TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Technische Mikrobiologie

Role of TcyB and Gpo in the maintenance of redox homeostasis and adaptation to oxidative stress in *Lactobacillus sanfranciscensis*

Mandy Stetina

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender:

Univ.-Prof. Dr. S. Scherer

Prüfer der Dissertation:

Univ.-Prof. Dr. R. F. Vogel
 Univ.-Prof. Dr. W. Liebl

Die Dissertation wurde am 27.08.2014 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 24.10.2014 angenommen.

DANKSAGUNG

Zuerst bedanken möchte ich mich bei meinem Doktorvater Prof. Dr. Rudi F. Vogel, der mir die Möglichkeit gegeben hat, diese Dissertation an seinem Institut anzufertigen. Seine konstruktiven Anregungen zu dieser Arbeit, seine Beharrlichkeit sowie seine stete Unterstützung, auch in schwierigen Phasen, haben zum Gelingen dieser Arbeit beigetragen.

Bei Prof. Dr. Matthias Ehrmann und Dr. Jürgen Behr möchte ich mich für die hilfreichen Diskussionen, besonders in der Anfangszeit bedanken. Bei Dr. Jürgen Behr für seine Geduld, mir die bioinformatischen Analysen näher zu bringen.

Bei meinen internen und externen Projektpartnern Alessandro Capuani und Iris Lovric möchte ich mich für die angenehme Zusammenarbeit und die vielen Ratschläge, auch außerhalb der Universität bedanken. Aus Kollegen sind Freunde geworden.

Besonderer Dank gebührt Dr. Sander Sieuwerts, der mir nicht nur bei der Durchführung der Microarray- Analyse an der Universität Wageningen helfend zur Seite stand, sondern mir während dieser Zeit auch Unterkunft gewährt und alles getan hat, um mir diesen Forschungsaufenthalt so angenehm wie möglich zu machen. Hartelijk dank liever vriend!

Allen (ehemaligen) KollegInnen und MitarbeiterInnen am Lehrstuhl danke ich für eine lehrreiche und schöne Zeit. Vielen Dank auch an Moni, Maggie und Angela für die kooperative und harmonische Zusammenarbeit.

Meiner Familie, insbesondere meiner Mutter danke ich für die stete Unterstützung und Motivation, auch in schweren Stunden. Danke für Euren Glauben an mich, auch über mein Studium und meine Promotion hinaus.

Schlussendlich danke ich Michael für seine Unterstützung, Gelassenheit und Motivation. Er ist der Mensch, der mich am besten kennt und nie daran gezweifelt hat, dass ich es schaffe. Das hat mir stets neuen Mut und Kraft zum Durchhalten gegeben.

ABBREVIATIONS

Ahp	alkyl hydroperoxide reductase gene
approx.	approximately
BCAA	branched chain amino acid
bp	base pair
С.	Candida
CDM	chemical defined media
cfu	colony forming unit
Cye3	cyanine 3
Cye5	cyanine 5
DSM	Deutsche Sammlung von Mikroorganismen
DTT	dithiothreitol
Е.	Escherichia
EDTA	ethylene diamine tetraacetic acid
FPKM	Fragments Per Kilobase of transcript per Million mapped reads
g (centrifugation)	relative centrifugal force
g (weight)	gram
g (weight) Gpx, Gpo	gram glutathione peroxidase gene
Gpx, Gpo	glutathione peroxidase gene
Gpx, Gpo GSH	glutathione peroxidase gene glutathion (reduced)
Gpx, Gpo GSH GshR	glutathione peroxidase gene glutathion (reduced) glutathion reductase
Gpx, Gpo GSH GshR GSSG	glutathione peroxidase gene glutathion (reduced) glutathion reductase glutathion (oxidized)
Gpx, Gpo GSH GshR GSSG h	glutathione peroxidase gene glutathion (reduced) glutathion reductase glutathion (oxidized) hour
Gpx, Gpo GSH GshR GSSG h H_2O_2	glutathione peroxidase gene glutathion (reduced) glutathion reductase glutathion (oxidized) hour hydrogen peroxide
Gpx, Gpo GSH GshR GSSG h H_2O_2 HPLC	glutathione peroxidase gene glutathion (reduced) glutathion reductase glutathion (oxidized) hour hydrogen peroxide high-performance liquid chromatography
Gpx, Gpo GSH GshR GSSG h H_2O_2 HPLC L.	glutathione peroxidase gene glutathion (reduced) glutathion reductase glutathion (oxidized) hour hydrogen peroxide high-performance liquid chromatography genus <i>Lactobacillus</i>
Gpx, Gpo GSH GshR GSSG h H2O2 HPLC L. LAB	glutathione peroxidase gene glutathion (reduced) glutathion reductase glutathion (oxidized) hour hydrogen peroxide high-performance liquid chromatography genus <i>Lactobacillus</i> Lactic acid bacteria
Gpx, Gpo GSH GshR GSSG h H2O2 HPLC L. LAB LB	glutathione peroxidase gene glutathion (reduced) glutathion reductase glutathion (oxidized) hour hydrogen peroxide high-performance liquid chromatography genus <i>Lactobacillus</i> Lactic acid bacteria lysogeny broth
Gpx, Gpo GSH GshR GSSG h H2O2 HPLC L. LAB LB lox	glutathione peroxidase gene glutathion (reduced) glutathion reductase glutathion (oxidized) hour hydrogen peroxide high-performance liquid chromatography genus <i>Lactobacillus</i> Lactic acid bacteria lysogeny broth lactate oxidase gene
Gpx, Gpo GSH GshR GSSG h H2O2 HPLC LAB LB lox M	glutathione peroxidase gene glutathion (reduced) glutathion reductase glutathion (oxidized) hour hydrogen peroxide high-performance liquid chromatography genus <i>Lactobacillus</i> Lactic acid bacteria lysogeny broth lactate oxidase gene molar

mMRS	modified deMan, Rogosa, Sharp medium
NCBI	national center for biotechnology information
nox	NADH oxidase gene
npx, npr	NADH peroxidase gene
O_2	superoxide radical
OD	optical density
ORP	Oxidation- reduction potential
р	probability
PCR	polymerase chain reaction
perR	peroxide- responsive repressor gene
PIPES	piperazine-N,N'-bis(2-ethanesulfonic acid)
pox	pyruvate oxidase gene
(p)ppGpp	guanosine- 3'- diphosphate- 5'- triphosphate
rex	redox- sensing transcriptional repressor
ROS	reactive oxygen species
rpm	revolutions per minute
RT	room temperature
S	second
SOD, sod	superoxide dismutase gene
spp.	Species
spx	transcriptional regulator gene
tcyB	cystine transport permease gene
TMW	Technische Mikrobiologie Weihenstephan
trxA	thioredoxin
trxR, trxB	thioredoxin reductase
V	volt
VS.	versus
w/ v	weight/ volume
WT	wildtype

CONTENTS

1	INTRO	DUCTION	I
	1.1 Ge	neral information about lactic acid bacteria	
	1.2 Re	dox reactions and oxidation- reduction potential (ORP)	
	1.3 Ge	neral aspects about the oxidative stress response in LAB	
	1.3.1	Sources of reactive oxygen species and detoxification mechanisms	
	1.3.2	Enzymes involved in thiol metabolism contribute to oxygen tolerance	5
	1.3.2.	1 Glutathione- glutathione peroxidase (<i>gpo</i> , <i>gpx</i>)	5
	1.3.2.	2 Thioredoxin reductase (<i>trxB</i> , <i>trxR</i>) and glutaredoxin-like protein (<i>nrdH</i>)	6
	1.3.2.	3 Cystine transport in gram- positive bacteria	7
	1.4 Ro	le of Mn ²⁺ in the metabolism and oxidative stress response in <i>Lactobacillus</i> spp	9
	1.5 Re	gulators involved in oxidative stress response in LAB	
	1.5.1	Peroxide- responsive repressor (<i>perR</i>)	
	1.5.2	Redox- sensing transcriptional repressor (rex)	
	1.5.3	Transcriptional regulator (<i>spx</i>)	
	1.6 Re	cognition motifs in proteins possibly involved in thiol- disulfide metabolism	
	1.7 Da	mages to biomolecules caused by ROS and corresponding repair mechanisms	
	1.7.1	Damages to proteins and bacterial (response and repair) mechanisms	
	1.7.2	Damages to DNA (RNA) and bacterial (response and repair) mechanisms	
	1.7.3	Damages to membrane lipids and bacterial (response and repair) mechanisms	
		neral information about the metabolism of L. sanfranciscensis	
		sanfranciscensis and oxidative stress	
23	HYPO	THESIS AND AIMS	21
2 3	HYPO MATE	THESIS AND AIMS RIAL AND METHODS	21 22
	HYPO MATE 3.1 Ma	THESIS AND AIMS RIAL AND METHODS terial	21 22 22
	HYPO MATE 3.1 Ma 3.1.1	THESIS AND AIMS RIAL AND METHODS terial Devices	21 22 22 22
	HYPO MATE 3.1 Ma	THESIS AND AIMS RIAL AND METHODS terial	21 22 22 22 22 23
	HYPO MATE 3.1 Ma 3.1.1 3.1.2	THESIS AND AIMS RIAL AND METHODS terial Devices Chemicals	21 22 22 22 22 23 23 26
	HYPO MATE 3.1 Ma 3.1.1 3.1.2 3.1.3	THESIS AND AIMS	21 22 22 22 23 23 26 26
	HYPO MATE 3.1 Ma 3.1.1 3.1.2 3.1.3 3.1.4	THESIS AND AIMS RIAL AND METHODS terial Devices Chemicals Expendable materials Kits	21 22 22 22 23 23 26 26 26 27
	HYPO MATE 3.1 Ma 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	THESIS AND AIMS RIAL AND METHODS terial Devices Chemicals Expendable materials Kits DNA markers	21 22 22 22 23 23 26 26 26 27 27
	HYPO' MATE 3.1 Ma 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6	THESIS AND AIMS RIAL AND METHODS terial. Devices Chemicals Expendable materials Kits. DNA markers Bacterial strains.	21 22 22 23 23 26 26 26 27 27 27 30
	HYPO' MATE 3.1 Ma 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7	THESIS AND AIMS RIAL AND METHODS terial. Devices Chemicals Expendable materials Kits. DNA markers Bacterial strains. Primer	21 22 22 23 23 26 26 26 27 27 27 30 32
	HYPO' MATE 3.1 Ma 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8	THESIS AND AIMS	21 22 22 22 23 23 26 26 26 27 27 27 27 30 32 32
	HYPO' MATE 3.1 Ma 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9	THESIS AND AIMS RIAL AND METHODS terial. Devices Chemicals Expendable materials Kits DNA markers Bacterial strains Primer Restriction enzymes Plasmids 1 <i>pME-1</i>	21 22 22 23 23 26 26 26 27 27 27 30 32 32 32 32
	HYPO MATE 3.1 Ma 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 3.1.9 3.1.9	THESIS AND AIMS RIAL AND METHODS terial Devices Chemicals Expendable materials Kits DNA markers Bacterial strains Primer Restriction enzymes Plasmids 1 pME-1 2 pMTL500E	21 22 22 23 24 25 26 26 26 26 27 27 27 27 30 32 32 32 32 32 33
	HYPO MATE 3.1 Ma 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 3.1.9 3.1.9 3.1.9. 3.1.9.	THESIS AND AIMS RIAL AND METHODS terial. Devices Chemicals Expendable materials Kits DNA markers Bacterial strains Primer Restriction enzymes Plasmids 1 pME-1 2 pMTL500E	21 22 22 22 23 23 26 26 26 27 27 27 27 30 32 32 32 32 32 33 33
	HYPO MATE 3.1 Ma 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 3.1.9 3.1.9 3.1.9. 3.1.9.	THESIS AND AIMS RIAL AND METHODS terial Devices Chemicals Expendable materials Kits DNA markers Bacterial strains Primer Restriction enzymes Plasmids 1 pME-1 2 pMTL500E 3 pmG36e	21 22 22 23 26 26 27 27 27 30 32 32 32 32 32 32 33 34 35
	HYPO MATE 3.1 Ma 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 3.1.9 3.1.9 3.1.9 3.1.9 3.1.9	THESIS AND AIMS RIAL AND METHODS terial Devices Chemicals Expendable materials Kits DNA markers Bacterial strains Primer Restriction enzymes Plasmids 1 pME-1 2 pMTL500E 3 pmG36e Molecular biology methods	21 22 22 23 26 26 27 30 32 32 32 33 34 35 35

	3.2.1.3	Analysis of PCR products using agarose gelectrophoresis	36
	3.2.1.4	Construction of chemically competent E. coli and transformation	36
	3.2.1.5	Construction of electrocompetent L. sanfranciscensis TMW 1.53	37
	3.2.1.6	Insertional inactivation of target genes by using single crossover integration	37
	3.2.1.7	Complementation of <i>L. sanfranciscensis</i> $\Delta tcyB$	38
3	.2.2	Microbiological Methods	39
	3.2.2.1	mMRS, Spicher and LB media	39
	3.2.2.2	Media and growth conditions	40
	3.2.2.3	Measurement of optical density (OD ₅₉₀ nm)	40
	3.2.2.4	Growth experiments in different mMRS media	40
	3.2.2.5	Fermentation experiments of WT, Δgpo , $\Delta tcyB$ and Δnox in mMRS	41
	3.2.2.6	Calculation of reduction, acidification and oxygen reduction rate	42
	3.2.2.7	Analysis of organic acids, carbohydrates and free amino acids	42
	3.2.2.8	Growth experiments of WT and $\Delta t cyB$ in mMRS without cysteine	43
	3.2.2.9	Growth experiments of WT and $\Delta t cyB$ in chemical defined media (CDM)	43
	3.2.2.10	Survival test after H ₂ O ₂ and diamide treatment	45
	3.2.2.11	Shock experiments with diamide and H2O2	45
	3.2.2.12	Extracellular and intracellular thiol group determination	45
	3.2.2.13	Influence of oxidants treatment on growth inhibition determined with plate assay	46
	3.2.2.14	Growth response in the presence of different reducing and oxidizing agents	46
	3.2.2.15	Qualitative assessment of H ₂ O ₂ accumulation	47
	3.2.2.16	Quantification of H ₂ O ₂	47
	3.2.2.17	In silico prediction of proteins involved in thiol disulfide redox metabolism of L. sanfranciscensis DSM20451 ^T	
3	.2.3	Franscriptional analysis	48
	3.2.3.1	Microarray design and strain selection	48
	3.2.3.2	Media and growth conditions	48
	3.2.3.3	RNA isolation	49
	3.2.3.4	Reverse transcription and degradation of mRNA	50
	3.2.3.5	Labeling with cyanine dyes and purification of amino allyl- modified cDNA	50
	3.2.3.6	Quantification and microarray analysis	51
3	.2.4	RNA sequencing	51
	3.2.4.1	Growth conditions and RNA isolation of L. sanfranciscensis (WT) and mutant $(\Delta t cyB)$	51
	3.2.4.2	Data analysis	52
R	RESULTS	55.	3
4.1	Const	ruction of knock-out mutants	53
4.2	Comp	lementation of L. sanfranciscensis $\Delta t cy B$	54
4.3	Grow	th experiments in different mMRS media	55
4.4	Quali	tative determination of H ₂ O ₂ accumulation	56
4.5	Quan	ification of H_2O_2 in mMRS and mMRS without Mn^{2+}	58
4.6	Grow	th response of WT and $\Delta t cyB$ to different cystine concentrations	60

	4.7	Growth tests in chemically defined media	61
	4.8	Survivability after H ₂ O ₂ and diamide shock	
	4.9	Shock experiments with diamide and H2O2	
	4.10	Quantification of extracellular and intracellular thiol groups after H_2O_2 and diamide treat	ment 65
	4.11	Sensitivity tests of WT, Δgpo and $\Delta tcyB$ against oxidants	
	4.12	Growth response in the presence of different reducing and oxidizing agents	
	4.13	Fermentations and metabolite analysis of WT, Δgpo , $\Delta tcyB$ and Δnox	
	4.14	Results of PCR Screening	
	4.15	Results of transcriptional analysis using microarray	
	4.15	5.1 Aim and experimental setup	
	4.15	5.2 Determination of RNA quantity and quality	
	4.15	Expression values after quantification	
	4.16	Results of transcriptional analysis using RNA sequencing	
	4.16	5.1 RNA quantity and quality check after RNA isolation	
	4.16	5.2 FPKM values after quantification	
	4.17	Results of <i>in-silico</i> protein prediction analysis	
5	DIS	CUSSION	94
	5.1	Construction of knock-out mutants, distinct growth behavior and quantification of H_2O_2	
	5.2	Functional characterization of <i>tcyB</i>	
	5.3	Response of WT, Δgpo and $\Delta tcyB$ to oxidant treatment	
	5.4	Effect of oxidizing and reducing agents on the growth of WT, Δgpo and $\Delta tcyB$	102
	5.5	Changes in ORP, pO ₂ , pH and metabolites during fermentation	103
	5.6	Distribution of "redox genes" in different LAB	107
	5.7	Transcriptional response of L. sanfranciscensis TMW 1.1304	108
	5.8	Transcriptional response of L. sanfranciscensis WT and $\Delta t cyB$ after diamide treatment	113
	5.8.	1 Thiol stress response of the WT	113
	5.8.	2 Thiol stress response of $\Delta t cyB$	
	5.9	Predicted proteins involved in thiol- disulfide reactions in L. sanfranciscensis	119
6		MMARY	
7 8		SAMMENFASSUNG FERENCES	
9	AP	PENDICES	147
1) LIS	T OF PUBLICATIONS DERIVED FROM THIS WORK	174

1 INTRODUCTION

1.1 General information about lactic acid bacteria

Lactic acid bacteria (LAB) have been used in food production (sourdough, vegetable fermentations, cheese, meat, beer, wine etc.) since prehistoric times. The genus *Lactobacillus* comprises of grampositive, non-spore forming, catalase negative (pseudocatalase rarely found) and acid tolerant bacteria with a rod or cocci shape and less than 55 mol% GC content (Stiles & Holzapfel 1997; Kandler 1983). LAB require complex nutritional sources for optimal growth. Due to their incomplete electron transport chain (ETC) and citric acid cycle, fermentation with generation of ATP via substrate level phosphorylation resembles the favored way for energy production.

Depending on their resulting carbohydrate fermentation spectra, LAB have been divided into three groups (Hammes & Vogel 1995):

- Group I: obligately homofermentative LAB
- Group II: facultatively heterofermentative LAB and
- Group III: obligately heterofermentative LAB

LAB of the first group use the Embden- Meyerhof (EM) pathway to oxidize imported hexoses to pyruvate with formation of ATP. Gluconate and pentoses are not metabolized. Facultatively heterofermentative LAB resemble the second group as most of the hexoses are converted into lactic acid. They are able to utilize pentoses because they can induce the enzyme phosphoketolase which yields acetic acid. LAB of the third group ferment hexoses to lactic acid, CO_2 and ethanol, whereas pentoses are metabolized to lactic and acetic acid. This group uses the phosphoketolase pathway for fermentation of hexoses and pentoses in general for energy production. If additional electron acceptors (oxygen, citrate, malate, tartrate, fructose etc.) are present, acetate formation can yield an additional ATP. Acetate is formed by decarboxylation of pyruvate to acetyl phosphate by pyruvate oxidase (*pox*). In *L. sanfranciscensis*, acetyl phosphate is dephosphorylated to acetate by acetate kinase reaction (*ack*). Thus, the presence or absence of external available electron acceptors decides, if formation of ethanol or acetate is favored (Knorr et al. 2001).

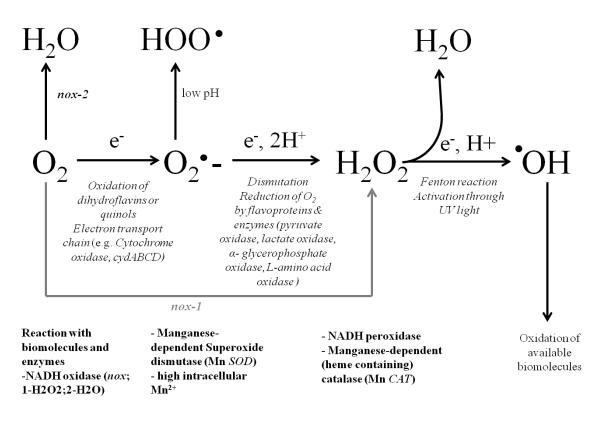
Generally, the oxidation of hexoses requires available redox carriers (NAD⁺/ NADH) which are reduced by electron acquisition (NAD⁺ \rightarrow NADH). The effective fermentation of imported sugars requires sufficient NADH which is re- oxidized to NAD⁺ (e.g. in lactate dehydrogenase reaction which forms lactic acid from pyruvate). In LAB, the entry of oxygen yields additional ATP, whereas under anaerobic conditions formation of ethanol results in reoxidized NAD⁺. One explanation is that during aerobiosis the enzyme NADH oxidase (*nox*) competes with acetaldehyde dehydrogenase and alcohol dehydrogenase for NADH. Consequently, the strain decides depending on growth stage and environmental stimuli if ATP formation or regeneration of coenzymes is preferred. LAB are found in nutritious environments like milk/ milk products, on plants, fruits, skin, mucosal tissue and in the gastrointestinal tract (GIT) of humans, animals and insects. Therefore, they are exposed to different environmental stressors like oxygen, low pH, high osmotic pressure, temperature, competitive (pathogenic) organisms etc.. Depending on the ecological origin, different strains of LAB acquired different mechanisms to combat different stimuli. The response to these effectors is therefore determined on strain level.

1.2 Redox reactions and oxidation- reduction potential (ORP)

Redox reactions comprise of all reactions where the transfer of electrons from electron donor to electron acceptor occurs. During this coupled reduction/ oxidation reaction, the electron donor becomes oxidized (release of electrons, X) and the electron acceptor is reduced (uptake of electrons, Y) as follows:

$$X_{red} + Y_{ox} \leftrightarrow X_{ox} + Y_{red}$$

Thus, oxidation- reduction enzymes are involved in numerous reactions in bacteria. These include enzymes, which reduce oxidized substrates, dehydrogenases, oxidoreductases, enzymes with a role in ETC and others.


The characteristic of compounds release or uptake of electrons (power of electron affinity of a redox pair) can be quantitatively described as oxidation– reduction or oxidoreduction potential (ORP) potential (= redox/ reduction potential E_h). The real- time measurement during fermentations can be carried out with ORP electrodes. During a spontaneous redox reaction, the redox pair with the lower ORP functions as electron donor whereas the redox pair with a higher ORP serves as electron acceptor. Each redox pair exhibits its own ORP value. The difference in ORP between electron donor and acceptor is often expressed as ΔE_h . The simultaneous presence of a suitable electron donor and electron acceptor is the prerequisite for energy production and release. An example for intracellular redox pairs are NADH/ NAD⁺ and NADPH/NADP⁺ whereas the ORP is mainly determined by the ratio of NADH/ NAD⁺ (Liu et al. 2012).

In literature, different assumptions exist about the reasons for a decrease in E_h values in bacterial fermentations. The presence of external sulfhydryl groups (Oktyabrsky & Smirnova 1993; Michelon et al. 2010) is proposed besides the activity of bacterial enzymes involved in ETC including NADH oxidase (Tachon et al. 2010).

1.3 General aspects about the oxidative stress response in LAB

1.3.1 Sources of reactive oxygen species and detoxification mechanisms

Depending on their natural habitat, LAB are exposed to low or high concentrations of oxygen. The resistance is based on the presence or absence of detoxifying enzymes against emerging reactive oxygen species (ROS) and varies between different LAB. A general overview of the possible formation of predominant ROS during aerobiosis in LAB is illustrated in Figure 1 and has been reviewed recently (Pedersen et al. 2012).

Figure 1: Schematic representation of the predominant ROS formation pathways during aerobic metabolism in LAB. Visible in italics are the biomolecules which participate in ROS formation, at the bottom and marked in bold are the enzymes/ compounds which are used for elimination of the corresponding ROS.

Due to incomplete biosynthetic pathways, most LAB are unable to synthesize heme or cytochromes, which are necessary for energy- linked oxygen metabolism. It is described for *L. plantarum*, *L. rhamnosus*, *L. brevis*, *L. paralimentarius* and others that aerobic growth can be stimulated by addition of heme and menaquinone (Brooijmans et al. 2009). Despite the fact that aerobic metabolism produces ROS, which can lead to growth stagnation, several LAB respond with enhanced survival, increase in growth yield, elevated biomass production and elevated resistance to hydrogen peroxide (H_2O_2) (Watanabe et al. 2012; Archibald & Fridovich 1981; Duwat et al. 2001; Gaudu et al. 2002).

Oxygen itself can easily react with different enzymes either involved in ETC like cytochrome oxidases or others like e.g. or flavinoxidases (NADH oxidase) to superoxide radicals (O_2^{\bullet}) or H_2O_2 directly.

Hydride ions from organic substrates reduce the flavins which transfers electrons to specific locations (iron- sulfur clusters or quinones) within the enzyme. Oxygen can react at this step with the reduced flavins which results in formation of ROS (ImLay 2003).

The generated superoxide radicals can be detoxified in LAB by superoxide dismutase (mainly manganese- containing SOD, *sodA*) with generation of H_2O_2 . LAB which lack SOD evolved the mechanism to accumulate high concentrations of intracellular manganese (Mn^{2+}) which acts as a scavenger for ROS in general (Archibald 1986). Thus, the divalent cation fulfils essential antioxidative functions as cofactor in SOD (Archibald & Fridovich 1981), catalase (Kono & Fridovich 1983) and as "free" intracellular Mn^{2+} (Archibald & Duong 1984). Corresponding reactions for SOD and Mn^{2+} are:

Sod and/ or
$$Mn^{2+}$$
: 2 O_2^{\bullet} + 2 $H^+ \rightarrow H_2O_2 + O_2$

 H_2O_2 can also be produced by various oxidases like NADH oxidase (*nox*), lactate oxidase (*lox*) and pyruvate oxidase (*pox*) (De Angelis & Gobbetti 2004). NADH oxidases have already been characterized in several lactobacilli, either producing H_2O_2 or H_2O (Y.- W. Zhang et al. 2012; Torre & Garel 2000b; Jänsch et al. 2011; Geueke & Riebel 2002) as indicated in Figure 1 and in the following formula:

> nox- 1: NADH + H⁺ + O₂ \rightarrow NAD⁺ + H₂O₂ nox- 2: 2 NADH + 2 H⁺ + O₂ \rightarrow 2 NAD⁺ + 2 H₂O

Lactate and pyruvate oxidases are not widely spread in LAB but known for their H_2O_2 producing ability especially under aerobic conditions (Zitzelsberger 1984; Taniai et al. 2008; Seki et al. 2004a; Stevens et al. 2010). Corresponding reactions include:

> *lox*: lactate + $O_2 \rightarrow pyruvate + H_2O_2$ *pox (spxB)*: pyruvate + $P_1 + O_2 \rightarrow acetyl-P + CO_2 + H_2O_2$

Pyruvate can further be converted into acetate and ATP from acetyl-P, which is catalysed by acetate kinase (*ack*) reaction already known for LAB (Knorr, Ehrmann 2001):

ack: acetyl-P + ADP
$$\rightarrow$$
 acetate + ATP

As the formation of H_2O_2 can lead to cessation of growth, the presence of efficient detoxification mechanisms influences the survival ability of the strain. As LAB lack the enzyme catalase which especially eliminates high concentrations of H_2O_2 , enzymes like NADH peroxidase (*npr*, *npx*) and alkyl hydroperoxide reductases (*ahp*) are found, which catalyze the following reactions:

npr, *npx*: NADH + H⁺ + H₂O₂
$$\rightarrow$$
 2 H₂O

ahp: organic hydroperoxide (or H_2O_2) + NADH + H⁺ \rightarrow (alcohol) + NAD⁺ + H_2O

In general, peroxidases require electron donors, the elimination of H_2O_2 therefore always depends on the NADH pool which is provided from metabolism alluded before (Imlay 2013). In *L. panis* PM1 most of the produced H_2O_2 was formed via *nox*, which was expressed under aerobic and microaerobic conditions whereas *npx* was activated in the presence of oxygen (Kang et al. 2013). The authors propose that rather reoxidation of NADH in a coupled *nox/ npx* reaction is responsible for the resistance mechanisms than ethanol production as already known from other heterofermentative LAB. *Ahp* can detoxify H_2O_2 and organic hydroperoxides and have been described in *Enterococcus faecalis* (La Carbona et al. 2007), *Streptococcus mutans* (Poole et al. 2000), *Bacillus subtilis* (Bsat et al. 1996) and others.

