On Multicasting Prioritized Messages

Shirin Saeedi Bidokhti (Technical University of Munich)
Joint work with Vinod Prabhakaran, Suhas Diggavi, Christina Fragouli

March 5, 2014
Problem setup
Problem setup

- Ahlswede, Li, Cai and Yeung (2000)
- Avestimehr, Diggavi and Tse (2007)
Problem setup: prioritized messages

\[W_1, W_2, W_3 \]

Transmitter

Communication Media

Receiver \[\hat{W}_1 \]
Receiver \[\hat{W}_2 \]
Receiver \[\hat{W}_1, \hat{W}_2, \hat{W}_3 \]
Receiver \[\hat{W}_1, \hat{W}_2, \hat{W}_3 \]
Receiver \[\hat{W}_1, \hat{W}_2, \hat{W}_3 \]

Video Streaming over Heterogeneous Networks
Scalable Video Coding (SVC standard)

- Korner and Marton (1977); Nair and El-Gamal (2008)
- Ngai and Yeung (2004), Erez and Feder (2003), and Ramamoorthy and Wessel (2009)
Problem setup: objective

- A high priority (common) message of rate R_1 and a low priority (private) message of rate R_2
- public receivers and private receivers
- What are the ultimate communication rates?
- Optimal or Near optimal communication schemes?
Problem setup: objective

- A high priority (common) message of rate R_1 and a low priority (private) message of rate R_2
- public receivers and private receivers
- What are the ultimate communication rates?
- Optimal or Near optimal communication schemes?
Outline

1. Combination networks
2. The challenge
3. Linear superposition coding
4. More than two public receivers...
 - A pre-encoding approach
 - A block Markov encoding scheme
5. Optimality results
6. Why are combination networks useful?
Outline

1. Combination networks
2. The challenge
3. Linear superposition coding
4. More than two public receivers...
 - A pre-encoding approach
 - A block Markov encoding scheme
5. Optimality results
6. Why are combination networks useful?
A combinatorial network model: combination networks
A combinatorial network model: combination networks
A combinatorial network model: combination networks

- A simple combinatorial model to capture the interaction of the signals
- Connections to linear deterministic broadcast channels
A simple combinatorial model to capture the interaction of the signals
Connections to linear deterministic broadcast channels
A simple combinatorial model to capture the interaction of the signals
Connections to linear deterministic broadcast channels
A combinatorial network model: combination networks

\[W_1 = [w_{1,1}] \]
\[W_2 = [w_{2,1}, w_{2,2}] \]

A simple combinatorial model to capture the interaction of the signals
Connections to linear deterministic broadcast channels
$m = 2$ public receivers, 2 private receivers
Notation

- \(m = 2 \) public receivers, 2 private receivers
- \(\mathcal{E}_s, s \subseteq \{1, 2\} \): the set of all resources connected to (and only to) every public receiver \(i \in S \)
Notation

- $m = 2$ public receivers, 2 private receivers
- \mathcal{E}_S, $S \subseteq \{1, 2\}$: the set of all resources connected to (and only to) every public receiver $i \in S$
- \mathcal{E}_S^p, $S \subseteq \{1, 2\}, p \in \{3, 4\}$: in \mathcal{E}_S but also connected to private receiver p
Outline

1 Combination networks
2 The challenge
3 Linear superposition coding
4 More than two public receivers...
 • A pre-encoding approach
 • A block Markov encoding scheme
5 Optimality results
6 Why are combination networks useful?
The challenge

\[W_1 = [w_{1,1}] \]
\[W_2 = [w_{2,1}, w_{2,2}] \]
The challenge

\[W_1 = [w_{1,1}] \]

\[W_2 = [w_{2,1}, w_{2,2}] \]
The challenge

\[W_1 = [w_{1,1}] \]

\[W_2 = [w_{2,1}, w_{2,2}] \]
The challenge

\[W_1 = [w_{1,1}] \]
\[W_2 = [w_{2,1}, w_{2,2}] \]
The challenge

\[W_1 = [w_{1,1}] \]

\[W_2 = [w_{2,1}, w_{2,2}] \]
The challenge

Combination networks
Linear superposition coding
More than two public receivers...
Optimality results
Why are combination networks useful?

