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Abstract—In Dynamic-Frame Aloha subsequent frame lengths
must be optimally chosen to maximize throughput. When the
initial population size N is known, numerical evaluations show
that the maximum efficiency is achieved by setting the frame
length equal to the backlog size at each subsequent frame;
however, at best of our knowledge, a formal proof of this result
is still missing, and is provided here. As byproduct, we also
prove that the asymptotic efficiency in the optimal case is e−1,
provide tight upper and lower bounds for the length of the entire
transmission period and show that its asymptotic behavior is
∼ ne− ζ ln(n), with ζ = −0.5/ ln(1− e−1).

Index Terms—RFID, Collision Resolution, Frame Aloha,
Frame Length, Optimal Strategy.

I. INTRODUCTION

C
OLLISION resolution protocols have played a funda-

mental role in communication systems starting with the

appearance of the Aloha protocol [1]–[3] back in 1970. Since

then, a variety of such protocols have been proposed and

have influenced satellite, radio and local area networks, being

nowadays applied also to radio frequency identification (RFID)

systems [4], [5]. In RFID systems a reader interrogates a set of

tags in order to identify each one of them [5]. Collisions may

occur among the responses of tags, and collision resolution

protocols are used to arbitrate transmissions so that all tags can

be finally identified. In this environment, the tag population

size N is not a random variable as it happens in multiple

access systems, but is a constant n, either known or unknown;

nevertheless, the collision resolution problem is quite similar

in both environments, and RFID protocols often represent

a straightforward derivation of those proposed for multiple

access.

Among the different protocols envisaged in past years,

Dynamic Frame Aloha (DF-Aloha) is the most popular in

RFID [6], [7]. In Frame-Aloha (F-Aloha) time is divided

into time slots equal to a packet transmission time, slots

are grouped into frames, and a tag is allowed to transmit

only a single packet per frame in a randomly chosen slot.

In the first frame all tags transmit, but only a part of them

avoid collisions with other transmissions and get through. The
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remaining ones, referred to as the backlog, re-transmit in the

subsequent frames until all of them are successful. Although

some versions allow the restart of a new frame at any slot,

should this be convenient, here we deal with the original one,

where the frame is explored in its entirety.

Unfortunately, F-Aloha, like other protocols of the Aloha

family [8], [9], is intrinsically unstable and its throughput is

very small unless some stabilizing control is used. A way to

do this is to dynamically adapt the frame length r according

to the backlog size n, hence the name Dynamic Frame Aloha

(DF-Aloha). This strategy has been proposed for the first time

in [10], in the field of satellite communications, where the

author proposes to set the frame length exactly equal to a

backlog estimate n̂. The reason for adopting this strategy is

that the throughput in a slot of a frame of length r:

n

r

(

1− 1

r

)n−1

, (1)

is maximized for r = n.

As a matter of fact, the performance figure to be optimized

is the overall efficiency

η =
E [N ]

E [L] , (2)

where N is the original tag population size and L is the

average length of the identification period (IP), i.e., the average

number of slots needed to successfully transmit all the N tags.

In RFID systems N is usually a constant n and, therefore, the

efficiency is maximized by minimizing L(n) = E [L].
A recursive formula is given [10] for the calculation of

L(n). By applying this formula with known n, we can

numerically show that the strategy that sets r = n at each

frame provides the shortest L(n) for any value of n attempted.

However, up to now, to the knowledge of authors, none has

provided a theoretical verification of the result.

In practical RFID applications n is usually unknown; how-

ever, in order to meet optimality conditions, it is usually re-

placed by an estimate n̂ based on the observation of outcomes

in a frame or in the entire history (see for example [4], [11]–

[13]). Quite often, setting r = n̂ has been assumed, never

really discussing the optimal strategy when n is unknown and

an estimate is needed, with the notable exception of [14]. In

that paper the authors have pointed out the non-optimality of

the above setting, and suggest a procedure to numerically find

the best frame-length choice when the initial backlog size n is

known in distribution. This procedure, when applied to known
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n, provides the recursive formula for L(n) cited above, which

is still solved only numerically.

In this paper we present an analysis of DF-Aloha with

known backlog size n, that definitely proves that local opti-

mization, i.e., maximizing the throughput/efficiency in each

frame (i.e., setting r = n at each frame), also maximizes

the overall efficiency. We rigorously prove that the optimal

asymptotic efficiency is e−1, further providing tight upper

and lower bounds to L(n), and showing that its asymptotic

behavior is ∼ ne− γ ln(n), with γ = −0.5/ ln(1− e−1).
The proof starts with providing, in Theorem 1, some general

properties of L(n) with strategy r = n at each frame, i.e.,

the strategy we will prove to be optimal. In particular, we

show that L(n) is an increasing function upper bounded by

ne. We then demonstrate two lemmas about upper and lower

bounds for the derivative of ε(n) = L(n) − ne. Subsequent

lemmas provide upper and lower bounds to error ε(n), and

together provides Theorem 2, that in turn gives the error’s

asymptotic behavior. Finally, from all the preceding results, we

are able to prove main Theorem 3, that confirms the optimality

of the cited strategy. The key lemmas, together with the final

theorem, make use of some properties of stochastic dominance

of the first order [15], [16]. To this end, Appendix A extends a

known result of stochastic dominance, and provides a lemma

where the distributions of collided tags in frame (n, r), for

different r and n, are ranked in terms of such stochastic

dominance. Often the proofs are analytically valid starting

from a population size n = n0 somewhat greater than zero,

and implying numerical verification up to n0. To this purpose,

in Appendix B, we provide the distribution of the number of

successes in a frame (n, r), together with additional proofs of

some properties used in theorems and lemmas.

