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Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Thomas Brück
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Abstract

The subject of multiphase reaction engineering is becoming increasingly important in vari-

ous processes such as chemical, petrochemical, pharmaceutical and energy industries. The

fluidized beds and bubble column reactors are widely employed in various applications.

Nowadays computational fluid dynamics (CFD) provides the state-of-the-art capabilities

of simulating the hydrodynamics in these reactors. The two-fluid model needs economical

computational resources and has become practical for reactor design and scaling-up.

To evaluate the total variation diminishing (TVD) convection schemes in OpenFOAM R© for

gas-solid flow modeling, the two-fluid model with kinetic theory of granular flow is imple-

mented into the open source CFD package OpenFOAM. Five TVD schemes are employed to

discretize the convection terms of phase velocity and solid volume fraction. Simulated results

of the two test cases give reasonable agreement with the experimental data in the literature.

By introducing a monolayer kinetic energy dissipation model into two-fluid model, tube

erosion in a bubbling fluidized bed is numerically studied. The hydrodynamical simulations

are performed. The time-averaged bubble frequency and bubble rise velocity are calculated

to characterize the bed hydrodynamics. The erosion rates of two target tubes are simulated

and the influence of the bubble behaviors on erosion rates is evaluated. The bubble behaviors

are well captured by the simulations. Good agreement between the calculated and measured

erosion rates is also obtained.

The fluidized bed methanation of syngas to produce synthetic natural gas (SNG) is promising

to utilize the syngas. A fluidized bed methanation reactor is simulated by coupling methana-

tion kinetics with the two-fluid flow model. The bed height is reasonably predicted with the

Gidaspow and Syamlal models. The simulated axial species concentrations agree well with

the measured results at the end of the bed. The effects of different operating parameters are

evaluated using the established models. The increase in the gas inlet velocity results in more

dilute solid concentration and larger bed expansion. The weak bed expansion results from

the methanation reaction with gas volume reduction. The methane concentration is increased

when increasing catalyst inventory in the reactor. The addition of water into the feedstock

with low H2/CO ratio benefits the methanation reaction.

In the CFD-PBM method, the k-ε model and Reynolds stress model (RSM) are used to

account for the liquid turbulence. For the bubble column operated at 0.10 m/s, minor

difference is found in the predicted profiles for 10 and 20 bubble classes. By using the Rampure

drag model, Tomiyama lift model and bubble-induced turbulence model, the gas holdup is

well predicted by the k-ε model and RSM. For the bubble column operated at 0.12 m/s,

good agreement with experimental data is obtained when the k-ε BIT model works with the

Tsuchiya drag coefficient and Tomiyama lift coefficient. The RSM with BIT gives reasonable

prediction when using the Tsuchiya drag coefficient and Tomiyama lift coefficient.
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Kurzfassung

Die Mehrphasen-Reaktionstechnik ist von großem Interesse und findet Anwendung in ver-

schiedenen Prozessen der chemischen und petrochemischen Industrie sowie in der Energietech-

nik. Wirbelschicht- und Blasensäulenreaktoren werden in einer Vielzahl von Anwendungen

verwendet. Heutzutage ist die Computational Fluid Dynamics (CFD) das Mittel der Wahl

zur Berechnung der Hydrodynamik in diesen Reaktoren. Das Zwei-Fluid-Modell ist wenig

rechenintensiv und findet praktische Anwendung im Reaktordesign und Scale-Up.

Um verschiedene Total Variation Diminishing (TVD) Konvektions-Schemata für die Model-

lierung von Gas-Partikel Strömungen mit OpenFOAM R© zu evaluieren wird das Zwei-Fluid-

Modell mit kinetischer Gastheorie für Partikelströmungen in der Open-Source CFD Software

OpenFOAM implementiert. Fünf TVD Schemata zur Diskretisierung der Konvektionsterme

von der Phasengeschwindigkeit und des Feststoffvolumenanteils werden getestet. Die Simu-

lationsergebnisse zweier Testfälle stimmen gut mit Messdaten aus der Literatur.

Durch Verwendung eines Modells für die Monolagendissipation der kinetischen Energie in

das Zwei-Fluid-Modell wird die Erosion von Rohreinbauten sowie die Strömung in blasen-

bildenden Wirbelschichten untersucht. Die Strömung in der Wirbelschicht wird mittels der

über die Zeit gemittelten Frequenz und Aufstiegsgeschwindigkeit der Blasen beschrieben. Die

Erosionsrate wird an zwei vorgegebenen Rohren simuliert und der Einfluss des Verhaltens der

Blasen beschrieben. Das Verhalten der Blasen wird durch die Simulationen zufriedenstellend

beschrieben. Die Übereinstimmung zwischen den berechneten und gemessenen Erosionsraten

ist gut.

Die Methanisierung von Synthesegas zur Herstellung von synthetischem Erdgas (SNG) in

Wirbelschichten ist ein vielversprechender Prozess zur Verwendung von Synthesegas. Ein

Wirbelschichtmethanisierungsreaktor wird simuliert mittels Kopplung der Methanisierungsk-

inetik mit dem Zwei-Fluid-Modell. Die Höhe des Betts wird durch die Gidaspow und Syamlal

Modelle zufriedenstellend vorhergesagt. Die simulierten axialen Konzentrationen stimmen

gut mit den gemessenen Werten am Ende des Bettes überein. Der Einfluss verschiedener

Betriebsbedingungen werden mit den etablierten Modellen untersucht. Eine Vergrößerung

der Gaseinlassgeschwindigkeit führt zu einer Verringerung der Feststoffkonzentration und

damit einer größeren Bett-Expansion. Die geringe Expansion der Wirbelschicht ist auf die

Volumenreduktion bei der Methanisierungsreaktion zurückzuführen. Die Konzentration an

Methan steigt an wenn die Menge an Katalysator im Reaktor erhöht wird. Ein Hinzufügen

von Wasser zum Feed begünstigt die Methanisierung bei geringen H2/CO-Verhältnissen.

Bei der CFD-PBM (Population Balance Modell) Methode werden das k-ε und das Reynolds-

Spannungs-Modell (RSM) zur Beschreibung der Turbulenz in der Flüssigphase verwendet.

Bei einer Gaseintrittsgeschwindigkeit von 0.1 m/s am Eingang der Blasensäule gibt es nur

geringe Unterschiede zwischen den berechneten Profilen bei der Verwendung von 10 und

20 Blasenklassen. Durch Verwendung des Rampure Widerstandsmodells, des Tomiyama
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Kurzzusammenfassung

Auftriebsmodells und des blaseninduzierten Turbulenzmodells wird der Gas-Holdup durch

k-ε und RSM gut wiedergegeben. Wenn die Einlassgeschwindigkeit der Blasensäule 0.12

m/s beträgt erhält man gute Übereinstimmung mit den Messdaten unter Verwendung des

k-ε BIT Modells zusammen mit dem Tsuchiya Widerstandskoeffizienten und Tomiyama

Auftriebskoeffizienten. Mit RSM mit BIT erhält man vernünftige Vorhersagen, wenn man

den Tsuchiya Widerstandskoeffizienten und Tomiyama Auftriebskoeffizienten verwendet.
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Chapter 1

Introduction

1.1 Multiphase reactor engineering

Most chemical reactors used in the commercial applications are operated with multiphase

flows. The subject of multiphase reactor engineering is becoming increasingly important in

various processes such as chemical, petrochemical, pharmaceutical and energy industries. The

fluidized beds and bubble column reactors are studied in the thesis.

1.1.1 Fluidization and fluidized bed reactors

Fluidization is the unit operation by which the solid particles are transferred from a static

solid-like state to a dynamic fluid-like state. This process occurs when a fluid (gas or liquid)

is passed up through the particle bed. The majority of the fluidization applications have

three important characteristics: 1) The strong mixing within a fluidized bed results in the

large interfaces between the fluid-solid phases; 2) There is excellent heat transfer between

the fluidized bed and heat exchangers immersed in the bed; 3) The fluidized particles can be

easily transported between different reactors.

Figure 1.1: Schematics of fluidized beds operated with different regimes [1]
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A number of flow regimes of fluidization are usually observed, as shown in Figure 1.1. The

fluidized bed behaves differently with different velocities, gas and solid properties. When

a gas flow with small velocities is introduced through the bed bottom, it moves upwards

through the empty space in the bed between the particles. At the low gas inlet velocities,

the drag force exerted on each particle is very small, and thus the bed remains at rest, which

is called the fixed bed. By increasing the gas velocity, a flow regime is reached where the

drag force equals the gravitational force of the particle, and the volume expansion is observed

in the bed. This is the onset of fluidization and is called the minimum fluidization with

a corresponding minimum fluidization velocity. With the further increase in the gas inlet

velocity, the bubbles are formed in the bed and the bubbling fluidized bed occurs. As the

velocity is further increased, the bubbles in the fluidized bed coalesce and grow as they rise.

If the ratio of the bed height to its diameter is large enough, the size of bubbles is almost

the same as the diameter of the bed. This is called the slugging regime. If the particles are

fluidized at a very high gas flow rate, the particle velocity exceeds its terminal velocity. The

upper surface of the bed disappears and one observes the turbulent motion of solid clusters

and gas voids with various sizes and shapes. The bed operated under these conditions is

called the turbulent bed. With further increases in gas velocity, the pneumatic transport of

solid particles takes place.

(a) (b) 

Figure 1.2: Schematics of the bubbling fluidized bed (a) [2] and the circulating
fluidized bed (b) [3]

The bubbling fluidized bed is one of the mostly used gas-solid reactor types as shown in Figure

1.2(a). It is characterized by the bubbles and the superficial gas velocity is only slightly higher
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than the minimum fluidization velocity. This type of fluidization is called the aggregative

fluidization and under these conditions two phases can be recognized, i.e., the bubble phase

and the emulsion phase. The bubbles in the bed are very similar to the gas bubbles formed

in a liquid. The bubbles coalesce as they move through the bed. The movement of particles

in fluidized beds depends largely on the bubbles.

The circulating fluidized beds are also widely employed in chemical, petrochemical, metal-

lurgical and energy industries. The circulating fluidized beds have many advantages such as

being a continuous operation, high throughput of gas and particles and ease of solid handling

[4]. The schematic diagram of the circulating fluidized bed reactor is shown in Figure 1.2(b),

which consists of riser, separator, downer and feed systems for the solids and for the fluid.

The riser is a tall vertical section in which hot particles are conveyed upward. The reaction

occurs in the riser due to the interaction between the reacting gases and particles. The gas

and solid particles are separated at the top of the reactor by cyclones and the particles are

returned to the riser via the downer. The feed gas is supplied from the bottom of the riser.

1.1.2 Bubble column reactors

In chemical process engineering, bubble columns are widely used as the gas-liquid reactors.

Their typical applications can be found in oxidation, hydrogenation, wastewater treatment

and Fischer-Tropsch synthesis [5]. Some distinct advantages of bubble columns are found

compared to other gas-liquid contactors. The excellent heat and mass transfer characteristics

can be achieved with high heat and mass transfer coefficients. Because of the construction

compactness and the lack of moving parts, little maintenance and low operating costs are

required. The online catalyst addition and withdrawal ability can also be achieved in the

bubble columns. Because of their industrial importance, considerable attention has been

paid to the design and scale-up of bubble columns during the past few decades.

Homogeneous regime Heterogeneous regime 

Figure 1.3: Schematic of a bubble column and flow regimes.
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Figure 1.3 illustrates the schematic of a bubble column and its basic flow regimes. A bubble

column reactor is constructed based on a cylindrical vessel. The gas distributor is equipped at

the bottom and the gas is sparged in the form of bubbles into a liquid phase. When the bubble

column is operated at low superficial gas velocities, the homogeneous flow regime (bubbly

flow regime) is observed. The small spherical bubbles travel upwards through the liquid with

nearly the same rise velocities. The interactions between bubbles such as coalescence and

breakup are negligible in this flow regime. The bubble size distribution is found to be narrow

and mono-modal. The heterogeneous flow regime (churn-turbulent regime) occurs at high

superficial gas velocities (greater than 5 cm/s). A wide bubble size distribution is obtained

due to the bubble coalescence and breakup. The non-uniform radial gas distribution causes

the bulk liquid circulation in this flow regime. The heterogeneous flow regime is frequently

observed in the industrial bubble columns.

1.2 Computational methods for multiphase flow

A detailed understanding of multiphase phenomena is crucial for analysing, designing and

scaling of the multiphase reactors. Over the past decades, computational fluid dynamics

(CFD) has been adopted by researchers to study the underlying physics of the gas-solid and

gas-liquid flows. Several models such as the local instantaneous formulations with explicit

treatment of interface and the macroscopic continuum method based on various averaging

methods are presented. Three levels of modeling can be identified based on the spatial and

temporal resolution of the models.

1.2.1 Direct numerical simulation

The gas-particle direct numerical simulation methods have been rapidly developing in the

past decade. The trajectories of the discrete particles are determined by the solution of

Newton’s equations of motion. The flow field around each particle is resolved based on the

full Navier-Stokes equation (continuum DNS). The forces acting on particles are estimated

by integrating the stresses on the surfaces of particles. No empirical coefficients associated

with the drag and lift forces are required in the DNS method. The Joseph group (Hu [6];

Pan et al. [7]) and the Banerjee group (Pan and Banerjee [8, 9]) are well known for the

DNS method. Recently, Deen et al. [10] developed a novel simulation technique to perform

direct numerical simulation of fluid flow and heat transfer in dense fluid-particle systems.

The fluid-solid coupling was achieved by the direct incorporation of the boundary condition

(with a second-order method) at the surface of the particles.

The direct numerical simulation of gas-liquid flow is also called interface resolving method.

The DNS techniques are based on the local instantaneous conservation equations. These

methods focus on the finest level, i.e. individual bubbles, small vortices behind bubbles

and bubble-bubble interactions. All the closure equations for the forces acting on a bubble

can be directly computed. However, these approaches are restricted to a single bubble or a

4



1 Introduction

few interacting bubbles due to very expensive computational requirements. Nowadays three

DNS methods are used, i.e. the volume-of-fluid method (VOF) [11], the level-set method

[12] and the front-tracking method [13]. The VOF method is a surface-tracking technique

applied to a fixed mesh. It simulates two or more immiscible fluids by solving one single

momentum equation and tracking the volume fraction of each fluid. In the open source

CFD software OpenFOAM [14], the standard solver interFoam is developed based on the

compressive volume-of-fluid method. The idea of the level-set method is to define the interface

as the zero level set of a smooth scalar function. Unlike the VOF method, the interface

is represented as a continuous surface. In the front-tracking method, the velocity field is

obtained by solving the momentum equation on a fixed mesh, while the phase interface is

represented by a set of marker particles.

1.2.2 Eulerian-Lagrangian method

In the Eulerian-Lagrangian approach, the continuous phase is treated in the Eulerian frame-

work and the averaged equations are solved, whereas the motion of individual discrete particle

is simulated by solving the Newton’s equations of motion. The trajectories of the particles are

computed in the control volume. In contrast to the DNS methods, the Eulerian-Lagrangian

approach requires closure relations to account for the interphase forces. The closure models

can be obtained from empirical relations or from more sophisticated simulations with fine

resolution. Due to the significant computational resources required, the Eulerian-Lagrangian

approach becomes infeasible for the simulations of large industrial-scale reactors.

Considerable efforts are made in simulating gas-solid flows using the Eulerian-Lagrangian

method. The Eulerian-Lagrangian method was pioneered by Tsuji et al. [15]. Most of the gas-

solid Eulerian-Lagrangian methods are developed by coupling CFD with the discrete element

method (DEM). A large number of research papers on the CFD-DEM have been published

over the past two decades. The Yu group made large progress in the development and

application of the CFD-DEM method [16–20]. The Kuipers group also contributed a lot in the

CFD-DEM modeling [21–24]. Many successful applications have been achieved in simulating

chemical reaction processes. The Cheng group implemented the CFD-DEM method into the

commercial software FLUENT to simulate the fluid catalytic cracking (FCC) process in risers

and downers [25–27]. Zhang et al. [28] simulated the gas-solid flow and methanol-to-olefins

(MTO) reactions in a fluidized bed reactor using the CFD-DEM method. A number of open

source and commercial codes are capable of doing the Eulerian-Lagrangian simulations for

gas-solid flows, e.g. MFIX-DEM [29, 30], FLUENT with the DPM (Discrete Particle Method)

and dense-phase DPM modules [31], Barracuda [32] and OpenFOAM [33, 34].

Several attempts have also been made to simulate the dispersed gas-liquid flows using the

Eulerian-Lagrangian approach (also called bubble tracking model). Buwa et al. [35] simulated

the dynamics of gas-liquid flows in a rectangular bubble column. Three-dimensional, unsteady

simulations were performed to simulate the dynamic characteristics of the oscillating bubble
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plume. Hu and Celik [36] simulated a partially aerated flat bubble column using the Eulerian-

Lagrangian based large-eddy simulation method. The two-way coupling was achieved between

the gas-liquid phases. Mattson and Mahesh [37] simulated the bubble coalescence using an

Eulerian-Lagrangian approach. The liquid phase was described using the Eulerian large-eddy

simulation method and the Lagrangian particle motion was solved with the equations relating

the turbulent motion of the liquid to the forces on each discrete bubble. Gruber et al. [38]

developed a four-way coupled Eulerian-Lagrangian method by integrating various bubble

coalescence and breakup models.

1.2.3 Eulerian-Eulerian method

In the Eulerian-Eulerian approach, each phase is treated as a continuous medium inter-

penetrating the other phase, and is represented by the macroscopic conservation equations,

which are valid throughout the entire flow domain. This method is commonly known as the

two-fluid model, or when more than two phases are considered, it is called the multi-fluid

model [39]. This approach requires less computational effort than the Eulerian-Lagrangian

approach. However, the discrete character of the dispersed phase is lost due to the averaging

procedure. Appropriate closure models should be provided.

The two-fluid model has been widely used to simulate the gas-solid fluidized beds. To describe

the solid properties, the kinetic theory of granular flow is usually employed [40]. Recently,

Wang et al. [41, 42] applied the kinetic theory for granular flow of rough sphere to describe

the particle collisions. The two-fluid model with kinetic theory of granular flow has been used

by researchers for simulating the gas-solid flows, e.g. Asegehegn et al. [43], Cloete et al. [44]

and Yusuf et al. [45].

The two-fluid model is also widely employed to simulated the gas-liquid flows. Most of the

gas-liquid two-fluid simulations were carried out using single mean bubble size [46–49]. This

assumption is usually reasonable in the homogeneous flow regime. To account for the bubble

size distribution, many attempts have been made by coupling computational fluid dynamics

with population balance model (CFD-PBM) to simulate the gas-liquid flows [50–54].

The Eulerian-based method is also used as the multi-fluid model for simulating the three-phase

fluidized bed reactors and slurry bubble column reactors. Panneerselvam et al. [55] simulated

a three-phase fluidized bed reactor using the Eulerian multi-fluid model. Hamidipour et

al. [56] performed the full three-dimensional multiple-Euler simulations of gas-liquid-solid

fluidized beds. Troshko and Zdravistch [57] simulated the slurry bubble column reactors for

Fisher-Tropsch synthesis. The syngas-slurry systems were described by a two-phase Eulerian

model. The slurry was assumed to be perfectly mixed. Wang et al. [58] simulated a gas-liquid-

solid three-phase airlift loop reactor used for the biotreatment of toluene. The three-Euler

model was used, i.e., the gas phase was the toluene waste gas, the mineral salt medium was

the liquid phase and the solid phase was the immobilized biomass.
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1.3 Objective and outline

The objective of this thesis is to apply the CFD method for simulating the gas-solid and

gas-liquid flows in the chemical reactors. Numerical simulations are performed based on

the two-fluid model. The two-fluid solvers are developed in the open-source CFD package

OpenFOAM. This thesis is organized such that each chapter can be read independently of

each other.

Chapter 2: the comprehensive theory on the two-fluid model is presented. The derivation of

two-fluid model is illustrated by conditionally averaging the local instantaneous conservation

equations. The model closures are provided for the interphase momentum transfer in the

gas-solid and gas-liquid flows. The particle size distribution and population balance method

are discussed. An overview on the two-phase turbulence is provided.

Chapter 3: a gas-solid two-fluid solver is implemented into OpenFOAM and validated by

simulating two bubbling fluidized bed cases, i.e., one with uniform gas feed and the other

with a central gas jet. The simulated results are compared against the experimental data from

the literature. The effect of different discretization schemes is investigated for the convection

terms of phase velocities and solid volume fraction.

Chapter 4: the hydrodynamics simulations with erosion modeling are performed to calculate

the total erosion rates of the target tubes immersed in a fluidized bed. The two-fluid model is

used to simulate the gas-solid flows. The monolayer kinetic energy dissipation model is used

to calculate the erosion rates with the input of the hydrodynamic information. The influence

of the wall boundary conditions on the simulated erosion rates is also investigated.

Chapter 5: numerical investigations of hydrodynamics and kinetic reactions in a fluidized bed

methanation reactor are carried out by coupling methanation kinetics with the two-fluid flow

model. A lab-scale fluidized bed methanation reactor is simulated with the test of various

grids and drag force models. Simulation results of axial species concentrations are compared

with experimental data found in the literature.

Chapter 6: the population balance equation (PBE) is implemented into OpenFOAM and

coupled with a CFD solver based on the two-fluid model. The liquid phase turbulence is

modelled based on the k-ε model and Reynolds stress model. Two cylindrical bubble columns

operated at high superficial gas velocities are simulated using the CFD-PBM method.

Chapter 7: the summary and outlook are given in this chapter.
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Chapter 2

Two-fluid modeling methodology

2.1 Two-fluid model formulation

The continuum mechanics is widely applied for analyzing two-phase flow. The two-phase flow

is considered as the field that is subdivided into two single-phase regions with the moving

interfaces between the phases. The standard single-phase conservation equations are valid for

each sub-region with the appropriate jump and boundary conditions. In theory, a two-phase

flow model can be formulated in terms of the local instantaneous variable. However, the

mathematical difficulties in using the local instantaneous formulations may be insurmountable

in many practical cases. Hence, the macroscopic two-fluid model is derived based on the local

instantaneous equations using proper averaging methods.

2.1.1 Local instantaneous conservation equations

The local instantaneous formulation of the continuity equation for a single compressible fluid

is written as:
∂ρ

∂t
+∇ · (ρU) = 0 (2.1)

where ρ is the density of a fluid, U is the fluid velocity.

The local instantaneous momentum conservation equation is written as

∂

∂t
(ρU) +∇ · (ρUU) = −∇p+∇ · τ + ρg (2.2)

where p is the pressure, τ is the viscous (or shear) stress tensor, g is the gravitational

acceleration. The simplest rheological constitutive equation for τ is the one for an inviscid

fluid, which is expressed as

τ = 0 (2.3)

For most fluids, the Newton’s viscosity law is applied to describe the viscous stress. The

generalized linearly viscous fluid has a constitutive equation as

τ = µ[∇U + (∇U)T]− (
2

3
µ− λ)(∇ ·U)I (2.4)
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2 Two-fluid modeling methodology

where µ is the dynamic viscosity relating the viscous stress to the linear deformations and

λ is the bulk viscosity relating the viscous stress to the volumetric deformations. Little is

known about the bulk viscosity, since its effect is quite small in practice.

2.1.2 Conditional averaging technique

In order to derive the conservation equations of two-fluid model, the individual phases should

be distinguished. This is achieved by conditioning the local equations so that contributions to

the averaged conservation equation of one phase come only from regions which contain that

particular phase [1]. The idea of conditioning is based on the work of Dopazo [2]. For the

conditional averaging (sometimes called phase-weighted averaging), the governing equations

are multiplied by a phase indicator function before standard averaging techniques are applied.

The phase indicator function Iϕ(x, t) is defined as

Iϕ(x, t) =


1 if point (x, t) is in phase ϕ

0 otherwise

(2.5)

The phase volume fraction is calculated as the probability of point (x, t) being in phase ϕ:

αϕ = Iϕ(x, t) (2.6)

where the overbar represents the ensemble average. The ensemble average is more fundamen-

tal than time and volume average and does not have the time and space restrictions. This

single ensemble averaging method has been used by Weller [3] and Rusche [4].

The conditional averaging rules for the differential operations and products are given as

Iϕ∇Φ = ∇(αϕΦϕ) +
︷ ︸︸ ︷
ΦI,ϕnI,ϕφ Σ (2.7)

Iϕ∇ · Φ = ∇ · (αϕΦϕ) +
︷ ︸︸ ︷
ΦI,ϕ · nI,ϕφ Σ (2.8)

Iϕ
∂Φ

∂t
=
∂αϕΦϕ

∂t
−
︷ ︸︸ ︷
ΦI,ϕnI,ϕφ ·UI,ϕφ Σ (2.9)

IϕΦ = αϕΦ (2.10)

IϕΦΨ = αϕΦϕΨϕ + αϕΦ′ϕΨ′ϕ (2.11)

where ︷︸︸︷ denotes a surface average and Σ is the local averaged interfacial area density.
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2 Two-fluid modeling methodology

2.1.3 Conditionally averaged phase continuity equations

The local instantaneous continuity equation is first multiplied by the phase indicator function

Iϕ, and then averaged as

Iϕ
∂ρ

∂t
+ Iϕ∇ · (ρU) = 0 (2.12)

Applying the conditional averaging rules, we obtain

∂(αϕρϕ)

∂t
−
︷ ︸︸ ︷
ρI,ϕnI,ϕφ ·UI,ϕφ Σ +∇ · (αϕρϕUϕ) +

︷ ︸︸ ︷
ρI,ϕnI,ϕφ ·UI,ϕ Σ = 0 (2.13)

where ρI,ϕ is the density of phase ϕ at the interface, nI,ϕφ is the unit normal vector at the

surface directing from phase ϕ into phase φ, UI,ϕφ is the interface velocity with the direction

from phase ϕ to phase φ, UI,ϕ is the velocity of phase ϕ at the interface.

