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Abstract—The problem of maximizing the n-letter mutual
information of the trapdoor channel is considered. It is shown
that 1

2
log

2

(

5

2

)

≈ 0.6610 bits per use is an upper bound on the
capacity of the trapdoor channel. This upper bound, which is
the tightest upper bound known, proves that feedback increases
the capacity.

I. INTRODUCTION AND CHANNEL MODEL

The trapdoor channel was introduced by David Blackwell in

1961 [1] and is used by Robert Ash both as a book cover and

as an introductory example for channels with memory [2]. The

mapping of channel inputs to channel outputs can be described

as follows. Consider a box that contains a ball that is labeled

s0 ∈ {0, 1}, where the index 0 refers to time 0. Both the

sender and the receiver know the initial ball. In time slot 1,

the sender places a new ball labeled x1 ∈ {0, 1} in the box. In

the same time slot, the receiver chooses one of the two balls s0
or x1 at random while the other ball remains in the box. The

chosen ball is interpreted as channel output y1 at time t = 1
while the remaining ball becomes the channel state s1. The

same procedure is applied in every future channel use. In time

slot 2, for instance, the sender places a new ball x2 ∈ {0, 1} in

the box and the corresponding channel output y2 is either x2 or

s1. The transmission process is visualized in Fig. 1. Fig. 1(a)

shows the trapdoor channel at time t when the sender places

ball xt in the box. In the same time slot, the receiver chooses

randomly one of the two balls xt or st−1 as channel output, in

the figure st−1. Consequently, the upcoming channel state st
becomes xt (see Fig. 1(b)). At time t+ 1 the sender places a

new ball xt+1 in the box and the receiver draws yt+1 from st
and xt+1. Table I depicts the probability of an output yt given

an input xt and state st−1.

TABLE I
TRANSITION PROBABILITIES OF THE TRAPDOOR CHANNEL

xt st−1 P (yt = 0|xt, st−1) P (yt = 1|xt, st−1)
0 0 1 0
0 1 0.5 0.5
1 0 0.5 0.5
1 1 0 1

Despite the simplicity of the trapdoor channel, deriving

its capacity seems challenging and is an open problem.

One feature that makes the problem cumbersome is that the

distribution of the output symbols may depend on events
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(a) The trapdoor channel at time t.
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(b) The trapdoor channel at time t+ 1. Here yt = st−1.

Fig. 1. The trapdoor channel.

happening arbitrarily far back in the past since each ball has

a positive probability to remain in the channel over any finite

number of channel uses. Instead of maximizing I(X ;Y ) one

rather has to consider the multi-letter mutual information, i.e.,

lim supn→∞ I(Xn;Yn).

Let Pn|s0 denote the matrix of conditional probabilities

of output sequences of length n given input sequences of

length n where the initial state equals s0. The following

ordering of the entries of Pn|s0 is assumed. Row indices

represent input sequences and column indices represent output

sequences. The (i, j)th entry of Pn|s0 , indicated as
[

Pn|s0

]

i,j
,

is the conditional probability of the binary output sequence

corresponding to the integer j − 1 given the binary input

sequence corresponding the the integer i − 1, 1 ≤ i, j ≤ 2n.

For instance, if n = 3, then
[

P3|s0

]

5,3
denotes the conditional

probability that the channel input x1, x2, x3 = 1, 0, 0 will be

mapped to the channel output y1, y2, y3 = 0, 1, 0.

Kobayashi and Morita showed [3] that Pn|s0 , s0 ∈ {0, 1},

satisfies the recursion laws

Pn+1|0 =

[

Pn|0 0
1
2Pn|1

1
2Pn|0

]

(1)

Pn+1|1 =

[

1
2Pn|1

1
2Pn|0

0 Pn|1

]

(2)

where the initial matrices are given by P0|0 = P0|1 = 1.

Ahlswede and Kaspi [4] derived the zero-error capacity of the

trapdoor channel which equals 0.5 b/u. Permuter et al. [5] con-

sidered the trapdoor channel under the additional assumption

of having a unit delay feedback link available from the receiver
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to the sender. They established that the feedback capacity of

the trapdoor channel is equal to the logarithm of the golden

ratio.

