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Prüfer der Dissertation: Univ.-Prof. Dr. Arndt Bode

Univ.-Prof. Dr. Dieter Kranzlmüller,
Ludwig-Maximilians-Universität München

Die Dissertation wurde am 17.09.2014 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 16.12.2014 angenommen.
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Abstract

Computer clusters made of mass-produced, off-the-shelf components are able to deliver
the same real-life performance on a variety of tasks as other types of supercomputers, but
at a lower cost. Current ad hoc design practices are characterised by only partial explo-
ration of design space and inability to accurately predict capital and operating expenses.
We provide the framework for a more comprehensive design space exploration, paving
the way to a future CAD system for computer clusters and warehouse-scale computers
with decision support and “what if” analysis capabilities.

We formulate the design task as a discrete combinatorial optimisation problem, with the
non-linear objective function being the ratio of total cost of ownership to real-life perfor-
mance. Although complex, the objective function allows for an unbiased assessment of
proposed design alternatives. Various constraints can be imposed on technical and eco-
nomic characteristics of the computer cluster, including minimal performance, maximal
capital and operating expenses, power consumption, occupied space, etc.

Obtaining the value of the objective function is only possible after several consecutive
stages of design process are completed: choosing an optimal configuration of a single
compute node, designing interconnection network and a power supply system, etc. We
provide a prototype CAD tool that implements these stages. We also propose heuristics to
deal with combinatorial explosion at various stages.
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Zusammenfassung

Automatisierter Entwurf von Rechnerclustern

Rechnercluster aus Standardkomponenten können für eine Vielzahl von Anwendun-
gen vergleichbare Rechenleistung bieten wie spezielle Supercomputer, jedoch zu einem
besseren Preis-Leistungsverhältnis. Heutige Adhoc-Entwürfe sind charakterisierbar durch
beschränkte Auswertung des Entwurfsraums und die Unfähigkeit, Investitionskosten und
Betriebskosten korrekt vorherzusagen. Im Rahmen dieser Arbeit wird eine Methode zur
besseren Auswertung des Entwurfsraums vorgeschlagen, die die Basis für künftige au-
tomatisierte Entwurfssysteme für Rechnercluster auf Basis von Standardkomponenten dar-
stellen können und entsprechende Entscheidungsunterstützungssysteme beinhalten.

Die Aufgabe des Entwurfs wird dabei als diskretes kombinatorisches Optimierungsprob-
lem formuliert, wobei die nichtlineare Zielfunktion das Verhältnis zwischen Gesamtkosten
und Rechenleistung für reale Anwendungen beschreibt. Trotz hoher Komplexität erlaubt
die Zielfunktion eine klare Analyse möglicher Entwurfsalternativen. Verschiedenste Rand-
bedingungen für technische und wirtschaftliche Eigenschaften des Rechenclusters können
formuliert werden, wie z.B. minimale Rechenleistung, maximale Herstellungskosten und
Betriebskosten, Leistungsaufnahme, Raumanforderungen, usw.

Der Wert der Zielfunktion kann erst bestimmt werden, wenn mehrere konsekutive Schritte
des Entwurfsprozesses fertiggestellt sind: Auswahl der optionalen Konfiguration des einzel-
nen Rechenknotens, Entwurf des Verbindungsnetzwerks, der Stromversorgung usw. Im
Rahmen der Arbeit wird der Prototyp eines automatisierten Entwurfswerkzeuges real-
isiert, der diese Arbeitsschritte implementiert. Weiterhin werden Heuristiken entwickelt,
die mit der kombinatorischen Explosion die verschiedenen Schritte eingrenzt.
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1. Introduction

To those who are called upon to make
decisions, practically the whole of
mankind, politicians included. Faced
with necessarily granular information,
we don’t expect people to arrive at the
optimum decision. But we demand
that they make reasonable choices.

Prof. Dr. Bruno Apolloni
University of Milan

In this chapter we introduce the reader to the task of synthesis of cluster supercomput-
ers. Design procedures result in good, and under certain conditions even mathematically
optimal solutions. Extended discussion of optimality is available in section 11.4.

We also explain why the design process should be automated, and show the connection
between our task and the field of Electronic Design Automation (EDA).

1.1. Motivation

Computer clusters made of mass-produced, off-the-shelf components have been successful
since their emergence in the early 1990s. Having continuously earned high rankings in the
TOP500 list [81], they are able to deliver the same real-life performance on a variety of
tasks as other types of supercomputers — but at a lower cost.

The off-the-shelf components that serve as the basis for computer clusters are avail-
able in great assortment. This means that a basic building block – a compute node –
can have many different configurations. Every component, like Central Processing Unit
(CPU), memory, local storage device or hardware accelerator, can be present in a compute
node in different types and quantities. Even if two nodes have similar sets of inside com-
ponents, they still can vary greatly in their mechanical characteristics, such as size and
weight, which depends on packaging: rack-mounted versus blade servers.

For every distinct compute node configuration, building a compute cluster out of these
nodes requires several stages. The first is choosing the number of compute nodes: it should
be large enough to satisfy performance constraints, but still should not violate budget con-
straints. Then storage is added, and a network is designed to connect compute nodes
together and to the storage. Finally, equipment is placed into racks, and cables are routed.
Every of this stages can be implemented in several ways, which essentially yields a combi-
natorial optimisation problem. Additionally, a solution to this problem is subject to many
constraints, e.g., physical size and power consumption of the future supercomputer are
often limited.

3



1. Introduction

Therefore, a challenge exists to build an optimal supercomputer – the one that brings
optimality to a certain criterion function while satisfying a set of design constraints.

Supercomputer vendors must be able to meet that challenge. The ability to accurately
predict characteristics of a supercomputer is especially important for the bigger systems,
when only a small prototype system can be built and evaluated before the bidding pro-
cedure with a prospective customer. Additionally, the biggest supercomputers are often
based on novel ideas. In this case, many unconventional solutions can be proposed by
designers, and evaluating their characteristics should be done automatically.

Currently government organisations are the primary consumers of the largest super-
computers. In the USA, supercomputers sponsored by the National Science Foundation
should be procured according to the guidelines outlined in [33]. According to the doc-
ument, requirements specification for the supercomputer issued by the procuring body
should specify the minimum performance that a system has to achieve on a set of bench-
marks.

The vendor, in turn, proposes a system that fits within performance, reliability and bud-
getary constraints. The figures should be obtained from prototype systems or be “esti-
mated by well-justified extrapolation from analogous systems”, as the guidelines term it.

The European entity, PRACE, summarised its procurement strategies in [76], citing sim-
ilar requirements for the bidding process.

A vendor’s ability to optimise hardware structure is crucial for winning a contract. For
example, a poor initial choice of a CPU which is too expensive can lead to the necessity to
choose a low-budget interconnection network, yielding a low performance of the whole
system. Choosing a less expensive CPU leaves more funds for the network, and the result-
ing system may have a higher performance. Such decisions can only be made if designs
can be quickly evaluated and compared, which calls for automation.

For scientists, who are today’s prevalent users of supercomputers, the existence of such
framework means better systems within the same budget.

1.2. Benefits of Automated Design Space Exploration

There is a complex interdependence between many factors that influence the design pro-
cess. A set of components that looked promising in the beginning may eventually result
in a design with unacceptable characteristics.

Given the wide assortment of off-the-shelf components, a single compute node can have
tens of favourable configurations, and further design stages quickly add to thousands of
combinations, each representing a different design, characterised by a number of techni-
cal figures (performance, power consumption, size, weight, etc.) and economic figures
(procurement costs, total cost of ownership).

The amount of designs that need to be analysed is big, and major technical and economic
characteristics for each design must be predicted using complex mathematical models. Ex-
isting vendor software tools [38, 44] do not provide required functionality. They check
compatibility of user-supplied components and can calculate cost, size and power con-
sumption of a design (but don’t try to predict performance), and are unable to automati-
cally iterate through many possible combinations.

Hence, these tools solve the direct problem: given a hardware configuration, assess its

4



1.2. Benefits of Automated Design Space Exploration

(a) JUROPA, a supercomputer installed
in the Jülich Supercomputing Centre.
(Source: fz-juelich.de)

(b) Underfloor cables of JU-
ROPA. (Source: fci.com)

Figure 1.1.: Cabling plans are essential for large installations

technical and economic characteristics. We need, however, to solve an inverse problem:
given a set of constraints, determine a hardware configuration that is optimal in a certain
sense. It is evident that the solution of the inverse problems involves solving a direct
problem many times.

Therefore, a framework for automated design of computer clusters is required. In the
absence of such a framework, ad hoc design practices are utilised. They are characterised
by only partial exploration of design space and inability to accurately predict capital and
operating expenses.

For example, a human designer may restrict one’s attention to a specific part of design
space due to reasons such as bias, personal preferences or simply lack of time.

Employing a Computer-Aided Design (CAD) system to automatically solve a design
problem has many benefits. First, a complete exploration of the design space can be en-
sured, which eventually leads to better designs. The CAD system can evaluate architec-
tures that a human designer would never consider due to one’s stereotypes; can do it in
less time, with less paperwork and without mistakes.

Second, all infrastructure components – storage, power, cooling – will be automatically
taken care of. Tedious task of selecting a proper power supply and cooling systems for
every candidate design can be commissioned to a CAD system. Choosing a different CPU
model for a compute node can lead to a change in power consumption and therefore re-
quired cooling capacity for the entire system in the range of tens of percent. A CAD system
will track these changes automatically.

Third, automated design leads to the capability of precise documentation being auto-
matically generated. Not only will a resultant solution meet all design constraints, it will
also have its network layout and floor plan available. All power and network cables, as
well as cooling water pipes, can be automatically routed in a non-conflicting manner. Fig-
ure 1.1 illustrates benefits of cabling plans.

Fourth, automation is the only possible way to track a rapidly changing market situa-

5



1. Introduction

tion. New components frequently appear on the supercomputing market. It also means
that existing components become outdated, and their prices decrease. However, the de-
crease is temporary: when components are out of stock, they become hard to find, and
in this situation of low supply the price increases according to market laws. Automation
allows to choose an optimal hardware configuration which has the lowest price at a par-
ticular moment of time.

Finally, automation makes it possible, in principle, to estimate many auxiliary useful
metrics, such as labour expenditures during the system installation.

1.3. A System-Level Complement to EDA

Engineers that design new microprocessors are always challenged with constraints and
trade-offs. They can put more cache memory onto a die, but this will increase die size and
production costs and decrease yield. They can make cores with a simple instruction set
architecture and connect them with a simpler on-chip network, but this may have perfor-
mance implications. Inflating clock frequency causes heat dissipation problems.

Designers of servers face similar challenges, although on a higher level. Instead of die
surface constraints, they have size constraints of a printed circuit board (PCB). Traces on
a PCB have to be carefully routed to reduce electromagnetic interference. Heat rejection
issues stay important as well.

In this sense, design of supercomputers is a system-level complement to the above men-
tioned problems of electronic design automation. Even more interesting is that EDA ap-
proaches can be utilised to solve problems of cluster computer design. For example, parti-
tioning components between boards in EDA is governed by the same algorithms as parti-
tioning equipment between racks in cluster design. Routing of PCB traces is very similar to
routing network cables in clusters. This continuity of ideas and approaches when moving
to higher abstraction levels is remarkable. (Note that the placement problem – the problem
of placing blocks on a VLSI die or placing components on a PCB – also has a correspon-
dence in cluster design, in the form of placing racks in a machine room. It has, however, a
much simpler formulation due to the fact that racks usually have identical dimensions).

In 2010, HiPEAC, the European initiative on architecture and compilation, described in
its roadmap [26] the forthcoming shift of Electronic Design Automation to a new abstrac-
tion level, Electronic System Level, with one of key issues being “component-based design,
from the basic building blocks up to the complete datacenter”. This has much in common
with our vision.

It is not far away from now when we will apply the principles of silicon compilers –
used to automatically design silicon chips with particular structure and functions – to a
whole new field of automated design of complete machines with particular structure and
functions. We even might need new languages for this, like Verilog and VHDL that are
used for silicon chips. The proposed framework moves us one step further to this future.

The quest for exascale systems is changing the landscape of cluster computing in yet
another way. While current petascale systems have on order of O(104) individual CPU
chips, future exascale systems are estimated [24] to have two orders of magnitude more
chips. Current cluster computers have to refer to off-the-shelf components to keep costs
low: mass-produced CPUs are used because they are cheap, not because they are perfect.
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In contrast, in future supercomputers the number of CPU chips will be so big that it would
justify their custom development. In view of the approach to system development out-
lined above – from chips to servers to entire supercomputers – this future mass-production
not only poses challenges but also opens new prospects. It can signify the convergence be-
tween custom supercomputers and the ones based on off-the-shelf components.

1.4. Generality of Approach

The framework that we develop can be applied to more general problems, like the design
of “warehouse-scale” computing facilities – the big data centres, as the ones used for cloud
computing. Indeed, the distinctive feature of computer clusters is that they are built from
a small variety of types of compute nodes, usually just one or two types, and the notion of
performance of a supercomputer is clearly defined.

In contrast, big data centres can utilise a diversity of equipment types, and the concept of
“performance” of a data centre is defined differently. Aside from that, problems remain the
same and are solved in the same way: assessing technical and economic characteristics of
a given hardware configuration, designing interconnection networks, placing equipment
into racks and positioning racks on the floor, routing cables and so on.
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If I have seen further it is by standing
on the shoulders of giants.

Isaac Newton

The process of designing a cluster supercomputer basically consists of several steps: (1)
exploring design space to find favourable configurations, (2) estimating performance of
each configuration, (3) adding infrastructure components, such as network, power, cool-
ing, etc., (4) assessing economic and technical characteristics of resulting designs.

The configuration step is of particular importance: using domain-specific knowledge,
it combines components in a compatible fashion, and simultaneously filters out poor de-
signs. This significantly reduces the number of designs that have to participate in subse-
quent procedures.

In this chapter we review a number of works: papers [60, 62, 43] address just the con-
figuration problem in the field of computer design, while papers [22, 112] try to solve the
whole problem of choosing an optimal computer cluster. (Literature on other tasks is re-
viewed in relevant chapters, e.g., literature on networks is discussed in Chapters 13 and
14).

Additionally, article [57] contains an extensive review of different combinatorial mathe-
matics formulations of system configuration task. It shows that a problem of finding a set
of distinct representatives, shortest path problem, knapsack problem, assignment problem
and morphological analysis – both in one-criterion and multi-criterion formulations – can
be successfully used to describe real-world configuration tasks.

2.1. McDermott, 1980

R1 is an expert system created by John P. McDermott in late 1970s [60]. Its main task was
to configure VAX-11/780 minicomputers made by Digital Equipment Corporation. As
VAX computers supported a large assortment of peripheral devices, the total number of
possible configurations was very big.

A bus called Unibus was used to connect low-speed peripheral modules to a minicom-
puter. There were lots of mechanical and power constraints that directed placement of
Unibus modules into backplanes, backplanes into boxes, and boxes into cabinets.

Unibus modules should be put into backplanes in a specific precomputed optimal se-
quence. If, after placing a module, the remaining space in the backplane is not sufficient to
accommodate the next module in the sequence, the designer has to consider two choices:
(1) either add a next backplane, possibly increasing the volume taken by hardware, and
eventually the occupied floorspace, or (2) deviate from the optimal sequence of modules.
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Similar rules and constraints apply to configuring another bus, the Massbus, used to
connect disk and tape drives.

Working with human designers, McDermott was able to initially extract 480 rules that
represented domain knowledge. Then, R1, an expert system, was implemented as a pro-
duction rule system.

R1 was designed to check customers’ orders for validity and complement them if neces-
sary. Given a partially defined order, the system would extend the configuration using the
design rules. For example, if one backplane was not enough to accommodate all peripher-
als specified in the order, the system would add as many backplanes as required.

The system didn’t try to iterate through different models of components, assessing cost
and performance of resulting designs, simply because it was created to solve a different
problem. Therefore, the R1’s approach could not be directly applied to design cluster
supercomputers. However, integrating an expert system into a CAD tool for cluster su-
percomputers appears beneficial, and this approach is detailed in chapter 18.

In a certain sense, R1 set the standards for future automated configurers of computers.
Indeed, the system was able to determine spatial location of components in cabinets, po-
sition of cabinets on the floor, length of cables (and produced a wiring table), and also
reported unused capacity – i.e., what other components could potentially be added to ex-
pand a computer in the future.

Additionally, R1, as a CAD system, was able to produce more detailed documentation
for technicians performing the physical assembly than human designers could do. This
feature, implemented in a future CAD system for supercomputers, would be especially
useful for larger installations.

2.2. Mittal and Frayman, 1989

In 1989, Sanjay Mittal and Felix Frayman revisited a general configuration task [62]. They
pointed at the deficiency of then-current aproaches: namely, the reliance on naı̈ve defi-
nition of configuration as a design activity, which didn’t allow for comparison between
approaches. As a uniformly accepted formal definition seemed to be lacking, Mittal and
Frayman introduced it.

According to their general definition, there exists a set of components, and each com-
ponent has a set of ports to connect to other components. The general version of the con-
figuration task – any component can be connected to any other compatible one – has an
exponential complexity.

They further introduce two restriction. The first relates to “functional architecture”: in-
stead of trying all possible arbitrary combinations of compatible components, real-world
configuration tasks usually connect components according to a certain set of rules which
together define an architecture, intended to fulfil a specific function. All other combinations,
although valid, should not be considered, which reduces search.

The second restriction concerns “key components”: if a certain functionality must be
available, there is usually a key component that is crucial in providing that functionality,
and which also entails a set of auxiliary components.

Example 2.1 Cluster supercomputers are commonly built using commercially available servers.
Each server has a video display interface which can be used for local debugging. However, the
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architecture of cluster supercomputers does not assume that displays would be connected to every
cluster node in the resulting machine: it is a computing farm, not a visualisation wall. Hence,
although the connection is formally valid, it contradicts the architecture and shall not be considered
during the automated configuration.

Similarly, to implement a function “interconnection network”, several key components are re-
quired: network adapters in cluster nodes, network switches and network cables. Network switches
additionally entail an auxiliary sub-component: power cables.

Together, these two restrictions, based on domain-specific knowledge, not only reduce
search space, but also help to partition the global configuration task into a number of
relatively independent subtasks.

Although the above considerations of knowledge representation may seem obvious for
any particular domain, the merit of the cited work is in formalising the ideas for the most
general abstract case. We will often refer to the concepts outlined above throughout this
thesis.

The authors also proposed an algorithm to search for configurations. They advised to
check compatibility constraints as early as possible during the design process to reduce
the need to backtrack.

2.3. Hsiung et al., 1998

ICOS – an Intelligent Concurrent Object-Oriented Synthesis methodology – was proposed
in 1998 by Pao-Ann Hsiung et al. [43] and focuses on design of multiprocessor systems. In
this object-oriented methodology, system components are modelled as classes with hierar-
chical relationships between them.

Previously synthesised subsystems are reused as building blocks of new designs. To
achieve this, ICOS applies machine learning techniques. It compares specifications of pre-
viously learnt designs with current specifications, using fuzzy logic, and in case of a match,
a previous design is reused.

Several design alternatives can be evaluated concurrently (in parallel), with the aim
of further reducing time to solution. Performance, cost, scalability, reliability and fault-
tolerance constraints can all be specified. Logic rules are used to detect incorrect or contra-
dictory input specifications.

Unsuccessfully synthesised components (violating constraints) cause the rollback pro-
cedure by propagating messages in the class hierarchy and subsequent re-synthesis. Of
several system designs that match constraints, the one with the best performance is se-
lected.

Overall, ICOS provides a way to represent design data and candidate solutions in the
memory of a CAD tool, in the form of a class hierarchy. It is theoretically capable of de-
signing cluster supercomputers, which can be specified therein as “MIMD hybrid archi-
tectures”, i.e., a number of multiprocessor compute nodes, each with a shared memory,
connected together by an interconnection network.

However, ICOS, being a rather general tool, cannot evaluate performance on differ-
ent workloads, doesn’t take infrastructural component of cluster supercomputers (power,
cooling, etc.) into account and is unable to calculate the total cost of ownership (TCO). The

11



2. Related Work

approach that we propose in this thesis overcomes these deficiencies, while utilising cer-
tain ideas from ICOS – namely, representing components as objects and ability to specify
an array of practically meaningful constraints.

2.4. Dieter and Dietz, 2005

At Supercomputing 2002 conference, William R. Dieter and Henry G. Dietz presented the
tutorial on Cluster Design Rules (CDR), the methodology to design computer clusters suited
for specific workloads. By 2005, their web-based CAD tool, CDR, was used many times,
and certain patterns started to emerge in the tool’s output. The findings were summarised
in 2005 in the technical report [22].

CDR is perhaps the first documented attempt to create a CAD tool for clusters, specific
enough to take care of necessary details, such as infrastructural equipment and component
prices, and at the same time general enough to allow for a wide variety of components.

Dieter and Dietz found an important regularity: for the criterion functions they were
using, there were no simple ways to derive a globally-optimal model of a component from
its parameters. For example, the fastest (and hence the most expensive) CPU as well as
the cheapest (and hence the slowest one) did not necessarily deliver optimality to the re-
sultant design. Similarly, the CPU with the lowest price to performance ratio did not yield
optimality, too.

It means that global optimality of the entire system cannot be ensured via using lo-
cally optimal components. In this example, the correct choice of a CPU can only be made
through exhaustive search, trying every candidate CPU and evaluating the global crite-
rion function. Additionally, when market prices change, the design procedure has to start
anew, because now it could be a different model that would bring global optimality.

During the execution, the tool presents a designer with a series of questions that mainly
describe workload characteristics. Of particular importance are (1) main memory band-
width within a compute node, measured in GBytes/second per a GFLOPS, that an appli-
cation needs, and (2) network parameters – namely, latencies of ordinary and collective
operations, bisection bandwidth per a processor core, and the number of neighbouring
compute nodes that an application will typically communicate with.

Unfortunately, there are problems with these parameters. First, they are difficult to
quantify (although a link is given to the paper that suggests to determine them using
hardware counters). Second, application’s needs may change during different phases of
its execution. It is unclear whether we should engineer the cluster for the worst case, or for
the average case, or otherwise. Third, in current cases of shared usage of big supercom-
puters, applications come and go, and requirements of the same application change with
code updates, introduction of new mathematical models, or with different input data. In
this case, precise tracking of the above parameters becomes useless.

It makes sense to determine workload requirements when workload is rather stable,
such as day-to-day weather predictions in national weather forecasting facilities. In other
cases, instead of the fairly low-level parameters, performance modelling appears a viable
alternative. CDR allows to specify the minimum required performance of the supercom-
puter on High Performance Linpack and SWEEP3D benchmarks (the latter is a particle
transport simulation).
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Additionally, physical constraints (rack space and available cooling) and budgetary con-
straints (acquisition cost, operating costs: electricity and floor space rent) can be specified.

The criterion function is a weighted linear combination of metrics, sought to be max-
imised. (Another criterion function, aimed to optimise for the minimal total cost of own-
ership (TCO), is marked as “experimental” and does not work). Weights can be specified
as zero (to disregard values of certain metrics) or as 10n, where 0 ≤ n ≤ 6. Metrics are
either ordinary (memory space size, memory bandwidth, disk space size, network band-
width and raw performance) or inverse (the lower the value, the better: network latency,
acquisition cost, operating cost per year).

The difficulty with the weightings is their voluntaristic assignment by the user. There is
no “ideal” assignment, so different assignments result in different “optimal” designs. This
depreciates the whole idea of optimisation.

CDR builds network structures for the supercomputers it designs, using the auxiliary
NetWires tool [23]. NetWires is capable of designing and visualising network topologies;
however, it is unable to calculate network cost, or design networks according to constraints
(such as expandability).

The results in [22] indicated the complex nature of design space when pricing is taken
into account. For example, when setting varying constraints for network performance
and cost, CDR suggested radically different network solutions, in terms of hardware and
topologies. Similarly, for smaller clusters, uniprocessor compute nodes were found to
have a higher performance within the same budget than the multiprocessor ones – a non-
intuitive conclusion. These examples once again underline that a thorough automated
search is required.

Overall, CDR was a successful project that pointed to new directions for research in its
field.

2.5. Venkateswaran et al., 2009

The problem of automated design of cluster supercomputers was attacked again in 2009 by
Nagarajan Venkateswaran et al. [112]. Their methodology, ”Modeling and integrated design
automation of supercomputers (MIDAS)”, tried to analyse and model cluster supercomputers
via the use of simulation. Although the methodology is aimed at Supercomputers-on-a-
Chip (SCOC), it can be generalised to wider areas as well.

MIDAS builds a dependency graph of many parameters that determine performance
and power consumption of a cluster supercomputer. Then the relationships are expressed
as analytical mathematical models, in form of equations. Separate components of a com-
puter are optimised using a simulated annealing procedure, to parametrise each model.
Then, high-level characteristics, such as performance, power, performance per watt are
inferred from separate models.

As MIDAS is intended for Supercomputers-on-a-Chip, it’s authors suggested to build
the chips – the basis of cluster nodes – using a library of IP cores. The functionality of
cores ranges from numerical to linear algebra to graph algorithms. Placing cores on a chip
in necessary quantities delivers specific functionality and performance of a cluster node.
Designing these custom chips (ASICs) is done using familiar EDA tools.
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MIDAS does not address problems of building interconnection networks to connect clus-
ter nodes, nor it concerns infrastructural components or equipment placement problems.
However, it serves as an important link for implementing the Electronic System Level de-
sign workflow detailed in “Introduction”: from chips to servers to supercomputers.
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Dr. Hoenikker used to say that any sci-
entist who couldn’t explain to an eight-
year-old what he was doing was a char-
latan.

Kurt Vonnegut
CAT’S CRADLE, CHAPTER 15

This chapter presents a concise formulation of the problem that we are trying to solve,
and introduces the reader to the possible mathematical formalisms that could be employed
for the task.

3.1. Problem Statement

We formulate the problem as follows: build a cluster supercomputer from identical com-
pute nodes, connected together via a network, equipped with uninterruptible power sup-
ply system (and possibly other infrastructural systems), subject to constraints imposed
on minimum performance and maximum acquisition cost, total cost of ownership (TCO),
space, power consumption (and possibly other characteristics), and yielding minimality
to the criterion function: f = TCO/Performance. The criterion function is therefore the
simplest multiplicative function, but its non-linearity induces certain consequences. This
choice is justified in Chapter 6.

We call for the use of total cost of ownership instead of using just capital expenditures
(the procurement costs), because operating expenditures can comprise a substantial share
of the TCO. For example, water-cooled equipment, seemingly expensive in terms of up-
front costs, may have lower operating expenditures, whilst allowing easy recuperation of
waste heat which leads to further savings.

The problem is a discrete optimisation problem. To perform a thorough search, we need
to: (1) try every possible compute node configuration, (2) choose the number of compute
nodes that meets constraints; if there are multiple variants, try all of them, (3) connect com-
pute nodes with all possible networks, (4) design infrastructural systems, etc. Of course,
this formulation makes the task intractable. We need to introduce substantial simplifica-
tions, and we start with a definition of a configuration.

3.2. Defining a Configuration

Following Mittal and Frayman [62], if we have a set of components, and every component
has ports to connect it to other compatible components, then a configuration is defined by
exact instances of components and structure of their connections with each other.
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This “material” definition is easily transferred into the field of cluster supercomputers.
Indeed, a compute node has a number of distinct ports, designed specifically to connect it
to other components of a supercomputer. Certain network ports can be used to connect to
a high-speed interconnection network, while others can serve to build a storage network.
Power ports connect compute nodes to relevant power equipment, such as uninterruptible
power supplies (UPS).

Some “ports” are less material but still stipulate compatibility between components. For
example, mechanical compatibility between rack-mounted servers and racks is ensured by
following industry standards. On the contrary, blade servers are normally compatible only
with enclosures made by the same vendor. In a CAD tool, two models of blade servers
made by different vendors will have to be represented as having incompatible “ports”.

But a configuration is not described merely with material items. Let us consider an
example. Multiprocessor compute nodes often have a system setting called “Memory inter-
leave”, which alters the assignment of memory blocks to CPUs. By turning this setting on
or off, hardware structure can be tuned to a particular memory access pattern of applica-
tions. For any given algorithm, both values of this setting can result in either performance
increase or degradation. Choosing inappropriate value can result in a performance loss
of this particular node. In parallel computing, where overall performance is often deter-
mined by the slowest node, this can lead to slowing down the entire cluster computer. For
such a non-material configuration item, there are no “ports” to connect it to other com-
ponents, still we need a way to represent this item in a CAD system. The key question is
therefore knowledge representation.

3.3. Representing Configurations with Multipartite Graphs

For a start, we must be able to construct valid configurations of compute nodes. In layman
terms, building a compute node from components boils down to filling provided “sockets”
and “slots” with these components, according to certain rules.

We follow the approach of Bozhko and Tolparov [14] for representing configurations
of arbitrary technical systems using multipartite graphs. However, instead of undirected
graphs with cycles we propose to use directed acyclic graphs, and rationalise our choice in
Chapter 10.

A relatively simple example of representing a compute node configuration with a mul-
tipartite graph is shown in Figure 3.1 (the graph is directed, but arrows are not shown to
reduce clutter). Each partition of the graph contains components of the same type. Edges
between components in different partitions represent compatibility of those components
(components are considered compatible if there are no restrictions on their simultaneous
use in the technical system). Every path in the graph represents a valid configuration.

This fictional compute node can have either one or two CPUs. Three CPU models are
available, but if two CPUs are used, the models must be identical. Additionally, each CPU
has a set of memory slots associated with it (a NUMA architecture). Note that we do not
represent memory slots in this particular graph, as this would further complicate matters.
Instead, we specify three available sizes of memory that can be attached to a single CPU.

There are two rules according to which this compute node must be configured: (1) at
least one CPU must be installed, (2) memory slots belonging to a certain CPU socket can
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Figure 3.1.: Representing configuration of a fictional compute node with a multipartite
graph.

only be filled if the corresponding CPU is installed.
Traversal of this graph models possible scenarios of configuring a compute node from

components. The process begins with filling the first CPU socket with one of three possible
CPU models. Then, if no second CPU is used, we only need to choose one of three possible
memory sizes for CPU1. Hence, a uniprocessor configuration has 9 realisations. If we
decide, however, to install a second CPU, then we can choose one of three possible memory
sizes for CPU1 and one of three sizes for CPU2. Therefore, in a dual-processor node, for
any given CPU model, there are nine possible memory configurations, and combined with
three CPU models, this gives 27 realisations. Together, this fictional node can be configured
in 9 + 27 = 36 distinct ways.

Even though only some of these 36 configurations are close to optimal, we need to rep-
resent all of them in a graph, to avoid invalid configurations. Trying to “simplify” this
graph may generate invalid solutions, such as having both CPU sockets empty, or having
memory attached to both CPU sockets while only one is filled.

Figure 3.2 describes traversal of the graph. Vertices – components of the compute node –
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Figure 3.2.: Traversing the graph to calculate characteristics of a configuration.

are assigned with a set of characteristics, literal or numeric, such as "cost=650". Travers-
ing the graph involves finding all possible paths from “Start” to “End”. One such path is
highlighted with arrows. Traversing vertices along the path allows to accumulate char-
acteristics assigned to vertices or to perform evaluation of expressions. For example, ex-
pression "cost=+800" signifies adding “800” to the current value of variable "cost".
(See complete syntax in Chapter 10). Thereby, after traversing the path, the value of cost is
determined and stored for future use.

Real-life equipment can be configured in much more ways. For example, Hewlett-
Packards’s “SL390s G7” server (the 4U height version) has two CPU sockets, and 13 CPU
models are supported. Twelve memory slots are available, providing for numerous mem-
ory configurations, with both ordinary and low-power modules. Internal x16 PCIe 2.0 slots
allow installation of up to three GPU accelerators. Up to eight hard drives can be installed,
combined into RAID arrays of three possible levels – 0, 1 and 5. A server can also have
an optional InfiniBand adapter, and last but not least, it is shipped in either left or right
variant, depending on its final position in the enclosure. As can be seen, the possibilities
for configuration are endless, as is the combinatorial difficulty of the task.

3.4. Algorithm for Designing Computer Clusters

The algorithm is described in full in Chapter 11. The required input to the algorithm is the
minimal performance that the cluster computer must be able to achieve. Optional inputs
include design constraints (see Chapter 8). The output of the algorithm is the configuration
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of the cluster computer, with all technical and economic characteristics necessary to (a)
conduct procurement, and (b) perform further design procedures as necessary. For each
configuration of a compute node obtained via traversing the graph, the following stages
of the algorithm are performed:

1. Using inverse performance modelling (see Chapter 9), calculate the number of com-
pute nodes that is required to attain the specified performance.

2. Design an interconnection network (see Chapters 13 and 14).

3. Design infrastructural systems, such as uninterruptible power supply system (see
Chapter 15).

4. Place equipment into racks and place racks on the floor plan (see Chapter 16).

5. Compute the criterion function for the configuration (see Chapter 6).

On every stage of this algorithm various technical and economic characteristics of the
configuration are evaluated, such as its cost, power consumption, amount of equipment,
etc. Simultaneously, on every stage configurations are checked against specified con-
straints, which allows to detect and discard violating configurations as early as possible.

The characteristic feature of our approach is that we propose to perform separate stages
of the design process by querying, via network, appropriate modules – performance mod-
elling module, network design module, and so on. This modular approach ensures ex-
tensibility of the CAD tool. It also allows to utilise the most current versions of design
algorithms by plugging in corresponding modules.

3.5. Combinatorial Explosion

Separate stages of the design process are subjected to local optimisation performed by the
corresponding modules. This allows to put a limit on combinatorial explosion. For exam-
ple, suppose that for each configuration a network can be designed in 5 ways, and a UPS
system in 3 ways. Therefore, for each configuration it will be required to run the network
design stage 5 times (5 units of work), and then for each of these semi-complete designs
the UPS design stage must be run 3 times (15 units of work), resulting in 20 instances of
design modules invocation.

In our approach, we run the network design stage 5 times and choose a locally optimal
solution. Then, we run a UPS design stage for 3 times, and again choose a locally optimal
solution. This approach may miss some globally optimal designs; however, it allows to
keep design times reasonably low.

There are other occasions where combinatorial explosion may manifest itself. For ex-
ample, turning the “Memory interleave” option in the BIOS of a compute node on or off
results, in fact, in two separate configurations, with drastically different performance char-
acteristics (see section 9.1.1 for this and other examples). The “Memory interleave” setting
can be represented with a configuration graph (by adding a new partition to the graph with
two vertices); however, it only makes sense to do so if there exist performance models that
can adequately predict performance based on this BIOS setting.
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Yet another case is choosing a software environment for the computer cluster. If there
are several software packages to solve a problem, and each is characterised by its own
performance curve and total cost of ownership (licensing costs as well as maintenance
and support costs), then thorough search among all software alternatives is required. In
the current implementation of our CAD tool, we ask the user to manually specify what
software (and its performance model) should be used to drive design decisions.

3.6. Interdependencies

Real life computing equipment can present unexpected interdependencies of components.
We review several examples of such situations where the configuration graph can ade-
quately represent valid configurations.

1. Modern commodity CPUs have a built-in memory controller which only supports a
specific amount of RAM. Therefore, a uniprocessor configuration can only be equipped
with a limited amount of memory. If more memory is needed, it is necessary to in-
stall a second CPU, and use its designated memory slots. Here the requirement of
adding more memory unexpectedly entails the need to install more CPUs. (See, for
example, Fig. 3.2, where installing 64 GBytes or more memory inevitably requires
installation of both CPUs).

2. Highest-capacity memory modules (such as 32 GByte DDR3 SDRAM modules) of-
ten work at lower speeds than modules of lower capacity (16 or 8 GBytes). In high-
performance computing, the performance of memory subsystem is of utmost impor-
tance. To reflect the issue, the configuration graph can be reworked to specify exact
types of memory modules and their performance characteristics.

Traversing the graph will generate all possible configurations. Then, constraints can
be imposed on the minimal total amount of memory and on the minimal memory
speed. This will weed out unsuitable configurations with slow memory. (It is also de-
sirable to pass the memory performance characteristics on to the performance mod-
elling module for more accurate performance predictions).

3. Some servers have a large number of memory slots, but when using high-capacity
memory modules, only part of the slots can be utilised, because the memory con-
troller built into a lower-end CPU can only address a limited amount of memory.
However, when using a higher-end CPU, all slots can be occupied.

4. Some servers can accommodate a wide variety of CPUs, ranging from low-end, low-
power models to hi-end models with high power consumption. It is possible that
due to thermal constraints either two low-power CPUs can be installed in a server,
or only one high-power CPU. The configuration graph can take care of this situation.

In all of these cases, using graphs allows to adequately represent real life interdepen-
dencies of components. There are, of course, more than these few examples of interdepen-
dencies. Some of those listed above can be obsoleted with introduction of new hardware,
while at the same time new interdependencies will emerge.
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3.7. Proposed Design Framework as a Means of Collaboration

Procurement of an HPC system involves at least three parties: hardware vendors, appli-
cation software vendors, and byers; the latter are research institutions and companies. (In
certain settings, although not in general, buyers can write their own software to be run on
a supercomputer, and therefore also play the role of application software vendors).

These three parties have little in common. Hardware vendors have knowledge of their
hardware and peculiarities of its usage. Application software vendors know the properties
of their software, and can predict how well it will run on the system being designed and
built, and how the software performance will be affected by changing computer parame-
ters.

For example, they can predict what impact a twice faster network could have on the
overall performance of their software. At the same time, they might not know complex
compatibility relations between hardware components. During the procurement process,
both groups – hardware and software vendors – work together to determine an “optimal”
configuration of a supercomputer for the task, and benchmarking is the main method em-
ployed.

Buyers, constrained by tight deadlines, necessarily face uncertainties. When large super-
computers are procured, it is generally impossible to run a full-scale benchmark, because
hardware vendors are unwilling to commit resources and time to building large prototype
machines. Similarly, if a decision to install a twice faster network is considered, buyers
need cooperation from both hardware and software vendors to make a conclusion.

A faster network will increase procurement and possibly operating costs. It is difficult
to quantify the increase unless the hardware vendor is willing to prepare several network
designs for the client, or if buyers possess tools to automatically design networks and as-
sess their technical and economic characteristics. On the other hand, a faster network may
increase performance of the supercomputer, perhaps surpassing associated cost increase.
Again, it is difficult to quantify performance increase unless software vendor cooperates,
or if there are tools to predict performance depending on computer parameters.

The proposed framework gives in the hands of buyers, the most numerous group of
players in the HPC market, a convenient set of tools which lessens their dependence on
hardware and software vendors. Software vendors can turn informal knowledge of their
software into performance models. Such models can be built and verified (similarly to
how we built a performance model for ANSYS Fluent software suite in section 9.4), and
then tweaked to be precise enough to make useful performance predictions.

Hardware vendors then can provide a configuration graph for their hardware, which
will generate valid configurations, together with cost, power and other characteristics.
Network, UPS and other vendors can provide modules that can design networks (see
Chapters 13 and 14), UPS systems (see Chapter 15), etc. The CAD tool will bring all com-
ponents together, allowing buyers to quickly search their chosen part of the design space,
without unnecessary reliance on vendors, and arrive to provably good designs.
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4. Outline of the Thesis

Part I: Introduction and Problem Statement

CHAPTER 1: INTRODUCTION

We start the thesis by explaining motivation behind the work, highlighting benefits of
automated design space exploration, and clarifying how design of computer clusters com-
plements the field of electronic design automation (EDA).

CHAPTER 2: RELATED WORK

We review related work in the filed of configuration of computer systems: from the
general formulation of the task, dating back to 1970s, to multiprocessor systems (1998), to
automated design of high-performance computers (2005 and 2009).

CHAPTER 3: PROBLEM STATEMENT

This chapter formulates the design task in terms of a discrete optimisation problem, ex-
plains the use of multipartite graphs to represent configurations, outlines the algorithm for
automated design of cluster supercomputers, and proposes strategies to deal with combi-
natorial explosion.

