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Abstract— Currently a lot of research concentrates on
future 5G networks for mobile radio systems of the next
generation. Options like Massive MIMO (mMIMO), coop-
eration based on coordination or joint transmission, user
equipment (UE) assisted interference cancellation, and ultra
dense deployment of small cells are under discussion to
achieve significant gains with respect to spectral efficiency.
Massive MIMO, i.e., a strong over provisioning of antennas
versus served users, is often claimed to solve many complex
issues like inter cell interference, multi user MIMO schedul-
ing, coverage holes and capacity limits. In this paper, the
tradeoffs between a pure mMIMO implementation versus
the combination with different types of cooperation are
investigated for indoor local area scenarios.

Index Terms— Cooperation, massive MIMO, channel es-
timation and prediction, JP CoMP, two stripe building,
network MIMO, interference management.

I. INTRODUCTION

It is expected that around 2020 the next generation of
mobile radio systems, typically called the fifth generation
or in short 5G, will succeed current 3GPP 4G networks.
It will have to support a high diversity of requirements
like efficient support of machine type communication, a
low latency, increased spectral efficiency, extremely high
peak data rates, and a high capacity. The capacity re-
quirements are expected to lead to a densification of radio
stations with lower transmit power, which are often called
small cells (SC). On the physical layer one of the most
promising enhancements is massive MIMO (mMIMO).
For typical 3GPP outdoor scenarios spectral efficiencies
of several tens of bits/s/Hz/cell might be possible, which
corresponds to a gain by a factor of ten or more compared
to todays 4G networks [see e.g. METIS deliverable D3.2].

Massive, compared to conventional MIMO, is often
defined as a strong over provisioning of antennas, for
example, compared to the number of served user equip-
ments (UEs) or streams. Strong beamforming and direc-
tivity gains are claimed to relax many challenges known
from conventional cellular radio systems like smart rank
adaptive schedulers or highly sophisticated interference
mitigation schemes.

Figure 1 illustrates the achievable capacity as a function
of the number of simultaneously served UEs normalized

Fig. 1: Capacity versus relative number of UEs for round
robin scheduled UEs (black curve) and with optimum
rank selection and user grouping (green curve) including
CS/CB (mid) and JT CoMP right part

by the number of antenna elements (AE). For lower
values of simultaneously served UEs, where the mMIMO
paradigm of strong over provisioning of AEs holds, the
capacity increases almost linearly with the number of
served UEs. Over provisioning means that the installed
hardware will not be used most efficiently, which might
be not acceptable considering the relative high cost of
a radio frequency chain (digital-to-analogue converter,
power amplifier, filter etc..) which is needed for each
antenna element.

A obvious idea is to add more users. Though with
more and more users the multi user MIMO channel for
randomly scheduled user equipments (UE) offers less
degrees-of-freedom for the transmission to the UEs and
interference between different cells increases. These two
effects eventually outweigh the extra gain of additional
users and the capacity saturates or even degrades (black
curve). For medium load conditions smart rank adapta-
tion, coordinated scheduling and coordinated beamform-
ing (CS/CB) are known to boost performance considerably
(green curve - middle).



Approaching full load conditions with similar number
of UEs compared to antenna elements, joint transmission
coordinated multi point (JT CoMP) can boost performance
due to rank enhancement and interference mitigation.

In the end there is a trade-off between easy imple-
mentation and installation (mMIMO), and the optimal
exploitation of the installed hardware (JT CoMP). Looking
at the figure we can tell, that depending on the scenario
JT CoMP might either increase the performance for a
certain number of AEs or decrease the number of required
AEs for a certain capacity target. We will investigate these
trade-offs in more detail in this paper.

Massive MIMO is often seen as an outdoor technology,
for example to upgrade already existing macro sites. For
local area (LA) and especially indoor LA scenarios, a
basic idea is to install a high number of low cost small
cells (SC), ideally in almost every room. The rationale
is that typically more than 70% of the mobile users are
located inside buildings and indoor SCs avoid the outdoor-
to-indoor penetration loss of usually more than 20 dB.
In addition, short radio links of a few to tens of meters
experience extremely low pathloss values.