Besides activity of different *ahp* or *npx*, a manganese dependent (pseudo) catalase exists in a strain of *L. plantarum* which prevented accumulation of H_2O_2 (Kono & Fridovich 1983; Condon 1987).

1.3.2 Enzymes involved in thiol metabolism contribute to oxygen tolerance

The prevention of ROS through enzymatic and non- enzymatic defense mechanisms is one way to minimize intracellular damages in the organisms in general. Enzymes involved in the thiol metabolism like glutathione- glutathione peroxidase system (Jänsch et al. 2007), the thioredoxin- thioredoxin reductase system (Van De Guchte et al. 2002; Vido, Diemer, Dorsselaer, et al. 2005; Rocha et al. 2007) as well as cyst(e)ine uptake and metabolism (Turner et al. 1999; Lo et al. 2009; Hung et al. 2005) are known for their "antioxidative" actions in LAB.

1.3.2.1 <u>Glutathione-glutathione peroxidase (gpo, gpx)</u>

The general role of glutathione (GSH) in LAB has been reviewed recently (Pophaly et al. 2012a) and their glutathione accumulation potential is already known (Wiederholt & Steele 1994; Kullisaar et al. 2002).

The enzyme glutathione peroxidase (*gpo*, *gpx*) eliminates organic hydroperoxides (ROOH) and/ or H_2O_2 with formation of water coupled with the oxidation of GSH to oxidized glutathione (GSSG) whereas the GSH/ GSSG redox switch determines the oxidative status of the bacterial cell (Jones 2002).

gpo, *gpx*: $2 \text{ GSH} + \text{H}_2\text{O}_2 \rightarrow \text{GSSG} + 2\text{H}_2\text{O}$

and/ or

 $ROOH + 2GSH \rightarrow ROH + GSSG + H_2O$

Gene deletion studies regarding gpx in gram- positive bacteria are limiting. A gpxA insertion mutant in *Neisseria meningitides* showed increased sensitivity to oxidative stress caused by superoxide generating compound paraquat and slightly increased sensitivity after H₂O₂ treatment, whereas aerobic growth was unaffected (Moore 1996). In *Streptococcus pyogenes*, a *gpoA* mutant showed no increased sensitivity to oxygen but to paraquat (King et al. 2000) and seems to be essential for pathogenicity in murine models mimicking suppurative diseases (Brenot et al. 2004).

So far no deletion studies exist of a *gpo* (*gpx*) mutant in *Lactobacilli*, however the role of glutathione reductase (*gshR*), which is necessary for reduction of GSSG, was already investigated. A glutathione reductase ($\Delta gshR$) mutant of *L. sanfranciscensis* DSM20451^T showed growth defects in the presence of oxygen and paraquat in MRS media without added cysteine (Jänsch et al. 2007). It could be observed that a high intracellular GSH/ GSSG status in which *gshR* is essential, improves the strains ability to defend against emerging oxidative stress. A deletion of *gshR* lead to decreased thiol levels in sourdough, therefore *gshR* in *L. sanfranciscensis* seems to be essential for the increase in thiol groups which is supported by the fact, that this enzyme is expressed during sourdough fermentation (Jänsch et al. 2007).

1.3.2.2 <u>Thioredoxin reductase (trxB, trxR) and glutaredoxin-like protein (nrdH)</u>

The bacterial thioredoxin system has been intensively reviewed (Zeller & Klug 2006; Lu & Holmgren 2013). The thioredoxin reductase (trxB, trxR) as oxidoreductase has essential functions in the reduction of small proteins, called thioredoxins (trxA), which act as defense proteins during oxidative insults for maintenance of a reducing intracellular milieu. The reaction back into the reduced forms lead to oxidation of active cysteine residues which form the redox- active center of the protein.

The typical thioredoxin-fold, which can also be found in several proteins involved in redox reactions, consists of a four- stranded central β -sheet which is flanked by three α -helices (Martin 1995). A structural similarity within this thioredoxin-fold is the CXXC motif where two cysteines (C) embed two variable amino acids (X). The role of the cysteines during oxidation is described in chapter 1.6.

The importance of the function of thioredoxins and thioredoxin reductases becomes apparent evaluating the effects in deletion mutants. In many cases gene inactivation fails because of essentiality of these proteins for growth and survival in a wide range of bacteria, especially those which lack other "antioxidative" enzymes. This is supported by the fact that successful gene deletions of thioredoxin reductase in particular are described quiet rarely or growth is highly dependent on the presence of reducing substances like cysteine, GSH or dithiothreitol (DTT) (Rocha et al. 2007; Vido, Diemer, Van Dorsselaer et al., 2005).

As a *trxB* deletion in *Staphylococcus aureus* causes lethality, the effect of *sarA* deletion, which normally controls transcription of many virulence- associated genes (*trxB* amongst others), was evaluated (Ballal & Manna, 2010). Transcription of *trxB* was enhanced under aerobic and

microaerophilic conditions and with an effect after diamide challenge comparing the *sarA* mutant with the wildtype.

Similar observations could be seen for a *trxB* mutant of *L. casei* strain Shirota. Growth under aerobic conditions was diminished and sensitivity against H_2O_2 and disulfide stress was increased (Serata et al. 2012). A *trxB* mutant of *Bacteroides fragilis* was unable to grow in media without addition of cysteine or dithiothreitol (DTT). Further, sensitivity against diamide and oxygen was increased (Rocha et al. 2007). A *trxB1* inactivation in *Lactococcus lactis* resulted in accumulation of H_2O_2 , whereas growth defects could be partly restored by addition of GSH, cysteine and pyruvate (Vido, Diemer, Van Dorsselaer et al. 2005). In contrast to these findings, overexpression of *trxB1* in *L. plantarum* WCFS1 improved the tolerance against oxidative stress originating from H_2O_2 and diamide (Serrano et al. 2007 a). Further, expression of genes involved in synthesis of purine and sulfur- containing amino acids, energy metabolism, stress response and Mn^{2+} transport were upregulated with *trxB1* overexpression and H_2O_2 treatment (Serrano et al. 2007a).

Mutations in the thioredoxins can also have distinct effects. Diminished growth after application of oxygen, H_2O_2 , paraquat and nitrosative stresses could be observed in a dysfunctional *trxA1* gene of *Helicobacter pylori*. A *trxA* inactivation in *Bacillus subtilis* resulted in cysteine/ methionine auxotrophy, defects in endospore formation and cytochrome C synthesis (Möller & Hederstedt 2008). Consequently, the role of *trxA* as electron donor for different cellular processes and its relevance in sulfate assimilation is clearly evidenced.

Glutaredoxins are thiol- disulfide oxidoreductases, which belong to the thioredoxin superfamily with the typical CXXC motif which becomes reversibly oxidized. These small proteins share homologies with *nrdH* proteins which function as hydrogen donor for the *nrdEF* ribonucleotide reductase. *NrdH* proteins could especially be found in several bacteria which lack GSH (Stehr & Lindqvist 2004; Jordan, Pontis, Fredrik, Hellman, Gibert, 1996). They are often named as glutaredoxin-like proteins, primarily due to the lack of suitable amino acids, which are responsible for GSH binding (Bushweller et al. 1994) and secondly due to the absence of GSH for reduction of disulfide bonds between the cysteines as already known for *Lactococcus lactis* (Jordan, Pontis, Fredrik, Hellman, Gibert, 1996). In this strain, the coding operon contains the *nrdEF* genes and two open reading frames, of which one is *nrdH*. In *Escherichia (E.) coli* the oxidized *nrdH* proteins become, similar to thioredoxins, reduced back via *trxR* whereas NADPH serves as electron donor (Jordan A, Aslund F, Pontis E, Reichard P, Holmgren 1997).

1.3.2.3 Cystine transport in gram- positive bacteria

Bacterial cystine transport systems exhibit a high specificity for cystine. The role of cystine transporters have already been described in *Bacillus subtilis* (Burguière et al. 2004), *L. reuteri* BR11 (Hung et al. 2005; Lo et al. 2009) and *E. coli* (Berger & Heppel 1972). Cysteine helps in protein

folding by forming disulfide bonds; it acts in catalytic sites of enzymes, and has diverse functions as a precursor of many molecules (methionine, GSH, biotin, coenzyme A, thiamine etc.).

Previous work in other gram- positive bacteria indicates the participation of the cysteine/ cystine transport in oxidative stress response. Severe growth defects in media without cysteine during aerobiosis and in the presence of paraquat could be observed for a *L. sanfranciscensis* DSM20451^T $\Delta gshR$ and a *L. sanfranciscensis* DSM20451^T Δnox mutant which were also sensitive to diamide treatment (Jänsch et al. 2007; Jänsch et al. 2011). The effects could be restored when cysteine was added to the media due to the fact that *L. sanfranciscensis* imports cyst(e)ine to increase thiol levels (Jänsch et al. 2007). However, it is unclear to which extent cystine transport is required as nutritional source, contributes to intracellular thiol homeostasis and/ or is involved in actions against oxidative stress.

Besides intracellular cysteine and cystine transport, especially *Firmicutes* tend to exclude cysteines from exported proteins, which can exhibit a selective advantage in extreme redox environments for example in presence of oxidative substances (Daniels et al. 2010). It is confirmed with the finding that an increase of exofacial thiol groups which are located on exoproteins in *Lactococcus lactis* leads to a decrease of the redox potential (Michelon et al. 2010).

Effects of gene inactivation of cyst(e)ine transporters in gram negative bacteria overlap with activities in gram- positive bacteria and shows also the rate of interchangeability of cysteine and cystine. *E. coli* mutants defective in cysteine transport ($\Delta y deD$) or cystine binding protein ($\Delta f liY$) showed increased sensitivity to H₂O₂ challenge compared to the wildtype (Ohtsu et al. 2010). The growth of $\Delta f liY$ was completely abolished using 0.5 mM H₂O₂. In agreement with these facts, the deletion of the cystine uptake gene (*cyuC*) in *L. reuteri* BR11 (formerly classified as *L. fermentum* BR11) lead to defective growth in presence of oxygen with increased sensitivity to paraquat (Turner et al. 1999). The export of sulfhydryl groups and therefore the decreased ability to build a reductive environment which can exhibit a protective barrier was not given in this mutant. The role of *cyuC* after application of oxidizing conditions is suggested because an increased expression could be measured in *L. reuteri* BR11 (Hung et al. 2005). Further, higher extracellular thiol levels could be measured in the mutant compared to the wildtype (Hung et al. 2003).

1.4 Role of Mn²⁺ in the metabolism and oxidative stress response in *Lactobacillus* spp.

In the past years, Mn^{2+} gained attention because of its important role in several metabolic processes besides its function in metalloproteins. Mn^{2+} - dependent enzymes in bacteria in general are summarized in the work of Kehres & Maguire (2003). The diverse actions of Mn^{2+} in different LAB can be retrieved from BRENDA enzyme website (<u>http://www.brenda-enzymes.org/</u>; Schomburg et al. 2000). The detailed mode of action in carbohydrate metabolism (pyruvate oxidase, phosphofructokinase, acetate kinase, phosphoketolase and different sugar isomerases), peptide metabolism (dipeptidases, aminopeptidases) dehydrogenase reactions (malate, lactate dehydrogenase) is mainly through activation, stimulation and protection of corresponding enzymes. It is discussed that Mn^{2+} has even a distinct role in signal transduction and stabilization of the bacterial cell wall (Jakubovics & Jenkinson 2001).

In several studies it could be observed that cultures of LAB grown in media with high Mn^{2+} developed higher cell densities compared to cells with low manganese (Watanabe et al. 2012). In *E. coli* and *Salmonella typhimurium* the divalent metal transporters *Nramp* which are known for their broad substrate specificities were upregulated after application of H₂O₂, although it could be shown in *E. coli* that the imported Mn²⁺ could not effectively degrade the applied H₂O₂ (Anjem et al. 2009; Kehres et al. 2000). In *Lactococcus lactis* the inactivation of *MntH* decreased the intracellular concentration of iron and therefore OH• production from H₂O₂ via the Fenton reaction (Smith et al. 2010). During aerobiosis the manganese transporters *MntH1* and *MntH2* were expressed and increased the intracellular manganese concentration, which elevated the resistance of emerging ROS (Aguirre & Culotta 2012; Jakubovics & Jenkinson 2001; Jänsch et al. 2011). In vitro experiments revealed that Mn²⁺ reacts with superoxide to form MnO²⁺ with rapid generation of manganous phosphate, dioxygen, and H₂O₂ (Barnese et al. 2008).

The function in Mn^{2+} containing SOD and catalases was already investigated in several gram- positive bacteria (Allgood & Perry 1986; Bruno-bárcena et al. 2004; De Angelis & Gobbetti 1999; Rochat et al. 2006; Mostertz, Scharf, Hecker, Homuth, 2004). A strain of *L. plantarum* with an intracellular Mn(II) concentration of 20 to 25 mM converted emerging superoxide into H₂O₂ during aerobic conditions (Archibald & Fridovich 1981). The low intracellular Mn²⁺ concentration of *L. bulgaricus* ATCC 11842 with 0.06 mM probably accounts for the lower resistance to emerging ROS (Rochat et al. 2006; Archibald & Fridovich 1981). The protective effect of Mn²⁺ depends also on the bacterial growth phase because increased sensitivity to H₂O₂ could be detected in cells which were incubated in Mn²⁺ containing media compared to bacteria without additional Mn²⁺ (Watanabe et al. 2012). To date, the exact mechanism of O₂⁺ or H₂O₂ detoxification is not fully understood.

1.5 Regulators involved in oxidative stress response in LAB

1.5.1 Peroxide- responsive repressor (*perR*)

Besides the direct actions of enzymatic and non- enzymatic mechanisms in LAB, regulators, which are activated in the presence of distinct ROS, exist in several gram- positive bacteria.

PerR, which is a metalloregulator of the *Fur* (Ferric uptake regulator) family, can specifically sense H_2O_2 by Fe²⁺ oxidation of two histidines which leads to release of Fe²⁺ and derepression of *perR* target genes as known for *Bacillus subtilis* (Lee & Helmann 2006). The binding of Mn²⁺ instead of Fe²⁺ results in formation of Mn²⁺- *perR* complex which acts as a repressor of target genes. This *perR* regulon controls the transcription of genes mostly involved in peroxide defense. Intracellular Mn²⁺ content therefore influences the sensitivity of *perR* against H_2O_2 in *Bacillus subtilis* (Herbig & Helmann 2001).

Deletion of genes within this *perR* regulon resulted in increased peroxide sensitivity, the contrary occurred after deletion of *perR* in *Staphylococcus aureus* (Cosgrove et al. 2007). Increased resistance against H_2O_2 and cumene hydroperoxide could also be seen for a *perR* deletion mutant of *Campylobacter jejuni* (Palyada et al. 2009). It is also proposed that *ClpP* in *Staphylococcus aureus* is possibly involved in the control of transcription of members of *Fur*, *perR*, *lexA*, *MntR* and others which reveals the interconnection of proteases with metal transport and homeostasis, peroxide stress and DNA damage (Michel et al. 2006).

The information on *perR* in *Lactobacillus* spp. is still lacking. As *perR* can also be found in annotated genomes of LAB, a role in peroxide response in LAB is possible. The minor role of iron and the importance of Mn^{2+} in the metabolism of most LAB is described manifold (Archibald 1983; Elli et al. 2000; Pandey et al. 1994; Imbert & Blondeau 1998; Bruyneel et al. 1989; Archibald & Duong 1984; Archibald & Fridovich 1981; Archibald 1986; Watanabe et al. 2012), however the question if Mn^{2+} has the same effect in interacting with *perR* in LAB remains open. It is not known if a similar *perR* regulon with potential target genes for H₂O₂ detoxification exists in LAB and if the repressor activity is also influenced by H₂O₂ and Mn²⁺ in the growth media.

1.5.2 Redox- sensing transcriptional repressor (*rex*)

The redox- sensing transcriptional repressor (*rex*) which responds to the intracellular NADH/ NAD⁺ levels, is involved in binding of genes involved in fermentation, glycolysis, (nitrate) respiration and biofilm formation (Bitoun et al. 2012; Brekasis & Paget 2003; Gyan et al. 2006; Pagels et al. 2010). It was studied to date in several gram- positive bacteria like *Staphylococcus aureus* (Pagels et al. 2010), *Bacillus subtilis* (Gyan et al. 2006; Wang et al. 2008), *Enterococcus faecalis* (Vesić & Kristich 2013),

Clostridium acetobutylicum (Wietzke & Bahl 2012), *Streptomyces coelicolor* (Brekasis & Paget 2003) and *Streptococcus mutans* (Bitoun et al. 2012). The protein *rex* responds if the NADH/ NAD⁺ ratio is low. It represses the transcription of genes, which are involved in NADH reoxidation. The DNA-binding domain and NAD- sensing domains are highly conserved not only in the phyla *Firmicutes*. In the work of Ravcheev et al. (2012), *rex* homologs could be identified in 16 other bacterial phyla.

Deletion of *rex* leads to increased sensitivity against H_2O_2 in *Streptococcus mutans* (Bitoun et al. 2012) and even a higher accumulation in *Enterococcus faecalis* $\Delta EF2638$ mutant (Vesić & Kristich 2013). An increased H_2O_2 accumulation and improved growth in the presence of catalase could not be seen for the $\Delta EF2933$ mutant compared to the wildtype. Further, growth defects during aerobiosis, a decrease in biomass and defects in biofilm formation and increased ethanol and butanol production could be observed in *rex*- negative mutants of diverse species (Bitoun et al. 2012; Wietzke & Bahl 2012; Vesić & Kristich 2013).

1.5.3 Transcriptional regulator (*spx*)

The *spx* protein is a small and conserved protein with the characteristic CXXC motif which interacts with the α C- terminal domain of RNA polymerases to repress or activate the transcription of genes involved in different bacterial processes as known for *Bacillus subtilis*, *Staphylococcus aureus*, *Streptococcus mutans* and *Enterococcus faecalis* (Liu et al. 2012; Kajfasz et al. 2010; Kajfasz et al. 2012; Nakano et al. 2003; Smith et al. 2010). As a member of the arsenate reductase (*ArsC*) family, it responds to different stressors (low pH, high temperatures, presence of bactericidal antibiotics, detergents and ROS, diamide). Interestingly in *Bacillus subtilis clpP* and *clpX* mutants had high *spx* levels. These proteases are needed for *spx* degradation (Nakano et al. 2002). Possible mechanisms include inhibition or alteration of *clpPX* activity, conformational change and thus decreased susceptibility of *spx* to *clpPX* and alterations in the structure of *spx* due to oxidation (Zuber 2004).

A *spx* deletion mutant in *Staphylococcus aureus* showed severe growth defects during non- stressing conditions (Pamp et al. 2006). In contrast to that, growth of a Δspx deletion mutant in *Enterococcus faecalis* was strongly compromised at low pH, higher temperatures or in media with a high salt concentration (Kajfasz et al. 2012). Increased sensitivity could also be detected in the presence of oxygen, H₂O₂ and diamide which evidences that *spx* is involved in antioxidative mechanisms during oxidative stress. This finding is supported in *Bacillus subtilis* in which *spx* deletion lead to increased expression of methionine sulfoxide reductases A and B (*msrAB*) and extreme sensitivity to paraquat which caused modifications of the cysteine(s) in *spx* (You et al. 2008). However diamide treatment did not induce *msrAB* expression which again showed that depending on the strain and stressor, the bacterial response mechanisms differ. The activation of *spx* in *Bacillus subtilis* depends rather on the

oxidation of the cysteine residues from the CXXC motif than direct DNA binding (Nakano et al. 2005; Zuber 2004).

The function of *spx* in the control of cysteine biosynthesis genes (Choi et al. 2006) confirms that this protein is probably involved in cysteine metabolism and turnover also in other gram- positive bacteria. Actions against oxidative stress cannot be assigned to separate events alone as the "antioxidative" actions link the redox regulators with protein metabolism, DNA repair mechanisms, oxidative stress enzymes and probably proteins of which the function was overlooked so far.

1.6 Recognition motifs in proteins possibly involved in thiol- disulfide metabolism

The different roles of cysteine residues within proteins were already described. Besides its function as catalytic redox and non- redox cysteine residue, it has metal- coordinating, regulatory and structural functions and serves as site for posttranslational modifications (Fomenko et al. 2009).

Due to the high reactivity of cysteine, many thiol oxidoreductases possess besides a thioredoxin-fold, a conserved CXXC motif as outlined before (thioredoxins, glutaredoxins, redox regulators like *spx*, see chapters 1.3.2.2 and 1.5.3) in which the first cysteine acts as attacking residue and the second as resolving residue (Fomenko et al. 2009). For catalytic redox activity, the reduced SH- group is essential. Rarely, the resolving residue is replaced with serine (CXXS) or threonine (CXXT) which can also stabilize the deprotonated thiol group (Fomenko & Gladyshev 2003; Fomenko & Gladyshev 2002).

Due to the increased availability of sequenced bacterial genomes, screening for CXXC (CXXS, CXXT) motifs in protein sequences for identification of possible alternative oxidoreductases could broaden the understanding of involved proteins, which are not yet annotated and characterized. As the CXXC motif occurs also in metal- binding cysteines, structure analysis and detailed location of the motif is also important for differentiation.

It is known from *Firmicutes* that the number of proteins with disulfide bonds represents a minimum and the tendency of cysteine inclusion in exported proteins is low (Dutton et al. 2008; Daniels et al. 2010). The question remains open if the low incorporation in exported proteins and therefore possible increased intracellular incorporation of cysteine has a protective effect for LAB which lack important "antioxidative" enzymes. To date, information regarding small proteins with CXXC (CXXS, CXXT) motif and thioredoxin-like fold in LAB is insufficient.

1.7 Damages to biomolecules caused by ROS and corresponding repair mechanisms

As illustrated in Figure 1, ROS can severely damage diverse biomolecules (DNA and RNA, lipids and proteins). In the following, possible damages to proteins, DNA (RNA) and lipids are discussed with involved repair mechanisms.

1.7.1 Damages to proteins and bacterial (response and repair) mechanisms

The main protein modifications in the presence of ROS are mentioned in the review of Cabiscol et al. (2000): deficits in catalytic activity, modifications of amino acids, formation of carbonyl groups, fluorescence change, protein- protein cross- linking, oxidation of thiol groups, change in thermal stability and/ or viscosity, increased acidity, proteolysis and protein fragmentation.

LAB comprise of a protein- quality control system including chaperones and proteases, which act in folding and refolding of (damaged) proteins, prevention of protein aggregation, controlled proteolysis and others.

Stress genes in gram- positive bacteria can be classified into four groups (Narberhaus 1999; Schumann et al. 2002). Class I genes encode chaperones (*DnaK*, *GroES* and *GroEL*), which are controlled by the *HrcA* repressor. The recognition and binding of the highly conserved <u>chaperone inverted-repeat</u> <u>chaperone expression</u> (CIRCE element) sequence is inactivated during heat stress. The class II genes code for general stress proteins which are regulated by the σ^{B} sigma factor. Heat shock genes of class III are controlled by the *CtsR* repressor which recognizes a tandem repeat sequence. Class IV genes are not regulated through recognition sequences by *HrcA* or *CtsR* nor by σ^{B} sigma factor. In *Streptococcus salivarius*, dual regulation is proposed because *HrcA* and *CtsR* control *clpP* expression (Chastanet & Msadek 2003). In contrast, the expression of *clp* genes in LAB differs depending on the strain examined. In *L. plantarum clp* expression is under *CtsR*, in *L. gasseri* under *HrcA* control (Suokko et al. 2008; Fiocco et al. 2010). The role of *Clp* ATPases and proteases in processes like protein quality control, cellular differentiation, activity of transcriptional regulators (e.g. *spx*) etc. in gram- positive bacteria are summarized elsewhere (Frees et al. 2007).

The activity and mode of actions of some chaperones in LAB have been reviewed by Sugimoto et al. (2008). In LAB, known chaperones (*DnaK*, *DnaJ*, *GrpE* and *GroESL*) and proteases (*Clp*, *HtrA*, *FtsH*) are induced during heat (Suokko et al. 2008; Walker et al. 1999), acid (Lim et al. 2000; Walter et al. 2003), osmotic stress (Prasad et al. 2003) and after high pressure treatment (Hörmann et al. 2006; Pavlovic et al. 2005). The above mentioned so- called heat shock proteins and proteases are well conserved in LAB although the regulatory mechanisms are still not fully understood (Van De Guchte et al. 2002).

Oxidation of amino acid residues results mainly in formation of hydroxyl and carbonyl groups of amino acid residues, the latter is often used as marker for protein damage (Avery 2011; Mary et al. 2004). Methionine and methionine residues are most susceptible to oxidation forming methionine sulfoxides (MetSO) (Avery 2011). As these modifications lead to reduction of protein hydrophobicity and flexibility, the presence of methionine sulfoxide reductases A and B (msrA, msrB) enables the reduction of free and protein- bound S- and R- methionine sulfoxides (Met-S-SO, Met-R-SO) back into methionine (Ezraty et al. 2005). The reaction of msrA and msrB back into the reduced forms is accomplished using thioredoxins (Boschi-Muller et al. 2008). The observations concerning the participation of *msr* proteins during oxidative stress in bacteria are contradictory. It is known for L. plantarum WCFS1 that three of four msr genes are upregulated when the bacteria experiences coumaric acid stress (Reverón et al. 2012). In contrast, H₂O₂ treatment in Enterococcus faecalis did not alter *msrA* transcription (Zhao et al. 2010). H_2O_2 and paraquat lead to significant upregulation of msrA in Bacillus subtilis whereas deletion of msrA in Salmonella enterica and Xanthomonas *campestris* increased sensitivity to H₂O₂ (Denkel et al. 2011; Mostertz, Scharf, Hecker, Homuth 2004; Vattanaviboon et al. 2005). It is said that expression of *msrA* and *msrB* is growth-dependent and basal levels differ under normal physiological conditions (Romsang et al. 2013; Vattanaviboon et al. 2005).

