount of sensors ranges from a few thousand to a couple of million, while the sensitive
area reaches from a couple of square centimeter to square meters. All of these sensors have
to be supplied, their signals converted and processed, and the resulting information extracted
and transfered to a control system. In order to feature reactive control, e.g. to withdraw from
undesired contacts, real time constraints apply. Regarding safety, important factors such as
redundancy and conformity to standards and norms are have to be considered. Skin has to be
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soft and flexible in order to passively absorb impacts and to spread and shape the contact area
between the robot and external objects. At the same time, sensitive skin has to be efficient to
manufacture, transferable between multiple robotic systems and easy to deploy. Artificial skin
has to be sensitive, but robust and reliable, since it is in constant interaction with the external
world. Skin is exposed to mechanical stress, e.g. wear, tear and impacts, but also to chemicals
like human sweat and the environment. Due to its electronic nature, electromagnetic compat-
ibility plays an important role. Electrostatic discharges will be surged into the skin. Its sensor
signals are objective to electromagnetic interference on their long pathways to the central pro-
cessing system and electromagnetic emission plays an important role in medical, industrial or
consumer applications. Skin should neither consume much power nor weigh much. Finally,
skin should also be aesthetically pleasing and deliver a friendly, natural and appealing look
and feel. On the other hand, the effective setup, maintenance and utilization of a high number
of distributed sensors poses significant challenges. A variable and high number of sensors on
an arbitrarily shaped surface need to be identified, labeled, routed and processed. Skin has
to organize and adapt its own processing and communication infrastructure to the number of
present sensors. In the scope of sensory-motor control, the location and orientation of each
sensor on the 3D surface and within the kinematic chain has to be provided to the control algo-
rithm. Manually providing this knowledge would be time consuming and error prone. Since
every motor action results in skin sensations, even the own individual interaction (self-touch,
skin kinesthesis), skin can capture knowledge about the own sensory-motor embodiment – the
robot uses its own sensors to learn about itself. This is especially interesting when an artificial
sensor skin is not designed for a single robot, but easily applicable across multiple robotic sys-
tems. Self-organization is also useful to automatically accommodate hardware failure during
life time – which is likely as skin is exposed to every (potentially harmful) contact. All those
challenges have to be addressed in a single systematic approach.

1.3. Contribution

This thesis contributes a novel approach to create a self-organizing, multi-modal, whole-body
artificial skin for robots and other potential applications. Unlike existing approaches, we solve
common problems i.e. wiring, failure tolerance and processing, with a modular approach.
Multi-modal skin cells form a scalable surface sensor network that can be easily enhanced with
new sensors and can be transfered to other robots or domains. The self-organizing network of
skin cells automatically adapts to changes in the topology, e.g. recovers from wiring failures
using redundant cell-2-cell connections. Besides this framework to automatically organize
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and acquire data from a variable number of distributed skin cells, we provide algorithms to
acquire their physical embodiment on the surface of a robot in a short time and with low-
ranging, open-loop motions. We provide an approach to acquire the 3D volumetric surface
and an approach to explore, model and calibrate the kinematic model of a robot. In order to
achieve those results, we have implemented cross-modal sensor fusion for tactile, visual and
proprioceptive senses. We demonstrate the feasibility of our approach with various different
applications. These applications include the first industrial robot arm with an intuitive, multi-
modal, whole-body tactile interface and distributed visual feedback and the first multi-modal,
whole body tactile grasping approach on a full-sized humanoid robot. This thesis presents the
first multi-modal, whole-body skin and the first completely self-organizing skin system. Our
solution provides a larger flexibility than any other existing artificial skin. We believe that the
presented work will have a long lasting impact on the design, organization and utilization of
artificial skin in robotics and beyond.

1.4. Thesis Outline

The remaining parts of this thesis are divided into five chapters: Chapter 2 gives a concise
overview of the related works on biological skin, artificial skin technology, body schema in
robotics and utilization of artificial skin. Chapter 3 introduces our novel modular approach to
create artificial skin from multi-modal skin cells, and explains our prototype implementation
based on standard technologies. Chapter 4 introduces our novel approach to automatically
reconstruct the 3D surface of body parts equipped with our artificial skin and a novel method
to visually combine distributed tactile representations. Chapter 5 explains our different ap-
proaches to acquire kinematic knowledge for robots equipped with our skin system. These
approaches include the acquisition of a local, inverse Jacobian like mapping, the exploration
of the kinematic dependencies and a full kinematic model estimation. Finally, Chapter 6 shows
exemplary applications of our artificial skin system: e.g. enhancing the interaction capabilities
of industrial robots or enabling a full-sized humanoid to grasp unknown objects with the upper
body only using tactile feedback.
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CHAPTER 2

Related Work

If I have seen further, it is by standing on the shoulders of giants.

(Bernard of Chartres)

In this chapter, we would like to give a concise overview of the related work. In order to
complete the biological motivation, we first introduce human skin and the biological notion of
body schema. The remaining parts are split i.e. into creation of artificial skin, body schema in
robotics and the application of tactile sensing in robotics and related fields.
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2.1. Biological Inspiration

As an organized/distributed system, each biological body is centered on the concepts of spe-
cialization and division of work. The cell is the basic structural and functional unit of living
organisms – the building block of life. Organization is necessary to drive those numerous cells
towards the collective goal, the generation of a new global entity – the body itself. In biolog-
ical systems, self-organization is a process where some form of global order or coordination
arises from local interactions between the individual components [Camazine et al., 2001].
For an embodied cognitive system, this coordination is centralized towards the brain [Llinas,
2002]. According to Llinas an embodied cognitive system requires at least three capabilities:
1) sensors to receive information about the surrounding environment; 2) actuators to realize
effects in the environment; 3) a centralized nervous system to internalize the external world,
predict and select appropriate actions. However before any external action is taken, the own
body has to be built and organized. Why should we take inspiration from biological skin to
develop an artificial skin system? – Because no artificial skin system yet comes close to the
overall performance of the biological archetype. We can learn from this beautifully designed
system and find answers to questions occurring during our own technical system design.

2.1.1. Sensitive Skin

Sensitive skin covers the complete body surface (≈ 2m2) with a few million discrete receptors
[Myles and Binseel, 2007] (see Fig. 2.1). The size of these receptors range from a few µm
with free nerve endings, to 1 mm with the largest receptor: the Pacinian corpuscle [Hubbard,
1974]. It is consequently possible to realize sensitive skin with small discrete sensor elements.
Skin receptors are classified into mechano-, thermal- and noci-receptors [McGlone and Reilly,
2010]. The purpose of nociceptors (pain receptors), is to protect the body against actual or po-
tential damage resulting from intense intense mechanical, thermal or polymodal (e.g. chem-
ical, mechanical, thermal) stimuli [Kandel et al., 2012]. The absence of an encapsulation
also renders nociceptors susceptible to intrinsic (and extrinsic) chemical agents [McGlone and
Reilly, 2010]. Thermal hot- and cold-receptors encode deviations from a homeostatic set-
point around 35 ◦C. There are five times as many cold-points as warm-points [McGlone and
Reilly, 2010]. Maybe human thermal object classification is biased towards cooling effects,
as humans are commonly warmer than the environment (which is similar for robots). It seems
also more important for a biochemical system to prevent cold than warmth, since cooling is
be easily achieved with sweat evaporation (with robots the opposite is the case – heat dis-
sipation is a major issue). The utilization of slow C (0.4-2.0 m/s) and Aδ (4-36m/s) fibers
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FIGURE 2.1. The figure shows the layers and mechano-receptors of human skin.

[Kandel et al., 2012], conducting the sensory signals of thermal sensation and nociception
from the sensor site to the brain, shows the minor relevance of latency and bandwidth for both
modalities. Thermal receptors do not require fast transmissions as thermal sensation itself has
a high time constant. The slow transmission of nociceptor signals can only be explained by
a binary response to pain – painful stimuli must be detected, but there is no need to regulate
or accurately classify pain. Mechano-receptors instead utilize myelinated (coated) fibers with
large diameters and high conduction speeds, like Aβ (36-72 m/s) and Aα (72-120 m/s) fibers
[Kandel et al., 2012]. Those fibers conduct signals at high bandwidth and only a small delay,
allowing fast control and a high resolution. The location of the mechano-receptors in the skin
is essential to promote their functionality [Maeno et al., 1998]. Especially the structure of
the epidermal ridges and papillae, structures in the upper level of the skin, act as mechanical
filters to shape the transmission of stimuli to the receptors [Cauna, 1954] [Dandekar et al.,
2003]. Type 1 mechano-receptors, in particular the Merkel cell (SA1) or the Meissner corpus-
cle (RA1), are located at the epidermal/dermal boundary, 0.5-1.0 mm below the skin surface
[Kandel et al., 2012]. Type 2 mechano-receptors, in particular the Ruffini ending (SA2) or
the Pacinian corpuscle (RA2), are located 2-3 mm below the skin surface in the dermal layer
[Kandel et al., 2012]. Consequently the mechanical receptive field is smaller and the spatial
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accuracy of sensors of Type 1 is higher than for Type 2. This also explains why there are about
100 Merkel and 150 Meissner receptors per cm2 on the fingers, but only about 20 Pacinian
and 20 Ruffini receptors per cm2 [Johnson, 2001]. On the contrary, Type 2 sensors are always
innervated only by a single fiber, while with Type 1 only one fiber innervates multiple recep-
tors nearby [Kandel et al., 2012]. With Type 1 receptors, large amount of spatial information
is fused at the receptor level. The fast adapting (FA) types only respond to the on- and off-set
of a stimulus, while the slow adapting (SA) persistently respond to constant stimulation. The
Pacinian corpuscle for example, embeds three levels of filtering: 1) the mechanical filter of
the onion-like capsule; 2) the electromechanical filter of the membrane; and 3) the electro-
chemical spike-train encoder [Bell and Holmes, 1992]. This filtering is performed locally at
the receptor level and helps with the efficient encoding of the tactile signals, for example in
manipulation tasks [Johansson and Flanagan, 2009]. In general, every mechano-receptor has
a measurement specialty: a) Pacinian corpuscles are very sensitive to high frequent vibrations
and largely applied for tool and object manipulation; b) Ruffini endings monitor stretch of
skin, useful to detect skin deformation, e.g. when conforming to an object or on own motions
(kinesthetic sensing [Edin, 2004]); c) Merkel cells give precise feedback about tactile patterns
such as points, edges and curvatures; and d) Meissner corpuscles react to low frequent, but
sudden force changes, e.g. onset of slip or making and breaking of contacts [Johnson, 2001]
[Johansson and Flanagan, 2009]. Hair root receptors react to very low forces and are enhanc-
ing the touch sensing ability of skin by a few millimeters above the skin surface [Kandel et al.,
2012]. Slow conducting CT afferents, preferentially reacting to low force and slow moving
mechanical stimuli, are said to posses limbic functionality towards the emotional aspects of
touch [McGlone and Reilly, 2010]. Moreover, biological skin is very bendable, but limited to
a maximum stretch of about 30% [Hendriks, 2005]. The ability of skin to span across joints is
a consequence of its ability to bend, not to stretch, which allows it to wrinkle and fold.

2.1.2. Human Body Schema

“The mechanisms underlying the working and development of body schema (and body im-

age) in animals and humans are still far from clear.” [Hoffmann et al., 2010]. According to
[de Vignemont, 2010], a growing consensus denotes at least two distinct types of body rep-
resentations – body schema and body image. De Vignemont defines the body schema as a
cluster of sensori-motor representations that are action-oriented and represent the body as the
effector and as the goal of the action. The body image instead groups all the representations
about the body that are not used for action, whether they are perceptual, conceptual or emo-
tional. According to Macaluso et al. [Macaluso and Maravita, 2010], the body representations
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FIGURE 2.2. The figure shows the cortical sensory homunculus, a visualization of the spatial
representation of tactile sensor locations in the human brain [Fig. by OpenStax College1].

also extend to the peri-personal space and are dominated by spatial, cross-modal links between
visual, tactile and proprioceptive senses. “Rather, the body schema and peri-personal space

are emergent properties of a network of interacting cortical and sub-cortical centres. Each

centre processes multi-sensory information in a reference frame appropriate to the body part

concerning which it receives information, and with which responses are to be made.” [Holmes
and Spence, 2004]. An instantiation of the spatial relationships can be seen with the sensory
homunculus in the primary somato-sensory cortex (see Fig. 2.2). The sensory homunculus
shows that sensors in close physical vicinity on the physical body are represented in a similar
spatial relationship in the somato-sensory cortex. In [Medina and Coslett, 2010] Medina et

al., presented arguments that this first somato-topical representation should be accompanied
by a second body form (size and shape) representation that allows to locate tactile sensations
on the skin surface, and a third postural representation that localizes the body in external space
in various egocentric frames of reference. The answer how the body infers those relationships
is found in the design of the human system [Kandel et al., 2012], as well as in its cogni-
tive development [Rochat, 1998]. With the tactile mechano-receptors, spatial relationships
are exploited at the cellular level (see Fig. 2.1), combining multiple receptors to receptive

1Fig. 14.23 in Anatomy & Physiology, OpenStax College, published on 25th April 2013, can be downloaded
for free at http://cnx.org/content/col11496/latest/.
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fields [Kandel et al., 2012]. Afferent fibers from the same areas are then routed by similar
pathways through the multiple stages of the central nervous system. Topological maps, are
already established all the way up to the cortex. Different exploration methods, as depicted in
[Rochat, 1998], serve to establish and calibrate the missing links. Rochat et al. explain that in-
fants have an early ability to discriminate environmental (single-touch) from self-stimulation
(double-touch). According to Rochat et al., this serves to develop the ecological self. The
perceptual monitoring of own actions serves as training data for the inter-modal calibration
between tactile, visual and proprioception. As this process is split into short-term versus long-
term body representations, the body schema is plastic in time [de Vignemont, 2010]. This
representation involves primarily visual, somatosensory and proprioceptive modalities, oper-
ates in body part-centred reference frames [Holmes and Spence, 2004], thus demonstrating
significant plasticity.

2.2. Artificial Skin

In the early 1980s, Leon D. Harmon conducted a survey about the requirements and potential
impacts of tactile sensing for researchers and industry [Harmon, 1982]. Some of his findings
are: “Approximately 90% of the respondents felt strongly that tactile sensing is needed. Touch

sensing was seen as an essential concomitant of vision. ... Artificial skin should have high

sensitivity, fast response, and continuous-variable output, and it should require little power

and be cheap and durable. ... Some sort of peripheral preprocessing of tactile sensory data

seemed imperative to most respondents. ... It would be imperative to pre-process the great

flow of transducer signals at or near the skin surface. ... a manufacturer is obliged to offer

complete systems; users are unwilling and/or unable to cope with specialized installations.

Standard systemintegration, data-processing software packages will undoubtedly be essential

to future systems. ... A somatotopic (skin-surface) map (similar to a retinal map in vision)

is desirable; some central representation of the patterns impinging on the sensory surface is

essential to intelligent processing. ... In the more general and interesting case of a relatively

unstructured environment, a robot arm or hand must have advance warning of impending con-

tact at all times. ... The touch-transducer response time needs to be small compared to that for

the loop cycle. ... Reaction time of 1-10 ms is desirable for the entire automaton, according to

some respondents, and should range up to 300 ms according to others. ... In general, software

was seen as the major problem. This worry was most sharply focused on data processing and

control algorithms. The integration of many sensors was felt to be quite difficult. ... Very likely,

some of the really high-payoff applications will not demand high speed and/or high resolu-
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FIGURE 2.3. The figure shows a collection of related work artificial skin systems.

tion during early, evolutionary years. ... Much more consultation between manufacturers and

robot designers was urged. Likewise, the need to implement considerably more laboratory-

to-real-world transfer was noted. ... As robotics matures and automata get smarter, more

versatile, and more numerous, machine-human interfacing will increase ... Safety looms as

a large problem and an obviously acute concern. Robots are powerful and stupid. Proxim-

ity devices and overload systems can fail. Extraordinarily fail-safe protective measures will

have to be part of robotic systems of the future, as people and machines work side by side in

increasing numbers and complexity of interactions.” [Harmon, 1982]. About 30 years later,
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tactile sensing still does not play this envisioned role [Lee, 2000]. A couple of recent reviews
from different authors [Dahiya et al., 2010] [Lucarotti et al., 2013] [Howe, 1994] [Lee and
Nicholls, 1999] [Yousef et al., 2011] unveil that the implementation of artificial skin has so far
largely been biased towards the technological implementation of sensors [Dahiya et al., 2008],
while a complete system is desired. Together with Dahia et al., we have recently summarized
challenges towards the effective utilization of artificial skin [Dahiya et al., 2013]. In the fol-
lowing, we are giving a short review on the different aspects of artificial skin technology in
the related work (see Fig. 2.3).

Sensing Modalities: Examination of sensing modalities in human, speak for a distinguished
set of sensors to encode different phases in contact handling [Johansson and Flanagan, 2009].
Pressure/Force is the overall choice if only a single modality is integrated [Tawil et al., 2009]
[Ulmen and Cutkosky, 2010] [Maheshwari and Saraf, 2006]. Using only a single modality
simplifies signal handling as it is not necessary to convert, transmit and process orthogonal
sensor signals, and homogeneous skin structures can be used. Nevertheless, the additional
costs for implementing multiple modalities seem to pay off on the processing side and provide
a greater range of applications. Slippage and surface roughness can be classified by sensing
vibrations [Göger et al., 2009] [Edwards et al., 2008]. Temperature changes help to distinguish
between different materials [Fishel et al., 2009] and compensate thermal drift for all other
mechanical sensors [Maiolino et al., 2013]. Shear stress sensors support the detection of
edges [Chorley et al., 2009] or skin kinesthesia [Vogt et al., 2013], but shear forces can also
be calculated from normal deflection [Fearing, 1990]. Proximity sensors enable a reaction
prior to touch, which is especially useful in motion control [Lumelsky et al., 2001].

Transduction Methods: Most physical principles [Dahiya and Valle, 2013] have been ex-
ploited to convert excitations, mainly normal forces, into measurable signals. These range
from resistive [Weiß and Woern, 2005] and piezoelectric principles [Göger et al., 2009], to
optical [Persichetti et al., 2009] and capacitive effects [Cannata et al., 2008]. The cost driving
touch screen market, along with the low power consumption and high versatility [Sato et al.,
2012] [Rocha et al., 2006], make capacitive touch sensing technologies a promising choice.
Force sensitive resistors are commonly used in the form of thin film layers [Papakostas et al.,
2002], conductive elastomers [Weiss and Woern, 2004], wire stitched [Shimojo et al., 2004]
or segmented fabrics [Buescher et al., 2012] or QTC segments [Stiehl and Breazeal, 2006].
Although, these materials provide excellent spatial resolution, they suffer from continuous
force calibration problems, lack of long term robustness, temperature dependencies and a lim-
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ited transduction bandwidth (temporal or force range). New materials, such as a mixture of
carbon nano-tubes with liquid crystals, can be used to on-line tune the force sensitive range
[Lai et al., 2011] and eliminate those limitations. Capacitance to digital converters do not
only detect conductive materials, e.g. human tissue, but it is possible to coat them with a con-
ductive material and use them as force sensors [Ulmen and Cutkosky, 2010] [Cannata et al.,
2008] [Biggio et al., 2010]. A combination of light emitter and detector senses light reflected
on an approaching object [Lumelsky et al., 2001], in a cavity [Hellard and Russell, 2002] or
within foam material [Fujimori et al., 2009] compressed by force. A method to measure the
effect of shear and lateral force on cross coupling between multiple optical pairs is proposed
in [Kadowaki et al., 2009]. Using optical fiber systems, as in [Hasegawa et al., 2008], decou-
ples the location of sensation and conversion. The same applies to hydraulic skin, where fluid
channels collect the overall deformation of areas, and convey the fluid pressure [Fishel et al.,
2009] or electrical resistance [Park et al., 2010] [Tseng et al., 2008] [Noda et al., 2010] as
an output. Piezoelectric materials, e.g. PVDF, show good vibrational sensitivity [Choi et al.,
2005] [Yamada et al., 2002b], but lack constant excitation capabilities. MEMS sense differ-
ent modalities such as orientation [Hoshi and Shinoda, 2008], shear and lateral force [Ascari
et al., 2007], vibration [Scheibert et al., 2009] [Sukhoy et al., 2009] and hardness [Shimizu
et al., 2002]. All in all, MEMS accelerometers have shown effective for sensing vibration
and orientation in one package – a low-cost and easy to use sensor. Temperature is sensed
with PTCs or NTCs in the form of custom wire patterns [Castelli, 2002] or chips [Yang et al.,
2008].

Coverage and Wiring Complexity: Only a few projects have attempted to largely cover
robots with sensitive skin. Here, we would like to highlight: 1) The european Roboskin project
that developed flexible, triangular units with a conductively coated silicone layer to provide
large area capacitive force sensing [Cannata et al., 2008]; 2) The robot TwendyOne at Waseda
university that has been equipped with multiple distributed tactile pads[Iwata and Sugano,
2009]; 3) Kuniyoshi and Ohmura et al. developed flexible optical and resistive cut and paste
wire comb patches to estimate contact forces on a humanoid [Ohmura et al., 2006], on a
human body [Fujimori et al., 2009] and on human hands [Sagisaka et al., 2011]; 4) Kadowaki
et al. [Kadowaki et al., 2009] developed an optical shear and normal force sensitive element
that was applied by Kumagai et al. [lori Kumagai et al., 2012] on large areas of HRP-2.
Most other projects only equipped parts of the robot with sensors, for example the finger tips
[Beccai et al., 2009] [Schmitz et al., 2010] [Biggio et al., 2010] and hands [Schmitz, 2011],
or parts for the expected interaction areas [Mukai et al., 2008] [Göger et al., 2006]. The most
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obvious way is to connect each sensor directly, leading to a high wiring cost (e.g. space,
weight, complexity, interference with motions). Several techniques attempt to overcome these
shortfalls: Matrix structures for instance try to reduce the wires by arranging sensors in rows
and columns [Yang et al., 2008] [Someya et al., 2004]. This technology is dependent on
the speed and robustness of the multiplexing pathways. Boundary scanning methods inject
currents [Alirezaei et al., 2009] or light pulses [Rothmaier et al., 2008] from the outside of a
skin patch. As with computer tomography, the state of the monitored area is estimated from
external sensor information. With this method, only a single modality has yet been introduced
[Heo et al., 2005]. Digital bus systems [Cannata et al., 2008] [Fujimori et al., 2009] are less
sensitive to interference than analogue signal transmissions, but rely on the cooperation of
every node. Wireless solutions based on radio [Chigusa et al., 2007] [Cartaa et al., 2009] or
optical transmission [Yamada et al., 2002a] suffer from low bandwidth and require a complex
supporting structure.

Skin Materials: The actual skin material has large effects on its function [Shimojo, 1997]
and aesthetics. Stretchability and bendability can be an inherent feature of the sensor [Alirezaei
et al., 2009] and supportive material [Kim et al., 2008] [Ohmura et al., 2006] or introduced at
the interconnection of rigid patches[Perez, 2006] [Lacour et al., 2005] or taxels [Lin and Jain,
2009] [Wakuda and Suganuma, 2011]. Special materials elongate the life time and robust-
ness [Strohmayr, 2012] of the skin system and modify the look [Yoshikai et al., 2007] of the
overall robot. New, self healing materials [Hou et al., 2013] [Toohey et al., 2007] automati-
cally repair small injuries. Surface structures can act as a mechanical filter for the sensation
[Cutkosky et al., 1987] [Gerling and Thomas, 2005] [Yamada et al., 2002b]. For a force
sensitive skin, the design of the mechanical conversion mechanism, the sensor and its cover
materials [Vasarhelyi et al., 2006] play a key role. Different materials, like urethane foam
[Ohmura et al., 2006] or silicone [Persichetti et al., 2009], and micro-structures like domes
[Tseng et al., 2008] or cantilevers [Oddo et al., 2009], have been utilized to convert forces into
measurable displacement. Instead of discrete elements [Yang et al., 2010], integrated organic
semiconductors (plastic electronics) will become important in the future [Someya et al., 2005].
Although those materials allow miniaturization, the thickness of artificial skin has an impor-
tant mechanical contribution, e.g. provides passive (in addition to active) safety [Fritzsche
et al., 2011] [Sugaiwa et al., 2008] [Park et al., 2011].

19



CHAPTER 2 Related Work

Processing: Processing tactile data usually entails algorithms dealing with spatial [Göger
et al., 2009] or temporal [Edwards et al., 2008] [Göger et al., 2009] [Sukhoy et al., 2009]
information extraction. Since tactile data is strongly coupled to its sensor location, the robot
can implement direct actions, e.g. protective reflexes in response to the excitation of a certain
body area [Dahl and Palmer, 2010]. One of the most effective ways to process tactile data
is to local analogue to digital conversion and preprocessing. This approach increases the
data transmission integrity and reduces the necessary transmission bandwidth and high-level
processing power [Perez, 2006] [Hakozaki et al., 2001] [Richardson et al., 2004]. It also
explains the long existing demand for a self-contained system on a chip [Dahiya et al., 2013].

2.3. Body Schema in Robotics

“Like natural agents, artificial agents can acquire sensori-motor representations of their own

bodies and use them to guide actions.” [Hoffmann et al., 2010]. We concur with a number
of statements made by Hoffmann et al., in their recent review on body schema in robotics.
It is desirable that robots automatically develop, calibrate and adapt their own body mod-
els (e.g. coordinate transformations), in order to lower the cost for building and maintaining
those models. A body model consists of two components: 1) relationships between sensor
modalities; and 2) relationships between sensor and motor representations. Body models are
beneficial e.g. when executing feed-forward control or predicting the expected sensory feed-
back. Models can not be replaced with reflex-like couplings, when planning and monitoring
whole action sequences, especially in complex systems as humanoid robots. In comparison
to implicit, explicit models are easier to debug and assess, easy to link to a common control
theory and provide valid data also in previously unseen situations. So far, the work on body
models in robotics has been heavily biased toward manipulator arms observed by a camera,
which is lacking the integration of multiple modalities (e.g. proprioception, vision and tactile)
as demonstrated by biological agents. We first focus on spatial tactile calibration (see Fig. 2.4)
and then move on to kinematic calibration methods (see Fig. 2.5).

2.3.1. Spatial Tactile Calibration

“The problem of robot skin calibration has been defined in [Cannata et al., 2010c] as the au-

tomated process of determining the location of taxels with respect to a known reference frame,

after the taxels have been actually fixed on a robot body link.” [Cannata et al., 2010b]. We
agree with Cannata et al., and add that not only the location, but also the orientation of taxels
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is important. It is for example essential to know the location and orientation of a shear force
sensor to act in the right direction. Manually providing those 6 parameters for a high number
of tactile sensors would be error prone and cumbersome. Nevertheless, manual calibration
is a very prominent solution. In the following, we summarize related work to automatically
acquire a spatial tactile calibration (see Fig. 2.4). In [Fuke et al., 2007] a simulated robot first

Kuniyoshi et al. 2004

Modayil 2010

Fuke et al. 2007

Prete et al. 2011Hoshi and Shinoda 2008

Yoshikawa et al. 2002

FIGURE 2.4. The figure shows the spatial calibration results of related works.

visually learns the local kinematics of its hand (see Fig. 2.4). It then probes the position of
tactile sensors on its face through the known hand position. This approach is limited to the
reachable body parts and the accuracy of the local kinematics. [Prete et al., 2011] utilize a
force/torque sensor in the upper arm of an iCub robot, and a completely initialized kinematic
chain, in order to estimate the location of taxels on the lower arm or hand (see Fig. 2.4). The
problems of self-reachability and self-contact control are omitted by touching the robot with
an external point probe. This approach fails when there is no F/T sensor, preceding the body
part under evaluation. In [Yoshikawa et al., 2002] a cross-modal map is learned among joint,
vision, and tactile sensor spaces by associating different pairs of sensor values when they are
activated simultaneously (see Fig. 2.4). When no visual input is available this learning method
misinterprets the given situation. In [Kuniyoshi et al., 2004] a simulated baby body performs
random movements in water, extracting only topological structures with spatio-temporal cor-
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relations (see Fig. 2.4). This approach has been extended to provide 3D sensor position es-
timates in [Modayil, 2010]. Modayil uses high correlations, limited to k-nearest neighbors,
to establish local distance constraints. Then, a global optimization algorithm unfolds the 3D
space, maximizing the unconstrained sensor distances. Implicitly given a global shape, the
estimate only vaguely resembles the original (see Fig. 2.4). Hoshi et al., utilize a fixed lattice
structure of rigid links (see Fig. 2.4), equipped with triaxial accelerometers, to reconstruct the
shape of cloth-like sheets [Hoshi and Shinoda, 2007]. Since the missing yaw angles are only
estimated from assumptions on the elemental loops of the lattice, this accelerometer based
approach suffers from singular configurations. In [Hoshi and Shinoda, 2008], Hoshi et al.

extend the sensing capabilities of each link by a triaxial magnetometer, which is considered
infeasible for an artificial skin on a robot. Metallic structures and the electromagnetic noise
distort the magnetic field close to every robot. The fixed lattice grid also does not account for
the flexibility of placing skin in arbitrary shapes on robots.

