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1 INTRODUCTION

1 Introduction

Maize (Zea maize L.) originates from Mexico and was domesticated around 9000 years

ago (Matsuoka et al. 2002). Today, maize is one of the most common crops grown in

the world with a production of 850 Million tonnes for food, fodder, and bioenergy in

2010 (FAO 2010) demonstrating the achievements of maize breeding all over the world.

In Germany, maize grain yields were on average 107.2 dt/ha and for silage production

476.1 dt/ha in 2011 (DMK 2011).

The revolution in maize breeding started with the first description of heterosis observed

between a cross of two inbred lines by Shull (1908, 1909). Since the early 1950s, the

first hybrid breeding programs started in Germany to exploit this heterosis effect and

until today they have replaced traditional open pollinated varieties or landraces within

breeding programs. For hybrid breeding, recurrent selection is conducted to genetically

improve quantitatively inherited traits within the breeding population with including

new material into every selection cycle (Hallauer and Miranda 1985). At the beginning

of a breeding cycle, several crosses are generated from elite lines derived from the cur-

rent breeding population. Out of these crosses, doubled haploid (DH) lines are produced

by pollinating the S0 plants with an inducer line (Röber et al. 2005). Each recurrent

selection cycle includes multiple years where the selection candidates (DH lines) are

crossed to several tester lines from the opposite pool and evaluated as testcrosses within

multi-environment trials to assess their genetic potential and general combining ability

(GCA). After several selection steps, hybrid performance is evaluated in factorial crosses

to assess the specific combining ability (SCA) of possible hybrid partners. The selected

lines will be used as parental lines for a new generation of DH lines and form the next

recurrent selection cycle. Further improvements of the breeding methodology are now

expected with the implementation of genome-based prediction of the performance of se-

lection candidates, which has already been successfully implemented in animal breeding

programs (Schaeffer 2006; Jannink et al. 2010).
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Reference
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Genotypes
and phenotypes

Prediction model
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candidates
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Selected
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Figure 1: Concept of genome-based prediction.

1.1 Genome-based prediction

Basic concept of genome-based prediction

Historically, genome-based prediction (GP) was developed in animal breeding and led

to improvements in assessing the potential of selection candidates (Goddard and Hayes

2007). First results were encouraging and genomic prediction was successfully imple-

mented in cattle breeding programs (Hayes et al. 2009a; VanRaden et al. 2009). As illus-

trated in Figure 1, genomic prediction models are developed based on a large reference

population for which genotypic and phenotypic data are available. The genetic value of

non-phenotyped candidates can then be predicted and the candidates are selected based

on their genomic information alone. In contrast to marker-assisted selection, GP does

not aim at the selection of markers based on quantitative trait loci (QTL) mapping but

uses all available markers for predictions. The assumptions behind this approach are

based on the hypothesis that with a sufficiently high density of markers all available QTL

are in linkage disequilibrium (LD) with random markers segregating in a population un-

der study (Goddard and Hayes 2007). Whittaker et al. (2000) proposed a linear mixed

model to estimate the effects of all available markers simultaneously. These estimates

can be employed to predict breeding values of non-phenotyped animals (Meuwissen

et al. 2001). In dairy breeding, this led to enormously shortened selection cycles, be-

cause the phenotyping of thousands of daughters of each bull took several years before

the breeding value of a bull could be estimated.

In animal breeding, mixed models had already been implemented using the pedigree-

2



1 INTRODUCTION

based kinship coefficients to estimate breeding values of selection candidates (Hender-

son 1984). Based on genome-wide marker information, the realized kinship matrix has

now replaced the traditional kinship for best linear unbiased predictions (BLUPs) (Ha-

bier et al. 2007; VanRaden 2008). Due to the “kernel trick” (Schölkopf et al. 1998), this

so called genome-based BLUP (GBLUP) model can be conveyed to the model where the

markers are fitted directly (see Appendix) but is computationally more efficient, when

the number of markers exceeds the number of individuals. In contrast to ridge regres-

sion, where all markers are assumed to have equal variance, further models have been

developed taking unequal variances for each marker into account. For example, Bayesian

prediction methods as BayesA and BayesB have been widely adopted in genomic predic-

tion (Meuwissen et al. 2001), but their sensitivity to different hyper-parameter settings

has been recently demonstrated by Lehermeier et al. (2013). Furthermore, none of

the Bayesian models has outperformed GBLUP when applied to experimental data and

traits with similar genetic architecture as the traits analyzed in this study (Wimmer et al.

2013). Improvements in prediction accuracy might be achieved with more complex

models as compared to GBLUP (Ober et al. 2011).

Genome-based prediction in plant breeding

The selection cycle in maize breeding starts with several initial crosses of elite material to

produce DH lines, which are fully homozygous. This breeding scheme leads to different

family structures and higher LD as observed for animal breeding, where the degree of

homozygosity is low. Furthermore, the DH lines are crossed to testers from the opposite

heterotic pool and are evaluated in replicated multi-environmental trials to assess trait

specific genotype by environment interactions. With GP, the genetic values of testcrosses

can be predicted based on related lines for which genotypic and phenotypic data are

available even in the absence of reliable pedigree data. Further advantages of GP com-

pared to pedigree-based selection are the differentiation of lines with equal expected

relatedness and the control of inbreeding rates during selection processes while selec-

tion intervals can be shortened (Heffner et al. 2009). Challenges for the implementation

of GP within maize breeding schemes include unbalanced breeding designs and that

extensive genetic substructures can occur in the breeding material when new material

from related breeding populations is introgressed into the main germplasm of the cur-

3



1 INTRODUCTION

rent breeding population. One further question for the implementation of GP into plant

breeding programs is the optimal allocation of resources, i.e., number of lines, number

of environments and the number of markers necessary to obtain reliable predictions.

The efficiency of GP compared to phenotypic selection can be derived from the “Breeder’s

equation” (Falconer and Mackay 1996), where the response to direct phenotypic selec-

tion (RP) can be expressed as

RP = i ·σg · h, (1)

where i is the selection intensity, h is the square-root of the trait heritability defined

as the ratio of genetic to phenotypic variance and σg is the square-root of the genetic

variance. Based on this equation, the relative efficiency of GP (RM), which can be seen

as indirect selection based on marker data, compared to direct phenotypic selection is:

RM

RP
=

iM ·σg · hM · r( ĝ, g)

i ·σg · h
, (2)

where iM is the selection intensity of indirect selection, hM is the heritability of the

marker, which is assumed to be hM = 1, if the marker genotypes can be assessed without

error, and r( ĝ, g) is the correlation between predicted and true genetic values of the

selection candidates (Technow et al. 2013). This correlation is also known as predic-

tion accuracy and can be used for the comparison of different genome-based prediction

models.

1.2 Assessing predictive ability

Different methods have been developed to assess the predictive ability or accuracy of

prediction models. The need of useful validation procedures was proposed by Kurtz

(1948) in the field of psychology, who criticized that models for the prediction of success

of insurance sales managers based on a Rorschach test were not validated on an inde-

pendent sample. However, in most studies only one sample is available and validation

on an independent sample is time and cost intensive.

4
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Figure 2: Basic scheme for cross-validation modified according to Mosier (1951).

Therefore, Mosier (1951) proposed a method to divide the data set into two disjoint

samples (Figure 2). Model parameters are then estimated in one sample and used for

prediction and cross-validation (CV) in the other sample. With this method one can

validate the prediction models on disconnected subsets without the assessment of an

additional data set. Advantages of CV compared to other model quality measures, e.g.,

Akaike information criterion, are to obtain out-of-sample estimates for the prediction

accuracy even for non-nested models. On the other hand, dividing the data set into

subsets causes a loss of information incurred in model development. Hence, optimiz-

ing the CV schemes to decrease the bias due to information loss without increasing the

variance across subsets has been subject to previous studies (Breiman and Spector 1992;

Utz et al. 2000). Furthermore, stratified CV schemes have been employed to account for

distinct family structures (Legarra et al. 2008). Overall, CV can be applied to evaluate

genome-based prediction models to obtain a direct estimate of the prediction accuracy

achieved within different sets of breeding populations. However, first experimental stud-

ies in plant breeding have shown that predictive abilities obtained with CV in one year

can only partly reflect the prediction of an independent sample evaluated in a differ-

ent year or environment (Hofheinz et al. 2012; Utz et al. 2000). Therefore, the naive

application of CV is not appropriate to obtain an adequate (unbiased) estimator of the

predictive ability for a typical plant breeding scenario where the interest lies in predict-

ing related crosses in a different year. For an overall evaluation of the potential of GP

in maize breeding, results need to be validated on data derived from different breeding

cycles and years.

5
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1.3 Accounting for genetic structure

In contrast to animal breeding, populations in plant breeding are open for the introgres-

sion of new material during every recurrent selection cycle (Gordillo and Geiger 2008).

Therefore, the training population might consist of individuals belonging to different

genetic groups from the same heterotic pool, which can have a strong effect on the pre-

diction of testcross values for different traits. As indicated by Windhausen et al. (2012),

predictive abilities are highly affected by population structure, when the genetic groups

differ in their mean performance. In addition, the choice of tester might be confounded

with the maturity of the selection candidates such that early testers are crossed to late

material of the breeding population and vice versa, but also with utilization aspects like

silage or grain use. Furthermore, phenotyping of all possible tester combinations within

early stages of a breeding cycle is usually not feasible, making predictions across genetic

groups, testers, and years of interest for maize breeders.

In the context of GP, one main focus of studies dealing with experimental data has been

the comparison of different GP models to improve prediction accuracies within plant

populations, e.g., diversity panels (Crossa et al. 2010; Riedelsheimer et al. 2012; Rin-

cent et al. 2012) or breeding populations (Zhao et al. 2012; Heslot et al. 2012). These

plant populations differ mainly in their genetic substructure influencing predictive abil-

ities. While diversity panels are designed to present a wide range of genetic variation,

breeding populations comprise more closely related material derived from single or mul-

tiple crosses adapted to specific environmental conditions. The potential of GP in highly

structured plant populations comprising different genetic groups or breeding cycles has

been less investigated (Heslot et al. 2012; Hofheinz et al. 2012; Technow et al. 2012).

However, these predictions are of high relevance in advanced cycle breeding populations.

In association studies, accounting for genetic substructure has already been discussed

to correct for spurious associations due to relatedness (Astle and Balding 2009). When

the genetic substructure is not known a priori, principal components and cluster analysis

can be applied to marker data to detect subgroups in the material. A principal compo-

nent analysis (PCA) represents the genetic relatedness between individuals in reduced

dimensions with capturing the original variation. The principal components (PC) are

linear combinations of the original data space derived from a single value decomposi-

6
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tion (Schölkopf et al. 1998). The properties of PCs are that they are orthogonal and

the first principal component explains most of the variability in the data set. To detect

groups in data, different clustering methods are available, e.g., hierarchical clustering

methods as UPGMA (unweighted pair group method with arithmetic mean; Sokal and

Michener (1958)) and Ward’s minimum variance (Ward 1963) method or k-means clus-

tering (Hartigan and Wong 1979).

7
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1.4 Objectives

The main goal of this thesis was to assess the potential of genome-based prediction

models in maize breeding. For this purpose, genomic prediction of testcross values was

analyzed in two experimental data sets representing typical maize breeding programs.

The first experimental data set used here consists of 1377 DH lines genotyped with 1152

single nucleotide polymorphism (SNP) markers, pedigree data, and phenotypic data of

two traits, grain dry matter yield (GDY) and grain dry matter content (GDC). A subset

of this data set was additionally genotyped with a high density SNP array. The second

data set consists of two calibration sets comprising 1073 and 857 DH lines evaluated as

testcrosses in two different years, where two traits, GDY and GDC, were assessed. All

lines were genotyped with a high density marker array. A selected set of DH lines from

the first calibration set was additionally evaluated with several testers in the following

year. The second data set can be further characterized according to the distinct genetic

substructure and the different testers used for producing the testcrosses. Therefore, the

objectives of this thesis were to

1. compare kinship coefficients between DH lines based on pedigree and genome-

wide marker data in the context of prediction models,

2. assess the potential of prediction within biparental families or genetic groups ver-

sus population-wide prediction,

3. assess the potential of prediction across groups, testers, locations and years,

4. evaluate the impact of number of individuals, markers, and locations on predictive

abilities, and

5. determine the impact of family and subpopulation structures on the predictive

ability within two experimental data sets.

8



2 MATERIALS AND METHODS

2 Materials and Methods

2.1 Plant materials

2.1.1 Maize 1

The first data set comprised a total of 1380 doubled haploid (DH) lines of maize (Zea

mays L.). Thirty-six families were derived from crosses among 29 inbred lines and four

single crosses all belonging to the dent heterotic group. Resulting S0 plants were used for

production of DH lines, which was performed with the in vivo haploid induction technol-

ogy according to Röber et al. (2005). S0 plants were pollinated with inducer line RWS

and on average 38 DH lines per cross were produced. The smallest DH family comprised

14, the largest 60 lines. For all lines full pedigree information was available up to three

generations (Appendix, Figure A1). The four largest biparental families, comprising 58-

60 DH lines, were analyzed separately to assess prediction accuracy within individual

families.

2.1.2 Maize 2

The second data set was derived from a different maize breeding program and consists

of two sets of genetic material from the maize dent pool comprising 1073 and 857 DH

lines. The two data sets represent two selection cycles of the same breeding program

and form two calibration sets for GP.

In calibration set 1 (CS1), the 1073 DH lines were derived from 192 crosses among 55

parents (43 inbred lines and 12 single-crosses). In calibration set 2 (CS2), the 857 DH

lines were obtained from 294 crosses among 75 parents (55 inbred lines and 20 single-

crosses). The two calibration sets were connected by 25 parents (Figure 3). The number

of DH lines derived from each cross was highly variable ranging from 1 to 63 DH lines

with an average of 6 DH lines in CS1 and from 1 to 26 DH lines and an average of 3 DH

lines in CS2. The number of progeny per parent ranged from 1 to 203 with an average

of 39 DH lines in CS1 and from 1 to 130 with an average of 23 DH lines in CS2. Pedigree

records included 479 ancestors representing a minimum of three generations. The DH
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lines can be assigned to three a priori defined groups (G1, G2, and G3) of different

genetic background, where G1 represents the core germplasm of both calibration sets

(Appendix, Figure A2). Figure 4 shows the connection between groups G1, G2, and G3

based on parents used in each of the two calibration sets.

A subset of 97 DH lines from CS1 was selected based on their phenotypic performance

to be evaluated in a second testcross cycle and forms a validation set (VS1) for CS1 and

CS2. The DH lines belong to all three genetic groups (NG1 = 67, NG2 = 8 and NG3 = 22).

(a) Parental lines across CS1 and CS2 (b) Families across CS1 and CS2

Figure 3: Venn-Diagram with parental lines and families across calibration sets CS1 and CS2 in
Maize 2.
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(a) Groups in CS1 (b) Groups in CS2

(c) Testers in CS1 (d) Testers in CS2

Figure 4: Venn-Diagram with parental lines across groups and testers for calibration set CS1 and
CS2 of Maize 2.

2.2 Phenotypic analysis

2.2.1 Maize 1

All 1380 DH lines were evaluated as testcrosses with a single-cross tester in 2009 in seven

European locations. Two-row plots were machine-planted and harvested as grain trials.

Data were recorded for grain dry matter yield (GDY, dt/ha) and grain dry matter content

(GDC, %). In each of the seven locations the experimental design consisted of 15 sets

with 100 entries each. Trials were performed with one replication per location. Each set

contained 92 DH lines and four checks each replicated twice. Outlying observations were

removed from the data set based on extreme deviate standardized residuals according

to Grubbs (1950). For each environment, trait values were adjusted for the effects of the

sets based on the means of the replicated check varieties. Due to unreplicated field trials,
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trait heritabilities were estimated with the pedigree-based prediction model (Eqn. 15).

2.2.2 Maize 2

Phenotypic performance of the DH lines of Maize 2 was evaluated in replicated field

trials as testcrosses with a single-cross (T1) or double-cross tester (T2) for CS1 in 2010

and with one of two single-cross testers for CS2 in 2011 (T1 or T3). The three testers

were derived from six parental lines (A, B, C, D, E, and F) from the opposite heterotic

flint pool, with T1 being a cross of A × B, T2 was C.D × B.E, and T3 was B × F. For the

VS1 in 2011, each DH line was tested with up to three testers, of which tester T1 was

in common with both calibration sets. Each of the 192 crosses in CS1 and 294 crosses

in CS2 was assigned to either of nine possible group/tester combinations. In CS1, four

group/tester combinations were evaluated and in CS2 five combinations. A detailed

summary of the distribution of DH lines across groups and testers in each calibration set

is given in Table 1.

Field trials were conducted in six German locations in 2010 and 2011, where four loca-

tions were represented in both years. In 2010, entries were distributed across 16 trials.

Each trial was conducted in four of the six locations resulting in 6-16 trials per location.

In 2011, entries were distributed across 12 trials and each trial was conducted in three

or four of the six locations, resulting in 4-12 trials per location. Phenotyping of the VS1

in 2011 was carried out in nine different locations consisting of 1-8 trials. Each trial was

laid out in a 10 × 10 lattice design with two replications containing 94 entries and six

Table 1: Number of DH lines in different groups and tester subsets for (a) calibration set CS1
and (b) CS2.

(a) CS1

G1 G2 G3

T1 682 0 16 698

T2 0 145 230 375

682 145 246 1073

(b) CS2

G1 G2 G3

T1 189 0 138 327

T3 393 15 122 530

582 15 260 857
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hybrid checks for CS1 in 2010 and VS1 in 2011 and 95 entries and five hybrid checks

for CS2 in 2011. Entries comprised the genotyped DH lines and additional DH lines for

which no genotypic data were available.