1.7.2 Damages to DNA (RNA) and bacterial (response and repair) mechanisms

Increase in ROS can not only have deleterious effects on proteins, also DNA and RNA can be severely damaged. Possible outcomes include missing or false bases, interstrand crosslinks or strandbreaks which can lead to reconfiguration of the chromosome as described for *Bacillus subtilis* (Smith et al. 2002). Several repair enzymes with corresponding mechanisms were mainly investigated in *E. coli* (Lin & Sancar 1989). Information about detailed DNA repair mechanisms in LAB is limiting. In different *Lactobacillus* spp. exonuclease protein (*uvrA*, *B*, *C*), SOS- response regulator and protease (*lexA*), DNA recombinase (*recA*), topoisomerase (*parE*, *C*), ATP dependent nuclease (*addA*, *B*) and UV- damage repair protein (*umuC*) are the most frequently specified.

DNA double- strand breaks are mended by homologous recombination using *rec* proteins amongst others. The mechanisms of homologous recombination with participating proteins in *E. coli* have been reviewed (Kowalczykowski et al. 1994). The *recA* gene is ubiquitous which is one reason for successful application as phylogenetic marker of different bacteria and even LAB species (Torriani et al. 2001; Eisen 2011; Sarmiento-Rubiano et al. 2010). Distinct functions of *recA* include the regulation of the SOS response to DNA damage and mediation of recombination. In *Neisseria gonorrhoeae recA*, *recB*, *recC*, *recD*, *recJ*, *recO* and *recQ* mutants as well as holliday junction mutants *ruvA* and *ruvC* showed increased sensitivity against H₂O₂ (Stohl & Seifert 2006). A *trxB1* overexpression mutant of *L. plantarum* showed overexpression of genes involved in DNA repair (*dnaE*, *recA*), DNA helicases and

of polymerase *umuC*, transcriptional regulator *lexA* and stress response genes (*groESL*) when challenged with H_2O_2 (Serrano et al. 2007 b). In a $\Delta clpP$ mutant of *Staphylococcus aureus*, genes like *umuC*, *uvrA*, and *lexA* were upregulated connecting the actions of the *clp* proteases with DNA repair mechanisms (Michel et al. 2006).

UvrA, *B* and *C* are effective endonucleases which repair nucleotide excisions of only single bases but also intra- and interstrand crosslinks (Sancar & Rupp 1983). In *L. helveticus uvrA* which shares sequence homologies to other *uvrA* sequences in other gram- positive bacteria, repairs DNA damages after acid and H_2O_2 challenges (Cappa et al. 2005).

DNA- binding protein from starved cells (Dps) act via binding of iron or in formation of Dps- DNA complexes for protection of DNA. Dps are known for their potential to reduce the number of DNA single- strand breaks as observed for *E. coli* (Kolter 1997). The protein Dpr (for Dps-like peroxide resistance) in *Streptococcus mutans* is responsible for aerotolerance but was not able to bind DNA (Yamamoto et al. 2000). The *dpr* gene expression was downregulated in *Streptococcus thermophilus* during co- culture with *L. bulgaricus* (Sieuwerts et al. 2010). In some *Lactobacillus* spp. a gene copy of *dps* (also called DNA- binding ferritin-like protein) exists but the concrete role was not yet investigated.

1.7.3 Damages to membrane lipids and bacterial (response and repair) mechanisms

Lipids which are mainly found in the bacterial membrane can also be damaged in the presence of ROS. Formation of endogenous ROS, especially in bacteria which favor anaerobic conditions, leads to mechanisms which regulate membrane adaptation and survival (Pesakhov et al. 2007). Interconnecting the protein damage with defects in lipids could be seen in *E. coli* because the chaperonin *GroEL* stabilizes the lipid membrane, besides its function in protein folding (Török et al. 1997).

Lipid peroxidation of fatty acids can lead to aldehyde formation with impairment of typical membrane properties with a decrease in membrane fluidity. Formed aldehydes (e.g. 4-hydroxynonenal, 4-hydroxyhexenal and malonaldehyde) can react with DNA, forming aldehyde- DNA adducts causing events already described before (Marnett 2002; Meaney et al. 1990). Generation of reactive epoxides which is enhanced during low ph, oxidative and heat stress, can affect DNA and proteins (Guerzoni et al. 2001).

Fatty acids which make up 65 to 75 % of the cellular fatty acid pool in LAB were myristic (tetradecanoic; 14:0), palmitic (hexadecanoic; 16:0, hexadecenoic; 16:1), stearic (octadecanoic; 18:0), oleic, cis- vaccenic, dihydrosterculic and lactobacillic acids (Johnsson et al. 1995; Kankaanpää et al. 2004; Veerkamp 1971). Although it is proposed that most of the monounsaturated lipids in bacterial membranes are not prone for radical attack (Bielski 1983), it is evidenced that LAB can incorporate

and convert polyunsaturated fatty acids (PUFA) (Kankaanpää et al. 2004). The membrane fluidity increases with a higher content of unsaturated fatty acids, which makes it more flexible for embedded proteins and lipids. A high proportion of PUFA (C18:3) in *L. sanfranciscensis* could lead to the assumption that the strain is more prone to ROS damages (Montanari et al. 2010) compared to strains with less PUFAs.

Despite limiting information concerning the lipid damaging effect of ROS in LAB, published data suggests that potential defects and adaptation reactions in membrane fatty acids are highly strain specific but also easily influenced by environmental factors (growth media, low pH, high temperatures, osmotic differences or high pressure). In *L. hilgardii* increasing ethanol concentration favored lactobacillic acid and a decrease in oleic and vaccenic acid in the membrane (Couto et al. 1996). A low ph, high temperature and H_2O_2 treatment in *L. helveticus* lead to epoxide formation (Guerzoni et al. 2001). Higher oleic acid content after growth with linoleic and linolenic acid under acid stress favors the assumption that saturation of membrane fatty acids occurs. The proportion of medium chain fatty acid increased during acid stress in *L. sanfranciscensis*, which implicates again an increase of saturation (Montanari et al. 2010).

Besides an increase in saturation, cyclization is another mechanism to protect the intact membrane in LAB. The degree of unsaturation decreased whereas the degree of cyclization increased with higher temperatures in *L. fermentum* (Suutari & Laakso 1991). Acidification in *L. delbrueckii* subsp. *bulgaricus* caused a slight decrease of unsaturated to saturated and cyclic to saturated membrane fatty acid ratios (Streit et al. 2008). The generation of cyclopropane fatty acids (C_{19}) from oleic or cisvaccenic acid could be found in different *L. bulgaricus* strains and were related to increased stability during cold treatment (Smittle et al. 1974). The outcomes of desaturation and cyclization in LAB are identical because the reduction of membrane fluidity prevents the passage of undesired substances (Guerzoni et al. 2001).

1.8 General information about the metabolism of L. sanfranciscensis

L. sanfranciscensis is the key LAB in wheat and rye sourdough and probably inhabits these food matrices since ancient times. Its dominance besides other LAB species is described in several traditionally made sourdoughs (Meroth, Walter, et al. 2003; Randazzo et al. 2005; Scheirlinck et al. 2007; Vogel et al. 1994). The genetic and phenotypic diversity of *L. sanfranciscensis* strains in sourdough is described elsewhere (Foschino et al. 2001).

The type strain *L. sanfranciscensis* DSM20451^T (other designations: ATCC 27651, NRRL B-3934) was isolated from San Francisco sourdough and is mentioned in the present work as *L. sanfranciscensis* TMW 1.53 or wildtype (WT). The majority of experiments were carried out with this strain due to its transformation ability. *L. sanfranciscensis* TMW 1.1304 was isolated from industrial sourdough fermentation in 2006. The whole genome sequence is public available since 2011 (Vogel et al. 2011). The chromosome (Accession number: NC_015978) consists of only 1,298,316 bp with two additional plasmids, *pLS1* (Accession number: NC_015979) and *pLS2* (Accession number: NC_015980), with sizes of 58,739 bp and 18,715 bp (Vogel et al. 2011). The strain has the highest rRNA operon density (5.39 per Mbp) among so far known free- living organisms (Vogel et al. 2011).

The main physiology, interactions with yeasts and genetic aspects of *L. sanfranciscensis* were already reviewed (Gobbetti & Corsetti 1997). This obligate heterofermentative bacterium exhibits an effective maltose metabolism which is highly preferred compared to glucose which clearly explains its occurrence in the narrow niche like cereal- based fermentation. The characteristic phosphorylitic cleavage of maltose with preferred glucose export was already discussed elsewhere (Neubauer et al. 1994) and key enzymes maltosephosphorylase (*mapA*) and phosphoglucomutase (*pgmA*) have been characterized (Ehrmann & Vogel 1998).

Further, it is known that the strain can use fructose, oxygen, citrate, pyruvate and α -ketoglutarate as external electron acceptors, which increases growth rate and cell yield (Stolz et al. 1995; Zhang & Gänzle 2010). For example, externally added pyruvate is reduced to lactate with reoxidation of NADH. Malate is not used as electron acceptor by *L. sanfranciscensis*. In the presence of external electron acceptors, acetate is formed instead of ethanol via acetate kinase (*ack*) reaction with formation of an additional ATP as already outlined in chapter 1.1 (Knorr, Ehrmann 2001). The use of fructose and oxygen as external electron acceptors has been well studied in *L. sanfranciscensis* as visible in Figure 2. The enzymes phosphotransacetylase (*pta*), acetate kinase (*ack*) and *nox* are involved in acetate formation. The production of acetate instead of ethanol forms ATP but does not regenerate coenzymes which are important to balance the electron flow.

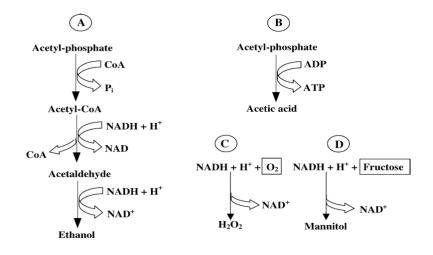


Figure 2: Use of fructose and oxygen as external electron acceptors by *L. sanfranciscensis*. (A) Two- carbon branch of the phosphogluconate pathway; (B) acetate kinase reaction; (C) use of oxygen; and (D) fructose as external electron acceptors. Picture taken from (Gobbetti et al. 2005).

Proteolytic activity is not very common among LAB found in sourdough and strain specific. No proteolytic activity is described for *L. sanfranciscensis* DSM 20451^{T} (Vermeulen et al. 2005), whereas the metabolism of amino acids depends on peptide availability and hydrolysis activity. In sourdough, exponentially growing bacterial cells express peptide transporter (*opp*, *dtpP*) and peptidase genes (*pepN*, *pepC*, and *pepT*) for peptide uptake and breakdown which originate from endogenous flour proteinases (Vermeulen et al. 2005). Based on the genome information of *L. sanfranciscensis* TMW 1.1304, the synthesis of four amino acids (alanine from pyruvate, aspartate from oxaloacetate, glutamate and glutamine) can be accomplished whereas the strain is auxotroph for the other twelve amino acids (Vogel et al. 2011). The high adaptation of *L. sanfranciscensis* to protein- rich wheat and rye dough with its low concentration of free amino acids and the strains preference for peptide import and intracellular turnover yielding amino acids was clearly evidenced.

1.9 *L. sanfranciscensis* and oxidative stress

L. sanfranciscensis as obligate heterofermentative LAB lacks the respiratory chain but is able to use oxygen as external electron acceptor resulting in a higher final cell yield and growth rate compared to anaerobic growth conditions (Stolz et al. 1995; De Angelis & Gobbetti 1999; Jänsch et al. 2011). The presence of genes in the genome of *L. sanfranciscensis* TMW 1.1304, which could be involved in the resistance against oxidative stress can be summarized (Vogel et al. 2011):

The presence of NADH oxidase 2 (*nox-2*; LSA_05610) catalyzes the four- electron reduction of oxygen to water (Riebel et al. 2003). The essentiality of this enzyme during aerobic incubation with increase in energy gain was already discussed. A Δnox mutant of *L. sanfranciscensis* DSM20451^T

showed increased sensitivity during aerobiosis and in the presence of paraquat and diamide in MRS media without additional electron acceptors (Jänsch et al. 2011). The mutant failed in regeneration of NADH during aerobic incubation which could be shown in a decreased acetate/ lactate ratio.

For detoxification of superoxide, a Mn^{2+} containing *sodA* exists in *L. sanfranciscensis* CB1 and it could be observed that aerobic incubation together with Mn^{2+} in MRS media lead to cell death after reaching the stationary phase (De Angelis & Gobbetti 1999). The strain accumulated high amounts of H_2O_2 due to *sodA* activity (and probably NADH oxidase 1). No *sodA* homologue could be found in the genome of *L. sanfranciscensis* TMW 1.1304.

L. sanfranciscensis lacks the enzymes catalase, *ahp* and *npx*, thus the elimination of H_2O_2 can only be executed by free available Mn^{2+} . The role of manganese in LAB was discussed in chapter 1.4.

In *L. sanfranciscensis* TMW 1.1304 two genome copies of thioredoxin reductases (LSA_02530; LSA_05170), one genome copy of thioredoxin (*trxA*, LSA_08950) and three thioredoxin-like proteins (LSA_08950, LSA_02610, LSA_06080) exist.

The synthesis of GSH is unfeasible due to the absence of enzymes like γ -glutamyl cysteine synthetase (*gshA*), glutathione synthetase (*gshB*) or glutathione biosynthesis bifunctional fusion gene (*gshA/B/gshF*). However the presence of glutathione reductase (*gshR/gor*, LSA_2p00270) and glutathione peroxidase (*gpo/gpx*, LSA_09790) suggest an essential role of GSH in *L. sanfranciscensis*. *GshR* reduces GSSG to two GSH monomers with simultaneous oxidation of NADH. In *L. sanfranciscensis* GshR is responsible for an increase in thiol levels in sourdough. A deletion of the gene decreased thiol levels and affected also the resistance against oxidative stress (Jänsch et al. 2007).

Other genes which are involved in actions against oxidative stress in *L. sanfranciscensis* TMW 1.1304 include the glutaredoxin-like protein (*nrdH*, LSA_04700) besides *nrdE*, *F*, *R* and a putative *nrdI*-like protein. The presence of *msrA* (LSA_07350 and *msrB* (LSA_07360) enables the strain to reduce oxidized methionine.

Regulators can also be found in the genome of *L. sanfranciscensis*. Peroxide stress can be detected by different sensors in bacteria. The following sensors and regulators can be found in the annotated genome of *L. sanfranciscensis*: *ohrR* (LSA_05940), *perR* (LSA_03000), regulatory protein *spxA* (LSA_02420) and redox- sensing transcriptional repressor *rex* (LSA_04930). The role of *perR*, *spx* and *rex* in LAB in general has already been explained in chapter 1.5. *OhrR* is a transcriptional repressor with cysteine residues which are oxidized in the presence of organic peroxides. The repression of *ohr* target genes follows to detoxify organic hydroperoxides (not H_2O_2). The role was already characterized in *Pseudomonas aeruginosa* (Atichartpongkul et al. 2010), *Streptomyces coelicolor* (Oh et al. 2007), *Xanthomonas campestris* pv. *phaseoli* (Panmanee et al. 2006) and others. As *ohr* target genes are absent in the genome of *L. sanfranciscensis* and the gene is labeled as "pseudogene", a possible role of *ohrR* in *L. sanfranciscensis* is questionable.

The annotation of a peroxide- responsive repressor *perR* (LSA_03000) reflects that this strain probably possesses a peroxide sensor. The protein consists of two CXXC motifs however target genes which are regulated by *perR* are unknown. In *L. sanfranciscensis* TMW 1.1304 one genome copy of *rex*, which consists of 216 amino acids can be found. A blastp search indicates high sequence similarity to LAB and other gram- positive bacteria. One genome copy of the regulatory protein *spxA* (LSA_02420) is present in *L. sanfranciscensis*.

Genes coding for chaperones and proteases are also present in the genome of *L. sanfranciscensis*. The role of proteases like *clpP* (LSA_05260), *clpX* (LSA_09640), *clpE* (LSA_10410), *clpC* (LSA_12680) and *ftsH* (LSA_04310) which are involved in diverse reactions against oxidative stress in diverse LAB were already mentioned. Chaperone like *groS* (LSA_04980), *groL* (LSA_04990), *dnaJ* (LSA_08110), *dnaK* (LSA_08120) and *grpE* (LSA_08130) can be retrieved from annotation. In the genome of *L. sanfranciscensis* both regulators *hrcA* (LSA_08140) and *ctsR* (LSA_11440) can be found which proposes a dual regulation as known for *Streptococcus salivarius* (Chastanet & Msadek 2003).

Present DNA repair proteins include: *recF* (LSA_00040), *recN* (LSA_06620), *recO* (LSA_07760), *radA*-like protein (LSA_04490) and DNA mismatch repair proteins *mutL* (LSA_09080) and *mutS* (LSA_09090). *UvrA* (LSA_05190), *uvrB* (LSA_05180) and *uvrC* (LSA_09610) are known to encode exinuclease proteins. *RecA* (LSA_01160), *recN* (LSA_06620), *recO* (LSA_07760) are also known to be involved in DNA repair. Others include topoisomerases like *parC* (LSA_07380), *parE* (LSA_07390), nuclease *addA* (LSA_13260), SOS response regulator *lexA* (LSA_08380) and ATP-dependent DNA helicases *ruvA* (LSA_09070) and *ruvB* (LSA_09060). Under stress conditions these genes encoding proteins, which are induced after DNA damage or blocking of DNA replication.

2 HYPOTHESIS AND AIMS

Previous work in *L. sanfranciscensis* DSM20451^T showed that the redox active enzymes glutathione reductase (*gshR*) and NADH oxidase (*nox*) involved in redox homeostasis having a significant role in allocation of reducing thiol equivalents (*gshR*) and generation of NAD⁺ during aerobic incubation (*nox*).

In order to improve the understanding of not yet described genes involved in redox reactions ("redox genes") in *L. sanfranciscensis*, the role of thioredoxin reductase (trxR), redox- sensing repressor (rex), glutathione peroxidase (gpo, gpx) and cystine transport permease (tcyB) should be highlighted in this work. It is hypothesized that these enzymes influence the intracellular redox homeostasis in *L. sanfranciscensis* especially in oxidative environments.

It is proposed that TrxR is essential to keep the intracellular homeostasis in a reduced state. Rex is generally described as regulator of the intracellular NAD: NADH ratio, and may act so also in *L. sanfranciscensis*, i.e. influencing the metabolic status of the cell. Gpo probably detoxifies emerging H_2O_2 and therefore protects the bacterium from further damage. Furthermore, TcyB is possibly involved in maintenance of the intracellular thiol homeostasis and resistance against ROS.

It is expected that especially under aerobic conditions where ROS formation occurs, generally growth of deletion mutants is impaired. The application of oxidative substances like paraquat (superoxide stress), diamide (thiol stress) and H_2O_2 (peroxide stress) should therefore give first information if the deleted genes participate in actions caused by superoxide, thiol and peroxide stress. The measurement of ORP including metabolite analysis, the determination of (intracellular and extracellular) thiol groups and H_2O_2 quantification are applied to get further information about the genes' participation during intracellular redox reactions in this bacterium.

Another part of the work should include screening for the presence and distribution of known "redox genes" in other LAB with degenerated primers. Based on this, groupings should be conducted and growth with oxidative agents should give information, if there is a connection between presence of "antioxidative" genes and their physiological tolerance against oxidants. It is hypothesized that strains with a larger set of "redox genes" and therefore an increased "antioxidative" potential tolerate the presence of oxidative agents like H_2O_2 and diamide much better.

The final aim was to determine the role of other, so far unknown "redox genes", which are involved in the resistance against specific environmental stressors [presence of electron acceptors like oxygen and fructose, co- cultivation with *Candida (C.) humilis*] in *L. sanfranciscensis*. For that purpose microarray analysis, RNA sequencing and *in-silico* protein prediction analysis should be used.

3 MATERIAL AND METHODS

3.1 Material

3.1.1 Devices

Major devices used in this work are listed in Table 1 in alphabetical order.

Table 1: Devices used in this study.

Device	Model	Manufacturer
Agarose gel chamber 25 x 20 cm	Easy Cast electrophoresis system	Owl Separation Systems, Portsmouth, NH, USA
Agarose gel chamber 13.8 x 12 cm	Easy Cast electrophoresis system	Owl Separation Systems, Portsmouth, NH, USA
Autoclaves	VE- 40 VX- 150	Systec GmbH, Wettenberg, Germany Systec GmbH, Wettenberg, Germany
	Varioklav	H + P Labortechnik, Oberschleißheim, Germany
Breeding/incubation	Certomat BS- 1 Hereaus B5042E Memmert INB series WiseCube®WIS- ML02	 B. Braun Biotech International, Melsungen, Germany Hereaus Instruments, Hanau, Germany Memmert GmbH & Co. KG, Schwabach, Germany Witeg Labortechnik GmbH, Wertheim, Germany
Centrifuges	Sigma 1 K 15	Sigma Labortechnik, Osterrode am Harz, Germany
	Sigma 6- 16K	Sigma Labortechnik, Osterrode am Harz, Germany
	J- 6	Beckman, Palo alto, CA, USA
	J- 2	Beckman, Palo alto, CA, USA
	HermLe Z383 K	HermLe Labortechnik, Wehningen, Germany
	HermLe Z382 K	HermLe Labortechnik, Wehningen, Germany
Drying machine	Venticell	MMM Medcenter Einrichtungen GmbH, Planegg, Germany
Electroporation system	Bio- Rad Gene pulser device	Bio- Rad Laboratories, Hercules, CA, USA
Fast Prep [®] System		MP Biomedicals, Solon, USA
Fermenter 3x 500 mL	Biostat®Q	B. Braun Biotech International, Melsungen, Germany
Ice mahine	AF100	Scotsman®, Milan, Italy
Incubation hood	Certomat H	B. Braun Biotech International, Melsungen, Germany
Ionenchromatography Laminar flow sterile work bench	ICS 5000 HERA safe	Dionex, Sunnyvale, USA Heraeus Instruments, Hanau, Germany
Microscope Microwave	Axiolab intellowave	Carl Zeiss MicroImaging GmbH, Germany LG, Seoul, South Corea
Nanodrop	Nanodrop1000	Peqlab Biotechnologie GmbH, Erlangen, Germany
PCR- Cycler	Primus 96 plus	MWG Biotech, AG, Ebersberg, Germany
	Mastercycler gradient	Eppendorf AG, Hamburg, Germany
pH determination (electrode) pH determination	InLab 412, pH 0- 14	Mettler- Toledo, Gießen, Germany
(fermenter)	ProLab3000	Schott® Instruments
Pipettes	Pipetman	Gilson- Abomed, Langenfeld, Germany

Device	Model	Manufacturer
Plate readers	TECAN SPECTRAFluor	TECAN Deutschland GmbH, Crailsheim, Germany
	FLUOstar Omega	BMG Labtech, Ortenberg, Germany
	TECAN SUNRISE	TECAN Deutschland GmbH, Crailsheim, Germany
Plating machine Eddy Jet		IUL Instruments, Königswinter, Germany
Power supplies	MPP 2 x 3000 Power Supply	MWG Biotech AG, Ebersberg, Germany
	Electroophoresis Power Supply EPS 3000	Pharmacia Biotech, Cambridge, England
	2197 Supply PPS 200- 1D	MWG Biotech AG, Ebersberg, Germany
Scales	SPD 61, SBA 52	Scaltec, Dania, USA
Shaking	Certomat R	B. Braun Biotech International, Melsungen, Germany
	Vortex 2 Genie	Scientific Industries Inc., Bohemia, NY, USA
Stirring	RCT- Basic	Mettler- Toledo, Gießen, Germany
Thermo block	Techne DRI- Block DB3	Thermo- Dux Gesellschaft für Laborgerätebau mbH, Wertheim, Germany
Ultra sonic water bath	Sonorex Super RK 103H	Bandelin electronic, Berlin, Germany
UV table	Herolab UVT 28M	Herlab GmbH Laborgeräte, Wiesloch, Germany
Water bath	Lauda BD	LAUDA Dr. D. Wobser GmbH & Co., Lauda- Königshofen, Germany

3.1.2 Chemicals

Chemicals used in this work are listed in Table 2 in alphabetical order.

Chemicals	Purity	Manufacturer
6 x DNA loading dye	-	Fermentas GmbH, St. Leon- Rot, Germany
Acetic acid	99 - 100 % (glacial)	Merck, Darmstadt, Germany
Acetone	for HPLC	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
Adenine	≥99 %	SIGMA- Aldrich, Steinheim, Germany
Agar	european agar	Difco, BD Sciences, Heidelberg
Agarose	for electrophoresis	Biozym Scientific GmbH, Oldendorf, Germany
L- Alanine	≥98 %	SIGMA- Aldrich, Steinheim, Germany
Amino acids	research grade	SERVA, Heidelberg, Germany
Ampicillin sodium salt	93.3 %	Gerbu Biotechnik GmbH, Gaiberg, Germany
Ammonium chloride	≥99.5 % p.a.	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
L- Arginine	-	Merck, Darmstadt, Germany
L- Asparagine	≥98 %	SIGMA- Aldrich, Steinheim, Germany
Biotin	~98 %	SIGMA- Aldrich, Steinheim, Germany
Bromcresol purple	p.a.	Carl Roth GmbH + Co. KG, Karlsruhe, Germany
Bromphenol blue	for electrophoresis	SIGMA- Aldrich, Steinheim, Germany
Cysteine hydrochloride * H ₂ O	p.a.	Roth, Arlesheim, Germany
Cystine	≥98 %	SIGMA- Aldrich, Steinheim, Germany
Dimidium bromide	≥98 %	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
Diamide	-	SIGMA- Aldrich, Steinheim, Germany

Table 2: Chemicals used in this study.