2.3.2. Kinematic Modeling

“Articulated models ... based on state variables (such as manipulator joint angle positions)

that interact according to the laws of dynamics and mechanics ... come closer to the no-

tion of body schema as we know it from biology. This time, however, the variables have to

be measured by the robot’s own sensors.”, [Hoffmann et al., 2010]. Kinematic models are
commonly acquired with superficial, highly precise external metro-logy systems. However, it
would be more interesting and important, e.g. to support life-long adaption and error recov-
ery, to automatically acquire those models with internal sensors only. Commonly, an explicit

Sturm et al. 2008Yan and Pollefeys 2006 Hersch et al. 2008Bongard et al. 2006
FIGURE 2.5. The figure shows the kinematic modeling with related works.

kinematic model acquisition involves two steps: 1) the synthesis of an articulated model from
a self-explored robot’s topology; 2) the calibration of the kinematic parameters of the model.
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The second step is well known as kinematic calibration e.g. with industrial robots. As de-
scribed in [Hollerbach and Wampler, 1996], calibration approaches are divided into open- and
closed-loop methods. With open-loop methods, a precise external metrology system measures
the pose (only the end-effector or all body parts) of the robot under motion. Their precision
stands and falls with the external metrology system. In the closed-loop approaches, the kine-
matic chain is closed with a mechanical constraint and the remaining mobility used with joint
level sensing (positions and/or forces) to generate the required input for the estimation. Closed
loop measurements profit from the accuracy of the fixation point to the environment or another
manipulator. Their precision stands and falls with this fixation accuracy and the remaining mo-
bility. With over-constrained closed loops additional sensors have to be provided, e.g. a force
torque sensor at the endpoint [Bennett et al., 1992]. A detailed overview of the fundamentals

of manipulator calibration is denoted in a book by Mooring et al. [Mooring et al., 1991].
Using a special form of open-loop motion, called Circle Point Analysis (CPA), moving only
one joint axis at a time, the kinematic parameters can be computed analytically [Hollerbach
and Wampler, 1996]. An example of this CPA approach, which is closely related to our work,
has been presented in [Canepa et al., 1994]. Canepa et al. utilize a 3-axis accelerometer on the
end effector to conduct a Circle Point Analysis. However, their approach is based on a first or-
der integration of the accelerometer data and large movements. This requires high integrity of
the accelerometer data, which is normally only achieved with large and expensive high grade
devices. Their approach also requires a large, collision free workspace for fast movements of
the uncalibrated robot. Motion capture systems, have often been used to automatically build
and estimate kinematic models. Most systems track active [Ude et al., 2000] or passive [Yan
and Pollefeys, 2006] visual markers/features (see Fig. 2.5). Such approaches are extremely
fast and can also robustly adapt to structural changes, e.g. utilizing Bayesian networks [Sturm
et al., 2008] (see Fig. 2.5). Magnetic motion capture systems perform better when occlusion
is a problem [O’Brien et al., 2000], but would fail on metallic robots. All former approaches
rely on a globally accurate and calibrated external sensor system, and the availability of ro-
bust tracking of markers or features. In [Hersch et al., 2008] (see Fig. 2.5), an algorithm is
presented to visually learn the subjective body schema of a HOAP-3 robotic platform from
a partial internal view on the end-effectors or subsequent body parts. The model takes ad-
vantage of a-priori information on the arrangement of joints and cannot learn any new body
structures. It also uses a calibrated stereo-vision system that provides reliable position input.
Inertial motion capture systems, like the XSens MVN [Roetenberg et al., 2008], come with a
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underlying body model on which several parameters have to be given manually and others are
found by matching known postures, e.g. the T-pose). The difficulties to explore the topology
and estimate the kinematic parameters from an egocentric perspective, using other than visual
sensors, can be seen in [Bongard et al., 2006a] and [Bongard et al., 2006b] (see Fig. 2.5).

2.4. Utilization

Artificial skin is useful for a variety of tasks in robotics (see Fig. 2.6), from classification
[Sukhoy et al., 2009] to contact control [Cannata et al., 2010a]. Providing tactile sensors, the

Noda et al. 2007

Mukai et al. 2011 Kumagai et al. 2012

Ohmura et al. 2007Lumelsky et al. 2001

Argall et al. 2010

FIGURE 2.6. The figure shows the exemplary utilization of artificial skin in related works.

required object knowledge can be relieved – the manipulation (e.g. a grasp) becomes reactive
[Hsiao et al., 2009]. As demonstrated in [Romano et al., 2011], manipulation sequences can
be separated into discrete states, activated e.g. by tactile events. In [Mukai et al., 2011],
tactile sensors are utilized to control the balancing contacts between a human-like object and
the arms of a nursing robot, while carrying it. In [Ohmura and Kuniyoshi, 2007], tactile
feedback and additional contact points enable a humanoid to lift heavy objects – we assume
that tactile feedback serves here to switch between pre-computed procedures. In [Noda et al.,
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2007], tactile sensor signals have been used to classify types of interaction, like hugging or
hand-shaking by a human with a real robot, while in [lori Kumagai et al., 2012] whole-body
contact states between the robot and an object are monitored. A survey by Argall et al. [Argall
and Billard, 2010] on tactile human robot interaction shows the potential of this new interface
– so far, the authors implemented an approach of tactile guidance for policy refinement [Argall
et al., 2010b] and tactile correction [Argall et al., 2010a]. In [Iwata and Sugano, 2006], tactile
recognition serves to identify a set of contact states (e.g. pulling, hitting, stroking) between
human and robots. Finger sensors in [Göger et al., 2009] detect slippage during manipulation
and contact profiles [Schmid et al., 2008] to open doors along with visual cues and joint-
level F/T sensing. Instantaneous movements in response to a sensory stimulus provide touch
triggered reflexes for safer robots, as in [Dahl and Palmer, 2010] and [Battaglia et al., 2009].
This type of behavior has also been used for interactive real-time guidance [Lumelsky et al.,
2001] and reactive grasping [Schmidt et al., 2006]. Before grasping, objects can be globally
localized via touch as shown in [Petrovskaya and Khatib, 2011]. Once localized, those objects
can be recognized by fusion of tactile and kinesthetic features [Navarro et al., 2012] [Schmitz
et al., 2014]. Both papers show the symbiotic relationship of the tactile and kinesthetic sensing
modalities. During manipulation, tactile information can evaluate the stability and allow in
hand manipulation [Kojima et al., 2013].

2.5. Summary

In this chapter, we summarized the related works on the creation and self-organization of ar-
tificial skin, from the biological inspiration to robotic implementations. We started with an
overview of the multiple mechano-receptors in human skin, showing its multi-modal sensitiv-
ity and its distributed nature (e.g. conversion, processing, communication). We then stated the
abilities of the human body to self-organize and calibrate its own sensory-motor body repre-
sentation – the body schema. We continued introducing various artificial skin solutions and
their contributions to the design and implementation of numerous multi-modal sensors on a
large surface area. We then introduced the notion of body schema in robotics, from the spatial
calibration of a highly distributed sensor system to classical and recent methods to model and
calibrate the kinematic representations of robots.
We extend this related work by providing a multi-modal, modular artificial skin with a dis-
tributed nature like biological skin (refer to Chapter 3). We then utilize sensor fusion across
visual, proprioceptive and tactile senses to build an ego-centric robotic body schema. We
provide a method to accurately acquire the spatial tactile calibration (location and orientation
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of taxels) with distributed body frames (refer to Sec. 4.2), and a method to visually combine
those distributed frames into a centralized body representation (refer to Sec. 4.3). Sensor fu-
sion across the proprioceptive and tactile sense enable us to explore the kinematic topology
(refer to Sec. 5.2) and calibrate the kinematic parameters with internal sensors only (refer
to Sec. 5.4). We finally provide utilization examples that serve for laboratory-to-real-world
transfer, e.g. enhancing the human-machine interface and safety of robots with contact and
pre-contact sensing (refer to Chapter 6).
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CHAPTER 3

Creating Artificial Skin

Think how lucky you are that the skin you live in,
so beautifully holds the “You” who’s within.

(Michael Tyler: The Skin You Live In)

This chapter introduces the novel artificial skin system we developed. In the first section,
we introduce a modular approach to create artificial skin from the same building block, a
multi-modal skin cell, along with a prototype with standard electronics. In the second section,
we provide details about the novel force sensor that has been integrated into the skin cell.
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SECTION 3.1 Introduction

3.1. Introduction

FIGURE 3.1. The figure shows a patch of CellulARSkinTM on a human hand.

Every interaction of an embodied agent, with itself or the environment, is grounded on its
surface. Sensitive skin provides a rich and direct feedback on these interactions, making it
a key technology for future robots. Multi-modal awareness of distributed contacts will give
robots, commonly only relying on vision and joint force/torque sensors, additional informa-
tion – e.g. when handling large/unknown objects, classifying contacts or dealing with cluttered
and occlusive environments. With a set of multiple sensor modalities, a variety of sensations is
supported. Skin is able to feel the own body motion, thermal effects, contact forces, vibrations
and painful stimuli. With an artificial skin those sensations can be meaningfully extended, e.g.
by a sense of approaching objects to improve safety. The first step towards those aims, the
creation of a large area, multi-modal artificial skin, poses many technical challenges. A large
number of distributed sensors have to be implemented, their signals converted and processed,
the resulting information extracted and transfered to the control system. Sensitive skin has to
be efficient to manufacture, transferable between multiple robotic systems and easy to imple-
ment. Artificial skin has to be sensitive, but robust and reliable, as it is in constant interaction
with the external world. A variable number of sensors on an arbitrary surface shape need to
be identified, labeled, routed and processed. In this chapter, we provide solutions to these
challenges, creating an easily transferable, scalable cellular artificial skin (see Fig. 3.1).

29



CHAPTER 3 Creating Artificial Skin

3.2. CellulARSkinTM

Tessellation

FIGURE 3.2. The figure shows a dense tessellation of a flat surface with hexagonal skin cells.

In this section, we introduce the concepts behind a cellular artificial skin, including its pro-
totype realization1. Why should artificial skin be built from elementary cells? – Because
following this biological inspiration is favorable for many technical advantages. First of all,
building a high number of similar cells, is in favor of efficient mass production – one design is
optimized and then replicated as many times as needed (see Fig. 3.2). Since each cell is a self-
contained entity, it is neither dependent on a central system nor on its neighbors. Every cell
provides its own sensing, processing, power and communication capabilities. Although the
repetition of functional elements might be seen as a waste of resources, it highly contributes
to the simplicity and robustness of the system. In the context of artificial skin, a highly dis-
tributed and parallelized system is much more robust than a centralized and serialized one.
Failures, either the death of a complete cell or only partial loss of functions, are isolated at
the smallest cellular level. The simplicity increases as all cells are functionally independent
building blocks. The artificial skin is created by placing as many elements next to each other
as fit the 3D surface to be sensitized. Since every cell brings its own infrastructure, little addi-
tional centralized infrastructure for power and communication is necessary. Combining local
sensing and processing, largely increases the information content of signals fed into a system.
Since those signals are digital, they are very well protected from external and internal influ-

1The work in this section has been published in [Mittendorfer and Cheng, 2011a][Mittendorfer and Cheng,
2012d][Mittendorfer and Cheng, 2013].
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ences on the long communication pathways to the central processing system. In fact, digital
repetition strengthens signals in technical as well as biological systems. Having a small, self-
contained entity also eases organization. Connections, memories and processing are managed
at cell level and in-situ modified to the available active elements. Control algorithms are able
to take advantage of the smallest building block, creating system behavior through local rules.
Self-organization, as a paradigm in biological systems, helps the creation of large and complex
global systems. In engineering, this approach is known as divide and conquer paradigm.

3.2.1. Cellular Sensor Network

3.2.1.1. Economy of Scale of a Modular Solution

FIGURE 3.3. The figure shows a large array of CellulARSkinTM electronic boards – the core
of the cellular artificial skin.

An artificial skin solution should not be focused on a single robot and be easily applicable
to other domains, e.g. health care or consumer products. Every solution has to be intrinsically
transferable and scalable. In order to offer an economically attractive solution, for a manifold
of potential customers, the costs have to be controlled. This goal is only achievable with a
highly modular solution, where the expensive and complex part is similar and can be mass
produced (see Fig. 3.3). The success of such a business model has not only been shown in
automotive industry, but also is currently introduced into robotics – e.g. by Universal Robots.
At the same time, the complexity of integrating customer specific solutions has to be minimal,
e.g. reduced to a cut & paste process, while the design and production process of a customer
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specific solution has to be an easy subject for automation. An intense testing of the main mod-
ule is justified by its potentially large production volume. Being able to specify and verify
systematic behavior of a multi-module system, it should not be necessary to proof the con-
formity to international standards (e.g. CE, ISO, FCC) for every customer implementation.
Using CellulARSkinTM (see Fig. 3.3) we have demonstrated the economy of scale of a modu-
lar solution. We have been able to apply our solution to different robots and have been able to
lower the production costs in every cycle by a factor of two, even in small series production.

3.2.1.2. Current and Future Integration Technologies

The available technologies are the pillars to build an artificial skin system on. However, the
concept behind should be technology independent and applicable to current, as well as future
technologies. In the case of CellulARSkinTM, we implemented a prototype with standards
electronics – sensors from the growing smart phone market, standard Printed Circuit Boards
(PCBs) and silicon chips (see Fig. 3.3). Those standard technologies clearly limit the capa-
bilities of our artificial skin regarding sensor density, manufacturing costs and the ability to
conform to arbitrary 3D surfaces. However, the conceptual design of the skin cell itself is inde-
pendent of technologies. Explored concepts and algorithms can be easily transferred between
current and upcoming technologies. We expect that the next step will allow hybrid solutions,
between small and fast silicon interfacing chips and low-cost, densely printed organic sensors.
In the future, we expect to be able to completely print cells in flexible organic electronics. It is
possible to shrink the size of the skin cell within each technology limit, easing the integration
on arbitrarily curved surfaces. Given a miniature skin cell, it is irrelevant if the cell element
is rigid or flexible, as long as the embedding substrate exhibits those features. In order to be
able to handle a growing number of distributed elements and sensor signals, self-organization
features and local processing will become more and more important.

3.2.1.3. The Optimal Cell Shape

One of the first questions, when tessellating/parqueting a surface with the same element, is its
shape. The 2D shape has an influence on how dense cells can be arranged next to each other.
Optimally there should be little insensitive space left between elements. Cells overlapping
or penetrating each other are not feasible. The 2D shape influences the number and contact
faces to the neighboring cells. Optimally, there is space for physical bonds to many neighbors.
The 2D shape of the rigid element with flex-rigid designs has an important influence on the
flexibility. Optimally, there are many flexible connections in multiple directions. Only three
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Triangle Rhomboid Hexagon
FIGURE 3.4. The figure shows potential regular skin cell shapes that tessellates a 2D surface

without gaps.

regular geometrical shapes tessellate a plane without gaps: triangles, rhomboids and hexagons
(see Fig. 3.4). We consider the hexagonal shape to be optimal due to the following arguments
(see Fig. 3.5): 1) Every hexagon is connected to all of its neighbors (close/far) by an edge;
these edges are utilized to establish physical (e.g. wired, optical, RF) data and power connec-
tions to every neighbor, offering a high number of potential links for redundancy or flexibility
in parqueting; 2) The distance of same points on aligned neighboring hexagons is equal for all
neighbors; This natural triangulation of sensor positions is best for circular symmetric kernels
– amongst them edge detectors [He and Jia, 2005]; 3) The high density (close to the optimal
circle) of the hexagon offers space for large standard components; This compactness is espe-
cially important for a flex-rigid solution. The benefits of hexagonal pixels, regarding sampling

FIGURE 3.5. Advantages of the hexagonal skin cell shape in a dense grid: dense shape; natural
sensor triangulation; edges to all neighbors.

and processing, have also been discussed in vision [He and Jia, 2005][Petersen, 1962]. He et

al. argument that the main problem limiting the utilization of hexagonal image structures, is

33



CHAPTER 3 Creating Artificial Skin

the lack of hardware for capturing and displaying hexagonal-based images. With our artifi-
cial skin system, we have the freedom to choose this optimal shape. Additionally, we wish
to point out that the closest packing of identical circles and one of the closest packing for
identical spheres (e.g. cells or atoms) is the hexagonal arrangement. This is the reason why
hexagonal grids are often found in nature.

3.2.1.4. Conformation to Arbitrary 3D Surfaces

FIGURE 3.6. The figure shows a skin patch with 143 skin cells mounted on the first tube like
link of an UR-5 robot arm. The tube like shape is approximated with a (tridecagon) regular
polygon with a bending angle of 27.7◦.

Artificial skin must conform to the arbitrary 3D surface it is put on. It also needs to par-
tially conform to the arbitrary surface of the object it is making contact with, enlarging the
mutual contact surface. In order to achieve this, skin requires mechanical flexibility. There
are multiple options to realize this flexibility: 1) a completely flexible design, with flexible
connections, sensors and logic; 2) a flex-rigid solution, with flexible connections, but rigid
sensors and logic; 3) a hybrid design with flexible connections and sensors, but rigid logic.
Although all flexible solutions are the ultimate goal, their practical implementation is not yet
mature. On the one hand, flexible electronics are still much more expensive and not yet com-
mercially available. On the other hand, technical problems occur when sensors, connections
and active elements are bent, e.g. due to piezoelectric effects. Regrading sensors, it is also be
extremely difficult to subtract flexure from desired effects, e.g. temperature induced changes
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vs. stretching of a resistive finger structure. The speed and integration complexity of organic
electronics is still comparably low. With the existing technologies, an organic electronic skin
would have a much lower bandwidth and higher latency compared to an inorganic electronic
skin. In our case, we opt to use a flex-rigid solution with flexible interconnects, but (quasi-
)rigid sensors and logic. This approach has multiple benefits: 1) mechanical stress is shifted
from critical core elements to (redundant) interconnects; 2) standard rigid electronics and tech-
nologies can be applied; 3) sensors are affected less by flexing the skin. Reducing the size of
the rigid elements increases the number of flexible interconnects and such the overall flexibil-
ity/bendability of the skin (see to Fig. 3.7). While the surface approximation quality of the

N=5, angle = 72◦ N=10, angle = 36◦ N=20, angle = 18◦

FIGURE 3.7. The figure shows a regular, piecewise linear approximation of a circle for differ-
ent lengths of the linear element. The required bending angle decreases with 1/N.

skin is becoming better, the local bending angle of the flexible connection is becoming less.
Another option to conform to the given surface is to leave skin cells from the initial regular
grid, allowing higher bending angles and preventing overlaps. In summary, we can say that a
high flexibility can be easily achieved with small rigid elements which are connected flexibly
as demonstrated in parts with CellulARSkinTM (see Fig. 3.6).

3.2.1.5. Skin Layers

Biological skin features multiple layers, which can not be replicated with a thin electronic
film on a rigid surface (refer to Sec. 2.1). The mechanical properties of the epidermal layer
play a major role regarding contact properties, e.g. friction and micro-compliance and provide
mechanical protection against wear and tear, physical and chemical abuse. The subcutaneous
layer is essential for bonding to the supporting structure and provides compliance. Skin re-
ceptors are placed at different depth of the skin to enhance their mechanical sensation, e.g. to
amplify light stimuli with papillary ridges [Cauna, 1954] or to broaden receptive fields with
sensors in the lower skin layers [Shimojo, 1997]. CellulARSkinTM uses multiple, specifically
designed layers (see Fig. 3.8). The top elastomer cover is a material mix composed of a
soft surface and soft encapsulation of the sensors, but hard epidermal layer with papillae like
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Top Mold

Bot Mold

PCB

Thickness = 3.5 mm

FIGURE 3.8. The figure shows the different layers of the artificial skin CellulARSkinTM.

structures on top of the force sensors. This design protects the sensors from impacts, pro-
vides a surface with high grip and acts as a spatial mechanical filter that collects and focuses
forces onto the mechanical sensors. The dermal layer of our skin, the electronics board, holds
multiple sensor modalities at various heights, e.g. the temperature sensor close to the surface
for best thermal coupling and the force sensors deeper in the skin for spatial filtering. The
subcutaneous layer provides compliance and protects the infrastructure. We either 3D print
the skin material with an elastomer called Tango Plus and Vero White from OBJET, a rapid
prototyping material that is printed drop by drop with a resolution of 16 µm, or we mold and
assemble the top and bottom layers from silicone and plastic. Using rapid prototyping materi-
als provides a number of advantages: 1) we can directly add micro structures made of different
material mixtures into the skin; 2) a skin layout for a robot can quickly be designed in a CAD
process and printed within a couple of hours. Molded materials instead, are long term stable,
more robust against wear & tear and can be produced at lower costs at higher quantities.

3.2.1.6. Digital Cell-2-Cell Communication

One challenge of a large area artificial skin is the acquisition of sensor signals from distributed,
multi-modal sensors. Sensor signals must not only be transfered over a potentially large dis-
tance, but also acquired from a high number of spatially distributed sensor locations. In order
to change pre-processing parameters, every skin cell must be reachable by a central control
unit. In comparison to analog, digital signal transmission offers many benefits in this ap-
plication. Digital signals are easily transmitted from cell-2-cell and repeated with minimal
hardware and no additional noise (only statistic errors). Embedding redundancy, digital signal
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errors can be detected and in many cases corrected. Especially for artificial skin, on a large
surface area and in a noisy robotic environment (e.g. electric motors and computers), signal
integrity plays a major role. Given local memory, digital signals are easy to store or delay
– enabling static or dynamic scheduling algorithms for transmission. Dynamic routing algo-
rithms provide means to transmitting critical data, e.g. safety related detections, with a higher
priority, in order to minimize reaction delays. It is easy to transfer multi-modal data with dig-
ital data packets. Direct, bidirectional data connections between neighboring skin cells have
multiple advantages. Significantly below the communication wavelength, impedance match-
ing is not critical. In this way, cheaper and smaller hardware can be utilized e.g. simple TTL
digital logic instead of LVDS differential signals with large analog drivers. The small antenna
effect also reduces noise emission and admission. Forwarding data from neighboring cells,
every cell behaves like a network repeater, which further increases signal integrity. Corrupted
transmissions are eliminated at an early stage. Connection failures can be isolated, using al-
ternative routing pathways. Every skin cell is able to utilize its own generation rate. There is
no need to synchronize the data generation, unlike with a bus or matrix system. Cell-2-Cell
communication also provides the ability to find adjacencies in the network and infer them to
distances in the real world, enabling self-organization methods as shown in Sec. 4.2.

3.2.1.7. A Self-organizing Artificial Skin Network

An artificial skin has a potentially high number of distributed sensors, numerous parallel and
serial communication pathways, and a unknown spatial topology. Manually setting up and
maintaining the skin network is consequently not feasible and should be replaced with auto-
mated routines. In a cellular skin, every skin cell must only know two elementary settings: 1)
its own unique ID, to be able to discriminate the origin of a packet in the network; 2) one out
of the available neighbor connections to forward its own and received packets to. Additional
information about the connection of the skin cells can be used to optimize this initial network
or infer spatial distances for self-organizing methods (refer to Sec 4.2). In CellulARSkinTM

these settings are determined by a network exploration algorithm, which is part of the startup
code. The self-organization is initiated and controlled by the interface, but unfolds with local
rules on the skin cells. The number of interface connections to the skin cell network, as well as
the topology of the network itself, is not limited. In the case of CellulARSkinTM, the network
organization is split into 4 phases (see Fig. 3.9). The organization starts with a broadcast of a
synchronization command from the interface. This token initiates a search for bidirectionally
active connections and synchronizes all skin cells after startup. Active connections are de-
tected by a question and answer principle in both directions. Inactive connections are turned
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FIGURE 3.9. The figure shows an exemplary network self-organization result: detected active

ports (I), set master ports (II), distributed IDs (III) and detected neighbors (IV).

off. Next, every interface port simultaneously injects a path exploration token. The connec-
tion of a skin cell at which this token is received first, is set as the master port, the others as
slave ports. Every skin cell forwards this token once to all of its slave ports. Master and slave
ports consequently build a directed communication path in the form of a communication tree.
Every root of the tree is one port of an interface (see Fig. 3.9). This communication pathway
is implicitly based on an optimization of the forwarding delay, from the interface ports to the
skin cells. It is not necessarily optimal to relay sensor data vice versa. Algorithms such as
the Capacitated Minimum Spanning Tree (CMST) algorithm can optimize this network based
on the acquired network graph (neighbor exploration) and upload new master ports for every
cell. In a next step, each tree like structure is utilized to distribute IDs by a Depth First Search
algorithm, incrementing and setting IDs every time a new skin cell is reached. Every time
the token is returned to an interface port, it is sent to the next interface port – until all active
interface ports have been served. Finally, every skin cell queries the ID of its nearest neigh-
bors and forwards this adjacency information to the computer. The artificial skin network
then continues with normal operation. A minimum algorithm to reach and read from every
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cell (like for the boot-loader) only incorporates step I and II. As the ID distribution algorithm
is not deterministic, skin cells have to memorize their IDs locally. The network exploration
algorithm scales linear in time with an increasing number of cells. Connection and skin cell
failure are handled with a quick re-exploration.

3.2.2. The Skin Cell

FIGURE 3.10. The figure shows the size of skin cell version 2.0 compared to a 2 EUR coin.

The skin cell (see Fig. 3.10) is the building block of our artificial skin. It is the carrier of
sensor modalities and provides local infrastructure to acquire, pre-process and communicate
sensor signals. In this subsection, we explain its functional elements and capabilities (please
also refer to Table 3.1).

number of modalities 4 discrete sensors 6

cell input voltage 3.0-5.5 V max cell power 16 mA/3.0 V

weight per cell < 3.0 g skin thickness 3.3 mm

cell-2-cell bandwidth 4 Mbit/s cell-2-cell protocol custom

cell-2-cell data packets 20 bytes cell-2-cell commands 4 or 20 bytes

ports per cell 4 wires per port 4

data packet routing active data packet scheduler round robin

min. cell-2-cell data delay 50 µs 1 cycle cell-2-cell data delay 200 µs

supply routing passive, resistive compensated voltage drop < 2.5 V

TABLE 3.1. The table shows the general specifications of skin cell version 2.0.
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3.2.2.1. Local Infrastructure

Port 1Port 2

Port 4 Port 3

Voltage
Regulator

Processor

Program
Interface

FIGURE 3.11. The figure shows the local infrastructure of the skin cell version 2.0.

The back side (see Fig. 3.11) of the skin cell features its local infrastructure: 1) the com-
bined data & power ports to connect it to neighboring cells; 2) the processor for sampling
and processing the sensor signals and communication; 3) the voltage regulator for local power
stabilization; and 4) distributed devices for energy buffering, EMI and ESD protection.
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FIGURE 3.12. The figure shows a port pattern allowing direct cell-2-cell connections -
(R)eception, (T)ransmission, (+) and (-) power.

Cell-2-Cell Ports: The cell-2-cell ports establish power and communication connections
between neighboring cells or cells and the interface. With the hexagonal shape, up to six cell-
2-cell connections can be established. In order to keep the wiring simple, only 4 non-crossed
wires are utilized to transfer bidirectional data and power. Therefore we developed a specific
pattern to allow direct connections between aligned neighboring cells (see Fig. 3.12). These
connections must be bendable to allow the skin structure to conform to the surface. Up to 5
of 6 connections per hexagon can fail (currently only 4 connections are implemented), which
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introduces the necessary redundancy for a non-healing skin solution. In future, we would
like to replace the wires with short ranging wireless solutions (e.g. capacitive or inductive
coupling), simplifying the skin production process and improving the mechanical reliability
and flexibility of the connections.

Reg. PIC24F BMA250 VCNL4010 pull-ups LM71 LED Total

Active 0.2 mA 6.9 mA 0.2 mA 3.8 mA 1.3 mA 0.6 mA 3.0 mA ≈ 16mA

Saving 2 µA 80 µA 7 µA 2 µA - - - ≈ 91µA

TABLE 3.2. The table shows the current consumption of each components of skin cell version
2.0 for a fully active and power saving standby mode (values from the data sheets).

Power Management: Every skin cell needs a small quantity of local energy storage and op-
tions to efficiently handle power consumption. Without local energy buffers, energy intensive
events, e.g. an active sensor emission or increase in processing activity, can cause insufficient
energy supply on a single cell. When power instabilities leave the boundaries of a single cell,
they affect the signal quality or stability of the surrounding cellular network. We use a linear
voltage regulator circuit to compensate the power network voltage drop (up to 2V), stabilize
analog and digital supply rails (to 3V), provide a small energy buffer (16 mA for 600 us) and
reject incoming and outgoing power noise (75 dB). Power management is necessary to cut
down the overall power consumption. Power intensive active sensors should only be activated
only for infinitesimal short times. We currently use a built in functionality of the proxim-
ity sensor (VCNL4010) to modulate its emitter current. Table 3.2 shows the consumption of
specific components in fully active and power saving modes. The large contribution of the
controller (PIC24F) can be reduced by lowering its frequency and entering idle modes – at
the cost of higher latencies in the signal communication. The potential of power saving is
consequently bound by the required sensors and latencies within a given application.

Local Controller: The local controller handles all multi-modal sensors, acquires digital sen-
sor values or converts analog signals to the digital domain. It then pre-processes the digital sig-
nals and assembles the results into communication packets. Those packets are forwarded, from
one skin cell to the next, towards one of the interface connections. Thus, the local controller
requires AD conversion, processing and communication capabilities. A major part of the sig-
nal processing can be done locally. Local time based filters (e.g. median, low-pass, high-pass)
significantly reduce the required sampling rates (Nyquist sampling theorem). Oversampling
in combination with digital filters, e.g. delta-sigma converters, replaces complicated analog
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filters. Local spatial filters significantly reduce the dimensionality of the transfered data. For
example, it is possible to temporarily average 3 linear force signals into a single output signal.
Value based filters, such as thresholding or level detectors, completely suppress the transfer
of signals when specific conditions are not met and the signals do not contain new pieces of
information. This is especially interesting for artificial skin, since most areas of the skin are
not excited or in constant excitation. Efficient pre-processing methods largely decrease the
demand to transmit, decode and process informations throughout the entire processing chain.
In consequence, a local controller leads to a more efficient and slender system design. In our
design, we use the functionality of a common PIC24FJ128GA306 micro-controller to achieve
the above properties. Beyond common controller features, the PIC24F features multiple high
speed Universal Asynchronous Receiver and Transmitter (UART) peripherals and a multi-
channel Direct Memory Access (DMA) controller to realize fast cell-2-cell communications,
an Analog to Digital Converter (ADC) with a Charge Time Measurment Unit (CTMU) to
realize capacitive sensing functionality and an internal Phase Locked Loop (PLL) with an em-
bedded Resistor/Capacitor (RC) oscillator to generate a local high speed clock. Future designs
can use a specialized ASIC for this purpose.

ESD/EMI Protection: Protection against Electrostatic Discharges (ESD) and Electromag-
netic Interferences (EMI) are important topics for an artificial skin. Residing on a large surface
area, artificial skin is especially prone to emission and immission, e.g. due to antenna effects
or direct contact. Human (or robots) for example, accumulate charges when walking or mov-
ing due to tribocharging or electrostatic induction, leading to voltage differences as high as
25 kV. Electromagnetic compatibility (EMC) is not only a regulatory demand for applications
in industrial and medical environments, it is also a core interest to reduce the Signal to Noise
Ratio (SNR) and reliability of a sensor system. ESD incidents can not only destroy sensors
or skin cells, but also change sensor behavior unnoticed. If not contained locally, ESD will
also spread in a skin network and finally affect whole areas. In our skin cells, we implemented
some preliminary measures against ESD. All components feature their local ESD protection
circuits, providing a baseline of protection. Large areas of the surface of the skin cell are
directly connected to a highly conductive ground plane beneath the surface. Distributed vias
and the elevated grounded force sensor caps provide a direct connection to this ground plane,
acting like lightning rods. Several distributed, low-inductive ceramic capacitors bypass and
consume some of the transient voltage energy. The remaining energy is spread via the power
network to neighboring cells and/or interfaces. Future designs will incorporate specialized
ESD elements to further protect each cell. EMI take pathways that emit interferences, also
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for imission. In the case of artificial skin on robots there is a magnitude of potential imis-
sion sources – e.g. computers, motors, control boards and wireless transceivers. For example
close to the joints, artificial skin is exposed to alternating magnetic fields from electric actu-
ators, supply noise and RF noise from other sensor and communication systems. In our skin
cells, we implemented some preliminary local measure against EMI. Every skin cell has a
large ground plane providing a low-impedance ground connection. This also minimizes an-
tenna effects for the return path of signal lines. The analog capacitive force sensor is shielded
with ground from both sides. Power noise is rejected with a high attenuation by the voltage
regulation circuit. The digital and analog power rails are separated in order to gain a higher
SNR with sensors. The local analog to digital conversion and sensor handling allow to use
very short tracks, minimizing the chance to catch interference. This also applies to the short
distance of the cell-2-cell communication.