Eq.(2.13) can be further simplified by combing the two surface average terms and applying

density weighted averaging to the term ρU:

ρU = ρU + ρ′U′ = ρŨ (2.14)

leading to

∂(αϕρϕ)

∂t
+∇ · (αϕρϕŨϕ) =

︷ ︸︸ ︷
ρI,ϕnI,ϕφ · (UI,ϕφ −UI,ϕ) Σ (2.15)

The difference between the interface velocity UI,ϕφ and the fluid velocity UI,ϕ at the interface

is called the interface propagation velocity. The product of the interface propagation velocity

and the surface normal velocity can be expressed as the interface propagation speed Sϕ to

account for the interphase mass transfer. Applying the above simplification, the final form

of the conditionally averaged continuity equation of phase ϕ is obtained as

∂αϕρϕ
∂t

+∇ · (αϕρϕŨϕ) =
︷ ︸︸ ︷
ρI,ϕSϕ Σ (2.16)

When the phase ϕ is assumed to be incompressible and no interfacial mass transfer occurs,

the conditional averaged phase continuity equation becomes

∂αϕ
∂t

+∇ · (αϕUϕ) = 0 (2.17)
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2.1.4 Conditionally averaged phase momentum equations

The local instantaneous momentum equation is multiplied by the phase indicator function

Iϕ, and then averaged as

Iϕ
∂(ρU)

∂t
+ Iϕ∇ · (ρUU) = −Iϕ∇p+ Iϕ∇ · τ + Iϕρg (2.18)

Using the conditional averaging rules for differential operations, we obtain

∂(αϕρϕUϕ)

∂t
−
︷ ︸︸ ︷
ρI,ϕUI,ϕ(nI,ϕφ ·UI,ϕφ) Σ +∇ · (αϕρϕUϕUϕ) +

︷ ︸︸ ︷
ρI,ϕUI,ϕ(nI,ϕφ ·UI,ϕ) Σ =

−∇(αϕpϕ)−
︷ ︸︸ ︷
pI,ϕnI,ϕφ Σ +∇ · (αϕτϕ) +

︷ ︸︸ ︷
τI,ϕ · nI,ϕφ Σ + αϕρϕg

(2.19)

Combining the two interface average terms on the l.h.s and using the density-averaging

method and the Reynolds stress term is R̃ϕ = Ũ′′ϕU′′ϕ, we obtain

∂(αϕρϕŨϕ)

∂t
+∇ · (αϕρϕŨϕŨϕ) +∇ · (αϕρϕR̃ϕ) =

−∇(αϕpϕ) +∇ · (αϕτϕ) + αϕρϕg −
︷ ︸︸ ︷
pI,ϕnI,ϕφ Σ +

︷ ︸︸ ︷
τI,ϕ · nI,ϕφ Σ +

︷ ︸︸ ︷
ρI,ϕUI,ϕSϕ Σ (2.20)

The surface average term of the instantaneous pressure p on the r.h.s of Eq.(2.20) can be

decomposed into surface average and surface fluctuation:

︷ ︸︸ ︷
pI,ϕnI,ϕφ Σ =

︷︸︸︷
pI,ϕ ∇αϕ +

︷ ︸︸ ︷
p]I,ϕnI,ϕφ Σ (2.21)

And using the following relations

∇(αϕpϕ) = αϕ∇pϕ + (∇αϕ)pϕ (2.22)

Finally, the conditionally averaged phase momentum equation is written as

∂(αϕρϕŨϕ)

∂t
+∇ · (αϕρϕŨϕŨϕ) +∇ · (αϕρϕR̃ϕ) = −αϕ∇pϕ +∇ · (αϕτϕ) + αϕρϕg

+Mϕ +
︷ ︸︸ ︷
ρI,ϕUI,ϕSϕ Σ (2.23)

where Mϕ accounts for the interfacial momentum transfer and
︷ ︸︸ ︷
ρI,ϕUI,ϕSϕ Σ is the interfacial

mass transfer term. The interfacial mass transfer term is usually ignored when there is no

interphase mass transfer (e.g. phase change). The interfacial momentum transfer term is

Mϕ = −(
︷︸︸︷
pI,ϕ +pϕ)∇αϕ −

︷ ︸︸ ︷
p]I,ϕnI,ϕφ Σ +

︷ ︸︸ ︷
τI,ϕ · nI,ϕφ Σ (2.24)
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2 Two-fluid modeling methodology

The two phase pressures are usually assumed to be equal to the average pressure p. For

the incompressible fluid, the phase momentum equation can be written by diving the phase

density ρϕ as

∂(αϕUϕ)

∂t
+∇ · (αϕUϕUϕ) +∇ · (αϕRϕ) = −αϕ∇p

ρϕ
+
∇ · (αϕτϕ)

ρϕ
+ αϕg +

Mϕ

ρϕ
(2.25)

Combing the Reynolds stress term and viscous shear stress term, we obtain

∂(αϕUϕ)

∂t
+∇ · (αϕUϕUϕ) = −αϕ∇p

ρϕ
+
∇ · (αϕτϕ,eff)

ρϕ
+ αϕg +

Mϕ

ρϕ
(2.26)

Due to the averaging procedure, the conditionally averaged equations for mass and momentum

contain extra unknown terms which represent the effects of the interphase momentum transfer

and the turbulent velocity fluctuations. These terms should be modeled in terms of known

quantities. In the following sections, the closures for these terms will be given for the gas-solid

and gas-liquid flows.

2.2 Gas-solid interphase momentum transfer

In the gas-solid flows, the drag force is usually considered to model the interphase momentum

transfer terms in the momentum equations. The interphase momentum transfer term Mϕ

is expressed by the product of the interphase momentum transfer coefficient β and the slip

velocity (Ug−Us) . In the following, three typical drag models are presented for calculating

the coefficient β.

2.2.1 Syamlal-O’Brien model

The Syamlal-O’Brien model was derived by converting the terminal velocity correlations in

fluidized or settling beds [5]:

β =
3

4
CD

αgαsρg
V 2
r dp

|Ug −Us| (2.27)

CD =

(
0.63 + 4.8

√
Vr
Re

)2

(2.28)

Vr = 0.5
[
a− 0.06Re +

√
(0.06Re)2 + 0.12Re(2b− a) + a2

]
(2.29)

a = α4.14
g , b =


0.8α1.28

g αg 6 0.85

α2.65
g αg > 0.85

(2.30)

Re =
ρgdp|Ug −Us|

µg
(2.31)
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2 Two-fluid modeling methodology

2.2.2 Gidaspow model

Gidaspow [6] adopted the Wen and Yu correlation for αs < 0.2 and the Ergun equation for

αs > 0.2. The Ergun equations were derived using the packed-bed pressure drop data [7],

whereas the Wen and Yu model was formulated based on the homogeneous expansion of

fluidized beds [8]. This drag model was recommended for describing dense fluidized beds.

The interphase momentum transfer coefficient is expressed as

β =


3

4

CDαgαsρg|Ug −Us|
dp

α−2.65
g αs < 0.2

150
µgα

2
s

α2
gd

2
p

+ 1.75
ρgαs
αgdp

|Ug −Us| αs > 0.2

(2.32)

The drag coefficient CD is calculated by

CD =


24

Re
[1 + 0.15(Re)0.687] Re < 1000

0.44 Re > 1000

(2.33)

where the particle Reynolds number Re is defined as

Re =
ρgdp|Ug −Us|

µg
(2.34)

2.2.3 EMMS model

A promising approach for modeling the gas-solid drag force is the energy minimization multi-

scale (EMMS) model proposed by Yang et al. [9]. The EMMS model was developed based on

the multi-scale analysis of the mass and momentum balance in fluidized beds. The EMMS

model assumes the flow consists of a particle cluster phase and its surrounding phase. The

interphase momentum transfer coefficient is calculated as

β =


3

4

CDαgαsρg|Ug −Us|
dp

CD0ω(αg) αg > 0.74

150
µgα

2
s

α2
gd

2
p

+ 1.75
ρgαs
αgdp

|Ug −Us| αg 6 0.74

(2.35)

CD0 =


24

αgRe
[1 + 0.15(αgRe)0.687] αgRe < 1000

0.44 αgRe > 1000

(2.36)
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ω(αg) =



−0.5760 +
0.0214

4(αg − 0.7463) + 0.0044
0.74 6 αg 6 0.82

−0.0101 +
0.0038

4(αg − 0.7789) + 0.0040
0.82 6 αg 6 0.97

−31.8295 + 32.8295αg αg > 0.97

(2.37)

2.3 Gas-liquid interphase momentum transfer

Generally, in the gas-liquid flows, the interfacial forces are divided into two categories: drag

force and non-drag forces. The non-drag forces are the lift force, the virtual mass force, the

turbulent dispersion force, and the wall lubrication force. The interphase momentum transfer

term Mϕ is calculated as

Mϕ = MD + ML + MVM + MTD + MWL (2.38)

2.3.1 Drag force

The drag force acting on a single bubble is resistant to the motion of a bubble through a fluid

flow. Its direction is opposite to that of the flow velocity and the drag force increases with

the relative velocity. The steady drag force on a single bubble is usually given as

FD =
1

2
CDρl

πd2
B

4
|Ul −Ug|(Ul −Ug) (2.39)

where CD is the drag coefficient, dB is the bubble diameter. The inter-phase momentum

transfer terms in the momentum equations due to the drag force are calculated as

Mg,D = −Ml,D =
3

4
CD

αgρl
dB
|Ul −Ug|(Ul −Ug) (2.40)

The drag coefficient is related to many factors: the bubble shape, orientation with respect to

the flow, flow parameters such as the bubble Reynolds number, the Eötvös number, turbulent

level, and so on. Table 2.1 presents the different correlations of the drag coefficient. The

following drag coefficients are only derived and valid for the single bubble systems. The drag

coefficients for the single bubble systems can be directly used for the dilute bubble swarm,

or some corrections should be introduced for the dense bubble swarms.

At high gas fractions, the drag force acting on a single bubble is influenced by its neighbouring

bubbles, which is referred to as the swarm effect. The drag coefficient of bubbles in a swarm is

usually related to that of a single bubble. Richardson and Zaki [10] conducted the pioneering

work on the swarm effect by establishing the dependence of the relative velocity of solid

particles in batch-fluidization and sedimentation experiments. Some other corrections were

proposed by Griffith and Wallis [11], Bridge et al. [12], Marrucci [13], Davidson and Harrison

[14], and Lockett and Kirkpatrick [15].
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Table 2.1: Drag coefficient expressions

Author Drag coefficient

Schiller & Naumann [16]
CD =


24

Re

[
1 + 0.15(Re)0.687

]
Re < 1000

0.44 Re > 1000

Dalla Valle [17] CD =
(

0.63 +
4.8√
Re

)2

White [18] CD = C∞ +
24

Re
+

1

1 +
√

Re
0 6 Re 6 2× 105

Moore [19] CD =
48

Re

(
1− 2.21

Re0.5

)
+O(Re−11/6)

Ishii & Zuber [20] CD =
2

3

√
Eo

Grevskott et al. [21] CD =
5.645

Eo−1 + 2.835

Lain et al. [22]

CD =



16

Re
Re 6 1.5

14.9

Re0.78 1.5 < Re < 80

48

Re

(
1− 2.21√

Re

)
+ 1.86× 10−15Re4.756 80 6 Re < 1500

2.61 1500 6 Re

Tsuchiya [23] CD = max

[
24

Re
(1 + 0.15Re0.687),

8

3

Eo

Eo + 4

]
Tomiyama [24] CD =

8

3

Eo(1− E2)

E2/3Eo + 16(1− E2)E4/3
F (E)−2

E =
1

1 + 0.163Eo0.757

F (E) =
sin−1

√
1− E2 − E

√
1− E2

1− E2

Murray et al. [25] CD =



24

Re
Re < 1

24

Re

[
1 +

3.6

Re0.313

(Re− 1

19

)2]
1 6 Re < 20

24

Re
(1 + 0.15Re0.687) 20 6 Re
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More recently, Rusche and Issa [26] introduced a correction function to account for the

influence of gas holdup on the drag coefficient:

CD,swarm = CD,∞(1− αg)
(

e3.64αg + α0.864
g

)
(2.41)

where αg is the gas holdup and CD,∞ is the single bubble drag coefficient. The correction

function was derived by fitting the experimental data in the literature. This method was

used by Behzadi et al. [27]. Ishii and Zuber [20] proposed a correction term (1 − αg)
p and

p = 2. Olmos et al. [28] tested different values of p. They recommended the higher values

of p should be used when increasing the superficial gas velocity. Rampure et al. [29] used

the corrections term (1− αg)
2 for superficial gas velocities below 0.20 m/s and (1− αg)

4 for

higher superficial gas velocities. Simonnet et al. [30] proposed a drag coefficient based on

the experimental data measured by using optical methods. However, the optical methods

are only appropriate to the dilute bubbly flows. The direct numerical simulation method

provides a good way to investigate the bubble swarms. Roghair et al. [31, 32] proposed a

bubble swarm drag coefficient using the DNS:

CD,swarm = CD,∞(1− αg)

(
1 +

18

Eo
αg

)
(2.42)

2.3.2 Lift force

The lift force is the perpendicular component of the hydrodynamic force relative to the flow

direction. The lift coefficient is well known for a single bubble, but for bubbles in a turbulent

plume uncertainty remains. Some authors set the coefficient to zero and some use it as a

tuning parameter. Whether the lift force is significant or not is still open for debate.

The lift force on a single bubble is widely expressed as

FL = VBρlCLUslip × ωl (2.43)

where VB is the bubble volume, Uslip is the slip velocity between bubbles and liquid,

Uslip = Ul −Ug, ωl is the vorticity of liquid, ωl = ∇ ×Ul, CL is the lift coefficient. The

momentum transfer terms due to the lift force are calculated as

Mg,L = −Ml,L = αgρlCL(Ul −Ug)× (∇×Ul) (2.44)

For a single spherical particle, the lift coefficient is 0.5 [33]. For dilute bubble plumes and

single bubbles, the lift coefficient is known to vary with bubble size and shape. Small bubbles

tend to move towards the edge of a plume and larger bubbles tend to move towards the centre

of a plume. Table 2.2 gives various correlations for the lift coefficient.
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Table 2.2: Lift coefficient expressions

Author Lift coefficient

Tomiyama [34] CL =


min

[
0.288tanh(0.121Re), f(Eo)

]
Eo < 4

f(Eo) 4 6 Eo 6 10

−0.29 Eo > 10

f(Eo) = 0.00105Eo3 − 0.0159Eo2 − 0.0204Eo + 0.474

Tomiyama [35] CL =


min

[
0.288tanh(0.121Re), f(Eod)

]
Eod < 4

f(Eod) 4 6 Eod 6 10

−0.29 Eod > 10

f(Eod) = 0.00105Eo3
d − 0.0159Eo2

d − 0.0204Eod + 0.474

Eod =
Eo

E2
, E =

1

1 + 0.163Eo0.757

Tomiyama [24] CL =


min

[
0.288tanh(0.121Re), f(Eod)

]
Eod < 4

f(Eod) 4 6 Eod 6 10

−0.29 Eod > 10

f(Eod) = 0.00105Eo3
d − 0.0159Eo2

d − 0.0204Eod + 0.474

Eod =
Eo

E2/3
, E =

1

1 + 0.163Eo0.757

Legendre & Magnaudet [36] CL =
√

(C lowRe
L )2 + (ChighRe

L )2

Sr =
Re∇
Re

, Re∇ =
ρlωld

2
B

µl
, ωl = |∇ ×Ul|

C lowRe
L =

6

π2
(ReSr)−1/2J(ε)

ChighRe
L =

1

2

1 + 16Re−1

1 + 29Re−1

ε =

√
Sr

Re
, J(ε) =

2.255

(1 + 0.2ε−2)3/2

Mei [37] CL =

{
6.46f Re < 40

6.46× 0.0524(βRe)1/2 40 < Re < 100

f = (1− 0.3314β1/2)e−0.1Re + 0.3314β1/2

β = 0.5
Re∇
Re
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To account for the influence of phase fraction on the lift coefficient, Beyerlein et al. [38]

analyzed phase fraction data for vertical upward flows. Their lift coefficient is expressed as

CL = 1.65× 10−3α−0.78
g (2.45)

where αg is the mean gas phase fraction in the pipe. However, the lift coefficient is correlated

with the mean gas phase fraction. Clearly, the local value should be used. Behzadi et al. [27]

proposed a correlation as

CL = 6.51× 10−4α−1.2
g (2.46)

where αg is the local gas phase fraction. It should be noted that the lift coefficient would

tend to infinity when αg → 0. This is avoided by limiting CL by a finite value which is taken

as 0.25.

2.3.3 Virtual mass force

The virtual mass force results from the effect that an accelerated particle always entrains a

part of its surrounding fluid. The interphase momentum transfer terms due to the virtual

mass force are expressed as

Ml,V M = −Mg,V M = CVMαgρl(
DgUg

Dt
− DlUl

Dt
) (2.47)

where
Di

Dt
is the total derivative:

Di

Dt
=

∂

∂t
+ Ui · ∇ (2.48)

For a single spherical particle, the coefficient of virtual mass force CVM is assigned with the

value of 0.5. For bubbles with changeable shapes, this value is generally lower. However,

this value is usually neglected because there are hardly any reliable correlations. From the

studies of Zhang et al. [39] the absolute value of the coefficient of the virtual mass force is

very small in a bubbly flow.

2.3.4 Turbulent dispersion force

Gas bubbles move along fluctuating trajectories in a turbulent flow field, while they interact

with turbulence-induced liquid vortex. These fluctuations can drive the gas bubbles apart.

In the two-fluid model, this dispersion can be considered by introducing a force which is

proportional to the gradient of gas phase fraction. The following formulation of the turbulent

dispersion force proposed by Lopez de Bertodano [40] is widely used:

Ml,TD = −Mg,TD = −CTDρlkl∇αg (2.49)

The coefficient of the turbulent dispersion force CTD is assumed to be in the range of 0.1-1.0

in many cases.
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2.3.5 Wall lubrication force

Under certain circumstances, e.g. bubbly upflow in a vertical pipe, the dispersed phase is

observed to concentrate in a region close to the wall, but not immediately adjacent to the

wall. This effect may be modeled by introducing the wall lubrication force, which tends to

push the dispersed phase away from the wall. The wall lubrication force along with the lift

force has significant influence on the radial distribution of the gas phase at a two-phase flow

in a pipe. The interphase momentum transfer terms due to the wall lubrication force are

formulated as

Ml,WL = −Mg,WL = −CWLαgρl[Ur − (Ur · nw)nw]2nw (2.50)

where CWL is the coefficient of the wall lubrication force, nw is the outward vector normal

to the wall, and Ur is the relative velocity.

Antal et al. [41] computed the wall lubrication force coefficient CWL as follows:

CWL = max

(
0,
CW1

dB
+
CW2

yw

)
(2.51)

In the ANSYS CFX implementation the coefficients CW1 and CW2 have the default values of

-0.01 and 0.05, respectively. yw represents the distance to the nearest wall.

Tomiyama [34] modified Antal’s model based on extensive experimental data measured in

the glycerol-air system. The coefficient of wall lubrication force was defined as follows:

CWL = CW3
dB
2

[ 1

y2
w

− 1

(D − yw)2

]
(2.52)

where D is the pipe diameter. The coefficient CW3 is a function of the Eötvös number Eo:

CW3 =


−0.933Eo + 0.179 1 6 Eo 6 5

0.00599Eo− 0.187 5 < Eo 6 33

0.179 33 < Eo

(2.53)

Frank et al. [42, 43] generalized Tomiyama’s model, which has no dependence on pipe

diameter, and it is given as

CWL = CW3 ·max

{
0,

1

CWD

1− yw
CWCdB

yw

( yw
CWCdB

)p−1

}
(2.54)

The coefficient CW3 preserves the same dependence on Eötvös number as the Tomiyama

model. CWC = 10, CWD = 6.8 and p = 1.7.
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2.4 Particle size distribution

The polydispersity in multiphase flows is present in many industrial and environmental

applications. The particles (e.g. gas bubble, liquid droplet and solid particle) in the flows may

interact among themselves. They collide and aggregate together. They also can be broken up

due to collisions or due to interaction with the continuous phase flow. In the two-fluid model,

the interphase transfer terms need to be modeled considering the interfacial area density.

The particle size distribution should be determined for the interfacial area density in the

polydispersed multiphase flows. Population balance method is becoming a powerful tool to

describe the particle size distribution.

2.4.1 Population balance equation

The particles can be characterized by time t, external coordinates x, which denotes the spatial

position of the particle, and a set of internal coordinates φ, which could include particle mass,

size, composition, and temperature. The particle number density function n(x, φ, t) is the

number of the particle with property φ per volume at the position x, which is also called

particle distribution function (PDF) or particle number distribution function.

For the mono-variable or mono-dimensional case, the particle volume v is usually used to

describe the particle property. Thus, the particle number density function is expressed as

n(x, v, t). For the sake of simplicity, the position vector x is not written in the subsequent

sections. The population balance equation for the particle number density function in a

computational cell is generally written as [44]

∂n(v, t)

∂t
+∇ ·

[
Up(v, t)n(v, t)

]
=

1

2

∫ v

0
c(v − v′, v′)n(v − v′, t)n(v′, t)dv′

−
∫ ∞

0
c(v, v′)n(v, t)n(v′, t)dv′

+

∫ ∞
v

β(v, v′)b(v′)n(v′, t)dv′

−b(v)n(v, t) (2.55)

where the second term on the l.h.s. of Eq.(2.55) represents the change of particle number

density due to the convection, c(vi, vj) is the coalescence frequency, b(v) is the breakup

frequency of a fluid particle with size v, and β(v, v′) is the daughter particle size distribution.

Many solution methods are proposed for solving the population balance equation. The most

obvious way is to carry out a discretization on the bubble size, similar to discretization in

space and time. This leads into the so-called classes method [44–48]. The classes method

is also called discrete method or sectional method. The main advantage of this method is

that the particle size distribution can be directly obtained. However, to reflecting the reality,

a large number of classes have to be used. Hence, the computational afford is very high to

solve the discretized population balance equations with other conservation equations.
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More recently, many attempts have been made to solve the population balance equation

using the direct quadrature method of moments (DQMOM) [49–51]. The DQMOM was

developed based on the quadrature method of moments (QMOM) [52]. The DQMOM avoids

the time-consuming quadrature evaluation from the moments of the distribution.

2.4.2 Discretization of population balance equation

In the classes method, Eq.(2.55) is transformed into the continuity equation of every bubble

class. The bubble size distribution is divided into a number of discrete size intervals. It is

assumed that all the bubbles have the same size in a discrete size interval (vi, vi+1) and this

size is represented by a pivot size xi. The pivot size xi does not equal to vi or vi+1. The

bubble number density function can be given as

n(v, t) =

N−1∑
k=1

Nk(t)δ(v − xk) (2.56)

and Ni is defined as the number of bubbles of volume between vi and vi+1 per unit volume.

It is calculated as:

Ni(t) =

∫ vi+1

vi

n(v, t)dv (2.57)

When vi → vi+1, Ni(t) will be the number of bubble with volume vi. In a computational cell

with volume V , the number of bubbles with volumes between vi and vi+1 is calculated as

N(t) =

∫
V

∫ vi+1

vi

n(v, t)dvdV (2.58)

Integrating Eq.(2.55) over each size interval (vi, vi+1), the discrete population balance equa-

tion can be expressed as

∂Ni(t)

∂t
+∇ ·

[
Ub(t)Ni(t)

]
=

1

2

∫ vi+1

vi

dv

∫ v

0
c(v − v′, v′)n(v − v′, t)n(v′, t)dv′

−
∫ vi+1

vi

n(v, t)dv

∫ ∞
0

c(v, v′)n(v′, t)dv′

+

∫ vi+1

vi

dv

∫ ∞
v

β(v, v′)b(v′)n(v′, t)dv′

−
∫ vi+1

vi

b(v)n(v, t)dv (2.59)

We aim to obtain the dependent variable Ni(t). However, the terms on the r.h.s. of Eq.(2.59)

still contain n(v, t) and the equation is not solvable. These terms should be represented by

Ni(t) to close this equation.
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When the size of a formed bubble does not equal to vi or xi, the bubble should be redistributed

to conserve the number and mass of the bubbles [47]. When the newly formed bubble volume

is defined as v in the size range (xi, xi+1) and the number of the newly formed bubbles is

assumed to be N , there will be Ψ(v, xi)×N bubbles assigned to xi and ζ(v, xi+1)×N bubbles

assigned to xi+1. There is a relationship to calculate the coefficients Ψ(v, xi) and ζ(v, xi+1):

Ψ(v, xi)xi + ζ(v, xi+1)xi+1 = v (2.60)

Ψ(v, xi) + ζ(v, xi+1) = 1 (2.61)

Eq.(2.59) can be rewritten by considering the bubble redistribution. After the reconstruction

of the four terms, the discrete population balance equation is given as follows:

dNi(t)

dt
+∇ ·

[
Ub(t)Ni(t)

]
=

j>k∑
j,k

xi−16(xj+xk)6xi+1

(1− 1

2
δjk)ηi,jkc(xj , xk)Nj(t)Nk(t)

−Ni(t)
M∑
k=1

c(xi, xk)Nk(t)

+

M∑
k=i

γi,kb(xk)Nk(t)

−b(xi)Ni(t) (2.62)

with

ηj,ik =


xi+1 − v
xi+1 − xi

xi 6 v 6 xi+1

v − xi+1

xi − xi−1
xi−1 6 v 6 xi

(2.63)

γi,k =

∫ xi

xi−1

v − xi−1

xi − xi−1
β(v, xk)dv +

∫ xi+1

xi

xi+1 − v
xi+1 − xi

β(v, xk)dv (2.64)

In the gas-liquid bubbly flows, the bubble number of class i and the gas holdup have the

following relationship:

αgfi = Nixi (2.65)
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where fi is the volume fraction of class i in the gas holdup, and xi is the volume of bubbles

between vi and vi+1. The bubble population balance equation is finally expressed as follows:

∂

∂t
(αgfi) +∇ · (αgUg,ifi) =

j>k∑
j,k

xi−16(xj+xk)6xi+1

(1− 1

2
δjk)ηi,jkc(xj , xk)

αgfj
xj

αgfk
xk

xi

−αgfi

M∑
k=1

c(xi, xk)
αgfk
xk

+

M∑
k=i

γi,kb(xk)
αgfk
xk

xi

−b(xi)αgfi (2.66)

The computational fluid dynamics-population balance model (CFD-PBM) coupled model

combines the advantages of CFD to calculate the entire flow field and of the PBM to calculate

the local bubble size distribution [53]. To reduce the computational time, the MUltiple SIze

Group method (MUSIG) is widely applied in the commercial CFD codes like CFX [54]. This

standard/homogeneous MUSIG method avoids solving the momentum equation for every

bubble class. Only one common momentum equation is solved for all bubble size classes.

It is assumed that all the bubble classes share the same velocity field. The concept of the

MUSIG method is widely used, e.g. Chen et al. [55, 56], Olmos et al. [28, 57], Wang et

al. [53, 58], and Bannari et al. [59]. However, the homogeneous MUSIG method fails to

predict the phase distribution when the different bubble motions become important. The

inhomogeneous MUSIG model was proposed [60–63]. In the inhomogeneous MUSIG model,

the gas phase is divided into N velocity groups, where each velocity group has its own velocity

field. And each velocity group is subdivided into M bubble classes.

2.4.3 Bubble kernel functions

2.4.3.1 Breakup mechanisms and models

The breakage of fluid particles in viscous and turbulent dispersions is influenced by the

continuous-phase fluid dynamics, transport phenomena, and interfacial interactions. The

breakage mechanisms can be classified into four main categories: (1) turbulent fluctuation

and collision; (2) viscous shear stress force; (3) shearing-off process; (4) interface instability

[64]. Some typical models for breakup frequency and daughter size distribution have been

proposed by considering the above mechanisms.