We also provide the overview of complex interdependencies between components that
can arise in real life configurations of supercomputers, and the role of configuration graphs
in representing compatibility between components.

Finally, we explain how the automated design framework presented in the thesis, to-
gether with its software tools, lessens the dependence of supercomputer buyers on hard-
ware and software vendors.

CHAPTER 5: SCIENTIFIC CONTRIBUTION

Here, we list scientific contributions of the thesis, i.e., what the reader can learn from the
thesis compared to the state of the art.

Part II: Criterion Function and Design Constraints

CHAPTER 6: CHOICE OF THE CRITERION FUNCTION

In this chapter, we propose the criterion function to be used throughout the thesis: the
ratio of total cost of ownership to performance. We explain why using one-criterion in-
stead of muti-criterion optimisation is possible and provides good results. Additionally, a
generalisation of the criterion function based on interval arithmetic is introduced.
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CHAPTER 7: ECONOMICS OF CLUSTER COMPUTING

We explain the benefits of total cost of ownership compared to procurement cost as a
metric guiding design decisions. We also compare capital and operating expenditures.
Finally, questions of balance between high-speed, high-cost components and low-power,
low operating cost components are addressed.

CHAPTER 8: DEALING WITH COMBINATORIAL EXPLOSION

Here, we detail strategies to deal with combinatorial explosion. The first approach is
to impose constraints on characteristics of compute nodes or the whole machine, and the
second one is to use heuristics that allow to quickly weed out unpromising solutions.

CHAPTER 9: PERFORMANCE MODELLING

In this chapter, we introduce the notion of performance and speed of computer compo-
nents, and then review related work concerning factors that influence performance as well
as approaches to performance modelling.

We then discuss the “optimal” number of computing blocks (cores, CPUs, compute
nodes) to be used for parallel execution, and the corresponding “throughput mode” of
operation of large supercomputers.

Further, we introduce inverse performance models and the algorithm to determine the
number of compute blocks required to attain a given performance level.

Finally, a simple analytical performance model for “ANSYS Fluent” CAE software suite
is proposed, and the process of querying performance models via Internet is explained.

Part III: Automated Design of Computer Clusters

CHAPTER 10: GRAPH REPRESENTATION OF CONFIGURATIONS

We explain the use of directed acyclic graphs for representing compatibility between
components of arbitrary technical systems, comparing benefits and disadvantages of di-
rected and undirected graphs.

We then propose assigning arithmetic expressions to vertices and edges of the configu-
ration graphs, which results in evaluation of technical and economic characteristics of sys-
tems during graph traversal. Finally, XML syntax for representing graphs is introduced.

CHAPTER 11: ALGORITHM FOR AUTOMATED DESIGN OF CLUSTER SUPERCOMPUTERS

Here, we describe in detail stages of the main algorithm used in the thesis, as well as dis-
cuss the limits of the design framework and their influence on the optimality of solutions
in the mathematical sense.

We then make the case for designing computer clusters based on their minimum perfor-
mance rather than on maximum budget.

CHAPTER 12: CAD SYSTEM FOR COMPUTER CLUSTERS

This chapter describes the user interface of the prototype CAD tool for computer clus-
ters. We also discuss currently implemented modules of the CAD system and their invo-
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cation sequence, and propose a parallelisation strategy for the CAD tool.

CHAPTER 13: FAT-TREE NETWORK DESIGN

We propose an algorithm for designing two-level fat-tree networks with arbitrary block-
ing factors, automatically choosing the best combination of monolithic or modular switches
on both levels, subject to various constraints.

We then discuss how technical and economic characteristics of fat-tree networks can be
easily derived from corresponding per-port metrics. Comparison of strategies for future
expansion of fat-trees concludes the chapter.

Note: the contents from this chapter were deposited in Arxiv, an open-access pre-print
repository [94].

CHAPTER 14: TORUS NETWORK DESIGN

We propose an algorithm for designing torus networks, and a heuristic for automatically
choosing the number of torus dimensions. We then compare cost of torus and fat-tree
networks.

Note: the contents from this chapter were deposited in Arxiv, an open-access pre-print
repository [93].

CHAPTER 15: DESIGNING OTHER SUBSYSTEMS OF COMPUTER CLUSTERS

We describe strategies to design storage and cooling systems, investigating the possi-
bility of using outside air for cooling purposes, depending on climate. We then compare
costs of cooling solutions, including water-based cooling, and propose to reuse waste heat
for agricultural purposes. Finally, we introduce an algorithm for designing UPS systems.

CHAPTER 16: EQUIPMENT PLACEMENT AND FLOOR PLANNING

This chapter introduces heuristics for placing equipment into racks, and compares ap-
proaches of equipment consolidation and distribution. We then provide a simple analytical
model for determining floorspace required to host a computer installation.

CHAPTER 17: PRACTICAL EVALUATION OF THE ALGORITHM

In this chapter, we evaluate the main algorithm of the thesis on a set of real life hard-
ware. We compare technical and economic characteristics of individual configurations of
compute nodes as well as clusters built using that configurations, with full infrastructure,
such as interconnection networks and UPS systems.

We further provide a detailed analysis of several cluster designs, and quantitatively in-
vestigate how changes in technical characteristics of interconnection networks and UPS
systems impact economic characteristics of cluster computers.

CHAPTER 18: SUMMARY AND FUTURE DIRECTIONS

Here, we summarise the contribution of the thesis, and provide guidelines for future di-
rections of work, such as turning the prototype CAD tool into a decision support system.
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5. Scientific Contribution

To be of use to the world is the only way
to be happy.

Hans Christian Andersen

In this chapter, we list scientific contributions made by the thesis, listed by knowledge
areas.

5.1. CAD systems

We propose a method for representing compatibility between components of arbitrary
technical systems using directed acyclic multipartite graphs for the purpose of structural
synthesis. We make the case for a modular CAD system for cluster supercomputers, with
modules supplied and maintained by hardware and software vendors, ensuring the use
of the most current price data and most recent algorithms to design separate subsystems.
We envision the use of interval arithmetic to capture uncertainty in both cost and perfor-
mance. We provide a proof that the single-objective optimisation used in the thesis always
results in a Pareto-optimal solution. We suggest a heuristic that allows to decrease design
space by a factor of ten but does not accidentally reject optimal solutions. We also offer
arguments against using local optimisations.

5.2. Performance modelling

We introduce the notion of inverse performance models and propose a two-phase iterative
algorithm for inverse performance modelling.

5.3. Computer networks

We propose algorithms to design two-level fat-tree and torus networks, with arbitrary
blocking factors. The algorithms operate with real life equipment characteristics such as
cost, power consumption, occupied rack space, weight and others, and are able to arrive
to cost-efficient network designs by utilising partially populated modular switches.

5.4. Data centre design

We propose strategies and heuristics for placing equipment into racks, for the general case
of non-identical equipment blocks, taking into account space, weight and power budget
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5. Scientific Contribution

of individual racks. We devise an algorithm for calculating floor space size required for
a given number of racks, with a constant run time. We also offer a greedy algorithm for
sizing an uninterruptible power supply system.

5.5. Cooling systems

We provide a chart for choosing air preparation methods for cooling with outside air and
suggest an algorithm for calculating cooling capacity for cooling with outside air. We then
perform comparison of capital and operating costs of three types of cooling solutions.

5.6. Economics

We provide a comparison of factors that influence cost and performance of cluster super-
computers, together with a quantitative analysis of using low-power (“green”) memory
modules. We then investigate properties of the total cost of ownership (TCO) as a function
of the number of compute nodes. Further, we offer an overview of TCO components for
supercomputers. Finally, we propose reusing waste heat from data centres for large-scale
greenhouses, outlining an implementation plan.
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6. Choice of the Criterion Function

There are decision objectives other than
maximizing expected return and mini-
mizing maximum loss. That is, in many
practical situations there are criteria of
optimality that are more appropriate
than these two mentioned.

Russell L. Ackoff
THE DEVELOPMENT OF OPERATIONS

RESEARCH AS A SCIENCE

As we are solving a combinatorial optimisation problem with many alternative solu-
tions, we need criteria to guide design decisions. The main approaches here are: (a) define
a set of criteria and perform multi-objective optimisation, (b) convolve multiple criteria
into a weighted additive or multiplicative criterion function and perform single-objective
optimisation, and (c) impose constraints on all but one criteria, and optimise the remaining
criterion.

Dieter and Dietz [22] used a weighted additive criterion function, while Hsiung et al. [43]
proposed to produce multiple designs subject to constraints (performance, cost, power,
reliability, etc.), and then choose one with the best performance. (Both works are reviewed
in more detail in Chapter 2).

There is also a separate approach where alternative computer designs can be evaluated
based not on their technical and economic characteristics, but rather on the value of results
that the computer can deliver [59]. With this approach, if a computer cannot deliver results
on time, or if they are not accurate enough, the “value of calculations” is lowered, down
to zero in case of useless results (such as a late weather forecast).

We identified two main criteria for designing cluster supercomputers: total cost of own-
ership (TCO) and performance on a specific task. Total cost of ownership, reviewed in
detail in Chapter 7, allows to capture in a natural and meaningful way many factors that
affect procurement and operation of supercomputers. For example, power consumption
can be most naturally accounted for by calculating electricity costs during the life span of
a computer, instead of trying to artificially introduce it into the criterion function with an
arbitrarily assigned weight.

In the following sections we (a) review multi-objective optimisation based on the two
criteria, cost and performance, (b) propose a simplest multiplicative criterion function,
and (c) explain possibility of single-objective optimisation.
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6. Choice of the Criterion Function

6.1. Multi-Objective Optimisation

Multi-objective optimisation allows to identify several non-dominated alternative designs
in the set of feasible designs, and then a human designer can choose one of them according
to expertise or intuition. To demonstrate multi-objective optimisation with the two crite-
ria outlined above, cost and performance, we performed analysis using the configuration
graph depicted in Figure 10.4 from Chapter 10.

This graph allows to generate 264 valid configurations of a compute node (characteris-
tics of hardware can be found in Appendix B). We then used the CAD system for computer
clusters, described in Chapter 12, to generate all possible cluster designs based on these
264 node configurations, using a constraint on the minimal performance, which was set
to be 240 tasks per day on the "truck_111m" benchmark (see section 9.4). We also re-
quested to design a non-blocking fat-tree network and a UPS system with 10 minutes of
backup time (more examples of this sort are given in Chapter 17).

It turns out there are 136 feasible cluster designs that adhere to the constraint on minimal
performance. Figure 6.1a presents the general view of 136 design points, drawn in the
coordinate system of performance and procurement cost. As can be seen, all of them have
the requested performance of at least 240 tasks per day, but have a widely varying cost,
ranging from roughly $128,000 to $556,000. To facilitate meaningful analysis, we zoom in
into the region of interest – that is, range of performance from 240 to 254 tasks per day – in
Figure 6.1b. To further simplify view, we disregard expensive solutions, zooming in into
the cost range of $120,000 to $170,000 in Figure 6.1c.

The three solutions in the bottom are non-dominated Pareto-optimal solutions, that is,
trying to improve one criterion of such a solution – for example, decrease its cost – will lead
to another solution where the second criterion is worsened, in this case, performance is also
decreased. All other solutions in the figure are dominated, that is, for each such solution
there is (at least one) solution that dominates it: either cost is lower, or performance is
higher, or both.

However, after obtaining three Pareto-optimal solutions, we cannot decide which of
them to choose, because it requires expertise or intuition from a human designer. This
contradicts to the goal of simplicity of the CAD system that we are trying to build (see
section 3.7). It would be beneficial to automatically choose one of the non-dominated so-
lutions according to a certain strategy and present it to a human designer. In the following
sections we show how this can be done.

6.2. “TCO to Performance Ratio” As a Criterion Function

The simplest multiplicative criterion function that utilises the two criteria we identified
above, TCO and performance, is just their ratio: f = TCO

Perf . The combinatorial optimisation
procedure seeks to minimise this function on the set of feasible solutions.

Functions of this type are already used in the computing industry to evaluate quality
of designs. For example, IBM’s announcement of servers based on POWER7 CPU [46]
mentions improvements in metrics such as “price/performance”, “performance per watt”
and “performance per-square-foot”.

Similarly, HiPEAC proposes [26] to use a criterion function “Performance per Euro” for
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Figure 6.1.: Graphical representation of 136 feasible solutions, with different levels of
zoom.
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ordinary computing devices, and “Performance per Watt per Euro” for mobile devices.
We, however, believe that the latter function is indeed better suited for mobile devices,
and should not be used for designing computer clusters, because it significantly changes
ordering of optimal solutions in non-intuitive ways, whereas accounting for power con-
sumption using TCO is more convenient and natural.

Let us consider yet another example where using a “TCO to performance ratio” allows
for comparisons in the presence of counterpoising factors.

Example 6.1 Certain IBM servers, such as the “Power 780” server, can run in so-called “Tur-
boCore” mode [46], when four out of eight cores on the CPU are turned off, the clock frequency
is slightly raised, and the chip’s resources (L3 cache, memory bandwidth) are shared between the
remaining cores. Here we have a complex interplay of factors.

First, switching off half of the cores seemingly reduces performance of the server. On the other
hand, the remaining cores can enjoy slightly higher clock frequency and, more importantly, twice
more L3 cache memory and memory bandwidth per core, which can significantly improve perfor-
mance of some latency-sensitive workloads, somewhat compensating for switched off cores.

And even if using “TurboCore” mode results in the overall performance drop of a single server,
it can still be justified due to the reduction in cost of per-core software licenses. Further, if more
servers are necessary to handle the workload in “TurboCore” mode, then additional space in the
machine room must be allocated, increasing operating expenses, and so forth. Obviously, there is
only one universal way to account for all these factors: carefully calculate total cost of ownership
and performance in each case.

We must also note that criterion functions in the form of “Cost to Technical Characteristic
Ratio” are not always meaningful. For example, in case of cables, cost per metre is lower
for longer cables. However, in practice shorter cables are beneficial whenever possible,
despite their higher cost per metre which is just not relevant.

6.3. Making the Case for Single-Objective Optimisation

Let us use the proposed criterion function – TCO to performance ratio – for single-objective
optimisation. Remember that we seek to minimise this function on the set of feasible solu-
tions. We refer to the same graphical representation as seen in Figure 6.1c, but this time we
supplement it with a straight line originating from the centre of coordinates. We gradually
increase the slope of this line, dragging it upwards, until it crosses one of the points repre-
senting solutions (see Figure 6.2a). The slope of this line – the tangent of its angle of incline
– is now equal to the ratio of cost to performance of the solution that the line crossed. It
is the minimal value among all feasible solutions, because the slope was monotonically
increased, and it is the first point crossed. Therefore, the solution corresponding to the
crossed point is optimal in the sense of single-objective optimisation.

Interestingly, it is also one of the non-dominated solutions of multi-objective optimisa-
tion. Let us prove it by contradiction. Suppose the point that is first crossed by the line
corresponds to a dominated solution. Therefore, there is at least one solution that domi-
nates it: where either (a) cost is lower, or (b) performance is higher, or (c) both; three such
possible solutions are shown in Figure 6.2b.
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Figure 6.2.: Geometric representation of single-objective optimisation.

The line’s slope is tan θ = Cost
Performance , therefore in case (a), when cost is lower, the slope

is also lower, and this means that the dominating point corresponding to case (a) would be
crossed first instead (it’s evident from the figure). This contradicts our assumption. Same
argument applies to cases (b) and (c). As a result, the assumption was incorrect, and we
come to conclusion that the first point crossed is a non-dominated solution.

This is a remarkable result, because we previously found that the first point crossed is
an optimal point in single-objective optimisation, and now it is also one of non-dominated
points in multi-objective optimisation. This means that a simple, single-objective opti-
misation procedure automatically yields one of the solutions that a much more complex
multi-objective optimisation would produce.

Therefore throughout this thesis we use single-objective optimisation. It is simple to
perform, and geometric representation of its results is intuitive to the human designer.
However, multi-objective optimisation is still helpful for experienced designers.

We also note that the proposed single-objective optimisation does not lead to the same re-
sults as the simple constrained optimisation, where a constraint on minimal performance is
imposed first, and then the lowest-cost solution is chosen. This can be demonstrated with
Figure 6.2a which depicts solutions that satisfy the constraint on minimal performance of
240 tasks per day. Of them, the point in the lower left corner corresponds to the lowest-
cost solution (241,2 tasks per day at $128,188). (It is also necessarily one of Pareto-optimal
solutions: any other solution that has a better performance also has a bigger cost).

In terms of the proposed single-objective optimisation, however, the optimal solution
is the rightmost Pareto-optimal solution (252,2 tasks per day at $132,608), because of the
minimal slope of the line passing through it. In simple terms, this solution is “better”,
because for a slightly bigger cost it offers substantially better performance than the lowest-
cost solution. It could happen, of course, that under other circumstances any of the Pareto-
optimal solutions could be optimal in the single-objective sense, including the lowest-cost
solution.
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6.4. Generalisation of the Criterion Function Based on Interval
Arithmetic

He is no wise man that will quit a cer-
tainty for an uncertainty.

Samuel Johnson

Both components of the criterion function – total cost of ownership and performance –
are never known with certainty. Therefore an ordinary number, the result of division of
TCO by performance, does not hold information about uncertainty of the input values.
There are two ways to deal with uncertainty: fuzzy numbers and interval arithmetic. For
the former, we can ascribe membership functions to fuzzy numbers to specify uncertainty;
however, we usually don’t have enough information to specify a meaningful shape of a
membership function. In contrast, interval arithmetic provides a compromise between
ability to express uncertainty and intuitive understanding.

Total cost of ownership is a sum of all costs during the lifetime of the system, and if
the components of this sum are specified as intervals, thereby incorporating uncertainty of
their estimation, then the final result of TCO evaluation will also be an interval, calculated
subject to simple rules of interval arithmetic. Performance, whenever possible, should also
be represented as an interval.

In the criterion function f = t
p , where t is TCO and p is performance, both arguments are

positive numbers. The function is increasing with respect to t and decreasing with respect
to p. Suppose TCO is represented with the interval t = [t, t], and performance with the
interval p = [p, p]. The resulting interval of the ratio is then given by:

[y, y] = [t/p, t/p]

To illustrate the above, we calculated the cost to performance ratio for 136 designs in
Figure 6.1, and then sorted them in ascending order. We then repeated the calculation, rep-
resenting both cost and performance as intervals with small random fluctuations around
the original values. This produced intervals for the cost to performance ratio. The inter-
vals for the best 25 designs are shown in Figure 6.3. Only if the intervals of the criterion
function of two designs do not overlap, we can say with certainty that one design is better
than the other (if they do overlap, the decision is uncertain).
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Figure 6.3.: Intervals for the criterion function of the best 25 designs.
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7. Economics of Cluster Computing

Textbooks often ignore the cost half of
cost-performance because costs change,
thereby dating books, and because the
issues are subtle and differ across in-
dustry segments. Yet, an understand-
ing of cost and its factors is essential for
computer architects to make intelligent
decisions about whether or not a new
feature should be included in designs
where cost is an issue. (Imagine ar-
chitects designing skyscrapers without
any information on costs of steel beams
and concrete!)

John L. Hennessy, David A. Patterson
COMPUTER ARCHITECTURE:

A QUANTITATIVE APPROACH,
5TH EDITION

In this chapter we review economics of cluster computing. We start with the discussion
of balance: when the budget is fixed and there are multiple contradicting requirements,
optimum is achieved by balancing these requirements. We then move to the total cost of
ownership, or TCO – a universally accepted measure of costs incurred during the life-cycle
of a system. We further explore economic characteristics of cluster computers, and con-
clude the chapter by highlighting the role of standardisation in reducing life-cycle costs.

7.1. From Innovative to Commodity Technologies

Cluster computing has traditionally relied on commodity technologies and mass-produced
off-the-shelf components. The word “commodity” refers to the fact that a market for a
product has little differentiation among possible suppliers: that is, any brand of a product
is acceptable. Many components of cluster computers are therefore commodities: network
hardware (adaptors, switches and cables), storage hardware (storage systems and hard
disk drives), memory modules, and finally motherboards. A notable exception are CPUs,
as there are only several vendors, and the choice of CPU dictates many other aspects of the
system.

For off-the-shelf components, their characteristic feature is low price, which is due to
the fact that mass-production allow to use more efficient technological processes, as well
as helps to amortise non-recurring engineering costs over large batches of products. CPU
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manufacturing is the example of mass production. Additionally, commodity technology
usually also implies mass production.

Switching to a new technology is only reasonable when benefits of switching outweigh
all costs associated with replacing a legacy technology with a new one, and overcome
hindrances such as inertia in thinking.

When a new, innovative product first appears on the market, it is difficult to maintain
low prices because mass production has not yet started. Mass production would allow
for lower prices, thereby increasing chances of market acceptance. But mass production is
only reasonable to start after the product finds market acceptance, and this creates a vicious
circle.

This is exacerbated due to the argument similar to Amdahl’s law but applicable to eco-
nomics as well: significantly improving a small subsystem leads to only a limited overall
improvement of the whole system (on the other hand, with a similar reasoning, signifi-
cantly increasing the cost of a subsystem leads to a limited relative increase of the system
cost). For example, memory manufacturers can come up with a new memory module,
having 50% better performance, measured with a STREAM benchmark. However, using
it in computer systems only boosts overall performance by 20%, while increasing overall
computer costs by 30%.

In this situation, cluster designers have little economic incentive to try the new mem-
ory type, because simply using more compute nodes with older memory technology will
result in the same 20% performance boost with roughly linear 20% cost increase. As a
result, the fate of innovation depends on market acceptance. In cluster computing, at-
tempts to decrease costs and reduce risk related to vendor lock-in are based on reliance on
mass-produced off-the-shelf components available from multiple vendors, which allows
to keep costs low. However, unlike the market segment of “traditional” supercomputers
where unique components are the norm, in cluster computing reliance on mass-produced
components may become a barrier to innovation.

7.2. Questions of Balance

With the criterion function we chose for this thesis – ratio of TCO to performance, see
Chapter 6 – it is especially evident that changes to a candidate solution that increase its
cost must be accompanied by exceeding increase in performance, otherwise the change is
inexpedient.

In this section we review several cases of changes in the structure of cluster comput-
ers, accentuating that in each particular case a detailed analysis of counteracting factors is
necessary to find a proper solution.

7.2.1. Choosing Proper Components

In their comprehensive exploration of the design space of cluster computers, Dieter and Di-
etz demonstrated that neither intuitive choices of components nor locally optimal choices
yield global optimality of a candidate solution: “For example, the best choice of proces-
sor is not always the fastest processor, nor the one with the best peak performance per
unit cost, nor the cheapest; the best processor is the one that is used in the design that
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best meets the requirements determined by your application(s) and budget (e.g., money,
space, power consumption)” [22]. To paraphrase, which component is the best can only be
determined after considering the entire candidate solution in connection with design con-
straints and expected use of the system: there are not really any shortcuts, and exhaustive
search can be the best alternative.

For example, in 2010, Douglas Eadline analysed technical and economic characteristics
of two Intel processors, Atom D510 and Xeon 5570, using “POV”, a rendering benchmark
[28]. According to the analysis, the Atom chip had a 7,7× lower performance, but at the
same time a 22× lower cost, therefore the price/performance advantage of Atom over
Xeon was on the order of 2,86×. The author noticed that considering other components as
well – including motherboards, memory modules and power supplies – will significantly
decrease the given advantage, but still hoped that low-power chips might be suitable for
certain workloads. Indeed, in 2013, “Hewlett-Packard” launched so-called “Moonshot”
line of servers, based on low-power Intel Atom S1260 CPUs and targeted at data centre
workloads [41]. (At the same time, we note that the 22× difference in price for Intel Atom
and Xeon chips is heavily influenced by purchasing power of market participants, and
may not reflect real manufacturing costs).

7.2.2. Multiprocessor Servers

Symmetric multiprocessor (SMP) servers can be a viable alternative to uniprocessor servers.
Several vendors produce dual-processor machines based on X86 architecture, therefore
it has now become a commodity technology. Prices gradually went down since such
servers first appeared on the market, influenced by mass production and competition.
Currently the easiest way to build a uniprocessor machine is to use a de facto standard
dual-processor motherboard, but install only one processor.

From system builder’s perspective, dual-processor servers allow to double the packag-
ing density by placing two CPUs in a standard 1U rack-mount server. Even more impor-
tantly, from programmer’s perspective, dual-processor servers are shared-memory ma-
chines that are easier to program with OpenMP or similar frameworks than two separate
uniprocessor machines.

However, multiprocessor designs must be well-balanced, because performance of sub-
systems may be divided among the processors. This was the case in the past with the
memory subsystem, when CPUs in a dual-processor machine interfaced to memory via a
bus, which created a bottleneck (now this limitation is overcome by having memory con-
trollers built into CPUs). This is still the case in the present with the network subsystem,
where the available network bandwidth is shared among processors. Therefore in case of
imbalances uniprocessor servers may be a better choice. For example, in their 2005 anal-
ysis [22], Dieter and Dietz found that under a fixed budget for a cluster computer, using
uniprocessor servers as compute nodes sometimes yielded better performance of a super-
computer.

Quad-processor servers apparently fell victim to a vicious circle described above: de-
mand for such machines could emerge if their prices were lower due to mass production,
but mass production could only start if demand was high enough. As a result, their prices
did not fall low enough to make these servers attractive as cluster compute nodes. Ad-
ditionally, performance of interconnection networks increased to the point that allowed
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to program cluster computers using only MPI rather than with a hybrid MPI+OpenMP
approach; this made quad-processor servers with fast shared memory redundant, because
cheaper dual-processor servers could deliver the same performance. Quad-processor ma-
chines remain a useful niche solution in data centre workloads where large amounts of
shared memory are important, such as database systems and big data analytics.

Having transparent access to huge amounts of shared memory simplifies programming
of HPC software, therefore there have been attempts to combine up to tens of standard
servers to form what from programmer’s viewpoint is a shared-memory machine. For ex-
ample, “Gordon” supercomputer [98] combines up to 32 dual-processor servers with pro-
prietary vSMP Foundation software into a shared-memory machine with 2 TB of DRAM
memory. Inter-processor communication is done via InfiniBand network, and is transpar-
ent for the programmer.

This software-based approach for building shared-memory machines has much higher
flexibility and avoids long hardware design cycles. The resulting “virtual” multiproces-
sor machine uses only commodity dual-processor servers and mass-produced InfiniBand
networking hardware, leading to low costs.

7.2.3. Local vs. Network Storage

Computer clusters are often bundled with storage systems that provide a coherent view
of the parallel file system to all compute nodes in the cluster. However, such systems are
expensive, especially when they are provisioned to support highly-parallel access. For
many applications there is a need for local temporary storage, where each running thread
performs I/O operations with its own set of files. In this case, having a RAID0 HDD-based
storage array within each compute node significantly decreases performance requirements
on the parallel file system, freeing it (and the interconnection network) for other tasks
instead of moving temporary results back and forth.

Here, the choice is either to over-provision the storage subsystem or to install RAID
controllers and HDD drives into compute nodes. The latter is a low-cost option to reduce
time applications spend for I/O operations; however, there are two possible drawbacks:
(a) for applications that don’t use temporary files this option is useless and only increases
cluster costs, and (b) it also creates additional points of failure in compute nodes.

Regarding the former, Shainer et al. [84] note that using a parallel file system, “Lustre”,
when running CAE software “LS-DYNA” led to performance increase compared to using
local disk storage (the paper doesn’t detail whether RAID arrays were used or not). Ap-
parently, “LS-DYNA” was unable to efficiently utilise local storage, or this storage was in-
adequately slow, which led to the necessity of employing a parallel file system. Installing a
parallel storage system raises TCO (including maintenance costs); if performance increase
is comparable or higher, the installation is justified.

If a RAID controller or any drive in a RAID0 array fails, the job will need rescheduling,
decreasing overall job throughput of a computer cluster. If failure rates of components are
known, the impact can be analysed quantitatively for various storage configurations. For
example, if a RAID10 array raises TCO by 5% compared to RAID0, but only increases job
throughput by 3%, its use is not justifiable.

Installing more RAM in a server to be used for disk cache can further boost performance
of the local storage subsystem. Therefore the question could be posed as for the balance
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between adding more RAM, which is expensive and prone to cache thrashing, and adding
more HDD drives to a RAID array, which improves I/O throughput but also has its lim-
its (such as throughput of the RAID controller itself). Yet another approach consists of
increasing the amount of RAM or flash memory based caches on RAID controllers. This
multitude of choices necessitates careful analysis in search of balance.

7.2.4. Regular vs. “Green” Components

There has been ongoing debate as to whether low-power, or “green” components are suit-
able for HPC purposes. Generally, within the same semiconductor manufacturing process,
specified in nanometres, power savings are attained by using lower clock frequencies and
possibly lower voltage; the chips run slower but use less power. Switching to a more ad-
vanced manufacturing process (called “die shrink”) allows either to (a) use less power at
the same frequency, or (b) raise frequency while staying within the same power envelope.

Blumstengel and Arenz [13] analysed power consumption of servers using DRAM mod-
ules made with memory chips with differing manufacturing process (30, 40 and 50 nanome-
tres), transfer rates (1600 and 1333 MT/s) and voltages (1,35 V and 1,5 V). For exam-
ple, in a dual-processor Intel Sandybridge EP server with 64 GBytes of memory running
SPECPower benchmark, memory modules ran in two configurations: 1600 MT/s at 1,5 V
and 1333 MT/s at 1,35 V. Power consumption of the server was 217 W and 208 W, respec-
tively. Power savings therefore totalled to 9 W, or 4,3%, attributed to both lower memory
clock frequency and lower voltage. Authors explain that comparatively low per-server
savings translate into large figures for big installations. At the same time, reducing mem-
ory speed led to a 2,3% decreased benchmark performance: 497 144 op/s vs. 485 952 op/s,
respectively.

The results were then analysed according to the performance/power ratio, that is, how
many benchmark operations could be performed per watt of consumed power (higher is
better). The metric for a configuration with low-power memory is better, 2336 op/W vs.
2291 op/W (a difference of roughly 2%), thereby seemingly justifying the use of memory
modules in low-power mode.

Let us now compare the two configurations according to the TCO/performance ratio
we adopted in Chapter 6. We will assume server cost of $5,000 and electricity price of
$0,15 per kW·h [29], and will consider TCO to be server cost plus energy costs in the life-
time of four years. For 217 W and 208 W servers, lifetime energy costs are $1,140 and
$1,093, respectively. TCO figures are therefore $6,140 and $6,093, and TCO/performance
ratios are 0,01235 and 0,01254 (lower is better). With our metric, the high-speed memory
configuration is in fact better by roughly 1,5%. This highlights that comparing design al-
ternatives immensely depends on the choice of criterion function. The difference of 1,5%
might appear modest, but with large machines, where 1 PFLOPS of peak performance has
capital costs on the order of 25 million US dollars (see Chapter 17 for more estimates), 1,5%
translates into $375,000.

Further analysis reveals that the high-speed memory configuration remains better until
electricity price rises to $0,80 per kW·h (that is, five-fold), which again disputes expedience
of using low-power memory configuration.

Overall, we note that operating computer components in low-power mode should be
balanced against possible performance degradation. Alternatively, switching to compo-
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nents manufactured with a more advanced semiconductor process will provide power
savings without performance impact, but incurs higher hardware procurement costs.

7.2.5. Custom vs. Ready-Made Software

In engineering, supercomputers allow to decrease time-to-market for new products using
simulation and virtual product prototyping. Project budget can be spent for developing
efficient custom software, however, this path is risky and time-consuming. Alternatively,
less efficient but ready-made software can be used. This path requires investment into
software licenses and more hardware than might be necessary with custom software, but
it reduces risks of overdue software projects and overspent budgets.

When creating custom software is inevitable – e.g., because no ready-made software ex-
ists – there can be numerous choices as to which hardware architecture to target. It might
be easier to write a program for a shared-memory SMP machine than for a distributed-
memory computer cluster, thereby conserving expensive programmer time. On the other
hand, computer clusters are cheaper to rent than SMP machines, especially with the widespread
emergence of cloud providers, so investing time into writing an efficient and scalable MPI
program can eventually pay off.

7.2.6. Regular vs. Blade Servers

There are three advantages of using blade servers instead of regular rack-mount servers:
first, blade servers are installed into an enclosure and therefore can share certain infras-
tructural components such as power supplies. For example, an enclosure with 16 blade
servers can have just four large power supplies with an added benefit of redundancy, in-
stead of 16 small power supplies, one per each server. Four larger power supplies are also
cheaper to manufacture than 16 smaller ones due to economy of scale.

Second, blade servers can connect to network hardware via enclosure backplane, elimi-
nating the need for cables. The backplane connection is also very reliable and not as prone
to vibration as cable connections.

The third advantage of blade servers is their increased density. However, according
to the law of diminishing returns, further attempts to minimise server volume will be less
successful. Indeed, a standard 42U rack can house 42 regular servers. Blade enclosure from
“Hewlett-Packard” can house 16 blade servers in 10U space, thereby increasing the num-
ber of servers per rack to 64, or by 52%. “IBM iDataPlex” rack further increases the number
of servers to 84, or by 31% compared to previous step. Subsequent density increase would
be even more difficult to achieve with air-cooled servers, and a massive change to water
cooling will be required. Constrained cooling in high-density servers stipulates the use of
low-power components such as CPUs which results in performance loss.

The major downside of blade servers is their price, explained by custom development.
Blade servers from different manufacturers are not interchangeable, and there are no stan-
dards, so each manufacturer has to “reinvent the wheel” and commit an unnecessary R&D
spending.

Additionally, decreasing the volume of computing equipment has limited effect on occu-
pied floor space due to reasons similar to Amdahl’s law: parts of computing infrastructure,
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such as power supply and cooling hardware, are not affected by this decrease. For exam-
ple, suppose there were four racks of servers, two racks of cooling systems, and one rack
of power supply equipment, for a total of seven racks. If server density is increased twice,
there will be two server racks instead of four, but the overall number of racks would be
five instead of seven, which translates into a modest 29% floor space decrease. Inter-rack
aisles are also not affected by server density increase, and therefore further diminish the
overall effect. As a result, decreased floor space and savings associated with it may not
compensate for increased cost of blade servers.

7.2.7. Fat-Trees vs. “Thin” Trees

Multi-level fat-tree networks are studied in depth in Chapter 13. Navaridas et al. [68]
demonstrated that blocking fat-trees (“thin” trees) can cause performance degradation for
applications with insufficient locality of communications. As a result, there is a balance in
choosing (1) a more expensive non-blocking network, or (2) a cheaper blocking network
that incurs performance impact.

7.2.8. “Brainware”

Bischof et al. [12] observed that a small amount of user projects in a supercomputer centre
(15 projects) corresponded to a large amount of computer usage (50%). As a result, even
slight performance tuning of several top projects can save energy due to decreased execu-
tion times, thereby freeing up money. According to their results, improving performance
of the top 30 projects in their environment by 20% would save enough money to pay three
HPC experts involved in tuning (“brainware”), plus e0,5M per year more. The balance
here is in either (1) using more hardware to run inefficiently programmed software, or (2)
using “brainware” – expert knowledge – to make software more efficient without changing
hardware resources.

7.3. Total Cost of Ownership and Its Components

Total cost of ownership, or TCO, is a universal measure of expenditures incurred by the
system throughout its life cycle. Expenditures are broadly categorised into capital and
operating. TCO arguably provides the most natural way to account for various factors of
system operation in a consistent fashion. For example, to account for power consumption
of a system there is no need to introduce power into an existing criterion function that
contains cost, forming non-intuitive constructs such as “performance per cost per watt”.
Instead, cost of consumed electricity, which easily reflects power consumption, can be
added to other costs. Additionally, this approach allows to naturally take into account
variation of electricity prices around the world.

TCO also allows to correctly analyse situations where a product seemingly inexpensive
in terms of capital expenditures requires high operating expenditures. If not the TCO,
products would be judged based on their capital costs, giving unfair advantage to products
that have lower initial price but then require maintenance contracts, unforeseen licensing
costs, etc.
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TCO calculations can be as complex or as simple as required for each particular case
(or as available data allows). Even if no detailed data is available, quoting figures for
operating expenditures helps to put numbers into context. For example, Hoefler estimates
[42] that electricity costs for a typical server over four years comprise 45% of the cost of
the server itself. Another example is a press release by the US Department of Defence
that breaks the $105 million acquisition into “$80 million for multiple systems along with
an additional $25 million in hardware and software maintenance services” [110] – that is,
capital and operating expenditures (note that in this case electricity costs were not included
into operating expenditures).

7.3.1. Properties of TCO as a Function

Let us consider TCO of a cluster computer as a function of the number of compute nodes:
TCO = f(N). It is defined for integer positive values of N . For practical purposes, this
function can be considered monotonically increasing. Additionally, it is characterised by
stepping behaviour: a small change in N sometimes incurs a relatively large increase in
TCO value. This happens because adding just one more compute node sometimes entails
adding a new network switch, a new rack, etc. In other situations, infrastructural com-
ponents – networks, racks, etc. – have enough reserves to accommodate more compute
nodes.

This also explains why the function is not additive, that is, TCO(A + B) 6= TCO(A) +
TCO(B). When the cluster of A nodes is considered, adding B nodes might be able to
make use of available reserves in infrastructural components, therefore building a single
large cluster of A + B nodes could be less expensive than building two clusters with A
and B nodes separately. In other situations, however, the result can be different. Let us
illustrate this by example, ignoring operating expenditures.

Example 7.1 The cluster for A = 20 nodes requires 20 nodes, one 36-port switch and one rack.
The cluster for B = 16 nodes requires 16 nodes, one 36-port switch and one rack. The cluster for
A+B = 36 nodes requires 36 nodes, one 36-port switch and one rack. In this case, TCO(A+B) <
TCO(A) + TCO(B), because adding B = 16 nodes to existing A = 20 nodes uses available
resources – switch ports and rack space.

Let us now consider the case of A = B = 35 nodes. Apart from nodes, both small clusters will
need one 36-port switch and a rack. At the same time, a cluster of A + B = 70 nodes will need
two racks and, more importantly, a sophisticated switch with 70 or more ports. The cost of this
switch will be higher than the cost of two standard, mass-produced 36-port switches. In this case,
TCO(A+B) > TCO(A) + TCO(B).

Calculating TCO(N) by different methods can lead to different results. The major con-
tributing factors are the following:

1. Different composition of costs included in TCO calculation – that is, whether certain
components are included or omitted (for example, due to the lack of data). Another
situation is attributing costs to either capital or operating: for example, housing a
computer can be attributed to capital expenditures (building a machine room) or
operating expenditures (renting data centre space).
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2. Different prices used in calculation. This includes price difference depending on
brand (different makers of similar equipment), market price fluctuations over time,
difference in prices across the regions of the world, difference in electricity prices
depending on its origin (“regular” vs. “renewable” energy), etc.

3. Different structure of components in the machine, in the way they are connected
and placed. One example would be using a two-level fat-tree network instead of a
modular switch (Chapter 13). Another example is placing compute nodes into racks
in a different manner (Chapter 16); dense placement may result in freeing up some
racks, which produces savings in rack cost (capital expenditures) as well as space
rental (operating expenditures).

7.3.2. Software

In this and the following sections we give examples of TCO components that are often
overlooked. We start with software costs.

Wolfgang Burke, explaining the use of HPC technologies at “BMW Group”, the automo-
tive company, notes [18] that the current per-core licensing model needs revisiting: scala-
bility of CAE software is limited, therefore with increasing the number of processor cores
speed-up soon flattens out, while licensing costs continue to rise linearly. In other words,
CAE software doesn’t scale well, and the party that pays for this inefficiency is the cus-
tomer, not the software vendor.

7.3.3. Installation and Deployment

Installation and integration may require vendor’s expertise. Additionally, installation of
large systems cannot be done by in-house workforce in reasonable time. As a result, instal-
lation costs should be accounted for. Certain site preparation activities, such as installing
raised floors for cables and water pipes, can require a large amount of construction work.

Seemingly simple tasks such as pulling network cables can also result in significant
spendings: for example, in 2006 “Hewlett-Packard” and “IDC” estimated cost for pulling
a cable at $100 [82], although in our opinion this figure is inflated because it is based on
the assumption that the pulling operation requires two man-hours.