Mixing of the common and private messages is necessary; but in a controlled manner

One has to reveal (partial) information about the private message to public receivers!
Main Results

An achievable rate-region using a standard linear superposition encoding schemes.

capacity region for two public and any number of private receivers.
Main Results

- An achievable rate-region using a standard **linear superposition encoding** schemes.
 - capacity region for **two public** and **any number of private** receivers.
- The rate-region is enlarged by employing a proper **pre-encoding** at the transmitter.
 - capacity region for **three (or fewer) public** and **any number of private** receivers.
- A **block Markov encoding** scheme may improve both previous schemes.
 - capacity region for **three (or fewer) public** and **any number of private** receivers.
Outline

1. Combination networks
2. The challenge
3. Linear superposition coding
4. More than two public receivers...
 - A pre-encoding approach
 - A block Markov encoding scheme
5. Optimality results
6. Why are combination networks useful?
Rate splitting and linear superposition coding

- let \(W = [w_{1,1} \ldots w_{1,R_1} w_{2,1} \ldots w_{2,R_2}]^T \)
- let \(X = A \cdot W \)
- reveal information about the private messages to public receivers through a **zero-structured encoding matrix**
- a linear superposition coding scheme

\[
A = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

\[
R_2 = \alpha_{\{1,2\}} + \alpha_{\{2\}} + \alpha_{\{1\}} + \alpha_{\phi}
\]
Rate splitting and linear superposition coding

- let $W = [w_{1,1} \ldots w_{1,R_1} w_{2,1} \ldots w_{2,R_2}]^T$
- let $X = A \cdot W$
- reveal information about the private messages to public receivers through a zero-structured encoding matrix
- a linear superposition coding scheme

\[
A = \begin{bmatrix}
R_1 & \alpha_{\{1,2\}} & \alpha_{\{1\}} & \alpha_{\{2\}} & \alpha_{\phi} \\
0 & 0 & 0 & 0 & \epsilon_{\{1,2\}} \\
0 & 0 & \epsilon_{\{1\}} & \epsilon_{\{2\}} & \epsilon_{\phi}
\end{bmatrix}
\]

\[
R_2 = \alpha_{\{1,2\}} + \alpha_{\{2\}} + \alpha_{\{1\}} + \alpha_{\phi}
\]

- choose appropriate parameters, and complete the matrix
Rate-region I

A rate pair \((R_1, R_2)\) is achievable if there exist variables
\(\alpha_{\phi}, \alpha_{\{1\}}, \alpha_{\{2\}}, \alpha_{\{1,2\}}\), s.t.

Structural constraints:
\[
\alpha_S \geq 0 \quad \forall S \subseteq \{1, 2\}
\]
\[
R_2 = \sum \alpha_S
\]

Decoding constraints at public receiver \(i \in \{1, 2\}\):
\[
R_1 + \sum_{S \ni i} \alpha_S \leq \sum_{S \ni i} |\mathcal{E}_S|
\]

Decoding constraints at private receiver \(p\):
\[
R_2 \leq \sum_{S \in \mathcal{T}} \alpha_S + \sum_{S \in \mathcal{T}^c} |\mathcal{E}_S^p| \quad \forall \mathcal{T} \subseteq 2^{\{1,2\}} \text{ superset saturated}
\]
\[
R_1 + R_2 \leq \sum_{S \subseteq \{1,2\}} |\mathcal{E}_S^p|
\]

The converse holds for two public and any number of private receivers, characterizing the capacity region.
Theorem