Placing a single mMIMO array somewhere at the center
of a building is not an optimal choice as users will suffer
from larger transmitter-to-receiver distances together with
a potentially high wall penetration loss. At the same time
there is the advantage of reduced infrastructure costs when
connecting a single radio site only, which motivates us to
evaluate the potential of this option.

In this contribution we evaluate and verify the above
mentioned trade-offs as well as the effects and the poten-
tial of massive and network MIMO (i.e., JT CoMP) for
classical dual stripe office buildings. In a further step we
evaluate the time variance of the LA radio channel due to
moving persons and the performance of classical Kalman
based channel prediction.

The scenario and system concept are described in Sec-
tion II. Section III details the used transmission schemes
and Section IV introduces LA performance results with no
estimation error. Section V explains the channel prediction
concept and Section VI assesses the effect of estimation or
prediction error on massive and network MIMO. Section
VII concludes the paper.

II. SYSTEM MODEL

Consider a two stripe building defined as the A1 indoor
office scenario in the WINNER II deliverable [1]. The
two stripe scenario is an office building with two parallel
corridors. On both sides of each corridor are rows of 10
office rooms. One office room has a size of 10m times
10m, while the width of a corridor is 5m. This leads to
an overall size of the building of 50m times 100m.

Two different base station deployments are considered.
The first consists of a single base station at the center
of the building. The second consists of four base stations
(BS), where two are placed in each corridor spaced 60m
apart. We denote the deployment with a single base station

in the center as “Massive MIMO” and the distributed
deployment as “Network MIMO”.

Since we consider single antenna UEs and orthogonal
frequency-division multiplexing (OFDM), we obtain in-
dependent MISO broadcast channels for each subcarrier.
The received signal for one subcarrier of the k-th UE is

yk = hH
k x+ zk, k = 1, . . . ,K, (1)

where hk is the length M channel coefficients vector from
the transmit antennas to the k-th UE and x is the length
M transmitted signal vector. zk is proper complex thermal
Gaussian noise with variance σ2

N , which is independent
of the noise at other UEs and other subcarriers. hH is
the complex conjugate transpose of vector h, respectively
HH of matrix H. For more than one base station we
stack the channel coefficient vectors to obtain hk. The
total number of transmit antennas M is the sum of the
number of transmit antennas at the BSs M =

∑
iMi.

We place the transmit antennas at one base station (BS)
in a rectangular array with an antenna spacing of λ/2.
The number of UEs is K, which is equal to the number
of receive antennas as we consider single antenna UEs.
The received signals of all UEs for one subcarrier are
combined into a vector

y = Hx+ z, (2)

where y = [y1, . . . , yK ], H = [h1, . . . ,hK ]H and z =
[z1, . . . , zK ].

The channel coefficients are generated according to the
WINNER II A1 indoor channel model [1]. The channel
model provides parameter sets for line-of-sight (LOS)
and non line-of-sight (NLOS) conditions. For each BS
and UE the number of walls between their positions
are determined and the appropriate condition is selected.
An additional penetration loss of 12 dB (as we assume
heavy walls) for every wall beyond the first is applied.
When determining the number of walls, paths along the
corridors are considered as an alternative to the direct path,
which might penetrate more walls. We use the QUAsi
Deterministic RadIo channel GenerAtor (QuaDRiGa) [2]
to generate the channels and enhance it to count the
number of walls and apply the wall penetration loss.

The number of walls for the “Massive MIMO” deploy-
ment is shown in Figure 2 and for the “Network MIMO”
deployment is shown in Figure 3.

For linear precoding the vector x is constructed as

x = Ws, (3)

where W = [w1, . . . ,wK ] is the matrix of the precoding
vectors and s = [s1, . . . , sK ] is the vector of transmit
symbols. The precoding vectors are normalized ‖wk‖2 =
1,∀k. We distribute the total transmit power PS equally to
the UEs. Hence the transmitted power per UE is limited
by PS/K, which can be allocated on N subcarriers.
The subcarriers are organized in physical resource blocks
(PRB) of 12 subcarriers, where the power allocation is
done on PRB level. The transmit symbols are constraint
to fulfill the per UE power constraint

∑N
i=n ‖sk,n‖2 ≤
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Fig. 2: Number of walls between UE position and the
central BS for the “Massive MIMO” deployment
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Fig. 3: Number of walls between UE position and lower
right BS for the “Network MIMO” deployment

PS/K,∀k, where sk,n is the transmit symbol of the k-th
UE on the n-th subcarrier.