7.3.4. Power

Holistic approach to power consumption allows to more accurately manage power costs.
Brehm et al. note [15] that there is an optimal CPU clock frequency for a computer clus-
ter that yields the lowest “energy-to-solution” for a particular job. Setting frequency too
low has little effect on overall power consumption of the computer in watts, but together
with impaired performance it leads to longer time-to-solution, and therefore to the overall
higher energy consumption in watt-hours. On the other hand, setting too high a frequency,
although slightly increasing performance, disproportionately increases energy consump-
tion due to semiconductor leakage currents in CPUs.

European project “FIT4Green” explored possibilities to reduce power consumption in
data centres by consolidating virtual machines via live migration and switching off re-
claimed servers. The approach was verified in supercomputing data centres (Jülich Super-
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computing Centre and other sites) and was estimated to provide energy savings from 4%
to 27% [34].

Switching to new technologies allows to achieve lower power consumption per unit
of performance. For example, in 2009 the “Jaguar” supercomputer had 2,98 MW/PFLOPS
(megawatts per one PFLOPS of peak performance) [105]. In 2012, the “Yellowstone” super-
computer achieved a 0,96 MW/PFLOPS [107] – that is, a 3× better metric value. However,
power consumption considerations alone are not enough as a justification to upgrade to
new technology.

Indeed, the 2012 electricity price for US commercial customers is $0,10 per kW·h [111],
which translates into $0,87M per MW·year. Therefore upgrading from 2009 to 2012 tech-
nology would lead to energy savings of roughly $1,75M per year per each PFLOPS of peak
performance. However, a 1,5 PFLOPS “Yellowstone” computer is estimated to have a cap-
ital cost of $25M to $35M [96], which is an order of magnitude higher per PFLOPS than
anticipated $2M per year savings from reduced energy consumption. As a result, decom-
missioning a supercomputer based on its high energy consumption alone is not justified.

Other factors may come into play, however, such as space savings, because when no
more data centre floor space is available for expansion, the alternatives are to either (1)
upgrade to a new computer technology, providing more performance within the same
floor space, or (2) build a new data centre, which could be even more expensive. Under
these circumstances, upgrading becomes economically viable.

Interestingly, power consumption of supercomputers closely relates to data centre floor
space: for example, Brehm et al. [15] note that in a new data centre built for housing the
“SuperMUC” computer [55], the space for computing equipment is 3 160 m2, while areas
for cooling and electrical equipment take up twice more space combined – 4 643 m2 and
1 750 m2, respectively.

7.3.5. Repair and Maintenance

Computer clusters contain a lot of parts that are likely to fail during operation. This sit-
uation is alleviated by the fact that some parts are commodity components that can be
sourced from multiple vendors. In any case, during the lifetime of a cluster computer
break downs are inevitable, and there must be a strategy to handle them.

One strategy involves repair and maintenance. Downtimes should be minimised, and
this could be done by either (1) using more reliable parts (with lower failure rates) – that is,
maximising time to failure, or (2) repairing faster – that is, minimising recovery time (the
idea of focusing on MTTR rather than on MTTF is due to “Recovery oriented computing”
project by Patterson et al. [78]).

The former approach requires more expensive parts that have lower failure rates or have
built-in fault-tolerance mechanisms. The latter approach requires keeping a reserve of
spare parts to facilitate faster replacement, avoiding the need to order them from the man-
ufacturer.

There is, however, an unconventional view that failed compute nodes should be sim-
ply disregarded. Based on the concept of recovery-oriented computing, Douglas Eadline
supposed [27] that for low-cost compute nodes repair effort may be inexpedient. In this
case, he proposes, nodes should be turned off and ignored, possibly until collecting and
shipping them to a centralised repair shop at a later time.
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We note that the economic viability of this approach generally depends on repair costs
that can vary across the world, but overall the approach appears interesting. The main
principle here is that staff time is not dispersed for tasks that can be done later and in a
more suitable environment such as a specialised repair shop.

Nodes that fail easily have their own implications. The job that utilised the failed node
will need rescheduling, and the previous optimal topology-aware task placement can be
impossible. The best workaround is for the job to flexibly adapt to the number of compute
nodes that the scheduler can allocate.

7.4. Aggregate and Specific Characteristics

Technical and economic characteristics of supercomputers can be divided into two broad
categories: aggregate and specific. Aggregate characteristics are those that can be used
with the word “total”: total performance, power consumption (W), occupied floor space
(m2), volume of equipment (m3), etc. Specific characteristics are ratios of one aggregate
characteristic to another. Some commonly used specific characteristics are listed below:

1. Cost/performance, or TCO/Performance – the metric that we use throughout this
thesis. Applicable both across technology generations and across different architec-
tures.

2. Performance/Watt – characterises energy efficiency. Variation of this metric is MW/PFLOPS
that we used in section 7.3.4. It is a meaningful metric for comparison between dif-
ferent computer architectures, but across technology generations it mostly reflects
advances in semiconductor technology.

3. Performance/m2 and Performance/m3. As with Performance/Watt, across genera-
tions these metrics mostly reflect advances in semiconductor technology. However,
within one technology generation, they clearly characterise manufacturer’s ability to
densely pack components: water-cooled servers, for instance, have higher values of
these metrics.

(There can also be component-level rather than system-level characteristics; for example,
for CPUs these can be Performance per MHz of clock frequency, or Performance per mm2

of die size).
Trends in some technical characteristics over time – i.e., from one generation of tech-

nology to another – have been studied. For characteristics such as Performance/Watt or
Performance/m2 growth is slowing down, but it is still continuing, and as new results
arrive, marketing specialists still report them as “breakthroughs”.

What is less studied, however, are trends in economic characteristics. What were the
trends, for example, for system-level Cost/Performance, or better yet TCO/Performance
of computer clusters across many generations of semiconductor manufacturing processes?
Knowing the trend would help in predicting economic characteristics of future exascale
machines. Hindering factors are: (a) cost data for new installations is unavailable to gen-
eral public, (b) TCO data only becomes available after several years of operation, and again
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rarely becomes public, (c) there are different approaches of structuring TCO into compo-
nents which skews reported results, and (d) economic analysis is required as costs must be
adjusted with regards to inflation.

7.5. Public Spending Issues

Intuitively, costs of obtaining one unit of performance (Cost/Performance metric) should
decrease with time; however, it is unclear how fast is this decrease, whether it has limits,
and whether it has slowed down recently. It is also obscure whether Cost/Performance
ratio within one technology generation is approximately equal or drastically different for
computers based on different architectures (e.g., between general-purpose CPUs and spe-
cialised accelerators such as GPUs). These questions have real-world implications, because
in the situation of limited resources investment decisions must be based on facts rather
than assumptions. For example, what should be the balance for investing the public funds
between (a) funding research in new and more efficient architectures, and (b) funding mass
production of less-efficient but cheap processors? Problems of this sort are often tackled
by operations research, but we need to gather a lot of data even to formulate questions.

There are yet other factors that complicate cost analysis. Cluster computers are built
from mass-produced components, but any attempt to introduce new types of components
requires R&D effort. This was the case, for example, with the “Gordon” supercomputer
[98] which utilised flash drives to create a new level of storage hierarchy. Although flash
drives were mass-produced, a considerable R&D effort was necessary to find the ways to
use them efficiently. R&D costs cannot be incorporated into cost of the first prototype,
because doing so will make the prototype less attractive than same-performing computers
based on traditional architectures. Nor can R&D costs be amortised over a fixed number
of systems, because it is not known beforehand how many systems using the new design
would be produced.

Sometimes an innovation is embodied in a product, and mass production starts. In this
case R&D and other non-recurring engineering costs are amortised over large batches.
However, public spending doesn’t stop at just buying mass-produced items, because sig-
nificant effort is still needed to make efficient use of technology. A prominent example
are GPU accelerators: when this technology became available, institutions that embraced
it had to invest time and other resources before they could reap performance benefits –
at least by rewriting their software to make use of GPUs. Therefore private investment
by GPU vendors was followed by significant public spendings, required for tailoring the
product to users’ needs.

The story now repeats with Intel Xeon Phi accelerators: there is a learning curve to pass
before enough knowledge and skills are accumulated and research laboratories can make
full use of the accelerator. Here, public spending also accompanies private investment in
the product. But in this case it is somewhat lower than in the case of GPUs, because the
Intel Xeon Phi accelerator has a familiar X86-based architecture and software development
tools.

The goal for emerging technologies is therefore not only to be cheap in production but
also to minimise consequent public spending for tailoring the product to users’ needs.
Complex functionality should preferably be implemented on manufacturer’s side so that
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costs could be amortised over many users. This way users won’t need to “reinvent the
wheel” and duplicate each other’s efforts by implementing functionality that could be
done by manufacturer once and for all (there is, of course, a balance between simplicity
and “over-engineering”).

Another way to curb public spending is to use open-source technologies wherever pos-
sible, both for software and hardware. This way, if functionality was not provided by the
manufacturer but was implemented by a user group, it would become available to other
users, lowering costs. A good example is “Rocks”, an open-source Linux distribution de-
signed specifically for easy deployment of cluster computers [74]. “Rocks” was developed
by University of California, San Diego and contributors, using funding from the US Na-
tional Science Foundation. During the course of ten years, it was installed on almost 2 000
clusters around the world, thereby relieving the institutions from inventing their own ad
hoc solutions, decreasing custom development effort, and lowering costs.
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8. Dealing with Combinatorial Explosion

Fools ignore complexity. Pragmatists
suffer it. Some can avoid it. Geniuses
remove it.

Alan Jay Perlis
FROM COMPLEXITY TO SIMPLICITY:
UNLEASH YOUR ORGANISATION’S

POTENTIAL

8.1. Sources of Combinatorial Explosion

We noted in Chapter 3 that configurations of a technical system (in our case, a compute
node of a cluster) to be examined are generated by traversing a multipartite configuration
graph. The graph describes compatibility relations between components of a technical
system. Trying to oversimplify the graph leads to inability to capture crucial aspects of the
system under study. However, expanding the level of detail beyond reasonable limits (and
therefore complicating the graph) leads to exponential increase in the number of generated
configurations.

Thereby a balance must be maintained: the graph should be detailed enough to capture
aspects of the system important for further analysis, but not more detailed than that. For
example, as described in section 3.5, the BIOS setting called “Memory interleave” can have
impact on application performance, and its boolean value can be represented in a config-
uration graph. However, if performance models employed in subsequent design stages
don’t make use of the value of this setting, there is no reason to include it in the graph, as
this will needlessly double the number of generated configurations.

Even if the configuration graph is carefully optimised by leaving out unnecessary fea-
tures, it still can generate a considerable number of configurations. For example, in Chap-
ter 17 we find that the sample graph used throughout this thesis generates 264 configura-
tions of Hewlett-Packard’s “BL465c G7” servers.

It is always beneficial to decrease the number of configurations to be analysed, because
it consequently decreases the number of invocations of design modules (the modules that
design interconnection networks, UPS systems, etc.) We employ two approaches to min-
imise the number of configurations to be examined and shorten the design time: heuristics
and design constraints.
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8.2. Heuristics

We define a heuristic as a technique that is faster than exhaustive search and provides a
satisfactory, although not necessarily optimal solution. In this thesis, we advocate for the
use of “TCO/Performance” criterion function, and in Chapter 17 we discover that the 264
configurations of a compute node lead to cluster designs with vastly different values of
the criterion function; differences as large as five times have been observed.

This suggests that the majority of compute node configurations don’t lead to good de-
signs, and consequently we can try to isolate such unproductive configurations. The goal
is to find some metric for a configuration that (a) reflects the quality of this configuration
as a building block for cluster computers, and (b) can be derived from the configuration’s
technical and economic characteristic. Then, based on the value of this metric, we can label
some configurations as unpromising and weed them out from further consideration. The
result is that the size of the design space is significantly decreased, and only a small share
of promising configurations is examined.

Two conditions must be fulfilled for the heuristic to be efficient: (1) the metric must be
easy to calculate – that is, finding out whether a configuration is promising or not must be
easier than subjecting it to the usual design stages, and (2) the metric must be a good pre-
dictor of the quality of the cluster computer – in particular, “false negative” errors, when a
good or even optimal compute node configuration is erroneously marked as unpromising
and rejected, are strongly undesirable.

8.2.1. The Case of Peak Floating-point Performance

Not surprisingly, we found that the value of “Cost/Peak floating-point performance” ra-
tio of a single compute node fulfils both conditions: it is easy to calculate, and it also
serves as a good predictor of the respective ratio of the cluster built using such nodes.
We conducted an experiment using the same sample configuration graph that we use in
Chapter 17. We selected the top 10% of 264 generated configurations (that is, 26 configura-
tions) with the lowest “Cost/Peak FP performance” ratio and designed computer clusters
based on these compute node configurations using the following parameters: minimal
peak floating-point performance of 100 TFLOPS, a non-blocking fat-tree network, and a
UPS system with at least 10 minutes of backup time.

These 26 configurations resulted in the equal number of cluster designs. The heuristic
indeed didn’t leave out good configurations: in fact, 19 cluster designs out of 26 were the
best designs obtained during exhaustive search. In other words, applying this heuristic
does not accidentally reject configurations that lead to optimal designs.

We can also formulate this finding more quantitatively: if we assume the quality of the
optimal design to be 100%, then the top 10% of designs obtained using exhaustive search
had the quality ranging from 100% to 67%, while the top 10% of configurations selected
by the heuristic led to designs with the quality ranging from 100% to 57%. We thereby
conclude that, when designing computer clusters based on the requirement of minimal
peak floating-point performance, the proposed heuristic can reduce design time ten-fold
without compromising quality of obtained solutions.
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8.2.2. The Case of Application Performance of ANSYS Fluent Software

“ANSYS Fluent” is a CFD software suite which heavily relies on floating-point capabilities
of the computer, but its performance also depends on memory and network performance.
We therefore were interested in finding whether the previously proposed heuristic, based
on peak floating-point performance of a single compute node, can be used to shrink the
design space of clusters designed for “ANSYS Fluent” workloads. We repeated the ex-
periment above with the top 10% of configurations selected by the heuristic, this time
designing computer clusters with the minimal performance of 240 tasks per day on the
"truck_111m" benchmark of “ANSYS Fluent” software.

This time, only 6 configurations out of 26 led to actual cluster designs, because the re-
maining 20 configurations selected by the heuristic could not provide the required perfor-
mance of 240 tasks per day: although these configurations had an appealing “Cost/Peak
FP performance” ratio, they all featured a cheap Gigabit Ethernet network which severely
limits performance of “ANSYS Fluent”. (This is not surprising, because similar configu-
rations equipped with an expensive InfiniBand network adaptor had a worse value of the
metric, and were therefore rejected by the heuristic).

Of 6 configurations that could provide the required performance, 5 used InfiniBand net-
work, and only one used Gigabit Ethernet, as its CPUs were powerful enough (running
at the clock frequency of 3 GHz) to limit the required level of parallelism and therefore
compensate for poor network scalability. All 6 configurations coincided with the 6 top
configurations detected by exhaustive search.

Quantitatively, 10% of best configurations examined by exhaustive search led to cluster
designs with the quality ranging from 100% to 70%, while 10% of configurations selected
by the proposed heuristic led to 6 cluster designs with the quality ranging from 100%
to 84%. Again, the heuristic did not accidentally reject the optimal configuration, and
we conclude it can be used for designing computer clusters based on the requirement of
minimal performance of “ANSYS Fluent” software.

8.2.3. Conclusion

The above examples demonstrate that we can safely consider a huge amount (e.g., 90%)
of generated configurations as potentially unproductive and disregard them. They do not
participate in any of the subsequent design stages, which significantly decreases overall
design time. For even greater safety, the prototype CAD tool weeds out 80% of unpromis-
ing configurations when applying a heuristic, while still leaving the remaining 20% for
further analysis.

The proposed heuristic is based on floating-point capabilities of a compute node, and
therefore its applicability is limited by floating-point intensive codes. It cannot be used to
design computer clusters for workloads such as data mining which don’t rely on floating-
point operations, because the value of the metric “Cost/Peak FP performance” ratio is a
bad predictor of cluster performance on data mining tasks.
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8.3. Design Constraints

Establishing constraints on technical and economic characteristics of the candidate solu-
tion or its components is an efficient measure that allows to reject unsuitable solutions on
as early stages as possible.

8.3.1. Node-level Constraints

A configuration of a compute node has many technical and economic characteristics, and
these can be used to filter out unsuitable configurations right after they have been gener-
ated via graph traversal. Rejected configurations don’t participate in subsequent design
stages, which shortens overall design time.

It should be noted, however, that the entire framework for automated design of com-
puter clusters was created for the purpose of automation, on the assumption that the com-
plexity of the task is beyond human limits. In other words, guidance from the engineer
can sometimes be misleading. With this in mind, constraints should only be established
on characteristics when their meaning is evident. For example, we can filter out config-
urations that have too few main memory per CPU core when we know that application
software to be run on the machine will require a particular amount of memory.

On the other hand, it makes little sense to establish constraints on the number of cores
in a CPU, apart from trying to exclude outdated CPU models from consideration, in which
case they should not be present in the graph database in the first place. It may be tempting
to specify that 16-core CPUs should be used in place of 12-core ones, but the engineer may
not realise the full complexity of interrelations between components as well as economic
aspects involved.

For instance, the compute node configuration which is optimal for the example in sec-
tion 8.2.1 is equipped with the “AMD Opteron 6274” CPU. This CPU has 16 cores, 16 MBytes
of L3 cache memory, runs at the clock frequency of 2,2 GHz, and costs $779. Now consider
another CPU, the “AMD Opteron 6238”: it has 12 cores, the same 16 MBytes of L3 cache
memory (that is, 33% more cache memory per core), has a clock frequency of 2,6 GHz, and
costs $569.

For certain applications whose working set fits well in cache memory, the higher per-
core cache size of the latter CPU, together with its higher clock frequency and lower price,
can make it the optimal choice. To avoid making such decisions on a case-by-case basis,
the design task is best left to automated tools. To summarise, constraints should not be
established if they are based purely on engineer’s intuition.

8.3.2. System-level Constraints

System-level constraints are those that are established on characteristics of the cluster com-
puter as a whole, and not on individual components such as compute nodes. The reader is
already familiar with the essential constraint of this sort, the minimal performance of the
cluster computer – without specifying it, the design process cannot even start.

There are other system-level constraints as well: economic (capital and operating costs
of the computer) and technical (power consumption, volume of equipment, occupied floor
space, etc.)
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The design process passes each candidate compute node configuration through a se-
quence of stages (see section 3.4). On each stage, the final configuration of the cluster com-
puter gradually builds up, based on the configuration of the compute node. This allows to
reject violating configurations on early stages.

For example, if we determine the required number of compute nodes and find that
power consumption limits or equipment volume limits are exceeded, then there is no need
to proceed with the next stage that designs an interconnection network; we can reject the
current configuration and examine the next one. But if the network was designed, both
constraints should be checked again, because after adding network equipment one or both
limits could be exceeded. (Constraint checking is a simple and fast operation, much faster
than invocation of an external design module).

As in the previous case of node-level constraints, system-level constraints are only ben-
eficial when they stem from real life limitations. For instance, trying to specify a constraint
on the volume of equipment, in the attempt to design a “smaller” computer when, in fact,
there is a lot of available space, can force the automated design system to use expensive
blade servers instead of the ordinary rack-mounted servers, resulting in unnecessarily ex-
pensive solution.

It cannot be known in advance whether a particular compute node configuration will
be rejected due to system-level constraints – and if yes, at which design stage. Different
configurations can be rejected at different stages, but every rejection shortens design time
and reduces the number of final cluster designs presented to the engineer.

8.4. The Case Against Local Optimisations

Instead of meticulously searching through many configurations, it can be tempting to per-
form “local” optimisations – that is, to find an ostensibly “optimal” model of a component,
and reject configurations that feature non-optimal models of that component. This will im-
mediately weed out many configurations, seemingly reducing the search space.

For example, one can try to determine an “optimal” CPU model. Hewlett-Packard’s
“BL465c G7” server can be configured with 18 different CPU models, so choosing one
model and rejecting all other models will tremendously decrease the number of configu-
rations to be examined.

In fact, such local optimisations can miss globally optimal solutions. As explained in sec-
tion 7.2.1, locally optimal choices of components do not lead to global optimality. There is
no CPU model which is equally good for all workloads, so examining only one CPU model
is likely to miss other, better suited models. Size and complexity of design space clearly
exceeds human capabilities, and well-intentioned attempts of optimising locally can lead
to very uneconomical solutions. Let us illustrate this by a very simplified example.

Example 8.1 Suppose we are designing a cluster computer with a minimum performance of 100
tasks per day, and the constraint of 7 units imposed on the equipment volume. There are two servers
that can be used as compute nodes: rack-mounted server R costs $2,000 and occupies one unit of
space, while blade server B costs $4,000 and occupies 0,5 units.

Both servers can be equipped with one of the two CPUs. CPU X costs $1,000 and delivers
performance of 10 tasks per day, while CPU Y costs $2,000 and delivers performance of 15 tasks
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Configu-
ration
index

Node
type

CPU
type

Number
of nodes

Performance
Equipment

volume
Cost

Cost to
performance

ratio

1 R X 10 100 10 $30,000 300
2 R Y 7 105 7 $28,000 267
3 B X 10 100 5 $50,000 500
4 B Y 7 105 3,5 $42,000 400

Table 8.1.: Four configurations of the sample cluster

per day. This way, there are four different server configurations that lead to cluster designs listed
in Table 8.1.

One attempt of local optimisation may claim that CPUX has a higher performance per unit cost,
therefore it is locally optimal and should be chosen (this decision would favour configurations 1 and
3 that both feature CPU X).

Another line of reasoning may be based on space constraints; one can claim that blade servers
B are more likely to meet strict space constraints, and therefore they should be chosen (this would
favour configurations 3 and 4, both of which are based on server type B).

However, none of these local optimisations produce the globally optimal solution. It is configu-
ration number 2 that meets both performance and space constraints, has the minimal cost, and is
optimal by its “Cost/Performance” ratio. In contrast to this, configuration number 1 doesn’t meet
space constraints, while configurations 3 and 4 are significantly more expensive than the optimal
configuration 2.

As can be seen, local optimisations can lead nowhere. Similar argument applies not only
to components of compute nodes but to other cluster subsystems as well. For example,
monolithic InfiniBand switches have a lower per-port cost than modular switches (see, e.g.,
Table 14.3). However, this fact doesn’t make such switches universally optimal, because
using them in the upper layers of fat-tree networks results in fabrics that are complex to
build and maintain and also less reliable.
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Anyone can build a fast CPU. The trick
is to build a fast system.

Seymour Cray

In our framework, where the criterion function is the ratio of TCO to performance, the
ability to quickly estimate the performance of each configuration of the computer cluster
is crucial. We therefore refer to performance modelling. Such models are mathematical
objects of various nature that receive the configuration of the cluster computer and output
its performance at a particular task.

In this chapter we review related work in the field of performance modelling, identifying
factors that affect performance, ranging from obvious to unexpected. We also reveal that
the accuracy of performance models is not very high but still sufficient to compare different
configurations of cluster supercomputers.

We then introduce inverse performance models which, given the required performance,
return the number of compute nodes needed to attain it. Finally, we describe a simple
performance model for “ANSYS Fluent”, the CAE software.

We need to distinguish between performance and speed. We define performance as an
integral characteristic of the computing system or its constituent functional units. Perfor-
mance is measured on a particular task, using a benchmark. Every functional unit, in turn,
can have a number of speed characteristics, determined by the parameters of this unit.

For example, computer’s main memory is a functional unit, and its performance can be
measured using a benchmark – for example, STREAM [58] or another benchmark. Dif-
ferent benchmarks measure performance differently, so even if the units of measurement
are the same (such as MBytes/sec in STREAM), the figures will be different. As a func-
tional unit, main memory has two distinct speed characteristics: bandwidth and latency.
Bandwidth characterises how fast the memory can transfer large amounts of data, and is
measured in bytes per second, while latency characterises how long it takes the memory
to deliver a single word, and is measured in seconds (or smaller units of time).

There are a number of parameters of main memory that influence both bandwidth and
latency, and therefore also influence its performance as a whole. Such parameters include:
memory bus width, clock frequency, access timings of DRAM chips, whether memory is
registered, whether interleave mode is turned on in the BIOS, etc. (See Figure 9.1). The
same applies to other functional units of a computer system.

Relations between unit’s parameters and its speed characteristics, and consequently its
performance, are often complex and unclear. For example, there is no universal answer as
to what effect on memory bandwidth (or latency) will produce a 10% increase in memory
clock frequency. Even if this effect was known, it still would be difficult to estimate how
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Figure 9.1.: Functional units of the computer system, their speed characteristics and pa-
rameters.

it would affect performance of real life applications, especially in the presence of modern
complex cache memory hierarchies.

Performance of the entire computer is dependent on many of its functional units and
subsystems. As a result, cluster designers often have to rely on rough estimates of perfor-
mance, because more detailed data is not available. Additionally, communities that design
subsystems – memory, interconnection networks, etc. – are isolated from each other and
from system-level designers, because there are no reliable ways to predict the effect that
enhancements in separate subsystems can have on the overall system performance.

9.1. Related Work

In this section we describe existing work in various fields related to performance mod-
elling, ranging from microarchitectural to system-level aspects.
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9.1.1. Factors That Influence Performance

Performance problems may come from heterogeneity of modern hardware (such as NUMA
architecture), and inability of runtime environments to automatically take care of this.
For example, multi-threaded applications should have their threads “pinned” to specific
CPUs, so that memory primarily accessed by the thread is “local” to the CPU. Treibig et al.
[108] analysed performance of memory subsystem of a dual-socket server based on Intel
Nehalem CPU, using STREAM benchmark, with and without “pinning” of threads.

The results indicate that pinning, enforced at runtime, resulted in considerably higher
observed memory bandwidth (e.g., 46% higher on average for 24 threads), although the
source and binary codes of the application under study (STREAM) remained the same.

Balaji et al. [10] note that inopportune mapping of MPI processes to compute nodes in
torus networks leads to performance degradation, proposing a methodology for topology-
aware mapping. We additionally note two factors. First, such inopportune mapping can
occur in other network topologies as well, for example, in fat-trees. Indeed, if the major-
ity of MPI processes are mapped onto compute nodes within one sub-tree, while some
processes are mapped onto nodes in a different sub-tree, accessible only via the root-level
switches of a fat-tree, then the MPI communication performance will suffer from the high-
latency connection between the two groups of processes.

The second factor worth noting is that this performance degradation is, in a sense, un-
avoidable: a new large compute job may find a supercomputer in a “fragmented” state,
when there is no a single contiguous block of compute nodes available within one sub-tree
to guarantee locality of communications. In this case, the job will be assigned to blocks
of compute nodes residing in different parts of the interconnection network, and perfor-
mance degradation will be observed.

In theory, smaller compute jobs, already running, could be migrated to “defragment”
the cluster computer. Another approach could be to hold the job in a queue waiting for
a contiguous block of compute nodes becoming available, however, this leads to a lower
utilisation of available resources, and although the run time of the job could be decreased
by achieving preferential process mapping, the total time to solution – from job submittal
to termination – may, in fact, increase.

A study by Subramoni et al. [100] describes a method of placing MPI processes onto
compute nodes, automatically taking network topology into account. This allows to place
heavily communicating MPI processes in proximity, potentially even within the same com-
pute node, demonstrating performance gains of up to 15%. Again, this increase in perfor-
mance is achieved at runtime, without any changes to source or binary code of the appli-
cation.

From the examples described above follows the difficulty for accurate performance mod-
elling. There are also quite obvious cases when performance variations will be observed,
for example, when using different MPI implementations at runtime, or linking against dif-
ferent mathematical libraries: community-provided open-source libraries versus vendor-
specific optimised libraries such as “AMD Core Math Library” or “Intel Math Kernel Li-
brary”. Trying to account for these effects would lead to increased complexity of perfor-
mance modelling.

We present one more example concerning factors that cause variation in observed per-
formance and therefore complicate construction of simple and efficient performance mod-
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els. Shainer et al. [84] note that using a parallel file system, “Lustre”, for I/O when running
CAE software “LS-DYNA” led to roughly 15% performance increase when using 64 cores
in a cluster, and a 20% increase when using 128 cores. (They don’t note, however, what
increase in cost is incurred by using a parallel storage system based on “Lustre”).

We have reviewed situations where the observed performance variation could be ex-
pected. Let us now refer to a number of cases where performance degradation was unex-
pected or counter-intuitive.

Mytkowicz et al. [64] describe how performance is affected by (a) the size of memory
used to store UNIX environment variables, and (b) the order of object files in the command
line of the linker, when linking the executable file of the application under study. Chan et
al. [20] observed a detrimental effect of cooling fan vibrations on hard disk bandwidth,
which led to performance degradation for I/O intensive jobs. In both of the described
cases, a performance model can hardly account for such runtime effects.

Pase and Reddy [77] studied performance of “ANSYS Fluent” CAE software on servers
made by IBM. One group of tests involved running the software using MPI, but within a
single server. Choosing MPI library optimised for InfiniBand hardware, compared to the
standard MPI library for Gigabit Ethernet network, generally resulted in a small perfor-
mance boost (on the order of 10% in most cases), although the network hardware of the
server was never used, and all MPI communications were in the memory.

Their study also found that using only one CPU in a dual-socket server reduces pres-
sure on the memory subsystem, therefore using twice as many uniprocessor servers, com-
pared to dual-processor servers, yielded performance gains on the order of 40..50% for
large compute jobs, despite increases in network traffic. It means that the application un-
der study, “ANSYS Fluent”, was more sensitive to memory performance than to network
performance.

As a result, using four uniprocessor servers led to 41% higher performance than using
two dual-processor servers. We note, however, that acquisition cost and the total cost of
ownership for the former configuration are likely to exceed those of the latter by more than
50% or 60%, making the former configuration economically disadvantageous.

Another interesting effect that makes performance modelling difficult is observed when
using Intel Turbo Boost (or similar) technology: with it, the clock frequency of a CPU can
be significantly increased when power and thermal constraints allow, e.g., when only a few
cores are active. For example, on a 4-core “Intel i7-920XM” CPU, when only one core is
active, the clock frequency can increase from 2,0 GHz up to 3,2 GHz – that is, by 60%. This
means that the performance model must take into account not only the base frequency of
a CPU, but also its possible increase.

However, frequency scaling depends on runtime conditions: in some installations, there
is no cooling reserve, and scaling will never occur, while in water-cooled machines, such
as “SuperMUC” [55], Turbo Boost can operate continuously [15] (although leading to a
higher power consumption of the machine).

This could be dealt with by specifying as an input to the performance model whether
Turbo Boost will be available, and to which extent. However, such additions make the
model more complex and less elegant.

There is an open question regarding functionality of a performance model: given the
total number of cores in a computer cluster, shall it simply predict the performance of a
given code on this machine, or shall it advice optimal placement of processes on compute
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nodes? For example, if the performance model “knows” that a certain software has a
speed-up of 50% when running on 4 cores, should it recommend running the software in
a single-thread (sequential) mode, using only one core, possibly utilising a Turbo Boost
frequency scaling of 60%, with associated overall performance gain, or should the model
simply report the performance estimate on 4 cores, as requested by the user, and exit? This
extra piece of information is useful, but we need to find the way to communicate it to the
higher levels of the cluster design framework.

Yet another side effect results from differently clocking CPUs in NUMA systems. Con-
sider the following scenario: a compute job utilises only the first CPU on a dual-processor
server. The remaining CPU is not participating in calculations and is therefore clocked
at a reduced frequency to save power. However, if it happens that memory used by the
compute job utilises memory modules connected to the second CPU, which is not run-
ning at full speed, then accesses to that memory will be characterised by bigger latencies,
degrading overall performance of applications running on the first CPU.

We have not experimentally verified whether such a problem really exists in modern
NUMA systems. In HPC environments all available CPU sockets are usually utilised,
so the chances for this problem to manifest itself are low. However, it highlights how
complex interrelations between components of modern computing systems can lead to
obscure effects which are difficult to capture in performance models.

9.1.2. Approaches to Performance Modelling

We argue that a single universally accepted measure of performance of a certain code on a
certain computer is the time to solution. For example, measuring performance in GFLOPS
makes no sense for codes that do not perform floating-point operations, such as graph-
traversal codes. For this class of workload, performance can be measured in edges tra-
versed per second (TEPS), but this, in turn, makes no sense for other types of workloads,
such as Map-Reduce, etc.

Therefore, time remains a universal measure. In practice, a reciprocal measure is more
convenient: the number of times this code can be run in a unit of time – for example, in a
day: it’s more natural for humans, because higher is better. CAE software “ANSYS Fluent”
uses “performance rating”: the number of times that a certain benchmark can be run in 24
hours. For example, a performance rating of 240 indicates that a computer can solve 240
tasks per day, or 10 tasks per hour. Therefore, time to solution for a single benchmark run
is 6 minutes. There are no other reasons for the use of performance rating instead of time
except convenience; in other respects they are equivalent and reciprocal.

Performance model is an object of arbitrary internal structure that can predict perfor-
mance. As a result, both parameters of the computer used to run the code, as well as
parameters of the code, must be supplied to this model. It is evident that adding more
inputs to the model leads to its exponential complexity.

Benchmarks provide a convenient way to reduce the number of code parameters that
must be supplied to the performance model. A familiar example is the “Linpack” bench-
mark that is used as a “proxy” for applications involving linear algebra computations.
However, it is only relevant as a proxy if the application behaves in a similar way to “Lin-
pack”: for example, if it uses sparse, rather than dense matrices, and so on.

Therefore there is a multitude of benchmarks for different classes of applications, made
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by scientists working in the field of workload characterisation. There have been efforts to
create parametrised performance benchmarks that would be able to serve as performance
proxies for any application – see, for example, Apex-Map benchmark by Strohmaier and
Shan [99], which has three parameters: memory size used by the code which behaviour is
to be modelled, as well as temporal and spatial locality of memory accesses made by this
code.

Now that the problem of specifying parameters of the code for the purpose of perfor-
mance modelling has been more or less solved by using representative benchmarks, it is
necessary to understand which parameters of the computer must be supplied to a perfor-
mance model to get a performance prediction within a certain error.

In the simplest case, a performance model can take into account a very limited number of
factors, such as the clock frequency of the CPU, the total number of cores in the compute
cluster, and type of the interconnection network. We introduce such a model below. Its
simplicity leads to its limited applicability: for example, it doesn’t take cache memory size
on the CPU into account, therefore it cannot be used to quantitatively compare clusters
built with CPUs with different cache memory sizes. Qualitatively, more cache memory
can lead to better performance, but this was obvious without the model, and the model
can’t capture this dependency.

To capture more aspects of the hardware, simulators can be used, such as PTLsim [115],
gem5 [11], Multi2Sim [109] or Simsys [71]. Simulators have a benefit in that they can
simulate execution of arbitrary code, not just an existing benchmark or performance proxy.
Simulators allow to explore a much larger hardware design space (down to accurate timing
of memory access operations, for example), albeit at expense of long run time.

However, the necessity to explore the design space – the reason to use simulation in
the first place – is exacerbated by the fact that simulators run considerably slower than
real hardware. Therefore, using simulation is usually beneficial only when hardware be-
ing simulated is not existent yet – for example, when trying to understand how different
designs of cache memory hierarchy would influence performance of an application.

Because simulation times are so long, there have been attempts to reduce them. The
first approach is simulating only part of the binary code of a big program, and then the
challenge is to find the smallest part of the code which is still representative with regard
to behaviour of the whole program – see, for example, paper [86] by Sherwood et al.

The second approach doesn’t change the code to be simulated, but instead tries to ex-
plore only a tiny part of the total hardware design space, and then employs different ap-
proximation techniques to build mathematical models that would use interpolation to pre-
dict performance with simulation accuracy but in less time. Joseph et al. [50] used non-
linear approximation model based on artificial neural network with radial basis function
(RBF) activation functions, while Ipek et al. [49] used sigmoid activation functions. In both
of these studies, microarchitectural CPU parameters were varied, while the applications
under study were fixed (SPEC CPU2000 benchmark suite).

Later, Lee et al. [54] compared approximation approaches based on artificial neural net-
works and on piecewise polynomial regression using cubic splines, and found that both
approaches have roughly the same accuracy. In this case the methodologies were used to
study performance of two applications (Semicoarsening Multigrid and High-Performance
Linpack) on three existing parallel computers (BlueGene/L with 512 compute nodes and
two Intel Xeon-based clusters with 64 compute nodes), and therefore involved not simu-
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lation but measurement. In contrast with the previous work, machine parameters were
fixed, and application parameters were varied. Both methodologies could predict perfor-
mance with a median error of 10% and less.

9.2. Throughput Mode

Scale of parallel computers continues to increase, but older codes are not able to efficiently
utilise available hardware parallelism. As a result, while degree of parallelism (for exam-
ple, the number of cores) increases, application speedup deviates from the straight line
(“linear speedup”) and then plateaus, indicating that employing more hardware to do the
work leads to diminishing returns.

Determining the degree of parallelism Nmax, after which performance increase is con-
sidered negligible, is purely subjective. In certain applications, such as urgent computing,
even a modest increase in performance can justify putting more hardware to the task. In
general, we can arbitrarily define “efficient” execution. For example, suppose we define
efficiency as the ratio of speedup to the degree of parallelism N , presented as a percentage.
As N is increased, speedup plateaus, and therefore efficiency decreases. We can define
execution as “efficient” when efficiency stays above, say, 70%. The Nmax corresponding to
this efficiency is then considered the maximal reasonable degree of parallelism.

When an application is to be run on a parallel computer with the number Nf of parallel
computing units (cores, CPUs, compute nodes, etc.) bigger than Nmax, it runs in what is
called “throughput mode”. In this mode, several copies of the application are run, each
in its own partition of the parallel computer with the degree of parallelism not exceeding
Nmax. Aggregate performance in throughput mode is the sum of performance figures of
individual partitions. One simple strategy is to create as many partitions of size Nmax as
possible, and the remaining computing units will then form the last, smaller partition. This
strategy leads to lowest time-to-solution of individual tasks, but may have a lower overall
throughput.

Example 9.1 Consider an application which has a maximal reasonable degree of parallelismNmax =
200 (say, cores), where it achieves performance rating of Pmax = 4 (tasks per day). It is also possible
to run this application on N1 = 100 cores with performance of P1 = 2,5, and on N2 = 50 cores
with performance P2 = 1,4. Let us consider two possible scenarios for partitioning the parallel
computer of Nf = 500 cores for this application.

Scenario A. Create two partitions of 200 cores each, and the third partition of 100 cores. In one
day the throughput of the system (the total number of tasks solved) will be 4+4+2,5=10,5. The
minimal time to solution is obtained on the first and second partitions and equals 6 hours (because
4 tasks are solved in 24 hours).

Scenario B. If the goal is to maximise the throughput, and obtaining the result of each individ-
ual task as soon as possible is not important, then one can assign 10 tasks to 10 partitions, each
consisting of 50 cores. In a day, 10 partitions will solve 1,4*10=14 tasks (which is 33% more
than in Scenario A). The time to solution of each individual task is, however, considerably longer:
24/1,4=17,1 hours.
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9.3. Direct And Inverse Performance Models

9.3.1. Definition

As we defined it earlier, a performance model is an object of an arbitrary internal structure
that can predict performance of a certain code when executed on a certain computer. To
facilitate the prediction, parameters of the code Pcode and of the computer Pcomp must be
supplied to the model D:

D : (Pcode, Pcomp)→ Performance

In the context of parallel computing, we can operate with parameters of the elemen-
tary building block of a parallel computer Pcomp block and the number of such blocks N .
(Building blocks can be defined differently depending on the level of abstraction: floating-
point units within a core, cores, CPUs, compute nodes, etc.) With this in mind, we can
reformulate the general definition above as follows:

D : (Pcode, Pcomp block, N)→ Performance

We now define an inverse performance model, specific to parallel computing: it is an
object that, when supplied with parameters of the code, parameters of the elementary
building block of a parallel computer and the performance that must be attained, returns
the number of blocks in a parallel computer:

I : (Pcode, Pcomp block, P erformance)→ N

The notion of inverse performance models is applicable from chip to server and up to
system level. On a chip level, consider Intel Xeon Phi as an example: if microarchitec-
tural details are specified, and clock frequency is known, how many cores must be on the
chip to attain a specific level of floating-point performance? If each core has a peak rate
of 16 double-precision floating-point operation, and clock frequency is 1.053 GHz, then
60 cores are required to achieve a “tempting” value of 1 TFLOPS of peak floating-point
performance.