Various models are developed based on turbulent fluctuation and collision. There are five

criteria for this mechanism: (1) turbulent kinetic energy of the drop greater than a critical

value [65]; (2) velocity fluctuation around the particle surface greater than a critical value

[66–68]; (3) turbulent kinetic energy of the bombarding turbulent eddy greater than a critical

value [69–71]; (4) inertial force of the bombarding turbulent eddy greater than the interfacial
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force of the smallest daughter particle [72]; (5) the combination of the criterion (3) and (4)

[73, 74].

2.4.3.2 Coalescence mechanisms and models

The bubble coalescence mechanism is considered more complex than the breakup process,

since it is affected by the interactions of bubbles with the surrounding liquid and other

bubbles. Three bubble coalescence criteria have been proposed: the film drainage model, the

critical approach velocity model and the energy model [75]. In all cases, the bubbles should

contact and collide to coalesce. The bubble collisions result from various relative velocities.

The relative motion may be due to five mechanisms in the turbulent flows: (1) the mean

velocity gradients in the flow; (2) the turbulent fluctuations in the surrounding fluid; (3) the

different bubble rise velocities; (4) the bubbles captured in an eddy; (5) the wake interactions.

Since not all bubble collisions result in the coalescence, the coalescence efficiency should be

used. The coalescence frequency is determined with the collision frequency and coalescence

efficiency. A detailed literature review has been made by Liao and Lucas [75].

Considerable effort has been made on the modeling of the coalescence frequency. Some

empirical or semi-empirical models with the adjustable parameters were developed, e.g.

Casamatta et al. [76], Konno et al. [77], Wright et al. [78] and Kentish et al. [79]. However,

the empirical models cannot be used for the general flows. Recently, some physical models

of the coalescence frequency are developed by multiplying the collision frequency with the

coalescence efficiency [70, 72, 80].

2.5 Two-phase turbulence modeling

In addition to the interphase momentum transfer terms, the two-fluid model requires closure

relations for the Reynolds stresses in the phase momentum equations. These unknown stresses

represent the effects of turbulence on the average phase momentum and need to be expressed

in terms of known quantities.

2.5.1 Gas-solid turbulence modeling

The gas-solid turbulent flow is characterized by the fluctuating velocity of gas phase and

solid phase. In the two-fluid model, the solid particle phase is considered to be a continuous

fluid. Some researchers assumed that the laminar flows exist in both gas and solid phases,

e.g. Chang et al. [81], Schreiber et al. [82], Passalacqua and Fox [83], and Verma et al. [84].

This assumption is reasonable in simulating the bubbling fluidized beds, since the superficial

gas velocity is quite low in the bubbling fluidized beds.

For gas-solid flows with high Reynolds numbers, the gas-phase turbulence has a noticeable

effect on the momentum and energy transfer between both phases. Bolio et al. [85] used the

low Reynolds number k-ε model to account for the gas turbulence, while the solid phase was
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assumed to be laminar. The particle-particle interactions were described by the kinetic theory

of granular flow. Benavides and van Wachem [86] presented a general Eulerian framework

the derivation of the averaged transport equations for turbulent gas-particle flows. The eddy

viscosity in the gas phase was determined by solving a k-ε model. The solid viscosity was

calculated using the kinetic theory of granular flow. Benavides and van Wachem [87] also

simulated the turbulent gas-particle flow in a vertically oriented backward-facing step. The

gas-phase turbulence was modeled by a k-ε model. The turbulence modification by the

presence of solid particles were performed in the turbulence transport equations. The solid

phase was modeled by the kinetic theory of granular flow including the models for describing

the solid phase interactions with the gas phase.

Cheng et al. [88] simulated the hydrodynamics in downer reactors. The kinetic theory model

coupled with the turbulence models of both gas phase and particle phase was proposed. The

gas-phase turbulence was modeled by the standard k-ε model. The turbulent kinetic energy

of particles was described by solving the turbulent kinetic energy equation of particle phase.

This gas-solid turbulence modeling method was used by Zheng et al. [89] for simulating the

hydrodynamics in riser reactors. Gryczka et al. [90] simulated the hydrodynamic behavior

of a prismatic spouted bed apparatus using the Eulerian method. The turbulence in the gas

phase was predicted with the modified k-ε model. The influence of the solid phase on the

gas-phase turbulence was considered in the k-ε model. The turbulent quantities for the solid

phase were calculated following Simonin and Viollet [91].

2.5.2 Gas-liquid turbulence modeling

2.5.2.1 Two equation k-ε turbulence models

In most cases, the single-phase standard k-ε model is used as a basis for the two-phase

turbulence models. The k and ε transport equations of the continuous phase, i.e. the liquid

phase, are written as follows:

∂

∂t
(αlρlkl) +∇ · (αlρlUlkl) = ∇ ·

[
αl
(
µl +

µt,l
σk

)
∇kl

]
+ αlGk,l − αlρlεl + Sk,l (2.67)

∂

∂t
(αlρlεl) +∇ · (αlρlUlεl) = ∇ ·

[
αl
(
µl +

µt,l
σε

)
∇εl

]
+ αl

ε

k
(Cε1Gk,l − Cε2ρlε) + Sε,l (2.68)

The production of turbulent kinetic energy is calculated in its exact form:

Gk,l = ∇Ul : τeff,l (2.69)

τeff,l = µeff,l[∇Ul + (∇Ul)
T]− 2

3
µeff,l(∇ ·Ul)I−

2

3
ρlklI (2.70)

The source terms Sk,l and Sε,l account for the influence of the presence of the dispersed phase

on the liquid phase turbulence (i.e. bubble-induced turbulence). Modeling of bubble-induced

turbulence in gas-liquid flows is still an unresolved issue. Some researchers neglected the
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bubble-induced turbulence when simulating the gas-liquid flows, e.g. Ranade [92], Pfleger et

al. [93], Sokolichin and Eigenberger [94], Buwa and Ranade [95] and Marschall et al. [96].

2.5.2.2 Reynolds stress transport model

The Reynolds stress transport model is also called the second-order or second-moment closure

model. It is the highest level of turbulence closure currently feasible for practical applications.

Launder et al. [97] developed a hierarchy of Reynolds stress transport models by consolidating

the work of various groups into a unified framework. The Launder model has been one of the

most widely used Reynolds stress models in engineering applications.

The transport equation of the Reynolds stress Ri,j = u
′
iu
′
j in the liquid phase is formulated

as

∂(αlρlRl)

∂t
+∇ · (αlρlUlRl) = ∇ ·

[
αl
(
µl + ρlCs

kl
εl

Rl

)
∇Rl

]
+ αlρlPl + αlρlΦl

−2

3
αlρlεlI + SR,l (2.71)

The molecular and turbulent transport term in the r.h.s of Eq.(2.71) is modeled with the

general gradient diffusion hypothesis (GGDH) of Daly and Harlow [98].

The production rate of Reynolds stress is calculated in its exact form:

Pij = −
(
uiuk

∂uj
∂xk

+ ujuk
∂ui
∂xk

)
(2.72)

The pressure-strain correlation term Φl is one of the most important terms, but most difficult

one to model accurately. It is modeled according to Gibson and Launder [99], Fu et al. [100],

and Launder [101, 102]:

Φl = Φ1 + Φ2 + Φw (2.73)

where Φ1 is the slow pressure-strain term, also known as the return-to-isotropy term, Φ2 is

called the rapid pressure-strain term, and Φw is the wall-reflection term. The slow pressure-

strain term is modeled as

Φ1 = −C1
εl
kl

(
Rl −

2

3
klI
)

(2.74)

The isotropization of production model is used for the rapid pressure-strain term:

Φ2 = −C2

(
Pl −

1

3
tr(Pl)I

)
(2.75)
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The wall-reflection term φij,w is responsible for the redistribution of normal stresses near the

wall. It tends to damp the normal stress perpendicular to the wall, while enhance the stresses

parallel to the wall. This term is modeled as

φij,w = C1w
εl
kl

(
u
′
ku
′
mnknmδij −

3

2
u
′
iu
′
knknj −

3

2
u
′
ju
′
knkni

)C3/4
µ k

3/2
l

κεld

+C2w

(
φkm,2nknmδij −

3

2
φik,2nknj −

3

2
φjk,2nkni

)C3/4
µ k3/2

κεd
(2.76)

where C1w = 0.5, C2w = 0.3, nk is the xk component of the unit normal to the wall, d is the

normal distance to the wall, Cµ = 0.09 and κ is the von Kármán constant (κ = 0.4187).

The fourth term in the r.h.s of Eq.(2.71) is modeled by assuming the isotropy of the small

dissipative eddies and it only affects the normal Reynolds stresses. The source term SR,l

represents the influence of the bubbles on the Reynolds stress in the liquid phase.

The transport equation of the dissipation rate of turbulence kinetic energy is expressed as

∂(αlρlεl)

∂t
+∇ · (αlρlUlεl) = ∇ ·

[
αl
(
µl + ρlCε

kl
εl

Rl

)
∇εl

]
+ αlρl

εl
kl

(C1εGk,l − C2εεl) + Sε,l

(2.77)

The Reynolds stress model constants are listed as C1 = 1.8, C2 = 0.6, Cs = 0.22, C1ε = 1.44,

C2ε = 1.92, Cε = 0.15.

2.5.2.3 Bubble-induced turbulence models

Generally, there are three approaches to account for the bubble-induced turbulence. One

approach is to simply add an extra bubble-induced contribution to the effective viscosity. Sato

and Sekoguchi [103] and Sato et al. [104] proposed the simplest model for the consideration

of the bubble influence on the liquid turbulence. The bubble-induced viscosity is added to

the laminar viscosity and shear-induced turbulent viscosity:

µeff,l = µl + µt,l + µB,l (2.78)

It is assumed that the bubble-induced turbulent viscosity is proportional to the local gas

holdup and the slip velocity:

µB,l = ρlCµ,BαgdB|Ug −Ul| (2.79)

where the model constant Cµ,B is set to 0.6. This model does not provide a direct value for

the total turbulent kinetic energy which includes the contributions from both shear-induced

and bubble-induced turbulence.
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The second approach to model the bubble-induced turbulence is proposed by Arnold et al.

[105] and Lahey et al. [106]. The total turbulence stress tensor is calculated as

τt,l = τl,SI + τl,BI (2.80)

The shear-induce turbulence stress tensor τl,SI can be modeled using the Boussinesq relation

or by solving the Reynolds stress transport equation. The bubble-induced turbulence stress

τl,BI is given as

τl,BI = −ρlRl,BI = −αgρlCvm

[
a(Ur ⊗Ur) + b(Ur ·Ur)I

]
(2.81)

where Cvm = 0.5, a = 1/10 and b= 3/10. The bubble-induced turbulent kinetic energy is

derived by taking the trace of the bubble-induced turbulence stress:

kl,BI =
1

2
tr(Rl,BI) =

1

2
αgCvm|Ug −Ul|2 (2.82)

The total turbulent kinetic energy is calculated as

kl = kl,SI + kl,BI (2.83)

The third method is to introduce the bubble-induced source terms in the turbulence model

equations. The influence of bubbles on the liquid phase turbulence is implicitly included.

Various source terms have been proposed. Gosman et al. [107] incorporated the effects of the

dispersed phase on turbulence with additional source terms in the k-ε equations. Oliveira

and Issa [108] also used the similar bubble-induced source terms in the k-ε equations. The

influence of gas-liquid interface on the liquid turbulence is modeled by Mudde and Simonin

[109] as the source terms in the k-ε equations. The source term in the k-equation is from Bel

F’Dhila and Simonin [110]. The source term in the ε-equation is from the work of Elghobashi

and Abou-Arab [111]. In the commercial CFD software FLUENT, the so-called dispersed

k-ε turbulence model describes the turbulence in the continuous phase by the modified k-ε

equations with extra terms that include interphase turbulent momentum transfer. Selma et

al. [112] incorporated the effect of the gas-liquid interface and the dispersed phase on the

liquid turbulence.

Kataoka and Serizawa [113] proposed the source term in the k-equation which is proportional

to the product of the drag force and the slip velocity between the two phases. This type of

source term is widely used by other researchers, e.g. Olmos et al. [28], Pfleger and Beck

[114], Le Moullec et al. [115], Mahmoodi et al. [116], Troshko and Hassan [117], Rzehak and

Krepper [118, 119].
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2.5.2.4 Dispersed phase turbulence modeling

The modeling of the dispersed phase turbulence was neglected by some researchers, e.g.

Olmos et al. [28, 57], Pfleger et al. [93], Pfleger and Becker [114], Wang et al. [120], and van

Baten and Krishna [121]. This assumption can be justified when the dilute dispersed phase

exists. However, it is much less certain in the churn-turbulent flows with high gas fractions.

The eddy viscosity approach is also used for the dispersed phase turbulence. The Reynolds

stress tensor of the dispersed phase is expressed as

− u′du′d = νt,d

[
∇Ud + (∇Ud)

T
]
− 2

3
νt,d(∇ ·Ud)I−

2

3
kdI (2.84)

The disadvantage with the eddy viscosity approach is the need to formulate and solve the

dispersed phase k-ε equations for calculating the dispersed phase eddy viscosity. To avoid this,

some workers related the dispersed phase eddy viscosity to the continuous phase eddy viscosity

by using the Peskin’s formula [122], e.g. Pourshmadi [123], Pourahmadi and Humphrey [124],

and Elghobashi and Abou-Arab [111, 125]. Simpler relations between the two phase eddy

viscosities were proposed by Chen and Wood [126, 127]. The dispersed phase turbulent kinetic

energy was also related to that of the continuous phase.

Politis [128] adopted the response coefficient Ct to relate the dispersed phase Reynolds stress

with the continuous phase Reynolds stress. Rusche [4] calculated the turbulent kinetic energy

and the effective viscosity of the dispersed phase by using the following expressions:

kd = C2
t kc (2.85)

νeff,d = νd + C2
t νt,c (2.86)

Oliveira and Issa [108] also related the dispersed phase turbulent kinetic energy and viscosity

to the continuous phase ones by means of the response functions:

kd = C2
t kc (2.87)

νeff,d = νd + νt,c (2.88)

Simonin and his coworkers [109, 129] achieved the turbulent predictions of the dispersed

bubble by an extension of Tchen’s theory. The particle or bubble fluctuations are assumed to

be driven by the surrounding continuous phase. In this way, the dispersed phase properties

are algebraically related to the continuous phase properties. In the commercial CFD package

FLUENT, the dispersed k-ε turbulence model also uses the Simonin’s method to predict the

turbulence in the dispersed phase.
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Chapter 3

CFD modeling of gas-solid bubbling fluidized beds: Model

validation and comparison of TVD differencing schemes

This chapter originates from the following publication:

Yefei Liu, Olaf Hinrichsen. CFD modeling of bubbling fluidized beds using OpenFOAM R©:

Model validation and comparison of TVD differencing schemes. Computers and Chemical

Engineering, 2014, 69, 75-88.

Reprinted with permission from Elsevier Ltd.

Abstract

The two-fluid model with kinetic theory of granular flow is implemented into the open

source CFD package OpenFOAM. The effect of total variation diminishing (TVD) convection

schemes is investigated by simulating two bubbling fluidized beds. Five TVD schemes are

employed to discretize the convection terms of phase velocity and solid volume fraction.

Simulated results of the two test cases give reasonable agreement with the experimental data

in the literature. For the discretization of the phase velocity convection terms, the five schemes

give quite similar time-averaged radial profiles of particle axial velocity. The predicted bubbles

in the bed with a central jet are not influenced by the different schemes. For the discretization

of the solid volume fraction convection terms, the limitedLinear01, Sweby01 and vanLeer01

schemes give the converged and reasonable solutions, whereas the SuperBee01 and MUSCL01

schemes diverge the solutions. When using the faceLimited gradient scheme the convection

scheme becomes more diffusive.
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3.1 Introduction

The Eulerian-Eulerian two-fluid model is widely employed for computational fluid dynamics

(CFD) simulations of the gas-solid flows, since it requires economical computational resources

and enables large-scale reactor modeling. The two-fluid model treats gas and solid phases as

fully interpenetrating continua, which typically involves two sets of averaged Navier-Stokes

equations [1–3]. These governing equations are closed with the interfacial transfer models

and the kinetic-frictional models for the description of granular phase [4–8].

Numerical solution of two-fluid model equations with kinetic theory of granular flow (KTGF)

has been achieved with some commercial software, in-house programs and open source codes,

e.g., FLUENT, CFX, MFIX and K-FIX. The commercial CFD packages FLUENT and CFX

gain many practices in Eulerian-based modeling of gas-solid flows [9–14]. FLUENT uses

a phase-coupled SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm,

while the inter-phase slip algorithm is adopted in CFX. The open source code MFIX (Multi-

phase Flow with Interphase eXchange) developed at National Energy Technology Laboratory

is also widely applied for fluidized bed simulations [15–18]. MFIX is developed with staggered

grid arrangement and Fortran coding. The MFIX manuals are well documented and freely

available to researchers. The in-house program K-FIX and its alternate versions are employed

by few researchers [19, 20]. The K-FIX source codes are not available to the public. Recently,

the open source CFD code OpenFOAM (Open source Field Operation And Manipulation)

[21] receives much more attention from academia and industry. In OpenFOAM the original

gas-solid flow solvers with two-fluid model are not yet fully developed and validated [22]. To

improve the solver accuracy and robustness, Passalacqua and Fox [23] proposed an iterative

solution procedure to solve the two-fluid model equations.

OpenFOAM is developed based on the fundamental ideas of object orientation, layered

software design and equation mimicking. Many CFD solvers for specialized applications

have been implemented in OpenFOAM. Compared with the business software products,

OpenFOAM offers the possibility to have insight into the source codes and hence it is of

great convenience for code customization. Instead of the staggered grids, OpenFOAM adopts

the co-located grids. The unstructured polyhedral cells can be deployed to handle complex

geometries. The use of the object-oriented C++ language further makes users implement

new models readily. OpenFOAM is becoming a flexible alternative tool for CFD simulation.

However, the gas-solid flow simulations with OpenFOAM are still quite few.

Gas-solid flow simulation in a fluidized bed depends not only on the fundamental two-fluid

model theory but also on the numerical techniques, i.e., time step, solution algorithm and

discretization scheme. First, it is important to achieve the complete implementation of the

two-fluid model with KTGF. While a robust gas-solid solver was developed and tested by

Passalacqua and Fox [23], further experimental validations are still very necessary to confirm

the applicability of OpenFOAM in simulating fluidized beds. Second, for the fluidized beds
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with convection-dominated flows, great care should be taken to the discretization schemes of

the convection terms. Guenther and Syamlal [24] compared the first-order upwind scheme

with three second-order schemes (SMART, SuperBee and MINMOD) in the MFIX code. And

the effect of convection scheme on the isolated bubble shape was investigated. Braun et al.

[25] also simulated the bubble behaviors in a fluidized bed by using the MFIX code. The first-

order upwind and SuperBee schemes were compared. Although various convection schemes

are available in OpenFOAM, little attention is paid to the effect of convection scheme on the

solution results of gas-solid flows in fluidized beds. It is of major importance to perform an

in-depth comparison of convection schemes within the OpenFOAM framework. Such a study

provides the guideline on the selection of convection schemes in the gas-solid flow modeling.

In this work a two-fluid solver is implemented into OpenFOAM. Experimental validations are

performed by simulating two bubbling fluidized bed cases, i.e., one with uniform gas feed and

the other with a central gas jet. The simulated results are compared against the experimental

data from the literature. The effect of different convection schemes is investigated for the

convection terms of phase velocities and solid volume fraction.

3.2 Mathematical models

The continuity equations of the gas and solid phases are written as

∂(αgρg)

∂t
+∇ · (αgρgUg) = 0 (3.1)

∂(αsρs)

∂t
+∇ · (αsρsUs) = 0 (3.2)

where ρg is the gas phase density, ρs is the solid phase density, Ug is the gas phase velocity,

Us is the solid phase velocity, αg and αs are the volumetric fractions of gas and solid phases,

αg = 1 - αs. The momentum equations of the gas and solid phases are given as

∂(αgρgUg)

∂t
+∇ · (αgρgUgUg) = −αg∇p+∇ · (αgτg) + β(Us −Ug) + αgρgg (3.3)

∂(αsρsUs)

∂t
+∇ · (αsρsUsUs) = −αs∇p−∇ps +∇ · (αsτs) + β(Ug −Us) + αsρsg (3.4)

where p is the bed pressure, ps is the solid phase pressure, τg and τs are the stress tensors

of gas and solid phases, β is the interphase momentum transfer coefficient, and g is the

gravitational acceleration.

The gas phase is assumed as a Newtonian fluid, and its stress tensor is defined using the

Newtonian stress-strain relation as

τg = µg
[
∇Ug + (∇Ug)

T
]
− 2

3
µg(∇ ·Ug)I (3.5)
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where µg is the shear viscosity of gas phase and I is the unit tensor. Similarly, the shear

stress tensor of solid phase is expressed as

τs = µs
[
∇Us + (∇Us)

T
]

+
(
λs −

2

3
µs
)
(∇ ·Us)I (3.6)

where µs is the solid shear viscosity and λs is the solid bulk viscosity.

3.2.1 Interphase momentum transfer coefficient

In order to close the phase momentum equations, the interphase momentum transfer coeffi-

cient β should be calculated with the drag force functions. The majority of the reported drag

models were empirically developed. No drag model is available for predicting a wide range

of gas-solid flow types. In this work, the drag force function of Syamlal et al. [15] is applied

for the fluidized bed with uniform gas feed. This function was derived by converting the

terminal velocity correlations in fluidized or settling beds. The fluidized bed with a central

jet is simulated with the drag model proposed by Gidaspow [26]. The Gidaspow model

combines the Ergun equations [27] with the Wen and Yu model [28]. The Ergun equations

were derived from the packed-bed pressure drop data, whereas the Wen and Yu model was

formulated based on the homogeneous expansion of fluidized beds.

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 71 0 2

1 0 3

1 0 4

1 0 5

 

 

Int
erp

has
e c

oef
fic

ien
t �

�, k
g/(

m3 s)

S o l i d  v o l u m e  f r a c t i o n

  S y a m l a l  ( d p  =  0 . 0 0 0 2 8  m )
  G i d a s p o w  ( d p  =  0 . 0 0 0 2 8  m )
  S y a m l a l  ( d p  =  0 . 0 0 0 5 0  m )
  G i d a s p o w  ( d p  =  0 . 0 0 0 5 0  m )

U g  -  U s =  2  m / s

Figure 3.1: Comparison of different interphase momentum transfer coefficients

The drag correlations of the Syamlal and Gidaspow models are given in Table 3.1. Figure 3.1

shows the comparison between these models. At the high solid volume fractions, the values

of β calculated with the Gidaspow model are larger than those calculated with the Syamlal

model. Therefore, the Gidaspow model predicts stronger bed expansion and the predicted

solid concentrations are smaller. Our preliminary study revealed that the fluidized bed with
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uniform gas feed is better simulated using the Syamlal model. However, the Gidaspow model

is needed to obtain the satisfactory predictions on the fluidized bed with a central jet.

Table 3.1: The interphase momentum transfer coefficients

(a) Syamlal model [15]

β =
3

4
CD

αgαsρg
V 2
r dp

|Ug −Us|

CD =

(
0.63 + 4.8

√
Vr
Re

)2

Vr = 0.5
[
a− 0.06Re +

√
(0.06Re)2 + 0.12Re(2b− a) + a2

]
a = α4.14

g , b =

 0.8α1.28
g , αg 6 0.85

α2.65
g , αg > 0.85

Re =
ρgdp|Ug −Us|

µg

(b) Gidaspow model [26]

β =


3

4

CDαgαsρg|Ug −Us|
dp

α−2.65
g , αs < 0.2

150
µgα

2
s

α2
gd

2
p

+ 1.75
ρgαs
αgdp

|Ug −Us|, αs > 0.2

CD =


24

αgRe
[1 + 0.15(αgRe)0.687], αgRe < 1000

0.44, αgRe > 1000

3.2.2 Kinetic theory of granular flow

The properties of solid phase, i.e., solid shear stress τs and solid pressure ps in Eq.(3.4), are

derived based on the kinetic theory of granular flow [26]. For the kinetic theory of granular

flow, the fluctuation energy of solid phase, also known as granular temperature, is obtained

by solving the granular temperature transport equation which is expressed as follows:

3

2

[
∂(αsρsΘ)

∂t
+∇ · (αsρsUsΘ)

]
= (−psI + τs) : ∇Us +∇ · (κs∇Θ)− γs + Jvis + Jslip (3.7)

where Θ is the granular temperature, κs is the conductivity of granular temperature, γs is the

dissipation rate due to particle collisions, Jvis is the dissipation rate resulting from viscous

damping, and Jslip is the production rate due to the slip between gas and particle. These

terms are modeled following Gidaspow [26].
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The solid bulk viscosity λs and the solid shear viscosity µs are calculated according to

Gidaspow [26]:

λs =
4

3
α2
sρsdpg0(1 + e)

√
Θ

π
(3.8)

µs,KTGF =
4

5
αsρsdpg0(1 + e)

√
Θ

π
+

10ρsds
√

Θπ

96αsg0(1 + e)

[
1 +

4

5
αsg0(1 + e)

]2

(3.9)

where dp is the particle diameter, e is the particle-particle restitution coefficient and g0 is

the radial distribution function. The solid phase pressure ps is calculated following Lun et

al. [5]:

ps = αsρsΘ + 2ρsα
2
sg0Θ(1 + e) (3.10)

The expression for g0 is given following Sinclair and Jackson [29]:

g0 =

[
1−

(
αs

αs,max

)1/3]−1

(3.11)

where αs,max is the particle packing limit.