3.2.2.2. Multi-modal Sensors

Normal ForceApproach/Contact

Motion/Vibration Temperature

kg

FIGURE 3.13. The figure shows the multi-modal sensors of the skin cell version 2.0.

The skin cell is a carrier platform for multiple sensor modalities (see Table 3.3 and Fig. 3.13).
New sensor modalities can be easily integrated with future versions. The current set of four
modalities is designed to meet human skin sensation, as well as provide useful extra function-
ality for robotic skins. The latest skin cell provides: 1) a proximity sensor – to detect light
touch and approaching objects; 2) a 3-axis accelerometer – to sense indirect impacts, motion
and vibration; 3) three normal force cells – to measure force along the surface normal; and 4)
a temperature sensor – to measure the absolute skin temperature and changes (see Fig. 3.13).
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sensor VCNL4010 BMA250 LM71 custom

modality pre-touch acceleration temperature normal force

size in mm 4.0x4.0x0.8 2.0x2.0x1.0 3.0x3.0x1.0 6.0x6.0x0.1

resolution 16 bit 10 bit 14 bit > 8bit

non-linear 3.91 mg 0.03 ◦C non-linear

range 1-200 mm ± 2/8/16 g -40 to 150 ◦C > 0-3 N

bandwidth 0-250 Hz 0-1 kHz 0-7 Hz 0-33 kHz

per cell 1 1 1 3

TABLE 3.3. The table shows the multi-modal sensor specifications of skin cell version 2.0.

Proximity Sensor: Human skin senses the lightest touch, through mechano-receptors at the
hair roots or in the epidermal layer of the skin. In our system, we emulate this light touch
sensation with a proximity sensor. A sense for approaching contacts can also enhance safety
and interaction capabilities of robots, enabling them to react prior to contact. Various methods
are available on the market e.g. optical, capacitive, ultrasonic or inductive. We decided to use
a reflective optical sensor, since there are small and low-cost solutions available. Reflective
optical sensors measure the amount of light reflected from an object, which is dependent on
the type of reflection (specular/diffuse), the reflectivity of the surface, the shape of the surface
and naturally the distance of the object. Theoretically, this type of sensor comes to a limit
with ideal transparent objects or black bodies. Practically, most visually transparent objects
are not transparent in the infrared spectrum and ideal black bodies do not exist. Due to the
measurement of the amount of reflected light, the returned value is not an accurate distance
measure, but an indicator for the presence of an object. The sensor also does not distinguish
where the object is in its angle of view. We started with an analog GP2S60 from SHARP with
version 1.1, but switched over to the digital VCNL4010 from VISHAY in version 2.0 (refer to
Sec. A.4). The VCNL4010 has dedicated hardware to modulate the emitter and demodulate
its own signal from the photo-receptor. This way, it distinguishes between its own and other
sources of light, does not saturate with sunlight and cuts down power consumption. Many skin
cells can be operated close to or opposing each other without interference. In order to make
the skin cell water & dust proof, an IR transparent window can be set on top of the sensor.
Currently, we only provide an aperture for the sensor to avoid double reflections.
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Accelerometer: Impact sensation, slip detection and contact roughness can be inferred from
vibration signals (refer to Chapter 2). We opted to use an accelerometer to emulate the human
vibration cue, as it provides additional motion sensing functionality. This motion sensing
functionality is a key sense for our self-organizing features introduced in Chapter 4 and 5.
The utilized Bosch BMA250 is a cost effective, small size and low power digital tri-axial
accelerometer with an additional temperature sensor for temperature compensation. We utilize
some of the built in monitoring functionalities, e.g. the tap detection to detect impacts.

Temperature Sensor: Temperature sensing plays an important part in the human tactile
system, potentially because human features a very narrow biochemical operating range. Since
robots have a much wider range, temperature sensing might not appear as important. How-
ever, this is a wrong assumption, since all mechano-receptors are affected by temperature and
would such differ in performance due to the large variation of temperature on a robot surface.
For instance, we have measured temperature differences up to 70 Kelvin on a KUKA light
weight robotic arm. Due to the common temperature difference between skin and the envi-
ronment, a sense of temperature can also be used to measure thermal transfers, e.g. wind-chill
(see Sec. 6.4). Although the BMA250 accelerometer provides a temperature sensor, the low
resolution of 0.5 degrees Celsius is far from human performance of 0.1 degrees [Dahiya et al.,
2010]. We therefore added a high resolution (0.03 ◦C) temperature sensor, the LM71 from
National. In order to be sensitive, the thermal coupling between the skin surface and the tem-
perature sensor is very important. We placed a comparably high/big sensor close to the surface
and maximized the contact surface between the encapsulating elastomer and the sensor lead
contacts, connected to its sensitive die.

Force Sensor: In completion to detecting touch (CellulARSkinTM detects touch with the
proximity sensor) an artificial skin should be able to quantify applied forces. Since miniature
and low-cost force sensors have not been available on the market, we developed a custom
normal force sensor. This normal force sensor measures the quantity of force applied along
the surface normal in its receptive field. Due to its discrete nature, it can be integrated side-
by-side with other sensor modalities. The receptive field of the discrete sensor is widened by
specifically designed properties of the encapsulating skin material. Instead of common Force
Sensing Rubber (FSR) materials, we utilize a metallic spring design. With this design, we have
been able to achieve outstanding sensor behavior regarding dynamics, hysteresis, temperature
effects and robustness. Please refer to Sec. 3.3 for further information.
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3.2.2.3. Skin Cell Software

Load     App
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Full Network 
Exploration

Normal Operation

Launch
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Min Network 
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Interrupt
Communication 

Routines

Acquisition

Filtering

Packeting

Wait/Sleep Oversample

Sensor 
Initialization

FIGURE 3.14. The figure shows the main parts and states of the skin cell software.

Software dictates the skin cell behavior. The software is divided into a boot-loader and an
application code (see Fig. 3.14). With the boot-loader, new application code is simultaneously
uploaded to all skin cells in the network. The boot-loader only provides a minimalistic network
exploration functionality to be able to broadcast new code packets to the network. With a
new application code, additional functionality can be implemented at the skin cell level, e.g.
new filter functions or routing algorithms. The current application code is separated into a
sensor initialization, a full network exploration and a normal operation phase. The current
normal operation phase splits into a cyclic timer driven sensor acquisition and an event driven
communication part.

Sensor Acquisition: The sensor acquisition is driven by two timers. One timer runs at a
high oversampling rate and acquires the analog sensor signals for enhanced digital filtering.
The other timer runs at the packet generation rate and acquires the remaining digital sensor
signals. All sensor signals are then filtered and (e.g. offset-) compensated with values stored in
local memory. In an operation mode where all sensor signals are forwarded to the processing
system, the sensor results are put in a packet and sent to the transmission stack of the skin
cell. We utilize controller internal timers to be bounded only by one critical component –
the controller. For digital sensors, which are running on their own asynchronous clock, this
approach may lead to an increased latency between conversion and transmission. If a sensor
does not reply, safe default values are filled into the packet. Events from digital sensors are
collected over one timer interval.
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Network Exploration: For the skin cell it is only important to know: 1) the master port it is
supposed to forward packets to and the slave ports to broadcast control messages; 2) its own
ID to react on ID specific commands and assemble its own sensor data packets; 3) inactive
ports to turn them off; and 4) all neighbors to assemble a neighbor information packet. For a
full explanation of the network exploration method, please refer to Sec. 3.2.1.7.

RX3

TX3RX4

TX4

TX1

RX1TX2

RX2

T

Forwarding
Scheduler

master port

Broadcasting/
CMD Decoding

slave port 3

slave port 2 slave port 1

Buffer 2
Buffer 4

Buffer 1
Buffer 3

Own Packages

R
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FIGURE 3.15. The figure shows a simplified data flow diagram for communication packets in
each skin cell. Ring buffers receive the packets and (e.g. round robin) schedulers handle
the forwarding, broadcasting and/or decoding.

Communication: The communication in the artificial skin is bidirectional – the central pro-
cessor sends messages to the skin cells and vice versa. Fig. 3.16 shows an example of a 20
byte data packet. Each packet contains a clear end of frame (EoF) and start of frame (SoF)
delimiter to be able to find packets in an asynchronous data stream. SoF and EoF bytes are
marked with a logical one at the most significant bit (MSB), while data bytes carry a MSB set
to logical zero. This fixed pattern serves to quickly identify transmission errors, as well as to
identify SoFs and EoFs for re-synchronization, with only a 10% overhead. The type of packet
is embedded as a command in the SoF. ID specific packets, like sensor packets, contain an ID
of either the recipient or the origin. Skin cells receive packets with the UART peripherals and
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BIT<7> BIT<6> BIT<5> BIT<4> BIT<3> BIT<2> BIT<1> BIT<0>
BYTE<0>
BYTE<1>
BYTE<2>
BYTE<3>
BYTE<4>
BYTE<5>
BYTE<6>
BYTE<7>
BYTE<8>
BYTE<9>
BYTE<10>
BYTE<11>
BYTE<12>
BYTE<13>
BYTE<14>
BYTE<15>
BYTE<16>
BYTE<17>
BYTE<18>
BYTE<19>

1 1 CMD<5> CMD<4> CMD<3> CMD<2> CMD<1> CMD<0>
0 ID<13> ID<12> ID<11> ID<10> ID<9> ID<8> ID<7>
0 ID<6> ID<5> ID<4> ID<3> ID<2> ID<1> ID<0>
0 PROX<15> PROX<14> PROX<13> PROX<12> PROX<11> PROX<10> PROX<9>
0 PROX<8> PROX<7> PROX<6> PROX<5> PROX<4> PROX<3> PROX<2>
0 AccX<9> AccX<8> AccX<7> AccX<6> AccX<5> AccX<4> AccX<3>
0 AccY<9> AccY<8> AccY<7> AccY<6> AccY<5> AccY<4> AccY<3>
0 AccZ<9> AccZ<8> AccZ<7> AccZ<6> AccZ<5> AccZ<4> AccZ<3>
0 AccTmp<7> AccTmp<6> AccTmp<5> AccTmp<4> AccX<2> AccX<1> AccX<0>
0 AccTmp<3> AccTmp<2> AccTmp<1> AccTmp<0> AccY<2> AccY<1> AccY<0>
0 free free PROX<1> PROX<0> AccZ<2> AccZ<1> AccZ<0>
0 FCELL1<11> FCELL1<10> FCELL1<9> FCELL1<8> FCELL1<7> FCELL1<6> FCELL1<5>
0 free free FCELL1<4> FCELL1<3> FCELL1<2> FCELL1<1> FCELL1<0>
0 FCELL2<11> FCELL2<10> FCELL2<9> FCELL2<8> FCELL2<7> FCELL2<6> FCELL2<5>
0 free free FCELL2<4> FCELL2<3> FCELL2<2> FCELL2<1> FCELL2<0>
0 FCELL3<11> FCELL3<10> FCELL3<9> FCELL3<8> FCELL3<7> FCELL3<6> FCELL3<5>
0 free free FCELL3<4> FCELL3<3> FCELL3<2> FCELL3<1> FCELL3<0>
0 TEMP<13> TEMP<12> TEMP<11> TEMP<10> TEMP<9> TEMP<8> TEMP<7>
0 TEMP<6> TEMP<5> TEMP<4> TEMP<3> TEMP<2> TEMP<1> TEMP<0>
1 0 1 0 1 0 1 0

FIGURE 3.16. The figure shows an exemplary skin cell data packet containing raw sensor data,
packet delimiters, an originating ID and a command (here 0x3F for raw data).

load them with DMA channels into local buffers (see Fig. 3.15). Once a packet is completely
received, a fast interrupt routine increments the ring buffer pointer for ongoing reception and
decides what to do with the received packet. Currently, packets received at the slave ports are
immediately entering a round robin scheduler for transmission on the master port. Packets
received on the master port, are decoded and forwarded once to every slave port. The decoded
packets are analyzed for commands from the central controller. Currently, we feature com-
mands to change the local LED color, memorize offsets of the proximity and force sensors,
memorize the own ID or change the update rate.
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3.3. Normal Force Sensor

FIGURE 3.17. The figure shows the custom made force sensors on skin cell version 2.0.

In this section, we introduce our custom made discrete force sensor2 (see Fig. 3.17). When-
ever possible, we made use of sensors from the global electronics market, in order to speed up
our development process and to lower the production costs (refer to Sec. 3.2.2.2). Since we
were not able to find a commercial force sensor that fit all of our requirements (e.g. low-cost,
robust, easy to implement, high dynamic range, low hysteresis, low temperature dependency,
little analog electronics), we decided to develop our own force sensor. Our force sensor mea-
sures the force-induced deformation of a circular cavity, etched into a thin copper beryllium
(CuBe2) plate, by means of capacitance (see Fig. 3.19). These caps are placed on any quasi-
plane, quasi-rigid piece of a substrate material, e.g. a flex-rigid or rigid PCB (see Fig. 3.18).
In comparison to rubber based sensors, this mechanism has significantly better characteristics,
due to the behavior of the metal spring. In comparison to state-of-the-art MEMS sensors, our
force sensor is easy to manufacture and low-cost. On excessive loads, the cavity settles into
a well defined overload protection state. We also invented a self-adjusting design, in order
to minimize the production and thus behavioral differences between a multitude of skin cells
[Mittendorfer, 2013]. Substrate and cap are joined in a standard pick&place and reflow solder-
ing process for automated mass production. Our design is scalable to support different sizes
and/or force ranges (refer to Sec. A.6). Currently, we combined three force sensors on one of

2The work in this section has been published in [Mittendorfer and Cheng, 2012b] and [Mittendorfer, 2013].
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our skin cells (see Fig. 3.17). In order to support force sensing, we enhanced the elastomer
cover on top of every skin cell with a harder micro-structure (see Fig. 3.21 and 3.22). This
structure collects forces acting on the surface, focuses the excitation on the three discrete force
sensors and serves as a protection layer for the embedded electronics.

3.3.1. Mechatronic Design

3.3.1.1. Parts

Level Pads

Solder Pads

6.
90

 m
m

6.90 mm

4.00 mm

Wire Channel

Etched Cavity

CuBe2 Plate

5.00 mm

0.10 mm

0.05 mm

Signal Wire

Signal Plate

(Substrate) (Cap)

6.00 mm

6.00 mm

FIGURE 3.18. The figure shows the main parts of the custom made force sensor: the substrate
and the cap. Placing the cap on the substrate builds a circular cavity which deforms on
applied normal forces.

The discrete force sensor consists of two main components (see Fig. 3.18): 1) a conductive,
thin and deformable cap with a micro-structured cavity; 2) a plane and rigid substrate with
a conductive plate. The cap is made from a (tplate = 100µm) thick CW101C-R1060 copper
beryllium (CuBe2) sheet, in a fast and low-cost lithographic etching process. CuBe2 has
excellent spring properties, high corrosion resistance, low creep and good conductivity. It
is commonly used for spring contacts or high precision instruments. CuBe2 can be joined
with common copper pads on a PCB in a common electronic soldering process. We are able
to utilize an initially hardened alloy which does not change characteristics during the solder
process, due to the low stress exerted on the material during the etching process. The substrate
consists of an ordinary (tsubs = 0.85mm) thick FR4 PCB which, compared to the cap, is quasi-
plane and -rigid. The actual capacitive sensor element builds from two conductive plates - a
circular pad on the PCB and the overlaying part of the metal cap (see Fig. 3.19).
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FIGURE 3.19. The figure shows an axial cut through a simplified, rotatory symmetric force
sensor model.

3.3.1.2. Assembly

Our goal was to integrate the novel force cell into the automated fabrication process of the
skin cells - utilizing pick & place machines and a reflow soldering process. Therefore, we
invented3 a special design. In this form, the cap self-aligns relative to the substrate, during
the soldering step. This is important as the mechanical pick & place joining process is much
less accurate than the chemical/lithographic manufacturing processes for the substrate and the
cap. The self-alignment is based on capillary effects, acting in between the cap and the solder
pads through the liquid solder. This serves to reduce two sources of uncertainty: 1) to align
the cavity and the wire channel horizontally above the signal plate and the signal wire; 2) to
minimize the vertical offset of the capacitor plate. For the second purpose, we added level
pads to minimize lifting effects by the liquid solder (see Fig. 3.18). In comparison to the
uncovered solder pads, the signal plate and the level pads are covered with a thin solder resist
layer (tstop≈ 30µm) on top of the copper. This thin isolation layer is important to prevent short
circuits with the capacitive sensor. Otherwise both conductors would directly touch each other
in case of a high load condition. The thickness of the solder resist layer ideally also defines the
thickness of the solder joints in between the CuBe2 cap and the solder pads (see Fig. 3.19).
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FIGURE 3.20. The figure shows the electronic components of PIC24F that are utilized to read
the custom made force sensor: An analog multiplexer, a charge time measurement unit, a
timer and an analog to digital converter.

3.3.1.3. Electronics

In order to reduce components, we only use electronics built into the micro-controller. The
utilized PIC24F features a capacitive touch sensing module, called Charge Time Measurement
Unit (CTMU). The CTMU provides a programmable and switchable constant current source,
directly linked to a timer and an Analog to Digital Converter (ADC) (see Fig. 3.20). The
CTMU allows to generate a constant current I, the timer to accurately gate the charge time T

and the ADC to measure the final voltage value U . The CTMU can be multiplexed to any of
the 16 available analog inputs and measure the capacitance of attached capacitors. Given that
the capacitor has been completely discharged before the charging cycle, the total capacitance
can be directly calculated:

Ctotal =
Q
U

=
I ·T
U

(3.1)

We use the maximum current Imax = 55µA, allowing the highest update rates and giving to
the parasitic resistive effects least time to interfere. The maximum voltage Umax = 3.0V is
limited by the supply voltage and the ADC range. The maximum voltage is measured in
case of an unloaded sensor. Once the capacitor plates are forced together, the capacitance
increases. Keeping the charge Q constant, the voltage U decreases. A range optimization
algorithm can maximize the charging time in the unloaded case - generating custom values
Tcust for each force sensor. Here, we utilize a heuristic default time Tdef = 2.5µs, for both
charging and discharging times, in order to easily compare raw signals from different cells.
The initial capacitance of the force sensor in parallel to all parasitic capacitors, such as of the

3European Patent EP 12 172 602.0 [Mittendorfer, 2013]
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pin or ADC, thus sum up to a value of Cinit = 46pF. With a sample rate of 200 kHz at 12
bit resolution, one analog to digital conversion approximately takes TADC ≈ 5µs. A complete
force measurement approximately takes Tforce≈ TADC+2 ·Tdef≈ 10µs. A skin cell can sample
all three force sensors with an update rate of fmax = 33kHz. We currently use a sample
rate of fsamp = 2.5kHz, and filter and decimate the signals to a lower update rate of fudr =

250Hz. The digital filter in combination with the oversampling rate serves two purposes: I)
as a low-pass filter to obey Nyquist sampling theorem; II) to filter uncorrelated noise and to
increase the signal to noise ratio. For us, filtering in the digital domain is more effective.
We save analog components, reduce costs and parasitic effects, are able to re-program the
filter and achieve steeper filter curves. Filtering in closed-loop control systems is troublesome
due to the inherent phase shifts. Nevertheless, utilizing unfiltered data, unwanted aliasing
and spikes can occur. In consequence, we decided to utilize a non-linear median filter on the
last N = 10 samples. Median filters do not degrade edges, but efficiently reduce outliers. In
our case with N = 10 and a following decimation by the same factor, the worst case phase
shift for a step response is half of the update rate 1

2· fudr
= 2ms. Computation wise, the median

calculation4 takes Tmed = 65µs for all three cells on the PIC24F. Since sampling is handled by a
timer triggered, non-interrupt routine, small amounts of sample rate jitter occur. A reasonable
amount of sample rate jitter is an effective measure against harmonic noise (refer to [Davison,
2010]).

3.3.1.4. Composite Skin

16.00 mm

(Front Side) (Back Side)

Force Concentrator

Force Collector

Component Molds

FIGURE 3.21. The figure shows the micro-structured top layer of the elastomer skin cover. The
cover is made of soft TangoPlusBlack and hard TangoGrey material.

4kth_smallest(array[],10,5) by N. Wirth, implemented by N. Devillard
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Composite skin is the material encapsulating the skin cells. The top layer (see Fig. 3.21)
consists of two different materials, a soft TangoPlus Black/Transparent (TPT) rubber like and
a hard Vero White/Grey (VW) ABS plastic like material (see Fig. 3.22). A hard VW layer
of tdist = 500µm thickness, tover = 200µm below the TPT epidermal skin surface, acts as a
collector of distributed pressure. The accumulated force is then concentrated by three pillars
on the three available force sensors per skin cell. Three pillars are utilized to define a mechani-
cally stable contact between the force collector and the sensors on the PCB. The pillars extend
through the TPT and about ttpe = 100µm on top of the flat inner surface. All other sensor

1.85 mm

(Inner Side)

Component Cavity

Force Concentrator Force Collector

Elastomer Overlay (Outer Side)

2.50 mm

500 um
100 um

500 um
200 um

FIGURE 3.22. The figure shows a vertical cut through the top layer of the elastomer skin cover,
at the center of a force collector pillar.

modalities have cutouts in the VW material that are filled with TPT to provide coupling to the
skin and to reduce influence with the force cells. The measures given in Fig. 3.21 are dictated
by the size of the off-the-shelf components and the minimal safe structure size (200 µm) with
the 3D printer. They are also subject to ongoing improvements and changes in the production
process (refer to Sec. A.5).

3.3.2. Evaluation

3.3.2.1. Test Stand

In order to evaluate the dynamic behavior of our force sensor, we designed a custom low-
cost test stand. The core of our test stand (see Fig. 3.23) is a VM2836-180 linear Voice Coil
Motor (VCM), converting current to force. A LMD18245 current driver converts arbitrary
voltage signals from a signal generator, to a regulated current through the VCM. Our test
stand currently generates forces between 0.12− 3.12N, constrained by the mass of the tip of
12 g and the VCM maximum current. We directly measure applied forces with a FSG-15N1A
sensor at the end of the linear pusher and also utilize its flat, 5 mm diameter tip to press on
the skin. The test stand can be extended with a TECB-1 peltier module to generate higher or
lower skin cell temperatures.
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FIGURE 3.23. The figure shows the custom made dynamic force test stand.

3.3.2.2. Repetitive Signals

Fig. 3.24 shows the response towards a burst of sinusoidal or rectangular force pattern, directly
applied on sensor 3. Offsets in between the three force sensors on the same skin cell are due to
unavoidable differences in the production process, differences in signal wire length and stray
capacitance. Permanent offsets are compensated in an automated calibration step. We were
not able to discriminate cross coupling effects from the noise floor. In order to evaluate the
sensor hysteresis, we plotted an overlay of the falling and rising flanks (see Fig. 3.25). No
significant hysteresis was detected.

3.3.2.3. Step Response

Fig. 3.26 shows the response towards a rising and falling step with an amplitude of 3 N
directly on force sensor 3 on a skin cell. From this data we have calculated mean values µ and
standard deviations σ . In case of the excited sensor, we have picked the stable region with a
window length of Nwin = 300 samples. For sensor 1 and 2 we took all (Nall = 3995) samples
into consideration. We then performed a Fourier analysis and plotted histograms for all mean
free noise signals. Besides Gaussian white noise, there was no indication of spectral noise
- especially harmonics of the micro-controller system clock or 50 Hz power net. We then
calculated the system span δ , comparing the mean values in the unloaded µu and maximally
loaded (test stand limit) µp state:

δ = |µu−µp| ≈ 312 (3.2)
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FIGURE 3.24. The figure shows the response of the force sensors on a skin cell on a burst of
4 sinusoidal or rectangular waves with a force of 0-3.12 N and a 2s period. Arrows are
indicating the placement and removal of the force test stand tip with a weight of 12 gram.

The signal to noise ratio (SNR) is be calculated [Davison, 2010] as:

SNR =
δ

σu
≈ 315 or SNRdB ≈ 20 · log(

δ

σu
)≈ 49.97dB (3.3)
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FIGURE 3.25. The figure shows an overlay plot of the sinusoidal signal flanks from Fig. 3.24
in order to evaluate the hysteresis of the force sensor.
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FIGURE 3.26. The figure shows the force sensor step response on a single pulse with a force
of 0-3 N and a 6s period. Arrows indicate the placement and removal of the force test stand
tip with a weight of 12 gram and regions of special interest.

Conservatively comparing the result to the dynamic range (random signal) or signal to noise
ratio (sinusoidal signal) of an analog to digital converter, the sensor resolution is 8 bit. There
is no detectable overshoot or ringing following a step. The sensor signal reaches 70% of the
full step span δ within 1 sample period of Ts,70 = 4ms, 90% after Ts,90 = 8ms and 95% after
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Ts,95 = 36ms. The fast settling time is due to the specific design of the force sensor and the
local median filter. A certain amount of creep and relaxation is inherently incorporated by the
mixed composite skin, acting as a viscoelastic material. The difference between σu and σp can
be explained by the vibrations originating from the voice coil motor (audible regulation noise).
The difference between σu and σr is due to the slight long term relaxation of the difference in
between µu and µr.

3.3.2.4. Curve Fitting
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FIGURE 3.27. The figure shows a curve fitting for the input/output relation of the force sensor
on applied forces.

Fig. 3.27 shows a functional regression model to compute the non-linear mapping in be-
tween readings of a force sensor and the originating force. A superposition of two sigmoid
functions fits, as their properties match the sensor’s behavior (also refer to Sec. A.6). Due
to the two-split behavior (normal/overload), two sigmoid functions are necessary. Given this
differentiable function, it is also possible to express the nonlinear sensitivity S(F) = dDigits(F)

dF ,
which reaches its absolute maximum of −290Digits

N at Fsw = 0.92N. At this force the sensor
switches in between normal and overload mode. The switch occurs, when the CuBe2 cap
first touches the incompressible solder resist layer of the signal plate (see Fig. 3.19), causing
increasing resistance to any further deformation on an increasing force.

58



SECTION 3.3 Normal Force Sensor

3.3.2.5. Chirp
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FIGURE 3.28. The figure shows the frequency response of one force sensor on a linear sinu-
soidal chirp from 1 Hz to 250 Hz, with a force of 0.12-3.12 N and a period of 20s.

Fig. 3.28 shows the response towards a linear, sinusoidal chirp between 1 and 250 Hz with
a force of 0.12 to 3.12 N directly on one of the force sensors. The visible decay in amplitude is
a superposition of the mechanical characteristics of the skin and the non-linear median filter.
One has to keep in mind that median filters truncate sinusoidal waveforms dependent on their
frequency, whereas they have less distortion effects on steps. It is also visible that the sensor
almost reaches full scale values for all frequencies, but does not return to quiescent state for
higher frequencies. This shows that the recovery time of the given system, including the mass
of the force test stand tip, or any other object applying varying forces, is higher than the
reaction time. The system settles close to full scale deflection, instead of mean or quiescent
state. Such a behavior is advantageous for an artificial skin as it detects applied peak forces
that can cause harm to objects under manipulation or the robot itself (please see 3.3.2.8).
Outliers in the data are due to imperfections of the test stand, e.g. the excitation of harmonics
in the voice coil motor linear mechanics.
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FIGURE 3.29. The figure shows the receptive field of the force sensors on a skin cell. A rect-
angular excitation, with a force between 0.12-3.12 N and a period of 2s, has been applied
while shifting the excitation along the indicated direction during low force phases.

3.3.2.6. Receptive Field

Fig. 3.29 shows the measured receptive field of force sensor 3 on a skin cell. The receptive
field was sampled, scanning with the tip of the force test stand along the indicated line over
the surface of the skin cell. We applied a rectangular excitation of 0.12-3.12 N and shifted
the position of the tip by one millimeter during each low force phase, making the field slightly
asymmetric. Ideally the receptive fields of the three cells overlap such that no insensitive areas
remain and every stimulus is sufficiently received by at least one receptor cell. Comparing
the expansion of the receptive fields (see Fig. 3.29 red/green/blue circles), of approximately
12 mm, with the distance of the sensors, it is clear that there are still insensitive areas with
the current design and object size (test stand tip). This puts a certain limit to the size and/or
curvature radius of objects that can be detected. The final goal of completely overlapping
receptive fields can be reached by increasing the thickness of the skin, stiffening the force
distributor or by a denser set of smaller skin cells.

3.3.2.7. Temperature Dependency

Fig. 3.30 shows the deviation in response to the same force stimulus at different temperatures.
In order to avoid bounding constraints, we reduced the CTMU charge time to Tred = 1.875µs.
Thermal energy was sinked and sourced on the back side of the skin and measured with the
LM71 temperature sensor in the upper layer. Such a setup produces temperature gradients,
which is much more realistic than a homogeneous distribution. Condensation at low temper-
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FIGURE 3.30. The figure shows the temperature dependency of the force sensor. We therefore
applied a sinusoidal force between 0.12-3.12 N and a period of 2s, at different temperatures.

atures was prevented with a thin foil on top of the skin cell. The plot contains all possible
effects, from the electronics, over thermal stress in the cap and PCB material, to the changing
behavior of the composite skin. Significant offsets only occur with low temperatures, which
can be explained with the change of elastomer stiffness at low temperatures. In this case,
damping effects can no longer be neglected and relaxation offsets occur. The amplitude shift
can be approximated (0.98 r-square goodness) with a linear model of−1.9 1

◦C gain. One expla-
nation is the thermal increase of capacitive area, explaining lower ADC readings with higher
temperatures.