Chemicals	Purity	Manufacturer
DMSO (dimethyl sulfoxide)	≥99.5 % p. a.	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
DTNB (Ellmans Reagenz)	≥98 %	SIGMA- Aldrich, Steinheim, Germany
DTT (1,4 Dithio- D,L- Threitol)	high purity	GERBU Biotechnik, GmbH, Gaiberg, Germany
EDTA	for molecular biology	GERBU Biotechnik, GmbH, Gaiberg, Germany
Erythromycin base	-	SERVA Electrophoresis GmbH, Heidelberg, Germany
Ethanol, denatured	99 % with 1 % methylethylketone	Chemikalien und Laborbedarf Nierle, Freising, Germany
Ethanol, absolute	≥99.8 %	VWR, Prolabo, Foutenay- sous- Bois, France
Ethidium bromide	1 % in H ₂ O for electrophoresis	Merck, Darmstadt, Germany
Fast- AP	-	Fermentas GmbH, St. Leon- Rot, Germany
FD restriction buffer	-	Fermentas GmbH, St. Leon- Rot, Germany
FD restriction enzymes	-	Fermentas GmbH, St. Leon- Rot, Germany
FeSO4*7H2O		SIGMA- Aldrich, Steinheim, Germany
Folic acid	p. a.	SIGMA- Aldrich, Steinheim, Germany
Fructose		OMNI Life Science, Bremen, Germany
Glucose	for biochemical use	Merck, Darmstadt, Germany
Glutathion, reduced		SIGMA- Aldrich, Steinheim, Germany
Glycerol	99.5 %, high purity	GERBU Biotechnik, GmbH, Gaiberg, Germany
Glycine	p. a.	GERBU Biotechnik, GmbH, Gaiberg, Germany
Guanine	≥99.8 %	Merck, Darmstadt, Germany
HCl 37 %	p.a.	Merck, Darmstadt, Germany
Histidine monohydrochloride	-	Merck, Darmstadt, Germany
Horse radish peroxidase		AppliChem, Gattersleben, Germany
Hydrogen peroxide	30 %	Merck, Darmstadt, Germany
IPTG	p.a.	GERBU Biotechnik, GmbH, Gaiberg, Germany
Isoleucine	-	SERVA, Heidelberg, Germany
Isopropanol	p.a.	Scharlau Chemi S. A., Sentmenat, Spain
KH ₂ PO ₄	p. a.	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
$K_2HPO_4 * 3 H_2O$	p.a.	Merck, Darmstadt, Germany
Kalium acetate	p. a.	Merck, Darmstadt, Germany
KCl	p. a.	Merck, Darmstadt, Germany
L- amino acids	p.a.	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
Leucine	-	Merck, Darmstadt, Germany
Lysozyme	-	SERVA, Heidelberg, Germany
Maltose	Biochemical grade	GERBU Biotechnik GmbH, Heidelberg, German
Meat extract	for microbiology	Merck, Darmstadt, Germany
Methanol	HPLC- grade	Mallinkrodt Baker B. V., Deventer, NL
Methionine	≥99 %	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
MgCl ₂ * 6 H ₂ O	p.a.	SIGMA- Aldrich, Steinheim, Germany

Chemicals	Purity	Manufacturer
MgSO ₄ * 7 H ₂ O	p.a.	Merck, Darmstadt, Germany
$MnCl_2 * 4 H_2O$	p.a.	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
MnSO ₄ * 4 H ₂ O	p.a.	Merck, Darmstadt, Germany
NaCl	p.a.	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
NaH ₂ PO ₄	p.a.	Merck, Darmstadt, Germany
NaOH	p.a.	Merck, Darmstadt, Germany
Nicotinic acid	p.a.	SIGMA- Aldrich, Steinheim, Germany
Ninhydrin	p.a.	Merck, Darmstadt, Germany
Orotic acid	p.a.	SIGMA- Aldrich, Steinheim, Germany
p- amino benzoic acid	≥99.8 %	SIGMA- Aldrich, Steinheim, Germany
Panthothenic acid	p.a.	SIGMA- Aldrich, Steinheim, Germany
Paraffin oil	-	SIGMA- Aldrich, Steinheim, Germany
Perchloric acid	70 %	SIGMA- Aldrich, Steinheim, Germany
Pepton from casein	for microbiology	Merck, Darmstadt, Germany
Phenylalanine	≥98 %	SIGMA- Aldrich, Steinheim, Germany
Phusion [®] DNA Polymerase	-	New England Biolabs, County Road, USA
Pyridoxal 5'- phosphate hydrate	-	SIGMA- Aldrich, Steinheim, Germany
Primer	-	MWG- BiotechAG, Ebersberg, Germany
Proline	≥99 %	SIGMA- Aldrich, Steinheim, Germany
Pyridoxal- HCl	p.a.	SIGMA- Aldrich, Steinheim, Germany
RINGER solution	for microbiology	Merck, Darmstadt, Germany
SDS	research grade	SERVA, Heidelberg, Germany
L- Serine	≥99 %	SIGMA- Aldrich, Steinheim, Germany
Sodium acetate $* 3 H_2O$	p.a.	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
Sodium azide	p.a.	SIGMA- Aldrich, Steinheim, Germany
Sodium citrate	p.a.	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
Sodium hydroxide	for HPLC	JT Baker, Griesheim, Germany
Sodium phosphate	p.a.	Merck, Darmstadt, Germany
Sucrose	HPLC- grade	GERBU Biotechnik GmbH, Heidelberg, German
Sulfuric acid	p.a.	Merck, Darmstadt, Germany
T4 DNA ligase	-	Fermentas GmbH, St. Leon- Rot, Germany
Taq Core Kit	-	MP Biomedicals Solon, Ohio, USA
Tetramethylbenzidin	≥98 %	AppliChem, Gattersleben, Germany
Thiamine HCl	_	SIGMA- Aldrich, Steinheim, Germany
L- Threonine	≥98.5 %	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
Tris	ultra pure	MP Biomedicals Solon, Ohio, USA
Tris base	ultra pure	ICN Biomedicals, Inc., Ohio, USA
Tris- HCl	p.a.	Merck, Darmstadt, Germany
L- Tryptophane	≥98.5 %	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
Tween 80		Mallinkrodt Baker B. v., Deventer, NL

Chemicals	Purity	Manufacturer
L- Tyrosine	-	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
Uracil	p.a.	SIGMA- Aldrich, Steinheim, Germany
L- Valine	≥98 %	SIGMA- Aldrich, Steinheim, Germany
Xanthine	p.a.	SIGMA- Aldrich, Steinheim, Germany
X- Gal (5- Bromo- 4- chloro- 3- indolyl- ß- D- galactobpyranoside)	p.a.	Carl Roth GmbH & Co. KG, Karlsruhe, Germany
Xylene Cyanol FF	-	SIGMA- Aldrich, Steinheim, Germany
Yeast extract	for microbiology	Merck, Darmstadt, Germany
ZnSO4	\geq 99.5 %	SIGMA- Aldrich, Steinheim, Germany

3.1.3 Expendable materials

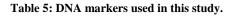
Other materials used in this work are listed in Table 3 in alphabetical order.

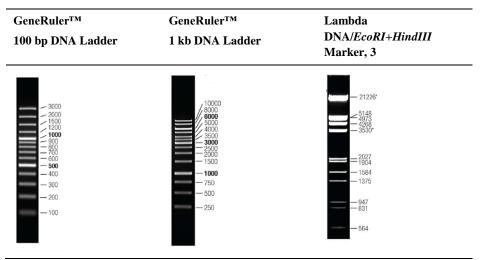
Table 3: Further materia	ls used in this study.
--------------------------	------------------------

Material	Туре	Manufacturer
Anaerocult C mini	-	Merck, Darmstadt, Germany
Combitips	0.5 mL; 2.5 mL; 10 mL	Eppendorf, Hamburg, Germany
Electroporation cuvettes	-	Biozym scientific GmbH, Oldendorf, Germany
		MP Biomedicals, Solon, USA
Fast Prep 24 Lysis Matrix tubes	0.1 mm Silica spheres	
Microtiter plates	multi well plate 96- well flat bottom with lid	Sarstedt, Nümbrecht, Germany
Reaction tubes	2 mL, 1.5 mL, 200 µL	Eppendorf, Hamburg, Germany
Sterile mL tubes	5 mL, 15 mL, 50 mL	Sarstedt, Nümbrecht, Germany
Sterile filter	Filtropur S 0.2 (0.2 µm)	Sarstedt, Nümbrecht, Germany
Sterile sensi- discs	Blank (no antibiotic)	BD Diagnostics, Heidelberg, Germany
Anaerocult	-	Merck, Darmstadt, Germany

3.1.4 Kits

Kits used in this work are listed in Table 4 in alphabetical order.


Table	4:	Kits	used i	in	this	study.
I unit	••	TTTT	abea		CTTTTO I	scaay.


Kit	Туре	Manufacturer
E.Z.N.A. Bacterial DNA Kit	DNA isolation	Omega Bio- Tek Inc., Norcross, GA, USA
E.Z.N.A. Plasmid Mini Kit II		Omega Bio- Tek Inc., Norcross, GA, USA
		Roche, Basel, Switzerland
High Pure RNA isolation	RNA extraction	Qiagen GmbH, Hilden, Germany
QIAprep®spin Miniprep Kit	Plasmid extraction	
Pierce Quantitative Peroxide Assay Kit	Lipid	Thermo Fisher Scientific, Waltham, MA, USA
Qiagen® Plasmid Plus Midi Kit	Plasmid extraction	Qiagen GmbH, Hilden, Germany

Kit	Туре	Manufacturer
QIAquick PCR purification Kit	PCR purification Kit	Qiagen GmbH, Hilden, Germany
RNeasy® Midi Kit	RNA extraction	Qiagen GmbH, Hilden, Germany
Taq Core Kit	DNA polymerase	MP Biomedicals Solon, Ohio, USA

3.1.5 DNA markers

DNA markers used for size estimations were purchased from Fermentas GmbH, St. Leon- Rot and are listed in Table 5.

3.1.6 Bacterial strains

All strains used in this work were obtained from TMW culture collection, stored at – 80 °C as glycerol stocks (see Table 6). For knock- out and cloning experiments, *E. coli* strains DH5 α and TOP 10 were used.

Table 6: Bacterial strains used for PCR screening in this work including abbreviations, origin of isolation, fermentation type and growth temperature.

no.	strains	abbreviations	origin of isolation	metabolism	temperature [°C]
1	Enterococcus (E.) faecalis TMW 2.630	E. fa.	sheep cheese	homofermentative	37
2	Lactobacillus (L.) acidophilus TMW 1.18	L. acid.	DSM 20079 ^T	obligate homofermentative	37
3	Lactobacillus (L.) brevis TMW 1.100	L. brev.	sourdough	heterofermentative	30
4	Lactobacillus (L.) brevis TMW 1.1785	L. brev.	rice sourdough	heterofermentative	30
5	Lactobacillus (L.) brevis TMW 1.1786	L. brev.	rice sourdough	heterofermentative	30
6	Lactobacillus (L.) brevis TMW 1.1787	L. brev.	rice sourdough	heterofermentative	30
7	Lactobacillus (L.) brevis TMW 1.1807	L. brev.	fermented food	obligate homofermentative	30
8	Lactobacillus (L.) brevis TMW 1.6	L. brev.	DSM 20054 ^T	obligate homofermentative	30
9	Lactobacillus (L.) brevis TMW 1.1326	L. brev.	ATCC 367	obligate homofermentative	30
10	Lactobacillus (L.) brevis TMW 1.313	L. brev.	beer	obligate homofermentative	30
11	Lactobacillus (L.) brevis TMW 1.1369	L. brev.	honey	obligate homofermentative	30
12	Lactobacillus (L.) brevis TMW 1.57	L. brev.	DSM 20054 ^T	obligate homofermentative	30

no.	strains	abbreviations	origin of isolation	metabolism	temperature [°C]
13	Lactobacillus (L.) brevis TMW 1.791	L. brev.	DSM 20556	obligate homofermentative	30
14	Lactobacillus (L.) brevis TMW 1.384	L. brev.	sourdough	obligate homofermentative	30
15	Lactobacillus (L.) casei paracasei TMW 1.1462	L. c. par.	sourdough	facultative heterofermentative	30
16	Lactobacillus (L.) curvatus TMW 1.624	L. curv.	raw sausage	facultative heterofermentative	30
17	Lactobacillus (L.) delbrueckii subsp. delbr. TMW 1.58	L. delbr.	DSM 20074 ^T	obligate homofermentative	37
18	Lactobacillus (L.) farciminis TMW 1.68	L. farc.	DSM 20184 ^T	obligate homofermentative	30
19	Lactobacillus (L.) fermentum TMW 1.1788	L. ferm	rice sourdough	obligate heterofermentative	30
20	Lactobacillus (L.) fermentum TMW 1.1837	L. ferm	fermented diary	obligate heterofermentative	30
21	Lactobacillus (L.) fermentum TMW 1.1836	L. ferm	fermented diary	obligate heterofermentative	30
22	Lactobacillus (L.) fermentum TMW 1.1835	L. ferm	fermented diary	obligate heterofermentative	30
23	Lactobacillus (L.) fermentum TMW 1.1727	L. ferm	rice sourdough	obligate heterofermentative	30
24	Lactobacillus (L.) graminis TMW 1.1174	L. gra.	grass silage(DSM 20719)	facultative heterofermentative	30
25	Lactobacillus (L.) mindensis TMW 1.1206	L. min.	sourdough (DSM 14500)	heterofermentative	30
26	Lactobacillus (L.) panis TMW 1.648	L. pan.	DSM 6035	obligate heterofermentative	37
27	Lactobacillus (L.) paracasei TMW 1.1305	L. par.	sourdough	facultative heterofermentative	30
28	Lactobacillus (L.) paracasei TMW 1.1434	L. par.	milk	facultative heterofermentative	30
29	Lactobacillus (L.) paracasei TMW 1.1724	L. par.	sourdough	facultative heterofermentative	30
30	Lactobacillus (L.) paracasei TMW 1.304	L. par.	beer	facultative heterofermentative	30
31	Lactobacillus (L.) paracasei subsp. paracasei TMW 1.1213	L. par. par.	sourdough	facultative heterofermentative	30
32	Lactobacillus (L.) paralimentarius TMW 1.1234	L. paralim.	sourdough	facultative heterofermentative	30
33	Lactobacillus (L.) paralimentarius TMW 1.1235	L. paralim.	sourdough	facultative heterofermentative	30
34	Lactobacillus (L.) paralimentarius TMW 1.1726	L. paralim.	rice sourdough	facultative heterofermentative	30
35	Lactobacillus (L.) paralimentarius TMW 1.256	L. paralim.	sourdough (DSM 13238)	facultative heterofermentative	30
36	Lactobacillus (L.) paralimentarius TMW 1.1725	L. paral.	sourdough	facultative heterofermentative	30
37	Lactobacillus (L.) perolens TMW 1.500	L. perol.	unknown	facultative heterofermentative	30
38	Lactobacillus (L.) plantarum TMW 1.1204	L. pla	sourdough (DSM 13238)	facultative heterofermentative	30
39	Lactobacillus (L.) plantarum TMW 1.1237	L. pla	sourdough	facultative heterofermentative	30
40	Lactobacillus (L.) plantarum TMW 1.124	L. pla	sourdough	facultative heterofermentative	30
41	Lactobacillus (L.) plantarum TMW 1.1723	L. pla	sourdough	facultative heterofermentative	30
42	Lactobacillus (L.) plantarum TMW 1.460	L. pla	sourdough	facultative heterofermentative	30
43	Lactobacillus (L.) plantarum TMW 1.702	L. pla	sourdough	facultative heterofermentative	30
44	Lactobacillus (L.) plantarum TMW 1.1	L. pla	raw sausage	facultative heterofermentative	30
45	Lactobacillus (L.) plantarum TMW 1.1732	L. pla	fermented food	facultative heterofermentative	37
46	Lactobacillus (L.) plantarum TMW 1.701	L. pla	sourdough	facultative heterofermentative	30
47	Lactobacillus (L.) plantarum TMW 1.1372	L. pla	honey	facultative	30

no.	strains	abbreviations	origin of isolation	metabolism	temperature [°C]
				heterofermentative	
48	Lactobacillus (L.) plantarum TMW 1.1478	L. pla	honey	facultative heterofermentative	30
49	Lactobacillus (L.) plantarum TMW 1.1809	L. pla	fermented food	facultative heterofermentative	37
50	Lactobacillus (L.) pontis TMW 1.56	L. pon.	rye sourdough	obligate heterofermentative	37
51	Lactobacillus (L.) pontis TMW 1.1300	L. pon.	sourdough	obligate heterofermentative	30
52	Lactobacillus (L.) pontis TMW 1.1301	L. pon.	sourdough	obligate heterofermentative	30
53	Lactobacillus (L.) pontis TMW 1.1086	L. pon.	rye sourdough DSM 8475 ^T	obligate heterofermentative	37
54	Lactobacillus (L.) reuteri TMW 1.106	L. reut.	sourdough	obligate heterofermentative	40
55	Lactobacillus (L.) sakei TMW 1.704	L. sak.	sourdough	facultative heterofermentative	30
56	Lactobacillus (L.) sakei TMW 1.705	L. sak.	sourdough	facultative heterofermentative	30
57	Lactobacillus (L.) sakei TMW 1.1239	L. sak.	sourdough	facultative heterofermentative	30
58	Lactobacillus (L.) sanfranciscensis TMW 1.53	L. sanfr.	sourdough DSM 20451 ^T	obligate heterofermentative	30
59	Lactobacillus (L.) sanfranciscensis TMW 1.728	L. sanfr.	-	obligate heterofermentative	30
60	Lactobacillus (L.) sanfranciscensis TMW 1.392	L. sanfr.	-	obligate heterofermentative	30
61	Lactobacillus (L.) sanfranciscensis TMW 1.377	L. sanfr.	sourdough DSM 20451 ^T	obligate heterofermentative	30
62	Lactobacillus (L.) sanfranciscensis TMW 1.398	L. sanfr.	sourdough	obligate heterofermentative	30
63	Lactobacillus (L.) sanfranciscensis TMW 1.1461	L. sanfr.	sourdough	obligate heterofermentative	30
64	<i>Lactobacillus (L.) sanfranciscensis</i> TMW 1.1304	L. sanfr.	sourdough	obligate heterofermentative	30
65	Lactobacillus (L.) spicheri TMW 1.1226	L. spich.	sourdough	obligate heterofermentative	30
66	Lactobacillus (L.) spicheri TMW 1.1233	L. spich.	sourdough	obligate heterofermentative	30
67	Lactobacillus (L.) spicheri TMW 1.1225	L. spich.	sourdough	obligate heterofermentative	30
68	Leuconostoc (Leuc.) holzapfelii TMW 2.813	Leuc. holz.	-	obligate heterofermentative	30
69	Pediococcus (P.) pentosaceus TMW 2.1036	P. pent.	sourdough	heterofermentative	30
70	Pediococcus (P.) pentosaceus TMW 2.6	P. pent.	sake mash (DSM 20333)	heterofermentative	30
71	Pediococcus (P.) pentosaceus TMW 2.74	P. pent.	-	heterofermentative	30
72	Pediococcus (P.) pentosaceus TMW 2.8	P. pent.	beer yeast (DSM 20336)	heterofermentative	30
73	Pediococcus (P.) pentosaceus TMW 2.149	P. pent.	DSM 20280	heterofermentative	30
74	Weissella (W.) cibaria TMW 2.1333	W. cib.	sourdough	heterofermentative	30
75	Weissella (W.) cibaria TMW 2.1039	W. cib.	sourdough	heterofermentative	30
76	Weissella (W.) confusa TMW 2.1034	W. conf.	sourdough	heterofermentative	30

3.1.7 Primer

Oligonucleotides for screening, cloning and sequencing are listed in Table 7. They were purchased from Eurofins Genomics (Ebersberg, Germany). Specific primers were designed from single nucleotide sequences retrieved from NCBI database. Degenerated primers were designed from nucleotide sequence or protein sequence alignments of different LAB as described in section 3.2.1.1.

Table 7: Primer used in this work in alphabetical order. Primer sequences marked with (*) were taken from literature as indicated at respective site. Primer sequences marked with (**) were previously designed at Lehrstuhl für Technische Mikrobiologie using sequences of LAB (*L. plantarum, L. johnsonii, L. gasseri* und *L. acidophilus*) and yeast (*Burkholderia cenocepacia, Aspergillus flavus* und *Talaromyces stipitatus*) and have not been published yet. Recognition sites of restriction enzymes which were used for cloning are underlined.

Primer	Primer sequence: $5' \rightarrow 3'$	Use/ species or plasmid considered		
ABC_trans_f:	CCGAATCAGGCGTCACTA	Sequencing/ TMW 1.53 Δ <i>tcyB</i>		
AFN2_lab_for*	GGNAAYGARATGGAYGG	Screening alpha- L- Arabinfuranosidase/		
(Park et al. 2007)		different strains		
AFC_lab_rev*	CCANACRTTCCAYTCRTC	Screening alpha- L- Arabinfuranosidase/		
(Park et al. 2007)		different strains		
cytB_for	TGGGAYGSVAAYGAAGT	Screening cytochrome B/ different strains		
cytB_rev	AAGACMACTTCRCCNGC	Screening cytochrome B/ different strains		
eryV	GACTCAAAACTTTATTACTTC	Sequencing/ pME-1		
Fae_for**	CGNTTYGAYTTYRAYGG	Screening ferulic acid esterase/ different strains		
Fae_rev**	ATNGGNWRYTGNGCNRTNG	Screening ferulic acid esterase/ different strains		
glaldDH_for	GGNTTYGGNMGNATHGGNMGN	Screening glyceraldehyde- 3- phosphate dehydrogenase/ different strains		
glaldDH_rev	CDATNGCYTTNGCNGCNCC	Screening glyceraldehyde- 3- phosphate dehydrogenase/ different strains		
G_perox_F_1	GCG <u>GGATCC</u> TGAATGGTCGAGAAATTG	Cloning glutathione peroxidase (<i>Gpo</i>)/ TMW 1.53		
G_perox_R_1	GCG <u>GGATCC</u> TGGAGAAGTTACTGGAGC	Cloning glutathione peroxidase (<i>Gpo</i>)/ TMW 1.53		
GSHPerox_DNA_for	TRATYGTKAATACKGCHASBAA	Screening Gpo/ different strains		
GSHPerox_DNA_rev	AAYTTYGTRAARTTCCAYTTGA	Screening Gpo/ different strains		
Hyp_Gp_rev	CAGCAAATGATAGTGGGACAC	Sequencing/ Gpo mutant		
msrA_for:	RTCYTGDAAHTGNCC	Screening peptide methionine sulfoxide reductase/ different strains		
msrA_rev:	GSTNRRVCCDTTTGA	Screening peptide methionine sulfoxide reductase/ different strains		
narH_for	CGYTGGGARGAYGAAGA	Screening nitrate reductase/ different strains		
narH_rev	TATTCVGKTGADCCHGC	Screening nitrate reductase/ different strains		
Ndh2_for	GGTTCYGGHTTYACBGG	Screening NAD(P)H dehydrogenase/ different strains		
Ndh2_rev	CCGGAARAAYTCKTGCA	Screening NAD(P)H dehydrogenase/ different strains		

Primer Primer sequence: $5' \rightarrow 3'$		Use/ species or plasmid considered	
Npox_for	GTYGGKKCWKCWCAYGG	Screening NADH peroxidase/ different strains	
Npox_rev	TCAATHCCRATRTADCCGS	Screening NADH peroxidase/ different strains	
opep_for	ATHGAYGTNGTNGARAAYMA	Screening oligo(endo)peptidase F/ different strains	
opep_rev	RTARTARAARTGNGGDATNCK	Screening oligo(endo)peptidase F/ different strains	
pdc_for* (de las Rivas et al. 2009)	GANAAYGGNTGGGARTAYGA	Screening phenolic acid decarboxylase/ different strains	
pdc_rev* (de las Rivas et al. 2009)	GGRTANGTNGCRTAYTTYT	Screening phenolic acid decarboxylase/ different strains	
pep_C_for	TTYTGGGAYAARTTYGARAAR	Screening aminopeptidase C/ different strains	
pep_C_rev	NACNACRTTNCCNARCATYTC	Screening aminopeptidase C/ different strains	
pep_E_for2	GGNGGNCARTGGGCN	Screening aminopeptidase E/ different strains	
pep_E_rev	NARNACRTCRTTNCCRAACCA	Screening aminopeptidase E/ different strains	
pheS-pMTL_F2	GTTTTCCCAGTCACGACGTT	Sequencing/ pMTL500e	
pheS-pMTL_R	CGGGGATCCTCTAGAGTCG	Sequencing/ pMTL500e	
phgluc_for	YTNATHGAYGGNGGNAAYACN	Screening 6- phosphogluconate dehydrogenase, different strains	
phgluc_rev	AAYAARGGNACNGGNAARTGG	Screening 6- phosphogluconate dehydrogenase/ different strains	
pMG36e_for	CGGAGGAATTTTGAAATGGC	Sequencing/ pMG36e	
pMG36e_rev	AACTGTCTTGGCCGCTTCAA	Sequencing/ pMG36e	
pMTL_for	GAGCCAACAGAACCAGAACC	Cloning/ pMTL500e	
pMTL_rev	CCTGGCTTGGTAGTGATTGAG	Cloning/ pMTL500e	
Pseu_for	GCCTGGTCTGACTGTGGT	Sequencing/ Gpo mutant	
pyrP_na_r	CTATCGAAGCCGATACAACTG	Sequencing/ TMW 1.53\DeltatcyB	
Red_II_for	ATWKGATWTNACRWTTATTRRTKGNGG	Screening Ferredoxin- NADP reductase/ different strains	
Red_II_rev	GGHTYRAWWGMBSCAHTYYC	Screening Ferredoxin- NADP reductase/ different strains	
Rex_F_1	GCG <u>GGATCC</u> GCTTTATTATCGTTATT	Cloning transcriptional regulator <i>rex/</i> TMW 1.53	
Rex_R_1	GCG <u>GGATCC</u> TCGTCTTCATCACTCTT	Cloning transcriptional regulator <i>rex/</i> TMW 1.53	
SP6	GATTTAGGTGACACTATAG	Sequencing/ pME-1	
spx_II_for	GAAGANATTATTTCWAMNCG	Screening transcriptional regulator <i>spx/</i> different strains	
spx_II_rev	CKRATTTCWTCTTCGTT	Screening transcriptional regulator <i>spx/</i> different strains	
Τ7	GTAATACGACTCACTATAGGGC	Sequencing/ pME-1	

Primer	Primer sequence: $5' \rightarrow 3'$	Use/ species or plasmid considered		
tcyB_com_for4	AT <u>CCATGG</u> AAAAACTAAACGAAAGGACT GATT	Complementation into <i>pMTL500e/</i> TMW 1.53∆ <i>tcyB</i>		
tcyB_com_rev4	ATA <u>CCATGG</u> AGTTCTCGTCCCCTTTCATA	Complementation into $pMTL500e$ / TMW $1.53\Delta tcyB$		
tcyB_com_for5	AT <u>TCTAGA</u> AAAAACTAAACGAAAGGACT GATT	Complementation into <i>pMG36e</i> / TMW 1.53∆ <i>tcyB</i>		
tcyB_com_rev5	TA <u>TCTAGA</u> AGTTCTCGTCCCCTTTCATA	Complementation into <i>pMG36e</i> / TMW 1.53∆ <i>tcyB</i>		
Th_red_F_1	GCG <u>GGATCC</u> GCTTGATCGTGGTGTTTA	Cloning thioredoxin reductase (<i>TrxR</i>)/ TMW 1.53		
Th_red_R_1	GCG <u>GGATCC</u> ACGAACATCACCAACAGC	Cloning thioredoxin reductase (<i>TrxR</i>)/ TMW 1.53		
TrxR_AA_for3	TAYGGNGGNCARATGAAYAAYAC	Screening Thioredoxin reductase (<i>TrxR</i>)/ different strains		
TrxR_AA_rev3	CRTCRCANACNGCRCARTA	Screening Thioredoxin reductase (<i>TrxR</i>)/ different strains		
ytpP_for	TKRATRAAWTYTTCDACYTST	Screening Thioredoxin like protein (<i>ytpP</i>)/ different strains		
ytpP_rev	YTGGTGYYCDGATTG	Screening Thioredoxin like protein (ytpP)/ different strains		

3.1.8 Restriction enzymes

All restriction enzymes used in this work were provided by Thermo Scientific Fermentas (Waltham, MA, USA) and applied as recommended in the manual of the supplier. If not stated otherwise, Fast Digest (FD) enzymes were used.

3.1.9 Plasmids

3.1.9.1 <u>pME-1</u>

The former *pSP72* plasmid with an ampicillin resistance (β - lactamase) gene was extended with an erythromycin resistance (*ErmC*) gene of *Staphylococcus aureus* as visible in Figure 3. This non-replicating vector with a size of 3,971 bp was used to clone a fragment of the target gene into multiple cloning sites. After homologous recombination, the insertion into the chromosome takes place and the reading frame of the target gene is interrupted which results in loss of gene function.