On a system level, if parameters of compute nodes (type of CPUs and their clock fre-
quency) and the type of interconnection network (e.g., Gigabit Ethernet or InfiniBand) are
specified, then the inverse performance model can answer the question: how many cores
in a computer cluster are required to attain a time to solution of 5 minutes on a specific
benchmark of “ANSYS Fluent”, "truck_111m" (equivalent to performance rating of 288
tasks per day). For example, a performance model that we construct below predicts that
for a clock frequency of 3,47 GHz the number of cores required to reach that performance
with Ten Gigabit Ethernet network is 374, while with InfiniBand it is only 312. This conclu-
sion couldn’t be easily derived from assorted benchmark results, and inverse performance
modelling made it possible.

We deliberately mentioned that a direct performance model is an object with an arbi-
trary internal structure. Inside the model there can be (a) an analytical model, such as a
formula, (b) an approximation model, such as one built using artificial neural networks, (c)
a simulator, (d) an FPGA prototype, etc. Therefore querying a direct performance model
can be a potentially lengthy task.
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Figure 9.2.: Inverse performance modelling

9.3.2. Algorithm

Inverse performance modelling can be performed quickly only in one case: when an ex-
plicit formula for N can be derived from a direct performance model, which is itself spec-
ified via a formula. Such cases are unlikely to occur in practise. For all other occasions,
we introduce a simple iterative algorithm for inverse performance modelling that involves
querying a direct performance model several times.

The algorithm relies on monotonic increase of performance as a function ofN . The main
input of the algorithm is the performance rating P that must be obtained, and the output
is the number of parallel blocksN . It works in two phases: in the first phase, the algorithm
queries the direct performance model, gradually increasing the number of blocks N by a
certain factor, until reported performance rating is greater than or equal to P . For example,
if the requested performance rating is P = 97, then the first phase will stop at N = 256, as
it is in this point where the requested rating is exceeded (see Figure 9.2a).

In the second phase, the algorithm refines the value ofN using bisection method, search-
ing between the last and the penultimate values of N . In our case, it searches the interval
of N = 128..256 until the value is found that corresponds to performance P , accurate to
the required precision. Four iterations of the bisection method use the following values of
N : 192, 160, 176 and 184 (see Figure 9.2b).

Let us describe the algorithm by stages. An important input parameter isNmax, the max-
imum reasonable number of parallel computing blocks, where application performance
starts to plateau. It depends on parameters of the application (Pcode) and parameters of
machine architecture (Pcomp block). Another application (or the same application with dif-
ferent input data), or a different structure of the parallel computer will yield a different
value to Nmax. Performance observed at Nmax is denoted by Pmax; performance higher
than this can be achieved only in throughput mode.

1. The algorithm starts with checking whether the requested (projected) performance
Pproj was greater than the reasonable maximum Pmax (line 1). If yes, it informs about
throughput mode, returns N and exits. N is calculated as Nmax scaled by the ratio of
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Algorithm 1 Inverse performance modelling

Input:
Pproj : Performance rating to achieve
Nmax: Maximum reasonable number of parallel computing blocks
Pmax: Performance rating observed at Nmax

Performance (N) = f(N,Pcode, Pcomp block): Direct performance model
Goal: :

N : Number of parallel computing blocks that yields performance rating P
1: if Pproj ≥ Pmax then
2: { Requested performance Pproj greater than the reasonable maximum Pmax }
3: print Throughput mode
4: N ← Nmax · Pproj/Pmax

5: Exit
6: end if
7: N ← 1; P ← Performance (N)
8: if P ≥ Pproj then
9: Exit { One block was enough to deliver required performance }

10: end if
11: { First phase: forward pass }
12: while P ≤ Pproj do
13: N ← N ·MulFactor { Increase N until Pproj or higher rating is reached }
14: if N ≥ Nmax then
15: N ← Nmax { Do not exceed Nmax }
16: end if
17: P ← Performance (N)
18: end while
19: { Second phase: bisection method }
20: Nr ← N { Right interval boundary }
21: Nl ← Nr/MulFactor { Left interval boundary }
22: Pprev ← 0
23: while (Nr −Nl > εN ) and (|Pprev − P | > εP ) do
24: Nm ← (Nl +Nr)÷ 2 { Interval centre }
25: Pprev ← P
26: P ← Performance (Nm)
27: if P > Pproj then
28: Nr ← Nm { Adjust right boundary }
29: else
30: Nl ← Nm { Adjust left boundary }
31: end if
32: end while
33: N ← Nr
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Pproj to Pmax. This corresponds to partitioning strategy leading to minimal time to
solution, as described in Scenario A in Example 9.1.

2. The algorithm checks if N = 1 parallel computing block is enough to deliver re-
quested performance (line 7). This can be the case, for example, when the block is a
powerful compute node with several multicore CPUs.

3. If one block was not enough, the algorithm performs the forward pass: it increases
N by MulFactor until projected performance Pproj is reached (line 13). Additional
check makes sure that N doesn’t exceed Nmax. By the end of the “while” cycle, N
receives such a value that the corresponding performance P (N) (the last point in the
sequence of forward pass points in Fig. 9.2a) “overshoots” the projected performance
(the “True point” in the same figure).

MulFactor controls the rate of increase of the forward pass, and consequently how
many queries of the direct performance model will be required; we found the value
of 2 to be suitable in practice.

4. As a result of the forward pass, the point that we are looking for is now located
between the last (N ) and penultimate (N/MulFactor) points (lines 20 and 21). The
algorithm employs bisection method to refine the value ofN . The interval is bisected
until it becomes shorter than εN , or when performance P (N) doesn’t change much
(performance obtained on the previous step, Pprev (line 25), is different from current
value of performance by no more than εP ).

As shown in Fig. 9.2b, the initial interval [128, 256] was bisected four times, each
time followed by adjusting one of its boundaries. Performance was evaluated in
four points: N = 192, leading to interval [128, 192], N = 160, leading to interval
[160, 192], N = 176, leading to interval [176, 192], and finally at N = 184, leading to
interval [176, 184], after which the process was considered to have converged, as the
interval length 184− 176 = 8 has become less than εN = 10.

The larger the values of εN and εP , the larger the uncertainty of N , but at the same
time the lower the number of queries of the direct performance model.

5. Finally, the algorithm chooses the right boundary of the interval as a value of N ,
thereby ensuring that resulting performance P (N) returned by the inverse model is
not lower than requested (line 33). In this case, N = 184 will be returned.

The algorithm relies on monotonic increase of performance P as a function of N , but
this holds in practice. Additionally, results of performance evaluation can be cached for
later reuse, which vastly decreases the number of queries to the direct performance model.
This is important, because, as we noted earlier, the direct performance model can have
an arbitrarily complex structure, ranging from an artificial neural network to an FPGA
prototype.

9.4. Simple Performance Model for ANSYS Fluent

We now describe a simple analytical direct performance model for computational fluid
dynamics (CFD) software suite, “ANSYS Fluent”, that approximates measured benchmark
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results with a quadratic polynomial. The model serves to demonstrate capabilities of our
automated design framework, with results of practical evaluation presented in Chapter 17.

To create the performance model, we used measured benchmark results for “ANSYS
Fluent” version 13, obtained on a benchmark task of modelling air flow over a truck body,
"truck_111m" [6]. The corresponding CFD model contains 111 million cells and ac-
counts for turbulence in the flow. Measured results were available for Intel Xeon 5600
series CPUs, and for two types of interconnection network hardware: Ten Gigabit Ether-
net and InfiniBand.

We didn’t set the goal of building a very precise performance model: first, as shown ear-
lier, in real life situations significant performance variations are observed even in similar
software and hardware settings, and it makes no sense to build a model to be more accu-
rate than the object it tries to simulate. Second, this performance model is mostly intended
to serve demonstration purposes as part of the design framework. However, even in its
current state the model proved useful for “sizing” cluster computers tailored to running
“ANSYS Fluent” jobs.

We used an entirely ad hoc approach to construct the performance model. First, after
analysing benchmark data, we determined boundaries of efficient execution. We defined
efficiency as the ratio of speedup to the degree of parallelism – that is, the number of cores
involved in the computation:

Eff =
S

N

With Ten Gigabit Ethernet network, efficiency decreased unacceptably after Nmax = 384
cores, while with InfiniBand network efficient execution was observed up to Nmax = 3072
cores. We noted that in the region of efficient performance, efficiency can be approximated
with a linear fit:

Eff(N) = ke ·N + be

For InfiniBand, linear fit yielded the following parameters: ke = −0,00979, be = 88,42.
For Ten Gigabit Ethernet we didn’t have enough measurement data available, so we as-
sumed that in the region of N < 192 cores, efficiency would be approximated by the same
formula that was used for InfiniBand, and in the region 192 ≤ N ≤ 384 the following
parameters would be used: ke = −0,08270, be = 101,98. Graphs for efficiency are shown in
Figure 9.3a; note that efficiency for Ten Gigabit Ethernet is piecewise linear.

By definition, speedup is the ratio of parallel performance to serial performance:

S(N) =
Ppar(N)

Pser

We assumed that we can approximate serial performance Pser as a linear dependence on
CPU clock frequency f :

Pser = kCPU · f

We found a good fit to experimental data with kCPU = 0,3125. Bringing all of the above
formulae together, we express parallel performance as a function of the number of cores
N and clock frequency f :
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Figure 9.4.: Performance model for “ANSYS Fluent” with experimental data

Ppar(N, f) = Pser · S(N) = kCPU · f · S(N) = kCPU · f ·N · (ke ·N + be)

As a result, when clock frequency f is fixed, parallel performance is approximated as a
quadratic polynomial of N . Corresponding graphs of P (N), for a fixed value of f = 3,47
GHz, are depicted on Fig. 9.3b.

Figure 9.4 plots these performance graphs separately and in more detail, overlapped
with experimental data. In case of InfiniBand (Fig. 9.4a), measurements were performed
on computers with different CPU clock frequencies. Therefore, to plot all data on a single
graph, we normalised measured data to clock frequency of f = 3, 47 GHz that was used
as a base point. The graph contains data points for three computers with InfiniBand net-
work, and one computer (“SGI UV 1000”) with a proprietary NumaLink interconnection
network, which is shown here for reference.

In case of Ten Gigabit Ethernet (Fig. 9.4b), there was only one machine (and only two
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measurements), so no scaling was required. We consider model’s agreement with experi-
mental data not ideal but satisfactory for our purposes. Raw benchmark data can be found
in Appendix A.

9.5. Accessing Models via Internet

In our automated design framework, performance models are just one type of “pluggable”
modules used to provide required functionality for the CAD system. Modules are queried
over network. This approach allows software vendors to publish performance models for
their software on their own websites as “black boxes”, maintaining control over the models
and updating them as new data becomes available.

We implemented the aforementioned performance model for “ANSYS Fluent” in a CGI
application [88]. The application allows easily predicting performance if the number of
cores in a compute cluster is known. The application also incorporates the inverse perfor-
mance modelling algorithm (Algorithm 1), thereby allowing users to determine the num-
ber of cores if they know the performance that the cluster must be able to achieve. In
both cases, CPU clock frequency and type of interconnection network (InfiniBand or Ten
Gigabit Ethernet, or both) must be specified.

Queries to the application can be performed via web interface, resulting in human-
readable output, or in a completely automated fashion, supplying input parameters in
key-value pairs and receiving output in a similar fashion. An example query for direct
performance modelling is presented below:

cores=1024
benchmark=truck_111m
network_tech=10gbe,infiniband-4x-qdr
cpu_frequency=3,47

The application returns the following reply:

cores=1024
benchmark=truck_111m
network_tech=Infiniband-4X-QDR
software=ANSYS FLUENT 13.0.0
perf_model_id=Demo model with linear approximation of

efficiency, March 2012
performance_throughput_mode=False
performance=870,5
time_to_solution=99,3
max_rating=1943,7
max_rating_at_cores=3072

Let us inspect the output.

1. The value of network_tech is parsed, and the application automatically chooses
the best type of network – in this case, InfiniBand – which is returned;
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2. The identification string software specifies the software whose performance is be-
ing modelled, while perf_model_id specifies the model ID, as there can be several
models of differing complexity and accuracy for the same software;

3. The application returns a value of “False” for performance_throughput_mode,
which indicates that throughput mode (see section 9.2) is not required, because the
number of parallel computing blocks specified by the user, in this case, N = 1024
cores, is less than the maximal reasonable number of blocks, Nmax. If the user re-
quested to calculate performance for the number of cores higher than Nmax, the ap-
plication would calculate it according to the principles of lowest time to solution (see
Scenario A in Example 9.1);

4. The next string, performance, is the most important output, as it returns the value
of performance rating, in tasks per day;

5. time_to_solution returns time required to run one task. It is reciprocal to per-
formance, but for convenience it is expressed in seconds, not in days. In this case,
the computer will complete a new task each 99,3 seconds. As N increases, perfor-
mance also increases, and time to solution decreases. When N approaches Nmax,
performance plateaus, and time to solution doesn’t decrease any more;

6. The last two strings, max_rating and max_rating_at_cores, are for informa-
tional purposes. They specify the highest possible performance rating and the num-
ber of parallel blocks Nmax at which it is attained. This gives insight as to whether
the original query was close to performance scalability limit, or still far from it. In our
case, there is a reserve to increase the number of cores three-fold, up to Nmax = 3072,
and performance will increase by a factor of 2,23.
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10. Graph Representation of Configurations

10.1. Undirected vs. Directed Graphs

Throughout the years, several schemes were proposed to describe configurations of tech-
nical systems. Approaches include morphological analysis by Fritz Zwicky and using
And-or trees to represent alternatives in design decisions.

In 2004, Bozhko and Tolparov [14] suggested to represent configurations of arbitrary
technical systems using multipartite graphs. Their approach is able to account for com-
patibility between components (or functions) of the system and allows for a clear visual
representation.

The first step is to define a tree of components or functions of the system which can
be implemented in multiple, mutually-exclusive ways. Figure 10.1 presents an example.
Electric torch has two physical components (light and power sources) and one function
(portability), each of which that can be implemented in several different ways.

The next step is to construct a multipartite graph, where each partition corresponds to a
component or function, and vertices in that partition correspond to possible implementa-
tions. Finally, the edges are drawn to indicate compatibility of components (see Fig. 10.2).

Components or functions not connected with an edge are incompatible. In this example,
we represented than incandescent lamp (1) is only compatible with lead battery (4), but not
with other power sources. Conversely, LEDs (2) are not compatible with lead batteries (4),
hence there is no edge between the two. All power sources are compatible with hand-
held implementation (6), while only alkaline battery (3) is compatible with head-wearable
implementation (7). Finally, all portability implementations (6 and 7) are compatible with
all light sources (1 and 2).

If there are more components or functions in the technical system, more partitions are
added, and vertices in them are connected to all existing partitions according to compat-
ibility. Configurations of the technical system are given by complete subgraphs (cliques)

Figure 10.1.: Functional structure for electric torch.
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Figure 10.2.: Graph representation for electric torch, using undirected graphs.

of the graph with the size of the clique equal to the number of partitions. For example, in
Fig. 10.2, vertices {1, 4, 6} form a clique (with three partitions, it is a triangle), therefore
this set of components represents a valid configuration. Other configurations are {2, 3, 6},
{2, 3, 7} and {2, 5, 6}. However, Bozhko and Tolparov note that finding all such complete
subgraphs in a given graph has exponential complexity.

They further note that in real life situations most components are compatible, and par-
titions often form bicliques – fully-connected bipartite subgraphs (see, for example, a bi-
clique formed by partitions “Light source” and “Portability” on Fig. 10.2). Therefore real
life graphs are very dense, which allows to save machine memory by storing complemen-
tary graphs.

Based on this idea of undirected graphs with cycles, and relying on the fact that in real
life systems most components are compatible, we propose to use directed acyclic graphs.
They lack a similar expressive power because, due to the absence of cycles, partitions are
laid out in a linear way, with a clear “start” and “end”, and hence representing incompat-
ibilities between components in two partitions is only possible when these two partitions
are adjacent. Incompatibility is denoted in the same way as with undirected graphs: that
is, by removing edges between incompatible components from a biclique formed by two
partitions.

However, we find that such directed acyclic graphs are suitable for our purpose. They
also have a benefit of clear visual representation that makes them easier to construct and
understand than undirected graphs with cycles. The traversal procedure is based on
depth-first search. Each path in the graph, from “Start” to “End”, represents a single valid
configuration of a technical system.

If an undirected graph contains only two partitions, or if it contains three partitions,
with two of them forming a biclique, then such a graph can be converted to a directed
graph, without loosing relationships of compatibility. With a tripartite graph, a biclique
between two partitions is broken, and one of the partitions is arbitrarily connected to the
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Figure 10.3.: Graph representation for electric torch, using directed acyclic graphs (arrows
not shown).

“Start” vertex, and the other one to the “End” vertex.
Figure 10.3 shows the above undirected graph converted into the directed form. Arrows

on edges are not shown as they uniformly point from “Start” to “End”. Traversing all pos-
sible paths in this graph generates the same four configurations as the undirected version,
thereby conserving compatibility relationships.

10.2. Expression Evaluation During Graph Traversal

A major advancement comes from assigning expressions to graph’s vertices and, optionally,
edges. These expressions can be evaluated in a very natural way when traversing the
graph. The following context-free grammar for expressions in extended Backus-Naur form
is proposed:

expression = string, ’=’, ’"’, ( complex_expression |
| update_expression ), ’"’ ;

complex_expression = ( arithmetic_expression |
parenthesised_expression ) { sign,
( arithmetic_expression | parenthesised_expression ) } ;

update_expression =
sign, complex_expression ;

arithmetic_expression =
simple_expression { sign, simple_expression } ;
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simple_expression = string | number ;

parenthesised_expression = ’(’ arithmetic_expression ’)’ ;

number = digit {digit} ;
digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ |

’6’ | ’7’ | ’8’ | ’9’ ;
string = char {char} ;
char = ’a’ | ’b’ | ... ’z’ ;
sign = ’+’ | ’-’ | ’*’ | ’/’ ;

Below are examples of valid expressions that can be assigned to graph vertices:

node_cost="6000"
node_cost="+200"
ups_cost_per_kw="ups_cost / (ups_power_rating / 1000)"

If the right-hand side of the expression starts with an arithmetic sign, it is considered
an update expression, and is evaluated as if the left-hand side was specified before the sign.
That is, the expression node_cost="+200" is evaluated as node_cost="node_cost+200",
thereby updating the value of node_cost.

A non-trivial example of representing a configuration of a compute node with a graph
is given in Figure 10.4. Rectangular blocks with vertices represent graph partitions, and
labels on the left are partition names. Arrows highlight one of the paths in the graph.
Expressions on the right of the graph are those assigned to the vertices along the path.

The compute node is based on “Hewlett-Packard” BL465c G7 server. The first partition
sets some basic characteristics of a compute node, including its cost that will later be up-
dated. Then, the graph diverges into two branches, because this server can use CPUs of
two different series, AMD 6100 and 6200, each compatible with its own memory modules.
In the figure, CPU partitions are shown to contain only three vertices for the reason of
simplicity, whereas the actual server supports ten AMD 6100 series CPU models and eight
AMD 6200 series CPU models.

Expressions assigned to CPU vertices specify important CPU characteristics such as the
number of cores, CPU clock frequency and the peak number of floating-point operations
performed per cycle; all of these are later used to calculate peak performance of the com-
pute node. Also present here are expressions that update compute node cost and power
consumption.

After the “CPU1” partition that defines the first CPU in the server, graph traversal can
proceed in two ways. If a second CPU is to be installed in the server, edges proceed to par-
tition “CPU2”, and in this case the expressions are evaluated one more time, which leads
to further update of node’s cost and power consumption. It is essential that the second
CPU, if installed, must match the first one, therefore partitions “CPU1” and “CPU2” do
not form a biclique.

Alternatively, to represent the configuration where the second CPU is not installed,
edges from partition “CPU1” follow to two auxiliary vertices that don’t have any expres-
sions associated with them.
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Figure 10.4.: Graph representation for the compute node configuration using a directed
acyclic graph.
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From partition “CPU2”, edges go to partition “Memory for CPU2”. In this case, all
components in both partitions are compatible (for example, all AMD 6200 series CPUs
are compatible with all PC3-12800 memory modules), therefore a biclique could be estab-
lished, but we chose to introduce an auxiliary vertex between the two partitions: it reduces
visual clutter, at the same time having no effect on graph traversal.

We earlier noted the limitation of describing configurations with directed acyclic graphs,
in that compatibility relations can be represented only between adjacent partitions (other-
wise cycles would appear in the graph). In this case, “CPU1” is adjacent to “CPU2”, which
is further adjacent to “Memory for CPU2”. This way, partitions “CPU1” and “Memory for
CPU1” are not adjacent, and we cannot directly represent compatibility between the two.
This limitation can be circumvented by further branching the graph, just as it was done
with branching into two different CPU series, AMD 6100 and 6200.

In this particular case there is no need to branch the graph; we simply require that mem-
ory configuration of CPU2 matches that of CPU1 (see edges between partitions “Memory
for CPU2” and “Memory for CPU1”). Expressions assigned to these partitions set values
for memory characteristics, and also update node’s cost and power consumption.

Of particular interest is the expression node_free_dimm_count="-8", which up-
dates the value set earlier in the first partition of the graph. It is used to track the number
of available DIMM memory slots on the motherboard, preventing invalid configurations
where more memory modules are configured than a motherboard can hold.

The next partition in the graph sets characteristics pertaining to the built-in 10Gbit Eth-
ernet adaptor. As the adaptor is built-in, it doesn’t influence the cost of the node (the
expression node_cost="+0" is given for clarity and can be omitted). Another network
adaptor, InfiniBand 4X QDR, is optional, which is indicated by an edge that bypasses it,
on the left of the corresponding vertex. However, the highlighted path in the figure does
include this vertex, which leads to the update of the value of node cost.

The last partition serves the purpose of updating characteristics of the compute node
that can later be used as design constraints, or as a part of the objective function. Here,
the node’s peak floating-point performance is calculated by multiplying four characteris-
tics whose values have already been set earlier. Another characteristic is the amount of
operating memory per CPU core. This can be later used as a constraint to quickly filter out
configurations that don’t have enough memory to run applications. The constraint can be
specified as: min_node_main_memory_per_core=2, where “2” is the minimal amount
of RAM, in GBytes, that a compute node should have.

10.3. Graph Transformations

We propose a number of graph transformations that simplify visual representation of the
graph. One of them was already mentioned: when two partitions form a biclique, an
auxiliary vertex can be introduced to replace the multitude of edges. It doesn’t affect graph
traversal, but can reduce clutter for a better understanding (see Figure 10.5a).

If there is a loop associated with a vertex, and the corresponding expression is of the
form “M,N”, this is supposed to denote a sequence of paths, containing M,M + 1, . . . , N
vertices (see Figure 10.5b).

Similarly, when a vertex’s label is preceded by an expression of the form N×, where N
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(a) Introducing an auxiliary vertex instead of
a biclique

(b) Loop transformed into a sequence of
paths

(c) Notation to represent graph copies
(d) Choosing a locally opti-

mal vertex

Figure 10.5.: Graph operations

is a natural number, this is supposed to be transformed into a path of N identical vertices.
For example, if a server can be configured with two or four CPUs, there are two identical
ways to represent this with a graph: see Figure 10.5c.

The last operation concerns not a visual representation but rather a modification of a
graph. If, out of some assumption, one of the vertices in a group is known to represent a
locally optimal component, the whole group can be substituted with this vertex (see Fig-
ure 10.5d). This can be used to substantially reduce the number of paths, and therefore the
number of configurations that the graph generates. However, there are two notes regard-
ing this operation. First, it is obviously irreversible, which is indicated by a one-way arrow.
Second, as usual with local optimisations, globally optimal solutions can be discarded.

A useful example of such local optimisation is the selection of an optimal memory con-
figuration of a compute node. For example, 32 GBytes of memory can be configured in
three ways: 8x4 GB, 4x8 GB and 2x16GB. One of these configurations can be chosen based,
for instance, on cost, effectively lowering the total number of configurations of a compute
node by a factor of three. In this particular case, using two 16 GB memory modules might
be ruled out due to their high price, and one of the remaining options will be preferred.
However, it can later be found that low-density memory modules occupy all DIMM slots
on the motherboard, making memory extension impossible – a consequence of local opti-
misation.

10.4. Defining Software Configurations with Graphs

Configurations of supercomputer software can be represented using the same graph-based
approach. We can specify dependencies between operating systems, libraries and applica-
tion software packages. For example, one application software can rely on an open-source
MPI library, while the other may require a third-party non-free library, and yet another
application software package may already include all required libraries.
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If all hardware configurations are compatible with all software configurations, then
graphs for both can be simply joined in a chain. In more complex cases, such as software
requiring a certain type of hardware, the hardware graph will be branched as necessary,
and corresponding software graphs will be connected to the branches.

During the traversal of this augmented graph, characteristics such as cost will be de-
termined for each software configuration. Moreover, performance modelling can then be
used to calculate performance of each “hardware plus software” combination. For ex-
ample, the use of free and non-free libraries can result in different performance and cost
figures, and the analysis will allow to make informed decisions.

10.5. XML Syntax for Graph Representation

We propose to store graph information in XML files. This includes (1) description of indi-
vidual hardware items using vertices, (2) commands to manipulate vertices, group them
into partitions and manage connections between them. We define the following context-
free grammar for commands in XML graph definition files (string and expression are
defined as above in section 10.2). The notation is relatively simple, and does not allow to
automatically represent loops (Fig. 10.5b) or sequences of identical vertices (Fig. 10.5c).

command = item | place | edge | connect | include ;

item = ’item’, { string, ’=’, expression }, ItemName ;

place = ’place’, ’to-partition=’ PartitionName ;

edge = ’edge’, ’from=’ ItemName,
[ ’from-partition=’ PartitionName ],
[ ’to=’ ItemName ],
[ ’to-partition=’ PartitionName ] ;

connect = ’connect’,
( ’from=’ ItemName | ’from-partition=’ PartitionName ),
( ’to=’ ItemName | ’to-partition=’ PartitionName) ;

include = ’include’, FileName ;

ItemName = string ;
PartitionName = string ;
FileName = string;

There are five commands; the fundamental one is item, which defines a hardware item
represented by a vertex in a graph. An arbitrary number of item characteristics can be
supplied via key=value pairs, where key is a string, and value is an expression in the
sense defined in section 10.2 – an arithmetic expression evaluated during graph traversal,
possibly involving characteristics of other items.
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Once a vertex has been defined, it can be reused multiple times by placing it into the
graph, using the place command. Copies of the same vertex are differentiated by the
partition to which they belong, specified as a required argument to to-partition=. Par-
titions are abstract entities, acting simply as vertex labels, and are helpful for visual repre-
sentation of the graph. Therefore, alongside with the original vertex that doesn’t belong to
any partition, there can be multiple copies of it, each belonging to different partitions.
edge is a command used to create connections from one vertex to another. It’s required

argument is the name of the source vertex, specified in from=. from-partition= pa-
rameter is optional; if specified, it means that a copy of the source vertex residing in the
specified partition should be connected rather than the source vertex itself (the copy must
have been already created using place).

To define edge’s destination, either to= or to-partition= is used, or both. to= spec-
ifies the name of the target vertex. If to-partition= is specified, it first creates a copy of
the target vertex specified in to= and places it into the required destination partition, then
creating an edge.

If to= is omitted, it is considered to be equal to the source vertex, and then to-partition=
should be specified (otherwise a cycle in the graph would appear).

The connect command connects two partitions in all-to-all manner (forming a biclique
between them), or connects a vertex to a partition, or a partition to a vertex. It replaces
the need to call edge multiple times. If from= and to= are both specified, it could be
interpreted as a request to create an edge between two vertices, but we rather consider it
an invalid combination and advice the user to call edge instead.

Finally, the include command includes another XML file in place. To be successfully
traversed, the graph requires two auxiliary vertices, “Start” and “End”. Below is the ex-
ample of an XML graph definition file.

<?xml version="1.0" encoding="UTF-8"?>
<itemslist>

<item>Start</item>
<item>End</item>

<item cpu_model="AMD Opteron 6272" cpu_cores="16"
cpu_frequency="2.1" node_cpu_count="+1">CPU</item>

<item main_memory_type="PC3" node_main_memory_size="+32">
Memory</item>

<edge from="Start" to="CPU" to-partition="CPU1"></edge>

<edge from="CPU" from-partition="CPU1"
to-partition="CPU2"></edge>

<edge from="CPU" from-partition="CPU1" to="Memory"></edge>
<edge from="CPU" from-partition="CPU2" to="Memory"></edge>
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10. Graph Representation of Configurations

<edge from="Memory" to="End"></edge>

</itemslist>

The graph built according to this definition is presented in Figure 10.6. According to the
commands in the XML file, first, two vertices are created, “Start” and “End”. Then, vertices
“CPU” and “Memory” are created, with corresponding characteristics. The first edge
command draws an edge from “Start” to the copy of vertex “CPU”, which is automatically
created in partition “CPU1”. The next edge statement draws an edge from this copy to
another copy, now in partition “CPU2”.

The following two edge statements draw edges from both copies to the “Memory” ver-
tex, and the final edge goes from “Memory” to “End”. The original “CPU” vertex is shown
in the figure, but it is not connected to any other vertex. It is shown here for the sake of
explanation; on other figures in this chapter we do not display vertices that are not part of
the graph.

Figure 10.6.: Graph built from XML definition.

Traversing this graph generates two configurations, the first having a single CPU, and
the second with two CPUs. Both configurations feature one memory block.
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11. Algorithm for Automated Design of
Cluster Supercomputers

In this chapter we present the main algorithm of our automated design framework. We
use single-criterion optimisation (see Chapter 6). As with any combinatorial optimisation
problem, the challenges are: (a) generating valid (feasible) candidate solutions, (b) quickly
calculating the value of criterion function for each candidate solution, and (c) pruning the
design space to discard inefficient solutions.

11.1. Generating Candidate Solutions

The ultimate solution to the problem of automated design of cluster supercomputers is
a configuration of a supercomputer – that is, the exact specification of types and quan-
tity of blocks within the system, and connections between them. However, attempting
to represent numerous subsystems of a cluster supercomputer within candidate solutions
(network, power, storage and other subsystems) would lead to combinatorial explosion.
Instead, we use a configuration of an elementary building block, a compute node, as a
candidate solution. During design stages, each solution is augmented by details corre-
sponding to the specific design stage.

We first considered applicability of commonly used simulated annealing and evolu-
tionary algorithms, such as genetic algorithms. However, these classes of algorithms rely
on ability to generate new candidate solutions out of existing ones: simulated annealing
needs to generate neighbouring states from the current state, while the crossover proce-
dure found in genetic algorithms uses two existing candidate solutions to generate two
new solutions.

Ideally, for these types of algorithms, candidate solutions (configurations of a compute
node) should be represented with a string or a vector. However, we could not find an
efficient encoding scheme; the main challenges were interdependencies and compatibility
relations between components.

Example 11.1 Suppose we want to represent a configuration of a supercomputer with a vector,
and part of that vector is used to represent configuration of compute nodes. There are two types of
servers that can be used as compute nodes, A and B, and five types of memory modules, numbered
from 1 to 5. Server A has six memory slots, and can accept memory modules of types 1, 2 or 3,
whereas server B has eight memory slots, accepting modules of types 3, 4 or 5.

To encode memory configuration of a compute node, we use a vector with three elements. The
first is the type of server (A or B), the second is the number of slots occupied by memory modules,
and the third is the type of memory module (a number from 1 to 5). Two sample valid vectors are
(A, 4, 1) and (B, 8, 5).
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11. Algorithm for Automated Design of Cluster Supercomputers

Considering these vectors as chromosomes and performing a crossover procedure (with a crossover
point after the first gene) would lead to two new vectors: (A, 8, 5), which is invalid, because server
A has only six memory slots, and doesn’t support memory type 5, and (B, 4, 1), also invalid, be-
cause server B doesn’t support memory type 1.

As a result, representing candidate solutions in a naı̈ve way leads to generation of in-
valid solutions. In addition to simulated annealing and genetic algorithms, we also con-
sidered evolutionary programming which allows more freedom in representing candidate
solutions (such representation doesn’t have to be a string or a vector), but concluded that
mutation operation inherent to this method would again lead to generation of invalid can-
didate solutions.

Instead of generating invalid configurations and backtracking, we chose to apply rules
to directly generate valid configurations. We use directed acyclic graphs to represent com-
patibility between components, and traversing these graphs immediately yields a list of
valid configurations (see Chapter 10).

11.2. Applying Constraints and Using Heuristics

With the graph-based representation of configurations, each candidate solution is a set of
key=value pairs. Traversing the configuration graph evaluates expressions assigned to
its vertices (see Section 10.2). This allows to apply user-specified constraints to the list of
candidate solutions.

Additionally, expressions can be used to evaluate arbitrary metrics of each candidate
solution. For example, in our framework we use the criterion function which is the ratio of
total cost of ownership of a supercomputer to its performance on a given task (see Chapter
6). When a candidate solution – a configuration of a compute node – has been generated,
we can calculate the value of the following metric: the ratio of cost of the compute node to
its peak floating-point performance. This metric is in a certain sense an approximation of
the criterion function obtained with less information, a “predictor” of its future value; it is
then used as a heuristic to filter out candidate solutions which are unlikely to be optimal.

Both techniques – constraints and heuristics – allow to quickly prune large sections of
the design space; see Chapter 8 for more details.

11.3. Algorithm

The proposed algorithm for automated design of cluster supercomputers operates on the
pool of candidate solutions (configurations of a compute node) that remain after filtering
out inviable configurations using constraints and heuristics. Each of the numerous de-
sign stages augments the candidate solutions with details corresponding to the stage. The
flowchart of the proposed algorithm is outlined in Figure 11.1 (some dashed arrows that
update metrics of candidate solutions are not shown to reduce clutter).

The design process starts with turning informal requirements into a formal specifica-
tion, which requires human intervention. Knowledge of existing infrastructure can also
be incorporated at this stage in the form of compatibility requirements. The outcome of
the process is the list of global requirements and constraints that all future solutions must
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11. Algorithm for Automated Design of Cluster Supercomputers

obey. Such requirements and constraints can be of various nature and have a necessary
level of detail. Performance constraints (lower limits on performance on a set of tasks) are
the only required. Additionally, there could be budgetary constraints (upper limits on al-
lowed capital and operating expenditures of the supercomputer), requirements on future
expansion of the supercomputer, requirements on reliability (important for all types of in-
stallations) and survivability (useful mainly for emergency and military applications), and
so on.

After the list of constraints has been built, a list of compute node configurations is gen-
erated from the configuration graph, and constraints are applied to filter out unsuitable
configurations. At this stage, candidate solutions contain information on technical and
economic characteristics of compute nodes only, rather than characteristics of subsystems
of the cluster computer or the machine as a whole. Therefore constraints that can be ap-
plied at this stage are essentially “node-level” constraints: number of CPUs or cores in a
node, power consumption of a node, its peak floating-point performance, etc. It is also at
this stage that a heuristic can be used to filter out unpromising configurations.

When decimation of the configuration list is complete, the main part of design procedure
starts. Compute node configurations are now considered candidate solutions. The loop
iterates through every candidate solution (this can be implemented in an “embarrassingly
parallel” way, see section 12.7), subjecting each of them to several design stages.

A configuration is stored as a set of key=value pairs. At this point, a candidate solution
is still just a configuration of a compute node, therefore it holds only node-level character-
istics: its model name, cost, power consumption, size, and others, as well as performance
metrics: peak floating-point rate, memory bandwidth of a node, etc.

On the next stage, the user is presented with an opportunity to select the type of clus-
ter interconnection network that will be used in further design procedures. The choice
includes network topology, equipment type and additional parameters such as the maxi-
mum allowed blocking factor for the network. The choice of network and its parameters is
important, because it influences both parts of the criterion function, cost and performance
of the final system.

There is, in fact, a multitude of possible network choices: for example, a torus network,
although cheaper than a fat-tree, can lead to unacceptable performance degradation for
some algorithms. What factor is bigger – cost decrease or performance degradation – and
what will be the decisive effect on the criterion function, cannot be known in advance,
before performance modelling is done. Therefore, if several network choices must be in-
spected, each candidate solution must be cloned the required number of times, and the
following design stages should operate on each copy independently (again, this can be
done in parallel).

In principle, the same “cloning” approach applies to other subsystems of computer clus-
ters that, when designed differently, influence both cost and performance. For example,
design of the storage subsystem can influence both cost and performance. On the other
hand, design of cooling and power supply systems has effect only on cost but not on per-
formance (at least, in a first approximation).

Hence, if there are two types of cooling systems, and three types of power supply sys-
tems, there is no need to try six different combinations. Locally optimal decisions can be
made: first, one of two cooling systems can be chosen, based on the minimal total cost of
ownership, and then one of three power supply systems is selected, with the same optimal-
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ity criterion. The resulting selection of subsystems is guaranteed to have the minimal total
cost of ownership, and when combined with computing hardware of the cluster, yields
global optimality to the criterion function, TCO/Performance.

The next stage of the algorithm uses an inverse performance model (see section 9.3) to
determine the number of compute blocks (cores, CPUs, compute nodes, etc.) required to
attain performance specified in performance requirements. If several such requirements
were specified, the maximal number of blocks returned by all inverse performance models
is used to satisfy all requirements: N = maxi=1,mNi. Performance modelling takes into
account the choice of interconnection network done earlier.

As the number of compute blocks becomes known, their procurement (capital) costs can
be determined and compared against global budgetary constraints. If constraints are vio-
lated, the candidate solution can be discarded immediately, because further design proce-
dures would only raise costs further. The same applies to power consumption and equip-
ment size of the computing hardware; they can also be checked against global constraints
as early as at this stage.

Reliability model can be plugged in here to estimate maintenance and repair costs for
computing equipment, updating operating expenditures of the candidate solution.

Based on the number of compute blocks, an interconnection network is designed – that
is, exact hardware items and connections between them are determined. This allows to
calculate capital and operating costs for network equipment, its power consumption and
size, and update corresponding metrics of the candidate solution. Again, the updated
metrics can be compared to global constraints, possibly discarding the candidate solution
before engaging with further design stages.

Based on power consumption of computing and network equipment, a cooling system
is then designed. Yet again, corresponding metrics of the candidate solution are updated
and checked against global constraints. Then follows a power supply system that must be
appropriately sized to back up the cooling system in case of power failure (see Chapter 15).
The next stage concerns placing equipment into racks and positioning racks on the floor
(see Chapter 16). This results in the size of the machine room, which influences capital
costs for constructing a machine room, or operating costs of renting this space. Metrics of
the candidate solution are updated once again.

The next stage is to trace network and power cables, and possibly pipes for the cooling
system; these are all done by similar algorithms. The result is the final design, comprising
of (a) drawings specifying blocks used to build the supercomputer and connections be-
tween them, floor plans, etc., and (b) the bill of items and materials that must be procured.
Manual additions can be performed upon the design. If the resulting design is still within
the constraints, it is saved to the pool of suitable designs for future inspection; candidate
solutions in the pool are then sorted according to the value of criterion function. Other-
wise, if constraints were violated, the current candidate solution is discarded, and the loop
starts its new iteration with the next candidate solution.

11.4. Optimality of Solutions

In this section, we discuss whether the synthesis procedure outlined in Chapter 1 indeed
leads to optimal solutions in the mathematical interpretation of the term. We arrive to
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the conclusion that optimality is guaranteed within the limits of the framework, and also
discuss what exactly are those limits. In the narrow sense, optimality is guaranteed by
using exhaustive search in the design space. The question is, however, how closely we
model the reality.