II. ANALYSIS

Let n be the number of tags to be identified and L(n, rn)
the average length of the identification period, where we have

made explicit its dependence on rn, the length of the frame

with n tags. The latter can be expressed as [10]

L(n, rn) = rn+

m
∑

s=0

pn,rn(s)L(n−s, rn−s), n ≥ 2, (3)

where m = min{n− 2, rn − 1}, and pn,rn is the probability

distribution of the number of successes Sn,rn in the first frame,

of length rn. Making the term L(n, rn) explicit yields

L(n, rn) =

rn +
m
∑

s=1

pn,rn(s)L(n− s, rn−s)

1− pn,rn(0)
, n ≥ 2.

(4)

If the sequence {rn} is known, then (4) can be used recur-

sively to get the sequence L(n, rn) starting from L(0, r0) =
L(1, r0) = r0.

A recursive expression of pn,rn(s, c), the probability of

having s successes and c collided slots in the first frame, is

given in [10]. A closed form expression for pn,rn(s), given in

Appendix B, can be derived from formulas in [17].

Let now call ”Selected Strategy” the one that assumes rn =
n at all frames. Later in the paper (Theorem 3) we show that

the Selected Strategy is indeed the optimum strategy. In the

remainder of the paper, for the sake of compactness, when

r = n we use a single subscript in the notation, e.g., Sn in

place of the more general Sn,n. In the analysis that follows

we also make use of some properties of random variable (RV)

Sn,r, and the related RV Rn,r = n − Sn,r, that are listed in

Appendix B.

Expressions (3) and (4) with the Selected Strategy can be

rewritten as follows, with the dependence on rn omitted in the

notation:

L(n) = n+

n
∑

i=1

πn,n(i)L(i), n ≥ 2, (5)

L(n) =

n+

n−1
∑

i=1

πn,n(i)L(i)

1− πn,n(n)
, n ≥ 2, (6)

where πn,r(i) = pn,r(n−i), for i = 0, . . . , n, is the probability

distribution of RV Rn,r = n − Sn,r, the number of collided

tags out of the initial n. Note that πn,r(1) = 0 for any pair

(n, r), therefore the summation in (5) can be started from

i = 2.

We now prove the following:

Theorem 1: With the Selected Strategy the average iden-

tification period in identifying n tags, L(n), presents the

following properties:

(a) L(n) is an increasing function of n,

(b) L(n) < ne.

Proof: (a) For n = 1 the thesis holds because L(1) = 1
and L(2) = 4. We assume that L(i) > L(i− 1) for i ≤ n and

show that it holds also for i = n+ 1.

We can easily lower bound the difference between (6),

evaluated in n+ 1, and (5) as follows

L(n+ 1)− L(n) > 1 +

n
∑

i=2

(π′
n+1(i)− πn(i))L(i), (7)

where

π′
n(i) =

πn(i)

1− πn(n)
, 0 ≤ i ≤ n− 1. (8)

Lemma 6 part 2, with r = n, implies that π′
n+1 stochasti-

cally dominates πn. Therefore, owing to the fact that L(i), i ≤
n, is an increasing function of i, by the basic property (78),

the summation in (7) can not be negative, and the thesis is

proved.

(b) We assume that L(i) < ie for i ≤ n and show that it

holds also for i = n + 1 (it is trivially L(1) = 1 < e). From

(6), the assumption allows to write

L(n+ 1) <

n+ 1 +

n
∑

2

πn+1(i) ie

1− πn+1(n+ 1)
(9)

=
n+ 1 + (Rn+1 − (n+ 1)πn+1(n+ 1))e

1− πn+1(n+ 1)
, (10)
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where Rn = E [Rn]. By Property 3b of Appendix B, we have

Rn < n(1− e−1), which, used in (10), finally provides

L(n+ 1) <
(n+ 1− (n+ 1) · πn+1(n+ 1)) e

1− πn+1(n+ 1)
= (n+ 1)e.

(11)

Denoting by ∆f(n) = f(n) − f(n − 1) the derivative of

function f(n), the next lemma provides an upper bound to the

derivative of error ε(n) = ne− L(n).

Lemma 1: Given the function

g(n) = ν ln(n) +
µ√
n
, (12)

the following inequality holds for ν = 1.5 and µ = 2:

∆ε(n) ≤ ∆g(n), n ≥ 2. (13)

Proof: By (5) we have

ε(n) = ne−Ln = n(e−1)−Rne+

n
∑

2

πn(i)ε(i), n ≥ 2.

(14)

The general term of the difference sequence for n ≥ 2 can be

written as

∆ε(n+ 1) = e − 1− (Rn+1 −Rn) e

+

n
∑

i=2

ε(i) (π′
n+1(i)− πn(i))

+
πn+1(n+ 1)

1− πn+1(n+ 1)
((n+ 1)(e− 1)−Rn+1e)

<
n
∑

i=2

ε(i) (π′
n+1(i)− πn(i)) +O(cn), (15)

where we have exploited inequality Rn+1 −Rn > (1 − e−1)
derived in Property 3c of Appendix B, and O(cn) corresponds

to fractional term on the left hand side of (15) with c = 0.9157
being derived in Property 2. If we assume that

∆ε(i) ≤ ∆g(i), 2 ≤ i ≤ n (16)

we can show that

∆ε(n+ 1) < ∆g(n+ 1), n ≥ 2, (17)

proving the theorem by induction. Lemma 6 part 2, with r =
n, implies that π′

n+1 stochastically dominates πn. Therefore,

by Lemma 5 of Appendix A and (16), we can write

ε(i) =
n
∑

i=1

ε(i) (π′
n+1(i)− πn(i))

≤
n
∑

i=1

g(i) (π′
n+1(i)− πn(i)) = g(i) = νln(i) + µ/

√
i.