In this paper, we consider the problem of maximizing the n-

letter mutual information of the trapdoor channel for any n ∈
N. We relax the problem by permitting distributions that are

not probability distributions. The resulting optimization prob-

lem is convex but the feasible set is larger than the probability

simplex. Using the method of Lagrange multipliers via a the-

orem presented in [2], we show that 1
2 log2

(

5
2

)

≈ 0.6610 b/u

is an upper bound on the capacity of the trapdoor chan-

nel. Specifically, the same absolute maximum 1
2 log2

(

5
2

)

≈
0.6610 b/u results for all trapdoor channels which process

input blocks of even length n. And the sequence of absolute

maxima corresponding to trapdoor channels which process

inputs of odd lengths converges to 1
2 log2

(

5
2

)

b/u from below

as the block length increases. Unfortunately, the absolute

maxima of our relaxed optimization are attained outside the

probability simplex. Otherwise we would have established the

capacity. Nevertheless, 1
2 log2

(

5
2

)

≈ 0.6610 b/u is, to the

best of our knowledge, the tightest capacity upper bound.

Moreover, this bound is less than the feedback capacity of

the trapdoor channel.

The notation used in this paper is as follows. The symbols

N0 and N refer to the natural numbers with and without 0,

respectively. The input corresponding to the ith row of Pn|s0 is

denoted as xi. Further, In denotes the 2n×2n identity matrix,

Ĩn is a 2n×2n matrix whose secondary diagonal entries are all

equal to 1 while the remaining entries are all equal to 0, and 1n

denotes a column vector of length 2n consisting only of ones.

The vector 1
T
n is the transpose of 1n. The functions exp2(·)

and log2(·) indicate the exponential function to base 2 and the

logarithm to base 2. If applied to a vector/matrix, log2(·) or

exp2(·) of each element is taken and a vector/matrix results.

Finally, the symbol ◦ refers to the Hadarmard product, i.e.,

the entry wise product of two matrices.

II. A LAGRANGE MULTIPLIER APPROACH TO THE

TRAPDOOR CHANNEL

A. Problem Formulation

We derive an upper bound on the capacity of the trapdoor

channel. Specifically, for any n ∈ N, we find a solution to the

optimization problem

maximize
PXn

1

n
I (Xn;Yn|s0)

=
1

n

2n
∑

i=1

2n
∑

j=1

pi
[

Pn|s0

]

i,j
log

[

Pn|s0

]

i,j
∑2n

k=1 pk
[

Pn|s0

]

k,j

(3)

subject to

2n
∑

i=1

pi = 1 (4)

2n
∑

k=1

pk
[

Pn|s0

]

k,j
≥ 0 ∀1 ≤ j ≤ 2n. (5)

Note that the pmf PXn represents the 2n-sequences

(p1, . . . , p2n) where pi denotes the probability of the ith input

sequence xi, i.e., the binary sequence corresponding to the

integer i−1. Constraint (5) guarantees that the argument of the

logarithm does not become negative. The feasible set, defined

by (4) and (5), is convex. It includes the set of probability

mass functions, but might be larger. To see this note that (5)

is a weighted sum of all pk where each weight
[

Pn|s0

]

k,j
is

non negative. Clearly, (4) and (5) are satisfied by probability

distributions. However, there might exist “distributions” which

involve negative values and sum up to one but still satisfy (5).

Moreover, the objective function n−1I (Xn;Yn|s0) is con-

cave on the set of probability distributions, which follows by

using the same arguments that show that mutual information

is concave on the set of input probability distributions. Conse-

quently, the optimization problem is convex and every solution

maximizes n−1I (Xn;Yn|s0). In the following, we use the

terminology

C↑
n

def
= max

PXn

n−1I (Xn;Yn|s0) .

Taking the limit of the sequence
(

C↑
n

)

n∈N
as n grows, one

obtains either the capacity of the trapdoor channel or an upper

bound on the capacity, depending on whether the limit is

attained inside or outside the set of probability distributions.

