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Abstract

The cornerstone of the thesis is to motivate and comprehensively describe H2 pseudo-
optimality in the linear model order reduction of large-scale dynamical systems based
on projections onto rational Krylov subspaces. The prefix “pseudo” relates to global
optimality within a certain subset of all possible reduced models. It is demonstrated
how H2 pseudo-optimality may be enforced with marginal computational effort, and its
consequences, benefits, and possible applications are thoroughly discussed. Moreover,
necessary and sufficient conditions for H2 pseudo-optimality are formulated together
with small-scale and easy-to-evaluate matrix equations, which in turn constitute the
main tool for the analysis and construction of H2 pseudo-optimal reduced models.
H2 pseudo-optimality is shown to be a natural extension of a cumulative framework

for model order reduction, denoted as “CURE”, which permits the accumulation of
independently reduced models and at the same time the preservation of the flexibility
that projections onto rational Krylov subspaces offer. The additional numerical effort
of CURE is marginal compared to the computation of Krylov subspaces and the main
benefit of H2 pseudo-optimal reductions within CURE is that this ensures a monotonic
decrease of the approximation error.
Although the results of this research are intended to improve model order reduction

using projections onto rational Krylov subspaces, they may also be exploited to approx-
imately solve large-scale Lyapunov equations. It is shown that applying the ideas of H2

pseudo-optimality to Lyapunov equations actually results in the same approximation
as one would obtain from the widely-used ADI iteration. This thesis therefore not only
provides a novel view on the ADI iteration, but it also offers tools for the analysis and
improvement of the ADI iteration, which include a low-rank formulation of the residual
and also the generalization of the ADI iteration to so-called tangential interpolation.
The main tool in this work certainly are particular Sylvester equations, which con-

stitute some kind of duality to bases of rational Krylov subspaces, because basically all
proofs in this thesis emanate from the detailed understanding of these equations.
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Preface

A tremendous technical progress has been made throughout the past decades in various
scientific domains, such as mechanical and electrical engineering, physics, chemistry and
economics. Dynamical models that are described in a particular mathematical structure
made an important contribution to this progress: they allow the analysis and numerical
simulation of physical phenomena, whereby time-consuming and costly experiments or
prototypes may be avoided.
The enduring process of this technical progress generates the need for ever detailed

models of increasing complexity. This can render their numerical simulation impossible
because of limited accuracy and storage capabilities. One remedy is to employ tech-
niques of model order reduction that try to approximate accurate large-scale models by
ones of reduced order, and thereby gather their most dominant characteristics.
This work is concerned with the efficient computation of reduced models for given

linear and large-scale dynamical systems. The cornerstone of this work is to motivate
and comprehensively describe a new concept for linear model order reduction: H2

pseudo-optimality. The notation “pseudo” stems from the fact, that optimality in a
particular subset can always be achieved for reduced order models—with negligible
computational effort. This does not mean that a pseudo-optimal reduced model is a
good approximation, it just implies that it is the optimal model in its respective subset.
The benefit is that instead of searching for a “good” (whatever that means) reduced
order model, one can search for an optimal subset—and then just pick the pseudo-
optimal reduced model out of this subset. This thesis proposes a numerically efficient
way to “pick the pseudo-optimal reduced model” out of a given subset, whereas the
search for a “good” subset, which actually boils down to some sort of optimization
technique, is not focussed on and reference is made instead to the literature, where
appropriate.
Certainly, I do not claim the invention of pseudo-optimality. The basic idea goes back

to at least the 1920s, and various labels, including “least-squares solution” and “sub-
optimal reduction”, have appeared in the rich literature on this topic. Even more, this
research uncovers that prevailing methods for model order reduction have been implic-
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itly using this concept—without even noticing, but nevertheless, in quite a sophisticated
way. Most of the available literature, however, is not applicable to large-scale systems,
because of numerically inappropriate algorithms. Furthermore, it seems like neither a
detailed analysis of pseudo-optimality is available, nor has it been thoroughly embedded
in a large-scale setting.
This work aims to fill this gap by integrating the concept of H2 pseudo-optimality in

the framework of projective model order reduction using rational Krylov subspaces. To
achieve this objective and ensure good readability, a simple label is essential. Therefore,
the phrase “pseudo-optimality” should not be understood as a fact, it is instead used
in this work to name a particular concept. The inaccuracy of the word “pseudo” is
acknowledged, nevertheless, it is employed here for lack of a better alternative.
This dissertation would not be the same without the contributions of my colleague

Heiko Panzer. All this started with the joint development of the error factorization
presented in Section 3.1. In retrospect, it is hard to tell who added which jigsaw piece
to the final formulation, but the idea of the resultant cumulative framework with its
convenient formulation of the reduced matrices (as presented in Section 3.2) was instead
the effort of Heiko Panzer. It is honestly hard to pinpoint Heiko Panzer’s contributions
to other aspects of this thesis due to the continuous exchange of ideas over the past
few years. On this account, this thesis and the one of Heiko Panzer, [148], are sort of
kindred because both of them build upon the very same ideas. They, however, have
a different focus: this thesis is concerned with the analysis of Sylvester equations and
of pseudo-optimality, and the solution of large-scale Lyapunov equations, whereas the
thesis of Heiko Panzer deals with the application of these results with aim of a fully
automatic and error-controlled model order reduction scheme for large-scale systems.
This document is divided into three main parts. In Part I, model order reduction

and relevant preliminaries are reviewed. In particular, the balanced truncation and
projections by rational Krylov subspaces are discussed, and in the end, the problem
which this thesis addresses is specified. The theoretical contributions of this disser-
tation are contained in Part II: the duality of rational Krylov subspaces and certain
Sylvester equations is discussed, an error factorization is proposed that yields a cumu-
lative framework for model order reduction, and the concept of H2 pseudo-optimality is
thoroughly described. Finally, these contributions are then applied to the approximate
solution of large-scale Lyapunov equations in Part III.

August 2014
Thomas Wolf
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1 Introduction

For the numerical simulation of dynamical systems in an engineering field, it is often
sufficiently accurate to employ linear time-invariant (LTI) models, which are usually
derived from linearisation at the operating point of interest. In this work, only LTI
models are considered. To this end, the notation for LTI models is introduced in this
chapter, and two widely-used methods for their reduction are reviewed: Truncated
Balanced Realization (TBR) and Moment Matching via Krylov subspaces.

1.1 Linear Time-Invariant (LTI) Systems

The time-domain realization of those LTI dynamical systems that are considered in this
work generally reads as

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(1.1)

where x(t)∈RN , u(t)∈Rm and y(t)∈Rp denote the state, input and output, respec-
tively. In a large-scale setting, the order N reaches values of N = 102, . . . , 106, whereas
the number of inputs and outputs, m and p, respectively, is assumed to be small, i. e.
up to a few tens. The model (1.1) then realizes a multi-input multi-output (MIMO)
model, whereas the case m=q=1 is denoted as single-input single-output (SISO). Con-
sequently, the dynamics of a MIMO model are described by the matrices A,E∈RN×N ,
B∈RN×m and C∈Rp×N , whereas in the SISO case B → b∈RN and C → c∈R1×N ,
and u(t)→ u(t)∈R and y(t)→ y(t)∈R.
The matrix E is assumed non-singular, which means that the model does not contain

algebraic constraints. Even though this would always allow to get rid of the E matrix by
multiplying the state equation of (1.1) with its inverse from the left, this should usually
be avoided in a large scale-setting due to numerical reasons, because all methods that
are investigated in this work can also be generalized to an E matrix. As a consequence,
only multiplications with E have to be carried out in the algorithms—instead of solving
linear systems with E. Working with the generalized form (1.1) thus may reduce the
numerical effort and improve the conditioning. It should be noted that the inverse E−1
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is still used in this work, but only in theoretical contexts, whereas applications are all
implemented without it.
All large-scale models are assumed to be completely controllable and observable, or

equivalently, the pair (E−1A,E−1B) is assumed controllable, whereas the pair (C,E−1A)
is assumed observable. This means that (1.1) is a minimal realization. It is additionally
assumed that the set of eigenvalues, denoted as Λ (E−1A), is contained in the open left
half of the complex plane, or in other words: the system is asymptotically stable.
The transfer function G(s) of (1.1) in the Laplace domain is given by

G(s) = C (sE−A)−1 B, (1.2)

and analogously, the impulse response of (1.1) in the time domain is

G(t) = CeE−1AtE−1B. (1.3)

For the ease of presentation, notation is slightly abused by letting G denote the system
itself, as well as its state-space realization (1.1), its transfer function (1.2) and its
impulse response (1.3). The particular meaning should become clear from the context.
Excellent textbooks on LTI systems are available, such as e. g. [52, 114, 222], whose

elaborateness cannot be achieved here. On this account, the reader is referred to the
textbook of his choice for details on the important concepts of stability, controllability,
observability, and minimality, and for additional aspects of linear systems theory.
Throughout this work, we use the following notation: N denotes the set of natural

numbers, R the set of real numbers, and C the set of complex numbers. The real
and imaginary part of a complex number are given by Re(·) and Im(·), respectively,
and ı =

√
−1 denotes the complex unit. Matrices are denoted by upper case letters,

and vectors by lower case letters, both in upright boldface type, like e. g. A and a,
respectively. Scalars are denoted by upper and lower case letters in italic type, like e. g.
A and a. For a better distinction, transfer functions in Laplace domain are printed in
italic boldface type, like e. g.A(s) and a(s), where s∈C. The transpose of a matrix A is
denoted by AT , its complex conjugate by A, and A∗ means transposition with complex
conjugation. The entry in row i and column j of a matrix A is accessed by Aij. Λ (A)
denotes the set of eigenvalues, whereas λi (A) refers only to the ith eigenvalue. The
rank of a matrix is denoted by rank(A), whereas span(A) denotes the subspace that is
generated by the columns of A. The trace of a square matrix is denoted by trace(A).
The matrix I always denotes the identity matrix, and unless specified, its dimensions
should become clear from the context. diag(A) denotes all entries on the diagonal of a
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square matrix, whereas diag (a1, a2, . . . , an) equals a square matrix of dimension n, with
ai on the diagonal and zero elsewhere. Generally, data referring to a reduced model are
denoted with an index “r”, like e. g. Ar.

1.2 Model Order Reduction

Model order reduction (MOR) seeks for a simpler model than the original one (1.1),
while at the same time the dynamical behaviour should be well approximated. Sim-
pler, in this context, means being of reduced order, i. e. having fewer state variables.
Accordingly, the state-space realization of a reduced model generally takes the form

Erẋr(t) = Arxr(t) + Bru(t),

yr(t) = Crxr(t),
(1.4)

where the state xr(t)∈Rn is of lower dimension n�N , and the output yr(t)∈Rp is
determined by the matrices Ar,Er∈Rn×n, Br∈Rn×m and Cr∈Rp×n.

Remark 1.1. A dynamical system may additionally feature a feed-through term, such
that the output equation in (1.1) would change to y(t)=Cx(t)+Du(t), with D∈Rp×m,
whereas the transfer function would take the form G(s)=C (sE−A)−1 B+D. As MOR
is concerned with the approximation of the transfer behaviour, a reduced model would
usually feature an equal feed-through term Dr=D, that is, the output equation in (1.4)
would change to yr(t) = Crxr(t)+Dru(t). Feed-through terms are therefore ignored,
as they would not change the results in this work. It, however, should be noted, that
Dr 6= D may still be used as an additional degree of freedom in order to improve the
approximation, cf. [66].

The benefit of the reduced model (1.4) is that it requires both less storage and evalu-
ation time. In the context of control theory, the lower complexity of the reduced model
(1.4) also facilitates designing a controller. Furthermore, a reduced control law can be
faster evaluated, such that simpler and cheaper hardware may be used. The design of
a controller based on a reduced model, however, requires additional attention, cf. [6,
20, 88, 186, 192], which is out of the scope of this work.
The development and parameter optimization of technical systems can be improved

by methods of parametric MOR. There, not merely a single large-scale system has
to be approximated, but rather a family of large-scale systems over a whole range of
parameter values. Many researchers tackled this problem in the past few years, which,
however, is also out of the scope of this work. The interested reader is instead referred
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to the recent survey [30] and the references therein.
On that account, the main goals of MOR in this work can be summarized as follows:

◦ First of all, yr(t) should approximate y(t) well. Accordingly, the errorG(s)−Gr(s),
whereGr(s)=Cr (sEr−Ar)−1 Br is the transfer function of (1.4), should be small.
This is sometimes required only in a certain frequency range of interest, cf. [7, 59,
80, 82, 90, 202].
◦ Another goal of MOR is preserving structural properties of the original model in
the reduced system, such as stability [86, 109], passivity [72, 145, 160], a second-
order structure [45, 51, 159, 172] or a port-Hamiltonian representation [94, 206].
◦ Additionally, the method to be used should be numerically efficient and stable,
◦ and finally, a quantitative information on the error should be available; at least
an upper bound is desirable unless the error itself may be computed.

It is a hard task to entirely achieve all these goals. Nevertheless, the state-of-the-art
methods for model order reduction can at least partly achieve the above mentioned
objectives; and as they may be subsumed in a projective framework, the following
section reviews model order reduction based on projections.

1.3 Projective Model Order Reduction

Assume there exists an n-dimensional subspace, with n�N , that contains the most
dominant dynamics of (1.1). Let V ∈ RN×n have full column rank and assume that
the columns of V form a basis of this subspace, then the approximation x(t)≈Vxr(t)
is admissible. The resulting error e(t) is defined by x(t) = Vxr(t)+e(t), which can be
substituted in the state equation of the original model (1.1),

EVẋr(t) = AVxr(t) + Bu(t) + ε(t), (1.5)

where the residual ε(t)=Ae(t)−Eė(t) contains all errors. The differential equation (1.5)
is overdetermined: N equations for the n unknowns in xr(t). This may be resolved by
projecting the whole equation onto the subspace span(EV). To this end, let W∈RN×n

have full column rank and assume that WTEV is non-singular. Then a projector
Π = Π2 ∈ RN×N can be defined by Π = EV

(
WTEV

)−1
WT . In this respect, the

matrices V and W will be called “projection matrices” hereafter because they generate
the projector Π. Multiplying (1.5) with Π from the left, yields

ΠEVẋr(t) = ΠAVxr(t) + ΠBu(t) + Πε(t). (1.6)
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The so-called Petrov-Galerkin condition is defined as ε(t)⊥W, which implies Πε(t)=0.
Consequently, by imposing the Petrov-Galerkin condition on (1.6), one may factor out
EV

(
WTEV

)−1
on the left hand side of each product, which finally leads to a reduced

model of the form (1.4),

Er︷ ︸︸ ︷
WTEV ẋr(t) =

Ar︷ ︸︸ ︷
WTAV xr(t) +

Br︷ ︸︸ ︷
WTB u(t),

yr(t) = CV︸︷︷︸
Cr

xr(t),
(1.7)

and which can uniquely be solved for the reduced state xr(t). In case of an orthogonal
projection, i. e. W = V, one refers to ε(t)⊥V as Galerkin condition. The following
lemma shows that only the subspaces span(V) and span(W) determine the transfer
function of the reduced model and that the chosen bases are irrelevant.

Lemma 1.2 ([79]). Let T1,T2∈Rn×n be non-singular matrices, then the reduced trans-
fer function Gr(s) = Cr (sEr −Ar)−1 Br is unchanged if we replace V and W by VT1

and WT2, respectively, because they span the same subspace.

The projective approach has led to various methods for MOR of LTI systems, which
cannot be reviewed here in their entirety. The interested reader is rather referred to
the monograph [8], the classical surveys [16, 73, 90] or the more recent ones [19, 23].
One quite self-evident approach to MOR is modal reduction. There, the projection

matrices W and V are chosen to span left and right invariant subspaces, in order
to preserve some eigenvalues of the original model in the reduced one. If we aim at
approximating only the transfer behaviour of G(s) by Gr(s) as good as possible, this,
however, is often too restrictive. By letting the reduced model Gr(s) have poles, that
are not poles of G(s), the transfer behaviour usually may be better approximated.
Modal reduction is therefore not discussed here; nevertheless, it should be mentioned
that in some cases, it is still a valuable tool, e. g. when dealing with certain mechanical
structures [36] or by combining the method with other approaches [157].

1.4 Balanced Truncation

One of the most important methods for MOR is the so-called truncated balanced real-
ization (TBR), or simply balanced truncation, as it achieves three of the four previously
mentioned main goals: TBR generally yields a good approximation, it preserves sta-
bility (a variant also passivity), and an a priori error bound is available. Merely in a
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large-scale setting with N >5000 (depending on the hardware), the numerical compu-
tations involved may be tough, which is not yet fully resolved. This, in fact, will be
tackled in Part III of this work, but at first, the basic concept of TBR is reviewed in
the following.
Balanced truncation consists of two main steps: find a state representation of the

original system, such that each state variable is as well controllable as it is observable
(the balancing step); and subsequently, eliminate those state variables that are least
controllable/observable (the truncation step). This method permits the nice physical
interpretation that those states are neglected which are difficult to reach and simul-
taneously difficult to observe, and consequently, which least contribute to the energy
transfer from the input to the output. Therefore, the starting point of balanced trun-
cation is to suitably quantify “observability” and “controllability” in a system, which
is reviewed next. The outcome will be a method also denoted as Lyapunov balancing,
in order to distinguish it from other types of balancing to-be-reviewed later on. The
proofs of the coming results can be found in the book [8] or references therein.
For a linear system, a state xe∈RN is called reachable, if there exists an input u(t),

such that x(T ) = xe after some finite time T > 0, starting from x(0) = 0. Accordingly,
if the minimum input energy that is required to reach the state xe is small, this xe is
well controllable—and if much energy is necessary to reach xe, it is poorly controllable.
In a dual way, observability of a state x0 can be quantified by measuring the output
energy that results from setting u(t) = 0, ∀t ≥ 0, with initial state x(0) = x0. As
asymptotically stable systems are treated, both energies Jc(xe) and Jo(x0), measuring
controllability of xe and observability of x0, respectively, remain bounded, and are given
by the functionals

Jc(xe) = min
x(−∞)=0,x(0)=xe

∫ 0

−∞
u(t)Tu(t) dt, and (1.8)

Jo(x0) =
∫ ∞

0
y(t)Ty(t) dt, x(0) = x0, where u(t) = 0, ∀t. (1.9)

It can be shown that both energies (1.8) and (1.9) satisfy

Jc(xe) = xTe P−1xe, and Jo(x0) = xT0 ETQEx0, (1.10)

where P,Q∈RN×N solve the two dual Lyapunov equations

APET + EPAT + BBT = 0, (1.11)

ATQE + ETQA + CTC = 0. (1.12)
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For an asymptotically stable system that is fully controllable and observable, both P
and Q are symmetric positive definite. The matrices P and ETQE are then called the
Controllability and Observability Gramian of the system, respectively. It follows from
(1.10) that states xe that require low energy to reach, and thus are well controllable, lie
in the span of those eigenvectors that correspond to large eigenvalues of P. Accordingly,
states that lie in the span of those eigenvectors that correspond to large eigenvalues of
ETQE yield much energy in the output, and thus are well observable.
For model order reduction, only those states may be neglected that are hard to reach

and simultaneously difficult to observe. In order to identify these states, introduce a
regular state transformation of the form z=Tx, with T∈RN×N non-singular. Then it
follows from the two Lyapunov equations (1.11) and (1.12) that the Gramians transform
correspondingly: P̃=TPTT , ẼT Q̃Ẽ=T−TETQET−1. This implies that the eigenval-
ues of the product of the Gramians are invariant with respect to state transformations,
P̃ẼT Q̃Ẽ=TPETQET−1, and thus are inherent properties of a system. The so-called
Hankel singular values (HSV) σi≥ 0 of a system arise from these eigenvalues and are
defined as

σi =
√
λi (PETQE). (1.13)

Definition 1.1. The state-space realization (1.1) of system G(s) is called balanced if

P = ETQE = Σ = diag (σ1, σ2, . . . , σN) , (1.14)

with σ1 ≥ σ2 ≥ . . . ≥ σN ≥ 0.

It can be shown that there always exists a state transformation T that simultaneously
diagonalizes both Gramians, and thereby balances the system. As discussed in [11], the
Hankel singular values usually decay very rapidly. This fact motivates the truncation
of those state variables that correspond to small Hankel singular values, as then the
approximation error can be expected to be small. Let the large-scale system be balanced
and the Gramians be partitioned as

P = ETQE = Σ =
[

Σ1 0
0 Σ2

]
, (1.15)

with Σ1 =diag (σ1, σ2, . . . , σn), Σ2 =diag (σn+1, σn+2, . . . , σN), and accordingly partition

A =
[

A11 A12
A21 A22

]
, E =

[
E11 E12
E21 E22

]
, B =

[
B1
B2

]
, C = [ C1 C2 ] . (1.16)

Then the reduced modelGr(s) of order n, obtained by balanced truncated, follows from
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truncating the second block of state variables and reads as

E11ẋr(t) = A11xr(t) + B1u(t),

yr(t) = C1xr(t).
(1.17)

Lemma 1.3 ([8]). Let the reduced system (1.17) be obtained by balanced truncation
with σi > σj, i = 1, . . . , n, j = n+1, . . . , N , then it has the following properties: it is
asymptotically stable, balanced, a minimal realization, and it satisfies

σn+1 ≤ ‖G−Gr‖H∞ ≤ 2 (σn+1 + . . .+ σN) . (1.18)

This reveals a nice property of balanced truncation: a rigorous upper bound on the
H∞ error is available—without having to compute the reduced system. Very recently,
Minh et al. [141] presented a new lower bound on the H∞ error. Without going into
details, the new bound suggests that in some cases discarding other states than the
ones that correspond to the smallest σj can lead to lower error in the H∞ norm. This
surprising result was also illustrated by a small example and it actually contradicts the
above mentioned motivation for balanced truncation; however, it seems to be unlikely
that this applies to large-scale models.
Quite the contrary, in a large-scale setting it is more likely that σi � σj, i =

1, . . . , n, j = n+ 1, . . . , N ; and then the reduced model obtained by balanced trun-
cation presumably is close to having locally minimal H2 error, cf. [104].
What is left to show is a numerically stable scheme for computing a balanced trun-

cated system. There are different ways to achieve this, see e. g. [35]; in the next lemma
the so-called square root algorithm is reviewed, for which a convenient implementation
is available in Matlab by the function balancmr.

Lemma 1.4. Given the two Cholesky decompositions P = RRT and Q = UUT and
the singular value decomposition UTER = MΣNT , where MT = M−1 and NT = N−1

are orthogonal, and Σ = diag (σ1, σ2, . . . , σN), the state transformation z = Tx that
simultaneously diagonalizes both Gramians and thereby balances the system is given by

T = Σ−1/2MTUTE and T−1 = RNΣ−1/2. (1.19)

In order to obtain the reduced model, it is not necessary to balance the complete
system. Instead, one may partition

M = [ M1 M2 ] , N = [ N1 N2 ] , Σ =
[

Σ1 0
0 Σ2

]
(1.20)
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with M1∈RN×n, N1∈RN×n and Σ1∈Rn×n, and define

WT = Σ−1/2
1 MT

1 UT ∈Rn×N and V = RN1Σ−1/2
1 ∈RN×n. (1.21)

The matrices that realize the reduced system by balanced truncation then are

Ar = WTAV, Er = WTEV, Br = WTB, and Cr = CV. (1.22)

By construction, Er is the identity matrix [209], and due to (1.22), V and W can be
interpreted as projection matrices, defining the projector Π = EVWT . This reveals
the connection of balanced truncation to projective MOR and shows how the reduced
system can be obtained in one step. In a large-scale setting it is advisable to drop Σ−1/2

1

in (1.21), leading to lower condition numbers of the projection matrices WT and V,
cf. [8]. This yields a reduced system (1.22) with equal transfer function and which is
balanced up to diagonal scaling.
A vast literature on balanced truncation is available. The fundamentals were de-

rived by Mullis and Roberts [143] and by Moore [142], and the generalization to an E
matrix is due to Hsu [103]. Many further generalizations of the method were treated
by various authors, including the—by no means exhaustive—examples: non-minimal
[185] and unstable [183, 221] systems, also systems with differential algebraic equations
(DAE) [26, 136, 160, 180, 181] or inhomogeneous initial conditions [99], and further-
more, second-order [44, 45, 139, 159, 218], periodic [191], time-varying [173], bilinear
[29], and infinite dimensional systems [158]. With regards to the numerical implemen-
tation, the square-root method [123, 185] was reviewed, but also other approaches are
possible, such as the Schur method [171] or the balancing-free square-root method [190].
As aforementioned, the presented approach is referred to as Lyapunov balanced trunca-
tion, as the solutions of two dual Lyapunov equations are simultaneously diagonalized.
For SISO and symmetric MIMO systems it also possible to diagonalize the solution
of one Sylvester equation, which is denoted as Cross-Gramian, cf. [61, 62, 63, 124,
177]. Moreover, other types of balancing solve Riccati equations instead of Lyapunov
equations, such that the bounded realness or the positive realness (i. e. passivity) of the
original system is preserved in the reduced one. As these approaches go beyond the
focus of this work, the interested reader is rather referred to the survey [87] and refer-
ences therein, where also stochastic and frequency weighted balancing is discussed. The
same holds for other related model reduction methods, such as optimal Hankel norm
approximation and singular perturbation approximation, for which references can be
found in the survey [19].
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1.5 Numerical Solution of Lyapunov Equations

All above mentioned methods for balanced truncation require the solution of large
matrix equations. As this work is concerned with Lyapunov balancing, the equations
to-be-solved are two dual Lyapunov equations. From a numerical point of view, their
solution is the bottleneck of the method, which is reviewed below. As solving (1.12)
for Q is dual to solving (1.11) for P, merely the latter is treated in the following, and
reference to (1.12) is made only if absolutely necessary.

1.5.1 Direct Solution

The first type of methods for solving the Lyapunov equation (1.11) are direct or
also called dense methods [178]: the Bartels-Stewart algorithm [18] and Hammarling’s
method [98]. Both algorithms were originally stated without an E matrix; the general-
ization was due to Penzl [152]. The original methods start with a Schur decomposition
of A=TDT∗, where T∗=T−1 is unitary and D is upper triangular, and transform the
Lyapunov equation (1.11) (for E identity) with T,

DP̃ + P̃D∗ + B̃B̃∗ = 0, (1.23)

such that B̃ = T∗B. Once (1.23) is solved for P̃, then P can be obtained by P = TP̃T∗.
In the Bartels-Stewart algorithm, (1.23) is solved for the columns of P̃ by forward

substitutions, which is possible owing to the triangularity of D. Then one complex linear
system solve is required for each column of P̃. This method is available in Matlab in
the function lyap, but it may also be formulated with a real Schur decomposition [178].
Hammarling’s method directly solves for the Cholesky factor R̃ of the solution P̃ =

R̃R̃T . This is done by recursively reducing the order of (1.23) by one and thereby pre-
serving the triangular structure. Assuming the right-hand side in factored form B̃B̃∗, R̃
can be directly computed and R may be obtained from R=TR̃. Hammarling’s method
is therefore well suited for square-root balanced truncation, and it is implemented in
Matlab in the function lyapchol.

1.5.2 Approximate Solution

Large-scale models often result from some kind of (often spatial) discretization. In such
a case, the generated matrices are typically sparse. This is the key to reducing storage
requirements in large-scale settings, as only non-zero entries have to be stored. In or-
der to also keep computational efforts manageable it is essential to employ numerical
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operations that can exploit sparsity. The Schur decomposition, which is mandatory for
both the Bartels-Stewart algorithm and Hammarling’s method, is a dense matrix fac-
torization whose storage requirements are O(N2) and whose computational complexity
is O(N3). As sparsity is lost in the Schur decomposition, direct methods are feasible
on a typical modern hardware only for systems with N up to a few thousands. In a
large-scale setting, however, computing the full rank solution P is an ill-conditioned
problem anyway, because of the typically rapid decay of its eigenvalues [11, 154]. Ow-
ing to its low numerical rank, P may then be well approximated by a non-negative
definite P̂∈RN×N of rank(P̂) = q, q�N , which may be factorized as P̂ = ZZT , with
Z∈RN×q. The matrix Z is denoted as low-rank (Cholesky) factor (of P̂), regardless of
the fact that Z itself might have full column rank. To perform the square root algo-
rithm, the Cholesky factor R then has to be substituted by Z, whereas the subsequent
steps remain unchanged.

The benefit of using low-rank factors is that storage requirements scale down to
O(Nq), and—depending on the method—computational complexity additionally may
be reduced significantly. The drawbacks are that the a priori error bound (1.18) is
strictly speaking lost, and that stability in the reduced system cannot be guaranteed.
In practice, however, it seems like the latter is not a problem and that the reduced
system is close to the one obtained by direct methods [93].

Various approaches have been derived to compute low-rank Cholesky factors Z. The
first type of methods is based on the integral form of the Gramian [8],

P =
∫ ∞

0
eÃτB̃B̃T eÃT τ dτ = 1

2π

∫ ∞
−∞

(ıωE−A)−1 BBT
(
−ıωE−AT

)−1
dω, (1.24)

with Ã=E−1A and B̃=E−1B. An approximation P̂ can be computed by integrating
(1.24) in time domain [166], sometimes denoted as balanced proper orthogonal decom-
position (POD) [146], whereas numerical quadrature in the frequency domain is usually
referred to as poor man’s TBR [155].

The second type of methods project the system matrices E, A and B and then solve
the reduced Lyapunov equation of order q by direct methods. One typically projects
onto Krylov subspaces, who will be defined in Section 1.6.1. Different types of Krylov
subspaces are available. Probably the easiest choice is to use their original formula-
tion, which could also be called classical Krylov subspaces; their application to solve
Lyapunov equations is discussed in [48, 102, 110, 111, 113, 166, 176]. The numerical
efficiency of this approach, however, suffers from possibly high dimension of the Krylov
subspace that is required for good approximation. To reduce the order of the Lya-
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punov equation that has to be solved by direct methods, an extended Krylov subspace
[100, 118, 174] may be applied. This approach is usually referred to as extended Krylov
subspace method (EKSM), although in the original work [174] it was denoted as Krylov-
plus-inverted-Krylov (K-PIK). More recently also rational Krylov subspaces are used
for the projection [25, 53, 54, 214], then referred to as rational Krylov subspace method
(RKSM). Even though the numerical effort to compute a rational Krylov subspace is
higher than in both other cases, this might be compensated by the lower order of the
reduced Lyapunov equation that is required for sufficient approximation. It should be
noted, that there are also further approaches that use Krylov subspaces, which e. g. try
to minimize the residual [129], or work for DAE systems [182].
The third type of methods for computing Z is based on the low-rank alternating di-

rection implicit (LR-ADI) iteration [27, 32, 33, 93, 127, 128, 153], which is also denoted
as Cholesky factor ADI (CF-ADI) iteration or low-rank Cholesky factor ADI (LRCF-
ADI) iteration. Wachspress [200] was the first to consider the Lyapunov equation as an
ADI model problem. In his original formulation, the ADI iteration has storage require-
ments of O(N2). In a large-scale setting, however, it is mandatory to use the low rank
formulation with storage requirements of O(Nn), which is due to Penzl [153] and Li
and White [128]. In this work, therefore always the low-rank formulation is meant when
just referring to “the ADI iteration”. The performance of this method heavily depends
on a good shift selection, which is typically achieved by solving a minimax problem
[199, 200] or by a heuristic approach [153]. LR-ADI is also denoted as low-rank Smith
(LR-Smith) iteration, which stems from an alternative derivation. If a given set of l
shifts is cyclically reused, then one also refers to the method as LR-Smith(l) iteration,
and a modification of this [95, 170] prevents the low-rank factor Z from having linearly
dependent columns. Recent results [34, 210] suggest adaptively chosen shifts instead of
a priori solving the minimax problem.
Methods that combine ideas of LR-ADI and Krylov projections can be found in [17,

38, 112], and it was proven that there is a strong connection of RKSM and LR-ADI [55,
67, 213], which will also be discussed in Section 5.4. For further reading, the surveys
[28, 175] are recommended.
The numerical solution of (1.11) with RKSM and LR-ADI is treated in more detail

in Part III. All three aforementioned types of methods for the approximate solution of
(1.11) are either based on projections onto Krylov subspaces (EKSM, RKSM), may be
interpreted as such (ADI [213]), or are at least connected to them (poor man’s TBR
[155], balanced POD [146]). Krylov subspaces, however, provide a family of methods
for MOR in their own right, which is why they will be reviewed in the next section.
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1.6 Moment Matching: Model Reduction Via Krylov Subspaces

Consider system (1.1) and define

X(s) = (sE−A)−1 B, (1.25)

which describes the transfer function from the input to the states in frequency do-
main. To get local information about the system, X(s) may be evaluated for a certain
frequency s0 ∈ C, leading to the m-dimensional block (s0E−A)−1 B. If appropriate
frequencies si, i=1, . . . , k are used, then the union of the blocks (siE−A)−1 B contains
the most dominant directions in state space. This is the basic idea behind rational
Krylov subspaces and is reviewed in this section.

1.6.1 Krylov Subspaces

Given the state-space realization (1.1) of a system G(s), and using the notation As0 =
(A−s0E), the rational input Krylov subspace K(s0, q0) of order q0 at s0 is defined as

K(s0, q0) = span
{
A−1
s0 B, A−1

s0 EA−1
s0 B, . . . ,

(
A−1
s0 E

)q0−1
A−1
s0 B

}
, (1.26)

and s0 is denoted as shift or expansion point. A rational input Krylov subspace Kb
generally merges different expansion points si, i=1, . . . , k with respective orders qi,

Kb = K(s1, q1) ∪ K(s2, q2) ∪ . . . ∪ K(sk, qk). (1.27)

An important property of a Krylov subspace Kb is that it can be nested, see e. g. [128,
Theorem 5.4]. To demonstrate this property, assume e. g. k different expansion points
si, i=1, . . . , k, all of order q1 = . . .=qk=1, then

Kb = span
{
A−1
s1 B, A−1

s2 B, . . . , A−1
sk

B
}
, (1.28)

= span
{
A−1
s1 B, A−1

s2 EA−1
s1 B, . . . , A−1

sk
E . . .A−1

s2 EA−1
s1 B

}
. (1.29)

If m= 1, (1.27) will be denoted as single-input rational Krylov subspace Ks, whereas
if m> 1, it is referred to as multi-input rational Krylov or block-input rational Krylov
subspace Kb. For every new shift or additional order, the dimension of the block-input
subspace grows by (actually at most) m, which might be undesirable in some settings.
A remedy is to introduce tangential directions li ∈ Cm whereby the tangential-input
rational Krylov subspace Kt is defined as
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Kt = span
{
A−1
s1 Bl1, A−1

s2 Bl2, . . . , A−1
sk

Blk
}
. (1.30)

Note that, in general, the nested property cannot be preserved for the tangential Krylov
subspace (1.30); the property in fact is dependent on the choice of li. Further note that
the tangential-input Krylov subspace can be considered as a generalization: it directly
includes single-input Krylov subspaces because then the tangential directions li become
scalars and do not alter the subspace; and ifm tangential directions li, that form a basis
of Rm, are used for each shift, then Kt essentially is a block-input Krylov subspace.
Krylov subspaces originate from the classical K∞, which is defined as

K∞ = span
{
E−1B, E−1AE−1B, . . . ,

(
E−1A

)q∞−1
E−1B

}
, (1.31)

and which can be shown to be related to rational Krylov subspaces by letting s0→∞.
Another important subspace is the already mentioned extended Krylov subspace Ke; it
combines K∞ with (1.26) for s0 = 0:

Ke = span
{
E−1B, . . . ,

(
E−1A

)qe−1
E−1B, A−1B, . . . ,

(
A−1E

)qe−1
A−1B

}
. (1.32)

Both (1.31) and (1.32), however, are of minor interest in this work, as we will see
in Chapter 4, that the main contribution—i. e. pseudo-optimality—requires rational
Krylov subspaces with s0 6=0.
For all mentioned input Krylov subspaces, also dual output Krylov subspaces can be

defined by simply substituting AT for A, ET for E, CT for B and ri∈Cp for li. Output
Krylov subspaces are of minor interest in this work, as well, since for pseudo-optimality
only one type of Krylov subspaces suffices.
In the remainder of this work, V ∈ RN×n will exclusively denote a matrix whose

columns form a basis of any of the above mentioned input Krylov subspaces, whereas
W∈RN×n may—but is not restricted to—denote a matrix whose columns form a basis
of an output Krylov subspace.

1.6.2 Moment Matching

Of course it is no coincidence that V and W denote not only projection matrices in
Section 1.3 but also bases of Krylov subspaces in Section 1.6.1. The reason is that
the transfer function G(s) may be locally approximated by using Krylov subspaces for
projecting (1.1); this is referred to as moment matching.
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Definition 1.2. Given the transfer function G(s)=C (sE−A)−1 B and an expansion
point s0, the Taylor series expansion of G(s) is defined as

G(s) =
∞∑
i=0

Ms0
i (s− s0)i , (1.33)

where Ms0
i are called the moments of G(s) at s0; they satisfy

Ms0
i = −C

(
A−1
s0 E

)i
A−1
s0 B. (1.34)

Expanding G(s) at s0 →∞, the Taylor series is given by

G(s) =
∞∑
i=1

M∞
i s
−i. (1.35)

The M∞
i are called the Markov parameters of G(s), and they satisfy

M∞
i = C

(
E−1A

)i−1
E−1B. (1.36)

With these definitions, the main theorem of Krylov-based MOR can be stated.