Measured phenotypic traits were grain dry matter yield (GDY, dt/ha) and grain dry mat-

ter content (GDC, %). Outliers were identified and removed based on maximum deviant

residuals of a single stage model according to Grubbs (1950). Phenotypic analysis in

each year was performed in a two-stage approach. In the first stage, adjusted means

were calculated for each location with the following model formulated according to

Piepho et al. (2003):

y1 = g : t r ial/rep/block, (3)

where y1 are plot observations for each location, g is a variable for genotypes including

checks and entries, and t r ial, rep and block are the variables for trials, replications,

and blocks, respectively. In this model notation, fixed effects are placed before the colon,

random effects are placed after the colon.

In the second stage, location-specific adjusted means (y2) of the first stage were passed

to the following model:

y2 = g : C · loc+ C · D1 · g · loc+ C · D2 · g · loc, (4)

with C being an indicator variable assigning genotypes to different factor levels such as

checks or group/tester combinations and loc is a variable for random location effects

which is assumed to be independent and identically normal distributed. Location spe-

cific residuals were assumed to follow a normal distribution with N(0,R), where R is a

diagonal matrix containing squared standard errors of means from the first stage (Eqn. 3,

Appendix Table A2 and A3) as weights (Möhring and Piepho 2009). The combination of

two dummy variables (D1 and D2) separates the genotyped DH lines (D1= 1, D2= 0),

the non-genotyped DH lines (D1 = 0, D2 = 1), and the checks (D1 = 0, D2 = 0). These

dummy variables were introduced to estimate variance components for genotyped (σ2
g1

)

and non-genotyped entries (σ2
g2

) and the corresponding genotype by location interac-
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tions (Piepho et al. 2006). Estimates of heritabilities on an entry mean basis were calcu-

lated on genotyped DH lines only. Variance components were estimated with restricted

maximum likelihood using the software ASReml 3.0 (Gilmour et al. 2009). Significance

of variance components was tested according to Stram and Lee (1994) based on the

following model with random genotype effects for estimating genotypic variances:

y2 = C : C · D1 · g + C · D2 · g + C · loc+ C · D1 · g · loc+ C · D2 · g · loc. (5)

Due to an unbalanced distribution of trials across locations used for the evaluation of

testcrosses, trait heritabilities h2 were approximated based on genotyped DH lines for

both traits and both years in the second stage as follows (Holland et al. 2003):

h2 =
σ2

g1

σ2
g1
+
σ2

g1×loc

L
+
σ2

e∗

L

, (6)

where σ2
g1

is the genetic variance of genotyped DH lines, σ2
g1×loc is the corresponding

genotype by location interaction variance component, σ2
e∗ is the residual variance cal-

culated as mean of weights in R (Eqn. 4) and L is the harmonic mean of number of

locations per genotype used in each year (L = 4 for CS1 in 2010, L = 3.3 for CS2

in 2011, and L = 5.6 for VS1 in 2011). Adjusted means from the second stage were

submitted to the prediction models (Section 2.5).

2.3 Genotypic analysis

For Maize 1, marker analyses of the 1380 DH lines were performed with a VeraCode

assay including 1152 biallelic SNP markers randomly distributed across the genome. For

the majority of the markers, the positions in the maize genome were known from their

alignment to the B73_RefGen_v1 sequence (Schnable et al. 2009). The average physical

distance between adjacent markers was 2.9 Megabases (Mb). Markers with more than

10 % missing values or a minor allele frequency (MAF) < 0.01 were discarded, resulting

in 732 useful SNPs in the population of DH lines. Three DH lines were discarded from

the analysis due to low-quality marker data.
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A subset of Maize 1 including 759 DH lines was additionally genotyped with 56110

SNPs using the Illumina R© MaizeSNP50 BeadChip (Ganal et al. 2011). Only high-quality

SNPs with a GenTrain-Score ≥ 0.7, a call frequency ≥ 0.9, a MAF ≥ 0.01, and non-

redundant SNPs were used for further analysis, resulting in 20742 useful, polymorphic

SNPs for 759 DH lines of Maize 1. The 20742 SNPs were equally distributed across

the ten chromosomes of the maize genome and had an average distance of 0.11 Mb.

For comparing the low-density and high-density SNP panels without an influence of the

sample size N , the subset of 759 DH lines were also examined with 654 polymorphic

SNPs from the VeraCode assay data.

For Maize 2, DH lines from both calibration sets were genotyped with the Illumina R©

MaizeSNP50 BeadChip (Ganal et al. 2011). Physical positions on the maize genome

were known from an alignment to the B73 AGPv2 assembly (www.maizesequence.org).

In both calibration sets, quality control of the DH lines (call rates≥ 0.9) and SNP pruning

based on the quality parameters (GenTrain-Score ≥ 0.7, call frequency ≥ 0.9, MAF ≥
0.01, and discarding redundant SNPs) was performed, resulting in 15732 polymorphic

SNPs for CS1 and 16846 SNPs for CS2. For the joint analysis of both calibration sets, the

same SNP selection steps were performed resulting in 17734 polymorphic SNPs for the

N = 1930 DH lines.

With fully homozygous inbred lines, only two genotypes can be distinguished. Marker

genotypes were coded 0 or 2 depending on the number of copies of the minor allele.

Missing marker genotypes were imputed based on family information for Maize 1 and

based on family information and flanking markers using BEAGLE 3.3.1 (Browning and

Browning 2009) and the R package synbreed (Wimmer et al. 2012) for Maize 2. If the

cross from which the DH line was derived did not segregate at the SNP locus, the missing

genotype was set to the genotype carried by its siblings. If the SNP marker did segregate

in the respective cross, the genotype was substituted at random with one of the two

possible genotypes at a probability of 0.5 (Maize 1) or with BEAGLE 3.3.1 (Maize 2).

Linkage disequilibrium (LD) between marker pairs was calculated as described by Hill

and Robertson (1968) using the synbreed package (Wimmer et al. 2012) and the PLINK

1.07 software (Purcell et al. 2007). For the low density SNP panel, LD was measured

between SNP pairs over the entire genome and for the high density SNP panels for
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SNP pairs from the same chromosome. As a measure of LD, the squared correlation r2

between alleles at two loci was used:

r2 =
(pvw − pv pw)2

pv(1− pv)pw(1− pw)
,

where pvw , pv, and pw are the frequencies of the haplotype vw and alleles v at one locus

and allele w at the other locus. For the SNPs from the VeraCode assay, significance of

LD was further tested using a χ2-test as suggested by Foulkes (2009). Differences in

average MAF between both calibration sets were tested with a Mann–Whitney-Wilcoxon

test.

2.4 Modeling the kinship between DH lines

In maize breeding, DH lines are evaluated as testcrosses in field trials to measure their

general combining ability (GCA) by crossing them to a common tester from the opposite

heterotic pool. In general, the genotypic variance (σ2
c ) and covariance (ωcc′) between

relatives of a cross can be expressed as

σ2
c = σ2

α1
+σ2

α2
+σ2

δ12

ωcc′ = Φ1σ
2
α1
+Φ2σ

2
α2
+Φ1Φ2σ

2
δ12

(7)

where σ2
α1

and σ2
α2

are the variances of GCA effects from parental populations 1 and 2,

σ2
δ12

is the interaction variance of specific combining ability (SCA) effects and Φ1 and

Φ2 are the probabilities that alleles originating from populations 1 and 2 are identical

by descent. Assuming that the DH lines are crossed to only one common tester, σ2
α2
= 0

and Φ2 = 1 and the GCA and SCA cannot be estimated separately and the sum of both is

therefore denoted as testcross variance. Therefore, the testcross variance (σ2
t , see also

Section 2.5) and the covariance (ωt t ′) of the DH lines from one population is:

σ2
t = σ2

α1
+σ2

δ12

ωt t ′ = Φ1(σ2
α1
+σ2

δ12
) = Φ1σ

2
t

(8)
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The probability that alleles are identical by descent can be estimated from pedigree

and/or marker data as described in this Section and is denoted as kinship coefficients

which are used to model the variance-covariance structure between DH lines.

2.4.1 Expected kinship coefficients

Expected kinship coefficients are based on pedigree data and give the expected prob-

abilities that two alleles are identical by descent. In animal breeding, the numerator

relationship coefficient, which is twice the kinship coefficient, was first applied by Hen-

derson (1977) for best linear unbiased prediction of breeding values.

In both data sets, the matrix of expected kinship coefficients K was calculated according

to Bernardo (2002) based on three generations of pedigree information. This method

has been adopted for fully inbred lines in maize breeding and was implemented into the

synbreed R-package (Wimmer et al. 2012).

2.4.2 Realized kinship coefficients

Instead of using pedigree-based estimates of kinship coefficients, genome-wide marker

data make it possible to account for Mendelian sampling effects and increase the differ-

entiation between equally related DH lines. Different methods have been proposed to

estimate realized kinship coefficients (Ui j) between two individuals i and j from genome-

wide marker data. Some coefficients are derived from the coefficient for alleles being

identical by state (IBS), which are corrected by the average proportion of alleles being

IBS between relatives in the base population. Other coefficients are derived from the

correlation between alleles taken from gametes (Powell et al. 2010; Astle and Balding

2009).

Simple Matching

In plant breeding, the similarity between DH lines is frequently estimated with the sim-

ple matching coefficient USM
i j (Sneath and Sokal 1973). This method can be applied to
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biallelic markers if the inbred lines are fully homozygous and one can form a 2×2 table

with counting number of equal and unequal loci between individuals i and j. The pair-

wise coefficients USM
i j between DH line i and j was calculated from SNP genotypes as

follows:

USM
i j =

∑M
m=1[(wim− 1)(w jm− 1)] +M

2M
, (9)

with wim and w jm being the genotype scores for lines i and j coded as 0 or 2 for ho-

mozygous loci m= 1, ..., M , with M being the number of markers. The simple matching

coefficient can be interpreted as average probabilities of alleles being IBS between two

individuals (Astle and Balding 2009; Piepho 2009), which has to be corrected with the

average proportion of alleles being IBS between relatives in the base population (Pow-

ell et al. 2010). Following Hayes and Goddard (2008), each element of the matrix was

transformed with umin, which is the minimum value of all pairwise similarity coefficients:

US
i j =

USM
i j − umin

1− umin
. (10)

US
i j =

∑M
m=1[(wim− 1)(w jm− 1)] +M + 2Mumin

2M(1− umin)
. (11)

This transformation leads to off-diagonal values between 0 and 1, while the diagonal

elements are equal to 1
2
(1+ F) = 1, where F is the inbreeding coefficient of the DH lines

in the population.

Trait specific kinship

The trait specific kinship is an extension of the previous kinship coefficient USM
i j according

to Zhang et al. (2010). This kinship incorporates specific weights for each marker based

on the estimates of marker effects for a trait in the reference population. The formula

for the trait specific kinship coefficient U T ′
i j is given by
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U T ′

i j =

∑M
m=1[(wim− 1)(w jm− 1) ·ωm] +M ·

∑M
m=1ωm

2M ·
∑M

m=1ωm

,

with ωm being a trait specific weight for each marker m calculated as 2pm(1− pm) · m̂2
m,

where m̂2
m is the squared effect of marker m for a specific trait estimated within the

reference population and pm is the MAF of marker m in the population under study.

These kinship coefficients are again corrected by the minimum entry of the trait specific

kinship matrix UT′ with

U T
i j =

U T ′
i j −min(UT′)

1−min(UT′)

to obtain unbiased estimates of the kinship coefficients.

Kinship based on centered marker scores

The realized kinship coefficient according to Habier et al. (2007) and VanRaden (2008)

is derived from the following formula

Ui j =
1

2

∑M
m=1[(wim− 2pm)(w jm− 2pm)]
∑M

m=1 2pm(1− pm)
. (12)

The subtraction of the expected value 2pm leads to mean-centered marker scores and

the average of pairwise kinship coefficients between DH lines becomes zero. In contrast

to kinship coefficients derived from the simple matching coefficient as described in the

previous paragraph, this formula can lead to negative off-diagonal values. Hence, the

direct interpretation as a probability of alleles being IBD does not hold, but an interpre-

tation as a coefficient of correlation is straightforward (Powell et al. 2010). The diagonal

elements also have a wider range than traditional kinship coefficients, but their expected

values within the population is 1
2
(1+ F) with F = 1 for DH lines.

19



2 MATERIALS AND METHODS

Kinship based on centered and scaled marker scores

A similar approach was proposed by Astle and Balding (2009), but in contrast to Van-

Raden (2008), the marker scores are centered and scaled to have equal variances. There-

fore, the formula for realized kinship coefficients is

UAB
i j =

1

2M

M
∑

m=1

(wim− 2pm)(w jm− 2pm)

2pm(1− pm)
. (13)

Here, the formula puts more weight on markers with low allele frequencies, but prob-

lems can occur for markers having an allele frequency close to zero. This causes the

undesirable property that the realized kinship coefficients between lines tend to infinity

when they carry rare alleles with a MAF approaching to zero (Endelman and Jannink

2012).

2.4.3 Analysis of kinship structure

In Maize 2, relatedness of DH lines within and between the three genetic groups G1,

G2, and G3 of both calibration sets was analyzed based on pedigree information. When

information about genetic substructures in a data set is given a priori, the maximum

kinship coefficient between a DH line i and all other lines from its own group (kmax ,i

within) should be significantly higher than the maximum kinship coefficient between

the DH line and all lines from the other groups (kmax ,i between)(Saatchi et al. 2011).

For example, maximum kinship kmax ,i between individual i belonging to group G1 was

derived from the following formula

kmax ,i,G1 = max(ki j) with i ∈ G1, j ∈ G1, j 6= i

kmax ,i,G2 = max(ki j) with i ∈ G1, j ∈ G2

kmax ,i,G3 = max(ki j) with i ∈ G1, j ∈ G3

where ki j is the expected kinship coefficient between individual i and j. Hence, for

each DH line, three kmax ,i values were calculated. All kmax ,i (i = 1, ..., NG1) values were
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averaged over DH lines within group G1 and across G2 and G3 resulting in a mean

kmax value within and between groups for G1. In addition, kinship coefficients between

DH lines from the same group were averaged to result in mean kinship coefficients k.

Calculations were performed within and across all groups and tester subsets of both

calibration sets and across calibration sets. In CS2, pairwise k and kmax values were also

estimated between group/tester combinations.

As the range of the kinship coefficient derived from the simple matching coefficient

(Eqn. 11) are equal to the pedigree-based kinship coefficients, the results from the kin-

ship structure analysis described above can be compared with this realized kinship coef-

ficient. Therefore, the kinship within and between groups and testers of Maize 2 were

additionally analyzed with the modified simple matching coefficient.

Cluster analysis

For proper clustering results, decisions are required on an appropriate distance metric

and clustering algorithm. To compare how different cluster methods can reveal genetic

substructures in experimental data, three clustering methods, UPGMA, Ward, and k-

means, were applied to the genotypic data of calibration sets CS1 and CS2 of Maize 2.

Both hierarchical cluster analyses were performed with Rogers’ distance as a genetic

distance measure between homozygous DH lines based on biallelic SNP markers (Rogers

1972). For pairs of fully homozygous lines, Rogers’ distance Di j can derived from 1−USM
i j

where USM
i j is the simple matching coefficient (Eqn. 9).

In UPGMA clustering, the distance between clusters i and j is calculated as average of

all pairwise distances between all lines in cluster i and all lines in cluster j. In each step

of the clustering process, the two clusters with the smallest average pairwise distance

are joined. Ward’s clustering method is based on an analysis of variance between the

clusters. Two clusters are merged, if they yield the lowest error sum of squares, which is

defined as the sum of squared distances between the line of the cluster and its centroid

and is used as a measure of the tightness of a cluster (Kaufman and Rousseeuw 2005).

For the third clustering approach, the k-means clustering, the number of clusters has to

be predefined. In contrast to Ward’s clustering, the observations are partitioned into a
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specific number of clusters and the sums of squared distances between observed values

in each cluster and the center of the cluster are minimized. For this study, the algorithm

according to Hartigan and Wong (1979) which is implemented in R was applied directly

to the genotype matrix.

The following two measures were used to determine the optimal number of clusters:

point-biserial correlation (PBC) and average silhouette coefficient (ASC) (Odong et al.

2011). The PBC is the correlation between the original distance matrix and a reduced

distance matrix with zeros and ones indicating lines in different and same clusters, re-

spectivly. The ASC relates the distance between two lines in the same cluster with

distances between lines not belonging to the same clusters. The PBC and ASC range

between zero and one and the highest value indicates the optimum number of clusters.

To illustrate the genetic substructures which occurred in both calibration sets of Maize 2,

a PCA was applied to the column-centered and scaled genotype matrix of both calibration

sets separately.

2.5 Prediction models

For the prediction of testcross values in maize breeding, mixed effect models including

best linear unbiased estimations (BLUEs) for the fixed effects and best linear unbiased

prediction (BLUPs) for the random effects were used (Henderson 1984). In contrast

to animal breeding, the variance-covariance structure of the random testcross effects is

determined by the joint action of GCA of DH lines and the SCA of the testcrosses as

described in Eqn. 8.

2.5.1 Pedigree-based best linear unbiased prediction

In the following model, the variance-covariance structure of testcross effects were mod-

eled using pedigree-based estimates of kinship coefficients. The model is denoted as

PBLUP and is described as follows
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y= Xβ + Zt+ e, (14)

where y is a N×1 vector of adjusted means for N DH lines obtained from the phenotypic

analysis (Eqn. 4); β is a vector of fixed effects, for Maize 1 β includes the overall mean

and for Maize 2 β is a c×1 vector comprising c = 4 (CS1) and c = 5 (CS2) factor levels

for group/tester combinations (see Table 1). The fixed effect was included to correct for

genetic substructure within both calibration sets. Random testcross effects were modeled

with the N×1 vector t∼ N(0,Kσ2
t ), where K is a N×N matrix of pedigree-based kinship

coefficients and σ2
t is the testcross variance as defined in Eqn. 8 pertaining to this model.

The design matrices X and Z assign the adjusted means to the fixed and random effects,

respectively. The N × 1 residual vector e is assumed to be independent and normally

distributed with e ∼ N(0, Iσ2
eP
), where I is an identity matrix and σ2

eP
is the residual

variance.