Rate \((R_1, R_2)\) is achievable if and only if

\[
R_1 \leq \min \left(|E\{1\}| + |E\{1,2\}|, |E\{2\}| + |E\{1,2\}| \right)
\]

\[
R_1 + R_2 \leq \min_{p \in I_2} \left\{ |E^p| + |E^p|_1 + |E^p|_2 + |E^p|_{1,2} \right\}
\]

\[
2R_1 + R_2 \leq \min_{p \in I_2} \left\{ |E\{1\}| + 2|E\{1,2\}| + |E\{2\}| + |E^p|_\phi \right\}
\]
Two public and any number of private receivers

Theorem

Rate \((R_1, R_2)\) is achievable if and only if

\[
R_1 \leq \min \left(|E_{\{1\}}| + |E_{\{1,2\}}|, |E_{\{2\}}| + |E_{\{1,2\}}| \right)
\]

\[
R_1 + R_2 \leq \min_{p \in I_2} \left\{ |E_\phi^p| + |E_{\{1\}}^p| + |E_{\{2\}}^p| + |E_{\{1,2\}}^p| \right\}
\]

\[
2R_1 + R_2 \leq \min_{p \in I_2} \left\{ |E_{\{1\}}| + 2|E_{\{1,2\}}| + |E_{\{2\}}| + |E_\phi^p| \right\}
\]

\[
R_1 \leq 2 \\
R_1 + R_2 \leq 3 \\
2R_1 + R_2 \leq 4
\]
Two public and any number of private receivers

Theorem

Rate \((R_1, R_2)\) is achievable if and only if

\[
R_1 \leq \min \left(|\mathcal{E}_{\{1\}}| + |\mathcal{E}_{\{1,2\}}|, |\mathcal{E}_{\{2\}}| + |\mathcal{E}_{\{1,2\}}| \right)
\]

\[
R_1 + R_2 \leq \min_{p \in I_2} \left\{ |\mathcal{E}_{\phi}^p| + |\mathcal{E}_{\{1\}}^p| + |\mathcal{E}_{\{2\}}^p| + |\mathcal{E}_{\{1,2\}}^p| \right\}
\]

\[
2R_1 + R_2 \leq \min_{p \in I_2} \left\{ |\mathcal{E}_{\{1\}}| + 2|\mathcal{E}_{\{1,2\}}| + |\mathcal{E}_{\{2\}}| + |\mathcal{E}_{\phi}^p| \right\}
\]

Diagram:

- **S**
- **D_1**
- **D_2**
- **D_3**

- **R_1 \leq 2**
- **R_1 + R_2 \leq 3**
- **2R_1 + R_2 \leq 4**
Two public and any number of private receivers

Theorem

Rate \((R_1, R_2)\) is achievable if and only if

\[
R_1 \leq \min \left(|E_1| + |E_{1,2}|, |E_2| + |E_{1,2}| \right)
\]

\[
R_1 + R_2 \leq \min_{p \in \mathcal{I}_2} \left\{ |E^p_\phi| + |E^p_1| + |E^p_2| + |E^p_{1,2}| \right\}
\]

\[
2R_1 + R_2 \leq \min_{p \in \mathcal{I}_2} \left\{ |E_1| + 2|E_{1,2}| + |E_2| + |E^p_\phi| \right\}
\]
Combination networks

The challenge

Linear superposition coding

More than two public receivers...

Optimality results

Why are combination networks useful?

Two public and any number of private receivers

Theorem

Rate \((R_1, R_2)\) is achievable if and only if

\[
R_1 \leq \min \left(|E\{1\}| + |E\{1,2\}|, |E\{2\}| + |E\{1,2\}| \right)
\]

\[
R_1 + R_2 \leq \min_{p \in I_2} \left\{ |E^p_\phi| + |E^p\{1\}| + |E^p\{2\}| + |E^p\{1,2\}| \right\}
\]

\[
2R_1 + R_2 \leq \min_{p \in I_2} \left\{ |E\{1\}| + 2|E\{1,2\}| + |E\{2\}| + |E^p_\phi| \right\}
\]
Outline

1. Combination networks
2. The challenge
3. Linear superposition coding
4. More than two public receivers...
 - A pre-encoding approach
 - A block Markov encoding scheme
5. Optimality results
6. Why are combination networks useful?
When there are more than two public receivers...