Theorem 1.5 (Moment matching [85]). Given the projection matrices V,W∈RN×n,
let the reduced model Gr(s)=Cr (sEr−Ar)−1 Br with Taylor series expansion Gr(s)=∑∞
i=0 M̂s0

i (s−s0)i =∑∞
i=1 M̂∞

i s
−i be given by projection: Ar = WTAV, Er = WTEV,

Br = WTB, and Cr = CV. Assume that s0 is neither an eigenvalue of E−1A, nor an
eigenvalue of E−1

r Ar. If one of the following,

span
{
A−1
s0 B, A−1

s0 EA−1
s0 B, . . . ,

(
A−1
s0 E

)q0−1
A−1
s0 B

}
⊆ span(V), (1.37)

span
{
A−Ts0 CT , A−Ts0 ETA−Ts0 CT , . . . ,

(
A−Ts0 ET

)q0−1
A−Ts0 CT

}
⊆ span(W), (1.38)

is satisfied, then Ms0
i = M̂s0

i , i = 0, . . . , q0 − 1. If both (1.37) and (1.38) are satisfied,
then Ms0

i = M̂s0
i , i = 0, . . . , 2q0 − 1. Accordingly, if one of the following,

span
{
E−1B, E−1AE−1B, . . . ,

(
E−1A

)q∞−1
E−1B

}
⊆ span(V), (1.39)

span
{
E−TCT , E−TATE−TCT , . . . ,

(
E−TAT

)q∞−1
E−TCT

}
⊆ span(W), (1.40)

is satisfied, then M∞
i = M̂∞

i , i = 0, . . . , q∞ − 1. If both (1.39) and (1.40) are satisfied,
then M∞

i = M̂∞
i , i = 0, . . . , 2q∞ − 1.
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Theorem 1.5 states that if the sequence A−1
s0 B, . . . ,

(
A−1
s0 E

)q0−1
A−1
s0 B is contained in

the subspace spanned by the columns of V, then Gr(s) and its first q0−1 derivatives
with respect to s are equal to G(s) and its first q0−1 derivatives at the point s= s0.
This is the fundamental relation between projections with Krylov subspaces and local
interpolation. It follows from (1.25) that in order to preserve local information in
the reduced system, it is sufficient to evaluate X(s) at a certain frequency and use
this information for projection. Because of its local nature, the crucial question in
the moment matching method has always been the choice of expansion points si and
respective orders qi for a good global approximation. Although various approaches
towards this aim are available in the literature, there is still potential for improving
their numerical efficiency. This question, however, will be treated later in this work;
but it requires some basic remarks on the numerical implementation to compute bases
of Krylov subspaces, as done in the following.

1.6.3 Numerical Considerations

Krylov subspace methods rely on evaluating (1.25) for a certain frequency s0. To
this end, a linear system of equations (LSE), (s0E−A) V0 = B, has to be solved for
V0. The numerical solution of LSEs has been massively studied: there are direct and
various iterative methods available. Direct methods are based on Gaussian elimination,
but there are also modifications for sparse matrices—both available in Matlab by the
backslash operator. If a rational Krylov subspace with higher order has to be computed,
multiple LSEs with only varying right-hand sides have to be solved; then, it is advisable
to compute an LU-decomposition of As0 a priori, because the LSEs may then be solved
by forward/backward substitutions with low numerical effort for all right-hand sides.
Iterative methods start with an initial approximation of V0 and try to improve it

in every step. The final V0 indeed is an “inexact solve”, but powerful methods try to
monitor or estimate the actual error. Methods of this kind are the generalized minimal
residual method (GMRES), or the biconjugate gradient method (BiCG), together with
its variants biconjugate gradient stabilized method (BiCGSTAB) and conjugate gradient
squared method (CGS), to mention just the most popular of them; implementations are
also available in Matlab. Convergence of these methods can be significantly accelerated
by preconditioning and restarting; details on this, however, are out of the scope of
this work—but it is crucial to note that LSEs can be solved efficiently. For details
on iterative methods, and how inexact solves effect moment matching in Theorem 1.5,
please refer to [4, 215] and references therein.
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As the solution of an LSE still requires most of the numerical effort in rational Krylov
subspace methods—irrespective of whether direct or iterative methods are used—, it is
inevitable to keep the number of LSEs to be solved as low as possible; this will become
important in Part III.
Assume that a V which spans a rational Krylov subspace was computed by solving

multiple LSEs. As V is subsequently used for projection, it is advisable in finite pre-
cision to employ an orthonormal basis of the same subspace, cf. [77] (which does not
change the reduced system, owing to Lemma 1.2). The orthogonalization of V can be
achieved by a (modified) Gram-Schmidt process.
Another issue with rational Krylov subspaces (1.26) is that computing V as

V =
[
A−1
s0 B, A−1

s0 EA−1
s0 B, . . . ,

(
A−1
s0 E

)q0−1
A−1
s0 B

]
, (1.41)

has to be avoided. Instead, one should compute the blocks in V recursively by Vi =
A−1
s0 EVi−1, i = 2, . . . , q0—with immediate orthonormalization. Such a numerical im-

plementation is usually denoted as Arnoldi or Arnoldi-type algorithm; a generalization
that simultaneously computes biorthogonal bases of input and output Krylov subspaces
is referred to as Lanczos(-type) algorithm. From a theoretical point of view, it is regard-
less which basis of a Krylov subspace is employed; “Arnoldi algorithm” should therefore
be understood in this work as an algorithm to compute any basis of a rational Krylov
subspace—irrespective of the details in the implementation. We will see in Section 2.3
that this is in fact equivalent to solving a particular Sylvester equation.
Finally, it is noted that the Krylov subspaces are assumed in the following to have

maximum rank. For minimal realizations of SISO systems, this can be shown to always
hold for arbitrary combinations of shifts si and respective orders qi, see e. g. [189].
This assumption, however, might not apply to block and tangential Krylov subspaces.
Then deflation techniques should be employed to compute a V with full column rank.
This is discussed in [72] and can be incorporated into the presented framework in a
straightforward way. Nevertheless, rational Krylov subspaces have storage requirements
of O(Nq), and the bottleneck of their computation is to solve LSEs. As this is possible
with exploiting sparsity, rational Krylov subspaces are well suited for large-scale models.

1.6.4 Notes and References

The idea of locally approximating a rational function—i. e. rational interpolation—has
a long history and contributions can be found under various names: matching the
moments M∞

i at infinity is usually referred to as partial realization; matching moments
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M0
i at s = 0 is called Padé approximation; the generalization to s = s0 is denoted

shifted Padé and to multiple shifts si multipoint Padé. In the literature on reducing
RC circuits, these methods are also known as asymptotic waveform evaluation (AWE)
[156] and complex frequency hopping (CFH) [47].
The drawback of the original formulations of these methods is that they rely on

the explicit computation of moments—which is numerically ill-conditioned. Following
Theorem 1.5, moment matching yet may also be enforced implicitly. To this end, Krylov
subspaces are computed by Arnoldi or Lanczos type algorithms, which were originally
introduced to solve LSEs and eigevalue problems (the generalization to rational Krylov
subspaces is due to Ruhe [165]). Villemagne and Skelton [50] were among the first
ones to use Krylov subspaces for MOR, but the general framework for projective model
reduction by Krlov subspaces was due to Grimme [85] and Freund [73] (see [85] also
for a nice historical overview). Model order reduction in this sense is called Padé via
Lanczos (PVL) [60], Krylov subspace method, or simply rational Krylov (RK).
To mention all contributions in Krylov-based model reduction since Grimme would go

beyond the scope of this work. References that are relevant in some kind, will anyway
be given in the subsequent chapters, where appropriate. As the case det(E) = 0 is
not considered in this work, it is worth noting here that the projective framework was
recently generalized to this case [96]. For more details, please refer to the recent surveys
[19, 23].
It is indeed judicious to call RK a framework: it has been shown [75, 78, 81, 97],

that any reduced model may be constructed through projections onto Krylov subspaces
(at least in the SISO case; MIMO is little more involved). Consequently, it is mislead-
ing to assume that moment matching per se guarantees a good approximation; quite
the contrary, arbitrarily bad approximations may be generated by moment matching.
However, this also implies that even the best reduced model may be found—it is just
a matter of choosing the right shifts. Another consequence is that any model of order
n<N matches (in fact more than) 2n moments of any model of order N . The important
question therefore is not if moments are matched in the reduced model, but instead to
know where the moments are matched, and if these locations are optimal in some sense.

1.7 Problem Formulation

Let us recap the main objectives of MOR as stated in Section 1.2: good approximation,
numerical efficiency, preservation of structural properties (probably most importantly:
stability), and quantitative information on the error (preferably an upper bound). If
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numerical efficiency is deemed to be of minor significance, then definitely balanced
truncation together with direct methods for solving the Lyapunov equations should be
used, because it fully accomplishes all remaining goals.
The situation changes with the reduction of large-scale models: then direct solvers

are inappropriate and have to be replaced by approximate solutions, which, however,
base upon projections onto Krylov subspaces (see Part III). This is actually not sur-
prising, owing to the aforementioned generality of Krylov subspace methods: (almost)
any reduced model can be generated. Consequently, Krylov subspaces may be under-
stood as a parametrization of reduced models, and without loss of generality we thus
may assume that the reduced model is constructed through a projection onto an input
Krylov subspace. The remaining degrees of freedom are then a sequence of shifts si (in
the MIMO case additionally a sequence of respective tangential directions li) and the
direction of projection by means of the matrix W. Given any SISO reduced model,
there is a combination of si and W, which generates it; and therefore, these quantities
may be used to parametrize all reduced models.
The question is now: how to choose si and W? This dissertation makes a sugges-

tion for W, by introducing the concept of H2 pseudo-optimality, which is the main
result of this thesis. It will turn out that this suggestion for W happens implicitly
because the reduced matrices can be directly computed without having to set up the
generating W explicitly. It will further be shown that H2 pseudo-optimality can be
embedded in a slightly alternative approach to MOR, namely a cumulative framework
using Krylov subspaces. The justification of combining the cumulative idea with H2

pseudo-optimality is that this offers a number of advantages: stability is preserved in
the reduced model; the degree of freedom in W is fixed by the choice of the Krylov
subspace V, which in turn leads to its automatic determination and, as will be shown,
which is in some sense optimal; the reduced order can be accumulated, which has not
been possible before; the approximation error is guaranteed to decrease monotonically;
and the approach can be regarded as numerically efficient, as the main numerical effort
remains to compute rational Krylov subspaces.
The drawback of the proposed framework might be that fulfilling all remaining goals

solely depends on the selection of shifts si. On that account, we will see that dependence
of the reduced model on the shifts in fact is virtually “doubled” in H2 pseudo-optimal
model reduction, which could be expressed as “all problems are shifted to the shifts”.
Admittedly, it is then still possible to generate very bad approximations in this frame-
work. Nevertheless, a lot of structure will become apparent in it, which then may
be exploited by algorithms. The hope is that this marks the beginning of powerful
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algorithms for choosing shifts si (and therefore, yielding a good approximation) and
computing error bounds with acceptable tightness and computational effort—as then
the mentioned objectives of model order reduction would entirely be satisfied.
Providing powerful algorithms for choosing shifts si is beyond the scope of this work,

and even more, finding algorithms that entirely satisfy all goals might even be impossi-
ble at this point. The aim of this thesis is rather to provide the theoretical foundation
of this framework, from which possible solutions hopefully may emanate. First and
promising ideas, are indeed suggested in the doctoral thesis of Panzer [148], where an
optimization technique skilfully exploits H2 pseudo-optimality to choose shifts adap-
tively and where rigorous and computationally efficient upper bounds for special system
classes are presented.
H2 pseudo-optimality is presented in this work in the context of rational Krylov

subspaces (because descriptions in other contexts, such as transfer functions, are already
available in the literature). To this end, it is mandatory to characterize any V that
spans a rational Krylov subspace as the solution of particular Sylvester equations. This
connection is reviewed in Chapter 2 and extended with some new results—all of which
will be used in the subsequent chapters.
The first conclusion that follows from these Sylvester equations is that the error

system G(s)−Gr(s) can be factorized if V spans a Krylov subspace. This is discussed
in Chapter 3, which also paves the way for both the error analysis discussed in the
thesis of Panzer [148], and an iterated reduction scheme using Krylov subspaces. The
latter allows to accumulate a reduced model by any number of independently reduced
ones; the resulting framework is denoted as cumulative model order reduction (CURE)
and is discussed in [148] and Chapter 3.
The concept of H2 pseudo-optimality is presented in Chapter 4. Its relation to H2

optimal MOR is disclosed, together with its effect on the CURE framework, i. e. it is
discussed how CURE benefits from H2 pseudo-optimality. The chapter provides the
first general and detailed description of H2 pseudo-optimality in the context of Krylov
subspaces.
The application of both the CURE framework and H2 pseudo-optimality to solve

large-scale Lyapunov equations follows in Chapter 5, which also forms Part III of this
thesis. The new results in this chapter are, firstly, the presentation of a numerically effi-
cient low-rank formulation of the residual that results from approximate solutions, sec-
ondly, the disclosure of how to replicate the ADI iteration by rational Krylov subspace
methods, and thirdly, the exploitation of this link in order to propose enhancements of
the ADI iteration.



Part II

Theory: H2 Pseudo-Optimality





2 Duality of Sylvester Equations
and Krylov Subspaces

Krylov subspaces have been studied mainly by numerical mathematicians, who devel-
oped practicable algorithms: the Arnoldi and Lanczos processes. The characterization
of a Krylov subspace by its numerical instructions, however, is probably too detailed
and non-constructive for system theoretical investigations. There, it is instead conve-
nient (and as we will see, also sufficient) to use a more abstract level, namely Sylvester
equations and a projection-based framework.

The main efforts in this direction are presumably the two theses by Grimme [85]
and Vandendorpe [189]. Theorem 1.5 already contains the main result of Grimme in
condensed form, whereas this chapter serves to review results due to Vandendorpe—
among others—, and to present some new results already published in [211, 212].

The focus of this chapter is to uncover the strong connection of Krylov subspaces and
particular Sylvester equations, which can actually be perceived as a duality. It should be
stressed, that all discussions in the subsequent chapters rely on this duality, which turn
Sylvester equations into the fundamental tool of this work. It is therefore important to
acquaint oneself with the upcoming notation in order to facilitate examination of the
subsequent chapters.

A certain type of Sylvester equation is of interest here, which is characterized in
Section 2.1, together with its numerical solution. This type also yields the solution for
the pole placement problem in control theory, which is reviewed in Section 2.2. The
fundamental duality of rational Krylov subspaces and Sylvester equations is reviewed in
Section 2.3 and an extension is presented in Section 2.4. The results of these sections not
only provide elementary tools for the subsequent chapters, but also entail a convenient
parametrization of all reduced models of order n that interpolate the original one at
given n points, which is presented in Section 2.5. Finally, these results are discussed in
Section 2.6, and it is analysed how the previously mentioned degrees of freedom si and
W translate into the Sylvester framework.
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2.1 Sparse-Dense Sylvester Equations

The Sylvester equation of interest in this work has a particular structure, which will be
denoted hereafter as “sparse-dense”, and which is defined as follows.

Definition 2.1. Given the large and sparse matrices A,E∈CN×N and B∈CN×m, let
S,R∈Cn×n and L∈Cm×n, with n�N , be small and dense, then

AVR − EVS = BL (2.1)

is called sparse-dense Sylvester equation for the solution V∈CN×n.

It should be noted, that the sign convention in (2.1) will facilitate the following
discussions. The dimensions of the matrices in (2.1) and also the sparsity of A, E,
and B are exemplified in Figure 2.1, where each “?” denotes a non-zero entry. It is

A V R − E V S = B L
? ?
? ?

? ? ?
? ?

?



? ?
? ?
? ?
? ?
? ?

[ ? ?
? ?

]
−


? ?

?
? ?

?
? ?



? ?
? ?
? ?
? ?
? ?

[ ? ?
? ?

]
=


?

?

 [ ? ? ]

Figure 2.1: Dimensions and sparsity of matrices in sparse-dense Sylvester equations.

essential that the matrices on the right-hand sides of all products in (2.1) are small
(because then they are allowed to be dense, too). This is the key for the solution of
(2.1)—notwithstanding its large order. By contrast, the large-scale Lyapunov equations
(1.11) and (1.12), or the Sylvester equation for the Cross-Gramian, share large and
sparse matrices on both sides of all products (which in this context could be called
sparse-sparse). They often require iterative solution techniques, which are separately
discussed in Part III. Although the results therein can be generalized to solve (sparse-
sparse) Sylvester equations as well, only Lyapunov equations are discussed in Part III.
Consequently, Sylvester equations appear in this work only in the form (2.1), and for
a concise presentation we may therefore drop the preceding term “sparse-dense”, i. e.
unless explicitly announced, “Sylvester equation” will always refer to a sparse-dense one
hereafter.
In the Sylvester equations of interest to this work, the matrix R in (2.1) is non-

singular. Then R may be cancelled and (2.1) changes to

AV− EVS = BL, (2.2)
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where SR−1 → S and LR−1 → L. The benefit is that the direct solution techniques
of Section 1.5.1 can be readily generalized to solve (2.2) by transforming the small and
dense S to Schur form, and subsequently, compute the columns of the transformed Ṽ by
forward substitutions. The solution V of (2.2) is finally found by back transformation;
a pseudo-code of this method is shown in Algorithm 2.1, where Mij denotes the (i, j)-
entry of a matrix M, and where Mi denotes the ith column of M.

Algorithm 2.1 Solution of sparse-dense Sylvester equations (2.2)
Input: E, A, B, S, L
Output: V such that AV− EVS = BL
1: S = US̃U∗, with U∗U = I and S̃ upper triangular // Schur decomposition
2: L̃ = LU
3: for i = 1, . . . , n do
4: Solve

(
A− S̃iiE

)
Ṽi = BL̃i +∑i−1

j=1 S̃jiṼj for Ṽi

5: end for
6: Ṽ =

[
Ṽ1, . . . , Ṽn

]
7: V = ṼU∗

Owing to n� N , the main numerical effort in Algorithm 2.1 are n solves for LSEs of
order N in Step 4 (which is already a first hint at the duality of Krylov subspaces and
Sylvester equations). With the same reasoning as in Section 1.6.3, we may therefore
assume that (2.2) is solvable in admissible time—regardless of whether direct or iterative
methods are used in Step 4.
If one uses an eigenvalue decomposition in Step 1 instead of the Schur decomposition,

a closed formula for the solution V can be stated, which was shown in [8, 177]: let
S=TΛT−1 denote the eigen-decomposition, such that ti are the columns of T and t̂∗i
are the rows of T−1, and assume that Λ is diagonal with entries λi. Then,

V =
n∑
i=1

(A−λiE)−1 BLtit̂∗i (2.3)

=
[
(A−λ1E)−1 BLt1, . . . , (A−λnE)−1 BLtn

]
T−1. (2.4)

Further details on the numerical solution of (2.2) can be found e. g. in [39]. Owing to
Lemma 1.2, we are mainly interested in the subspace that is spanned by the columns of
V; the actual basis becomes relevant only in numerical implementations. We therefore
state the following invariance property.

Lemma 2.1. Let V satisfy (2.2). Then every Ṽ, which spans the same subspace,
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span(Ṽ)=span(V), solves a Sylvester equation

AṼ− EṼS̃ = BL̃, (2.5)

where S and S̃ share equal Jordan canonical form.

Proof. Because of span(Ṽ) = span(V), there exists a non-singular T∈Cn×n, such that
Ṽ = VT. Substituting V = ṼT−1 in (2.2), and multiplication with T from the right,
yields (2.5), with L̃=LT and S̃=T−1ST, which completes the proof.

2.2 An Excursus on Sylvester Equations and Pole Placement

Before discussing the connection to rational Krylov subspaces, this section provides a
short excursus on a method for static state-feedback in control theory known as the
pole-placement problem: we are searching for a feedback u(t) =−Rx(t) such that the
closed-loop system Eẋ(t) = (A−BR) x(t) has its eigenvalues at prescribed locations.
The following lemma reviews how Sylvester equations can be linked to this problem; it
shows, how n≤N poles/eigenvalues can be assigned, and additionally, that the transfer
function, which is obtained from replacing the output by the resulting feedback R and
from adding a unit feed-through, has transmission zeros at the desired locations.

Lemma 2.2. Given the Sylvester equation

AV− EVS = BL, (2.6)

with S∈Cn×n, L∈Cm×n, assume that the pair (L,S) is observable. Let Λ(S) denote
the set of eigenvalues of S and further assume Λ(S) ∩ Λ(E−1A) = ∅. If R∈Cm×N is
such that RV=L, then the following holds.

◦ Pole placement: Λ(S) become eigenvalues of E−1 (A−BR),
◦ Zero placement: Λ(S) become transmissions zeros of R (sE−A)−1 B+I.

Proof. Observability of the pair (L,S) and Λ(S) ∩ Λ(E−1A) = ∅ guarantee that V
has full column rank. Then, substituting RV=L in the Sylvester equation (2.6) reads
as (A−BR) V = EVS, which proves that the n eigenvalues of S are assigned in the
closed loop, and furthermore, that V spans the corresponding invariant subspace in the
closed-loop system.
To prove the “zero placement”, let si denote an eigenvalue of S. Then si is a transmis-

sion zero of the above systems if there exists an li, such that
[
R (siE−A)−1 B+I

]
li=0,
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cf. [222], which is equivalent to R (siE−A)−1 Bli = −li. Because of Lemma 2.1, we
may assume without loss of generality that S = diag(s1, . . . , sn) and L = [l1, . . . , ln].
Then using (2.4), the columns vi of V are given by vi = (A−siE)−1 Bli, and there-
fore, −R (siE−A)−1 Bli = Rvi. From RV = L it follows that Rvi = li, and thus,
R (siE−A)−1 Bli=−li, which is the above condition for a transmission zero.

This lemma shows that the solution of a Sylvester equation can be used to place
n ≤ N poles of a closed-loop system. If n < N , then this is also known as partial
pole placement, which paves the way to an iterative procedure of assigning the desired
poles. Algorithm 2.2 shows how all N eigenvalues can be assigned one after the other,
by iteratively computing feedbacks Ri that place only one desired eigenvalue—without
affecting previously assigned ones. The total feedback that assigns all N poles is then
given by R=∑N

i=1 Ri.

Algorithm 2.2 Iterative Pole Placement
Input: A, B, L = [l1, . . . , ln], S = diag(s1, . . . , sn)
Output: R such that Λ (A−BR) = Λ(S)
1: V = []
2: for i = 1→ N do
3: vi = (A− siI)−1 Bli
4: V = [V, vi]
5: L̂ = [0, . . . , 0, li]
6: find Ri such that RiV = L̂, // e. g. Ri = L̂(VTV)−1VT

7: A← A−BRi

8: end for
9: R = ∑N

i=1 Ri

An elaborate discussion of the pole placement problem in the multi-variable case
m > 1 is due to Roppenecker [163]. Up to the author’s knowledge, Bhattacharyya
and De Souza [37] were the first ones to discover the link between pole placement and
Sylvester equations, which was then used in [43] to maximize the conditioning of A−BR.
This is possible due to the (almost) free choice of li in Algorithm 2.2. Kautsky et. al.
[116] used this degree of freedom to minimize sensitivity to perturbations in the system
matrices, which is the basis of the function place in Matlab. It can be shown [144],
that this also maximizes a stability margin with respect to disturbances of the system
matrices.
If only n<N poles are assigned, there is an additional degree of freedom in the N−n

remaining eigenvalues, which corresponds to the different solutions that are possible in
Step 6 of Algorithm 2.2. The natural idea is to pick n eigenvalues of E−1A, which then



30 2 Duality of Sylvester Equations and Krylov Subspaces

are assigned at the desired locations, and leave the remaining N−n ones unchanged [163,
167]. It is however also possible to use the not explicitly assigned N−n eigenvalues
as an additional degree of freedom to minimize the conditioning of the closed-loop
system [122], or to minimize the norm of the feedback R, and thereby assuring that
the remaining N−n eigenvalues are assigned inside a pre-defined region in the complex
plane [49].
An iterative pole placement like Algorithm 2.2 is also presented in [162]. Furthermore,

a link between pole placement and the linear quadratic regulator (LQR) is discussed in
[164]; it, however, can be shown with a simple example, cf. [57], that the poles resulting
from LQR cannot be located at arbitrary positions.
As we have seen, the Sylvester equation provides the solution for the fundamental

pole placement problem in control theory. As any method for determining a static
state-feedback R in fact places the poles at some locations, the Sylvester equation
(2.6) can be seen as a parametrization of all possible feedbacks. The following sections
instead show that this Sylvester equation also serves as a parametrization of all possible
reduced order models.

2.3 Sylvester Equation for the Interpolation Data

This section presents the duality of rational Krylov subspaces and Sylvester equations.
It will be shown, that the interpolation data, i. e. the shifts si and (in the MIMO
case also) the tangential directions li, may conveniently be specified by the matrices S
and L from (2.2). This turns the Sylvester equation into the fundamental tool in this
work. The section comprises results from [76, 79, 189]; however, presentation is slightly
different to better meet the needs of this work. As the statement of the most general
case requires quite cumbersome notation, we first start with the case that the rational
Krylov subspace contains only a single expansion point s0.

Lemma 2.3. Given the expansion point s0 and the tangential directions l1, . . . , lq, as-
sume that s0 is not an eigenvalue of E−1A. Then the columns of V∈CN×q form a basis
of the tangential-input rational Krylov subspace

span(V) = span

A−1
s0 Bl1,A−1

s0 EA−1
s0 Bl1+A−1

s0 Bl2, . . . ,
q−1∑
ν=0

(
A−1
s0 E

)ν
A−1
s0 Blq−ν

, (2.7)

if and only if there exists an observable pair (L,S), S∈Cq×q, L∈Cm×q, which admits
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the Jordan canonical form J,

T−1ST = J =


s0 1

. . . . . .
. . . 1

s0

 , and LT = [l1, . . . , lq] , (2.8)

for an appropriate transformation matrix T∈Cq×q, such that the Sylvester equation

AV− EVS = BL (2.9)

is satisfied.
Moreover, the reduced modelGr(s)=Cr(sEr−Ar)−1Br from (1.7) fulfils the tangential

interpolation

(
Ms0

0 − M̂s0
0

)
l1 = 0, (2.10)(

Ms0
0 − M̂s0

0

)
l2 +

(
Ms0

1 − M̂s0
1

)
l1 = 0, (2.11)

...
q−1∑
ν=0

(
Ms0

ν − M̂s0
ν

)
lq−ν = 0, (2.12)

if s0 is not a pole of Gr(s).

Proof. Use Lemma 2.1 to transform S in (2.9) by T to Jordan canonical form, then
the proof is contained in [76, 79, 189]. An alternative proof is actually given in Theo-
rem 2.15.

The next theorem generalizes the above result to the most general case and thereby
describes the duality of Krylov subspaces and Sylvester equations.

Theorem 2.4 (The “duality”). Given k distinct expansion points si, i= 1, . . . , k, as-
sume that none of them is an eigenvalue of E−1A, and assign to each shift of them mi

Jordan blocks Jij, j=1, . . . ,mi, of dimension qij:

Jij =


si 1

. . . . . .
. . . 1

si

 ∈ Cqij×qij . (2.13)

Let there be qij tangential directions for each Jordan block Jij, such that K =∑k
i=1 mi

tangential-input rational Krylov subspaces like (2.7) can be defined. Then the columns
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of V form a basis of the union of all K tangential-input rational Krylov subspaces if and
only if there exists an observable pair (L,S) of appropriate dimensions, which admits
the Jordan canonical form J,

T−1ST = J = diag (J11, . . . ,J1m1 ,J21, . . . ,J2m2 , . . . ,Jk1, . . . ,Jkmk
) , (2.14)

for an appropriate transformation matrix T, such that LT has the aforementioned tan-
gential directions as columns, and such that the Sylvester equation

AV− EVS = BL (2.15)

is satisfied. Then 1≤mi≤m holds true.
Moreover, the reduced system Gr(s) = Cr(sEr−Ar)−1Br from (1.7) fulfils the tan-

gential interpolation defined by (2.10)–(2.12) for all K Jordan blocks, if none of the si
is a pole of Gr(s).

Proof. Following the lemma of Hautus, the pair (L,S) is observable, if and only if ∀si,
i= 1, . . . , k, rank [siI−S∗, L∗] = n. Therefore, a necessary condition for observability
is that the geometric multiplicity of each eigenvalue si is smaller or equal to m, which
proves 1≤mi≤m. The rest of the proof follows from the fact that the K Jordan blocks
are decoupled in the eigen-decomposition of S, such that Lemma 2.3 may be applied to
each of them independently. An alternative proof can also be found in [189].

Theorem 1.5 shows that there is some kind of duality between Krylov subspaces
and solutions of Sylvester equations: any basis of a Krylov subspace solves a partic-
ular Sylvester equation with an observable pair (L,S), where the shifts si correspond
to the eigenvalues of S (including higher multiplicities), and the tangential directions
correspond to the columns of L (after transforming S to Jordan canonical form). Con-
versely, any solution of a sparse-dense Sylvester equation (2.2), where the pair (L,S)
is observable, spans a rational Krylov subspace, where the expansion points and tan-
gential directions are encoded in S and L. The pair (S,L) thus serves as a convenient
specification of the interpolation data: eigenvalues of S correspond to expansion points,
where higher multiplicities are reflected in Jordan blocks, and the tangential directions
are determined by the columns of L.
The pair (L,S) will be used subsequently to derive various result, so it is important

to get an idea of its structure. For the sake of generality, however, Theorem 2.4 requires
quite cumbersome notation, whereas this can be significantly simplified in relevant cases
for this work, such as single-input or block-input Krylov subspaces. Although this is
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actually redundant, subsequently three cases are examined in more detail, in order to
clarify the structure of (L,S).

Corollary 2.5 (single-input, one shift). Given the expansion point s0, assume m= 1
and that s0 is not an eigenvalue of E−1A. Then the columns of V∈CN×q form a basis
of the single-input rational Krylov subspace

span(V) = span
{
A−1
s0 b, A−1

s0 EA−1
s0 b, . . . ,

(
A−1
s0 E

)q−1
A−1
s0 b

}
, (2.16)

if and only if there exists an observable pair (l,S), S∈Cq×q, l∈C1×q, which admits the
Jordan canonical form J,

T−1ST = J =


s0 1

. . . . . .
. . . 1

s0

 , (2.17)

for an appropriate transformation matrix T∈Cq×q, such that the Sylvester equation

AV− EVS = bl, (2.18)

is satisfied.
Moreover, the reduced model Gr(s)=Cr(sEr−Ar)−1Br from (1.7) matches the p×1

moments Ms0
i =M̂s0

i , i=0, . . . , q−1 if s0 is not a pole of Gr(s).

Corollary 2.5 is a direct consequence of Lemma 2.3, because scalar tangential direc-
tions do not alter the Krylov subspace, nor do they influence moment matching. To
illustrate Corollary 2.5, consider the following example.

Example 2.1. Let S = J be given by (2.17) and let l = [1, 0, . . . , 0]∈R1×q. Then the
Sylvester equation (2.18) is solved by

V =
[
A−1
s0 b, A−1

s0 EA−1
s0 b, . . . ,

(
A−1
s0 E

)q−1
A−1
s0 b

]
. (2.19)

Corollary 2.6 (block-input, multiple shifts). Given k distinct expansion points si,
i=1, . . . , k, assume that none of them is an eigenvalue of E−1A. Then the columns of
V∈CN×km form a basis of the block-input rational Krylov subspace

span(V) = span
{
A−1
s1 B, A−1

s2 B, . . . , A−1
sk

B
}
, (2.20)
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if and only if there exists an observable pair (L,S), S ∈ Ckm×km, L ∈ Cm×km, which
admits the Jordan canonical form J,

T−1ST = J =

 s1I
. . .

skI

 , and LT = [I, . . . , I] , (2.21)

where I is the m×m identity matrix, and for an appropriate transformation matrix
T∈Ckm×km, such that the Sylvester equation

AV− EVS = BL, (2.22)

is satisfied.
Moreover, the reduced model Gr(s)=Cr(sEr−Ar)−1Br from (1.7) matches the p×m

block moments Msi
0 =M̂si

0 , i=1, . . . , k if none of the si is a pole of Gr(s).

Corollary 2.6 follows from Theorem 2.4, with mi = m, ∀i, and qij = 1, ∀i, j. Then
there are m tangential directions to each eigenvalue, which have to span the whole Rm,
owing to observability. Then complete block moments are matched instead of individual
tangential directions. To illustrate Corollary 2.6, again consider a short example.

Example 2.2. Let I denote the m×m identity matrix and S, S̃ and L, L̃ be given by

S =

 s1I
. . .

skI

 , S̃ =


s1I I

. . . . . .
. . . I

skI

 , and (2.23)

L = [ I . . . I ] , L̃ = [ I 0 . . . 0 ] , (2.24)

Then the Sylvester equations AV−EVS=BL, and AṼ−EṼS̃=BL̃ are solved by

V =
[
A−1
s1 B, . . . , A−1

sk
B
]
, and (2.25)

Ṽ =
[
A−1
s1 B, A−1

s2 EA−1
s1 B, . . . , A−1

sk
E . . .A−1

s2 EA−1
s1 B

]
. (2.26)

This example shows, how switching to a nested basis (2.26) of the same Krylov
subspace (2.25) affects the matrices S and L in the Sylvester equation.

Corollary 2.7 (tangential-input). Given n distinct expansion points si, i = 1, . . . , n,
and the tangential directions l1, . . . , ln, assume that none of the si is an eigenvalue of
E−1A. Then the columns of V ∈ CN×n form a basis of the tangential-input rational
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Krylov subspace

span(V) = span
{
A−1
s1 Bl1, A−1

s2 Bl2, . . . , A−1
sn

Bln
}
, (2.27)

if and only if there exists an observable pair (L,S), S∈Cn×n, L∈Cm×n, which admits
the Jordan canonical form J,

T−1ST = J =

 s1
. . .

sn

 , and LT = [l1, . . . , ln] , (2.28)

for an appropriate transformation matrix T∈Cn×n, such that the Sylvester equation

AV− EVS = BL, (2.29)

is satisfied.
Moreover, the reduced modelGr(s)=Cr(sEr−Ar)−1Br from (1.7) fulfils the tangential

interpolation
(
Msi

0 −M̂si
0

)
li=0, i=1, . . . , n if none of the si is a pole of Gr(s).

Corollary 2.7 follows from Theorem 2.4, with mi = 1, ∀i and qij = 1, ∀i, j, and is
illustrated in the following example.

Example 2.3. Let both S and L be given as in (2.28). Then the Sylvester equation
(2.29) is solved by

V =
[
A−1
s1 Bl1, A−1

s2 Bl2, . . . , A−1
sn

Bln
]
. (2.30)

Remark 2.8. Theorem 2.4 and Corollaries 2.5–2.7 describe the duality of Krylov sub-
spaces and Sylvester equations for moment matching/tangential interpolation. This
duality, however, can be generalized in two ways. It is possible to incorporate invariant
subspaces in V, which would lead to modal approximation. The generalized eigen-
vectors in V would then correspond to the unobservable part in the pair (L,S), cf.
[189]. It is further possible to include the subspace (1.31) in V, which would lead
to matching the Markov parameters. This case can be incorporated in the Sylvester
equation by either introducing a singular R in (2.1), cf. [189], or by replacing B with
Bm∞ = (AE−1)m∞ B, cf. [212]. For further details please refer to [76, 79, 189, 212], as
these generalizations are irrelevant for this work.

Remark 2.9. Sylvester equations can not only be connected to Krylov subspaces, but
also to the Loewner matrix, cf. [8, Remark 6.1.2]. The Loewner and shifted Loewner
matrices are the main tool for an approach to model a system, when only given a set
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of measurements of its frequency response. This, however, is a different concept than
the one pursued in this work, as it is based on given (tangential) interpolation data,
instead of a given state-space realization (A,E,B,C). The interested reader is therefore
referred to [125, 134] for further details.

To summarise, the matrix V may be equivalently interpreted in three different ways:

◦ the solution of a particular Sylvester equation,
◦ a matrix whose columns span the union of Krylov subspaces, or
◦ the outcome of a numerical procedure such as the Arnoldi or Lanczos processes.

It was already mentioned, that the first interpretation—that is, solution of a Sylvester
equation—is most appropriate for system theoretical considerations. To this end, we
have to find a triple (V,S,L) that composes the Sylvester equation (2.15), in order to
turn this equation into a tool. There are three cases that may occur, when computing
a triple (V,S,L): the first one is, that we encode the desired interpolation data—i. e.
shifts and tangential directions—in the matrices S and L, and then solve the Sylvester
equation (2.15). The solution could be based on the ideas presented in Section 2.1,
and hence, this case is already completed. The second case is, that V is already given
(analytically as in the examples above, or computed by a numerical procedure), and
that we have to compute back to the corresponding S and L. Finally, the third case
is, that a compatible triple (V,S,L) is simultaneously computed by some numerical
procedure. The two latter cases are detailed in the remainder of this section.
Assume that an Arnoldi-like process shall be adapted in order to not only compute

V, but also S and L. The basic iterative procedure then is as follows: assume that
a compatible triple (V,S,L) is already given and that we want to expand the Krylov
subspace by the shift s0. Then for computing the new column in V, an LSE with
the matrix (A−s0E) has to be solved, whereas the matrix S has to be extended by
a column and row, with s0 on the diagonal and zeros elsewhere. If, on the one hand,
the right-hand side in the LSE is Bl0, then L has to be extended by the additional
column l0, and if, on the other hand, the right-hand side is a previous column in V this
amounts to an extension of L by zeros, and an additional entry in S above the diagonal.
Subsequently, all operations in the Gram-Schmidt process to orthogonalize the columns
of V can be translated into appropriate modifications of S and L. A pseudo-code of
this approach can be found in [77] and a Matlab implementation in [148].
Now assume, that we want to compute back to the corresponding S and L for an

already given V. Towards this aim, two approaches are suggested in the following
propositions. Both of them are based on projections, so they require the matrices
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Ar=W∗AV, Er=W∗EV and Br=W∗B, where W is arbitrary, but such that each si
is not an eigenvalue of E−1

r Ar; as, apart from this, W may chosen arbitrarily, one may
simply take W=V.