III. TRANSMISSION SCHEME

For the “Massive MIMO” deployment all antennas are
located at one physical site, whereas for the network
MIMO deployment the antennas are at different sites.
To treat the distributed BSs as single BS, a sufficient
backhaul connection between the BSs is needed. We
assume a perfect backhaul between the BSs for the
“Network MIMO” deployment. Additionally we assume
a total transmit power constraint for the cooperating BSs,
instead of a per BS power constraint. This way we can
use the same transmission scheme for both deployments.

To determine the benefit of Network MIMO (netMIMO)
versus centralized mMIMO we consider only scenarios
where the total number of transmit antennas M is larger
or equal to the number of UEs. Hence it is always possible
to schedule all users in every time frame and on every
PRB.

A. Zero Forcing Beamforming (ZFBF)

The linear precoder are determined according to an
interference zero forcing objective. The optimal solution
given a sum power constraint to the optimization problem
is the pseudo-inverse combined with a power allocation
[3]. The pseudo-inverse is

W′ = HH(HHH)−1. (4)

Carrier frequency 2.1GHz
Bandwidth 20MHz
Used bandwidth 18MHz
Subcarrier spacing 15 kHz
Number of subcarriers 1200
Number of PRBs 100
Antenna Spacing λ/2
Wall penetration loss 12 dB
Sum power constraint 26 dBm
Noise level −124.6 dBm
Maximum modulation scheme 256 QAM
Number of UEs 20
Number of drops 300
Number of channel realizations per drop 10

TABLE I: Simulation Parameters

In order to obtain a precoding matrix W with normalized
precoders we divide the columns of W′ by their norm

W =

[
w′1
‖w′1‖

, . . . ,
w′K
‖w′K‖

]
. (5)

With this choice of the precoding matrix the received
signals become

y = HWs+ z

= HHH(HHH)−1diag
(

1

‖w′1‖
, . . . ,

1

‖w′K‖

)
s+ z

= diag
(

1

‖w′1‖
, . . . ,

1

‖w′K‖

)
s+ z. (6)

The amplitudes of the interference free channels to the
UEs are the inverses of the norms of the columns of the
pseudo inverse.

For a sum rate maximization with a total power con-
straint, the power allocation to the transmit symbols s can
be solved using the water filling solution [3]. Here we
choose to distribute the power equally to the transmission
to each UE. The distribution of the per-UE power on the
subcarriers is determined by the water filling solution.

IV. SIMULATION RESULTS WITH PERFECT CSI

To determine the benefit of distributed antennas with a
sufficient backhaul over centralized antennas, we fix the
number of UEs and compare the performance with ZFBF
for different numbers of total transmit antennas. First we
compare the performance of the “Massive MIMO” deploy-
ment and the “Network MIMO” deployment assuming
perfect channel state information (CSI) of all links being
available when determining the precoder.

We define one drop as the random placement of all
20 UEs at positions within the two stripe building. For
each drop we generate 10 channel realizations. We use
a bandwidth of 20MHz around a carrier frequency of
2.1GHz. Hence we obtain 100 PRBs, where the precoders
and the power allocation are determined per PRB. The
simulation parameters are summarized in Table I.

Note that we define one cell for the “Massive MIMO”
deployment as the central BS and for the “Network
MIMO” deployment as the cooperation cluster consisting
of the four distributed BSs. Hence the maximal achievable



spectral efficiency per cell without considering control
signaling overhead is

20 · log2(256) bits · 1200 · 7
0.5µs · 20MHz

= 134.4 bit/s/Hz, (7)

where 20 is the number of UEs, log2(256) are the maximal
achievable bits per 256 QAM symbol, 1200 is the number
of subcarriers, 7 is the number of OFDM blocks per
subframe, 0.5µs is the duration of one subframe and
20MHz is the bandwidth.