3.2.3 Frictional stress models

In the regions where the particles are closely packed, the behavior of the granular flow is

dominated by the frictional stresses and it is not adequately described only by KTGF. Similar

to the solid kinetic stresses, the solid frictional stresses consist of the frictional shear stress

and the frictional normal stress (i.e., solid frictional pressure). When the solid volume fraction

exceeds a critical value αs,min, the solid frictional stresses are usually added to the solid kinetic

stresses calculated from KTGF [30]:

ps = ps,KTGF + ps,f, µs = µs,KTGF + µs,f (3.12)

The solid frictional pressure ps,f proposed by Schaeffer [7] and the frictional shear viscosity

µs,f by Johnson et al. [30] are employed as

ps,f = Fr
(αs − αs,min)n

(αs,max − αs)p
(3.13)

µs,f =
ps,f sinφf

2
√
I2D

(3.14)

where Fr = 0.05 N/m2, n = 2,p = 5, φf is the internal frictional angle and I2D represents the

second invariant of the deviator of the strain rate tensor Ds:

I2D =
1

6

[
(Ds,11−Ds,22)2 + (Ds,22−Ds,33)2 + (Ds,11−Ds,33)2

]
+D2

s,12 +D2
s,23 +D2

s,13 (3.15)

Ds =
1

2

[
∇Us + (∇Us)

T
]

(3.16)
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3.3 Numerical implementation

3.3.1 Discretization of the phase momentum equations

The gas and solid phases are assumed to be incompressible. Eqs. (3.3) and (3.4) are re-written

by dividing the density of each phase:

∂(αgUg)

∂t
+∇ · (αgUgUg)−∇ · (αgνg∇Ug) +∇ · (αgR

C
g ) = −αg

ρg
∇p

+
β

ρg
(Us −Ug) + αgg (3.17)

∂(αsUs)

∂t
+∇ · (αsUsUs)−∇ · (αsνs∇Us) +∇ · (αsRC

s ) = −αs
ρs
∇p− 1

ρs
∇ps

+
β

ρs
(Ug −Us) + αsg (3.18)

where ν is the kinematic viscosity, ν = µ/ρ. RC
g and RC

s are expressed as follows:

RC
g = −νg(∇Ug)

T +
2

3
νg(∇ ·Ug)I

RC
s = −νs(∇Us)

T −
(λs
ρs
− 2

3
νs
)
(∇ ·Us)I

The difficulty is found in the solution of the phase momentum equations, since the solid

phase is not necessarily present in the whole computational domain of a bubbling fluidized

bed. As a result, the discretized momentum equations result in the singular system of linear

algebraic equations. Some workers suggested re-writing the phase momentum equations in

the non-conservative or semi-conservative forms to avoid the singularity [31, 32]. Passalacqua

and Fox [23] adopted the conservative forms of the phase momentum equations. In those

computational cells with solid volume fraction lower than a specified minimum value, the

discretized momentum equations were not solved.

The momentum conservative form is also adopted in our solver. As an example of the

equation implementation in OpenFOAM, the transient term, convection term, diffusion term

and divergence term in the l.h.s. of Eq.(3.18) are discretized with the following codes:

fvVectorMatrix UaEqn

(

fvm::ddt(alpha,Ua)

+ fvm::div(alphaf*phia,Ua)

- fvm::laplacian(alpha*nua,Ua)

+ fvc::div(alpha*Rca)

);
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where alpha represents the solid volume fraction, alphaf is the interpolated face value of

solid volume fraction, and phia is the particle velocity flux. The fvm operator returns the

implicit discretization of the transient, convection and diffusion terms, while the divergence

of alpha*Rca is explicitly discretized with the fvc operator. It is seen that the different terms

in the C++ implementation mimics their mathematical counterparts.

By discretizing the transient, convection, diffusion and divergence terms in Eqs.(3.17) and

(3.18) are discretized, the semi-discretized forms of the momentum equations are written as

AgUg = Hg −
αg

ρg
∇p+

β

ρg
(Us −Ug) + αgg (3.19)

AsUs = Hs −
αs
ρs
∇p− 1

ρs
∇ps +

β

ρs
(Ug −Us) + αsg (3.20)

where A and H are accessed by using the member function A() and H() of the class

fvVectorMatrix, respectively. The parameter A gives the diagonal coefficients of the velocity

matrix. H represents the off-diagonal part of the velocity matrix and the source part.

The partial elimination algorithm proposed by Spalding [33] is adopted to decouple the

momentum equations. The different velocities in Eqs.(3.19) and (3.20) are collected:

Ug = ξg

(
Hg −

αg

ρg
∇p+ αgg

)
+ ξg

β

ρg
Us (3.21)

Us = ξs

(
Hs −

αs
ρs
∇p− 1

ρs
∇ps + αsg

)
+ ξs

β

ρs
Ug (3.22)

with

ξg =
1

Ag + max(δ, αgαs)
β∗

ρg

, ξs =
1

As + max(δ, αgαs)
β∗

ρs

where β∗ is obtained by extracting αgαs from β. In this study a small value (δ = 1×10−4)

is introduced into β to avoid the infinite values of ξg and ξs when αs = 0. Substituting Us

in Eq.(3.19) using Eq.(3.22) and Ug in Eq.(3.20) using Eq.(3.21), we obtain the decoupled

momentum equations:

Ug =
Hg

A∗g
+

ξsβ

ρgA
∗
g

Hs −
(

αg

ρgA
∗
g

+
αsξsβ

ρgρsA
∗
g

)
∇p− ξsβ

ρgρsA
∗
g

∇ps +

(
αg

A∗g
+
αsξsβ

ρgA
∗
g

)
g (3.23)

Us =
Hs

A∗s
+

ξgβ

ρsA
∗
s

Hg −
(

αs
ρsA

∗
s

+
αgξgβ

ρgρsA
∗
s

)
∇p− 1

ρsA
∗
s

∇ps +

(
αs
A∗s

+
αgξgβ

ρsA
∗
s

)
g (3.24)
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with

A∗g = Ag −
β

ρg

(
ξs
β

ρs
− 1

)
, A∗s = As −

β

ρs

(
ξg
β

ρg
− 1

)

3.3.2 Pressure equation and PISO algorithm

The PISO (Pressure Implicit with Split Operator) algorithm is adopted to handle the

pressure-velocity coupling [34], where a pressure equation based on the volumetric continuity

equation is solved to correct the predicted velocities. The velocity fluxes are obtained by

calculating the dot-product of velocities in Eqs.(3.23) and (3.24) with face area vector Sf :

ϕg =

(
Hg

A∗g

)
f

· Sf +

(
ξsβ

ρgA
∗
g

Hs

)
f

· Sf −
(

αg

ρgA
∗
g

+
αsξsβ

ρgρsA
∗
g

)
f

| Sf | ∇⊥p

−
(

ξsβ

ρgρsA
∗
g

)
f

(∇ps)f · Sf +

(
αg

A∗g
+
αsξsβ

ρgA
∗
g

)
f

g · Sf (3.25)

ϕs =

(
Hs

A∗s

)
f

· Sf +

(
ξgβ

ρsA
∗
s

Hg

)
f

· Sf −
(

αs
ρsA

∗
s

+
αgξgβ

ρgρsA
∗
s

)
f

| Sf | ∇⊥p

−
(

1

ρsA
∗
s

)
f

(∇ps)f · Sf +

(
αs
A∗s

+
αgξgβ

ρsA
∗
s

)
f

g · Sf (3.26)

Due to the volumetric conservation, the total volumetric flux is obtained as

∇ · ϕ = ∇ · (αg,fϕg + αs,fϕs) = 0 (3.27)

From Eq.(3.27), the pressure equation can be derived as

∇ ·

{[
αg,f

(
αg

A∗gρg
+

αsξsβ

ρgρsA
∗
g

)
f

+ αs,f

(
αs

A∗sρs
+

αgξgβ

ρsρsA
∗
s

)
f

]
| Sf | ∇⊥p

}
= ∇ · ϕo (3.28)

where ϕo is the total volumetric flux without the contribution of the pressure gradient and

it is expressed as

ϕo = ϕo
g + ϕo

s (3.29)

ϕo
g =

(
Hg

A∗g

)
f

· Sf +

(
ξsβ

ρgA
∗
g

Hs

)
f

· Sf −
(

ξsβ

ρgρsA
∗
g

)
f

(∇ps)f · Sf +

(
αg

A∗g
+
αsξsβ

ρgA
∗
g

)
f

g · Sf

(3.30)

ϕo
s =

(
Hs

A∗s

)
f

· Sf +

(
ξgβ

ρsA
∗
s

Hg

)
f

· Sf −
(

1

ρsA
∗
s

)
f

(∇ps)f · Sf +

(
αs
A∗s

+
αgξgβ

ρsA
∗
s

)
f

g · Sf

(3.31)
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Once the pressure equation is solved, the velocity flux of each phase is corrected using the

new pressure field:

ϕg = ϕo
g −

(
αg

ρgA
∗
g

+
αsξsβ

ρgρsA
∗
g

)
f

| Sf | ∇⊥pn (3.32)

ϕs = ϕo
s −

(
αs
ρsA

∗
s

+
αgξgβ

ρgρsA
∗
s

)
f

| Sf | ∇⊥pn (3.33)

Finally, the new velocity fields are reconstructed from the corrected face fluxes using the flux

reconstruction method [23].

3.3.3 Discretization of the solid phase continuity equation

The boundedness of solid phase fraction is the key issue in the discretization of solid phase

continuity equation. The phase fraction should be bounded between zero and one. Following

the approach of Rusche [35], the boundedness is achieved by re-formulating the continuity

equation as

∂αs
∂t

+∇ · (Uαs) +∇ · (αgUrαs) = 0 (3.34)

where U is the mixture velocity, U = αsUs + αgUg, and Ur is the relative velocity,

Ur = Us −Ug.

Special care should be taken on the discretization of the solid phase continuity equation,

since the solid volume fraction should not exceed its physical maximum value. In MFIX, the

effect of solid pressure is explicitly included in the solid phase continuity equation to obtain a

solid volume fraction correction equation. This correction equation is solved using the local

relaxation to avoid numerical instability [36]. However, this explicit approach is not always

satisfactory [23]. To make the solid volume fraction below the packing limit, we implicitly

include the solid pressure gradient in the solid phase continuity equation. The solid pressure

gradient is expressed as the product of the elastic stress modulus G(αs) and the gradient of

solid volume fraction [37]:

∇ps = G(αs)∇αs (3.35)

G(αs) =
∂ps
∂t

(3.36)

Finally, the solid phase continuity equation is re-formulated as

∂αs
∂t

+∇ · (U∗αs) +∇ · (αgU
∗
rαs)−∇ ·

[
αs
( 1

ρsA
∗
s

)
G(αs)∇αs

]
= 0 (3.37)

52



3 Gas-solid model validation and comparison of TVD schemes

with

U∗ = U + αs
( 1

ρsA
∗
s

)
G(αs)∇αs

U∗r = Ur +
( 1

ρsA
∗
s

)
G(αs)∇αs

Eq.(3.37) is discretized with the class fvScalarMatrix as

fvScalarMatrix alphaEqn

(

fvm::ddt(alpha)

+ fvm::div(phi,alpha)

+ fvm::div(-fvc::flux(-phir, beta), alpha)

- fvm::laplacian(alphaf*ppMagf, alpha)

);

where phi is the flux of the mixture velocity, phir is the flux of the relative velocity, ppMagf is

the face value of the term G(αs)/(ρsA
∗
s), beta is gas phase volume fraction. The discretization

of the Laplacian term is provided in Appendix A.

3.4 TVD differencing schemes

The finite volume method divides the spatial domain into a number of contiguous control

volumes or cells (Figure 3.2). Dependent variables and other properties are stored at cell

centers in OpenFOAM. For the face f connecting two cells, OpenFOAM designates an owner

cell P and a neighbour cell N . The face area vector Sf is a vector normal to the face pointing

out of the owner cell, whose magnitude is that of the face area. The vector d connects the

centers of two adjacent cells.

Figure 3.2: Geometric parameters of the control volumes
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3.4.1 Discretization of convection terms

The discretization of convection terms in fluid transport equations has proven to be one of

the most troublesome issues. The general convection term is integrated over a control volume

after applying the Gauss theorem and linearized as follows:∫
V
∇ · (ρUφ)dV =

∫
S
dS · (ρUφ) ≈

∑
f

Sf · (ρU)fφf =
∑
f

Ffφf (3.38)

where φ is a dependent variable and Ff is the face flux, Ff = Sf · (ρU)f . The approximation

of the face value φf from the cell-centered values is the key problem in the cell-centered

finite volume discretization. Generally, the face value can be determined with the first-order

upwind scheme and high-order convection schemes (linear and non-linear schemes). The

central differencing scheme is an example of the high-order linear convection schemes (also

called κ-schemes), while the flux limiter and normalized-variable approach are the two widely

used non-linear high-order convection schemes [38].

For the central differencing (CD) scheme, the face value φf is calculated as

φf,CD = fCDφP + (1− fCD)φN = fCD(φP − φN ) + φN (3.39)

where fCD is a weighting factor, fCD = fN/PN . While the central differencing scheme is

second-order accurate, this scheme causes unphysical spatial oscillations in the convection-

dominated flows and thus violating the boundedness.

To maintain the boundedness the upwind differencing (UD) scheme determines the face value

φf from the direction of the flow:

φf,UD = fUD(φP − φN ) + φN (3.40)

where the weighting factor fUD equals to 1 if the flux Ff > 0 and 0 otherwise. The

upwind scheme ensures the unconditional boundedness at the cost of accuracy by introducing

numerical diffusion.

In an attempt to preserve the boundedness with reasonable accuracy, OpenFOAM provides

the blended schemes by combining the upwind and central differencing schemes. The face

value φf in the blended schemes is formulated as

φf = (1− ω)φf,UD + ωφf,CD (3.41)

where ω is a blending factor which determines how much numerical diffusion will be intro-

duced. Clearly, ω = 0 gives the upwind scheme and ω = 1 results in the central differencing.
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The discretized convection term along with the discretization of the transient, diffusion, and

source terms generates the following linear equation system:

aPφP =
∑
N

aNφN + SP (3.42)

where SP is the source term from the transient term and the volume integral of the linearized

source term. Jasak [39] pointed out that only the upwind scheme creates the diagonally equal

matrix. The other convection schemes would create negative matrix coefficients in Eq.(3.42).

The negative coefficients violate the diagonal equality and result in the unbounded solutions.

In order to improve the matrix quality, Khosla and Rubin [40] proposed the deferred correction

method to implement the high-order convection schemes. In this method, the part of the

convection term corresponding to upwind differencing is implicitly built into the matrix, and

the other part is added into the source term. At present, the deferred correction method is

not available in the OpenFOAM package and is not used in this work.

3.4.2 TVD flux limiters in OpenFOAM

The blending factor ω in Eq.(3.41) can be evaluated in a face-by-face way based on total

variation diminishing (TVD) [41, 42] or normalized variable diagram (NVD) [43, 44]. The

TVD flux limiting procedure creates a differencing scheme which is higher than first-order

accurate without the spurious oscillations. The NVD approach stabilizes the central dif-

ferencing scheme and ensures the solution boundedness by introducing a small amount of

numerical diffusion [39].

The TVD concept has proved to be the most promising method [39]. The performances of

TVD schemes are preferentially evaluated in our gas-solid flow simulations. The blending

factor ω (also called flux limiter in TVD method) requires the calculation of the variable

r which represents the ratio of successive gradients of the interpolated variable. The TVD

limiting scheme of the scalar fields calculates r as follows:

r =


2
d · (∇φ)P
φN − φP

− 1 Ff > 0

2
d · (∇φ)N
φN − φP

− 1 Ff 6 0

(scalar φ) (3.43)

where (∇φ)P is the full gradient calculated at the owner cell P . The discretization of gradient

term is given in Appendix B.

When discretizing the vector fields, OpenFOAM adopts the V-scheme to maximize the

limiting based on the worst-case direction where the steepest gradient exists [45]. The V-

scheme is used by adding V to the name of a TVD scheme. The calculation of r for a vector

field is expressed as
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r =


2

(φN − φP ) · (d · (∇φ)P )

(φN − φP ) · (φN − φP )
− 1 Ff > 0

2
(φN − φP ) · (d · (∇φ)N )

(φN − φP ) · (φN − φP )
− 1 Ff 6 0

(vector φ) (3.44)

To bound some scalar fields (e.g., αs), the name of a scheme can be preceded by the word

limited and followed with the lower bound and upper bound, respectively. This limited scheme

uses the upwind differencing scheme (ω = 0) when the value of φ in the cell is not between

the lower bound and upper bound. For example, to bound the vanLeer scheme between -2

and 3, it is specified as limitedVanLeer -2.0 3.0. For the scalar fields commonly bounded

between 0 and 1, the limited scheme is renamed as the 01-scheme and is used by adding 01

to the name of the scheme.

Table 3.2: The TVD flux limiters used in the present study

Flux limiter Formulation Reference

limitedLinear ω = max[min(2r/k, 1), 0] 0 < k 6 1 OpenCFD Ltd.[21]

Sweby ω = max[0,min(kr, 1),min(r, k)] 0 < k 6 2 Sweby [42]

SuperBee ω = max[0,min(2r, 1),min(r, 2)] Roe [46]

vanLeer ω = r+|r|
1+|r| van Leer [47]

MUSCL ω = max[min(2r, 0.5r + 0.5, 2), 0] van Leer [48]

Figure 3.3: Profiles of five TVD flux limiters in the Sweby diagram
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Five TVD flux limiters are formulated in Table 3.2 and also profiled in Figure 3.3. The limited-

Linear scheme is an OpenFOAM invention and it is the stabilized central differencing scheme

with a limiter. For the limiterLinear and Sweby schemes, the coefficient k is needed. When

k = 0, the limitedLinear and Sweby schemes become the central differencing scheme. For the

smooth variation (r = 1), all the TVD schemes degenerate the central differencing scheme.

The Sweby, SuperBee, vanLeer and MUSCL schemes can use some downwinding, whereas

the limitedLinear scheme only combines the upwind and central differencing schemes.

3.5 Test case descriptions

3.5.1 Experimental conditions

The fluidized bed setup with uniform gas feed (Figure 3.4a) is simulated which was experi-

mentally studied by Taghipour et al. [49]. The bed material is made of spherical glass beads

with a mean diameter of 2.8×10−4 m and a density of 2500 kg/m3. The experiment started

with a static bed height of 0.4 m and a solid volume fraction of 0.6. The bubbling fluidized

bed with a central jet (Figure 3.4b) used by Gidaspow et al. [50] is also simulated which is

filled with the particles having a mean diameter of 5.0×10−4 m. The initial bed height is up

to 0.2922 m from the bottom. At the center of the bottom, a rectangular orifice of 0.0127 m

× 0.0381 m allows a central jet into the bed, while the rest of the bottom is uniformly fed by

air at the minimum fluidization velocity of 0.282 m/s.

Figure 3.4: Schematics of fluidized beds with (a) uniform gas feed (b) a central jet
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3.5.2 Simulation setup

The 2D computational domain is employed for the fluidized bed with uniform gas feed and

is discretized with 11200 rectangular cells, corresponding to a grid width of 0.005 m. The

grid size is the same as that adopted by Taghipour et al. [49]. The fluidized bed with a

central jet is simulated using 2D domain with 124 cells in the x-direction and 108 cells in the

y-direction. The parameters for the two fluidized bed cases are summed up in Tables 3.3 and

3.4. The transient simulations are conducted with an adaptive time step method. The time

step is adapted with the Courant number which is defined in Eq.(3.45):

Co =
∆t | Ur |
∆x

(3.45)

where ∆t is the time step, |Ur| is the magnitude of the relative velocity through the cell and

∆x is the cell size in the direction of the relative velocity. The Courant number is not allowed

to be larger than 0.1. The maximum value of time step is set to 1.0×10−4 s.

Table 3.3: Parameters for the simulation of fluidized bed with uniform gas feed

Parameter Value

Bed width, m 0.28

Bed height, m 1.0

Bed depth, m 0.025

Initial bed height, m 0.4

Initial solid packing 0.6

Superficial gas velocity, m/s 0.38, 0.46

Min. fluidization velocity, m/s 0.065

Gas density, kg/m3 1.2

Gas kinematic viscosity, m2/s 1.4×10−5

Particle diameter, m 2.8×10−4

Particle density, kg/m3 2500

Particle - particle restitution coefficient 0.8

Specularity coefficient 0.5

αs,max 0.65

αs,min 0.50
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Table 3.4: Parameters for the simulation of fluidized bed with a central jet

Parameter Value

Bed width, m 0.3937

Bed height, m 0.5844

Bed depth, m 0.0381

Jet orifice width, m 0.0127

Initial bed height, m 0.2922

Voidage at min. fluidization 0.402

Jet inlet velocity, m/s 1.511, 3.55

Min. fluidization velocity, m/s 0.282

Gas density, kg/m3 1.2

Gas kinematic viscosity, m2/s 1.4×10−5

Particle diameter, m 5.0×10−4

Particle density, kg/m3 2610

Particle - particle restitution coefficient 0.8

Specularity coefficient 0.5

αs,max 0.65

αs,min 0.63

The inlets of fluidized beds are made impenetrable for the solid phase by setting the velocity of

solid phase to be zero m/s. The uniform gas velocity is employed at the inlets. The pressure at

the outlet is specified as the atmospheric pressure. The no-slip boundary condition is applied

at the wall for the gas phase velocity, while the partial slip boundary condition proposed by

Johnson and Jackson [6] is used for the solid phase in the two test cases. At the wall surfaces,

the particle velocity is determined with the following correlation:

∇τs,w = −π
6

αs
αs,max

ψρsg0

√
3ΘUs,w (3.46)

where ψ is the specularity coefficient. When the value of ψ is zero, the perfect smooth wall

exists, on the contrary unity represents the no-slip wall boundary condition.

3.6 Results and discussion

3.6.1 Model validations

3.6.1.1 Bubbling fluidized bed with uniform gas feed

Figure 3.5 shows the comparison of the simulated profiles of solid volume fraction with the

experimental results measured at two gas inlet velocities (0.38 and 0.46 m/s). The simulations

are run for 60 s of real time. The time-averaged results are computed over the last 55 s of
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the simulation. It is tested that the time period for averaging is enough to obtain the time-

averaged results. Here, the limitedLinear, limitedLinearV and limitedLinear01 schemes are

adopted for the convection terms in the granular temperature transport equation, the phase

momentum equations and the solid phase continuity equation, respectively. The simulated

results of solid volume fraction give reasonable agreement with the experimental data. At the

gas inlet velocity of 0.38 m/s, the dense particle flows are formed in the bed center region.

While increasing gas inlet velocity to 0.46 m/s, the gas-particle flows are more developed

which results in the flat radial profiles at the bed center.

Figure 3.5: Comparison of the simulated time-averaged solid volume fractions with
experimental data at two superficial gas velocities

Figure 3.6: Snapshots of experimental and simulated solid volume fraction distribu-
tions (Ug = 0.46 m/s)
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As a comparison, the simulated results collected from Taghipour et al. [49] are given in Figure

3.5. For the inlet velocity of 0.46 m/s, the simulated solid concentrations in this work show

better predictions than those from Taghipour et al. [49]. Moreover, the typical core-annular

flow structures in the fluidized bed are properly captured where high particle concentrations

are found in the near wall region and low concentrations in the bed center. In Figure 3.6,

the detailed bed hydrodynamics is shown by the contours of solid volume fraction and the

snapshot from Taghipour et al. [49]. Both experimental and simulated results indicate that

the small gas bubbles are mainly formed at the bed bottom, whereas the large bubbles exist

at the upper part due to the bubble coalescence.

3.6.1.2 Bubbling fluidized bed with a central jet

The fluidized bed with a central gas jet is chosen to investigate the simulated bubble behaviors.

Figure 3.7 displays the evolution of the first bubble injected by the central jet. Gradually,

the first bubble is formed due to the more compact particle layer around it. The first bubble

expands as it rises through the bed. The bubble shapes are quite similar to the ones simulated

by Passalacqua and Marmo [51]. The typical rounded kidney shape of the first bubble is well

captured at t = 0.4 s.

Figure 3.7: Simulated contours of the fluidized bed with a jet velocity of 3.55 m/s

Figure 3.8 gives the comparison of the simulated profiles of solid volume fraction with the

experimental data from Gidaspow et al. [50]. The fine agreement between experiments and

simulations is also achieved for two different jet velocities. In summary, our gas-solid solver

is well capable of describing the solid particle concentrations and bubble behaviors in the

different fluidized beds.
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Figure 3.8: Comparison of the simulated profiles of solid volume fraction with the
experimental data from Gidaspow et al. [50]

3.6.2 Discretization of phase velocity convection terms

For the velocity fields (Us and Ug), the V-schemes of the five TVD flux limiters are employed

for all phase velocity convection terms. The gradient terms are discretized with the non-

limited Gauss linear scheme. For the fluidized bed with uniform gas feed, the simulated

radial profiles of particle axial velocity are compared for the five schemes (Figure 3.9). It

is observed that the particles flow up in the bed center, while the downward flow exists in

the near wall region. These particle flow patterns can be captured with the five schemes.

Furthermore, the difference in the profiles of particle axial velocity is not pronounced among

these schemes.
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Figure 3.9: Effect of discretization of the phase velocity convection terms on the
time-averaged results of particle axial velocity
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The effect of the discretization of phase velocity convection terms on the first bubble shape

is studied in the fluidized bed with a central jet. Figure 3.10 presents the comparison of the

first bubbles simulated using the different schemes (t = 0.4 s). Clearly, the bubble shapes

predicted with the five schemes are almost identical. Figure 3.11 indicates the simulated

instantaneous profiles of particle axial velocity at the vertical position of 0.2 m in the bed.

Also, quite similar velocity profiles are observed among the five schemes.

Since the five TVD schemes give quite similar results, it is inferred that the gradient ratio

r calculated with Eq.(3.44) is around 1 and the five TVD flux limiters become the central

differencing scheme (see Figure 3.3). From the above study, little care can be taken on the

choice of the TVD convection schemes used for phase velocity convection terms.

Figure 3.10: The bubble shapes simulated with five TVD schemes for the phase
velocity convection terms (t = 0.4 s)
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Figure 3.11: Effect of discretization of the phase velocity convection terms on the
instantaneous particle axial velocities (t = 0.4 s).
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3.6.3 Discretization of solid volume fraction convection terms

3.6.3.1 Comparison of the TVD schemes

The 01-schemes of the TVD flux limiters, i.e., limitedLinear01, Sweby01 and vanLeer01, are

applied for the solid volume fraction convection terms. The phase velocity convection terms

are discretized with the limitedLinearV scheme. The limitedLinear scheme is used for the

granular temperature convection term. The gradient terms are discretized with the non-

limited Gauss linear scheme. Figure 3.12 shows the comparison of the time-averaged profiles

of particle axial velocity simulated with the limitedLinear01, Sweby01 and vanLeer01 schemes.