A solution for the fixed and random effects is obtained by solving the mixed model

equation according to Henderson (1977):





β̂

t̂



=







X′X X′Z

Z′X Z′Z+K−1σ
2
eP

σ2
t







−1




X′y

Z′y





Variances σ2
t and σ2

eP
were estimated using restricted maximum likelihood as imple-

mented in ASReml 3.0. In contrast to Maize 2, where heritabilities were estimated in

the phenotypic analysis across locations, trait heritabilities for Maize 1 were estimated

based on the variance components derived from this PBLUP model using the standard

formula:

ĥ2 =
σ̂2

t

σ̂2
t + σ̂

2
eP

. (15)

23



2 MATERIALS AND METHODS

2.5.2 Genome-based best linear unbiased prediction

In contrast to the PBLUP model, the variance-covariance structure of testcross effects can

also be derived from genome-wide marker data as described in Section 2.4.2. The model

is denoted as GBLUP and can be written as

y= Xβ + Zu+ e, (16)

where the vectors y, β and e and the design matrices X and Z are defined as in the

PBLUP model with e ∼ N(0, Iσ2
eG
) and σ2

eG
being the residual variance pertaining to the

GBLUP model. The difference to PBLUP is the modeling of the random testcross effects

u, which are assumed to be normally distributed with u ∼ N(0,Uσ2
u) in Maize 1 and

u ∼ N(0,UABσ
2
u) in Maize 2, where U and UAB are N × N matrices of realized kinship

coefficients based on marker data (Eqn. 12 and 13, respectively) and σ2
u is the testcross

variance pertaining to the GBLUP model.

Due to the “kernel trick”, which is described in Schölkopf et al. (1998), the GBLUP

model using the realized kinship based on the unscaled matrix of genotype scores (W) is

a transformation of the ridge regression BLUP (RRBLUP, Whittaker et al. (2000)), where

the markers in W are fitted directly as BLUPs in the following model

y= Xβ +Wm+ e, (17)

with m being a vector of marker effects under the assumption that m ∼ N(0, Iσ2
m). The

transformation of variance components and means is described in detail in the Appendix.

In some cases, when the number of loci is smaller than the number of observations, it can

be useful to apply RRBLUP to obtain marker effects directly. Based on GBLUP using the

kinship coefficients U based on centered marker scores, marker effects can be calculated

with the following transformation (Yang et al. 2011):

m̂=W′U−1û/
M
∑

m=1

2pm(1− pm).
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2.5.3 Pedigree- and genome-based best linear unbiased prediction

The expected and realized kinship coefficients can be combined in one model (Legarra

et al. 2008). The testcross variance is decomposed into a component explained by the

pedigree-based kinship coefficients and a component based on the marker data. Hence,

the P+GBLUP model for testcross performance is

y= Xβ + Zt+ Zu+ e, (18)

where the vectors y, β and e and the design matrices X and Z are defined as in the

PBLUP model with e∼ N(0, Iσ2
ePG
) and σ2

ePG
being the residual variance pertaining to the

P+GBLUP model. Here, the vectors t and u comprise the random testcross values based

on pedigree and marker data, respectively. Both vectors of testcross effects are assumed

to be independent and normally distributed with t ∼ N(0,Kσ2
tPG
) and u ∼ N(0,Uσ2

uPG
),

where K and U are the expected and realized kinship matrices from PBLUP and GBLUP,

respectively.

2.6 Cross-validation

When only one data set is available to assess predictive abilities, cross-validation is a use-

ful method to compare different models without the necessity of an additional validation

sample. The basic concept of CV is to divide the data set into an estimation set (ES) for

fitting the model and a test set (TS) for validating the estimated model parameters.

In this study, mean predictive abilities were constant for 4< k ≤ 20, while the variability

was lowest for k = 5 (Appendix, Figure A3). Therefore, 5-fold CV was applied to Maize 1

and Maize 2, which were randomly divided into five disjoint sets. Four sets were used

for the ES and the remaining set as TS (CV-R, Figure 5). This procedure is repeated

five times so that each subset was used once as TS, which ensures that each DH line was

used once for validation. Assigning genotypes into five subsets was additionally repeated

ten times to result in 50 CV runs. In Maize 1, average predictive abilities did not differ

when the variance components were re-estimated in the ES or estimated in the data

set and committed to the CV procedure, but the computational load was substantially
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greater. Therefore, model parameters and variance components were estimated for both

traits once in the complete Maize 1 data set (N = 1377) with ASReml 3.0 (Gilmour

et al. 2009). For Maize 2, the breeding populations were less homogeneous compared

to Maize 1 and variance components were re-estimated in each ES.

VS

VS

fold 1

Estimation set (ES) Test set (TS)

random 
splitting

fold 2

fold 3

fold 4

fold 5

Data set

Figure 5: Scheme of 5-fold cross-validation
with random sampling (CV-R) illustrating
the five test sets (TS) and estimation sets
(ES) of five runs within one replication.

Predictive abilities were calculated as the

Pearson correlation coefficient between pre-

dicted and observed testcross performance or

values of each TS. Based on vectors β̂ , t̂,

and û estimated in the ES, predictive abili-

ties of the different models were calculated

in the corresponding TS as r(yTS,XTSβ̂ + ZTSt̂)

for PBLUP, r(yTS,XTSβ̂ + ZTSû) for GBLUP and

r(yTS,XTSβ̂ + ZTSt̂+ ZTSû) for P+GBLUP. Here,

the vector yTS is a NTS × 1 vector of observa-

tions in the TS and XTS is a NTS × c and ZTS is a

NTS×N design matrix for fixed and random ef-

fects, respectively. Due to the group structures

in Maize 2, observed testcross performance was adjusted for the effect of its respective

group/tester combination when the same combinations occurred in the ES and TS for CV-

R. Hence, the predictive ability was r(yTS−XTSβ̂ ,ZTSt̂) for PBLUP and r(yTS−XTSβ̂ ,ZTSû)

for GBLUP. The standard deviation of predictive abilities was calculated from means

across folds within each replication.

The accuracy of a prediction model, which is the correlation between true and predicted

testcross values, can be approximated by dividing the predictive ability by the square-

root of the trait heritability h (Dekkers 2007; Legarra et al. 2008). However, the division

by h does not influence the ranking of the different prediction models. Therefore, the

focus in this study will be on predictive abilities for the comparison of models.

For Maize 1, another measure for the comparison of prediction models was applied be-

cause the selection of the top 10 % best DH lines within one testcross cycle is of interest

for each plant breeder. Therefore, predicted testcross values of all five folds were merged

within each replication and the best 10 % of DH lines were selected based on their pre-
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dicted testcross performance. The observed testcross performance was averaged over

the ten replications and compared between models.

The CV procedure described above was applied to Maize 1 and additionally to the four

largest biparental families (N = 58 − 60) within this data set. In Maize 2, predictive

abilities were assessed in both calibration sets and within genetic groups, testers or

group/tester combinations of a given calibration set. The subset of group G3 crossed

to tester T1 of CS1 and group G2 of CS2 were not analyzed because they comprised only

16 and 15 DH lines, respectively.

Effect of maturity on grain yield

Due to the genetic substructure in Maize 2, the impact of maturity on the prediction of

grain yield within both calibration sets was determined. Using ES and TS sampled with

10×5-fold CV-R, predictive abilities for GDY were determined within each group/tester

subset as the correlation between predicted testcross values of GDC and the observed

testcross performance of GDY. Differences across group/tester subsets were visualized

with elliptic contours. Each ellipse was shaped according to the 95 % confidence region

of a bivariate normal distribution with mean and variance-covariance structure corre-

sponding to the mean and variance-covariance matrix of the predicted testcross values

and observed testcross performance within each group/tester combination.

Effect of sample size and marker density

To evaluate the effect of sample size on the accuracy of testcross prediction, the data set

Maize 1 with N = 1377 DH lines was divided into 2, 4, and 8 subsets resulting in an

array of subsets of size N = 688, 344, and 172, respectively. The procedure was repeated

16 times for N = 688, 8 times for N = 344, and 4 times for N = 172 to create 32 subsets

for each sample size. Each of them was analyzed with PBLUP, GBLUP and P+GBLUP.

Here, 10×5-fold CV with random sampling of the testcross progenies to the subsets was

applied. In Maize 2, this procedure was applied to both calibration sets for comparing

prediction within groups and tester subsets with a random sample of the complete data

set. Therefore, CS1 with N = 1073 DH lines and CS2 with N = 857 DH lines were
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divided into 2, 3, 4, 8, and 16 subsets of size N = 536, 358, 268, 134, and 67 for CS1

and N = 428, 286, 214, 107, and 54 for CS2, respectively. The sampling into subsets

was repeated 24, 16, 12, 6, or 3 times to result in 48 subsets for each sample size.

The effect of the marker density was evaluated within Maize 1. Here, two different

marker arrays with high and low density were used to genotype a set of 759 DH lines.

2.6.1 Sampling within/across families

To account for the familiy structure in the data set, different sampling strategies can

be used instead of random sampling within a data set. This implies sampling where the

family structure of the complete data set is captured in each of the five subsets, i.e., strat-

ified cross-validation (Kohavi 1995), or subsets reflect only a part of the family structure

observed in the complete data set. These two sampling schemes, i.e., within family sam-

pling (CV-W) and across family sampling (CV-A), are illustrated in Figure 6 (Legarra

et al. 2008). With Maize 1, CV-W was performed for the entire data set (N =1377)

and testcross progenies of each family were subdivided into five subsets. Four of them

were assigned to the ES (NES=1093-1113), one to the TS. With CV-A, the 36 families of

Maize 1 (N = 1377) were divided into four subsets of seven and one subset of eight fam-

ilies. Thus, the ES comprised 28 or 29 families, the TS contained the remaining families

not included in the ES. Because the size of the families varied, the sample size of the ES

also varied from NES=1002 to NES=1172. Due to the low number of progenies in each

cross for both calibration sets in Maize 2, random sampling was used for CV instead of

within and across family sampling.

2.6.2 Prediction across groups and testers

For Maize 2, the CV schemes were modified to assess predictive abilities across genetic

groups and testers (CV-aG) conditional on a given TS. Here, the same TS as sampled

from CV-R within each group or tester subset were used. The ES were sampled either

from all remaining DH lines of a given calibration set (ESG1,G2,G3) or from DH lines not

belonging to the same group or tester represented in the TS. Sampling conditional on

a TS from G3 in CS1 (NTS = 49) is illustrated in Figure 7. Here, ESG1,G2,G3 comprised

28



2 MATERIALS AND METHODS

P1 P2

P3 P4

P5 P6

P7 P8

P9 P10

ES 
TS

(a) Within family sampling

P1 P2
ES 
TS

P3 P4

P5 P6

P7 P8

P9 P10

(b) Across family sampling

Figure 6: Example of stratified cross-validation with different estimation (ES) and test sets (TS)
for sampling within (a) and across (b) five families derived from parental lines P1-P10.

the remaining 1024 DH lines from CS1, while ESG1,G2 comprised only DH lines from the

groups G1 and G2 (NES = 827). As groups G1 and G3 in CS2 were both crossed to

testers T1 and T3, predictions were performed within and across group/tester subsets

(further denoted as G1/T1, G1/T3, G3/T1, and G3/T3). Here, seven possible ES existed

comprising the three ES described before, one ES comprising the remaining lines from

the complete group, and three additional ES including the remaining group/tester sub-

sets not belonging to the TS to assess predictive abilities within groups across tester and

across groups within the same tester subset. When different group/tester combinations

occurred in the ES and TS, a correction for the fixed group/tester effect was not possi-

ble and predictive abilities were calculated based on the unadjusted observed testcross

performance yTS.

To account for the difference in sample size of the resulting ES for the prediction of

group G2 in CS1, the size of the ES for the prediction across groups was kept constant at

NES = 116. Sampling within each ES of the 50 CV runs was repeated 20 times resulting

in 1000 ES. For the prediction across group/tester combinations in CS2, the size of the

ES was reduced to NES = 98 which was sampled once from each of the 50 ES.

2.6.3 Effect of decreasing number of locations and sample size

The influence of different sets of locations on the predictive ability and the prediction of

testcross values across locations was analyzed based on the subset of tester T1 from CS1
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G1+G2 G3

ES TS

fold 1

fold 2

fold 3

fold 4

fold 5

G1+G2 G3

ES TS

G1+G2 G3

ES TS

(a) CV-R: prediction of TSG3
with ESG3

G1+G2 G3

ES TS

fold 1

fold 2

fold 3

fold 4

fold 5

G1+G2 G3

ES TS

G1+G2 G3

ES TS

(b) CV-aG: prediction of TSG3
with ESG1,G2,G3

G1+G2 G3

ES TS

fold 1

fold 2

fold 3

fold 4

fold 5

G1+G2 G3

ES TS

G1+G2 G3

ES TS

(c) CV-aG: prediction of TSG3
with ESG1,G2

Figure 7: Cross-validation schemes for the prediction within (CV-R) and across genetic groups
(CV-aG). Scheme (a) illustrates the five test sets (TSG3) for sampling within group G3 with the
corresponding ESG3 and scheme (b) and (c) illustrate the two ES conditional on TSG3 contain-
ing all remaining DH lines of the calibration set and DH lines belonging to groups G1 and G2,
respectively.

of Maize 2. All DH lines of this tester subset (N = 698) were evaluated in the same four

locations and only negligible genetic substructure was expected as nearly all DH lines

belong to group G1.

To analyze the influence of the number of locations, three, two, and one location out of

four were selected and submitted to the second stage of phenotypic analysis to obtain

adjusted means across locations for GBLUP (Schön et al. 2004). In each sampling step of

locations, also subsets of the data set were selected to assess additionally the influence

of the reference set size on predictive abilities. Therefore, the data set was divided into

2, 4, and 8 equally sized subsets containing N = 349, 175, and 87 DH lines, respectively.

Prediction performance of these subsets was compared to prediction within the complete

data set, as well as the evaluation within all four locations. A summary of the number of

locations, DH lines and randomizations for each sampling step is given in Table 2.

2.6.4 Prediction across locations

Prediction across locations was assessed to analyze the influence of genotype by location

interactions. Therefore, the tester T1 data set was divided into five genotypic subsets

(S) of CV-R each evaluated in the same four locations, resulting in 20 disconnected

subsets (Figure 8). Assigning genotypes to subsets was repeated ten times as described

for 10×5-fold CV-R.

The ES comprised adjusted means over two or three locations obtained from the pheno-

typic analysis. For each set of locations, heritabilities for both traits were assessed. The
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Table 2: Number of location subsets (L) × number of subsets for a specific sample size (N)
× number of randomizations for each possible location and sample size subsets of tester T1 in
calibration set CS1 of Maize 2. Number of resulting data sets for each sampling step are in
parenthesis.

N

L 698 349 175 87

4
1 × 1 × 1 1 × 2 × 4 1 × 4 × 2 1 × 8 × 1

(1) (8) (8) (8)

3
4 × 1 × 1 4 × 2 × 4 4 × 4 × 2 4 × 8 × 1

(4) (32) (32) (32)

2
6 × 1 × 1 6 × 2 × 4 6 × 4 × 2 6 × 8 × 1

(6) (48) (48) (48)

1
4 × 1 × 1 4 × 2 × 4 4 × 4 × 2 4 × 8 × 1

(4) (32) (32) (32)

phenotypic correlation was calculated between adjusted means obtained from locations

in the ES and adjusted means obtained in each remaining location. Adjusted means ob-

tained from each single locations were further analyzed with a cluster analysis based on

the distance between locations according to Ouyang et al. (1995). Finally, each ES com-

prised three locations and four genotypic subsets resulting in 4× 10× 5 = 200 possible

ES and two locations and four genotypic subsets in 6× 10× 5 = 300 ES. Following Utz

et al. (2000), three different test sets (TS) were defined for each ES taking genotypic

sampling (TSg), sampling of locations (TSloc) and both factors simultaneously (TSg×loc)

into account. With TSg, independent genotypes are predicted with the information from

related DH lines in the same set of locations. In TSloc, the same genotypes are predicted

in an independent location. Both factors are combined in TSg×loc, where genotypes and

locations are independent from the estimation set.
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(a) Three locations
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S1 S2 S3 S4 S5
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Loc2

Loc3

Loc4

ES
N = 558

TSg
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TSg×loc

N = 140
TSloc

N = 558

TSloc

N = 558

ES
N = 558

TSg

N = 140

TSg×loc

N = 140

(b) Two locations

Figure 8: Sampling scheme for cross-validation with five genotypic subsets and four locations
according to Utz et al. (2000). Colors are indicating possible ES including (a) three or (b) two lo-
cations and different TS for the predictions of independent genotypes (TSg, dark blue), locations
(TSloc, light blue) or genotypes and locations (TSg×loc, grey).

2.6.5 Prediction across years

In Maize 2, two calibration sets evaluated in different years were available and predic-

tions within each calibration set could be additionally validated by predicting testcross

performance with the other calibration set. To investigate predictive abilities of GBLUP

across years, data from both calibration sets were analyzed jointly (N = 1930) with a re-

alized kinship matrix UAB calculated from M = 17734 SNPs. The vector of fixed effects β

in the joint model included c = 9 factor levels for each year/group/tester combination.

To predict testcross performance of DH lines from CS2, phenotypic observations from

CS2 were masked and predicted from data in CS1 and vice versa. Predictive abilities

were measured as the correlation of predicted testcross values and observed testcross

performance across all DH lines in each calibration set and for DH lines within each

group/tester combination separately. To compare predictive abilities across locations

and years, validation across years was also performed for the data subset of tester T1,

which included DH lines from group G1 and G3 in both calibration sets.