Since it does not matter whether the optimization is with

respect to initial state 0 or 1 (due to symmetry reasons), we

do not have to distinguish between lower capacity and upper

capacity [6, Chapter 4.6]

B. Using a Result from the Literature

The reason for considering (5) and not the more natural

constraints pk ≥ 0 for all k is that a closed form solution can

be obtained by applying the method of Lagrange multipliers

to (3) and (4). As a byproduct, (5) will be automatically

satisfied. In particular, setting the partial derivatives of

1

n
I (Xn;Yn|s0) + λ

2n
∑

i=1

pi (6)

with respect to each of the pi equal to zero results in a closed

form solution of the considered optimization problem.

This was done in [2, Theorem 3.3.3] for general discrete

memoryless channels which are square and non singular. Note

that Pn|s0 is square and non singular (see, for instance,

Lemma II.2 (b)). Moreover, we assume that the channel Pn|s0

is memoryless by repeatedly using it over a large number of

input blocks of length n. Consequently, C↑
n might be an upper

bound on the capacity of the channel Pn|s0 . The reason is that

some input blocks possibly drive the channel Pn|s0 into the

opposite state s0 ⊕ 1, i.e., the upcoming input block would

see the channel Pn|s0⊕1 (whose C↑
n is equal to C↑

n of Pn|s0

by symmetry) but not Pn|s0 . However, by assuming that the

channel does not change over time, the sender always knows

the channel state before a new block is transmitted. Hence,

C↑
n might be an upper bound (even though it is attained on

the set of probability distributions). Nevertheless, this issue
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can be ignored if n goes to infinity because in the asymptotic

regime the channel Pn|s0 is used only once. Indeed we are

interested in the asymptotic regime since the limit of the

sequence
(

C↑
n

)

n∈N
is also its supremum (see Theorem II.7

and Remark II.9).

In summary, it is valid to apply [2, Theorem 3.3.3] which

yields

C↑
n =

1

n
log2

2n
∑

j=1

exp2

(

−

2n
∑

i=1

[

P
−1
n|s0

]

j,i
H (Yn|Xn = xi)

)

(7)

attained at

pk = 2−C↑
ndk, k = 1, . . . , 2n (8)

where dk is given by

2n
∑

j=1

[

P
−1
n|s0

]

j,k
exp2

(

−

2n
∑

i=1

[

P
−1
n|s0

]

j,i
H (Yn|Xn = xi)

)

.

(9)

Clearly,
[

p1, . . . , p2n
]

is a probability distribution only if

dk ≥ 0. Observe that the Lagrangian (6) does not involve

the constraint (5). However, the proof of [2, Theorem 3.3.3]

shows that
∑2n

k=1 pk
[

Pn|s0

]

k,j
equals

exp

(

λ−
M
∑

i=1

[

P
−1
n|s0

]

j,i
H (Yn|Xn = xi)− 1

)

(10)

for all 1 ≤ j ≤ 2n. Hence, (5) is satisfied.

For computational reasons we write (7) in matrix vector

notation, which reads

C↑
n =

1

n
log2

(

1
T
n exp2

(

P
−1
n|s0

(

Pn|s0 ◦ log2 Pn|s0

)

1n

))

(11)

In the remainder, we use (11) instead of (7) and we find exact

numerical expressions for (11) in Theorem II.7 below.

C. Useful Recursions

In this section, we derive recursions for

−
(

Pn|s0 ◦ log2 Pn|s0

)

1n and P
−1
n|s0

(

Pn|s0 ◦ log2 Pn|s0

)

1n,

as stated in Lemma II.4 and Lemma II.5. The recursions,

interesting by themselves, are needed to prove the main

result. Both expressions are defined next.

Definition II.1. (a) The conditional entropy vector hn|s0 of

Pn|s0 , s0 ∈ {0, 1}, is

hn|s0

def
=
[

H(Yn|Xn = x1) . . . H(Yn|Xn = x2n)
]T

(12)

= −
(

Pn|s0 ◦ log2 Pn|s0

)

1n (13)

where n ∈ N0.

(b) The weighted conditional entropy vector ωn|s0 of Pn|s0 ,

s0 ∈ {0, 1}, is

ωn|s0

def
= −P

−1
n|s0

· hn|s0 (14)

= P
−1
n|s0

(

Pn|s0 ◦ log2 Pn|s0

)

1n (15)

where n ∈ N0.