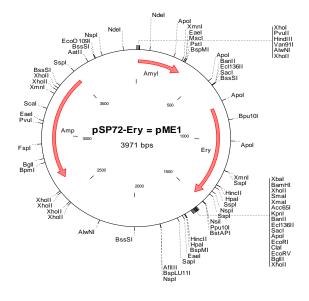


Figure 3: Vectormap of *pME- 1*.

3.1.9.2 <u>pMTL500E</u>

The shuttle vector *pMTL500E* was provided of the chair of Microbiology of the Technical University Munich and was originally isolated from *Bacillus subtilis*. As shown in Figure 4 the replicating vector carries erythromycin and ampicillin resistance genes, which are suited for selection in *E. coli* and *L. sanfranciscensis*. The vector consists of 6,380 bp and was used in this work mainly for complementation experiments and to control the transformation efficiency of electrocompetent *L. sanfranciscensis* cells.

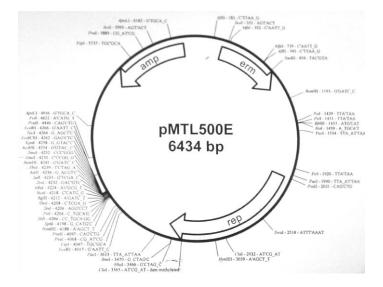


Figure 4: Vectormap of *pMTL500E*.

3.1.9.3 <u>pmG36e</u>

The vector pmG36e with its origin of replication pWV01, was constructed for the heterologous expression of genes in *Lactococcus lactis* subsp. *lactis*. It consists of approx. 3,700 bp. The kanamycin resistance cassette was replaced by an erythromycin resistance gene (designation from pMG36 to pmG36e) of *Staphylococcus aureus* plasmid pE194 for selection of plasmid carrying clones (van de Guchte et al. 1989) as visible in Figure 5. The promoter p32 derives from *Streptococcus cremoris*. In this work, the vector was used for complementation experiments. It also comprises of a multiple cloning site flanked by gene expression signals including a termination signal that derive from *L. lactis* subsp. *cremoris* Wg2.

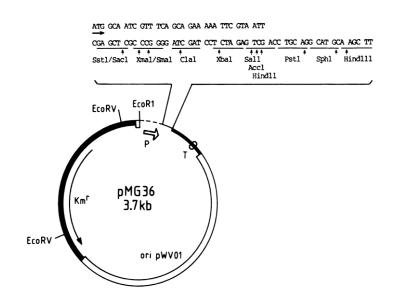


Figure 5:Vectormap of *pMG36e*.

3.2 Methods

3.2.1 Molecular biology methods

3.2.1.1 DNA isolation and primer design

For DNA isolation, the E.Z.N.A.® Bacterial DNA Kit (Norcross, USA) was used according to the protocol of the supplier with a few variations. The incubation times for lysozyme, proteinase and RNAse treatment were increased depending on the strain used for extraction; the elution buffer was prewarmed to 65 °C before applied onto the extraction columns to yield higher DNA concentrations. Resulting DNA was solved in TE buffer and the concentrations were measured with Nanodrop® ND-1000 (Thermo Scientific, USA). For PCR screening and for cloning purposes, the DNA concentrations were adjusted to 50 ng/ μ L.

The primer design was carried out manually from annotated DNA and protein sequences taken from NCBI (http://www.ncbi.nlm.nih.gov/) of different *Lactobacillus* strains. Genes were searched according to the available annotations and information in the literature. The chosen genes were classified into the following main five groups: "typical redox", peptidase, dehydrogenase, electron transport chain (ETC) and "aroma". For primer design, multiple sequence alignments with DNA and protein sequences were performed with *ClustalW* (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Particularly conserved regions were used for manual primer design. Designed primers were checked with a primer analysis tool of Thermo Scientific to detect possible variations in melting temperatures, determination of CG contents (%), primer lengths, estimations of primer- dimer binding, molecular weights etc. (http://www.thermoscientificbio.com/webtools/multipleprimer/?redirect=true). Table 7 lists the degenerated PCR primers used in this work. In Appendix A1 to A 13 published DNA and protein sequences of the strains (see Table 6 for used abbreviations) with locations for manual primer design are displayed.

3.2.1.2 <u>PCR performance</u>

PCR amplification was performed by using a final volume of 25 μ L containing 1.25 U of *Taq* DNA polymerase (MP Biomedicals, Solon, USA), 10 x appropriate buffer with 15 mM MgCl₂, deoxynucleoside triphosphate at a concentration of 0.2 mM, 0.4 μ M of each primer and 100 ng of the DNA of the 76 tested strains. If necessary, primer binding was increased by the addition of 25 mM MgCl₂ stock solution with end concentrations of 2.5 mM or 3 mM MgCl₂. The thermal cycle involved 3- min activation of the polymerase at 94 °C before 30 cycles of dissociation (45- sec at 93 °C), annealing (30- sec, temperature variable) and elongation (1- min, 72 °C) followed. For determination of the annealing temperature, all used primers were tested in gradient- PCR and with DNA of different *Lactobacillus* strains to test the efficiency as positive controls.

For complementation experiment and sequencing-PCR, the proof-reading Phusion® DNA polymerase (New England Biolabs, USA) was used. PCR amplification with Phusion® DNA polymerase was performed by using a final volume of 50 µL containing 0.5 µL of Phusion® DNA polymerase (New England Biolabs, USA), 5 x appropriate HF buffer, deoxynucleoside triphosphate at a concentration of 0.2 mM, 0.4 µM of each primer and 100 ng of the DNA. The thermal cycle involved 3- min activation of the polymerase at 98 °C before 35 cycles of dissociation (10- sec at 98 °C), annealing (30- sec, temperature variable) and elongation (5- min, 72 °C) followed. The amplification of obtained PCR products of the expected size was confirmed by electrophoresis through a 1 % agarose gel (Biozym, Germany) in TBE or TAE buffer (Sambrook, 2001) followed by staining with dimidium bromide (Roth, Germany). The bands were visualized using UV light. Negative results were tested two times to exclude false negatives due to low DNA concentration and DNA degradation.

3.2.1.3 <u>Analysis of PCR products using agarose gelectrophoresis</u>

<u>6 x Loading Dye</u> 0.03 % Bromphenol blue 0.03 % Xylene Cyanol FF 60 % Glycerol 60 mM EDTA 10 mM Tris- HCl (ph 7.6)

PCR products were analyzed using 0.8 – 3 % agarose gels. The agarose was solved in TAE or TBE buffer and heated in the microwave. The gels were placed into gelelectrophoresis chambers filled with the appropriate buffer. The PCR products were mixed with Loading Dye whereas the 100 bp and 1000 bp markers of Fermentas (St. Leon- Rot, Germany) served as size standards. The average running time at standard conditions (120 V, 200 mA) was 60 – 120 minutes. After running, the gels were placed into dimidiume bromide (Carl Roth GmbH & Co. KG, Karlsruhe, Germany) bath before they were analyzed using UV light for visualization. Appropriate bands were cut, purified with "QIAquick PCR purification Kit" (Qiagen GmbH, Hilden, Germany) and sent to the company GATC Biotech (Konstanz, Germany) for sequencing.

3.2.1.4 Construction of chemically competent E. coli and transformation

Calcium chloride solution 60 mM CaCl₂ x 2 H₂O 15 % Glycerin 10 mM PIPES *E. coli* was precultured in 50 mL LB media at 37 °C. After inoculation in fresh media, the cells were incubated aerobically for 3 – 4 hours at 37 °C until the OD_{595nm} of 0.4 was reached. The cells were harvested through centrifugation for 5 minutes at 3,000*g* and 4 °C. The supernatant was removed and the cell pellet was carefully washed with 20 mL of 4 °C cold calcium chloride solution, before the volume was adjusted to 50 mL. After another centrifugation step at 3,000*g* the washing step was repeated once. Finally, the pellet was resuspended in 1250 µL calcium chloride solution at 4 °C and incubated on ice for 20 minutes. The suspension was aliquoted à 100 µL and shocked with liquid nitrogen for 5 minutes. The chemically competent *E. coli* cells were mixed with 5 µL of ligation mixture (or 1 ng of plasmid DNA) and placed on ice for 10 minutes. Afterwards, the bacteria were placed into a water bath with 42 °C for 2 minutes, the addition of LB or SOC media and incubation at 37 °C for 30 – 60 minutes recovers the cells. *E. coli* DH5 α which were transformed with *pME-1* integration vectors were plated onto LB plates containing 100 µg/ mL of ampicillin for selection of positive clones.

3.2.1.5 Construction of electrocompetent L. sanfranciscensis TMW 1.53

The preparation of electrocompetent *L. sanfranciscensis* cells was performed as already described in the work Jänsch et al. (2007) with slight modifications. One colony of the strain was grown on mMRS (modified MRS, chapter 3.2.2.2) media added with 1 % (wt/vol) of glycine at 30°C in a water bath covered with aluminium foil to an optical density at 590 nm of 0.6. The cells were cooled on ice and centrifuged at 4°C (5,500g, 15 min), washed three times with 40 mL of 10 mM MgCl₂ solution, one time with glycerol (10%, vol/vol), one time with glycerol- sucrose solution (10%, vol/vol; 0.5 M). The resuspension of the cells were performed in glycerol- sucrose solution in which they were incubated on ice for 20 minutes, aliquoted à 80 - 100 µL, freezed in liquid nitrogen and storage solutions were cooled on ice before. The transformation efficiency of electrocompetent bacteria was checked using *pMTL500E* with a concentration of 50 – 100 ng/ µL.

3.2.1.6 Insertional inactivation of target genes by using single crossover integration

For insertional inactivation of known "redox genes", the following four genes were amplified based on the genome of *L. sanfranciscensis* TMW 1.1304: 1) thioredoxin reductase (*trxR*), 2) transcriptional regulator (*rex*), 3) glutathione peroxidase (*gpo*, *gpx*) and 4) Cystin transport permease (*tcyB*). The primers listed in Table 7 (Th_red_F_1/ R_1; Rex_F_1/ R_1; G_perox_F_1/ R_1; and Cys_F_1/ R_1) were used to obtain PCR products carrying BamHI restriction sites. Restriction endonuclease digestions and ligations with T4- DNA ligase were performed as indicated by the supplier (Fermentas, St. Leon- Rot, Germany). For insertional inactivation of the mentioned genes, the fragments were digested and ligated into plasmid *pME-1* resulting in the nonreplicating integration vectors *pME*-

 $1\Delta trxR$, pME-1 Δrex , pME-1 Δgpo and pME-1 $\Delta tcyB$. The vectors were transformed in chemically competent E. coli DH5a for multiplication as described in section 3.2.1.4. The plasmid isolation was executed with the "Plasmid Mini Kit" (Omega, Norcross, USA). Positive clones onto agar plates were picked and streaked out a second time onto agar plates containing the appropriate antibiotic and checked with insert and vector primers in the colony- PCR as described in section 3.2.1.2. Selected PCR products with the proper size were purified with the "QIAquick Purification kit" (Qiagen, Hilden, Germany), sequenced by the company GATC Biotech (Konstanz, Germany) and checked with ChromasPro 1.7.5 software (http://technelysium.com.au/?page_id=13). Alignments were conducted with the online tool ClustalW (http://www.ebi.ac.uk/Tools/msa/clustalw2/). The isolated and purified plasmids of E. coli were used for transformation into L. sanfranciscensis TMW 1.53. Transformations of electrocompetent L. sanfranciscensis cells (as described in section 3.2.1.5) were carried out with a Bio- Rad gene pulser apparatus in 0.2 mm cuvettes (Bio- Rad Laboratories, Hercules, CA) with the following parameters for LAB: 1.2 kV, 25 μ F and 1,000 Ω . After electroporation with the Gene pulser device of Bio- Rad (Bio- Rad Laboratories, USA), the cells were recovered with prewarmed mMRS medium and incubated in the water bath at 30°C for 5 hours prior to plating on mMRS plates with 10 µg/ mL erythromycin. After incubation in the water bath, erythromycin- resistant colonies were plated again onto mMRS (+10 μ g/ mL erythromycin) plates and cultured in liquid media with 5 μ g/ mL of erythromycin. For verification of the insertion of the plasmids into the chromosome, the chromosomal DNA of the erythromycin- resistant colonies was extracted as described in 3.2.1.1. PCR was carried out with primers targeting the regions upstream and downstream of the four mentioned genes and regions on the plasmid from *pME-1* (SP6, eryR) (see primer sequences in Table 7). The PCR products were sequenced at GATC Biotech (Konstanz, Germany) and evaluated as described above.

3.2.1.7 <u>Complementation of L. sanfranciscensis \(\Delta tcyB\)</u>

For complementation of *L. sanfranciscensis* $\Delta tcyB$, the *tcyB* gene including promoter were amplified using Phusion® High-Fidelity DNA polymerase (New England Biolabs, USA) and primers tcyB_com_for4/ rev4 (for vector *pMTL500e*) and tcyB_com_for5/ rev5 (for vector *pMG36e*). Further information regarding detailed primer sequence and restriction sites can be taken from Table 7. Corresponding PCR conditions including used chemicals and thermal profile were already described in chapter 3.2.1.2. Inserts were cloned into vectors *pMTL500e* and *pMG36e* and transformed into *E. coli* DH5 α as described in 3.2.1.4. Positive clones were selected in using the appropriate antibiotics and checked with insert and vector primers. Positive clones were cultured in liquid LB (+ antibiotic) media before plasmid isolation followed. Sequencing primers PheS-pMTL-F2/R (for *pMTL500e*) and pMG36e_for/rev (for *pMG36e*) were used to amplify the desired PCR product. Sequencing was carried out by GATC Biotech (Konstanz, Germany) and obtained sequences were checked as mentioned above. The products of positive clones were transformed into electrocompetent *L. sanfranciscensis* $\Delta tcyB$ using the parameters mentioned in the previous chapter 3.2.1.6.

3.2.2 **Microbiological Methods**

3.2.2.1 <u>mMRS, Spicher and LB media</u>

Table 8: mMRS for cultivation of *L. sanfranciscensis* WT and mutants, pH = 6.2.

component	concentration [% (w/v)]	
Peptone from Casein	1	
Yeast extract	0.5	
Meat extract	0.5	
K ₂ HPO ₄ x 3H ₂ O	0.4	
KH ₂ PO ₄	0.26	
NH ₄ Cl	0.3	
Cysteine- HCl	0.05	
Tween 80	0.1	
Maltose	1.5	
Fructose	0.5	

Table 9: Spicher for cultivation of other *Lactobacillae*, pH = 5.6.

component	concentration [% (w/v)]		
Peptone from Casein	1		
Yeast extract	0.7		
Meat extract	0.2		
Sodium gluconate	0.2		
Sodium acetate trihydrate	0.5		
Diammonium hydrogen citrate	0.5		
KH ₂ PO ₄	0.25		
MgSO ₄ x 7 H ₂ O	0.02		
MnSO ₄ x H ₂ O	0.01		
FeSO ₄ x 7 H ₂ O	0.005		
Cysteine- HCl	0.05		
Tween 80	0.1		
Maltose	0.7		
Fructose	0.7		
Glucose	0.7		

Table 10: LB media for cultivation of *E. coli*, pH = 7.

component	concentration [% (w/v)]
Peptone from Casein	1
Yeast extract	0.5
Sodium chloride	0.5

3.2.2.2 Media and growth conditions

All *Lactobacillus* spp. were cultivated in modified MRS (mMRS, see Table 8) after (Stolz et al. 1995) with addition of 5 g fructose per l, whereas vitamins were omitted. If no growth in mMRS media could be detected, Spicher media was used (see Table 9). The growth temperatures for the corresponding strains are shown in Table 6. For agar plates, 1.5 % agar was added. The components were dissolved in 800 mL H_2O_{dest} , the pH was adjusted by adding 4 M or 6 M HCl to 6.2. Sugars were dissolved separately in 200 mL H_2O_{dest} . For experiments with recombinant *L. sanfranciscensis* in liquid media, 5 μ g/ mL of erythromycin was added to maintain the insertion into the chromosome. For selection of recombinants and cultivation on agar plates, 10 μ g/ mL of erythromycin was used. 1 mL sterile filtrated (pore size Ø 0.2 μ m) magnesium/ manganese 1000- fold stock solution (MgSO₄ * 7 H₂O 100 g/l, MnSO₄ * 4 H₂O 50 g/l) was added to the media after autoclaving. Liquid bacterial cultures were incubated in sterile plastic tubes. Agar plates were incubated anaerobically using Anaerocult (Merck, Darmstadt, Germany) systems in heat-sealed plastic bags or airtight incubation containers.

Escherichia coli strains were grown in LB medium. Components were dissolved in H_2O_{dest} and pH was adjusted to 7.0. For clone selection, the appropriate antibiotic was added to the desired end concentration. *E. coli* strains were aerobically cultivated at 37 °C. Liquid cultures were incubated in Erlenmeyer flasks or sterile plastic tubes at 180 rpm.

3.2.2.3 <u>Measurement of optical density (OD₅₉₀ nm)</u>

The measurements of the optical density were conducted in TECAN readers (TECAN Deutschland GmbH, Germany) at 590 nm. For this purpose, 200 μ L of the bacterial cultures were pipetted into microtiter plates in duplicate, whereas mMRS media without bacterial cells served as Blank which was subtracted from the raw data.

3.2.2.4 Growth experiments in different mMRS media

Overnight cultures of WT, Δgpo and $\Delta tcyB$ were grown in mMRS (+5 µg/ mL erythromycin for mutants) for 24 hrs at 30 °C. After washing the cultures with Ringer solution, the OD was adjusted to 2.0. The different mMRS media according to the work of Jänsch et al. (2011) were used, with a few changes, visible in Table 11. Additionally, bacteria were grown in precultures without Mn²⁺ (mMRS7) and cysteine (mMRS8) and inoculated a second time in these media in regard to gain information about storage capacities in *L. sanfranciscensis* TMW 1.53. The different media used were inoculated at 1 % level with the bacterial cultures solved in Ringer solution. The growth was monitored measuring the OD _{590nm} described in section 3.2.2.4. The bacteria were plated for colony forming unit (cfu) determination.

component	mMRS	mMRS2	mMRS3	mMRS4	mMRS5	mMRS6	mMRS7	mMRS8
manganese	+	-	-	-	+	+	-	+
cysteine	+	+	-	+	-	-	+	-
fructose	+	+	-	-	-	+	+	+

Table 11: Modifications of mMRS media for growth experiments.

3.2.2.5 Fermentation experiments of WT, Agpo, AtcyB and Anox in mMRS

WT, Δgpo and $\Delta tcyB$ mutants of *L. sanfranciscensis* TMW 1.53 were fermented in mMRS media at 30 °C for 24 hrs and pH, redox potential and oxygen partial pressure were measured automatically described below. The already characterized Δnox mutant (Jänsch et al. 2011) was used as control. The sterilized fermenters were filled with 300 mL each of mMRS media. Before inoculation, the strains were grown over night in the same media (+ 5 µg/ mL of erythromycin for the mutants) washed one time in Ringer solution and the OD was set to 2.0. The inoculation dosage was 1%. Samples were taken every 2 hrs (T0, T2, T4, T6, T8, T10, T12, T24) for OD_{590nm} measurement, HPLC analytic (amino acids, sugars, acids, ethanol) and thiol group determination. For measurement of the optical density, 200 µL per sample were pipetted in duplicate into microtiter plates to analyze the OD at 590 nm in TECAN Spektraflour or Sunrise (TECAN Deutschland GmbH, Crailsheim, Germany). The measurement of mMRS media gave a blank which was subtracted from the generated raw data. The fermentation experiment was carried out with three independent replicates (n = 3).

Fermentations were carried out for 24 hours in fermenters (B. Braun Sartorius, Göttingen, Germany) at 30 °C. The parameters pH, oxidation- reduction potential (ORP) and oxygen partial pressure (pO_2) were measured using electrodes to record changes in these parameters automatically every 10 minutes. The pH was measured by using autoclavable pH electrodes (Mettler- Toledo, Greifensee, Switzerland). The calibration was accomplished with pH 7 and pH 4 calibration buffers. The pO₂ electrodes (Ingold, Greifensee, Switzerland) were calibrated employing N₂ and air.

ORP was measured by autoclavable redox electrodes Pt-Ag/AgCl (SCHOTT, Mainz, Germany). The integrity of the redox electrodes were checked using a standard redox solution of 240 mV (Hanna, Kehl am Rhein Germany). The redox potential E_h was calculated using the equation:

$$E_h = E_m + E$$

in which E_h refers to the redox potential of the normal hydrogen electrode (NHE), E_m to the recorded redox potential and E_r is the potential of the reference electrode at 30 °C (204 mV). As changes in the pH during the fermentation modify also the Eh, the redox potential was expressed at pH 7 according to (L. & Mirna 1959):

$$E_{h7} = E_h - [(7 - pH) \alpha]$$

in which α is the change per pH unit (E_h - pH; mV/ pH unit) which was determined before. In mMRS media the variation of E_h was 55.7 mV/pH unit at 30 °C.

3.2.2.6 <u>Calculation of reduction, acidification and oxygen reduction rate</u>

The E_{h7} , pH and pO₂ values of three different fermentations for each strain were processed mathematically for calculation of reduction rate V_r (d E_{h7} /dt, mV/h), acidification rate V_a (dpH/dt, pH unit/h) and oxygen reduction rate O_r (dpO₂/h, pO₂%/h) according to the method of Cachon et al. (2002) and Wick et al. (2003). This calculation was used for the determination of the maximum reduction rate V_{mr} (mv/h), the maximum acidification rate V_{ma} (pH unit/h), the maximum oxygen reduction rate O_{mr} (pO₂%/h) and corresponding time points: T_{mr} (h), T_{ma} (h) and T_{or} (h).

3.2.2.7 Analysis of organic acids, carbohydrates and free amino acids

For quantification of organic acids and ethanol, 400 μ L of each sample was mixed with 4 μ L 15 % perchloric acid and incubated over night at 4 °C to precipitate proteins. The formed precipitate was removed by centrifugation (30 min, 4 °C) and the supernatant was filtered (0.2 μ m) and diluted 1:3 with water. The samples were stored at – 20 °C until analysis.

For quantification of the carbohydrates, 500 μ L of each sample was mixed with 250 μ L 10 % ZnSO4 and 250 μ L NaOH (0.5 N). The samples were mixed carefully, incubated for 20 min at room temperature (RT) following a centrifugation step for 30 min to remove the formed protein precipitate. The supernatants were filtrated (0.2 μ m), diluted with water 1:20 and frozen at – 20 °C until analysis.

For amino acid determination 1 mL of the sample volume were mixed with 50 μ L undiluted perchloric acid and incubated over night at 4 °C for protein precipitation. The samples were centrifuged for 30 min at 4 °C, supernatants were filtered (0.2 μ m) and diluted 1: 50 with 0.1 M HCl. The samples were frozen at – 20 °C until analysis.

Organic acids, ethanol and carbohydrates were analyzed by IEC dual analysis system ICS-5000 (Dionex, USA). Organic acids and ethanol were analyzed employing a ReproGel- H 9 lm (Dr. Maisch GmbH, Ammerbuch- Entringen, Germany) combined with a conductivity detector, suppressor and RI-101 detector (Shodex, München, Germany) for ethanol detection. The maintenance of the system at 30 °C was provided using 1 mM heptafluorobutyric acid (mobile phase) with a flow rate at 1 mL min⁻¹ and 5 mM tetrabutylammonium hydroxide (anion suppression reagent). This method was developed modifying an application of Dionex (Document No. 031181-07). Carbohydrates were analyzed using a Carbopac PA20 column (Dionex, Sunnyvale, USA) combined with an electrochemical detector ICS-5000 (Dionex, Sunnyvale, USA), (Schwab et al. 2008). Water (A/B), 100 mM NaOH (C) and 1 M Sodium acetate were used as solvents applying the following gradient: 0 min, 37.5 % B and 25.5 % C; 24 min, 100 % C; 34 min, 100 % D; 44 min, 37.5 % B and 25.5 % C.

The concentrations of free amino acids were determined by reversed phase high performance liquid chromatography (RP- HPLC on an UltiMate 3000 HPLC system, Dionex, Germany) as already described by Schurr et al. (2013). A Gemini C18 column (Phenomenex, Aschaffenburg, Germany) was used for measurements. The mobile phases A (20 mM Na₂HPO₄, 20 mM NaH₂PO₄, 0.8 % tetrahydrofuran, pH 7.8) and B (30 % acetonitrile, 50 % methanol, 20 % HPLC- grade water) were employed with a flow rate of 0.8 mL/min (0 min, 0 % B; 16 min, 64 % B; 19 min, 100 % B; 22 min, 100 % B; 22.25 min, 0 % B). Amino acid separation and UV- mediated detection at 338 or 269 nm was performed with a Dionex UltiMate 3000 HPLC system (Dionex, Idstein, Germany), the column temperature was set to 40 °C. Precolumn amino acid derivatisation using o-phthalaldehyde-3-mercaptopropionic (OPA) acid and 9-fluorenylmethyl chloroformate (FMOC) was conducted in accordance to the work of Bartóak et al. (1994). The quantification of amino acids was performed using external standards and Chromeleon evaluation software version 6.80 (Dionex, Idstein, Germany).

3.2.2.8 Growth experiments of WT and AtcyB in mMRS without cysteine

Overnight cultures of WT and $\Delta tcyB$ were grown in mMRS media. After washing two times in Ringer solution, the OD _{590nm} was adjusted to 2.0. A stock solution of cystine was diluted to final concentrations of 0.01 M, 0.001 M and 0.0001 M in mMRS. Measurements were carried out in 96 well plates in a plate reader at 30 °C for 24 hrs monitoring the growth at OD _{590nm}. For that, 200 µL of mMRS without additional cysteine (but different concentrations of cystine) were pipetted into 96 well plates including 2 µL of bacterial cells. Three different biological replicates were prepared. Media without bacterial cells served as Blank. To compare the results of the 200 µL of the microtiter plate with a higher volume, 15 mL tubes were also inoculated. Significance was calculated using two-sided t- test.

3.2.2.9 Growth experiments of WT and AtcyB in chemical defined media (CDM)

The compounds listed in Table 12 were weighed, mixed and the pH was adjusted to 6.2. To maintain the biological activity of the added compounds freshly prepared media was sterile filtrated (0.2 μ m) using Sarstedt filter. CDM without cysteine and cystine, with cysteine only and with cystine only were prepared to separate growth characteristics of the $\Delta t cyB$ mutant vs. WT.

Media component	concentration [% (w/v)]
Natriumacetate trihydrate	0.5
KH_2PO_4	0.3
K ₂ HPO ₄	0.3
$MgSO_4 \cdot 7 H_2O$	0.02
$MnSO_4 \cdot 4 H_2O$	0.005
$FeSO_4 \cdot 7 H_2O$	0.002
Tween 80	0.1
L- Alanine	0.01
L- Arginine	0.01
L- Asparagine	0.02
L- Cysteine*	0.02
Cystine*	0.01
Glycine	0.01
L- Histidine	0.01
L- Isoleucine	0.01
L- Leucine	0.01
L- Methionine	0.01
L- Phenylalanine	0.01
L- Proline	0.01
L- Serine	0.01
L- Threonine	0.01
L- Tryptophan	0.01
L- Tyrosine	0.01
L- Valine	0.01
Nicotinic acid	0.0001
Pantothenic acid	0.0001
Pyridoxal 5 phosphate	0.0002
Adenine	0001
Orot acid	0.001
Uracil	0.001
C- Quelle: Maltose	1

 Table 12: Composition of chemical defined minimal media for L. sanfranciscensis, adjusted after (Hebert et al. 2000).