Prediction across years was additionally assessed with the DH lines of CS1 which were

selected in 2010 and evaluated again in 2011 as VS1. Therefore, different reference

sets were used to predict the testcross values of the DH lines selected from CS1. The

data set used for model training included observations from CS1, the observations from

CS1 and CS2 (Figure 9a and 9b), or observations from CS2 (Figure 9c). For prediction

of testcross performance of VS1 in 2011, the DH lines selected from CS1 could be in-
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cluded (Figure 9a) or excluded from CS1 (Figure 9b). To compare the selection based on

predicted testcross values with the selection based on observed testcross performance,

correlations were calculated between observed testcross performance from 2010 and

2011 for DH lines included in VS1 (Figure 9d).

CS1 
CS2 

DH lines selected for 

VS1 

Field trials in 2010 Field trials in 2011 

VS1 

(a) Selected lines for VS1 were included in the
reference set

CS2 

DH lines selected for 

VS1 

Field trials in 2010 Field trials in 2011 

VS1 

CS1 

(b) Selected lines for VS1 were excluded in the
reference set

CS1 
CS2 

DH lines selected for 

VS1 

Field trials in 2010 Field trials in 2011 

VS1 

(c) CS2 in the reference set

CS1 
CS2 

DH lines selected for 

VS1 

Field trials in 2010 Field trials in 2011 

VS1 

(d) Correlation between years

Figure 9: Possible reference sets for predicting DH lines in the validation set VS1. The reference
set included DH lines from calibration set CS1 (black arrow) or CS1 and CS2 (grey arrow), where
the DH lines selected for VS1 were (a) included or (b) excluded from the reference set or (c) only
observation from CS2. Scheme (d) illustrates the correlation between observations from 2010
and 2011 of DH lines in the VS1.
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3 Results

3.1 Phenotypic analysis

3.1.1 Maize 1

Adjusted testcross values of the 1377 DH lines for GDY averaged across the seven loca-

tions ranged from 105.69 to 175.98 dt/ha and for GDC from 78.18 to 84.52 %. Family

means varied for GDY from 132.38 to 159.52 dt/ha and for GDC from 80.34 to 83.09 %.

Phenotypic correlations between the seven locations calculated from the testcross per-

formance of the DH lines varied between 0.19 and 0.38 for GDY and between 0.32 and

0.64 for GDC. Estimates of the heritability based on variance components estimated with

PBLUP were ĥ2
GDY = 0.84 and ĥ2

GDC = 0.85 (Appendix, Table A4).

3.1.2 Maize 2

Observed testcross performance of the DH lines for GDY and GDC are given for the two

calibration sets and for each group/tester combination within CS1 and CS2 in Appendix

Table A5. In CS1, adjusted means for GDY from phenotypic analysis ranged between

95.13 and 148.20 dt/ha with a mean of 126.71 dt/ha. Climatic conditions in 2011 were

more favorable for maize production than in 2010 and GDY and GDC in CS2 were sig-

nificantly (p < 0.01) higher than in CS1 with a range of 108.10 to 165.30 dt/ha and a

mean of 144.31 dt/ha for GDY and a mean of 71.81 % for GDC (range 66.12-76.70 %.

For the DH lines in the VS1 evaluated in 2011, trait values ranged between 126.77 and

157.58 dt/ha with a mean of 144.47 dt/ha for GDY and between 68.07 and 74.42 %

with a mean of 71.44 % for GDC. In both calibration sets, phenotypic means differed

significantly between the three genetic groups (G1-G3) and between groups of DH lines

crossed to different testers. In CS2, these differences were reduced between group G1

and G3 for GDY and between group G2 and G3 for GDC.

Phenotypic correlations between GDY and GDC were -0.25 and -0.27 and genetic cor-

relations were -0.45 and -0.37 in CS1 and CS2, respectively. In both calibration sets,

genotypic and genotype by location interaction variances were highly significant for
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both traits (p < 0.01). The resulting trait heritabilities on a progeny mean basis were

ĥ2
GDY
= 0.72 and ĥ2

GDC
= 0.94 for CS1, ĥ2

GDY
= 0.71, ĥ2

GDC
= 0.95 for CS2 (Appendix,

Table A6) and ĥ2
GDY
= 0.77 and ĥ2

GDC
= 0.90 for VS1.

3.2 Genotypic analysis

3.2.1 Maize 1

From the set of 732 polymorphic SNP markers 663 could be assigned to linkage groups,

representing the ten chromosomes of maize. For sixty-nine markers the chromosomal

position was unknown. The markers were evenly distributed across the genome with

an average distance of 2.9 Mb. The number of SNPs per linkage group ranged from

48 on chromosome 10 to 96 on chromosome 1. The average MAF across markers was

0.19. The largest proportion of markers was observed for low MAF (Figure 10a), where

42 % of the markers had a MAF < 0.1. The number of polymorphic SNPs within the 36

crosses ranged from 78 to 600. Figure 10b illustrates the LD between adjacent SNPs.

Only significant LD (p < 0.05) was included and average LD between adjacent SNPs was

0.23. As expected for an advanced cycle breeding population substantial long-range LD

was detected (see Albrecht et al. (2011)).

For 18791 out of 20742 polymorphic SNPs, which were used for genotyping the subset of

759 DH lines, the map positions along the maize genome were known. The distribution

of these SNPs is illustrated in Figure 11. The number of SNPs on each chromosome

ranged between 1233 on chromosome 6 to 2884 on chromosome 1. Average distance

between SNPs was 0.11 Mb and average LD between adjacent SNPs was high with 0.57.

3.2.2 Maize 2

For both calibration sets together, 17431 SNPs could be assigned to the physical map.

The distance between neighboring markers along the genome was on average 0.12 Mb

and ranged between 0 and 12.23 Mb. The number of SNPs on each chromosome ranged

from 1014 on chromosome 10 to 2707 on chromosome 1.
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(b) Linkage disequilibrium

Figure 10: Histogram of (a) minor allele frequency (MAF) and (b) linkage disequilibrium (r2)
between adjacent markers (M = 732). Nr. of SNPs 
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Figure 11: Distribution of M = 18791 mapped SNPs along chromosomes in the maize genome.
Color-scale indicates the number of SNPs within 1 Mb.

For each calibration set, allele frequencies and LD were calculated for polymorphic SNPs

and visualized in Figure 12 and 13, respectively. In CS1, the proportion of SNPs with

MAF ≤ 0.1 was lower compared to CS2 leading to a significant decrease in mean MAF

from 0.20 in CS1 to 0.19 in CS2 (p < 0.01). In addition, LD between adjacent SNPs

was higher for DH lines from CS1 with a mean of 0.42 compared to DH lines from CS2

with a mean of 0.35. The percentage of adjacent SNPs with r2 ≥ 0.2 was 59 % in CS1
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and 50 % in CS2. The observed differences in MAF and LD between the two calibration

sets confirm differences in the distinct family structure in CS1 and CS2.
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(b) Linkage disequilibrium

Figure 12: Histogram of (a) minor allele frequency (MAF) and (b) linkage disequilibrium (r2)
between adjacent markers (M = 15732) in calibration set CS1.
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(b) Linkage disequilibrium

Figure 13: Histogram of (a) minor allele frequency (MAF) and (b) linkage disequilibrium (r2)
between adjacent markers (M = 16846) in calibration set CS2.
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3.3 Substructure of genetic material in Maize 2

Table 3 shows the results from the kinship analysis according to Saatchi et al. (2011)

for the DH lines from the two calibration sets CS1 and CS2 based on the expected (ki j)

and realized kinship coefficients (us
i j). Mean kinship coefficients within groups were

different compared to the complete calibration set. Due to larger family sizes and a

smaller number of parents, mean expected kinship coefficients in CS1 were higher than

in CS2. In most cases, mean maximum kinship within groups was close to or exceeded

0.5 reflecting the high relatedness of DH lines derived from crosses of closely related

parents. Maximum kinship within groups was always significantly higher than between

groups confirming the prior assumption of genetic substructure (Appendix Figure A4).

In CS2, the difference in mean maximum kinship within and between groups decreased

compared to CS1.

Analogously as for the three genetic groups, the level of kinship can be analyzed for

groups of DH lines crossed to the three different testers (Table 3). In CS1, the subset

of tester T1 contained mainly DH lines from group G1, while the subset of tester T2

contained only lines from G2 and G3 (Table 1a). Thus, the kinship within and between

groups of DH lines crossed to T1 and T2 reflected the kinship observed for the three

genetic groups. In CS2, lines from G1 and G3 were crossed to both testers. However,

average relatedness of DH lines crossed to T3 was higher than for lines crossed with

T1, indicating a non-random assignment of crosses and DH lines to testers (see also Ap-

pendix Figure A5). This can also be inferred from the low number of parents connecting

subsets of lines crossed with T1 and T3 (Figure 4d).

The different levels of mean kinship coefficients across groups can also be verified based

on the realized kinship coefficients. Here, maximum realized kinship coefficients us
max

within groups or tester subsets were also higher than between subsets. Lowest differ-

ences for expected and realized kinship occurred in both calibration sets in group G3.
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3 RESULTS

Principal component analysis

The different extent of genetic substructure in both calibration sets CS1 and CS2 is

illustrated based on the first two PCs of the genome-wide marker data (Figure 14 and

15). In CS1, there was a clear separation of the predefined groups G1, G2 and G3 along

the first and second PC, which explained 8.5 and 5.2 % of the total variation in marker

data, respectively (Figure 14a). This separation was also represented between tester

subsets. In CS2, the three groups were less separated than in CS1 within the space of

the first two PCs, which explained only 5.6 and 3.9 % of the total variation (Figure 15a).
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Cluster analysis

The results from the cluster analysis are illustrated in Figure 16, 17, and 18. Based on

the maximum ASC, the optimum number of clusters in CS1 was two for UPGMA and

Ward’s clustering method, but three for k-means clustering, which is in accordance with

the number of predefined genetic groups in CS1. With PBC, the maximum correlation

was reached with three clusters for Ward and k-means, while for UPGMA, the optimum

number of clusters was much higher than for the other clustering methods, which was

also observed by Odong et al. (2011). In CS2, the optimum number of clusters varied

strongly across clustering methods irrespective of the coefficient applied indicating that

the optimum number of clusters could not be determined. These results confirm the

marginal separation of the genetic groups in the space of the first two PCs.

In Figure 18, two and three clusters obtained with UPGMA, Ward’s, and k-means cluster-

ing are illustrated within the space of the first two PCs. For the first two clusters, the data

set was divided into similar subsets along the first PC with Ward’s method and UPGMA

clustering. The first two clusters were also in accordance with the a priori known groups

(Figure 14), where the first cluster represented group G1 which is the core germplasm

of the breeding population. The other two groups G2 and G3 clustered into the same

cluster. The cluster subsets differed when more than three clusters were considered,

where the third cluster based on UPGMA included only three DH lines. With Ward’s

method, the first three clusters split the data set along the first and second PC. Subsets

derived from k-means clustering are illustrated in Figure 18c. The subsets for three clus-

ters were similar to these derived from Ward’s method as both methods minimize the

squared sums between observations and the mean within a cluster.
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Figure 16: Optimum number of clusters obtained with (a) average silhouette coefficient and (b)
point-biserial correlation for an increasing number of clusters in calibration set CS1.
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(c) k-means

Figure 18: Two and three clusters obtained with (a) UPGMA, (b) Ward, and (c) k-means cluster
analysis plotted within the space of the first two principal components of the marker data from
calibration set CS1.
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3 RESULTS

3.4 Predictive abilities obtained with different cross-validation
schemes

3.4.1 Within/across family prediction

Mean predictive abilities of Maize 1 obtained with 10 × 5-fold CV-W, i.e., within fam-

ily sampling, and CV-A, i.e., across family sampling, are shown for PBLUP, GBLUP and

P+GBLUP for both traits in Table 4. For GDY and CV-W, the mean predictive ability of

GBLUP and P+GBLUP over the 50 cross-validation runs was rTS = 0.66 and 0.68, respec-

tively, which was substantially higher than for PBLUP. P+GBLUP performed better than

GBLUP but predicted testcross values were highly correlated (r = 0.90). Mean predictive

abilities of CV-A were markedly reduced and much more variable compared to CV-W. For

GDY, the mean predictive ability for PBLUP was reduced to rTS = 0.11 and for GBLUP

to rTS = 0.44. Mean predictive abilities for GDC were generally higher than for GDY in

both CV schemes.

Comparing the models on the basis of mean phenotypic performance of 10 % best lines

selected based on their predicted testcross performance, resulted in the same ranking

of models as obtained from comparing predictive abilities. Lines selected based on pre-

dictions from GBLUP and P+GBLUP performed substantially better than those selected

based on PBLUP with both CV schemes, but P+GBLUP did not show an advantage over

GBLUP.

Within each of the four large biparental families in Maize 1, the number of polymorphic

markers varied from 116 to 212 (Figure 19). Mean predictive abilities differed between

families with a range of rTS = 0.24 to 0.54 for GDY and from rTS = 0.43 to 0.78 for

GDC and were highly variable across CV runs. Except for GDC in biparental family 3,

predictive abilities were smaller than those obtained with the complete data set.
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Table 4: Mean predictive abilities and observed testcross performance of 10 % best predicted
DH lines with their standard deviations derived from 10× 5-fold cross-validation with sampling
within (CV-W) and across (CV-A) families for PBLUP, GBLUP and P+GBLUP for traits grain yield
(GDY) and grain dry matter content (GDC) estimated in Maize 1 (N = 1377 and M = 732).

Model Predictive abilities 10 % best predicted

GDY GDC GDY GDC

CV-W

PBLUP 0.509 ± 0.004 0.498 ± 0.004 157.40 ± 0.17 82.41 ± 0.01

GBLUP 0.664 ± 0.006 0.719 ± 0.003 159.00 ± 0.21 82.70 ± 0.02

P+GBLUP 0.679 ± 0.006 0.724 ± 0.003 159.04 ± 0.16 82.70 ± 0.02

CV-A

PBLUP 0.113 ± 0.114 0.308 ± 0.048 154.79 ± 1.70 81.87 ± 0.28

GBLUP 0.440 ± 0.035 0.594 ± 0.037 157.30 ± 0.37 82.57 ± 0.05

P+GBLUP 0.426 ± 0.048 0.593 ± 0.029 156.90 ± 0.67 82.55 ± 0.05
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Figure 19: Predictive abilities within four biparental families (BF1-4) obtained from 10×5-fold
cross-validation with random sampling within each family for the traits grain dry matter yield
(GDY) and grain dry matter content (GDC). The boxplots show the range, median (bar) and
mean (×) of 50 CV runs for both traits grain dry matter yield (GDY) and grain dry matter content
(GDC). Numbers above and below boxplots indicate number of DH lines (N) and number of
polymorphic markers (M) in each family.
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3.4.2 Influence of sample size and marker density on predictions

The connection between sample size of the reference population and predictive ability

is illustrated in Figure 20 for Maize 1. The size of the data set had a strong effect on the

predictive ability of all models for predicting testcross performance for GDY and GDC.

The reduction in predictive ability was more pronounced for GBLUP and P+GBLUP than

for PBLUP but performance of the models with genomic information was still better. A

reduction of the data set from 1377 to 688 or 344 DH lines led only to a slight decrease in

predictive abilities. A further reduction from 344 to 172 DH lines led to strong decrease

in predictive abilities for all models and both traits.

An increase of the marker density from 654 to 20742 SNPs for the subset of N = 759 DH

lines of Maize 1 led to substantially higher predictive abilities for both traits (Figure 21).

For GDY, predictive abilities increased from 0.59 to 0.62 with CV-W and from 0.35 to 0.39

for CV-A. Differences in predictive abilities between CV-W and CV-A were reduced with

higher marker densities. But, predictive abilities for GBLUP with high marker densities

were lower than for the complete data of Maize 1 with N = 1377 DH lines and M = 732

SNPs.
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Figure 20: Average predictive ability of PBLUP, GBLUP and P+GBLUP with decreasing sample size
for (a) grain dry matter yield and (b) grain dry matter content measured in Maize 1 (M = 732).
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Figure 21: Comparison of predictive abilities of GBLUP with different SNP densities, VeraCode
(VC) with M = 654 and 50k SNP chip with M = 20742 SNPs, determined from 10×5-fold cross-
validation with sampling within (CV-W) and across families (CV-A) for (a) grain yield and (b)
grain dry matter content. The boxplots show the range, median (bar) and mean (×) of 50 CV
runs for both traits grain dry matter yield (GDY) and grain dry matter content (GDC). Numbers
above or below boxplots indicate average predictive abilities.

3.4.3 Prediction within calibration sets and genetic groups

In both calibration sets of Maize 2, GBLUP consistently outperformed PBLUP irrespective

if cross-validation procedure CV-R was performed in the entire data set, within genetic

groups or within groups of lines crossed to the same tester (Figure 22 and 23). Pre-

dictive abilities obtained with PBLUP were of similar magnitude when compared across

calibration sets, although the size of the data set decreased in CS2. Mean predictive

abilities obtained with GBLUP were higher in CS1 than in CS2 for both traits.

In CS1, average predictive abilities were rTS = 0.59 for GDY in the complete set of lines

and ranged between rTS = 0.40 for the smallest group G2 (NG2 = 145) and rTS = 0.65 for

the largest group G1 (NG1 = 682) with the highest mean expected kinship coefficient.

Although the size of the ES was increased when CV-R was performed in the complete

calibration set (N = 1073), there was no gain in predictive ability for GDY compared to

a prediction within group G1. Mean predictive ability for GDY of tester T1 (NT1 = 698)

was also substantially higher than within CS1, while predictive abilities within tester T2

were low (rTS = 0.46). For GDC however, mean predictive ability was rTS = 0.87 for
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CS1 and higher than within groups. Although group G2 and G3 were small (NG2 = 145,

NG3 = 246), predictive abilities for GDC were still high (rTS = 0.77 and rTS = 0.78,

respectively). Predictions for GDC within tester T2 (rTS = 0.87) performed better than

within tester T1 (rTS = 0.84).

For CS2, mean predictive ability for GDY was rTS = 0.49 for the complete data set and

ranged between rTS = 0.35 for group G3 (NG3 = 260) to rTS = 0.56 for T3 (NT3 = 530).