The three schemes have no significant differences in the simulated profiles. Figure 3.13

presents the instantaneous contours of the first bubble predicted with the limitedLinear01,

Sweby01 and vanLeer01 schemes at t = 0.3 s. Also, the bubble shapes predicted with the

three schemes are quite similar to each other. However, the wakes following the first bubbles

are different. Due to the gas jet with the high velocity, the strong convection takes place in

the wakes. In such strong convective flows, the differences among the different schemes would

be more obvious.
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Figure 3.12: Effect of discretization of the solid volume fraction convection terms on
the time-averaged results of particle axial velocity

It is found that the SuperBee01 and MUSCL01 schemes for solid volume fraction convection

terms destroy the solution convergence. By using the SuperBee01 and MUSCL01 schemes,

solid volume fraction cannot be effectively limited to be lower than the packing limit. When

solid volume fraction reaches the packing limit, the radial distribution function g0 becomes

infinite which results in the solution divergence.
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Figure 3.13: The bubble shapes simulated with different schemes for the solid volume
fraction convection terms (t = 0.3 s)

Figure 3.14: An example for comparing the limitedLinear01 and SuperBee01 schemes

In Figure 3.14 the face values of SuperBee01 scheme are compared with those of limitedLin-

ear01 scheme. The one-dimensional variation of φ is used as an illustrative example. Here,

the variable φ represents the solid volume fraction. The cell centers are uniformly located in

the grid. In this case, the gradient ratio r has a value of 5 at the west face. Therefore, at the

west face, the SuperBee01 scheme becomes the downwind scheme, while the limitedLinear01

scheme uses the central differencing. At the east face, the gradient ratio r is 0.2 and the same

face value is interpolated with the SuperBee01 and limitedLinear01 schemes:

φe = 0.8φP + 0.2φE (3.47)
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The first-order Euler implicit scheme is employed to discretize the transient term of solid

volume fraction: ∫
V

∂φ

∂t
dV =

∂

∂t

∫
V
φdV = VP

φP − φo
P

∆t
(3.48)

where VP is the volume of cell P , φo
P is the value at the previous time step, and ∆t is the

time step. By discretizing the transient, convection and diffusion terms in Eq.(3.47), the

discretized solid phase continuity equation is given in the following form:

aPφP = aWφW + aEφE + SP (3.49)

The matrix coefficients in Eq.(3.49) for the limitedLinear01 scheme are listed as

aP =
VP
∆t

+ 0.5Fw + 0.8Fe +
Γw | Sw |
| d |

+
Γe | Se |
| d |

(3.50)

aW =
Γw | Sw |
| d |

− 0.5Fw (3.51)

aE =
Γe | Se |
| d |

− 0.2Fe (3.52)

SP =
VP
∆t

φo
P (3.53)

where Fe and Fw are the flux at the east and west face, respectively, Fe > 0 and Fw < 0. Γ is

the coefficient in the diffusion term. By using the SuperBee01 scheme, the matrix coefficients

in Eq.(3.49) are given as

aP =
VP
∆t

+ Fw + 0.8Fe +
Γw | Sw |
| d |

+
Γe | Se |
| d |

(3.54)

aW =
Γw | Sw |
| d |

(3.55)

aE =
Γe | Se |
| d |

− 0.2Fe (3.56)

SP =
VP
∆t

φo
P (3.57)

Comparing Eq.(3.50) with Eq.(3.54), the matrix coefficient of φP obtained using the Super-

Bee01 scheme is more prone to the negative value, especially when using large time step.

According to Versteeg and Malalasekera [52], the negative matrix coefficients would violate

the solution boundedness and destroy numerical stability. From Eq.(3.37), the face flux Fe

and Fw include the contribution from the solid pressure gradient, which could make the face

flux much larger and diverge the solutions more readily. The same stability problem is also

encountered by the MUSCL01 scheme.
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To further verify the above analysis, the SuperBee01 and MUSCL01 schemes are modified to

approach to central differencing by reducing the downwind. The stable solutions are obtained

with the modified schemes. Figure 3.15 shows the contours of the first bubble in the bed with

a central jet.
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Figure 3.15: Simulated results with the modified SuperBee01 and MUSCL01 schemes

3.6.3.2 The influence of gradient discretization scheme

From Eqs.(3.43) and (3.44), the gradient discretization scheme plays an important role in

the calculation of the gradient ratio r used in TVD convection schemes. By combining

with the limitedLinear01 convection scheme, the non-limited, cellLimited, faceLimited and

cellMDLimited versions of Gauss linear scheme are investigated for the gradient term of solid

volume fraction. The gradient limiting method makes the pure Gauss linear scheme more

stable [21]. The different gradient limiting methods are illustrated in Appendix B.

Figure 3.16 displays the simulated bubbles with different gradient limiting methods. The

non-limited, cellLimited and cellMDLimited methods produce the rounded kidney bubbles,

whereas the unphysical pointed shape [24] is predicted by the faceLimited method. The

pointed bubble is also predicted with upwind scheme. A large amount of numerical diffusion

is introduced by the upwind scheme. It is inferred the faceLimited method generates small

values of the gradient ratio r, and makes the limitedLinear01 scheme more diffusive (see Figure

3.3). Hence, the faceLimited scheme should not be applied for the gradient terms, although

it provides good numerical stability. The cellLimited and cellMDLimited gradient schemes

are recommended to achieve the simulations with higher accuracy and better stability.
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Figure 3.16: The bubble shapes simulated with different schemes for the gradient
term of solid volume fraction

3.7 Conclusions

The gas-solid OpenFOAM solver based on two-fluid model is validated by simulating two

different fluidized beds. The simulated results of solid volume fraction are in good agreement

with the experimental data from the literature. The first bubble in the bed with a central jet

is well predicted. The gas-solid solver is capable of predicting the gas-solid flows in the two

fluidized beds.

For the discretization of the phase velocity convection terms, the five TVD schemes give very

similar time-averaged results of particle axial velocity in the bed with uniform gas feed. In

the bed with a central jet, the predicted first bubble shapes and particle velocity profiles are

also quite similar among the five schemes. The five schemes have no stability problem in the

discretization of phase velocity convection terms. Therefore, the choice of the TVD schemes

needs little attention when discretizing the phase velocity convection terms.

When discretizing the solid volume fraction convection terms, the limitedLinear01, Sweby01

and vanLeer01 schemes give the stable solutions in the two test cases. The three schemes

have no significant differences in the simulated results. However, in the discretized solid phase

continuity equation, the SuperBee01 and MUSCL01 schemes generate the negative matrix

coefficients and destroy the solution convergence. The faceLimited gradient scheme makes

the convection scheme more diffusive. The cellLimited and cellMDLimited schemes have high

accuracy and good stability.
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Appendix A. Discretization of Laplacian term

The Laplacian term is integrated over a control volume and discretized as follows:∫
V
∇ · (Γ∇φ)dV =

∫
S
dS · (Γ∇φ) ≈

∑
f

ΓfSf · (∇φ)f (3.58)

The face gradient is implicitly discretized when the vector d between the own cell center and

the neighboring cell center is orthogonal to the face:

Sf · (∇φ)f =| Sf |
φN − φP
| d |

(3.59)

Appendix B. Gradient schemes

The gradient term is usually integrated over a control volume and discretized as∫
V
∇φdV =

∫
S
dSφ =

∑
f

Sfφf (3.60)

For incompressible flows the face value φf is usually calculated using the linear interpolation

(i.e., Gauss linear scheme in OpenFOAM). The cell-centered gradient (full gradient) at the

cell P is calculated as

(∇φ)P =
1

VP

∑
f

Sfφf (3.61)

where VP is the volume of the cell P . Gradient reconstruction may lead to the unbounded

face value (Figure 3.17). The gradient limiting is necessary for the bounded variable. There

are two types of gradient limiting available in OpenFOAM, i.e., cell limiting and face limiting.

For the cell limited gradient, the neighbor cell with the maximum value of φ and the neighbor

cell with the minimum value of φ are firstly found. Then, the cell limited gradient is calculated

as

(∇φ)P,cellLimited =


H

D
(∇φ)P D > H

h

d
(∇φ)P h < d

(3.62)

The parameters h and H are calculated as follows:

h = φmin − φP , H = φmax − φP

The parameters d and D are calculated based on the full gradient:

d = df · (∇φ)P , D = df · (∇φ)P

where df is the vector connecting the owner cell center and one of its bounding face centers.
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Figure 3.17: The cell limited gradient scheme in OpenFOAM

Figure 3.18: The face limited gradient scheme in OpenFOAM

The multi-dimensional version of the cell limited gradient scheme (i.e., cellMDLimited scheme

in OpenFOAM) applies the gradient limiter for each face and is expressed as

(∇φ)P,cellMDLimited =


(∇φ)P +

df (H −D)

[df · (∇φ)P ]2
D > H

(∇φ)P +
df (h− d)

[df · (∇φ)P ]2
h < d

(3.63)

Instead of using the cell neighbors having the maximum and minimum values of φ, the face

limited gradient is calculated by multiplying the minimum face limiter with the full gradient.

For each face bounding the owner cell, each face limiter is calculated (Figure 3.18). By

comparing each face limiter, the minimum face limiter is chosen to calculate the face limited

gradient.
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Chapter 4

Numerical simulation of the tube erosion in a bubbling

fluidized bed with a dense tube bundle

This chapter originates from the following publication:

Yefei Liu, Olaf Hinrichsen. Numerical simulation of tube erosion in a bubbling fluidized bed

with a dense tube bundle. Chemical Engineering & Technology, 2013, 36, 635-644.

Reprinted with permission from Wiley-VCH GmbH.

Abstract

Tube erosion in a bubbling fluidized bed is numerically studied using the Eulerian-Eulerian

method coupled with a monolayer kinetic energy dissipation model. The hydrodynamical

simulations are performed under conditions with three different superficial gas velocities.

The time-averaged bubble frequency and bubble rise velocity are calculated to characterize

the bed hydrodynamics. The erosion rates of two target tubes are simulated and the influence

of the bubble behaviors on erosion rates is evaluated. Compared with the experimental data

in the literature, the bubble behaviors are well captured by the simulations. Good agreement

between the calculated and measured erosion rates is also obtained for the two target tubes.

The bubble behaviors around the tubes have direct impact on the tube erosion. Only small

discrepancies in the calculated erosion rates are found when using different particle-wall

restitution coefficients and specularity coefficients.
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4 Tube erosion modeling in a bubbling fluidized bed

4.1 Introduction

Gas-solid fluidized beds are widely used in various industrial processes such as combustion,

gasification, granulation, and polymerization. For many applications tube bundles are usually

inserted into the fluidized beds to modify the inner flow structures, with an effort to enhance

transfer and conversion rates, to control operating temperatures, and to reduce gulf circulation

of solid particles. For bubbling fluidized beds with tube bundles, the moving gas and solid

particles always introduce the tube erosion problems, especially in fluidized bed combustors

with tube heat exchangers. The erosion results in material degradation and loss, and

eventually affects the continuous operation and the economics of fluidized bed plants [1, 2].

The issue of tube erosion in fluidized beds has received much attention, and remarkable

progress has been made in the erosion modeling. Generally, the tube erosion modeling is

numerically coupled with the simulations of the hydrodynamics in fluidized beds. There are

two widely used computational fluid dynamics (CFD) methods to simulate the hydrodynamics

in the gas-solid flows, i.e. the Eulerian-Lagrangian approach and the Eulerian-Eulerian

approach. For the Eulerian-Lagrangian method, the physical information of the impacting

particles, which is essential to some erosion models, is obtained using the Lagrangian method,

and the continuous gas phase is described in the Eulerian manner [3, 4]. Although the

Eulerian-Lagrangian method can provide the details of the particle-tube collisions, it is

computationally expensive for engineering applications. Alternatively, the Eulerian-Eulerian

approach describes the particulate phase as a continuum like a fluid phase by using the

Navier-Stokes equations. It is more efficient for the simulations of large-scale processes.

Based on the Eulerian-Eulerian method, the kinetic theory erosion model and kinetic energy

dissipation erosion model were respectively developed to predict the tube erosions [5, 6]. Due

to its low computational demand, the Eulerian-Eulerian method has been extensively applied

for investigating erosion rates on the surfaces of the immersed tubes in fluidized beds [7–10].

However, previous numerical studies on tube erosion were only focused on single or very few

tubes in gas-solid fluidized beds. Since the densely arranged tubes would complicate the

hydrodynamics and then influence the erosion characteristics, the CFD method coupled with

the erosion models should be further investigated for simulating dense tube configurations,

which is more meaningful and practical for designing and optimizing realistic industrial

devices. Simulations on the hydrodynamics in fluidized beds with dense tube bundles have

been performed by several researchers. Asegehegn et al. [11] simulated a pseudo-2D fluidized

bed with 36 tubes using the Eulerian-Eulerian two-fluid model. Li et al. [12] numerically

investigated a bubbling fluidized bed containing 25 tubes by using a cell-cutting technique

to deal with the curved tube surfaces in the Cartesian coordinate system. Yusuf et al. [13]

studied the tube-to-bed heat transfer in a fluidized bed with 45 tubes based on the Eulerian-

Eulerian approach. However, the above reported work only focused on the simulations of

hydrodynamics and heat transfer in fluidized beds without considering the tube erosion

process. Furthermore, most of the hydrodynamics modeling was just verified by qualitative
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comparisons between simulations and experimental data. The influence of the wall boundary

conditions on the simulations of erosion rates was also not reported in the previous work.

Hence, a parametric study is necessary for better understanding of key modeling parameters

as basis for more efficient simulations.

Almstedt et al. have carried out a lot of experimental investigations in tube erosion occurring

in the fluidized beds with a large number of tubes [14–16]. They studied the influence of

pressure, fluidization velocity, particle size and tube bank geometry on the tube erosion in

the fluidized beds. Their experimental work can provide a validation basis on which further

studies on the numerical models can be achieved in a more reliable manner.

The coupling of the hydrodynamics simulations with erosion modeling is taken into account

to calculate the total erosion rates of the target tubes immersed in a fluidized bed. The

Eulerian-Eulerian two fluid model is used to simulate the gas-solid flows. The monolayer

kinetic energy dissipation model is used to calculate the erosion rates with the input of the

hydrodynamic information. The influence of the wall boundary conditions on the simulated

erosion rates is also investigated.

Figure 4.1: Schematic representation of the bubbling fluidized bed with 59 immersed
tubes used in the experimental work of Johansson et al. [16].

4.2 Experimental

The experimental work by Johansson et al. [16] is used to validate the hydrodynamics and

erosion simulations. The experimental setup (Figure 4.1) was a 2.1-m long fluidized bed with

a rectangular cross-section of 0.2 m × 0.3 m. Inside the bed a tube bundle with 59 tubes was

horizontally equipped, of which 21 tubes were exchangeable for erosion testing. Prior to the
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exposure to gas-solid flows, each testing tube was smoothed to an outer diameter of 0.0264

m. The testing tubes were made of AISI 304L stainless steel.

The bed material was silica sand with a mean particle diameter dp of 0.0007 m and a density ρs

of 2600 kg/m3. The bed height at minimum fluidization was 0.86 m with the corresponding

voidage of 0.46 and the minimum fluidization velocity Umf of 0.25 m/s. Hydrodynamics

measurements were performed for three superficial gas velocities (U fl = 0.4, 0.65 and 1.0

m/s), while the local tube erosion rates were only measured on tubes exposed to the lowest

and highest superficial gas velocities. The superficial gas velocity Ufl was determined based

on the free bed cross-section. The exposure time for the two gas velocities was 1440 h and

504 h, respectively. The local bubble behaviors were measured using a capacitance probe

located between the tubes No.12 and No.15. The mean bubble frequency Nb was determined

from the signals of the lowest positioned capacitor. The erosion rates were determined by

subtracting the measured radii along the circumference before and after exposure.

4.3 Mathematical models

4.3.1 Fluid dynamics models

The hydrodynamics of gas-solid flows is simulated using the Eulerian-Eulerian two fluid model

with constitutive equations. The constitutive models were derived based on the Kinetic

Theory of Granular Flow (KTGF). The continuity equations of gas and solid phases can be

written as

∂(αgρg)

∂t
+∇ · (αgρgUg) = 0 (4.1)

∂(αsρs)

∂t
+∇ · (αsρsUs) = 0 (4.2)

The gas and solid volume fractions are related as

αg + αs = 1 (4.3)

The momentum conservation equations of gas and solid phases are, respectively, described as

follows:

∂(αgρgUg)

∂t
+∇ · (αgρgUgUg) = −αg∇p+∇ · (αgτg) + β(Us −Ug) + αgρgg (4.4)

∂(αsρsUs)

∂t
+∇ · (αsρsUsUs) = −αs∇p−∇ps +∇ · (αsτs) + β(Ug −Us) + αsρsg (4.5)

To close the above momentum equations, the drag force model is needed and represented

by the product of the interphase momentum transfer coefficient β and the slip velocity
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(Ug −Us). β is calculated by Eq.(4.6) according to Gidaspow [17], who adopted the Wen

and Yu correlation for αs < 0.2 and the Ergun equation for αs > 0.2.

This drag model was recommended for describing dense fluidized beds.

β =


3

4

Cdαgαsρg|Ug −Us|
dp

α−2.65
g , αs < 0.2

150
µgα

2
s

α2
gd

2
p

+ 1.75
ρgαs
αgdp

|Ug −Us|, αs > 0.2

(4.6)

The drag coefficient Cd in Eq.(4.6) is calculated by

Cd =


24

Rep
[1 + 0.15(Rep)0.687], Rep < 1000

0.44, Rep > 1000

(4.7)

where the particle Reynolds number Rep is defined as

Rep =
ρgdp|Ug −Us|

µg
(4.8)

The gases in the fluidized bed are assumed to be Newtonian fluids and the gas phase stress

tensor τg in Eq.(4.4) can be modeled using the Newtonian stress-strain relation:

τg = µg[∇Ug + (∇Ug)
T]− 2

3
µg(∇ ·Ug)I (4.9)

where the dynamic viscosity µg is assumed to be constant and I is the unit tensor.

The properties of the solid phase, i.e., the solid shear stress τs and solid pressure ps in

Eq.(4.5), were derived based on the Kinetic Theory of Granular Flow [17]. For the Kinetic

Theory of Granular Flow, the fluctuation energy of the granular phase, also known as granular

temperature Θ, can be obtained by solving the granular temperature transport equation which

is expressed as follows:

3

2

[
∂(αsρsΘ)

∂t
+∇ · (αsρsUsΘ)

]
= (−psI + τs) : ∇Us +∇ · (κs∇Θ)− γs + Jvis + Jslip (4.10)

where κs is the conductivity of granular temperature, γs the collision dissipation rate of

granular temperature, Jvis the dissipation rate of granular temperature resulting from viscous

damping, and Jslip the production rate of granular temperature due to the slip between gas

and particle. The solid phase shear stress tensor τs can be given as

τs = µs[∇Us + (∇Us)
T] +

(
λs −

2

3
µs

)
(∇ ·Us)I (4.11)
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where µs is the solid phase shear viscosity and λs is the solid bulk viscosity. The bulk viscosity

λs is calculated with the expression of Lun et al. [18].

λs =
4

3
α2
sρsdpg0(1 + e)

√
Θ/π (4.12)

The solid-phase shear viscosity µs is calculated by the sum of a collisional and a kinetic

contribution [17] :

µs = µs,col + µs,kin (4.13)

with

µs,col =
4

5
αsρsdpg0(1 + e)

√
Θ/π (4.14)

µs,kin =
10ρsds

√
Θπ

96αsg0(1 + e)

[
1 +

4

5
αsg0(1 + e)

]2

(4.15)

The granular particle pressure ps is calculated according to [18]

ps = αsρsΘ + 2ρsα
2
sg0Θ(1 + e) (4.16)

where e is the particle-particle restitution coefficient and g0 is the radial distribution function.

The expression of g0 proposed by Lun and Savage [18] is given as

g0 =

(
1− αs/αs,max

)−2.5αs,max

(4.17)

The radial distribution function g0 will become infinite to avoid unphysically high values of

αs, when the solid volume fraction αs reaches the particle packing limit αs,max.

In the case of dense gas-solid flows, some particles are often closely packed together and

the granular flow is not adequately described only by the above kinetic theory. In regions

with high solid volume fraction, the particle frictional stresses will dominate the solid phase

stress generation. Therefore, it is necessary to consider the frictional stresses because of

the dense granular flows used in this work. Similar to the shear stresses, frictional stresses

consist of frictional shear stress and frictional normal stress (i.e., frictional solid pressure).

The frictional stresses are simply added to the solid stresses calculated from KTGF when

the solid volume fraction exceeds a critical value αs,min. The solid frictional pressure pf and

frictional viscosity µf proposed by Srivastava and Sundaresan [19] are applied as follows:

pf = 0.1αsFr
(αs − αs,min)n

(αs,max − αs)p
(4.18)

µf =
pf

√
2 sinφf

2

√
Ss : Ss +

Θ

d2
p

(4.19)
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where Fr = 0.05 N/m2, n = 2, p = 5, φf is the internal frictional angle and Ss is the strain

rate of the solid phase which can be calculated as

Ss =
1

2
[∇Us + (∇Us)

T]− 1

3
(∇ ·Us)I (4.20)

4.3.2 Monolayer energy dissipation erosion model

Numerous models for predicting erosion of stationary surfaces in fluidized beds have been

suggested in the literature. Lyczkowski and Bouillard [1] classified various erosion modeling

methods into the two main approaches, i.e., single-particle models and energy dissipation

models. It was reported that the energy dissipation erosion models can provide reliable

trends on the overall erosion rates [6].

The monolayer energy dissipation erosion model is used to simulate the erosion rates of the

tube surfaces, which was essentially derived by Bouillard et al. [20], as further refined by

Bouillard and Lyczkowski [21]. The model formulation is given by Eq.(4.21)

ĖMED = C

(
− dEp

dt

)
dp

Esp
= C

[
(αsτs) : ∇Us +

βU2
s

2

]
dp

Hv
(4.21)

where Ep is the particle kinetic energy, dp is the particle diameter, Esp is the specific energy

of the tube surface, and Hv is the Vickers hardness of the tube surface. In this model it is

assumed that the rate of available energy responsible for erosion in the vicinity of an eroding

surface is a constant fraction of the kinetic energy dissipation rate. This constant fraction C

represents the fraction of solid particles in contact with the surface that cause surface erosion.

Lyczkowski and Bouillard recommended 0.1 as a suitable value for C [2]. The first term in

the sum on the right-hand side of Eq.(4.21) represents the rate of irreversible conversion

to internal energy due to solid viscous dissipation. The second term represents the rate of

dissipation of kinetic energy due to interphase drag dissipation [21]. According to [21], the

solid viscous dissipation is much smaller than the interphase drag dissipation at and above the

minimum fluidization. In the vicinity of a tube surface, the gas phase velocity is assumed to

be zero by the non-slip boundary condition for the gas phase velocity. Hence, the dissipation

function β(Ug −Us)
2/2 in the interphase drag dissipation term becomes βU2

s/2 as written

in Eq.(4.21).

4.4 Simulation procedure

4.4.1 Simulation setup

All the simulations of hydrodynamics and erosion in the bubbling fluidized bed are performed

using a two-fluid solver (twoPhaseEulerFoam) implemented in the open-source CFD package

OpenFOAM R© [22]. OpenFOAM (Open Field Operation And Manipulation) is a flexible and

efficient C++ library for the customization and extension for the CFD applications. The
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twoPhaseEulerFoam solver is developed for simulating the systems of two incompressible

fluid phases with one dispersed phase, e.g., solid particles in a gas-solid fluidized bed. The

kinetic theory models of the granular flow have already been implemented into this solver for

modeling the hydrodynamic properties of the solid phase. The two-fluid modeling framwork in

OpenFOAM has been developed and applied for simulating gas-liquid flows [23, 24]. Further

numerical and theoretical details of this solver is found in the technical report of Weller [25].

The particle frictional stress models proposed by Srivastava and Sundaresan [19] are imple-

mented into the twoPhaseEulerFoam solver. The calculated frictional stress terms are added

to the kinetic stress terms when the solid volume fraction exceeds a specified critical value

αs,min. To limit the over-packing of the particles, the frictional pressure term is introduced

into the dispersed phase continuity equation. The implicit treatment of the frictional pressure

term is crucial in enforcing the particle packing limit to ensure numerical stability. To calcu-

late the erosion rates of the tube surface, the implementation of the monolayer kinetic energy

dissipation model is carried out using the results obtained by the hydrodynamic models. The

physical properties and model parameters are listed in Table 4.1.

Table 4.1: Physical properties and model parameters used for the simulations

Symbol Description Value

ρg Gas density 0.468 kg/m3

ρs Particle density 2600 kg/m3

µg Gas viscosity 4.1× 10−5 Pa·s
dp Particle diameter 7×10−4 m

D Diameter of a immersed tube 0.0264 m

H Bed height at minimum fluidization 0.86 m

Hv Vickers hardness 1.08× 1010 Pa

Umf Minimum fluidization velocity 0.25 m/s

αs,mf Minimum fluidization solid volume fraction 0.54

Ufl Superficial gas velocity 0.4, 0.65, 1.0 m/s

e Particle-particle restitution coefficient 0.96

αs,max Particle packing limit 0.63

αs,min Critical value for frictional stresses 0.50

φf Internal friction angle 28.5o

ew Particle-wall restitution coefficient 0.6, 0.8, 1.0

φ Specularity coefficient 0.3, 0.6, 0.9

In view of extremely large computational effort required for 3D simulations, a 2D unstructured

mesh is used to capture the profiles around the tubes. It was reported that an acceptable

grid-independent solution can be obtained when a fine enough grid resolution (approximately

ten particles in diameter) is used for gas-solid flow systems [26]. The grid size around the
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surface of one circular tube is set to be 4.15 mm, which is almost six times larger than the

particle diameter (dp = 7×10−4 m). The following simulations in this work are performed

based on the above mesh with 13286 hexahedral cells. The transient simulations are conducted

with an adaptive time stepping technique. The time step is limited by the maximum Courant

number Co = 0.3. Simulations are carried out for 20 s real time. The time-averaged results

are obtained in the last 15 s. The mathematical equations are solved by using a 64 bit

computer with Intel Xeon Quad Core 3.47 GHz CPU and 11.8 GB RAM.

4.4.2 Initial and boundary conditions

The initial conditions for all simulation cases are set to be at the minimum fluidization

conditions with bed voidage of 0.46 and bed height of 0.86 m. Initially, the velocities of

both gas and solid phases in the bed are set to be 0 m/s. The initial values of the granular

temperature in the bed are set to be 0.0001 m2/s2.

At the inlet of the fluidized bed, the gas and solid velocities, granular temperature and solid

volume fraction are specified as Dirichlet boundary conditions. The bed pressure at the inlet

is specified using zero-gradient Neumann conditions. At the bed outlet, the bed pressure is

specified as atmospheric pressure, and the zero-gradient boundary condition is applied for

solid volume fraction, granular temperature and gas and solid velocities.

At the bed walls and tube surfaces, the zero-gradient boundary condition is used for solid

volume fraction and bed pressure. The non-slip Dirichlet condition is applied for the gas

phase velocity. The partial slip boundary conditions proposed by Johnson and Jackson [27]

are used for the granular temperature and solid phase velocity. At the wall surfaces, the

normal velocity of solid phase is set to be 0 m/s. The tangential velocity and granular

temperature of solid phase at the wall are specified as follows:

Ust,w = − 6µsαs,max

φπρsαsg0

√
3Θ

∂Ust,w

∂n
(4.22)

Θw = −ksΘ
γw

∂Θw

∂n
+

√
3πφρsαsU

2
s,slipg0Θ3/2

6γwαs,max
(4.23)

with

γw =

√
3π(1− e2

w)αsρsg0Θ3/2

4αs,max
(4.24)

where ew is the solid-wall restitution coefficient and φ is the specularity coefficient.