 *Chemical defined media was prepared either with cysteine, cystine or without cysteine and cystine.

Overnight cultures of WT and $\Delta tcyB$ were grown in mMRS media. After washing two times in Ringer solution, the OD _{590nm} was adjusted to 2.0. The CDM without cysteine and cystine was used for growth measurements. Cysteine and cystine were manually added to CDM in three different concentrations (see Table 13). Three different biological replicates were prepared. Measurements were carried out in 96 well plates in a plate reader at 30 °C for 24 hrs monitoring the growth at OD _{590nm}. For that, 200 µL of CDM were pipetted into 96 well plates including 2 µL of bacterial cells. CDM without bacterial cells served as Blank.

Cystine concentrations (stock solution of 0.144 M solved	Cysteine (stock solution of 0.57 M solved in distilled water)
in 0.5 M HCl)	
72 µM	285 µM
7.2 μΜ	28.5 μM
0.72 μΜ	2.85 μM

Table 13: Concentrations of Cystine and Cysteine in CDM for growth determination.

3.2.2.10 Survival test after H_2O_2 and diamide treatment

Overnight cultures of WT, Δgpo and $\Delta tcyB$ were grown for 24 hrs. Stock solutions of H₂O₂ and diamide were prepared with a concentration of 10 mM and sterile filtrated (0.2 µm). Stationary grown bacterial cultures were treated with H₂O₂ and diamide (final concentration ~ 1 mM), the control cultures were inoculated with distilled water instead of oxidants. The experiment was performed with three biological replicates. Samples were taken every 2 hours for CFU determination.

3.2.2.11 Shock experiments with diamide and H₂O₂

Cultures of WT, Δ gpo and Δ *tcyB* were grown in mMRS media until the OD of 0.5. A stock solution of 50 mM of H₂O₂ (Merck, Darmstadt, Germany) and diamide (SIGMA- Aldrich, Steinheim, Germany) was prepared and sterile filtrated before addition to the exponentially grown cells of *L. sanfranciscensis* followed. The final concentration of both oxidants in the cultures was approx. 1.67 mM; distilled water was only added to the control cultures. After incubation at 30 °C for 1 hour, a sufficient volume of each sample was taken and frozen at – 20 °C for thiol group determination.

3.2.2.12 Extracellular and intracellular thiol group determination

KPM solution

0.1 M K₂HPO₄ containing 10 mM MgSO₄ * 7H₂O, pH 6.5

The extracellular and intracellular thiol groups after H_2O_2 and diamide treatment were determined as already described in the work of Jänsch et al. (2007) with slight modifications. After centrifugation, the cells were washed two times with nitrogen- aerated KPM solution. The volume of 5 μ L of a 10 μ M of L- Cystine and 10 μ L of 1 M D- Glucose solution was added to KPM cell suspensions. The tubes were incubated for 1 hour at 30 °C before the cells were centrifuged and the supernatant was transferred into new tubes and placed on ice for determination of extracellular thiol groups. The volume of 50 μ L of 10 mM DTNB solution was added and incubation in the dark for 30 minutes at RT followed. The supernatants were pipetted into 96 well plates to measure the absorption at 412 nm in a plate reader FLUOstar Omega (BMG Labtech, Germany). KPM solution served as Blank.

For determination of intracellular thiol groups, the cell pellet was washed two times in KPM solution before it was solved in 200 μ L distilled water, 4 μ L 0.5 M EDTA, 10 μ L 1 M Tris- HCl (ph=8.0), 20

 μ L 10 mM DTNB and 100 μ L 10 % SDS solution. The mixture was incubated for 1 hour at 30 °C before the cell debris was removed by centrifugation. The absorption of the supernatant was measured again in micro titer plate at 412 nm in FLUOstar Omega. For quantification of thiol groups, several dilutions of L- Cysteine were prepared in KPM solution. The resulting data was exported into Excel and a standard curve was constructed for quantification purposes.

3.2.2.13 Influence of oxidants treatment on growth inhibition determined with plate assay

The resistance against different oxidizing compounds in *L. sanfranciscensis* TMW 1.53 (WT) and Δgpo and $\Delta tcyB$ mutants was tested on agar plates with two different media types (mMRS, mMRS5= without cysteine and fructose) according to the work of Jänsch et al. (2011). To maintain the genomic insertion 5 - 10 µg/ mL of erythromycin was added to agar plates for the mutants. The plates were covered with 150 µL of overnight cultures of WT and Δgpo and $\Delta tcyB$ mutants. After drying of the plates, sterile sensi- discs (BD Diagnostics, Heidelberg, Germany) were supplemented with H₂O₂ (final concentrations 5 mM and 2.5 mM), paraquat (final concentrations 250 mM and 500 mM) and diamide (final concentrations 1 M and 0.5 M) and placed in the middle of the agar plates. To compare the growth under normal conditions, separate plates with the addition of distilled water were used for each strain as positive controls. Plates were incubated for 48 hrs at 30 °C anaerobically for H₂O₂ and diamide, aerobically for paraquat. Due to the potentially light sensitivity of the oxidants, plates were covered with aluminium foil and incubated in the dark. The growth of inhibition was measured as the diameter of growth inhibition expressed in millimeter. Data was loaded into "*R*" (http://www.bioconductor.org) and p-values (≤ 5 %) were calculated with two sample t- test indicating significant effects.

3.2.2.14 Growth response in the presence of different reducing and oxidizing agents

Overnight cultures were grown in mMRS (+5 μ g/ mL erythromycin for the mutants), washed two times in Ringer solution before the OD was adjusted to 2.0 as already described. As reducing agents cysteine, glutathione (GSH) and dithiothreitol (DTT); as oxidizing agents, H₂O₂ and diamide were used. After sterile filtration, stock solutions of 1 M were diluted to obtain the following concentrations: 100 mM, 40 mM, 20 mM, 10 mM, 5 mM and 1 mM. The growth was monitored as described in section 3.2.2.3. Growth was monitored for 24 hours at 30 °C with OD_{590nm} measurement every 60 minutes in TECAN Spektraflour or Sunrise (TECAN Deutschland GmbH, Crailsheim, Germany). Data was exported and analyzed in Excel and "*R*" (http://www.bioconductor.org) to visualize data and calculate appropriate p-values using two- sided ANOVA test. When ANOVA indicated a significant effect, pairwise comparisons were made with Tukey's HSD test.

3.2.2.15 Qualitative assessment of H₂O₂ accumulation

For qualitative assessment of H_2O_2 accumulation, plates with four different media compositions were used (1. mMRS, 2. mMRS – manganese, 3. mMRS – manganese – cysteine and 4. mMRS – cysteine). Corresponding mMRS media components and agar was weighed and the pH was adjusted to 6.2. The agar media mix was heated in the microwave until the agar solved completely. After sugars were added, the mixture was cooled down and Tetramethylbenzidine (TMB, 0.03 g solved in 100 μ L DSMO) and Horseradish peroxidise (HRP, solved in water, stock solution of 1 mg/ mL) were added. Plates were dried and stored in the dark at 4 °C until further use.

WT Δgpo , $\Delta tcyB$, Δnox and $\Delta gshR$ were precultured in mMRS (for mutants + 5 µg/ mL erythromycin) as described in 3.2.2.2. The mutants Δnox and $\Delta gshR$ were used as internal controls. After OD measurement, the cultures were washed two times in Ringer solution before they were solved in Ringer. A volume of 10 µL of each strain were dropped onto two different plates and after drying, the plates were incubated anaerobically for 48 hours at 30 °C. For assessment of H₂O₂ accumulation, plates were exposed to oxygen for 10 minutes. Immediately after oxygen exposure and after 30 seconds, 3, 5 and 8 minutes, pictures were taken with a digital camera to evaluate the intensity of the color change at respective time points. Also color changes on the plates were scored by eye to confirm the images.

3.2.2.16 Quantification of H_2O_2

For quantification of H_2O_2 , the method of Nakajima et al. (2003) was used with slight modifications. Cultures of WT, Δgpo , $\Delta tcyB$ and Δnox were grown anaerobically in mMRS and mMRS without manganese for 48 hrs. After incubation, stationary phase cells were washed two times in Ringer solution, resuspended in Ringer solution with addition of 0.5 % glucose before the OD was adjusted to 2. Each of the suspension was incubated for 3 hrs anaerobically and aerobically (220 rpm) at 30 °C and a sample of each suspension was drawn after 1 hour (T₁) and after three hours (T₃). After a centrifugation step (15.000 rpm for 3 minutes), 18 µL of the supernatant was used for quantification using the Quantitative Peroxide Assay Kit – Lipid (Thermo Scientific). The procedure was performed according to the protocol of the manufacturer. The determination was executed in duplicate for every strain. The absorption at 595 nm was measured in the FLUOstar Omega reader immediately after prepared in methanol. Using linear regression, the absorption values of the samples were used for quantification.

3.2.2.17 In silico prediction of proteins involved in thiol disulfide redox metabolism of L. sanfranciscensis $DSM20451^{T}$

Protein sequences of genomic DNA, *pLS1* and *pLS2* (NC_015978.faa, NC_015979.faa, NC_015980.faa) of *L. sanfranciscensis* TMW 1.1304 were retrieved from FTP website

(ftp://ftp.ncbi.nih.gov/genomes/). Proteins were searched automatically for CXXC, CXXS and CXXT motifs. Using PSI- BLAST (Altschul et al. 1997) from NCBI, the selected proteins were checked for conserved domains. The parameters for BLAST were set to default. After this step, proteins were manually checked according to specific parameters as outlined in the work of Gopal et al. (2009). Modeling of 3D structure was carried out with 3D- JIGSAW Protein Comparative Modelling Server (http://www.bmm.icnet.uk/~3djigsaw/) published by Bates et al. (2002) and the SWISS- MODEL Server (http://swissmodel.expasy.org/workspace) as described in the work of Arnold et al. (2006). All parameters were set as default. Detailed information can be taken from the corresponding results section 4.17.

3.2.3 Transcriptional analysis

3.2.3.1 Microarray design and strain selection

Microarrays were spotted on the Agilent 8x15K platform (Agilent Technologies, Santa Clara, CA, USA) with a custom probe design comprising the published sequence of *L. sanfranciscensis* TMW 1.1304 (released by NCBI, Genbank accession no. NC_015978.1 for the chromosome, NC_015979.1 and NC_015980.1 for the two plasmids *pLS1* and *pLS2*).

3.2.3.2 Media and growth conditions

component	concentration [% (w/v)]
Peptone from Casein	1
Yeast extract	0.4
Meat extract	0.7
Sodium acetate trihydrate	0.5
Diammonium hydrogen citrate	0.2
Dipotassium phosphate	0.2
KH ₂ PO ₄	0.25
MgSO ₄ x 7 H ₂ O	0.02
$MnCl_2 * 4 H_2O$	0.005
Tween 80	0.1
Maltose (for L. sanfranciscensis)	2
Fructose (for L. sanfranciscensis)	0.7
Glucose (for <i>C. humilis</i>)	0.8

As the transcriptional response of *L. sanfranciscensis* TMW 1.1304 to different environmental stimuli was tested, the strain was grown in mMRS media with maltose as the only sugar to OD 0.6. For the co- cultivation with *C. humilis* (TMW 3.191), the yeast was grown in mMRS media with glucose to

OD 0.8. The five conditions applied are summarized in Table 15. The applied conditions were carried out at 30 $^{\circ}$ C for 2 hrs before RNA isolation started.

Table 15: Experimental cond	ions for microarray analysis.
-----------------------------	-------------------------------

conditio	ns	application	(incubation) time
1)	Anaerobic (control)	Standing culture	2 hrs
2)	Aerobic	180 rpm	
3)	+ Fructose	media with fructose	
4)	Co- cultivation with C. humilis (TMW 3.191)	1/100 ratio yeast/ bacteria	
5)	Co- cultivation with C. humilis (TMW 3.191)	1/10 ratio yeast/ bacteria	

3.2.3.3 <u>RNA isolation</u>

Table 16: Extraction mixture for RNA isolation.

component	volume
Phenol/ Chloroform	500 μL
10 % SDS	30 µL
3 M Sodium acetate (pH 5.2)	30 µL
Glass beads (75 – 150 µm)	500 mg
TE buffer (or MRS)	400 µL

The cells were centrifuged at 30 °C at 15.000g for 15 minutes for harvesting. The bacterial and yeast cells were quenched with -20 °C cold 60 % glycerol using 3 volumes of quenching solution and 1 volume of cells. After mixing, the samples were stored at -20 °C. Following a centrifugation step at -20 °C at 9.000 rpm for 10 minutes, cells were resuspended in 1mL TE buffer. The samples were placed into tubes containing extraction mixture and mixed manually for 2 minutes. Afterwards, the tubes were immediately frozen in liquid nitrogen and stored at -80 °C overnight for RNA isolation. The cells were broken down using a FastPrep® machine (MP Biomedicals, Solon, USA) between the steps; the tubes were placed on ice. The cells were centrifuged at 20.800g for 1 minute at 4 °C to remove the cell debris. The supernatants were transferred into new tubes and an equal amount of chloroform was added which was cooled before use. The mixtures were centrifuged again for 1 minute. The supernatants were taken and mixed in a ratio of 1:1 with the capture buffer of the "High Pure RNA isolation Kit" (Roche, Basel, CH). The next steps were carried out as described in the protocol of the supplier. The Dnasel digestion was carried out for 90 minutes directly on the column to remove traces of DNA. For elution of the RNA, 50 µL of elution buffer was added onto the columns. The RNA was stored in two aliquots, one of 20 µL for further analysis and labeling and one back- up of 30 μ L at – 80 °C. The RNA quantity and quality was checked using NanodropTM ND- 1000 (Peglab Biotechnologie, Erlangen, Germany) and Spektrometer 3000 SmartSpecTM (Bio- Rad, Hercules, CA, USA).

3.2.3.4 <u>Reverse transcription and degradation of mRNA</u>

For annealing, 10 μ g of each RNA sample was mixed with 1 μ L of random Nonamers (Invitrogen, Carlsbad, CA, USA) and nuclease free water yielding a total volume of 11 μ L. After mixing, an incubation step at 70 °C for 5 minutes followed before the samples were cooled at RT for 10 minutes. The mixture was spinned down and placed on ice. For reverse transcription 5 x buffer, 0.1 M DTT, dNTPs and Superscript® Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA) were gently mixed and added to the mix of RNA and Nonamers. An incubation step for 3 hrs at 42 °C followed before the samples were cooled on ice. For degradation of mRNA, 2 μ L of 2.5 M NaOH were added to the samples, mixed and shortly centrifuged. After incubation for 15 minutes at 37 °C, 10 μ L of HEPES free acid were added before the solution was mixed and centrifuged again for further use.

3.2.3.5 Labeling with cyanine dyes and purification of amino allyl- modified cDNA

CyScribe GFX columns were placed into new collection tubes. 500 μ L of capture buffer was added to each column and the unpurified cDNA products were transferred into each CyScribe column. After mixing with the pipette, samples were centrifuged at 13.800*g* for 30 sec. The liquid was discarded before 600 μ L of 80 % ethanol was added to each column. A centrifugation step followed. This washing step was repeated two times before the columns were dried with an additional centrifugation step. The columns were placed into new collection tubes and 60 μ L of freshly prepared 0.1 M sodium bicarbonate (ph 9.0) was pipetted directly onto the column. The tubes were incubated with elution buffer for 1 - 5 minutes at RT. The purified cDNA was collected with a centrifugation step at 13.800 *g* for 60 sec. This elution step was repeated.

All labeling and hybridization steps have to be carried out in the dark due to light sensitivity of the CyeDyes. For labeling amino allyl- modified cDNA were directly added into one aliquot of CyeDye NHS ester. Before usage, the CyeDye NHS esters were resuspended completely by pipetting. Each cDNA sample was allocated into equal volumes and mixed with each of the dye, resulting in two tubes per sample, one labeled with cyanine 5 (Cye5) and one with cyanine 3 (Cye3). An incubation step at RT for 60 – 90 minutes followed before 15 μ L of 4M Hydroxylamine was added to each coupling reaction. It was mixed by stirring and incubated at RT for another 15 minutes. Before hybridization, the quality of the cDNA and labeling was checked again with NanodropTM ND- 1000. The hybridization for the 8x15K microarrays was executed according to the protocol 5.5 (2007) of the supplier (Agilent, Santa Clara, CA, USA). Cye3 and Cye5 labeled samples (each of approx. 300 ng) have to be mixed with 5 μ L of 10 x Blocking Agent, 25 x Fragmentation buffer and water to a total volume of 20 μ L of hybridization buffer and careful mixing results in the solution which will be placed onto the arrays. For that, tubes were placed on ice and loaded onto the eight arrays without introducing air bubbles. The entire array was placed in an array rack and in a hybridization oven for at

least 16 hours at 65 °C and 10 rpm. The washing of the array was performed using the supplied washing solutions of Agilent. The array was dried and scanned with Agilent microarray scanner. The parameters were set as follows: Hitchip Profile, channels R + G, resolution 5 µm, 16 bit TIFF, XDR 0.10, RPMT and GPMT. Laser lights of wavelengths at 532 nm for Cye3 and 635 nm for Cye5 dye were used to excite.

3.2.3.6 Quantification and microarray analysis

Fluorescent images were captured as multi- image- tagged image file format (TIFF) and quantification was carried out with the Imagene 7.5 software (Axon) (BioDiscovery, Marina del Rey, USA) at NIZO food research institute (Ede, Netherlands). The resulting files were opened as Excel file, columns and "signal mean" were marked and sorted. Files were loaded into *"R*" "name" (http://www.bioconductor.org) and mean group values were calculated. The group mean values were copied into txt file and later into Excel. All calculated mean values and standard deviation (STD) values were copied into one Excel file including all LSA numbers which derived from the genome of L. sanfranciscensis TMW 1.1304. With KAAS (KEGG Automatic Annotation Server; http://www.genome.jp/tools/kaas/) each gene of the genome of L. sanfranciscensis TMW 1.1304 was given a specific K number (Moriya et al. 2007). In Excel, the corresponding LSA numbers were assigned to the K numbers including all mean and STD values. Finally, depending on the tested condition, the ratios of the mean values were calculated (e.g. Fructose/ Anaerobic). For determination of colours for visualization with *iPath2* (Interactive Pathways Explorer 2; http://pathways.embl.de/), Excel function "IF" was used. Ratios above ≥ 2 (overexpression) were defined as "green", values ≤ 0.5 (underexpression) were defined as "red" and conditions between 0.5 and 2 were marked as "blue" for no differential expression. Loading the txt files with the values into *iPath2*, metabolic pathways for L. sanfranciscensis TMW 1.1304 were generated (Letunic et al. 2008).

3.2.4 RNA sequencing

3.2.4.1 Growth conditions and RNA isolation of L. sanfranciscensis (WT) and mutant ($\Delta tcyB$)

WT and $\Delta tcyB$ were grown anaerobically at 30 °C in mMRS media as described in section 3.2.2.2. For the mutant, 5 µg/ mL of erythromycin was added to the media to maintain the stability of the genomic insertion. In the exponential phase (OD ~ 0.5), 68.4 mM of diamide [1,1'- Azobis(*N*,*N*dimethylformamide), Sigma- Aldrich, St. Louis, USA] was added to 40 mL cultures (final concentration of 1.7 mM). The control cultures were treated with distilled water instead of diamide. After incubation at 30 °C for 35 minutes without shaking, the cultures were shocked with - 20 °C cold methanol and centrifuged at 6000 rpm. The resulting pellet was solved in TE buffer before the cells were disrupted with Silica beads and the isolation with the "RNA Midi Kit" (Qiagen, Hilden, Germany) started following the recommendations of the supplier. Two biological replicates were prepared on two individual days. The RNA was eluted from the columns with RNAse free water and the quantity was determined with Nanodrop® ND- 1000 (Peqlab Biotechnologie, Erlangen, Germany). For quality check, the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) was used. Remaining DNA was removed with the "TURBO DNA- free KitTM" (Ambion, Santa Clara, CA, USA) according to the protocol of the supplier. The RNA precipitation was carried out with ice- cold 3 M sodium acetate and abs. ethanol. After this step, the quality and quantity of the samples were checked again as already mentioned above. Subsequently, RNA samples were mixed with the reagent RNA stable® (Biomatrica, San Diego, CA, USA) and dried at room temperature under the flow hood. The dried RNA samples were sent to BGI Hongkong for library construction and RNA sequencing using Illumina HiSeqTM2000 technology. The samples have to fulfill the following requirements for RNA sequencing analysis at BGI (Hongkong): 1) sample quantity $\geq 10 \ \mu g$; 2) sample concentration $\geq 65 \ ng/\mu L$; sample purity OD _{260/280} = 1.8 – 2.0 and OD _{260/230} ≥ 1.8 ; RNA 23S/ 16S ≥ 1.0 and RIN ≥ 6.0 ; treated with DNAse.

3.2.4.2 Data analysis

The data analysis was performed according to the protocol of Trapnell et al. (2012). The mapping of the generated paired- end FASTAQ files was carried out using Bowtie (Langmead et al. 2009) onto the published genome of L. sanfranciscensis TMW 1.1304 and the plasmids pLS1 and pLS2. The resulting sam files were sorted and filtered with samtools. Generated bam files were provided as input to cufflinks which produced assembled transcript fragments with FPKM (fragments per kilobase of exon per million reads mapped) values. The programme *cuffmerge* was used to merge these data files into a single transcript with taking the reference transcriptome annotation data. For quantification of any differential expression, cuffdiff was applied in using standard settings. The quantified data were imported into "R" (http://www.bioconductor.org) and further processed with the cummeRbund package to generate expression plots. With specific commands differentially expressed transcripts and differentially spliced and regulated genes can be accessed. In this work the package was mainly used to identify genes which show significantly differentially expressed isoforms depending on the different treatments and to generate expression plots. The existing *bam* files of WT and mutant were changed into tmp files and loaded together with the FASTA files of the genome and the two plasmids of L. sanfranciscensis TMW 1.1304 into DNAPlotter and Integrative Genomic Viewer (IGV) (Carver et al. 2009; Thorvaldsdóttir et al. 2013).

4 RESULTS

4.1 Construction of knock-out mutants

The construction of knock-out mutants for thioredoxin reductase (*trxR*), redox- sensing repressor (*rex*), glutathione peroxidase (*gpo*, *gpx*) and cystine transport permease (*tcyB*) was the first objective. The transformation failed for the nonreplicating integration vectors *pME-1* Δ *trxR* and *pME-1* Δ *rex*. Using different plasmid concentrations of *pME-1* Δ *gpo* and *pME-1* Δ *tcyB*, two clones for Δ *gpo* and Δ *tcyB* could be gained with 50 – 100 ng/ µL of the corresponding isolated plasmid.

For verification of insertion of *pME-1* Δ *tcyB* and *pME-1* Δ *gpo* at appropriate site in the genome of *L*. *sanfranciscensis*, vector primers (SP6, eryR) were combined with primers flanking the target region in the chromosome (Gene_for/ Gene_rev) as visible from Figure 6. As there are two integration possibilities, specific PCR in the two clones (Δ *tcyB* and Δ *gpo*) revealed that integration I had taken place.

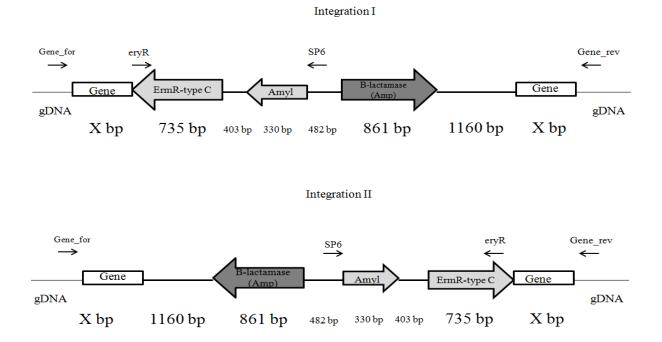


Figure 6: Schematic representation of both integration possibilities (I, II) of the non- replicating plasmid *pME-1* (including β - lactamase, amylase and erythromycin resistance genes) into genomic DNA (gDNA) of *L. sanfranciscensis* TMW 1.53 at respective site. Visible are the flanking regions (gDNA) with Gene_for and Gene_rev primers and the vector *pME-1* marked in bold. The combination of vector primers (SP6, eryR) and genomic DNA primers (Gene_for, Gene_rev) were used for verification of the genomic insertion. For integration I Gene_for/ SP6 and Gene_rev/ eryR result in PCR products; for integration II Gene_for/ eryR and Gene_rev/ SP6 were applied.

The PCR with ABC_for/ SP6 ($\Delta tcyB$) and Pseu_for/ SP6 (Δgpo) resulted in products of ~ 2100 and ~ 2300 bp whereas pyrP_rev/ eryR ($\Delta tcyB$) and Hyp_Gp_rev/ eryR (Δgpo) gave products with ~ 4500 and 4900 bp as visible from Figure 7. Chromosomal DNA of the WT (marked as 1.53 in Figure 7) served as negative control to eliminate products resulting from unspecific binding of the flanking primers in the chromosome; further for testing the specificity of the vector primers eryR and SP6. PCR

products resulting from Gene_for/ SP6 of $\Delta tcyB$ and Δgpo were sequenced to verify the disruption of the genes. The sequences can be retrieved from Appendices A 14 and A 15.

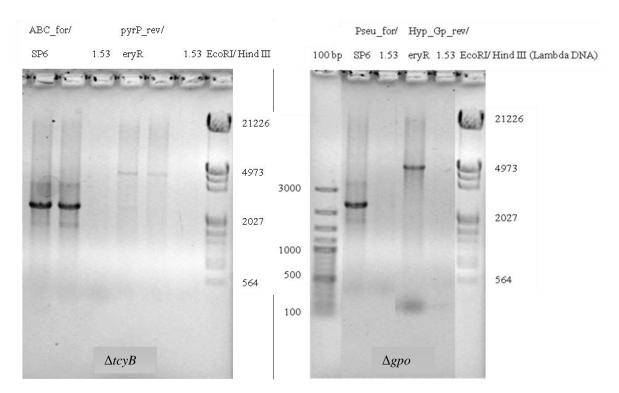


Figure 7: Agarose gel pictures after screening- PCR with border and vector primers. In the left picture, primers with the combination of ABC_for/SP6 and pyrP_rev/eryR yielded positive PCR bands for the $\Delta tcyB$ mutant. On the right, PCR bands resulting from primer combinations Pseu_for/SP6 and Hyp_Gp_rev/eryR are visible for the Δgpo mutant. Chromosomal DNA of the WT (TMW 1.53) served as "negative control". For estimation of the size of the PCR products, 100 bp marker and marker with Lambda DNA cut with *EcoRI* and *HindIII* were used.