Predictive abilities within group G1 (rTS = 0.54) were again higher than within the

complete calibration set (N = 857). Highest predictive abilities for GDY were observed

for tester T3, which was crossed to DH lines from all groups. For GDC, mean predictive

ability was rTS = 0.86 within CS2 and decreased when the predictions were performed

within subsets of smaller sample sizes.

Results for the prediction of testcross values for GDY based on effects from GDC obtained

from CV-R of the complete calibration sets are illustrated in Figure 24. Within CS1, pre-

diction of GDY based on GDC resulted in a mean predictive ability of |rTS|= 0.22 to 0.44

measured within each group/tester combination, but was lower than mean predictive

ability for GDY obtained in CS1 with CV-R (rTS = 0.59). Within CS2, the correlation be-

tween predicted testcross values of GDC and observed testcross values of GDY decreased

substantially within the subsets of G1 and G3 tested to T1 (|rTS| = 0.01 and 0.04, re-

spectively). For the subsets of groups belonging to tester T3, higher correlations were

observed.
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Figure 22: Predictive abilities with decreasing number of observations (N) for PBLUP and GBLUP
assessed with 10×5-fold cross-validation within random subsets of the complete data set and
within groups and tester subsets of calibration set CS1 for (a) grain yield and (b) grain dry
matter content. Stars and circles with whiskers indicate average predictive abilities and range
of 10 replications averaged across five folds. Dashed lines indicate 95 % confidence intervals for
predictive abilities across random subsets.
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Figure 23: Predictive abilities with decreasing number of observations (N) for PBLUP and GBLUP
assessed with 10×5-fold cross-validation within random subsets of the complete data set and
within groups and tester subsets of calibration set CS2 for (a) grain yield and (b) grain dry
matter content. Stars and circles with whiskers indicate average predictive abilities and range
of 10 replications averaged across five folds. Dashed lines indicate 95 % confidence intervals for
predictive abilities across random subsets.
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Figure 24: Correlation of observed testcross performance for grain dry matter yield with pre-
dicted testcross values of grain dry matter content obtained with GBLUP and CV-R within (a)
calibration set CS1 and (b) CS2 visualized as elliptical contours representing 95% confidence
intervals of means for individual group/tester subsets. The respective group/tester subsets are
indicated by the symbol in the center of the ellipse and different types of lines. Correlations (r)
are given for individual group/tester subsets.
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3.4.4 Prediction across groups and testers

Results for the prediction across genetic groups and testers obtained with procedure

CV-aG are given for both calibration sets in Table 5 and 6.

In CS1, tester T1 was crossed mainly to DH lines from group G1 (see Table 1a) and T2

was crossed only to lines of groups G2 and G3. Thus, the effects of genetic substructure

and SCA cannot clearly be separated in CS1. The small subset of the combination from

group G3 and tester T1 can be neglected as no large effect on predictive abilities within

the subset of T1 compared to group G1 has been observed. For GDY, predictive abilities

in group G1 decreased when the ES was augmented with DH lines from G2 and G3

even though sample size of the ES was almost doubled (Table 5). The same effect was

observed for group G3 even though the increase in sample size of the ES was more

dramatic than for group G1. In contrast for G2, there was an increase in predictive

ability from rTS = 0.40 to 0.44 when the ES included also lines from groups G1 and

G3. The increase in sample size in this case was almost tenfold with NES = 1044 for

ESG1,G2,G3 as compared to NES = 116 for ESG2. To account for the effect of sample size,

testcross values of DH lines from G2 were predicted with randomly sampled 116 DH

lines from the 1044 DH lines of ESG1,G2,G3 which lead to a decrease of average predictive

abilities from rTS = 0.44 to 0.23. For all groups in CS1, predictive abilities decreased

substantially (rTS = 0.26− 0.30), when the ES consisted only of DH lines from genetic

groups that were not included in the TS. For GDC, augmenting the ES with lines from the

other genetic groups led to markedly higher predictive abilities for all groups. Prediction

of genetic values of DH lines from groups G2 and G3 worked well (rTS = 0.69 and 0.74,

respectively) even when the ES comprised only DH lines from the other genetic groups

as long as the sample size of the ES was large enough. For the TS of G1, predictive

abilities decreased (rTS = 0.57) when only the groups G2 and G3 were included in the ES

(NES = 391). As expected in CS1, very similar results could be observed when prediction

was performed across the two groups of lines crossed to T1 and T2 as they were largely

reflecting differences in genetic groups (Table 6). The comparison of predictive abilities

for T1 based on EST2 (NES = 375) and T2 based on EST1 (NES = 698) showed that the

sample size of the respective ES had a strong effect on prediction across testers for both

traits.
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In CS2, genetic groups G1, G2, and G3 were not as clearly differentiated based on marker

or pedigree data as in CS1 (Figure 15 and Table 3). In addition, subsets of genetic

groups G1 and G3 were crossed to both testers (T1 and T3). The mean kinship within

the subsets of DH lines crossed to tester T1 were lower than compared to the subsets

crossed to T3. Therefore, results for the prediction across groups in CS2 are illustrated

separately for the four group/tester subsets (Table 5 and 6). For GDY, the prediction of

G1/T1 and G1/T3 with ESG2,G3 and G3/T1 with ESG1,G2, respectively, resulted in a much

smaller difference in predictive ability between within and across group predictions as

compared to differences in CS1 (Table 5) reflecting the higher connectedness between

groups in CS2. For G3/T3, predictive abilities increased with ESG1,G2 as compared to

the prediction within the group/tester subset, probably driven by the larger sample size

of the ES. For GDC, predictive abilities increased for group/tester combinations when

DH lines from all groups comprised the ES. For G1/T1 and G3/T3, predictions within

the group/tester subsets were reduced compared to the prediction within the complete

group G1 and G3 (Figure 23), respectively, and prediction based on all groups lead to

an increase in predictive ability.

In addition for CS2, pairwise predictions across each group/tester combination (G1/T1,

G1/T3, G3/T1, and G3/T3) were performed separately (Table 7). Results were very

similar for both traits. The best predictive ability was obtained within each group/tester

combination except for G3/T3 where an increase in predictive ability could be achieved

with ES from G1/T3 having a substantially larger sample size (NES = 393) than the ES

for G3/T3 (NES = 98). Predictive abilities decreased more when the tester changed as

compared to the genetic group, which might have been the result of relatively small

genetic diversity between G1 and G3 in CS2 or the non-random assignment of DH

lines from the respective groups to testers T1 and T3. With keeping the size of the ES

constant at NES = 98 (Figure 25), predictive abilities of GBLUP were highly correlated

with the mean and maximum kinship coefficients between DH lines of the group/tester

combinations (Figure 26). For expected kinship coefficients, predictive abilities across

group/tester subsets were significantly (p < 0.01) correlated with kmax . For k, correla-

tions were only significant for GDY (p < 0.01).
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Table 5: Predictive abilities of the prediction within and across genetic groups with specific
estimation sets (ES) for the same test set (TS) of calibration set CS1 and CS2 in Maize 2. Size of
each TS (NTS) and corresponding ES (NES) are given in the table.

TS ES Predictive ability ± standard deviation

Group NTS Group NES GDY GDC

CS1 G1 136 G1 546 0.650 ± 0.007 0.841 ± 0.005

G1,G2,G3 937 0.631 ± 0.007 0.857 ± 0.004

G2,G3 391 0.292 ± 0.004 0.568 ± 0.003

G2 29 G2 116 0.402 ± 0.035 0.766 ± 0.022

G1,G2,G3 1044 0.441 ± 0.021 0.817 ± 0.014

G1,G3 928 0.303 ± 0.018 0.694 ± 0.012

G3 49 G3 197 0.432 ± 0.034 0.776 ± 0.013

G1,G2,G3 1024 0.385 ± 0.024 0.826 ± 0.006

G1,G2 827 0.260 ± 0.007 0.737 ± 0.006

CS2 G1/T1 38 G1/T1 151 0.442 ± 0.029 0.724 ± 0.029

G1,G2,G3 799 0.464 ± 0.017 0.839 ± 0.013

G2,G3 275 0.424 ± 0.013 0.753 ± 0.007

G1/T3 78 G1/T3 315 0.592 ± 0.009 0.832 ± 0.007

G1,G2,G3 779 0.567 ± 0.010 0.848 ± 0.006

G2,G3 275 0.401 ± 0.009 0.688 ± 0.002

G3/T1 28 G3/T1 110 0.331 ± 0.048 0.804 ± 0.016

G1,G2,G3 829 0.349 ± 0.036 0.836 ± 0.009

G1,G2 597 0.292 ± 0.020 0.740 ± 0.012

G3/T3 24 G3/T3 98 0.298 ± 0.036 0.536 ± 0.025

G1,G2,G3 833 0.409 ± 0.020 0.768 ± 0.019

G1,G2 597 0.442 ± 0.013 0.556 ± 0.013
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Table 6: Predictive abilities of the prediction within and across tester subsets with specific esti-
mation sets (ES) for the same test set (TS) of calibration set CS1 and CS2 in Maize 2. Size of
each TS (NTS) and corresponding ES (NES) are given in the table.

TS ES Predictive ability ± standard deviation

Tester NTS Tester NES GDY GDC

CS1 T1 140 T1 558 0.654 ± 0.012 0.837 ± 0.005

T1,T2 933 0.636 ± 0.009 0.850 ± 0.006

T2 375 0.288 ± 0.004 0.567 ± 0.004

T2 75 T2 300 0.462 ± 0.029 0.865 ± 0.005

T1,T2 998 0.500 ± 0.019 0.885 ± 0.004

T1 698 0.405 ± 0.007 0.785 ± 0.003

CS2 G1/T1 38 G1/T1 151 0.442 ± 0.029 0.724 ± 0.029

T1/T3 799 0.464 ± 0.017 0.839 ± 0.013

T3 530 0.344 ± 0.006 0.680 ± 0.010

G3/T1 28 G3/T1 110 0.331 ± 0.048 0.804 ± 0.016

T1,T3 829 0.349 ± 0.036 0.836 ± 0.009

T3 530 0.249 ± 0.018 0.497 ± 0.028

G1/T3 78 G1/T3 315 0.592 ± 0.009 0.832 ± 0.007

T1,T3 779 0.567 ± 0.009 0.848 ± 0.006

T1 327 0.204 ± 0.009 0.527 ± 0.006

G3/T3 24 G3/T3 98 0.298 ± 0.036 0.536 ± 0.025

T1,T3 833 0.409 ± 0.018 0.768 ± 0.019

T1 327 0.208 ± 0.028 0.490 ± 0.015
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Table 7: Predictive abilities of the prediction within and across group/tester subsets with specific
estimation sets (ES) for the same test set (TS) in calibration set CS2. Size of each TS (NTS) and
corresponding ES (NES) and the mean (k) and maximum (kmax) expected kisnhip coefficients
between group/tester combinations are given in the table.

TS ES k kmax Predictive ability ± standard deviation

Subset NTS Subset NES GDY GDC

G1/T1 38 G1/T1 151 0.20 0.52 0.442 ± 0.029 0.724 ± 0.029

G1/T3 393 0.20 0.31 0.326 ± 0.008 0.651 ± 0.013

G3/T1 138 0.13 0.33 0.338 ± 0.011 0.715 ± 0.007

G3/T3 122 0.15 0.24 0.288 ± 0.016 0.462 ± 0.016

G1/T3 78 G1/T3 315 0.32 0.60 0.592 ± 0.009 0.832 ± 0.007

G1/T1 189 0.20 0.34 0.172 ± 0.010 0.482 ± 0.006

G3/T3 122 0.22 0.40 0.374 ± 0.008 0.647 ± 0.002

G3/T1 138 0.14 0.28 0.205 ± 0.011 0.377 ± 0.005

G3/T1 28 G3/T1 110 0.16 0.42 0.331 ± 0.048 0.804 ± 0.016

G3/T3 122 0.16 0.24 0.120 ± 0.014 0.322 ± 0.019

G1/T1 189 0.13 0.35 0.288 ± 0.017 0.753 ± 0.012

G1/T3 393 0.14 0.21 0.230 ± 0.020 0.466 ± 0.032

G3/T3 24 G3/T3 98 0.25 0.46 0.298 ± 0.036 0.536 ± 0.025

G3/T1 138 0.16 0.27 0.194 ± 0.020 0.325 ± 0.020

G1/T3 393 0.22 0.42 0.446 ± 0.009 0.564 ± 0.013

G1/T1 189 0.15 0.26 0.208 ± 0.014 0.400 ± 0.020
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Figure 25: Predictive abilities obtained with 10×5-fold cross-validation across group/tester
subsets of calibration set CS2. Specific estimation sets (ES) were sampled with constant size
(NES = 98) for test sets (TS) of (a) G1/T1, (b) G1/T3, (c) G3/T1, and (d) G3/T3 containing the
same group/tester subset or the remaining group/tester subsets. The boxplots show the range,
median (bar) and mean (×) of 50 CV runs for both traits grain dry matter yield (GDY) and
grain dry matter content (GDC). Numbers above and below boxplots indicate average predictive
abilities.
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Figure 26: Mean predictive ability of GBLUP for traits GDY and GDC obtained for the prediction
within and across group/tester combinations (G1/T1, G1/T3, G3/T1, and G3/T3) in calibra-
tion set CS2 plotted against (a) mean (k) and (b) maximum kinship (kmax) within and across
group/tester combinations. The sample size of the estimation sets was fixed to NES = 98 for
each of the 16 possible combinations. Correlations (r) between predictive abilities and mean
and maximum expected kinship coefficients, respectively, are given for both traits in the legend.
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3.4.5 Predictive abilities based on different kinship coefficients between
testcrosses

A pairwise comparison between different kinship matrices for the Tester T1 subset of

CS1 in Maize 2 is visualized in Figure 27. The Pearson’s correlation coefficient between

the different kinship coefficients derived from pedigree or genome-wide marker data

ranged between r(K,UAB) = 0.55 to r(U,UAB)=0.97. As both realized kinship matrices

U and UAB are based on a marker matrix with column-centered genotype scores, this

high accordance was expected. The realized kinship coefficients US, UTGDY
and UTGDC

were also highly correlated (r = 0.88 − 0.94) as both were derived from the simple

matching coefficient. The lowest correlations were observed between the expected and

realized kinship coefficients (r = 0.55−0.76), where US showed the highest accordance

with K.

Average predictive abilities derived from PBLUP and GBLUP for the tester T1 subset of

CS1 based on these kinship coefficients are shown in Table 8. Confirming the results

from Section 3.4.3, lowest predictive abilities were observed for the pedigree-based kin-

ship. For GDY, predictive abilities obtained with different realized kinship coefficients

showed no large differences. Larger differences occurred between GBLUP with different

kinship coefficients for the trait GDC. Here, highest predictive abilities (rTS = 0.84) were

obtained with US and U. The predicted testcross values derived from the GBLUP model

with these two realized kinship coefficients were correlated with r = 1 but shifted by a

constant.
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Figure 27: Scatterplot of pairwise comparisons between kinship coefficients. Lower triangle
shows the correlation coefficients between kinship matrices for DH lines from subset of tester T1
of calibration set CS1 in Maize 2.

Table 8: Mean predictive abilities and attached standard errors for grain yield (GDY) and grain
dry matter content (GDC) obtained with 10×5-fold cross-validation with random sampling of
PBLUP and GBLUP with different realized kinship coefficients for tester T1 subset of calibration
set CS1 in Maize 2.

Kinship Predictive ability ± standard deviation

coefficients GDY GDC

K 0.398 ± 0.007 0.519 ± 0.008

US 0.654 ± 0.011 0.844 ± 0.004

UT 0.649 ± 0.012 0.831 ± 0.004

U 0.654 ± 0.011 0.844 ± 0.004

UAB 0.654 ± 0.012 0.837 ± 0.005
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3.4.6 Predictive abilities with decreasing number of locations and sample
size

The dependency of predictive abilities on the number of locations (L) and number of

individuals (N) within the data set of tester T1 in CS1 of Maize 1 is displayed for both

traits in Table 9. Predictive abilities decreased with decreasing number of locations,

which were used for the phenotypic evaluation of testcrosses. Moreover, within a con-

stant set of locations, predictive abilities decreased when the number of individuals de-

creased. For GDY, predictive abilities were reduced from rTS = 0.65 within the set of

four locations and with all 698 DH lines to rTS = 0.32 when only 87 DH lines and one

location were used for testcross evaluation. For GDC, predictive abilities were reduced

from rTS = 0.84 to 0.50.

Table 9: Predictive abilities and standard deviations within subsets of specific size (N) and num-
ber of locations (L) obtained from 10×5-fold cross-validation for grain yield (GDY) and grain
dry matter content (GDC). Predictive abilities were averaged across randomizations for each
combination of N × L subsets as stated in Table 2.

N

Trait L 698 349 175 87

GDY 4 0.654 0.592 ± 0.058 0.530 ± 0.071 0.432 ± 0.103

3 0.631 ± 0.038 0.568 ± 0.068 0.505 ± 0.085 0.407 ± 0.119

2 0.593 ± 0.061 0.531 ± 0.086 0.468 ± 0.111 0.375 ± 0.142

1 0.523 ± 0.097 0.466 ± 0.106 0.407 ± 0.139 0.322 ± 0.157

GDC 4 0.837 0.766 ± 0.013 0.685 ± 0.045 0.534 ± 0.084

3 0.829 ± 0.009 0.758 ± 0.017 0.679 ± 0.045 0.531 ± 0.082

2 0.814 ± 0.016 0.744 ± 0.023 0.667 ± 0.049 0.522 ± 0.088

1 0.777 ± 0.025 0.708 ± 0.031 0.636 ± 0.057 0.500 ± 0.098
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3.4.7 Prediction across locations

Figure 28 illustrates the predictive abilities with sampling of genotypic subsets, locations,

and both factors simultaneously based on the possible combination of three and two

locations in the ES as described in Figure 8. With genotypic sampling, predictive abilities

ranged between rTS = 0.41 and 0.77 with an average of rTS = 0.63 for GDY. Accounting

for sampling of locations resulted in lower mean predictive abilities (TSloc, rTS = 0.51).