(18)

In order to upper bound g(i) we focus on term ln(i), and

make use again of Lemma 5 of Appendix A in the form

provided by Corollary 3, by writing

ln(i) =

n
∑

i=1

ln(i) (π′
n+1(i)− πn(i))

≤
n
∑

i=1

g1(i) (π
′
n+1(i)− πn(i)), (19)

where

g1(x) =

4
∑

i=1

(−1)i+1 (x− a)i

iai
+

(x− a)5

5a4
, (20)

and

dlnx

dx
≤ dg1(x)

dx
=

3
∑

i=0

(−1)i
(x− a)i

ai+1
+

(x− a)4

a4
(21)

for all x ≥ 1 and a ≥ 1.

By choosing a = Rn in (20) and expliciting it in (19) the

latter becomes

ln(i) ≤
4
∑

i=1

(−1)i+1

(

E
[

(R′
n+1 −Rn)

i
]

iRi
n

− E
[

(Rn −Rn)
i
]

iRi
n

)

+
E
[

(R′
n+1 −Rn)

5
]

5R4
n

− E
[

(Rn −Rn)
5
]

5R4
n

(22)

= n−1 +

(

6 + 3e− e2
)

2e(e− 1)
n−2 +O(n−3), (23)

where in the last step moments of RVs R′
n+1 and Rn have

been computed as described in Property 5 of Appendix B,

and Taylor’s expansions have been used. We repeat the same

procedure for term 1/
√
n in g(n). We have

d(1/
√
x)

dx
≤ − 1

2
√
a3

+
3(x− a)

4
√
a5

(24)

for all x ≥ 1 and a ≥ 1, which implies

1/
√
i =

n
∑

i=1

(1/
√
i) (π′

n+1(i)− πn(i))

≤
n
∑

i=1

g2(i) (π
′
n+1(i)− πn(i)), (25)

being

g2(x) = −x− a

2
√
a3

+
3(x− a)2

8
√
a5

(26)

for all x ≥ 1 and a ≥ 1.

Again, choosing a = Rn, inequality (25) becomes

1/
√
i ≤ −R′

n+1 −Rn

2
√

R3
n

+
3E
[

(R′
n+1 −Rn)

2
]

8
√

R5
n

− 3E
[

(Rn −Rn)
2
]

8
√

R5
n

(27)

=
1

2
√
1− e−1

n−3/2 +O(n−5/2), (28)

and putting together (23) and (28) we finally get

g(i) = νln(i)+µ/
√
i ≤ νn−1+µ

1

2
√
1− e−1

n−3/2+O(n−2).

(29)
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From (15) and (18), we see that, to prove the thesis, we

must have

g(i) +O(cn) ≤ ∆g(n+ 1)

= ν (ln(n+ 1)− ln(n)) + µ

(

1√
n+ 1

− 1√
n

)

= ν

(

n−1 − 1

2
n−2 +

1

3
n−3 + . . .

)

− µ

2
n−3/2 + . . . .

Substituting inequality (29), term n−1 simplifies and, to

prove the thesis, the final condition becomes

µ

2
√
1− e−1

n−3/2 ≤ −µ

2
n−3/2 +O(n−2). (30)

Disregarding the asymptotic term, the above inequality is

always true for any µ. This means that there exists an n0 such

that for any n ≥ n0 (30) is satisfied. Then, we numerically

verify that (13) holds up to n0, and the lemma is proved.

Note that, by proving (13), the above Lemma proves also the

following

Corollary 1: If distribution πX stochastically dominates

distribution πY , and g(n) is the function (12), then we have

n
∑

i=1

ε(i) (πX(i)− πY (i)) ≤
n
∑

i=1

g(i) (πX(i)− πY (i)). (31)

Corollary 2: If distribution πX stochastically dominates

distribution πY , g(n) is the function (12), and l(n) = ν ln(n),
ν as in (12), then we have

n
∑

i=1

ε(i) (πX(i)− πY (i)) ≤
n
∑

i=1

l(i) (πX(i)− πY (i)), (32)

where the thesis comes from Corollary 1 and Lemma 5, being

∆l(n) ≥ ∆g(n).
The next lemma provides a lower bound to ∆ε(n).
Lemma 2: Given the function

g(n) = ν ln(n) n ≥ 3

g(2) = −0.5,

for ν = 1 the following inequality holds

∆ε(n) ≥ ∆g(n), n ≥ 2. (33)

Proof: The proof proceeds exactly as in Lemma 1, where

now we set g(n) = ν ln(n). We exploit again (15), carrying

also the infinitesimal terms of expansion in Property 3c of

Appendix B. This yields

∆ε(n+ 1) = − 7

24n2
+

n
∑

i=2

ε(i) (π′
n+1(i)− πn(i)) +O(n−3)

(34)

for n ≥ 2. We proceed by induction as in Lemma 1, where

now (18) becomes ε(i) ≥ g(i). Here the value g(2) has been

chosen so as to satisfy g(2) < ε(2) ≈ −0.2817. In order

to lower bound g(i), relations (20) and (21) are respectively

replaced by

g1(x) =

4
∑

i=1

(−1)i+1 (x − a)i

iai
(35)

dlnx

dx
≥

3
∑

i=0

(−1)i
(x− a)i

ai+1
(36)

for all x ≥ 1 and a ≥ 1. Using the same series expansions we

get the corresponding of (23) as

ln(i) ≥ n−1 +
3− e

2(e− 1)
n−2 +O(n−3). (37)

From (34), to prove the thesis ∆ε(n+1) ≥ ∆g(n+1), we

must have

− 7

24
n−2 + ν ln(i) +O(n−3) > ∆g(n+ 1)

= ν

(

n−1 − 1

2
n−2 +

1

3
n−3 + . . .