We remark that hn|s0 and ωn|s0 are column vectors with

2n entries. The following two lemmas provide tools that we

need for the proof of Lemma II.4 and Lemma II.5.

Lemma II.2. (a) The trapdoor channel matrices P2n+2|0 and

P2n+2|1, n ∈ N0, satisfy the following recursions:

P2n+2|0 =









P2n|0 0 0 0
1
2P2n|1

1
2P2n|0 0 0

1
4P2n|1

1
4P2n|0

1
2P2n|0 0

0
1
2P2n|1

1
4P2n|1

1
4P2n|0









(16)

P2n+2|1 =









1
4P2n|1

1
4P2n|0

1
2P2n|0 0

0
1
2P2n|1

1
4P2n|1

1
4P2n|0

0 0
1
2P2n|1

1
2P2n|0

0 0 0 P2n|1









. (17)

(b) Let M0
def
= P

−1
2n|0P2n|1P

−1
2n|0 and M1

def
=

P
−1
2n|1P2n|0P

−1
2n|1. The inverses of P2n+2|0 and P2n+2|1,

n ∈ N0, satisfy the following recursions:

P
−1
2n+2|0 =











P
−1
2n|0 0 0 0

−M0 2P−1
2n|0 0 0

0 −P
−1
2n|0 2P−1

2n|0 0

2M0P2n|1P
−1
2n|0 −3M0 −2M0 4P−1

2n|0











(18)

P
−1
2n+2|1 =











4P−1
2n|1 −2M1 −3M1 2M1P2n|0P

−1
2n|1

0 2P−1
2n|1 −P

−1
2n|1 0

0 0 2P−1
2n|1 −M1

0 0 0 P
−1
2n|1











.

(19)

Proof. (a): Substituting P2n+1|0 and P2n+1|1 into P2n+2|0

and P2n+2|1, where the four matrices are expressed as in (1)

and (2), yields (16) and (17).

(b): Two versions of the matrix inversion lemma are [7]

[

A 0

C D

]−1

=

[

A
−1

0

−D
−1

CA
−1

D
−1

]

(20)

[

A B

0 D

]−1

=

[

A
−1 −A

−1
BD

−1

0 D
−1

]

. (21)

Now divide (16) and (17) into four blocks of equal size. A

twofold application of (20) and (21), first to P2n+2|0 and

P2n+2|1 and, subsequently, to each of the blocks of P2n+2|0

and P2n+2|1 yields (18) and (19).

A transformation relating Pn|0 to Pn|1, P−1
n|0 to P

−1
n|1, hn|0

to hn|1 and ωn|0 to ωn|1 is derived next.

Lemma II.3. Let Pn|0 and Pn|1 be trapdoor channel matri-

ces, n ∈ N0. We have the following identities.

(a)

Pn|1 = ĨnPn|0Ĩn (22)

Pn|0 = ĨnPn|1Ĩn. (23)
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(b)

P
−1
n|1 = ĨnP

−1
n|0Ĩn (24)

P
−1
n|0 = ĨnP

−1
n|1Ĩn. (25)

(c)

hn|1 = Ĩnhn|0 (26)

hn|0 = Ĩnhn|1. (27)

(d)

ωn|1 = Ĩnωn|0 (28)

ωn|0 = Ĩnωn|1. (29)

(e) The row sums of P−1
n|0 and P

−1
n|1 are 1.

Proof. See [8].

We can now state the recursive laws for the conditional

entropy vector and the weighted conditional entropy vector.

Lemma II.4. For n ≥ 1, h2n+2|0 satisfies the recursion

h2n+2|0 =









h2n|0
1
2h2n|0 +

1
2 Ĩ2nh2n|0 + 12n

3
4h2n|0 +

1
4 Ĩ2nh2n|0 +

3
212n

1
4h2n|0 +

3
4 Ĩ2nh2n|0 +

3
212n









. (30)

The initial value for n = 0 is given by h0|0 = 0.

Proof. See [8].

Lemma II.5. (a) For n ∈ N0, ω2n|0 satisfies the recursion

ω2n+2|0 =









ω2n|0

ω2n|0 − 2 · 12n

ω2n|0 − 2 · 12n

ω2n|0









(31)

with initial value ω0|0 = 0.