Predictive abilities were reduced even more, when the sampling accounted for genotypes

and locations simultaneously (TSg×loc; rTS = 0.42). Predictive abilities were reduced for

all sampling schemes, when only two locations were sampled for the ES. Predictive

abilities for grain dry matter content were higher than for grain yield for all CV schemes.

For GDC, accounting for sampling of locations did not lead to reduced predictive abilities

compared to genotypic sampling.

In Figure 29, the correlation between locations is illustrated with a dendrogram. When

highly correlated locations were sampled for the ES, estimated heritabilities were high.

In Figure 30, mean predictive abilities are illustrated for each possible combination of lo-

cations in the TS when the ES included three or two environments against the heritability

in each ES. Figure 31 illustates predictive abilities against the phenotypic correlation be-

tween ES and TS. With genotypic sampling (TSg), predictive abilities were significantly

(p < 0.01) dependent on trait heritabilities for both traits obtained from a specific set of

locations in the ES. Mean predictive abilities across locations (TSloc) were significantly

(p < 0.001) reflected in the phenotypic correlations between adjusted means of locations

in the ES and TS. Best predictions of testcross values were observed when heritabilities

of the ES were high and the adjusted means from the TS and ES were highly correlated.
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Figure 28: Predictive abilities of different TS derived from (a) 300 possible ES of three locations
and (b) 200 possible ES of two locations from genotypic and environmental sampling in cross-
validation for both traits grain yield (GDY) and grain dry matter content (GDC). Numbers above
and below boxplots show average predictive abilities.
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Figure 29: Dendrogram of locations estimated with average linkage clustering. Distance between
locations was calculated based on (a) grain yield and (b) grain dry matter content.
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Figure 30: Mean predictive abilities within three specific test sets (TSg, TSloc,TSg×loc) for dif-
ferent subsets of locations in the estimation set including two or three locations against trait
heritabilities in the estimation set (h2

ES
) for (a) grain yield and (b) grain dry matter content.
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Figure 31: Mean predictive abilities within specific test sets (TSloc,TSg×loc) for different subsets
of locations in the estimation set including two or three locations against phenotypic correlations
between adjusted means of locations in the estimation and test set (rp(ES, TS)) for (a) grain dry
matter yield and (b) grain dry matter content.
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3.4.8 Prediction across years

In both calibration sets, a subset of DH lines was evaluated with tester T1. Therefore,

the testcross values of DH lines from the group/tester combination G1/T1 in 2011 (CS2)

were predicted based on the data from the tester T1 subset in 2010 (CS1). The correla-

tions between predicted and observed testcross values of G1/T1 in CS2 were r = 0.36 for

GDY and r = 0.61 for GDC (Appendix, Table A8). The prediction across years resulted in

even more reduced predictive abilities as compared to the prediction of an independent

set of DH lines in an independent location within the same year (see TSg×loc).

The prediction across the two complete calibration sets was also investigated. Figure 32

shows correlations between observed testcross performance of DH lines in one year and

their predicted testcross values derived from model training with the entire calibration

set of the other year separated for the respective group/tester combination. For GDY, pre-

dictive abilities across years ranged between 0.30 and 0.44 for all group/tester subsets

except for DH lines from group G2 that could not be predicted accurately (rTS = 0.28 in

CS1 and -0.15 in CS2). For GDC, predictive abilities across years ranged between 0.50

and 0.74. Within the respective group/tester combinations, predictions across years

were of similar magnitude irrespective of whether model training was performed on

CS1 and predictions on CS2 or vice versa. However, when calculated across all subsets,

predictive abilities were higher in CS1 (rCS1 = 0.58 for GDY and rCS1 = 0.74 for GDC)

than in CS2 (rCS1 = 0.38 for GDY and rCS1 = 0.51 for GDC). Predictions across years for

GDY were in a similar range as predictions obtained for the prediction across locations

when sampling independent genotypes (Figure 28, TSg×loc).

For predicting testcross values of DH lines of VS1 evaluated in 2011, different reference

sets were used for model training. The results from these predictions are shown for both

traits in Table 10. For GDY, the highest correlation (r = 0.60) was obtained when the

observations from CS1 were used for predicting the testcross performance in 2011. For

GDC, predictive abilities were higher than the phenotypic correlation with CS1 when the

testcross values were predicted based on genotypic information from CS1. An additional

increase was observed when the reference set included also the DH lines from CS2,

which was evaluated in the same year as the VS1. For both traits, predictive abilities

dropped when the selected DH lines were excluded from CS1 in the reference set.
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Figure 32: Observed against predicted testcross values of calibration set CS1 and CS2 predicted
with the other calibration set for traits grain yield (GDY) and grain dry matter content (GDC)
as elliptical contours representing 95 % confidence intervals for each group/tester combination.
Predictive abilities as correlation (r) between observed and predicted testcross values are stated
within the figures for each calibration set and within group/tester combinations.
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Table 10: Correlation of observed testcross performance for grain dry matter yield and grain dry
matter content of DH lines in the validation set VS1 with observed or predicted testcross values
from calibration set CS1 and/or CS2. The DH lines selected for the VS1 were a subset of the DH
lines from CS1 and their observations from 2010 were included or excluded for model training.
Confidence intervals for α= 0.05 are in parentheses.

Correlation of observed testcross

performance of VS1 in 2011 with Grain dry matter yield Grain dry matter content

Observed testcross values of VS1 in 2010 0.599 [0.454, 0.713] 0.814 [0.734, 0.872]

Predicted testcross values based on model training with

Observed values of VS1 from 2010 included

CS1 0.555 [0.400, 0.680] 0.846 [0.778, 0.895]

CS1 + CS2 0.582 [0.433, 0.700] 0.850 [0.783, 0.897]

Observed values of VS1 from 2010 excluded

CS1 0.519 [0.357, 0.651] 0.772 [0.676, 0.842]

CS1 + CS2 0.548 [0.391, 0.674] 0.798 [0.712, 0.861]

CS2 0.498 [0.332, 0.635] 0.743 [0.639, 0.821]
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4 Discussion

4.1 Modeling the kinship between DH lines

The application of pedigree-based kinship coefficients has been widely adopted into

plant breeding programs (Bernardo 2002). In association studies, kinship coefficients

have been applied to correct for spurious associations which rely only on relationships

between individuals instead of true marker trait associations (Astle and Balding 2009).

When pedigree data is not available, marker information can be used to model these

kinships. One of the first suggestions for marker-based kinship estimates have been

reported in Fernando and Grossman (1989). For genomic prediction, the estimated kin-

ship coefficients are used to model the variance-covariance structure of random effects

to predict the genetic value of related individuals. For traits regulated by a large number

of genes with small effects, e.g., grain yield and grain dry matter content (Melchinger

et al. 1998; Schön et al. 2004), and populations with strong long range LD, these mixed

effects models have been shown to perform well with respect to prediction accuracies

(Lorenzana and Bernardo 2009; Zhong et al. 2009; Piepho 2009; Crossa et al. 2010;

Wimmer et al. 2013).

4.1.1 Predictive abilities with pedigree- and genome-wide marker data

Irrespective of the CV scheme employed, genome-enabled predictions performed sub-

stantially better than the model based on pedigree data alone. So far, PBLUP has been

a standard procedure for predicting the performance of selection candidates within a

breeding population. The relative performance of GBLUP compared to PBLUP indicates

an advantage of marker information in contrast to pedigree data only (Daetwyler et al.

2013). As pointed out by Goddard (2008), for predicting the magnitude of this increase

in accuracy the effective number of segregating loci in the population under study is

most relevant. In advanced cycle breeding populations with small effective sample size

and doubled haploid lines generated from F1 plants, extensive LD can be expected and

was shown for the experimental material under study. Consequently, the variation in re-

alized genetic relationship among DH lines sharing the same expected relatedness, i.e.,
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within full-sib families, is high (Appendix, Figure A1 and A2), leading to an increase in

prediction accuracy for models using genomic data. In Maize 1 for 264 DH lines of a

randomly chosen test set from CV-W, Figure 33 illustrates predicted testcross values for

grain yield derived from PBLUP and GBLUP relative to their respective family mean cal-

culated from adjusted means of the full data set. While in PBLUP testcross performance

of all DH lines derived from the same cross obtain the same predicted value, variation of

testcross values predicted with GBLUP is large within each of the 36 families leading to

higher predictive abilities.
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Figure 33: Predicted testcross performance with PBLUP and GBLUP obtained from one test set
of within family sampling in Maize 1 plotted against the respective family means calculated from
adjusted means for grain yield.

Including pedigree information in addition to genome-wide marker data in the model

(P+GBLUP) improved prediction of testcross performance but only to a small extent

and only with CV-W (Table 4). A modest improvement of predictive abilities of models

including pedigree information in addition to marker data was also observed by Crossa

et al. (2010). Goddard (2008) pointed out that including a polygenic term in the model

might be beneficial for capturing the effects of alleles with low frequency. However, the

relative performance of P+GBLUP was equal compared to GBLUP when predictions were

calculated for distantly related DH lines in CV-A (Table 4). As observed in this study,
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even with high-quality pedigree and genome-wide marker data for all individuals in

model training and prediction, P+GBLUP did not outperform GBLUP with mixed effects

models due to the redundancy of the data.

The conclusions on the relative performance of the three models were further confirmed

when comparing the mean phenotypic testcross performance of the 10 % best lines se-

lected based on their predicted testcross performance for grain yield. Lines selected

based on predictions from GBLUP and P+GBLUP performed markedly better than those

selected based on PBLUP with CV-W and CV-A, but P+GBLUP did not have an advantage

over GBLUP.

In Maize 2, the relative performance of PBLUP to GBLUP in both calibration sets con-

firmed the differences in family substructure (see also Section 4.2.3). Due to the smaller

family sizes, prediction performance of PBLUP for GDY was high in CS2 (Figure 23).

However, realized genetic kinship coefficients capture the variation within large crosses

and the advantage of GBLUP over PBLUP was higher in CS1 than in CS2.

4.1.2 Predictive abilities with different genome-based kinship coefficients

The estimation of genomic relatedness was one of the first applications of molecular

markers in plant breeding and has been successfully used for a wide range of appli-

cations such as management of heterotic pools, prediction of heterosis, and diversity

analyses. Many different measures of relatedness have been proposed for quantifying

the kinship between pairs of individuals (Reif et al. 2005). In maize breeding, estimates

of kinship between fully homozygous inbred lines are frequently calculated from the pro-

portion of shared marker alleles corrected for the average proportion of alleles alike in

state between unrelated individuals in the population under study (Bernardo 1993). A

similar approach is the application of US, but instead of correcting with the proportion of

alleles alike in state estimated from unrelated individuals, the minimum value of alleles

shared between DH lines (smin) as suggested by Hayes and Goddard (2008) was taken

as a correction term. As shown in the Appendix, the choice of the correction factor for

US in GBLUP affects the estimated variance components in a predictable form and pre-

dicted testcross values from GBLUP will be shifted in scale but ranked identically when

70



4 DISCUSSION

compared to GBLUP with U. Predictive abilities obtained in CV were not influenced by

the choice of one of these two kinship coefficients (Table 8).

The kinship between DH lines can be estimated from genome-wide covariances of allele

counts which can be interpreted as deviations of allele sharing from that expected for

unrelated individuals. In this study, allele frequencies were estimated directly from the

data to obtain the elements of the matrix U for GBLUP. As pointed out by Habier et al.

(2007), correction of allele counts (elements wim) with their expected values (2pm) sub-

tracts the same constant for all individuals in the population under study and thus only

leads to a scale-shift. Analogously as for GBLUP, testcross values predicted with RRBLUP

are shifted in scale but ranked identically when compared to GBLUP. The transformation

of RRBLUP to GBLUP is only possible, when the final matrix of kinship coefficients is not

further modified. Although negative kinship coefficients can occur, the interpretation as

a correlation coefficient is straightforward and negative values should not be set to zero

which was recently applied in association studies (Bernardo 1993; Stich et al. 2008).

Comparing the kinship coefficient based on centered or centered and scaled marker

scores (VanRaden 2008; Astle and Balding 2009), only the second one puts more weights

on the rare alleles, while the first results in identical estimates as RRBLUP. Endelman and

Jannink (2012) discussed that different shrinkage of the kinship matrix can influence

predictive abilities when N > M and the phenotypic accuracies are low. With multi-

environmental trials for maize breeding populations which are genotyped with a high

density panel of SNPs, it was expected that there might be no large difference of pre-

dictive abilities as observed for the data sets of this study (Table 8). However, Scutari

et al. (2013) concluded that the kinship based on column-scaled marker scores might be

superior to the kinship according to VanRaden (2008).

4.2 Implications from cross-validation and validation

Cross-validation is a nonparametric method for the selection and evaluation of prediction

models. The main feature of this method is to split the data set into two subsets to

obtain estimates of the predictive ability and accuracy without a second trial. Different

sampling strategies were applied to analyze factors influencing predictive ability and to
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obtain an estimate of predictive ability for the different models. Dividing the data set

into subsets is always a loss of information in estimating the effects of a model, because

one subset of observations is discarded in model fitting. But with decreasing test set

size, the variance of predictive abilities increases. Breiman and Spector (1992) proposed

that 5- and 10-fold CV are suited for model selection and Kohavi (1995) obtained an

optimum for predictive abilities with 10- and 20-fold CV. In this study, an optimal choice

was k = 5 (Appendix, Figure A3). Similar sampling strategies were applied in a QTL

study with 5-fold CV by Utz et al. (2000).

4.2.1 Stratified cross-validation

In stratified CV, each subset has the same distribution as the original data set. Kohavi

(1995) proposed to use this sampling strategy to obtain less biased estimates of the pre-

dictive ability. This can be achieved by sampling equally within crosses (Table 4). In

Maize 1, CV-W yielded high average accuracies for both traits, when the genetic rela-

tionship between DH lines was modeled based on genomic data (r TS ≥ 0.66). These

high values are in accordance with analytical and computer simulation results presented

by Hayes et al. (2009b) who also showed high prediction accuracies within families as

compared to random mating populations. Comparing CV-W with splitting the data set

randomly into subsets for 5-fold CV resulted in similar accuracies. Random sampling

was able to capture the family distribution of the whole data set, because each family

was sufficiently represented in the complete data set since even the smallest full-sib fam-

ily contained at least 14 DH lines. In addition, a high degree of relatedness between the

DH lines in the ES and TS as well as long range haplotype blocks within families lead to

high LD between markers and QTL causing these high predictive abilities obtained with

CV-W.

In contrast to CV-W, across family sampling (CV-A) was applied as described by Legarra

et al. (2008). As expected, average predictive abilities with using the information of

distant relatives were lower compared to using information from close relatives. The

low average accuracies obtained in CV-A with PBLUP (r̄TS ≤ 0.31) indicated that in

the population under study, families derived from different crosses were only distantly

related by pedigree. For GBLUP and P+GBLUP, predictive abilities decreased not as
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severely as with PBLUP, indicating that substantial LD between the markers and QTL was

captured by the markers. Furthermore, predictive abilities obtained with CV-A varied

considerably more compared to CV-W, which might be a result of the highly variable

degree of relatedness between lines in the ES and the corresponding TS. As pointed out

in Habier et al. (2010), the relatedness between lines in the ES and TS must be known

to provide reliable accuracies for the prediction of testcross performances. On the other

hand, due to sampling whole families of different size, the size of the ES varied over the

50 CV runs (1002≤ NES ≤ 1172). But, the possible minimum size of ES within the CV-A

procedures could have been 902 which can still result in reliable predictive abilities as

shown in Figure 20.

Predictive abilities obtained within full-sib families are considered to be higher than

those for random mating populations because allele effects are estimated more accu-

rately and the effective number of independently segregating loci controlling the phe-

notype is reduced (Hayes et al. 2009b). In addition, when model training is performed

within biparental families with relatively low marker densities, high LD and the lack

of population structure will increase predictive abilities for GP (Crossa et al. 2014).

Therefore, predictive abilities of GBLUP were assessed within the four largest biparental

families (58 ≤ N ≤ 60) of Maize 1. Predictive abilities obtained for the four families

varied strongly from rTS = 0.26 to 0.59 for GDY and from rTS = 0.47 to 0.85 for GDC

(Figure 19), probably the result of different genetic relatedness between the parents of

the crosses or differing heritabilities within families (Lehermeier et al. 2014). Based

on pedigree information alone, the expected kinship between progenies of all crosses

showed the same degree of relatedness of 0.5. The number of polymorphic markers dif-

fered substantially. In the family with the lowest accuracy, only 116 of the 732 markers

were polymorphic as compared to 212 in the family with the highest accuracy. Due to the

small family sizes, predictive abilities varied highly across the 50 CV runs. Considering

the substantially higher and much less variable predictive abilities obtained when using

the full data set and CV-W, higher predictive abilities can be achieved with taking into

account information from related families or population wide LD and it does not seem

appropriate to perform model training within individual families (Jannink et al. 2010).
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4.2.2 Allocation of ressources

The main factors influencing predictive ability are the resources available for developing

the training population. The influence of the size of the training set on predictive abili-

ties was analyzed in both breeding populations. For this purpose, the complete data set

of Maize 1 was reduced to N = 688, 344, and 172. The values for the predictive abilities

were still high up to N = 344, below this limit the predictive abilities dropped substan-

tially for both traits (Figure 20). A similar slope was observed for the two calibration

sets in Maize 2 (Figure 22 and 23). As shown by Lorenzana and Bernardo (2009) with

biparental plant populations, the limits of the population size were about 100-200 for

highly heritable traits in maize. Results from this study with multiple crosses indicate

that the critical limit for the size of the training population is in the order of 400 DH

lines.