)

,

(38)

and using (37) term n−1 simplifies, leading to condition

7

24
n−2 ≤ ν

1

e− 1
n−2 +O(n−3). (39)

If we disregard term O(n−3), for any ν ≥ 0.502 the above

inequality is always verified. This means that there is an n1(ν)
such that for n ≥ n1(ν) (39) is always verified, and the lemma

is proved if the thesis is shown to hold numerically up to

n1(ν). This is the case, for example, with ν = 1, and the

thesis is proved.

Now we proceed to get bounds to error ε(n) and to provide

its asymptotic behavior.

Lemma 3: The following inequality holds:

ε(n) > f(n) = ζ ln(n) +
λ

n
, n ≥ 2, (40)

where λ = 1.2 and

ζ = − 0.5

ln(1 − e−1)
= 1.0900... (41)

Proof: We start from relation (14) that, using Property 3b

of Appendix B and Rn/n = 1− e−1 − ξn, becomes

ε(n) = neξn +

n
∑

2

πn(i) ε(i),

and, solving for ε(n), we get

ε(n) =

neξn +

n−1
∑

2

πn(i) ε(i)

1− πn(n)
. (42)

In the following, we assume that inequality (40) is verified

up to n − 1 ≥ 2, and show that it is also satisfied for n,

proving the theorem by induction. This assumption, applied

to (42), implies

ε(n) > neξn +

n−1
∑

2

πn(i) f(i)

= neξn +

n
∑

2

πn(i) f(i)− πn(n) f(n). (43)

Similarly to preceding Lemmas we use inequalities

ln(x) ≥ ln(a) +
(x− a)

a
− (x − a)2

2a2
+

(x − a)3

3a3
− (x − a)4

a3.5
(44)
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1

x
≥ 1

a
− (x− a)

a2
(45)

for all x ≥ 1 and a ≥ 1, evaluated at a = Rn, which provide

f(i) =
n
∑

2

πn(i) f(i)

≥ ζ

(

ln(Rn)−
E
[

(Rn −Rn)
2
]

2R2
n

+
E
[

(Rn −Rn)
3
]

3R3
n

− E
[

(Rn −Rn)
4
]

R3.5
n

)

+
λ

Rn
. (46)

Using Property 3b of Appendix B, and substituting Taylor’s

expansions, (46) provides

f(i) ≥ ζ

(

ln(1 − e−1) + ln(n)− 1

(e − 1)
n−1

)

+
λ e

(e− 1) n+ 1/2
+O(n−2). (47)

From inequality (43), and using the above, the thesis is true

if the following holds

ε(n) > neξn + ζ ln(1− e−1) + ζ ln(n)− ζ

e− 1
n−1

+
λ e

e− 1
n−1 +O(n−2)

≥ ζ ln(n) + λ n−1. (48)

or

neξn+ ζ ln(1−e−1)− ζ

e− 1
n−1+

λ

e − 1
n−1+O(n−2) ≥ 0.

(49)

Substituting expansion neξn = 1
2 + 7

24n + O(n−2) and ζ,

condition (49) becomes

(

7

24
− ζ

e− 1
+

λ

e− 1

)

n−1 +O(n−2) ≥ 0. (50)

Disregarding term O(n−2), the above is true for λ > ζ −
(7/24)(e − 1) ≈ 0.6. This means that, in this case, there is

some n0(λ) such that for all n ≥ n0 (50) is true. The thesis

is then proved by showing that (40) numerically holds up to

n0. This happens for λ = 1.2. Since we are dealing with a

lower bound, we are interested in taking λ as large as possible.

However, we have found that as λ increases beyond 1.35 (40)

does not hold from n = 2 up, and the lemma can not be

proved.

Lemma 4: The following inequality holds:

ε(n) < g(n) = ζ ln(n) +K, n ≥ 2, (51)

where

ζ = − 0.5

ln(1− e−1)
= 1.0900.., (52)

and K = 0.7.

Proof: The proof proceeds exactly as in Lemma 3, where

term λ/n is replaced by the constant K . We assume that

inequality (51) is verified up to n − 1 ≥ 2, and show that

it is also satisfied for n, proving the theorem by induction.

The corresponding of (43) is

ε(n) <
1

1− πn(n)

(

neξn +

n
∑

2

πn(i) g(i)− πn(n) g(n)

)

= neξn +

n
∑

2

πn(i) g(i) +O(cn)

< neξn + ζ ln(Rn) +K +O(cn), (53)

where in the last step we applied Jensen’s inequality. Again,

using the expansion for ln(Rn) and Property 3b of Appendix

B, that provides neξn = 1
2 + 7

24n
−1 +O(n−2), we have

ε(n) <
1

2
+

7

24
n−1 + ζ ln(1 − e−1) + ζ ln(n)

− ζ
1

2(e− 1)
n−1 +K +O(n−2). (54)

The thesis holds if we show that ε(n) < g(n), which, using

the above and (52), gives the condition

7

24
n−1 − ζ

1

2(e− 1)
n−1 +O(n−2) < 0. (55)

Disregarding term O(n−2), the inequality above is always

true. This means that there is some n0 such that for all n ≥ n0

(55) is true. The value of constant K has no effect on the above

inequality; in fact, it is taken as the practical smaller value that

makes (51) true for 2 ≤ n ≤ n0. We have found that the thesis

holds with K = 0.7.