(b) For n ∈ N, ω2n+1|0 satisfies the recursion

ω2n+1|0 =









ω2n−1|0

Ĩ2n−1ω2n−1|0

ω2n−1|0 − 2 · 12n−1

Ĩ2n−1ω2n−1|0 − 2 · 12n−1









(32)

with initial value ω1|0 =
[

0 −2
]T

.

Proof. (a): The proof is by induction. The case n = 0 can be

verified using Definition II.1 (b) with P0|0 = P−1
0|0 = 1. Now

assume that (31) holds for some n. In order to show (31) for

n+ 1, we evaluate ω2n+2|0 using (15) and replacing P−1
2n+2|0

and h2n+2|0 with (18) and (30). The details of the simplifica-

tion steps can be found in [8].

(b): Recall the recursions

P2n+2|0 =

[

P2n+1|0 0
1
2P2n+1|1

1
2P2n+1|0

]

(33)

P
−1
2n+2|0 =

[

P
−1
2n+1|0 0

P
−1
2n+1|0P2n+1|1P

−1
2n+1|0 2P−1

2n+1|0

]

, (34)

which follow from (1) and (20). Computing the first half (i.e.,

the first 22n+1 entries) of ω2n+2|0, indicated as ω
(1)
2n+2|0, based

on Definition II.1(b) and using (33) and (34) yields

ω
(1)
2n+2|0 = P

−1
2n+1|0

(

P2n+1|0 ◦ log2 P2n+1|0

)

12n+1. (35)

By definition, the right hand side of (35) is ω2n+1|0. Hence,

under consideration of (31), we have

ω2n+1|0 =

[

ω2n|0

ω2n|0 − 2 · 12n

]

. (36)

It remains to express ω2n|0 in (36) in terms of ω2n−1|0. By the

same argument as just used, the first half of the vector ω2n|0

equals ω2n−1|0. Since ω2n|0 is a palindrome1 by assumption,

the second half of ω2n|0 equals Ĩ2n−1 · ω2n−1|0. Hence,

ω2n|0 =

[

ω2n−1|0

Ĩ2n−1 · ω2n−1|0

]

. (37)

By replacing ω2n|0 in (36) with (37), we obtain (32). The

initial value ω1 =
[

0 −2
]T

follows from (36) for n = 0 and

noting that ω0|0 = 0.

Remark II.6. The recursions derived in Lemma II.4 and II.5

are with respect to initial state s0 = 0. They can be trans-

formed to recursions with respect to initial state s0 = 1 by

using (26) and (28) from Lemma II.3.

D. Proof of the Main Result

In this section, we evaluate (11) based on Lemma II.5.

Theorem II.7. Consider the convex optimization problem (3)

to (5). The absolute maximum for input blocks of even

length 2n is

C
↑
2n =

1

2
log2

(

5

2

)

b/u for all n ∈ N. (38)

For input blocks of odd length 2n− 1, the absolute maximum

is

C
↑
2n−1 =

1

2n− 1

[

log2

(

5

4

)

+ (n− 1) · log2

(

5

2

)]

b/u

(39)

where n ∈ N.

Proof. Without loss of generality, the initial state is assumed to

be s0 = 0. Recall (11), which for input blocks of length 2n+k

reads

C
↑
2n+k =

1

2n+ k
log2

(

1
T
2n+k exp2

(

ω2n+k|0

))

b/u (40)

where n ∈ N0 and k = 1, 2. For n = 0, a straightfor-

ward computation shows, using (31) and (32), that C
↑
1 =

log2
(

5
4

)

b/u and C
↑
2 = 1

2 log2
(

5
2

)

b/u. Now assume that (38)

and (39) hold for some n. In particular, suppose that

1
T
2n exp2

(

ω2n|0

)

=

(

5

2

)n

(41)

1A palindrome is a finite sequence of symbols, numbers or elements, which
reads the same backwards as forward.
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and

1
T
2n−1 exp2

(

ω2n−1|0

)

=
5

4

(

5

2

)n−1

. (42)

We now show that (38) and (39) hold if n is replaced by n+1.