(0, 2) is not achievable using the previous scheme!

\[W_1 = [] \]
\[W_2 = [w_{2,1}, w_{2,2}] \]
When there are more than two public receivers...

- (0, 2) is not achievable using the previous scheme!

\[
W_1 = []\\
W_2 = [w_{2,1}, w_{2,2}]
\]

The private information revealed to different subsets of public receivers need not be independent
Appropriate pre-encoding

\[W_1 = \left[\right] \]
\[W_2 = [w_{2,1}, w_{2,2}] \]

\[S \]
\[X_{\{1\}} \]
\[X_{\{2\}} \]
\[X_{\{3\}} \]
\[D_1 \]
\[D_2 \]
\[D_3 \]
\[D_4 \]
\[D_5 \]
\[D_6 \]

- pre-encode \(W_2 = [w_{2,1}, w_{2,2}]^T \) into \(W'_2 = [w'_{2,1}, w'_{2,2}, w'_{2,3}] \)
- now use an structured encoding matrix

\[
\begin{bmatrix}
X_{\{1\}} \\
X_{\{2\}} \\
X_{\{3\}}
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
w'_{2,1} \\
w'_{2,2} \\
w'_{2,3}
\end{bmatrix}.
\]
Rate-region II

A rate pair \((R_1, R_2)\) is achievable if there exist variables \(\alpha_\phi, \alpha\{1\}, \alpha\{2\}, \alpha\{1,2\}\), s.t.

Structural constraints:
\[
\alpha_S \geq 0 \quad \forall \phi \neq S \subseteq \{1, 2\}
\]
\[
R_2 = \sum \alpha_S
\]

Decoding constraints at public receiver \(i \in \{1, 2\}\):
\[
R_1 + \sum_{S \ni i} \alpha_S \leq \sum_{S \ni i} |\mathcal{E}_S|
\]

Decoding constraints at private receiver \(p \in I_2\):
\[
R_2 \leq \sum_{S \in \mathcal{T}} \alpha_S + \sum_{S \in \mathcal{T}^c} |\mathcal{E}_S^p| \quad \forall \mathcal{T} \subseteq 2^{\{1,2\}} \text{ superset saturated}
\]
\[
R_1 + R_2 \leq \sum_{S \subseteq \{1,2\}} |\mathcal{E}_S^p|
\]

The converse holds for three (or fewer) public and any number of private receivers, characterizing the capacity region.
Beyond pre-encoding: dependency through time

how to achieve rate pair $(R_1 = 0, R_2 = 2)$?
Beyond pre-encoding: dependency through time

- how to achieve rate pair \((R_1 = 0, R_2 = 2)\)?
- \((R_1 = 0, R'_2 = 3)\) is achievable using the linear superposition encoding scheme, over the extended channel
Beyond pre-encoding: dependency through time

- How to achieve rate pair \((R_1 = 0, R_2 = 2)\)?
- \((R_1 = 0, R'_2 = 3)\) is achievable using the linear superposition encoding scheme, over the extended channel.
- Use it to achieve rate pair \((0, 2)\) over the original network: block Markov encoding and backwards decoding.
Beyond pre-encoding: dependency through time

\[w_1[t], \ w_1[t + 1] = [] \]

\[w'_2[t], \ w'_2[t + 1] = [w'_{2,1}[t + 1], w'_{2,2}[t + 1], w'_{2,3}[t + 1]] \]

- how to achieve rate pair \((R_1 = 0, R_2 = 2)\)?
- \((R_1 = 0, R'_2 = 3)\) is achievable using the linear superposition encoding scheme, over the extended channel
- use it to achieve rate pair \((0, 2)\) over the original network: block Markov encoding and backwards decoding
Beyond pre-encoding: dependency through time

\[w_1[t], \quad w_1[t+1] = [] \]

\[w'_2[t], \quad w'_2[t+1] = [w'_{2,1}[t+1], w'_{2,2}[t+1], w'_{2,3}[t+1]] \]