Using the preceding lemmas we may conclude:

Theorem 2:

1.2

n
+ ζ ln(n) ≤ ε(n) < 0.7 + ζ ln(n), n ≥ 2, (56)

ε(n) ∼ ζ ln(n). (57)

We now are in the position to prove the main theorem of this

paper. Let L(n, r) be the average IP when r is the length of

the first frame, whereas for the remaining frames the Selected

Strategy is adopted.

Theorem 3: L(n, r) is minimized by the strategy that at

each frame sets the frame length r equal to the backlog size

n.

Proof: We assume that the above strategy is used in all

frames with backlog i, 2 ≤ i ≤ n− 1, and show that we have

∆L(n, k) = L(n, n)− L(n, n+ k) < 0 (58)

for k ≥ −(n − 1) and k 6= 0, then the theorem is proved by

induction starting from n = 2. From (5) and (6) we have

∆L(n, k) = n+

n
∑

i=2

πn,n(i) L(i)

− n+ k +
∑n−1

i=2 πn,n+k(i) L(i)

1− πn,n+k(n)
. (59)

We now proceed by proving (58) for the two cases, k < 0 and

k > 0.
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Part Ia. k < 0, or h = −k > 0. Since the range of h
depends on n, we further set h = αn, with 1/n ≤ α ≤
(n− 1)/n. Equation (59) can be expressed as

∆L(n,−αn) = n+

n
∑

i=2

πn,n(i) L(i)

− n(1 − α) +
∑n

i=2 πn,n(1−α)(i) L(i)− πn,n(1−α)(n) L(n)

1− πn,n(1−α)(n)
.

(60)

By Theorem 2 we use inequalities

ie− ζ ln i− 0.7 ≤ L(i) ≤ ie− ζ ln(i),

to bound (60) as follows

∆L(n,− αn) ≤ n+ eRn,n − ζE [lnRn,n]

− n(1− α) + eRn,n(1−α) − ζ E
[

lnRn,n(1−α)

]

1− πn,n(1−α)(n)

+
0.7 + πn,n(1−α)(n) (ne − ζ ln(n))

1− πn,n(1−α)(n)
(61)

= −n(e− 1) + e Rn,n + ζ (ln(n)− E [lnRn,n])

− −n(e− 1) + e Rn,n(1−α)

1− πn,n(1−α)(n)

− ζ (ln(n)− E
[

lnRn,n(1−α)

]

)− nα− 0.7

1− πn,n(1−α)(n)
. (62)

In the last passage above we get term (61) that is of the order

O(n−1). In fact, in Lemma 3 we have lower bounded function

f(i) that includes term E [lnRn,n]. By result (47) we have

ln(n)−E [lnRn,n] ≤ − ln(1−e−1)+
1

(e − 1)
n−1+O(n−2).

(63)

Using Property 3b and Jensen’s inequality E
[

lnRn,n(1−α)

]

≤
ln(Rn,n(1−α)), term (61) becomes

−0.5− ζ ln(1− e−1) +

(

ζ

(e − 1)
− 7

24

)

n−1+O(n−2)

= O(n−1),
(64)

having exploited the relation −0.5 − ζ ln(1 − e−1) = 0. As

for term (62), we use expansions

eRn,n(1−α) = n(e− e
α

α−1 ) + e
α

α−1

(2α− 1)

2(α− 1)2
+O(n−1)

ln(Rn,n(1−α)) = ln(n) + ln
(

1− e
1

α−1

)

− e
1

α−1 (2α− 1)

2(e
1

α−1 − 1)(α− 1)2
n−1 +O(n−2)

(65)

and inequality (61)-(62) becomes

∆L(n,−αn) ≤ − s(n, α)

1− πn,n(1−α)(n)
+O(n−1), (66)

where

s(n, α) = n(1 − α− e
α

α−1 ) + e
α

α−1

(2α− 1)

2(α− 1)2

− ζ ln
(

1− e
1

α−1

)

− 0.7. (67)

Function s(n, α) is negative only in a small interval beyond

α = 0. It crosses the axis at α0 that we find by expanding

s(n, α) around α = 0 up to the second power and for large

n. We get

s(n, α) = n
α2

2
− 0.7 +O(nα3), (68)

which shows that s(n, α) switches from negative to positive

at about

α0 =
√

1.4/n+ o(1/
√
n),

and then remains positive up to α = (n − 1)/n. Therefore,

from (66) we see that an n0 exists such that for α0 < α ≤ 1
and all n > n0 we have ∆L(n, n(1− α)) < 0.

Part Ib. Here we consider the case h/n = α ≤ α0, i.e.,

h/n ≤ α0 =
√

1.4/n+ o(1/
√
n). This means that we have

h ≤
√
1.4n+ o(1/

√
n). (69)

The (59) can be bounded as follows

∆L(n,−h) ≤ n+

n
∑

i=2

πn,n(i) L(i) + πn,n−h(n) L(n)

−
(

n− h+

n
∑

i=2

πn,n−h(i) L(i)

)

= h+
n
∑

i=2

(πn,n(i)− πn,n−h(i)) L(i) +O(cn),

(70)

where we have made use of Property 2B.

By substituting the expression L(i) = ie − ε(i) (Th. 1),

condition (58) turns into

ε(i) =
n
∑

i=2

ε(i) (πn,n−h(i)− πn,n(i))

< e (Rn,n−h −Rn,n)− h−O(cn). (71)

We use the expansion

Rn,n−h −Rn,n = he−1

(

1 +
h+ 1

2
n−1

+
4h2 + 18h+ 7

24
n−2

)

+O(n−3).