Proposition 2.10. Given V whose columns span an input rational Krylov subspace,
and an arbitrary W, define B⊥ = B−EVE−1

r Br and assume that Er is non-singular
and that both B⊥ and [EV,B] have full column rank. Then there exists a unique S and
a unique L, such that the Sylvester equation

AV− EVS = BL, (2.31)

is satisfied, and they are given by

L = (B∗⊥B⊥)−1 B∗⊥
(
AV− EVE−1

r Ar

)
, (2.32)

S = E−1
r (Ar −BrL) . (2.33)

Proof. Existence of S and L was proven in Theorem 2.4. Rewrite the Sylvester equation
to

[ EV B ]
[

S
L
]

= AV. (2.34)

As we assume that [EV,B] has full column rank, it follows that S and L are unique.
Multiplying (2.31) from the left with the projector I−EVE−1

r W∗ yields

AV− EVE−1
r Ar = B⊥L, (2.35)

and multiplying (2.35) with (B∗⊥B⊥)−1 B∗⊥ from the left yields (2.32); (2.33) then follows
from multiplying (2.31) with W∗ from the right.

A second approach to compute the corresponding S and L for a given V requires
a priori knowledge of the expansions points si (including their multiplicities) and is
presented next.

Proposition 2.11. Given V whose columns span an input rational Krylov subspace
with shifts si (and in the MIMO case also tangential directions li), and an arbitrary
W, but such that Er is non-singular and such that Br has full column rank, define
the matrix J in Jordan canonical form as in (2.13), (2.14), let L̃ have the tangential
directions as columns, and let T satisfy the small (dense-dense) Sylvester equation

E−1
r Ar T−T J− E−1

r BrL̃ = 0. (2.36)
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Assume that [EV,B] has full column rank, then there exists a unique S and a unique
L, such that the Sylvester equation

AV− EVS = BL, (2.37)

is satisfied, and they are given by S=TJT−1, and L= L̃T−1.

Proof. Existence of S and L was proven in Theorem 2.4, and uniqueness in Proposi-
tion 2.10. Owing to Theorem 2.4, there is a Ṽ that satisfies the Sylvester equation

AṼ− EṼJ = BL̃, (2.38)

and from Lemma 2.1 it follows that Ṽ = VT, J = T−1ST and L̃ = LT, which proves
S=TJT−1, and L= L̃T−1. Substituting Ṽ=VT in (2.38) and multiplying it with W∗

from the left leads to (2.36), which completes the proof.

Both approaches of Propositions 2.10 and 2.11 can be used to compute compatible
S and L for a given V. The former is based on a projection onto the orthogonal
complement of span(W) and is capable of identifying the shifts that were used in
the Krylov subspace. (It was already published in [212].) By contrast, the latter a
priori requires the knowledge of the shifts and tangential directions and only computes
the correct transformation matrix T that corresponds to the given V. This approach
is based on a projection onto span(EV) and is inspired by [14, 15]. The proofs of
Propositions 2.10 and 2.11 already contain results that are discussed in the following
two sections: the second type of Sylvester equation (2.35) (which is the basis of the
error factorization in Chapter 3), and a parametrization of the family of reduced models
that matches moments.
It should finally be noted that from now on we may assume that a triple (V,S,L)

which fulfils the Sylvester equation AV−EVS=BL is given—irrespective of which above
mentioned approach is used to compute it. This triple provides all necessary data: V
spans the rational Krylov subspace, the eigenvalues of S correspond to the expansion
points (including higher multiplicities), and the columns of L encode the tangential
directions. Instead of characterizing a rational Krylov subspace by its expansion points
si with respective multiplicities and tangential directions li, we thus will hereafter also
use the pair (S,L) to conveniently define the interpolation data of a Krylov subspace.
For further details on the Sylvester equation (2.15), its solution and numerical stability
please refer to [76, 77, 79, 189, 212].
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2.4 Sylvester Equation for the Projection

As we have seen, the Sylvester equation (2.15) provides the desired interpolation data
in terms of the eigenvalues of S and columns of L. It should be stressed, that this
interpolation data, still is independent from the remaining degree of freedom in projec-
tive MOR—which is the matrix W—, and thus also from the matrices of the reduced
model. The purpose of this section is to provide a second type of Sylvester equation for
V, which does not encode the interpolation data, but instead the reduced dynamics.
Besides the Sylvester equation (2.15), this new Sylvester equation will be the second
fundamental tool in the subsequent chapters.

Lemma 2.12. Given V that solves the Sylvester equation (2.15), and an arbitrary
W, but such that Er = W∗EV is non-singular, define the projector Π = EVE−1

r W∗

and B⊥= (I−Π) B = B−EVE−1
r Br. Then V also satisfies a second type of Sylvester

equations, namely
AV− EVE−1

r Ar = B⊥L. (2.39)

Proof. The proof simply follows by multiplying (2.15) with (I−Π) from the left.

In order to distinguish both types of Sylvester equations, we will use the labels “B-
Sylvester equation” for the first type (2.15), and “B⊥-Sylvester equation” for the second
one (2.39). The notation “B⊥” stems from the fact that B⊥ is orthogonal to the column
span of W: W∗B⊥=0. It follows that B⊥ closes the vector chain from the columns of B
to its respective projections, which are the columns of EVE−1

r Br: B=B⊥+EVE−1
r Br.

This is illustrated in Figure 2.2.

B⊥

EVB

E−1
r Br

Figure 2.2: Vector chain of B, B⊥, and EVE−1
r Br

The result of Lemma 2.12 was published in preliminary form in [211] and in general
form in [212]. Although the B⊥-Sylvester equation can be easily derived, it has been
largely overlooked in the literature. This is remarkable, as (2.39) can be seen as the
generalization of the Arnoldi equation to rational Krylov subspaces: let E = I, m= 1
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and consider the (classical) Arnoldi method [12] that computes an orthogonal Vk whose
columns span the subspace given by the sequence B,AB, . . . ,AkB. This Vk then can
be shown to satisfy

AVk = VkHk + rke∗k, (2.40)

where Hk = V∗kAVk is upper Hessenberg, ek is the last column of the k×k identity
matrix, and r is the nonzero residual, cf. [8]. Therefore, the B⊥-Sylvester equation
(2.39) is the counterpart of (2.40) for rational Krylov subspaces as it connects V to the
projection of A and the residual of B. This is why (2.39) is also denoted as Arnoldi-
like equation by Frangos and Jaimoukha, cf. [70, 71]. They derived the B⊥-Sylvester
equation for the rational Arnoldi algorithm in [70], and for the modified rational Arnoldi
algorithm in [71], both of which differ only in the right-hand sides of the LSEs that
have to be solved. Nevertheless, both approaches yield the same subspace due to the
“nested property” in rational Krylov subspaces; see also [68] for a discussion at full
length. The results of Frangos and Jaimoukha are based on the particular course of
action in numerical implementations, which leads to different formulations of the B⊥-
Sylvester equation for the Arnoldi and Lanczos process, and which unfortunately buries
the connection to the B-Sylvester equation. Within the projective framework pursued
in this work, the result instead may be proven in the most general form, with no
constraints on the numerical implementation. The interested reader is also referred to
[69], where the B⊥-Sylvester equation is exploited to further reduce an already reduced
model that is too large (and thereby preserve the matching of certain moments), and
also to [3] where sparse-sparse Sylvester equations are iteratively solved—to which we
will come back in Part III.

Remark 2.13. The B⊥-Sylvester equation (2.39) is primarily used as a tool in the fol-
lowing chapters, but it nevertheless leads to remarkable insights by itself: as the B⊥-
Sylvester equation is similar to the B-Sylvester equation, Theorem 2.4 proves that the
columns of V must span the rational Krylov subspace for the input B⊥ and eigenvalues
of E−1

r Ar. This statement may be even extended, as the matrix W in Lemma 2.12 is
arbitrary (as long as Er is non-singular). Therefore, as there are infinitely many ad-
missible W, there are also infinitely many B⊥-Sylvester equations (2.39). That means
that as soon as the columns of V span one rational Krylov subspace, they in fact
span infinitely many rational Krylov subspaces—all of which are connected through
projections. In particular, V spans the Krylov subspace for the input B⊥, with the re-
duced eigenvalues as shifts and the columns of L, after transforming E−1

r Ar to Jordan
canonical form, as tangential directions.
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2.5 Parametrized Family of Reduced Dynamics

After comprehensively characterizing bases of Krylov subspaces, given by V and the
respective interpolation data, i. e. shifts and tangential directions in terms of S and L,
we are now ready to thoroughly examine the remaining degrees of freedom contained in
the reduced model. This is carried out in this section and thereby, the results of Astolfi
[13, 14, 15] and of [212] are slightly generalized and equipped with new proofs.

Lemma 2.14. If V solves the Sylvester equation

AV− EVS = BL, (2.41)

then for any W∈CN×n the matrices of the reduced system satisfy

Ar = ErS + BrL. (2.42)

Proof. The proof directly follows by multiplying (2.41) with W∗ from the left.

Lemma 2.14 in fact delivers a family of reduced models that interpolate G(s): define
Er = I, then the family may be parametrized by the reduced input Br, because Ar

is then defined by (2.42), and Cr is independent from W; this is stated in the next
theorem, which in addition gives a new proof of (tangential) interpolation by rational
Krylov subspaces.

Theorem 2.15. Given a triple (V,S,L) that satisfies the Sylvester equation

AV− EVS = BL, (2.43)

with S∈Cn×n and L∈Cm×n, assume (L,S) observable and Λ(S)∩Λ(E−1A)=∅. Define
the family of reduced models GF(s), parametrized in F∈Cn×m, as follows:

ẋr(t) = (S + FL) xr(t) + Fu(t),

yr(t) = CVxr(t).
(2.44)

If F is such that Λ(S)∩Λ(S + FL)=∅, then GF(s) (tangentially) interpolates G(s) as
encoded in the pair (L,S) and as defined in Theorem 2.4.

Proof. Due to Lemma 2.1, changing the basis of V amounts to a state transformation
of (2.44), to which the transfer behaviour of GF(s) stays invariant. We may therefore
assume without loss of generality that S is in Jordan canonical form and that L has
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the desired tangential directions li as columns. As the Jordan blocks are decoupled, it
is sufficient to proof the theorem only for one Jordan block of dimension q. We may
therefore assume the triple (V,S,L) with S∈Cq×q and L∈Cm×q given by

V=
A−1

s0 Bl1, . . . ,
q−1∑
ν=0

(
A−1
s0 E

)ν
A−1
s0 Blq−ν

, S=


s0 1

. . . . . .
. . . 1

s0

, L=[l1, . . . , lq] ,

(2.45)
and it is left to prove that GF(s) satisfies the tangential interpolation (2.10)–(2.12) for
arbitrary choices of F. To this end, let ei denote the i-th column of the q×q identity
matrix, then it follows from (2.45) that

(S + FL− s0I) e1 = Fl1, (2.46)

(S + FL− s0I) ei = Fli + ei−1, i = 2, . . . , q (2.47)

Due to the assumption Λ(S)∩Λ(S + FL) = ∅, we can solve this for ei, i=1, . . . , q, and
by recursively using the results it follows that

ei =
i−1∑
ν=0

(S + FL− s0I)−(ν+1) Fli−ν . (2.48)

Then,
i−1∑
ν=0

M̂s0
ν li−ν = −CV

i−1∑
ν=0

(S + FL− s0I)−(ν+1) Fli−ν (2.49)

(2.48)= −CVei (2.50)

(2.45)= −C
i−1∑
ν=0

(
A−1
s0 E

)ν
A−1
s0 Bli−ν (2.51)

=
i−1∑
ν=0

Ms0
ν li−ν , (2.52)

holds for i = 1, . . . , q, which proves tangential interpolation (2.10)–(2.12) of GF(s).

It should be noted that the reduced models in the family GF(s) are not obtained
by a projection of G(s); they are instead directly constructed such they interpolate
G(s), and hence, Theorem 2.15 presents a new projection-independent proof of moment
matching/tangential interpolation based on rational Krylov subspaces.
The benefit of the Theorem 2.15 is a parametrization of all reduced models that

interpolate the original one: given (V,S,L) such that the assumptions hold, one may
select any Br such that Λ(S) ∩ Λ(S+BrL) = ∅; then the reduced model Gr(s) that
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interpolates G(s) is given by Er=I, Ar=S+BrL and Cr=CV.
A remaining question is if every reduced model that interpolates G(s) with the inter-

polation data (V,S,L) can be parametrized by F, i. e. how general is the family GF(s)
in Theorem 2.15. The next theorem shows that GF(s) is indeed more general than the
projection framework using W.

Theorem 2.16. Given a triple (V,S,L) that satisfies the Sylvester equation

AV− EVS = BL, (2.53)

with S∈Cn×n and L∈Cm×n, define the family of reduced systems GF(s), parametrized
in F∈Cn×m,

ẋr(t) = (S + FL) xr(t) + Fu(t),

yr(t) = CVxr(t),
(2.54)

and the family of reduced systems Gr(s), parametrized in W,

Erẋr(t) = Arxr(t) + Bru(t),

yr(t) = Crxr(t).
(2.55)

Then the following statements hold.

i) For any W such that Er is non-singular, there exists a unique F such that E−1
r Br=

F and E−1
r Ar = S+FL, which means that the transfer functions Gr(s) =GF(s)

are equal.
ii) If [EV,B] has full column rank n+m, then for any F there exists a W such

that F = E−1
r Br and S+FL = E−1

r Ar, which means that the transfer functions
Gr(s)=GF(s) are equal.

Proof. The output Cr=CV is independent from W and F. To prove i), note that for
any W such that Er is non-singular, Gr(s) = Cr(sI−E−1

r Ar)−1E−1
r Br. Then choose

the unique F=E−1
r Br and it follows from (2.42) that E−1

r Ar=S+FL which completes
the proof for this part.
To prove ii), it is sufficient due to Lemma 2.14 to show existence of a W such that

Er = W∗EV = I and Br = W∗B = F, which is equivalent to W∗[EV,B] = [I,F]. We
may therefore restrict W to be contained in the subspace span(W) ⊂ span[EV, B],
which shows non-uniqueness of W. Construct W=[EV, B]K, then K∈C(n+m)×n such
that the above mentioned statement holds has to satisfy K∗[EV,B]∗[EV,B] = [I,F],
which exists for any choice of F only if [EV,B] has full column rank.
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Remark 2.17. The statements of Theorems 2.15 and 2.16 may actually be generalized
to reduced DAE systems. Following the proof of Theorem 2.15, a DAE family GF,H =
CV(sH − (HS + FL))−1F with singular H can still fulfil tangential interpolation for
the ODE parts of S and L. The accurate conditions, however, would require further
analysis, but this is omitted because it is arguable if it makes sense to construct a
reduced DAE system for an original ODE model.

Remark 2.18. It should be stressed that Theorem 2.16 is not restricted to reduced
models that match moments of G(s) (only DAE systems are excluded); it would also
apply for reduced models that match Markov parameters or that preserve eigenvalues
of the original model; these cases, however, are not of interest here.

Remark 2.19. A stronger statement of Theorem 2.16 follows for single inputs m = 1.
As we consider matrices V whose columns span rational Krylov subspaces, and as we
further assume that the pair (E−1A,E−1b) is controllable, then [EV,b] is guaranteed to
have full column rank n+1, and hence, the two familiesGr(s) andGF(s) are equivalent;
this was already proven by Astolfi [15]. Additionally taking into account the generality
of projections by Krylov subspaces [75, 78], it follows that given a minimal system of
order N , for any minimal model of order n < N , there exists a triple (V,S,L), such
that this reduced model is contained in both families Gr(s) and GF(s). The difference
is that F provides a unique parametrization, whereas W does not.

It was shown that the reduced models in the families (2.54) and (2.55) are equivalent;
only the matrix W is not unique. In order to remove this redundancy one could define
the following parametrization.

Corollary 2.20. Given a triple (V,S,L) that satisfies the Sylvester equation

AV− EVS = BL, (2.56)

with S∈Cn×n and L∈Cm×n, define Ŵ=[EV,B], and assume that Ŵ has full column
rank n+m. If W is constructed as W = ŴK, where K∗ = [I,F](Ŵ∗Ŵ)−1, then W
and F are in a one-to-one relation and consequently the families Gr(s) in (2.55) and
GF(s) in (2.54) are equivalent.

Proof. Note that [Ar,Er,Br]=W∗[AV,EV,B], and hence, only the subspace spanned
by the columns of [AV,EV,B] is relevant for W. It follows from the B-Sylvester
equation that span(AV) ⊆ span[EV,B] and therefore taking W = ŴK is sufficient.
The rest of the proof is already contained in the proof of Theorem 2.16.
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Remark 2.21. Due to the B⊥-Sylvester equation, span[EV,B⊥] = span[EV,B], and
therefore, it would also be possible to define the alternative parametrization of the
projected models by Ŵ=[EV,B⊥], and then proceeding similarly to Corollary 2.20.

Most of the results in this section were found by Astolfi: the family GF(s) is intro-
duced in [14], where the free parameter F is used to assign eigenvalues and/or zeros, or
to render the model passive, lossless, dissipative, or compartmental; a similar discussion
can be found in [15], where also a generalization of the notion of moments for non-linear
systems is presented; the equivalence of various families of reduced models is studied
in [13]. The proof of moment matching/tangential interpolation in Theorem 2.15 ap-
pears to be new, whereas the generalizations of (2.42) to E 6= I and multiple inputs,
and its connection to the B- and B⊥-Sylvester equations were first published in [212].
Ionescu and Astolfi studied the choice of appropriate shifts si such that the family
GF(s) preserves either passivity, cf. [107], or a port-Hamiltonian structure, cf. [105].
The authors also deepened the understanding of moments in the non-linear case in
[106], and furthermore, they chose F in [108] such that the reduced model becomes
non-minimal, which results in a reduced model of smaller order than n, but which still
achieves moment matching. This approach, however, seems cumbersome, because a re-
duced model of order n/2 that matches n moments could have been directly constructed
through a two-sided projection. Finally, Ahmad et. al. [3] employed a closely related
parametrization of the reduced dynamics, i. e. of Theorem 2.15.

2.6 Chapter Overview and Outlook

The aim of this chapter was to describe bases of rational Krylov subspaces—not only
by its interpolation data, i. e. expansion points and tangential directions, but also by
useful Sylvester equations. We found that any V in fact satisfies two types of Sylvester
equations with specific structure, which in turn define the matrices S, L, and B⊥—all
of which will become important in the subsequent chapters. The reason for this is, that
the B-Sylvester equation (2.15), the B⊥-Sylvester equation (2.39), and also (2.42), will
be the main tools to derive the various results. It should be stressed, that the just
mentioned matrices allow for concrete interpretations: S and L encode the expansion
points and tangential directions, respectively, and B⊥ represents the residual of B after
projection.
The aim of the subsequent chapters now can be depicted as follows: assume that a

triple (V,S,L) is given, which satisfies the B-Sylvester equation (2.15). This in fact
implies that two issues in MOR have already been solved: firstly, the interpolation
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points si with multiplicities have been selected (and in the MIMO case additionally
the tangential directions li), and secondly, a numerical procedure for computing V
has been implemented (either with direct or iterative solvers of the LSEs). Needless
to say that both issues are far from trivial—their solution, however, is postponed for
the moment. Then the remaining degrees of freedom in model order reduction can be
parametrized in two ways: either with W, leading to the familyGr(s) in (2.55), or with
F, leading to the family GF(s) in (2.54). The main contribution of this thesis is then to
suggest a unique way, how fix this degree of freedom. This choice will coincide with the
concept ofH2 pseudo-optimality and has considerable advantages: stability is preserved
in the reduced model; the degree of freedom is uniquely determined; the reduced model
satisfies some kind of optimality; the reduced order can be accumulated, such that the
approximation error is guaranteed to decrease monotonically; and the main numerical
effort remains the computation of the triple (V,S,L). The statement of the concept of
H2 pseudo-optimality, however, requires the analysis of the approximation error, which
is why this is first conducted in the next chapter.
What is left over, then are expedient methods to reveal suitable shifts and tangential

directions. But as already mentioned, this is omitted in this work, and the interested
reader is instead referred to the thesis of Panzer [148]. It should also be noted, that
numerical issues in the computation of a triple (V,S,L) are independent from the
theoretical concept of H2 pseudo-optimality and hence omitted; in this regard, the
interested reader is referred to the thesis [215] and references therein.
Finally, it should be noted, that all results of this chapter can be formulated in a dual

way for the output side: let the columns of W form a basis of an output rational Krylov
subspace, then there exist C- and C⊥-Sylvester equations and a similar parametrization
of the reduced dynamics. The duality follows by replacing A with A∗, E with E∗, B
with C∗ and V with W, cf. [212]. The details, however, are omitted, since the dual
results are equivalent to the input side [13] and not essential for this work.
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This chapter discusses a factorization of the error model. It is based on the B⊥-Sylvester
equation and therefore requires that the columns of V span a rational Krylov subspace.
The basic factorization is presented in Section 3.1, whereas Section 3.2 discusses an
incremental model order reduction, which emerges from iterative error factorizations in
each step. The results are based on the publications [149, 211, 212].

3.1 Factorization of the Error System

Irrespective of whether we try to solve a large-scale Lyapunov equation in TBR or
compute a reduced model by Krylov-based projections, we aim at approximatingX(s),
defined as

X(s) = (sE−A)−1 B, (3.1)

by X(s)≈VXr(s), where Xr(s) satisfies

Xr(s) = (sEr −Ar)−1 Br. (3.2)

Then the error E(s) reads as

E(s) = X(s)−VXr(s). (3.3)

The error E(s) is typically described by the residual error R(s), which is defined next,
cf. [85].

Definition 3.1. Given V, the original model (1.1), and its reduction (1.4), the residual
error R(s) is defined as

R(s) = B− (sE−A) V (sEr −Ar)−1 Br. (3.4)

With this definition, it readily follows for the error that

E(s) = (sE−A)−1R(s), (3.5)
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and it is straightforward to show that the residual error R(s) satisfies the Petrov-
Galerkin condition, W∗R(s)=0, whereas the error E(s) generally does not, W∗E(s) 6=
0. It should be noted that the error model Ge(s) = G(s)−Gr(s) can be similarly
described by the residual error, as it holds irrespectively of the output C that

Ge(s) = G(s)−Gr(s) = C [X(s)−VXr(s)] = CE(s) = C (sE−A)−1R(s). (3.6)

The next theorem investigates the residual error R(s), which is already the main
result of this section. This important statement is the basis of a number of applications
in this thesis. Although it was previously observed by Frangos and Jaimoukha in a
slightly different form in [68], it has been largely overlooked in the literature.

Theorem 3.1. Let V satisfy the Sylvester equation

AV− EVE−1
r Ar = B⊥L, (3.7)

where B⊥=B−EVE−1
r Br. Define the feed-through model Gf (s)=L (sEr−Ar)−1 Br+I

of reduced order n, then the residual error R(s) may be factorized as

R(s) = B⊥Gf (s). (3.8)

Proof. It follows from the Sylvester equation (3.7) that

(sE−A) V = sEV− EVE−1
r Ar −B⊥L = EVE−1

r (sEr −Ar)−B⊥L. (3.9)

Substituting this in the definition of the residual error (3.4) yields

R(s) = B−
[
EVE−1

r (sEr −Ar)−B⊥L
]

(sEr −Ar)−1 Br (3.10)

= B− EVE−1
r Br + B⊥L (sEr −Ar)−1 Br (3.11)

= B⊥ + B⊥L (sEr −Ar)−1 Br, (3.12)

which completes the proof.

A consistent statement also holds for the error modelGe(s), which was also published
in [211, 212].

Corollary 3.2. Let V satisfy the Sylvester equation

AV− EVE−1
r Ar = B⊥L. (3.13)
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Then the error model Ge(s)=G(s)−Gr(s) can be factorized by

Ge(s) = G⊥(s)Gf (s). (3.14)

where G⊥(s) of order N and the feed-through model Gf (s) of order n are defined as

G⊥ = C (sE−A)−1 B⊥ (3.15)

Gf (s) = L (sEr −Ar)−1 Br + I (3.16)

Proof. The statement is a direct consequence of Theorem 3.1 and (3.6).

It should be stressed that G⊥(s) shares E, A and C with G(s) and only differs from
it in its input. Furthermore, the feed-through model Gf (s), which is introduced in
Theorem 3.1 and its Corollary 3.2, is of small order n and shares Er, Ar and Br with
the reduced model Gr(s). The zeros of Gf (s) are investigated in the next lemma.

Lemma 3.3. Given a triple (V,S,L) that satisfies the B-Sylvester equation (2.15), let
s0 be an eigenvalue of S and assume that (L,S) is observable and that s0 is not a pole
of Gf (s). Then s0 is a transmission zero of Gf (s).

Proof. Gf (s) is an m×m proper transfer function, and due to its feed-through term,
it has full column normal rank. For a proper definition of the concept of normal rank
see e. g. [222]. It then follows from [222, Lemma 3.27], that s0 is a transmission zero of
Gf (s) if there exists a nonzero u0 ∈Cm such that Gf (s0)u0 = 0. For the construction
of a suitable u0, let the nonzero x0 denote an eigenvector to the eigenvalue s0, i. e.
(s0I−S)x0 =0, and pick u0 =−Lx0. Note that this u0 is nonzero as (L,S) is assumed
observable. Then it follows that

0 = (s0Er − ErS) x0 = (s0Er − (ErS + BrL) + BrL) x0 (3.17)
(2.42)= (s0Er −Ar + BrL) x0 = (s0Er −Ar) x0 −Bru0 (3.18)

Now taking Lx0+u0 =0 and replacing x0 by (3.18), yields L (s0Er−Ar)−1 Bru0+u0 =0,
where the inverse exists due to the assumption made. This proves that there exists a
nonzero u0 such that Gf (s0)u0 =0.

Remark 3.4. It should be noted that the assumption that s0 is not a pole of Gf (s)
is not restrictive: it means that s0 is not an eigenvalue of E−1

r Ar, which is the same
assumption that is required anyway for moment matching to hold. Another argument
that compensation is very unlikely in practice is that we are searching for a stable
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reduced model, which means that the poles of Gf (s) should lie in the left half of the
complex plane, whereas the shifts s0—the zeros of Gf (s)—are typically chosen in the
right half of the complex plane. Finally, assuming that (L,S) is observable is also not
restrictive, as this is required for moment matching, as well.
Remark 3.5. It should also be noted that the following generalizations of Lemma 3.3 are
straightforward: if the eigenvalue s0 has geometric multiplicity 1<m0<m, then there
exist m0 linearly independent ui such that Gf (s0)ui, i=1, . . . ,m0; if the eigenvalue s0

has geometric multiplicity m0 =m, then s0 is a blocking zero, i. e. Gf (s0)=0. A further
generalization follows, if S contains a Jordan block of dimension q0 to the eigenvalue
s0. Then it can be shown that s0 is also a transmission zero of the first q0−1 derivatives
of Gf (s); as this case is of minor interest, the details are omitted for brevity; a proof
in the SISO case can be found in [211].
The factorization of the error also brings forth another interesting question: is there

a perturbation of the state-space realization of the original model G(s) such that the
reduced model Gr(s) exactly approximates its transfer behaviour, i. e. such that Gr(s)
is a minimal realization of the perturbed G(s)? Although the answer is not directly
related to the objective of this work, it is still presented in the next lemma, because
it provides interesting insight into MOR based on rational Krylov subspaces. This is
inspired from [68].

Lemma 3.6. Given the perturbations ∆A = B⊥LE−1
r W∗E and ∆B = B⊥, define the

perturbed dynamics X∆(s) = [sE−(A−∆A)]−1 (B−∆B) and G∆(s) = CX∆(s), and
assume that V satisfies the B- and B⊥-Sylvester equations (2.15) and (3.7). Then
X∆(s) = VXr(s) for all s such that det [sE−(A−∆A)] 6= 0. Furthermore, all eigen-
values of E−1 (A−∆A) are either eigenvalues of E−1

r Ar or not controllable, i. e. Gr(s)
is a minimal realization of G∆(s).

Proof. It follows from the B⊥-Sylvester equation (3.7) that

EVE−1
r Ar = AV−B⊥L =

(
A−B⊥LE−1

r W∗E
)

V = (A−∆A) V, (3.19)

which proves that Λ (E−1
r Ar)⊂Λ (E−1 (A−∆A)). Now consider

B−∆B = B−B⊥ = EVE−1
r Br (3.20)

= EVE−1
r (sEr −Ar) (sEr −Ar)−1 Br (3.21)

=
(
sEV− EVE−1

r Ar

)
(sEr −Ar)−1 Br (3.22)

(3.19)= [sE− (A−∆A)] V (sEr −Ar)−1 Br, (3.23)
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which proves that all remaining eigenvalues of E−1 (A−∆A) are not controllable in
X∆(s), and also that X∆(s) = VXr(s) for all other values of s. G∆(s) =Gr(s) then
follows by multiplication with C.

Lemma 3.6 presents a neat observation in MOR by rational Krylov subspaces, but it
is merely of theoretical interest. By contrast, Theorem 3.1 and its Corollary 3.2 have a
strong impact on error analysis in MOR. Assume for example that Gr(s) approximates
G(s) well, then the error Ge(s) should be small for all s. In light of the error model
Ge(s)=G(s)−Gr(s), this means that the difference of two large and similar quantities
would result in a small value. The traditional formulation of the error model therefore
is numerically ill-conditioned, as the “small” error dynamics are overwhelmed by the
“large” dynamics of original and reduced model, and thus, are hard to identify.
By using Theorem 3.1 and Corollary 3.2, the error model can instead be factorized

intoG⊥(s) of original orderN andGf (s) of reduced order n. The difference between the
traditional formulation, Ge(s) =G(s)−Gr(s), and the new one, Ge(s) =G⊥(s)Gf (s),
may be illustrated as a parallel and a series connection, respectively, in a block diagram;
this is shown in Figure 3.1, where Figure 3.1a corresponds to Ge(s)=G(s)−Gr(s) and
where Figure 3.1b describesGe(s)=G⊥(s)Gf (s). The benefit is that only the real error
dynamics are triggered in the new formulation Ge(s)=G⊥(s)Gf (s), as no subtraction
in the output occurs. The interpretation is that B⊥ must be worse controllable than B
(which will be also verified by investigating the Lyapunov equation in Part III).

Gr

G

u(t)

y(t)

yr(t)

y(t)−yr(t)

(a) Traditional formulation as a difference

Gf G⊥
u(t) y(t)−yr(t)

(b) New formulation as a factorization

Figure 3.1: Block diagrams describing the error

The factorized formulation is particularly helpful in a large-scale setting, because only
B⊥ and L are required, which in turn may be computed with negligible numerical effort.
The benefit is that the factorization is described by state-space models that preserve
sparsity of the original matrices. In conclusion, the factorized formulation is better
suited for further analysis than the traditional formulation Ge(s)=G(s)−Gr(s); a first
application is presented in the next section. Finally, it should be noted, that the above
results could be generalized to cases where invariant subspaces and also subspaces like
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(1.31) are contained in span(V), which, however, is omitted as these cases are irrelevant
for this work.

3.2 Cumulative Approximation using Krylov Subspaces

We have seen that the error can be factorized by E(s) =X⊥(s)Gf (s), with X⊥(s) =
(sE−A)−1 B⊥. The second factor Gf (s) is of reduced order n, so it can be analysed
without difficulty. The unknown remains X⊥(s), which yet is equal to the original
X(s)—except for a different input. Then why not approximate X⊥(s) in a second
step? Just replace B by B⊥, then the reduction works the same way as in the first
step. It then turns out that this can be repeated as often as desired, which yields an
iterative or also called cumulative or incremental framework for model reduction by
rational Krylov subspaces. The idea was first published in [149] and is discussed in this
section.

3.2.1 The Cumulative Framework

The presentation unfortunately requires some inconvenient notation, which is clarified
first. Let all quantities of the reduction and factorization performed so far have an
additional index “1”, to denote the first reduction. Accordingly, using the projection
matrices V1 and W1, the original dynamics X(s) are approximated by

X(s) = V1Xr,1(s) +X⊥,1(s)Gf,1(s) (3.24)

with

Xr,1(s) = (sEr,1 −Ar,1)−1 Br,1, (3.25)

X⊥,1(s) = (sE−A)−1 B⊥,1, (3.26)

Gf,1(s) = L1 (sEr,1 −Ar,1)−1 Br,1 + I, (3.27)

where Er,1 = W∗
1EV1, Ar,1 = W∗

1AV1, Br,1 = W∗
1B, and where B⊥,1 and L1 are given

by the B⊥-Sylvester equation (3.7). As already mentioned, the idea is now to consider
X⊥,1(s) as the original data, and reduce it in a second step, using the projection
matrices V2 and W2, where V2 is assumed to span a rational Krylov subspace to the
input B⊥,1, that is, V2 satisfies

AV2 − EV2S2 = B⊥,1L2. (3.28)
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The resulting reduced quantities are denoted with the index “2”, i. e. Er,2 = W∗
2EV2,

Ar,2 =W∗
2AV2 and Br,2 =W∗

2B⊥,1, and it follows that V2 also satisfies a corresponding
B⊥-Sylvester equation

AV2 − EV2E−1
r,2Ar,2 = B⊥,2L2, (3.29)

with B⊥,2 =B⊥,1−EV2E−1
r,2Br,2. A question that then arises is, if both reduced quantities

can be conveniently merged into a single, accumulated model. The goal thus is to find
quantities with index “tot”, that define the total reduction and error after two steps;
the result is presented in the next theorem.

Theorem 3.7. Let a reduction and factorization (3.24)–(3.27) be given, and assume
that X⊥,1(s) was reduced and factorized in a second step, where V2 satisfies (3.28).
Then the error of the total reduction can be factorized as

X(s) = VtotXr,tot(s) +X⊥,2(s)Gf,tot(s) (3.30)

with

Xr,tot(s) = (sEr,tot −Ar,tot)−1 Br,tot, (3.31)

X⊥,2(s) = (sE−A)−1 B⊥,2, (3.32)

Gf,tot(s) = Ltot (sEr,tot −Ar,tot)−1 Br,tot + I, (3.33)

and where the accumulated quantities are given by

B⊥,2 = B⊥,1 − EV2E−1
r,2Br,2, Vtot = [ V1 V2 ] , Ltot = [ L1 L2 ] , (3.34)

Ar,tot =
[

Ar,1 0
Br,2L1 Ar,2

]
, Er,tot =

[
Er,1 0
0 Er,2

]
, Br,tot =

[
Br,1
Br,2

]
. (3.35)

Proof. Owing to the Sylvester equation (3.29),X⊥,1(s) can be described by its reduction
and factorized error,

X⊥,1(s) = V2Xr,2(s) +X⊥,2(s)Gf,2(s), (3.36)

with B⊥,2 =B⊥,1−EV2E−1
r,2Br,2. Replacing X⊥,1(s) in (3.24) by (3.36) yields

X(s) = [ V1 V2 ]
[

Xr,1(s)
Xr,2(s)Gf,1(s)

]
+X⊥,2(s)Gf,2(s)Gf,1(s), (3.37)

which proves Vtot = [V1 V2]. Consider Xr,tot(s) from (3.31) and use the definitions
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(3.35), then

Xr,tot(s) =
[
sEr,1−Ar,1 0
−Br,2L1 sEr,2−Ar,2

]−1 [ Br,1
Br,2

]
(3.38)

=
[

(sEr,1−Ar,1)−1 0
(sEr,2−Ar,2)−1 Br,2L1 (sEr,1−Ar,1)−1 (sEr,2−Ar,2)−1

][
Br,1
Br,2

]
(3.39)

=
[

Xr,1(s)
Xr,2(s)Gf,1(s)

]
, (3.40)

which proves that Xr,tot(s) from (3.31) and with the definitions (3.35) indeed describes
the dynamics required by (3.37). By comparing (3.37) with (3.30), it follows that it
is left to prove that Gf,tot(s) =Gf,2(s)Gf,1(s). Consider Gf,tot(s) from (3.33) and use
(3.34), then

Gf,tot(s) = [ L1 L2 ]Xr,tot(s) + I (3.40)= [ L1 L2 ]
[

Xr,1(s)
Xr,2(s)Gf,1(s)

]
+ I (3.41)

= L2Xr,2(s)Gf,1(s) + L1Xr,1(s) + I (3.42)

= L2Xr,2(s)Gf,1(s) +Gf,1(s) (3.43)

= (L2Xr,2(s) + I)Gf,1(s), (3.44)

which completes the proof.

Theorem 3.7 shows, that the error after the second reduction step (3.30), has again the
identical structure that was already apparent after the first step (3.24). It is therefore
possible to iterate the reduction and subsequent factorization, i. e. repetitively exploit
Theorem 3.7 as often as desired; the next corollary describes how to recursively generate
the matrices that describe this procedure—i. e. the cumulative framework.

Corollary 3.8. Assume that the reduction and factorization of the error from Theo-
rem 3.7 has been recursively performed for k steps, where the columns of each Vi form
a basis of a rational Krylov subspace, i. e. it satisfies a corresponding Sylvester equation
similar to (3.28). Then the error of the total reduction can be factorized as

X(s) = VtotXr,tot(s) +X⊥,i(s)Gf,tot(s) (3.45)

with

Xr,tot(s) = (sEr,tot −Ar,tot)−1 Br,tot, (3.46)

X⊥,i(s) = (sE−A)−1 B⊥,i, (3.47)

Gf,tot(s) = Ltot (sEr,tot −Ar,tot)−1 Br,tot + I, (3.48)
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where the final matrices can recursively be generated by

Ar,tot ←
[

Ar,tot 0
Br,iLtot Ar,i

]
, Er,tot ←

[
Er,tot 0

0 Er,i

]
, Br,tot ←

[
Br,tot
Br,i

]
, (3.49)

B⊥,i = B⊥,i−1 − EViE−1
r,i Br,i, Vtot ← [ Vtot Vi ], Ltot ← [ Ltot Li ], (3.50)

for i = 1, . . . , k with B⊥,0 = B and where Vtot, Ltot, Ar,tot, Er,tot and Br,tot are all
initialized as empty matrices.