To model structure of a compute node, we use the approach based on directed acyclic
graphs (see Chapter 10) which allows to reach any required level of detail in determining
procurement cost and total cost of ownership (TCO) of the machine. However, we delib-
erately limit accuracy of description to reduce the size of design space. For example, we
found that describing a compute node based on Hewlett-Packard’s “BL465c G7” server
with a sufficient level of detail gives us 264 different configurations. Using a more detailed
description doesn’t lead to more precision in determining the total cost of ownership.

We then use performance models which also have a certain precision. Using more pre-
cise performance models would increase modelling time, but would hardly make sense,
because we have seen in Chapter 9 that real life cluster computers demonstrate perfor-
mance variations, sometimes on the order of 10% or more, even if they are assembled from
identical hardware components and use similar software stacks. Therefore precision of
performance models is limited, but this is not a problem.

We showed earlier that certain design stages, such as interconnection network design,
influence both performance and cost of the solution, therefore to account for the multitude
of possible network designs we must examine each of them. This is a manifestation of
combinatorial explosion.

For other design stages, such as design of power supply and cooling systems, that only
affect TCO but not performance, we showed that using locally optimal results of such
stages is enough. Then, after completion of each design stage, we can compare metrics
of the candidate solution to global constraints, and possibly discard the solution, which
limits the number of candidate solutions that reach the final stage.

Within the limitations outlined above, we use exhaustive search – that is, we analyse
all 264 configurations of a compute node – so we are guaranteed to find one of 264 that
brings optimality to the criterion function, TCO/Performance. That’s why the synthesis
is formally optimal.

For large problems, we propose to use constraints and heuristics to reduce the design
space. Using either of these approaches cuts off parts of the design space, and therefore
the optimal candidate solution can accidentally be lost; searching the reduced design space
then leads to sub-optimal designs. In Chapter 17 we explore in more detail the quality of
sub-optimal solutions.

In a wider sense of the term “optimal”, the question is whether supercomputer designs
derived with a proposed algorithm are indeed competitive with existing machines, de-
signed manually or with partial automation. In other words, could another computer,
designed according to different principles, be faster, or cheaper, or both? The answer is
positive.

For example, our performance models could be incomplete or imprecise, or the compet-
ing machine could be hand-tuned to provide more performance for that particular task, or
the task’s algorithm could be adapted to make better use of the machine. All these factors
could make a competing machine faster. Emergence of new hardware components on the
market could additionally make the competing machine cheaper.

In this common meaning of the word “optimal”, our framework provides good designs.
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It still has a range of useful features compared to manual designs or ad hoc practices:
it automates most parts of the process, lacks bias inherent to humans, and is capable of
exploring large design spaces.

11.5. Duality of Design Problems

In real life, cluster buyers usually possess a certain fixed budget, and want to maximise
the performance of a computer they can buy for that budget. In this formulation, the total
cost of ownership is fixed, and performance must be maximised. This formulation is dual
to ours where performance is fixed, and the total cost of ownership must be minimised.

Remember that with our algorithm for each candidate solution we perform the follow-
ing actions: (1) determine the number of compute blocks necessary to attain required per-
formance; (2) perform numerous design stages. The first of these actions is done by the
inverse performance model (section 9.3) and has an iterative structure: we adjust the num-
ber of compute blocks N until performance P (N) is greater than or equal to the required
level. At each iteration we calculate performance P (N). After N is found, we perform
design stages. Thereby handling each candidate solution results in several invocations of
a direct performance model that calculate P (N), and then a single set of design stages for
the last iteration.

Suppose now that we use a dual formulation of the problem, where the budget is fixed
and performance must be maximised. In this case we would need to iteratively increase the
number of compute blocksN until the total cost of ownership TCO(N) is slightly less than
or almost equal to the fixed budget. The challenge here is that at each iteration, in order
to calculate TCO(N), we need to perform all design stages. We also need to calculate
performance P (N) at every iteration, to ensure that increasing N does indeed increase
performance. Here, handling each candidate solution requires several invocations of a
direct performance model, and several sets of design stages – compared to the single set of
stages in the previous case.

Design stages are lengthy and require network calls to modules that are external to the
CAD system. As a result, the dual formulation takes considerably longer to solve, even
though it would finally arrive to the same result as our method.

We also note that an attempt to “spend all available money” (that is, trying to design
based on the fixed budget) may not lead to good solutions. Indeed, a certain number of
compute nodes can fulfil all performance requirements, at the same time staying within
power, space and other constraints. If some money remains unspent, there could be an
incentive to buy more compute nodes. However, this can lead to worse solutions: when
adding more nodes, constraints can suddenly become violated, because technical and eco-
nomic characteristics tend to increase in steps rather than continuously even when adding
a single node.

For example, the need to buy one more rack to house new nodes leads to a stepwise
increase in capital and operating expenses; similarly, buying more nodes may require an-
other network topology with more switches, again with a stepwise increase in cost.

Even if there are no hard constraints on these metrics, cost increase resulting from buy-
ing more nodes can prevail over performance increase, and the system that spends all
available money will, in fact, be less optimal in terms of TCO/Performance than the
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original design that just attains the requested performance.
Due to all these circumstances, we stick to our formulation that tries to minimise the

TCO rather than maximise the performance.
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In this chapter we describe the design and functioning of the software tool – the prototype
CAD system – that implements the main algorithm of our framework described in Chap-
ter 11. The CAD system is modular software, with the main application written in Object
Pascal and therefore working both in GNU/Linux and MS Windows operating systems
due to its portability.

The modules are used to implement specific design tasks; they are essentially CGI scripts
that are queried over the network using Hypertext Transfer Protocol (HTTP). Thereby, in
principle, they can be implemented in any programming language and run on any plat-
form. In this prototype implementation we chose to place all modules on the same com-
puter with the main CAD application, so all communication takes place inside a single
computer. The modules for “ANSYS Fluent” performance model (Chapter 9) and inter-
connection network design (Chapters 13 and 14) are implemented in Object Pascal, while
the module to design UPS systems (section 15.9) is implemented in the Python language.

In the prototype implementation, modules are run by the Python-based web server
which is available in the standard Python installation. As a result, the entire software
suite can be downloaded from the Internet and run on any GNU/Linux or MS Windows
computer without installation, with the only requirement that the Python environment
version 3.3 or higher is already installed.

The architecture of the CAD system was presented three times at the International Su-
percomputing Conference (ISC). In particular, in 2011 and 2012, research posters [90, 91]
were presented that formulated, respectively, the goals for the CAD system and the mod-
ules comprising it. In the follow-up work, a research paper [95] was presented in 2014
that proposed a Python-based domain-specific language (DSL) called “SADDLE”, used to
create scripts that automate design procedures.

Since the CAD system was put online in November of 2012, it has been downloaded
over 100 times. The latest release features source code for all components, facilitating
adaptation of the tools by third parties to their own needs.

12.1. Overall Structure of the Main CAD Application

The application has the means to load a configuration graph (Chapter 10) stored in XML
format and generate configurations from it. Internally, each configuration is represented as
a list of key=value pairs that store characteristics of the configuration. During the course
of design procedures, the list is augmented by more characteristics as they get evaluated.
To reduce the size of design space, constraints can be imposed on the list of configurations.
Node-level constraints only affect characteristics of separate compute nodes, and are usu-
ally imposed immediately after loading the configuration graph. Global constraints put
restrictions on the machine as a whole; they are checked after each design stage and pre-
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vent offending configurations from participating in further design stages.
Both types of constraints mark configurations as “disabled”, effectively removing them

from consideration by the CAD tool. Such configurations bear a tag explaining the reason
for disabling. They can be automatically or manually removed from the list, or can be
left for further inspection. Another technique to quickly weed out potentially unsuitable
configurations is to apply a heuristic. See Chapter 8 for an overview of methods to deal
with combinatorial explosion.

The main window of the prototype CAD tool is presented in Figure 12.1. The tool-
bar allows to load a configuration graph database in XML format (see toolbar button
"Load XML DB"). After the graph is loaded, configurations are generated and displayed
in the lower pane in a comma-separated values (CSV) form. They can be saved to a file
(see toolbar button "Export to CSV"), which can later be read back (see toolbar button
"Import from CSV").

A pane "Node-level constraints" allows to specify constraints that act only on
technical and economic characteristics of compute nodes, rather than an entire machine.
In the figure, currently specified constraints are: min_cpu_cores=12 (requires that com-
pute nodes have at least 12 CPU cores) and min_node_main_memory_per_core=4 (re-
quires that a compute node has at least 4 GBytes of main memory per each CPU core).
The first constraint, for example, will allow a compute node with two 6-core CPUs, or two
8-core CPUs, or one or two 12-core CPUs, because all of these configurations provide 12
cores or more. However, it will disallow a compute node with one 6-core or 8-core CPU.

A comment symbol # prepends a constraint that is to be ignored by the CAD tool. To
apply constraints, the "Impose node-level constraints" button is used. If some
configurations are disabled during this procedure, it is reflected in the status bar in the

Figure 12.1.: Main window of the prototype CAD tool.
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lower right corner of the window. In our example, only 64 configurations remain enabled
out of 264 originally loaded.

Another way to weed out potentially unpromising configurations is to apply a heuristic.
Currently implemented heuristic is "Node cost / Peak performance" (see Chapter
8 for more details). Both actions – node-level constraints and heuristics – can severely re-
duce the number of enabled configurations. If the user feels no need to examine which
configurations were disabled and why, then disabled configurations can be removed from
the list by pressing the "Clean up now" button. Alternatively, a check box "Delete
disabled configurations" can be ticked to automatically clean up the list when-
ever some configurations become disabled during application of node-level constraints
or heuristics.

The "Undo" button on the toolbar allows to revert the results of any action that resulted
in modification of the configuration list: application of constraints or a heuristic, or a clean-
up action.

12.2. “Performance” Tab

The "Performance" tab of the prototype CAD tool allows to select the performance
model to be used during the design procedure (see Figure 12.2). The button "Load" is
used to load the list of models by querying the specified URL. Upon pressing the button,
the list of available models appears in the lower pane of the window.

Currently two performance models are implemented. The first, "Peak performance",
refers to the peak floating-point performance of the cluster computer, and is “built-in” –
that is, peak performance can be calculated directly from characteristics of compute nodes,

Figure 12.2.: “Performance” tab of the prototype CAD tool.
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without querying any external module. The peak performance is given by the following
expression: number of floating-point operations per cycle, times CPU clock frequency,
times number of cores in a CPU, times number of CPUs in a compute node, times number
of compute nodes in a cluster.

The second performance model is for the “ANSYS Fluent” computational fluid dynam-
ics (CFD) software suite (see section 9.4), and in particular it’s "truck_111m" bench-
mark. The URL to query the performance model is provided. Remember from Chapter 9
that there are two types of performance models, direct and inverse. A direct performance
model receives the number of compute blocks and returns a performance estimate. In our
case, the value of a characteristic "cores" from each configuration is sent, and the direct
model’s output is saved in a characteristic called "performance".

Conversely, querying an inverse performance model sends the value of a characteristic
"projected_performance" and receives the number of compute blocks required to
attain this performance into the characteristic "cores".

To correctly estimate performance, two more characteristics must be sent, "cpu_freq
uency" (CPU clock frequency in GHz) and "network_tech" (network technology of a
compute cluster, specified as a list of technologies available for each compute node config-
uration, for example: "10GbE InfiniBand-4X-QDR"). If more than one network tech-
nology was sent in "network_tech", then the performance model chooses the best one
(producing the best performance) – in this case, "InfiniBand-4X-QDR" – and returns it
back in "network_tech".

Another characteristic that is received is "performance_throughput_mode". Here,
the performance model can specify a Boolean value indicating whether the number of com-
pute blocks requested by the user was higher than the optimal, and “throughput mode”
was required (see section 9.2 on the explanation of “throughput mode”). For a sample
query to a performance model, see section 9.5.

12.3. “Network” Tab

The “Network” tab of the prototype CAD tool (see Figure 12.3) serves to load the list of
network topologies and select one of them that will be used to design an interconnection
network of a cluster supercomputer. The network design module developed in this thesis
can design fat-tree and torus networks (see Chapters 13 and 14, respectively).

The essential characteristic that must be sent to the network design module is the num-
ber of compute nodes ("nodes"), while network cost is received and saved in "network
_cost". A number of additional characteristics is received and stored for future use,
including important technical characteristics such as rack size occupied by the network
equipment ("network_equipment_size"), power consumption ("network_power")
and weight ("network_weight") of equipment.

In Figure 12.3, a non-blocking fat-tree topology is selected. Other topologies (blocking
fat-trees or torus) differ in parameters passed when querying the network design module
via Internet.
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12.4. “UPS” Tab

The “UPS” tab of the prototype CAD tool (Figure 12.4) allows to load the list of uninter-
ruptible power supply (UPS) design modules and select one of them to be used for design
procedures. The UPS design module works according to the algorithm outlined in section
15.9. Currently, one model of UPS is available, a 45 kW “Liebert APM”.

The essential characteristic that is sent to the UPS design module is a combined power
consumption of compute nodes and network equipment ("power"). Additionally, the
minimum backup time is specified in "min_ups_backup_time". In response, the mod-
ule returns cost of the UPS system ("ups_cost") as well as a number of other charac-
teristics of the UPS, such as its backup time ("ups_backup_time"), size in racks, and
weight.

12.5. “Design” Tab

“Design” tab of the prototype CAD tool is used for launching the design process and in-
specting the results (see Figure 12.5). Global design constraints are specified in the desig-
nated pane. In contrast to node-level constraints from the “Nodes” tab that put restrictions
on characteristics of compute nodes, global constraints pertain to characteristics of the en-
tire machine.

The only required constraint is the lower bound on performance that must be obtained:
"min_performance=240". Other constraints are optional. In our example, constraints
on capital expenditures ("max_capex=200000") and power consumption of the cluster
("max_power=10000") were specified; this allows to further reduce the number of con-

Figure 12.3.: “Network” tab of the prototype CAD tool.
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figurations to be manually inspected by the user. In principle, any types of constraints can
be specified here, as long as corresponding metrics are available in the configuration graph
or can be calculated by design modules.

Figure 12.4.: “UPS” tab of the prototype CAD tool.

Figure 12.5.: Design results tab of the prototype CAD tool, with the best configuration.
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Characteristic Best design Worst design

Number of compute nodes 13 28
CPUs per compute node 2 1

CPU model AMD Opteron 6276 AMD Opteron 6272
Cores per CPU 16 16

CPU frequency, GHz 2,3 2.1
Total number of cores 416 448

Performance 252,2 247,1
Equipment size, rack mount units 11 21

Power, W 5,379 6,590
Weight, kg 503 593

Capital expenditures, $ 158,504 197,776
Objective function,

CapEx / Performance
628,49 800,39

Table 12.1.: The best and the worst of ten designs

After the "Start Design Process" button is pressed, the multi-stage process is
launched; every configuration is separately inspected and processed (this allows for a triv-
ial parallelisation strategy, see section 12.7 below). Upon termination of each design stage,
the configuration is checked against the list of global constraints; if a violation is detected,
the configuration is immediately disabled and doesn’t participate in the subsequent de-
sign stages. In this case, out of 64 configurations only 10 meet design constraints and are
still enabled after the design process finishes, as indicated in the status bar.

The list of configurations is further sorted according to the value of the objective func-
tion, and the best configuration is displayed. The lower left pane lists the key=value pairs
that store technical and economic characteristics of the configuration. The lower right pane
briefly represents essential characteristics in a more easily readable form. In this case, the
number of compute nodes in a cluster is 13, performance is 252,2 tasks per day, power
consumption is 5,379 W, and capital expenditures are $158,504. As can be seen, all design
constraints are satisfied.

In fact, design constraints are satisfied for the first 10 configurations in the list, but char-
acteristics of the best (1st) and the worst (10th) designs differ considerably, as indicated in
Table 12.1. The 10th design is 27% worse by the value of objective function than the 1st. A
thorough analysis is provided in Chapter 17.

54 configurations out of 64 do not meet design constraints and were marked as disabled
during various stages of the design process. In this case, the CAD tool provides the ex-
planation for disabling when hovering the mouse over the red circle (see Figure 12.6). For
example, for the 11th configuration a constraint on capital expenditures was violated. As
the configuration list is sorted according to the value of the objective function, and for dis-
abled configurations this value cannot be calculated, those configurations appear in the
list in no particular order.
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Figure 12.6.: Design results tab of the prototype CAD tool, with one of the disabled config-
urations.

12.6. Module Invocation Sequence

When the multi-stage design process is launched, each configuration is examined, and
modules are invoked in the sequence stipulated by the algorithm outlined in Chapter 11,
alternating with constraints checks:

1. Inverse performance model is invoked to determine the number of cores required to
attain specified minimum performance.

2. The number of compute nodes is calculated, based on the number of cores returned
by the inverse performance model. The number of cores is then recalculated by
rounding it up (for example, 10 compute nodes contain 240 cores, not 237).

3. Technical and economic characteristics (cost, power, space, weight) of the computing
equipment are evaluated. If there are violations of global design constraints, the
configuration is marked as disabled, and the process ends.

4. Direct performance model is invoked with the newly calculated number of cores.

5. Network design module is invoked to design a network with a specified topology.
Network equipment is added to computing equipment, and constraints are checked
again.

6. UPS design module is invoked. UPS equipment is added to the existing hardware,
and constraints are checked yet again.

7. Objective function is computed.
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12.7. Parallelisation Strategy for the CAD Tool

As mentioned earlier in section 12.5, during the design process all configurations are ex-
amined separately. This suggests a simple parallelisation strategy: divide the list of con-
figurations into equally-sized partitions, and spawn the corresponding number of threads
to handle each partition. There are two important considerations here.

First, as shown in section 12.6, configurations can become disabled in the middle of the
design process. Therefore creating equally-sized partitions doesn’t guarantee synchronous
completion of all threads, as some partitions can become empty earlier than the others.

Second, the biggest limiting factor in spawning threads is the amount of computing
resources available on the servers that run modules (performance models, network and
UPS design modules, etc.) If too many threads are spawned, servers will temporarily
stop accepting connections, and corresponding threads will temporarily block until servers
handle the load.

Alternatively, when massive queries are anticipated, design modules can be published
as web services in a Platform-as-a-Service (PaaS) environment, such as “Google App En-
gine”. This cloud environment automatically scales the number of web service copies
listening to requests according to user demands.

When design modules execute quickly, the major slowdown in performing queries can
be introduced by a delay in the connection phase inherent to TCP protocol. This delay
can be eliminated by using HTTP request pipelining. On the other hand, when design
modules execute slowly, they can be re-implemented with parallel algorithms, if possible,
to speed up their execution.
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13. Fat-tree Network Design

Trees sprout up just about everywhere
in computer science.

Donald E. Knuth
THE ART OF COMPUTER

PROGRAMMING: VOL. IV–A,
COMBINATORIAL ALGORITHMS

We present an algorithm to automatically design two-level fat-tree networks, such as
ones widely used in large-scale data centres and cluster supercomputers. The two levels
may each use a different type of switches from design database to achieve an optimal
network structure. Links between layers can run in bundles to simplify cabling. Several
sample network designs are examined and their technical and economic characteristics are
discussed.

The characteristic feature of our approach is that real life equipment prices and values
of technical characteristics are used. This allows to select an optimal combination of hard-
ware to build the network (including semi-populated configurations of modular switches)
and accurately estimate the cost of this network. We also show how technical character-
istics of the network can be derived from its per-port metrics and suggest heuristics for
equipment placement.

13.1. Introduction

Parallel computers use many types of networks to interconnect its computing elements.
Frequently used topologies include stars, meshes, tori and trees.

“Beowulf”-style cluster supercomputers often employ fat-tree topologies built using
readily available off-the-shelf InfiniBand hardware. We describe an algorithm that allows
to automatically design fat-tree networks with a variety of objective functions, with the
most obvious example being the total cost of network. The algorithm is implemented in a
software tool [89].

This algorithm is used as a part of the CAD system for cluster supercomputers that we
propose in this thesis. Such a system iterates through different combinations of hardware,
varying the number of compute nodes and other parameters. Thus, designing an inter-
connection network for every hardware combination under review is a self-contained and
highly repetitive operation that must be performed efficiently.

Many researchers of fat-tree networks concentrate on general properties of such net-
works and big fabrics that could be built using them. We focus on real-life scenarios, tai-
loring network designs to the number of network endpoints and available switches. For
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example, our approach allows to select optimal configurations of modular switches, with
just the right number of leaf modules installed.

Current ASIC technology enabled the appearance of readily available, off-the-shelf In-
finiBand switches with P = 36 ports. This allows to build two-level fat-trees with as much
as P 2/2 = 648 cluster nodes. For many typical installations this is enough.

However, vendors also provide high-radix modular switches, which internally imple-
ment a two-level fat-tree. Switches with up to P = 648 ports (in non-blocking configu-
rations) are available, hence networks with more than 200K nodes can be built with the
proposed algorithm – this far exceeds the demands of even the most powerful today’s
supercomputers.

On the other hand, intermediate-sized designs that do not use the full capacity provided
by switches tend to have unused ports unless designed carefully. If no network expansion
is anticipated, unused ports represent a waste of hardware resources. Therefore our algo-
rithm tries to minimise the number of unused ports. Additionally, the algorithm reports if
links between switches can run in bundles. Such bundles can be implemented with cables
that aggregate multiple links, e.g., 12x instead of 4x InfiniBand cables. This results in a
lower number of cables and reduced cable bulk.

During the design process, other characteristics of interconnection networks, such as re-
liability, can be estimated and used as design constraints or as a part of a complex objective
function.

The rest of the chapter is organised as follows. Section 13.2 describes existing work
in the field of fat-tree networks and their economic issues. Section 13.3 introduces the
main algorithm, and section 13.4 discusses it. In section 13.5 we conduct a sample run of
the algorithm and present the results. Section 13.6 explains how to obtain technical and
economic characteristics of fat-trees using per-port metrics, while section 13.7 discusses
design for future expansion. Finally, section 13.8 concludes the chapter.

13.2. Related Work

Fat-trees were initially introduced by C. Leiserson [56]. The mathematical formalism to de-
scribe their structure, “k-ary n-trees”, was proposed by Petrini and Vanneschi [79]. Zahavi
[116] further introduces two other formalisms for describing fat-trees, Parallel Ports Gen-
eralized Fat-Trees, where links between switches can run in parallel, and Real Life Fat-Trees
where bandwidth between layers stays constant to guarantee content-free operation.

A tool called NetWires [23] was created by H.G.Dietz as part of the bigger project Cluster
Design Rules [22]. Netwires is able to design different types of interconnection networks,
including trees, tori and a specific Flat Neighbourhood Network, using user-supplied param-
eters, and outputs a wiring diagram. Aside from the number of required switches, no
other technical or economic characteristics are assessed. Our approach is different in that
we only require a few input parameters from the user, and iterate through other param-
eters automatically, trying to find a combination that yields an optimal value to a certain
objective function subject to constraints.

Gupta and Dally [36] suggested a tool to optimise network topology, in the broad class
of hybrid Clos-torus networks. Cost, packaging and performance constraints can be spec-
ified. This tool is most valuable for building custom interconnection solutions when arbi-
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trary topologies are feasible, contrary to the case of using commodity switches where most
parameters are fixed but optimisation can take actual prices into account.

Al-Fares et al. [2] proposed to use fat-trees for generic data centre networks, using com-
modity hardware. Farrington et al. [31] followed up, suggesting to build a 3,456-port data
centre switch with commodity chips (“merchant silicon”) internally connected in a fat-tree
topology. They also advice to use optical fibre cables with as much as 72 or even 120 sep-
arate fibres (strands) to minimise the volume and weight of cable bundles for inter-switch
links.

Mudigonda et al. [63] introduced Perseus, a framework to design fat-tree and HyperX
topologies for data centres, and elaborated on cable tracing issues. However, fat-tree
topologies built by Perseus use identical switches on all levels.

Parallel applications typically exhibit locality of communications. Therefore in multi-
level non-blocking fat-tree networks the bandwidth offered by upper levels may remain
underutilised. On intermediate levels, switch ports can be redistributed so that the number
of links to the lower level is bigger than to the upper level. This reduces “fatness” of the
tree, providing substantial hardware savings in terms of switches and links.

Navaridas et al. [68] introduced such a reduced topology, thin-tree, and analysed its be-
haviour using simulation and several synthetic workloads. Overall, for the mix of work-
loads, different configurations of the reduced topology were found beneficial in terms of
“performance/cost” ratio compared to traditional fat-trees, especially when collective op-
erations were only lightly used. They add, however, that in the absence of a topology-
aware scheduler, neighbouring processes may be assigned to physically distant process-
ing nodes, requiring full bandwidth at upper levels and thus rendering reduced topologies
useless. Necessity of topology-aware scheduling is additionally highlighted in [69].

Kamil et al. [51] similarly proposed a reduced topology, but used communication pat-
terns of actual parallel applications for analysis.

Kim et al. [52] introduced a flattened butterfly topology, providing detailed analysis
of cost breakdown for electrical cables. 12x InfiniBand cables, aggregating three 4x links,
were shown to be more economical than separate 4x cables and to additionally reduce
cable bulk. Their subsequent work [53] compared cost models for electrical and active
optical cables, showing that in 2008 prices, optical cables are less expensive starting from
10m. Parker and Scott [75] further advocate for the adoption of optical interconnects.

Singla et al. [87] proposed to abstain from rigid network structures such as fat-trees, and
connect switches in a random order, in a topology called Jellyfish. They found that with the
same performance figures and the same network equipment as the fat-tree, their topology
supports more servers (performance results were obtained via simulation with random
permutation traffic). Another benefit of Jellyfish is the ability of incremental expansion.

13.3. Algorithm

Let us consider the algorithm to design fat-tree networks with two levels of switches
(namely, edge and core layers). Suppose we have two databases, for edge and core switches,
respectively, with each switch characterised primarily by the number of its ports. For the
number of ports of a specific edge switch we will use the designation PE , and for a core
switch we will use PC .
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Some switch models can be used for building both core and edge levels, and can be
present in both databases. The two layers of network can employ different types of switches,
but switches within the same layer are identical.

Let E and C be the sets of edge and core switches. Each i-th switch is characterised
by its model and the number of ports, e.g.: C = {〈MCi , PCi〉}. These sets are the algo-
rithm’s input. Their structure allows them to contain several models of switches with the
same number of ports but with differing characteristics, such as cost, reliability, energy
consumption, etc.

For blade servers, which are installed into enclosures, edge-level switches are also in-
stalled in the same enclosures, and thus E usually contains only one element – a single
switch, compatible with the enclosure. Ordinary rack-mounted servers can, on the con-
trary, use a variety of edge-level switches.

Apart from E and C, other inputs for the algorithm are N , the number of compute
nodes that need to be interconnected, andBl, the blocking (oversubscription) factor, which
denotes the decrease in bandwidth available to compute nodes compared to a full, non-
blocking fat-tree.

The outputs of the algorithm are models of edge and core switches used to obtain the
optimal design, as well as E and C, the number of edge and core switches, respectively,
and f , the value of the objective function.

In a fat-tree network with a blocking factor Bl and edge switches with PE ports, PEn =
bPE ·(Bl/(1+Bl))c of those ports are used to connect compute nodes, and the rest are used
to connect the edge switch to the core layer. Under these conditions, in order to connect all
N nodes, E = dN/PEne edge switches are required.

The remaining ports on edge switches are connected to core layer switches. When build-
ing the core layer, each port on an edge switch is connected to a different core switch. It
means that a core switch must have at least as many ports as there are edge switches. For
example, first ports of all edge switches will connect to the same core switch. As a result,
core switches must have at least PCmin ≥ E ports.

Similarly, if a core switch has PC ≥ PCmin ports, it can be connected to a maximum of
PC edge switches, each of those having PEn compute nodes connected to it. Therefore, the
maximum number of nodes that could be connected is Nmax = PC · PEn.

The algorithm structure is as follows. First we check for two trivial cases where a full
two-level fat-tree network is not required. Then we iterate through a set of edge switches.
For every edge switch in the set, we evaluate multiple possible network designs, trying
suitable core switches, and choose one of them. Finally, the best design over all iterations
is selected.

Let us describe the algorithm by stages.

1. The first stage is to check for the trivial case of two blade enclosures (line 2). In
this set-up, there are two enclosures of PE/2 servers, each fitted with built-in edge
switches with PE ports. Half of the ports of each switch are connected to servers.
The two switches can be directly connected together with PE/2 cables, and a core
level is not necessary.

A cheaper alternative is to replace one of the switches with a “pass through” panel,
also allowing to directly connect this enclosure’s servers to the remaining second
switch.
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Algorithm 2 Design a two-level fat-tree network

Input:
N : Number of nodes to interconnect
Bl: Blocking factor
E,C: Sets of edge and core switches

Goal: Optimal network structure:
E,C: Number of edge and core switches
Blr: Resulting blocking factor
B: Number of links in a bundle
L: Number of cables
f : Objective function for the optimal network structure

1: { First trivial case: }
2: if (Using blade servers) and (Only two enclosures) then
3: Trivial case 1: connect enclosures with cables
4: Compute f1
5: end if
6: { Second trivial case: }
7: if ∃〈M,P 〉 ∈ E ∪ C : P ≥ N then
8: { If there exists a switch with N or more ports }
9: Trivial case 2: use star network

10: Compute f2
11: end if
12: {Main loop: iterate through edge switches }
13: for all edge switches 〈MEi , PEi〉 ∈ E do
14: PEni ← bPEi · (Bl/(1 +Bl))c { Ports to nodes }
15: PEci ← PEi − PEni { Ports to core level }
16: Blr ← PEni/PEci { Resulting blocking }
17: Ei ← dN/PEnie { Number of edge switches }
18: for all core switches 〈MCj , PCj 〉 ∈ C do
19: if PCj ≥ Ei then { Core switch suitable }
20: { Try core switch MCj }
21: B ←min (PCj ÷ E,PEci) { Links in a bundle }
22: C ← dPEci/Be { Number of core switches }
23: L← N + Ei · PEci { Number of cables }
24: Compute fi,j = f(Ei, Cj)
25: end if
26: end for
27: end for
28: Choose optimal combination of MC and ME : f3 = min fi,j
29: Output optimal network structure: f = min(f1, f2, f3)
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(In case of rack-mounted servers, these complications are irrelevant, because two
blocks of PE/2 servers can always be connected with a single edge switch with PE

ports).

We check if this configuration satisfies design constraints, and if yes, compute the
value f1 of the objective function (in particular, expandability constraints could be
violated).

2. The second stage concerns the trivial case of a star network (line 7). If there exists a
switch, in either E or C, with enough ports to accommodate all N nodes, it can be
used to build a star network. If several such switches exist, we choose one. Similar
to the above case, the value of the objective function, f2, is then computed.

3. The main loop iterates over available edge switches using index i.

a) For every switch model, we calculate: PEni , the number of ports that are con-
nected to compute nodes (line 14), PEci , the number of ports connected to the
core level (line 15), Blr, resulting blocking factor (line 16), and finally Ei, the
number of required edge switches (line 17).

b) We then iterate through all core switches using index j (line 18). If the number
of ports on the core switch makes it suitable, we perform the following actions.

i. Calculate B, the number of links that run in parallel between edge and core
switches (line 21).

The core level is built in the following way. We take one core switch. For
every edge switch, we connect its first port to the core switch. As we have
E edge switches, this operation will occupy E ports on the core switch.

Now, we repeat this step several times until we run out of ports on the core
switch. If this step is performed for a total of B times, then each of the edge
switches becomes connected to the core switch with a bundle of B links. B
can be obtained with a simple equation: B = PCj ÷ E.

In certain rare cases with high blocking factors (see Example 3 below), only
one core switch is necessary to connect together all edge switches, and then
links from all ports on the edge switch directed towards the core level form
a single bundle B = PEcj . Line 21 handles this scenario using the min
function.

ii. After determining B, we calculate the number of core switches C.

iii. At this point, the number of edge and core switches becomes known, hence
we can calculate the value of the objective function fi,j for this particular
fat-tree configuration.

c) We choose the optimal fat-tree configuration: f3 = min fi,j (or, alternatively,
present a human designer with several choices)

4. From all combinations obtained with the previous steps (trivial cases 1, 2) and main
loop (3), we choose the one with the optimal value of the objective function (line 29).
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Figure 13.1.: Network of N = 60 nodes, created by the proposed algorithm. Thick lines
between edge and core levels represent bundles of nine network links.

Example 1. Suppose we need to interconnect N = 60 nodes using 36-port switches
(PE = PC = 36) with a non-blocking network (Bl = 1). The algorithm would return E = 4
edge switches, C = 2 core switches, and B = 9 links in a bundle.

The wiring diagram for the resultant network is shown in Figure 13.1. Note that on the
rightmost edge switch only 6 ports are utilised, and 12 ports are left unused. Lines between
edge and core switches are thicker to represent multiple links connecting switches in edge
and core layers. In this case, bundles of B = 9 links are used. Running links in bundles
allows for greater maintainability. Additionally, using 12x InfiniBand cables that aggregate
three 4x links allows to decrease the number of physical cables in a bundle to only three.

Example 2. Let us design a network for N = 1200 nodes, using a blocking factor of
Bl = 2. We will use edge switches with PE = 36 ports and core switches with PC = 108
ports. Out of 36 ports on the edge switch, PEn = 24 will be connected to compute nodes,
and the remaining PEc = 12 ports will be connected to the core layer. This provides the
blocking factor of Bl = 24/12 = 2. The algorithm would return E = 50 edge switches,
C = 6 core switches, and B = 2 links in a bundle.

Example 3. Let us now design a network for N = 280 nodes with an artificially high
blocking factorBl = 11, using 36-port switches (such a configuration is unsuitable for HPC
workloads, and is more relevant for generic data centre environments). The algorithm
would distribute ports on edge switches in the following way: PEn = 33 ports will be
connected to compute nodes, and PEc = 36 − 33 = 3 ports will be connected to the core
level. The resulting blocking factor is Blr = 33/3 = 11. The number of edge switches is
E = 9. Only three ports on edge switches are available for connecting to the core level,
therefore they will form a single bundle: B = 3. The number of core switches is then
C = 1.

Note that, when the number of edge switches E is determined, there are two possible
scenarios of connecting compute nodes to edge switches: (1) connect as many nodes to
each switch as possible, and leave the last switch underutilised (see Fig. 13.1), or (2) dis-
tribute compute nodes uniformly between all switches. The latter scenario can, in very
rare cases, lead to a lower number of required core switches. However, it also leads to
difficulties when expanding the network, because there may not be enough free space in
racks. Our software tool [89] that implements the algorithm actually checks for that con-
dition, and uses this scenario only if it provides hardware savings and if the user didn’t
specify preference for expandability.
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13.4. Discussion

13.4.1. Switch Configurations

We consider two types of switches. First is an ordinary commodity non-modular switch
with some redundant components. An example would be a typical off-the-shelf 36-port
InfiniBand FDR switch, with redundant fans and an optionally redundant power supply,
but with a non-redundant management board.

The second type is the modular switch. Consider, for example, a 144-port InfiniBand
switch, equipped with 9 line cards, each allowing to connect 16 nodes in a non-blocking
configuration. Fabric boards are used to provide internal fabric of the switch, and all four
fabric boards must be installed to make the switch non-blocking. Line cards and fabric
boards are installed into the chassis, which also contains redundant power supplies, re-
dundant fans, and redundant management boards.

(Such a switch itself contains a two-level fat-tree, with links between core and edge levels
running in bundles of B = 4 and implemented as traces on its backplane printed circuit
board. Parameters of this fat-tree network are as follows: PE = 32, PC = 36,E = 9, C = 4).

Modular switches have large port counts, this reduces the overall number of switches in
the network, improving manageability and simplifying cable routing. Additionally, they
allow for future expandability by adding more line cards when required. These benefits
often outweigh their higher prices per port.

When the number of nodes to be interconnected is lower than the number of ports pro-
vided by the fully configured modular switch, a reduced configuration can be used, with
fewer line cards installed. This allows to significantly decrease the cost of the switch com-
pared to the full configuration.

Different reduced configurations are treated as different models of switches in the databases
E and C, because they have differing technical and economic characteristics.

13.4.2. Design Constraints and Objective Functions

Objective functions can be diverse, and various design constraints can be specified. Let us
confine ourselves to a single example. Suppose we need to choose one of the following
switches for the core level: (a) 144-port fully configured modular switch, or (b) partially
configured 324-port modular switch, with 144 configured ports. The former takes up less
space in a rack, while the latter provides for future expansion.

If constraints on equipment size are imposed, the 144-port switch will be used, and the
324-port switch might not be even tried if it violates constraints. Conversely, if constraints
on future expandability are imposed, the 144-port switch might get discarded. If no con-
straints are imposed, exhaustive search will be performed: the value of the objective func-
tion (e.g., the total cost of ownership of the network) will be calculated for both variants to
make the decision.

13.4.3. Cable Count

Cables that interconnect edge and core levels are laid out at installation time, and later
updates are difficult and costly.
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Therefore, when future use of spare ports is anticipated, we recommend establishing a
full fabric between edge and core levels. As we haveE edge switches, whose PEc ports are
connected to core level, we need E ·PEc cables to establish a full fabric between the layers.
Additionally, N cables are needed to connect compute nodes to the edge level.

The complete expression for the number of cables is therefore L = N + E · PEc. For
example, in Figure 13.1 the number of cables is L = 60 + 4 · 18 = 132.

For blade servers, the connection of compute nodes to edge switches doesn’t require
cables, therefore the first summand in the above formula is eliminated.

13.5. Experimental Results

We apply the proposed algorithm to a real-life scenario, perform detailed calculations and
discuss economic implications. Prices are subject to change over time, but this does not
affect generality of conclusions.

We build a fat-tree network for a cluster of N = 224 blade servers. The cluster is built
with 14 enclosures, each of them containing 16 blade servers. Every enclosure is fitted with
an edge switch with PE = 32 ports.

13.5.1. Design Database

We will use two possible core switches: (a) a 36-port monolithic switch with a price of
$11,000, which is roughly $306 per port, and (b) a modular switch which can be configured
with up to 108 ports, in multiples of 18. In the network design tool this modular switch
is represented as six switches of 18, 36, ..., 108 ports. Therefore, C contains seven items in
total.

The modular switch consists of a chassis ($25,000), 3 fabric boards necessary to make the
switch non-blocking ($9,000 each), and a required number of line cards (up to 6), providing
18 ports each ($13,000 each). Full configuration costs $130,000, or $1,204 per port. This is a
four times higher price per port compared to a simple 36-port switch.

Modular switches have a lower port density, therefore using them can unexpectedly
increase the total space taken by network equipment. If only limited space is available, this
can be dealt with by imposing constraints on equipment size when running the algorithm.

13.5.2. Possible Core Level Configurations

According to the algorithm, on the edge level E = 14 switches will be used. On the core
level, there are seven possible choices of core switches. The least expensive configuration
of the core level ($88,000) is obtained when using eight 36-port monolithic switches.

Reduced configurations of the modular switch with 18, 36, 54 and 72 ports result in
unreasonably high costs, and we don’t analyse them here. They could also be discarded
using the following heuristic: modular switches are cost-effective when configured close
to their full capacity.

Of special interest are, however, configurations with 90 and 108 ports. Both of them
requireC = 3 core switches. The 90-port configuration will be used, as it is slightly cheaper
($117,000) than the full 108-port configuration ($130,000). The cost of core level with this
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configuration is therefore 3 · $117, 000 = $351, 000. This is roughly 4 times more expensive
than with a 36-port switch.

13.5.3. Factoring In Other Costs

We continue to compare two configurations of the core level – with 36-port switches and
with 90-port switches. Let us now factor in the cost of 14 edge-level switches, located
in enclosures (one switch per enclosure, $11,000 each), and the cost of 224 cables (as per
section 13.4.3) of $80 each (an averaged price for cables of this length, calculated manually).
The per-port total costs of the two networks are $1,160 and $2,334, respectively – a twofold
difference.