- how to achieve rate pair \((R_1 = 0, R_2 = 2)\)?
- \((R_1 = 0, R'_2 = 3)\) is achievable using the linear superposition encoding scheme, over the extended channel
- use it to achieve rate pair \((0, 2)\) over the original network: block Markov encoding and backwards decoding
Beyond pre-encoding: dependency through time

\[w_1[t], \ w_1[t+1] = [w'] \]

\[w'_2[t], \ w'_2[t+1] = [w'_{2,1}[t+1], w'_{2,2}[t+1], w'_{2,3}[t+1]] \]

- how to achieve rate pair \((R_1 = 0, R_2 = 2)\)?
- \((R_1 = 0, R'_2 = 3)\) is achievable using the linear superposition encoding scheme, over the extended channel
- use it to achieve rate pair \((0, 2)\) over the original network: block Markov encoding and backwards decoding
A rate pair \((R_1, R_2)\) is achievable if there exist \(\alpha_{\phi}, \alpha_{\{1\}}, \alpha_{\{2\}}, \alpha_{\{1,2\}}\), s.t.

\[
\begin{align*}
\alpha_{\{1,2\}} & \geq 0, \quad \alpha_{\{1\}} + \alpha_{\{1,2\}} \geq 0, \quad \alpha_{\{2\}} + \alpha_{\{1,2\}} \geq 0 \\
\alpha_{\{1\}} + \alpha_{\{2\}} + \alpha_{\{1,2\}} & \geq 0 \\
\alpha_{\phi} + \alpha_{\{1\}} + \alpha_{\{2\}} + \alpha_{\{1,2\}} & \geq 0
\end{align*}
\]

\[
R_2 = \sum_{S} \alpha_S
\]

Decoding constraints at public receiver \(i \in \{1, 2\}:\)

\[
\sum_{S \ni i} \alpha_S \leq \sum_{S \in T} \alpha_S + \sum_{S \in T^c, S \ni i} |E_S| \quad \forall T \subseteq \{\{i\}\} \text{ superset saturated}
\]

\[
R_1 + \sum_{S \ni i} \alpha_S \leq \sum_{S \ni i} |E_S|
\]

Decoding constraints at private receiver \(p:\)

\[
R_2 \leq \sum_{S \in T} \alpha_S + \sum_{S \in T^c} |E_S^p| \quad \forall T \subseteq 2^{\{1,2\}} \text{ superset saturated}
\]

\[
R_1 + R_2 \leq \sum_{S \subseteq \{1,2\}} |E_S^p|
\]

The converse holds for three (or fewer) public and any number of private receivers, characterizing the capacity region.
Outline

1. Combination networks
2. The challenge
3. Linear superposition coding
4. More than two public receivers...
 - A pre-encoding approach
 - A block Markov encoding scheme
5. Optimality results
6. Why are combination networks useful?
Optimality results

Discussions delegated to the end of the presentation, if of your interest!
Outline

1. Combination networks
2. The challenge
3. Linear superposition coding
4. More than two public receivers...
 - A pre-encoding approach
 - A block Markov encoding scheme
5. Optimality results
6. Why are combination networks useful?
Connections with linear deterministic broadcast channels

\[Y_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \end{bmatrix} \]

\[Y_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} \]

\[Y_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_4 \end{bmatrix} \]

\[Y_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \]
Connections with linear deterministic broadcast channels

\[
Y_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \end{bmatrix}
\]

\[
Y_2 = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 \\ x_3 \end{bmatrix}
\]

\[
Y_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 + x_3 \\ x_4 \end{bmatrix}
\]

\[
Y_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 + x_2 \\ x_2 + 3x_3 + 2x_4 \end{bmatrix}
\]
Connections with linear deterministic broadcast channels

\[Y_1 = H_1 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \end{bmatrix} \]

\[Y_2 = H_2 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 \\ x_3 \end{bmatrix} \]