(72)

Furthermore, since πn,n−h stochastically dominates πn,n

(Lemma 6), we use Corollary 2 to show that ε(i) ≤ l(i),
where we have adopted the new distributions. Therefore, from
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(71), the thesis is proved true by showing that

ε(i) ≤ l(i)

=

n
∑

i=2

l(i) (πn,n−h(i)− πn,n(i))

<
(h+ 1)h

2
n−1 +

(4h2 + 18h+ 7)h

24
n−2 +O(n−3).

(73)

We prove the above inequality by bounding l(i) exactly

as we bounded g(i) in Lemma 1. Actually, this evaluation

is simpler, as function l(n) coincides with the first part of

g(n). We take the power series at a = Rn,n−h, and get the

corresponding of (22), where now the moments are evaluated

according to the distributions in (73). We then substitute the

asymptotic expansions to get

l(i) ≤ ν
h

e− 1
n−1 +O(n−2), (74)

then (73) is true if the following is true

ν

e− 1
n−1 <

h+ 1

2
n−1 +O(n−2). (75)

Disregarding term O(n−2), the above inequality is always

verified as by Lemma 1 we have ν < e − 1. Under this

hypothesis we can always find a finite n1 such that for all

n > n1 inequality (75) holds.

Part II. The (59) becomes

∆L(n, k) = −k +

n
∑

i=2

(πn,n(i)− πn,n+k(i))L(i) +O(cn).

(76)

Substituting L(i) = ie− ε(i), condition (58) transforms into

n
∑

i=2

ε(i)(πn,n(i)−πn,n+k(i)) ≥ e(Rn,n−Rn,n+k)−k+O(cn).

(77)

If we disregard term O(cn), the above inequality is always

verified for any k > 0. In fact, by Property 4b in Appendix B,

the right hand term is negative. On the other side, by Lemmas

2, 5, 6, and property (78), the left hand side cannot be negative

(actually we can show it is positive). Therefore, we can find

an n2, independent of k, even when k → ∞, such that the

above inequality is satisfied for any n > n2.

Then we numerically show that (58) holds up to

max[n0, n1, n2], and the whole theorem is proved.

III. CONCLUSIONS

In this paper we have theoretically proved results about the

Frame Aloha protocol that up to now were only numerically

verified. In particular we have shown that the strategy that

minimizes the time to the identification of a known number

of tags is the one that sets at each frame the frame length r
equal to the backlog n. Furthermore we have shown that the

optimal asymptotic efficiency is e−1, and derived tight upper

and lower bounds to the identification time.

APPENDIX A

We make use of the concept of stochastic dominance of first

order. Given two non negative RVs X and Y , the probability

distribution πX of X is said to stochastically dominate πY of

Y if their cumulative distributions FX and FY are such that

FX(i) ≤ FY (i), ∀i.
If the property above holds true, and g(i) is a weakly increas-

ing function, then the following property holds [15]:
∑

i

g(i) (πX(i)− πY (i)) ≥ 0. (78)

Lemma 5: If πX stochastically dominates πY , and if u(i)−
u(i− 1) ≥ h(i)− h(i− 1), ∀i, we have
∑

i

u(i) (πX(i)− πY (i)) ≥
∑

i

h(i) (πX(i)− πY (i)). (79)

Proof: In fact, (79) holds if the following relation holds
∑

i

(u(i)− h(i)) (πX(i)− πY (i)) ≥ 0. (80)

The above is true if u(i) − h(i) is weakly increasing, which

holds by hypothesis.

If u(x) and h(x) are defined over the real interval that

comprises all the values of RVs X and Y , since

d

dx
(u(x)− h(x)) ≥ 0, ∀x

is a sufficient condition for u(i)− h(i) ≥ 0, ∀i, we have

Corollary 3: If πX stochastically dominates πY , and if

du(x)/ dx ≥ dh(x)/ dx, ∀x, then inequality (80) holds.

With the notation used in the paper we have:

Lemma 6:

1) Distribution πn+1,r stochastically dominates, in the first

order, πn,r;

2) πn+1,r+1 and π′
n+1,r+1 stochastically dominate, in the

first order, πn,r;

3) πn,r stochastically dominates, in the first order, πn,r+1.

Proof:

1) We must show that

P(Rn+1,r > i) > P(Rn,r > i), i = 0, . . . n.

The experiment that provides Rn+1,r can be composed of

two subsequent experiments: the first is the experiment that

provides Rn,r, and the second experiment adds to the frame

the (n + 1)-th tag, which can be either collided or not. Let

R1 denote the increase in the number of collided tags the

second experiment causes, either 0, 1, or 2. Therefore we have

Rn+1,r = Rn,r +R1, and also

P(Rn+1,r > i) = P(Rn,r +R1 > i)

= P(Rn,r > i) +
∑

k≥0

P(Rn,r = i − k)P(R1 > k)

> P(Rn,r > i),

which prove the first point.

2) We must show that

P(Rn+1,r+1 > i) > P(Rn,r > i), i = 0, . . . n+ 1, (81)
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that is equivalent to show that

P(Sn+1,r+1 < n−(i−1)) > P(Sn,r < n−i), i = 0, . . . n+1,

and using the change of variable i′ = n− i, the condition to

check is

P(Sn+1,r+1 < i′ + 1) > P(Sn,r < i′), i′ = −1, . . . n.
(82)

As suggested by (87), the ratio between pn+1,r+1(i + 1) and

pn,r(i) is a decreasing function of i:

pn+1,r+1(i+ 1)

pn,r(i)
=

n+ 1

i+ 1

(

r

r + 1

)n

, 0 ≤ i ≤ min{n, r},
(83)

and this is a sufficient condition to ensure (82), i.e., that

{pn,r(i)} stochastically dominates {pn+1,r+1(i + 1)} [16].

This is equivalent to say that (81) holds, i.e., that πn+1,r+1

stochastically dominates πn,r.