3.3.2.8. Robustness

Fig. 3.31 shows the reaction of a skin cell towards excessive loads and impacts generated
by a human walking over, stomping or hammering on a skin cell lying on the floor. Due to
the high stress, the sensor shows slightly more, but reversible relaxation effects. Permanent
offsets were not experienced. Deviations in the quiescent state between Fig. 3.31 and e.g. Fig.
3.24 are due to the utilization of a different skin cell. The increased system span δ ≈ 1000
also indicates the existence of a third, ultra-high load mode, with a completely collapsed force
cell.
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FIGURE 3.31. The figure shows recordings from one skin cell under excessive loads (80 kg
human walking over and stomping on it) and impacts (hammering at different locations).
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SECTION 3.4 Summary

3.4. Summary

In this chapter, we introduced a modular artificial skin system, built from multi-modal skin
cells. We showed that such a skin can not only be built with standard electronics, but has a lot
of potential with future technologies. We discussed the selection of the optimal skin cell shape,
the influence of multiple layers with an artificial skin and how an artificial skin made from a
flex-rigid solution is able to conform to arbitrary 3D surfaces. We summarized the benefits of a
digital cell-2-cell communication and introduced a self-organizing sensor network exploration
method that is able to deal with varying topologies and partial failure. We then introduced a
prototype skin cell to realize our novel concepts and a set of sensor modalities to emulate
human and to enhance robot tactile sensation. We gave an overview of the required skin cell
features, such as a local controller for communication and signal processing, and showed the
essential skin cell behavior. Finally, we introduced our novel normal force sensor that is cost-
effective, easy to manufacture and shows excellent sensing characteristics and robustness.
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CHAPTER 4

Body Schema for Spatial Representation

Something pretty ... that’s just the surface.

(Jeanne Moreau)

In this chapter, we first introduce a method to locally reconstruct the 3D shape of patches
of artificial skin, e.g. body parts of the robot. We then provide a method to visually combine
multiple of those locally reconstructed surfaces into one homogeneous body representation.
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4.1. Introduction

3 Skin PatchesOutliers

Visually Combined Local 3D Reconstructions
FIGURE 4.1. The figure shows a multi-body, 3D surface reconstruction with the robot TOM.

Three skin patches, with 260 skin cells in total, have been individually 3D reconstructed
and visually combined into a homogeneous body representation by our algorithms.

The 3D surface of our body shapes our tactile appearance, as every close-encounter must
take place on it. Therefore, knowing the volumetric dimension of the own body, as well
as the relative location and orientation of sensors on it, is important for many subsequent
algorithms. For example, tactile patterns can only be extracted if the spatial relationship of
sensors are known. The knowledge of the volumetric dimension of the own body, allows to
plan motions without self- or environment collisions. It is consequently necessary to have
a concise spatial representation of the 3D body surface and all sensors on it. It is not only
important to know the position but also the orientation of every sensor, as e.g. normal and shear
force sensors only differ in the sensing direction. Manually providing this 6D information
for a high number of skin cells is cumbersome and erroneous. Robots should utilize their
own sensors and actuators to build their own body models. In this chapter, we specifically
introduce: 1) an algorithm (refer to Sec. 4.2) to relatively localize (position/orientation) all
skin cells within a skin patch; 2) an algorithm (refer to Sec. 4.3) to estimate the transformations
between multiple skin patches and to combine them in a homogeneous body representation. A
skin patch is defined a closely connected set of skin cells on the same body part (see Fig. 4.15).
The obtained result is the automatic calibration of the robot’s volumetric surface model for
areas equipped with artificial skin (see Fig. 4.1). The second algorithm also fuses visual and
tactile coordinates, which has a strong biological background (refer to Sec. 2.1.2).
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4.2. 3D Surface Reconstruction of Skin Patches

FIGURE 4.2. The figure shows the 3D reconstruction of a half-tube-like test shape equipped
with 16 skin cells. The figure shows the real device, its 3D reconstruction in OpenGl and
the transformation/network graph with Graphviz. The automatically chosen origin of the
skin patch is highlighted in blue.

In this section, we present a new approach to reconstruct the 3D surface of robotic body
parts equipped with artificial skin (please see Fig. 4.2) 1. We achieve this by fusing static
knowledge on the shape, size and tessellation capabilities of the skin cells, with dynamic
knowledge about its neighbors and measurements from its orientation sensor – a 3-axis ac-
celerometer. Our approach makes it possible to reconstruct the 3D surface of robotic body
parts equipped with a patch of skin in a very short time, providing the location and orientation
of every skin cell in a patch relative to an automatically chosen origin on the skin patch. This
approach has been motivated by a paper from [Hoshi and Shinoda, 2007]. Our approach does
not suffer from singularities in the rotation estimation. We sample a complementary set of
gravity vectors, actively or passively driving the robotic body parts into a variable number of
different poses, while the skin remains undeformed. Our approach explicitly makes use of
the networking capabilities of our artificial skin, able to explore the connectivity between the
nearest neighbors. Shifting the problem to graph theory and applying local, instead of global
optimization the system can quickly adapt to changes, e.g. delete non-direct neighbor rela-

1Work in this section has been published in [Mittendorfer and Cheng, 2012a].

68



SECTION 4.2 3D Surface Reconstruction of Skin Patches

tions in the topological map when body structure information becomes available. Utilizing
no external sensors, and only little robot independent a-priori knowledge, our method can be
quickly transferred between robots. This touch-less skin calibration approach saves time and
enables fast initial or re-calibration.

4.2.1. Formulation as Homogeneous Transformations

Our aim is to efficiently estimate the relative position and orientation of skin cells, distributed
on the surface of robotic body parts, utilizing static a-priori and dynamically generated on-line
knowledge.

Link Point

Pose Gravity Vectors Port Vectors Cell Origins

Gap VectorsGap Rotation Axes

(c)urrent

(n)ext

FIGURE 4.3. The figure shows the model of the elastomer gap in between two skin cells

As our artificial skin builds from an instantiation of the same thin rigid skin cell, homo-
geneous rigid body transformations, with a rotation (cRn) and a translation (ctttn), adequately
describe the connection in between two neighboring skin cells n and c (see Fig. 4.3). In ap-
proximation, no scaling, shearing, reflection or projection takes place:

cTn =

cRn
ctttn

0 1

 (4.1)

We further assume that the link in between two skin cells n and c, directly connected through
port lc and ln, can be approximated by setting the link point of the extended port vectors c ppplc,n

and n pppln,c equal, in the current (c) cell coordinates:

cTn · n pppln,c =
c ppplc,n (4.2)
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This assumption is based on specific properties of our artificial skin: 1) artificial skin cells
do not overlap; 2) a dense tessellation of thin hexagonal shaped skin cells on a surface, con-
strains the local placement and alignment of each cell; 3) ports have to be closely placed and
initially aligned, to be directly connected; 4) the average gap size for a tessellation is known
a-priori; 5) the translational component of a relatively small elastomer gap in between thin,
rigid hexagonal cells can be neglected; 6) the point of rotation of the elastomer gap is approx-
imately in its center. Based on these assumptions, we neglect the change of the small gap
vectors (see Fig. 4.3) and add half of the known gap size directly to each port vector - form-
ing the four static extended port vectors (u ppp1, ...,

u ppp4), defined in skin cell (u) coordinates.
Combining Equation (4.1) and (4.2) leads to:

ctttn =
c ppplc,n− cRn · n pppln,c (4.3)

This shows that the relative translation (ctttn) can be calculated from the relative rotation
(cRn) and the knowledge of connected skin cells (n and c) and ports (ln and lc), replacing the
port vectors variables (c ppplc,n and n pppln,c) with the connected port vectors (u ppp1, ...,

u ppp4). We
utilize the network exploration to find directly connected ports of skin cells and measurements
of the skin cell gravity vectors to estimate the relative rotation. When all local transformations
in a skin patch (s) are known, the orientation and position of every skin cell (u), relative to
a chosen origin cell (os), are calculated as kinematic chain between u and os, with a variable
number of cells (x) in between:

osTu =
osTx · ... · xTu (4.4)

An error estimate, allocated to every local transformation (cen), allows to calculate the inher-
ently accumulated error (oseu) between each skin cell (u) and its origin (os):

oseu =
osex + ...+ xeu (4.5)

The overall error in a skin patch is minimized by choosing an optimal origin for every skin
patch and calculation path for every skin cell in it (refer to Sec. 4.2.2). The shape and size
of the skin cell, as well as the position and orientation of every sensor on a cell, are known
in cell coordinates. With Equation (4.4), it is possible to transform these sensor coordinates
into common skin patch coordinates. This allows the reconstruction of the partial shape of the
carrier object, the surface of the skin patch and the orientation and location of every sensor in
it, relative to the origin of each skin patch.
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SECTION 4.2 3D Surface Reconstruction of Skin Patches

4.2.2. Representation as Graph
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FIGURE 4.4. The figure shows a partial visualization of the X17 test patch network graph with
GraphViz. The nomenclature for each edge is SxPz_TyPw, where x/y represent the source
and sink skin cell IDs and z/w the source and sink port IDs.

Graph theory (here implemented with BGL2) provides an adequate representation for our
artificial skin, and methods to efficiently handle arbitrary configurations of skin cells. We
begin with parsing the result of the automatic network exploration into an empty graph (refer
to Alg. 4.1), attaching a property map to the graph, with a variable for the number of skin
patches and a vector to memorize the origin of each skin patch. For every skin cell we create

Algorithm 4.1 3D Reconstruction of multiple skin patches
1: Detection of available skin cells (U)
2: Creation of a skin graph with (U) vertices
3: Exploration of skin cell network neighbors = neighbor list
4: Creation of directed port edges from neighbor list
5: Deletion of non-direct edges e.g. across body parts
6: Analysis of connected components = skin patches
7: while reconstruction loop do
8: Sampling of gravity vectors in multiple poses (P)
9: Estimation of rotations (cRn) between connected skin cells

10: Calculation of edge weights from local estimation errors (cen)
11: Find skin cell with shortest accumulated path for every patch
12: Set these skin cells as patch origins (os) and memorize paths
13: Default position (wtttos) and orientation (wRos) of patch origins
14: Update remaining skin cell orientations along calculation paths
15: Update remaining skin cell positions (ostttu) along calculation paths

a vertex, attaching a property map with its unique ID and placeholders for its skin patch ID,
relative orientation matrix and position vector. For every neighbor, in the list of network
neighbors, we create a directed edge, attaching a property map with the ID of the source and

2J. G. Siek and L. Q. Lee and A. Lumsdaine, “The Boost Graph Library”, Addison-Wesley, 2001, version 1.4.9
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the target, as well as the source port and the target port, and placeholders for the relative
rotation matrix and the weight related to the estimation error. As all available connections are
bidirectional, each add two edges (see Fig. 4.4). For the 3D reconstruction of skin patches,
only close connections are of interest. All others edges need to be deleted or muted. So far, we
have implemented two methods: 1) we delete edges to computer interfaces, acting like skin
cells with top of the range IDs; 2) we delete edges in between different body parts (refer to
Sec. 5.2). In both cases spatial relations are lost, e.g. by long cables. For the next steps, the
relative edge rotation estimation must be complete for all edges. First, we perform a connected
components algorithm on the whole graph. This algorithm returns the number of skin patches
(S) and assigns every skin cell to a patch (s). Next, we search the skin cell with the shortest
accumulated path for every skin patch, based on a Dijkstra shortest path algorithm, and set it
as origin (os) of the skin patch (s). As the positions (wtttos) and orientations (wRos) of the skin
patch origins are not yet defined, we default them to:

wtttos = 000 and wRos = I , s ∈ {1, ...,S} (4.6)

Starting from each origin (os), we then propagate along the shortest paths and update all
relative skin cell orientations (osRu) and positions (ostttu) along the kinematic chain:

osRn =
osRc · cRn (4.7a)

ostttn =
ostttc +

osRc · ctttn (4.7b)

4.2.3. Relative Rotation Estimation

The rotational component (cRn) of the transformation (cTn) in between two directly connected
cells n and c combines two subcomponents: 1) the 2π

6 repetitive initial port alignment of the
hexagonal tessellation; 2) the deformation of the elastomer gap, simplified as rotation around
the link point (see Fig. 4.3). Due to Equation (4.3) both can be estimated at the same time. We
estimate the rotation between two neighboring skin cells (cRn) based on measurements of the
time (t) dependent local gravity vectors (cgggc(t) and ngggn(t)) which are measured by the triaxial
accelerometer on every cell. This is possible as the gravitational (G = 6.7×10−11 m3

kg·s2 ) vector
(wggg(wrrr+ wsss)) in world coordinates (w), for a robot on the comparably large (wrrr = 6371km)
and heavy (M = 5.9×1024 kg) earth surface, is independent of the sample point vector (wsss):

wggg(wrrr+wsss) =− G(M+m)

‖wrrr+wsss‖3 (
wrrr+wsss)≈ wggg (4.8)
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Thus the relative, time dependent rotation matrix (cRn(t)) directly links the two local gravity
vectors (cgggc(t) and ngggn(t)):

cRn(t) · ngggn(t) =
cgggc(t) (4.9)

As described in [Hoshi and Shinoda, 2007], a single measurement of the gravity vectors is
not sufficient to estimate the relative orientation of rigid bodies. Here, we present a method
to combine a variable number of measurements of the gravity vectors (cgggc,p and ngggn,p) in (P)
different poses (p), to obtain the missing complementary information. Therefore, we actively
or passively drive the skin patches to different poses between two measurements. Active means
that the robot actuates a related, revolute joint axis itself. Whereas passive specifies that an
operator inclines the whole robot or forces a related revolute joint axis to move. The method
assumes that the relative rotation (cRn(t)) exhibits minimum changes over the lifetime (T ) of
the reconstruction:

cRn(t)≈ cRn , t ∈ [0,T ] (4.10)

This (quasi) rigid body assumption makes it possible to continuously generate new sets of
gravity vectors, changing in time (t) the orientation

(bRw(t)
)
) of the body part (b) where the

skin patch is mounted on:

cRn · nRw(t)wggg = cRw(t) ·wggg (4.11a)
nRw(t)≡ cRw(t)≡ bRw(t) (4.11b)

The following equation system, relates all nine unknowns of the rotation matrix (cRn):

cRn · ngggn,p =
cgggc,p (3 ·P) (4.12a)

det(cRn) = 1 (1) (4.12b)
cRT

n = cR−1
n (3) (4.12c)

Equation (4.12a) provides up to 9 independent equations based on three 3-dimensional or-
thogonal vectors from (P = 3) orthogonal poses:

ugggT
u,1 · ugggu,2 =

ugggT
u,1 · ugggu,3 =

ugggT
u,2 · ugggu,3 ≡ 0,u ∈ {n,c} (4.13)
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Given the additional properties of the rotation matrix, defined in Equations (4.12b) and
(4.12c), it is sufficient to provide a set of (P = 2) independent gravity measurements, to main-
tain an overdetermined system. Certain rotations of the body part, in order to reach new poses,
are excluded to obtain independent equations in (4.12a). Rotations around the gravity vector
itself or π repetitive rotations around any axis, provide linearly dependent equations. We uti-
lize a constrained general solution of the procrustes problem3, to find a rotation matrix (cRn)
that closely maps a variable set (nNP×3) of (P) gravity vectors (ngggn,p) to another variable set
(cCP×3) of (P) gravity vectors (cgggc,p). The actual solution of the mapping is thus shifted to a
singular value decomposition (svd) of the two sample sets (nN and cC):

[ncU , ncΣΣΣ , ncV] = svd
(

nNT
cC
)

(4.14)

The rotation matrix (cRn) builds from the left singular vectors in (ncU), the right singular
vectors in (ncV) and the modified singular values (ncΣΣΣ

′):

cRn = ncU · ncΣΣΣ
′ · ncVT (4.15)

Sigma (ncΣΣΣ
′) is a 3×3 identity matrix (I3×3) with the location of the lowest singular value

(matrix entry (3,3)) replaced with the determinant (det(ncU · ncVT )), in order to enforce the
rotation matrix (cRn) to be a special orthogonal matrix (det(cRn) = 1):

ncΣΣΣ
′ =


1 0 0

0 1 0

0 0 det(ncU · ncVT )

 (4.16)

We only utilize the original singular values (ncσ1 ≥ ncσ2 ≥ ncσ3 in ncΣΣΣ) in order to evaluate
the quality of the estimation. In the following calculations we assume that all measured gravity
vectors are normalized:

‖ggg‖ ≡ 1g (4.17)

3P. H. Schonemann, “A generalized solution of the orthogonal Procrustes problem”, Psychometrika 31, pp.
1-10, 1966
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Deviations of gravity (ggg) from the local constant (GM
r2 ) indicate additional effects with the

accelerometer (see Equ. (4.19)). With the normalization, we make our approach independent
of the local constant. The estimation of the rotation matrix (cRn) itself is not affected by a
normalization, as a rotation matrix preserves the length of a vector. Here, we only differentiate
in four estimation qualities, with the following edge weights (ncw):

un-defined ncσ1 < 1,ncσ2 < 1 ncw = ∞ (4.18a)

partially-defined ncσ1 ≥ 1,ncσ2 < 1 ncw =U (4.18b)

fully-defined ncσ1 ≥ 1,ncσ2 ≥ 1,ncσ3 < 1 ncw = 1 (4.18c)

over-defined ncσ1 ≥ 1,ncσ2 ≥ 1,ncσ3 ≥ 1 ncw = 1 (4.18d)

In case of an un-defined or only partially-defined estimation, it is not possible to completely
estimate the rotational component around the link point in the elastomer gap. However, the
alignment of the connected ports can still be enforced, appending a set of scaled (10% of
unit length), correctly signed (incoming or outgoing) gap axes (see Fig. 4.3) to the data sets
(nN and cC). The influence of the support axes vanishes when the gravity measurements (P
vectors) are well defined, but help to stabilize the system output in un- or partially defined
cases. Finally, we wish to describe the sampling of the gravity vectors. We measure the
gravity vectors (ugggu,p) of every skin cell (u) in a skin patch in (P) different poses (p) with an
accelerometer aligned with the cell origin. The accelerometer does not only measure a rotated
version of the world gravity vector (wggg), but also the second time derivative of position of the
skin cell origin, transformed from world (wooou(t)) into skin cell (uooou(t)) coordinates (u) by the
rigid body transformation (uTw,p(t)) of pose (p):

uaaau,p(t) =
d2

dt2 (
uRw,p(t) ·wooou,p(t)+wtttu,p(t))+ uRw,p(t) ·wggg (4.19)

This shows that, in order to extract the gravity vector from the accelerometer data, the skin
patch has to maintain a static pose in world coordinates. We then average N = 100 subsequent
samples at 1 kHz in every pose (p) to decrease the influence of noise and vibrations on the
robot:

ugggu,p =
1
N

N

∑
n=1

uaaau,p[n] (4.20)

Thus sampling a pose (p) currently takes 100 ms.
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4.2.4. Experiments

In this section, we provide experimental results on the 3D reconstruction quality.

4.2.4.1. Known Shape

FIGURE 4.5. The figure shows the 3D surface reconstruction of a cylindrical test shape
equipped with the X17 test patch.

In this experiment, we provide quantitative results on the reconstruction quality of a car-
rier object. To do this, we put a X-shaped skin patch, made from U = 17 skin cells (ver-
sion 1.1, refer to Sec. A.4), on a geometrically known object, an aluminum cylinder with
a measured radius of rreal = 50.1mm (see Fig. 4.5). We sampled a minimal set of gravity
vectors in P = 2 orthogonal poses. The first pose with the cylinder standing on a desk, the
second held by hand as depicted in Fig. 4.5, to include vibrations as noise. We then com-
pared the generated point cloud of the (U = 17) skin cell origins (ostttu), with the ground
truth – the parameterized cylinder surface. As we do neither exactly know the alignment
of the x-shaped patch on the cylinder, nor its axis or a point on it, we started with a reg-
istration algorithm on the point cloud. We utilize the fgcylinder function of the LSGE4

MATLAB library. Besides the point cloud, fgcylinder requires rough initial estimates on
the cylinder axis (oshhhinit = [0;1;0]mm), the radius (rinit = 15mm) and one point on the axis
(osbbbinit = [0;0;−15]mm), which we provided. Starting from this input, fgcylinder estimates
the best fitting cylinder axis (oshhhest = [−0.02;1.00;0.01]mm), radius (rest = 49.80mm) and
one point on the axis (osbbbest = [−3.11;1.21;−49.64]mm), based on a least squares algorithm.

4“The least squares geometric elements library”, EUROMET Repository of Software, version 0.7.6
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SECTION 4.2 3D Surface Reconstruction of Skin Patches

Additionally, it provides an array of the minimal radial distances (dest,u), in between each of
the skin cell origins and the parameterized surface model (see Fig. 4.6). We utilized this array,
along with the difference in between the real (rreal) and estimated (rest) cylinder radii, in order
to build a quantitative reconstruction error (εrecon) metric:

4= rest− rreal (4.21)

εrecon =

√
1
U

U

∑
u=1

(dest,u +4)2 (4.22)

For the experiment shown in Fig. 4.5 we maintained a difference of 4 = −0.30mm and an
error of εrecon = 1.62mm. We have not yet taken the thickness f ≈ 3.4mm of the skin into

Cell ID
x
y
z
d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
39.5 43.2 37.1 21.9 0 23.0 40.6 48.9 46.1 -23.0 -41.6 -51.2 -49.7 -23.0 -42.5 -53.6 -52.2
57.1 43.2 29.0 14.6 0 -13.4 -26.4 -39.3 -52.0 14.1 28.1 41.8 54.5 -13.5 -27.2 -40.3 -51.6
-69.0 -45.8 -23.2 -6.2 0 -5.7 -21.5 -44.0 -67.8 -4.7 -18.7 -40.0 -64.1 -5.4 -19.1 -39.7 -64.2
-1.77 -2.52 -1.32 0.36 -0.06 -1.27 1.83 1.71 1.50 -0.89 -0.99 -1.62 -1.97 -1.06 0.66 2.52 2.35

FIGURE 4.6. The figure shows the round truth comparison of the cylinder 3D reconstruction
result. The best fitting cylinder is plotted in green, while the skin cell origins (ostttu) are
plotted in blue. The table denotes the relative skin cell positions towards the origin cell
(os), here the skin cell with ID 5, and the radial distances (du) to the cylinder surface.

account, statically modeled the elastomer gap as an extension of the according port vectors by
half of the gap (1.77

2 mm) and have not yet calibrated the triaxial accelerometers. We are aware
that a selection of the skin cell origins, as sample points, is optimal for a concave surface like
the cylinder, whereas points on the boundary of the rigid hexagonal shape are optimal for a
convex surface. With a reduction of the skin cell size, in comparison to the curvature of the
robotic part, this will no longer be relevant.
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4.2.4.2. Closed Loop

FIGURE 4.7. The figure shows the closed-loop 3D reconstruction result of a skin patch with 8
skin cells.

In this experiment, we provide quantitative results on the closed loop test case. To do
this, we placed a patch of U = 8 skin cells (version 1.1, refer to Sec. A.4) in the longest
configuration - a straight line. Then, we connected the two unconnected ends closely together,
forming a ring (see Fig. 4.7). In order to stabilize the shape between poses, we fixed the
patch on a paper cup. We then sampled P = 2 orthogonal poses, one with the cup standing
on the table, the other holding the cup in the hand, to validate the robustness of the algorithm
to vibrations. Fig. 4.8 depicts the difference between the link points os ppp2,1 and os ppp3,8 of the
unconnected, but closely placed ports 2 and 3, in between the skin cells with ID 1 and ID
8. In the given experiment the difference vector δδδ = [−6.10;−2.36;8.16]mm has a length of
‖δδδ‖ = 10.46mm. Compared to the loop length L = 222.28mm of the 16 accumulated port
vectors, the error is 4.71%. The curvature of the skin, and thus also the error of the simplified
gap model, is higher than in the previous experiment. Every gap is prone to a 360/8 = 45◦

rotation.

4.2.4.3. Large Skin Patch

In this experiment, we provide quantitative results on the reconstruction quality of a real
robotic part and a large skin patch. To do this, we equipped the largest tube like body part
of the UR-5 robotic arm (see Fig. 3.6) with U = 143 skin cells (version 2.0, refer to Sec. A.4).
We then sampled a set of gravity vectors in P = 3 poses and compared the generated point
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FIGURE 4.8. The figure shows the deviation (red) of the ideally connected link points (ma-
genta) with the closed loop 3D reconstruction experiment. The skin cell origins are plotted
in blue, while the utilized port vectors for the closed loop calculation are given in green.

(A) 3D view (B) y/z plane view
FIGURE 4.9. The figure shows the 3D point cloud of skin cell origins (blue) of a skin patch

made from 143 skin cells, mounted on the largest tube of the UR-5 robot arm (see Fig. 4.1),
in comparison to an optimal cylinder fitting (green).

cloud of the U = 143 skin cell origins (ostttu), with ground truth – a parameterized cylinder
surface. We utilized the same fgcylinder fitting function as in Sec. 4.2.4.1. In this experiment,
the algorithm estimated a cylinder radius of rest = 58.96mm, while we calculated a radius
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of rreal = 60.16mm from a 378 mm circumference, measured at mid skin height. The radial
distances (dest,u) in between each of the skin cell origins (ostttu) and the parameterized cylinder
model (see Fig. 4.9) are depicted in Fig. 4.10. The maximum radial distance is 3.5 mm with a
standard deviation of 1.3 mm.
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FIGURE 4.10. The figure shows the radial distance of the 3D reconstructed skin cell origins to
an optimal cylinder fitting as depicted in Fig. 4.9

4.2.4.4. Influence of Accelerometer Calibration

In this experiment, we provide results on the influence of accelerometer calibration on the 3D
reconstruction quality. Therefore, we performed a P = 6 pose calibration routine as described
in Sec. 5.4.1.2. We then compared the results of our reconstruction algorithm for two different
data sets: 1) directly running on the P = 6 complementary calibration poses; 2) running on a
set of P = 6 poses generated by only rotating around one close to horizontal axis, but using
offset and gain compensated accelerometer readings. In this experiment we utilized a straight
line of of U = 12 skin cells (version 2.0, refer to Sec. A.4), conducting the closed loop test
case as previously described in Sec. 4.2.4.2. Both experiment sets showed an accumulated
loop error below 0.7% for a total loop length of L = 333.42mm. The link displacement was
‖δδδ‖ = 2.22mm for set 1 and ‖δδδ‖ = 2.09mm for set 2. One the one hand, those results
show that the reconstruction quality can be largely improved (see Fig. 4.11) by an additional
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FIGURE 4.11. The figure shows the improved closed-loop 3D reconstruction result of a skin
patch made of 12 skin cells. This was achieved by calibrating the skin cell accelerometers,
reducing the loop error to 0.7%.

accelerometer calibration - either during production or in situ. On the other hand, we could
show that our algorithm can implicitly handle this calibration, given an adequate pose set (like
6 gravity vectors spanning a sphere). This behavior is an intrinsic property of the constrained
Procrustes rotation estimation that we apply.

4.2.5. Discussion on Scalability

Every time a new skin cell version has to be integrated, only the specific information of the
skin cell must be updated. A smaller size of the skin cell naturally increases the number of
consecutive transformations, which increases the probability of propagation errors. However,
we think that the increasing the number of alternate pathways, the decreasing influence of a
single (local) transformation and the denser sampling of the surface will finally decrease the
overall error. A higher number of skin cells, and their subsequent connections, will also in-
crease robustness due to the manifold of network redundancies. With flexible skin cells, a
smaller cell size allows to neglect the cell deformation and to continue with the rigid body
assumption. Relative rotations in between skin cells can be estimated with alternative sensors
– e.g. strain gages in the elastomer gap. However, local strain sensors suffer when the incre-
mental rotations between the elements become barely measurable. In our approach, utilizing
accelerometers, the homogeneous field allows to measure relative rotations between arbitrary
element pairs. Finding direct neighbors through the network exploration is a very fast method,
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it currently takes around 130ms to power up and explore U = 31 skin cells – most of which is
static waiting times. Nonetheless, we can generate edges with a different method, e.g. using
spatial information distances (refer to Sec. 2.3.1). Regarding processing power, our approach
is efficient. The rotation estimation is calculated numerically with a singular value decomposi-
tion, while the graph algorithms have known complexity. In order to save high level processing
time, most of the relative computations can also be shifted to the skin cells.
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4.3. Visual Transformation Estimation between Skin
Patches

3D Visualization
Camera Frame

Patch I

Patch II

Patch III

Patch I

Patch II

Patch III

FIGURE 4.12. The figure shows three skin patches of a multi-modal, modular artificial skin
(7 skin cells per patch) arbitrarily placed on a UR-5 robotic arm. All skin patches are
individually 3D reconstructed, transformed into optical markers and visually joined into a
single homogeneous body representation.

In this section, we present an approach to spatially self-organize a distributed modular arti-
ficial skin in 3D space5. With the help of a calibrated monocular camera we can then estimate
a homogeneous transformation between the camera and every, at least partially visible, skin
patch. When multiple skin patches are visible at the same time, we can utilize those camera
transformations to calculate the missing transformations between skin patches (see Fig. 4.15).
Here, we combine our 3D surface reconstruction algorithm for individual patches of artificial
skin with a common active visual marker approach. Light emitting diodes, built into every
cell of our modular artificial skin enable us to turn each reconstructed patch of skin into an
absolute, active visual marker. Our approach allows to quickly combine distributed tactile and
visual coordinate systems into one homogeneous body representation (see Fig. 4.12).

5Work in this section has been published in [Mittendorfer et al., 2014a]
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4.3.1. Visual Pose Estimation

In order to turn a skin patch into an absolute visual marker, and estimate its homogeneous
transformation to a camera with a standard Perspective-n-Point (PnP) algorithm, we have to
provide a set of (N ≥ 6) independent point correspondences between the visual and 3D space.

Algorithm 4.2 Visual pose estimation for skin patches
1: calculate relative 3D LED positions for all skin patches
2: for localization of all (U) skin cells do
3: turn all LEDs off
4: capture background color frame (BCu)
5: turn single LED (u) on
6: capture foreground color frame (FCu)
7: convert color images to gray scale (BGu and FGu)
8: subtract background from foreground (Du)
9: blur difference frame (DBu)

10: threshold to binary image (Bu)
11: run constrained blob detector
12: check (single) and memorize blob coordinates (vcccu)
13: solvePnP for all skin patches with N ≥ 6 visible LEDs

4.3.1.1. Visual Marker Generation

FIGURE 4.13. The figure shows a skin patch made from 7 skin cells, turned into an active
visual color marker by the RGB LEDs integrated into every cell.
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SECTION 4.3 Visual Transformation Estimation between Skin Patches

For the generation of known, locatable visual features in 3D space, we make use of the RGB
LED integrated into every of our skin cells (see Fig. 4.13). As explained in the previous section
(refer to Sec. 4.2), the position (ostttu) and orientation (osRu) of every skin cell is known relative
to its related patch origin (os). The allocation of skin cells to patches is known from our con-
nected components algorithm. Since all LEDs have a static location (utttLED = (7.9,0,0)T mm)
in skin cell (u) coordinates, we directly calculate their feature positions (os fff u):

os fff u =
ostttu +

osRu · utttLED (4.23)

As every LED is controlled (color and on/off) individually from the main system, we are
able to generate salient visual features. Due to the similar characteristics of our small size
LED (1x1mm, 120 degree visual angle) to a point light source, those features will be close to
circular in visual space (see Fig. 4.14).