Proof. The proof follows by recursively applying Theorem 3.7.

According to [148], the procedure of Corollary 3.8 will be denoted as cumulative
reduction (CURE) in the following. CURE is of course also valid if G(s), with arbi-
trary output C, has to be approximated instead of X(s). The result is obvious with
Corollary 3.8, but it is nevertheless presented for completeness.

Corollary 3.9. Let all variables be as defined in Corollary 3.8 and assume that the
columns of each Vi form a basis of a rational input Krylov subspace. Then the model
G(s)=C (sE−A)−1 B can be reduced in a cumulative procedure with k steps, such that
the total reduction and error factorization is given by

G(s) = Gr,tot(s) +G⊥,i(s)Gf,tot(s) (3.51)

with

Gr,tot(s) = Cr,tot (sEr,tot −Ar,tot)−1 Br,tot, (3.52)

G⊥,i(s) = C (sE−A)−1 B⊥,i, (3.53)

and Cr,tot =CVtot.

Corollaries 3.8 and 3.9 define the cumulative framework CURE. The basic procedure
of three steps in CURE is illustrated in Figure 3.2, where the dimensions of the matrices
of the state-space realizations are described in the form

G(s) = C (sE−A)−1 B + D =
[

E,A B
C D

]
. (3.54)

The matrices of corresponding steps in CURE are printed with equal shades of grey,
and the shade of grey becomes darker with consecutive steps. It should be stressed that
A, E and C remain unchanged in G⊥(s) during all steps of CURE.
It is next shown that CURE is not restrictive, which means that the results of Chap-

ter 2 also apply to the accumulated quantities in CURE.
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=

G(s)

+

Gr(s) G⊥,1(s) Gf (s)

+ +=

+ +=

G⊥,2(s)

G⊥,3(s)

+

Gf,tot(s)

Gf,tot(s)

Gr,tot(s)

Gr,tot(s)

3rd step:

2nd step:

Original data
1st reduction & factorization
2nd reduction & factorization
3rd reduction & factorization

Figure 3.2: Illustration of three steps of the cumulative framework CURE.

3.2.2 Properties of the Cumulative Framework

The first question is whether Vtot satisfies a B-Sylvester equation, and consequently,
whether its columns form a basis of a rational input Krylov subspace. The answer is
given in the next lemma.

Lemma 3.10. Let all variables be as defined in Corollary 3.8 and assume that the
columns of each Vi form a basis of a recursively computed input rational Krylov sub-
space, i. e. each Vi satisfies due to Theorem 2.4

AVi − EViSi = B⊥,i−1Li, (3.55)

for i=1, . . . , k and B⊥,0 =B. Then the accumulated matrix Vtot =[V1, . . . ,Vk] satisfies

AVtot − EVtotStot = BLtot, (3.56)

where Stot and Ltot can be generated by the recursive procedure

Stot ←
[

Stot −E−1
r,totBr,totLi

0 Si

]
, Ltot ← [ Ltot Li ] , (3.57)
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in which Vtot, Stot, and Ltot are initialized as empty matrices.

Proof. The proof is done by induction. The case i=1 is true due to Theorem 2.4. Then
assume that (3.56) holds at step i−1 and let Vi satisfy (3.55). Arranging both Sylvester
equations (3.55) and (3.56) in one equation reads as

A [ Vtot Vi ]− E [ Vtot Vi ]
[

Stot 0
0 Si

]
= [ BLtot B⊥,i−1Li ] . (3.58)

Replacing B⊥,i−1 =B−∑i−1
ν=1 EVνE−1

r,νBr,ν =B−EVtotE−1
r,totBr,tot in (3.58) yields

A [ Vtot Vi ]− E [ Vtot Vi ]
[

Stot −E−1
r,totBr,totLi

0 Si

]
= B [ Ltot Li ] , (3.59)

which completes the proof.

Remark 3.11. It should be noted that due to its upper-triangular block structure, the
eigenvalues of Stot are the union of the eigenvalues of Si, i= 1, . . . , k. The columns of
Vtot thus form a basis of the rational Krylov subspace with input B, and where the
shifts and tangential directions are encoded in Stot and Ltot. It is therefore irrespective
of whether B or B⊥,i is used to compute Vi+1, as this does not change the subspace that
is spanned by the columns of Vtot. Lemma 3.10 thus actually gives an alternative proof
of the “nested property” of rational Krylov subspace, which was already mentioned.

Owing to the Sylvester equation (3.56), one could define a parametrized family of
reduced models like in Section 2.5 by using Stot and Ltot; yet this is senseless as it
would destroy the cumulative idea. Nevertheless, it might be interesting to note that
Lemma 2.14 can be maintained in CURE.

Lemma 3.12. Let all variables be as defined in Lemma 3.10, then

Ar,tot = Er,totStot + Br,totLtot. (3.60)

Proof. The proof is straightforward by inserting the definitions (3.57) and (3.49).

It follows from this result, that also the B⊥-Sylvester equation holds for the cumulated
quantities in CURE.

Lemma 3.13. Let all variables be as defined in Lemma 3.10, then Vtot satisfies

AVtot − EVtotE−1
r,totAr,tot = B⊥,iLtot. (3.61)
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Proof. The proof follows by replacing Stot in (3.56) by (3.60) and noting that B⊥,i =
B−EVtotE−1

r,totBr,tot.

Finally, it can also be shown that the transmission zeros of Gf,tot are the union of
the transmission zeros of Gf,i, i=1, . . . , k.

Lemma 3.14. Let s0 be an eigenvalue of Stot, and assume that s0 is not a pole of
Gf,tot(s), and that the pair (Ltot,Stot) is observable. Then s0 is a transmission zero of
Gf,tot(s).

Proof. The proof is analogous to the one of Lemma 3.3 as the only requirement is that
(3.60) holds.

The original goal of MOR was to (tangentially) interpolate X(s), or equivalently
G(s). At first sight, it seems like this property should be lost in CURE, because
at steps i = 2, . . . , k we actually interpolate X⊥,i−1(s) instead of X(s). Neverthe-
less, Lemma 3.14 shows that interpolation at the primary expansion points indeed
is preserved in CURE: it follows from (3.57), that Stot unites the eigenvalues of all
Si, i = 1, . . . , k, which precisely are the expansion points; as these eigenvalues are
transmission zeros of Gf,tot(s), they are also transmission zeros of the error, Etot(s) =
X⊥,k(s)Gf,tot(s), and hence, interpolation is preserved. The remaining question is,
what are the tangential directions? The answer to this is quite involved in the most
general case, so for a concise presentation, we consider only the case of k= 2 steps of
CURE in the next lemma. As we work with the Sylvester equation, we call the pair
(S,L) interpolation data, knowing that the expansion points si are encoded as eigen-
values of S and that the respective tangential directions li are encoded as columns of
L, after transforming S to Jordan canonical form, cf. Lemma 2.3.

Lemma 3.15. Given two steps of CURE, where V1 and V2 satisfy

AV1 − EV1S1 = BL1, (3.62)

AV2 − EV2S2 = B⊥,1L2. (3.63)

Then VtotXr,tot(s) interpolates X(s) at the data (S1,L1) and (S2,L2+L1M), where M
satisfies

S1M−MS2 = E−1
r,1Br,1L2. (3.64)

Proof. Due to Lemma 3.10,

A [ V1 V2 ]− E [ V1 V2 ]
[

S1 −E−1
r,1Br,1L2

0 S2

]
= B [ L1 L2 ] . (3.65)
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Introduce the matrix T to transform Stot:

T =
[

I M
0 I

]
, T−1StotT =

[
S1 S1M−MS2 − E−1

r,1Br,1L2
0 S2

]
(3.66)

The matrix T thus transforms Stot to block-diagonal structure if and only if (3.64)
holds. In order to transform (3.65), multiply it with T from the right hand side, which
leads to LtotT=[L1,L2+L1M] and which completes the proof.

Lemma 3.15 shows how the tangential directions that are encoded in L2, and which are
applied to the input B⊥,1, trace back to the original input B, namely by L2+L1M. This
shows that the proper choice of tangential directions in the CURE framework might not
be transparent. The situation, however, changes if either there is a single-input, m=1,
or only block-input rational Krylov subspaces are employed. Then the interpolation is
irrespective of the choice of the Li and every eigenvalue si of Stot becomes a blocking
zero in the error: Gf,tot(si)=0. There is a final remark in order, concerning the CURE
framework.

Remark 3.16. An important property of CURE is that the individual reduction steps
are decoupled: we can choose the interpolation points freely, as this choice is neither
depending on previous steps, nor does it affect the subsequent ones; and even more,
once an expansion point is incorporated in the accumulated quantities, the interpolation
property will not be destroyed (if no singularities occur). Furthermore, it follows from
the structure of Er,tot and Ar,tot, that also the reduced eigenvalues of the individual
reduction steps are accumulated in the total reduced model. In addition, for the recur-
sive construction of the accumulated quantities, there is no need to individually access
the quantities of previous steps; it is instead sufficient to use only the accumulated
quantities so far (index “tot”), cf. (3.49) and (3.57). It is therefore indeed justified to
call CURE a cumulative framework, as all previous data is kept, while new one can be
added independently. Finally, it should be noted that the additional numerical effort
of CURE is negligible: the recursive factorization only requires the computation of Li

and B⊥,i, which are easy to calculate, cf. Chapter 2.

CURE was first published in [149], where it is denoted as “iterative model order
reduction”. Therein, X⊥,i(s) was investigated in every step, in order to adaptively
select interpolation points. This idea is elaborated by Panzer in his thesis [148], where
also the notation “CURE” is introduced. It is interesting to note that a quite similar
approach was presented by Ahmad et. al. [3], however, only in the context of solving
large-scale Sylvester and Lyapunov equations. Also related to CURE is the work of
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Lefteriu and Antoulas [125], who introduced the idea of recursive interpolation in the
Loewner framework.
All in all, CURE is a framework that allows to recursively accumulate a reduced

model, or equivalently, an approximation of a large-scale Lyapunov equation. Thereby,
the reduced order can be adaptively chosen. This is probably the main improvement
that CURE contributes: recursively perform independent reduction steps, until at some
point the desired accuracy is reached. Even more, this functionality is independent from
the degrees of freedom in Krylov-based projection methods, which are the selection of
interpolation points and tangential directions, and also the choice of the projection
matrices Wi. To conclude, the CURE framework preserves all the flexibility that is
available in Krylov-based projection methods.
It remains to determine interpolation points, tangential directions, and the projection

matrix W that induce a good approximation. The following chapter addresses the
latter by introducing the concept of H2 pseudo-optimality. And as it will turn out, this
concept perfectly suits into the CURE framework, as it will assure nice properties.



4 Analysis of H2
Pseudo-Optimality

pseudo-: false, not genuine, fake

(wiktionary.org)

The statement “something is optimal” is not absolute; instead, it certainly relates to
some measure. Consequently, in the context of model order reduction one first of all
has to suitably quantify the error with respect to which optimality is desired. To this
end, there are various adequate ways, all of which result in well-defined system norms;
see e. g. [8] for a nice overview. A common system norm is the H∞ norm, as it is an
induced norm, which provides a concrete interpretation: the maximum amplification
possible. Measuring the error in the H∞ norm hence provides valuable information,
and what is more, having a reduced model that minimizes the error in the H∞ norm
indeed might be the ultimate solution in many practical applications of MOR. A severe
drawback of the H∞ norm, however, is that it is hard to handle, both analytically and
numerically, and especially in a large-scale setting.
This is the main reason, why in this thesis the error is quantified in the H2 norm, as

it is not only numerically accessible even in a large-scale setting, but also “analytically
convenient” [161]. This allows to derive convenient necessary conditions for optimality,
which also led to an algorithmic implementation in the famous IRKA algorithm [92].
One drawback of theH2 norm is that interpretation is not as simple as for theH∞ norm:
it is “the expected root-mean-square (rms) value of the output when the input is a unit
variance white noise process” [219]. Another drawback is that an H2 optimal reduced
model might simply not be one’s desire; one may think of many practical applications
where an H∞ optimal reduced model would instead be the benchmark solution. In
addition, the H2 norm is induced either in the single-input or single-output case, but
not in general, cf. [8, p. 144] and [46]. Nevertheless, an H2 optimal reduced model
typically also yields small error in the H∞ norm, and it certainly is better to achieve
at least H2 optimality than none.
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The aim of this chapter is twofold. On the one hand, H2 optimal MOR is reviewed.
On the other hand, the concept of H2 pseudo-optimality is comprehensively described,
and it is discussed how the state-of-the-art in H2 optimal MOR may be improved by
exploiting H2 pseudo-optimality. To this end, Section 4.1 reviews the H2 inner product
and norm, and discusses different ways for their computation. There are convenient
necessary conditions for H2 optimality, which can be stated in different forms. This is
reviewed in Section 4.2, together with an iterative algorithm that, upon convergence,
yields locally optimal reduced models. Section 4.3 presents the main result of this
work: the concept of H2 pseudo-optimality is introduced; various equivalent necessary
and sufficient conditions for H2 pseudo-optimality are defined; and a numerically effi-
cient algorithm for the direct computation of an H2 pseudo-optimal reduced models is
stated. Finally, the results are discussed and possible applications are suggested. The
contributions of this chapter were partly published in preliminary form in [208].

4.1 The Hilbert Space H2

Let H(p,m)
2 denote the set of all asymptotically stable systems, which have m inputs and

p outputs and a strictly proper transfer function. We will very much make use of the
notation H(p,m)

2 in the following, however, in order to improve readability, we will drop
“(p,m)” hereafter and use only H2 instead. This should not lead to confusion, because
all models are generally assumed to have m inputs and p outputs, whereas deviations
should become clear from the context.

4.1.1 H2 Inner Product

Now define the H2 inner product (which will induce a respective norm) as follows.

Definition 4.1 ([21]). LetG(s) andH(s) beH2 functions, then theirH2 inner product
is defined as

〈G,H〉H2
= 1

2π

∫ ∞
−∞

trace [G∗(ıω)H(ıω)] dω (4.1)

=
∫ ∞

0
trace [G∗(t)H(t)] dt, (4.2)

where the second equation is a consequence of Parseval’s theorem.

With this inner product, the set H2 becomes a Hilbert space, cf. [24]. There is a
convenient way to compute the H2 inner product based on large-scale (sparse-sparse)
Sylvester equations, which is presented in the next lemma.
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Lemma 4.1. Let G(s)=C (sE−A)−1 B and H(s)=CH (sEH−AH)−1 BH be H2 func-
tions, then the H2 inner product is given by

〈G,H〉H2
= trace (B∗YBH) = trace (CXC∗H) , (4.3)

where X and Y satisfy

AXE∗H + EXA∗H + BB∗H = 0, (4.4)

A∗YEH + E∗YAH + C∗CH = 0. (4.5)

Proof. Define

Y = E−∗
∫ ∞

0

(
eA∗E−∗tC∗CHeE−1

H AHt
)

dt E−1
H , (4.6)

then

A∗YEH + E∗YAH =
∫ ∞

0

(
A∗E−∗eA∗E−∗tC∗CHeE−1

H AHt+

+ eA∗E−∗tC∗CHeE−1
H AHtE−1

H AH
)

dt (4.7)

=
[
eA∗E−∗tC∗CHeE−1

H AHt
]∞

0
= 0−C∗CH, (4.8)

which proves that Y satisfies (4.5). From the time-domain formulation of the H2 inner
product (4.2) it follows that

〈G,H〉H2
= trace

[
B∗E−∗

∫ ∞
0

(
eA∗E−∗tC∗CHeE−1

H AHt
)

dt E−1
H BH

]
, (4.9)

which proves 〈G,H〉H2
=trace(B∗YBH). By using trace[G∗(t)H(t)]=trace[H(t)G∗(t)],

the proof of 〈G,H〉H2
=trace(CXC∗H) can be derived analogously to the above one.

An alternative way to compute the H2 inner product is based on the pole-residue
representation of G(s). For the ease of presentation, assume for the moment that
E−1A is diagonalizable, then the pole-residue representation is defined as follows.

Definition 4.2. Let A = diag[λ1I1, . . . , λkIk], B = [B∗1, . . . ,B∗k]∗ and C = [C1, . . . ,Ck],
with Bi∈Cmi×m and Ci∈Cp×mi and where Ii is the mi×mi identity matrix. Then

G(s) =
k∑
i=1

CiBi

s− λi
, (4.10)

is called the pole-residue representation of G(s) = C (sI−A)−1 B; the Bi and Ci are
called input and output residues (residue directions), respectively.
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Remark 4.2. It should be noted that the pole-residue representation is not unique.
Consider e. g. non-singular Ti∈Cmi×mi and define the transformed residues B̃i=TiBi

and C̃i = CiT−1
i , then obviously, G(s) =∑k

i=1
CiBi

s−λi
=∑k

i=1
C̃iB̃i

s−λi
. The row span of Bi

and the column span of Ci, however, is invariant under this transformation. Then the
subspace spanned by the columns of B∗i and Ci is unique, and it is indeed judicious to
also call Bi and Ci residue directions.

With the above definition, we may formulate the H2 inner product based on poles
and residues as follows.

Lemma 4.3. Let G(s) and H(s) be H2 functions, and assume that H(s) is given in
pole-residue representation: H(s)=∑k

i=1
CiBi

s−λi
. Then the H2 inner product is given by

〈G,H〉H2
=

k∑
i=1

trace
[
C∗iG(−λi)B∗i

]∗
. (4.11)

Proof. An admissible state-space realization of H(s) is given in Definition 4.2 together
with EH = I identity. Now consider (4.5) and divide Y = [Y1, . . . ,Yk] into the blocks
Y1 ∈ CN×mi . It then follows due to the block-diagonal structure of AH that (this is
actually the direct application of (2.4))

Yi = − (A∗ + λiE∗)−1 C∗Ci. (4.12)

Now using Lemma 4.1 to compute the H2 inner product yields

〈G,H〉H2
= trace

[
−B∗

k∑
i=1

(A∗+λiE∗)−1 C∗CiBi

]
= trace

[
k∑
i=1
G∗(−λi)CiBi

]
(4.13)

=
k∑
i=1

trace
[
BiG

∗(−λi)Ci

]
, (4.14)

then transposition with complex conjugation completes the proof.

Remark 4.4. It should be noted, that if G(s) admits a state-space realization with
real matrices then obviously, G(s) =G(s). It then directly follows, that the H2 inner
product could also be formulated as 〈G,H〉H2

= ∑k
i=1 trace

[
CT
i G(−λi)BT

i

]
. If both

models G(s) and H(s) admit a real valued realization in state-space, then it follows
from Lemma 4.1 that the H2 inner product is also real valued, and it could be for-
mulated as 〈G,H〉H2

= ∑k
i=1 trace

[
C∗iG(−λi)B∗i

]
. As it will be easier to state the

subsequent results if these assumptions are avoided, we, however, still use the slightly
more inconvenient formulation in (4.11).
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We will also make use of the next lemma, which introduces a slight modification of
the above one, and which appears to be new.

Lemma 4.5. Let G(s) and H(s) be H2 functions, and assume that H(s) is given in
pole-residue representation: H(s)=∑k

i=1
CiBi

s−λi
. LetH ′(s) denote the derivative ofH(s)

with respect to s, then

〈G,H ′〉H2
=

k∑
i=1

trace
[
C∗iG′(−λi)B∗i

]∗
. (4.15)

Proof. We first of all seek for an appropriate state-space realization of H ′(s). To this
end, define EH′=I and

AH′=


Ã1

. . .
Ãk

 , BH′=


B̃1
...

B̃k

 , CH′=
[

C̃1 . . . C̃k

]
, (4.16)

where

Ãi=
[
λiI I
0 λiI

]
, B̃i=

[ 0
Bi

]
, C̃i=[ −Ci 0 ] . (4.17)

This defines the desired state-space realization by H ′(s)=CH′ (sEH′−AH′)−1 BH′ , be-
cause of

CH′ (sEH′ −AH′)−1 BH′ =
k∑
i=1

C̃i

[ (s− λi)I −I
0 (s− λi)I

]−1
B̃i (4.18)

=
k∑
i=1

1
(s− λi)2 C̃i

[ (s− λi)I I
0 (s− λi)I

]
B̃i (4.19)

=
k∑
i=1

−CiBi

(s− λi)2 = H ′(s). (4.20)

Now consider (4.5) and divide Y=[Ỹ1, . . . , Ỹk] into the blocks Ỹi=[Yi,1 Yi,2], because
then it holds for each block that

A∗
[

Yi,1 Yi,2

]
+ E∗

[
Yi,1 Yi,2

]  λiI I
0 λiI

 = C∗
[

Ci 0
]
, (4.21)

and hence,

Yi,1 = (A∗ + λiE∗)−1 C∗Ci, (4.22)

Yi,2 = − (A∗ + λiE∗)−1 E∗ (A∗ + λiE∗)−1 C∗Ci. (4.23)

Now we use Lemma 4.1 to compute the H2 inner product by
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〈G,H ′〉H2
= trace (B∗YBH′) =

k∑
i=1

trace
(
B∗ỸiB̃i

)
=

k∑
i=1

trace (B∗Yi,2Bi) (4.24)

=
k∑
i=1

trace
[
−B∗ (A∗ + λiE∗)−1 E∗ (A∗ + λiE∗)−1 C∗CiBi

]
(4.25)

=
k∑
i=1

trace
[
B∗iC∗iG′(−λi)

]∗
, (4.26)

from which the statement can be concluded.

It is interesting to note that the derivative with respect to s “jumps” in Lemma 4.5
from one model to the other. This result also induces the next statement.

Corollary 4.6. Let G(s) and H(s) be H2 functions, and assume that H(s) is given
in pole-residue representation, H(s)=∑k

i=1
CiBi

s−λi
, then

〈G,H ′〉H2
= 〈G′,H〉H2

. (4.27)

Proof. Consider Lemma 4.3 and replace G(s) by G′(s), then obviously 〈G′,H〉H2
=∑k

i=1 trace
[
C∗iG′(−λi)B∗i

]∗
, which equals 〈G,H ′〉H2

due to Lemma 4.5.

The formula for the H2 inner product based on poles and residues, as in Lemma 4.3,
requires that at least one of the systems can be transformed to diagonal form. If this is
not the case, Lemma 4.3 can be generalized, which however requires quite cumbersome
notation. For the sake of a concise presentation, we only present the case of m̃ Jordan
blocks of equal dimensions to one eigenvalue λ in the following. The most general case
can then be deduced from combining this result with Lemma 4.3.

Lemma 4.7. Let G(s) and H(s) be H2 functions, and assume 1 ≤ m̃ ≤m and that
H(s) is given by H(s)=CH (sI−AH)−1 BH, with

AH =


λI
−I . . .

. . . . . .
−I λI

 , BH =

 B1
...

Bk

 , CH = [ C1 . . . Ck ] , (4.28)

and where I denotes the m̃×m̃ identity matrix and Bi∈ Cm̃×m and Ci ∈Cp×m̃. Then
the H2 inner product is given by
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〈G,H〉H2
=

k∑
i=1

k∑
j=i

trace
[
C∗jG(j−i)(−λ)B∗i

]∗ 1
(j − i)! (4.29)

=
k∑
i=1

k∑
j=i

trace
[
C∗jM−λ

(j−i)B
∗
i

]∗
, (4.30)

where G(j−i)(s) denotes the (j−i)th derivative of G(s) with respect to s, and where the
moments M−λ

(j−i) are defined in Section 1.6.2.

Proof. Consider (4.5) and divide Y =[Y1, . . . ,Yk] into the blocks Y1∈CN×m̃. It then
follows that

Yi =
k∑
j=i
−
[
(A∗ + λE∗)−1 E∗

](j−i)
(A∗ + λE∗)−1 C∗Cj. (4.31)

Using M−λ
(j−i) =−C

[(
A+λE

)−1
E
](j−i) (

A+λE
)−1

B and G(j−i)(−λ) = M−λ
(j−i)(j−i)!,

then the proof is analogous to the one of Lemma 4.3, hence omitted.

Remark 4.8. The above lemma describes the case that the state-space representation
of H(s) contains one eigenvalue λ of algebraic multiplicity m̃ k, and that there are m̃
Jordan blocks, all of dimension k. Although AH in (4.28) is not in Jordan canonical
form, it will become apparent in Section 4.3, why this unusual definition was used in
the lemma.

Using the H2 inner product, the respective H2 norm is defined as follows.

Definition 4.3. Let G(s) be an H2 function, then its H2 norm is defined as

‖G‖H2
=
√
〈G,G〉H2

=
( 1

2π

∫ ∞
−∞

trace [G∗(ıω)G(ıω)] dω
) 1

2
(4.32)

=
(∫ ∞

0
trace [G∗(t)G(t)] dt

) 1
2
. (4.33)

It is obvious by Lemmata 4.1, 4.3 and 4.7, that also the norm of a system can be
computed by its Gramian or based on its pole-residue formulation. This is stated next
for completeness.

Corollary 4.9. Let G(s) = C (sE−A)−1 B be an H2 function, then its H2 norm is
given by

‖G‖2
H2

= trace (B∗QB) = trace (CPC∗) , (4.34)

where P and Q satisfy the two dual Lyapunov equations (1.11) and (1.12). Furthermore,
if E−1A is diagonalizable, let G(s) =∑k

i=1
CiBi

s−λi
denote the pole-residue representation,
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then the H2 norm is also given by

‖G‖2
H2

=
k∑
i=1

trace
[
C∗iG(−λi)B∗i

]
. (4.35)

If otherwise G(s) admits the state-space realization given by E=I identity, and by

A =


λI
−I . . .

. . . . . .
−I λI

 , B =

 B1
...

Bk

 , C = [ C1 . . . Ck ] , (4.36)

where I denotes the m̃×m̃ identity matrix and Bi∈Cm̃×m and Ci∈Cp×m̃, then its H2

norm is given by

‖G‖2
H2

=
k∑
i=1

k∑
j=i

trace
[
C∗jG(j−i)(−λ)B∗i

] 1
(j − i)! . (4.37)

Proof. The proof is a direct consequence of Lemmata 4.1, 4.3 and 4.7, by noting that
the system norm is real valued and hence the final complex conjugation in (4.11) and
(4.29) can be omitted.

4.1.2 H2 Error in Model Order Reduction

The previous section discusses the H2 inner product on a general level, i. e. for two
anonymous models. Indeed, the H2 norm is of course used in this work to measure the
approximation error in model order reduction. In order to clarify this, the formulations
of Section 4.1.1 are now reviewed for all relevant quantities. To this end, first of all
some notation is introduced, which will be frequently used in the remainder: given the
original model G(s) = C (sE−A)−1 B and its reduction Gr(s) = Cr (sEr−Ar)−1 Br,
then X and Y are defined as the solutions of

AXE∗r + EXA∗r + BB∗r = 0, (4.38)

A∗YEr + E∗YAr + C∗Cr = 0. (4.39)

Furthermore, suppose

ArPrE∗r + ErPrA∗r + BrB∗r = 0, (4.40)

A∗rQrEr + E∗rQrAr + C∗rCr = 0, (4.41)
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then Pr and ET
r QrEr denote the Controllability and Observability Gramians, respec-

tively, of the reduced model. We are now ready to describe the H2 error in model order
reduction.

Corollary 4.10. Given the original model G(s) = C (sE−A)−1 B, assume a reduced
model Gr(s)=Cr (sEr−Ar)−1 Br that admits a state-space realization with exclusively
real matrices. Then the H2 norm ‖Ge‖H2

of the error Ge(s)=G−Gr is given by

‖Ge‖2
H2

= ‖G‖2
H2

+ ‖Gr‖2
H2
− 2 〈G,Gr〉H2

, (4.42)

where 〈G,Gr〉H2
can be computed by

〈G,Gr〉H2
= trace (B∗YBr) = trace (CXC∗r) , (4.43)

for which X and Y satisfy (4.38) and (4.39). Assume that Gr(s) admits the pole-residue
representation Gr(s)=∑k

i=1
CiBi

s−λi
, then 〈G,Gr〉H2

can also be computed by

〈G,Gr〉H2
=

k∑
i=1

trace
[
C∗iG(−λi)B∗i

]
. (4.44)

Proof. Note that 〈Gr,G〉H2
= 〈G,Gr〉∗H2

, which equals 〈G,Gr〉H2
if both G(s) and

Gr(s) admit state-space realizations with real matrices. Equation (4.42) then follows
from evaluating ‖Ge‖2

H2
= 〈G−Gr,G−Gr〉H2

and the rest is a direct application of
Lemmata 4.1 and 4.3.

Remark 4.11. It should be noted that (4.44) is a convenient representation of the H2

inner product of original and reduced model, as the original model has to be evaluated
solely at the mirror images of the reduced poles—which is often feasible even in a
large-scale setting.

Not only the definition of the H2 norm based on Gramians (4.34), but also its appli-
cation to the error model in Corollary 4.10 can be found in many textbooks, see e. g. [8].
The expression of theH2 norm based on the pole-residue formulation is due to Antoulas,
and a proof in the SISO case can be found e. g. in the book [8]. It should be noted that
the MIMO case is stated on p. 145 therein without proof, however with a small typo:
Equation (4.35) is printed with G∗, instead of the correct G, which could yield complex
values for system norms. See also [197], where an alternative formulation of this result
is presented, which is based on an element-wise access of the residual matrices Bi and
Ci. An alternative proof of the H2 inner product based on poles and residues, i. e. of
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Lemmata 4.3 and 4.7, can be found in [92], but for the SISO case only; the MIMO case
is used e. g. in [21]. By contrast, Lemma 4.5 and all the proofs given here (which are
based on explicit formulae for the solution of Sylvester equations) appear to be new.

4.2 H2 Optimal Model Order Reduction

The results of the previous section provide convenient analytical and numerical access
to the H2 norm, which paves the way to various contributions on minimizing the H2

error norm in MOR. This fact is reflected in the large literature that is available on this
subject, and which this section tries to review.

4.2.1 The Problem

For the statement of the problem, we require additional notation: let dim(Gr) denote
the McMillan degree of Gr(s), or equivalently, the order of any minimal realization of
Gr(s) in state-space; for details on this and a definition of the McMillan degree, please
refer to e. g. [222]. The general problem of H2 optimal MOR then may be defined as
follows.

Problem 4.1. Given the original model G(s) = C (sE−A)−1 B and a reduced order
n, we are searching for the H2 optimal reduced model Gr(s) with dim(Gr)=n, which
satisfies

‖G−Gr‖H2
= min

dim(Hr)=n
‖G−Hr‖H2

. (4.45)

Let J denote the approximation error measured in the H2 norm,

J = ‖G−Gr‖H2
, (4.46)

then the problem is to minimize J in the set of all asymptotically stable systems of
fixed order. This, in fact, is a non-convex optimization problem, which has “no ap-
parent explicit closed-form solution” [203]. Only recently, Problem 4.1 was tackled for
the reduced orders n = 1 in [2], and n = 2 in [1]. It however seems like the compu-
tations involved are not suitable in a large-scale setting, such that these contributions
unfortunately are merely of theoretical interest.
As the global solution of Problem 4.1 is generally not possible, one instead considers

first-order necessary conditions, which Gr(s) has to fulfil in order to minimize J . These
conditions can then be used to construct at least locally H2 optimal reduced models.
The next subsection first of all reviews different formulations of these conditions.
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4.2.2 First-Order Necessary Conditions

Assume that we have some valid parametrization of the reduced model, i. e. a set of
quantities that uniquely defines the transfer behaviour ofGr(s). Then it is obvious that
the gradient of J with respect to these parameters must vanish in the optimum—and
that this is irrespective of the kind of parametrization we had chosen. The analysis of the
vanishing gradient then leads to so-called first-order necessary conditions thatGr(s) has
to satisfy, and which accordingly may be exploited to generate optimal reduced models.
But it should be stressed that, due to the nature of gradient based optimization, one
certainly can enforce merely local optimality instead global one.
The remaining question is still how to parametrize the reduced model, for which one

possibility would be to take e. g. the poles and residues—or another one to directly use
the matrices Er, Ar, Br and Cr. The derivation of J with respect to these different
parameters thus triggers also diverse formulations of the first-order necessary conditions;
the first one, which is based on poles and residues, is presented in the next theorem.

Theorem 4.12 ([92]). Given G(s), let Gr(s) be a local minimizer of J , and suppose
that Gr(s) admits the pole-residue formulation Gr(s) = ∑n

i=1
cibi

s−λr,i
, with the residue

directions b∗i ∈Cm and ci∈Cp. Then, for i=1, . . . , n,

G(−λr,i)b∗i = Gr(−λr,i)b∗i , (4.47)

c∗iG(−λr,i) = c∗iGr(−λr,i), (4.48)

c∗iG′(−λr,i)b∗i = c∗iG′r(−λr,i)b∗i , (4.49)

where G′(s) denotes the first derivative of G(s) with respect to s.

Remark 4.13. Theorem 4.12 is valid only if E−1
r Ar is diagonalizable. If this is not the

case, the above conditions can be generalized by considering also higher derivatives of
G(s) and Gr(s). However, this would require cumbersome notation, which is omitted
for brevity; the interested reader is instead referred to [197].

The tangential directions bi and ci degenerate to scalars in the SISO case, and hence
can be omitted. This is clarified in the next corollary.

Corollary 4.14. Given the SISO model G(s), let Gr(s)=cr (sEr−Ar)−1 br be a local
minimizer of J , and suppose that E−1

r Ar can be diagonalized to diag[λ1, . . . , λn]. Then



72 4 Analysis of H2 Pseudo-Optimality

for i=1, . . . , n,

G(−λr,i) = Gr(−λr,i) (4.50)

G′(−λr,i) = G′r(−λr,i). (4.51)

Theorem 4.12 and Corollary 4.14 show that an H2 optimal reduced model has to
interpolate the original model at the mirror images of its poles with respect to the imag-
inary axis. In the MIMO case, additionally, the tangential directions for interpolation
are defined by the residue directions of the reduced model. Equations (4.47)–(4.49) and
(4.50)–(4.51) are usually referred to as “interpolatory conditions” or “Meier-Luenberger
conditions”. The interpolation property renders these conditions appealing in the con-
text of MOR by Krylov subspaces, which will be discussed in Section 4.2.3.
Owing to the duality of Krylov subspaces and Sylvester equations, it naturally follows

that there must also be a version of the first order necessary conditions that is based on
Sylvester equations. This formulation indeed arises by the derivation of J with respect
to Er, Ar, Br and Cr, and is usually denoted as the “Wilson conditions”; it is reviewed
in the following theorem.

Theorem 4.15. Given G(s) = C (sE−A)−1 B, let Gr(s) = Cr (sEr−Ar)−1 Br be a
local minimizer of J , where all matrices in both state-space realizations are assumed to
be real, then

QrErPr −YTEX = 0, (4.52)

QrBr −YTB = 0, (4.53)

CrPr −CX = 0. (4.54)

where X, Y, Pr and Qr satisfy (4.38)–(4.41).

Proof. The proof for E = I can be found in the original work of Wilson [203]. The
general case is straightforward to show, by noting that Y changes to ETYEr and that
Qr changes to ET

r QrEr.

It should be noted that one can deduce from (4.52)–(4.54) appropriate projection
matrices by V = XP−1

r and W = YQ−1
r , that would indeed yield the corresponding

reduced model, however, only if the Wilson conditions are already satisfied. These
projection matrices V and W actually span rational Krylov subspaces. To uncover this
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fact, substitute X=VPr and Y=WQr in (4.38) and (4.39), then it follows that

AV− EV
(
−PrA∗rE−∗r P−1

r

)
= −B

(
B∗rE−∗r P−1

r

)
, (4.55)

A∗W− E∗W
(
−QrArE−1

r Q−1
r

)
= −C∗

(
CrE−1

r Q−1
r

)
. (4.56)

Using Theorem 2.4, this shows that the projection matrices V and W that satisfy the
Wilson conditions in fact span rational Krylov subspaces, which guarantee interpolation
at the mirror images of the reduced poles. This indicates that the Wilson conditions
and the Meier-Luenberger conditions in Theorem 4.12 are actually equivalent.
Before going into this, a third formulation of the first-order necessary conditions

is reviewed, which is denoted as the “Hyland-Bernstein conditions”. The following
theorem, however, presents a slightly different form of the original formulation in [104],
in order to better suit the notation of this work. To the best of the author’s knowledge,
this has not been presented before.

Theorem 4.16. Given G(s) = C (sE−A)−1 B, let Gr(s) = Cr (sEr−Ar)−1 Br be a
local minimizer of J , then there exist projection matrices V, W ∈ RN×n, such that
Gr(s) is given by projection as in (1.7), and such that

AP̂ET + EP̂AT + BBT = B⊥BT
⊥, (4.57)

AT Q̂E + ET Q̂A + CTC = CT
⊥C⊥, (4.58)

where P̂=VPrVT , Q̂=WQrWT , B⊥=B−EVE−1
r Br and C⊥=C−CrE−1

r W∗E, and
where Pr and Qr are defined by (4.40) and (4.41).

Proof. The proof is derived from the main theorem in [104]. It should be noted that
the notation of P̂ and Q̂ is interchanged in [104]. Further note that Q changes to
ETQE for E 6= I and hence, Q̂ changes to ET Q̂E. Consider P̂ET Q̂E =GTMΓ with
GT = V, M = PrET

r QrEr and Γ = E−1
r WTE. The eigenvalues of M are the squared

Hankel singular values of the reduced model and hence positive. Therefore, GTMΓ
is an admissible factorization required in [104] and clearly, ΓGT = I, and τ = GTΓ
defines a projector. Then I = Er, ΓE−1AGT = Ar, ΓE−1B = Br, and CGT = Cr

define the reduced model. Obviously, rank(P̂) = rank(Q̂) = rank(P̂Q̂) = n and finally,
using Proposition 2.4 from [104], the statement follows with B⊥ = E(I−τ )E−1B and
C⊥=C(I−τ ).