By means of the recursions derived in Lemma II.5, we have

1
T
2n+2 exp2

(

ω2n+2|0

)

= 1
T
2n

[

2 exp2
(

ω2n|0

)

+ 2 exp2
(

ω2n|0 − 2 · 12n

)]

=
(

2 + 2 · 2−2
)

1
T
2n exp2

(

ω2n|0

)

(43)

and

1
T
2n+1 exp2

(

ω2n+1|0

)

= 1
T
2n−1

[

2 exp2
(

ω2n−1|0

)

+ 2 exp2
(

ω2n−1|0 − 2 · 12n

)]

(44)

=
(

2 + 2 · 2−2
)

1
T
2n−1 exp2

(

ω2n−1|0

)

. (45)

Observe that we used the property

1
T
2n−1 exp2

(

Ĩ2n−1ω2n−1|0

)

= 1
T
2n−1 exp2

(

ω2n−1|0

)

in (44). Finally, using (40) under consideration of (43) and (45)

and the induction hypotheses (41) and (42), we obtain

C
↑
2n+2 =

1

2n+ 2
log2

((

2 + 2 · 2−2
)

1
T
2n exp2

(

ω2n|0

))

=
1

2
log2

(

5

2

)

b/u

and

C
↑
2n+1 =

1

2n+ 1
log2

((

2 + 2 · 2−2
)

1
T
2n−1 exp2

(

ω2n−1|0

))

=
1

2n+ 1

[

log2

(

5

4

)

+ n · log2

(

5

2

)]

b/u.

Remark II.8. Observe that limn→∞ C
↑
2n+1 = 1

2 log2
(

5
2

)

,

where convergence is from below. Hence, we have

max
n∈N

C↑
n =

1

2
log2

(

5

2

)

b/u.

Unfortunately, the distributions corresponding to (38)

and (39) involve negative “probabilities” – otherwise the

capacity of the trapdoor channel would have been established.

We elaborate this issue in the following remark.

Remark II.9. Note that condition (9) does not hold for all

k = 1, . . . , 2n. This can be verified as follows. For a trapdoor

channel Pn|0, condition (9) reads in matrix vector notation as

[

dk
]

1≤k≤2n
=
(

P
−1
n|0

)T

exp2 (ωn) . (46)

We now compute the second last row of
(

P
−1
n|0

)T

by the

following recursive scheme. Applying the matrix inversion

lemma in the form of (20) to Pn|0, which is written as in

(1), and subsequently taking the transpose, then replacing the

right bottom block of this matrix, which is 2
(

P
−1
n−1|0

)T

, with

the just obtained matrix times two (where n − 1 is replaced

by n − 2), then applying the same procedure to the right

bottom block of 2
(

P
−1
n−1|0

)T

and so on until the right bottom

block equals 2n−1
(

P
−1
1|0

)T

shows that the second last row of
(

P
−1
n|0

)T

equals
[

0 · · · 0 2n−1 −2n−1
]

. Further, using

Lemma II.5, it follows that the second to last entry and the last

entry of ωn equals −2 and 0 if n ∈ N is even, and −4 and

−2 if n ∈ N is odd. Inserting the gathered quantities into (46)

yields

d2n−1 =

{

−3 · 2n−3 if n is even

−3 · 2n−5 if n is odd.

Hence, condition (9) does not hold for all k = 1, . . . , 2n.

III. CONCLUSIONS

We have focused on the convex optimization problem (3)

to (5) where the feasible set is larger than the probabil-

ity simplex. An absolute maximum of the n-letter mutual

information was established for any n ∈ N by using the

method of Lagrange multipliers. The same absolute maximum
1
2 log2

(

5
2

)

≈ 0.6610 b/u results for all even n and the se-

quence of absolute maxima corresponding to odd block lengths

converges from below to 1
2 log2

(

5
2

)

b/u as the block length

increases. Unfortunately, all absolute maxima are attained

outside the probability simplex. Hence, instead of establishing

the capacity of the trapdoor channel, we have shown only

that 1
2 log2

(

5
2

)

b/u is an upper bound on the capacity. To

the best of our knowledge, this upper bound is the tightest

known bound. Notably, this upper bound is strictly smaller

than the feedback capacity [5]. Moreover, the result gives an

indirect justification that the capacity of the trapdoor channel

is attained on the boundary of the probability simplex.
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