4.3.1.2. Visual Localization

In order to identify and localize the visual features (LEDs) in the camera frame (see Fig. 4.14),
we actively control all LEDs and subtract foreground from background frames. Here, we make

FIGURE 4.14. The figure (original resolution) shows a close-up (6.4x) of the visual localization
for a skin patch with 7 skin cells, seen by a 720HD camera from 630 mm distance. The
black dots in the center of the LED pixels symbolize the corresponding pixel coordinates.
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use of OpenCV6 for all image processing routines. Color features would allow to identify mul-
tiple LEDs at once and thus reduce the localization time. With the 7 basic RGB combinations
(see Fig. 4.13), we would for example handle a complete skin patch transformation estima-
tion (N ≥ 6) with a single frame. However, the hue grade value of the LED blobs is strongly
dependent on the viewing angle and distance. For a robust mapping only one LED (u) can
be used at a time. The foreground (FCu) and background (BCu) color images are captured in
close time vicinity to avoid large changes in the background. The images are then converted
to gray scale (FGu and BGu) and subtracted to calculate the local differences (Du):

Du = FGu−BGu (4.24)

The difference image is then blurred and binary thresholded:

DBu = GaussianBlur(Du,size,sigma) (4.25a)

Bu = Thresh(DBu, thresh) (4.25b)

This process is repeated and multiple (M) binary images are Hadamard-multiplied (element
wise), in order to form an overlay image (BOu) that excludes uncorrelated changes in the
background:

BOu = B(1)
u ◦ ...◦B(M)

u (4.26)

This final image (BOu) is then fed to a constrained (maxArea = 500, minArea = 1) blob
detector. When the current LED (u) is visible, the blob detector should return only one blob
(0) with the blob point (pt) coordinates (vcccu = (x,y,1)T ) approximately at the visual (v) LED’s
center:

vcccu = BlobDetector(BOu,maxArea,minArea)(0)pt (4.27)

If none or more than one blob is returned, the visual feature is not available and excluded from
the pose estimation.

6OpenCV Library, version 2.4.8

86



SECTION 4.3 Visual Transformation Estimation between Skin Patches

4.3.1.3. Pose Estimation

The LED camera (vcccu) and relative 3D (os fff u) coordinates are linked by the homogeneous
transformation (vTos), between the camera and the skin patch coordinate system, and the cam-
era projection matrix (A):

vcccu = A · vTos · os fff u (4.28a)

A =


fx 0 cx

0 fy cy

0 0 1

 (4.28b)

vTos =

vRos
vtttos

0 1

 (4.28c)

Given a calibrated (and undistorted) camera and N ≥ 6 independent corresponding points, the
homogeneous transformation (vTos) (see Fig. 4.15) can be uniquely estimated [Leng and Sun,
2009]. We utilize an OpenCV PnP algorithm to estimate this transformation if more than 6
corresponding points are available for each skin patch.

4.3.2. Homogeneous Rigid Body Representation

Once we have estimated all skin patch transformations (vTos), we are able to represent all
simultaneously visible skin patches in a common visual (v) camera coordinate system (see
Fig. 4.15). This allows us to combine local skin patch reconstructions of those patches, as well
as their related multi-modal tactile stimuli, in a single homogeneous rigid body representation.
Due to occlusions, and a constrained view of the camera, only a small set of skin patches will
be visible at the same time. To be able to map the remaining skin patches, and an entire rigid
body, we need to re-locate the camera. In order not to loose all existing estimations, we must
set a common rigid body reference coordinate system (r). – e.g. to identity (I4) with the first
utilized camera coordinates (v1):

rTv1 = I4 (4.29)
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skin patch origin (n)

(v)isual
origin

skin patch origin (m)

skin cell 
LEDs

body reference (r)

FIGURE 4.15. The figure shows the estimation of the transformation (omTon) between two in-
dividually 3D reconstructed, modular artificial skin patches (m) and (n), by the means of
a camera pose estimation (vTon and vTom). If the position of one visible patch is mem-
orized (m), a new patch (n) can be added/transformed to an existing homogeneous body
representation (r).

New (n) patches are added to this existing homogeneous body representation (r), when they
are simultaneously visible (N ≥ 6) with at least one known patch in memory (m):

rTon =
rTom · omTon (4.30a)

omTon = (vTom)
−1 · vTon (4.30b)

We can now estimate the relative position and orientation of all skin cells applied on the same
rigid body – e.g. a robotic arm or a full sized humanoid robot in a (quasi-)static pose.

4.3.3. Experiments

In this section, we experimentally evaluate the performance of our approach by comparing it
to ground truth. All visual tests have been performed with a calibrated MacBook Pro (2012)
camera with a resolution of 1280x720 and M = 3 binary images. Due to the bright LED
dot we found a blur in the pixel range (size = 9× 9, sigma = 2× 2) and a 50 % threshold
(thresh = max(DBu)/2) effective. Setting a heuristic minimum value (e.g. minVal = 40) for
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the thresholding excludes false detection when no LED is visible. In order to estimate the PnP
transformations, we utilized the OpenCV solvePnPRansac algorithm (iterationsCount = 100,
repro jectionError = 8.0, minInliersCount = 6) with the method CV_EPNP7. The proposed
algorithms also effectively deal with outliers (see Fig. 4.17 or Fig. 4.1).

4.3.3.1. Single Skin Patch Pose Estimation Quality

In this subsection, we evaluate the pose estimation accuracy of a single skin patch. We chose
the most compact setting of 7 skin cells as default test shape (see Fig. 4.13), due to its close to
minimal (PnP algorithm requires N ≥ 6 point correspondences) number of skin cells and its
quite common appearance as sub-set in larger patches.

skin patch origin

(v)isual
origin

60 cm

22.5 cm

x

y

z

FIGURE 4.16. The figure shows the test setup for the plausibility check of the skin patch
marker transformation estimation. The picture approximately shows the local camera and
skin patch coordinates.

7F. Moreno-Noguer, V.Lepetit and P. Fua, “EPnP: Efficient Perspective-n-Point Camera Pose Estimation”,
OpenCV 2.4.8
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Absolute Accuracy: In this experiment, we compared the returned pose estimation to a
manually measured homogeneous transformation between the camera and the skin patch. We
would like to point out that our manual measurements are imprecise and the exact camera co-
ordinates unknown. The difficulties to manually measure a relative transformation confirmed
our initial motivation to replace manual with automated spatial calibration routines. For this
test, we placed the skin patch flat on the table approximately 60 cm mid front of the laptop
display, where the camera is integrated at a hight of approximately 22.5 cm, put the display
into an exactly vertical position (using a water level) and aligned the skin patch y coordinate
with the projection of the visual z-axis on the table (see Fig. 4.16). The pose (vTo1) estima-
tion algorithm returned a translation of vttto1 = (8.1,193.4,597.6)T mm and a rotation vector
of vrrro1 = (1.634,0.015,−0.020)T radian. This is close to the expected 1.57 radian rotation
around the eeex vector, while the patch origin is located 32 mm from the manually measured
one (0,225,600)T mm. The estimated distance of 628 mm is such 13 mm shorter than the
manually measured value of 641 mm.

Relative Accuracy: In this experiment, we evaluated the pose estimation quality with known
relative transformations in 3D space. For accurate translational displacements, we utilized a
linear wheel stand with an integrated caliper. For rotational displacements, we utilized the
last two revolute joints of a UR-5 robotic arm. We performed all tests with our default 7 skin
cell test skin patch, one time flat and one time bent to the surface of a paper cylinder (ra-
dius 40 mm). Each time we located the patch into three different distances from the camera
(≈60/100/140 cm) and translated/rotated it by a fixed value (20 mm and 0.175 rad), approxi-
mately around/along the visual coordinate vectors. The results in Table 4.1 indicate a relative
translational accuracy below 1 cm and a relative rotational accuracy below 0.07 radian (4◦) for
tested camera to object distances up to 1.4 m.

4.3.3.2. Large Patches & Partial Occlusion

Our algorithm also handles large patches and partial occlusion. Here, we show a large 23 skin
cell skin patch, placed on a shoe (see Fig. 4.17) or our latest implementation with 260 skin
cells on the robot TOM (see Fig. 4.1). In order to measure the worst case effect of occlusion,
we visually blocked the center cell of our default test patch, placed it on a cylinder (radius
40 mm) in a distance of 100 cm to the camera and shifted it 20 mm along the visual axis
veeez. The estimation result of 25.68 mm indicates that even a minimal (N = 6) worst case
configurations will work.
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relative estimation results

camera distance 60 cm 100 cm 140 cm

marker shape flat bent flat bent flat bent

translation(veeez, 20 mm) 19.53 17.66 23.02 25.95 26.18 23.09

translation(veeey, 20 mm) 19.88 19.73 19.67 19.84 21.66 19.91

rotation(veeez, 0.175 rad) - 0.172 - 0.178 - 0.182

rotation(veeey, 0.175 rad) - 0.145 - 0.106 - 0.184

TABLE 4.1. The table shows the relative experimental accuracy of visual skin patch markers.

FIGURE 4.17. The figure shows the camera frame and absolute 3D visualization of a shoe sole,
equipped with a skin patch of 23 skin cells. Six of the skin cells in the center are occluded
by a business card.

4.3.3.3. Multi-Patch Pose Estimation Quality

In order to evaluate the relative pose estimation quality between two patches of skin, we put
them physically next to each other on a cylinder (radius 50 mm) and measured the displace-
ment between the ideally linked port vector pairs (see Fig. 4.18). In our experiment, placing
the cylinder 100 cm in front of the camera, all three potential link points only had a distal
mismatch of 3 mm.
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FIGURE 4.18. The figure shows two closely placed, but unconnected patches of skin on a cylin-
der, separately 3D reconstructed and joined into one body representation by our algorithm.

4.4. Summary

In this chapter, we introduced and quantitatively evaluated a new approach to quickly and au-
tomatically spatially self-organize an artificial skin. Distributed accelerometers, along with in-
formation on the network topology, have been utilized to reconstruct the 3D surface of patches
of artificial skin. Light emitters, integrated into every skin cell, turn each skin patch into an
active optical marker, in order to visually combine all distributed coordinate frames into one
homogeneous body representation. Unlike point probing approaches, or even a manual cali-
bration of tactile sensors, our approach is significantly faster, more precise and easy to apply.
Our visual approach can work with external as well as internal cameras, e.g. the robots own
eyes. In comparison to existing optical markers, e.g. for motion tracking, skin patch markers
can have arbitrary shape, be bent to conform to a surface and partially occluded. The scalabil-
ity of our approach to a high number of cells has been proven (see Fig. 4.1). Given full cover-
age, our algorithms quickly and robustly deliver a complete volumetric surface representation,
along with the relative orientation and position of every tactile sensor, and a biologically in-
spired cross-modal fusion between tactile and visual space. Thus, the methods in this chapter
enable the complete body schema for spatial representation to be realized.
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CHAPTER 5

Body Schema for Sensory-motor Control

Our own physical body possesses a wisdom which we, who inhabit the
body, lack. We give it orders which make no sense.

(Henry Miller)

In this chapter, we introduce methods to automatically acquire sensory-motor knowledge
for robots equipped with our artificial skin. This knowledge is important to transfer sensory
stimulations into motor actions. We first introduce an algorithm to self-explore the sequential
dependencies of the kinematic tree of a multi-limb robot. Then, we present an algorithm to
obtain a local, inverse Jacobian-like mapping in order to reactively transfer tactile stimulations
into joint velocities and forces. Finally, we show an approach to automatically model and
calibrate the kinematics of a robot manipulator.
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5.1. Introduction

Tactile

Visual

Proprioception

Kinematics

FIGURE 5.1. The figure shows the importance of acquiring kinematic knowledge for the inte-
gration of multiple modalities into a homogeneous, sensory-motor body representation.

It is important for our body to acquire the relationships between sensor and motor spaces
(see Fig. 5.1), in order to react on stimulations, e.g. to support active tactile compliance or
trigger protective reflexes. Manually providing those kinematic parameters is not effective,
especially in case of a high number of motor and sensor units. Robots should utilize their
own motion and sensing capabilities to explore and calibrate their own sensory-motor body
schema. In comparison to human, robots are constrained in time to generate this knowledge
and immediately exposed to a potentially harmful environment. Therefore, we introduce fast
open-loop approaches, based on inertial sensors integrated into our artificial skin, that only re-
quire the robot to perform a set of safe, small-ranging motions. In this chapter we specifically
introduce: 1) an approach to explore the structural dependencies of the kinematic tree in order
to build kinematic models; 2) an approach to automatically acquire a local, inverse Jacobian-
like mapping to immediately transfer tactile stimulations into joint motions; 3) an approach
to calibrate the kinematic parameters for a global kinematic model. No a-priory knowledge
regarding the kinematic structure and/or parameters is required. We specifically make use of
accelerometers, since purely rotation dependent motion sensors, e.g. magnetometers or gyro-
scopes, are translation invariant. Although our approach might initially seem far off biological
inspiration, human is most likely using differential information to acquire body knowledge
as well, for example the resistance of movements in water as simulated in [Kuniyoshi et al.,
2004] or the acquisition of Jacobian mappings as in [Fuke et al., 2007].
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5.2. Self-exploration of the Kinematic Tree

Part1
SC: 1,2,3,4,5,6,7,8,9,10,29,30,31

Joint4
DoF: 8,9,10

Part2
SC: 11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28

Joint5
DoF: 11

Part3 (EEF)
SC: 20

Joint6
DoF: 12,13,14

Part4
SC: 32,33,34,35,36,37,56,57,58,59,60,61,62

Joint1
DoF: 1,2,3

Part5
SC: 38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55

Joint2
DoF: 4

Part6 (EEF)
SC: 46

Joint3
DoF: 5,6,7

Part7 (Torso)
SC: 63,64,65,66,67,68,69,70,71,72,73,74

FIGURE 5.2. The figure shows the exploration result for the kinematic tree of HRP-2’s upper
body, visualizing the dependencies of joints (featuring one or multiple revolute degrees of
freedom (DoF)) and body parts (featuring one or multiple skin cells (SCs)) towards the
torso (root of the tree), in comparison to the real robot.

In this section, we introduce an algorithm (see Alg.5.1) to automatically explore the de-
pendencies of the kinematic tree of a robot equipped with our artificial skin1 (see Fig. 5.2).
This information is necessary to identify individual manipulator limbs and build sequential
kinematic models for them (refer to Sec. 5.4). Moreover, we utilize the result to suppress
uncorrelated motions in the sensory-motor-map (refer to Sec. 5.3) and to detect connections
between body parts in the neighbor graph of the 3D surface reconstruction (refer to Sec. 4.2).
The algorithm provides information on about the number of body parts and which skin cells
are allocated to which body part. It also defines how joints, composed of one or more revolute
degrees of freedom (DoFs), connect the body parts. The algorithm identifies which body parts
are end-effectors (located at the end of a serial kinematic chain) or root (located at the start of
a serial kinematic chain). In order to achieve this, our method only utilizes information from
the accelerometers built into every skin cell and small range, quasi-static, open loop motions
of the robot. Our approach only requires control on joint axes and a quasi-static base/torso,
e.g. humanoid fixed into a calibration stand or a stationary mobile base. We use an internal
observer which is not limited by occlusions or any dependent on any external components.
Due to the contact-less approach, our method is able to acquire its information in a very short
time, even for a high number of distributed skin cells and revolute degrees of freedom.

1Work in this section has been published in [Mittendorfer and Cheng, 2012c], [Mittendorfer et al., 2013] and
[Mittendorfer et al., 2015].
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5.2.1. Theory of Operation

5.2.1.1. Constraints
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FIGURE 5.3. The figure shows an exemplary distribution of skin cells (SC) on body parts (BP)
and revolute degrees of freedom (DoF) of Joints (J) for a stick-man model of a humanoid.

We assume rigid body kinematics, i.e. joints with one or more revolute degrees of freedom
(DoF) are connected by non-deformable body parts. Furthermore, our approach requires a
non-inertial base frame. This implies that during the whole calibration process one reference
body part (root) of the robot has to remain static in world coordinates. With a robotic arm or
wheeled robotic platform this constraint is naturally given by the base frame. For a humanoid
robot the torso is considered the best option, as it is a casual point to fix a humanoid, is
located close to the center of mass and is a relatively central point in the kinematic tree. It is
necessary that every DoF can be actuated freely. Impacts with the DoF limits or on any objects
surrounding the robot interfere with the motion generation and sensory sampling. This is no
limitation as in general collisions during calibration procedures are usually avoided. Given
full coverage, artificial skin can automatically detect any collision. The robot needs to be
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equipped with at least one skin cell per body part. Only then, it is possible to unambiguously
discriminate the sequence of joints and body parts of the robot’s kinematic tree (see Fig. 5.3).
We currently only support revolute DoFs, which covers the grand majority of robots. However,
an extension to include linear joints is possible.

5.2.1.2. Physical Formulation

FIGURE 5.4. The figure shows an exemplary functional dependency between gravity mea-
surements of distributed accelerometers (blue), the joint axes and joint position variables
(black), towards the position of the accelerometers in the serial kinematic chain. The grav-
ity measurement (3ggg) on the end-effector is for example affected by both joint axes, while
the one on the static body part (1ggg) is independent of both.

Actuating one revolute degree of freedom (DoF) at a time generates two dynamic and one
static contributor (refer to Sec. 5.4.2 or Sec. 5.3.1.2). Both dynamic effects (centripetal and
tangential acceleration) vanish if the length of the radial vector between the joint axis (d) and
the accelerometer (u) (urrru,d) is close to zero. For skin cells close to the axis of motion, it is
difficult to extract an influence from noise. Here, we use the static component, the rotated
gravity vector uggg[n], which is independent of translations. Rigid body kinematics enforce the
same rotation for all accelerometers located on the same body part. All skin cell (u) gravity
measurements (ugggu,d) can be expressed as a function of the position variables (θd) of the joints
between the static root and the body part carrying the skin cell (see Fig. 5.4). Whether a
skin cell (u) is dependent on a DoF (d) or not, is detected by changing the position of one
DoF after the other, while monitoring the gravity vectors measured before (ugggu,d(t)) and after
(ugggu,d(t +4T )) the incremental (4θd) motion around each joint axis (u jjjd):

ugggu,d(t +4T ) = vrrotvec2mat(u jjjd,4θd) · ugggu,d(t) (5.1)
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If the distance between two normalized gravity vectors gggu,d is above a pre-defined limit (lth),
the correlation entry (amu,d) in a binary table, called activity matrix (A), is set to true:

amu,d =

∥∥∥∥∥ ugggu,d(t)∥∥ugggu,d(t)
∥∥ − ugggu,d(t +4T )∥∥ugggu,d(t +4T )

∥∥
∥∥∥∥∥> lth , amu,d ∈ {0,1} (5.2)

Problems occur, whenever a joint axis is aligned to the gravity vector. In this case the gravity
vector is the eigenvector of the rotation matrix, the measured gravity vectors do not change
and matrix entries are falsely set to ‘0’:

ugggu,d(t +4T ) = vrrotvec2mat
(ugggu,d(t),4θd

)
· ugggu,d(t) =

ugggu,d(t) (5.3)

Since every motion must produce an effect at least on one body part, we are able to detect this
singular situation. To overcome it, multiple activity matrices of the same robot are combined
with an element wise logical ‘or’. A secure approach to generate two complementary activity
matrices is to rotate the static body part (root) of the robot around one of the horizontal axes,
e.g. a ‘standing’ and a ‘lying’ humanoid. In cases where the joint axes directly connected to
the root are not vertical, one position incremental and one position decremental sequence on
every DoF is sufficient.

5.2.2. Algorithm

Algorithm 5.1 Exploration of the kinematic tree
1: Detect number of available skin cells (U) and revolute DoFs (D)
2: Move one DoF at a time, sampling all skin cell gravity vectors
3: Create activity matrix AAAU×D, thresholding the samples
4: Merge skin cells with similar row vectors in AAA to body parts
5: Merge DoFs with similar column vectors in AAA to joints
6: Extract connection sequences from row vectors
7: Detect the reference body part (RS)
8: Determine available end-effectors
9: Assemble a serial sequence for a each robotic limb (manipulator)

For all further steps, we infer that a valid activity matrix has been acquired (refer to Sec. 5.2.1.2).
In each step, the results are automatically evaluated for errors, e.g. DoFs must feature at least
one positive entry in the activity matrix to exclude rotations around the gravity axis (refer to
Equ. 5.3). This error detection is important for an autonomous system.
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FIGURE 5.5. Steps of the kinematic tree exploration algorithm (refer to Alg. 5.1) for an ac-
tivity matrix representing a “simulated” humanoid robot test case (see Fig. 5.3). Available
skin cells and degrees of freedom (DoF), as well as detected body parts and joints are
automatically labeled with consecutive identification numbers (IDs).
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SECTION 5.2 Self-exploration of the Kinematic Tree

5.2.2.1. Segment and Joint Merging

Skin cells that are located on the same body part present the same motion ‘activity’ and are
merged into body parts (see Fig. 5.5.III). Similarly, all DoFs between body parts are merged
into its corresponding joints. This leads to a merged matrix, correlating joint and body part
activities (see Fig. 5.5). The number of rows gives the number of detected body parts while
the number of columns provides the number of joints. This is common for a tree like robotic
structure, where the number of body parts (S) must be higher than the number of joints (J), i.e.
S = J+1.

5.2.2.2. Joint Segment Connectivity

The merged activity matrix must be sortable to a strictly lower triangular form (see Fig. 5.5).
If this is not true, one of the given constraints has been violated (refer to Sec. 5.2.1.1), e.g.
there are body parts without skin cells. Our algorithm progresses along the secondary lower
diagonal. For each column of the secondary lower diagonal we perform a column wise search
of common elements, excluding only the current diagonal element. For example in Fig. 5.5.III,
we can see that joint 2 (column 6) connects body part 3 (row 7) with body part 4 (row 3).

5.2.2.3. Segments and Limbs

The extracted joint/body-part connectivity represents a hierarchical kinematic tree. The static
reference body part (root) of the robot is the null row vector of the merged activity matrix.
End effector body parts (leaves), like the finger tips of a humanoid, exactly connect to a single
joint. Body parts that connect more than two joints, like the palm of a humanoid, are inner
nodes and can serve as an intermediate reference for sub-manipulators. A limb is a kinematic
chain, starting from a reference body part and ending at an end-effector or inner node.

5.2.3. Experiments

In order to verify our approach, we performed kinematic tree exploration experiments with
three different robot platforms: 1) with a simulated model humanoid (i.e. fixed torso); 2) with
a KUKA light weight robotic arm mounted on a horizontal stand (i.e. fixed base); 3) with
the upper body of a HRP-2 humanoid robot while balancing (i.e. floating base). In all the
cases we were able to reliably extract the kinematic tree. For the simulated humanoid, we
manually extracted the activity matrix (see Fig. 5.5) from the stick-man model (see Fig. 5.3).
In this thesis, we focus only on the most interesting experiment on the HRP-2. In this case,
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74 skin cells have been distributed on the upper body of HRP-2 (see Fig. 5.2), while having
control on 14 actuators (DoFs) of the left and right arm. All skin cell gravity vectors were
measured 500 ms before and 500 ms after (to attenuate vibrations) each postural change by
4θd = 0.1rad. We sampled each vector with an averaging window of 1.0 s length. The total
exploration lasts approximately 70 seconds and can be easily sped up by tuning the previous
parameters. A binarizing threshold of lth = 0.01g was applied (refer to Equ. 5.2), which is
10% of the maximum value caused by a 0.1 rad rotation around an axis orthonormal to gravity
(refer to Alg. 5.1). The chosen threshold has proven to be sensitive enough, but is still robust
enough against sensor noise and balancing motions of the robot. We did not detect any failure
in all (N ≈ 10) conducted experiments. The result of the exploration can been seen in detail
in Fig. 5.2.
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5.3. Self-acquisition of an Inverse Jacobian like Mapping

X

V

V

X

X

X
X

Tactile Reaction Robot Reaction

FIGURE 5.6. The figure shows the similarity of the sensory-motor map to an inverse Jacobian
matrix (uJ−1

d (θθθ)), mapping tactile stimulations, generating desired contact point velocities
(uẋxxu), into joint velocities (ωωωu).

In this section, we introduce an inverse Jacobian like mapping – the sensory-motor map2.
This self-acquired lookup table is used to map multi-modal tactile reactions into joint velocity
reactions of the robot, like an inverse Jacobian matrix (see Fig. 5.6). It can be used when a
full kinematic estimation is not possible or necessary. The sensory-motor map is organized in
tiles, each directly linked to a pose of the robot. Tiles are generated during an initial phase to
supply a set of key poses for the desired workspace. In operation (see Fig. 5.8), our algorithm
automatically selects a tile with minimum euclidean distance (measured in the joint space)
to the actual pose of the robot. Every tile contains a set of joint velocity vectors to directly
transfer multi-modal tactile stimuli on the skin cells into joint motions. Currently, we only
utilize one joint velocity vector, allocated to the motion along the surface normal of each cell,
which is sufficient for a variety of multi-modal reactions, e.g. temperature or proximity. The
two other sideways translational directions can be easily added by reformulating our weight
extraction equation (see Equ. 5.12). Rotational components have not yet been implemented,
however a similar approach can be implemented using gyroscopes, magnetometers or gravity
samples. For most tactile applications, the three translational components will be sufficient.

2Work in this section has been published in [Mittendorfer and Cheng, 2011b] and [Mittendorfer et al., 2015].

103



CHAPTER 5 Body Schema for Sensory-motor Control

Our approach only requires control on the joint axes and a quasi-static base/torso. We use an
internal observer and are not limited by occlusion or any external components. Due to the
touch-less approach, our method is able to acquire its information in a very short time, even
for a high number of distributed skin cells.

5.3.1. Theory of Operation

5.3.1.1. Working Principle

In order to acquire all weight values of a tile, our algorithm applies dynamic motion pattern
to all actuated joint axes, one after the other. Our algorithm then evaluates the effects each
motion had on our skin cells using the information from the built-in 3-axis accelerometer. A
high acceleration in the desired direction returns a high score, while unwanted motions in the
other directions are penalized with low scores. Only few constraints have to be taken into
account during the acquisition of the map: 1) a fixed robot base frame; and 2) a sufficient
unconstrained motion range around every robot pose for the exploration. In principle, our
approach is based on three theorems: 1) Every sensor modality on our multi-modal skin cell
has a preferred direction in which motion increases or decreases the sensor excitation, e.g. the
proximity sensor along the local surface normal; 2) The robot has an explicit central point in
the kinematic tree which grounds reflex like, immediate reactions; 3) Reactions from different
sensor modalities and locations can be meaningfully super-imposed. The first theorem implies
that we are able to use the motion sensor on every skin cell, in order to evaluate appropriate
reactions and transfer these to other modalities. To achieve this, it is necessary to know the
alignment between the new sensor modality and the motion sensor. In our case this informa-
tion is available on each skin cell. The second theorem makes possible to reuse previously
explored sensory-motor weights and apply them to generate reactions around the same or suf-
ficiently close poses. Since we use a relative motion sensor, it is necessary that a reference
point is quasi-static during the whole exploration phase. With a robotic arm, this central point
is given by the base, while for a humanoid robot, we have to artificially provide this fixation,
e.g. by fixing the torso or hip in a calibration stand. The third theorem sum reactions from
different sensor modalities and skin cells before mapping this combined information into mo-
tor actions. Conflicts between reactions have to be solved at a higher level. Here, we only
propose a standard interface per skin cell for a high level controller (refer to Sec. 5.3.3 and
Sec. 6.2).
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FIGURE 5.7. The figure shows the components of the accelerometer reading, when actuating
one revolute joint at a time.

5.3.1.2. Physical Formulation

In this paragraph, we briefly describe the physical effects of an isolate revolute joint motion
on accelerometers mounted on the actuated body parts (see Fig. 5.7). Neglecting skin defor-
mations, every skin cell follows the acceleration of its mounting point. Given a single static
reference body part (w), a change in velocity ( d

dt
wωd(t) = wαd(t)) of a revolute DoF (d) has

a direct influence on the acceleration uaaau,d of skin cell (u), which measures three superposed
effects:

(a) The tangential acceleration w
tanaaau,d , which is dependent on the revolute acceleration wαααddd

and the radial vector wrrru,d , in between DoF (d) and the accelerometer (u):

w
tanaaau,d = w

αααddd×wrrru,d (5.4)

(b) The centripetal acceleration w
cpaaau,d , which is dependent on the angular velocity wωωωddd as well

as the vector wrrru,d:
w
cpaaau,d = w

ωωωddd× (w
ωωωddd×wrrru,d) (5.5)

(c) And the gravity vector wggg.

An accelerometer (u) senses all these effects at the same time, in its local coordinate system:

uaaau,d = uRw ·
(wggg+w

tanaaau,d +
w
cpaaau,d

)
(5.6)
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The rotation matrix uRw between the static reference frame and the accelerometer, as well
as the vector wrrru,d , are dependent on the unknown kinematics of the robot. Here, we exploit
the fact that the tangential acceleration vector is co-linear with the angular motion vector.

5.3.2. Generation of a Sensory-Motor Map

The sensory motor map is a container for the explored weight values, acting as a lookup table
for the mapping of tactile reactions (see Fig. 5.8). Each tile of the sensory motor map is
explored in a pose (p = [1,2, ...,P]), and features up to 3 sets of matrices, which are related
to the 3 translational directions (ueeez,ueeey,ueeez). The dimension of each matrix is defined by
the available skin cells (u = [1,2, ...,U ]) and degrees of freedom (d = [1,2, ...,D]), leading
matrices of size (U ×D). Due to our current set of sensor modalities, we only use one matrix
which is collinear to the surface normal (ueeez), with the values zwu,d,p. Each tile also contains a
vector of the robot pose that has been used for the exploration. This helps to recall the closest
(e.g. quadratic distance) memorized pose when mapping tactile reactions into robot reactions.