We have now reviewed three different formulations of necessary conditions for local
H2 optimality, so it is important to analyse their difference; i. e. is there a formulation
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that is more powerful than the other? As all of them are derived from setting some
gradients to zero, this is not the case, and in fact, they are all equivalent to each other;
this is reviewed in the next proposition.

Proposition 4.17. The first order necessary conditions of Theorem 4.12, of Theo-
rem 4.15 and of Theorem 4.16 are equivalent to each other.

Proof. The proof in the SISO case for simple poles is given in [92], the MIMO case
with multiple poles can be found in [41]. See also [188], where the discrete time case is
discussed.

Both the Wilson and the Hyland-Bernstein conditions are theoretically more con-
venient, as neither do they alter for multiple inputs, nor do they change for reduced
eigenvalues with higher orders; see also the discussion in [188]. By contrast, the Meier-
Luenberger conditions pave the way to a fixed point iteration, which is based on rational
Krylov subspaces, and which can generate locally optimal reduced models. This is re-
viewed next. Finally, it should be stressed that the conditions are of first-order type
and hence not sufficient for locally minimal error; Kammler [115] presented examples,
where the conditions are indeed satisfied also by local maxima.

4.2.3 Iterative Rational Krylov Algorithm (IRKA)

The Meier-Luenberger conditions suggest to use the mirror images of the reduced eigen-
values as shifts for rational Krylov subspaces, and then project again. Recursively ap-
plying this idea yields the fixed point iteration due to Gugercin et al. [92], which is
known as the iterative rational Krylov algorithm (IRKA). The famous IRKA algorithm
can still be regarded as state-of-the-art in H2 optimal MOR, which is not only due to
its striking simplicity. Its basic procedure is shown in Algorithm 4.1.
It should be noted that Algorithm 4.1 merely displays the basic concept of IRKA,

instead of a numerical implementation. It is e. g. left undefined, how to measure conver-
gence of IRKA in Step 8, as there are different possibilities. One would be to compute
the difference in the vector [λ1, . . . , λn] between the current and the preceding iteration
step. Then, however, the eigenvalues λi of two successive iterations have to be matched
appropriately.
We know from Lemma 1.2 that the bases of V and W are irrelevant and only the

subspaces spanned by their columns define the reduced model. Therefore, one would
usually compute real bases of V and W in Steps 3 and 4, respectively, which is always
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Algorithm 4.1 Iterative rational Krylov algorithm (IRKA)
Input: E, A, B, C and reduced order n
Output: locally H2 optimal reduced model Gr(s)=Cr (sEr−Ar)−1 Br of order n
1: Make initial choice of the set {s1, . . . , sn}, that is closed under conjugation; select

b∗i ∈Cm and ci∈Cp, that satisfy bi=bj and ci=cj if si=sj.
2: repeat
3: V=

[
(A−s1E)−1 Bb∗1, . . . , (A−snE)−1 Bb∗n

]
4: W=

[(
AT−s1ET

)−1
CTc1, . . . ,

(
AT−snET

)−1
CTcn

]
5: Er=W∗EV, Ar=W∗AV, Br=W∗B and Cr=CV
6: Compute eigenvalue decomposition E−1

r Ar=UΛU−1, with Λ=diag(λ1, . . . , λn)
7: Assign si=−λi, [b∗1, . . . ,b∗n]∗=U−1E−1

r Br and [c1, . . . , cn]=CrU
8: until converged

possible as the sets si, bi and ci are closed under conjugation. This reduces complex
arithmetic and hence improves numerical conditioning.

From Theorem 2.4 it is clear that the computation of bases of rational Krylov sub-
spaces in Steps 3 and 4 of Algorithm 4.1 is equivalent to the solution of particular
Sylvester equations. To this end, consider the Sylvester equations

AV− EV
(
−A∗rE−∗r

)
= B

(
B∗rE−∗r

)
, (4.59)

ATW− ETW
(
−E−1

r Ar

)
= CTCr, (4.60)

whose solutions span the same subspaces as V and W in Algorithm 4.1. Equa-
tions (4.59) and (4.60) thus serve as a substitute for Steps 3, 4, 6 and 7 in IRKA.
It should be stressed, that this substitution would not change the basic concept of
IRKA—it only represents a different numerical implementation. Such an approach was
denoted in [217] as two-sided iteration algorithm (TSIA), and the idea has also appeared
in [187]. Owing to its conceptual equivalence, the acronym TSIA will not be used in
the remainder. Nevertheless, using (4.59) and (4.60) instead of Steps 3, 4, 6 and 7 in
IRKA may have numerical advantages, especially if reduced eigenvalues of higher orders
occur; see e. g. the discussion in [188].

There is an important property of the IRKA algorithm: assume that IRKA has con-
verged, then the resulting reduced model is guaranteed to have locally minimal H2

error—even though IRKA is based on the first-order necessary conditions which also
local maxima satisfy. This property follows from the particular fixed point iteration of
IRKA, see e. g. [23]. Convergence of IRKA, however, cannot be guaranteed in general.
Only for certain system classes convergence of IRKA can be ensured, cf. [65]. In gen-
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eral, it may happen that IRKA does not converge, but which is not a severe problem
in practice. However, IRKA sometimes requires unacceptably many iterations for con-
vergence, which gets worse the higher the reduced order is. In such a case, the CURE
framework seems to be appropriate, by dividing the problem into smaller parts with
better convergence behaviour. This approach is denoted as “CUREd IRKA” in [148],
where also numerical examples are given.

4.2.4 Overview on H2 Optimal Model Order Reduction

The interpolatory conditions for H2 optimality were originally derived in the context
of network synthesis by Aigrain and Williams [5], and then rediscovered in the control
literature by Meier and Luenberger [137]. Since then, H2 optimal approximation was
addressed by many researchers. Miller [140] formulated the Aigrain-Williams conditions
also for sampled data, whereas Riggs and Edgar [161] stated the Meier-Luenberger
conditions corresponding to local optimality in a finite time interval of the impulse
response. They were able to also treat multiple inputs, but only single outputs. Maybe
the first reference of the interpolatory conditions in the MIMO case was by Krajewski
et al. [119], who presented a block version. Maybe the most famous work on that
topic is due to Gugercin et al. [92] who not only introduced the IRKA algorithm, but
also presented a new proof of the Meier-Luenberger conditions based on structured
optimality. The proof in the MIMO case can be found in the work of Van Dooren et al.
[187], whereas the generalization to multiple poles was presented by Vossen et al. [197]
and Van Dooren et al. [188]. An IRKA-like algorithm that minimizes the H2,α norm of
the error, where α ∈R is an additional stability margin, can be found in the work of
Vossen [196].
Wilson [203] derived his version of the optimality conditions from setting to zero

the gradient of J with respect to Ar, Br and Cr. Hirzinger and Kreisselmeier [101]
computed these gradients also for different input functions, such as a unit step or the
impulse response of a linear shaping filter. Wilson and Mishra [205] generalized the
conditions to inputs of the form u(t)= tk

k! . A more recent proof of the Wilson conditions
was presented by Van Dooren et al. [187].
Hyland and Bernstein [104] showed the equivalence of their version of the necessary

optimality conditions to the Wilson conditions. The equivalence of all three formula-
tions was proven by Gugercin et al. [92] in the SISO case, and in the most general case
by Bunse-Gerstner et al. [41] and Van Dooren et al. [188].
The idea of an IRKA-like fixed point iteration was independently introduced by
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Lepschy et al. [126] and Lucas [130, 131] for SISO systems. A block-MIMO version
was suggested by Krajewski et al. [120], which then was slightly modified by Ferrante
et al. [64] in order to improve convergence properties—but with higher numerical ef-
fort. All of these references, however, are based on data of the transfer function G(s)
(i. e. poles, residues and characteristic polynomials), which is not desirable in a large-
scale setting. The “breakthrough” for large-scale systems was due to Gugercin et al.
[92] who formulated the idea of a fixed point iteration in a state-space setting using
projections onto Krylov subspaces. Van Dooren et al. [188] discussed the occurrence
of higher-order poles, which would in fact lead to a slight modification of the IRKA
algorithm. A discrete version of IRKA, the MIMO Iterative Rational Interpolation Al-
gorithm (MIRIAm), was introduced by Bunse-Gerstner et al. [42]. Although IRKA
might not converge in general, Flagg et al. [65] proved that IRKA is guaranteed to lo-
cally converge at least for “state-space-symmetric systems”. To overcome convergence
problems, Krajewski and Viaro [121] suggested a modification of IRKA with guaran-
teed convergence. If the original IRKA, however, converges—which is not known a
priori—the proposed modification seems to lead to a higher number of iterations for
convergence. The modified IRKA of Krajewski and Viaro therefore appears to be a
reasonable choice, only if IRKA does not converge in the first place. A quite simi-
lar modification of IRKA was suggested by Wolf et al. [208], which is based on the
conditions for H2 pseudo-optimality in Section 4.3.3, but without rigorous convergence
analysis. Various derivatives of the IRKA algorithm are available from different authors:
Gugercin [89] suggested an iterative SVD-rational Krylov based model reduction method
(ISRK) that, on the one hand, guarantees stability preservation, but on the other hand,
requires a Gramian; in a similar way, Gugercin et al. [94] showed how IRKA can pre-
serve a port-Hamiltonian structure in the reduced model; a frequency weighted version
of IRKA was presented by Anic et al. [7]; Poussot-Vassal and Vuillemin [157] combined
IRKA with the preservation of some user-defined eigenvalues, which can be desirable
in the aeronautic field; an IRKA-like algorithm based on measurements in the Loewner
framework is due to Beattie and Gugercin [24], and finally, an extension to time-varying
discrete-time systems over finite horizons was suggested by Melchior et al. [138], which,
however, is not yet applicable for large-scale models.

Instead of recursively mirroring the reduced eigenvalues in the IRKA algorithm, it is
also possible to employ gradients and Hessians for optimization. Bryson and Carrier [40]
proposed a Newton-Raphson algorithm, which is based on data of the transfer function
G(s), but, as already mentioned above, this is not applicable in a large-scale setting.
This also seems to be the case for the optimization on a Stiefel manifold suggested by
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Yan and Lam [219]. Xu and Zeng [216] transformed this idea into an optimization on a
Grassmann Manifold (and thereby facilitating the computation of the gradient), which
was enhanced by Zeng [220] with oblique projections. However, it remains unclear
if these approaches are suitable for large-scale problems. Beattie and Gugercin [22]
proposed a Newton algorithm which they later generalized for MIMO models and in
addition, which they also equipped with a trust region algorithm, cf. [21]. Panzer et al.
[149] then addressed numerical drawbacks of this approach by employing the concept of
H2 pseudo-optimality and the CURE framework, all of which was improved by Panzer
in his thesis [148].
A gradient-based approach has some advantages over the IRKA algorithm. Probably

the main drawbacks of IRKA are that, on the one hand, it might not converge, and
that, on the other hand, the whole algorithm must be restarted with a higher reduced
order n, if the approximation was not sufficient in the first place. By contrast, the cu-
mulative approach in [148, 149] can not only guarantee convergence, but also adaptively
choose the reduced order—without the need of entirely restarting the algorithm. An
important ingredient in this approach is the concept of “H2 pseudo-optimality”. The
proper definition and detailed analysis of this concept now follows and it is the main
result of this thesis.

4.3 H2 Pseudo-Optimality

The basic idea behind H2 pseudo-optimality is to divide the set of reduced models with
fixed order into disjoint subsets. The respective global minimizer in any of these subsets
will be marked with the prefix “pseudo”. As any locally H2 optimal reduced model
necessarily is also the H2 pseudo-optimal reduced model in its respective subset, the
concept of H2 pseudo-optimality may be exploited for optimization. This is discussed
in the end of this section. First of all, the notation “pseudo” is defined.

Definition 4.4. Given a subset G ⊂H2 of reduced models with fixed order n. Then
the reduced model Gr(s) that satisfies

‖G−Gr‖H2
= min

Hr∈G
‖G−Hr‖H2

(4.61)

is called “H2 pseudo-optimal” (with respect to G).

It should be stressed, that the H2 pseudo-optimal reduced model is the global mini-
mizer of the H2 error norm in its respective subset G, and that basically no assumptions
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are made on the subset G. It is therefore possible to let an H2 pseudo-optimal reduced
model be an arbitrarily bad approximation of G(s), by just selecting an arbitrary bad
subset G. The resulting H2 pseudo-optimal reduced model would then indeed be far
from local H2 optimality. This is the reason, why alternative labels, like e. g. “subopti-
mality” would be inappropriate as notation, and “pseudo-optimality” is chosen instead.

4.3.1 The Problem

The nature of H2 pseudo-optimality is illustrated in Figure 4.1. The grey square on the
left-hand side represents the set of all reduced models of fixed order n. After slicing the
square into infinitesimal strips, we get disjoint subsets G. In each of theses subsets we
can identify a unique minimizer of the H2 error norm: the H2 pseudo-optimal reduced
model, denoted as “×”. Following the trace of H2 pseudo-optimal reduced models in
adjoining subsets G, we will eventually come across a locally H2 optimal reduced model,
denoted as “⊗”. Due to non-linearity, there may be several local minima, and the best
of them is the global minimum, which is denoted as “⊗©”.

©

× : H2 pseudo-optimum
⊗ : local H2 optimum
⊗ : global H2 optimum
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Figure 4.1: Illustration of H2 pseudo-optimality.

The objective now is to translate Figure 4.1 into a mathematical language. To this
end, we first of all have to suitably define the subsets G. For SISO models, fixing the
reduced eigenvalues and varying only the residues is a proper choice; this is reviewed
in the next lemma.

Lemma 4.18 ([137]). Let G(L) be the set of all SISO models with fixed eigenvalues
L={λ1, . . . λn}, where λi 6= λj, for i 6= j, and Re(λi)<0, i= 1, . . . n. Then Gr(s) is
the H2 pseudo-optimal reduced model, i. e. it satisfies

‖G−Gr‖H2
= min

Hr∈G(L)
‖G−Hr‖H2

, (4.62)
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if and only if

G(−λi) = Gr(−λi), i = 1, . . . n. (4.63)

Lemma 4.18 is sometimes referred to as Gaier’s result [74, Theorem 3, p. 86], but
it seems like this finding was already known to Walsh [201, Theorem 1, p. 224] in the
1920’s. Since then, many researches made use ofH2 pseudo-optimal reduced models (see
the discussion in Section 4.3.9), which were often denoted as the “least-squares solution”.
We do not use this term here, in order to avoid confusion with the independent least-
squares model reduction by Gugercin and Antoulas [91]. The available literature on
H2 pseudo-optimality provides various numerical methods to compute the H2 pseudo-
optimal reduced model for a given set G(L), but all of which directly construct the
reduced model, i. e. without determining a connecting projection to the original model.
The knowledge of the corresponding V that spans a suitable Krylov subspace is however
essential in the CURE framework. This is the reason, why the available literature is
not applicable in the CURE framework, and why the discussion here is required.
The results that are next presented are the following: first of all, the necessary and suf-

ficient interpolatory condition for SISO H2 pseudo-optimality, as shown in Lemma 4.18,
is generalized to multiple inputs and outputs. In order to make the result available in
the CURE framework, H2 pseudo-optimality is subsequently embedded in a projec-
tive framework using rational Krylov subspaces. In addition, a numerically efficient
algorithm is proposed to compute an H2 pseudo-optimal reduced model that results
from projection. Finally, various new conditions for H2 pseudo-optimality are pre-
sented, which are proven to be equivalent to each other, and which also include coun-
terparts of the Meier-Luenberger, Wilson, and Hyland-Bernstein conditions. These
easy-to-evaluate conditions can then be either used a priori, for the construction of
H2 pseudo-optimal reduced models, or a posteriori, to analyse (the distance to) H2

pseudo-optimality. Preliminary versions of these results are published in [208, 213].
The benefits and possible applications of H2 pseudo-optimality are finally discussed in
Section 4.3.8.

4.3.2 Interpolatory Conditions for H2 Pseudo-Optimality

The necessary and sufficient interpolatory condition for H2 pseudo-optimality in the
MIMO case is presented in the next theorem; the statement is almost identical to the
result of Beattie and Gugercin [24], but it introduces a new and shorter proof, which
in turn is inspired by the work of Gugercin et al. [92] for the SISO case.
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Theorem 4.19. Given a fixed set LB={(λ1,B1), . . . , (λk,Bk)} of pairs (λi,Bi), where
λi with λi 6= λj, i 6= j, and Re(λi) < 0, i = 1, . . . k, denote eigenvalues, and where
Bi∈Cmi×m with 1≤mi≤m, i=1, . . . k, denote input residues, define the set G(LB) of
all reduced models having the pairs (λi,Bi) of poles and input residues as follows:

G(LB) =
{
Hr(s)

∣∣∣∣∣ ∃ Ci ∈ Cp×mi : Hr(s) =
k∑
i=1

CiBi

s− λi

}
. (4.64)

Then Gr(s) is the unique H2 pseudo-optimal reduced model, i. e. it satisfies

‖G−Gr‖H2
= min

Hr∈G(LB)
‖G−Hr‖H2

, (4.65)

if and only if

G(−λi)B∗i = Gr(−λi)B∗i , i = 1, . . . k. (4.66)

Proof. It can be readily verified, that the sum of two models from G(LB) stays in G(LB).
Therefore, G(LB) is a closed subspace of H2, which essentially is the key to the proof
of the statement, because we then may apply the Hilbert projection theorem: it states
that Gr(s) is the unique minimizer of the H2 error norm in the subspace G(LB), if and
only if

〈G−Gr,Hr〉H2
= 0, (4.67)

for all Hr(s)∈G(LB). Obviously, Hr(s) has the pole residue representation Hr(s) =∑k
i=1

CiBi

s−λi
, where the λi’s and Bi’s are fixed and the Ci’s are arbitrary. Using this and

Lemma 4.3 for the H2 inner product in (4.67), results in

k∑
i=1

trace
[
C∗i

(
G(−λi)−Gr(−λi)

)
B∗i
]∗

= 0. (4.68)

As (4.68) has to hold for any Ci, this is equivalent to (4.66).

It is obvious, that there exists also a dual version of the above theorem.

Theorem 4.20. Given a fixed set LC={(λ1,C1), . . . , (λk,Ck)} of pairs (λi,Ci), where
λi with λi 6= λj, i 6= j, and Re(λi) < 0, i = 1, . . . k, denote eigenvalues, and where
Ci∈Cp×mi with 1≤mi≤p, i=1, . . . k, denote output residues, define the set G(LC) of
all reduced models having the pairs (λi,Ci) of poles and output residues as follows:

G(LC) =
{
Hr(s)

∣∣∣∣∣ ∃ Bi ∈ Cmi×m : Hr(s) =
k∑
i=1

CiBi

s− λi

}
. (4.69)
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Then Gr(s) is the unique H2 pseudo-optimal reduced model, i. e. it satisfies

‖G−Gr‖H2
= min

Hr∈G(LC)
‖G−Hr‖H2

, (4.70)

if and only if

C∗iG(−λi) = C∗iGr(−λi), i = 1, . . . k. (4.71)

Proof. The proof is dual to the one of Theorem 4.19, hence omitted.

To distinguish both cases of pseudo-optimality, we will denote a reduced modelGr(s),
that satisfies Theorem 4.19 as “input H2 pseudo-optimal”, and a reduced model that
satisfies Theorem 4.20 as “output H2 pseudo-optimal”.

Remark 4.21. It should be noted that both subsets G(LB) and G(LC) are not uniquely
defined by the input residues Bi and output residues Ci, respectively. Introduce e. g.
non-singular transformation matrices Ti ∈ Cmi×mi , and define the set G(LB̃), with
LB̃ = {(λ1, B̃1), . . . , (λk, B̃k)}, and where B̃i = TiBi. Then it readily follows that
G(LB̃) = G(LB), as the Ti’s may be shifted into the Ci’s, see also Remark 4.2. As a
consequence, the subset G(LB) and the condition for H2 pseudo-optimality (4.66) is
determined only by the row span of the Bi’s.

Both Theorems 4.19 and 4.20 can be generalized to reduced models that contain poles
of higher multiplicities. As the most general case would require cumbersome notation,
we only consider the case of one eigenvalue, from which then the most general case can
be deduced. This is introduced in the next theorem, which appears to be new.

Theorem 4.22. Given a fixed eigenvalue λ, with Re(λ)< 0, and a fixed set of input
residues B={B1, . . . Bk}, where Bi∈Cm̃×m and 1≤m̃≤m, define

AH =


λI
−I . . .

. . . . . .
−I λI

 , BH =

 B1
...

Bk

 , (4.72)

where I denotes the m̃×m̃ identity matrix. Further define the set G(λ,B) of all reduced
models having one eigenvalue λ with m̃ Jordan blocks of dimensions k and with the
input residues B as follows:

G(λ,B) =
{
Hr(s)

∣∣∣ ∃ CH ∈ Cp×km̃ : Hr(s) = CH (sI−AH)−1 BH
}
. (4.73)
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Then Gr(s) is the unique H2 pseudo-optimal reduced model, i. e. it satisfies

‖G−Gr‖H2
= min

Hr∈G(λ,B)
‖G−Hr‖H2

, (4.74)

if and only if (
M−λ

0 − M̂−λ
0

)
B∗1 = 0 (4.75)(

M−λ
0 − M̂−λ

0

)
B∗2 +

(
M−λ

1 − M̂−λ
1

)
B∗1 = 0 (4.76)

...
k−1∑
i=0

(
M−λ

i − M̂−λ
i

)
B∗k−i = 0 (4.77)

Proof. It can be readily verified, that also G(λ,B) is a closed subspace of H2, and
hence, we may again apply the Hilbert projection theorem, which states that Gr(s) is
the unique minimizer of the H2 error norm in the subspace G(λ,B), if and only if

〈G−Gr,Hr〉H2
= 0, (4.78)

for all Hr(s) ∈ G(λ,B). Now subdivide CH into the blocks CH = [C1, . . . ,Ck] with
Ci∈Cp×m̃, and use Lemma 4.7 for the H2 inner product, then (4.78) reads as

k∑
i=1

k∑
j=i

trace
[
C∗j

(
M−λ

(j−i) − M̂−λ
(j−i)

)
B∗i
]∗

= 0. (4.79)

As (4.79) has to hold for arbitrary Ci this is equivalent to (4.75)–(4.77), which completes
the proof.

Remark 4.23. There would of course also be a dual version of Theorem 4.22 for output
H2 pseudo-optimality. However, the statement should be obvious with Theorem 4.20,
hence it is omitted for brevity.

It should be noted, that Theorem 4.19 generalizes three results that are available
in the literature: the SISO case as stated in Lemma 4.18 follows from the fact that
scalar “tangential directions” can be cancelled in (4.66). This statement is in fact more
general, as it also applies to single inputs and multiple outputs. The MIMO case with
single tangential directions, i. e. mi = 1, i= 1, . . . , k, was already presented in [24] and
is directly included in Theorem 4.19. If block Krylov subspaces are employed, then
mi =m, i= 1, . . . , k, and the conditions for H2 pseudo-optimality simplify. This has
been published in [213] and is clarified in the following.
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Corollary 4.24. Given a fixed set LB={(λ1,B1), . . . , (λk,Bk)} of pairs (λi,Bi), where
λi with λi 6= λj, i 6= j, and Re(λi) < 0, i = 1, . . . k, denote eigenvalues, and where
Bi ∈ Cm×m, i= 1, . . . k, denote input residues, and are assumed non-singular, define
the set G(LB) of all reduced models having the pairs (λi,Bi) of poles and input residues
as follows:

G(LB) =
{
Hr(s)

∣∣∣∣∣ ∃ Ci ∈ Cp×m : Hr(s) =
k∑
i=1

CiBi

s− λi

}
. (4.80)

Then Gr(s) is the unique H2 pseudo-optimal reduced model, i. e. it satisfies

‖G−Gr‖H2
= min

Hr∈G(LB)
‖G−Hr‖H2

, (4.81)

if and only if

G(−λi) = Gr(−λi), i = 1, . . . k. (4.82)

Proof. The proof follows from Theorem 4.19 and by noting that non-singular Bi can
be cancelled in (4.66).

We have now discussed all possible cases for input H2 pseudo-optimality: SISO mod-
els, MIMO models—both in terms of tangential interpolation and matching complete
block moments—, and also higher order poles. In this respect, if we just say that a
reduced model is “input H2 pseudo-optimal”, we actually mean that it is the input H2

pseudo-optimal reduced model in its respective subset, which then could be G(L) by
Lemma 4.18, G(LB)—either by Theorem 4.19 or by Corollary 4.24—, or also G(λ,B)
by Theorem 4.22. Before we proceed, an important remark on H2 pseudo-optimality is
in order, which applies to all mentioned cases.

Remark 4.25. It should be stressed that an important property of H2 pseudo-optimality
is that once the poles and the input residues (or equivalently the output residues) are
fixed, the above conditions become necessary and sufficient for H2 optimality. It is
therefore reasonable to employ H2 pseudo-optimality for optimizing reduced models;
this is discussed in Section 4.3.8.

The necessary and sufficient conditions for H2 pseudo-optimality are in the form of
interpolatory Meier-Luenberger conditions. The next section presents equivalent con-
ditions that include also counterparts of the Wilson and Hyland-Bernstein conditions.

4.3.3 New and Equivalent Conditions for H2 Pseudo-Optimality

The next two theorems provide new and elegant conditions for H2 pseudo-optimality
in the context of projective MOR based on rational Krylov subspaces. These condition
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are “almost” (this will be well defined in Theorem 4.27) necessary and sufficient for
H2 pseudo-optimality and they are in the form of easy-to-evaluate matrix equations.
They thus serve as a valuable tool not only for the a priori construction but also for the
a posteriori analysis of H2 pseudo-optimality, and additionally, they make it possible
for the first time, to use H2 pseudo-optimality in a large-scale setting in the CURE
framework. In this respect, these conditions are the most important result of this
thesis. A preliminary version in the SISO case was published in [208].

Theorem 4.26. Given G(s) and a V whose columns form a basis of a rational input
Krylov subspace, define the reduced model Gr(s) = Cr (sEr−Ar)−1 Br by projection as
in (1.7). This particularly means that Gr(s) is contained in the family GF(s) from
Section 2.5, and that V, S, L, X, and Pr are defined by the equations (2.15), (4.38),
and (4.40), and that P̂=VPrV∗, and B⊥=B−EVE−1

r Br. Furthermore, let E∗rQfEr

be the Observability Gramian of the system Gf (s), i. e. Qf satisfies

A∗rQfEr + E∗rQfAr + L∗L = 0. (4.83)

Assume that both Br and B⊥ have full column rank and that Pr, the solution of (4.40),
exists and is unique. Then, the following statements are equivalent:

i) S = −PrA∗rE−∗r P−1
r

ii) E−1
r Br + PrL∗ = 0

iii) SPr + PrS∗ −PrL∗LPr = 0
iv) X = VPr

v) AP̂ET + EP̂AT + BBT = B⊥B∗⊥
vi) P−1

r = E∗rQfEr

vii) Gf (s) is all-pass, i. e. it satisfies Gf (s)G∗f (−s) = I

Additionally, the statement

viii) S∗ and −E−1
r Ar share the same Jordan canonical form

is necessary for statements i)–vii) and sufficient only if the columns of V form a basis
of either a single-input or a block-input Krylov subspace.

Proof. The proof can be found in Appendix A.

It should be highlighted that Theorem 4.26 does not assume stability of the reduced
model. The next result connects the above conditions to H2 pseudo-optimality.
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Theorem 4.27. Let the conditions of Theorem 4.26 be satisfied, and assume that all
interpolation points si of the Krylov subspace that is spanned by the columns of V are
contained in the open right half of the complex plane, then

i) Gr(s) is input H2 pseudo-optimal.
ii) The gradient of J=‖G−Gr‖2

H2
with respect to Cr vanishes.

Conversely, let the reduced model Gr(s) be input H2 pseudo-optimal, then there exists
a V whose columns form a basis of a rational input Krylov subspace, such that Gr(s)
is contained in the family GF(s), and for which the conditions of Theorem 4.26 are
satisfied.

Proof. The proof can be found in Appendix B.

Remark 4.28. The above theorem shows that the conditions of Theorem 4.26 are suf-
ficient for H2 pseudo-optimality, if the expansion points si are contained in the open
right half of the complex plane. Conversely, they are not necessary, because the very
same reduced model may be constructed through projections with different Krylov sub-
spaces. As a consequence, there might even exist more than one H2 pseudo-optimal
reduced model in the family GF(s). Nevertheless, if the reduced model is H2 pseudo-
optimal, at least there always exists a Krylov projection that satisfies the conditions
of Theorem 4.26. This is the reason, why the conditions can be exploited to derive
an algorithm for the direct construction of (in fact, all possible) H2 pseudo-optimal
reduced models; this is done in the Section 4.3.4.

Remark 4.29. There is a concrete interpretation of condition vii) of Theorem 4.26 in
the SISO case: H2 pseudo-optimality requires that the interpolation points si and the
reduced poles are mirror images of each other. Gf (s) obviously has the same poles
as the reduced model and due to Lemma 3.3, its transmission zeros are exactly the
interpolation points si. In the H2 pseudo-optimal case, Gf (s) hence takes the form
Gf (s)= (s−s1)···(s−sn)

(s+s1)···(s+sn) , which depicts that Gf (s) is all-pass.

Remark 4.30. We may assume that we choose the shifts in the open right half of the
complex plane, then, unlike the interpolatory (kind of Meier-Luenberger) conditions of
Section 4.3.2, the conditions of Theorem 4.26 are only sufficient but not necessary forH2

pseudo-optimality. Nevertheless, a kind of Wilson condition, iv), and a kind of Hyland-
Bernstein condition, v), for H2 pseudo-optimality are included. The advantage of con-
ditions i)–viii) is that neither do they alter for higher order poles nor do they change
for multiple inputs, all of which is the case for the interpolatory (Meier-Luenberger)
conditions. This is similar to the necessary conditions for local H2 optimality, which
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was already discussed by Van Dooren et al. [188], who also showed that the generality
of the Wilson conditions may have numerical advantages.

It is obvious that there exist also dual versions of the above two theorems which
provide easy-to-evaluate conditions for output H2 pseudo-optimality; this is presented
next for completeness.

Theorem 4.31. Given G(s) and a W whose columns form a basis of a rational output
Krylov subspace, define the reduced model Gr(s) = Cr (sEr−Ar)−1 Br by projection as
in (1.7). This particularly means that there exist dual SW and LW such that

ATW− ETWS∗W = CTL∗W, (4.84)

ATW− ETWE−∗r A∗r = C∗⊥L∗W, (4.85)

with C⊥=C−CrE−1
r W∗E. Let Y and Qr be given by the equations (4.39) and (4.41),

and define Q̂=WQrW∗, and the Controllability Gramian Pf of the feed-through model
Gf,W(s)=Cr (sEr−Ar)−1 LW + I, i. e. Pf satisfies

ArPfE∗r + ErPfA∗r + LWL∗W = 0. (4.86)

Assume that both Cr and C⊥ have full row rank and that Qr, the solution of (4.41),
exists and is unique. Then, the following statements are equivalent:

i) S∗W = −QrArE−1
r Q−1

r

ii) E−∗r C∗r + QrLW = 0
iii) S∗WQr + QrSW −QrLWL∗WQr = 0
iv) Y = WQr

v) AT Q̂E + ET Q̂A + CTC = C∗⊥C⊥
vi) Q−1

r = ErPfE∗r
vii) Gf,W(s) is all-pass, i. e. it satisfies Gf,W(s)G∗f,W(−s) = I

Additionally, the statement

viii) S∗W and −E−1
r Ar share the same Jordan canonical form

is necessary for statements i)–viii) and sufficient only if the columns of W form a basis
of either a single-output or a block-output Krylov subspace.
Moreover, assume that the above conditions i)–vii) are satisfied, and that all interpo-
lation points si of the Krylov subspace that is spanned by the columns of W—i. e. the
eigenvalues of SW—are contained in the open right half of the complex plane, then
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i) Gr(s) is output H2 pseudo-optimal.
ii) The gradient of J=‖G−Gr‖2

H2
with respect to Br vanishes.

Conversely, let the reduced model Gr(s) be output H2 pseudo-optimal, then there exists
a W whose columns form a basis of a rational output Krylov subspace, such that Gr(s)
is contained in the dual family to GF(s), and for which the above conditions i)–viii) are
satisfied.

Proof. The proof follows from duality and is hence omitted.

As we have defined both conditions for input and output H2 pseudo-optimality, we
are now ready to relate them to the first order necessary conditions for H2 optimality.

Lemma 4.32. If both conditions for input and output H2 pseudo-optimality from The-
orems 4.26 and 4.31 are satisfied, then the first order necessary conditions for H2 op-
timality from Theorems 4.12, 4.15 and 4.16 are satisfied.

Proof. The proof readily follows from the equivalence of conditions v) from Theo-
rems 4.26 and 4.31 to the Hyland-Bernstein conditions in (4.57), (4.58).

If MOR is based on projections onto rational Krylov subspaces, the equivalent con-
ditions of both Theorems 4.26 and 4.31 are a valuable tool for the a posteriori analysis
of a given reduced model. This has considerable advantages over the necessary and
sufficient interpolatory conditions of Section 4.3.2: the evaluation of the interpolatory
conditions requires large-scale operations, because moments of the original model have
to be computed; the conditions of Theorems 4.26 and 4.31 may be instead evaluated
with small-scale operations only, e. g. by condition ii), because the nature of rational
Krylov subspaces is exploited. Another application of Theorems 4.26 and 4.31 is the
direct construction of H2 pseudo-optimal model reduced models, which is discussed in
the next section.

4.3.4 H2 Pseudo-Optimal Rational Krylov (PORK) Algorithm

Assume that a sequence of interpolation points si with respective tangential directions
Li is given. As discussed in Section 2.3, then it is possible to compute a triple (V,S,L),
such that the B-Sylvester equation (2.15) is satisfied, where the columns of V form a
basis of the rational input Krylov subspace, and where the interpolation points si are the
eigenvalues of S, and where the tangential directions Li are incorporated in L. Given
such a triple (V,S,L) that satisfies the B-Sylvester equation (2.15), the exploitation
of condition iii) of Theorem 4.26, and subsequently of condition ii), and of equation



4.3 H2 Pseudo-Optimality 89

(2.42), is sufficient for the construction of an input H2 pseudo-optimal reduced model.
(The sufficiency is in fact proven in the end of Appendix B.) The basic procedure is
depicted in Algorithm 4.2—denoted as the pseudo-optimal rational Krylov (PORK)
algorithm—which has been published for the SISO case in [208].

Algorithm 4.2 Pseudo-optimal rational Krylov (PORK)
Input: V, S, L, C, such that AV−EVS=BL is satisfied (see Section 2.3)
Output: input H2 pseudo-optimal reduced model Gr(s)=Cr (sEr−Ar)−1 Br

1: P−1
r = lyap(S∗,−L∗L) // direct solver for S∗P−1

r +P−1
r S−L∗L=0, condition iii)

2: Br=− (P−1
r )−1 L∗ // condition ii)

3: Ar=S+BrL, Er=I, Cr=CV

It should be noted that PORK requires any V that spans an input rational Krylov
subspace, together with corresponding S and L. (An admissible triple (V,S,L) may
be computed by a modified Arnoldi algorithm; for details please refer to Section 2.3.)
This is already the main numerical effort to achieve the H2 pseudo-optimal reduced
model, because it then remains in PORK to solve a Lyapunov equation and an LSE—
but both of reduced order n. It should be stressed, that these remaining steps may
be conducted irrespectively of the type of Krylov subspaces, namely single-, block- or
tangential-input. This allows for a convenient implementation of PORK, as there is
no need to distinguish the different cases. The reason for this is that the shifts si,
the tangential directions Li, and even more, higher multiplicities of si and Li, are all
encoded in the Jordan canonical form of the pair (L,S), such that one does not have
to bother with these details any more.
Another interesting aspect should be highlighted, which is not obvious from Algo-

rithm 4.2: as the outcome of PORK is an H2 pseudo-optimal reduced model, it satisfies
two particular properties. Firstly, the eigenvalues of S—i. e. the shifts si—will become
the mirror images of the eigenvalues of Ar—i. e. the poles of the reduced model—,
with corresponding multiplicities. Secondly, the tangential directions Li will become
the input residues B∗i of the reduced model. Although this fact is not apparent from
Algorithm 4.2, it is a consequence of Theorem 4.26. To illustrate the nature of PORK,
a simple example is presented next.

Example 4.1. Assume a single-input, m = 1, and that we have an expansion point
s0∈R, at which we want to match the first two moments. Define As0 =(A−s0E), then
an admissible triple (V,S,L) is given by

V =
[

A−1
s0 b A−1

s0 EA−1
s0 b

]
, S =

[
s0 1
0 s0

]
, l = [ 1 0 ] . (4.87)



90 4 Analysis of H2 Pseudo-Optimality

Owing to condition iii) of Theorem 4.26, we solve at Step 1 of PORK the Lyapunov
equation P−1

r S+STP−1
r −lT l=0 for

P−1
r =

 1
2s0

− 1
4s2

0
− 1

4s2
0

1
4s3

0

 , and hence, Pr = 4s0

[ 1 s0
s0 2s2

0

]
. (4.88)

The reduced matrices then follow from Steps 2 and 3 of PORK, and read as

br=
[ −4s0
−4s2

0

]
, Ar=

[ −3s0 1
−4s2

0 s0

]
, Er=I, Cr=

[
CA−1

s0 b CA−1
s0 EA−1

s0 b
]
. (4.89)

Then Gr(s) = Cr (sEr−Ar)−1 br satisfies G(s0) =Gr(s0) and G′(s0) =G′r(s0), where
G′(s) denotes the derivative with respect to s. Moreover, Ar has one eigenvalue −s0,
with algebraic multiplicity 2 and geometric multiplicity 1. It is noteworthy, that Er,
Ar and br are all independent from the original model.