4.5 Results and discussion

4.5.1 Bubble characteristics

In order to predict tube erosion rates, the hydrodynamic properties of both solid and bubble

phases are needed as inputs for the erosion modeling. The tube erosion is directly related
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to the bubble-induced particle motion. Hence, accurately predicting bubble behaviors is a

prerequisite to the erosion modeling. For this reason, it is worthwhile to analyse the bubble

characteristics in the bed firstly.

Figure 4.2: Comparison of the simulated mean bubble frequency with the experimental
data at three superficial gas velocities.

Figure 4.3: Comparison of the simulated mean bubble rise velocity with the experi-
mental data at three superficial gas velocities.

Before determining the bubble frequency, a criterion demarcating the boundary of the bubble

and solid phases should be firstly defined. Different values of the bubble boundary have been

adopted in the literature to indicate the existence of bubbles [28, 29]. The voidage of 0.85 is

adopted to determine the bubble boundary. Figure 4.2 presents the comparison of simulated

time-averaged bubble frequency with the experimental data at three different superficial gas

84



4 Tube erosion modeling in a bubbling fluidized bed

velocities (Ufl = 0.4, 0.65 and 1.0 m/s). The time-averaged bubble frequency is obtained by

using the profiles of the instantaneous solid volume fractions in the last 15 s of the simulation

time. Figure 4.2 reveals that the simulated values of bubble frequency are in good agreement

with the experimental data. The bubble frequency increases with the increase in superficial

gas velocities, i.e., there are more bubbles formed at larger superficial gas velocities.

Local bubble rise velocities are also important to characterize the bubble characteristics and

bed hydrodynamics. Figure 4.3 shows the simulated bubble rise velocities at different super-

ficial gas velocities comparing with the experimental data. According to the experimental

measuring method [16], the bubble rise velocity can be measured through dividing the distance

between the two capacitors by the time shift of the occurrences of two consecutive bubbles.

The instantaneous bubble rise velocities are calculated between two different locations with

a vertical distance of 0.015 m that equals to the distance between the two capacitors. As

indicated in Figure 4.3, the simulated time-averaged bubble rise velocities qualitatively agree

with the experimental results at three different superficial gas velocities, and the bubble rise

velocity becomes larger when the gas velocity is increased.

In summary, the complicated hydrodynamics of gas-solid flows around such a dense tube

bundle can be well predicted by the Eulerian-Eulerian two-fluid model. Consequently, the

validity of the hydrodynamic information used for the erosion modeling can be guaranteed.

4.5.2 Tube erosion modeling

The variation of the measured and simulated erosion rates with the circumferential angles for

the target tube No. 21 is presented in Figure 4.4. It is exposed to the superficial gas velocity

(Ufl = 0.4 m/s). The most severe erosion occurs on the circumferential positions of about

140o and 220o. The smaller erosion rates are found at the lowest part of the tube, while the

smallest erosion rates are obtained at the upper parts of the tube.

Figure 4.4: Comparison of the predicted erosion rates with experimental data at
different circumferential positions of tube No.21 (Ufl = 0.4 m/s).
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Figure 4.5 gives the measured and simulated erosion rates of the target tube No. 18. They

are obtained at the same superficial gas velocity. Both the experimental data and simulations

also show the similar trend of the erosion rates to those in Figure 4.4.

Figure 4.5: Comparison of the predicted erosion rates with experimental data at
different circumferential positions of tube No.18 (Ufl = 0.4 m/s).

Compared with the experimental data, the trend of the erosion rates around the two tubes is

well captured by the simulations, and the quantitative agreement between the experimental

and simulated results can also be obtained. However, there still exist some overpredictions

on the erosion rates at the upper part of the tube. Moreover, the erosion rates at the lowest

part of the tube are underestimated. The disagreement could possibly be due to the 2D

simulation method used here. This is because the dispersion of the gas and solid phases is

only restricted in the 2D region.

Figure 4.6: Predicted values of time-averaged erosion rates and solid volume fractions
at different circumferential positions of tube No.18 (Ufl = 0.4 m/s).
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The time-averaged erosion rates and solid volume fractions at various positions along the

tube surface are given in Figure 4.6. There is a similar tendency in the erosion rate and solid

volume fraction at the lower part of the tube. Hence, the erosion rates are closely related to

the solid volume fractions around the tubes. The solid particles easily achieve the packing at

the upper part of the tube, which in turn results in the large values of solid volume fraction.

Figure 4.7: (a) Predicted solid volume fractions and erosion rates at the circumferen-
tial position 220◦ of tube No.21 (Ufl = 0.4 m/s); (b) Change of erosion rates in a
short time interval.

Figure 4.7a illustrates the local instantaneous solid volume fraction and erosion rate as a

function of time at the circumferential position of 220o. The occurrence of the erosion rate

peaks also closely follows the variation in the solid volume fraction. The peak of erosion rate

emerges when the solid volume fraction suddenly increases from the lowest value, i.e., the

tube is being hit by the solid particles entrained by the wake of a bubble. Most of the peaks

of the erosion rate are followed by the smoothly varying profiles of the erosion rate which was

also observed by Gustavsson and Almstedt [8]. Figure 4.7b indicates a short time interval

when just one peak of the erosion rate occurs which is obtained from Figure 4.7a.
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To investigate the influence of bubble behaviors on erosion rate, the time sequence of the solid

volume fraction around the target tube No.21 is given in Figure 4.8. Figure 4.8a presents

that the tube is immersed in the bubble phase. The corresponding erosion rate is low at this

moment (see Figure 4.7b). In Figure 4.8b, it can be seen that a dense stream of particles is

approaching to the target tube from below and the target tube is very near to the bubble

wake. Figure 4.8c reveals that the tube is being hit by the dense solid particles. Hence, the

corresponding erosion rate reaches the maximum value in Figure 4.7b. Due to the energy

dissipation, the erosion rate decreases (Figure 4.7b, 4.8d). Figure 4.8e presents that a new

bubble is approaching to the tube from below, causing the surrounding particles to move

away as it expanded. Then, the erosion rate further decreases. It can be observed in Figure

4.8f that a new stream of the solid particles is formed again following the bubble, and the

erosion rate starts to increase at this moment (Figure 4.7b). Based on the above analysis, the

erosion rate greatly depends on the bubble behaviors around the tube. Overall, the accurate

hydrodynamic simulation is definitely the key step to determine the tube erosion rates.

a b 

c d 

e f 

Figure 4.8: Contours of the simulated solid volume fraction and particle velocity
around tube No.21 at different time (Ufl = 0.4 m/s).
(a) 8.85 s (b) 8.89 s (c) 8.90 s (d) 8.93 s (e) 9.00 s (f) 9.09 s.
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4.5.3 Effect of particle-wall restitution coefficient

The wall boundary conditions have an important influence on CFD modeling of gas-solid

fluidized beds. However, no work has been reported on the influence of wall boundary

conditions on erosion rates of the immersed tube surface. Three kinds of wall boundary

conditions are usually used in numerical simulations of fluidized beds (i.e. non-, partial- and

free-slip). The partial slip wall boundary condition proposed by Johnson and Jackson [27],

which is the most widely used, requires the particle-wall restitution coefficient ew and the

specularity coefficient φ to be specified.

The particle-wall restitution coefficient ew serves as a characteristic measure of the inelasticity

degree of the particle-wall collisions, whose value may be varied from zero, representing

perfectly inelastic collisions, to one for elastic collisions. Figure 4.9a displays the simulated

results of erosion rates when using the different values of particle-wall restitution coefficient.

Tartan and Gidaspow [30] estimated the particle-wall restitution coefficient as 0.6 from

experiments by assuming that the walls were softer than the particles. The values of 0.6,

0.8 and 1.0 are employed in the test cases. It can be observed in Figure 4.9a that the increase

in the particle-wall restitution coefficient does not result in an evident change in the simulated

erosion rates around the target tube. Therefore, little attention can paid on the setting of

particle-wall restitution coefficient.

(a) Effect of particle-wall restitution coefficient on
the simulated erosion rates of tube No.21.

(b) Effect of specularity coefficient on the simulated
erosion rates of tube No.21.

Figure 4.9: Effect of particle-wall restitution coefficient and specularity coefficient.

4.5.4 Effect of specularity coefficient

The specularity coefficient φ is used to represent the momentum transfer between walls and

particles. When its value is set to be zero, the perfect smooth wall (free-slip condition) is

assumed, and its value of unity represents the non-slip wall boundary condition. Li et al. [28]

studied the influence of different specularity coefficients on the flow dynamics in bubbling
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fluidized beds such as bed expansion, local voidage, solid velocity and bubble diameter and

bubble rise velocity. Bahramian et al. [31] also investigated the influence of different particle-

wall boundary conditions on a conical fluidized bed unit. They reported that the numerical

predictions using free-slip boundary conditions agreed reasonably well with the measured

pressure-drop, especially at superficial gas velocities larger than the minimum fluidization

velocity. Moreover, the simulated results of the mean axial solid velocity were in better

agreement with the experimental data when using the free-slip boundary condition.

The values of specularity coefficient are set to be 0.3, 0.6 and 0.9 in the test cases. As

indicated in Figure 4.9b, there are also no large differences in the simulated erosion rates for

the three cases. Thus, the specification of the specularity coefficient also has little influence

on the simulated results of tube erosion rate.

4.6 Conclusions

Tube erosion of a bubbling fluidized bed with densely arranged tubes is simulated using the

Eulerian-Eulerian two-fluid model with a monolayer kinetic energy dissipation model. The

main conclusions are as follows:

(1) The simulated time-averaged bubble frequency and bubble rise velocity at three superficial

gas velocities are in good agreement with the experimental data reported in the literature.

Hence, the hydrodynamics and bubble characteristics are well simulated by the extended

twoPhaseEulerFoam solver implemented in the OpenFOAM package.

(2) Good agreement between the calculated and measured erosion rates is also obtained for

the two target tubes No. 18 and No. 21 at the superficial gas velocity Ufl = 0.4 m/s. The

erosion rates are closely related to the solid volume fractions around the tube. The study

of the influence of the bubble behaviors on erosion rates shows that the erosion rate also

depends strongly on the bubble behaviors around the tube. The above coupled CFD and

erosion models can provide reasonable predictions of tube erosion rate in the fluidized bed

with dense tube bundles.

(3) The sensitivity study of wall boundary conditions used in the simulations reveals that

there exist no large differences in the simulated results of erosion rate when using different

values of particle-wall restitution coefficient and specularity coefficient.
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Abstract

Numerical investigations of hydrodynamics and kinetic reactions in a fluidized bed methana-

tion reactor are carried out by coupling methanation kinetics with the two-fluid flow model.

The gas-solid reacting flow models are implemented within OpenFOAM. The grid resolution

is investigated using 2D and 3D meshes. The bed height is reasonably predicted with

the Gidaspow and Syamlal models. Simulated results are compared against experimental

data in literature. The simulated axial species concentrations agree well with the measured

results at the end of the bed. The effects of different operating parameters are evaluated

using the established models. The increase in the gas inlet velocity results in more dilute

solid concentration and larger bed expansion. The weak bed expansion results from the

methanation reaction with gas volume reduction. The methane concentration is increased

when increasing catalyst inventory in the reactor. The addition of water into the feedstock

with low H2/CO ratio benefits the methanation reaction.
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5.1 Introduction

Fluidized beds are extensively employed in gas-solid processes in which large heat and mass

transfer rates are highly required. The fluidized bed methanation of syngas from coal or

biomass gasification to produce synthetic natural gas (SNG) is an example to deal with

fast and highly exothermic reactions [1–3]. The complex reacting flows in fluidized bed

methanation reactors would cause great difficulties in rational reactor design and scaleup.

Comparing with experimental studies, numerical modeling is more flexible and less expensive,

which is becoming a promising route for predicting gas-solid hydrodynamics and catalytic

reactions in the fluidized bed reactors.

Many studies involving simulations of syngas methanation processes have been performed

with different models. Previously, simple reactor models were usually applied in modeling

fluidized bed methanation reactors. Cobb and Streeter [4] used the perfectly mixed reactor

model to simplify the hydrodynamics in fluidized beds. Bellagi [5] and Kai et al. [6]

employed the original homogeneous two-phase fluidized bed model to simulate methanation

reactors. Kopyscinski et al. [7, 8] applied the one-dimensional homogeneous two-phase model

to simulate their fluidized bed methanation reactor. However, the above simplified reactor

models largely depend on empirical correlations and only reactor-scale information is obtained

for the flows and reactions. Advanced modeling techniques based on the first principles are

demanded to obtain comprehensive knowledge on fluidized bed methanation reactors.

Nowadays, computational fluid dynamics (CFD) provides the state-of-the-art capabilities

of simulating gas-solid hydrodynamics in fluidized bed reactors. CFD strategies used for

gas-solid flows are generally classified into two main categories, i.e., Eulerian-Eulerian and

Eulerian-Lagrangian methods. In the Eulerian-Eulerian method, the particle phase is treated

as a continuous fluid. The averaged mass and momentum balance equations allow for

efficiently simulating large-scale reactors. Concerning the Eulerian-Lagrangian approach,

the motion of solid particle is calculated individually with Newton’s equations of motion.

Typically, the discrete element method (DEM) is widely adopted to solve each particle’s

trajectory.

To date, very few CFD-based studies are carried out to model and simulate fluidized bed

methanation reactors. Wu et al. [9] applied the CFD-DEM coupled method to simulate a

lab-scale fluidized bed used for the syngas methanation process. Zhang et al. [10] incorporated

methanation reaction kinetics into an in-house CFD-DEM code to investigate the effect of

reduction in volumetric flow in a bubbling fluidized bed reactor. However, in their work,

model validations were not conducted using species concentrations measured in the reactors.

Furthermore, the CFD-DEM method requires massive computational effort for industrial-

scale reactors. Alternatively, the Eulerian-Eulerian two-fluid method is a good choice to

simulate the complex interaction between gas-solid hydrodynamics and chemical kinetics in

industrial fluidized beds. In the previous work, no reports were found on the simulations of
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fluidized bed methanation reactors by means of the computationally economical Eulerian-

Eulerian method. Hence, development and validation of a gas-solid Eulerian-based model

coupled with methanation kinetics are very necessary for methanation reactor design.

In this work, a numerical solver based on the open source CFD package OpenFOAM is

developed by coupling the Eulerian-Eulerian two-fluid model with methanation reaction

kinetics. A lab-scale fluidized bed methanation reactor is simulated with the test of various

grids and drag force models. Simulation results of axial species concentrations are compared

with experimental data found in the literature. The effects of inlet flow rate, catalyst inventory

and feed composition are also numerically investigated.

5.2 Mathematical models

5.2.1 Governing equations

In the fluidized bed methanation reactor, there exist two phases, i.e., gas phase including the

reactant gases, product gases and inert gas, solid phase including the catalyst particles. The

continuity equations of gas and solid phases are written as follows:

∂(αgρg)

∂t
+∇ · (αgρgUg) = Rg (5.1)

∂(αsρs)

∂t
+∇ · (αsρsUs) = Rs (5.2)

where α, ρ and U are the phase volume fraction, density and velocity, respectively. Rg and

Rs are the mass transfer source terms due to catalytic reactions.

The momentum balance equations of gas and solid phases are given as

∂(αgρgUg)

∂t
+∇ · (αgρgUgUg) = −αg∇p+∇ · (αgτg) + β(Us −Ug) + αgρgg (5.3)

∂(αsρsUs)

∂t
+∇ · (αsρsUsUs) = −αs∇p−∇ps +∇ · (αsτs) + β(Ug −Us) + αsρsg (5.4)

where β is the interphase momentum transfer coefficient.

To close the solid phase momentum equation, the descriptions of solid shear stress τs and

solid pressure ps in Eq.(5.4) are required. When the particle motion is dominated by binary

collisional interactions, the kinetic theory of granular flow (KTGF) is employed to obtain the

properties of solid phase [11].The transport equation of the fluctuation energy of solid phase

(also known as granular temperature) is expressed as

3

2

[
∂(αsρsΘ)

∂t
+∇ · (αsρsUsΘ)

]
= (−psI + τs) : ∇Us +∇ · (κs∇Θ)− γs − Js (5.5)
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where Θ is the granular temperature, κs is the conductivity of granular temperature, γs is

the collision dissipation rate of granular temperature, Js is the dissipation rate of granular

temperature resulting from the working of the fluctuating force exerted by the gas through

the fluctuating velocity of the particles.

The methanation reactions only take place in the gas phase and no solid species is produced.

The gas species transport equation is written using the mass fraction of each species:

∂(αgρgYg,i)

∂t
+∇ · (αgρgUgYg,i) = ∇ · (αgJg,i) +Rg,i (5.6)

where Yg,i is the mass fraction of species i in gas phase, Jg,i is the species diffusion flux of

species i, and Rg,i is the reaction rate of species i.

No energy conservation equations are solved because the isothermal flow is assumed in the

bubbling fluidized bed reactor. Under the experimental conditions the bed temperature was

well controlled at 593 K (± 5 K) in the fully developed flow region [7].

5.2.2 Hydrodynamic model closures

The gas phase is assumed as a Newtonian fluid, and its stress tensor is defined using the

Newtonian stress-strain relation as

τg = µg
[
∇Ug + (∇Ug)

T
]
− 2

3
µg(∇ ·Ug)I (5.7)

where µg is the shear viscosity of gas phase and I is the unit tensor. Similarly, the shear

stress tensor of solid phase is expressed as

τs = µs
[
∇Us + (∇Us)

T
]

+
(
λs −

2

3
µs
)
(∇ ·Us)I (5.8)

where µs is the solid shear viscosity and λs is the solid bulk viscosity.

The interphase momentum transfer only accounts for the drag force resulting from the velocity

differences between two phases. β can be calculated with various drag force functions. These

drag force functions were empirically developed. Therefore, their applicability to simulate a

specific fluidized bed reactor needs to be evaluated. Here, three different drag force models

are tested and compared. First, the Syamlal model was derived by converting the terminal

velocity correlations in fluidized or settling beds [12]. Second, the Gidaspow model is a

combination of the Ergun equations and the Wen and Yu model [11]. The Ergun equations

were derived using the packed-bed pressure drop data [13], whereas the Wen and Yu model

was formulated based on the homogeneous expansion of fluidized beds [14]. The third drag

force function is the energy minimization multi-scale (EMMS) model proposed by Yang et al.

[15]. The EMMS model was developed with the concept of particle clusters. These gas-solid

drag relations are given in Table 5.1.
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Table 5.1: Interphase momentum transfer coefficients

(a) Syamlal model

β =
3

4
CD

αgαsρg
V 2
r dp

|Ug −Us|

CD =

(
0.63 + 4.8

√
Vr
Re

)2

Vr = 0.5
[
a− 0.06Re +

√
(0.06Re)2 + 0.12Re(2b− a) + a2

]
a = α4.14

g , b =

 0.8α1.28
g αg 6 0.85

α2.65
g αg > 0.85

Re =
ρgdp|Ug −Us|

µg

(b) Gidaspow model

β =


3

4

CDαgαsρg|Ug −Us|
dp

α−2.65
g αs < 0.2

150
µgα

2
s

α2
gd

2
p

+ 1.75
ρgαs
αgdp

|Ug −Us| αs > 0.2

CD =


24

αgRe
[1 + 0.15(αgRe)0.687] αgRe < 1000

0.44 αgRe > 1000

(b) EMMS model

β =


3

4

CDαgαsρg|Ug −Us|
dp

CD0ω(αg) αg > 0.74

150
µgα

2
s

α2
gd

2
p

+ 1.75
ρgαs
αgdp

|Ug −Us| αg 6 0.74

CD0 =


24

αgRe
[1 + 0.15(αgRe)0.687] αgRe < 1000

0.44 αgRe > 1000

ω(αg) =


−0.5760 +

0.0214

4(αg − 0.7463) + 0.0044
0.74 6 αg 6 0.82

−0.0101 +
0.0038

4(αg − 0.7789) + 0.0040
0.82 6 αg 6 0.97

−31.8295 + 32.8295αg αg > 0.97
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Table 5.2: Constitutive equations in the two-fluid granular model

(a) solid pressure
ps,KTGF = αsρsΘ[1 + 2(1 + e)g0αs]

(b) solid shear viscosity

µs,KTGF =
4

5
α2
sρsdpg0(1 + e)

√
Θ

π
+

10ρsdp

√
Θπ

96(1 + e)g0

[
1 +

4

5
αsg0(1 + e)

]2

(c) solid bulk viscosity

λs =
4

3
α2
sρsdpg0(1 + e)

√
Θ

π

(d) radial distribution function

g0 =

[
1−

(
αs

αs,max

)1/3]−1

(e) conductivity of granular temperature

κs = 2α2
sρsdpg0(1 + e)

√
Θ

π
+

9

16
α2
sρsdpg0(1 + e)

√
Θπ+

15

16
αsρsdp

√
Θπ+

25

64

√
Θπ

ρsdp

(1 + e)g0

(f) collision dissipation rate of granular temperature

γs = 12(1− e2)
α2
sρsg0

dp
√
π

Θ3/2

(g) dissipation rate of granular temperature resulting from fluctuation

Js = β
[
3Θ− βdp(Us −Ug)

2

4αsρs
√

Θπ

]
(h) frictional solid pressure

ps,f = Fr
(αs − αs,min)n

(αs,max − αs)p

(i) frictional shear viscosity

µs,f =
ps,f
√

2 sinφf

2αs

√
Ss : Ss +

Θ

d2
p

Ss =
1

2
[∇Us + (∇Us)

T]− 1

3
(∇ ·Us)I
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The physical properties of solid phase are described with the kinetic theory of granular flow

and the frictional stress models [16–19]. In the so-called rapid granular regime the particles

experience short and fast collisions. The kinetic stresses are calculated by means of the kinetic

theory of granular flow. In the so-called quasi-static regime with large solid volume fractions,

the frictional interaction of particles is dominant. When the solid volume fraction exceeds

a critical value αs,min, the frictional stresses are added to the solid kinetic stresses following

Johnson et al. [20]:

ps = ps,KTGF + ps,f (5.9)

µs = µs,KTGF + µs,f (5.10)

where ps,KTGF and µs,KTGF are the solid pressure and shear viscosity from the kinetic theory

of granular flow. ps,f and µs,f are the frictional solid pressure and the frictional shear viscosity.

The constitutive relations of the kinetic theory of granular flow and the frictional stress models

are summarized in Table 5.2.

5.2.3 Methanation kinetics

For the catalytic methanation of carbon monoxide (CO) to methane (CH4), two global

reactions are taken into consideration, i.e., the CO methanation reaction and the water-gas

shift reaction.

CO methanation reaction:

CO + 3H2 ↔ CH4 + H2O ∆H298K = −206.28kJ/mol (5.11)

water-gas shift reaction:

CO + H2O↔ CO2 + H2 ∆H298K = −41.16kJ/mol (5.12)

The rate equations of the above reactions are based on the kinetic model proposed by

Kopyscinski et al. [21] and described by the following expressions:

r1 =
k1KCp

0.5
COp

0.5
H2

(1 +KCp0.5
CO +KOHpH2Op

−0.5
H2

)2
(5.13)

r2 =

k2

[
KαpCOpH2O −

(
pCO2pH2/Keq

)]
p0.5

H2
(1 +KCp0.5

CO +KOHpH2Op
−0.5
H2

)2
(5.14)

The values of the kinetic parameters in Eqs.(5.13) and (5.14) follow those determined by

Kopyscinski et al. [21]. The composition of gas mixture is changed with the progress of gas
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phase reactions. The local gas density is variable and calculated with the ideal gas law. The

local viscosity of gas mixture is determined following Kopyscinski et al. [7]

5.3 Numerical solutions

5.3.1 Solver development

Our own gas-solid solver is developed based on the original solver twoPhaseEulerFoam in

the open source CFD package OpenFOAM [22]. The conservative forms of phase momentum

equations are employed as suggested by Passalacqua and Fox [23]. Instead of the semi-implicit

method used in twoPhaseEulerFoam, the partial elimination algorithm developed by Spalding

[24] is implemented to deal with the interphase momentum transfer terms. To prevent solid

volume fraction from exceeding its maximum physical value, the effect of solid pressure is

implicitly included into the solid-phase continuity equation.

Initial time 

Calculate solid-phase 

pressure 

Solve solid-phase 

continuity equation 

Calculate drag coefficient 

Construct momentum 

equations 

PISO corrections 

Solve species transport 

equations 

Final time 

N
ex

t 
 t

im
es

te
p

 

Solve reaction source 

terms 

Figure 5.1: Solution algorithm used in the gas-solid two-fluid solver
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The PISO (Pressure Implicit with Split Operator) solution procedure [25] is adopted to handle

pressure-velocity coupling, where a pressure equation is constructed based on the volumetric

continuity equation and is solved to correct the predicted velocities. The full coupling of

hydrodynamics and chemical reactions is achieved using the time-splitting scheme. In the

first fractional time step, the gas species transport equations are constructed and solved

spatially without the reaction source terms. In the second fractional time step, the ordinary

differential equations representing the reaction source terms are calculated in each cell using

the fourth-order Runge-Kutta method. After solving the kinetic reactions, the species mass

fractions and other physical properties are updated. The sequences of the iteration operations

performed at each time step are illustrated in Figure 5.1.

5.3.2 Simulation setup

The lab-scale fluidized bed setup built by Kopyscinski et al. [7] is simulated as the base case

(Figure 5.2). Experimental data of species concentrations are employed for model validation.

0.1 kg of Ni/γ-Al2O3 catalyst as the Geldart B particles was used in this experiment. The

gases H2, CO, and N2 are fed into a 0.052 m i.d. fluidized bed reactor and distributed with

a nonreactive porous metal plate. The pressure in the bed was 1.3×105 Pa. The inlet feed

gas mixture consisted of 60 vol.% H2, 20 vol.% CO, and 20 vol.% N2 with a total volumetric

flow rate of 10 LN/min.

Figure 5.2: Schematic of the fluidized bed reactor and the computational mesh
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Table 5.3: Parameters for the simulation of the fluidized-bed base case

Parameter Value

Bed diameter, m 0.052

Bed height, m 0.20

Initial bed height, m 0.056

Initial solid packing 0.6

Superficial gas velocity, m/s 0.13

Gas density, kg/m3 ideal gas law

Particle diameter, m 1×10−4

Particle density, kg/m3 2000

Restitution coefficient 0.7

YCO 0.45

YH2 0.10

YN2 0.45

F r, kg/(m s2) 0.05

n 2

p 5

φf, deg 28.5

αs,max 0.65

αs,min 0.55

Table 5.4: Discretization schemes for the terms in the governing equations

Term Discretization scheme

∂ψ/∂t Euler

∇ψ cellMDLimited Gauss linear 1

∇p Gauss linear

∇ · (αgUgUg) Gauss limitedLinearV 1

∇ · (αsUsUs) Gauss limitedLinearV 1

∇ · (αsUs) Gauss limitedLinear01 1

∇ · (αgUgYg,i) Gauss limitedLinear01 1

∇ · (αsUsΘ) Gauss limitedLinear 1

∇ · τk Gauss linear

∇2ψ Gauss linear uncorrected

∇⊥ψ uncorrected

(ψ)f linear
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Numerical simulations are performed using 2D and 3D meshes with the same dimension as

the experimental setup in Figure 5.2. The simulation parameters of the base case are given

in Table 5.3. Numerical schemes for all terms in the governing equations are listed in Table

5.4. The first-order Euler implicit scheme is employed to discretize the transient terms. The

Gauss linear scheme is used for the pressure gradient, whereas the cellMDLimited Gauss

linear scheme with good stability is recommended for other gradients. OpenFOAM provides

a limited second-order central differencing scheme (limitedLinear) for the convection terms.