The optimal marker density used for genomic prediction depends on the sample size

and genetic structure observed in a breeding population. The resulting structure and

extent of LD influences the efficiency and success of genome-wide prediction. Observed

LD within a European elite maize breeding population is mainly caused by relatedness,

population stratification, and genetic drift (Stich et al. 2005). In Maize 1, containing

1377 DH lines out of an advanced cycle breeding population, the level of LD was high

even between marker pairs not located on the same chromosome. This might be an ef-

fect of admixture of different allele frequencies coming from different populations and

the small effective population sizes expected for a maize breeding population. With this

high level of LD, a low marker density as used in Maize 1 seems to already capture the

necessary information required for genomic selection and only a small additional gain

of predictive ability was expected with a higher marker density. The results obtained

with the high density marker panel confirmed this assumption (Figure 21), as increasing

the marker density led only to a small increase in predictive abilities for CV-W. In con-

trast, higher marker densities were more efficient than the lower marker panel for the

prediction of less related material in CV-A. These findings are corroborated by the study

of Habier et al. (2010) who observed that accuracies between unrelated individuals are

decreasing, if LD is only based on selection rather than historic mutations and linkage.

The allocation of field resources to optimize breeding schemes is another crucial point
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for the implementation of genomic prediction. Therefore, the influence of the number

of locations on predictive ability was additionally analyzed. In general, Burgueño et al.

(2011) and Guo et al. (2013) observed a gain in predictive ability if a multi-environment

analysis was applied instead of a single-environment analysis for the prediction of newly

developed genotypes. Similar results could be observed from this study, using half of

the available number of locations reduced predictive abilities for grain yield to the same

amount compared to using only half of the DH lines evaluated in all locations for model

training (Table 9). In contrast for GDC, reducing the sample size had a larger effect on

predictive abilities than reducing the number of location. Therefore, when the number

of plots available for the field trials is limited, it might be advisable to reduce the number

of locations before discarding DH lines for model training.

4.2.3 Optimizing the population for model training

In commercial maize breeding, new improved elite material is recombined in successive

cycles in recurrent selection schemes (Gordillo and Geiger 2008). Unrelated genetic ma-

terial from other breeding populations is introgressed into the core germplasm to main-

tain the genetic variability within the breeding pool. At the beginning of a breeding cycle,

genetic groups will occur where the relatedness within groups is higher than between

groups, which was observed for Maize 2 in this study. As pointed out by Habier et al.

(2010), it is useful to select DH lines, which are closely related to the non-phenotyped

testcrosses to form the training population. Therefore, an estimation of testcross effects

should include the most recent field data from a related training population. On the

other hand, to maintain long term selection gain, Rincent et al. (2012) recommended

capturing high genetic variation within the training population by including a diverse

set of parents for model training. Hence, the optimization of the training population for

GP in maize breeding schemes is still an open question.

In Maize 2, predictive abilities within and across genetic groups were influenced by the

kinship between groups and the size of the ES. The most important factor influencing

predictive abilities across groups was the average and maximum kinship between these

groups, which has also been described by Habier et al. (2010) and Saatchi et al. (2011)

for cattle breeding populations. Predictive abilities for GBLUP across group/tester sub-
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sets in CS2 of Maize 2 were highly dependent on the maximum kinship captured be-

tween estimation and test set when fixing the sample size of the ES in CV (Figure 26).

However, when new genetic material is integrated into an existing breeding population,

there is generally a strong imbalance in the number of lines derived from adapted and

new genetic material and inferences on the association of the degree of relatedness and

predictive ability are not as straightforward.

While adding progenies of unrelated material does not change the maximum kinship

between ES and TS, a reduction of the predictive ability of GBLUP for GDY was observed

for some scenarios. Especially for group G1, which represents the core germplasm of

the calibration sets in Maize 2, predictive abilities did not increase although material

of the other groups was added to the ES. These results confirm similar conclusions by

Riedelsheimer et al. (2013), where the prediction accuracy in multi-parental crosses of

maize could not be improved with including unrelated families to the training popu-

lation. Thus, when new genetic material is introgressed into the breeding population,

predictions within the main genetic group might be advisable until a higher connectivity

between groups is reached by recombination.

However, results obtained in Maize 2 indicate that increasing the ES size by adding

unrelated material to an existing ES of small sample size improves predictive abilities of

GBLUP, which was observed for G2 in CS1 and in CS2 (Table 5). Also for GDC, predictive

abilities slightly increased or were not affected when the ES included lines from all

genetic groups (ESG1,G2,G3). Similar results were observed in animal breeding (Erbe et al.

2012), where the highest prediction accuracies were observed, if the reference set pooled

multiple breeds to predict a TS including Jersey bulls only. Hayes et al. (2009a) argued

that SNPs capturing effects across multiple breeds must be adjacent to the potential

QTL, because they are in high LD across all breeds. Therefore, predictions might be

more persistent over generations when multiple groups are included in the reference

population.
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4.2.4 Accounting for genetic substructures

In Maize 2, CS1 is characteristic for an early cycle from a maize breeding program show-

ing extensive genetic substructure, CS2 represents a cycle where genetic groups can not

be distinguished. In both calibration sets, the core set of germplasm in the breeding

populations is formed by genetic group G1 with the highest performance level and high

average kinship between DH lines.

Accounting for population structure has mainly been discussed in the context of genome-

wide association studies to correct for spurious associations due to admixture (Astle and

Balding 2009). In the context of GP, Windhausen et al. (2012) observed that predic-

tion accuracies are overestimated due to different phenotypic performance levels across

groups. A correction based on principal components was recently proposed by Guo et al.

(2014) and illustrated that predictive abilities in structured breeding populations are bi-

ased. The same effect was observed in Maize 2. When the substructure was not included

as fixed effects in the prediction model within CS1, predictive abilities increased from

rTS=0.59 to 0.73 for GDY (Appendix, Table A7), because markers captured the variation

across groups in addition to the variation within groups. To predict the genetic potential

for grain yield of an untested DH line, the focus of the selection is on the genetic vari-

ation within groups and the estimation of testcross effects should be independent from

the variation across genetic groups.

Results from this study emphasize the importance of taking substructure into account. If

the substructure within a data set is unknown, marker data can be used to assess pop-

ulation structures, e.g., with cluster analyses (Odong et al. 2011; Saatchi et al. 2011;

Heslot et al. 2012). The information from a principal component analysis can be used to

illustrate genetic groups and correct for their effects when estimating predictive abilities

(Guo et al. 2014). In Maize 2, both calibration sets were analyzed with a cluster and

principal component analysis. All clustering methods applied to CS1 were able detect

main substructures in this data set. Main clusters detected in CS1 with the different

cluster analyses could be distinguished in the space of the first two PCs. However, a

prediction within clusters derived from the different clustering methods resulted only in

slightly better predictive abilities as a random sample of CS1 (Appendix, Figure A6). Fur-

thermore, the prediction within group G1 outperformed predictions within the largest
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clusters derived from all clustering methods. In CS2, less variability was explained by

the PCs and the optimum number of clusters could not be clearly identified confirming

that the substructure in CS2 was reduced compared to CS1.

Results obtained within each calibration set of Maize 2 can only partly reflect the effect

of genetic substructure in prediction of an independent sample. Only few studies so far

have validated their results from CV in an independent sample. As observed by Hofheinz

et al. (2012) for sugar beet and Windhausen et al. (2012) for maize, results obtained

with CV within a population can be overestimated compared to a validation on lines

from another related population. Both concluded that high predictive abilities evaluated

within the same population do not necessarily lead to good predictions in a different val-

idation set as LD and linkage phases might change across populations. Therefore, results

obtained from CV-R in CS1 of Maize 2 were validated on CS2 and vice versa (Figure 32).

As expected, predictive abilities of the validation decreased compared to the results ob-

tained with CV-R. Due to the higher extent of genetic substructure in CS1, correlations

within CS1 obtained with CS2 as training set were higher than predictions obtained

with CS1 as training set. However, the overall correlations were substantially inflated

(rCS1 = 0.58 for GDY) or deflated (rCS2 = 0.51 for GDC) because the across group varia-

tion was not captured in the prediction across years. The correlations between observed

and predicted testcross values within the respective group/tester subsets captured by the

within group variation were of the same magnitude for both calibration sets. Improve-

ments could be observed, when the VS1 in 2011 was predicted with the training sets

capturing the within group variation of CS1 and the year interaction from CS2.

To avoid biased predictive abilities due to differences in mean performance across ge-

netic groups, the observed testcross performance should be adjusted in advance by using

estimates of fixed effects. However, if the fixed effects in the validation sample cannot

be estimated within the training population, for example due to different group/tester

combinations in both calibration sets as observed for Maize 2, these differences need

to be known a priori. Otherwise, results should be handled with caution and might be

difficult to interpret (de los Campos et al. 2013).
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4.2.5 Multi-trait predictions

In computer simulations, multi-trait GP models are very promising to be advantageous

if traits differ substantially in heritability or if data on one trait are incomplete (Jia and

Jannink 2012). In European maize breeding, the two most important traits are yield

and maturity and their negative correlation is undesirable. Therefore, it is important to

establish to which extent predictive abilities in GDY can be influenced by differences in

GDC. In Maize 2, results show that depending on the genetic group and the tester, marker

effects predicted for GDC could effectively predict GDY, making it difficult to break up the

negative correlation between the two traits in selection (Figure 24). On the other hand,

the tight association between the two traits could be used in multi-trait prediction models

to enhance the prediction of GDY due to the higher and more stable prediction accuracies

obtained for GDC. However, results from this study show that genetic substructure plays

an important role for GP and that the genetic correlation between GDY and GDC strongly

varied for the different group/tester combinations. In addition, it is hard to rule out

the possibility that the different weather conditions experienced in the two years of

evaluation affected the association between GDY and GDC in different ways. Thus,

modeling the genetic variance-covariance between traits is exceedingly challenging for

real life experimental data. It remains to be seen if employing a multi-trait prediction

approach can simultaneously improve the predictive accuracies of both traits.

4.2.6 Prediction across testers

Another important question for breeders is the comparison of predictive abilities across

testers, as multiple testers are often used for producing testcrosses. The genetic corre-

lation (rg) between testers can be used to estimate the accordance between testers. In

Maize 2, DH lines were crossed to only one of two testers in each calibration set and the

genetic correlation rg could not be directly assessed. The extent of rg depends on the

general and specific combining ability, which cannot be separated when testcrosses were

produced with only one inbred or single-cross tester (see Section 2.4). However, corre-

lations between testers are expected to be medium to high as in hybrid maize breeding,

heterotic pools emerged a long time ago which reduced the influence of specific com-

pared to general combining ability (Reif et al. 2007). From the literature, rg between
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testers of greater than 0.6 for GDY and GDC have been observed for testcrosses derived

from biparental families with two different testers (Melchinger et al. 1998). Concern-

ing predictive abilities obtained from CV-R within testers in CS1 and the fact that the

testers were mainly crossed to different genetic groups, the observed predictive abilities

obtained from CV across testers were higher than expected with rg = 0.6 as assumed by

Windhausen et al. (2012) (Table 6). In CS2, predictive abilities across testers were gen-

erally lower as expected although both single-cross testers T1 and T3 shared a common

parent. However in this data set, the DH lines were not randomly assigned to the tester

subsets in both calibration sets and this effect cannot be separated from the specific com-

bining ability of each tester. Thus, the choice of the tester can have a strong effect on

predictive abilities and the exploitation of specific combining ability for GP needs further

attention.

4.2.7 Prediction across locations and years

The prediction of untested DH lines in a different set of locations and years is of im-

portance for any breeder. The evaluation of DH lines in multiple years is time and cost

consuming. Therefore, DH lines are generally evaluated in multiple locations represent-

ing the target environment to capture genotype by environment interactions within one

year only. Using the subset of tester T1 from CS1 of Maize 2, predictive abilities across lo-

cations were compared to validation in the next year to assess whether prediction across

locations can reflect genotype by environment interactions necessary for the prediction

across years. All DH lines belonging to this subset were evaluated in the same four lo-

cations and tester T1 was crossed to subsets of groups G1 and G3 in both calibration

sets.

The results for the prediction across locations were highly dependent on the selected

locations for the ES. While the prediction of untested DH lines within a set of locations

was dependent on the heritability obtained from the selected locations (Figure 30), the

prediction of testcross performance in a different location was dependent on the cor-

relation between these locations (Figure 31). Best predictions of genotypes within the

TSloc and TSg×loc were obtained when the ES included locations which represented the

whole range of the target environment and were therefore highly correlated with the en-

80



4 DISCUSSION

vironment in the TS. Similar results were observed by Burgueño et al. (2011), i.e., pre-

dictive abilities improved when not only highly correlated environments were selected

for the ES. Hence, environments for calibration of prediction models should be highly

heritable but still covering a wide range of genotype by location interactions to obtain a

good prediction across locations and genotypes. Comparing the predictions across loca-

tions with predictions across years, large differences could be observed between the two

traits. For GDY, mean predictive abilities obtained in TSg×loc were of the same magni-

tude as the correlation with predicted testcross values from CS1 and observations from

CS2 (rG1/T1 = 0.36). In contrast for GDC, predictions across locations and genotypes

within one year overestimated predictive abilities compared to validation across years

(rG1/T1 = 0.61). This might be an effect of the different weather conditions in both

years. In 2011, weather conditions were more favorable for maize production than in

2010 influencing the level of maturity reached at harvest. In addition, these results

are comparable with previous QTL studies. As observed by Utz et al. (2000) for traits

like GDY and GDC, the proportion of genetic variance explained by the QTL was always

higher for the validation in TSg×loc than in an independent validation sample, although

the power of QTL detection was reduced due to the lower number of observations in

the ES compared to analyses with the complete data set. However, predictions of GDC

for G1/T1 in CS2 using the complete CS1 data set yielded markedly higher predictive

abilities (rG1/T1 = 0.71, Figure 32) which were comparable to those obtained with the

predictions across locations. To obtain a more complete picture on the effects of geno-

type by environment interactions on predictive abilities and the usefulness of accounting

for them in GP will require more than two calibration sets. Connections between years

by common check cultivars might increase the potential to fully capture genotype by en-

vironment interactions. Further improvements for the predictions across environments

might also be achieved with modeling the genotype by environment interactions within

the GP model as suggested by Burgueño et al. (2011) and Guo et al. (2013).
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5 Conclusions

High predictive abilities obtained with different cross-validation and validation scenar-

ios are promising for the implementation of genomic prediction into maize breeding

programs. The data sets presented in this study exhibited different degrees of genetic

substructure and it was demonstrated that due to the complexity of the data sets, the

implementation of GP is not straightforward.

Prediction models should account for data heterogeneity, different testers and genotype

by environment interactions. In general, predictive abilities were highly dependent on

the relatedness between estimation and test sets. When data heterogeneity is high and

the connection between genetic groups is low, a prediction within groups can outper-

form a prediction including multiple groups. However, when across group variation

is reduced by recombinations, information for the predictions can be gained from re-

lated testcrosses even from different genetic groups or families. Observed correlations

between testers were lower than expected. To increase the information gain for the

calibration of prediction models, the connectivity between different testers should be

increased by common check cultivars crossed to all available testers used for producing

the testcrosses. Predictions across years were highly influenced by the across group vari-

ation and predictive abilities were over- as well as underestimated. For prediction across

years, information will be gained from related lines evaluated in several years to capture

genotype by environment interactions. By including correlated environments represent-

ing the full spectrum of the target environment and modeling genotype by environment

interactions in the prediction model, predictive abilities could be increased.

This study gives valuable insights into the re-allocation of resources for maize breed-

ing to effectively implement GP and shows that not only the size of the population for

model training but also the genetic variation captured by the population is of utmost

importance.
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6 Summary

Genomic prediction is a newly developed method to predict the genetic potential of un-

tested individuals based on their genotypic profile. This method has been successfully

implemented into dairy breeding, where phenotypic performance of a bull cannot be

directly assessed and the evaluation of daughters is time and cost consuming. With

decreasing genotyping costs, genomic prediction has also become of interest for plant

breeders, where multi-environmental trials are necessary to assess the performance of

newly developed lines. First results on the genome-based prediction of testcross perfor-

mance from this study are encouraging for the implementation of genomic prediction

into maize breeding programs. However, the implementation of genomic prediction in

plant breeding is not straightforward and more research is needed for the prediction

within structured breeding material or the prediction across testers and years.

The experimental data sets used in this study were derived from two commercial maize

breeding programs. The first data set comprised 1377 doubled haploid (DH) lines eval-

uated as testcrosses with one tester in seven locations. All DH lines were genotyped

with a low-density array including 1152 biallelic single nucleotide polymorphism (SNP)

markers, a subset of the DH lines was additionally genotyped with a high-density SNP

array comprising 56110 markers. The second data set was composed of two calibra-

tion sets derived from subsequent breeding cycles comprising 1073 and 857 DH lines.

Both calibration sets included germplasm from three genetic groups and were evaluated

as testcrosses with three different testers in four locations and two consecutive years.

Genotyping was performed with the high-density SNP array (56110 markers). Selected

DH lines of the first calibration set were additionally evaluated in the second year. In all

data sets, the traits grain dry matter yield and content were assessed.

All data sets were characteristic for maize breeding populations exhibiting different de-

grees of genetic substructure and distinct family and tester composition. To obtain an

estimate of the relative performance of genome-based compared to pedigree-based pre-

diction of testcross performance, models employed for the prediction of testcross perfor-

mance differed in how the kinship between DH lines was modeled based on pedigree and

marker data. Different cross-validation and validation procedures were applied to the

data sets to assess the genome-based prediction performance within and across families,
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6 SUMMARY

genetic groups, testers, locations, and years.

It was demonstrated that genome-based predictions outperformed pedigree-based pre-

dictions in plant breeding populations. Different methods for estimating genome-based

kinship coefficients between DH lines resulted in similar or even identical predictive

abilities. The largest influence on prediction performance was observed for genetic sub-

structure in the data sets. In most cases, mean predictive abilities across families or

subsets of genetic groups and testers were lower than predictive abilities within families

or subsets, due to the reduced relatedness among DH lines in the estimation and test

sets. Genome-based prediction across years achieved promising results but predictive

abilities were reduced compared to the prediction within a year. The optimal calibra-

tion population should represent the full genetic variation of the breeding population.