In Figure 4 the cumulative distribution functions (CDF)
of the spectral efficiencies with ZFBF for the two de-
ployments are shown with 20, 24, 40, 80 and 200 total
transmit antennas. The solid curves correspond to the
“Massive MIMO” deployment and the dashed curves to
the “Network MIMO” deployment.
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Fig. 4: CDFs of the spectral efficiencies for 20 UEs and
perfect CSI

For each number of total transmit antennas the “Net-
work MIMO” deployment clearly outperforms the “Mas-
sive MIMO” deployment. The poor performance for both
deployments of the fully loaded MIMO systems with 20
transmit antennas can be improved significantly by adding
only few (4) antennas. Alternatively, scheduling could
be used to improve the performance for fully or close
to fully loaded MIMO systems. Adding more antennas
increases the performance though with decreasing gain
for each additional antenna. With the “Network MIMO”
deployment almost all UEs achieve the highest possible
spectral efficiency for 80 total transmit antennas, while
with the “Massive MIMO” deployment we do not achieve
this even for 200 total transmit antennas.

A. SNR with Maximum Ratio Transmission

In this section we want to give hints to why the
“Massive MIMO” deployment performs worse than the
“Network MIMO” deployment. We compare the SNR
achieved with maximum ratio transmission (MRT) to one
UE at different positions within the two stripe building.
For a system with only one UE the MRT precoder is equal

to ZFBF. The performance with MRT to one UE serves as
an upper bound to the performance achievable with ZFBF
or any other linear precoding scheme, as serving more UEs
only reduces the degrees-of-freedom. In Figures 5 and 6
the average SNR achieved with MRT are shown for the
“Massive MIMO” deployment and the “Network MIMO”
deployment with 20 total transmit antennas. To obtain
these heat maps we average over 300 channel realizations
for each sampled position.
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Fig. 5: Average SNR achieved with MRT to 1 UE at
different positions with the “Massive MIMO” deployment
and 20 total transmit antennas
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Fig. 6: Average SNR achieved with MRT to 1 UE at
different positions with the “Network MIMO” deployment
and 20 total transmit antennas

Note that for the “Massive MIMO” deployment in
many rooms, especially those close to the outside wall,
only very low SNR values are achieved. This is due to
the penetration loss of the walls. Adding more antennas
improves the SNR values only slightly. Whereas with the
“Network MIMO” deployment the SNR values are much
higher in the rooms close to the outside wall. Hence
we conclude that the worse performance of the “Massive
MIMO” deployment is at least partly due to the large wall
penetration loss.

V. CHANNEL PREDICTION ON INDOOR
MEASUREMENTS

In the previous sections, we have investigated the bene-
fits of CoMP in the context of massive and network MIMO
for local area with perfect CSI. Usually perfect CSI is not
available and we have to estimate or predict the channel
in some way and feedback this information. This results



in an estimation or prediction error, feedback delay and
overhead which affect our overall system performance.
Channel prediction can be a main enabler for network
MIMO in typical 5G local area environments as it might
significantly reduce the feedback overhead [5]. To assess
of the typical variance of indoor radio channel conditions
and to determine the benefits of channel prediction we
applied state-of-the-art Kalman filtering (KF) for LA
office buildings. The time-varying channel properties are
derived from available indoor measurements with different
degrees of user movements.

A. Kalman filter based prediction

To construct the state space model for the Kalman
filter, we follow [6] and begin by modeling a single
channel coefficient as an autoregressive (AR) process.
This channel coefficient can either be a tap in an impulse
response or the complex-valued scalar channel for a single
pilot subchannel. The local scattering environment and
the velocity of the UE determine the behavior of each
coefficient, which is commonly oscillatory and justifies
the use of AR models. The channel coefficient ht at time
t can be modeled as

ht + a1ht−1 + . . .+ akht−q = ut, (8)

where q is the model order, {ai}qi=1 are the AR parameters
and ut is the process noise that excites the process.
The AR parameters can be estimated based on blocks of
measurements. Considering we have a noise-free training
segment of length N available, we can set up an over
determined system of equations (Yule-Walker method)

Aa = b. (9)

As an example, if we consider a time segment, N = 100
and a model order, q = 4, we may construct

A =



0 0 0 0
h0 0 0 0
h1 h0 0 0
h2 h1 h0 0
h3 h2 h1 h0
...