When discretizing the velocity convection terms, OpenFOAM adopts the limitedLinearV

scheme to maximize the limiting. To bound solid volume fraction and species mass fraction

between 0 and 1, the limitedLinear01 scheme is chosen for the convection terms of solid volume

fraction and species mass fraction. This special 01-scheme uses the upwind differencing

scheme when the variable is not between 0 and 1.

The discretized pressure equation is solved with the geometric algebraic multi-grid (GAMG)

method. The bi-conjugate gradient solver with the diagonal incomplete-LU preconditioner

is used for solving other equations. Tolerances are set to 1.0×10−10 for the pressure, and to

1.0×10−5 for other variables. To achieve converged solutions, four PISO corrector steps are

performed to make the residual of the solution of the pressure equation below 1.0×10−9.

At the reactor outlet, a fixed pressure of 1.3×105 Pa is given to both gas and solid phases. At

the solid walls, the no-slip boundary condition is applied to the gas phase, and the partial-slip

boundary condition is used for the solid phase [18]. To obtain the time-averaged data, 20 s of

operation is simulated during which the results of the last 15 s are adopted for time-averaging.

The adaptive time-step is used to guarantee good numerical stability.

5.4 Results and discussion

5.4.1 Grid resolution and drag model study

To study the effect of mesh resolution on the simulation results, three 2D meshes are employed:

1 mm, 2 mm and 4 mm rectangular cells. In Figure 5.3a, due to the considerable numerical

diffusion, the largest bed height is predicted with the 4 mm mesh size. By refining the mesh,

the low bed heights are given by the 1 mm and 2 mm meshes. Although the numerical

diffusion is significantly reduced with the mesh refinement, it is not eliminated and the minor

differences in the profiles of solid volume fraction are still observed for the 1 mm and 2 mm

meshes. Figure 5.3b shows the simulated CH4 concentrations with the three meshes. Due to

numerical diffusion, the small differences are also found for the three meshes. Different from

the solid volume fraction, the CH4 concentrations predicted with the 4 mm mesh are close to

those predicted with 2 mm mesh. The strong gas convective flows in the reactor would reduce

the differences in the CH4 concentration between these two meshes. Since the computational

demand significantly increases with the mesh refinement, the 2 mm mesh size has to be used

for the reasonable computational effort.
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Figure 5.3: The effect of mesh size on the simulated solid volume fraction and CH4

mass fraction
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Figure 5.4: The radial profiles of the time-averaged solid volume fraction and CH4

mass fraction calculated with 2D and 3D computational domains
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Generally, all physical gas-solid flows are 3D in nature and the 3D computational domain

should be used. However, the 3D simulations are computationally very demanding. There-

fore, most of the previous simulations were conducted with 2D computational domains.

Cammarata et al. [26] performed the 2D and 3D simulations of bubbling fluidized beds.

They found the 2D simulations predicted smaller bubbles than those predicted with the 3D

simulations. Xie et al. [27] studied the effects of 2D and 3D domains on the simulated results

in bubbling fluidized beds. They concluded that the 2D domain can be used to successfully

simulate the bubbling regime. From the above work, great care should be taken when using

the 2D computational mesh. In Figure 5.4, the comparison of the 2D and 3D simulations

is performed. Similar to the 2D mesh with 2 mm cell, the 3D mesh has 2 mm cell size in

the axial direction. The minor differences are found in the solid volume fraction and CH4

concentrations. According to the Ergun equation [13], the minimum fluidization velocity

Umf is calculated as 0.033 m/s. The fluidization velocity of 0.13 m/s (∼ 4.0Umf ) generates

the bubbling fluidization regime. The minor differences between 2D and 3D simulations are

consistent with the findings of Xie et al. [27]. Therefore, the 2D computational domain is

employed for less computational resources.
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Figure 5.5: The calculated solid volume fraction and interphase momentum transfer
coefficient with three drag force models

In a fluidized bed reactor, the drag force is usually the dominant interaction between gas and

solid phases. The simulated axial profiles of solid volume fraction with three drag force models

are shown in Figure 5.5a. Clearly, the prediction of bed expansion strongly depends on the
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drag force models. The bed expansion is underestimated by the EMMS model and the higher

beds are predicted by the Syamlal and Gidaspow models. From the experimental observation,

the fluidized bed ended at a height of 0.095 m [7]. The degree of bed expansion is reasonably

captured by the Syamlal and Gidaspow models. Figure 5.5b shows the calculations of the

interphase momentum transfer coefficient for three models. It is seen that the EMMS model

gives much smaller values of β in the dilute particle flows with the solid volume fraction below

0.2. The smaller value of β represents the weaker interaction and results in the lower bed

expansion. The EMMS model is developed based on the concept of particle clusters. The

particle cluster has a larger particle diameter and a smaller interphase exchange coefficient.

As suggested by Yang et al. [15], the EMMS model needs to be further improved for other

systems. In this work, the Gidaspow model is chosen for the subsequent simulations.

5.4.2 Reacting flow fields and model validation

The efficiency of a fluidized bed reactor mainly depends on the gas-solid mixing. The large

volumetric interfacial areas are preferred since the catalytic methanation reaction takes place

in the emulsion phase. Figure 5.6 demonstrates the instantaneous gas-solid flow patterns at

the superficial gas velocity of 0.13 m/s. It is found that the solid particle flows are quite

chaotic with non-uniform distributions and there exist no large gas bubbles formed in the

bed. Herein, the excellent gas-solid mixing is achieved under such operating conditions, which

allows for achieving the homogeneous temperature fields without hot spots in the bed.

Figure 5.6: Snapshots of the solid volume fraction distributions at the superficial gas
velocity of 0.13 m/s
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Figure 5.7: The time-averaged distributions of the mass fractions of H2, CO and CH4

The time-averaged fields of H2, CO and CH4 concentrations are presented in Figure 5.7. The

local information of the hydrodynamics and species concentrations in the reactor is provided

by the CFD simulations. H2 is consumed rapidly in the region near the inlet because of the

large reactant concentrations and catalyst content here. In the upper region of the bed, H2 is

not completely reacted and the low concentration of the residual H2 is observed. However, the

CO concentration in the upper region is almost zero, which implies CO has been completely

converted in the fluidized bed. The high CH4 concentration is uniformly distributed in the

bed.
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To validate the gas-solid hydrodynamic and methanation reaction models used in current

research, the simulated mole fractions of gas species are compared with the literature data

(Figure 5.8). The simulated results are in good agreement with the experimental values

measured at the end of the bed. However, the large discrepancy is observed in the region

near the gas distributor. In accordance with Figure 5.7, the methanation reaction mainly

takes place in the region near the gas distributor. The deviation in this region may be due to

the uniform distribution of gas feed in the simulations. The key role of the fluidization quality

near the gas distributor suggests using the real gas distributor configuration in the further

work. Meanwhile, the validity of the global reaction kinetics should be further confirmed in

such complex fluidized bed flows.

5.4.3 The effects of different operating parameters

The macroscopic functionality of a fluidized bed reactor is directly determined by various

operating conditions. It is of utmost importance to recognize the optimal operating conditions

for satisfactory syngas conversion and product yield. The effect of different gas inlet velocities

on the bed expansion ratio is shown in Figure 5.9. For the reactive flow simulations, a

consistent increase in the bed expansion ratio is observed with the increase in the gas inlet

velocity. As a comparison, the cold model simulations are also performed without considering

the reactions in the bed. The higher bed expansions are predicted by the cold flow models,

especially at the high gas inlet velocities. The significant distinction could be due to the

CO methanation reaction. This reaction results in the large reduction of the gas volume

and the bed expansion is greatly suppressed by this defluidization behavior. At the high gas

inlet velocities, the gas-volume reduction makes the difference in the bed expansion more

pronounced. In essence, the density and viscosity of reacting gas mixture are locally variable

and then the different interphase force interactions generate the different bed expansion

behaviors.
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Figure 5.9: The effect of gas inlet velocity on the bed expansion in the reactor

108



5 CFD simulation of a fluidized-bed methanation reactor

0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 50 . 1 6

0 . 1 8

0 . 2 0

0 . 2 2

0 . 2 4

0 . 2 6

0 . 2 8

 

 

G a s  i n l e t  v e l o c i t y ,  m / s

CH
4 m

ass
 fra

cti
on

0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

H
2 mass fraction
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Figure 5.11: Snapshots of solid volume fraction for different gas inlet velocities

Figure 5.10 reveals the effect of gas inlet velocity on the CH4 and H2 concentrations at the

reactor outlet. It is indicated that the CH4 concentration decreases with the increase in gas

inlet velocity, while the increase in the residual H2 concentration is found. The instantaneous

distributions of the solid volume fraction are predicted by the reactive flow models for different

gas inlet velocities. In Figure 5.11, the higher gas input rate makes the catalyst concentration

more dilute. Many large bubbles are formed at the high gas inlet velocities. In such cases,

the volumetric interfacial areas are significantly reduced. Moreover, the larger gas velocity
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shortens the residence time of the reactant gases in the bed. Hence, the high gas inlet velocity

is not beneficial to the syngas conversion with this amount of catalyst inventory. However,

from the industrial point of view, the large reactant input is of most interest as it ensures

high volumetric productivity. Thereby, the catalyst inventory should be adjusted accordingly

when increasing the syngas feedstock.
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Figure 5.12: The effect of catalyst inventory on the CH4 concentration and bed height

Figure 5.13: Snapshots of solid volume fraction for different catalyst inventories

Figure 5.12 displays the effect of catalyst inventory on the CH4 mole fraction and bed

height. The catalyst inventory is represented by the initial bed height. One observes that

the bed height continuously increases when the initial bed height is increased. The CH4
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concentration also increases with the catalyst inventory. However, the increase is quite minor

for the large catalyst inventories. This is well reflected by the catalyst particle concentrations

as shown in Figure 5.13. The catalyst concentrations are similar for the different catalyst

inventories. Meanwhile, when increasing the catalyst inventory, the higher bed leads to the

longer residence time of the reactant gases. Due to the fixed feedstock, further increase in the

catalyst inventory cannot significantly improve the product concentration. These findings

indicate that there exist some optimal conditions where the large product yield could be

obtained with reasonable catalyst amount.

In the industrial situations, the H2/CO ratio is usually very low (0.3 - 2.0) in the syngas

produced from biomass and coal gasifiers. To achieve good CO conversion, the water-gas

shift reaction plays an important role in adjusting the H2/CO ratio by converting the excess

CO with H2O into CO2 and H2. Figure 5.14 presents the effect of the water addition in feed

gases on the axial profiles of the CH4 and H2 concentrations. It is found that the decrease

in the H2/CO ratio in the feed gases yields the smaller concentrations of CH4 and H2. By

adding water into the feed gases, the CH4 mole fraction is increased by about 38% for the gas

feed (30 vol.% H2, 30 vol.% CO and 20 vol.% H2O). The water-gas shift reaction provides

the additional H2 used for the methanation reaction. Comparing to CH4 mole fraction, the

increase in the H2 mole fraction is much higher. As an example, for the gas feed with 30

vol.% H2 and 30 vol.% CO, H2 is almost completely consumed, whereas a large amount of

CO is not reacted. For the gas feed with 30 vol.% H2, 30 vol.% CO and 20 vol.% H2O, the

residual CO reacts with H2O in the feed to produce much H2.
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Figure 5.14: The effect of the feed composition on the CH4 and H2 concentrations
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5.5 Conclusions

The implementation of gas-solid methanation reacting flow models is achieved within Open-

FOAM. A methanation kinetic model with two global reactions is coupled with the Eulerian-

Eulerian two-fluid model. To achieve a compromise between computational effort and solution

accuracy, the simulations are performed with the 2D mesh with 2 mm cell size. The Gidaspow

model reasonably predicts the bed height of 0.095 m. The simulated axial concentrations

of CO, H2, CH4, CO2 and N2 agree well with the measured data at the end of the bed.

The modeling framework provides a new path for studying the fluidized bed methanation

reactors.

The bed expansion in the fluidized bed methanation reactor is weakened due to the CO

methanation reaction with the gas volume reduction. The increase in the gas inlet velocity

results in the smaller catalyst concentration and shorter reactant residence time. At the

reactor outlet the H2 concentration is increased when increasing the gas inlet velocity, whereas

the decrease in the CH4 concentration is obtained. When increasing the catalyst inventory,

the bed height and CH4 concentration are increased. The addition of water into the gas

feedstock increases the CH4 and H2 concentrations since the additional H2 used for the

methanation reaction can be produced by the water-gas shift reaction. It is important to

couple the water-gas shift reaction with the hydrodynamic models for the methanation reactor

modeling.
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Abstract

Gas-liquid heterogeneous flows in two cylindrical bubble columns are simulated using the

computational fluid dynamics - population balance model (CFD-PBM) implemented in the

open source CFD package OpenFOAM. The liquid phase turbulence is described by the

k-ε model and the Reynolds stress model (RSM). Simulation results are compared with

experimental data from the literature. For the bubble column operated at 0.10 m/s, minor

difference is found in the predicted profiles when using 10 and 20 bubble classes. With the

Rampure drag coefficient, Tomiyama lift coefficient and bubble-induced turbulence (BIT), the

gas holdup is well predicted by both k-ε model and RSM. For the bubble column operated

at 0.12 m/s, good agreement with experimental data is obtained when the k-ε BIT model

works with the Tsuchiya drag coefficient and Tomiyama lift coefficient. The RSM with BIT

also gives reasonable prediction when using the combination of Tsuchiya drag coefficient and

Tomiyama lift coefficient.
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6.1 Introduction

Bubble columns are of considerable industrial importance due to their wide applications in

the chemical, biochemical and petrochemical industries. Numerous advantages of the bubble

column reactors are recognized such as excellent heat/mass transfer characteristics, simple

construction, no moving parts and low operating cost [1]. Most of the bubble columns are

operated under turbulent flow conditions. Turbulent fluid dynamics is physically related to

gas dispersion, bubble breakup/coalescence and interphase transfer phenomena. The deep

knowledge of flow turbulence in bubble columns is crucial to successful reactor design and

scale-up.

In recent years computational fluid dynamics (CFD) has emerged as an important tool to

resolve the multiphase physics in bubbly turbulent flows. The multiphase turbulence could

be described by the fully-resolved direct numerical simulation (DNS) methods [2]. Due to

massive computational demand, the application of DNS-based methods is only restricted

to very few bubbles in gas-liquid systems. The Euler-Lagrange method also has limited

applications in simulating the gas-liquid flows. Alternatively, the Euler-Euler two-fluid model

is widely employed to simulate the gas-liquid turbulent flows with high gas fractions. As a

result of the averaging procedure, the Reynolds stress terms in the two-fluid model should be

closed by the appropriate turbulence model. The gas-liquid two-fluid modeling approach still

remains some open questions due to the uncertainty regarding the phase interaction terms,

turbulence closure schemes, and multiple bubble sizes [3].

Most of the two-fluid simulations were carried out using single mean bubble size in bubble

columns [4–7]. This assumption is usually reasonable in the homogeneous flow regime.

However, in the highly turbulent heterogeneous flows, the knowledge of local bubble size

distribution is very essential since a wide spectrum of bubble size is formed due to bubble

breakup and coalescence. Many attempts have been made by coupling computational fluid

dynamics with population balance model (CFD-PBM) to simulate the gas-liquid flows [8–12].

In the CFD-PBM method the turbulence closure scheme not only determines the Reynolds

stress terms but also governs the solution of the population balance equations. Thus, it is of

prime importance to examine the turbulence models used in the CFD-PBM method.

The two equation k-ε turbulence models are widely applied in simulating bubbly turbulent

flows [13–18]. The k-ε models have mathematical simplicity and need low computational

demand. However, they have the shortcoming from the isotropic eddy-viscosity assumption.

In order to handle the anisotropic turbulent flows, the Reynolds stress model (RSM) can be

coupled with the Euler-Euler multiphase algorithm [19]. The directional effect of the Reynolds

stress field is represented with the transport equation of each Reynolds stress component. The

Euler-Euler large eddy simulation (LES) method is often employed to track more turbulence

details in the gas-liquid flows [20–22]. Comparing with the RSM, the two-phase LES method

requires much larger computational effort because the finer grids should be used for resolving
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the large eddy structures. As a result, this LES form of turbulence model has not been widely

applied for simulating large-scale flow reactors.

The two equation k-ε turbulence models are widely applied in simulating bubbly turbulent

flows [13–18]. The k-ε models have mathematical simplicity and need low computational

demand. However, they have the shortcoming from the isotropic eddy-viscosity assumption.

In order to handle the anisotropic turbulent flows, the Reynolds stress model (RSM) can be

coupled with the Euler-Euler multiphase algorithm [19]. The directional effect of the Reynolds

stress field is represented with the transport equation of each Reynolds stress component. The

Euler-Euler large eddy simulation (LES) method is often employed to track more turbulence

details in the gas-liquid flows [20–22]. Compared to the RSM, the two-phase LES method

requires much larger computational effort because the finer grids should be used for resolving

the large eddy structures. This form of turbulence model has not been widely applied by

industrial users.

Comparative studies of turbulence models were performed for bubble column flows by various

researchers. Zhang et al. [4] compared the different model constants of the sub-grid scale

LES model, and three bubble-induced k-ε models were also investigated. Tabib et al. [6]

studied three different turbulence models (standard k-ε, RSM and LES) used for the liquid

phase. Ekambara and Dhotre [7] assessed the performance and applicability of the standard

k-ε, RNG k-ε, k-ω, RSM and LES models. Laborde-Boutet et al. [23] investigated three

formulations of the k-ε model (standard, RNG, realizable) combined with three different

modalities to account for gas-phase effects. However, the bubble size distribution was not

considered in the above work. The roles of different turbulence models in the CFD-PBM

method are still not clarified, especially for the heterogeneous flow regime in the bubble

columns. Furthermore, the combined effects of interfacial force models and bubble-induced

turbulence models should be further investigated.

Most of previous bubble column simulations were conducted with different CFD codes and the

test cases were also of great difference. As a result, the distinct choices of solution algorithms,

discretization schemes and grid arrangements make it difficult to clarify the intrinsic difference

among various turbulence models. Jakobsen et al. [24] suggested a solution to this issue

through a unified code available for all research groups. Nowadays the open source CFD

package OpenFOAM (Open Field Operation And Manipulation) gains some success in the

bubble column simulations [10, 18, 25]. The OpenFOAM package offers the possibility to

have insight into the source codes and hence it is of great convenience to implement new

physical models.

The previous simulations were conducted with different commercial CFD codes and the test

cases were also of great difference. As a result, the distinct choices of solution algorithms,

discretization schemes and grid arrangements make it difficult to clarify the intrinsic difference
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among various turbulence models. Jakobsen et al. [24] suggested a solution to this issue

through a unified code available for all research groups. Nowadays the open source CFD

package OpenFOAM (Open Field Operation And Manipulation) gains some success in the

bubble column simulations [10, 18, 25]. The OpenFOAM package offers the possibility to

have insight into the source codes and hence it is of great convenience to implement new

physical models.

In this work the population balance equation (PBE) is implemented into OpenFOAM and

coupled with a two-fluid model solver. The k-ε model and Reynolds stress model with bubble-

induced turbulence models are also implemented to account for the liquid phase turbulence.

Two bubble columns operated at high gas inlet velocities are simulated. Numerical results

are obtained for gas holdup, axial liquid velocity, bubble mean diameter and turbulence fields.

Simulations of the k-ε and Reynolds stress models are compared with the experimental data

in the literature.

6.2 Two-fluid model equations

Numerical simulations are performed with the Euler-Euler two-fluid model. For the bubble

population balance, the bubble size distribution is divided into a number of bubble classes.

All the bubbles are assumed to travel at the same velocity Ug. This simplification has been

employed with success by some researchers [9, 10, 12]. Theoretically, the multi-fluid model is

more accurate and it allows different bubble classes to move at different velocities. However,

the momentum equation for each bubble class should be solved. Since the multi-fluid model

is computationally expensive, the two-fluid model is used in this work. The continuity and

momentum equations of the gas and liquid phases are written as

∂(αkρk)

∂t
+∇ · (αkρkUk) = 0 (6.1)

∂(αkρkUk)

∂t
+∇ · (αkρkUkUk) = −αk∇p+∇ · (αkτk) + αkρkg + Mk (6.2)

where k refers to the phase (l for liquid and g for gas), U represents the phase velocity, α

denotes the volume fraction of each phase and τ is the effective stress tensor. Mk is the

interfacial momentum transfer term due to various interphase forces.

In this study the drag and lift forces are considered, while the other forces are neglected

since they have little effect on the flows [4]. The drag force resists the bubble motion in the

surrounding liquid. The interfacial transfer term due to the drag force is defined as

MD,g = −MD,l =
3

4
αlαgρl

CD
dB
|Ug −Ul|(Ul −Ug) (6.3)
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where dB is the bubble size and CD is the drag coefficient which depends on the flow regime

and the liquid property. The drag coefficient for the single bubble proposed by Tsuchiya et

al. [26] is used in this work:

CD,∞ = max
[ 24

Re
(1 + 0.15Re0.687),

8

3

Eo

Eo + 4

]
(6.4)

where the bubble Reynolds number ReB and Eötvös number Eo are defined as

Re =
ρldB|Ug −Ul|

µl
, Eo =

g(ρl − ρg)d2
B

σ

In the heterogeneous flow, the bubble swarms are formed and they experience different drag

forces from the single bubble. The drag coefficient for bubble swarm is also used following

the work of Rampure et al. [27] by correcting the drag coefficient of the single bubble as

CD = (1− αg)
2CD,∞ (6.5)

In addition to the drag force, the bubble experiences a lift force perpendicular to its relative

motion. The lift force plays an important role in the radial gas holdup distribution. The

momentum transfer due to the lift force is calculated as

ML,g = −ML,l = αgρlCL(Ul −Ug)× (∇×Ul) (6.6)

where CL is the lift coefficient. For the single bubble, the lift coefficient varies with bubble

size and shape. Small bubbles tend to move towards the wall and large bubbles move towards

the centre of the bubble column. Tomiyama [28] proposed a lift coefficient to capture this

phenomenon:

CL =


min

[
0.288tanh(0.121Re), f(Eod)

]
Eod < 4

f(Eod) 4 6 Eod 6 10.7

−0.29 10.7 < Eod

(6.7)

with

f(Eod) = 0.00105Eo3
d − 0.0159Eo2

d − 0.0204Eod + 0.474

Eod =
g(ρl − ρg)d2

H

σ
, dH = dB(1 + 0.163Eo0.757)1/3

The above lift coefficient is justified for the single bubble, but for bubble swarm the un-

certainty still remains. Very few studies are found on the lift force of the bubble swarms.

Behzadi et al. [17] proposed a lift coefficient as a function of gas holdup:

CL = 6.51× 10−4α−1.2
g (6.8)

However, the applicability of this lift coefficient should be further confirmed.
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6.3 Population balance model

There are several approaches developed for solving the population balance equations, e.g.

the method of classes [29], Monte Carlo method [30], the parallel parent and daughter classes

method [31], and the direct quadrature method of moments (DQMOM) [32]. The DQMOM

has proved an efficient technique for solving the population balance equation. Selma et al.

[33] compared the DQMOM with the class method. Both methods can give good agreement

with the experimental data. In this work the class method is used, since the bubble size

distribution can be directly defined. The bubble classes are represented through a finite

number of pivotal grid xi, and the coalescence and breakup processes are transformed into

the birth and death rates for each bubble class. The population balance equation for the i-th

class is written as

∂

∂t
(αgfi) +∇ · (αgUg,ifi) = Si (6.9)

where fi represents the fraction of bubble group i occupied in the gas holdup, and Si is the

source term accounting for bubble coalescence and breakup:

Si =

j>k∑
j,k

xi−16(xj+xk)6xi+1

(1− 1

2
δjk)ηi,jkc(xj , xk)

αgfj
xj

αgfk
xk

xi

−αgfi

M∑
k=1

c(xi, xk)
αgfk
xk

+
M∑
k=i

γi,kb(xk)
αgfk
xk

xi − b(xi)αgfi (6.10)

where

ηj,ik =


xi+1 − v
xi+1 − xi

xi 6 v 6 xi+1

v − xi+1

xi − xi−1
xi−1 6 v 6 xi

γi,k =

∫ xi

xi−1

v − xi−1

xi − xi−1
β(v, xk)dv +

∫ xi+1

xi

xi+1 − v
xi+1 − xi

β(v, xk)dv

where c(xj , xk) is the coalescence frequency, b(xi) is the breakup frequency of the bubble

group i, and β(v, xk) is the daughter size distribution. the Sauter mean diameter d32 is

calculated to represent the bubble size dB:

d32 =

∑
i fi∑

i(fi/di)
(6.11)
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The coalescence frequency c(di, dj) is usually calculated as the product of the collision

frequency $c(di, dj) and the coalescence efficiency Pc(di, dj):

c(di, dj) = $c(di, dj)Pc(di, dj) (6.12)

where di and dj are the diameter of bubble group i and j, respectively. The bubble coalescence

may occur due to a variety of mechanisms in turbulent flows, e.g. turbulent fluctuation, global

velocity gradient, eddy capture, buoyancy and wake effect [34]. Various coalescence models

are proposed in the literature. Since we focus on assessing the performance of the turbulence

models, the coalescence mechanism only due to turbulent fluctuation is considered in this

work. The uncertainty in other mechanisms would make the problem more complicated. The

collision frequency resulting from turbulent fluctuation is expressed as [35]

$c(di, dj) =
π

4

√
2ε

1/3
l (di + dj)

2(d
2/3
i + d

2/3
j )1/2 (6.13)

Wu et al. [36] and Wang et al. [37] proposed some modified forms of the collision frequency.

However, the uncertainty still exists in their expressions. Accordingly, the coalescence

efficiency of the bubble group i and j is calculated as [35]:

Pc(di, dj) = exp

{
− C

[0.75(1 + ξ2
ij)(1 + ξ3

ij)]
1/2

(ρg/ρl + Cvm)(1 + ξij)3
We

1/2
ij

}
(6.14)

where C is a model parameter, C = 1.0; ξij = di/dj ; Cvm is the coefficient of the virtual mass

force, Cvm = 0.5; Weij is the Weber number.