Introducing the probabilities

p′n+1,r+1(i+ 1) =
pn+1,r+1(i+ 1)

1− pn+1,r+1(0)
, i = 0, . . . n,

that are scaled versions of pn+1,r+1(i+1), we note that their

ratio with pn,r(i) is still a decreasing function of i, therefore

π′
n+1,r+1 stochastically dominates πn,r.

3) The thesis implies that distribution pn,r+1 stochastically

dominates pn,r. Using the ratio Yn,r(i) = pn,r+1(i)/pn,r(i),
owing to (87) we have the recursion

Yn,r(i) = Yn−1,r−1(i)

(

r2

r2 − 1

)n−1

. (84)

Let now assume that the ratio Yn−1,r−1(i) is a non-decreasing

function of i and that

Yn−1,r−1(i0) ≤ 1, Yn−1,r−1(i0 + 1) ≥ 1.

Then, owing to (84), Yn,r(i) is a non-decreasing function of

i. Furthermore, condition Yn,r(i) > 1 can not hold for all i,
because this would imply pn,r+1(i) > pn,r(i) for all i, clearly

impossible. Therefore, for some i1 it must hold

Yn,r(i1) ≤ 1, Yn,r(i1 + 1) ≥ 1.

This proves the thesis by induction on the pair (n, r) starting

from

Y2,r(0) = r/(r + 1),

Y2,r(1) = 1,

Y2,r(2) = r2/(r2 − 1), r ≥ 2,

where Y2,r(1) = 1 means that the two terms of the ratio are

equal, though both equal to zero.

APPENDIX B

A recursive expression of pn,rn(s, c), the probability of

having s successes and c collided slots in the first frame, is

given in [10]. A closed-form expression for pn,r(s) is given

in the following

Property 1: The distribution pn,r is given by

pn,r(i) =

m
∑

k=i

(−1)k+i

(

k

i

)

Xn,r(k), 0 ≤ i ≤ m, (85)

where m = min{n, r}, and

Xn,r(k) =

(

r

k

)

n!

(n− k)!

(

1

r

)k (
r − k

r

)n−k

, (86)

with k ≤ m.

Furthermore we have

pn+1,r+1(i + 1) = pn,r(i)
n+ 1

i+ 1

(

r

r + 1

)n

, 0 ≤ i ≤ m.

(87)

Proof: Let A1, A2, . . . , Ar be r non-disjoint events. The

probability that exactly t among these events jointly occur is

given by [17]

Pt = Xt −
(

t+ 1

t

)

Xt+1 +

(

t+ 2

t

)

Xt+2

− . . .+ (−1)r−t

(

r

t

)

Xr (88)

where

X1 =
∑

P(Ai)

X2 =
∑

i6=j

P(AiAj)

X3 =
∑

i6=j 6=k

P(AiAjAk) (89)

and so on. Summations involve all possible combinations in

such a way that each n-string appears just once, and the

number of the terms Xk is
(

r
k

)

.

In our case the event Ai is defined as the occurrence of just

one transmission, out of n, in slot i of a frame composed of

r slots, and the probability of any of the k-string is given by

P(Aj1Aj2 . . . Ajk) =
n!

(n− k)!

(

1

r

)k (
r − k

r

)n−k

,

k ≤ m, which by (88) and (89) proves the first part of the

theorem.

The proof of the second part comes from (85) and (86),

observing that

Xn+1,r+1(k + 1) =
n+ 1

k + 1

(

r

r + 1

)n

Xn,r(k).

and rearranging terms.

Property 2: The sequence {πn(n)}n for n > 16 is bounded

as:

πn(n) < π̄n(n) = 3.47·10−3·0.9157n+59.79·0.4157n. (90)

Proof: Once the number of tags that participates in a

frame is fixed, adding a slot to the frame decreases the

probability of having no successes, or, in other terms,

πn+1,n+1(n+ 1) < πn+1,n(n+ 1). (91)
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On the other side, considering the outcome of the (n + 1)-th
tag being added to the frame, we can write

πn+1,n(n+1) = πn,n(n)P(X = 1)+ πn,n(n− 1)P(X = 2),
(92)

where X denotes the increase in the collided tags caused by

the (n+1)-th tag. In the case represented by πn,n(n−1) there

is only one success that the new added tag turns into two more

collisions, and this happens with probability

P(X = 2) = 1/n.

In the case represented by πn,n(n) the added tag must select

one of the collided slots, and this happens with probability

P(X = 1) =
E [Cn | Sn = 0]

n
<

n

2
· 1
n
=

1

2
.

From recursion (87) one has

πn(n− 1) = pn(1) = pn−1(0) ·Sn = πn−1(n− 1) ·Sn. (93)

Using (91), (92) and (93) we finally get

πn+1(n+ 1) <
1

2
πn(n) +

Sn

n
πn−1(n− 1),

and, taking advantage of Property 3b, we may write

πn+1(n+ 1) <
1

2
πn(n) +

S15

15
πn−1(n− 1),

for n ≥ 15. This means that it is possible to build a sequence

{π̄n(n)}, that upper bounds the actual sequence {πn(n)},

through the recurrence

π̄n+1(n+ 1) = 0.5 π̄n(n) + 0.381 π̄n−1(n− 1),

for n ≥ 16, with initial conditions π̄14(14) = π14(14) ≈
1.285 · 10−3 and π̄15(15) = π15(15) ≈ 8.106 · 10−4. The

solution of the above difference equation is

π̄n(n) = 3.47 · 10−3 · 0.9157n + 59.79 · (−0.4157)n, (94)

for n ≥ 16. From this, bound (90) is immediate.