The dual output PORK algorithm shall also be presented for completeness. The
prerequisite is that the columns of W form a basis of a rational output Krylov subspace
(may be single-output, block-output or tangential-output), and corresponding SW and
LW, such that ATW−ETWS∗W =CTL∗W is satisfied, have to be given. Then the output
pseudo-optimal rational Krylov (O-PORK) algorithm, that computes the output H2

pseudo-optimal reduced model, is presented in Algorithm 4.3.

Algorithm 4.3 Output pseudo-optimal rational Krylov (O-PORK)
Input: W, SW, LW, B, such that ATW−ETWS∗W =CTL∗W is satisfied
Output: output H2 pseudo-optimal reduced model Gr(s)=Cr (sEr−Ar)−1 Br

1: Q−1
r = lyap(SW,−LWL∗W) // condition iii) of Theorem 4.31

2: Cr=−L∗W (Q−1
r )−1 // condition ii) of Theorem 4.31

3: Ar=SW+LWCr, Er=I, Br=W∗B

The kind of optimality, which the outcome of both PORK and O-PORK algorithms
fulfil, might require some clarification. To this end, let a V be given whose columns form
a basis of a rational input Krylov subspace, then PORK as in Algorithm 4.2 directly
constructs a reduced model that is H2 pseudo-optimal. Bearing in mind the family
GF(s) from Section 2.5, this means that PORK automatically picks an H2 pseudo-
optimal reduced model out of the family GF(s). However, it should be highlighted
that there is no guarantee, that the outcome of PORK minimizes the H2 error in the
family GF(s); it is rather like there always exists (at least) one H2 pseudo-optimal
reduced model—with respect to the subset G(LB)—in the family GF(s), and which
PORK automatically picks. PORK may thus be interpreted as a deliberate choice of
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the direction of projection, represented by the matrix W (which has been the remaining
degree of freedom after fixing V). Please note that PORK does not explicitly build up
an appropriate matrix W, it is instead implicitly determined by the outcome of PORK.
If desired, it would be possible to subsequently construct a suitable W that goes with
the reduced model; this, however, seems to be needless, as no circumstance is known
to the author, where the explicit knowledge of W is beneficial.
By contrast, the explicit knowledge of V is essential because it is required in the

CURE framework. To be precise, the factorization of the error model discussed in
Section 3.1 is feasible only if V is known. This fact justifies the need for the PORK
algorithm, because most existing ways to compute H2 pseudo-optimal reduced models
rely on the direct construction of Gr(s), and hence, the connection to the Krylov sub-
space V would be lost. Another possibility to compute an H2 pseudo-optimal reduced
model—at least in the SISO case—is the pole-placement approach due to Antoulas [9].
Although this way could preserve the connection to V, it would require additional
large-scale operations, which can be avoided in PORK: once that V is computed, all
remaining steps in PORK are n-dimensional operations. The advantage of PORK over
other approaches to compute H2 pseudo-optimal reduced models was also discussed in
[208], to which the interested reader is referred to for further details.

4.3.5 Orthogonality in H2 Optimal Reduction

Another interesting point to study is orthogonality in H2 optimal MOR, which is pre-
sented in the next lemma.

Lemma 4.33. If the reduced model Gr(s) is input or output H2 pseudo-optimal, then

〈G−Gr,Gr〉H2
= 0. (4.90)

Moreover, if the reduced model Gr(s) is locally H2 optimal, then additionally

〈G−Gr,G
′
r〉H2

= 0, (4.91)

where G′r(s) denotes the derivative of Gr(s) with respect to s.

Proof. We prove only the case that Gr(s) is input H2 pseudo-optimal, as the proof
for output H2 pseudo-optimality directly follows from duality. Use Lemmata 4.3 and
4.7 for the H2 inner product (4.90), then the first result follows from the necessary
and sufficient conditions of Theorems 4.19 and 4.22. Use Lemma 4.5 for the H2 inner
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product (4.91), then the second result follows from the necessary conditions for local
H2 optimality stated in Theorem 4.12. To prove (4.91) in case of higher multiplicities
of the reduced poles would require cumbersome notation and is omitted for brevity.

Lemma 4.33 presents the geometric interpretation that the error is orthogonal to
the reduced model in the H2 pseudo-optimal case and, additionally, orthogonal to the
derivative of the reduced model in the local H2 optimal case. A similar statement in
terms of the error factorization from Section 3.1 is presented in the next lemma.

Lemma 4.34. If the reduced model Gr(s) is input H2 pseudo-optimal and satisfies the
conditions of Theorem 4.26, then

〈G⊥Gf ,Gr〉H2
= 0. (4.92)

‖G−Gr‖H2
= ‖G⊥‖H2

. (4.93)

Moreover, if the reduced model Gr(s) is locally H2 optimal, then additionally

〈G⊥,Gr〉H2
= 0. (4.94)

Proof. As G⊥(s)Gf (s) = G(s)−Gr(s), the proof of (4.92) is already contained in
Lemma 4.33. To prove (4.93), consider ‖Ge‖2

H2
= 1

2π
∫∞
−∞ trace [G∗e(ıω)Ge(ıω)] dω. Sub-

stitutingGe(s)=G⊥(s)Gf (s), and usingGf (s)G∗f (−s)=I (and hence,Gf (ıω)G∗f (ıω)=
I), due to Theorem 4.26, the proof can be concluded. It is left to prove (4.94): G⊥(s)
shares E, A and C with G(s), and we can use Lemma 4.1 to compute the H2 inner
product: 〈G⊥,Gr〉H2

=B∗⊥YBr. Owing to Theorem 4.26, the reduced model is a pro-
jection onto a rational input Krylov subspace, and due to Wilson’s necessary conditions
for local H2 optimality, there exists a W such that Y=WQr. By definition, W⊥B⊥,
which completes the proof.

The orthogonality of the error and reduced model has an important consequence,
which is presented in the next theorem. It presents one of the main advantages of H2

pseudo-optimal reductions, which is the basis for the optimization procedures discussed
in [148].

Theorem 4.35. If the reduced model Gr(s) is input or output H2 pseudo-optimal, then

‖G−Gr‖2
H2

= ‖G‖2
H2
− ‖Gr‖2

H2
, (4.95)

and consequently, ‖G‖H2
≥‖Gr‖H2

.
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Proof. Due to Lemma 4.33, 〈G−Gr,Gr〉H2
= 0, which is equivalent to 〈G,Gr〉H2

=
〈Gr,Gr〉H2

= ‖Gr‖2
H2

. Using this in (4.42), ‖Ge‖2
H2

= ‖G‖2
H2

+‖Gr‖2
H2
−2 〈G,Gr〉H2

,
proves (4.95), which also yields ‖G‖2

H2
=‖Gr‖2

H2
+‖Ge‖2

H2
≥‖Gr‖2

H2
.

Theorem 4.35 shows that theH2 norm of the reduced model cannot be larger than the
H2 norm of the original model—if the reduced model is H2 pseudo-optimal. Equation
(4.95) also has a nice interpretation, as it depicts some kind of Pythagorean equation,
which might be illustrated by Thales’ theorem like in Figure 4.2.

G(s)

Gr(s) Ge(s)

Figure 4.2: Original, H2 pseudo-optimal reduced, and corresponding error model.

The figure clearly shows that ‖Gr‖H2
cannot grow larger than ‖G‖H2

, and that a
larger ‖Gr‖H2

forces the error, i. e. ‖Ge‖H2
, to decrease. This is a crucial consequence, as

it may be exploited for optimization: instead of minimizing the H2 norm of the error—
which is usually not accessible in a large-scale setting—one can equivalently maximize
the H2 norm of the reduced model, as long as one reduces H2 pseudo-optimally (e. g.
through PORK). The justification for this statement is that an H2 pseudo-optimal
reduced model will always rest on the semi-circle drawn in Figure 4.2, and hence,
maximizing the H2 norm of the reduced model forces the H2 norm of the error to
decrease. This paradigm shift in the optimization procedure may be depicted as follows:

min ‖G−Gr‖H2

H2 pseudo-optimality=⇒ max ‖Gr‖H2
. (4.96)

This is one of the ideas behind the trust region optimization algorithm denoted as
stability-preserving, adaptive rational Krylov (SPARK), which was introduced by Panzer
et al. [149], and then improved by Panzer in his thesis [148]. The approach also makes
use of the CURE framework, and as will be discussed in Section 4.3.7, Theorem 4.35 is
the reason, whyH2 pseudo-optimality is particularly beneficial in the CURE framework.
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4.3.6 Nested Inner IRKA Loop for Multivariable Systems

Generally, the convergence of IRKA slows down with higher numbers of inputs and
outputs. This can be improved by exploiting H2 pseudo-optimality in the MIMO case;
which is discussed in this section, and which does not apply to SISO models.
To identify the difference between SISO and MIMO, assume for the moment a SISO

model, because then H2 pseudo-optimality is defined as the global minimizer in the
subset G(L) as in Lemma 4.18. That means, that a set of reduced eigenvalues L =
{λ1, . . . λn} uniquely defines the respective subset. By contrast, in the MIMO case
the reduced model may not only be input H2 pseudo-optimal, but also output H2

pseudo-optimal. That means, that the reduced model is the global minimizer in the
subset G(LB) as in Theorem 4.19, or in the subset G(LC) as in Theorem 4.20, where to
each reduced eigenvalue either an input residue direction or an output residue direction
is associated. Consequently, any SISO reduced model is contained in only one subset
G(L), whereas any MIMO reduced model is contained in two intersecting subsets G(LB)
and G(LC). In order to clarify all possible cases that might occur with MIMO models,
please consider Table 4.1.

Table 4.1: Possible cases of H2 pseudo-optimality for multivariable models
input H2 pseudo-optimal output H2 pseudo-optimal locally H2 optimal

Case 1: X — —
Case 2: — X —
Case 3: X X —
Case 4: X X X

Cases 1 and 2 are obvious, as they describe either input or output H2 pseudo-
optimality; Case 4 is also clear, as local H2 optimality requires both input and out-
put H2 pseudo-optimality; the interesting one is Case 3: a reduced model may be
both input and output H2 pseudo-optimal, without being locally H2 optimal. Owing
to Theorems 4.26 and 4.31 this means that both gradients of J , with respect to Br

and Cr vanish—but not the gradient of J with respect to Ar. If one thinks of the
Meier-Luenberger condition for local H2 optimality as in Theorem 4.12, this means
that G(−λr,i)b∗i =Gr(−λr,i)b∗i , cf. (4.47), and c∗iG(−λr,i)=c∗iGr(−λr,i), cf. (4.48), are
satisfied, but not c∗iG′(−λr,i)b∗i =c∗iG′r(−λr,i)b∗i , cf. (4.49).
Owing to the existence of simultaneous input and output H2 pseudo-optimality, Fig-

ure 4.1 does in fact not reflect all aspects of H2 pseudo-optimality in the MIMO case.
This is generalized in Figure 4.3: it is illustrated that in the MIMO case there are
two distinct ways to divide the set of all reduced models of fixed order. Either way,
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the global minimizer in the subsets are input (I) H2 pseudo-optimal, denoted as “×”,
or output (O) H2 pseudo-optimal, denoted as “+”. If two subsets G(LB) and G(LC)
overlap at an H2 pseudo-optimum, the reduced model is both input and output (I/O)
H2 pseudo-optimal, denoted as “×+”. Then every locally H2 optimal reduced model, de-
noted as “⊗⊕”, necessarily is both input and output H2 pseudo-optimal, and the global
optimum is denoted as “©⊗⊗+”. Figure 4.3 of course oversimplifies H2 pseudo-optimality
in the MIMO case, but it still reflects its basic nature.

···
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× : I H2 pseudo-optimum

⊗ : local H2 optimum
⊗ : global H2 optimum
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Figure 4.3: Illustration of H2 pseudo-optimality in the MIMO case.

The occurrence of reduced models that are simultaneously input and output H2

pseudo-optimal may be exploited in IRKA. The original statement of IRKA, as in
Algorithm 4.1, depicts a single loop, in which all data—i. e. interpolation points, input
and output tangential directions—is updated at the same time. The idea now is to
establish two nested loops: an inner loop in which the reduced eigenvalues are fixed,
and which only corrects the tangential directions, and an outer loop, which performs
an update of the interpolation points. The basic idea was proposed by Beattie and
Gugercin [24].
The principle of the inner loop then is to alternate between input and output H2

pseudo-optimal reduced models for a given set of reduced eigenvalues, until at some
point the residues converge to a set for which the reduced model is simultaneously
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input and output H2 pseudo-optimal. The task in the inner loop thus is to find the
H2 pseudo-optimal output (input) residue directions for given poles and input (output)
residue directions. This may basically be solved by the PORK and O-PORK algorithms.
However, it will be beneficial in this setting to slightly modify these algorithms, which
is discussed next.
Assume that an admissible triple (V,S,L) is given and that the input H2 pseudo-

optimal reduced model has been computed by PORK as in Algorithm 4.2. Then in-
troduce the state transformation z = −P−1

r x, such that the reduced model reads as
Gr(s)=−CrPr (sI−P−1

r ArPr)−1 (−P−1
r Br). Owing to Step 2 of PORK, Br=−PrL∗,

then the input of the state-transformed (i. e. in z co-ordinates) model becomes L∗.
Furthermore, the dynamic matrix becomes

P−1
r ArPr

Step 3= P−1
r SPr − L∗LPr (4.97)

Step 1= −S∗P−1
r Pr + L∗LPr − L∗LPr = −S∗, (4.98)

and hence, the reduced model Gr(s) has the state-space realization

ż(t) = −S∗z(t) + L∗u(t),

y(t) = −CVPrz(t).
(4.99)

To summarise these findings: let S be diagonal with mirrored eigenvalues −λi on the
diagonal, and L=[b∗1, . . . ,b∗n] with input residue directions as columns, then it follows
from (4.99), that the output residue directions for input H2 pseudo-optimality are
given by the columns of −CVPr = [c1, . . . , cn]. In a dual way, if SW = S is given as
above, together with output residue directions L∗W =[c1, . . . , cn], then the input residue
directions for output H2 pseudo-optimality are the rows of −QrW∗B = [b∗1, . . . ,b∗n]∗,
and the reduced model reads as

ż(t) = −S∗Wz(t)−QrW∗Bu(t),

y(t) = L∗Wz(t).
(4.100)

Both reduced models (4.99) and (4.100) are the basis of the inner loop of IRKA we
are about to derive. The benefit is that we may choose S=SW, such that it is possible
to alternate between (4.99) and (4.100), in order to compute H2 pseudo-optimal output
residue directions by (4.99) on the one hand, and on the other hand H2 pseudo-optimal
input residue directions by (4.100).
The basic procedure of the modified IRKA algorithm with inner and outer loop
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Algorithm 4.4 IRKA with inner loop for residue correction
Input: E, A, B, C and reduced order n
Output: locally H2 optimal reduced model Gr(s)=Cr (sEr−Ar)−1 Br of order n
1: Make initial choice of the set {s1, . . . , sn}, that is closed under conjugation; select

b∗i ∈Cm and ci∈Cp, that satisfy bi=bj and ci=cj if si=sj.
2: V=

[
(A−s1E)−1 Bb∗1, . . . , (A−snE)−1 Bb∗n

]
3: W=

[(
AT−s1ET

)−1
CTc1, . . . ,

(
AT−snET

)−1
CTcn

]
4: Er=W∗EV, Ar=W∗AV, Br=W∗B and Cr=CV
5: repeat
6: Compute eigenvalue decomposition E−1

r Ar=UΛU−1, with Λ=diag(λ1, . . . , λn)
7: Assign si=−λi, [b∗1, . . . ,b∗n]∗=U−1E−1

r Br and [c1, . . . , cn]=CrU
8: S=diag(s1, . . . , sn)
9: for 1 to n do

10: Vi=(A−siE)−1 B, Wi=
(
AT−siET

)−1
CT

11: end for
12: repeat
13: for 1 to n do
14: bi= bi

‖bi‖2
15: end for
16: V=[V1b∗1, . . . , Vnb∗n], L=[b∗1, . . . , b∗n],
17: P−1

r = lyap(S∗,−L∗L)
18: [c1, . . . , cn]=−CV (P−1

r )−1

19: for 1 to n do
20: ci= ci

‖ci‖2
21: end for
22: W=[W1c1, . . . , Wncn], L∗W =[c1, . . . , cn],
23: Q−1

r = lyap(S,−LWL∗W)
24: [b∗1, . . . ,b∗n]∗=− (Q−1

r )−1 W∗B
25: until converged
26: Er=W∗EV, Ar=W∗AV, Br=W∗B and Cr=CV
27: until converged

is shown in Algorithm 4.4. It should be highlighted, that the reduced model only
depends on the directions of the input and output residues, and hence, we are allowed to
normalize them in Steps 14 and 20 of the algorithm for a better numerical conditioning.
The main numerical effort in Algorithm 4.4 remains the computation of the Krylov
blocks in Step 10, whereas the inner loop, described by Steps 12–25, is based on mainly
small-scale operations. The motivation for Algorithm 4.4 is as follows: although a single
iteration of the outer loop requires higher numerical effort compared to one iteration
of standard IRKA as in Algorithm 4.1, one hopes that Algorithm 4.4 requires less
iterations of the outer loop for convergence, due to the optimized residue directions in
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the inner loop. Then it may happen, that the total effort for convergence is decreased by
the modified IRKA in Algorithm 4.4. Finally, it should be stressed, that Algorithm 4.4
only describes the principle course of action, and it is not intended for direct numerical
implementation; one would e. g. use real bases of V and W for complex conjugated
interpolation points and tangential directions.
Wilson [204] was probably the first one, who proposed the mentioned inner loop,

to optimize residue directions of MIMO models for given reduced eigenvalues. His
algorithm, however, was not yet applicable in a large-scale setting. Only recently,
Beattie and Gugercin [24] reinvented the idea. Although their inner loop is stated
in the context of the Loewner framework, it is directly applicable to original models
in state-space representations of the form (1.1). The algorithm in [24], however, uses
Cauchy matrices, which may be “poorly conditioned”. In this respect, Algorithm 4.4
may be seen as the state-space counterpart of the algorithm presented in [24], which
in turn is based on transfer functions. It was also Beattie and Gugercin who named
the inner loop the “residue correction” step, and furthermore, who presented promising
numerical examples, that verified that the modified IRKA in Algorithm 4.4 can indeed
outperform a standard implementation like in Algorithm 4.1. As the approach in [24] is
conceptually equal to the one pursued here, we refrain from also presenting numerical
examples.

4.3.7 H2 Pseudo-Optimality and the Cumulative Framework

The concept of H2 pseudo-optimality is particularly beneficial in the cumulative frame-
work CURE. This is due to condition vii) of Theorem 4.26: the feed-through model
Gf (s) becomes an all-pass in the H2 pseudo-optimal case. Consider e. g. a SISO model,
then Gf (s) generates a 0dB line in the magnitude plot, and hence, all dynamics are
shifted to G⊥(s). This is essential, as then G⊥(s) may be subsequently reduced in the
next iteration of CURE, so that all dynamics of the error are available for reduction.
Instead, if Gf (s) is not all-pass, it might contain dynamics that are important for the
reduced model. But since the reduced model is the cumulated reduction of the G⊥,i(s),
it proves hard to generate these dynamics of Gf (s) in the reduced model in subsequent
iterations of CURE.
It is therefore reasonable to reduce H2 pseudo-optimally in each iteration of CURE.

But in order to guarantee H2 pseudo-optimality in each iteration, we yet still have to
prove that the cumulated reduced model stays H2 pseudo-optimal, if each individually
reduced models have been H2 pseudo-optimal. This is clarified in the next lemma.
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Lemma 4.36. Let all variables be as defined in Corollary 3.9, and assume that the
columns of each Vi form the basis of recursively computed rational input Krylov sub-
spaces, i. e. each Vi satisfies (3.55). Further assume that each reduced model Gr,i(s)
is input H2 pseudo-optimal, such that the conditions of Theorem 4.26 hold. Then the
accumulated reduced model Gr,tot(s) is also input H2 pseudo-optimal, and the conditions
of Theorem 4.26 also hold for the accumulated data.

Proof. The proof is done by induction. The case i = 1 is trivial, as Gr,1(s) is input
H2 pseudo-optimal due to the assumptions made. Then assume that the total reduced
model Gr,tot(s) at step i−1 is input H2 pseudo-optimal and that the conditions of
Theorem 4.26 hold for the cumulated data. It follows from Lemma 5.9 that Pr,tot can
be recursively computed by

Pr,tot ←
[ Pr,tot P12

PT
12 P22

]
(4.101)

where P12 and P22 are obtained from (5.29) and (5.30). Due to condition ii) of Theo-
rem 4.26, we can substitute Er,totPr,totL∗tot =−Br,tot in (5.29), which yields

Ar,totP12E∗r,i + Er,totP12A∗r,i = 0. (4.102)

As both the total reduced model and the reduced model at the subsequent step i are
assumed H2 pseudo-optimal, they are asymptotically stable and hence, the solution
P12 of the above Sylvester equation exists and is unique, and we can identify P12 =0.
Substituting this in (5.30) directly yields P22 = Pr,i. Then we have the following
recursive formula for Pr,tot, if each reduced model in CURE is input H2 pseudo-optimal:

Pr,tot ←
[

Pr,tot 0
0 Pr,i

]
. (4.103)

It then can be readily verified with equations (4.103), (3.49) and (3.50) that condition
ii) of Theorem 4.26 is satisfied also for the cumulated reduced model after step i, and
consequently, that this model is input H2 pseudo-optimal due to Theorem 4.27.

We are now ready to state the probably most important benefit of H2 pseudo-optimal
MOR in the CURE framework; this was also proven by Panzer in his thesis [148].

Theorem 4.37. Let all variables be as defined in Corollary 3.9, and assume that the
columns of each Vi form the basis of recursively computed rational input Krylov sub-
spaces, i. e. each Vi satisfies (3.55). Further assume that each reduced model Gr,i(s)
is input H2 pseudo-optimal, such that the conditions of Theorem 4.26 hold. Then, the
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H2 norm of the error, ‖G−Gr,tot‖H2
, decreases monotonically with each iteration of

CURE. Moreover, if ‖Gr,i‖H2
6= 0, ∀i, then the H2 norm of the error decreases strictly

monotonically in each iteration of CURE.

Proof. Due to Lemma 4.36, the total reduced model Gr,tot(s) stays H2 pseudo-optimal,
if each each reduced model Gr,i(s) already is. Then it follows from Theorem 4.35, that
‖Gr,tot‖H2

≤‖G‖H2
. It is therefore left to show, that ‖Gr,tot‖H2

cannot decrease in each
iteration of CURE, because this would ensure that the error monotonically decreases.
To this end, consider Cr,tot = C [V1, . . . ,Vk], which can be recursively formulated as
Cr,tot ← [Cr,tot, Cr,i]. Together with the recursive definition of Pr,tot in (4.103), and
the computation of ‖Gr,tot‖H2

by (4.34), i. e. ‖Gr,tot‖2
H2

= trace
(
Cr,totPr,totC∗r,tot

)
, the

statement can be concluded.

Remark 4.38. It should be noted that the statement of Theorem 4.37 is irrespective
of the choice of interpolation points si. That means that, if the reduced model is
computed by PORK in each iteration of CURE, theH2 error is guaranteed to decrease—
no matter which interpolation points si and tangential directions Li are plugged into
PORK (to be precise: in fact poles and transmission zeros of the original model have to
be excluded, which can be avoided in practical applications). In conclusion, although
CURE combined with PORK does not at all ensure that one “does the right thing”—as
this heavily depends of the choice of si and Li—, one at least “cannot do wrong” within
this framework.

4.3.8 Discussion of H2 Pseudo-Optimality

To recap the findings thus far, if the original model is large-scale, then the projection
onto rational Krylov subspaces is one of the major tools for MOR. Instead of directly
generating the reduced model in a single projection step, the recursive error factorization
discussed in Chapter 3 permits any desired number of individual, decoupled reduction
steps and, furthermore, provides easy-to-implement recursive formulae to gather these
reduced models in an accumulated one. The idea of this framework, denoted as CURE,
may be illustrated as “salami slicing” or “divide and conquer”, and its mathematical
description reads as:

G(s) = Gr,tot(s) +G⊥,i(s)Gf,tot(s) (4.104)

Subsequently, it was shown that it is advisable to reduce H2 pseudo-optimally in each
iteration (which also includes local H2 optimal reduction). This has several benefits:
on the one hand, Gf,tot(s) becomes all-pass, and due to (4.93), the remaining dynamics
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of the error stay in G⊥,i(s)—which in turn may be reduced in a successive iteration of
CURE. On the other hand, an H2 pseudo-optimal reduction in each iteration ensures
that the error measured in the H2 norm decreases. It is notable that H2 pseudo-optimal
reductions in CURE (with non-trivial reduced models) guarantee strictly monotonically
decreasing error without making any assumption on the choice of interpolation points.
This whole framework is available for general MIMO models, and the only large-scale
operation is the calculation of bases of Krylov subspaces, and therefore, it can be
considered numerically efficient.

In this respect, CURE combined with PORK solves many problems in large-scale
model order reduction: stability of the reduced model is guaranteed, a proper choice of
W is made, the feed-through model Gf (s) becomes all-pass, the reduced order can be
adaptively selected, and a strictly monotonically decrease in the error may be secured.
The only drawback is that the reduced model now depends twice as much on the proper
choice of interpolation points (and in the MIMO case also tangential directions), because
these also become the mirror images of the reduced poles (and the reduced input or
output residues). This fact may be illustrated as “all problems are shifted to the shifts”.
Hence, it is indispensable in H2 pseudo-optimal reduction to be sure of having properly
selected interpolation points. This issue would most appropriately be tackled with some
kind of optimization, which, however, is out of the scope of this thesis; the interested
reader is instead referred to the thesis of Panzer [148]. Nevertheless, the benefits of H2

pseudo-optimality for this optimization will be briefly pointed out in the next paragraph.

On the one hand, H2 pseudo-optimality can be exploited a posteriori: an obvious
approach would be to run IRKA in each iteration of CURE. The drawback of this
procedure is that local H2 optimality is generally not preserved in the accumulated
reduced model; only H2 pseudo-optimality is maintained. The advantage, however, is
that in combination with CURE, IRKA may be executed with arbitrary small reduced
orders. It is to say that convergence of IRKA typically is faster the smaller the reduced
order is. Furthermore, an entire restart would be required in IRKA without CURE, if
the reduced order was too small for sufficient approximation. Nevertheless, combining
IRKA with CURE, may cause unexpected trouble. This is due to the fixed point
iteration in IRKA: the algorithm requires a large number of iterations to yield an
analytically exact local minimizer of the H2 error; in practice, one always has to abort
the iteration after a certain convergence tolerance is achieved. This is even deteriorated
by numerical round-off errors. As a consequence, the outcome of IRKA can only be close
to local H2 optimality and hence, is not even H2 pseudo-optimal. This would not be
problematic if the outcome of IRKA was the final reduced model; in combination with
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CURE, however, this means that monotonic decrease of the error is strictly speaking
lost. Furthermore, Gf (s) is not all-pass, and hence, potentially important dynamics
withdraw from being available for subsequent iterations of CURE. Although these errors
might be small at first sight, by performing many iterations of CURE, they sum up
and may considerably deteriorate the quality of the total reduced model. To avoid
this, one can take the eigenvalues λi of the reduced model (and in the MIMO case also
input or output residues) after IRKA was aborted, and plug a V whose columns form
a basis of the rational Krylov subspace with their mirror images, −λi, as expansion
points into PORK. This would only marginally alter the reduced dynamics, but H2

pseudo-optimality is guaranteed, which increases robustness against the convergence
tolerance in IRKA. Gilbert confirmed in his thesis [83, p. 61] that small perturbations
on locally H2 optimal reduced models are not critical:

“Does an approximate solution of the pole optimization problem appreciably
alter approximation accuracy? For numerous practical examples the answer
is fortunately no. Pole position can be changed rather drastically in cer-
tain directions with little effect on system response (provided, of course, that
the approximation coefficients are always chosen for minimum error [Editor:
corresponds to H2 pseudo-optimality]). However, in some cases the tolerance
to pole position shifts may be poor or the approximate poles may be poorly
chosen. In these cases, the additional error can always be corrected by the
addition of more terms (i. e., more poles) [Editor: this would correspond to
the next iteration of CURE] in the approximating series.”

Although the CURE framework has not been available to Gilbert in the presented form,
he in fact promotes its basic idea in combination with H2 pseudo-optimality and his
statement may perhaps be translated into the framework here as follows: it is suggested
to undertake a final step of PORK, after IRKA has been aborted in each iteration of
CURE, because the advantages of this approach outweigh the drawbacks. Finally it
should be noted, that the final execution of PORK does not even increase the numerical
effort considerably, as the V, which is required in PORK, is already available from the
last iteration of IRKA.
On the other hand, H2 pseudo-optimality can also be exploited a priori: the idea is to

search for locally H2 optimal reduced models only in the subset of H2 pseudo-optimal
ones. Due to Lemma 4.33 and Thales’ theorem, this may be illustrated as the search “on
a semi-circle instead of in the whole plane”. To be precise: once we have a set of reduced
poles (and in the MIMO case also input or output residues) it is suggested to compute
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the H2 pseudo-optimal reduced model with PORK; subsequently, an optimization is
required that finds an improved set of reduced poles (and in the MIMO case also input
or output residues). This optimization could be based on gradients and maybe also
Hessians. The very idea of this approach was already suggested by Wilson [203]. His
evaluation of the gradient, however, required the knowledge of the Gramian of the
original model, which is unfavourable in large-scale settings. Various authors revisited
the idea of gradient based optimization since Wilson, which was already addressed
right before Section 4.3. However, it seems like only very recently Panzer et al. [149]
brought back H2 pseudo-optimality in a Krylov-based projection framework for large-
scale models. As this is a complex subject, we will not dig deeper into it, and refer the
interested reader to the thesis of Panzer [148], who fruitfully exploited in his approach,
CURE, PORK, and also the maximization of ‖Gr‖H2

as the optimization objective.
Apart from the just mentioned optimization, also smaller applications of H2 pseudo-

optimality are imaginable, which shall be briefly reviewed here. Any of the conditions of
Theorem 4.26 may be used as a convergence criterion in IRKA. Especially condition iii)
suggests itself by providing with ‖E−1

r Br+PrL∗‖2 a distance to a locally H2 optimal
reduced model. This idea was already presented in [208], where also an alternative
update scheme for IRKA was suggested. This modification can improve convergence of
IRKA, and furthermore, can cause IRKA to yield better local minima after restart, both
of which were verified by numerical examples. Although the suggested modification was
motivated only heuristically, maybe the work of Krajewski and Viaro [121] can give hints
for its rigorous convergence analysis.
Another application is the work of Panzer et al. [150], who introduced rigorous upper

bounds on the approximation error, for which in turn H2 pseudo-optimality is also
beneficial: two bounds—one on theH2 norm and one on theH∞ norm—were suggested,
both of which include the factor ‖Gf‖H∞ ; if the reduced model is computed by PORK,
then Gf (s) is all-pass, and hence, no additional overestimation due to ‖Gf‖H∞ is
introduced.

4.3.9 Overview on H2 Pseudo-Optimality

The basic idea of H2 pseudo-optimality is to find the optimal residues for fixed reduced
poles and was proven and used by many researchers. In the context of approximating
rational functions, the result was stated by Walsh [201] and Gaier [74]. Gilbert [83] was
probably the first one to employ the result in the context of dynamical systems. He
also presented a constructive approach to compute H2 pseudo-optimal reduced models,
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that required the solution of one LSE. Meier and Luenberger [137] already knew that
the conditions for H2 pseudo-optimality are necessary and sufficient and could also de-
rive (4.95). H2 pseudo-optimality (and local H2 optimality) in the context of signal
processing was covered by McDonough and Huggins [135]. They elaborately exploited
orthogonality and it seems appealing to investigate, if their ideas may be transferred
to the presented large-scale setting. Wilson [203] suggested a constructive way to com-
pute H2 pseudo-optimal reduced models, which relies on either the controllability or
the observability canonical form of the reduced model. Later in [204], he proposed an
iterative procedure to compute MIMO reduced models that are simultaneously input
and output H2 pseudo-optimal, similar to what was presented in Section 4.3.6. Riggs
and Edgar [161] generalized the conditions forH2 pseudo-optimality to, amongst others,
finite time intervals, time delay systems, or higher order poles. Kimura [117] observed
that in the H2 pseudo-optimal case one may equivalently maximize the H2 norm of the
reduced model, instead of minimizing the H2 norm of the error. He, however, could
not make a suggestion, how this can be exploited to optimize pole locations of the
reduced model. The computation of H2 pseudo-optimal reduced models within given
linear constraints was treated by Vilbé and Calvez [193]. This e. g. allows to find the
H2 pseudo-optimal reduced model with a prescribed steady-state gain. The numerical
implementation of this approach was improved first by Therapos [184], and then again
by Vilbé et al. [195], through avoiding matrix inversion. H2 pseudo-optimal approx-
imation was employed by Vilbé et al. [194] for suboptimal reduced poles, that result
from computing time derivatives (and integrals) of the impulse response G(t). Spanos
et al. [179] suggested an optimization algorithm that combined H2 pseudo-optimality
with a line search for the poles, which is based on gradients. Easy-to-implement con-
structive algorithms to compute H2 pseudo-optimal reduced models were proposed by
Lucas for continuous time [133] and discrete time models [132]. Gugercin [89] provedH2

pseudo-optimality of the IRKA-like ISRK algorithm, which was adapted by Gugercin
et al. [94], in order to preserve a port-Hamiltonian structure in the reduced model. The
first work to propose the necessary and sufficient interpolatory condition for MIMO,
i. e. either input or output, H2 pseudo-optimality, as in Theorems 4.19 and 4.20, was
due to Beattie and Gugercin [24]. They also suggested the inner IRKA loop, but only
in the context of the Loewner framework, which seems to be numerically ill-conditioned
in the Krylov-based projective model order reduction. For the block-case, i. e. that each
reduced eigenvalue has geometric multiplicity m, the conditions for MIMO H2 pseudo-
optimality were presented by Wolf and Panzer [213]. As already mentioned, none of
the available literature suggested a constructive way to compute H2 pseudo-optimal
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reduced models while preserving the projection onto a V, whose columns span the cor-
responding rational Krylov subspace, like it is possible with PORK. This was introduced
by Wolf et al. [208], whereas this thesis represents its comprehensive analysis.
Finally, it is to say that there are two methods to solve large-scale Lyapunov (or

Sylvester) equations, which, in fact, compute H2 pseudo-optimal approximations: the
alternating direction implicit (ADI) iteration, see e. g. [27, 33, 128], and the approach
by Ahmad et al. [3]. Although both of these methods were motivated completely
differently, it can be shown that they can actually be interpreted as H2 pseudo-optimal
approximations. As their inherent optimality property has not been recognized so far,
this will be covered in the final part of this thesis.





Part III

Application: Large-Scale
Lyapunov Equations





5 Approximate Solutions based on
Rational Krylov Subspaces

The results obtained in Part II will be applied in this chapter to approximate the
solution of large-scale Lyapunov equations in the form

APET + EPAT + BBT = 0. (5.1)

Because we assume that E is non-singular and that the eigenvalues of E−1A are con-
tained in the open left half of the complex plane, the solution P=PT of (5.1) exists and
is unique. We further assume that the pair (E−1A,E−1B) is controllable, which ensures
that P is positive definite. For details on existence and uniqueness of the solution of
(5.1), please refer to e. g. [10].
It was already mentioned in Section 1.5.2, that the main effort in balanced truncation

is to find a low-rank Cholesky factor Z, such that the low-rank approximation P̂=ZZ∗

satisfies P̂≈P. However, in the following we employ the more general form P̂=VPrV∗,
where the columns of V ∈ CN×n span an appropriate subspace, and where Pr is the
reduced solution. If Pr is symmetric, positive definite, then the low-rank Cholesky
factor Z can be readily deduced from computing the Cholesky factorization, Pr=RrR∗r ,
because then obviously Z=VRr. The advantage of the formulation P̂=VPrV∗ is that
the search for an approximate solution P̂ can be split into two independent parts:

◦ the search for a subspace span(V),
◦ and the search for a reduced Lyapunov solution Pr.

Concerning the first part, apparently bases of rational Krylov subspaces will be used,
whereas the latter part will be extensively discussed in the following sections.
Numerous approaches to compute suitable P̂ have been proposed by various re-

searchers over the past decades, see e. g. the surveys [28, 48, 175]. In what follows,
we try to adapt the ideas of the previous chapters to find a suitable P̂. In Section 5.1,
the basic idea of approximate solutions by projections with rational Krylov subspaces
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is reviewed. This approach unfortunately has some drawbacks, which are discussed
in Section 5.2. Nevertheless, it seems reasonable to still pursue this approach in a
large-scale setting. Section 5.3 not only presents how the method can be extended with
the cumulative idea, but also how one can benefit from H2 pseudo-optimality in this
context. In Section 5.4, the resulting approach will be shown to be equivalent to both
the alternating directions implicit (ADI) iteration and the method of Ahmad et al. [3].
Preliminary versions of these contributions have been published in [207, 210, 213, 214].

5.1 Rational Krylov Subspace Method (RKSM)

First of all, the rational Krylov subspace method (RKSM) for computing P̂ is reviewed.

5.1.1 Approximate Solution by RKSM

Let the columns of V form a basis of a rational input Krylov subspace, and let W be
arbitrary but such the solution Pr of

ArPrET
r + ErPrAT

r + BrBT
r = 0 (5.2)

exists and is unique; then P̂ = VPrV∗ is called the approximate solution of (5.1)
by RKSM. It should be noted, that RKSM was introduced in [53] with a Galerkin
projection W = V, but as the basic procedure is left unchanged, we still refer to the
generalized method W 6=V as RKSM. It should be further noted, that a change of basis
does not change the approximation, which is stated in the next lemma.