Many previous models considered the turbulent collision between eddies and bubbles was the

dominant reason for bubble breakup. The breakup model by Luo and Svendsen [38] is used

in this work. It is based on the concept that the bubble breaks up when it collides with the

turbulent eddy with sufficient energy. One advantage is that this model does not include

empirical parameters. Another advantage is that the daughter size distribution is derived

directly. This model has been widely used in the previous work [8, 10–12]. The breakup

frequency of a bubble with volume vi that breaks into two daughter bubbles with volume vj

and (vi - vj) is given as

Ω(vj , vi) = 0.923(1− αg)

(
εl
d2
i

)1/3 ∫ 1

ξmin

(1 + ξ)2

ξ11/3
exp

(
− 12cfσ

2ρlε
2/3
l d

5/3
i ξ11/3

)
dξ (6.15)

where ξmin = λmin/di, λmin = (11.4− 31.4)η, η = (µl/ρl)
0.75/ε0.25

l . cf is calculated as

cf =

(
vj
vi

)2/3

+

(
1− vj

vi

)2/3

− 1 (6.16)
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The total breakup frequency of bubbles with size vi is calculated:

b(vi) =
1

2

∫ vi

0
Ω(v, vi)dv =

1

2

∫ 1

0
Ω(vifv, vi)dfv =

∫ 0.5

0
Ω(vifv, vi)dfv (6.17)

where the factor 1/2 represent the binary breakage and the breakup fraction fv = vj/vi. The

daughter bubble size distribution is calculated as

β(vj , vi) =
Ω(fv|vi)∫ 0.5

0
Ω(fv|vi)dfv

(6.18)

6.4 Turbulence closure models

The two-fluid model requires the closure relations for the Reynolds stresses in the phase

momentum equations. For the liquid phase, the effective stress tensor reads

τl = µl,lam

[
∇Ul + (∇Ul)

T
]
− 2

3
µl,lam(∇ ·Ul)I + τl,turb (6.19)

where µl,lam is the laminar viscosity and τl,turb is the Reynolds stress tensor which can be

modeled either by solving the Reynolds stress transport equation or by using the classical

Boussinesq relation:

τl = −ρlRl = µl,turb

[
∇Ul + (∇Ul)

T
]
− 2

3
µl,turb(∇ ·Ul)I−

2

3
ρlklI (6.20)

where Rl is the Reynolds stress and µl,turb is the turbulent viscosity. For the gas phase, the

effective stress tensor is calculated as

τg = (µg,lam + µg,turb)
[
∇Ug + (∇Ug)

T
]
− 2

3
(µg,lam + µg,turb)(∇ ·Ug)I (6.21)

where µg,turb is the turbulent viscosity of gas phase and calculated from that of the liquid

phase [39]: µg,turb = ρg/ρlµl,turb.

6.4.1 Two equation k-ε model

In the majority of publications on numerical simulations of turbulent bubbly flows, the

standard k-ε model developed for single-phase flows has been employed to calculate the

turbulent viscosity. The transport equations for kl and εl are written as

∂(αlρlkl)

∂t
+∇ · (αlρlUlkl) = ∇ ·

[
αl
(
µl,lam +

µl,turb
σk

)
∇kl

]
+ αl(Gk,l − ρlεl) + Sk,l (6.22)

∂(αlρlεl)

∂t
+∇ · (αlρlUlεl) = ∇ ·

[
αl
(
µl,lam +

µl,turb
σε

)
∇εl

]
+ αl

εl
kl

(Cε1Gk,l − Cε2ρlεl) + Sε,l(6.23)
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where Gk,l is the production term of turbulent kinetic energy and calculated as

Gk,l = ∇Ul : τl,turb (6.24)

The shear-induced turbulent viscosity µl,SI is calculated as

µl,SI = ρlCµ
k2
l

εl
(6.25)

In this work the standard k-ε model constants are used as Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92,

σk = 1.0, σε = 1.3. The source terms Sk,l and Sε,l represent the influence of the bubble

phase on the liquid phase turbulence, i.e., bubble-induced turbulence. In this work, the

source terms are set to zero. The bubble-induced turbulence is considered by adding an extra

bubble-induced contribution to the shear-induced turbulent viscosity [40]:

µl,turb = µl,SI + µl,SI (6.26)

The bubble-induced turbulent viscosity µl,BI is calculated as

µl,BI = ρlCµ,BdBαg|Ug −Ul| (6.27)

where the model constant Cµ,B is set to 0.6.

6.4.2 Reynolds stress model

The transport equation of the Reynolds stress Rl in the liquid phase is written as

∂(αlρlRl)

∂t
+∇ · (αlρlUlRl) = ∇ ·

[
αl
(
Csρl

kl
εl

Rl

)
∇Rl

]
+ αlρlPl + αlρlΦl

−2

3
αlρlεlI + SR,l (6.28)

The production terms Pl is calculated as

Pl = −Rl ·
[
∇Ul + (∇Ul)

T
]

(6.29)

The pressure-strain term are modeled as

Φl = −C1
εl
kt

(
Rl −

2

3
ktI
)
− C2

(
Pl −

2

3
tr(Pl)I

)
(6.30)

The source term SR,l accounts for the bubble-induced turbulence, which is also set to zero in

this work. To consider the bubble-induced turbulence, the bubble-induced turbulent viscosity
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µl,BI calculated in Eq. (6.27) is added to the laminar viscosity. The total turbulent kinetic

energy is calculated from the trace of the total Reynolds stress:

kt =
1

2
tr(Rl + Rl,BI) (6.31)

The bubble-induced Reynolds stress is calculated following Arnold et al. [41]:

Rl,BI = αgCvm[a(Ur ⊗Ur) + b(Ur ·Ur)I] (6.32)

where Cvm = 1.2, a = 0.1 and b = 0.3 in this work.

To close the Reynolds stress model, the transport equation of the dissipation rate εl should

be solved and it is expressed as

∂(αlρlεl)

∂t
+∇ · (αlρlUlεl) = ∇ ·

[
αl
(
Cερl

kl
εl
εl
)
∇Rl

]
+ αl

εl
kl

(Cε1Gk,l − Cε2ρlεl) + Sε,l (6.33)

where the source term Sε,l in the dissipation rate equation is set to zero in this work. The

Reynolds stress model constants are listed as C1 = 1.8, C2 = 0.6, Cs = 0.22, Cε1 = 1.44,

Cε2 = 1.92, Cε = 0.15.

6.5 Numerical solution

6.5.1 Model implementation

OpenFOAM is employed as the basic framework which is a flexible and efficient C++

library for manipulating scalar, vector and tensor fields [42]. In our developed solver,

the discretized population balance equations are constructed using the C++ template:

PrtList<fvScalarMatrix>. The partial differential equations are discretized with the opera-

tor fvc (finite volume calculus) and fvm (finite volume method). The fvc functions calculate

the explicit terms, while the fvm functions are used to discretize the implicit derivatives.

To calculate the triple integration in the breakup frequency term, the incomplete Gamma

function is implemented following the work of Alopaeus et al. [43]. Figure 6.1 shows the

calculated results of breakup frequency and daughter size distribution. The dissipation rate of

kinetic energy has obvious influence on the breakup frequency and daughter size distribution.

Meanwhile, the breakup frequency is not sensitive to the different values of the minimum

eddy size.

Since the liquid phase is not present in the whole domain of the bubble colmn, the discretized

turbulence model equations result in the singular system of linear algebraic equations. Fol-

lowing the work of Oliveira and Issa [44], the phase-intensive forms of the turbulence model

equations are employed by dividing the original transport equations by the liquid volume

fraction. Oliveira and Issa found the phase-intensive formulation gives stable solutions and the

predicted results have quite small difference from those predicted by the original equations.
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Figure 6.1: (a) Specific breakup frequency; (b) daughter size distribution; (c) effect
of the minimum eddy size.
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Figure 6.2: Solution algorithm implemented in the CFD-PBM coupled solver.

Table 6.1: The numerical schemes used in the test cases

Term Discretization scheme

∂ψ

∂t
Euler

∇ψ cellMDLimited Gauss linear 1

∇ · (UkUk) Gauss limitedLinearV 1

∇ · (Ugαg) Gauss limitedLinear01 1

∇ · (Ulkl) Gauss limitedLinear 1

∇ · (Ulεl) Gauss limitedLinear 1

∇ · (UlRl) Gauss limitedLinear 1

∇ · τk Gauss linear

∇2ψ Gauss linear corrected

∇⊥ψ corrected

(ψ)f linear
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The linear equation systems resulting from the discretization procedure are solved in a

segregated fashion. The pressure-velocity coupling is handled using the PISO solution

algorithm [45]. The interphase coupling terms in the momentum equations are treated using

the semi-implicit method [46]. The pressure equation is solved and the predicted phase

velocities are corrected by the pressure change. The solution procedure is schematized in

Figure 6.2. Table 6.1 gives the details of the discretization schemes used for the different

terms in the governing equations.

6.5.2 Test case descriptions

The bubble column (2.0 m height and 0.2 m i.d.) built by Rampure et al. [27] is simulated

using the CFD-PBM method. It contained a batch liquid with unexpanded height of 1.0

m. Air was supplied through the column bottom at 0.10 m/s. The heterogeneous flow

regime was formed with high gas holdup. The simulations are also performed to predict the

hydrodynamics in a bubble column of 2.0 m height and 0.19 m diameter. The experimental

data of gas holdup, liquid velocity and turbulent kinetic energy were measured in this column

[47–49]. The static water height was 0.95 m. The heterogeneous flow regime was achieved by

operating the column at a superficial gas velocity of 0.12 m/s.

Initially, the static water exists in the bubble columns and the gas holdup is set to be zero

within the static water. The gas distributor is treated as a uniform inlet with the gas volume

fraction of 1.0. The liquid inlet velocity is set to zero for all test cases because of no water

supply into the bubble columns. The pressure at the inlet is specified using the zero gradient

boundary condition. At the outlet, the pressure is specified as atmospheric pressure. The

no-slip boundary condition is applied at the wall for all velocities. The wall function proposed

by Launder and Spalding [50] is used to specify the turbulent quantities. The law of the wall

for mean velocity gives

U∗ =
1

κ
ln(Ey∗) (6.34)

with

y∗ =
ρlC

1/4
µ k

1/2
P yP

µl
(6.35)

where κ is the von Karman constant, κ = 0.42, E is an empirical constant, E = 9. In

OpenFOAM, the log-law equation is employed when y∗ > 11.6.

The turbulent kinetic energy is solved in the whole domain including the wall-adjacent cells.

At the wall, the zero gradient boundary condition is used for turbulent kinetic energy. The
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production term of turbulent kinetic energy and its dissipation rate at the wall-adjacent cells

are computed as

GP =
µlUPC

1/4
µ k

1/2
P

ρlκyP
(6.36)

εP =
C

3/4
µ k

3/2
P

κyP
(6.37)

where yP is the distance from point P to the wall, UP is the mean velocity at the point P ,

and kP is the turbulent kinetic energy at the point P .

Table 6.2: Bubble classes used in the simulations

(a) 10 bubble classes

index 1 2 3 4 5 6 7 8 9 10

diameter (mm) 3.1 3.9 4.9 6.1 7.7 9.7 12.2 15.4 19.4 24.5

(a) 20 bubble classes

index 1 2 3 4 5 6 7 8 9 10

diameter (mm) 2.3 2.6 3.0 3.4 3.9 4.5 5.1 5.9 6.7 7.7

index 11 12 13 14 15 16 17 18 19 20

diameter (mm) 8.8 10.1 11.6 13.2 15.2 17.4 19.9 22.7 26.0 29.8

Simulations are conducted using two-dimensional computational meshes with 10 mm cell

size. The diameters of 10 and 20 bubble classes are listed in Table 6.2. The simulations

are carried out for 60 s real time and the time-averaged results are obtained in the last 55

s. The governing equations are solved in a transient way using adaptive time step method

to improve the stability. The time step is adapted by the Courant number. The Courant

number is defined as

Co =
∆t|Ur|

∆x
(6.38)

where ∆t is time step, Ur is the relative velocity through the cell, ∆x is the cell size in the

direction of relative velocity. The maximum Courant number is set to 0.1.

6.6 Results and discussion

6.6.1 Test case I: superficial gas velocity of 0.10 m/s

Sensitivity study on the bubble number is performed through the 10 and 20 bubble classes

for the k-ε model and the RSM. The bubble-induced turbulence is considered in the two

turbulence models. Figure 6.3 shows the effect of the number of bubble classes on the gas
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holdup and axial liquid velocity when using the k-ε model. Clearly, increasing the number of

bubble classes does not significantly increase the agreement with experimental data. However,

much more computational time is needed when increasing the number of classes to 20. Figure

6.4 shows the effect of the number of bubble classes on the gas holdup and axial liquid velocity

predicted by the RSM. Also, the simulation results of the RSM are not sensitive to the number

of bubble classes. From Figures 6.3 and 6.4, the 10 bubble classes are sufficient to resolve the

bubble size distribution. The profile of gas holdup is well predicted when using the 10 and

20 bubble classes. However, small underestimation on axial liquid velocity is observed for the

k-ε model and RSM.
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Figure 6.3: Effect of the number of bubble classes on the gas holdup and axial
liquid velocity predicted by the k-ε model. BIT: bubble-induced turbulence; C.:
considered.
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Figure 6.4: Effect of the number of bubble classes on the gas holdup and axial liquid
velocity predicted by the RSM.
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Figure 6.5 displays the effect of the lift coefficients of the single bubble and the bubble

swarm on the simulated results of the k-ε model. The Rampure model is adopted to account

for the swarm effect on the drag coefficient. In Figure 6.5a the Tomiyama model gives

better prediction on gas holdup than the Behzadi model, although it was formulated based

on the data of single bubbles. The Tomiyama model has the lift coefficient in the range

0 < CL 6 0.288 for the small bubbles with diameter less than 6 mm, whereas the negative

values in the range −0.29 < CL 6 0 are used for the large bubbles with diameter larger than

6 mm. The negative lift coefficient makes the bubbles move towards the center of the bubble

column. However, only the positive lift coefficients are predicted by the Behzadi model. The

positive coefficient leads to the bubble migration towards the walls. Thus, the flat profile of

gas holdup is predicted by the Behzadi model. In Figure 6.5b both lift coefficient models give

the underestimation on the axial liquid velocity.
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Figure 6.5: Effect of the lift coefficient on the gas holdup and axial liquid velocity
predicted by the k-ε model.

Figure 6.6 shows the effect of the lift coefficient on the gas holdup and axial liquid velocity

predicted by the RSM. The poor prediction on gas holdup and axial liquid velocity is also

observed for the Behzadi lift coefficient. Although the Behzadi lift coefficient was originally

proposed for the pipe flows, its applicability is not general in simulating the bubble column

flows. Since the strong liquid circulation exists in the bubble columns, the bubble column

flow is quite different from the concurrent flow in the pipe.

In Figure 6.7 the predicted profiles of turbulent kinetic energy and its dissipation rate are

compared between the k-ε model and the RSM. For the k-ε model, the radial profile of

turbulent kinetic energy exhibits the two maximums at the two sides near the walls. However,

the parabolic profile is predicted by the RSM. In the RSM, the bubble-induced kinetic energy

is added to the shear-induced kinetic energy. Therefore, the large kinetic energy is predicted
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by the RSM in the column center. In Figure 6.7b the simulated dissipation rate increases

from the center to the wall for the k-ε model and the RSM. Near the walls, the smaller values

are predicted by the RSM and the large difference is observed. It should be mentioned that,

due to the lack of experimental data of the turbulence quantities in this bubble column, the

applicability of the k-ε model and the RSM cannot be judged in predicting the turbulence

parameters. Hence, the turbulence models should be further investigated by simulating other

test cases.
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Figure 6.6: Effect of the lift coefficient on the gas holdup and axial liquid velocity
predicted by the RSM.
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Figure 6.7: (a) Turbulent kinetic energy and (b) dissipation rate predicted by the k-ε
model and the RSM.
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6.6.2 Test case II: superficial gas velocity of 0.12 m/s
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Figure 6.8: Effect of the different closure models with the k-ε model. N.C.: not
considered.

To further assess the k-ε and Reynolds stress models in the CFD-PBM method, the bubble

column operated at 0.12 m/s is simulated. Figure 6.8 shows the experimental and simulated

results of gas holdup, axial liquid velocity and turbulent kinetic energy. The different models

for drag and lift coefficients are used with the k-ε model. The bubble size distribution

is represented by 10 bubble classes. For the gas holdup profile in Figure 6.8a, the best

prediction is obtained by the combination of the Tsuchiya drag coefficient, Tomiyama lift

coefficient and bubble-induced turbulence model. However, the gas holdup profile is poorly

predicted by the other model combinations. The Behzadi lift coefficient predicts the flat

profile when it works with the Tsuchiya drag coefficient. Furthermore, it is found that the

bubble-induced turbulence should be taken into account to obtain good agreement with the

experimental data. In Figure 6.8b the good prediction on axial liquid velocity is also obtained

using the Tsuchiya drag coefficient, Tomiyama lift coefficient and bubble-induced turbulence

model. The under-prediction is given by the Rampure drag coefficient. This is because the

Rampure drag coefficient is smaller than the Tsuchiya drag coefficient. In Figure 6.8c the
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best prediction on turbulent kinetic energy is obtained when the k-ε model is used with the

Tsuchiya drag coefficient, Tomiyama lift coefficient and bubble-induced turbulence model.
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Figure 6.9: Effect of the different closure models with the RSM.

Figure 6.9 gives the profiles of gas holdup, axial liquid velocity and turbulent kinetic energy

predicted by the RSM with different closure models. It is seen from Figure 6.9a that good

agreement is obtained when the RSM is used with the Tsuchiya drag coefficient, Tomiyama

lift coefficient and the bubble-induced turbulence model. Similar to the k-ε model, the RSM

with the Behzadi lift coefficient predicts the flat profile of gas holdup in the column center.

Although the Rampure drag coefficient was proposed to account for the swarm effect, it

is still poor in predicting the gas holdup in the bubble column. The swarm effect in the

heterogeneous flow regime needs to be modeled based on more sound physics. In Figures

6.9b and 6.9c the prediction on axial liquid velocity and turbulent kinetic energy is greatly

improved when the RSM works with the bubble-induced turbulence, Tsuchiya drag coefficient

and Tomiyama lift coefficient. Without the bubble-induced turbulence model, the predicted

profile of turbulent kinetic energy is much lower than the experimental data. This discrepancy

is due to the lack of the bubble-induced kinetic energy. For the Rampure drag coefficient,
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although the bubble-induced turbulence is considered, the large over-prediction on turbulent

kinetic energy is observed in the column center. Similar to the k-ε model, the RSM with the

Behzadi lift coefficient gives under-prediction on the turbulent kinetic energy.

From Figures 6.8 and 6.9, the closure models of the drag and lift coefficients and the

bubble-induced turbulence play very important roles in evaluating the performances of the

k-ε and the RSM. The simulated results are determined by the combined effect of various

models. In principle, the RSM is more physically sound than the k-ε model in handling the

anisotropic flows. However, the uncertainty in the interfacial force terms and the bubble-

induced turbulence model would ruin the validity of the RSM. Some effort should be made

to establish more accurate models of the interfacial force and bubble-induced turbulence.

Furthermore, when the population balance is considered, the bubble coalescence and breakup

should be accurately modeled. The multi-fluid model framework would be more reasonable

to calculate the velocities of different bubble classes.
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Figure 6.10: Comparison of the dissipation rate and Sauter mean diameter predicted
by the k-ε model and the RSM.

Finally, the comparison of the profiles of the dissipation rate and Sauter mean diameter is

made for the two turbulence models. In Figure 6.10a, the larger values of the dissipation

rate are predicted by the k-ε model near the walls. Since the bubble size distribution is

influenced by the dissipation rate, the large difference in the profiles of Sauter mean diameter

is also found near the walls. From Figure 6.1a, the increase in the dissipation rate promotes

the bubble breakup. Thus, the smaller values of the bubble diameter are predicted by the

k-ε model, as shown in Figure 6.10b. The profiles of the dissipation rate and Sauter mean

diameter should be validated in the future study.
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6.7 Conclusions

The heterogeneous bubble column flows are simulated for the evaluation on the k-ε and

Reynolds stress models. The coupled CFD-PBM method is implemented into OpenFOAM.

Simulations are compared with the experimental data in the literature. For the bubble column

operated at 0.10 m/s, minor difference is found in the predicted profiles of gas holdup and

axial liquid velocity when using 10 and 20 bubble classes. The Behzadi lift coefficient gives

poor prediction when it is used with the k-ε model and the RSM. With the Rampure drag

coefficient, Tomiyama lift coefficient and bubble-induced turbulence, the k-ε model and the

RSM gives good prediction on gas holdup.

For the bubble column operated at 0.12 m/s, the k-ε model should work with the Tsuchiya

drag coefficient and Tomiyama lift coefficient to get good prediction. The bubble-induced

turbulence should also be considered in the k-ε model. Similarly, good agreement with

experimental data can be obtained when the RSM is used with the Tsuchiya drag coefficient,

Tomiyama lift coefficient and bubble-induced turbulence model. For the k-ε model, the

smaller bubble diameters are predicted, because the larger values of the dissipation rate are

obtained by this model.
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Chapter 7

Summary and Outlook

7.1 Summary

Two-fluid modeling of gas-solid and gas-liquid flows is performed in the thesis. The different

CFD solvers are implemented in the open source C++ package OpenFOAM. The numerical

issues are discussed by investigating the effect of total variation diminishing (TVD) convection

schemes. The different turbulence closures are also studied for the gas-liquid solver. The two-

fluid solvers are applied for simulating the tube erosion in the fluidized bed, the fluidized bed

methanation reactor and the bubble column reactors.

Five different TVD schemes are employed to discretize the convection terms of phase velocity

and solid volume fraction. Simulated results agree well with the experimental data in the

literature. For the discretization of the phase velocity convection terms, the five schemes give

quite similar time-averaged radial profiles of particle axial velocity. The predicted bubbles in

the bed with a central jet are not influenced by the different schemes. For the discretization

of the solid volume fraction convection terms, the limitedLinear01, Sweby01 and vanLeer01

schemes give the converged and reasonable solutions, whereas the SuperBee01 and MUSCL01

schemes diverge the solutions. By using the faceLimited gradient scheme, the TVD scheme

becomes more diffusive.

Tube erosion in a bubbling fluidized bed is numerically studied using the Eulerian-Eulerian

method coupled with a monolayer kinetic energy dissipation model. The hydrodynamical

simulations are performed under conditions with three different superficial gas velocities.

The time-averaged bubble frequency and bubble rise velocity are calculated to characterize

the bed hydrodynamics. The erosion rates of two target tubes are simulated and the influence

of the bubble behaviors on erosion rates is evaluated. Compared with the experimental data

in the literature, the bubble behaviors are well captured by the simulations. Good agreement

between the calculated and measured erosion rates is also obtained for the two target tubes.

The bubble behaviors around the tubes have direct impact on the tube erosion. Only small

discrepancies in the calculated erosion rates are found when using different particle-wall

restitution coefficients and specularity coefficients.
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Numerical investigations of hydrodynamics and kinetic reactions in a fluidized bed methana-

tion reactor are carried out by coupling methanation kinetics with the two-fluid flow model.

The gas-solid reacting flow models are implemented within OpenFOAM. The grid resolution

is investigated using 2D and 3D meshes. The bed height is reasonably predicted with

the Gidaspow and Syamlal models. Simulated results are compared against experimental

data in literature. The simulated axial species concentrations agree well with the measured

results at the end of the bed. The effects of different operating parameters are evaluated

using the established models. The increase in the gas inlet velocity results in more dilute

solid concentration and larger bed expansion. The weak bed expansion results from the

methanation reaction with gas volume reduction. The methane concentration is increased

when increasing catalyst inventory in the reactor. The addition of water into the feedstock

with low H2/CO ratio benefits the methanation reaction.

The heterogeneous flows in bubble columns are simulated for the evaluation on the k-ε and

Reynolds stress models in the coupled CFD-PBM method. For the bubble column operated

at 0.10 m/s, it is found that minor difference exists in the predicted profiles of gas holdup and

axial liquid velocity when using the 10 and 20 bubble classes. The Behzadi lift coefficient gives

poor predictions when it works with the k-ε model and the RSM. Working with the Rampure

drag coefficient, Tomiyama lift coefficient and bubble-induced turbulence, the k-ε model and

the RSM give good prediction on gas holdup. For the bubble column operated at 0.12 m/s,

the k-ε model should work with the Tsuchiya drag coefficient and Tomiyama lift coefficient

to get good prediction. The bubble-induced turbulence should be also considered in the k-ε

model. Good agreement with experimental data can be obtained when the RSM is used

with the Tsuchiya drag coefficient, Tomiyama lift coefficient and bubble-induced turbulence

model. For the k-ε model, the smaller bubble diameters are predicted, because the larger

values of the dissipation rate are obtained by this model.

7.2 Outlook

For the gas-solid flow modeling, it is found that the use of SuperBee01 and MUSCL01 schemes

for solid volume fraction convection terms destroys the solution convergence. By using the

SuperBee01 and MUSCL01 schemes, solid volume fraction cannot be effectively limited to

be lower than the packing limit. When solid volume fraction reaches the packing limit, the

radial distribution function g0 becomes infinite which results in the solution divergence. This

problem could be solved by using the deferred correction method. In the deferred correction

approach, the part of the convection term corresponding to upwind differencing is implicitly

built into the matrix, and the other part is added into the source term. The deferred correction

method can be studied in the future to improve the numerical stability.

For the practical applications, the gas-solid solver can be used for simulating other process

of industrial importance, e.g. the biomass pyrolysis in the fluidized beds, the fluidized bed
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combustion, the fluidized bed MTO process, some chemical vapor deposition processes in

the fluidized beds. The two-fluid model is computationally economical for simulating the

large-scale reactors. The two-fluid model solver can be extended to the multi-fluid solver

for simulating the three-phase reactors. With the development in the catalytic kinetics,

some multiphase reaction processes can also be simulated using the two-fluid model with the

reaction models.

For the gas-liquid flows, especially the heterogeneous flows, the gas-liquid two-fluid modeling

approach still remains certain open questions due to the uncertainties regarding the phase

interaction terms, turbulence closure schemes, and multiple bubble sizes. The CFD-PBM

method is very promising and should be further studied. From our work, it is found that

the closure models for drag and lift coefficients and the bubble-induced turbulence model

play very important roles when evaluating the performances of the k-ε and the RSM. The

simulated results are determined by the combined effect of various models. In principle, the

RSM is more physically sound than the k-ε model in handling the anisotropic flows. However,

the uncertainty in the interfacial force terms and the bubble-induced turbulence model would

destroy the validity of the RSM. The effort should be made to establish more accurate models

for the interfacial force and bubble-induced turbulence. When the population balance is

considered, the bubble coalescence and breakup should be accurately modeled. Moreover,

the multi-fluid model framework would be more reasonable to calculate the velocities of

different bubble classes.
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