Locations selected for evaluating this population should represent the complete target

environment. However, accounting for data heterogeneity, different testers, and geno-

type by environment interactions should be improved with increasing the connectedness

between calibration and validation population by including common test units.
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7 Zusammenfassung

In der Pflanzenzüchtung beruht die Evaluierung von ungeprüften Selektionskandidaten

bisher auf ressourcenintesiven, mehrortigen Feldversuchen. Die Vorhersage des gene-

tischen Wertes einer Linie basierend auf ihrem DNA Profil ist hingegen eine neue und

vielversprechende Methode. In der Rinderzüchtung wurde diese Methode bereits erfolg-

reich etabliert, da die bisherige Zuchtwertschätzung von Bullen eine teure und lang-

wierige Prüfung der Bullentöchter beinhaltete. Mit der stetigen Abnahme der Geno-

typisierungskosten ist die genombasierte Vorhersage auch für die Pflanzenzüchtung in

greifbare Nähe gerückt. Erste Ergebnisse aus dieser Studie sind vielversprechend für

die Implementierung der genomischen Vorhersage in Maiszuchtprogrammen. Jedoch ist

die genaue Kenntnis des Einflusses von Populationsstrukturen auf die Vorhersage über

Populationen sowie über Tester und über Jahre notwendig.

Die Datensätze für diese Studie stammen aus zwei Zuchtprogrammen. Der erste Daten-

satz bestand aus 1377 Doppelhaploiden (DH)-Linien, welche als Testkreuzungen mit

einem gemeinsamen Tester an sieben Standorten geprüft wurden. Alle DH-Linien wur-

den mit 1152 biallelen Einzelnukleotid-Polymorphismus (engl. single nucleotide poly-

morphism, SNP)-Markern genotypisiert, ein Teil der Linien wurde zusätzlich noch auf

einer Hochdurchsatzplattform mit 56110 SNP-Markern genotypisiert. Der zweite Daten-

satz enthielt zwei Kalibrierungspopulationen mit 1073 und 857 DH-Linien aus zwei

aufeinanderfolgenden Zyklen desselben Zuchtprogramms. Beide Populationen wurden

als Testkreuzungen mit drei unterschiedlichen Testern an vier Standorten in 2010 be-

ziehungsweise 2011 geprüft. Die Genotypisierung erfolgte ebenfalls mit der 50k SNP-

Plattform. Aus der ersten Kalibrierungspopulation wurden einige DH-Linien selektiert

und als Validierungspopulation erneut im zweiten Jahr geprüft. In allen Datensätzen

wurden die Merkmale Korntrockenmasseertrag und -gehalt bestimmt.

Alle Datensätze waren charakteristisch für europäische Maiszuchtprogramme und spiegel-

ten unterschiedliche Grade an Familien-, Tester- und Populationsstrukturen wider. Für

die Vorhersage der Testkreuzungsleistung wurden verschiedene statistische Modelle eta-

bliert, welche sich in der Modellierung der Verwandtschaft zwischen den Linien, basierend

auf Marker- und Abstammungsdaten, unterschieden, um die relative Effizienz der genomi-

schen zur stammbaumbasierten Vorhersage abschätzen zu können. Um die Vorher-
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sageleistung innerhalb und zwischen Familien, Gruppen, Testern, Orten und Jahren er-

mitteln zu können wurden unterschiedliche Kreuzvalidierungs- und Validierungsszena-

rien auf die Datensätze angewendet.

Wie erwartet war die genomische Vorhersage der Testkreuzungsleistung dem Modell

basierend auf den Abstammungsdaten überlegen, während die verschiedenen Metho-

den zur Schätzung der genomischen Verwandtschaft zwischen den Linien nur zu gerin-

gen Unterschieden in den Vorhersagegenauigkeit führten. Den größten Einfluss auf die

Vorhersageleistung hatte die genetische Struktur innerhalb der Kalibrierungspopulatio-

nen. Die Vorhersage innerhalb der Familien, Gruppen und Testerteildatensätze funktion-

ierte meist deutlich besser als die Vorhersage zwischen Familien und Gruppen, da die

Verwandtschaft zwischen den DH-Linien im Schätz- und Testset im zweiten Fall deutlich

geringer war. Obwohl die Vorhersage über Jahre stark von der Substruktur beeinflusst

wurde, waren die Vorhersagegenauigkeiten hoch, aber geringer als innerhalb der Jahre.

Aus den Ergebnissen lässt sich schließen, dass die optimale Kalibrierungspopulation das

gesamte genetische Spektrum des Zuchtprogramms widerspiegeln sollte. Des Weiteren

sollten die ausgewählten Umwelten zur Phänotypisierung der Kalibrierungspopulation

möglichst gut der Zielumwelt entsprechen. Um die Heterogenität in den Datensätzen zu

minimieren und somit den Einfluss der Gruppen und Tester, sowie der Genotyp-Umwelt-

Interaktion zu reduzieren, sollte anhand von gemeinsamen Prüfgliedern zwischen den

Testern und Jahren die Verbindung zwischen Kalibierungs- und Validierungspopulation

optimiert werden.
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9 Appendix

Transformation of variance components

As described in Section 2.5.2, the GBLUP model with the realized kinship according to

Habier et al. (2007) and VanRaden (2008) can be transformed to the RRBLUP model.

The transformation of variance components can be derived from the following equations

under the assumption that the variance-covariance structure of y is equal in both models.

The variance components for GDY were estimated with both models in tester T1 subset of

Maize 2 (Table A1). The realized kinship coefficients were calculated from the genotype

matrix W with the following formula in matrix notation:

U=
(W− P)(W− P)′

2 ·
∑M

m=1 2pm(1− pm)

Table A1: Variance components and mean for GDY estimated with GBLUP and RRBLUP in the

subset of tester T1 in calibration set CS1 of Maize 2.

σ̂2
u σ̂2

us
σ̂2

m σ̂2 µ

GBLUP(U) 21.73 12.96 129.74

GBLUP(US) 35.74 12.96 124.46

RRBLUP 0.00329 12.96 131.89
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Var(y) = VGBLUP = VRRBLUP

ZUZ′σ̂2
u + Iσ̂2 = WIW′σ̂2

m+ Iσ̂2

ZUZ′σ̂2
u = WIW′σ̂2

m

Z
(W− P)(W− P)′

2 ·
∑M

m=1 2pm(1− pm)
Z′σ̂2

u = WW′σ̂2
m with Z= I

(W− P)(W− P)′

2 ·
∑M

m=1 2pm(1− pm)
σ̂2

u = WW′σ̂2
m

σ̂2
u = 2 ·

M
∑

m=1

2pm(1− pm) · σ̂2
m

21.73 ≈ 0.00329 · 6608.51= 21.74

The variance components are unaffected by P, since the same column vector p is sub-

tracted from each vector of marker genotypes m and the slope of the regression of

the phenotype on each SNP is not changed. The term P is constant and captured by

the intercept as described in the next section. The same transformation can be de-

rived for the comparison of variance components of GBLUP with US and RRBLUP, where

σ̂2
us
= 2M(1− smin) · σ̂2

m ≈ 10948 · 0.00329.
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Transformation of the intercept

The following equations describe how the intercept in the RRBLUP model is shifted by

a constant, when the term P is subtracted from the genotype matrix W. If RRBLUP is

estimated with a column-centered genotype matrix, i.e., W− P, the estimated intercept

equals that of GBLUP, while the marker variances are not changed as described in the

previous section. Therefore, the modified RRBLUP can be rewritten as

y = Xβ + (W− P)m+ e

y = Xβ +Wm− Pm+ e.

As Pm is constant for each predicted testcross value, the term captures the difference of

the intercepts, i.e., Xβ in that case, and can be expressed as

µGBLU P −µRRBLU P =
M
∑

m=1

(P · m̂)

129.74− 131.89 ≈ −2.155
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Additional Tables and Figures

Table A2: Variance components and repeatability (rep2) from the first stage of phenotypic anal-

ysis for grain yield (GDY) and grain dry matter content (GDC) for each location in 2010 of

Maize 2.

Variance components

Trait Location σ̂2
g σ̂2

t r ial σ̂2
rep σ̂2

block σ̂2
e ˆrep2

GDY Loc 1 44.93 9.68 3.54 1.61 45.02 0.50

Loc 2 24.13 5.24 2.40 8.90 32.09 0.43

Loc 3 35.42 36.53 7.12 4.63 35.39 0.50

Loc 4 34.44 7.03 3.49 5.31 49.44 0.41

Loc 5 75.03 2.22 0.68 0.00 48.62 0.61

Loc 6 23.31 15.93 6.38 10.64 62.43 0.27

GDC Loc 1 1.48 0.38 0.11 0.10 0.24 0.86

Loc 2 0.96 0.05 0.06 0.14 0.24 0.80

Loc 3 0.92 0.27 0.01 0.02 0.17 0.84

Loc 4 0.99 0.25 0.04 0.08 0.22 0.82

Loc 5 1.44 0.56 0.00 0.03 0.16 0.90

Loc 6 1.57 0.02 0.03 0.06 0.38 0.81
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Table A3: Variance components and repeatability (rep2) from the first stage of phenotypic anal-

ysis for grain yield (GDY) and grain dry matter content (GDC) for each location in 2011 of

Maize 2.

Variance components

Trait Location σ̂2
g σ̂2

t r ial σ̂2
rep σ̂2

block σ̂2
e ˆrep2

GDY Loc 1 58.52 40.61 3.54 6.29 58.73 0.50

Loc 2 56.63 2.83 2.82 3.96 36.81 0.61

Loc 3 60.02 2.99 0.04 0.07 41.22 0.59

Loc 4 54.64 0.00 22.43 8.19 45.05 0.55

Loc 7 79.44 66.86 16.16 33.92 69.51 0.53

Loc 8 85.01 18.87 0.00 6.27 44.04 0.66

GDC Loc 1 1.90 3.16 0.07 0.08 0.30 0.86

Loc 2 1.02 0.09 0.08 0.08 0.21 0.83

Loc 3 1.04 0.44 0.01 0.05 0.15 0.88

Loc 4 2.54 0.33 0.29 0.13 0.37 0.87

Loc 7 2.15 0.43 0.31 0.29 0.43 0.83

Loc 8 2.29 0.90 0.05 0.10 0.17 0.93

Table A4: Variance components and heritability (h2) from the prediction models PBLUP, GBLUP

and P+GBLUP for grain yield (GDY) and grain dry matter content (GDC) of Maize 1.

Trait Model σ̂2
t σ̂2

u σ̂2
e ĥ2 LogL AIC

GDY PBLUP 79.36 ± 19.49 14.86 ± 10.3 0.84 -3499.69 7003

GBLUP 44.22 ± 5.27 34.92 ± 1.56 -3343.46 6691

P+GBLUP 36.92 ± 12.14 35.20 ± 4.73 14.37 ± 6.45 -3318.45 6643

GDC PBLUP 0.862 ± 0.22 0.152 ± 0.12 0.85 -376.53 757

GBLUP 0.690 ± 0.075 0.284 ± 0.01 -123.12 250

P+GBLUP 0.213 ± 0.09 0.641 ± 0.072 0.167 ± 0.05 -113.39 233
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Table A5: Averages of adjusted entry means of grain yield (GDY) and grain dry matter content

(GDC) within tester subsets and groups of calibration sets CS1 and CS2 of Maize 2.

Trait Tester Group

G1 G2 G3 Mean

CS1 GDY T1 129.81 ± 0.22a 126.37 ± 1.12 129.74 ± 0.22

T2 118.47 ± 0.44 122.74 ± 0.47 121.09 ± 0.32

Mean 129.81 ± 0.22 118.47 ± 0.44 122.98 ± 0.42 126.71 ± 0.18

GDC T1 69.00 ± 0.04 68.92 ± 0.17 68.99 ± 0.04

T2 69.73 ± 0.09 67.83 ± 0.08 68.57 ± 0.06

Mean 69.00 ± 0.04 69.73 ± 0.09 67.90 ± 0.08 68.84 ± 0.03

CS2 GDY T1 142.61 ± 0.52 140.96 ± 0.72 141.91 ± 0.43

T3 145.83 ± 0.35 134.95 ± 1.60 147.00 ± 0.66 145.79 ± 0.30

Mean 144.79 ± 0.29 134.95 ± 1.60 143.79 ± 0.49 144.31 ± 0.25

GDC T1 73.44 ± 0.11 72.26 ± 0.16 72.94 ± 0.09

T3 71.38 ± 0.05 71.49 ± 0.38 70.22 ± 0.10 71.12 ± 0.05

Mean 72.05 ± 0.05 71.49 ± 0.38 71.30 ± 0.09 71.81 ± 0.05

a Standard errors centered for each group/tester combination attached

Table A6: Variance components and heritability (h2) from the second stage of phenotypic analysis

for grain yield (GDY) and grain dry matter content (GDC) in calibration sets CS1 and CS2 of

Maize 2.

Trait σ̂2
g1

σ̂2
g1×loc σ̂2

e∗ ĥ2

CS1 GDY 25.05 ± 1.52 11.91 ± 0.95 27.31 0.72

GDC 1.106 ± 0.05 0.128 ± 0.01 0.170 0.94

CS2 GDY 39.01 ± 2.69 19.46 ± 1.64 33.88 0.71

GDC 1.658 ± 0.08 0.050 ± 0.01 0.268 0.95
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Table A7: Average predictive abilities of PBLUP and GBLUP with and without correction for
group/tester effects obtained with 10×5-fold cross-validation of grain yield (GDY) and grain dry
matter content (GDC) in calibration set CS1 and CS2 of Maize 2.

Model Predictive ability ± standard deviation

with correction without correction

GDY GDC GDY GDC

CS1 PBLUP 0.383 ± 0.004 0.597 ± 0.004 0.641 ± 0.002 0.646 ± 0.003

GBLUP 0.594 ± 0.006 0.872 ± 0.003 0.726 ± 0.003 0.868 ± 0.003

CS2 PBLUP 0.400 ± 0.011 0.594 ± 0.005 0.467 ± 0.010 0.748 ± 0.004

GBLUP 0.489 ± 0.012 0.861 ± 0.004 0.535 ± 0.010 0.842 ± 0.006

Table A8: Correlation (rTS) between predicted and observed testcross values for grain yield

(GDY) and grain dry matter content (GDC) from the prediction across years within groups, tester

subsets and group/tester subsets from calibration set CS1 and CS2 of Maize 2.

CS1 → CS2 rTS CS2 → CS1 rTS

GDY GDC GDY GDC

G1 G1 0.393 0.391 G1 G1 0.429 0.682

G1/T1 0.341 0.620

G1/T3 0.451 0.653

G2 G2 0.141 0.830 G2 G2 -0.070 0.485

G3 G3 0.284 0.446 G3 G3 0.272 0.600

G3/T1 0.384 0.411 G3/T1 0.298 0.396

G3/T3 0.224 0.648 G3/T2 0.304 0.627

T1 T1 0.302 0.557 T1 T1 0.341 0.589

G1/T1 0.358 0.610 G1/T1 0.322 0.595

G3/T1 0.235 0.403 G3/T1 0.338 0.531
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Figure A1: Expected (upper triangle and diagonal, blue) and realized kinship coefficients (lower
triangle, green) based on the modified simple matching coefficient in Maize 1.

Figure A2: Expected (upper triangle and diagonal, blue) and realized kinship coefficients (lower
triangle, green) based on the modified simple matching coefficient of calibration set CS1 and
CS2 in Maize 2.
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Figure A3: Predictive abilities of 10× k-fold cross-validation with increasing number of folds for
grain yield (GDY) and grain dry matter content (GDC) within the subset of tester T1 of calibration
set CS1 of Maize 2 (N = 698, M = 11646).
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Figure A4: Density plots of maximum expected and realized kinship based on the modified
simple matching coefficient across different subsets of groups and clusters in calibration set CS1
of Maize 2.

106



9 APPENDIX

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

Group G1

Maximum expected kinship

D
en

si
ty

G(1,1)
G(1,2)
G(1,3)

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

Group G2

Maximum expected kinship

D
en

si
ty

G(2,1)
G(2,2)
G(2,3)

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

Group G3

Maximum expected kinship

D
en

si
ty

G(3,1)
G(3,2)
G(3,3)

(a) Maximum expected kinship across groups

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

Group G1

Maximum realized kinship

D
en

si
ty

G(1,1)
G(1,2)
G(1,3)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

Group G2

Maximum realized kinship

D
en

si
ty

G(2,1)
G(2,2)
G(2,3)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

Group G3

Maximum realized kinship

D
en

si
ty

G(3,1)
G(3,2)
G(3,3)

(b) Maximum realized kinship across groups

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

Tester T1

Maximum expected kinship

D
en

si
ty

T(1,1)
T(3,1)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

Tester T3

Maximum expected kinship

D
en

si
ty

T(1,3)
T(3,3)

(c) Maximum expected kinship across tester

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

Tester T1

Maximum realized kinship

D
en

si
ty

T(1,1)
T(3,1)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

Tester T3

Maximum realized kinship

D
en

si
ty

T(1,3)
T(3,3)

(d) Maximum realized kinship across tester

Figure A5: Density plots of maximum expected and realized kinship based on the modified
simple matching coefficient across different subsets of groups and clusters in calibration set CS2
of Maize 2.
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Figure A6: Predictive abilities with decreasing number of observations (N) for GBLUP assessed
with CV-R within random subsets of the complete data set and within clusters derived from
UPGMA (U1, U2), Ward’s (W1, W2, W3), and k-means (K1, K2, K3) clustering in calibration
set CS1 of Maize 2 for (a) grain yield and (b) grain dry matter content. Stars and circles with
whiskers indicate average predictive abilities and range of 10 replications averaged across five
folds. Dashed lines indicate 95 % confidence intervals for predictive abilities across random
subsets.
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