Lemma 5.1. Let the columns of V1 and of V2 form two different bases of the same
subspace, span(V1) = span(V2), and correspondingly let W1 and W2 be such that
span(W1)=span(W2). Given that Pr,1 and Pr,2 satisfy the respective reduced Lyapunov
equations (5.2), the resulting low-rank approximations are equal: P̂1 = V1Pr,1V∗1 =
V2Pr,2V∗2 =P̂2.

Proof. Because of span(V1)=span(V2), there exists a non-singular matrix TV∈Cn×n,
such that V2 = V1TV, and consequently, there is also a TW ∈Cn×n, such that W2 =
W1TW. Substituting this in Ar,2Pr,2ET

r,2+Er,2Pr,2AT
r,2+Br,2BT

r,2 =0 yields

TT
WAr,1TVPr,2TT

VET
r,1TW + TT

WEr,1TVPr,2TT
VAT

r,1TW + TT
WBr,1BT

r,1TW = 0. (5.3)

Then TW can be cancelled and due to uniqueness, Pr,1 =TVPr,2TT
V can be identified,
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which is equivalent to Pr,2 = T−1
V Pr,1T−TV . Then, P̂1 = V1TVT−1

V Pr,1T−TV TT
VVT

1 =
V2Pr,2VT

2 =P̂2, which completes the proof.

Lemma 5.1 shows that only the subspaces spanned by the columns of V and W affect
the approximate solution P̂, whereas the chosen bases are irrelevant. For a given V
that spans a rational input Krylov subspace, the remaining degree of freedom in P̂ is
the choice of the subspace spanned by the columns of W—or equivalently the selection
of one reduced model out of the family GF(s). Before we dig deeper into this, let us
first analyse the residual in the original Lyapunov equation.

5.1.2 The Residual in RKSM

The residual R∈CN×N that follows from an arbitrary approximate solution P̂∈CN×N

is generally defined as
R = AP̂ET + EP̂AT + BBT . (5.4)

Proposition 5.2. Let P̂ = VPrV∗, where Pr solves (5.2), then the residual satisfies
the Petrov-Galerkin condition: W∗RW=0.

Proof. The proof readily follows by multiplying (5.4) with W∗ and W from the left and
right, respectively.

Even if the matrices A, E and B are sparse, the residual R is generally dense, which
makes it actually difficult to store and analyse R. However, if P̂ is computed by
RKSM, then a convenient low-rank formulation of the residual can be computed with
low numerical effort. This is stated in the next theorem.

Theorem 5.3. Let the columns of V form a basis of a rational input Krylov subspace,
and let W be arbitrary but such that the solution Pr of (5.2) exists and is unique.
This particularly means that there exist S and L such that (2.15) is satisfied, and that
B⊥=B−EVE−1

r Br. Define

F = EV
(
E−1
r Br + PrL∗

)
∈ CN×m, (5.5)

then the approximate solution P̂=VPrV∗ yields the following residual:

R = [ B⊥ F ]
[ I I

I 0
] [ B∗⊥

F∗
]
. (5.6)



112 5 Approximate Solutions based on Rational Krylov Subspaces

Proof. Consider B=B⊥+EVE−1
r Br, then

BB∗ = B⊥B∗⊥ + B⊥B∗rE−∗r V∗E∗ + EVE−1
r BrB∗⊥ + EVE−1

r BrB∗rE−∗r V∗E∗. (5.7)

The residual is defined as

R = AVPrV∗E∗ + EVPrV∗A∗ + BB∗. (5.8)

Replacing AV by the Sylvester equation (2.39) leads to

R = EV
(
E−1
r ArPr + PrA∗rE−∗r

)
V∗E∗ + B⊥LPrV∗E∗ + EVPrL∗B∗⊥ + BB∗. (5.9)

Substituting E−1
r ArPr+PrA∗rE−∗r =−E−1

r BrB∗rE−∗r and replacing BB∗ by (5.7) yields

R = B⊥LPrV∗E∗ + EVPrL∗B∗⊥ + B⊥B∗⊥ + B⊥B∗rE−∗r V∗E∗ + EVE−1
r BrB∗⊥ (5.10)

= B⊥B∗⊥ + FB∗⊥ + B⊥F∗. (5.11)

Expanding the formulation (5.6), leads to (5.11) and completes the proof.

Theorem 5.3 shows that the rank of the residual R cannot exceed 2m—irrespective of
the reduce order n. The formulation (5.6) therefore massively reduces storage require-
ments compared to the traditional dense matrix that follows from (5.4). Additionally,
common matrix norms of the residual R—which are often used as a convergence cri-
terion when iteratively approximating P—can be easily computed with the low-rank
formulation. The case of computing the Euclidean norm is presented in the next lemma.

Lemma 5.4. The Euclidean norm ‖R‖2 of the residual (5.6) can be calculated from
the eigenvalues of a 2m×2m matrix,

‖R‖2 = max
∣∣∣∣∣Λ
([

BT
⊥B⊥ BT

⊥F
FTB⊥ FTF

] [ I I
I 0

])∣∣∣∣∣ , (5.12)

where Λ(·) denotes the set of eigenvalues of a matrix.

Proof. Because R is symmetric, ‖R‖2 =
√

max λ (R2) = max |λ (R)|. For arbitrary
matrices M and N of appropriate dimensions, Λ(MN)=Λ(NM), and hence,

Λ (R) = Λ
(

[ B⊥ F ]
[ I I

I 0
] [ BT

⊥
FT

])
= Λ

([
BT
⊥

FT

]
[ B⊥ F ]

[ I I
I 0

])
, (5.13)

which completes the proof.
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Lemma 5.4 shows that the Euclidean norm of R can be calculated even in a large-
scale setting with marginal numerical effort: both B⊥ and F are found by mainly
matrix vector products, and as we assume only a few inputs, the eigenvalue problem of
dimension 2m×2m may be easily solved. The low-rank formulation (5.6) of the residual
is hence not only analytically convenient, but also numerically. Finally, the eigenvalues
of the residual are studied in the next lemma.

Lemma 5.5. Let the residual R be given by Theorem 5.3, and assume that R is real and
that [B⊥, F] has full column rank. Then R has m positive and m negative eigenvalues.

Proof. As [B⊥, F] has full column rank, let X⊥ ∈ RN×(N−2m) denote its orthogonal
complement and I the m×m identity matrix, then

R = B⊥B∗⊥+ FB∗⊥+ B⊥F∗ = [F, B⊥ + F, X⊥ ]
 −I 0 0

0 I 0
0 0 0

 F∗
B∗⊥ + F∗

X∗⊥

. (5.14)

Due to the assumptions, [F, B⊥+F, X⊥] is real and non-singular, and hence, the proof
follows from Sylvester’s law of inertia, cf. [8, p. 189].

5.1.3 Iterative Procedure with RKSM

When applying RKSM to approximate P, one typically performs an iterative procedure
instead of computing P̂ at once. The basic steps of such an approach can be pictured
as follows:

◦ Compute k∈N+ new directions of a Krylov subspace: V∈RN×n→V∈RN×(n+k).
◦ Project equation (5.1) onto the subspace span(EV) and compute the solution Pr

of the projected Lyapunov equation (5.2) using direct solvers.
◦ (Usually compute some norm of the residual in order to) evaluate an appropriate
stopping criterion.
◦ If the desired accuracy is achieved, stop the algorithm; otherwise restart by cal-
culating k additional directions.

We will see that the numerical effort of such an iterative approach may be reduced by
the cumulative idea. Before going into this in Section 5.3, we will first of all review
some literature and then also discuss the drawbacks of RKSM in Section 5.2.

5.1.4 Notes and References

Not only classical Krylov subspaces (1.31) have long been used to approximate the
solution of (5.1), see e. g. [48, 102, 110, 111, 113, 166, 175, 176], but also extended
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Krylov subspaces (1.32), cf. [100, 118, 174]. As the basic machinery has been available
throughout these years, it is surprising that [53] seems to be the first reference that
explicitly uses rational Krylov subspaces for projection, where also the label “RKSM”
was introduced. An error analysis of RKSM is available in [25], and generalizations to
the MIMO case can be found in [54]. For further reading, the recent surveys [28, 175]
and references therein are recommended.
The residual R is often used as an indicator for the approximation of P by P̂. As

R is a dense matrix, one was typically computing its Frobenius norm or was using
power methods to approximate the Euclidean norm, see e. g. [170, Section 4]. As stated
above, the low-rank formulation of the residual from Theorem 5.3 eases this computa-
tion, which has been published in [214]. There it was also shown, how the low-rank
formulation reads for the classical (1.31) and extended Krylov subspaces (1.32), and
how ‖R‖2 can be employed to upper bound

∥∥∥P−P̂
∥∥∥

2
, by slightly generalizing the result

of Hodel and Tenison [102]. In addition, it was discussed that a small Euclidean norm
of the residual is neither necessary nor sufficient for a good approximation. This finding
has been observed in numerical examples by Saak et al. [169]. The conclusion in [169]
was then to suggest a particular “goal-oriented” convergence criterion if P̂ is to be used
for balanced truncation. The above mentioned bound on

∥∥∥P−P̂
∥∥∥

2
was improved in

[150] in order to state a bound on the H2 error in model order reduction. This bound is
also based on the error factorization discussed in Chapter 3, and additionally, a bound
on the H∞ error was proposed in [150].

5.2 The Dilemma of RKSM

This section discusses a drawback of RKSM, as the resulting approximation P̂ of RKSM
can to some extent not be as one might hope for. Basically, our objective is to approxi-
mate P, such that the error P−P̂ is as small as possible. Similar to what was discussed
in Chapter 4 for model order reduction, here again, one first has to define a suitable
measure of the error—which in this case obviously should be a matrix norm. A self-
evident choice would be the Euclidean norm

∥∥∥P−P̂
∥∥∥

2
, but as P is generally dense, its

analysis and computation are hard tasks in a large-scale setting. We will instead con-
sider the Frobenius norm

∥∥∥P−P̂
∥∥∥

F
, because we will see that this is analytically more

convenient, and also because a minimization of the Frobenius norm likewise minimizes
the Euclidean norm due to

∥∥∥P−P̂
∥∥∥

F
≥
∥∥∥P−P̂

∥∥∥
2
. The problem is accurately stated as

follows.
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Problem 5.1. Given the Lyapunov equation (5.1), we are searching for the approximate
solution P̂ of given rank n, which satisfies

∥∥∥P− P̂
∥∥∥

F
= min

rank(P̃)=n

∥∥∥P− P̃
∥∥∥

F
. (5.15)

The well-known solution of Problem 5.1 is obtained by retaining the n largest singular
values of P. This is often referred to as Eckart-Young-Mirsky theorem [56]. We of course
do not know P, and hence, it is impossible to compute its singular value decomposition.
In practice one would instead only know an approximating subspace, which in the case
here is a rational Krylov subspace span(V). As mentioned above, the approximate
solution then reads as P̂ = VPrV∗, and consequently, we are merely searching for the
optimal Pr. This leads us again to some kind of pseudo-optimality, defined as follows.

Definition 5.1. Given a V∈CN×n with full column rank, let P solve (5.1) and define
the subset P of all symmetric approximations P̂ that satisfy span(P̂)=span(V). Then
P̂ that satisfies ∥∥∥P− P̂

∥∥∥
F

= min
P̃∈P

∥∥∥P− P̃
∥∥∥

F
(5.16)

is called “Frobenius pseudo-optimal” (with respect to P).

The Frobenius pseudo-optimality that minimizes
∥∥∥P−P̂

∥∥∥
F
in a certain subset, is

similarly defined as H2 pseudo-optimality in minimizing ‖G−Gr‖H2
. In order to find

the Frobenius pseudo-optimal approximation P̂, we require the following definition of
the Frobenius inner product.

Definition 5.2. Let A and B be two matrices of appropriate dimensions, then the
Frobenius inner product is defined as

〈A,B〉F = trace (A∗B) , (5.17)

and it induces the Frobenius norm: ‖A‖F =
√
〈A,A〉F.

We are now ready to show that Frobenius pseudo-optimality is likewise uniquely
defined, which is presented in the next theorem.

Theorem 5.6. Given V∈CN×n with full column rank, let P solve (5.1) and define the
subset P of all symmetric approximations P̂ that satisfy span(P̂) = span(V). Assume
that V is orthogonal, V∗V = I, then P̂ = VPrV∗ is the Frobenius pseudo-optimal
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approximation with respect to P, i. e. it satisfies

∥∥∥P− P̂
∥∥∥

F
= min

P̃∈P

∥∥∥P− P̃
∥∥∥

F
, (5.18)

if and only if Pr=V∗PV.

Proof. The space of all N×N symmetric matrices is a Hilbert space with the Frobenius
inner product 〈A,B〉F. All symmetric approximations P̂ that satisfy span(P̂)=span(V)
may be formulated as P̂=VP̃rV∗, with some P̃r. Then it can be readily verified that
the sum of two P̂=VP̃rV∗ stay in P , such that that P is a closed subspace. We thus
can apply the Hilbert projection theorem, which states that P̂ is the unique minimizer
of
∥∥∥P−P̂

∥∥∥
F
in the subspace P , if and only if

〈
P− P̂,VP̃rV∗

〉
F

= 0, (5.19)

for all VP̃rV∗∈P . Then it follows

0 =
〈
P,VP̃rV∗

〉
F
−
〈
P̂,VP̃rV∗

〉
F

= trace
(
PVP̃rV∗

)
− trace

(
VPrP̃rV∗

)
(5.20)

= trace
(
V∗PVP̃r

)
− trace

(
PrP̃r

)
= trace

[
(V∗PV−Pr) P̃r

]
. (5.21)

As trace
[
(V∗PV−Pr) P̃r

]
=0 has to be satisfied for arbitrary P̃r= P̃∗r, this is equiva-

lent to V∗PV−Pr=0, which completes the proof.

It is possible to state similar orthogonality conditions for Frobenius pseudo-optimality,
as was already the case for H2 pseudo-optimality. This is presented in the next lemma.

Lemma 5.7. If the approximate solution P̂ is Frobenius pseudo-optimal, then

〈
P− P̂, P̂

〉
F

= 0, (5.22)

and also 〈
P, P̂

〉
F

=
〈
P̂, P̂

〉
F
, (5.23)∥∥∥P− P̂

∥∥∥2

F
= ‖P‖2

F −
∥∥∥P̂∥∥∥2

F
, (5.24)

‖P‖F ≥
∥∥∥P̂∥∥∥

F
. (5.25)

Proof. The proof of (5.22) is actually already contained in the proof of Theorem 5.6,
because P− P̂ is orthogonal to all VP̃rV∗. Equation (5.23) is a direct consequence
of (5.22). Then consider

∥∥∥P−P̂
∥∥∥2

F
=
〈
P−P̂,P−P̂

〉
F

=
〈
P−P̂,P

〉
F
−
〈
P−P̂, P̂

〉
F

(5.22)=
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〈P,P〉F−
〈
P̂,P

〉
F

(5.23)= ‖P‖2
F −

∥∥∥P̂∥∥∥2

F
, which proves (5.24), and from which (5.25) obvi-

ously follows.

Lemma 5.7 shows that if we would compute the Frobenius pseudo-optimal approxi-
mation P̂, the error P−P̂ would be perpendicular to P̂, and in a cumulative framework
we would achieve strictly monotonically convergence towards the real solution. Conse-
quently, Frobenius pseudo-optimality features the same nice properties as H2 pseudo-
optimality, which would pave the way for an advantageous framework to approximate
P. The drawback, however, is that the Frobenius pseudo-optimal approximation sat-
isfies Pr = V∗PV, which is difficult to achieve without the knowledge of P. To be
precise, the following lemma states that the Frobenius pseudo-optimal approximation
given by Pr =V∗PV can in general not be achieved by RKSM, which could be called
a “dilemma of RKSM”.

Lemma 5.8. Given an orthogonal V whose columns span a rational input Krylov sub-
space, and let P solve (5.1), then there need not exist a W, such that Pr solves (5.2) and
the resulting approximation P̂=VPrV∗ is the Frobenius pseudo-optimal one, given by
Pr=V∗PV. In other words, it occurs that the Frobenius pseudo-optimal approximation
P̂=VV∗PVV∗ cannot be generated by RKSM.

Proof. For a given V, the matrices S and L are fixed, and for any choice of W, the
reduced solution Pr by RKSM satisfies (5.2), and it also has to hold that Ar=ErS+BrL.
Using these equations yields

SPr + PrS∗ = E−1
r ArPr + PrA∗rE−∗r − E−1

r BrLPr −PrL∗B∗rE−∗r (5.26)

= −
(
E−1
r BrB∗rE−∗r − E−1

r BrLPr −PrL∗B∗rE−∗r
)
. (5.27)

The right hand side of (5.27) obviously has maximum rank 2m. Consequently, if Pr =
V∗PV is the Frobenius pseudo-optimal solution, then rank (SV∗PV+V∗PVS∗)≤2m
has to be satisfied. As this condition is independent from W, it is a necessary condition
that V has to satisfy, such that RKSM can yield the Frobenius pseudo-optimal solution.
However, this condition need not be satisfied for arbitrary Krylov subspaces. Moreover,
simple numerical examples confirm that this indeed generally does not hold.

In conclusion, Frobenius pseudo-optimal approximations P̂ would on the one hand
be desirable, due to nice properties, such as e. g. guaranteed convergence. On the other
hand, the Frobenius pseudo-optimal approximation not necessarily may be attained
by RKSM—one instead requires knowledge of P in order to identify the Frobenius
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pseudo-optimal solution. Needless to say, that this is improper in a large-scale setting.
Consequently, it is indeed judicious to employ the concept of H2 pseudo-optimality not
only for model order reduction, but also for the solution of Lyapunov equations—even
in the absence of an output matrix C. This is discussed in the next section.

5.3 A New Type of RKSM

The objective of this section is to exploit the concept of H2 pseudo-optimality also for
the approximation of P. The task thus is to translate the findings of Part II, made for
model order reduction, into a new approach to approximately solve Lyapunov equations.
We start with the presentation of the cumulative idea from Chapter 3.

5.3.1 Cumulative Framework for RKSM

The error due to approximate solutions P̂ was already analysed in Theorem 5.3, by
stating the low-rank formulation of the residual. This can be seen as a counterpart
of Section 3.1, where the factorization of the error in model order reduction was pre-
sented. The next lemma hence directly proposes a cumulative framework for Lyapunov
equations, similar to Section 3.2.

Lemma 5.9. Let all variables be as defined in Corollary 3.8, and assume that the
columns of each Vi form a basis of recursively computed rational input Krylov subspaces,
i. e. each Vi satisfies (3.55). Then the total approximate solution P̂tot =VtotPr,totV∗tot

of the Lyapunov equation can be recursively obtained by

Pr,tot ←
[ Pr,tot P12

PT
12 P22

]
, (5.28)

where P12 and P22 satisfy

Ar,totP12E∗r,i + Er,totP12A∗r,i + Er,totPr,totL∗totB∗r,i + Br,totB∗r,i = 0, (5.29)

Ar,iP22E∗r,i + Er,iP22A∗r,i + Br,iB∗r,i + Br,iLtotP12E∗r,i + Er,iP∗12L∗totB∗r,i = 0, (5.30)

and where Vtot, Ltot, Ar,tot, Er,tot, Pr,tot, and Br,tot are all initialized as empty matrices.
Furthermore, let B⊥,i=B⊥,i−1−EViE−1

r,i Br,i, with B⊥,0 =B, and define

Ftot = EVtot
(
E−1
r,totBr,tot + Pr,totL∗tot

)
, (5.31)
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then the total approximate solution P̂tot =VtotPr,totV∗tot yields the following residual:

Rtot = [ B⊥,i Ftot ]
[

I I
I 0

] [ B∗⊥,i
F∗tot

]
. (5.32)

Proof. The proof is done by induction. The case i = 1 is trivial, as then Pr,tot and
P12 are empty matrices. Then assume that the cumulated reduced matrices satisfy the
reduced Lyapunov equation (5.2) at step i−1, and define

A+=
[

Ar,tot 0
Br,iLtot Ar,i

]
, E+=

[
Er,tot 0

0 Er,i

]
, P+=

[ P11 P12
PT

12 P22

]
, B+=

[
Br,tot
Br,i

]
, (5.33)

then Pr,tot at step i, i. e. P+, is determined by

A+P+E∗+ + E+P+A∗+ + B+B∗+ = 0. (5.34)

Executing simple matrix products shows

A+P+E∗+=
[ Ar,totP11E∗r,tot Ar,totP12E∗r,i

Br,iLtotP11E∗r,tot + Ar,iP∗12E∗r,tot Br,iLtotP12E∗r,i + Ar,iP22E∗r,i

]
. (5.35)

Then it follows from the left upper block of (5.34) that P11 = Pr,tot, whereas from
the right upper and left lower block (5.29) follows. The right lower block is equal to
(5.30). It is left to prove the formulation of the residual, which was already done in
Theorem 5.3 for a single reduction. The proof of Theorem 5.3 required that the B⊥-
Sylvester equation (2.39) holds, which was proven in Lemma 3.13 to hold also for the
cumulated data. This proves that the formulation of the residual of Theorem 5.3 also
holds for the cumulated data.

The cumulative framework suggested in Lemma 5.9 has considerable numerical ad-
vantages over standard iterative procedures as depicted in Section 5.1.3. In the stan-
dard framework actually only the matrix V is accumulated, whereas reduced Lyapunov
equations of increasing orders have to be solved anew by direct methods. By contrast,
within the framework of Lemma 5.9 it is possible to additionally accumulate the reduced
Lyapunov solution Pr. This has the advantage, that now the Lyapunov equation to-
be-solved is (5.30), which has only the reduced order chosen in the current step of each
iteration, whereas the additional Sylvester equation (5.29) can efficiently be solved with
the ideas presented in Section 2.1. Consider for example a Lyapunov equation (5.1),
and assume that at the current step we have Pr,tot ∈Rn×n, and that the matrix V is
augmented by n̂ columns for the next iteration. In the standard iterative procedure,
one would then have to solve a reduced Lyapunov equation of order (n+n̂)—without
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a chance to recycle the previous reduced solution Pr,tot. In the cumulative framework
suggested above, one instead only has to solve a reduced Lyapunov equation of order n̂
and a Sylvester equation of dimensions (n+n̂)×n̂, both of which together considerably
require less numerical effort.
The drawback of the cumulative approach is that the total approximation P̂tot =

VtotPr,totV∗tot differs from the one of standard RKSM. This is due to the fact, that the
residual after each iteration contains both B⊥ and F, whereas only B⊥ is incorporated
in the computation of the subsequent Vi. This can be resolved by employing H2

pseudo-optimality, which is presented in the next section.

5.3.2 H2 Pseudo-Optimal and Cumulative RKSM

The cumulative framework for the solution of large-scale Lyapunov equations with H2

pseudo-optimal approximations in each iteration is presented in the next lemma.

Lemma 5.10. Let all variables be as defined in Corollary 3.8, and assume that the
columns of each Vi form a basis of recursively computed rational input Krylov subspaces,
i. e. each Vi satisfies (3.55). Further assume that the reduced data in each iteration
satisfies the conditions of Theorem 4.26 for input H2 pseudo-optimality. Then the total
approximate solution P̂tot = VtotPr,totV∗tot of the Lyapunov equation can be recursively
computed by

Pr,tot ←
[

Pr,tot 0
0 Pr,i

]
, (5.36)

where Pr,i satisfies

Ar,iPr,iE∗r,i + Er,iPr,iA∗r,i + Br,iB∗r,i = 0, (5.37)

and where Vtot and Pr,tot are initialized as empty matrices. Moreover, the total approx-
imate solution P̂tot = VtotPr,totV∗tot yields the residual Rtot = B⊥,iB∗⊥,i, which can be
recursively computed by B⊥,i=B⊥,i−1−EViE−1

r,i Br,i, with B⊥,0 =B. Finally, the accu-
mulated reduced data, i, e. Vtot, Stot, Ltot, Ar,tot, Er,tot, Pr,tot, and Br,tot, also satisfy
the conditions of Theorem 4.26 for input H2 pseudo-optimality.

Proof. The proof is done by induction. The case i = 1 is trivial, as then Pr,tot is an
empty matrix. Then assume that the reduced Lyapunov equation holds at step i−1, and
we can compute Pr,tot recursively by (5.28)–(5.30). As we assume that the conditions of
Theorem 4.26 for input H2 pseudo-optimality are satisfied for each iteration, they are
also satisfied for the cumulated data due to Lemma 4.36, which already proves the last
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part of the above statement. Substituting Er,totPr,totL∗totB∗r,i=−Br,tot due to condition
ii) of Theorem 4.26 in (5.29), leads to

Ar,totP12E∗r,i + Er,totP12A∗r,i = 0. (5.38)

We can identify the unique solution P12 = 0, which, inserted in (5.30) proves (5.37).
The proof of the residual follows from (5.31) and (5.32): using again condition ii) of
Theorem 4.26 yields F=0 which completes the proof.

The benefit of using H2 pseudo-optimal approximations in each iteration of the cu-
mulative framework is that the individual iterations are decoupled due to the diagonal
structure of Pr,tot in (5.36). This means that the total approximation is actually the
sum of all individual iterations: P̂tot = ∑k

i=1 ViPr,iV∗i . Another benefit is that after
each iteration we have

AP̂totE∗ + EP̂totA∗ + BB∗ = B⊥,iB∗⊥,i, (5.39)

and consequently,

A
(
P− P̂tot

)
E∗ + E

(
P− P̂tot

)
A∗ + B⊥,iB∗⊥,i = 0. (5.40)

This means that this approach for approximating P in fact performs a restart after
each iteration: the current error P− P̂tot solves a similar Lyapunov equation as the
original one—only the input matrix changes to B⊥,i. This restart is the consequence of
Ftot =0 in the residual, such that the remaining error P−P̂tot is completely available for
the next iteration. (This basically corresponds to Gf (s) being all-pass in model order
reduction.)
In order to compute an approximation P̂ that satisfies the conditions for H2 pseudo-

optimality, as assumed in Lemma 5.10, one can use the PORK algorithm presented
in Section 4.3.4. As we are at this point not concerned with the computation of an
H2 pseudo-optimal reduced model, it is actually not necessary to execute all steps of
PORK. For the solution of Lyapunov equations in terms of H2 pseudo-optimality, it
suffices to use a version of PORK that is specially tied for Lyapunov equations, and
which will be denoted as “PORK-Lyap” hereafter. This is illustrated in Algorithm 5.1.
It should be noted, that in principle B⊥ = B−EVE−1

r Br, but due to condition ii) of
Theorem 4.26, the different statement in Step 3 of Algorithm 5.1 follows.
Within an iterative procedure as defined by Lemma 5.10, i. e. which is based on H2

pseudo-optimality and which uses PORK-Lyap, all data can be recursively computed.
To clarify this, the basic procedure is depicted in the following.
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Algorithm 5.1 Pseudo-optimal rational Krylov for Lyapunov equations (PORK-Lyap)
Input: E, B, V, S, L, such that AV−EVS=BL is satisfied (see Section 2.3)
Output: approximate solution P̂ in terms inputH2 pseudo-optimality and correspond-

ing residual R=B⊥B∗⊥
1: P−1

r = lyap(S∗,−L∗L) // direct solver for S∗P−1
r +P−1

r S−L∗L=0, condition iii)
2: P̂=V (P−1

r )−1 V∗
3: B⊥=B+EV (P−1

r )−1 L∗ // condition ii)

◦ Compute k ∈ N+ new directions of a Krylov subspace, i. e. a Vi ∈ RN×k whose
columns form a basis of a rational input Krylov subspace with input B⊥,i and
corresponding Si and Li.
◦ Plug E, B⊥,i, Vi, Si and Li into PORK-Lyap to compute the approximation

P̂i=ViPr,iV∗i .
◦ Update the total approximation by Vtot← [Vtot,Vi] and by (5.36), i. e. P̂tot←

P̂tot +P̂i, and the residual Rtot = B⊥,i+1B∗⊥,i+1, where B⊥,i+1 is given by Step 3 of
PORK-Lyap.
◦ (Usually compute some norm of the residual in order to) evaluate an appropriate
stopping criterion.
◦ If the desired accuracy is achieved, stop the algorithm; otherwise restart by cal-
culating k additional directions.

Remark 5.11. It should be noted that if the approximate solution P̂ is computed in the
sense of H2 pseudo-optimality, then P̂ is irrespective of whether we use the cumulative
framework, or a single run of PORK-Lyap. Assume e. g. m=1 and that a sequence of
interpolation points s1, . . . sk is given. Then one possibility is to directly compute the
complete matrix V∈CN×k and plug it into PORK-Lyap, in order to compute P̂ in a
single step. Another possibility is to put only one basis vi∈CN (for each shift si) after
another into PORK-Lyap, with intermediate updates of the approximation P̂tot and
the residual, as just described in the cumulative approach. The final approximations of
both approaches would then be equal, P̂= P̂tot. This provides an additional degree of
freedom: we do not have to compute the total approximation at once, we can rather split
the calculations into suitably small parts and restart the algorithm after each iteration—
without affecting the outcome. It should however be stressed, that this only applies to
the case that the approximation is computed in terms of H2 pseudo-optimality.

It would be normally necessary to present at this point promising numerical examples,
which verify the suitability of combining the proposed cumulative framework with ap-
proximations in terms of H2 pseudo-optimality; but this can actually be omitted due
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to the following reason. It can be shown, that this approach in fact is equivalent to a
prevalent method for solving (5.1): the alternating directions implicit (ADI) iteration.
To be precise, the total approximation P̂tot of the above approach equals the outcome
of the ADI iteration—only the computation might differ. As various numerical exam-
ples are available in the literature, which already prove that the outcome of the ADI
iteration is competitive to other methods, we can refrain from presenting further ones.
Instead, we may immediately go into the theoretic details of the link between ADI and
RKSM. In this respect, the above discussions can just as well be seen as the theoretical
grounding for a deeper analysis and further development of the ADI iteration.

5.4 Alternating Directions Implicit (ADI) Iteration

The ADI iteration was originally introduced for the numerical solution of parabolic and
elliptic differential equations by Peaceman and Rachford [151], and later identified by
Ellner and Wachspress [58, 198] to be a suitable tool for solving Lyapunov equations.
Assume that an initial approximation P̂0 is chosen, e. g. P̂0 =0, and that E=I. Further
assume that a sequence of complex shifts s1, s2, . . . , sk is given. It should be noted, that
unlike in the original formulation, the shifts si∈C are here chosen in the right half of
the complex plane, in order to align the notation to the definition of rational Krylov
subspaces as in Section 1.6.1. Then an approximation P̂ of P is given by the following
half-step iteration—the ADI iteration:

(A− siI) P̂i− 1
2

= −BBT − P̂i−1
(
AT − siI

)
,

(A− siI) P̂T
i = −BBT − P̂i− 1

2

(
AT − siI

)
.

(5.41)

The drawback of this approach is that the approximation P̂ is generally dense, which
renders its computation via (5.41) unsuitable for large-scale Lyapunov equations. How-
ever, it was recognized by Penzl [153] and by Li and White [128], that the iteration
(5.41) can be recast into another iterative procedure, which directly generates a low-
rank Cholesky factor Z, such that P̂=ZZ∗. To this end, divide Z=[Z1, . . . , Zk] into the
block Zi∈CN×m, and assume that P̂0 =0, then (5.41) can be generalized to arbitrary
but non-singular E 6=I, where the blocks Zi are given by the following iteration:

Z1 =
√

2Re(s1) (A− s1E)−1 B,

Zi =

√√√√ Re(si)
Re(si−1)

(
I + (si + si−1) (A− siE)−1 E

)
Zi−1, i = 2, . . . , k.

(5.42)
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Various contributions are available in the literature, which are based on the formulation
(5.42). These include: partly heuristic approaches for selecting the shifts si [34, 153,
199, 210]; modifications to prevent the low-rank factor Z from having linearly dependent
columns [95, 170]; and a slight modification which directly delivers a real low-rank factor
Z, if the sequence of shifts is closed under complex conjugation [33]. Further articles
adapt (5.42) for second-order models [32], or discuss issues that occur when P̂ is used
for balanced truncation [169, 209]. For a general overview, the thesis of Saak [168] is
recommended.
The formulation (5.42) is the basis for the following discussions, where a Z, which re-

sults from the iteration (5.42), will be called the “ADI basis”. Li and White [128] proved
that the ADI basis actually spans a rational block-input Krylov subspace, which already
indicates that there exists a link between ADI and RKSM. The actual connection, how-
ever, was discovered only very recently. Druskin et al. [55] and Flagg and Gugercin
[67] independently presented proofs, that the approximations of the ADI iteration and
RKSM are identical under certain constraints. The aim of the remainder of this the-
sis is to slightly generalize these proofs, then identify the ADI iteration as the H2

pseudo-optimal cumulative framework presented above, and by doing so, introducing
an alternative way to compute the ADI approximation based on rational Krylov sub-
spaces, which finally leads to a new ADI iteration with tangential interpolation. These
results are based on the publications [210, 213].

5.4.1 The Sylvester Equation for the ADI Iteration

In order to translate the ADI iteration (5.42) into a framework with rational Krylov
subspaces, we start with stating the B-Sylvester equation for the ADI basis Z, similar
to Theorem 2.4.

Lemma 5.12. Let I denote the identity matrix of dimension m×m and define αi :=√
2 Re(si), and

SADI =


s1I α1α2I · · · α1αkI

. . . . . . ...
. . . αk−1αkI

skI

 , and LADI = [α1I, . . . , αkI] . (5.43)

Then the ADI basis Z from the iteration (5.42) satisfies the Sylvester equation

AZ− EZSADI = BLADI. (5.44)
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Proof. It follows from the Sylvester equation (5.44) and the definitions (5.43), that

(A− siE) Zi = αi

i−1∑
j=1

αjEZj + B

 . (5.45)

We prove the equivalence of the ADI iteration (5.42) and (5.45) by induction. Obviously,
Z1 in (5.45) is equal to Z1 of the ADI iteration (5.42). Now assume that Zi from (5.42)
is given by (5.45) and substitute −si= s̄i−α2

i . Then (5.45) becomes

(A + s̄iE) Zi = αi

 i∑
j=1

αjEZj + B

 , (5.46)

which is equivalent to

(A−si+1E)
[
I + (si+1+s̄i) (A−si+1E)−1E

]
Zi = αi

 i∑
j=1

αjEZj + B

 . (5.47)

Using
[
I+(si+1+s̄i) (A−si+1E)−1E

]
Zi= αi

αi+1
Zi+1 from (5.42), shows that (5.45) is true

for Zi+1, which completes the proof by induction.

Lemma 5.12 shows that any ADI basis Z satisfies a B-Sylvester equation, and hence,
must span a rational Krylov subspace. This is stated in the next lemma, which, in that
sense, presents a new and simpler proof than the original statement in [128].

Lemma 5.13. Given a sequence of shifts s1, s2, . . . , sk, si∈C, where multiplicities are
allowed, define Asi

= (A−siE). Then the ADI basis Z from the iteration (5.42) spans
the rational block-input Krylov subspace

span (Z) = span
{
A−1
s1 B, A−1

s2 EA−1
s1 B, . . . , A−1

sk
E . . .A−1

s2 EA−1
s1 B

}
. (5.48)

Proof. Z satisfies the B-Sylvester equation (5.44), where the pair (LADI,SADI) is observ-
able. Then it follows from Theorem 2.4 that Z spans a rational input Krylov subspace,
where the expansion points correspond to the eigenvalues of SADI. The eigenvalues of
SADI can be readily identified, due to the upper diagonal structure in (5.43). As SADI

has the (m×m)-dimensional blocks siI on its diagonal, it follows that Z spans the
block-input Krylov subspace (5.48).

5.4.2 The ADI Iteration Implicitly Performs H2 Pseudo-Optimal MOR

We are now ready to state the main result of this section, which describes how the
approximation P̂ from the ADI iteration (5.42) can be generated by Krylov projection
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methods. This new and enlightening result unveils the link between ADI and RKSM.

Theorem 5.14. Given a sequence of shifts s1, s2, . . . , sk, si ∈ C, let the columns of
V form the basis of the corresponding rational block-input Krylov subspace (5.48), and
let S and L be given according to Theorem 2.4. Then both approximations P̂ of P,
that results from the ADI iteration (5.42) and from the PORK-Lyap Algorithm 5.1, are
equal.

Proof. Due to Lemma 5.13, the ADI basis Z spans a rational input Krylov subspace
and we can plug (Z,SADI,LADI) from Lemma 5.12 into PORK-Lyap in Algorithm 5.1.
Step 1 of PORK-Lyap then requires to solve S∗ADIP−1

r,ADI +P−1
r,ADISADI = L∗ADILADI for

P−1
r,ADI. Due to (5.43) it follows that this is solved by Pr,ADI = I identity. Then the

outcome of PORK-Lyap is P̂=ZPr,ADIZ∗=ZZ∗ which equals the approximation of the
ADI iteration, and which completes the proof.

Before discussing Theorem 5.14, we will first derive a low-rank formulation of the
residual from the ADI iteration, because as the approximations P̂ of the ADI iteration
and of PORK-Lyap are equal, so have to be the residuals.

Corollary 5.15. Let P̂ be given by the ADI iteration (5.42), then the residual is R =
B⊥B∗⊥, with B⊥=B+EZL∗ADI, and where LADI is defined in (5.43).

Proof. Due to the proof of Theorem 5.14, Pr,ADI = I. Then the proof readily follows
from Step 3 of PORK-Lyap in Algorithm 5.1.

Theorem 5.14 uncovers how the approximation P̂ of the ADI iteration can be alter-
natively constructed within a framework that relies on projections onto rational Krylov
subspaces. Corollary 5.15 additionally proposes a convenient low-rank formulation of
the residual that results from the approximation P̂ of the ADI iteration (5.42). These
results, however, involve further consequences, which are discussed next.