If we further add the cost of blade servers, equipped with dual CPUs, memory and
InfiniBand adapters ($9,600 per each server), and cost of 14 enclosures ($7,500 per each), we
will receive the total costs of the computer cluster, $2,515,320 and $2,778,320, for networks
made of monolithic and modular core switches, respectively. The difference per connected
server diminishes to 10,4%. It means that for a small premium we can attain a possibility
of future network expansion and greatly simplify cabling.

Additionally, these calculations demonstrate that using blocking networks, such as thin-
trees, will only marginally reduce total cost of the supercomputer, while potentially having
severe consequences on performance.

It is worth noting that cost of cables is very low compared to the cost of entire computer
cluster. This justifies the use of rough approximations of cable costs when designing entire
computers (see also section 16.3).

13.6. Per-port Metrics

Let us consider a particular case of a network where edge and core switches are identical,
and all ports are occupied. Some useful metrics can be derived for such networks.

Let us denote port count on edge and core switches by P . The network can connect a
maximum of N = Nmax = P 2/2 nodes. There will be P edge and P/2 core switches, for
a total of 3P/2 switches. As switches have P ports each, the total number of ports on all
switches will equal to 3P 2/2 = 3N , which is thrice the number of nodes. In other words,
for each of N connected nodes, the two-layer fat-tree network employs three ports (and a
three-layer network employs five).

Several important characteristics, such as network cost and power consumption, are
“additive” in a sense that x identical switches cost x times more than a single switch and
consume x times more power. The same applies on a per-port level: a network of iden-
tical arbitrarily connected switches, with a total port count of y, costs y times more and
consumes y times more power than per-port cost and power consumption, respectively.

This allows to easily determine a rough estimation of cost, power, rack space, weight and
possibly other characteristics of a network that supports N nodes by simply multiplying
corresponding per-port characteristics of switches by 3N , without the need for detailed
analysis.

For example, a 36-port switch mentioned in section 13.5.1 has a cost of $306 per port.
Typical power consumption reported by manufacturer is 152W with copper cables, which
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Figure 13.2.: Network cost, estimated and actual.

is 4,22W per port. The switch occupies 1U of rack space, hence “per-port rack space” is
1/36.

For a full configuration of N = 648 nodes, power consumption is 3N times per-port
consumption (8,204W). Cost is 3N times per-port cost ($594,864). Occupied rack space is
3N times “per-port rack space” and equals 54U.

This estimation is also correct when the number of nodes N is X times smaller than
Nmax, where X is a non-trivial factor of P/2. In this case links between core and edge
layers run in bundles of X . For example, if P = 36, valid values for X are 2, 3, 6 and 9.
The estimation will thus be accurate for clusters of 324, 216, 108 and 72 nodes.

In all other cases there will be spare ports on core and possibly edge layers, and the
above approach will systematically underestimate metric values, because the actual net-
work will have more than 3N ports. Therefore, the estimation provides the lower bound on
metric values.

Figure 13.2 provides an example. The blue line represents the actual cost of network
built with 36-port switches, including cables, for N ∈ [2, 160] nodes. A region of 2 ≤
N ≤ 36 nodes represents a trivial case of star network, with only one switch: no fat-tree is
required, hence the cost of network is kept low. Starting from 37 nodes, a two-layer fat-tree
is used. Stepped behaviour of the blue curve is explained by increased switch count for
every additional P/2 = 18 nodes. Monotonic increase inside a step is caused by increased
cable count for every connected node.

The green line starts at 37-th node and represents the above estimation: 3N multiplied
by per-port cost, plus the cost of cables. At 72 and 108 nodes it exactly matches the actual
cost, as discussed above, but in other points a discrepancy is observed, with the median
value of 12%.

This result allows to quickly obtain engineering evaluations of fat-tree characteristics
without referring to the algorithm.

13.7. Designing for Future Expansion

Expanding existing fat-tree networks can be a difficult task. While adding edge level
switches is easy, core level switches might not have spare ports necessary for expansion if
this was not taken care of during design phase. We suggest to design a core level for the
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Figure 13.3.: Equipment placement for partly expandable configuration.

largest anticipated number of ports, and then gradually connect more nodes via additional
edge switches as the need arises.

We demonstrate with a real-life scenario that failure to properly construct the core level
can lead to non-expandable networks. Suppose we need to build a computer cluster using
1U compute nodes and commodity switches with P = 36 ports. Additional design con-
straint is that the cluster shall initially occupy two standard 42U racks with as many nodes
as possible, and be expandable to three racks in the future – imitating lack of space in the
machine room.

If we do not take expandability into account, the network design process proceeds as
follows. Two racks contain 84U of space. With N = 84 nodes we require E = 5 edge and
C = 3 core switches which would occupy additional 8U, thus exceeding allotted space.
Hence we reduce node count to N = 76.

Resulting equipment placement is presented in Figure 13.3, with a close-up of the area
of interest in Figure 13.4.

Initially there are two racks, the left and the middle. Five edge switches are located in the
top of the middle rack, followed by three core switches. All remaining space is occupied
by N = 42 + 34 = 76 compute nodes.

Let us discover opportunities for expandability when the third rack becomes available.
First, we can use spare ports in already installed edge and core switches. There are 28
spare ports in the topmost edge switch, shown in cyan, and 32 spare ports in three core
switches, shown in cyan and magenta.

Using 28 spare ports in the edge switch allows to connect 14 more nodes which would
be placed to the bottom of the newly available right rack, denoted by a cyan block. Of
28 ports, half would be connected to the new nodes, and the remaining half would be
connected to corresponding cyan ports of core switches.

Next opportunity for expansion lies in installing a sixth edge switch in the top of the
right rack, shown in magenta. 18 ports of this switch will be connected to 18 nodes in
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Figure 13.4.: Close-up of the area of interest.

the right rack, denoted by a magenta block. Remaining 18 ports would be connected to
corresponding magenta ports of core switches.

Now opportunities for expansion are exhausted. A total of N = 108 nodes were con-
nected, and nine units of rack space cannot be utilised, violating the design constraint.
Further expansion would require redesigning the core layer: adding more switches and
rewiring connections. For large clusters this is a complex and costly task that should be
avoided if possible.

Instead, we can design a network from the start to accommodate the largest anticipated
number of nodes. In this case, three racks can house N = 126 nodes. The network will
consist of E = 7 edge and C = 4 core switches, occupying in total 11U of rack space.
Hence node count shall be respectively reduced to N = 115. All three racks will be fully
populated.

This allows to expand the cluster by 7 additional nodes, compared to the previous vari-
ant. However, this also incurs increased network cost, as 11 switches are used instead of 9,
so design decisions have to be carefully balanced.

For this newly designed expandable network, there are two alternative variants of equip-
ment installation in the initial two racks:

1. Install all C = 4 core and E = 7 edge switches at once. This requires 11U of racks
space, and leaves space for 73 nodes. Additional 42 nodes will be added when a new
rack is available.

2. Install all C = 4 core switches and as many edge switches as required to fill up two
racks with nodes, namely, E = 5 edge switches. This requires 9U of rack space, and
allows to install 75 nodes. Additional 40 nodes and two edge switches will be added
when a new rack is available.

The latter variant allows to populate initial two racks with more nodes and reduce orig-
inal investment in edge switches, as their procurement can be delayed until the expansion
stage.

13.8. Conclusions

We presented the algorithm to automatically design two-layer fat-tree networks with ar-
bitrary blocking factors. We applied proposed algorithm to design several networks and

117



13. Fat-tree Network Design

analysed their characteristics. We demonstrated that a lower bound (and a rough approx-
imation) for many technical and economic characteristics of the whole network can be
easily obtained from per-port metrics. We also discussed expandability of fat-trees.
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In this chapter we present a simple algorithm to calculate the number of switches in a torus
network, based on the number of compute nodes to be interconnected and, optionally, a
blocking factor. Results obtained using this algorithm are later used to compare technical
and economic characteristics of tori to fat-tree networks.

14.1. Related Work

Torus networks have found widespread use in supercomputing. IBM used a 3D torus net-
work in BlueGene/L, and a 5D network [21] in BlueGene/Q. A 6D mesh-torus network
was used in “K Computer” [1]. Both are direct networks, where compute nodes are con-
nected directly to their neighbours, as opposed to switched fabrics, where nodes are first
connected to switches, and then switches are connected to each other in a torus topology.
The example of the latter is a 3D torus network for the Gordon supercomputer [98].

Torus networks are inherently prone to congestion, but this is mitigated by designers
by increasing the number of dimensions. Commenting on the Gordon project, Strande
[97] quotes the following benefits of torus networks: (a) lower cost compared to fat-trees
and (b) easy linear scaling along one of dimensions. However, such scaling may result in
unbalanced topologies, leading to bigger latencies and higher congestion on the links in
that dimension. Strande also mentions that the torus topology uses short cables, which
makes the use of fibre optical cables unnecessary, leading to further cost savings.

Navaridas and Miguel-Alonso [67] analysed performance of 2D switch-based torus topolo-
gies and fat-trees for up to 7,680 compute nodes, on a range of workloads, using simulation
techniques. They conclude that performance degradation from using torus networks, com-
pared to fat-trees, can reach 20..40%, and sometimes more, on communication-intensive
workloads, which limits applicability of tori in larger installations.

Cámara et al. [19] introduced the technique to turn unbalanced rectangular 2D and 3D
tori to twisted tori by rearranging peripheral links, which improves performance charac-
teristics as well as regains network symmetry.

14.2. 3D Dual-rail Torus Network of the Gordon Supercomputer

Gordon supercomputer [98] uses InfiniBand switches with P = 36 ports of 4X QDR tech-
nology. Switches form a 4x4x4 torus; each switch has 6 neighbours, to which it connects
with 3 links, thereby utilising 18 ports out of 36. 17 more ports are used to connect 16
compute nodes and one I/O node.

The network is dual-rail, therefore there are actually two tori made of switches, and
compute and I/O nodes have two network interfaces, one of which is used to connect to
the switch in the first torus (“rail”), and the other to the second one. Currently, one rail is
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used for MPI, and the other one for I/O traffic. According to Strande [97], there are plans
to use both rails simultaneously to provide failover capabilities and improve bandwidth.

14.3. Algorithm for Designing Torus Networks

We propose the algorithm to calculate the number of switches in a torus network, using
as input the number of compute nodes to be interconnected and, optionally, a blocking
factor that determines the distribution of ports on a switch between compute nodes and
neighbouring switches. The algorithm is suitable to design networks built with commod-
ity hardware, such as Gordon’s network.

As torus networks are inherently prone to congestion, imposing additional blocking at
the switch level is very disadvantageous. However, sometimes blocking is stipulated by
the hardware manufacturer, and cannot be avoided. For example, in [67] the hardware
under review was a blade chassis equipped withN = 20 compute nodes and an InfiniBand
switch with P = 36 ports. Only 16 ports of the switch were used to connect it to the
outside world, which resulted inBl = 20/16 = 1,25 blocking factor. In order to build torus
networks for such hardware with the proposed algorithm, we need to specify the blocking
factor as an input.

The algorithm tries to build a network using identical switches with PE ports. Let us
describe the algorithm by stages. In line 1 we check if the switch has enough ports to
connect all N nodes. In this case, we use the star topology with only one switch and exit.

Otherwise, we will build a ring or a torus. In lines 8..10 we calculate the number of
switch ports that go to compute nodes and to the neighbouring switches, and then recal-
culate the blocking factor for the network. On line 11 we derive the minimal number of
switches required to connect N nodes with a given blocking factor. The actual torus will
contain slightly more switches (generally, the increase is within 20% for small networks,
and within several percent for the large ones).

On line 12, we use a heuristic to determine the number of torus dimensions, based on
the number of switches. It is important to note that there are no hard rules when choosing
the number of dimensions. Choosing a low number of dimensions for a high number of
compute nodes leads to increased network diameter and therefore latencies. On the other
side, choosing a too high number of dimensions for a low number of compute nodes does
not provide network performance benefits but results in complex cabling patterns. In the
case of direct networks this scenario also requires network adapters with an unnecessarily
large number of ports.

The optimal number of dimensions depends on the communication pattern of the ap-
plication, and can be reliably determined, for any given application, only through bench-
marking on real hardware or by using simulation such as in [67]. Therefore we relied on
using a heuristic.

Currently, the dimension choice heuristic returns the number of dimensions as per Ta-
ble 14.1, up toD = 5. The layout of switches in the maximal configuration for that number
of dimensions is provided in the last column of the table for reference.

If the heuristic returns D = 1, then we use the ring topology (line 14). Otherwise, we
use the torus topology, and need to calculate the number of switches along each of D
dimensions by rounding D

√
E to the nearest integer (line 17).
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This creates a topology close to an ideal square, cube, etc. Packaging constraints, how-
ever, may preclude from using this particular ideal layout, and in the resulting unbalanced
torus the number of switches along dimensions may differ significantly. The number of
switches, E, still remains the same as returned by the algorithm, allowing to correctly
calculate equipment cost and other metrics.

On the next step, we calculate the number of switches in the last dimension (line 18)
and recalculate the total number of switches as the product of switch counts along all
dimensions (line 19).

The number of cables is determined on line 21. The number of switch ports facing to
neighbouring switches, PEc, is divided by two, because two ports are connected with one
cable. This is then multiplied by the number of switches E. Compute nodes are connected
with additional N cables. The network is expandable from N up to E ·PE compute nodes.
Inter-switch links run in bundles of approximately PEc/(2 ·D), therefore it is often possible
to use cables that integrate several links (such as a 12x InfiniBand cable that integrates three
4x links) to reduce the number of physical cables, simplifying installation.

Sample output of the algorithm for commodity InfiniBand switches with PE = 36 ports
and a non-blocking network (Bl = 1) is presented in Table 14.2.

14.4. Cost Comparison of Torus and Fat-tree Networks

We used real life equipment costs provided by Mellanox Technologies to derive costs of fat-
tree and torus networks for up to 3,888 compute nodes. We utilised the tool for automated
design of cluster interconnection networks [89]. Equipment costs are given for the older
generation of equipment (InfiniBand QDR), and technical characteristics are summarised
in Table 14.3. Cable cost is assumed to be $80.

We consider three models of switches. The first of them, the 36-port switch, is used for
building torus networks, and is also utilised on edge level of fat-tree networks. The other
two are modular switches that have 108 and 216 ports in their maximal configurations. The
actual number of supported ports depends on the number of installed line cards, which
leads to 6 and 12 configurations of these switches, respectively. Each configuration has its
own set of technical characteristics as well as cost.

The set of equipment described above allows to build non-blocking fat-tree networks
with up to Nmax = PE · PC/2 = 36 · 216/2 = 3,888 nodes. On Fig. 14.1 we plot costs of
non-blocking as well as 2:1 blocking fat-tree networks, and torus networks. As expected,
the cost of 2:1 blocking fat-trees is lower than of their non-blocking counterparts; but re-
duction in cost is less than twofold. Torus networks are consistently cheaper than fat-trees;
however, their inherent blocking may have detrimental effect on application performance
that will not be offset by lower costs.

We also consider an alternative way of building fat-trees: using 36-port switches for
both core and edge layers. This allows to build non-blocking fat-tree networks with up to
Nmax = 36·36/2 = 648 nodes. Such networks are characterised by complex wiring patterns
between the two layers, but are marginally cheaper to build. Fig. 14.2 is essentially a close-
up of the previous figure, focusing on values of N up to 648 nodes, with an additional
curve representing costs of the alternative fat-tree building method.

As the diagram indicates, using 36-port switches for building fat-trees does indeed lead
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Algorithm 3 Design a torus network

Input:
N : Number of nodes to interconnect
Bl: Blocking factor
PE : Number of switch ports

Goal: Optimal network structure:
D: Number of torus dimensions
d = 〈d1, . . . , dD〉: Number of switches along each dimension
E: Total number of switches
Blr: Resulting blocking factor
L: Number of cables
f : Objective function for the optimal network structure

1: if PE ≥ N then
2: { If there exists a switch with N or more ports }
3: print Topology: star
4: E ← 1; Blr ← 1; L← N
5: Compute f
6: Exit
7: end if
8: PEn ← bPE · (Bl/(1 +Bl))c { Ports to nodes }
9: PEc ← PE − PEn { Ports to other switches }

10: Blr ← PEn/PEc { Resulting blocking }
11: E ← dN/PEne {Minimal number of switches }
12: D ← GetDimCount(E) { Heuristic for the number of torus dimensions}
13: if D = 1 then
14: print Topology: ring
15: else
16: print Topology: torus
17: di ← round( D

√
E) | i = 1 . . . D − 1 { Number of switches along dimensions }

18: dD ← dE/dD−1
1 e { Switches in the last dimension }

19: E ← ∏D
i=1 di { Actual number of switches }

20: end if
21: L← N + E · PEc/2 { Number of cables }
22: Compute f

Switch count, E Topology Dimensions, D Max. configuration

2 or 3 Ring 1 —

up to 36

Torus

2 6x6
up to 125 3 5x5x5
up to 2401 4 7x7x7x7
more than 2401 5 (As appropriate)

Table 14.1.: Heuristic for the number of torus dimensions
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Compute nodes, N Dimensions, D Torus topology
Supercomputer of
comparable size

1,000 3 4x4x4 Gordon [98]
6,000 4 4x4x4x6 Stampede [102]
8,000 4 5x5x5x4 Tianhe-1A [66]
10,000 4 5x5x5x5 SuperMUC [55]
19,000 4 6x6x6x5 Titan [72]

Table 14.2.: Sample output for Algorithm 3

Switch
applicability

Switch model
Port

count
Size, U Weight, kg Power, W Cost, $

Torus, Fat-tree
(edge layer)

Mellanox
Grid Director

4036
36 1 7,7 202 10,820

Fat-tree
(core layer)

Mellanox
IS5100

18

7

75,1 516 78,500
36 77,8 606 90,000
54 80,6 696 101,500
72 83,3 786 113,000
90 86,1 876 124,500
108 88,9 966 136,000

–”–
Mellanox

IS5200

18

10

115,7 516 125,500
36 118,4 606 137,000
54 121,2 696 148,500
72 123,9 786 160,000
90 126,7 876 171,500
108 129,5 966 183,000
126 132,2 1,056 194,500
144 135,0 1,146 206,000
162 137,7 1,236 217,500
180 140,5 1,326 229,000
198 143,3 1,416 240,500
216 146,0 1,506 252,000

Table 14.3.: Characteristics of InfiniBand QDR equipment
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Network type Non-blocking 2:1 blocking

Topology Star Two-level fat-tree
Edge level switch Mellanox IS5200 (162 ports) Mellanox Grid Director 4036 (36 ports)
Core level switch N/A Mellanox IS5100 (90 ports)

Power, W 1,236 2,290
Weight, kg 137,7 140,0

Size, U 10 14
Cost, $ 229,500 218,960

Table 14.4.: Structure comparison for two types of fat-tree networks, for N = 150 nodes.

to certain cost savings: for N = 648 nodes, per-port cost of such networks is roughly
$1,060, while for the usual way of building fat-trees, using modular switches on the core
level, the per-port cost is roughly $1,930. However, these savings should be weighed
against the cost of compute nodes: if the latter is much higher than the per-port cost of the
interconnection network, then cost savings might not justify increased wiring and mainte-
nance complexity of this type of networks.

Example 14.1 Let us assume the cost of a compute node is $5,000. If per-port cost of two types of
interconnection networks is $1,000 and $2,000, respectively, then savings from using the network
of the first type is 7000/6000, or roughly 17%. Factoring in costs of other equipment, as well as
operating expenses, further dilutes savings.

Figure 14.2 is particularly helpful to emphasise the structure of networks generated by
the network design tool [89]. Consider, for example, the case of non-blocking and 2:1
blocking fat-trees, for N = 150 compute nodes. The costs of these two networks are very
close, but their structure is entirely different, which is summarised in Table 14.4.

If the tool is requested to design a non-blocking network, it chooses a star topology with
a single modular switch. If, however, a 2:1 blocking network is requested, the result is a
two-layer fat-tree, with 36-port switches on the edge level and a 90-port switch on the core
level. The latter network is chosen because it is marginally (5%) cheaper. At the same time,
it draws 85% more power and requires 40% more space in the rack.

This example illustrates two points: (A) more complex criterion functions, such as total
cost of ownership, should preferably be used instead of capital costs; (B) trying to design
blocking networks doesn’t necessarily save considerable amounts of money, therefore de-
signers should consider non-blocking networks first.
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15. Designing Other Subsystems of
Computer Clusters

15.1. Order of Design Stages

The order of design stages is determined by the cluster design algorithm (Chapter 11). As
per the algorithm, for every configuration of compute node, given the minimum required
performance, we determine the number of compute nodes, and then design the intercon-
nection network. This way we obtain figures for power consumption of computing and
network equipment. The next stage designs a storage system, which gives its power con-
sumption (this stage is not implemented in the prototype CAD tool).

Practically all consumed power is transformed into heat that must be taken away by the
cooling system. Cooling system has its own power consumption. Therefore the next stage
is to design an uninterrupted power supply (UPS) system which will provide power to all
classes of aforementioned equipment: computing, network, storage, and cooling.

The UPS system produces a small amount of heat during its operation, and the cooling
system should be designed to account for it (we deal with this later).

We also specifically make the case for providing the cooling system with uninterrupted
electrical power. For legacy air-cooled installations, a power outage could result in air con-
ditioners being switched off, while computing equipment continued working and could
overheat if shutdown procedures were not performed quickly. Such overheats may result
in accumulating permanent hardware damage later manifesting itself as faults. Therefore
with air-cooled equipment connecting a cooling system via a UPS is essential, even if it
results in additional cost and size of power supply equipment.

Newer water cooling systems are more forgiving to power outages, due to water’s
higher thermal capacity. However, as we review later, power consumption of water cool-
ing systems represents a small share of computing equipment’s power consumption, which
makes it reasonable to connect cooling equipment via UPS.

Power consumption of compute nodes has a cascading effect on other equipment. With
all other parameters, including performance, being equal, using low-power compute nodes
not only leads to power savings of computing equipment, but also leads to lower required
capacities of cooling and power supply systems, which directly translates to lower costs,
and in large installations can also lead to space savings.

Another factor that influences overall power consumption of the supercomputer instal-
lation is the uneven load of compute nodes with jobs, because idle nodes consume signif-
icantly fewer power. For example, according to “Hewlett-Packard” [40], “HP DL360 G7”
servers, equipped with two “Intel Xeon X5670” CPUs, can draw 88W of power when idle
and 193W when performing compute work. Consequently, with water cooling, the rate
of water flow through idle or even powered-off servers can be reduced, leading to further
savings.
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15.2. Storage System

A substantial body of knowledge exists on designing storage systems, including the fol-
lowing three works by “Hewlett-Packard Labs” employees. Anderson et al. [4] present
Disk Array Designer, the tool that designs storage systems according to capacity and perfor-
mance requirements of different workloads. Ward et al. proposed [113] Appia, the frame-
work for designing storage area networks (SAN) – sets of switches and links that connect
storage devices to clients, given traffic flow patterns. Amiri and Wilkes suggest [3] to use
Markov chains to design storage systems with availability requirements.

In this thesis, we don’t provide any particular algorithm for designing storage systems,
and refer the reader to related work outlined above. Instead, we propose that storage
vendors implement storage system design algorithms, tailored to their hardware, in web-
based modules that can be queried by the cluster design tool. The modules will receive as
their input the design requirements for the storage system, such as capacity, performance
and reliability, and will return to the tool technical and economic characteristics of the stor-
age system, in line with other subsystems of compute clusters: cost, operating expenses,
power consumption, size, weight, etc.

Tao et al. of “Whamcloud, Inc.” describe [101] designing storage systems based on the
Lustre parallel filesystem, explaining the role of all elements in the “storage pipeline” and
highlighting issues as subtle as the position of host channel adaptors (HCAs) in PCIe slots
on motherboards of Lustre storage servers.

Their work explains that requirements of capacity, performance and cost must be bal-
anced. Based on their methodology, we provide the following economic analysis of storage
systems with regard to different criterion functions. Suppose we need to build a storage
system with the throughput requirement of 50 GB/s, and this figure can be attained with
20 enclosures fitted with high-capacity (3 TB) disks, with each enclosure offering 2,5 GB/s
of throughput. Each enclosure provides 144 TB of usable space, for the total capacity of
2,9 PB. However, if we only need 1 PB of storage space, it doesn’t mean we can simply
decrease the number of disk drives three-fold, because performance critically depends on
the number of drives in the system (“spindles”).

Alternatively, we can equip enclosures with disks of the same performance but lower
capacity (1 TB). Thus a single enclosure will still provide the throughput of 2,5 GB/s, but
the usable space of the enclosure will be decreased to 48 TB. We still need 20 enclosures to
attain the required throughput of 2,5 GB/s. The system storage capacity will be roughly
1 PB. Both variants of the storage systems are summarised in Table 15.1.

We now pose the question: if both variants are suitable, which one is preferable? We
show that preference heavily depends on the choice of the criterion function.

In terms of pure cost, variant “B” is likely to be slightly cheaper (and therefore prefer-
able), due to the lower cost of low-capacity disks. However, the cost of disk drives substi-
tutes just a small share of the total cost of the storage system, and certain market fluctua-
tions can even lead to small disks becoming on par or more expensive than high-capacity
disks. In this situation, cost is not a robust criterion function, as we cannot use it to reliably
differentiate between the two variants.

We can employ the criterion function from the “cost/performance” class. The question
is how to define performance. If we define throughput to be the measure of performance,
this simply reduces the case to the previous one (and “B” is preferable again), because
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Metric A B

Size of individual disk 3 TB 1 TB
Usable space of enclosure 144 TB 48 TB

Enclosure throughput 2,5 GB/s
Number of enclosures 20
Total storage capacity 2,9 PB 1 PB

Criterion function Preferable variant

Cost B
Cost / throughput B

Cost / capacity A
Cost / (throughput * capacity) A

Table 15.1.: Comparison of technical characteristics for two types of storage systems.

throughput is the same for both variants. Therefore we cannot use “cost/throughput”
either.

If we use “cost/capacity”, then variant “A” with its higher capacity is clearly preferable,
as it provides three times more storage space at about the same price. However, this metric
is not general, because it does not take throughput into account, not to mention other
possible performance metrics such as IOPS (I/O operations per second).

With the emergence of “big data” applications, another possible metric is the time re-
quired to read the contents of the computer’s operating memory from the storage. How-
ever, it boils down to throughput, and doesn’t take other performance metrics or cost into
account.

More balanced evaluation could be based on the more complex criterion function such
as “cost/(throughput*capacity)”. Here, capital costs should preferably be replaced with
the total cost of ownership; this will account for power consumption and equipment size
(which translates to required floor space) in an unbiased way.

Indeed, suppose that we shift from hard disk drives with rotating spindles to solid-state
drives (SSD). They have higher performance but lower capacity, which leads to increase
in the number of enclosures needed to reach required capacity, which in turn has effect
on required floorspace. On the other side, SSDs have lower power consumption which
leads to energy savings, while higher potential fault rate due to wear-out leads to higher
expenses when replacing faulty drives. All these opposing trends can be accounted for
when using total cost of ownership.

The approach with total cost of ownership is also useful for comparing existing solutions
with the new technology based on completely different principles, such as comparing tape-
based archival storage with “massive array of idle disks” (MAID) technology.

15.3. Cooling System

Air has been used for cooling of computing and other electronic equipment since its in-
ception. In the recent decade, density of computing equipment was rising steadily, culmi-
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nating in the advent of blade servers and similar hardware architectures that closely pack
heat-generating components – CPU and GPU chips – into limited spaces. The “Lomonosov”
supercomputer that first entered the TOP500 list in November 2009 [106] generated unusu-
ally high values of heat, up to 65 kW per rack.

Raising density of computing equipment requires its complete redesign and therefore
incurs significant engineering costs that are later shifted to consumers. However, when air
cooling is used, high density of computing equipment doesn’t guarantee overall density
on the data centre level. Indeed, the “Lomonosov” used blade chassis that housed 16
servers in 7U of rack space, or 96 servers per standard 42U rack. Overall, per 60 racks
of computing equipment, additional 40 racks of cooling equipment were required [7]. If
density of computing equipment was lowered by a factor of two, traditional rack-mounted
servers could be used, significantly decreasing capital costs, and additionally providing
more practical cooling regimes. At the same time, rack count would only increase by 60%.
(See also discussion of blade servers in section 7.2.6).

Woods [114] reviews current industry practices in air cooling of data centres, quoting
significant savings that result from placing data centres in cold climatic zones. Heat can
then be rejected from interior air to the exterior, either by using heat-exchangers or through
mixing two flows directly.

In 2008, Atwood and Miner [9] conducted a test for using outside air for cooling pur-
poses. Temperature range for supplied air was artificially limited to 18..32°C: if the outside
air was too cold, it was mixed with interior air before entering machine room, and if the
air was too hot, it was cooled to 32°C by a traditional cooling system.

However, humidity was not controlled, and dust filtering was “minimal”. At the end of
the 10-month testing period, servers and the inside of the machine room were covered with
dust, but failure rates were not significantly bigger (4,46% versus 3,83% in the main Intel’s
data centre and 2,45% in the reference installation that used direct expansion cooling at all
times). Humidity of supplied air ranged between 5..30%, mainly staying within 10..15%.
Estimated reduction in energy consumption for cooling purposes was 74%.

They also note that even if cooling is required in extremely hot weather conditions, it is
only necessary to cool the air to 32°C which was found to be acceptable, not to the industry
standard 20°C. This means that less cooling equipment is required than usually, resulting
in savings in capital expenses. However, the scenario described by Atwood and Miner
doesn’t address the problem of contaminated outside air.

In 2009, “Microsoft” built a data centre in Ireland [61], using cold outside air for cooling
needs and thus reducing operating expenses. It is noted, however, that the usual direct
expansion cooling system is still in place, and will be used when outside air is unsuitable
for cooling, due to its temperature or contamination. Therefore, if air contamination is
possible on the site, the usual cooling system will need to be installed to organise air re-
circulation, and thus savings in capital costs cannot be realised (but savings in operating
expenses are still in effect, because air contamination is an unlikely event, and the cooling
system, although present, might never be required to run).

In 2011, “Dell” certified [70] some of its servers to run at air temperatures of 40°C for 900
hours per year and at 45°C for 90 hours per year, specifically to allow the use of outside air.
Also in 2011, “Hewlett-Packard” announced [39] their modular data centre, “HP EcoPod”,
designed for cooling with outside air, switching to a standard direct expansion cooling
system when necessary.
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Based on the work referenced above, we arrived to the following conclusions for air-
cooled computing equipment:

1. Cooling with outside air is feasible, it requires the least equipment (hence savings
in capital costs) and leads to substantial energy savings (hence savings in operating
costs). However, filters should be used to prevent dust deposits in the machine room.

2. The safe operating temperature range for outside air is between TL = 18°C and
TH = 32°C. With vendor warranties, the upper bound, TH , could be further raised
for a limited number of hours of operation per year.

3. If on-site climate statistics indicate that air temperatures below TL are possible, air
mixing equipment should be installed to mix outside air with interior air before sup-
plying it to the machine room.

4. Additionally, if climate statistics indicate that air temperatures above TH are possible,
a traditional cooling system of capacity Ppart should be installed, with the intention
to cool outside air to the level of TH . This is not mutually exclusive with the previ-
ous item, because in certain climatic zones, such as deserts, temperature variations
between night and day can be large enough to require the use of both methods of air
preparation.

5. If air contamination is possible, the cooling system described above should be ac-
companied by either a standard direct expansion cooling system, or, as suggested
by Woods [114], an air-to-air heat exchanger. The latter will transfer heat from in-
terior air to the outside one without mixing them. These additional systems will
require installation (increasing capital costs), but may never require operation (if air
never becomes contaminated), thereby they do not necessarily add much to operat-
ing costs.

We also propose the following decision chart (Figure 15.1) for selecting cooling methods
for air-cooled computing equipment.

15.4. Calculating Partial Cooling Capacity

As shown above, in hot climates it may be required to cool outside air to the level of TH ,
using a standard direct expansion cooling system, before supplying air to the machine
room. It is therefore necessary to calculate capacity of this cooling system.

With current industry standards, a cooling system needs to remove as much heat as
the computing equipment generates; let us denote this as P watts. However, when using
outside air, it is only necessary to cool it down to TH , which usually requires removing
substantially fewer heat, Ppart, than P .

We show how to calculate Ppart, the cooling capacity of such a system, based on statis-
tical climate data. For this purpose we use the bar graph, similar to the one appearing
in [114], that contains data for on-site temperature distribution throughout the year (see
Figure 15.2).
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Figure 15.1.: Decision chart for selecting cooling methods for air-cooled computing equip-
ment

This figure depicts climate data for a fictional site. For all 8,760 hours per year – that is,
all year round – the temperature is higher than 20°C, but it never rises to 36°C or above.
We choose the temperature, Tmax, up to which the data centre must still be operational at
full scale; most often this will be the highest temperature observed on the site.

As we assume the highest safe server operating temperature to be TH = 32°C, we need
to cool incoming air from at most Tmax = 36°C down to TH = 32°C, by ∆T = Tmax −
TH = 4°C. (If we are prepared that the data centre will run in degraded mode, with some
computing equipment turned off, during hours of peak heat, we can also choose a lower
value for Tmax).

Now, we need to calculate the amount of heat that must be extracted from the outside
air to cool it by ∆T degrees. We use the typical amount of air that is required to pass
through servers to cool them, such as f = 160 cubic feet per minute (CFM) per kilowatt
(kW) of equipment power [65]. First, we convert units of measurement to SI units (equa-
tions (15.1) and (15.2)). Then we calculate the volume of air required to pass per second
through equipment with airflow f and power consumption P (equation (15.3)). Then we
use air density (ρ) to calculate the mass of air ((15.4)), and finally use air heat capacity (c)
to calculate the amount of heat that needs to be extracted ((15.5)). Therefore, each second
Q joules of heat must be extracted, which essentially means the cooling capacity of the air
cooling system is numerically equal to Ppart = Q (equation (15.6)).
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Figure 15.2.: Climate data for a fictional site

1 ft3 = 28, 3 · 10−3 m3 (15.1)

1 ft3/(min · kW) = 0, 47 · 10−6 m3 / (sec ·W) (15.2)

V = f · P · 0, 47 · 10−6 m3 (15.3)

m = ρ · V kg, where ρ = 1, 2 kg/m3 (15.4)

Q = c ·m ·∆T = f · P ·∆T · 0, 57 · 10−3 Joules, where c = 1012 J/(kg · °C) (15.5)

Ppart = Q Watts (15.6)

Let us perform calculations according to these formulae, for a data centre with power
consumption of IT equipment of P = 1 MW, located on the site that we described above,
with ∆T=4°C.

f=160 CFM/kW
∆T = 4°C
P = 106 W

Q = 364800 Joules
Ppart = 364800 W
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As follows from the calculation, in the conditions specified above, the required cooling
capacity of the system that uses outside air is approximately 36% of the standard direct
expansion cooling system. This translates into proportional reduction in required cooling
equipment, with associated savings in capital and operating expenditure. Additionally,
this system only operates a limited number of hours per year, when the outside tempera-
ture is higher than TH , thereby further decreasing TCO.

Cooling with outside air is only beneficial when Ppart < P . If Ppart = P , cooling with
outside air and closed-circuit cooling both require the same amount of energy and cooling
equipment. As follows from equation (15.5), when this happens,

∆Tpeak =
Q

f · P · 0, 57 · 10−3
=

1754

f
°C (15.7)

If we assume f = 160 CFM/kW as we did above, ∆Tpeak = 10, 96 ≈ 11°C. This means
that cooling with outdoor air is beneficial up to ambient temperature of Tpeak = TH +
∆Tpeak = 32 + 11 = 43°C, or almost anywhere in the world throughout the year. Beyond
Tpeak (very rare weather conditions), using outdoor air is not economically viable, and
closed-circuit cooling should be used.

When outdoor air temperature approaches Tpeak = 43°C, cooling with outdoor air does
not provide energy benefits, while traditional closed-circuit cooling still has greater control
over humidity and dust concentration, which makes it preferable until outdoor tempera-
ture drops in the evening.

15.5. Comparing Cooling Solutions

In this section, we compare capital and operating costs of the following cooling solutions:

1. (A) Cooling is performed with outside air only; standard direct expansion cooling
system is installed in case of peak heat or air contamination, but is not operated;

2. (B) Same as the previous case, but the standard cooling system operates for 5% of the
year, due to outdoor temperatures exceeding TH = 32°C or air contamination;

3. (C) Standard direct expansion cooling system, operating continuously; cooling with
outside air not implemented.

We assume the climatic conditions of the fictional site described above (and hence ∆T =
4°C), power consumption of IT equipment P = 1 MW, and electricity price of $0,15 per
kW·h (price for industrial consumers in Germany in May 2012 [29], converted to US dollars
for consistency).

For our calculations we use direct expansion cooling unit “ACRD 500” produced by
“APC” [8], with the cost of $17,800. This unit’s maximum cooling capacity is 37 kW, and
maximum power consumption is 16 kW. Variants (A) and (B) feature an under-provisioned
cooling system of 10 units, designed only to cool outside air down to TH = 32°C. Variant
(C) uses a full-fledged cooling system operating all year round, and with electricity price
that we assumed operating costs in 4 years are much higher than capital costs.

The analysis is simplified in that with (A) and (B) variants the capital and operating
costs of air intake and mixing equipment – large fans that bring outside air into machine
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A B C

No. of direct expansion cooling units 10 10 27
Power consumption of cooling system, kW 160 160 432

Operating time per year, h 0 438 8,760
Energy consumption per year, kW·h 0 70,080 3,784,320

Capital costs of cooling units, $ $178,000 $178,000 $480,600
Operating costs of cooling units, per year, $ 0 $10,512 $567,648

TCO of the cooling system in 4 years, $ $178,000 $220,048 $2,751,192

Table 15.2.: Comparison of capital and operating costs of cooling methods.

room, possibly mixing it with interior air in cold weather – is not accounted for. Another
simplification is that costs of rooftop condensers, a required component of direct expansion
cooling systems in all three variants, are also not taken into account.

As can be seen, using a standard cooling solution represented in variant (C) leads to the
highest expense, compared to variants (A) and (B) that use outdoor air for cooling. Without
the simplifications outlined above the difference would be less pronounced, though.

We can also supplement this analysis with capital and operating costs of the entire clus-
ter computer. Based on calculations from Chapter 17, we conclude that a cluster com-
puter designed for peak performance that consumes 1 MW of power has a TCO of roughly
32 million dollars. In other words, even the most expensive cooling system in variant (C)
would represent only a small addition (7,8%) to the computer’s TCO.

15.6. Liquid-based Cooling Methods

Using water or other liquids as the cooling medium at server level presents several ben-
efits: reduced (or completely eliminated) vibration and noise in the machine room and
reduced power consumption for cooling systems. Equally important is that the heat taken
away by circulating water can be reused later. This allows to use the same amount of
energy twice: first time for powering computing equipment, and second time for other
useful purposes, such as heating buildings or greenhouses (see below). Benefits of using
water cooling at server level should be weighed against risks of leakage that can result in
damage.

“IBM” has been using water cooling since 1966, starting with their “System/360” main-
frame computer [48]. In the standard servers market segment, “IBM” provides water-
cooled “iDataPlex dx360 M4” server [47], such as the one used in “SuperMUC” computer
[55]. Other vendors provide similar solutions: “Aurora Tigon” by Eurotech [30] (allowing
inlet water temperatures in the range of 18..52°C), “RSC Tornado” by “RSC Group” [83],
and a future water-cooled computer in the Netherlands to be installed by “Bull” in 2013
[16] (with inlet water temperature initially limited to only 35°C).

Hybrid cooling solutions that utilise both water and air have also been known for many
years, recently being able to demonstrate remarkable efficiency. However, in this use
case water does not reach temperatures high enough to allow heat reuse. For example,
“Google” uses air-cooled servers, and heat is rejected by passing air through water-cooled
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coils [35]. Heat is then removed from the water by various methods, and there is no infor-
mation on successful heat reuse.