5.3.2.1. Exploration Pattern

In order to evaluate the influence of each revolute degree of freedom (DoF) (d), on the transla-
tional motion of a skin cell (s), in a pose (p), the robot applies test pattern to one DoF after the
other (see Fig. 5.9). For the translational components, only the tangential acceleration u

tanaaau,d

can be utilized, since it is collinear with the local motion vector. The influence of the cen-
tripetal acceleration is minimized by keeping the angular velocity ωd low. The rotated gravity
vector is nearly constant, and thus subtract-able, when the DoF motion only covers a small
angular range4θd . In order to maximize the tangential acceleration, the angular acceleration
αd has to be high. In order to maintain smooth accelerometer readings, it is necessary to con-
trol the angular velocity ωd(t), the acceleration αd(t) and the jerk ζd(t). It is desirable that
the DoF returns to its initial position θd(0) = θd(T ) once the exploration pattern stops at time
T. A velocity profile ωd(t) that fulfills all the above requirement is a sine wave:

θd(t) =
A

2π f
(1− cos(2π f t)) (position) (5.7)

ωd(t) = Asin(2π f t) (velocity) (5.8)

αd(t) = 2π f Acos(2π f t) (acceleration) (5.9)

ζd(t) =−(2π f )2 Asin(2π f t) (jerk) (5.10)
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FIGURE 5.8. The figure shows the control loop of the tactile reaction control system using a
sensory-motor map – Tactile stimulations are sensed by the multi-modal skin cells. A low-
level reaction controller evaluates the sensor input and provides an interface for a higher
level controller. All reactions for a single skin cell are super imposed and then multiplied
by the according row of the current sensory-motor map tile. A multiplexer automatically
selects a tile of the sensory motor map with the minimal euclidean distance to the current
pose of the robot. Finally, all generated velocity commands are super imposed and sent to
the robot.

These equations help us to dimension the DoF exploration pattern. The selection of A is lim-
ited by the maximum DoF velocity and the tolerable influence of the centripetal acceleration.
2π f A has to be lower than the maximum DoF acceleration and below a value that shows unde-
sired dynamic side effects, e.g. base motions. A

2π f has to be small enough to be able to neglect
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FIGURE 5.9. The figure shows data recorded during the sensory-motor map exploration of
pose I, shown in Fig. 5.12, with a Kuka LWR robotic arm – The first graph shows the
velocity pattern the robot performs on every revolute degree of freedom (DoF), one after
the other. The highlighted area shows compliant coupling of DoFs due to the dynamics of
the distributed mass. The second graph shows the angular DoF positions during exploration
of pose I. The pattern amplitude is low and every DoF returns to its initial position. The
last graph shows unfiltered accelerometer data from skin cell with ID 8. The highlighted
accelerometer readings explain the generation of a high normal weight for DoF with ID 3,
but a low one for DoF with ID 1. The readings show high z and low x/y activity for DoF
with ID 3 and lower z and high x/y activity for DoF with ID 1. The surface normal of every
skin cell is aligned with the z axis of the accelerometer.
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the influence of the rotating gravity vector and the postural change of the robot. However
2π f A, has to be sufficiently large that the measurement of the accelerometer uaaau,d of skin cell
(u) stands out from its intrinsic sensor noise. A windowing function W (t) is necessary to cut
the executed pattern in time ωex,d(t) and stop the robot at its initial posture:

ωex,d(t) =W (t) ·ωd(t) (5.11)

We currently utilize a rectangular function, cutting the oscillation after one period (T = 1/ f ).
In general, we use the same empirical values across different robots: A = 0.4rad s−1, f = 2Hz
and T = 0.5s, e.g. tested on UR-5, HRP-2 and the KUKA LWR.

5.3.2.2. Weight Extraction

A distinct value quantifies the contribution of a DoF (d), to the desired motion of a skin cell
(u) in the current robot pose (p). We first subtract the mean value from all accelerometer axes,
in order to eliminate constant sensor offsets and the gravity vector uggg. Then, we apply a digital
low pass filter, with a bandwidth B larger than 10 times the pattern frequency f , to eliminate
noise and vibrations. Finding the minimum and maximum, we calculate the amplitude for
every axis (see Fig. 5.10), here along the z-axis ueeez of the accelerometer zAu,d,p:

zAu,d,p = max(zau,d,p)−min(zau,d,p) (5.12)

In order to discriminate if the desired motion is in-phase or anti-phase, we evaluate if half of
the minimum or the maximum is located first in time (MATLAB terminology, see Fig. 5.10):

zsu,d,p = sign
(

find
(

zau,d,p == max(zau,d,p)/2, ‘first’
)
− (5.13)

find
(

zau,d,p == min(zau,d,p)/2, ‘first’
))

The weight zwu,d,p, in the local skin cell surface normal direction ueeez, is now computed as:

zwu,d,p = zsu,d,p · zAu,d,p

xAu,d,p + yAu,d,p + zAu,d,p
(5.14)

Weights have values between [−1;1], being close to ±1 if the DoF motion fully correlates
with the desired translational motion, while being 0 in orthogonal cases. Weights in the shear
directions ueeex and ueeey, are calculated by replacing the numerator with xAu,d,p and yAu,d,p.
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FIGURE 5.10. The figure shows the weight extraction from accelerometer data – The plots
show unfiltered and bandpass-filtered data from skin cell with ID 8 on a pattern generated
by the revolute degree of freedom with ID 2 in pose I (see Fig. 5.12). xA8,2,I , yA8,2,I and
zA8,2,I ideally constitute of the maximal amplitude of the tangential acceleration tanaaa8,2,I
(see Fig. 5.7). The first occurrence of the half of the minimum (min(za8,2,I)/2) and the
half of the maximum (max(za8,2,I)/2) is a measure of the sign (out of phase/in phase) in
between motion generation and sensation.

5.3.3. Mapping of Multi-Modal Tactile Stimuli

The sense of touch allows to implement meaningful direct reactions on multi-modal tactile
stimulation – e.g. to avoid self- or environment collisions or to let users kinesthetically guide
the robot. The advantage of instantiating one multi-modal reaction controller for every skin
cell (u) is the scalability of this approach – tactile behavior is programmed for the smallest
piece of skin and expanded to the whole robot surface. Since all cellular parameters (tm,u,
Pm,u) are accessible by the high level control system, spatial reactions are set up for a specific
task. Here, we compute a proportional (Pm,u) gain motor reaction for every multi-modal (m)
sensor value (ρm,u) of a skin cell (u) above a pre-defined threshold (tm,u). All (M) multi-modal
reactions on a cell are then accumulated and mapped to a desired cellular velocity reaction
vector, via the sensory-motor map. Super-imposing the resulting velocity vectors from all (U)

110



SECTION 5.3 Self-acquisition of an Inverse Jacobian like Mapping

skin cells, leads to a global tactile robot joint velocity reaction (ωωω tactile):

ωωω tactile =
U

∑
u=1

(
wwwu,p ·

M

∑
m=1

(ρm,u > tm,u) · (ρm,u− tm,u) ·Pm,u

)
(5.15)

Modalities are be inhibited, promoted or inverted by setting their gain (Pm,u), please see exam-
ples in Sec. 6.2. The threshold (tm,u) determines the activation level and is important to sup-
press sensor noise and offsets. In general, we act directly on persistent sensor data (e.g. force
or proximity), omitting additional reaction delays and computational efforts. In case smoother
reactions are desired, either the stimuli or the executed response can be extended/filtered in
time, damping the whole system. With time singular tactile stimulations, e.g. the detection of
impacts via vibrational cues like in [Mittendorfer and Cheng, 2011a], an elongated temporal
response is inevitable.

5.3.4. Experiments

In this subsection, we show results from our initial experiments on a KUKA LWR arm. Further
results can be seen in Chapter 6, where the sensory-motor map is used for tactile kinesthetic
guidance and a reactive grasping approach on a full-sized humanoid.

5.3.4.1. Setup

In order to validate our approach, we distributed 15 of our skin cells (version 1.1, refer to
Sec. A.4) on a KUKA light weight robotic arm. Fig. 5.11 illustrates the distribution of skin
cells and revolute degrees of freedom (DoF) along the serial kinematic chain. The generator
for the sinusoidal DoF velocity pattern was set to an amplitude of A = 0.4rad s−1 with a
frequency of f = 2Hz and a length of a single wave of 500 ms, cut by a rectangular window
function. The acceleration recording was started 500 ms before a DoF pattern was launched
and stopped 500 ms after the pattern has finished. We then detected touch by applying a
threshold of 0.3 on the proximity sensor raw data. This represents a human hand being closer
than 2 mm with skin cell version 1.1 (refer to Sec. A.4). The exited modality reaction strength
was set to 0.4 rad s−1 with a binary controller.
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FIGURE 5.11. The figure shows the experimental setup for testing the acquisition of the
sensory-motor map. Multiple skin cells (blue) and revolute degrees of freedom (green)
have been distributed along the entire serial kinematic robotic chain.

5.3.4.2. Results

Fig. 5.12 shows two out of many poses we tested. The skin cells with ID 11-14 always show
similar weights, as they are located closely and exhibit the same orientation. Skin cell ID
10 always shows similar amplitudes, compared to ID 11-14, but with opposite sign. This is
correct as the skin cell has been mounted on the opposite side of the box like gripper. Touching
the robot at skin cell with ID 11-14 makes the robot evade the contact along the surface normal
(ueeez), the more skin cells are simultaneously touched, the stronger is the reaction. This is due
to the super imposing behavior of the reaction controller. Touching two opposite cells, e.g.
skin cells with ID 10 and 11, the reaction is nearly canceled. There is minor motion left, due
to inherent sensor noise, small alignment mismatches and coupled motions during exploration.
Changing from pose I to II, the weights of DoF with ID 4 remain similar, while in the second
pose the weights of DoF with ID 2 gain a significant influence for skin cells with ID 11-14. A
touch reaction in pose II is also stronger than in pose I. This shows the demand to normalize
reactions and the influence postural changes have on the sensory motor map. Our approach can
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FIGURE 5.12. The figure shows two sensory-motor map tiles for two different poses of a Kuka
LWR arm equipped with 15 skin cells. Here, we only show weight values for the mapping
of reactions along the local surface normal (ueeez) of each skin cell (u).
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also be applied to motion constrained skin cell locations, e.g. close to the kinematic reference.
An example is skin cell ID 4, which is located on the 4th body part with only 3 DoFs before the
robot base. Our algorithm found a high weight for DoF ID 2, which we verified by touching
the skin cell. As our approach is singularity free, it does not exhibit fast motions that scare
people.
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5.4. Automatic Kinematic Modeling of Manipulators

0 0.2 0.4 0.6 00.10.2

0

0.1

0.2

0.3

0.4

0.5

y [m]

J5

ACCJ6

J4

J3

Kinematic Model

x [m]

J1

J2

z 
[m

]

FIGURE 5.13. The figure shows the result of our method, acquiring the kinematic model of the
left arm of TOM (Tactile Omni-directional Mobile Manipulator), with an accelerometer
mounted on the end effector frame.

In this section, we present an approach to automatically acquire the kinematic model of
a robot equipped with a multi-modal, modular artificial skin3. Here, we use the tri-axial
accelerometer built into every cell of our artificial skin, along with a set of static and dynamic
open-loop test motions performed by the robot. With a circle point analysis we extract the
relevant vectors to assemble a forward kinematic model. In comparison to existing approaches,
our method builds and calibrates a kinematic model with minimal motions around the initial
workspace, does not require any external metrology system and works with low-grade motion
sensors. A similar kinematic estimation approach by Canepa et al. [Canepa et al., 1994] was
not able to handle our low-grade accelerometer and safe minimal motions. We demonstrate the
robustness of our approach by estimating the kinematic parameters of an industrial Universal
Robots’ UR-5 robotic arm mounted on an inertial dual arm platform (see Fig. 5.13).

3The work in this section has been published in [Mittendorfer et al., 2014b].
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5.4.1. Robotic System

5.4.1.1. Robot Requirements

In order to cover a broad hardware spectrum, minimum requirements are needed from the
robot platform. The robot has to accept (emulated) velocity control signals and has to return
position feedback that is differentiable (2 times) to joint accelerations. In this first stage, our
approach only handles revolute joints, which is the most common joint used for robots (i.e.
humanoids). At least one reference body frame, like the torso of a humanoid or base of a
mobile manipulator, has to remain stationary during the whole process.

5.4.1.2. Accelerometer Calibration

The utilized BMA250 tri-axial accelerometer is a very small-scale (2x2x1mm) and low-cost
sensor. This has benefits, e.g. a close to common center for all axes, but also drawbacks. Al-
though calibrated by the manufacturer, the accelerometer shows significant offsets and some
gain differences. The given ±0.08g offset on each axis contributes to a vector estimation mis-
alignment of up to±5◦. We developed a quick calibration routine that estimates all three gains
(uGGG) and offsets (uOOO) by forcing the norm of gravity samples (ugggp) in (P=6) complementary
poses (p) on the unit sphere:

[uGGG,uOOO] = min
uGGG,uOOO

P

∑
p=1

(
‖ugggp‖−1

)2 (5.16)

In comparison to other approaches, our method does not need exact alignments or special
calibration equipment. Performing two runs after each other, the offset corrections for each
axis in the second run drop to ≤±0.001g.

5.4.2. Accelerometer Circle Point Analysis

In the following, we show how to extract the circle point vectors (u jjjd , urrru,d) for each joint (d),
from accelerometer (u) measurements (uaaau,d[n]) during quasi-static and dynamic test motions
performed on one joint axis (d) after the other. For an angular motion around a joint axis (u jjjd)
(see Fig. 5.14) the accelerometer is subject to the sum of three accelerations:

uaaau,d[n] = u
tanaaau,d[n]+ u

cpaaau,d[n]+ ugggu,d[n] (5.17)
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FIGURE 5.14. The figure shows the circle point vectors (u jjjd and urrru,d) along with the accel-
eration components (uggg,utanaaau,d ,ucpaaau,d) an accelerometer (u) is subject to on a revolute joint
axis (d) motion.

All components depend on one of the joint variables (θd , ωd = θ̇d , αd = ω̇d) and the circle
point vectors (u jjjd , urrru,d):

ugggu,d[n] = vrrotvec2mat(u jjjd,θd[n]−θd[0]) · ugggu,d[0] (5.18)

u
tanaaau,d[n] = αd[n] · ‖urrru,d‖ ·

(
u jjjd×

urrru,d

‖urrru,d‖

)
(5.19)

u
cpaaau,d[n] = ωd[n]2 · ‖urrru,d‖ ·

(
u jjjd×

(
u jjjd×

urrru,d

‖urrru,d‖

))
(5.20)

In the following we utilize three features: 1) the two dynamic components, the tangential
(u
tanaaau,d[n]) and centripetal (u

cpaaau,d[n]) acceleration, which are orthogonal to each other; 2) the
directions of the dynamic components are stationary in accelerometer (u) coordinates; 3) each
component in Equ. 5.18 depends on another joint variable (θd , ωd , αd). This enables us to
design specific motion patterns and algorithms for each circle point vector.

5.4.2.1. Exploration Motions

Similar to [Canepa et al., 1994], we execute static and dynamic motions on one revolute joint
axis (d) after the other. These designed motions are:
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FIGURE 5.15. The figure shows the three special test motions we utilize for the CPA.

The quasi-static motion (QSM) is a three step trapezoid velocity function (see Fig. 5.15).
The joint travels both directions and stops at the initial position (θd[0]). The QSM is designed
to quickly generate gravity vector measurements, while minimizing other motion influences.
We commonly use a trapezoid function with the following heuristic parameters: max(|ωd|) =
0.2rad s−1,4θd ≤±0.53rad and Tramp = 1s.

The windowed sine motion (WSM) is a sinusoidal velocity control function with a Gaus-
sian window function (see Fig. 5.15):

ωd,WSM(t) = e
− (t−Tm)2

2Tσ
2 (A · sin(2π f t)) (5.21)

The WSM is designed to repeatedly generate high joint accelerations with a varying amplitude,
while minimizing position changes, joint velocity and jerk. This is necessary to robustly
estimate the direction of the tangential acceleration vector. We commonly use the following
heuristic values: A = 0.5rad s−1, f = 2Hz, Tm = 2.5s, Tσ = 0.7s.
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The Gaussian punch motion (GPM) is a velocity function, combining a positive and a
negative Gaussian pulse (see Fig. 5.15):

ωd,GPM(t) = A ·
(

e
− (t−Tm)2

2Tσ
2 − e

− (t−2Tm)2

2Tσ
2

)
(5.22)

The GPM generates a smooth, traceable polarity in joint accelerations, while minimizing po-
sition changes, joint velocity and jerk. This is necessary to correct the sign of the tangential
acceleration vector, which can not be extracted from the symmetric envelope of the WSM. We
commonly use the following heuristic values: A = 0.5rad s−1, Tm = 0.5s, Tσ = 0.05s
In general, at least a quasi-static and a dynamic motion primitive are required to separate the
static and dynamic measurements from the accelerometer (refer to Equ. 5.17). The further
separation of the dynamic primitive into the WSM and GPM supports the robust estimation of
the direction and polarity of the tangential motion vector.

5.4.2.2. Joint Axis Unit Vector Estimation
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FIGURE 5.16. The figure shows accelerometer samples for the joint axis estimation of the

second UR-5 joint, sampled during QSM, along with the estimated joint axis.

The joint axis unit vector (u jjjd , ‖u jjjd‖ = 1) are estimated in accelerometer coordinates (u)
from the gravity vector samples recorded during QSM (see Fig. 5.16). We first tried to re-
produce the result by Canepa et al. [Canepa et al., 1994], enforcing a constant dot product
between the joint axis and the gravity samples. Alas this approach was not successful since
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Algorithm 5.2 Estimation of joint axis vector
1: for d = 1 to D do
2: Sample uaaau,d [n], θd [n] while QSM on joint (d)
3: Solve u jjjd = min

u jjjd

(eu,d)

it is not explained how to reliably maintain the unknown value of the constant dot product.
Sensor noise and a small angular motion prevent the accurate estimation of the dot product,
especially close to the singular case where the joint axis is collinear with gravity. We finally
solved the estimation problem minimizing an enhanced three component error function to-
wards the unknown joint axis:

u jjjd = min
u jjjd

(
3

∑
i=1

(
Wi · eu,d,i

))
(5.23)

The first error component is a high priority (e.g. W1 = 1000) embedded constraint and enforces
the unit length of the axis:

eu,d,1 = (‖u jjjd‖−1)2 (5.24)

The second mid priority (e.g. W2 = 10) error component minimizes the variance of the dot
product for all (N) samples:

eu,d,2 =
N

∑
n=1

(
ugggu,d[n]

T · u jjjd−
1
N

N

∑
n=1

ugggu,d[n]
T · u jjjd

)2

(5.25)

The third soft (e.g. W3 = 1) error is the squared length of the difference between the measured
gravity samples and vectors predicted by an angle axis rotation (vrrotvec2mat(axis,angle))
from the initial gravity vector (ugggu,d[0]) and joint position (θd[0]):

eu,d,3 =
N

∑
n=1
‖vrrotvec2mat(u jjjd,θd[n]−θd[0]) · ugggu,d[0]− ugggu,d[n]‖2 (5.26)
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SECTION 5.4 Automatic Kinematic Modeling of Manipulators

This last component serves as a stabilization term around singular cases and provides cor-
rect axis polarity in non-singular cases. The global minimization problem is solved with a
derivative free local minimizer (GNU Scientific Library, Nelder and Mead Simplex, nmsim-
plex2rand) and multiple starting points on the unit sphere (e.g. ±eeex,±eeey,±eeez). We commonly
use the following heuristic parameters: an initial step size of 0.01 and a termination size
of 1e-9 or 2000 iterations. Gravity samples are normalized and Gaussian filtered (size=11,
sigma=2.83) before utilization.

5.4.2.3. Tangential Unit Vector Estimation
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FIGURE 5.17. The figure shows an example of the filtered raw data for the tangential unit
vector estimation of the 2nd UR-5 joint, sampled during WSM, along with the estimated
tangential, joint and radial unit vector axes and gravity.

The direction of the tangential unit vector (unnnu,d) is estimated in accelerometer coordinates
(u) from the dynamic acceleration samples recorded during WSM, while its polarity is cor-
rected by the samples recorded during GPM. In order to maintain the dynamic acceleration
components (u

dynaaau,d[n]), we first subtract gravity (see Equ. 5.18) from the raw data:

u
dynaaau,d[n] = uaaau,d[n]− ugggu,d[n] (5.27)
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Algorithm 5.3 Estimation of tangential vector
1: for d = 1 to D do
2: Sample uaaau,d [n], θd [n] while WSM on joint (d)
3: Subtract gravity from samples⇒ u

dynaaau,d [n]
4: Subtract accelerations along joint axis⇒ u

dynâaau,d [n]
5: Assemble sample matrix⇒ uAd
6: SVD of sample matrix⇒ [uUd ,

uSd ,
uVd ]

7: Extract largest eigenvector⇒ unnnu,d
8: Correct sign of tangential unit vector with GPM⇒ un̂nnu,d

Next, we subtract uncorrelated dynamic motions along the known joint axis (u jjjd):

u
dynâaau,d[n] = u

dynaaau,d[n]−
(
(u jjjd)

T · udynaaau,d[n]
)
· u jjjd (5.28)

We also subtract the remaining mean value in order to prevent that an incomplete gravity
subtraction interferes with the following singular value decomposition:

u
dynãaau,d[n] = u

dynâaau,d[n]−
1
N

N

∑
n=1

u
dynâaau,d[n] (5.29)

We then assemble a matrix (uAu,d) from all samples:

uAu,d =
[

u
dynãaau,d[1], ...,u

dynãaau,d[N]
]T

(5.30)

And perform a singular value decomposition (SVD) on this sample matrix :

[uUu,d,
uSu,d,

uVu,d] = svd(uAu,d) (5.31)

For a sinusoidal velocity control function the relation between the maximum amplitude of the
tangential and centripetal acceleration is given by the parameters ( f and A):

max(tanau,d)

max(cpau,d)
=

max(αd)

max(ω2
d )

=
2π f

A
(5.32)

Due to the orthogonality of the tangential and centripetal acceleration, and the dominance in
case of the chosen sinusoidal parameters (A = 0.5rad s−1, f = 2Hz), the tangential unit vector
is the largest/first eigenvector of the SVD (see Fig. 5.17):

unnnu,d = [V11V21V31]
T (5.33)
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SECTION 5.4 Automatic Kinematic Modeling of Manipulators

Due to the line symmetry of the Gaussian window function, the polarity of the tangential
vector can not be extracted from the WSM. Therefore we have developed the point symmet-
ric GPM. Again, we subtract the gravity vectors from the raw accelerometer data. We then
calculate the tangential amplitude by multiplying the dynamic acceleration samples with the
previously extracted tangential vector:

tanau,d[n] = (unnnu,d)
T · udynaaau,d[n] (5.34)

This tangential amplitude (tanau,d[n]) is then correlated with the joint acceleration (αd[n]) to
determine the phase:

uCd[m] =
+∞

∑
n=−∞

tanau,d[n] ·αd[n+m] (5.35)

In case the vector is anti-phase, we correct its polarity (un̂nnu,d):

un̂nnu,d = copysign(1, |max(uCd)|− |min(uCd)|) · unnnu,d (5.36)

5.4.2.4. Radial Distance Estimation

The radial distance (ru,d) is estimated from the linear relation:

tanau,d[n] = αd[n] · ru,d (5.37)

Here, we apply a least squares linear fitting on the data set recorded during WSM:

ru,d = min
ru,d

N

∑
n=1

(tanau,d[n]− (ru,d ·αd[n]))2 (5.38)

It is important that the sensor samples in Equ. 5.37 (but also Equ. 5.27) have the similar sam-
pling rates and do not exhibit mutual delays. Signals with different sample rates are up/down
sampled to a common frequency. Delays are e.g. introduced by signal filters (up sampling,
noise reduction, differentiation), the utilization of a non real-time OS or communication de-
lays. We compensate delays (u4d) detected with a correlation of the off-line samples:

u4d = max
u4d

+∞

∑
n=−∞

(
(tanau,d[n]) ·αd[n+ u4d]

)
(5.39)
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Algorithm 5.4 Estimation of radial distance
1: for d = 1 to D do
2: Sample uaaau,d [n], θd [n], αd [n] while WSM on joint d
3: Subtract gravity from samples⇒ u

dynaaau,d [n]
4: Calculate tangential amplitude⇒ tanau,d [n]
5: Compensate mutual delays between αd [n] and tanau,d [n]
6: Fit least squares linear model⇒ ru,d

5.4.2.5. Calculation of Radial Vector

Finally, we compute the radial vector (urrru,d), pointing from the closest point on the joint axis
to the accelerometer origin:

urrru,d = ru,d ·
(un̂nnu,d× u jjju,d

)
(5.40)

5.4.2.6. Constraints

Our CPA algorithm has two important constraints: 1) joint axes may not be aligned with grav-
ity in order to discriminate their polarity; 2) a minimal radial distance is required to estimate
the tangential vector. The first constraint only affects the first axis, as subsequent joints axes
are automatically put into a different pose. For the first axis, either the base frame has to
change orientation or an additional method (e.g. visual observation) has to help with the bi-
nary decision. We are able to handle the second constraint in the common case that a whole
skin patch is mounted on the end-effector. If a too small radial distance is detected, another
skin cell can be chosen for the estimation.

5.4.3. Kinematic Model Extraction

In this subsection, we extract a kinematic model from the previously estimated circle point
vectors and a known sequence of joints (see Fig. 5.18). Two algorithmically complex methods
to extract minimal Denavit-Hartenberg (DH) parameters from a CPA are presented in [Moor-
ing et al., 1991]. In our case, we apply an algorithm that is simple and robust, and intrinsically
deals with the last transformation to the free accelerometer coordinate frame. The algorithm
first estimates all accelerometer-2-joint transformations from the circle point vectors. It then
assembles the forward kinematic model using those transformations and revolute joint models.
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SECTION 5.4 Automatic Kinematic Modeling of Manipulators

FIGURE 5.18. The figure shows the transformations of an exemplary kinematic chain model for
D = 3 single DoF joints. The accelerometer-2-joint transformations (blue) are estimated
by the CPA. The joint-2-joint transformations are then calculated in the initial pose and
multiplied with the joint rotation transformations to form a serial kinematic chain.

5.4.3.1. Accelerometer-2-Joint Transformations

In a first step, we calculate the homogeneous transformation (dTu) from the accelerometer
coordinate frame (u) to each newly defined joint coordinate frame (d). Similar to DH coordi-
nates we align the joint axis (u jjjd) with the z-axis (eeez). Furthermore, we define that the x-axis
is aligned with the radial vector (urrru,d) and the joint origin is located at the intersection of
the joint axis and the radial vector. The rotation matrix between both coordinate systems is
calculated with a Procrustes algorithm4. The two related vector sets (N and Md) that need to
be mapped are the corresponding axes of the coordinate frames (u and d):

N = [eeex,eeez]; Md = [
urrru,d

‖urrru,d‖
,u jjjd]; (5.41a)

The Procrustes algorithm solves this mapping using a SVD (also refer to Sec. 4.2.3):

[Ud , ΣΣΣd , Vd] = svd
(
N ·MT

d
)

(5.41b)

dRu = Ud · Σ̂ΣΣd ·VT
d (5.41c)

4P. H. Schonemann, “A generalized solution of the orthogonal Procrustes problem”, Psychometrika 31, pp.
1-10, 1966
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Σ̂ΣΣd =


1 0 0

0 1 0

0 0 det(Ud ·VT
d )

 (5.41d)

The homogeneous transformation is given as:

dTu =

dRu
dRu · urrru,d

000T 1

 (5.42)

5.4.3.2. Joint-2-Joint Transformations

In order to compute the joint-2-joint transformations in the initial pose, we require information
about the sequence of joints from the structural exploration. Here, we infer linearly increasing
joint IDs from the base to the accelerometer frame. The transformation between two consec-
utive joints (dTd+1) is calculated from the accelerometer-2-joint transformations:

dTd+1 =
dTu · d+1T−1

u (5.43)

5.4.3.3. Full Kinematic Chain Model

Now, we assemble the kinematic forward model from the base to the accelerometer on the end
effector frame, taking the joint positions (θd) into account. Each revolute joint (dTd′(θd)) is
modeled with a rotation (vrrotvec2mat(axis,angle)) around the z-axis (eeez):

dTd′(θd) =

vrrotvec2mat(eeez,θd[n]−θd[0]) 000

000T 1

 (5.44)

The kinematic chain (BTu(θθθ)) is then calculated from a concatenation of the known homoge-
neous transformations:

BTu(θθθ) =
BT1 ·

D−1

∏
d=1

(
dTd′(θd) · d

′
Td+1

)
·DTD′(θD) ·D

′
Tu (5.45)

Hereby the transformation from the first joint to the base frame (BT1) can be freely chosen
(e.g. BT1 = I4).
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SECTION 5.4 Automatic Kinematic Modeling of Manipulators

5.4.4. Experiments

In this section, we experimentally evaluate the performance of our approach by comparing it
to ground truth. All measurements have been performed with a 6-axis UR-5 robotic arm (Uni-
versal Robots), mounted on our custom built “Tactile Omni-directional Mobile Manipulator”
(TOM) robot (see Fig. 5.13). The sampling rate of the accelerometer is 250 Hz, the robot
control frequency is 62.5 Hz (interpolated to 125 Hz on the robot) and the robot sample rate is
125 Hz. All signals are converted to a common 250 Hz sample rate and run through Gaussian
filters (size = 11, sigma = 2.83). One complete estimation run approximately lasts for 180 s.

5.4.4.1. Ground Truth Circle Point Analysis

1 2 3 4 5 6
0

0.05

Joint Axis Deviation

ra
d

1 2 3 4 5 6
0

0.05

0.1

Radial Vector Deviation

ra
d

1 2 3 4 5 6
−0.01

0

0.01

Absolute Radial Distance Deviation

m

1 2 3 4 5 6
−0.15
−0.1

−0.05
0

Relative Radial Distance Deviation

%

Joint ID

FIGURE 5.19. The figure shows the deviation of the estimated CPA vectors to CPA vectors
extracted from an ideal kinematic model, in two different initial poses of the robot (red,
blue) with 5 trials in each pose.
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In this experiment, we compare the circle point vectors (u jjjd , urrru,d) estimated with our al-
gorithm, to the ground truth vectors extracted from an ideal kinematic model of the robot,
computed with the DH parameters of the robot and a known accelerometer placement. The
results in Fig. 5.19 show an angular deviation of≤ 0.05rad for the joint axis and≤ 0.09rad for
the radial vector, and a radial displacement of≤ 0.02m or≤ 11%, for 10 trials in two different
poses of the robot. The accuracy and precision of the radial vector alignment drops with the
decreasing distance (see Fig. 5.19, radial vector deviation), while the joint axis estimation is
independent of the localization (see Fig. 5.19, joint axis deviation). The radial distance devia-
tion absolutely increases and relatively decreases with the distance (Fig. 5.19, radial distance
deviation). Especially with small radial distances (� 3cm), motion (e.g. jerk and structure
vibrations) and sensor noise render the extraction of small tangential effects challenging. With
large radial distances, e.g. a fully extended robot arm, induced base motions are challenging.
Our heuristic motion parameter set is a good compromise for both.