Remark 5.16 (Link to RKSM). Theorem 5.14 identifies the ADI iteration as a particular
type of RKSM: the ADI basis Z spans a rational Krylov subspace, and the associated B-
Sylvester equation can be stated in closed form like in (5.44). This provokes a family of
reduced Er, Ar and Br (as discussed in Section 2.5), that are attainable via projection
onto Z. Executing the PORK algorithm (or equivalently PORK-Lyap), just picks one
member out of this family, and hence, there exists a W, such that Pr,ADI =I satisfies

Ar,ADIPr,ADIE∗r,ADI + Er,ADIPr,ADIA∗r,ADI + Br,ADIB∗r,ADI = 0, (5.49)
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with Er,ADI =W∗EZ, Ar,ADI =W∗AZ and Br,ADI =W∗B, which yields the approxima-
tion P̂=ZPr,ADIZ∗=ZZ∗ of the ADI iteration. This means that there exists a reduced
Lyapunov equation (5.49), which follows from a projection onto the rational Krylov
subspace span(Z), and which causes the same approximation P̂ as the ADI iteration
(5.42). This renders the ADI iteration a very special type of RKSM: the degrees of
freedom in RKSM are the expansion points in the Krylov subspace and the direction
of projection, which is specified by W. The ADI iteration hence can be interpreted
as RKSM with a particular choice of W. It should be noted, that although this W is
not built up explicitly, the respective Er,ADI, Ar,ADI and Br,ADI from (5.49) could still
be computed by the final steps of PORK in Algorithm 4.2, if desired. But as this W,
and thus also Er,ADI, Ar,ADI and Br,ADI, are fixed in advance, it is indeed possible to
compute the resulting approximation P̂ by the ADI iteration (5.42)—without actually
solving (5.49).

Remark 5.17 (Link to H2 pseudo-optimal MOR). Let an arbitrary C∈Rp×N be given,
which induces a dynamical model with the transfer functionG(s)=C (sE−A)−1 B, and
let Z be the ADI basis that follows from (5.42). Then using SADI and LADI from (5.43),
the unique input H2 pseudo-optimal reduced model Gr(s) can be computed by PORK,
and its Controllability Gramian Pr,ADI provides an approximation P̂=ZPr,ADIZ∗ of P,
which equals the outcome of the ADI iteration. This means that the ADI iteration (5.42)
generates the same approximation P̂, that would follow from the input H2 pseudo-
optimal reduced model (for arbitrary outputs). If theH2 pseudo-optimal reduced model
Gr(s) would be constructed through PORK, then it would satisfy the conditions of
Theorem 4.26, and because the columns of Z from (5.42) is a basis of a rational block
Krylov subspace, G(si)=Gr(si) would hold true and the reduced eigenvalues λi would
be λi=−si, i=1, . . . , k, all with geometric multiplicity m.

Remarks 5.16 and 5.17 show that a (virtual) reduced Lyapunov equation (5.49),
and if a C ∈ Rp×N is given, additionally a (virtual) reduced model Gr(s), may be
associated with the ADI iteration (5.42). This unveils the link of the ADI iteration
to methods based on projections onto rational Krylov subspaces for the solution of
Lyapunov equations and model order reduction. To conclude these findings: the ADI
iteration qualifies as a straightforward instruction to implement RKSM in a (cumulative
and) H2 pseudo-optimal manner; or to put it bluntly:

ADI = RKSM + PORK (+CURE), (5.50)

where “CURE” is put in parentheses due to the following reason: it is regardless of
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whether or not using CURE, if reductions are solely performed with PORK, because
then the final approximation does not alter, cf. Remark 5.11.

5.4.3 Tangential ADI Iteration

So far we have used the machinery “projections onto rational Krylov subspaces” only
to describe the ADI iteration. In what follows, it shall be also used for the synthesis of
a new ADI iteration that additionally can handle tangential interpolation.
First of all, consider again the kind of equation (5.50), where “CURE” is put in

parentheses. Theorem 5.14, in fact, only proves ADI = RKSM + PORK, but due
to Remark 5.11, also ADI = RKSM + PORK + CURE holds. It should therefore
be possible to restart the ADI iteration (5.42) at any point, in order to integrate the
cumulative idea. This is done in the next lemma, which presents a reformulation of the
ADI iteration (5.42).

Lemma 5.18. Define B⊥,0 = B and αi =
√

2 Re(si), then the ADI iteration (5.42) is
equivalent to the following iteration for i=1, . . . , k:

Zi = αi (A− siE)−1 B⊥,i−1,

B⊥,i = B⊥,i−1 + αiEZi.
(5.51)

Proof. It is shown in the proof of Lemma 5.12, that Zi is given by

(A− siE) Zi = αi

i−1∑
j=1

αjEZj + B

 . (5.52)

The residual is proven in Corollary 5.15 to be R=B⊥B∗⊥, with B⊥=B+EZL∗ADI, and
by using the definition of LADI in (5.43), it follows that B⊥,i = B+∑i

j=1 αjEZj. By
substituting this in (5.52), the statement can be concluded.

Lemma 5.18 states the cumulative version of the ADI iteration (5.42), where the
restart is performed after every single shift. It would of course also be possible to
execute several, say k, iterations of the original ADI iteration (5.42), not till then
compute B⊥,k=B+∑k

j=1 αjEZj, and only subsequently perform the restart as described
by (5.51), i. e. Zk+1 =αk+1 (A−sk+1E)−1 B⊥,k. This means that one can freely choose
when to perform a restart by using the previous B⊥,i−1, cf. (5.51), and when to apply
the original ADI iteration by using the previous Zi−1, cf. (5.42).

Remark 5.19. Lemma 5.18 provides a more natural formulation of the ADI iteration
than (5.42), because it incorporates the residual factor B⊥ as an integral part of the
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iteration. That means that the re-formulation updates the current residual on the way
as a byproduct. Surprisingly, this works with consistent numerical effort: the main
effort in both formulations (5.42) and (5.51) is to solve an LSE for each iterate Zi. The
remaining operations in both iterations are a single matrix-vector product with E and
a weighted sum of two N×m blocks.

The low-rank factor Z of both ADI iterations (5.42) and (5.51) gains a new block of
m columns in each step, and hence, the larger m is, the faster the ADI basis grows with
each iteration. If now a practical application requires many iterations for convergence,
the final Z might grow too large for reasonable processing. It would instead be desirable,
that for every shift si only one column—or as many columns as absolutely necessary—
are added to the low-rank factor Z. For projection methods with rational Krylov
subspaces, this problem is solved by introducing tangential directions li for each shift
si. Hence, our goal now is to introduce this possibility also into the ADI iteration.
The finding will be denoted as tangential (low-rank) ADI iteration (T-LR-ADI) in the
following.
To this end, the re-formulation in Lemma 5.18 is essential: in the original formula-

tion (5.42), every iterate Zi originates from its predecessor Zi−1, whereas in the new
formulation (5.51), each Zi originates from the recent residual factor B⊥,i−1 instead.
This permits us to use individual tangential directions li∈Cm for every iterate by sim-
ply replacing B⊥,i in (5.51) by B⊥,ili. This is indeed a valuable extension of the ADI
iteration, because it prevents the ADI basis Z from growing too large, and thereby it
may ensure that Z stays numerically manageable. Incorporating tangential directions
therefore extends the application spectrum of the low-rank ADI iteration, if the tangen-
tial directions are suitably chosen. This completely new idea was already introduced in
the preprint [210].
All that remains to show, is that replacing B⊥,i in (5.51) by B⊥,ili still fulfils the

conditions for input H2 pseudo-optimality, and furthermore, how the residual factor
B⊥,i changes by incorporating tangential directions. Different from the block iteration
(5.51), real and complex conjugated shifts have to be distinguished in T-LR-ADI. Both
cases are treated separately in Theorems 5.20 and 5.21.

Theorem 5.20 (Real T-LR-ADI). Define B⊥,0 :=B, and assume exclusively real shifts
si∈R, and real tangential directions li∈Rm, with unit length ‖li‖2 =1, for i=1, . . . , k.
If Z=[z1, . . . , zk] is given by the T-LR-ADI iteration

zi = αi (A− siE)−1 B⊥,i−1li,

B⊥,i = B⊥,i−1 + αiEzilTi ,
(5.53)
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then P̂=ZZT satisfies the conditions of Theorem 4.26 for input H2 pseudo-optimality.

Proof. As the re-formulated ADI iteration comprises a restart after every single step,
it is actually sufficient to show that the first iterate P̂ = z1zT1 is equal to the out-
come of PORK-Lyap, because then the conditions of Theorem 4.26 for input H2

pseudo-optimality will be ensured. To this end, rewrite the first equation of (5.53)
as (A−s1E) z1 =α1Bl1, and by comparing this with (5.44), we can identify SADI = s1

and LADI = α1l1. As by assumption l∗1l1 = 1, the solution at Step 1 of PORK-Lyap is
P−1
r = 1, and the approximate solution reads as P̂ = z1 (P−1

r )−1 zT1 = z1zT1 . It is left to
prove that B⊥,1 =B+α1Ez1lT1 , which directly follows from Step 3 of PORK-Lyap.

Assume a complex shift s1 ∈ C and tangential direction l1 ∈ Cm, and compute the
first iterate z1 by (5.53). In order to yield a real approximation P̂=ZZ∗ ∈ RN×N , the
second iterate z2 has to be contained in span[z1, z1]. However, the z2 resulting from
the direct application of (5.53) with s2 =s1 and l2 = l1 would not satisfy this. For this
reason, T-LR-ADI requires a slight modification for complex conjugated shifts. This is
done in the next theorem, which proposes an iteration similar (5.53), but which directly
yields a real ADI basis for complex conjugated pairs of shifts and tangential directions.

Theorem 5.21 (Complex T-LR-ADI). Let B⊥,0 := B, and assume for every iterate
i=1, . . . , k a complex shift si∈C with nonzero imaginary part, and a tangential direction
li∈Cm, with ‖li‖2 =1. Define

αi =
√

2 Re(si), βi = l∗i li
Re(si)
si

, γi = 1√
1− βiβi

, δi =
√

1 + Re(βi). (5.54)

If Z=[Z1, . . . ,Zk] is given by the T-LR-ADI iteration

vi = αi (A− siE)−1 B⊥,i−1li,

Zi =
√

2
δi

[
Re(vi), γi

(
Im(βi) Re(vi) + δ2

i Im(vi)
)]
,

B⊥,i = B⊥,i−1 +
√

2αi
δi

EZi

[
Re(li), γi

(
Im(βi) Re(li) + δ2

i Im(li)
)]T

,

(5.55)

where each real Zi ∈ RN×2 contains both ADI bases for the pair (si, li) and the com-
plex conjugated pair (si, li), i. e. span(Zi) = span{vi,vi}, then P̂ = ZZT satisfies the
conditions of Theorem 4.26 for input H2 pseudo-optimality.

Proof. First of all, note that γi always exists. This is due to βiβi= l∗i lilTi liRe2(si)
(sisi) . Direct

complex analysis shows that 0≤ l∗i lilTi li≤ 1, which is due to the assumption ‖li‖2 = 1,
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and that 0< Re2(si)
(sisi) <1, because si has non-zero imaginary part. Therefore, 0<βiβi<1,

and γi always exists.
As the re-formulated ADI iteration comprises a restart after every single step, it is here
again sufficient to show that the first iterate P̂=Z1ZT

1 is equal to the outcome of PORK-
Lyap, because then the conditions of Theorem 4.26 for input H2 pseudo-optimality will
be ensured. To this end, choose V = [v1,v1] as a basis of the desired tangential-input
rational Krylov subspace, which includes the pair (si, li) and its complex conjugated
pair (si, li). Then, the B-Sylvester equation AV−EVSADI = BLADI is satisfied for
SADI = diag(s1, s1), and LADI =

[
l1, l1

]
α1. As by assumption l∗1l1 = 1, the solution at

Step 1 of PORK-Lyap is

P−1
r =

[ 1 β1
β1 1

]
, and thus Pr =

(
P−1
r

)−1
= γ2

[ 1 −β1
−β1 1

]
. (5.56)

In order to get a real basis, introduce the unitary basis transformation T∈C2×2,

T = 1√
2

[ 1 −ı
1 ı

]
, TT∗ = I, (5.57)

because then P̂ = VPrV∗= VTT∗PrTT∗V∗= ṼP̃rṼ∗, with P̃r = T∗PrT ∈ R2×2 and
Ṽ = VT =

√
2[Re(v1), Im(v1)] ∈ RN×2. It can be shown by exploiting the definitions

(5.54), that P̃r and its Cholesky factorization R̃R̃∗=P̃r are given by

P̃r = T∗PrT = γ2
1

[ 1− Re(β1) Im(β1)
Im(β1) 1 + Re(β1)

]
and R̃ = 1

δ1

[ 1 γ1 Im(β1)
0 γ1δ

2
1

]
. (5.58)

As P̂ = ṼR̃R̃∗Ṽ∗, the result for Z1 = ṼR̃ can be concluded. It is left to prove the
statement for B⊥,1, which follows from Step 3 of PORK-Lyap:

B⊥,1 = B + EVPrL∗ADI = B + EṼP̃rT∗L∗ADI = B + EZ1(LADITR̃)∗. (5.59)

With LADIT=
√

2α1[Re(l1), Im(l1)]∈Rm×2, the result follows.

Both ADI iterations for real (5.53) and complex conjugated shifts (5.55), can be
combined. An implementation of the resulting T-LR-ADI iteration is illustrated in
Algorithm 5.2. There, the real low-rank factor Z = [Z1, Z2, , . . . , Zk] is computed
iteratively, where Zi has one column if si is real, and two columns if si is complex.
Additionally, the low-rank factor B⊥ of the residual is iteratively computed.

Remark 5.22. The reasoning for the convergence criterion is as follows: for the ap-
proximation P̂ = 0, we have the residual BBT , hence we might be interested in the
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Algorithm 5.2 Tangential-Low-Rank-ADI (T-LR-ADI)
Input: E, A, B, tol
Output: Approximation P̂=ZZT and residual R=B⊥BT

⊥
1: initial choice of s1∈C and l1∈Cm with ‖l1‖2 = 1
2: Z=[ ], B⊥=B
3: repeat
4: solve (A−siE) v=B⊥li for v
5: if si∈R and li∈Rm then
6: Zi=

√
2siv, Li=

√
2sili

7: else
8: β= l∗i li

Re(si)
si

, γ= 1√
1−ββ

, δ=
√

1 + Re(β)

9: Zi= 2
δ

√
Re(si) [Re(v), γ (Im(β) Re(v)+δ2 Im(v))]

10: Li= 2
δ

√
Re(si) [Re(li), γ (Im(β) Re(li)+δ2 Im(li))]T

11: end if
12: Z=[Z,Zi]
13: B⊥=B⊥+EZiLT

i

14: determine si+1 and li+1 with ‖li+1‖2 =1
15: until ‖B⊥‖2<tol ‖B‖2

relative residual error, which would yield ‖R‖2 < tol
∥∥∥BBT

∥∥∥
2
. As R = B⊥BT

⊥, this is
however equivalent to Step 15 of Algorithm 5.2. Nevertheless, one might as well think
of alternative criteria for convergence.

T-LR-ADI by Algorithm 5.2 represents a generalization of the block ADI iteration
(5.51). To demonstrate this, assume m equal real shifts s1 = s2 = . . . = sm and an
orthonormal basis {l1, . . . , lm} as tangential directions. Then the outcome of T-LR-
ADI, [z1, . . . , zm], is equal to the first iterate of the block ADI iteration (5.42) or (5.51).
Therefore, the block ADI iteration is a special case of T-LR-ADI, where the latter
provides an additional degree of freedom: instead of being restricted to the whole
block, we may pick only certain directions of our choice.
It is left open, how to determine the shifts si and tangential directions li. Basically,

this should be done on the basis of some optimization procedure. However, this rep-
resents a research direction in its own right, which is out of the scope of this work.
The interested reader is instead referred to [210], where this discussion is more detailed.
There was also presented a numerical example, which justifies the idea of a tangential
ADI iteration, as it indeed can outperform the ADI iteration (5.42) based on blocks.

Remark 5.23 (Parallelization). There is a final remark in order: in all formulations of
the ADI iteration—that is (5.42), (5.51), (5.53) and (5.55)—one in principle has to
wait until the preceding shift was processed, before the next can be used; but with the



5.4 Alternating Directions Implicit (ADI) Iteration 133

findings of this chapter, it is for the first time possible to parallelize the ADI iteration
for solving Lyapunov equations. Without going into computational details, this will be
demonstrated by a simple example. Assume a single input m = 1, and that we have
access to k processors, and that a set of k shifts s1, . . . , sk is given. The main numerical
effort in the ADI iteration is to solve the k LSEs (A−siE) vi = b for vi, so it would
be desirable to distribute them and simultaneously solve them on the k processors. If
we do so, a final step to merge the different solves is required. This could be done
by plugging the matrices V = [v1, . . . ,vk], S = diag(s1, . . . , sk), and L = [1, . . . , 1] into
PORK-Lyap and solve the Lyapunov equation of dimension k by direct methods for Pr.
The ADI basis Z then follows from the Cholesky factorization Pr=RR∗, and by taking
Z=VR, whereas the residual factor is given by b⊥=b+EVPrL∗=b+EZR∗rL∗. Then
we could repeat the whole procedure by determining k new shifts (or possibly recycle
the already given ones). In conclusion, if k processors are available, it is reasonable to
distribute k LSEs and compute the joint approximation P̂ by PORK-Lyap—instead of
using one of the iterative procedures (5.42), (5.51), (5.53) or (5.55), which perform a
restart after every single shift, and thereby render parallelization impossible.

5.4.4 Overview on the Link Between ADI and Krylov

The link between Krylov based methods and the ADI iteration for solving Lyapunov
equations has been investigated by various authors. After introducing the low-rank
formulation of the ADI iteration, Li and White [128] already proved that the ADI basis
Z spans a rational Krylov subspace. It has been accepted since then, that both methods
are connected somehow; Gallivan et al. [79] expressed this in the following way:

“Even though these methods [Editor: ADI iteration included] cannot directly
be interpreted as interpolation techniques, they are linked to Krylov based
interpolation.”

The results of this section, however, suggest that the ADI iteration may indeed be
interpreted as an interpolation technique, by associating (virtual) reduced data to its
constitutive functional iterations (5.42), (5.51), (5.53) or (5.55). First steps in this
direction yet are due to Flagg and Gugercin [67] and Druskin et al. [55]: it was inde-
pendently proven in their works, that the approximation P̂ of the ADI iteration equals
the one of RKSM with W = V, if and only if the eigenvalues of the projected matrix
E−1
r Ar are the mirror images of the shifts si, with respect to the imaginary axis. This

condition, however, can hold true only for special sets of shifts si (these could be com-
puted in an IRKA-like manner). The results given here, and which has been presented
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in [207, 213], instead describe a constructive way how the approximation of the ADI
iteration can be computed by Krylov-based projections—for arbitrary shifts. Thereby,
the “oblique” nature of the ADI iteration is identified, as the Krylov-based approach
generally requires oblique projections, in order to copy the approximation of the ADI
iteration. It should be noted, that the “obliqueness” of the projection that the ADI iter-
ation is associated with, can be measured with low numerical effort. This was presented
in [213], where this measure is also used to estimate the quality of approximation.
The link between RKSM and ADI is proven in [55] by showing the equivalence of

the ADI iteration to the so-called skeleton approximation. There are therefore three
approaches for solving large-scale Lyapunov equations—ADI iteration, skeleton approx-
imation and RKSM in terms of H2 pseudo-optimality—, all of which originate from
completely different motivations, but still generate equal approximations.
The H2 pseudo-optimal nature of the ADI iteration, was already recognized by Flagg

and Gugercin [67], however, only for the single-input case. It was noted, that this
“proves harder to extend” to multiple inputs m> 1, which was also considered as an
“interesting research direction to pursue”. This work presents the full generalization to
multiple shifts and to both block-input and tangential-input Krylov subspaces.
A very interesting approach for solving large-scale Sylvester and Lyapunov equations

was proposed by Ahmad et al. [3], which was denoted as “Krylov subspace restart
scheme”. The starting point is quite similar to the approach pursued here: given a
basis of a rational Krylov subspace, the family of possible reduced data is formulated
like in Section 2.5, although this is carried out in [3] via an auxiliary (intermediate
step of an) orthogonal projection. Then the remaining degree of freedom is determined,
such that the rank of the residual is minimized—which in fact causes R = B⊥B∗⊥.
The benefit then is that the algorithm can be restarted with B⊥ instead of B and
that the approximation P̂ can be cumulated with guaranteed monotonically decreasing
error. What was not recognized is, that the emerging reduced data has eigenvalues
and expansion points as mirror images and hence, that this approach actually depicts
an H2 pseudo-optimal approximation. Furthermore, the cumulative idea was proposed
only for the solution of Sylvester and Lyapunov equations, whereas the possibility of
also accumulating an approximate transfer function was not discovered. In addition,
the equivalence to the ADI iteration was not recognized. Nevertheless, it is interesting
to note that a completely different motivation—minimizing the rank of the residual—in
fact yields the same approximation as the H2 pseudo-optimal framework discussed in
this work. The “Krylov subspace restart scheme” by Ahmad et al. [3] thus can be seen
as the fourth approach alongside the above mentioned ones, all of which yield equal
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approximate solutions P̂.
It was already recognized in [67], that the residual R of the ADI iteration fulfils cer-

tain orthogonality conditions for special shifts; yet the first explicit formulation of the
residual is probably stated in [55], which, however, is inappropriate for numerical com-
putations, because an ill-conditioned Cauchy matrix is involved. The above formulation
of the ADI residual, which is easy to implement, well-suited for numerical computations,
and which directly includes the above statement on orthogonality, was first presented
in the talk [207], then proven in [213], and in the meantime independently proven by
Benner et al. [32].
The re-formulation (5.51) of the ADI iteration was independently found by Benner

and Kürschner, cf. [31] and [34]. It was also presented in [210], where additionally the
tangential ADI iteration was introduced.
It should be possible to directly generalize the results of this chapter to large-scale

(i. e. sparse-sparse) Sylvester equations. This is omitted here for a concise presentation,
but first ideas can be found e. g. in [34, 67]. Finally, it should be noted that the link
between ADI and H2 pseudo-optimal RKSM was used in [209], where the effect of the
approximations P̂ from ADI and RKSM on the reduced order model by approximate
balanced truncation was investigated.





6 Conclusions

This work treats model order reduction of linear time invariant systems using projec-
tions onto rational Krylov subspaces. Because theoretically any reduced model may
be generated with projections onto rational Krylov subspaces, we may without loss of
generality choose “Krylov” as the tool to construct reduced models.
It was shown in this work that it is useful to describe bases of rational Krylov sub-

spaces through particular sparse-dense Sylvester equations, which may actually be un-
derstood as a duality. The in-depth analysis of this duality allows to define a family
of reduced models that ensures moment matching at prescribed interpolation points.
Moreover, a new proof of moment matching was derived in this work.
Sylvester equations are definitely the main tool in this research, as all proofs basically

emanate from their detailed understanding. In this respect, the Sylvester equations
themselves are mainly of theoretical interest, as they are not beneficial in their own
right. They rather pave the way to new methods of model order reduction. By contrast,
the matrices that form the Sylvester equations, these are V, S, L, and B⊥, are indeed
relevant for practical applications and new approaches to MOR. One example is the
reshaped error model presented in Section 3.1: the sum G(s)−Gr(s) is transformed
into the product G⊥(s)Gf (s). This has both analytical and numerical advantages (see
e. g. the rigorous upper bounds on the error proposed in [150]). Moreover, the error
factorization is the basis for a paradigm shift in MOR towards the cumulative framework
CURE, presented in Section 3.2. It permits the accumulation of independently reduced
models, and at the same time the preservation of the aforementioned generality that
Krylov-based projections offer.
The flexibility that projections onto Krylov subspaces provide is one of their main

advantages compared to other methods of MOR. However, one has to make sure that
these degrees of freedom do not turn into disadvantages, because if any reduced model
may be generated, then also the worst one is possible. It is therefore essential to
have useful guidelines how to determine these degrees of freedom. To this end, this
thesis suggests a deliberate way to restrict at least half of the degrees of freedom.
This is carried out by proposing the concept of “H2 pseudo-optimality”. The label
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“pseudo-optimal” stems from the fact that a certain kind of optimality it automatically
ensured. Moreover, forcing H2 pseudo-optimality requires only marginal numerical
effort compared to the computation of bases of rational Krylov subspaces. One benefit
then is that stability is preserved in the reduced model. Furthermore, H2 pseudo-
optimality is a natural extension of the CURE framework, since it ensures that the
approximation error decreases monotonically with each “salami slice”, i. e. with each
additional reduced model. To conclude, this thesis promotes to perform H2 pseudo-
optimal reductions within the cumulative framework.
The sole remaining issue left over is the determination of interpolation points and

tangential directions. However, this represents a research direction in its own right,
which is why it is tackled in another thesis by Panzer [148]. There, the structure
which the combination of the cumulative framework with H2 pseudo-optimality offers
is exploited to propose an optimization procedure that has guaranteed convergence
towards interpolation points that yield locally H2 optimal reduced models. One of the
tools to derive these results are the small-scale and easy-to-evaluate matrix equations
for H2 pseudo-optimality, which are presented in this thesis. They mark the main
devices for the analysis and construction of H2 pseudo-optimal reduced models, and
consequently, they are among the most important results of this thesis.
Although these results intended to improve MOR using projections onto rational

Krylov subspaces, they may also be exploited to approximately solve large-scale Lya-
punov equations. It was shown that applying the ideas of H2 pseudo-optimality to
Lyapunov equations actually results in the same approximation as one would obtain
from the prevalent ADI iteration. This thesis therefore not only provides a novel view
on the ADI iteration, but it also offers tools for the analysis and improvement of the
ADI iteration. One such example is the numerically efficient low-rank formulation of
the residual, which was presented in this thesis, and which eases convergence analysis
of the ADI iteration. Moreover, the disclosure of the link between the ADI iteration
and projections onto rational Krylov subspaces enables the generalization of the ADI
iteration to tangential interpolation. The benefit is that this new functionality might
prevent the ADI basis from growing too large in certain cases, and it thereby ensures
that the final approximation stays numerically manageable. Finally, the results of this
work allow for the first time to parallelize the computations involved in the ADI it-
eration. If multiple processors are available, then the suggested ideas for distributing
computations to these processors have the potential to massively reduce computational
time of the ADI iteration.
Although H2 pseudo-optimality seems to be a promising contribution to MOR, there
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are of course still open questions that remain to be clarified. For example, the optimiza-
tion procedures for the determination of interpolation points allow for improvement; es-
pecially elaborate algorithms for the optimal selection of tangential directions are still
lacking. Maybe also some ideas for optimization that are contained in the mentioned
literature on H2 pseudo-optimality based on data of transfer functions might allow to
be translated into a large-scale setting based on rational Krylov subspaces.
Future work might also include some generalizations of the presented results. This

might be the formulation of necessary and sufficient conditions for frequency weighted
H2 pseudo-optimality. Moreover, the results of this research may be generalized to the
solution of large-scale (sparse-sparse) Sylvester equations, which, however, should be
straightforward.





Appendix A

Proof of Theorem 4.26

Equations (2.42) and (4.40) will be required in the following rewritten form:

S = E−1
r Ar − E−1

r BrL, (A.1)

−PrA∗rE−∗r P−1
r = E−1

r Ar + E−1
r BrB∗rE−∗r P−1

r . (A.2)

Proof of i) ⇔ ii): Subtract (A.2) from (A.1):

S + PrA∗rE−∗r P−1
r = −E−1

r Br

(
L + B∗rE−∗r P−1

r

)
. (A.3)

If the left hand side is zero, so is the right hand side and vice versa. Setting the left
hand side to zero is equivalent to condition i), and setting the right hand side to zero
is equivalent to condition ii), if Br has full column rank.
Although it was assumed in the theorem that Br has full column rank, let us briefly
consider the case that this is not satisfied (this is particularly the case if n < m):
it will follow from the rest of the proof that conditions ii)–vi) are equivalent to each
other, irrespective of whether Br has full column rank or not. If now Br has not full
column rank, then (A.3) shows that conditions ii)–vi) are sufficient but not necessary
for condition i).

Proof of ii) ⇔ iii): Replacing E−1
r Ar and A∗rE−∗r in (A.2) by (A.1), and multiplying

the result with Pr from the right leads to

SPr + PrS∗ + E−1
r BrLPr + PrL∗B∗rE−∗r + E−1

r BrB∗rE−∗r = 0. (A.4)

By using(
E−1
r Br + PrL∗

) (
E−1
r Br + PrL∗

)∗
=

E−1
r BrB∗rE−∗r + E−1

r BrLPr + PrL∗B∗rE−∗r + PrL∗LPr, (A.5)
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it follows that

SPr + PrS∗ −PrL∗LPr = −
(
E−1
r Br + PrL∗

) (
E−1
r Br + PrL∗

)∗
. (A.6)

If the left-hand side is zero, so is the right-hand side and vice versa, which proves
equivalence of conditions ii) and iii).

Proof of ii) ⇔ iv): Noting that X in (4.38) is unique, we insert iv) in (4.38) and mul-
tiply the result with E−∗r P−1

r from the right:

AV + EVPrA∗rE−∗r P−1
r + BB∗rE−∗r P−1

r = 0. (A.7)

Using (A.2) for PrA∗rE−∗r P−1
r yields

⇔ AV− EVE−1
r A−1

r − EVE−1
r BrB∗rE−∗r P−1

r + BB∗rE−∗r P−1
r = 0. (A.8)

Substituting B− EVE−1
r Br = B⊥ we get

⇔ AV− EVE−1
r A−1

r = B⊥
(
−B∗rE−∗r P−1

r

)
. (A.9)

Subtracting (A.9) from (2.39) yields B⊥ (L + B∗rE−∗r P−1
r ) = 0. As B⊥ is assumed to

have full column rank, condition ii) follows, showing equivalence to condition iv).

Proof of ii) ⇔ v): Owing to Theorem 5.3,

AP̂ET + EP̂AT + BBT = B⊥B∗⊥ + FB∗⊥ + B⊥F∗. (A.10)

Condition v) therefore is equivalent to FB∗⊥+B⊥F∗= 0. This in turn is equivalent to
F = 0, because on the one hand B⊥ is assumed to have full column rank and on the
other hand span(B⊥) 6= span(F). Finally, F = EV (E−1

r Br + PrL∗) = 0 is equivalent
to condition ii).

Proof of iii) ⇔ vi): Starting from condition iii)

P−1
r S + S∗P−1

r − L∗L = 0, (A.11)

we replace S by (A.1)

S = E−1
r Ar − E−1

r BrL
ii)= E−1

r Ar + PrL∗L, (A.12)
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to show that this is equivalent to vi):

⇔ P−1
r E−1

r Ar + A∗rE−∗r P−1
r + L∗L = 0, (A.13)

⇔ E∗rE−∗r P−1
r E−1

r Ar + A∗rE−∗r P−1
r E−1

r Er + L∗L = 0. (A.14)

By comparing the Lyapunov equations (A.14) and (4.83), we can identify E−∗r P−1
r E−1

r =
Qf , which proves equivalence of conditions i)–vi).

Proof of vii) ⇔ vi),ii): Pr and E∗rQfEr define the Controllability and Observability
Gramian of Gf (s) = L (sEr −Ar)−1 Br + I, respectively. By condition vi), it holds
that PrE∗rQfEr = I. Using the result of Glover [84, Theorem 5.1], this is equivalent
to the existence of a feed-through D, such that L (sEr −Ar)−1 Br + D is all-pass.
Taking D = I and employing condition ii), B∗rE−∗r + LPr = 0, we can check with [84,
Theorem 5.1] that Gf (s)G∗f (−s) = I. (Please note that there is a little typo in [84,
Theorem 5.1], as it is printed as: Gf (s)G∗f (−s) = I.)

Proof of i) ⇒ viii): It is obvious that condition viii) is necessary for condition i).

Proof of i) ⇐ viii) if V spans single- or block-input Krylov subspace: We only prove the
case that V spans a rational block-input Krylov subspace, as the single-input case then
is directly included. Consider equation (A.1):

S = E−1
r Ar − E−1

r BrL. (A.15)

Condition viii) leads to the interpretation of (A.15) as a pole placement problem in
control theory: we are searching for the “feedback” L such that the eigenvalues of
E−1
r Ar are mirrored along the imaginary axis. Because condition viii) requires that all

eigenvalues are assigned, it follows that the pair (E−1
r Ar,E−1

r Br) must be controllable.
Generally, the multivariable pole placement problem has many solutions. However, due
to block Krylov subspaces, all to-be-assigned eigenvalues of S have geometric multiplic-
ity m, and the Jordan blocks to each eigenvalue have equal dimensions, cf. Theorem 2.4
and Corollary 2.6. In this particular case, O’Reilly and Fahmy [147, Corollary 8] proved
that the feedback L becomes unique. Consider again equation (A.2) in order to identify
the desired feedback:

−PrA∗rE−∗r P−1
r = E−1

r Ar + E−1
r BrB∗rE−∗r P−1

r . (A.16)

As the left-hand side shares the desired Jordan normal form, (A.16) constitutes the
same pole placement problem as (A.15). Due to uniqueness of the “feedback” L, we
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can identify L = −B∗rE−∗r P−1
r and S = −PrA∗rE−∗r P−1

r which proves that viii) ⇒ i)
and viii) ⇒ ii), if V spans a rational block-input Krylov subspace



Appendix B

Proof of Theorem 4.27

Proof of i): Define AH = P−1
r E−1

r ArPr, BH = −P−1
r E−1

r Br, and CH = −CrPr, then

CH (sI−AH)−1 BH = CrPrP−1
r

(
sI− E−1

r Ar

)−1
PrP−1

r E−1
r Br = Gr(s) (B.1)

is an admissible state-space realization of the reduced model. If the conditions of
Theorem 4.26 are satisfied, then AH

i)= −S∗ and BH
ii)= L∗ and hence, Gr(s) =

CH (sI− (−S∗))−1 L∗.

We first prove the case that V spans a rational tangential-input Krylov subspace with
k expansion points si, i = 1, . . . , k and respective tangential directions Li ∈ Cm×mi . We
may assume without loss of generality that in this case

S =

 s1I
. . .

skI

 , L = [ L1 . . . Lk ] , CH = [ C1 . . . Ck ] , (B.2)

which yields Gr(s) = CH (sI− (−S∗))−1 L∗ = ∑k
i=1

CiL∗i
s+si

, from which we can identify
the reduced eigenvalues λi = −si and the respective input residues Bi = L∗i . Then
the tangential interpolation G(si)Li = Gr(si)Li, i = 1, . . . , k, due to Theorem 2.4
becomes G(−λi)B∗i = Gr(−λi)B∗i , i = 1, . . . , k, which proves H2 pseudo-optimality
due to Theorem 4.19.

As was noted before Corollary 4.24, the above result already includes single-, block-
and tangential-input Krylov subspaces, if each expansion point is used only once. For
the generalization to higher multiplicities, consider the case that V spans a rational
tangential-input Krylov subspace with a single expansion point s0. Without loss of
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generality, we may assume in this case

S =


s0I I

. . . . . .
. . . I

s0I

 , L = [ L1 . . . Lk ] , CH = [ C1 . . . Ck ] , (B.3)

from which it follows that AH = −S∗ and BH = L∗ are in the form assumed in
Theorem 4.22, and that the reduced eigenvalue is λ = −s0 and that the input residues
are Bi = L∗i . Therefore, the tangential interpolation

(
Ms0

0 − M̂s0
0

)
L1 = 0 (B.4)(

Ms0
0 − M̂s0

0

)
L2 +

(
Ms0

1 − M̂s0
1

)
L∗1 = 0 (B.5)

...
k−1∑
i=0

(
Ms0

i − M̂s0
i

)
Lk−i = 0 (B.6)

become the necessary and sufficient conditions for H2 pseudo-optimality stated in The-
orem 4.22.
As noted before Theorem 4.22, the combination of different expansion points in V

with higher multiplicities requires cumbersome notation and is omitted for the sake of
a concise presentation.

Proof of ii): The gradient of J with respect to Cr is given by [187, 203]: ∇CrJ =
2 (CrPr −CX) = 2C (VPr −X). By condition iv) of Theorem 4.26, namely X = VPr,
it directly follows that ∇CrJ = 0.

Proof of existence of V: If Gr(s) is input H2 pseudo-optimal, then it satisfies the inter-
polatory conditions of Theorems 4.19 or 4.22. Then define the matrix S in Jordan canon-
ical form, with the mirror images−λi of the reduced poles as eigenvalues, and the matrix
L, with the residues B∗i as columns. Let V solve the B-Sylvester equation (2.15), and
define the family GF(s) by (2.44), i. e. the reduced model Gr(s) = Cr (sEr−Ar)−1 Br

with Ar = S+FL, Er = I , Br = F and Cr = CV with the free parameter F. Then it
holds G(−λi)B∗i = Gr(−λi)B∗i due to Theorem 2.15 and we have to show that there
exists an F, such that the conditions of Theorem 4.26 are satisfied. To this end, let Pr

be the unique solution of the Lyapunov equation given by condition iii) of Theorem 4.26
and choose F =−PrL∗. Then it is left to prove that Pr indeed is the Controllability
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Gramian of the constructed reduced model, which is defined as

ArPr + PrA∗r + BrB∗r
Ar=S+FL= SPr + PrS∗ + FLPr + PrL∗F∗ + BrB∗r (B.7)

Br=F=−PrL∗= SPr + PrS∗ −PrL∗LPr. (B.8)

Equation (B.8) is equal to zero by construction of Pr, and hence, the reduced model
Gr(s) satisfies the conditions of Theorem 4.26, which completes the proof.
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