This technology allowed “Google” by year 2012 to attain power usage effectiveness
(PUE) of 1,12, which signifies overhead of 12% for every unit of power spent by IT equip-
ment. Cooling equipment power consumption represents just a share of those 12%, there-
fore we can safely assume that the target goal of power consumption for best-of-breed
cooling systems should be on the order of 10% or less of the power consumed by the com-
puting equipment they cool.

Despite the efficiency, Google’s technology lacks the benefit of heat reuse. Additionally,
concerns were raised [25] that discharging large amounts of heat into the Baltic Sea may
have environmental impact, even though the return water is only slightly warmer than the
inlet water.

Some components of water-cooled servers, such as power supply units, remain cooled
by ambient air. The same holds true for storage and network equipment. This means that
air conditioners are still necessary in the machine room, but their required cooling capacity
is dramatically reduced, resulting in space and cost savings.

With regard to floor planning, we propose to establish two distinct zones in the machine
room: one for legacy air-cooled storage and network equipment, the traditional environ-
ment with inherent noise and strong air flows, and one for the compute nodes which are
primarily water-cooled. In the latter zone more friendly environmental conditions can be
maintained, including reduced noise levels and light air flows. This equipment separation
has effects on cable routing.

Technical and economic characteristics for a large-scale water-cooled supercomputer in-
stallation, SuperMUC [55], were obtained by Brehm et al. [15]. Compute nodes in Su-
perMUC are cooled by passing hot water (currently with inlet temperature of 40°C; up
to 45°C is possible) through copper tubes and heat sinks attached to server components
that generate the most heat. This allows to remove 90% of heat generated by the server;
the remaining 10% is removed by air cooling, which is therefore much less intense than in
traditional data centre environments.

Networking and storage equipment is located in racks equipped with rear door heat
exchangers, but this requires cold water preparation. Below we estimate savings resulting
from the use of hot water.

Pumping hot water through rooftop cooling towers allows to decrease its temperature
in a free-cooling process by ∆T = 6°C. Therefore, pumping 1 litre of water per second
allows to remove this amount of heat:

Q = cwater ·m ·∆T = 25, 1 · 103 Joules, cwater = 4181 J/(kg · °C), (15.8)

which is equivalent to cooling capacity of 25,1 kW. Therefore, to remove 3 MW of heat
(the power consumption of the entire SuperMUC machine), the required water flow is
approximately 120 litres/sec, or 0,12 m3/sec. According to [15], energy consumption for
pumping hot water is 0,36 kW·h/m3, while the analogous figure for cold water includes
efforts required to cool the water to T = 14°C, and equals 1,46 kW·h/m3.

Savings resulting from using hot water instead of cold water are 1,1 kW·h/m3, and
with the required water flow of 0,12 m3/sec this corresponds to 0,132 kW·h/sec. With
the electricity price of $0,15 per kW·h as used above, this translates to $1,711 per day and
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$624,412 per year, or e468,000 per year. This mostly coincides with figures of savings in
operating costs as quoted in [15].

Additional equipment needed for hot water cooling requires capital investment ofe800K,
and the total cost of ownership of SuperMUC is e83M (ibid). If cold water would be used
instead of hot water for cooling, this would reduce capital expenditures by e800K, but
raise operating expenditures by e468K each year. We can estimate that in 5 years this
would lead to the increase in TCO from e83M to e84,54M. Therefore, hot water cooling
provides approximately 1,86% reduction in TCO. Additional benefits can be realised if
heat contained in the outlet water is reused, as described below.

15.7. Waste Heat Reuse

Andrews and Pearce estimate [5] that reusing 5,1 MW of waste heat from industrial pro-
cesses allows to sustain a tomato greenhouse of 15,800 m2, with yields of tomato crops of
735 tonnes per year. We then estimate [92] that reusing 3 MW of waste heat from Super-
MUC would yield tomato crops of 432 tonnes per year. In 2009, per-capita supply quantity
of tomatoes in Germany was 18,3 kg [32]. Therefore, the greenhouse utilising heat from
SuperMUC can supply enough locally grown tomatoes to cover the needs of 23,000 people.
The same idea of heat reuse applies to data centres of any nature.

The challenge is to create a heat reuse solution that would be (A) easily reproducible
by greenhouse owners, (B) suitable for use in situations of heat supply from sources other
than data centres, (C) scalable from several hundreds of kilowatts to several megawatts,
and (D) tolerant to variations in heat supply (for example, at times when supercomputer
is only lightly loaded with jobs, and therefore doesn’t produce enough heat to completely
support the greenhouse).

We propose the following plan of actions:

1. Use the monitoring system to understand how much energy consumed by the su-
percomputer can actually be captured and reused for agricultural purposes;

2. Understand the impact of work load level on heat output. This item is important be-
cause variation in heat output is quoted in [5] as a factor that prevented widespread
adoption of industrial waste heat reuse since this technology was first used in late
1970s;

3. Perform feasibility studies for a range of European climates, particularly targeting
northern climates where greenhouses are the preferred method of growing vegeta-
bles;

4. Create several designs of heat reuse systems for greenhouses, ranging in size and
tailored to different climatic regions. Ideally, the system should be able to utilise heat
from various sources, including industrial processes, and be easily scalable so that
single-type blocks can be connected together to heat larger greenhouses.

The main components of the proposed system will be: (A) pipes to deliver water to parts
of the greenhouse, (B) pumps and valves to control the flow of hot water, (C) monitoring
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and control industrial automation system for pumps and valves for automatically main-
taining optimal growing conditions, and (D) auxiliary heat supply (such as a gas burner)
when main heat supply from a data centre is not sufficient.

15.8. Power Supply System

In this section we provide a literature review of power supply options. At a minimum,
power supply system of computer clusters consists of power distribution equipment. In
many cases uninterruptible power supply (UPS) is additionally required to facilitate clean
shutdown of the computer in case of power failure, or to switch to a backup generator.

“SuperMUC” [55] uses a hybrid system that consists of both flywheel-based and battery-
based UPS systems. Rooms for electrical equipment take up 18% of total data centre floor
space, or roughly 100 m2 per MW of power [15].

There exist alternative solutions that allow to avoid UPS systems altogether. “Google”
equips their servers with individual batteries [85] to reduce the number of power con-
versions from AC to DC and back, additionally claiming financial savings compared to a
centralised UPS system; however, this has not been verified.

“Bull” optionally installs so-called “ultra-capacitors” in their servers that protect from
power outages of up to 300 msec [17]. This approach is only applicable with reliable elec-
tric power providers, but allows to manage without a UPS system, resulting in reduced
capital expenditures and floor space as well as operating costs associated with mainte-
nance of UPS systems such as replacement of failed batteries.

Proposals exist to minimise the number of power conversions and deliver direct current
(DC) to servers. A study conducted by Ton et al. in 2006 demonstrated that providing
380 V DC power provided about 7% higher efficiency than a standard 208 V AC power
distribution system commonly used in the USA [104]. However, a later 2008 study con-
ducted by “The Green Grid Association” [103] found no significant difference in efficien-
cies of eight typical power distribution configurations in data centres, including supply of
380 V DC and 48 V DC power.

Finally, certain supercomputer installations are equipped with service and monitoring
networks that monitor environmental parameters, allow to switch compute nodes on or
off remotely, control the UPS system that delivers power to IT equipment, etc. When de-
signing a power supply system, it is advisable to provide separate uninterruptible power
for this network, because monitoring and control functions must be available even after
main power failure.

15.9. Algorithm for UPS Design

Graph representation of configurations of technical systems that we introduced in Chap-
ter 10 is general enough to be applicable to represent UPS systems as well. In this section,
we propose a greedy algorithm for designing UPS systems.

We use a simple UPS model “Liebert APM” manufactured by “Emerson Network Power”
[80] which is available in three configurations summarised in Table 15.3. The UPS system
ships in a single rack, and free space in the rack can be used either for power conversion
blocks (one to three blocks, 15 kW each) or for batteries. Therefore the configuration with
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Power rating,
W

Backup time,
min

Heat output,
W

Weight,
kg

Cost,
$

Cost per kW,
$/kW

15,000 49 900 417 35,000 2,333
30,000 21 1,800 451 41,000 1,367
45,000 12 2,700 485 47,000 1,044

Table 15.3.: Configurations of Liebert APM UPS system.

the highest power rating has the lowest backup time, and vice versa. We represent the
configurations with a graph shown in Figure 15.3.

Graph traversal proceeds from “Start” to “End”, and there are three possible paths. One
of them, corresponding to the power rating of 30 kW, is highlighted. Visiting each vertex
along the path sets or updates values of corresponding characteristic. For example, there
are three identical vertices describing three power conversion blocks that could be installed
into the system. Each such block adds 15 kW of power capability, 34 kg to weight, 900 W
to heat output (due to unideal UPS efficiency) and 6,000 dollars to cost. Traversing the
highlighted path results in setting of the following values of characteristics:

ups_model=Liebert APM (up to 45kW)
ups_size_racks=1
ups_weight=451
ups_cost=41000
ups_power_rating=30000
ups_heat=1800
ups_backup_time=21
ups_cost_per_kw=1367

These characteristics describe the configuration completely; their values are further used
in the computer cluster design procedure. Traversing all three available paths yields values
of technical characteristics as they were summarised in Table 15.3. Now that we described
how configurations become generated from the graph, let us proceed with the algorithm
(see Algorithm 4).

The proposed algorithm uses as its input the minimum power rating of the UPS system
to be designed, together with the set of UPS configurations, generated by traversing the
graph as shown above. Each configuration is described mainly by its power rating Pi

and cost Ci. Additionally, constraints on other technical characteristics, such as minimum
backup time, can be supplied in A. The algorithm proceeds in the following way:

1. Create a copy of the input database and remove from it all configurations whose
power rating is lower than Pmin (line 1). Function f(Set | C1, C2, . . .) imposes con-
straints C1, C2, . . . on members of Set, removes members that do not satisfy the con-
straints, and returns the result.

2. If the resulting set is non-empty (line 2), then there exist configurations that can de-
liver the required power rating. Choose the configuration that brings minimum to
Ci over the set Uc – that is, the cheapest configuration in this set (line 3);
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Figure 15.3.: Graph representation of configurations of Liebert APM UPS
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Algorithm 4 Design a UPS system

Input:
Pmin: Minimum power rating of the UPS system
U = {〈Pi, Ci〉}: Set of UPS configurations, where:
Pi: power rating of the configuration, and
Ci: cost of the configuration

A: Additional constraints, such as constraints on minimum backup time, etc.
Goal: Optimal UPS structure:
〈P1, C1〉; 〈P2, C2〉: Configurations used for the optimal design
b1, b2: Number of UPS blocks of the first and second type
P : Resulting power rating of the entire system

1: Uc ← f(U | Pi ≥ Pmin, A) {Impose constraints on power rating}
2: if Uc 6= ∅ then {A single configuration is sufficient}
3: U = 〈P1, C1〉 ← arg minUc

Ci { Choose the cheapest configuration }
4: P ← P1

5: b1 ← 1; b2 ← 0
6: Exit
7: else {Employ a greedy algorithm}
8: Uc ← f(U | A) {Impose additional constraints, if any}
9: U1 = 〈P1, C1〉 ← arg minUc

Ci
Pi
{ Choose a configuration with the lowest cost per kW

}
10: b1 ← Pmin ÷ P1

11: P ← P1 · b1;Prem ← Pmin − P
12: if Prem > 0 then
13: Uc ← f(U | Pi ≥ Prem, A) {Impose constraints on power rating}
14: U2 = 〈P2, C2〉 ← arg minUc

Ci { Choose the cheapest configuration }
15: P ← P + P2

16: b2 ← 1
17: end if
18: end if
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3. The overall power rating P of the designed UPS system then equals the rating of the
selected configuration (line 4), and the UPS system consists of only one block (line
5);

4. However, we could end up with the set Uc being empty (line 7). This signifies that
there do not exist configurations in the database that alone can provide the required
power rating. Therefore, it will be necessary to utilise several (b1) identical blocks
to build a larger system, almost completely covering the required rating, and then
possibly one more block to cover the remaining deficit.

5. For this purpose, we create a copy of the input set and impose any additional con-
straints specified by the user, but no constraints on power rating (line 8), Then we
choose a configuration that brings minimum to the value of Ci

Pi
over the set Uc –

that is, a configuration with the lowest cost per kW of power rating (line 9). This
behaviour – choosing the locally optimal solution – is specific to greedy algorithms;

6. The rationale behind this choice is to obtain required power rating Pmin for the mini-
mal possible cost. In this particular case, the configuration U1 with a power rating of
P1 was selected, and we need b1 blocks with this configuration to almost completely
cover our requirements in power rating (line 10);

7. The remaining deficit that needs to be covered, if any, is calculated in Prem (line 11).
We again create a copy of the input database, this time leaving only configurations
whose power rating is enough to cover the deficit Prem (line 13);

8. We then choose the cheapest of those configurations, U2 (line 14). It’s power rating
P2 is then added to the overall power rating P (line 15). Finally, we specify that one
additional UPS block was required by returning b2 = 1 (line 16).

Several examples of algorithm’s output are given in Table 15.4. When the algorithm
performs partitioning of the UPS system into blocks, we assume that each such block will
power its part of IT equipment, and that a single UPS system with the required power
rating is simply not available.

Greedy algorithms are not guaranteed to produce optimal solutions, but we believe that
with real life equipment prices our algorithm will be able to design UPS systems with costs
close to optimal (this should be verified on a larger database of equipment). For example,
the power rating of 60 kW can be satisfied in two ways: 2*30 kW blocks or 45+15 kW
blocks. Interestingly, with the (somewhat artificial) prices that we used for this modelling,
both configurations would have the same cost and cost per kW.

However, the 2*30 kW configuration has a backup time of 21 minutes, while the 45+15 kW
has a backup time of 12 minutes for the 45 kW part and 49 minutes for the 15 kW part. The
overall backup time is determined by the lesser value, and is therefore 12 minutes. (More-
over, if a high backup time is required, such as 40 minutes, it can only be provided by
multiple 15 kW configurations, despite their higher costs).

As shown in the table, the greedy algorithm chose the 45+15 kW configuration. But if
additional constraints were specified on backup time (see constraints A in Algorithm 4),
such as Tmin = 20 minutes, then the algorithm would choose the 2*30 kW configuration.
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Req. power
rating, W

Resulting power
rating, W

UPS
partitioning

Backup time,
min

Cost,
$

Cost per kW,
$/kW

20,000 30,000 1*30,000 21 41,000 1,367

40,000 45,000 1*45,000 12 47,000 1,044

60,000 60,000
1*45,000+
1*15,000

12 82,000 1,367

80,000 90,000 2*45,000 12 94,000 1,044

100,000 105,000
2*45,000+
1*15,000

12 129,000 1,229

150,000 150,000
3*45,000+
1*15,000

12 176,000 1,173

Table 15.4.: Sample outputs from the UPS design algorithm
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In this chapter, we describe activities related to placement of hardware. We start with the
discussion of partitioning strategies, then propose heuristics for placing equipment into
racks. Finally, we develop an algorithm to calculate the size of floor space required to
accommodate a given number of equipment racks.

16.1. Partitioning Strategies: Consolidation vs. Distribution

Hardware of cluster computers consists of blocks of different types, connected together
according to a certain structure. Computing and storage hardware is connected to network
equipment via communication cables, while the power supply system is connected to all
other equipment via power cables. There are two alternative strategies for partitioning
hardware into blocks: consolidation and distribution.

Consolidation strategy assumes using hardware blocks of the biggest possible size, while
distribution strategy tries to build smaller, independent blocks. For example, with consol-
idation we can build one large UPS system capable of providing electric power to a large
array of racks. Alternatively, we can divide racks into “islands” of one or a few racks, with
each island served by its own independent smaller UPS system; this would be an example
of distribution. These islands would now be able to operate independently with regard to
power supply. We can further increase independence of blocks by providing a dedicated
small uninterruptible power supply system to each compute node – such as a battery, as
used by “Google” in its servers.

The strategy of distribution increases independence of hardware blocks – that is, they
are capable to continue operation even if other blocks fail. This can be valuable for some
workloads, such as those found in search engines, where unavailability of some search
results is not critical. For most other parallel workloads, including HPC workloads, failure
of one compute node often means that computation will need to be restarted. In such cases,
extreme distribution and independence of individual compute nodes that it brings is less
relevant; more important is reliable operation of a large block of equipment.

For example, a large UPS system can be designed with built-in fault tolerance mecha-
nisms such as redundancy, providing power to the whole cluster computer. Large tech-
nical systems enjoy economy of scale, and therefore a large UPS is likely to be more eco-
nomical than a thousand small UPS systems of comparable power supply capability. One
of the reasons is that a single large battery is easier and cheaper to manufacture than, say,
ten small batteries of the same aggregated capacity. In this example, consolidation results
in savings.

Similar arguments of consolidation and distribution apply to network hardware: we can
design a giant switch with 3,456 ports; one such InfiniBand switch was once built by Sun
Microsystems, and another design was proposed by Farrington et al. [31]. Alternatively,
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we can use a traditional approach with 36-port top-of-rack switches for the edge level of
the network, and bigger switches for the core level. In this case, however, a “consolidated”
3,456-port switch might not be cheaper because its parts are not mass-produced. Also,
because of the vast quantity of cables that connect to such switch, it is somewhat unwieldy
to install and maintain.

16.2. Distributed Structure for High Survivability

In certain cases, independence of blocks is attractive because of improved survivability.
Consider a military anti-missile defence system that includes a radar and a cluster com-
puter with several spatially dispersed blocks capable of independent operation. All blocks
can work together as a single cluster computer, delivering highest performance and there-
fore highest precision in calculating missile coordinates. If some blocks are destroyed, the
remaining blocks can continue operation, although in degraded mode with lower preci-
sion, which might still be enough to destroy the missile.

In this situation, it is beneficial to design the cluster computer in such a way that it can
operate as a whole, and at the same time each of constituent blocks (say, a rack of equip-
ment) can operate independently. When some blocks are destroyed or some communica-
tion links are lost, the remaining blocks can continue operation as a single computer of
degraded configuration. In the worst-case event, the only remaining single block can still
work independently.

This approach requires to build infrastructural systems of the cluster computer in a dis-
tributed rather than in a consolidated way. Each block must be provisioned with all nec-
essary infrastructure: power supply, network and local storage systems; in this case it will
be capable of operating independently from the other blocks.

Some infrastructural systems within a block may be more “distributed” than the others.
For example, suppose that the independent block consists of two racks of compute nodes.
We can have a single network switch serving both racks – that is, a consolidated solution.
At the same time, we can have a single UPS supplying power to both racks (a consolidated
solution), or if it deems appropriate, we can have two independent UPS systems, one
for each rack (a distributed solution); finally, we can even have separate batteries in each
compute node (an even more distributed one).

However, this increased extent of distribution in the power supply system doesn’t by it-
self guarantee increased reliability of power supply for the block as a whole. It only brings
independence of power supply of racks or compute nodes within a block, which may be of
little relevance: the two racks within the block cannot operate completely independently,
as we still have a single network switch per block. In other words, infrastructural systems
can have different degrees of distribution, but it may not have practical benefits.

16.3. Equipment Placement Heuristics

Strategy of partitioning equipment into blocks has a profound effect on what equipment
comprises a block, as well as the structure of connections within a block and between
blocks. However, when a specific structure of a block has been decided upon, the next
step can be performed: placing chosen equipment into racks and locating racks on the
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floor. In this section, we propose heuristics for placing compute and network equipment
into racks. The heuristics are applicable in the case when there is a block of compute
nodes connected to a single network switch, and all items of equipment should preferably
remain physically close to each other. This is the case of fat-tree topologies and indirect
torus topologies.

Mudigonda et al. [63] propose a straightforward cable routing algorithm which relies on
a prior placement of nodes and switches into racks in a manner that minimises total cable
length. Such positioning resembles a knapsack problem, so a number of heuristics were
introduced in the cited paper.

We generalise their findings by considering equipment items of differing physical sizes,
and propose our own heuristics. We show below that fat-trees are perfectly suitable for
packing racks as densely as possible, or for leaving as much blank space in every rack as
necessary (e.g., for other equipment), and also allow for a smooth transition between these
extreme cases. After running the network design algorithm, the number and types of
required switches are obtained, hence the size they occupy becomes available. The size of
compute nodes becomes known at an even earlier stage. Therefore equipment placement
can begin using the following heuristics.

1. Modular switches are physically indivisible and should be placed first. Otherwise
one may end up with partially filled racks, with no space in any of them enough to
house relatively big modular switches, and new empty racks would be required.

2. Space for other indivisible equipment can be reserved in the same manner.

3. The principal “building block” of a fat-tree network is an edge switch and nodes
connected to it. It is logical to keep this switch and its nodes in the same rack (with
blade servers, this occurs by itself). They are connected with relatively short cables.
One or more such building blocks are added to a rack until one of the following
budgets is exceeded:

a) The remaining free space in the rack cannot accommodate another building
block;

b) Weight budget of the rack, stipulated by the floor load limit, is exceeded (im-
portant mainly for raised floors);

c) Power consumption of equipment in the rack goes above capacity of the power
supply or cooling systems.

Now we can’t add the next new block to the rack, but there could still be an oppor-
tunity to add individual compute nodes from that block. We calculate the remaining
budget of all characteristics (space, weight, power, cooling, etc.) for the current rack,
and estimate the number of compute nodes that can be placed in this rack at a later
time, and then proceed to the next rack.

4. The previous step – placing blocks into racks – is repeated several times, until we
have enough semi-filled racks to accommodate the next block by “spreading” it
among these racks.

147



16. Equipment Placement and Floor Planning

This strategy allows to fill racks as densely as possible, but results in irregular wiring
patterns, as noted by other researchers. However, minimising the number of racks
not only saves floorspace, it also allows to decrease the length of cables running be-
tween distant racks. If there is no goal to save space, this heuristic could be omitted.

Example 16.1 When using commodity 1U InfiniBand switches with P = 36 ports and 1U
compute nodes, a building block consists (in the case of a non-blocking network) of one switch
and 18 nodes, for a total of 19U. Two such blocks can be placed in a standard 42U rack, and
4U of blank space will remain. After filling five racks in this manner, the resultant 20U of
space are enough to house the next 19U block.

5. Although an edge switch and its nodes should preferably be kept in a single rack,
they don’t necessarily have to be adjacent. In fact, other researchers recommend
to place edge switches to the top of the rack (hence the colloquial name: “top-of-
rack switches”). This decreases the length of cable bundles that run between racks,
potentially enabling the use of shorter cables.

6. Racks in a row are filled until the end of a row in a machine room is encountered.
The next rack to be filled is chosen across the aisle that separates rows.

This behaviour ensures that parts of the next block to be spread among several racks
will remain close to each other. Placement proceeds in a serpentine pattern until all
equipment is placed.

These heuristics are general enough to enable placement of compute nodes and switches
of differing physical sizes into racks of differing heights even within one installation. After
placement is complete, a cable routing algorithm can be run to calculate cable lengths and
hence costs.

We present an example of using these heuristics in Figure 16.1, deliberately demonstrat-
ing filling the racks as densely as possible. In this example, we need to design a non-
blocking fat-tree network for N = 396 compute nodes, using twenty-two 36-port edge
switches and two 198-port core switches. We then place all computing and network equip-
ment into standard 42U racks. (Note: this example serves demonstration purposes. In a
real life situation, instead of a multitude of interconnected switches, a single large modular
switch would be preferred to simplify cabling and improve reliability).

The large indivisible blocks of equipment are installed first. Then, we install blocks of
compute nodes, and put edge switches for the blocks to the top of corresponding racks.
Finally, after installing seven such blocks into four racks, we have enough spare space
in the racks to place one more block of compute nodes; however, this time it has to be
“spread” among all four racks (the exact location of the corresponding edge switch for this
block can be chosen arbitrarily). Two units of space in the rightmost rack are empty and
can be used further. Overall, the first four racks could accommodate 8 blocks of equipment
out of 22.

Figure 16.2 further presents the top view of 14 racks, arranged in two rows. The first
four racks from the upper row correspond to those in Figure 16.1. Rack filling starts in a
clockwise direction. First, the indivisible equipment is placed; we arbitrarily chose to place
block A1 into rack 1, and two core switches, 10U each, into rack 5. Then we start placing
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16.3. Equipment Placement Heuristics

Figure 16.1.: Front view of four racks filled using the proposed heuristics. There are seven
contiguous blocks of compute nodes; their edge switches are placed in top
positions of corresponding racks. There is also the 8th block which is “spread”
among the four racks.

Figure 16.2.: Top view of 14 racks filled using the proposed heuristics. The first four racks
in the top row are racks from Figure 16.1. Boxes and bands, drawn not to
scale, represent blocks of equipment; numbers are box IDs. Blocks 8 and 18
are “spread”, other blocks are contiguous.
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blocks – compute nodes and their edge switches. The first 7 blocks are contiguous, and the
8th block is spread among the four racks, as described above.

As rack 5 contains two 10U core switches, only one contiguous block 9 could be placed
into it. Contiguous blocks 10 to 17 are placed into racks 6 to 9. At this moment, racks 4
to 9 contain 21U of empty space, which is enough to place block 18, spread among these
racks. As can be seen from the figure, this block crosses the aisle that separates rows; the
corresponding edge switch can be placed into either row. Blocks 18 to 22 are placed into
racks 10, 11 and 12.

The final placement occupies 12 racks. This dense placement approach is not very ele-
gant because of the irregular wiring patterns in spread blocks. However, if we didn’t use
the strategy of block spreading, blocks 8 and 18 would have to be placed into racks 12 and
13, so using strictly regular wiring patterns would cost us one additional rack.

16.4. Algorithm for Floor Planning

After equipment has been placed into racks, the number of racks becomes known, and we
can position them on the floor. During automated design procedures, we need to quickly
calculate the required floor space size for each configuration of the cluster computer. Floor
space size affects total cost of ownership (TCO) of the supercomputer, because this space
must be either constructed (resulting in capital expenditures) or rented (resulting in oper-
ating expenditures).

However, the calculation of the required floor space size must be quick enough to be
applicable for automated design workflow. In this section, we propose a simple algorithm
that calculates floor space size, based on the inputs such as the number of racks, rack
dimensions, and clearances around the racks.

A typical arrangement of two rows of racks and clearances around them are shown in
Figure 16.3. Typical rack dimensions are depth d = 1,07 m and width w = 0,6 m; these
values are for rack model “AR3100” made by APC. Specification for the “Open Rack” [73],
proposed by the “Open Compute Project”, stipulates the same width, while the depth of
the rack can range from 0,35 to 1,22 m, to accommodate different types of equipment. In
IBM’s “iDataPlex” rack [45], depth and width are swapped compared to the standard rack:
d = 0,6 m and w = 1,2 m.

In the figure, w and d denote rack width and depth, respectively, cf is a front (and rear)
clearance, cs is the side clearance, and ca is the aisle width. lx and ly are machine room
dimensions.

Values for clearances depend on building construction codes and cooling requirements:
air cooling using cold air supplied through raised floors is known to require wide inter-
rack aisles to ensure optimal air flow; with water cooling this precaution is not required.
In any case, the aisle width ca must be large enough to allow pulling equipment out of the
rack; in practice this means the aisle width must be at least as large as the rack depth.

The algorithm we are proposing calculates the required floor space size by placing R
racks into ry rows (that is, in y dimension), with rx racks in each of them, and with clear-
ances cf and cs around rows and aisles ca between the rows. The main idea behind the
algorithm is that the resulting floor area should be roughly square.

150



16.4. Algorithm for Floor Planning

Figure 16.3.: Placement of two rows of racks on the floor, with clearances.

There is another consideration that we must pay attention to. To facilitate easy move-
ment of personnel in a machine room, very long rows should be broken into smaller seg-
ments; we denote the length of contiguous segments as lxc, and the distance cs between
the segments should be maintained. A rational value for the segment length is lxc = 6..10
m.

The algorithm (see Algorithm 5) works in two stages: on the first stage, it calculates
rough approximations for rx and ry, the number of racks per row and the number of rows,
respectively, based on the assumption of the square shape of the machine room. On the
second stage, it refines room’s dimensions to its final values.

If there are rx racks per row, then the length lx of the machine room is rxw, plus a
correcting term rxw

lxc
cs that accounts for gaps between contiguous segments or racks within

a long row, plus two side clearances cs:

lx = rxw +
rxw

lxc
cs + 2cs (16.1)

On the other hand, if there are ry rows of racks in the room, then the width ly of the room
is the depth of all racks ryd, plus the width of aisles (ry − 1)ca, plus two front clearances
cf :
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Algorithm 5 Calculate the arrangement of racks on the floor

Input:
R: Number of racks to place on the floor
w, d: Rack width and depth
cs: Side clearance
cf : Front and rear clearances
ca: Aisle width
lxc: Maximal length of a contiguous segment of racks

Output:
rx: Number of racks per row
ry: Number of rows
{ Floor sizes: }
lx, ly: Floor length and width
f : Floor space
{ Components of the “floor space formula”: }
rbs: Number of racks in big segments
rss: Number of racks in the last small segment
nb: Number of big segments

1: { Coefficients of the quadratic equation: }
2: a← d+ ca; b← 2cf − 2cs − ca; c← −Rw(1 + cs

lxc
)

3: D ← b2 − 4ac { Discriminant }
4: ry1 ← (−b+

√
D)/(2a); ry2 ← (−b−

√
D)/(2a) { Roots }

5: ry ← round (max(ry1 , ry2)) { Number of rows }
6: ly ← ryd+ (ry − 1)ca + 2cf { Floor width }
7: rx ← dR/rye { Number of racks per row }
8: s← drxw/lxce { Number of contiguous segments }
9: g ← s− 1 { Number of gaps between segments }

10: lx ← rxw + gcs + 2cs { Floor length }
11: f ← lxly { Floor space }
12: rbs ← drx/se { Number of racks in big segments }
13: nb ← rx ÷ rbs { Number of big segments }
14: rss ← rx − nb · rbs { Number of racks in the last small segment }
15: print Floor space formula: (nb · rbs + rss) · ry

ly = ryd+ (ry − 1)ca + 2cf (16.2)

Room shape is supposed to be square, so we can equate the two expressions (lx = ly),
and additionally the total number of racks in the room must be equal to the input value R
specified by the user; this gives us a system of equations:®

rxw + rxw
lxc
cs + 2cs = ryd+ (ry − 1)ca + 2cf

rxry = R
(16.3)

We use the second equation to express ry, and substitute it into the first equation. This
leads to a quadratic equation:
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r2y(d+ ca) + ry(2cf − 2cs − ca)−Rw
Å

1 +
cs
lxc

ã
= 0 (16.4)

It can be solved with respect to ry (lines 1..4). There are two roots; we take the positive
one, and round it to the nearest integer (line 5).

We further use the obtained value of ry as the final number of rows in the machine
room. Additionally, this immediately yields the width ly of the machine room through
equation (16.2), see line 6. We then determine the number of racks per row in such a way
that the total number of racks in the room, rxry, is at least as big as R racks requested by
the user: rx = dR/rye (line 7).

Now, we need to calculate how many contiguous segments of racks there will be in a
row. There are a total of rx racks in a row, each with a width ofw, and the maximal allowed
segment length is lxc, hence the number of segments is s = drxw/lxce (line 8). The number
of gaps between the segments is g = s− 1, and the width of each gap is the side clearance
cs, hence the width of empty space between all segments is gcs. This allows to calculate
the final length lx of the machine room (line 10):

s = drxw/lxce
g = s− 1
lx = rxw + gcs + 2cs

(16.5)

At this moment, floor space size can be calculated and reported to the user: f = lxly (line
11). It only remains to give a hint to the designer as to how the racks will be segmented in
the row (lines 12..14). Big segments will have rbs = drx/se racks; there will be nb = rx÷ rbs
such segments. The last segment is smaller or even empty, it has rss = rx − nb · rbs racks.

The obtained values allow to build a “floor space formula” that unambiguously defines
the location of racks in the machine room: (nb ·rbs+rss)·ry. A sample formula is (2·9+7)·8,
it describes arrangement of R = 200 racks in 8 rows, with 25 racks per row. Each row has
three segments: two long (9 racks) and one short (7 racks).

We test the proposed algorithm by calculating floor space size required to place up to
R = 2,048 racks. We use racks with width w = 0,6 m and depth d = 1,1 m, and clearances
cs = cf = 1 m. The maximal length of a contiguous segment of racks in a row is lxc = 6 m.
Two aisle widths were used: ca = 1 m and ca = 1,5 m. Experimental results are shown in
Figure 16.4.

As can be seen, at R = 100 racks, extending the aisle width ca from 1 to 1,5 m leads to
increase in the overall machine room size by only 13%; at R = 2,048 racks the increase
reaches roughly 24%.

The larger the installation, the less is the per-rack space; for instance, in the case of
R = 2,048 racks and ca = 1 m aisles, the per-rack space is 1,52 m2. However, a single rack
physically occupies only w · d = 0,66 m2, which means that “empty spaces”, used mainly
for movement of personnel, take up 130% of space occupied by equipment itself.

The proposed algorithm is simple, and for some input values it produces sub-optimal
solutions. For example, for R = 31 racks it suggests a 11 × 3 arrangement, resulting in 33
racks and f = 70,08 m2, while the more optimal arrangement would be 8 × 4, with only
32 racks and f = 63,92 m2. However, in the vast majority of cases, it produces accurate
results. Another feature of the algorithm is that it is very quick, and its run time does not
depend on the number of racks to be placed.
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Figure 16.4.: Floor space size calculated by the proposed algorithm
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17. Practical Evaluation of the Algorithm

The goal of this chapter is to evaluate the cluster design algorithm proposed in Chapter 11,
using the prototype CAD system described in Chapter 12. For a start, we will analyse
technical and economic characteristics of individual compute nodes, and then proceed to
characteristics of computer clusters built using these nodes.

The flexibility of our approach allows to calculate any of the following characteristics: (a)
characteristics of individual components of a computer system, assigned to vertices of the
configuration graph (e.g., cpu_cores="8"), (b) characteristics evaluated via arithmetic
expressions in the configuration graph (e.g., node_cost="+349"), and (c) characteristics
evaluated inside the CAD tool (such as power consumption of the entire machine, or its
volume of equipment).

We will also examine how cluster characteristics, including capital and operating ex-
penditures, are affected by factors such as performance goals (different workloads and
different levels of performance) and interconnection networks characteristics (topology
and blocking factor).

17.1. Overview of Equipment

For the purpose of analysis, we employ a configuration graph that generates 264 configu-
rations of the Hewlett-Packard’s “BL465c G7” server. The configuration graph is shown in
Figure 10.4 in Chapter 10.

The hardware that we use for analysis is of the previous generation – that is, a newer
line of servers and CPUs is already available on the market. We deliberately use this out-
dated hardware because its prices have stabilised, and are not going to change any more.
This allows to use our fixed set of hardware as a reference dataset, without the risk of
different researchers obtaining different results because of variations in prices. Complete
characteristics of hardware and its prices are given in Appendix B.

The “BL465c G7” server can be fitted with 18 possible CPU models, 10 of them are AMD
Opteron 6100 series processors (outdated but included for the sake of completeness) that
can be coupled with 5 configurations of PC3-10600 DRAM memory. This gives 50 pos-
sible configurations of a compute node; but the node can have either one or two CPUs,
so this number is doubled to 100 configurations. Another 8 CPU models are from AMD
Opteron 6200 series, and these can be coupled with two configurations of faster PC3-12800
DRAM memory, giving 16 configurations, and this number is again doubled depending
on whether the second CPU is installed or not, leading to 32 configurations.

In total, these components give 132 configurations. Then, the InfiniBand network adap-
tor may or may not be installed into the compute node, thereby again doubling the number
of configurations to 264.

Compute nodes are connected via an interconnection network with fat-tree (Chapter 13)
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Characteristic Minimal value Maximal value

CPU clock frequency, GHz 1,6 3,0
CPU cores per compute node 8 32
CPU L3 cache size, MBytes 12 16
RAM size per compute node, GBytes 32 128
RAM size per CPU, GBytes 32 64
RAM size per CPU core, GBytes 2 8
Number of occupied DIMM slots 2 16
Power, W 166 329
Peak floating-point (FP) performance, GFLOPS 64 294,4
Compute node cost, $ 2,756 12,796
Cost to peak FP performance ratio, $/GFLOPS 17,5 108,6

Table 17.1.: Extreme values of characteristics across 264 configurations of individual com-
pute nodes.

or torus (Chapter 14) topologies, using InfiniBand QDR switches. Types and characteristics
of the switches are listed in Table 14.3 in Chapter 14. (Please note that InfiniBand switches
are used also when compute nodes are connected via their Ten Gigabit Ethernet adaptors.
This is because prices for corresponding Ten Gigabit Ethernet switches were not available,
and we used InfiniBand switches instead. This circumstance is unlikely to have much
impact on the outcomes of our analysis because per-port prices for both types of switches
are comparable).

Compute nodes and network equipment are powered using uninterrupted power sup-
ply (UPS) devices available in three configurations; those configurations and their charac-
teristics are listed in Table 15.3 in Chapter 15.

17.2. Characteristics of Individual Compute Nodes

The CAD tool reads the configuration graph stored in XML files, traverses it, and generates
the list of configurations in a comma-separated values (CSV) file; each configuration is
represented as a set of fields separated by commas. It is interesting to note that technical
and economic characteristics across the configurations are vastly different, see Table 17.1.

All CPU models have a peak performance of 4 floating-point operations per cycle. The
minimal peak floating-point (FP) performance of 64 GFLOPS is obtained on configurations
with one 8-core CPU running at 2 GHz, the maximal performance of 294,4 GFLOPS is
obtained on configurations with two 16-core CPUs running at 2,3 GHz. The difference in
peak performance across the configurations is therefore 4,6 times.

By chance, cost difference has a similar value, 4,64 times. The cheapest configuration is
a uniprocessor node with one 8-core CPU running at 2,6 GHz, with 32 GBytes of memory
and without the InfiniBand network adaptor. The most expensive configuration is a dual-
processor node with two 12-core “AMD Opteron 6176” CPUs running at 2,3 GHz, with
128 GBytes of memory and with the InfiniBand adaptor. The latter configuration by no
means can be considered optimal; it is overly expensive, mostly because of its outdated
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and overpriced CPUs. There is a better CPU model, “AMD Opteron 6276”, with 16 cores
instead of 12 and 16 MBytes of L3 cache memory instead of 12 MBytes, running at the
same clock frequency of 2,3 GHz – and at the same time less expensive despite its better
characteristics.

When components become outdated, they also become hard to source, and their price
can rise due to market laws. At the same time, newer components with better functionality
and price may already be available. In general, one should avoid having outdated compo-
nents in the database; this reduces the number of generated configurations and speeds up
analysis. In any case, even if these overpriced components are present in the database, the
CAD tool will mark them as non-optimal during analysis.

We further compute the “Cost/Peak FP performance” ratio for each configuration, thereby
finding a “locally optimal” configuration (that is, optimal on the first stage of the design
process, where configurations are generated, and no detailed analysis has been performed
yet). This metric is also used as a heuristic to filter out unpromising configurations (see
Chapter 8). The difference in the value of this metric across the configurations is even more
impressive and reaches 6,2 times. The lower the value of the metric, the better; the lowest
value (17,5 $/GFLOPS) is obtained on a dual-processor server with 16-core CPUs running
at 2,1 GHz, with 32 GBytes of memory and without the InfiniBand network adaptor.

This configuration costs $4,701; on the charts in Figure 17.1 it is marked with a cross.
However, we have to mention that it is not necessarily a globally optimal configuration. It
is because the metric takes into account only peak floating-point performance of a single
compute node: at the early design stage, when a configuration has just been generated
but a performance model has not been invoked yet, no performance figures other than
peak performance are available. There is another configuration, which is similar to the
listed one but does include the InfiniBand adaptor. This latter configuration has a higher
value of the “Cost/Peak FP performance” ratio due to its higher cost, and therefore is
not locally optimal, but it could be more beneficial for workloads that require intensive
communications, although this can only become known after the performance modelling
stage.