...
...

...
h98 h97 h96 h95
h99 h98 h97 h96
0 h99 h98 h97
0 0 h99 h98
0 0 0 h99



, b = −



h0
h1
h2
h3
h4
...
h99
0
0
0
0


(10)

A point estimate â is then found by solving for â in

(AHA)â = AHb. (11)

After finding â, we can calculate the corresponding
poles {pi}qi=1 of the AR process. We use these poles
to construct a state space model for the fading channel
coefficient ht

xt+1 = Xxt + yut, (12)
ht = zxt, (13)

where xt is the state vector of length q. The state space
is chosen on the diagonal canonical form, so that X is
diagonal. The elements of X ∈ Cq×q , y ∈ Cq×1 and
z ∈ C1×q are set as follows

X[i, i] = pi, (14)

y[i] =
∏

j=1,...,q
j 6=i

(pi − pj)−1, (15)

z[i] = pq−1i , i = 1, . . . , q (16)

where X[i, i] represents the i-th diagonal element of the
matrix X, y[i] and z[i] represent the element at index i
of the vectors y and z respectively.

Now we have a state space model for just one channel
coefficient. To model the complete SISO channel, we need
to model each channel coefficient in the channel. We can
track w parallel pilot subchannels if they are correlated.
This correlation depends on the spacing between them
and the coherence bandwidth of the channel. To track w
subchannels, we set up a block diagonal state space

x
′

t+1 = diag(X, . . . ,X)x
′

t + diag(y, . . . ,y)ut,(17)

= Ax
′

t +But, (18)

h
′

t = diag(z, . . . , z)x
′

t = Cx
′

t, (19)

where x
′

t is the state vector which now has a length
qw. A ∈ Cqw×qw is diagonal and B ∈ Cqw×w and
C ∈ Cw×qw are block diagonal matrices with w blocks
each. Ideally we should employ different models for indi-
vidual channel coefficients, but as long as the narrowband
assumption holds the same model can be used for all w
subchannels.

Once we have modeled the state space, we apply the
Kalman filter algorithm [6]. From the state estimate vector
we can compute the channel coefficients estimate by

h
′

t = Cx
′

t, (20)

and the L-step prediction estimate by

h
′

t+L = CALx
′

t. (21)

B. Indoor Channel Measurements

Specific LA measurements have been performed by
Umer Zeeshan in a cooperation project between NSN
and TU Dresden (TUD) under the supervision of Michael
Grieger. The measurements were carried out with the
TUD LTE testbed within a single room of a typical office
building. The BS and the UE are both static and placed
at a height of 1.62 m and at a distance of 5.46 m apart
from each other. The total system bandwidth is 20 MHz



and the total number of pilots 200. The carrier frequency
is 2.68 GHz and the measurement is carried out for a
duration of 2.1 seconds with a sampling time of 1 ms.
The measurements were made for different scenarios,
like the basic static case, and for cases where different
number of people are moving between the BS and UE. A
basic depiction of the measurement setup and the scenario
where a person is moving around while waving a big board
in his hand is illustrated in Figure 7

Tx Rx

Board

Initial positionInitial position

window window

Door
Distance covered approx 4 m

Height Tx = 
1.62m

Height Rx = 
1.62m

Distance between Tx and Rx = 5.46 m

Board

Final positionFinal position

Fig. 7: A general illustration of the move-board measure-
ment scenario

The moving people act as scatters and affect the fading
behavior of the channel as can be observed in Figure 8.
The channel is almost static when there is no movement
between the BS and UE. When a person is moving around
or additionally waving a big board (move-board scenario),
we see that it induces some severe fading at select pilot
subcarriers and time instances.