\[Y_3 = H_3 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 + x_3 \\ x_4 \end{bmatrix} \]

\[Y_4 = H_4 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 + x_2 \\ x_2 + 3x_3 + 2x_4 \end{bmatrix} \]
Connections with linear deterministic broadcast channels

\[
Y_1 = H_1 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \end{bmatrix}
\]

\[
Y_2 = H_2 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 \\ x_3 \end{bmatrix}
\]

\[
Y_3 = H_3 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 + x_3 \\ x_4 \end{bmatrix}
\]

\[
Y_4 = H_4 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 + x_2 \\ x_2 + 3x_3 + 2x_4 \end{bmatrix}
\]
The capacity region of a linear deterministic broadcast channel with two public receivers and any number of private receivers is given by

\[
\begin{align*}
R_1 & \leq \min_{i \in I} r\{i\} \\
R_1 + R_2 & \leq \min_{i \in I_2} r\{i\} \\
2R_1 + R_2 & \leq \min_{i \in I_2} \{r\{1\} + r\{2\} + r\{1,2,i\} - r\{1,2\}\},
\end{align*}
\]

where the size of \mathbb{F} is larger than K. The rates given above are expressed in $\log |\mathbb{F}|(\cdot)$.

- $r\{i\} \triangleq \text{rank}(H_i)$
- $r\{i_1, \ldots, i_{|\mathcal{S}|}\} \triangleq \text{rank} \begin{bmatrix} H_{i_1} \\ \vdots \\ H_{i_{|\mathcal{S}|}} \end{bmatrix}$
Example

<table>
<thead>
<tr>
<th></th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 0 0 0</td>
<td>1 0 0 0</td>
<td>1 0 1 1</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 1</td>
<td>0 1 0 0</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>3</td>
<td>0 1 1 1</td>
<td>0 1 1 1</td>
<td>0 1 1 1</td>
</tr>
</tbody>
</table>
Example

\[\mathbf{H}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \]

\[\mathbf{H}_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \]

\[\mathbf{H}_3 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \]

\[r_1 = r_2 = 2 \]

\[r_3 = 3 \]

\[r_{12} = 3 \]

\[r_{123} = 3 \]
Example

\[\mathbf{H}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \]

\[\mathbf{H}_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \]

\[\mathbf{H}_3 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \]

\[
\begin{align*}
 r_1 &= r_2 = 2 \\
 r_3 &= 3 \\
 r_{12} &= 3 \\
 r_{123} &= 3
\end{align*}
\]
Example

\[
\mathbf{H}_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \\
\mathbf{H}_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \\
\mathbf{H}_3 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}
\]

\[r_1 = r_2 = 2\]
\[r_3 = 3\]
\[r_{12} = 3\]
\[r_{123} = 3\]

\[R_1 \leq 2\]
\[R_1 + R_2 \leq 3\]
\[2R_1 + R_2 \leq 4\]
Example

$$H_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$H_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$H_3 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$r_1 = r_2 = 2$$

$$r_3 = 3$$

$$r_{12} = 3$$

$$r_{123} = 3$$

$$R_1 \leq 2$$

$$R_1 + R_2 \leq 3$$

$$2R_1 + R_2 \leq 4$$
Summary

- Studied the problem of multicasting prioritized messages over combination networks
Summary

- Studied the problem of multicasting prioritized messages over combination networks

- Combination networks turn out to be a rich class of networks and a rich class of linear deterministic broadcast channels
Summary

- Studied the problem of multicasting prioritized messages over combination networks
- Combination networks turn out to be a rich class of networks and a rich class of linear deterministic broadcast channels
- Discussed three encoding schemes, and their regimes of optimality
Summary

- Studied the problem of multicasting prioritized messages over combination networks

- Combination networks turn out to be a rich class of networks and a rich class of linear deterministic broadcast channels

- Discussed three encoding schemes, and their regimes of optimality

- Generalizing these schemes to linear deterministic broadcast channels seems very promising