4.2 Complementation of *L. sanfranciscensis* Δ*tcyB*

The complementation of *L. sanfranciscensis* $\Delta tcyB$ was conducted to reveal, if possible effects which are further described in this work, occurred due to the *tcyB* gene deletion or other mechanisms (e.g. introduction of the erythromycin resistance gene). Using the two vectors *pMTL500e* and *pMG36e*, positive clones could be obtained using both plasmids. Detailed analysis of the clones after transformation into *E. coli* DH5 α indicated that the DNA quality of the clone transformed with *pMTL500e* was not good enough for sequencing. After sequence analysis, three positive clones for *pMG36e* resulted in a shorter *tcyB* insert where 24 bases were missing. The further transformation of these three plasmids into *L. sanfranciscensis* $\Delta tcyB$ yielded no positive clones.

4.3 Growth experiments in different mMRS media

Growth was tested in different mMRS media as already outlined in the corresponding methods section. Different growth behavior of the WT vs. mutants shall give first information concerning specific growth responses in different media and under aerobic and anaerobic growth conditions.

Taking the OD values of the strains, the growth rate μ (dOD₅₉₀/ dt) was determined for each media type. The μ values are visible in Table 17 whereas maximum and minimum were specifically marked. The values of the WT were higher during aerobic than anaerobic conditions. The same observation could be found for the two mutants Δgpo and $\Delta tcyB$ except for mMRS2 (without Mn²⁺).

Table 17: Summarized table of the maximum and minimum μ (dOD₅₉₀/ dt) values of WT, Δgpo and $\Delta tcyB$ incubated anaerobically and aerobically in different media (mMRS1 - mMRS8). The highest values are underlined and marked in bold; the lowest values are marked in italic.

μ (dOD ₅₉₀ / dt)										
	mMRS1	mMRS2	mMRS3	mMRS4	mMRS5	mMRS6	mMRS7	mMRS8	MAX	MIN
WT anaerobic	0,125	0,087	0,043	0,037	0,080	0,112	0,049	0,123	0,125	0,037
WT aerobic	0,146	0,107	0,111	0,087	0,138	0,122	0,072	<u>0,151</u>	0,151	0,072
∆ <i>gpo</i> anaerobic	0,085	0,068	0,006	0,004	0,023	<u>0,086</u>	0,019	0,057	0,086	0,004
∆ <i>gpo</i> aerobic	<u>0,097</u>	0,050	0,040	0,041	0,074	0,087	0,040	0,070	0,097	0,040
∆ <i>tcyB</i> anaerobic	<u>0,088</u>	0,053	0,008	0,006	0,009	0,027	0,008	0,005	0,088	0,005
Δ <i>tcyB</i> aerobic	<u>0,096</u>	0,050	0,096	0,061	0,019	0,013	0,039	0,009	0,096	0,009

The growth rates of the WT were overall higher compared to Δgpo and $\Delta tcyB$. WT reached the highest growth rate values in mMRS1 media under anaerobic conditions and in mMRS8 under aerobic conditions (preculture without cysteine). The lowest growth rates for the WT could be observed in mMRS4 during anaerobic conditions (without Mn²⁺ and fructose) and mMRS7 (preculture without Mn²⁺) during aerobiosis. The Δgpo mutant reached the highest values in mMRS6 (without cysteine) during anaerobic conditions, in mMRS1 during aerobic conditions. The lowest growth rate during anaerobiosis was determined in mMRS4 (without Mn²⁺ and fructose) as seen for the WT. During aerobiosis the lowest growth could be observed in mMRS3 (without Mn²⁺, cysteine and fructose) and mMRS7 (without Mn²⁺). The $\Delta tcyB$ mutant showed the highest growth rates during aerobic and anaerobic conditions in mMRS1. The lowest values in the presence and absence of oxygen in mMRS8 (preculture without cysteine).

4.4 Qualitative determination of H₂O₂ accumulation

For first screening purposes, the accumulation of H_2O_2 was monitored over 8 minutes using different agar plates (mMRS, mMRS – Mn^{2+} , mMRS – cysteine – Mn^{2+} , mMRS – cysteine). The generated images taken after 30 seconds, 3 and 8 minutes after oxygen exposure are visible in Figure 8. Corresponding color changes were scored by eye; the results are summarized in Table 18. Additionally to the Δgpo and $\Delta tcyB$ mutants, Δnox and $\Delta gshR$ were used as internal control.

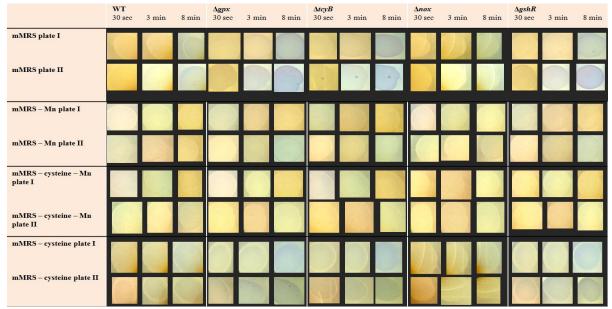


Figure 8: Pictures of the H_2O_2 plate assay of WT, Δgpo , $\Delta tcyB$, Δnox and $\Delta gshR$ in four different media (mMRS, mMRS – manganese, mMRS – cysteine – manganese and mMRS – cysteine). Visible are the color changes of stationary grown cultures shortly after oxygen exposition, pictures were taken at time points: 30 seconds, 3 and 8 minutes. The experiment was conducted in duplicate on two different days, which is indicated as plate I and plate II.

The accumulation of H_2O_2 led to a color changes from white to blue. After 8 minutes the blue color for Δgpo , $\Delta tcyB$ and $\Delta gshR$ was more pronounced than the blue color for the WT in mMRS. The Δnox mutant showed no color change in mMRS media. Looking at the mMRS – Mn^{2+} and mMRS – cysteine – Mn^{2+} plates, the effect of the distinct color change was less visible. Only the mMRS – Mn^{2+} plates II with Δgpo , $\Delta tcyB$ and $\Delta gshR$ showed a slightly blue stain after 8 minutes which was more pronounced than for the WT. The Δnox mutant showed again no color change when Mn^{2+} and/ or cysteine were absent.

The plates with mMRS – cysteine showed a similar color change like mMRS plates. The blue stain for Δgpo , $\Delta tcyB$ and $\Delta gshR$ was more pronounced compared to the WT. No color changes could be observed for Δnox . Especially the margins of the bacteria appeared brighter for all tested strains.

Table 18: H_2O_2 accumulation on mMRS, mMRS – cysteine+ manganese, mMRS – manganese and mMRS– manganese– cysteine plates with TMB and HRP of the WT, $\Delta gshR$, Δgpx , $\Delta tcyB$ and Δnox . Color changes after distinct time spans were scored by eye whereas 0 indicates no color change, 1 a slightly blue staining and 2 a clear blue staining. The experiment was conducted in duplicate; this table represents the results after single determination.


media	time	strains					
		WT	ΔgshR	Δgpo	ΔtcyB	Δnox	
mMRS	0	0	0	1	1	0	
	30 sec	0	0	1	1	0	
	3 min	1	1	2	2	0	
	5 min	1	1	2	2	0	
	8 min	2	2	2	2	0	
		WT	ΔgshR	Δgpo	ΔtcyB	Δnox	
ine.	0	0	0	0	0	0	
mMRS - cysteine	30 sec	0	0	1	1	0	
5	3 min	1	1	1	1	0	
MRS	5 min	1	2	2	2	0	
m	8 min	1	2	2	2	0	
		WT	ΔgshR	Δgpo	ΔtcyB	Δηοχ	
_	0	0	0	0	0	0	
mMRS - Mn	30 sec	0	0	0	0	0	
RS .	3 min	0	0	0	0	0	
Mm	5 min	0	0	0	0	0	
	8 min	0	1	1	1	0	
		WT	ΔgshR	Δgpo	ΔtcyB	Δηοχ	
ne -	0	0	0	0	0	0	
ystei	30 sec	0	0	0	0	0	
- cy Mn	3 min	0	0	0	0	0	
mMRS - cysteine - Mn	5 min	0	0	0	0	0	
mM	8 min	0	0	0	0	0	

The images were additionally scored by eye (Table 18). The results mainly resembled the color differences showed above. The Δgpo and $\Delta tcyB$ mutants showed faster and more pronounced color change in mMRS and mMRS – cysteine compared to the WT. The results for $\Delta gshR$ were comparable with Δgpo and $\Delta tcyB$. No color changes could be observed for Δnox independent of the media examined. Using media without Mn²⁺, color changes could not be detected for all strains.

4.5 Quantification of H_2O_2 in mMRS and mMRS without Mn^{2+}

The plating assay revealed that *L. sanfranciscensis* accumulates H_2O_2 in the presence of oxygen and depending on the incubation media.

The amount of accumulated H_2O_2 in anaerobic and aerobic cultures in mMRS and mMRS without Mn^{2+} can be retrieved from Figure 9 and Figure 10. The Δnox mutant was used to compare the obtained results.

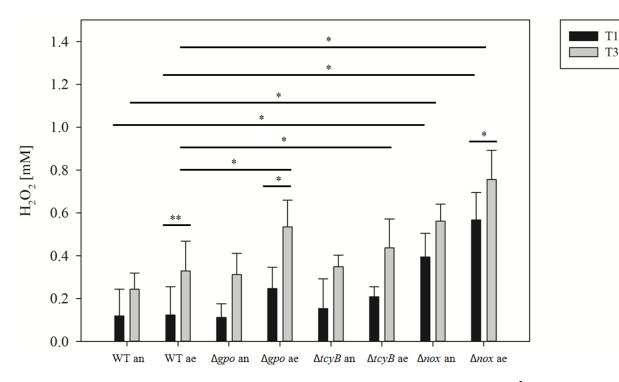


Figure 9: H_2O_2 **quantification [mM] of WT**, Δgpo , $\Delta tcyB$ and Δnox grown in mMRS. At the bottom the bar charts are labeled with the corresponding name (WT, $\Delta tcyB$, Δgpo and Δnox) and anaerobic (an) or aerobic (ae), depending on the method of incubation. Shown are the mean values of triplicate measurements including standard deviations. Samples were taken and quantified after 1 hour (T1) and three hours (T3). *p ≤ 0.05

In mMRS the WT accumulated significantly more H_2O_2 after 3 hours during aerobic incubation (1 mM vs. 0.5 mM). This effect could not be seen for the Δgpo and $\Delta tcyB$ mutants. The amount of H_2O_2 during aerobic conditions was slightly higher but not significant compared to anaerobic growth conditions.

The Δnox mutant accumulated more H₂O₂ during anaerobic and aerobic conditions than the WT. Already after 1 hour over 0.6 mM of H₂O₂ and after 3 hours of aerobic incubation over ~ 1.6 mM of H₂O₂ could be quantified.

The results concerning the amount of accumulated H_2O_2 in mMRS – Mn^{2+} (Figure 10) differed from the ones above.

Figure 10: H₂O₂ **quantification [mM] of WT**, $\Delta tcyB$, Δgpo and Δnox grown in mMRS without Mn^{2+} . At the bottom the bar charts are labeled with the corresponding name (WT, $\Delta tcyB$, Δgpo and Δnox) and anaerobic (an) or aerobic (ae), depending on the method of incubation. Shown are the mean values of triplicate measurements including standard deviations. Samples were taken and quantified after 1 hour (T1) and three hours (T3). *p ≤ 0.05 , ** p ≤ 0.01

Without additional Mn^{2+} in mMRS, overall less H_2O_2 was detected for all strains. The WT produced significantly more H_2O_2 after 3 hours of aerobic incubation. The same observation could be seen for the Δgpo and Δnox mutant. The Δgpo mutant produced aerobically more H_2O_2 compared to the WT. The amount of produced H_2O_2 in the $\Delta tcyB$ mutant was also significantly higher compared to the WT (0.33 ± 0.14 vs. 0.44 ± 0.14) but only in the presence of additional oxygen.

The Δnox mutant showed again a higher H₂O₂ accumulation independent of the presence/ absence of oxygen or the incubation time. After 3 hours of anaerobic incubation, approx. 0.6 mM, in the presence of oxygen ~ 0.8 mM of H₂O₂ could be measured. In comparison, the WT reached anaerobically approx. 0.2 mM and aerobically 0.3 - 0.4 mM of H₂O₂.

4.6 Growth response of WT and $\Delta t cyB$ to different cystine concentrations

To test the specificity and impact of the deleted cystine transporter (*tcyB*) in *L. sanfranciscensis*, the growth of $\Delta tcyB$ mutant and WT was monitored in mMRS without cysteine but supplemented with cystine. The OD₅₉₀ values at respective time points can be taken from Table 19.

The WT reached after 10, 20 and 40 hours significant higher OD values compared to the $\Delta tcyB$ mutant. As growth control served normal mMRS in which the WT reached an OD of 1 and $\Delta tcyB$ an OD of 0.8. Growth was monitored also in higher volumes which is exemplary visible in Figure 11. Growth of WT and $\Delta tcyB$ at 0.1 mM cystine (left) and 1 mM cystine (right) was visible after 24 hours of incubation. Clearly visible was the normal growth behavior for the WT whereas $\Delta tcyB$ was not able to grow.

Table 19: Summarized table of the OD values of WT and $\Delta tcyB$ at specific time points (10 h, 20 h and 40 h). Visible are the mean OD 590 values including standard deviations of growth in mMRS without cysteine and different concentrations of added cystine (0.01 M, 0.001 M and 0.0001 M). The experiment was conducted in triplicate. *p \leq 0.01.

Strain (concentration of cystine in M)	10 h	20 h	40 h
WT (0.01 M cystine)	0.11 ± 0.006	0.24 ± 0.014	0.38 ± 0.023
WT (0.001 M cystine)	0.13 ± 0.012	0.27 ± 0.021	0.44 ± 0.037
WT (0.0001 M cystine)	0.14 ± 0.012	0.30 ± 0.006	0.49 ± 0.013
WT mMRS	0.25 ± 0.026	0.99 ± 0.082	1.13 ± 0.080
$\Delta t cyB$ (0.01 M cystine)	$0.01^{**} \pm 0.003$	$0.05^{**} \pm 0.009$	$0.14^{**} \pm 0.007$
$\Delta t cyB$ (0.001 M cystine)	$0.02^{**} \pm 0.012$	$0.07^{**} \pm 0.019$	$0.14^{**} \pm 0.020$
$\Delta t cyB$ (0.0001 M cystine)	$0.01^{**} \pm 0.003$	$0.06^{**} \pm 0.010$	$0.13^{**} \pm 0.009$
$\Delta t cyB$ mMRS	$0.12^{**} \pm 0.020$	$0.55^{**} \pm 0.039$	$0.78^{**} \pm 0.076$

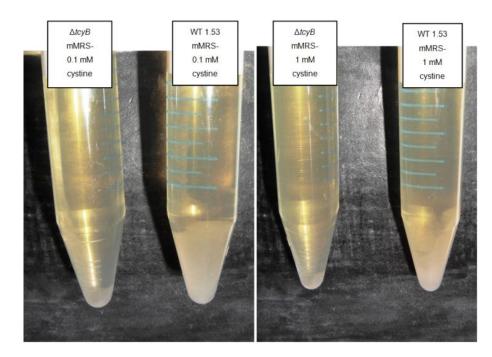


Figure 11: Growth of WT and $\Delta tcyB$ in mMRS without cysteine but with 0.1 mM cystine (left picture) and 1 mM cystine (right picture). Pictures were taken after 24 hours of incubation.

4.7 Growth tests in chemically defined media

To confirm the results gained from growth in mMRS without cysteine, WT and $\Delta t cyB$ were grown in CDM with additional cystine (visible in Figure 12) and cysteine (visible in Figure 13).

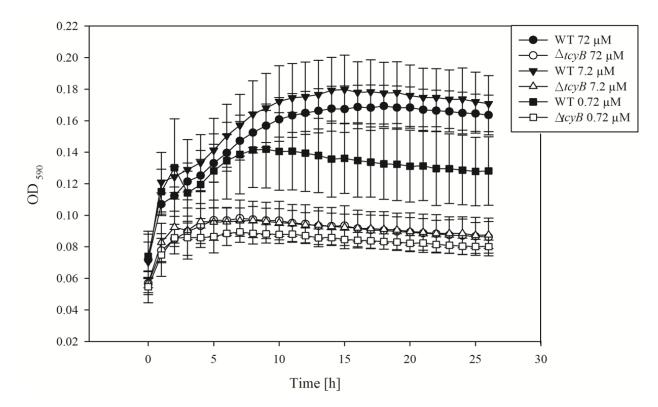


Figure 12: Growth curves of WT and $\Delta tcyB$ in CDM without cysteine with added cystine (72 μ M, 0.72 μ M and 0.72 μ M). Visible are the mean OD 590 values with corresponding standard deviations of triplicate measurements. Closed symbols label the WT; open symbols flag the $\Delta tcyB$ mutant.

The growth of the WT was comparable with 7.2 μ M and 72 μ M of added cystine (Figure 12). The concentration of 0.72 μ M cystine was probably to low as OD values decrease. Overall, the WT grew better than $\Delta t cyB$. The growth of the mutant was hardly detectable and independent of the concentrations of added cystine.

Looking at the growth curves in CDM with added cysteine (Figure 13) showed a similar picture as above. The WT grew best with 28.5 μ M and 0.285 mM added cysteine whereas a decrease of OD values occurred with 2.85 μ M cysteine. The $\Delta tcyB$ mutant grew better with 28.5 μ M cysteine which was comparable with the growth of the WT with 2.85 μ M of cysteine. The OD values of $\Delta tcyB$ were even a little higher than for the WT with 0.285 mM of cysteine.

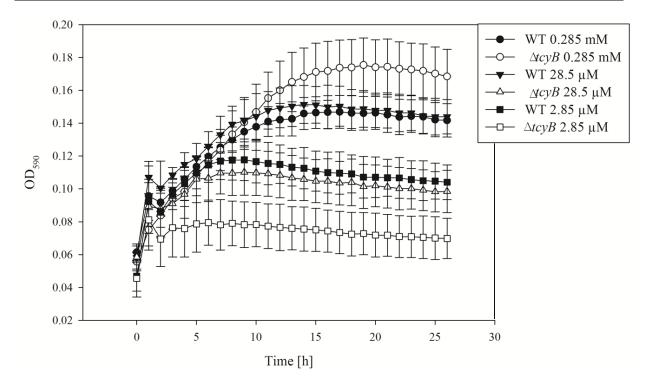
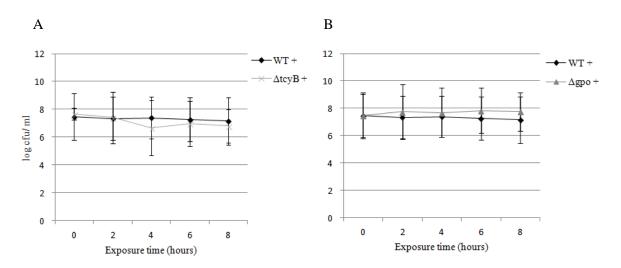
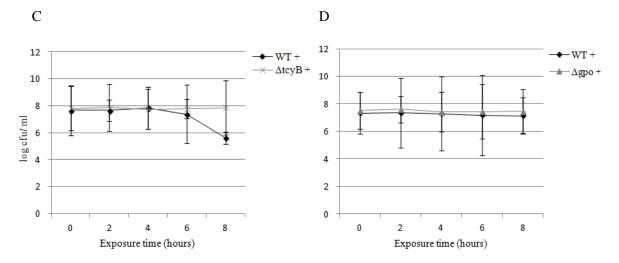



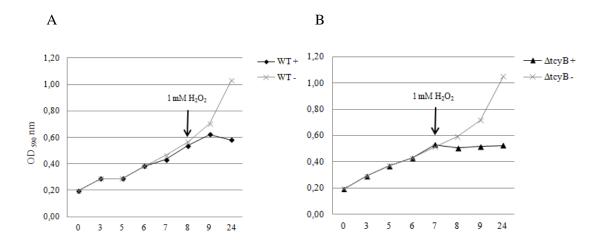
Figure 13: Growth curves of WT and $\Delta tcyB$ in CDM with cysteine in three different concentrations (0.285 mM, 28.5 μ M and 2.85 μ M). Visible are the mean OD 590 values with corresponding standard deviations of triplicate measurements. Closed symbols label the WT; open symbols flag the $\Delta tcyB$ mutant.

4.8 Survivability after H₂O₂ and diamide shock

The sensitivity against peroxide and thiol stress after application of H_2O_2 and diamide to stationary phase grown cells was tested to determine the number of viable cells in mMRS media.

No significant differences between WT, Δgpo and $\Delta tcyB$ mutants could be observed (Figure 14 A- D). Neither H₂O₂ nor diamide treatment changed the number of viable bacteria. The values ranged from 6.8 log cfu/ mL to 7.6 log cfu/ mL of treated samples and were equal to the values obtained for the untreated samples (data not shown).




Figure 14: Effect of H_2O_2 (A, B) and diamide (C, D) addition of the survival of viable cells of stationary cultures of WT, $\Delta tcyB$ and Δgpo . Plotted are the log cfu per mL of treated (+) WT and treated (+) $\Delta tcyB$ or Δgpo mutant against the exposure time in hours. Shown are the mean values including standard deviations of the cfu determined from triplicate measurements. The survival curves for the untreated samples are not shown as the values are not different to the ones represented here.

4.9 Shock experiments with diamide and H₂O₂

Exponential phase cells (OD 0.5) were shocked with H_2O_2 and diamide for 1 hour to collect samples for thiol group determination and OD measurements. The results of the OD measurements are displayed in Figure 15 (H_2O_2) and Figure 16 (diamide).

As visible in Figure 15 A, the OD of the WT showed an increase after application of H_2O_2 between the eighth and ninth hour and reached a plateau after 9 and 24 hours. The final OD after 24 hours remained at 0.6 for the WT.

The OD curves after H₂O₂ treatment of $\Delta tcyB$ (15 B) and Δgpo (15 C) were similar. No increase in cell density for $\Delta tcyB$ and Δgpo could be measured. The OD values remained at ~ 0.5.

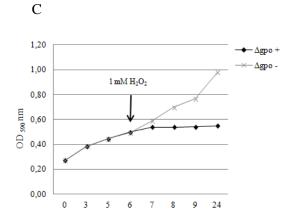


Figure 15: Growth curves of WT (A), $\Delta tcyB$ (B) and Δgpo (C) after application of 1 mM H₂O₂ determined at different times (T₀, T₃, T₅, T₆, T₇, T₈, T₉ and T24). Shown are mean OD₅₉₀ nm values of the treated (+) and untreated (-) samples against the incubation time in hours. Measurements were conducted in triplicate; standard deviations were omitted due to clear arrangement of the curves.

The effects after application of diamide are visible in Figure 16. Neither the WT (16 D) nor the mutants (16 E, 16 F) showed any differences in OD values of the treated (+) vs. untreated (-) samples. The curves were similar and showed no changes after 1 hour of diamide treatment.

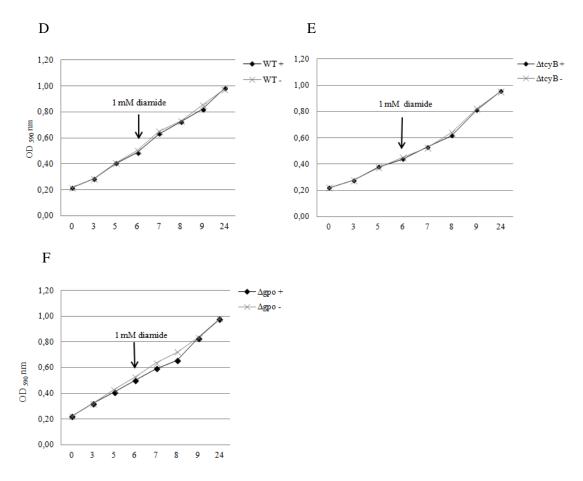


Figure 16: Growth curves of WT (D), $\Delta tcyB$ (E) and Δgpo (F) after application of 1 mM diamide determined at different times (T₀, T₃, T₅, T₆, T₇, T₈, T₉ and T₂₄). Shown are mean OD₅₉₀ nm values of treated (+) and untreated (-) samples against the incubation time in hours. Measurements were conducted in triplicate; standard deviations were omitted due to clear arrangement of the curves.

RESULTS

4.10 Quantification of extracellular and intracellular thiol groups after H₂O₂ and diamide treatment

Intracellular and extracellular thiol groups were determined to obtain information if the application of H_2O_2 and diamide disturbs the extracellular and/ or intracellular thiol balance in the Δgpo and $\Delta tcyB$ mutants of *L. sanfranciscensis*.

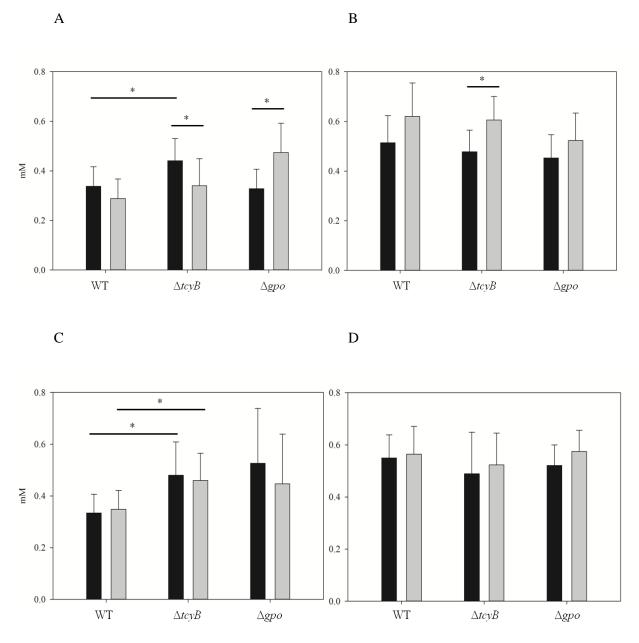
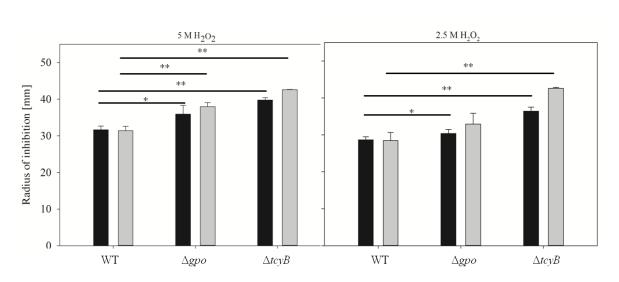


Figure 17: Extracellular and intracellular thiol group quantification of WT, $\Delta tcyB$ and Δgpo . Plotted are the mean values of triplicate measurements with corresponding standard deviations. Visible are the concentrations of thiols in mM at OD 0.5 after H₂O₂ (A, B) and diamide (C, D) treatment. On the left of each line, the extracellular thiol groups, on the right the quantified intracellular thiol groups in mM are shown. The dark grey bars indicate the treated samples whereas the light grey bars are the control samples. *p ≤ 0.05

The results of determined extracellular and intracellular thiol groups after H_2O_2 and diamide treatment are depicted in Figure 17.


The application of H_2O_2 increased the extracellular thiol groups in the $\Delta tcyB$ mutant compared with the WT (17 A). The concentration of thiols in the $\Delta tcyB$ mutant was significantly higher compared to the control. In the Δgpo mutant the extracellular thiol groups were significantly higher compared to the WT (17 A). The intracellular thiol groups after H_2O_2 treatment (17 B) were significantly higher in the control of the $\Delta tcyB$ mutant compared to the treated samples.