C. NMSE Performance of Kalman Prediction on Mea-
surements

The time variance of the radio channel is one issue, but
more interesting is how well state-of-the-art prediction like
KF can exploit the relatively slow channel fluctuations.
For evaluation, we track w = 8 parallel pilot subchan-
nels at a time with a spacing of 90 kHz between them
respecting the coherence bandwidth. As there are 200
pilot subchannels in total, we need 200/8 = 25 parallel
KFs to track the complete channel. Similarly, to ensure
that the channel remains stationary during the prediction
and hence the state space model remains valid, we train
over a 100 ms time segment and then estimate/predict
the channel for up to 100 ms. We model our channel
coefficients on an AR process of order 1, as we found
out that such a model represents the channels best.

We use normalized mean square error (NMSE) to char-
acterize the performance of the predictor as it provides a
direct relative measure for the degradation due to channel
prediction. The NMSE is computed as an expectation over
all time slots for every pilot subchannel.

(a) Static Scenario

(b) One person is moving

(c) A person is moving with a board

Fig. 8: The channel transfer functions (CTFs) for different
measurement scenarios



NMSE = σ2
E =

E{‖e‖2}
E{‖h‖2}

=
E{‖h− ĥ‖2}

E{‖h‖2}
(22)

Figure 9 shows NMSE performance versus prediction
time for the different investigated scenarios. It was shown
in [7] that an NMSE below −10 dB is required to have
successful link adaptation and/or scheduling. We can see
that the NMSE is below −10 dB until a prediction horizon
of 28 ms for the static case and 24 ms with one person
moving. This means that for LA a relative large prediction
horizon with accordingly low feedback overhead seems to
be possible.
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Fig. 9: NMSE performance of various scenarios at differ-
ent prediction horizons

Figure 10 shows the NMSE for various time samples
and pilot subchannels at a prediction horizon of 8 ms for
the move-board scenario. We can observe that at most
of the subchannels, the NMSE is quite similar with a
mean value of −11 dB. This scenario has the worst
performance out of all the three scenarios but much better
prediction performance seems to be possible by proper
scheduling. We can avoid to schedule users in subchannels
containing frequency notches with according fast channel
fluctuations, hence a higher NMSE. We see from the
histogram that the error is close to Gaussian distributed.

VI. SIMULATION RESULTS WITH PREDICTION ERROR

We analyze the effect of prediction errors on the per-
formance of ZFBF in the two deployments. Based on
the channel prediction with error Ĥ the precoder are
determined. When these precoder are used to transmit,
interference between the UEs is introduced due to the
prediction error.

In Figure 11 the spectral efficiencies for different esti-
mation error variances achieved with 40 total transmit an-
tennas are shown. The performances of both deployments
degrade for an NMSE larger than −40 dB. The mMIMO
deployment is outperformed for all NSME values clearly
by the netMIMO deployment.

Fig. 10: NMSE at a prediction horizon of 8 ms for the
move-board scenario
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Fig. 11: CDFs of the spectral efficiencies with different es-
timation noise variances for 20 UEs and 40 total transmit
antennas

Concluding we can state that both deployments suf-
fer from estimation noise, while the “Network MIMO”
deployment still outperforms the mMIMO deployment.
More robust precoding techniques could allow a better
performance in the presence of higher prediction error.

VII. CONCLUSIONS

In this work we assessed the benefits of JT CoMP,
sometimes denoted as netMIMO, in the context of
mMIMO and local area scenarios. With netMIMO, con-
siderable hardware savings are possible as less antennas
are needed to achieve the same spectral efficiency. With
the same number of antennas significantly higher spectral
efficiency is obtained. A sufficient backhaul is needed to
enable netMIMO.

For a practical solution the trade-off between infrastruc-
ture costs versus costs for antenna elements, including the



radio frequency chains, should be considered. Strong over
provisioning of antenna elements simplifies scheduling
and decreased sensitivity to channel prediction errors for
massive as well as for network MIMO systems.

For a classical Kalman based state space realization,
an LA specific error model for the prediction errors
was derived and used to assess the overall network and
massive MIMO performance. Depending on the scenario
and transmission scheme a prediction horizon of up to
28ms is achieved.
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