5.4.4.2. Ground Truth Kinematic Model
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FIGURE 5.20. The figure shows the deviation of a kinematic model extracted with our method,
in comparison to an ideal kinematic model (calculated by Emmanuel Dean) with the DH
parameters of the robot and a known accelerometer placement.
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In this experiment, we compare our kinematic extraction algorithm to an ideal kinematic
model of the robot, computed with the optimal DH parameters of the robot and a measured
(visual alignment) accelerometer placement (see Fig. 5.13). Here, we take one set of the
previously estimated CPA vectors. Due to the free placement of the base frame, we need to first
register (BnewTBdh) both kinematic models in the initial pose. We then compare the global end-
effector transformation (BTu(θθθ)) of both models, executing large sinusoidal motions on all
(D) joints ( f = 1Hz,4θd =±π). The results in Fig. 5.20 show a translation error of≤ 0.05m
and a rotational displacement of the ideally aligned end effector coordinates (ueeex,ueeey,ueeez) of
≤ 0.09rad.

5.5. Summary

In this chapter, we introduced three methods to acquire sensory-motor control knowledge with
open-loop motions of the robot and feedback from the accelerometers integrated in every of
our multi-modal skin cells: 1) an algorithm to explore the kinematic dependencies of the
kinematic tree of a robot; and 2) an algorithm to acquire an inverse Jacobian like mapping
between tactile stimulations and robot reactions; 3) an algorithm to model and calibrate the
kinematic models of articulated robot manipulators. Using minimalistic static and dynamic
motions on one revolute joint axis after the other, we can acquire those parts of the body
schema in a very short time and without the need for potentially dangerous fast and large
ranging robot motions. First implementations on the upper body of a humanoid robot and
multiple industrial robotic arms show the transferability, scalability and robustness of our
approaches.
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CHAPTER 6

Integration/Applications

Few things are impracticable in themselves; and it is for want of
application, rather than of means, that men fail to succeed.

(Francois de La Rochefoucauld)

In this chapter, we show exemplary applications of the artificial skin system. We first in-
troduce a novel approach to grasp unknown objects with a full-sized, position controlled hu-
manoid robot only via tactile feedback and a self-explored body schema. We then provide ad-
ditional use cases, e.g. the exoskeleton robot that has been used during the opening-ceremony
of FIFA world championship 2014 or the two different industrial robot arms that have been
enhanced with multi-modal tactile sensitivity.

131





SECTION 6.1 Introduction

6.1. Introduction

FIGURE 6.1. The figure shows different integrations and applications of CellulARSkin.

In this chapter, we show exemplary applications (e.g. grasping, collision avoidance, human-
robot interaction, tactile feedback) of our artificial skin system with implementations on more
than 3 different robots, e.g. Kuka’s LWR, Universal Robots’ UR-5 and Kawada Industry’s
HRP-2. In the first section, we introduce a novel approach to grasp unknown objects with a
full-sized, position controlled humanoid robot only via tactile feedback and a self-explored
body schema. This implementation demonstrates the transferability of our artificial skin to
new robotic systems in a short time1. We then introduce multiple use cases, on an exoskeleton
robot that has been used during the opening ceremony of the FIFA world championship 2014
and on two industrial robot arms that have been enhanced with multi-modal tactile sensitivity.
The latest implementation on our robot TOM shows the scalability of our modular approach
to a higher number of skin cells, while the robustness of our artificial skin has been proven
with demonstrators on international conferences and fairs (e.g. Automatica 2014 or Robots on
Tour 2013).

1In this case a 3 month research visit at AIST
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6.2. Grasping Unknown Objects with a Humanoid

FIGURE 6.2. The figure shows HRP-2 holding objects that have been grasped only with tac-
tile feedback and a self-explored body model. Key poses for the trajectory generation and
expected contact points have been taught with a novel method of tactile human-robot inter-
action.

In this section we introduce a new approach to grasp unknown objects with the complete
upper body of a position controlled humanoid robot (HRP-2) and tactile feedback 2. Our work
has been motivated by the demand to handle unknown, large and/or heavy objects with the
whole robot body, instead of grasping them only with the end-effectors. Being able to effi-
ciently handle those objects would have a large impact in households, care giving or industrial
scenarios – e.g. robots could help to (un-)load airplanes, handle bags of clothes in an industrial
laundry or deliver parcels in an office. For such tasks, multi-modal, large-area surface sensa-
tion seems predestined, as it provides a rich and direct feedback from numerous simultaneous
contact points from a potentially large area of contact. In order to omit manual calibration with
a high number of sensor and actuators, we use our kinematic self-organizing features – here the
sensory-motor map and the structural exploration method. Additional task-related knowledge,
e.g. the expected contact points or grasping trajectories, were taught through direct physical
human-robot tactile interaction. This direct, interactive method to transfer knowledge to the
robot includes non-specialists.

2The work in this section has been published in [Mittendorfer et al., 2013].
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6.2.1. Integration on HRP-2

FIGURE 6.3. The figure shows the distribution of skin on the humanoid robot HRP-2. The
interface box to the on board computer can be seen on the back side. A foam layer between
the skin and the robot’s surface provides compliance and smooths out the irregular surface.

In this experiment setup, 74 skin cells have been distributed on the whole upper body of
HRP-2, covering parts of the chest and both arms (see Fig. 6.3). A foam layer between the
skin and the robot’s surface provides compliance (lowering control constraints), smooths out
the irregular surface of the the robot and ensures that contact is made on the elevated skin. In
order to minimize delays, we utilized the second on board computer (i686, 1.6 GHz, 2 cores,
3 MB L2, 32 GB RAM, Ubuntu 10.04) of HRP-2. The primary computer executes the 200 Hz
real-time control loop – the stack of tasks (SoT). A stable central body part, like the torso of
a humanoid robot or the platform of a mobile robot, is required during self-organization. This
base frame will be the reference of actions for the motion primitives. With a humanoid robot
like HRP-2, a stable balancing controller is required. This is not a constraint, as our algorithm
currently only takes a subset of the available DoFs into account - namely those related to
both arms. The HRP-2 controller generates actuator commands by resolving, in real-time, a
set of prioritized tasks. In our experiments, equilibrium is achieved by fixing feet and center
of mass position to a static position. Redundancy allows the HRP-2 to realize whole-body
manipulation while satisfying the equilibrium tasks. To generate grasping motions with the
robot upper-body, a low-priority task is added to the SoT, enforcing both arm velocities.
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6.2.2. Tactile Teaching

This section is devoted to the explanation of transfer of knowledge from human to robot
through tactile interaction.

6.2.2.1. Tactile Guidance

FIGURE 6.4. The figure shows an example of tactile guidance with HRP-2.

Tactile guidance (see Fig. 6.4) is a direct evasive reaction of body parts on multi-modal tac-
tile stimulation, with the purpose to follow the motion of a teacher. Utilizing simultaneous or
sequential contacts, the robot is driven into different meaningful configurations – here the key
poses. We currently provide two different modes: (i) force guidance; (ii) proximity guidance.
Force guidance takes the force modality into account and thus requires physical contact with
the robot and a sufficiently high force to safely detect the stimulus from background noise.
With the proximity sensor, and thus proximity guidance, the robot will start to react before the
teacher touches the robot (here ∼ 5cm before).
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(home) (open) (closed) (pulled)
FIGURE 6.5. The figure shows key poses that are taught to the robot via tactile guidance and

serve for the generation of grasping trajectories.

6.2.2.2. Key Poses

Tactile guidance is used to interactively drive the robot into different key poses (see Fig. 6.5).
For example, the robot starts from an initial ’home’ key pose, which the robot remembers and
uses as a safe home configuration. In the ’open’ key pose, both arms are opened widely to
allow an object in between. The ’closed’ key pose brings both arms together, therefore an
object between is clamped and makes contact with the robot. In the ’pulled’ key pose both
arms are still together, but the arms are pulled closer to the chest. In this form, any object
between the arms will be in contact with the chest. All key poses are added to the sensory-
motor map and serve for grasping trajectory generation.

6.2.2.3. Touch Areas

Tactile sensing allows to define areas of special interest – the touch areas (see Fig. 6.6). For
example, we activate the grasping sequence by touching the robot in a ’pat’ area (PA) (see
Fig. 6.11). Teaching touch areas is done by selecting a label, activating the attention of the
robot (e.g. pushing a button), brushing over the desired area and deactivating attention. While
paying attention, the robot evaluates the incoming event stream for new (close) contact events
and stores the related unit IDs in a binary vector. For the grasping approach, the operator needs
to define the expected contact areas (CA), while the remaining IDs are automatically allocated
to the non-contact area (NCA). Both areas are allocated with different reaction primitives and
their events lead to different state changes while grasping objects. The chest area (CHA)
serves as a third explicit contact point, besides the left and right arm, which is necessary for a
globally stable grasp.
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Contact Areas (CA)

Chest Area (CHA)

Pat Area (PA)

FIGURE 6.6. The figure shows the touch areas that allow the generation of specialized tactile
events and a differentiation of touch reactions with specific parameters (see Table 6.2).

6.2.3. Control Strategies

In this section, we describe the low and high level control (see Fig. 6.7) used with HRP-2.
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FIGURE 6.7. The figure shows the data exchange between the robot, the artificial skin, the
long term memory and the controller sub-blocks during our grasping approach. The state
machine controls sub-block activity and parameter distribution.
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6.2.3.1. Tactile Reaction Primitives

The sense of touch allows to implement meaningful direct reactions on multi-modal tactile
stimulation – e.g. to avoid self- or environment collisions or to let users kinesthetically guide
the robot. The advantage of instantiating one multi-modal reaction controller for every skin
cell (u) is the scalability of this approach – tactile behavior is programmed for the smallest
piece of skin and expanded to the whole robot surface. Since all cellular parameters, are
accessible by the high level control system, spatial reactions can be set up for a specific task.
We compute a proportional motor reaction for every multi-modal (m) sensor value (ρm) above
a pre-defined threshold (tm) (refer to Sec. 5.3.3). All (M) multi-modal reactions on a cell are
accumulated and mapped to a desired cellular velocity reaction vector, via the sensory-motor
map vectors (wwwu,p) of the current pose (p). Super-imposing the resulting velocity vectors from
all (u = [1, ...,U ]) skin cells, leads to a global tactile robot joint velocity reaction (ωωω tactile)
(see Equ. 5.15). Modalities are inhibited, promoted or inverted by setting their gain (Pm,u)
and threshold (tm,u) (refer to Table 6.2). The threshold determines the activation level and is
important to suppress sensor noise and offsets.

6.2.3.2. Postural Trajectory Generation

The trajectory generator calculates velocity commands to transfer the robot in joint space from
the current pose (θθθ cur) to a desired (θθθ des) key pose:

ωωω traject =
ωmax · (θθθ des−θθθ cur)

max(max(abs(θθθ des−θθθ cur)),θacc)
(6.1)

Control parameters define the maximum joint velocity (ωmax), the desired postural accuracy
(θacc), the name of the pose and a flag if the robot should stop once the desired key pose has
been reached. Once the desired pose has been reached, an event is sent to the control system.
For the overall reaction of the robot, the tactile reaction velocity vector (ωωω tactile) and trajectory
velocity vector (ωωω traject) are super-imposed:

ωωω robot = ωωω traject +ωωω tactile (6.2)

This is the reason why tactile reactions have to be dominant in comparison to the trajectory
speed and/or cancel the current trajectory execution in case of detected ‘pain’ levels, e.g. a
high force applied on a single force sensor (see Table 6.1).
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6.2.3.3. Tactile Events

Force Cells Proximity Sensor

pain force close contact

0.45 0.80

high force low proximity

0.30 0.10

medium force medium proximity

0.10 0.02

low force high proximity

0.04 0.01

no force no proximity

0.00 0.00

TABLE 6.1. The table shows the heuristic, normalized thresholds for the generation of multi-
modal tactile events with the proximity and force sensors.

Centrally monitoring a growing number of tactile sensors generates high computational and
network overloads. Since most skin areas are not (or in constant) contact, this effort is not
efficient. To prevent this scalability bottleneck, we pre-process tactile signals into events.
Currently this is still done on the computer, as we wish to log all raw experimental data. How-
ever, the design of CellulARSkinTM allows to locally process tactile signals in every skin cell,
extracting information at the earliest stage. New data packets should only be generated if sen-
sor values deviate significantly from sensor noise and recently transmitted samples. Therefore
all our high level algorithms use abstract tactile events, while our low level control algorithms
can deal with varying update rates. For our grasping approach on HRP-2, we utilized force
and proximity events, with a coarse separation into heuristically pre-defined thresholds (refer
to Table 6.1). A new tactile event is only emitted on changes between those levels, with a
small hysteresis to prevent repetitive triggers. Due to the direct localization of touch, tactile
events in specific areas can trigger robot behaviors or state changes, e.g. launch a grasping
sequence when patted on the shoulder.
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State: Launch
----------------------------------------------

(On Entry)
 check:!knowledge
 emit:! ‘cancel’ or ‘ok’

 

State: Open
----------------------------------------------

(On Entry)
 pose: ‘open’ fast
 react: evade prox all fast

 

State: Approach
----------------------------------------------
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 pose:! ‘closed’ fast
 react:! evade prox all fast

(During)
 emit:! ‘cancel’ if ‘closed’ 
! pose reached

State: Contact
----------------------------------------------
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 pose: ‘closed’ med
 react: evade prox NCA med

(During)
 emit:! ‘cancel’ if ‘closed’ 
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State: Load
----------------------------------------------
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FIGURE 6.8. The figure shows the high-level control state-machine of our grasping approach.
Tactile events or high level commands trigger transitions between the discrete grasping
states. Entry or exit actions of the states send new parameters to the low-level postural
trajectory (see Equ. 6.1) or tactile reaction controllers (see Equ. 5.15 and Fig. 5.8).

6.2.3.4. Grasp State Machine

The whole grasping sequence is split into multiple states of a sequential state machine (see
Fig. 6.8). As an entry action, every state sends a set of area specific control directives to
the low-level tactile controllers. Changes between states are triggered by events from the
trajectory generator or tactile events. Emergency situations, e.g. pain level forces, drive the
robot into a safe state. The safest action is not to stop all upper body motions, but to slowly
evade all contacts. States with contact as main objective (e.g. the approach, contact, load or
pull state), fail if the set key pose is reached without receiving the desired tactile events. In
the ‘approach’ state, the object needs to come close to the expected contact area (CA), while
forces have to be applicable in the ‘load’ state. In general, the interaction speed is reduced the
closer the robot and the object come together. Here, we specifically use the proximity sensor
modality to safely increase the speed in the approach and contact phase (refer to Table 6.2).
Purely relying on the force sensors, forces can ramp up quicker than the reaction time of
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the robot, damaging the robot or the object. With HRP-2 and CellulARSkinTM we solved this
issue by: (i) using the on-board computer to minimize delays; (ii) adding a foam layer between
the robot and the skin to provide (sensor) hysteresis free compliance; and (iii) using proximity
sensors to slow down motion before contact.

6.2.4. Experiments

In this section, we explain results from our grasping experiments, showing the main features
obtained using the skin.

6.2.4.1. Tactile Guidance

The effectiveness of tactile reactions, and their transfer to motor actions through the sensory-
motor map, are best evaluated on tactile guidance. Fig. 6.9 shows a plot of force guidance
with both arms, first the left and then the right arm. The activation threshold of tF,u = 0.05
force sensor readings, approximately relates to 0.6 N, the chosen force gain is PF,u = 1.0. A
single force reading of ρF,u = 0.14, relating to a force of 1.0 N, leads to commanded velocity
of ωωωre = 0.09rad s−1 on a single DoF – which is approximately what we observe in Fig. 6.9
between 75 s and 85 s with DoF ID 1 and SC ID 52. All key poses in Fig. 6.5 have been taught
without touching the robot, via the proximity sensor. As the sensory-motor map builds on the
fly, it operates as an extrapolation of the closest explored pose – starting from the initial home
key pose (see Fig. 6.5). Due to the lack of the two shear sensing directions on the current SC
version, the rotation of some DoFs require a postural change first – which is unintuitive.

6.2.4.2. Grasping of Unknown Objects

In Fig. 6.10, we show a set of 5 objects with different weight, size, shape and compliance,
which we successfully tested our approach on (see Fig. 6.2). We applied the same set of
heuristic control parameters for all objects (refer to Table 6.2). A grasp succeeded, when the
robot was able to make contact with the object, apply forces on it and pull it to its chest. Our
approach infers that the graspable object is in between both arms when receiving the launch
command. If there is no object, or the object can not be pulled, the robot automatically cancels
the grasp. The plastic cover on the wrist does not support force and is allocated to the non-
contact areas, where applied forces intentionally cancel the grasp. Naturally this limits our
success rate when grasping big objects, e.g. the trash bin or the big moving box, as big objects
are likely to touch the wrist. We wish to emphasize that no object has been damaged during
all experiments. To demonstrate the reliability of our system, we let the robot ‘hug’ human
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FIGURE 6.9. The figure shows a force guidance experiment – Tactile stimulations are directly
mapped to evasive motor reactions via the sensory-motor map. The first graph shows the
force stimulation intensity (grayscale value, white is sub-threshold) of all sensor cells over
time. The two other graphs show the resulting joint positions of the left and right arm.

multiple times (first author). The proximity sensor modality allows to speed up motions prior
to contact and robustly detects when the object touches the chest, which is sufficient to prevent
the rotation of grasped objects. The advantages of our multi-modal approach, triggering and
controlling phases of the grasping approach with different sensor modalities, can be seen in
Fig. 6.11. As a consequence of the similar size, both objects (B and E) are first contacted after
nearly the same time. First light contact forces also build up in a similar time frame. However,
it is already visible in the proximity intensity, that object E has a symmetric surface, while
object B is asymmetric. This observation continues within the force profile, where object E
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FIGURE 6.10. The figure shows the objects utilized to test the graping approach: (A) plastic
trash bin; (B) sponge rock; (C) moving box; (D) lid of a paper box; (E) computer delivery
box. The objects have different weights, shape, hardness and size.

develops and maintains a clear and symmetric contact force intensity on both arms, while
object B remains squishy. Due to the conformation of object B to the robot’s surface, and the
incomplete coverage with skin, forces for object B are in parts grounded on insensitive spots,
which is visible in the remaining sensational asymmetry. Both grasps are finalized with a close
contact on the chest, but after a significantly different time span. This can be explained, as
Object B had to be pulled over a longer distance and compressed for a longer time to maintain
‘satisfying’ contact pressure.

6.2.5. Application Notes

In this section, we presented a general tactile approach to grasp unknown objects with a posi-
tion controlled humanoid robot. We demonstrated that even a coarse, self-explored sensory-
motor mapping is sufficient to achieve the task. Additionally, we showed how knowledge is
transfered from human to robots using tactile interaction. For the first time, we apply our
multi-modal artificial skin, and its self-organizing features, on a full-sized humanoid robot. A
general tactile approach for grasping unknown objects is introduced, which efficiently takes
advantage of a distributed, multi-modal sense of touch. In comparison to existing approaches,
our novel grasping algorithm requires minimum knowledge on the robot it controls (no kine-
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Control
State

Control Parameters
Touch
AreasForce Proximity Pose

tF,u PF,u tP,u PP,u hash ωmax θacc

F-guide 0.05 1.0 - - - - - all

open - - 0.01 0.4 open 0.4 0.01 all

approach - - 0.01 0.4 closed 0.4 0.01 all

contact - -
- -

closed 0.1 0.01
NCA

0.01 0.4 CA

load
- - 0.01 0.01

closed 0.05 0.01
NCA

- - - - CA

pull
- - 0.01 0.01

pulled 0.05 0.01
NCA

0.10 0.80 - - CA

hold
- - 0.01 0.01

- - -
NCA

0.10 0.80 - - CA

release - - 0.01 0.2 - - - all

TABLE 6.2. The table shows the heuristic parameters of the grasping experiment. Every high
level state of the state machine (see Fig. 6.8) features its own set of parameters for the
contact (CA) and non-contact (NCA) areas (see Fig. 6.6). Here, we utilize normalized
threshold and gain values for the force (tF,u and PF,u) and proximity (tP,u and PP,u) sen-
sor mappings (see Equ. 5.15). The trajectory generator takes a pose hash, a leading joint
velocity (ωmax) and postural accuracy (θacc) as an input (see Equ. 6.1).

matic/dynamic model) and the object it handles (no object model). Utilizing proximity sensors
as a novel method of teaching behaviors through direct tactile interaction, it is not necessary to
apply force on the robot or even touch it – making heavy or position controlled robots feath-
erlight to interact with. Relying on artificial skin, no joint level force sensing is required. Our
approach provides a new and complementary level of direct physical interaction.
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FIGURE 6.11. The figure shows the proprioceptive and tactile feedback while grasping two
objects (E/B) with different compliance (hard/soft) and shape (regular/irregular), please
also see Fig. 6.10.
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6.3. Walk Again Project

FIGURE 6.12. The figure shows the kick-off with the Walk Again Project exoskeleton robot at
the FIFA world cup in Brazil 2014. [source: https://twitter.com/walkagainproject]

In the Walk Again Project an international team of researchers and a company (BIA), en-
abled a paralyzed teenager to do the ceremonial kick-off at the FIFA world championship
2014 (see Fig. 6.12). The vision was to control the powerful exoskeleton only with a EEG
brain machine interface and to provide the exoskeleton and the user with tactile feedback in
order to sympathize human robot interaction. One key contribution of TUM in this project
was to provide the artificial skin system for the exoskeleton and training facilities.

6.3.1. Skin Applications

Multiple applications have been discussed regarding the application of artificial skin on the
exoskeleton. With an exoskeleton, the artificial skin can be used to measure the interaction
with the external world, as well as with the internal user. External sensors can also provide
feedback to the user – e.g. provide paralyzed patients with a feeling of their feet. For the
final demonstration, only two of the potential applications have been applied, namely: 1) the
tactile feedback about the time of ground contact; and 2) sensors on the arm wrist as a safety
measure for the EEG control. In the following, we will give a concise overview on all potential
applications.
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6.3.1.1. Ground Contact

The exoskeleton needs to detect the ground contact time to synchronize the walking motion
patterns, while force distributions can provide feedback about the center of mass for balancing.
For the patient, it is important to synchronize his upper body motions with the exoskeleton,
like a passenger on a motorcycle, in order to avoid antagonistic behavior with the stabilization
algorithm. The detection of the time of contact with the ground is thus important for the
exoskeleton, as well as for the patient which is carried by the robot. Prior to our involvement in
the Walk Again Project (WAP), we already tested the capability of our artificial skin to measure
ground contacts. To do this, we installed 4 skin cells on the foot of an HRP-2 robot and
recorded the data while the robot was performing cyclic steps. We obtained the result that all
four implemented sensor modalities can be used to detect ground contact (see Fig. 6.13). We
also developed a tactile feedback shoe (see Fig. 6.14) that maps the magnitude of the proximity
and force into a PWM signal for vibrational motors that can be mounted on other parts of the
body. For the WAP, we manufactured a high range version of our custom force sensor, in order
to avoid saturation with the expected weight of the exoskeleton. Multiple skin cells were then
implemented (by BIA) into the shoe sole of the exoskeleton (see Fig. 6.15). The tactile shoe is
able to measure the weight of a person standing on it (≈ 86kg) with an approximate accuracy
of ±2kg. Due to constant re-designs of the exoskeleton shoes, an additional stand-alone skin
cell was provided. This stand-alone version is able to detect ground contact via the proximity
sensor and provides a binary interface for an external tactile display (developed by EPFL).
This combination of tactile sensor and tactile display has for example been utilized for patient
training on the Locomat (see Fig. 6.16).

6.3.1.2. Shot Contact

Similar to ground contact, the contact with the soccer ball can be detected with the multi-
modal sensors (see Fig. 6.17).

6.3.1.3. Contact Surface between the Exoskeleton and the Patient

The exoskeleton developed during the Walk Again Project is very powerful. At the same time
the patients wearing it are fragile and can exhibit involuntary spastic movements. When the
exoskeleton is forcing against those spastic movements, the patient may be harmed. One idea
was to equip the exoskeleton braces, fixing the patient to the robot, with surface sensation (see
Fig. 6.18 and Fig. 6.19) and monitor spasticity. Three problems finally prohibited utilization
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FIGURE 6.13. The figure shows four skin cells mounted on the right foot of HRP-2 and a
plot with the reaction of all four sensor modalities, while the robot walks eight steps. The
plots show the complete relaxation of the normal force sensor, the clean measurement of
foot motion phase by the accelerometer, the contact phases by the proximity sensor and the
slightly delayed thermal transfer on ground contact.

in the current state: 1) the flexible braces are closed with a high compressive load, causing
high offsets; 2) the braces were always mounted differently, causing varying feedback; 3) the
discrimination of normal vs spastic motions was difficult. Those three issues must be solved
before brace inlets can be utilized for patient monitoring.

6.3.2. Application Notes

CellulARSkinTM provided reliable feedback to the patients during walking with the exoskele-
ton and training on the Locomat. Some of the potential applications of skin on an exoskeleton
have been utilized in the final demonstration of the exoskeleton during the FIFA world cham-
pionship opening ceremony. Those applications have only been possible due to the ease of
integration of our modular artificial skin and the reliable multi-modal sensor feedback it deliv-
ers. Further applications like the integration into the shoe or into the braces have been tested.
The self-organizing features developed in this thesis can also be applied to an exoskeleton (see
Fig. 6.19).
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FIGURE 6.14. The figure shows the tactile feedback shoe developed at ICS.

FIGURE 6.15. The figure shows the shoe sole of the exoskeleton, equipped with
CellulARSkinTM.
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FIGURE 6.16. The figure shows a patient training on Locomat with tactile feedback from the
shoe sole.

FIGURE 6.17. The figure shows a skin cell of CellulARSkinTM mounted on the tip of the
exoskeleton shoe for contact detection with the soccer ball.
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FIGURE 6.18. The figure shows a brace inlet of the exoskeleton for patient monitoring.

FIGURE 6.19. The figure shows the 3D reconstruction results of the brace inlet in Fig. 6.18.
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6.4. Multi-modal Interaction with a Kuka LWR

FIGURE 6.20. The figure shows the Kuka Light Weight Robot (LWR) arm equipped with a
couple of skin cells version 1.1 (refer to Sec. A.4).

In this subsection, we present results from our initial experiments towards multi-modal
tactile interactions with an industrial robot arm 3. We therefore distributed 8 cells of the pre-
vious version 1.1 of our skin cell (refer to Sec. A.4) on the whole body of our Kuka Light
Weight Robot (LWR) arm (see Fig. 6.20). Version 1.1 only features four low ranging proxim-
ity sensors (1-2mm), a 3-axis accelerometer and six temperature sensors – therefor no force
experiments have been conducted, as this sensor has been introduced with version 2.0 of our
skin cells (refer to Sec. A.4).

3The work in this section has been published in [Mittendorfer and Cheng, 2011a].
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6.4.1. Control Framework

6.4.1.1. Multi-Modal, Multi-Touch Controller

Multi-modal touch stimuli can be directly mapped to reactive motions of the robot. Therefore
a local reaction of a skin cell adds a rotational or translational velocity to the relative mounting
point of its body part. To do this, it is necessary to provide the tactile controller with the body
part, and the relative location and orientation of every skin cell in local body part coordinates.
In this sub-section, we manually provide this information. The overall reaction of a single
body part is then superimposed from the local reactions of the skin cells on it.

6.4.1.2. Robot controller

An inverse kinematic chain algorithm per body part, calculates the desired joint velocities
from the desired Cartesian velocities of all super-imposed tactile reactions on it. To do this,
the kinematic parameters of the robot, as well as the homogeneous mapping between tactile
and kinematic coordinates, have to be known. For the results in this subsection, we manually
calibrated those parameters. The joint control values of all body parts are then superposed,
along with an optional global task. This global task can for example be a weak ’return to a
home position’ as in our experiments.

6.4.2. Experiments

6.4.2.1. Proximity - Multi-touch Reactions

Fig. 6.21 shows the robot reaction to multiple touch places detected by the proximity sensor.
In version 1.1, this sensor only had a range of 1-2mm, whereas it has been extended up to
200 mm in version 2.0 (refer to Sec. A.4). For version 1.1, a binary controller evaluating the
offset-adjusted signals of all proximity sensors was enough. When a threshold of 200 raw
sensor reading was reached a constant velocity excitation of -0.05 m/s was added to the lateral
velocity of the body part where the skin cell was located on. Since we also super-impose
the reactions of multiple proximity sensors on a single skin cell, this fairly simple controller
already shows desired tactile reactions. It reacts faster when the touched surface is increasing,
while touching two opposite Tactile Modules neutralize the reaction (see Fig. 6.21 at 13 s).
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FIGURE 6.21. The figure shows the reactions of the Kuka LWR arm, towards tactile stimula-
tions on the proximity sensors, with isolated or simultaneous stimulations on different skin
cell locations.

6.4.2.2. Temperature - Air Draft Reaction

The power dissipation of the micro-controller and the robot are generating an over temperature
of the artificial skin towards common environments (e.g. office rooms). The cooling effect of
an air flow (see Fig. 6.23) or human touch can thus be used to trigger actions, e.g. evasive
movements. We implemented this reaction with a constant threshold on a low pass filtered
signal, such that the robot is reacting either on the cooling effect of touching it with a human
hand or by blowing at it (see Fig. 6.22) .
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FIGURE 6.22. The figure shows the author, gently blowing on a cell of the artificial skin. In
the video this picture is captured from, the robot evades next.
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FIGURE 6.23. The figure shows the thermal cooling effect either by gently blowing on a skin
cell of the artificial skin. 95 % of the response value is reached after 2.4 s. Setting adequate
thresholds, the robot reacts approximately after 500 ms.
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FIGURE 6.24. The figure shows the tip-tap controller reacting on impacts on the fingers by
changing the direction – the robot is trapped between the fingers.
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FIGURE 6.25. The figure shows exemplary signals from one skin cell accelerometer when
impacts (similar to Fig. 6.24) occur on a KUKA LWR arm.

6.4.2.3. Acceleration - Impact Reaction

Safety is very important when a robot interacts with people or the environment. Independent
of the robot force sensors (tactile or joint) we need to detect self- or environment impacts. As a
robot body normally moves smoothly, we discriminate unexpected impacts with objects from
the rate of change of acceleration (see Fig. 6.25). To demonstrate this effect, we programmed
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the robot to go in the opposite direction whenever a constant magnitude threshold was detected
on the accelerometer axis normal to a skin cell (see Fig. 6.24). As an impact has influence on
the acceleration of a whole body part, and the exited vibrations are partially conducted by
the frame, we were able to use a single accelerometer to detect impacts at various body part
locations and even across body parts.