Property 2b:

πn,n/k(n) = O(cn), c < 1 (95)

where k > 1 is such that n/k is integer. This property can be

proved exactly as the previous one by suitably choosing some

coefficients.

In the analysis carried out in the paper we make use of

properties of RVs Sn and Rn = n−Sn, listed below, that can

be proved with standard tools.

Property 3:

a) E [Sn,r] = Sn,r = n

(

1− 1

r

)n−1

;

b) Rn/n is an increasing function of n such that
Rn
n =

1− e−1 − e−1

2n − 7e−1

24n2 − 3e−1

16n3 +O(n−4);
c) Rn+1−Rn is a decreasing function of n with (Rn+1 −

Rn) = 1− e−1 + 7e−1

24n2 +O(n−3).

Property 4:

a) Rn,n+k−1 −Rn,n+k < e−1, for all n ≥ 1 and k ≥ 1;

b) Rn,n −Rn,n+k < ke−1, for all n ≥ 1 and k ≥ 1.

Proof: For the first point it is

Rn,n+k−1 −Rn,n+k = Sn,n+k − Sn,n+k−1

≤ max
k∈{1,2,...}

(Sn,n+k − Sn,n+k−1)

≤ sup
k∈[1,∞)

∂

∂k
Sn,n+k

for all n ≥ 1. The derivative with respect to k is

∂

∂k
Sn,n+k =

n

n+ k

Sn−1,n+k

n+ k
, (96)

where Sn−1,n+k/(n + k), the throughput per slot, is a de-

creasing function of k, for k ≥ 1. This means that also (96)

is a decreasing function of k, and therefore the maximum is

achieved for k = 1:

∂

∂k
Sn,n+k ≤ n

(n+ 1)2
Sn−1,n+1

=
n(n− 1)

(n+ 1)2

(

1− 1

n+ 1

)n−2

< e−1.

Point 4b comes straightforwardly from point 4a.

Property 5: Here we show how to derive moments of

variable Sn,r. Moments for variable Rn,r can be derived

by the relation Rn,r = n − Sn,r. The first order moment

is given above in Property 3a. For the evaluation of higher

order moments we express Sn,r as the sum of binary variables

Xn,r(i), where Xn,r(i) takes value 1 if in the corresponding

i-th slot of the frame there is only one tag, i.e., a success.

Hence

E
[

Sk
n,r

]

= E





(

r
∑

i=1

Xn,r(i)

)k


 .

We use the multinomial theorem, that gives

E





(

r
∑

i=1

Xn,r(i)

)k


 =
∑

k1+k2+...+kr=k

k!

k1!k2! . . . kr!
Qn,r

with

Qn,r = E





r
∏

j=1

Xkj

n,r(j)





=
∑

P

(

Xn,r(1) = x1;Xn,r(2) = x2;

. . . Xn,r(r) = xr

)

·
∏

j∈Ω

x
kj

j ,

where the summation is extended to the whole space of

outcomes, whereas the product is extended to indexes j ∈ Ω =
{j1, j2, . . . , j|Ω|} for which kj > 0, and 1 ≤ |Ω| ≤ min{r, k}.
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We consider the case where k ≤ r. This allow us to write

Qn,r = P(Xn,r(j1) = 1;Xn,r(j2) = 1; . . .Xn,r(j|Ω|) = 1)

= P(Xn,r(j1) = 1) ·
|Ω|
∏

t=2

P

(

Xn,r(jt) = 1|Xn,r(jt−1) = 1,

Xn,r(jt−2) = 1, . . . , Xn,r(j1) = 1
)

=

|Ω|
∏

t=1

P(Xn−t+1,r−t+1(jt) = 1)

=

|Ω|
∏

t=1

Sn−t+1,r−t+1

r − t+ 1
,

where we have used the chain rule for probabilities and the fact

that knowing the outcomes of some slots reduces the problem.

Furthermore, sequences k1, k2, . . . kn that are permutations of

the same sequence provide the same Qn,r. As a consequence,

in the case where k ≤ r, the k-th moment of RV Sn,r can be

written as

E
[

Sk
n,r

]

=

k
∑

i=1

ai

i
∏

t=1

Sn−t+1,r−t+1

r − t+ 1

=
Sn,r

r

(

a1 +
Sn−1,r−1

r − 1

·
(

a2 + . . .

(

ak−1 +
Sn−k+1,r−k+1

r − k + 1
ak

))

)

,

where ai is the number of combinations where |Ω| = i.

For example, for k = 2 ≤ r, we have r terms corresponding

to kj = 2, being all the others zero (|Ω| = 1 and a1 = r), and

r(r − 1) terms of type ki = 1, kj = 1, i 6= j, being all the

others zero (|Ω| = 2 and a2 = r(r − 1)). This provides

E
[

S2
n,r

]

= Sn,r + Sn,rSn−1,r−1.

In a similar way we have found

E
[

S3
n,r

]

= Sn,r + 3 Sn,r Sn−1,r−1

+ Sn,r Sn−1,r−1 Sn−2,r−2,

E
[

S4
n,r

]

= Sn,r + 7 Sn,r Sn−1,r−1

+ 6 Sn,r Sn−1,r−1 Sn−2,r−2

+ Sn,r Sn−1,r−1 Sn−2,r−2 Sn−3,r−3,

E
[

S5
n,r

]

= Sn,r + 15 Sn,r Sn−1,r−1

+ 25 Sn,r Sn−1,r−1 Sn−2,r−2

+ 10 Sn,r Sn−1,r−1 Sn−2,r−2 Sn−3,r−3

+ Sn,r Sn−1,r−1 Sn−2,r−2 Sn−3,r−3 Sn−4,r−4.
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