The highest (and hence the worst) value of the metric, 108,6 $/GFLOPS, is obtained on
a uniprocessor server with the 8-core CPU running at 2 GHz, with 64 GBytes of memory
and the InfiniBand adaptor; this configuration costs $6,951. As can be seen, the most and
the least optimal (in the sense of this metric) configurations are neither least nor most ex-
pensive, which means that the cost of a compute node cannot be used to make judgements
about optimality of its configuration.

Our next step is to graphically represent the distribution of the bottom four characteris-
tics listed in Table 17.1 using charts. Before plotting each chart, the list of configurations
is sorted according to the value of the characteristic being inspected, therefore the order of
configurations is not preserved across the charts.

The chart for power consumption (Figure 17.1a) has coarse steps; this is explained by
the lack of detailed data on power consumption of compute node components. Indeed,
the biggest contributors in power consumption are CPUs, and the only data available to
us is the “thermal design power”, or TDP, which is simply the typical amount of power
consumed by CPUs under load as assigned by the manufacturer, whereas actual power
consumption can differ. In this chart we only have four different levels of power con-
sumption: the CPUs that we have in the database have TDP of either 85 W or 115 W, and
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Figure 17.1.: Characteristics of 264 configurations of individual compute nodes (order of
configurations is not preserved across charts). The cross denotes the configu-
ration with the minimal value of “Cost/Peak FP performance” ratio.

the node can have either one or two CPUs, hence the four levels. Other components in our
database that contribute to node’s power consumption are RAM and motherboard; due to
the lack of detailed data, these are considered constant across all configurations and thus
do not create “sublevels” on the chart.

The next chart (Figure 17.1b) depicts peak floating-point performance of configurations
in GFLOPS. As we have a wide variety of CPU models, each with its own number of
cores and clock frequency, and additionally there is an opportunity to install either one
or two CPUs into a compute node, our configurations have many different levels of peak
performance.

Intuitively, configurations with a higher peak performance are preferable for floating-
point intensive workloads, but only if they are not overpriced. The locally optimal config-
uration (with the lowest value of “Cost/Peak FP performance” ratio, marked with a cross)
turns out to have one of the highest values of performance across all configurations, but
still not the highest. That is, there are other configurations with even higher peak perfor-
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mance, but their price makes them less attractive.
The chart that depicts cost of configurations is given in Figure 17.1c. As can be seen,

there are very affordable as well as very expensive configurations, and the optimal one is
in the lower part of the cost range.

Finally, the chart in Figure 17.1d shows configurations sorted by their cost to perfor-
mance ratio, and the optimal one is obviously the first. This chart serves as a visual aid for
understanding the heuristic that we proposed in Chapter 8; indeed, the value of the metric
rises rather steeply, so it only makes sense to examine at most the first 20% of configura-
tions.

17.3. Designing for Peak Performance Requirements

Now that we examined technical and economic characteristics of individual compute nodes,
we can proceed with characteristics of complete computer clusters built using those com-
pute nodes, together with network and UPS equipment.

To calculate TCO of solutions, we will use prices [37] advertised by “Hetzner Online
AG”, the German co-location and hosting provider: electricity price of e0,29 per kW·h, or
about $0,37 per kW·h, and data centre space rental costs of e199 per rack per month, or
about $257 per rack per month. The lifetime of the machine will be taken at 3 years.

In this section we focus on designing computer clusters based on requirements of peak
floating-point performance. In particular, we will design a cluster with peak performance
of 500 TFLOPS, using a non-blocking fat-tree network and a UPS system with a minimum
of 10 minutes of backup time.

In our database of network hardware we have edge switches with PE = 36 ports and
core switches with up to PC = 216 ports (see Table 14.3). Therefore we are limited to
building non-blocking fat-tree networks with up to Nmax = PE ·PC/2 = 36 · 216/2 = 3,888
nodes. This, in turn, means that not all configurations of compute nodes are suitable: to
attain a 500 TFLOPS level of aggregate peak performance, individual compute nodes must
have peak performance of at least 500,000/3,888 = 128,6 GFLOPS. (Trying to design, say,
a 1 PFLOPS cluster instead of a 500 TFLOPS one would further limit available configura-
tions, making our analysis less insightful).

Only 134 of 264 configurations meet this constraint, and the CAD tool disregards the rest,
because no fat-tree network can be built using available network hardware. All 134 de-
signed cluster computers have the required performance of 500 TFLOPS or slightly more,
but other characteristics differ significantly. Technical characteristics are plotted in Fig-
ure 17.2, and economic characteristics are plotted in Figure 17.3. Marked with a cross is the
optimal cluster design with the lowest value of the objective function “Cluster TCO/Peak
performance” ratio.

The optimal cluster design is based on a dual-processor configuration of a compute node
with 16-core CPUs running at 2,3 GHz. Note this is different from the results of section 17.2
where optimality of a configuration was determined by its “Node cost / Node peak per-
formance” ratio (which we called “local optimality”), and where CPUs running at 2,1 GHz
were found to be optimal. Using that locally optimal configuration without detailed anal-
ysis would be a simple but erroneous choice, because the cluster design based on that
configuration ranks 3rd after detailed analysis, and, despite this seemingly simple change
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Figure 17.2.: Technical characteristics of 134 cluster designs with Rpeak = 500 TFLOPS (or-
der of configurations is not preserved across charts). The cross denotes opti-
mal cluster design with the minimal value of “Cluster TCO/Peak FP perfor-
mance” ratio.
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Figure 17.3.: Economic characteristics of 134 cluster designs with Rpeak = 500 TFLOPS
(order of configurations is not preserved across charts). The cross denotes
optimal cluster design with the minimal value of “Cluster TCO/Peak FP per-
formance” ratio.

of CPU model, that design has a $637,800 higher TCO.
As the charts indicate, the optimal cluster design has the lowest values of several char-

acteristics: “TCO/Performance” ratio (which is obvious), power consumption, number of
racks, weight, and number of compute nodes. However, it has a medium number of cores,
54,368: there are designs with fewer cores (such as a cluster with 41,680 cores, based on the
powerful 8-core 3 GHz CPUs and ranked 19th) or with more cores (such as a cluster with
78,144 cores, based on low-power 16-core 1,6 GHz CPUs and ranked 13th).

The optimal design also has the lowest operating expense and TCO across all designs.
It’s capital expense (CapEx, or cost of equipment) is $13,12M and is the 2nd lowest across
all designs; the minimal CapEx of $12,99M belongs to another configuration (the chart in
Figure 17.3a is not detailed enough to show this). This fact again highlights that low cost
of equipment does not necessarily result in the lowest TCO.

Counterintuitively, the optimal design has one of the highest values of “OpEx/TCO”
ratio (see Figure 17.3d). The explanation for this phenomenon is the following: as designs
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move away from the optimum, their CapEx (and hence TCO) grows rather fast; at the
same time, their OpEx grows slower, resulting in the smaller share of OpEx in TCO for
those designs.

Another useful finding from this section is the “TCO of 1 TFLOPS” of peak floating-point
performance. In our case, the optimal cluster design, with all infrastructural components
(network and UPS), has a “TCO/Peak FP performance” ratio of $39,2/GFLOPS (see chart
in Figure 17.2a), or $39,200 per TFLOPS. Such a value can be used to make a quick but
realistic estimate of the total cost of ownership of a future supercomputer given its peak
performance. Alternatively, one can quickly estimate the capability of a supercomputer
that one can buy for a given budget; e.g., with the budget of $200,000 the peak performance
is $200,000/39,200 = 5,1 TFLOPS.

Of course, as new hardware becomes available on the market, such analysis should be
repeated, taking this new hardware – servers, accelerators, etc. – into account, together
with its prices. This will allow to derive a new estimate for the “TCO of 1 TFLOPS” of
performance. For example, recent accelerators such as GPGPUs or “Intel Xeon Phi” allow
to considerably reduce the TCO to performance ratio, compared to the above figure of
$39,200 per TFLOPS.

17.4. Designing for ANSYS Fluent Performance Requirements

The analysis in the previous section provided demonstration of the capabilities of the algo-
rithm and the CAD system in building optimal cluster designs and accurately estimating
their technical and economic characteristics.

However, we can conduct an even more insightful analysis if we try to design a clus-
ter based on the performance requirements of a real application rather than simple peak
floating-point performance. In this section we instruct the CAD system to employ the per-
formance model for “ANSYS Fluent” CFD software suite that we developed in Chapter 9
and design clusters capable of delivering a predefined level of real performance, measured
in tasks per day, on a benchmark task "truck_111m".

We will design clusters for the following levels of performance: 480, 960 and 1,440 tasks
per day. It turns out that these performance levels are only attainable for configurations
that use InfiniBand network adaptors; other configurations will be disregarded by the
CAD tool.

Altogether we have 132 compute node configurations with InfiniBand adaptors, and all
of them are capable of attaining the performance of 480 tasks per day. However, as we
increase the desired performance level, the number of suitable configurations decreases:
for 960 and 1,440 tasks per day, only 118 and 22 configurations remain, respectively. Each
compute node configuration corresponds to one cluster design, and we plot resulting de-
signs for all three cases in Figure 17.4, using geometric interpretation that we introduced
in Chapter 6. On every graph, the optimal configuration is circled.

We summarise characteristics of the three designs in Table 17.2. It is important to note
that simple, cost-efficient compute node configurations may become unsuitable for clus-
ters with high performance requirements. For example, when moving from 960 to 1,440
tasks per day, the cost-efficient 16-core CPUs running at 2,3 GHz are unable to deliver re-
quired performance, and higher clock frequency is required. (In other words, when indi-
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Figure 17.4.: Cluster designs for real performance of 480, 960 and 1,440 tasks per day for
ANSYS Fluent, on the “truck 111m” benchmark. Optimal configurations are
circled.

vidual cores are slow, even a large number of them does not help, as performance quickly
flattens out). In case of Rreal = 1,440 tasks per day, 12-core CPUs running at 2,6 GHz must
be used, and trying to further increase performance requirements above 1,440 tasks per
day would eventually require the use of the fastest CPUs that we have in the database: the
8-core 3 GHz CPUs.

Another interesting observation from the table is that efficiency of running a parallel
workload inevitably decreases when degree of parallelism is increased, hence to maintain
linear performance increase the amount of hardware thrown to the task must be increased
superlinearly. For example, to double performance from 480 to 960 tasks per day, we need
to increase the number of CPU cores from 832 to 1,920 – that is, by the factor of ×2,31.

Similarly, the expenses also increase superlinearly, which can be seen by the increasing
value of the criterion function, TCO to performance ratio: had the TCO increase been
linear with regard to performance, this value would remain constant. This is explained by
the amount of high-speed (and therefore not cost-effective) hardware that must be used to
attain the highest levels of performance.

In fact, performance of 1,440 tasks per day means that the system will be able to deliver
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Characteristic

Rreal, tasks per day

480 960 1,440
1,440

throughput
mode

CPU model AMD 6276 AMD 6276 AMD 6238 AMD 6276
CPU cores per CPU 16 16 12 16
CPU clock frequency, GHz 2,3 2,3 2,6 2,3
CPU cores per compute node 32 32 24 32
Compute nodes 26 60 126 90
CPU cores, total 832 1,920 3,024 2,880
Compute node cost, $ 6,596 6,596 5,836 5,301
Network technology InfiniBand InfiniBand InfiniBand 10GigE
Network topology Star Star Star Star
Network switch 36 ports 72 ports 126 ports 90 ports
Power, W 9,656 22,326 45,210 33,186
Racks 2 3 4 3
Weight, kg 581 894 1,373 1,111
CapEx, $ 219,396 554,560 986,916 655,790
OpEx, $ 112,395 244,845 476,612 350,443
TCO, $ 331,791 799,405 1,463,528 1,006,233
OpEx / TCO, % 33,9 30,6 32,6 34,8
TCO/Perf., $/(tasks/day) 691,1 832,0 1012,8 681,9
Time to solution, sec. 180 90 60 446

Table 17.2.: Characteristics of three cluster designs for different levels of performance of
ANSYS Fluent.

one solved task per minute. The user might not need this high rate of system response.
Instead, the acceptable alternative could be to have three solved tasks per three minutes,
or, say, six tasks per six minutes – that is, by utilising throughput computing mode (see
section 9.2). This is the same one task per minute on average, and can be perfectly suitable
for many situations.

We re-ran the design procedure for 1,440 tasks per day, this time specifying a directive
for the performance model that allows to utilise throughput mode. Characteristics of the
resulting design are listed in the last column of Table 17.2. This new design makes use of
built-in Ten Gigabit Ethernet network adaptors instead of expensive InfiniBand adaptors;
this reduces costs of compute nodes.

This cluster still guarantees the throughput performance of 1,440 tasks per day; however,
as InfiniBand network is not used, scalability of a single task is limited to only 384 cores,
which is the upper reasonable number of cores for Ten Gigabit Ethernet runs with this
benchmark (see Chapter 9). Therefore the cluster will be logically divided into 7 blocks of
384 cores each (that is, 12 compute nodes), and one smaller block of 192 cores (6 compute
nodes). Each of the bigger blocks will deliver 193,8 tasks per day, which is one task each
446 seconds, or 7,4 minutes; the smaller block will deliver 118,8 tasks per day, or one task
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each 12,1 minutes (values obtained via performance model from Chapter 9). The total
aggregate performance of all blocks will equal 7 · 193,8 + 118,8 = 1475,4 tasks per day.

As can be seen, this design has a ×7,4 higher time to solution (446 seconds) than the
corresponding design for 1,440 tasks per day that is not utilising throughput mode (60
seconds). However, it uses more cost-effective equipment, and requires less of that equip-
ment; as a result, it has a 31% lower TCO, making it an attractive option for many situations
where absolute performance of individual compute tasks is not important.

17.5. Impact of Network Topology and Blocking Factor

We have seen in section 14.4 that using a blocking network to interconnect cluster nodes
can reduce cost of network equipment (see, for example, Figures 14.1 and 14.2). Addition-
ally, torus networks cost considerably less than fat-tree networks for the same number of
nodes.

It is therefore interesting to investigate the impact of network topology and blocking fac-
tor with relation to the capital expense and total cost of ownership of the whole computer,
and not just the network equipment. For this purpose, we calculated CapEx and TCO of
cluster computers with peak floating-point performance of 100 to 500 TFLOPS (the latter
corresponds to roughly 1,700 compute nodes). We used non-blocking fat-tree and torus
networks as well as three types of blocking fat-trees, with blocking factors 2:1, 3:1 and
3,5:1. These blocking factors correspond to the following distribution of ports on 36-port
edge switches (to nodes / to core level): 24:12, 27:9, and 28:8.
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Figure 17.5.: CapEx and TCO of clusters with the peak floating-point performance of 100
to 500 TFLOPS, with different network designs.

CapEx and TCO of optimal designs are plotted in Figure 17.5. As can be seen from the
charts, both economic metrics grow linearly with respect to performance. Moving from the
non-blocking fat-tree network to 2:1 blocking network provides certain savings, e.g, TCO
is reduced by roughly 8%..9%. However, further increase in blocking factor has negligible
effects on economic characteristics. As even the 2:1 blocking can have a degrading effect on
parallel application performance (see section 13.2 for a literature review), we recommend
to weigh financial savings from blocking topologies against possible performance impact.
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Cost savings can still be realised when large “islands” of compute nodes are connected
with non-blocking fabrics, as done in “SuperMUC” [55], and when compute jobs are not
supposed to cross island boundaries – in these cases, communication within the islands is
always non-blocking. However, such configurations require the use of topology-aware job
schedulers.

17.6. Impact of UPS Backup Time

The UPS system can be configured in three different ways, with each configuration guar-
anteeing its own backup time (see Table 15.3 for the list of configurations). UPS systems
with backup time of 49 minutes are much more expensive than systems with backup time
of 10 minutes that we used for analysis in the previous sections of this chapter. However,
cost of the UPS system is just one of factors contributing to total costs. Let us investigate
how requirements for UPS backup time affect CapEx and TCO of cluster designs.

For this purpose, we design clusters with peak floating-point performance of 100 to
500 TFLOPS, as we did in the previous section, but this time fixing the network type – a
non-blocking fat-tree network – and varying UPS backup time, setting it to 10, 20, and 40
minutes.

Due to the greedy nature of the UPS design algorithm, the UPS system is always de-
signed using blocks that have the lowest cost per kW of power but still satisfy constraints
on backup time (see more details about the algorithm in section 15.9). Therefore, when
backup time of 10 minutes is specified, all three types of blocks listed in Table 15.3 are
suitable, and the 45 kW blocks with the lowest cost per kW are generally used.

When the backup time is 20 minutes, the 45 kW blocks are no longer usable, as they can
provide only 12 minutes of backup time; hence, 15 kW and 30 kW blocks must be used
instead. Finally, when the required backup time is 40 minutes, the only remaining type
of suitable blocks are 15 kW blocks; they have the highest cost per kW which results in
expensive UPS systems.

We plot charts with CapEx and TCO of clusters with different UPS backup times in
Figure 17.6. As seen from the charts, designing a UPS system with 40 minutes of backup
time instead of 10 minutes adds only 4% to 5% to TCO over the cluster’s lifetime.

17.7. Components of Total Cost of Ownership

Using results of the previous sections, we can graphically represent shares of TCO compo-
nents. Optimal cluster designs from sections 17.3 and 17.4 are represented in Figure 17.7.
Pie charts for both clusters are surprisingly similar, even though the machines have very
different compute node counts: 1,699 and 126 nodes, respectively.

In both cases, electricity costs take up a large share of TCO, which is explained by high
electricity prices set by the co-location facility: $0,37 per kW·h [37], whereas wholesale
electricity price for industrial consumers in Germany in May 2012 were on the order of
$0,15 per kW·h [29].

Network equipment comprises a substantial share of TCO, so that using a dual-rail net-
work would essentially double the amount of network equipment, causing increase in
TCO. However, this not only leads to increased network throughput, but also to increased
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Figure 17.6.: CapEx and TCO of clusters with the peak floating-point performance of 100
to 500 TFLOPS, with different UPS backup times.

(a) Cluster designed for peak floating-point
performance Rpeak = 500 TFLOPS

(b) Cluster designed for ANSYS Fluent per-
formance 1,440 tasks per day

Figure 17.7.: TCO components for two cluster designs.

resilience to network failures, which can become an important factor in future exascale
computers.

In both cases floorspace rental costs represent a small share of TCO; even if doubled,
they would not add much. This again reminds that space savings resulting from dense
computing solutions such as blade servers do not always justify higher procurement cost
of this equipment.
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18. Summary and Future Directions

Your task is not to foresee the future,
but to enable it.

Antoine de Saint Exupéry

18.1. Summary

In this thesis we discuss the problem of automated design of cluster supercomputers. This
type of computing machinery has been known for almost twenty years, but so far most
of design decisions are based on engineers’ intuition, which is not an adequate replace-
ment to thorough analysis. This thesis changes the situation by providing a framework
for automation that allows to (a) quickly explore large design spaces, (b) present reliable
quantitative evaluations of technical and economic characteristics of cluster designs, and
(c) stimulate engineers to develop their intuition in fields where automation is not yet
possible.

The thesis consists of three parts. Part I starts with the explanation of benefits of au-
tomation in computer design and reviews related work. It also provides the reader with
a gentle introduction into the statement of a problem and our proposed approaches to its
solution.

Part II defines a criterion function, which is a major component of any optimisation
problem, and describes two methods to deal with combinatorial explosion, namely heuris-
tics and design constraints. It additionally includes a detailed discussion on the role of eco-
nomics in designing, building and operating supercomputers. The part concludes with the
chapter on performance modelling, which introduces the notion of inverse performance
models and provides an algorithm to quickly calculate the number of compute blocks re-
quired to reach a specified level of performance.

Finally, Part III integrates all relevant automated design processes, from representing
configurations of technical systems using graphs, to main algorithm of automated design,
to auxiliary algorithms that design cluster subsystems such as interconnection networks
and a UPS system. The part concludes with an extensive evaluation of the framework
on a number of real life cases, accompanied by estimations of technical and economic
characteristics of corresponding cluster designs.

18.1.1. Key Findings

Key findings of Chapter 1:
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1. Automation of design procedures leads to many benefits, including (a) exploration
of a larger design space, (b) accurate estimations of technical and economic character-
istics of the future supercomputer, and (c) automated generation of documentation
required to assemble the computer.

2. Automated design of cluster supercomputers is a logical continuation of electronic
design automation (EDA) on a higher, system level.

3. Approaches to designing cluster supercomputers can also be used for a more general
task of designing large “warehouse-scale” computing facilities.

Key findings of Chapter 2:

The problem of automated system-level design of parallel computers was tackled by
different researchers since at least late 1970s. Since each study analysed different aspects
of the problem, the results were rather disconnected from each other. Our thesis aims to
“connect the dots” by creating a solid integrated automation framework.

Key findings of Chapter 3:

1. The problem of automated design of cluster supercomputers can be formulated as a
single-criterion discrete optimisation problem with constraints.

2. Configurations of real life technical systems can sometimes be characterised by un-
expected interdependencies between components; these interdependencies can be
represented using graph structures further introduced in Chapter 10.

Key findings of Chapter 6:

1. Multi-objective optimisation can be used for our problem, with detecting Pareto front
and choosing one of non-dominated solutions.

2. However, we can calculate the value of “TCO to performance ratio” for each cluster
design alternative, and use this function as our criterion function, thereby reducing
the problem to a simpler single-objective optimisation problem. Besides, the optimal
solution is also necessarily a non-dominated solution of multi-objective optimisation.

3. To take into account uncertainties in performance and cost estimations of design
alternatives, interval arithmetic can be used.

Key findings of Chapter 7:

1. Changes in computer systems (adding or replacing components) lead to changes in
both performance and cost. Performance increase resulting from the change should
exceed cost increase, otherwise the change is impractical. In real life situations many
counteracting factors come into play, therefore there are no “rules of thumb” that
allow to select good components (e.g., whether to use uni- or dual-processor servers,
a fat-tree or a torus network, etc.) As a result, automation helps explore large design
spaces.
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2. Total cost of ownership (TCO) allows to take into account various expenses in a very
natural way. For example, instead of introducing power consumption of the com-
puter into the criterion function, we can use cost of consumed electricity as part of
the TCO, which is more objective.

3. TCO as a function of the number of compute nodes is not additive.

Key findings of Chapter 8:

1. Structure of compute nodes is represented via multipartite graphs, where each par-
tition corresponds to a specific feature of a node. Partitions contain vertices that cor-
respond to possible implementations of that feature. Each configuration is a unique
path in the graph that traverses it from start to end.

2. Increasing the level of detail in description leads to adding more partitions to the
graph, and each new partition with n vertices increases the number of paths, and
hence configurations, by n times. Adding p partitions increases the number of paths
np times – that is, exponentially. As a result, we should keep the number of features
encoded in a graph to the lowest possible level to minimise the effect of combinato-
rial explosion.

3. Many compute node configurations will lead to cluster designs that are far from
optimal. We can disregard these configurations on as early stage as possible using
two mechanisms: heuristics and constraints.

4. The heuristic calculates the value of “Cost / Peak floating-point performance ratio”
for each configuration and then disregards 80% of configurations based on this met-
ric. The heuristic works automatically and allows to quickly shrink the design space,
but can be unsuitable when designing clusters for workloads that are not floating-
point based, such as data mining.

5. Constraints can be imposed by the user on metrics of (a) compute nodes, and (b)
the whole cluster design. For example, the user can request configurations with a
specific amount of main memory per core, a specific number of cores per CPU, an
upper bound on power consumption of the cluster, etc. Constraints require user
intuition, and hence are not automatic; however, they are still good at shrinking the
design space.

Key findings of Chapter 9:

1. Performance models are mathematical objects of various nature that receive the con-
figuration of the cluster computer, including the number of compute blocks (nodes,
CPUs, cores or otherwise), and output computer’s performance at a particular task.

2. We introduce the notion of inverse performance models, which, given the required per-
formance, return the number of compute blocks needed to attain it.

3. We present a simple two-phase iterative algorithm that implements inverse perfor-
mance modelling using a sequence of queries to a direct performance model, which
in turn can have any internal structure.
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4. We also develop a simple direct performance model for “ANSYS Fluent” CAE soft-
ware suite based on benchmarking results. The model approximates parallel effi-
ciency with a piecewise linear function.

5. To make the CAD system modular, performance models are shipped as modules
that are queried by the CAD system via network. This allows to quickly re-orient the
CAD system from one performance model to another, including updated versions of
models.

Key findings of Chapter 10:

1. Configurations of arbitrary technical systems, including compatibility relations be-
tween components, can be represented with multipartite graphs. Undirected graphs
have more expressive power, while directed acyclic graphs provide convenient vi-
sual clues to the user about compatibility of components. We use directed acyclic
graphs in this thesis.

2. Characteristics of technical systems can be easily evaluated when traversing the con-
figuration graph, using expressions assigned to graph’s vertices. We provide the
grammar for such expressions.

3. We propose graph transformations that simplify visual representation of the graphs,
and present the syntax for encoding graphs in XML language.

Key findings of Chapter 11:

1. Combinatorial optimisation procedure relies on generation of valid candidate solu-
tions that are subsequently analysed. Simulated annealing and evolutionary algo-
rithms, such as genetic algorithms, were found to be unsuitable for our task, because
they tend to generate invalid configurations; this is due to complex compatibility
relations between components of candidate solutions.

2. The main algorithm of the thesis is described.

3. The automation framework can perform thorough search of the design space, so the
final solution is formally guaranteed to be optimal – but only within the limits of the
framework. However, there are factors that we are unable to account for – such as
imprecision of performance models, uncertainties in costs, etc. – that make our solu-
tions good but not necessarily optimal: theoretically, based on the same input data,
another supercomputer could be designed that would have a higher performance, or
lower cost, or both. This is as expected, as the quality of solutions is always limited
by the quality of input data.

4. Our formulation of the design problem is to minimise the total cost of ownership.
There is also a dual formulation, with the goal to maximise performance, but we
demonstrate that it would lead to longer design times.

Key findings of Chapter 12:

172



18.1. Summary

1. The prototype CAD system is modular, with each module implementing its own de-
sign stage. One type of modules implement performance models, other modules
are used to design networks and UPS systems. This structure allows to use mod-
ules from different equipment manufacturers, or to easily switch to new versions of
modules with advanced functionality or enhanced precision.

2. As configurations of compute nodes are handled independently by the CAD tool,
the entire design process can be parallelised in a trivial way.

Key findings of Chapter 13:

1. We present an algorithm for designing two-level fat-tree networks, choosing the op-
timal combination of available network switches (including modular switches), with
arbitrary blocking factors.

2. Per-port metrics of network switches (such as per-port cost) can be used to quickly
estimate corresponding values of many technical and economic characteristics of
two-level fat-tree networks built using that switches, by simply multiplying per-port
metrics by 3N , where N is the number of compute nodes to be interconnected. The
estimated value is a lower bound on actual value, and discrepancy between the two
is generally low.

3. For two-layer fat-tree networks, future expansion is greatly simplified if the core
layer is designed from the start to accommodate this expansion. Moreover, procure-
ment of extra edge switches can be delayed until the expansion.

Key findings of Chapter 14:

1. We present an algorithm to design multi-dimensional torus networks. The number
of dimensions is automatically chosen by a heuristic.

2. Cost comparison reveals that torus networks are significantly cheaper than non-
blocking fat-trees, while fat-trees with a blocking factor of 2:1 occupy a medium
position between them.

Key findings of Chapter 15:

1. In air-cooled installations, using cold outdoor air can significantly reduce energy
consumption for cooling purposes, compared to traditional cooling systems based
on direct expansion, which reduces operating expenses. If air contamination is un-
likely, direct expansion cooling systems are not required at all, which leads to further
reduction in TCO.

2. Decision chart for selecting cooling methods for air-cooled computing equipment is
presented. For hot climates, the chart recommends designing a small cooling sys-
tem, to cool outside air to allowed server operating temperature. The method for
calculating the partial cooling capacity Ppart of such a system is proposed.
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3. Water cooling allows to easily reuse heat extracted from compute equipment, for
example, for heating greenhouses. A greenhouse utilising heat from the SuperMUC
computer can supply enough locally grown tomatoes to cover the needs of 57,000
people.

4. We present a greedy algorithm to design UPS systems, based on choosing UPS blocks
with the lowest cost per kW.

Key findings of Chapter 16:

1. There are two strategies for partitioning hardware into blocks: consolidation and
distribution. Consolidation can lower costs due to effects of economy of scale, while
distribution increases independence of blocks, improving survivability.

2. We provide a set of heuristics for placing cluster equipment into racks, delivering
either regular wiring patterns or dense packaging. The heuristics are applicable in
the case of fat-tree and indirect torus network topologies.

3. We propose an algorithm to calculate the size of floor space required to accommodate
a given number of equipment racks, taking into account dimensions of racks and
clearances between them.

Key findings of Chapter 17:

1. Compute nodes can have several hundreds of configurations, depending on the level
of detail in their description. These configurations have vastly different technical and
economic characteristics. Configurations that are unsuitable or unpromising can be
quickly filtered out, thereby decreasing the time required for detailed analysis.

2. Analysis indicated that for a sample 500 TFLOPS cluster computer based on our
reference hardware dataset, the cost of 1 TFLOPS of peak floating-point performance
is $39,200.

3. When having the lowest possible time to solution is not important, the required level
of performance can be attained by using throughput mode. Clusters designed for
throughput mode have a significantly longer time to solution, but at the same time
they are less expensive.

4. Using fat-tree networks with a 2:1 blocking factor allows to reduce TCO by roughly
8%..9%. Further increasing the blocking factor has negligible effect on TCO but may
cause performance degradation.

5. Raising the UPS backup time from 10 to 40 minutes increases TCO by 4%..5%.

6. Electrical power costs represent a significant share of TCO, especially in settings
where electricity is expensive, such as when renting data centre space from co-location
providers.

7. Floor renting costs represent a small share of TCO; this means that the use of ex-
pensive blade servers is unlikely to be justified solely by the reduced equipment
footprint.
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18.2. Future Directions

18.2.1. Designing for Reliability

Reliability will be of utmost concern for future exascale computers [24]. In its current state,
the proposed design automation framework does not address reliability concerns. There
are, however, three ways in which it can be extended.

First, we can prescribe reliability characteristics (such as mean time to failure) to individ-
ual components of compute nodes, encoding them in the configuration graph. This way,
configurations with less reliable components can be disregarded by using constraints (see
section 8.3), right after configurations are generated from the graph. Second, if reliability
of a compute node cannot be easily calculated from reliability of individual components,
then the configuration can be sent for inspection to the reliability model, implemented as
a separate module of the CAD system, similar to performance modelling.

Finally, reliability of infrastructural components – interconnection network, UPS and
storage systems, etc. – should be calculated within CAD modules that design these com-
ponents, and returned to the CAD system for analysis.

Reliability of the designed cluster computer can further be used to estimate the failure
rate of its components, and thereby the required size of the pool of substitution equipment
that must be maintained for quick repair, as well as the repair staff head count.

18.2.2. Reflections on Trust for Web Services

It is supposed that equipment vendors can make available custom design modules, in-
tended for designing infrastructural components and based on equipment of that partic-
ular vendor. For example, the UPS design module that we review in section 15.9 is based
on the “Liebert APM” UPS model manufactured by “Emerson Network Power”.

The internal structure of such design modules does not necessarily have to be open; the
CAD system views it as a black box. However, the genuineness of the results returned by
such third party modules cannot be checked, because the structure of the modules is not
open. This presents a danger of the “trojan” supply of information, and suggests an idea
of maintaining a white list of trusted organisations.

18.2.3. Towards a Decision Support System

The main goal of design automation is to help the engineer in making decisions. The
proposed framework inspects the whole design space and eliminates unpromising or un-
suitable candidate solutions, explaining the reason for dismissal to the engineer.

This allows the engineer to understand why the CAD tool made that specific decision,
but does not enhance the intuition. To mitigate this, the CAD tool can supply the engineer
with the wealth of hints. Let us consider two examples.

First, suppose the user has compute nodes each capable of performance of 10 tasks per
day, and wants to build a cluster computer capable of performance of 200 tasks per day.
Even with linear performance scaling (which is unlikely in practice), they will need at least
20 such compute nodes. Now, if each node consumes 300 W of power and weights 15 kg,
then the lower bound on power consumption and weight of the cluster is 6 kW and 300 kg,
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respectively. The GUI of the CAD tool can then display these values, to give a hint to the
user that the resulting cluster computer will have at least these values of corresponding
characteristics.

The CAD tool can also prevent the user from setting constraints on technical character-
istics that contradict the lower bounds found above, as an additional indication that no
designs would match those unrealistic constraints. For example, if the above procedure
found that for the three configurations of compute nodes present in the database the lower
bounds on cluster power consumption are 6, 7 and 9 kW, respectively, then it makes no
sense for the user to specify the power constraint of 5 kW, because all designs are guaran-
teed to violate that constraint. Preventing the user from setting unrealistic constraints also
allows to refrain from launching useless design procedures.

The second example concerns costs. Suppose the user specifies a cost constraint in the
CAD tool, and designs that exceed the budget are automatically disregarded with a cor-
responding message that the cost constraint was violated. In practice, the cost constraint
is exceeded when the minimal performance level specified by the user required to use too
many compute nodes to stay within the budget. It would be helpful if the CAD tool not
only informed the user that the constraint was violated, but also indicated how big the
violation was.

All these hints enhance the user’s intuition, allowing them to develop more realistic
expectations as to what kind of designs they can arrive at.

18.2.4. Role of Automation in System-Level Design

The challenge with supercomputer design is that there is no end-to-end design method-
ology, and different levels of design hierarchy are handled by different professional com-
munities. As a result, technical and economic characteristics of low-level stages, such as
microprocessor design, are loosely related to corresponding characteristics on the system
level.

Consider a team that is designing a new microprocessor, trying to cater to future un-
certain market preferences which are prone to irrational changes. The team uses design
methodologies specific to their fields, namely radio electronics and semiconductor fabri-
cation. They make design trade-offs: for example, they can use die space for lots of simple
cores, or put less cores and use the remaining space for cache memory.

Then, on the board level, the chips are placed on a board and connected to each other and
to memory. Again, there are opportunities for making design trade-offs: for example, how
many chips to place on a board, and how to connect them to each other. Board designers
are more concerned by radio electronics constraints, such as interference, rather than by
limitations of semiconductor technology. They use specific EDA tools and corresponding
methods. The modules – microprocessors, memory and network chips – are considered to
be finished devices, without delving into their internal structure.

On the system level, designers have to possess a yet another set of skills, this time largely
in the fields of electrical and mechanical engineering. As a result, predicting how low-
level design choices made on the chip level can impact performance of a future large-
scale system incorporating tens of thousands of such chips is not easy. Design automation
allows to expose effects of low-level design decisions on system-level metrics.
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A. ANSYS Fluent Benchmark Data

Performance data used to construct performance model for ANSYS Fluent computational
fluid dynamics (CFD) software was obtained using version 13.0 of the software, on a
benchmark simulating air flow around a truck body (truck_111m). Data presented in
the tables below was taken from ANSYS website [6].

There is one dataset for Ten Gigabit Ethernet network type, three for InfiniBand, and one
for proprietary SGI NumaLink. The column with scaled performance rating, if present, is
used to plot all experimental data on a single graph (Fig. 9.4).

Cores Performance rating

24 22
384 247,2

Table A.1.: Benchmark data for “Cisco UCS C200 Intel Xeon 5670”, Ten Gigabit Ethernet
network, clock frequency f = 2, 93 GHz

Cores Performance rating

96 84,2
192 179,8
384 349,9
768 679,2

1536 1239,6
3072 1928,6

Table A.2.: Benchmark data for “SGI Altix Ice 8400EX Intel Xeon 5690”, InfiniBand net-
work, clock frequency f = 3, 47 GHz
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Cores Performance rating
Performance rating,

scaled to f = 3, 47 GHz

96 51 70,8
192 99,1 137,6
384 195,3 271,1
768 369,4 512,7
1536 658,5 914,0

Table A.3.: Benchmark data for “SGI Altix Ice 8400 AMD Opteron 6180”, InfiniBand net-
work, nominal clock frequency f = 2, 5 GHz

Cores Performance rating
Performance rating,

scaled to f = 3, 47 GHz

96 84,6 100,2
192 161 190,7
384 324,3 384,1
768 626,1 741,5

Table A.4.: Benchmark data for “IBM DX360 M3 Intel Xeon 5670”, InfiniBand network,
nominal clock frequency f = 2, 93 GHz

Cores Performance rating
Performance rating,

scaled to f = 3, 47 GHz

64 41,5 53,9
128 74 96,2
256 138,9 180,5
512 274,7 357,0

Table A.5.: Benchmark data for “SGI UV 1000 Intel Xeon E7 8837”, proprietary NumaLink
network, nominal clock frequency f = 2, 67 GHz
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B. Hardware of Compute Nodes

In this thesis we used Hewlett-Packard’s “BL465c G7” servers as cluster compute nodes.
In the tables below we list characteristic of the node itself and its components: CPUs, main
memory, and network adaptors. All information about compatibility of components (e.g.,
what CPUs can be fitted into the server) as well as prices were taken from “HP BladeSys-
tem Power Sizer Tool” by Hewlett-Packard [38], and power consumption of components
was additionally estimated using “HP Power Advisor Tool” [40].

Note that certain CPU models, although outdated, were included for completeness. For
example, the older 12-core “AMD Opteron 6176” CPU can be replaced with a newer 16-
core “AMD Opteron 6276” model: at the same clock frequency it has more cores and more
L3 cache memory, while having a lower price.

The criterion function that we use, “Cost/Performance”, makes such outdated and over-
priced components less favourable, therefore the CAD system will never mark them as
optimal. However, not having these components in the production database in the first
place means that fewer configurations have to be analysed, leading to faster design times.

Codename
Feature
size, nm

Cores Model
Frequency,

GHz
L3 Cache,
MBytes

TDP,
W

Cost,
$

Magny-Cours 45

8

6128 HE 2,0 12 85 649
6132 HE 2,2 12 85 749

6134 2,3 12 115 609
6136 2,4 12 115 859
6140 2,6 12 115 1149

12

6164 HE 1,7 12 85 869
6166 HE 1,8 12 85 1015

6172 2,1 12 115 1189
6174 2,2 12 115 1339
6176 2,3 12 115 1449

Interlagos 32

8
6212 2,6 16 115 349
6220 3,0 16 115 649

12
6234 2,4 16 115 479
6238 2,6 16 115 569

16

6262 HE 1,6 16 85 649
6272 2,1 16 115 649
6274 2,2 16 115 779
6276 2,3 16 115 949

Table B.1.: Characteristics of AMD Opteron CPUs
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To calculate power consumption of each configuration, we add up power consumption
of all components. For a CPU, the power consumption is considered to be equal to its TDP.
Power consumption of the motherboard is listed in Table B.4. There was no reliable data
on power consumption of memory modules and network adaptors, therefore we consid-
ered all memory configurations to consume 18 W, irrespective of the type and number of
memory modules used; power consumption of network adaptors was set to zero.

Applicability
Memory

type
Low

voltage
Layout

Total size,
GBytes

Cost, $

AMD Opteron
6100 series

CPUs

PC3-10600R – 4x8 GBytes 32 796
PC3-10600R – 8x4 GBytes 32 840

PC3L-10600R Yes 2x16 GBytes 32 1798
PC3L-10600R Yes 8x8 GBytes 64 1592
PC3L-10600R Yes 4x16 GBytes 64 3596

AMD Opteron
6200 series CPUs

PC3-12800R – 4x8 GBytes 32 996
PC3-12800R – 8x8 GBytes 64 1992

Table B.2.: Characteristics of main memory configurations

Technology
Link speed,

Gbps
Ports Cost, $

10 Gbit Ethernet 10 2 0 (Built-in)
4X QDR InfiniBand 40 2 1295

Table B.3.: Characteristics of network adaptors

Characteristic Value

Model BL465c G7
Power, W 63
Weight, kg 6

DIMM Slots 16
Cost, $ 1411

Table B.4.: Characteristics of Hewlett-Packard’s “BL465c G7” server.
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