6.4.2.4. Acceleration - End Effector Orientation Control

FIGURE 6.26. The figure shows the Kka LWR arm balancing a cup with orientation control
based on an accelerometer below the tablet.

In this experiment, we implemented an orientation controller for the robot end effector, with
one local accelerometer of a skin cell on it (see Fig. 6.26). Two proportional controllers for
the pitch and roll axes stabilize the orientation based on the measured acceleration vector. As
the accelerometer measures a superposition of the gravity and movement acceleration vector,
we normalized the axes values before we calculated the two orientations angles. We are not
stabilizing towards the world coordinates, but towards the normal vector of the current super-
position of both acceleration values. This enables us to stabilize a loosely placed cup on a
plate that is held by the end effector even when the rest of the robot is moving. If necessary,
we detect additional acceleration by movements, by a deviation of the norm from 1 g. A data
log of the experiment is given in Fig. 6.27. This test also shows the sufficiently low latency of
our system for dynamic control.
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FIGURE 6.27. The figure shows signal plots from the end-effector orientation controller.

6.4.3. Application Note

We demonstrated that multi-modal tactile sensors can be utilized for a variety of tactile interac-
tions with industrial robots. Standard non-compliant robots can be provided with compliance
and compliant robots can be enhanced with multi-modal and multi-touch features. For exam-
ple, we showed that impacts of the robot with the environment can be detected with vibrations
measured by the accelerometer, even if the impact was not directly on the skin cell. This fea-
ture allows skin cells to be placed at higher spatial distances, while still being able to monitor
safety critical impacts. Pre-contact sensors allowed a feather light interaction with the robot,
on multiple-simultaneous contact points. We especially showed that antagonistic touch reac-
tions cancel out, like with joint level sensing, but can still be detected and e.g. used to react
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differently. One of the essential findings we made during those first experiments was that
manual calibration is cumbersome and erroneous. We thus identified self-calibration as one
of the key challenges to efficiently use artificial skin. Amongst others, this highly complex
challenge has been solved in this thesis.
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6.5. Factory-in-a-Day

FIGURE 6.28. The figure shows a futuristic factory layout using collaborative robots at small
and medium enterprises (SMEs). [Source: www.factory-in-a-day.eu]

“The project Factory-in-a-day aims at improving the competitiveness of European man-

ufacturing SMEs by removing the primary obstacle for robot automation: installation time

and installation cost.”[www.factory-in-a-day.eu]. The EU FP-7 project Factory-in-a-day
(FiaD), which we participate in, aims to reduce the installation time of hybrid human-robot
production lines, from weeks/months to a single day. The FiaD robots will be able to operate
without safety fences due to the utilization of intrinsically safe robots (e.g. Universal Robots’
UR-5), dynamic contact avoidance and intention-projection showing the robots’ motion plans
to the human coworkers [FiaD]. As stated by [Harmon, 1982] (please also refer to Sec. 2.2),
artificial skin plays a major role in this context. Enhancing robots with a proximity-sensitive
skin, dynamic collision avoidance can be implemented. A set of multi-modal sensors (e.g.
force and acceleration) provides safety redundancy in the case collision avoidance fails, e.g.
via multi-modal collision detection (refer to Sec. 6.4) or contact force control. At the same
time artificial skin provides a large and user friendly human-robot interface. In the framework
of FiaD, we intend to utilize this feature to speed up the teach-in process at the installation
site and to enable non-expert users to directly interact with the robot, e.g. with gestures or
tactile kinesthetic teaching – removing the necessity for complicated teach-pendants. Part of
the intention-projection, showing the robots’ motion plans, will be projected on the surface
of the robot (e.g. LEDs with CellulARSkin). As stated by [Harmon, 1982] users and manu-
facturers are unwilling and/or unable to cope with specialized installations. The artificial skin
system must be able to self-organizing/calibrate and provide a standard software framework
that embeds all features. In the context of FiaD, self-organization is especially required to
speed up initial integration and to support autonomous failure recovery at the customer.
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6.5.1. Research Platform TOM

FIGURE 6.29. The figure shows the robot TOM on the trade fair Automatica 2014, visually
displaying the contact states detected on its surface.

TOM (Tactile Omni-directional Mobile Manipulator) is a robot that has been developed at
ICS under the umbrella of the Factory-in-a-Day project and has been first introduced at the
Automatica trade fair 2014 (see Fig. 6.29). The aim was to show the differences between a
standard UR-5 robotic arm and an arm equipped with artificial skin. For this demonstration,
we equipped one of the UR-5 robotic arms with 260 skin cells. We then combined the arti-
ficial skin framework with a new virtual dynamics control framework developed at ICS (by
Emmanuel Dean). With his framework the robot can for example be enhanced with virtual tac-
tile compliance (see Fig. 6.30). We specifically made use of the 3D reconstruction capability
of the artificial skin in order to match the skin to the existing robot model. Therefore, we indi-
vidually 3D reconstructed the three patches of artificial skin. We then imported the resulting
3D skin patch models into ROS. In a quick manual calibration step, the 3 missing transfor-
mations of the skin root cells were matched to the RViz (ROS Visualization, see Fig. 6.31)
model of the robot. This process sped up the integration of the artificial skin, as it reduced the
required number of homogeneous transformations (one for each of the three patches, instead
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FIGURE 6.30. The figure shows the robot TOM in compliance mode, detecting the approach
of a human hand with the proximity sensors (red), while compliant motions are canceled
out due to the antagonistic forces (blue) applied to the skin surface.

FIGURE 6.31. The figure shows the RViz model of the robot TOM along with the 3D models
of the last two patches of artificial skin.

of one for each of the 260 skin cells). Additionally, we were able to utilize a method that we
call heuristic visual matching, finding the relative transformation between two CAD models
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by their best visual alignment. Given the final results of this thesis, this matching could also
be performed fully automatically. The algorithm then automatically calculates a Jacobian for
each skin cell and implements an impedance like controller to map multi-modal stimulations
into joint motions (similar to the controllers in this thesis). Two of the modalities, force and
proximity, have been utilized to interact with the robot. A first implementation of a distributed
visual feedback utilized the RGB LEDs in every skin cell to display current contact states, e.g.
red for pre-contact (see Fig. 6.32), blue for force (see Fig. 6.30) and green for no touch.

FIGURE 6.32. The figure shows the contact state display of the robot TOM, detecting the
approach of a human hand with the proximity sensors (red).

6.5.2. Application Notes

With TOM, we demonstrated our currently largest deployment of artificial skin on a robot
(260 skin cells). Large surface areas of the robot arm UR-5 have been enhanced with multi-
modal tactile sensitivity. We have shown that our 3D reconstruction algorithm can be utilized
to quickly map our skin to existing robot models. We also demonstrated that our artificial
skin can be integrated into other control frameworks. Unlike the KUKA LWR, UR-5 is a
low-cost industrial robot that is used in industry and does not feature advanced joint level
torque sensing. With our artificial skin, we still achieved to render this non-compliant robot
compliant.
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6.6. Summary

In this chapter, we demonstrated the feasibility of our new artificial skin system. We applied
our skin on more than three different robots (e.g. Kuka’s LWR, Universal Robots’ UR-5 and
Kawada Industry’s HRP-2), showing that our design is transferable. Our latest implementation
on the robot TOM (see Fig. 6.29) supports the scalability of our approach to a high number
of skin cells and large areas. We demonstrated that our self-organization features are appli-
cable to complex robots, such as a HRP-2, and can largely speed up the integration time on
industrial robots, such as TOM. We showed exemplary applications of our artificial skin: such
as grasping, collision avoidance and human-robot interaction. With demonstrators on interna-
tional conferences and trade fairs, e.g. Automatica 2014, we have proven the reliability of our
system. First internal (TOM) and external (Walk Again Project, Factory-in-a-Day) projects,
provided us with feedback on the usability and on the remaining technical challenges.
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CHAPTER 7

Conclusion

In literature and in life we ultimately pursue, not conclusions,
but beginnings.

(Sam Tanenhaus: Literature Unbound)

In this chapter, we first summarize the content of this thesis. We then state our contribution
on top of the related works. Finally, we give a brief overview of potential future works.
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7.1. Summary

In this thesis, we presented new approaches to design, self-organize and utilize artificial skin.
In Chapter 1 we introduced our motivation to develop a self-organizing artificial skin. We
denoted potential impacts in the field of robotics and beyond, e.g. in health care or industry.
We summarized challenges involved in the design and organization of a large area artificial
skin, along with our contributions to solve these issues. In Chapter 2, we gave an overview on
the related work. Starting from biological skin and the development of human body schema,
we introduced multiple approaches to develop electronic sensitive skins and the notion of
body schema in robotics, for the development of spatial embeddings and kinematic model-
ing/calibration. In Chapter 3, we introduced a new approach to create artificial skin from
multi-modal skin cells. With our biologically inspired, modular approach, we solved com-
mon challenges like wiring efforts, failure tolerance, processing efforts and scalability. The
self-organizing network of skin cells automatically initializes and adapts to changes in the
topology, e.g. recovers from wiring failures using redundant cell-2-cell connections. Our
modular approach can be easily transfered to other robots or applications. In Chapter 4, we
introduced a new approach to automatically reconstruct the 3D surface of body parts equipped
with our artificial skin and a new method to visually combine distributed tactile representa-
tions. This method allows us to quickly and automatically acquire the location and orientation
of all distributed tactile sensors, relative to an egocentric coordinate system and only using in-
ternal sensors. At the same time internal visual and tactile frames of reference are combined.
In Chapter 5, we introduced novel approaches to acquire kinematic knowledge for robots
equipped with our skin system, from the acquisition of an inverse-Jacobian like mapping, via
the exploration of the kinematic tree, to a full kinematic model estimation. Altogether, this
allows us to fuse visual, tactile and proprioceptive sensations in a single self-centered body
representation. In Chapter 6, we finally showed exemplary applications of our artificial skin
system, enhancing the interaction capabilities of industrial robots or enabling a full-sized hu-
manoid to grasp unknown objects only with tactile feedback. Therefore, we introduced a new
framework to map multi-modal stimulations into motor actions, taking the location of tactile
stimuli and tactile events into account. All-in-all this thesis contributes a complete approach
to design, organize and utilize a multi-modal, modular artificial skin system.
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7.2. Contribution

This thesis extends the state of the art (refer to Sec. 2) in the following aspects.

Modular skin: We presented a novel modular approach to create artificial skin from a multi-
modal, self-contained skin cell. Our design supports the acquisition and transfer of multi-
modal tactile signals, along with distributed processing capabilities. Digital cell-2-cell trans-
missions reduce wiring efforts and provide robustness against interferences and failure. Due
to the high modularity, the system can be easily applied to different robots and applications.

Force Sensor: We developed a low-cost, capacitive force sensor. Due to our novel design,
based on a metal spring, outstanding sensor performance has been achieved. The sensor is
scalable to a variety of force sensing ranges. Its robustness against mechanical abuse, due to
an intrinsic overload mode, has been proven. In order to reduce production offsets, a patented
self-alignment method has been invented.

Multi-modal integration: A biological inspired set of multi-modal tactile sensors has been
chosen. All multi-modal sensors have been integrated in a single skin cell. The cell supports
the acquisition, preprocessing and transfer of all its multi-modal sensor signals. A composite,
micro-structured coating has been developed to support and protect all discrete sensors.

Artificial skin network: We developed methods to support a scalable surface sensor net-
work, with a high flexibility in the network topology. Our system supports a fast and automatic
network self-exploration and can forward acquired sensor data in real-time. Failure in the net-
work connections can be quickly and automatically handled with a re-exploration, supporting
an enhanced life-time of the artificial skin.

3D surface reconstruction: Our 3D surface reconstruction method allows to precisely ac-
quire the surface model of robotic body parts and the location/orientation of each sensor on it.
Utilizing network connectivities and embedded motion sensors, we can acquire the required
local information within a very short time. Our algorithm can deal with different topologies,
is scalable and can be enhanced with additional information, e.g. local and global transforma-
tions as has been shown with the visual marker approach.
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Visual markers: In combination with our 3D surface reconstruction algorithm, we are able
to turn every patch of the artificial skin into an absolute, active visual marker. This enables us
to estimate a homogeneous transformation between visual and tactile coordinate frames in a
short time. In comparison to common visual markers, our skin patch markers can conform to
arbitrary surfaces and can be largely occluded.

Kinematic calibration: We contribute new methods to explore, model and calibrate an ego-
centric kinematic model of a robot. Therefore, we only utilize motion sensors distributed on
the robot and low-ranging, open-loop motions of the robot. Along with our 3D reconstruction
and visual marker method, we can acquire a complete robotic body schema, across visual,
tactile and proprioceptive space, within a short time.

Application of artificial skin: In order to proof the effectiveness of our system, we provide
exemplary applications: 1) a control framework to adaptively grasp objects with the upper-
body of a humanoid robot and multi-modal tactile feedback only; 2) a control framework to
enhance multi-modal tactile interactions with industrial robots.

Modular framework: We contribute a complete and scalable framework to support the
utilization of a modular artificial skin. The modular nature of the framework allows a quick
and easy expansion and/or improvement using extra modules. With our framework new robots
and applications can be easily enhanced with an otherwise complex artificial skin technology.

Dissemination: The presented work lead to 2 international journal papers and 9 interna-
tional conference papers (first author). One European patent has been filed and one interna-
tional workshop (ICRA13) has been organized. A scientific audience has been addressed with
presentations at workshops, a summer school and several invited talks. The work has been
disseminated to a general audience with press-releases, interviews to mass media (TV, radio,
print) and demonstrations on scientific and trade fairs. The novel skin technology has led to a
participation in two ongoing European projects (CONTEST and Factory-in-a-Day).
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7.3. Outlook

Although the presented work is complete in itself, a self-organizing modular artificial skin, it
is only a starting point on which future work can build:

New technologies: System on chips and flexible printed organic electronics could be uti-
lized to improve the mechanical flexibility and the spatial resolution of the existing sensor
system. New mechanical or biomedical sensors, e.g. shear sensors or hormone receptors,
would broaden the potential area of application. In order to satisfy diverse needs with a com-
mon hardware and framework, a generalized surface sensor chip should be developed. This
chip could be the processing and communication center of a variety of hybrid (organic/silicon)
skin cells in different application scenarios. First approaches in the direction of flexible and
printable sensors are made in the CONTEST project, which we participate in.

Technology transfer: In order to create innovation, we must bring our technology to the
market. Building on the first prototype system, this technology transfer could be started soon.
Our artificial skin can deliver two key contributions to robotics industry: 1) it can enhance hu-
man robot interaction in close contact collaboration; 2) it can provide contact safety and tactile
compliance as a flexible add-on solution, even for heavy robots. In order to satisfy industrial
needs, the software and hardware framework must be adapted and evaluated according to in-
dustrial standards. First approaches towards industrial robots are made under the umbrella of
the Factor-in-a-Day project, which we participate in.

Event based system: An early and efficient encoding of spatio-temporal tactile data into
events is important for a large scale integration of artificial skin. Sensor signals should be
encoded into events as early as possible in order to reduce the required communication and
processing bandwidth. The transition to an event based system does not only affect the low-
level encoding, but also the real-time communication pathways and low/high level control
algorithms. The multi-modal skin cells and framework that have been developed in this thesis,
can be extended with this functionality.
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Spatio-temporal analysis: Spatio-temporal analysis of tactile data would give way to new
applications and enhance the capability of existing robots. A multi-modal artificial skin, as
presented in this thesis, could passively or actively classify materials and objects, discriminate
human touch from other contacts and distinguish contact states based on past experience. New
methods need to be developed, in order to automatically generate and robustly extract spatio-
temporal features. Frameworks to support dynamic and transfer learning with (event based)
tactile data need to be developed.

Utilizing close encounters: Taking advantage of distributed contacts is a key aspect for fu-
ture robots, in order to efficiently deal with complex manipulation tasks (e.g. lifting large
and heavy objects) and to be able to handle everyday environments (e.g. sitting on a chair
while doing handcraft). In this thesis, we presented a first framework to react on multi-modal
tactile stimulation and to coordinate these tactile behaviors into primitive tasks. This frame-
work should now be extended. Sensor prediction would allow to suppress expected sensory
feedback and to focus attention on unexpected sensations. New control paradigms should
be developed, to learn task requirements and to resolve competing low-level reactions. The
utilization of close encounters also requires the effective modeling and controlling of contact
dynamics.
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Appendix

Appendix usually means “small outgrowth from large intestine,” but in
this case it means “additional information accompanying main text.”
Or are those really the same things? Think carefully before you insult
this book.

(Pseudonymous Bosch: The Name of This Book Is Secret)

The appendix introduces additional technical details on our artificial skin that did not fit
in the main document. In A.1, we show different interfaces for the skin. An exemplary
manufacturing process of the current skin prototype is shown in A.2. In A.3 we introduce the
demokit that has been developed for the Factory-in-a-Day project. A.4 gives an overview of
the skin cell versions we have developed during the thesis. The same is done in A.5 for the
elastomer encapsulation. In A.6 we show the scalability of our force sensor to higher force
ranges. And finally, in A.7, we consider bandwidth and latency constraints of our current
communication system.
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A.1. Skin Interfaces

In order to power and communicate with the artificial skin, we developed a variety of inter-
faces.

The FPGA based Gigabit Ethernet interface (see Fig. A.1) is the most powerful inter-
face. It can currently handle up to 335 skin cells at full speed (250 Hz) on 5 ports (refer to

FIGURE A.1. The figure shows the Gigabit Ethernet interface board.

Sec. A.7). The same limit in numbers applies for powering the connected skin cells. The
interface provides a DC/DC converted 5 V output voltage, with up to 6 A current output, from
a wide range (7-35 V) input voltage. In order to simultaneously reset all skin cells, the supply
voltage can be switched on/off from central control. The utilization of Gigabit Ethernet UDP
packets causes minimal transmission delays and computational overhead on the control PC.
At the same time Ethernet allows to easily interface to a great variety of robotic hardware.
Due to the parallel processing in the FPGA, this interface can be easily extended to support
more skin cells. With up to 87 ports on a single interface, 5829 skin cells could be handled at
full speed (250 Hz).
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The Bluetooth interface (see Fig. A.2) is the only wireless interface we currently support.
Bluetooth was preferred over WiFi, due to the lower power consumption, low cost and simpli-

FIGURE A.2. The figure show the Bluetooth interface, along with a skin cell and the battery.

fied setup. High performance WiFi connections can also be realized by interfacing our Gigabit
Ethernet interface with wireless switches. The Bluetooth interface’s transmission capability
is limited by the Bluetooth standard, as well as the utilization of the serial SPP protocol. The
maximum throughput of our module, an OBS421 from connectBlue, is 1.3 Mbit s−1. With 20
byte data messages, theoretically up to 32 skin cells could be served at full speed (250 Hz).
Practically this number is further limited. Due to the conversion of skin cell packets to a serial
stream, the package structure is lost, causing additional delay and re-packing issues on the PC
side. The same issue applies to common serial to USB converters. Due to the increasing trans-
mission loop delay, with an increasing number of Bluetooth modules, the maximum number
of modules is reduced from 7 to 3. Each module only features a single interface port.

The standalone CAN interface (see Fig. A.3) has been developed to interface the skin
without a PC in the ’Walk-Again-Project’. Therefore, it incorporates all necessary code for
the skin network exploration that is commonly handled by the PC. Its transmission capabilities
are limited due to the maximum 1 Mbit s−1 bandwidth of the CAN bus. Skin cell package IDs
are mapped to CAN bus message IDs. The advantage of this board is its low cost and its
stand-alone capabilities. The interface can also be enhanced with 10/100Mbit s−1 Ethernet or
USB 2.0 (full speed) connections. Due to the utilization of a micro-controller, instead of an
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FIGURE A.3. The figure shows the CAN interface we developed to operate the skin stand-alone
and interface it e.g. with the exoskeleton robot of the ’WalkAgainProject’.

FPGA, the number of cells that can be connected is limited by the re-packing capabilities of
the micro-controller. First experiments (PIC32 Ethernet Starter Kit) indicate a limitation of
about 17000 UDP packets per second, relating approximately to 80 skin cells at 250 Hz update
rate.
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A.2. Skin Assembly

Currently the assembly of a skin patch with standard electronics is split into the following
steps: We first buy discrete components and the printed circuit boards. Those are then sent to
a pick&place company that mounts the components for us (see Fig. A.4). In a first step, we

FIGURE A.4. The figure shows a production panel, holding 10 skin cells, as returned from the
component pick & place company.

program all cells with the micro-controller software (boot loader and application code). We
then separate the production trays into single skin cells (see Fig. A.5). Afterwards, the skin
cells are pick & placed into templates, according to the specific dimension of the skin patch
we wish to produce (see Fig. A.6). We then dispense the solder paste on the ports of the skin
cells (see Fig. A.7). and place the flexible PCBs on the guidances of the solder template (see
Fig. A.8). The cell-2-cell connections can now be soldered in a reflow or hot air process (see
Fig. A.9). We also mount the cables to interface the skin at the desired boundary ports (see
Fig. A.10). After this step, we perform a final test before encapsulation (see Fig. A.11). The
bottom and top mold are either printed with a rapid prototyping printer or molded with silicon
and molding templates (see Fig. A.12). The electronic boards are finally put in between the
bottom and the top elastomer and both molds are glued together (see Fig. A.13). Currently, this
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FIGURE A.5. The figure shows the skin cells separated from the production panel.

FIGURE A.6. The figure shows the skin cell pick&place process into a soldering template.

production process still involves a lot of costly manual labor. This is why we are looking into
options to automate the entire process. Especially the handling of flexible materials, e.g. the
interfacing cables (see Fig. A.10) and elastomer covers (see Fig. A.13), is challenging. In the
framework of the Factory-in-a-Day project, we would like to develop a shared human/robot
workspace for the collaborative assembly of artificial skin by and for robots.
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FIGURE A.7. The figure shows the solder paste dispensing process for the flexible cell-2-cell
interconnects.

FIGURE A.8. The figure shows the pick&place process of the flexible cell-2-cell connection
into the solder template.

FIGURE A.9. The figure shows the re-flow soldering of the flexible cell-2-cell connections.
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FIGURE A.10. The figure shows the process of soldering interface cables to the skin patches.

FIGURE A.11. The figure shows an active skin patch with 110 skin cells before the elastomer
encapsulation.
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FIGURE A.12. The figure shows the filling of the top mold for a silicone forming process to
produce the skin elastomer.

FIGURE A.13. The figure shows an active skin patch with 110 skin cells after the elastomer
encapsulation.
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A.3. Demo Kit

FIGURE A.14. The figure shows the demo kit delivered to partners in the European Union
FP-7 project ’Factory-in-a-Day’.

In order to disseminate our work to a broader community, and in order to collect feedback
for a potential spin-off company, we created a demo kit within the framework of the EU FP-7
project ’Factory-in-a-day’. The demo kit contains the required hardware (see Fig. A.14) to
operate CellulARSkinTM with an additional PC. All algorithms have been ported to ROS, by
Emmanuel Dean, and provided as ROS drivers. In a basic tutorial, the user can control the
classical ROS turtle via multi-modal tactile input (see Fig. A.15).

FIGURE A.15. The figure shows the visualization of the demo-kit’s ROS tutorial, where the
user can experience tactile interaction with a simulated turtle.
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A.4. Skin Cell Versions

FIGURE A.16. The figure shows a skin cell version 1.0.

1.4 cm

Acceleration Proximity

Temperature

Port - 1Port - 2

Port - 4 Port - 3

FIGURE A.17. The figure shows a skin cell version 1.1.

Most of the work in this thesis has been performed with version 2.0 of our multi-modal
skin cell (see Fig. A.18). In this section, we would like to shortly introduce the differences
between the multiple versions of our skin cells. The dimension of the cells are equal between
all versions. Both first generation versions operated with a PIC32MX695F micro-controller.
In comparison to the current PIC24FJ128GA306 the serial communication speed of this chip
(12 Mbit s−1) was three times higher than the current 4 Mbit s−1. Alas, it’s power consump-
tion with 60 mA, instead of now 7 mA, was also more than 8 times higher. For an artificial
skin, the differences between 32 and 16 bit architecture are negligible – commonly 16 bit is a
better business choice. Only 3 pieces have been manufactured of version 1.0 (see Fig. A.16),
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FIGURE A.18. The figure shows a skin cell version 2.0.

about 140 pieces of version 1.1 (see Fig. A.17) and more than 1500 pieces of version 2.0 (see
Fig. A.18). Therefore production costs had to be optimized and reduced, simplifying the de-
sign and reducing components. Version 2.0 for example only requires a 4 layer board, instead
of 6 layers with the previous versions. In order to reduce cost and space, the programming
connector was shifted to test pads and analog circuitry was reduced to the available compo-
nents in the micro-controller. Most changes have been made on the sensor side. From version
1.0 to version 1.1, we removed all non-SMD components, e.g. the strain gages and the ther-
mistor. From version 1.1 to version 2.0, we largely introduced digital sensors, in order to
improve performance (e.g. noise and resolution) and get rid of analog circuitry. Version 2.0 is
also the first version with a customized sensor – the normal force sensor. The elastomer covers
that are protecting the skin from both sides, have been introduced from version 1.1 on. Large
efforts have been made, to integrate multiple discrete sensor modalities into the constrained
common space. We tried to keep the skin thin, while maintaining the performance constraints
for all sensor modalities, explicitly making use of the 3D placement of the sensors (refer to
Sec. 3.2.2.2).
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A.5. Elastomer Cover Versions

FIGURE A.19. The figure shows the elastomer cover version 1.1.

FIGURE A.20. The figure shows the elastomer cover version 2.0.

Multiple elastomer covers have been developed for the artificial skin. Fig. A.19 shows the
initial single material version for version 1.1 of the skin cells. With version 2.0 (refer to
Sec. A.4) of the skin cells, we introduced the first composite material for the top elastomer
cover (see Fig. A.20). The harder material is necessary to collect and focus forces onto the
discrete force sensors. With the first cover version, we experienced some problems with the
low infrared transparency of the 3D printed material and insufficient receptive fields with the
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FIGURE A.21. The figure shows the elastomer cover version 2.1.

force sensors. The next cover version (see Fig. A.21) provided a cut-out for the proximity
sensor and the LED, and a thicker hard epidermal layer to better collect contact forces applied
to the surface. As this removed the need for an opaque material, we switched to the more
frequently used black material color (cheaper). Fig. A.22 shows a special version of the cover
for the Walk Again Project which has been enhanced with domes. Amongst others, this serves
to ensure contact is made on a surface close to the location of the discrete force sensors.
Fig. A.23, finally shows the latest version of the skin cover, made from silicon molding and
plastic inserts. Molding the skin has two major benefits: 1) molding can dramatically lower the
cost in mass production; 2) more durable materials, e.g. silicon, can be utilized. Difficulties
to glue the dirt-repelling, high energetic surface of the silicon material have been solved with
priming chemicals.
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FIGURE A.22. The figure shows the elastomer cover version 2.S.

FIGURE A.23. The figure shows the elastomer cover version 2.2.
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A.6. Force Sensor - Extended Range

In section 3.3 we stated that our custom force sensor can be easily scaled to support higher
forces. In the following, we present results for extending the force sensitive range of our cus-
tom made force sensor. Therefore, we manufactured two additional versions of the CuBe2
cap, deviating from the common 100 µm thick substrate and 50 µm deep cavity. One version
is etched from a 150 um thick substrate, etching only a 50 um cavity into the material. This
1/3 to 2/3 etching process is more complicated for the manufacturer, but gives higher capac-
itive changes due to lower initial distance. The other version is etched from a 300 um thick
substrate, etching a 150 um cavity into the material. We manufactured skin cells with both
versions and tested them with the flat tip of an Imada DS2-50 force gauge on a PCE-FTS
50 linear test stand. The resulting plots (see Fig. A.24 and Fig. A.25) support our sigmoid
function approximation in Sec. 3.3 and demonstrate the scalability of our approach to higher
force ranges. We cover forces ranges of one to several hundreds of Newtons with a similar cap
design and the same skin cell design. This allows us to manufacture skin cells with different
force ranges, e.g. for different body parts like arms and feet, in the same production run.
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FIGURE A.24. The figure shows the force/response plot of an extended range force sensor with
150 µm material thickness and 50 µm cavity.
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FIGURE A.25. The figure shows the force/response plot of an extended range force sensor with
300 µm material thickness and 150 µm cavity.
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A.7. Communication Bandwidth and Latency

Bandwidth: Each port of skin cell version 2.0 (refer to Sec. A.4) utilizes a 4 Mbit s−1 UART
with an 8b/10b encoding. Each 20 byte long sensor data packet (see Fig. 3.16) is such 200
bit long and its transfer takes about 50 µs. As every skin cell is sending updates with 250 Hz,
50 kbit s−1 data are generated. The theoretical limit is such 80 skin cells per port. The practical
limit is lower than 67, as an additional 10 µs inter-frame gap is necessary to give interrupt
routines time to react. With 5 ports per Gigabit Ethernet interface board (see Fig. A.1), up to
335 skin cells can be handled at full speed (250 Hz). In order to further increase the number of
skin cells, additional interface boards have to be provided or the number of ports per interface
have to be increased. The maximum number of ports on an interface is limited by the network
connection. With one UDP packet, we transfer 20 bytes payload. The UDP, IPv4 and Ethernet
layer add an additional 66 bytes overhead on top of the 20 data bytes. This leads to a total
amount of 86 bytes that are approximately transmitted in 688 ns on the 1 Gbit s−1 line. As a
single data packet transfer on the gigabit Ethernet line takes 688 ns, but data packets on the
ports are coming in at most every 60 µs (see previous calculation), up to 87 interface ports
are theoretically possible. One Gigabit Ethernet interface can consequently handle up to 5829
skin cells of version 2.0 at full speed (250 Hz).

Latency: As calculated in the last paragraph, the transfer of a single 20 byte data packet in
the inter-cell network takes less than 60 µs. In a cell-2-cell routing, this is the minimum delay
for one step upwards in the communication tree. With this minimum delay of 60 µs and an
update time of 4 ms, the depth of a communication tree must not be higher than 66 cells. The
worst case routing delay of a skin cell is dependent on the filling level of the local communica-
tion buffers (see Fig. 3.15). With every full round robin scheduling cycle a packet must wait,
another 4 ·60 = 240µs delay are added. With an update rate of 4 ms, the sensor data expires
after 16 full waiting cycles. In comparison to the skin cell network, the UDP Gigabit Ethernet
transfer adds a marginal latency of 688 ns per utilized interface port.

With a high number off skin cells, sophisticated networking and local data reduction algo-
rithms are required to guarantee that those bandwidth and latency constraints are met.
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