A higher concentration of extracellular thiol groups in the $\Delta tcyB$ mutant compared with the WT could also be observed in 17 C, although the effect was independent of the diamide treatment. The Δgpo mutant showed no significant differences in extracellular thiol levels compared to the WT (17 C). No significant differences could be observed for the intracellular thiol groups; only the $\Delta tcyB$ mutant showed a little trend towards lower thiol levels compared to the WT (17 D).

4.11 Sensitivity tests of WT, Δgpo and $\Delta tcyB$ against oxidants

For testing the sensitivity of WT and mutants, strains were plated onto different media (mMRS, mMRS without cysteine and fructose) with applied H_2O_2 , paraquat and diamide each in two different concentrations. The results are displayed in Figure 18.

The effect of applied H_2O_2 showed the most pronounced effects in mMRS and mMRS5 media. The radius of inhibition for Δgpo and $\Delta tcyB$ was significantly higher compared to the WT in both media types when 5 M H_2O_2 was used (18 A). The effects for $\Delta tcyB$ were highly significant at both H_2O_2 concentrations (A, B). The sensitivity against H_2O_2 depended also on the used media.

В

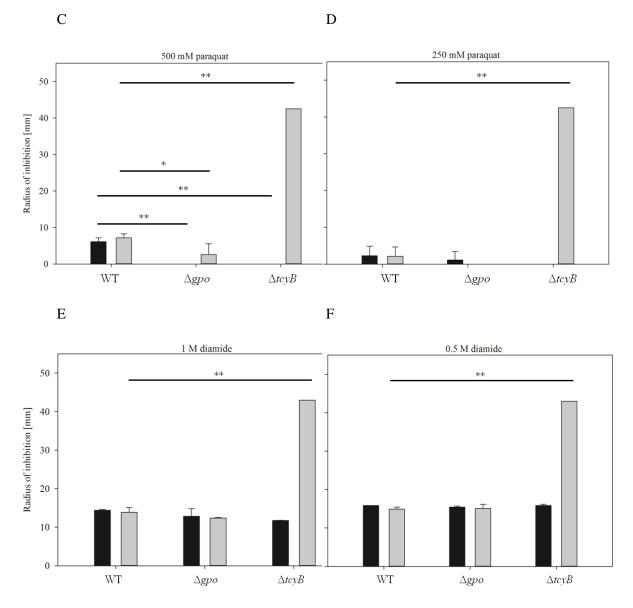


Figure 18: Growth- zone inhibition assay of WT, Δgpo and $\Delta tcyB$. The zones of growth inhibition after H_2O_2 (A, B), paraquat (C, D) and diamide (E, F) challenge shown in millimeter (mm) on the y- axis. The black bars indicate the incubation onto mMRS plates, the grey bars onto mMRS5 plates. Corresponding concentrations of the used reagents are labeled on top of the diagrams. The experiment was conducted four times; mean values are displayed with corresponding standard deviations. *p ≤ 0.05 , **p ≤ 0.01 .

The effects of superoxide generating paraquat are visible in Figure 18 C and D. The mutants Δgpo and $\Delta tcyB$ showed a higher resistance against paraquat as no inhibition zones could be measured in mMRS with 500 mM paraquat (C). The $\Delta tcyB$ mutant showed a high sensitivity in mMRS5 compared to the WT at both paraquat concentrations (C, D).

The application of diamide showed little effects on the sensitivities of the mutants as depicted in diagrams E and F. The thiol- oxidizing agent had no effect on the Δgpo mutant at both concentrations. In contrast, the $\Delta tcyB$ mutant showed higher sensitivity in mMRS5 media at both concentrations compared to the WT (E, F).

4.12 Growth response in the presence of different reducing and oxidizing agents

Corrected OD values of WT, Δgpo and $\Delta tcyB$ after 16 hours of the six different concentrations (100 mM, 40 mM, 20 mM, 10 mM, 5 mM and 1 mM) were taken for analysis. Interaction plots for all concentrations including standard deviations are displayed in Figure 19 (A - F). The corresponding significant p-values between the growths of WT and mutants in the presence of oxidizing and reducing agents are summarized in Table 20.

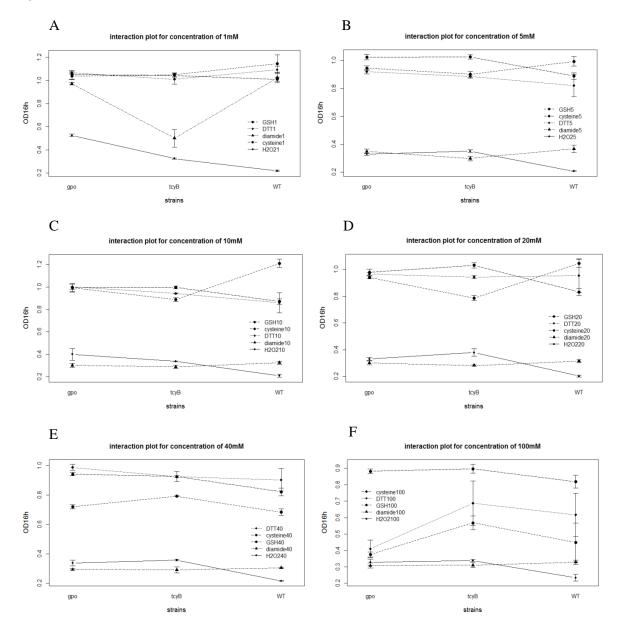


Figure 19: Interaction plots of WT, Δgpo and $\Delta tcyB$ grown in mMRS media with cysteine, DTT, glutathione, diamide and H₂O₂ at concentrations of 1 mM (A), 5 mM (B), 10 mM (C), 20 mM (D), 40 mM (E) and 100 mM (F). Plotted are the OD₅₉₀ values of triplicate measurements after 16 hours of growth of the mentioned strains on the x- axis with corresponding standard deviations. The five used chemicals are marked in each interaction plot with suitable symbols.

Most pronounced effects could be observed when 1 mM of oxidants were used. The $\Delta tcyB$ mutant showed significantly lower OD values at 1 mM diamide compared to the OD values of the WT and the Δgpo mutant (A). Further, the Δgpo mutant showed a significantly higher resistance against 1 mM applied H₂O₂ compared to the WT. It reached OD values of ~ 0.5 whereas only OD values of 0.2 - 0.3 could be seen for the WT and $\Delta tcyB$ mutant. The same observation could be retrieved from the interaction plot with other concentrations of H₂O₂ (B, C, D, E and F). The OD values of Δgpo and $\Delta tcyB$ mutant were higher compared to the WT.

Significant higher OD values of Δgpo and $\Delta tcyB$ mutant were reached after application of 20 mM cysteine compared to the WT (D). The incubation with 20 mM GSH led to significant lower OD values of the $\Delta tcyB$ mutant compared to the OD values of the WT. The Δgpo mutant showed lower OD values (OD 0.3 – 0.4) in the presence of 100 mM GSH and 100 mM DTT compared to the WT (OD 0.5 – 0.7) (F).

Table 20: Significance values of WT, Δgpo and $\Delta tcyB$ after 16 hours of growth with different oxidizing and reducing agents. Two- way ANOVA was used to indicate significant effects between the concentrations, used chemicals and strains, Tukey's HSD test was used to calculate corresponding p-values.

strains	Used chemical and corresponding concentration in mM	p-values
WT: $\Delta t cy B$	diamide- 1 mM	0.0000000
$\Delta tcyB: \Delta gpo$	diamide- 1 mM	0.0000000
WT: Δgpo	H_2O_2 - 1 mM	0.0001137
$\Delta tcyB: \Delta gpo$	H_2O_2 - 1 mM	0.0276948
WT: $\Delta t c y B$	H_2O_2 - 5 mM	0.0461015
WT: Δgpo	H ₂ O ₂ - 10 mM	0.0220590
WT: $\Delta t c y B$	GSH- 20 mM	0.0019355
WT: $\Delta t c y B$	Cysteine- 20 mM	0.0363688
WT: $\Delta t c y B$	$H_2O_2-40 \text{ mM}$	0.0294389

4.13 Fermentations and metabolite analysis of WT, Δgpo , $\Delta tcyB$ and Δnox

Fermentations with analysis of ORP, pO_2 and pH were conducted to detect differences in ORP development and oxygen reducing abilities of WT and mutants.

The E_h values with corresponding pO₂ values of WT, Δgpo , $\Delta tcyB$ and Δnox over the fermentation time of 24 hours are displayed in Figure 20.

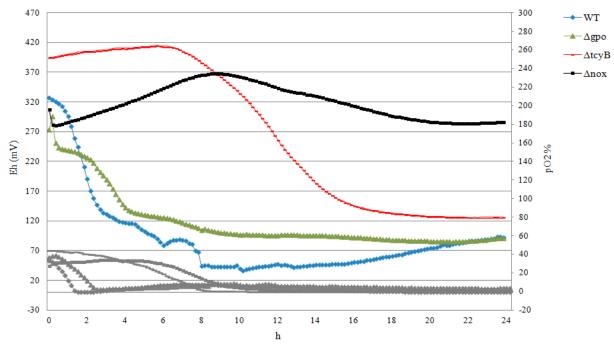


Figure 20: Development of E_h and pO_2 % of WT, Δgpo , $\Delta tcyB$ and Δnox in mMRS over 24 hours. Visible are the mean values of E_h of triplicate measurements of WT (blue diamond), Δgpo (green triangle), $\Delta tcyB$ (red bar) and Δnox (black square). The SD values for E_h were omitted due to clear arrangement of the curves. The means of SD values of E_h are 40.4 (WT), 25.9 (Δgpo), 32.2 ($\Delta tcyB$) and 29.4 (Δnox). Corresponding mean pO_2 values in % are depicted in grey, the same symbols were used.

Overall, positive E_h values were reached for the four examined strains. The E_h for WT, Δgpo and Δnox started between 270 and 320 mV, for $\Delta tcyB$ above 370 mV. The curves for WT and Δgpo look similar, however the WT reached lower E_h values especially between hours 4 and 18. In contrast to the WT, the E_h curve for $\Delta tcyB$ remained stable for the first six hours, before it started to drop between 7 and 14 hours. In the remaining 10 hours, E_h values approached the values for WT and Δgpo . The E_h curve for Δnox was also different to the others. In the first 8 hours, an increase in E_h values (from 280 mV to 370 mV) could be observed before the values dropped to the initial point of approx. 280 mV. The final E_h values were much higher compared to the values for the WT (280 mV vs. 80 mV).

Looking at the pO₂ values, WT and Δgpo showed a similar oxygen consumption rate (Figure 20, Table 21). The mutants $\Delta tcyB$ and Δnox needed longer to eliminate the oxygen, whereas Δnox had the lowest oxygen reducing capacity.

Retrieving the data concerning the fermentation kinetics (Table 21) revealed no significant differences in V_{mr} and V_{ma} as well as O_{mr} between WT and tested mutants (p > 0.05). In all fermentations, V_{mr} occurred after O_{mr} except for Δnox . Minor differences between the strains can be observed. The highest V_{mr} achieved the WT, followed by Δnox . The time reaching the maximal reduction of Δnox occured at the same time as the maximum acidification after 3.3 h.

The highest oxygen consumption had the WT (- 34 pO₂ %/ h), followed by Δgpo and $\Delta tcyB$. The lowest oxygen consumption had Δnox (- 9.8 pO₂ %/ h). All mutants needed more time to reach the maximum oxygen consumption compared to the WT. Especially the mutants $\Delta tcyB$ and Δnox had lower oxygen consumption values and needed longer to achieve similar values (6.2 h and 7.7 h) as already described above.

The maximum acidification rate had Δnox followed by WT and Δgpo , the lowest value had $\Delta tcyB$. Simultaneously, the Δnox mutant reached the maximum acidification before the WT at 3.3 h. The $\Delta tcyB$ mutant achieved the maximum acidification later than the other strains.

Table 21: Mean values of fermentation kinetics calculated from the reduction V_{mr} , acidification V_{ma} and oxygen consumption O_{mr} rates of WT (n = 3), Δgpo (n = 3), $\Delta tcyB$ (n = 3) and Δnox (n = 3).

strain	$V_{\rm mr}$ (mV/ h)	$T_{\rm mr}$ (h)	$O_{\rm mr} \left({\rm pO}_2 \% / {\rm h} \right)$	$T_{\rm or}$ (h)	V _{ma} (pH unit/ h)	$T_{\rm ma}$ (h)
WT	- 131.8 ± 4.73	2.0	-34.0 ± 20.19	1.3	-0.5 ± 0.193	4.0
Δgpo	- 69.14 ± 49.13	3.5	-25.2 ± 20.27	2.2	-0.36 ± 0.06	5.7
$\Delta t c y B$	- 55.80 ± 12.15	11.7	- 13.6 ± 9.69	6.2	-0.24 ± 0	8.8
Δnox	-80.23 ± 145.29	3.3	- 9.8 ± 3.08	7.7	- 1.62 ± 2.55	3.3

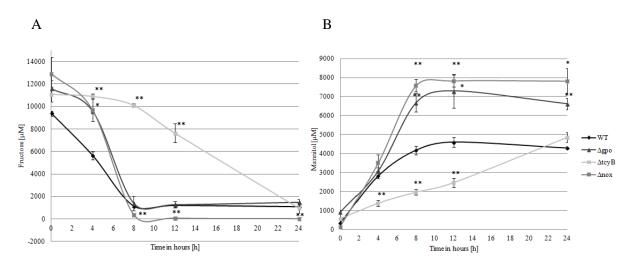

The production of organic acids and ethanol of WT and mutants can be taken from Table 22. After 8 hours the Δgpo , $\Delta tcyB$ and Δnox mutants produced less lactate compared to the WT. After 24 hours Δgpo and $\Delta tcyB$ reached the values of the WT whereas lactate production for Δnox mutant was still lower. No significant differences between WT and mutants could be seen for acetate production neither after 8 hours nor after 24 hours of growth. The production of ethanol was significantly increased for the Δnox mutant after 8 and 24 hours. The Δgpo mutant showed a slightly increased ethanol production after 24 hours compared to the WT however not as high as Δnox .

Table 22: Metabolite production of WT, Δgpo , $\Delta tcyB$ and Δnox fermented in mMRS expressed in mM with corresponding standard deviations. *p ≤ 0.05 , **p ≤ 0.01 .

Strains	Lactate (mM)		Acetate (mM)		Ethanol (mM)			
	8 h	24 h	8 h	24 h	8 h	24 h		
WT	73.88 ± 6.37	148.76 ± 5.31	17.65 ± 1.99	19.45 ± 0.53	10.73 ± 2.57	51.40 ± 1.20		
Δgpo	$42.72^* \pm 0.09$	146.71 ± 2.71	17.32 ± 0.28	19.14 ± 0.34	10.36 ± 1.75	$63.11* \pm 3.52$		
$\Delta t c y B$	28.36** ± 0.15	148.53 ± 2.28	13.73 ± 0.10	19.22 ± 0.18	9.08 ± 0.85	49.09 ± 11.47		
Δnox	$19.15^{**} \pm 3.27$	66.31** ± 3.59	20.56 ± 3.17	21.81 ± 1.55	29.56** ± 1.51	147.10** ± 9.32		

The consumption and production of sugars/ sugar alcohols of WT and mutants can be retrieved from Figure 21 and Figure 22. The decrease in fructose of WT, Δgpo and Δnox to very low values after 8 hours was comparable whereas $\Delta tcyB$ reached the same level not until 24 hours (Figure 21 A). As the production of mannitol depends on fructose consumption, the beginning of the curves in Figure 21 B resembled the values observed in Figure 21 A. The first increase in mannitol production of WT, Δgpo

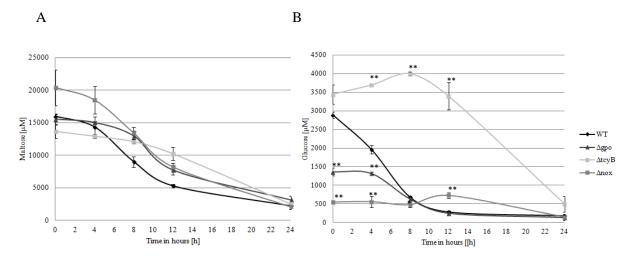

and Δnox was comparable whereas significant higher mannitol production occurred for Δgpo and Δnox already after 6 hours with maximum values reached in the twelfth hour. The WT and $\Delta tcyB$ reached final concentrations of 4000 – 5000 µM whereas Δgpo and Δnox ended up with 6500 – 8000 µM of mannitol. The increase in mannitol production over the time for $\Delta tcyB$ was slower compared to the WT.

Figure 21: Fructose consumption (A) and mannitol production (B) in μ M of WT Δgpo , $\Delta tcyB$ and Δnox . Visible are the mean values in μ M of triplicate measurements with corresponding standard deviations during 24 hrs of fermentation. Samples were taken and measured at time points 0, 4, 8, 12 and 24 hours. *p ≤ 0.05 , **p ≤ 0.01 .

No significant differences in maltose consumption could be seen when comparing all strains (Figure 22 A). The decline of the curves for Δgpo and $\Delta tcyB$ was lower compared to the WT and Δnox , however after 24 hours the end concentrations were similar.

As the initial glucose concentrations of the used mMRS differed strongly between the strains (Figure 22 B), conclusions have to be drawn carefully. For the $\Delta t cyB$ a short increase in glucose concentration could be observed until 8 hours before the concentration dropped. The final concentration of glucose was comparable between the strains.

Figure 22: Maltose (A) and glucose (B) consumption in μ M of WT Δ *gpo*, Δ *tcyB* and Δ *nox*. Visible are the mean values in μ M of triplicate measurements with corresponding standard deviations during 24 hrs of fermentation. Samples were taken and measured at time points 0, 4, 8, 12 and 24 hours. *p ≤ 0.05 , **p ≤ 0.01 .

No significant differences could be obtained from HPLC measurements quantifying amino acids between WT and mutants (results not shown).

4.14 Results of PCR Screening

Besides the characterization of deleted "redox" genes in *L. sanfranciscensis*, another important aim of the present work included the PCR- screening of known "redox" genes, peptidases, dehydrogenases and genes, which are known to participate in reactions of the ETC in LAB. The screening for aroma genes shall give information if some of the used strains also take part in aroma formation.

The results of the PCR- screening are summarized in Table 23. *Lactobacillus* strains with the most positive results included strains of *L. plantarum*, *L. brevis*, *L. pontis* and *L. paracasei*. Strains with less positive results were *L. sanfranciscensis*, *L. spicheri*, *L. paralimentarius*, *Pediococcus pentosaceus*, *L. acidophilus* and *Weissella* (*cibaria*, *confusa*) strains.

Table 23: Results of screening- PCRs for genes coding for thioredoxin reductase (*TrxR*), glutathione peroxidase (*gpo*), thioredoxin-like protein (*ytp*), peptide methionine sulfoxide reductase (*msrA*), spx protein (*spx*), NADH peroxidase (*Npox*), ferredoxin- NADP reductase (*Red*), aminopeptidase C (*pepC*), aminopeptidase E (*pepE*), opep (oligoendopeptidase F), 6- phosphogluconate dehydrogenase (*phgluc*), glyceraldehyde- 3- phosphate dehydrogenase (*glaldDH*), cytochrom B (*cytB*), nitratreduktase (*narH*), NAD(P)H dehydrogenase (*Ndh2*), phenolic acid decarboxylase (*Pdc*), alpha-L- Arabinfuranosidase (*AFN*) and ferulic acid esterase (*Fae*). Grey colored boxes mark "redox genes", green boxes label peptidase genes, blue boxes flag dehydrogenase genes, orange boxes are genes involved in ETC and purple boxes mark aroma genes. Filled boxes indicate negative results, empty boxes positive results.

	Tested strains of Technische Mikrobiologie Weihenstephan (TMW)	TrxR	gpo, gpx	ytpP	msrA	spx	Npox	Red	pepC	pepE	opep	phgluc	glaldDH	cytB	narH	Ndh2	Pdc	AFN	Fae
1	L. plantarum TMW 1.1723																		
2	TMW 1.1478																		
3	TMW 1.1372																		
4	TMW 1.701																		
5	TMW 1.460																		
6	TMW 1.1732																		
7	TMW 1.1																		
8	TMW 1.702																		
9	TMW 1.1809																		
10	TMW 1.1237																		
11	TMW 1.124																		
12	TMW 1.1204																		
13	L. sanfran. TMW 1.1304																		
14	TMW 1.1461																		
15	TMW 1.398																		
16	TMW 1.377																		
17	TMW 1.392																		
18	TMW 1.728																		
19	TMW 1.53																		
20	L. brevis TMW 1.384																		
21	TMW 1.791																		
22	TMW 1.57																		
23	TMW 1.1785																		
24	TMW 1.1369																		

	Tested strains of Technische Mikrobiologie Weihenstephan (TMW)	TrxR	gpo, gpx	ytpP	msrA	xds	Npox	Red	pepC	pepE	opep	phgluc	glaldDH	cytB	narH	Ndh2	Pdc	AFN	Fae
25	TMW 1.313																		
26	TMW 1.1326																		
27	TMW 1.6																		
28	TMW 1.1807																		
29	TMW 1.100																		
30	TMW 1.1786																		
31	TMW 1.1787																		
32	L. panis TMW 1.648																		
33	•																		
34	TMW 1.1300																		
35	TMW 1.1301																		
36	TMW 1.56																		
37	L. spicheri TMW 1.1225																		
38	TMW 1.1233																		
39	TMW 1.1226																		
40	<i>L. paralim.</i> TMW 1.1725																		
40	TMW 1.1234																		
42	TMW 1.1254																		
43	TMW 1.256																		
44	TMW 1.230																		
45	L. paracasei TMW 1.1434																		
46	TMW 1.1724																		
47	L. casei TMW 1.1462																		
48	L. paracasei TMW 1.1305																		
49 50	TMW 1.1213 TMW 1.304																		
50																			
52	L. ferment. TMW 1.1727 TMW 1.1835																		
53	TMW 1.1835 TMW 1.1836																		
54	TMW 1.1830																		
55	TMW 1.1788																		
56																			
57	TMW 1.1239																		
58	TMW 1.705																		
59																		_	
60 61	<i>P. pentos.</i> TMW 2.6 TMW 2.74																		
	TMW 2.14																		
62	TMW 2.149																		
63																			
64	TMW 2.8 W. cibaria TMW 2.1039																		
65 66	W. cibaria TMW 2.1039 TMW 2.1333 TMW 2.1333																		
60 67																			
68	L. reuteri TMW 1.106																		

	Tested strains of Technische Mikrobiologie Weihenstephan (TMW)	TrxR	gpo, gpx	ytpP	msrA	xds	Npox	Red	pepC	pepE	opep	phgluc	glaldDH	cytB	narH	Ndh2	Pdc	AFN	Fae
69	L. farciminis TMW 1.68																		
70	L. delbrueckii TMW 1.58																		
71	L. curvatus TMW 1.624																		
72	L. acidophilus TMW 1.18																		
73	L. graminis TMW 1.1174																		
74	L. perolens TMW 1.500																		
75	- 15																		
	TMW 2.813																		
76	<i>E. faecalis</i> TMW 2.630																		

Based on the number of positive PCR results for "redox" genes, peptidases, dehydrogenases and genes involved in ETC reactions, strains were classified into 5 groups. Each of the groups contained a strain with most positive PCR results; the other with least positive PCR results (grey boxes in Table 23). Different growth responses in the presence of H_2O_2 and diamide were checked to get first information concerning a possible correlation between the presence of tested genes and its tolerance against oxidants.

The results of the growth tests are summarized in Table 24. The two *L. plantarum* (TMW 1.1723, TMW 1.1237) strains showed no different growth behavior, the same could be observed for the two strains of *L. sanfranciscensis* (TMW 1.392; TMW 1.728) and *L. fermentum* (TMW 1.1835; TMW 1.1788). The results for *L. brevis* and *L. pontis* overlapped with the results received from PCR-screening. The strains *L. brevis* TMW 1.791 and *L. pontis* TMW 1.1300 showed a lower tolerance in the presence of H_2O_2 and diamide compared to *L. brevis* TMW 1.1326 and *L. pontis* TMW 1.56.

Table 24: Results of the growth tests of different concentrations of H_2O_2 and diamide of the 5 groups determined before. Each of the groups comprises of a *Lactobacillus* species with the highest number; the other with the lowest number of positive PCR signals as visible in Table 23. Growth was assessed qualitatively in which [1] determines growth and [0] no growth at the corresponding concentrations.

	Results of growth test	s with oxidizing agents	100 mM H ₂ O ₂	$20 \text{ mM H}_2\text{O}_2$	10 mM H ₂ O ₂	$1 \text{ mMH}_2\text{O}_2$	20 mM diamide	10 mM diamide	1 mM diamide	uns	positive PCR signals
1.	L. plantarum	TMW 1.1723	0	0	0	1	1	1	1	4	11
		TMW 1.1237	0	0	0	1	1	1	1	4	14
2.	L. sanfranciscensis	TMW 1.392	0	0	0	1	0	0	0	1	5
		TMW 1.728	0	0	0	0	0	0	1	1	10
3.	L. brevis	TMW 1.791	0	0	0	1	0	1	1	3	6
		TMW 1.1326	0	0	0	1	1	1	1	4	12
4.	L. pontis	TMW 1.1300	0	0	0	0	0	0	1	1	4
		TMW 1.56	0	0	0	1	0	0	1	2	12
5.	L. fermentum	TMW 1.1835	0	0	0	1	1	1	1	4	6
		TMW 1.1788	0	0	0	1	1	1	1	4	13

4.15 Results of transcriptional analysis using microarray

4.15.1 Aim and experimental setup

Using microarray analysis, the transcriptional response of *L. sanfranciscensis* TMW 1.1304 was studied using conditions, which typically occur in sourdough environments. These included the following: presence of electron acceptors (oxygen, fructose) and yeast (*C. humilis*). Aerobic conditions and the addition of fructose to the media should give information which genes participate in redox reactions if different electron acceptors were present. The incubation with *C. humilis* should answer the question which "redox genes" were differently expressed and if *L. sanfranciscensis* was positively or negatively affected during co- cultivation. Anaerobic incubation resembled the control condition.

4.15.2 Determination of RNA quantity and quality

The quantity and quality of the extracted RNA samples was checked using Nanodrop (Table 25) and Bioanalyzer (electropherograms see Appendix A 16).

Table 25: Quantification of isolated RNA samples (anaerobic, aerobic, Fructose, 1/ 10 and 1/ 100 with *Candida humilis* (C)) from Nanodrop measurement. Samples were diluted 1/ 10 before measurement. The totals RNA in ng/ μ L and quality parameters (260/ 280 and 260/ 230) values were determined.

Sample ID	ng/ μL	A 260	A 280	260/ 280	260/230
Anaerobic 1/10	648.10	16.20	7.33	2.21	2.50
Aerobic 1/10	734.56	18.36	8.22	2.23	2.56
Fructose 1/10	880.40	22.01	9.91	2.22	2.54
C_1:10 1/10	275.98	6.90	3.14	2.20	2.57
C_1:100 1/10	581.87	14.54	6.57	2.21	2.56

Nanodrop analysis as well as Bioanalyzer results revealed that RNA quality and quantity was sufficient for further processing.

4.15.3 Expression values after quantification

Significant differentially expressed genes during the different tested conditions are arranged in Table 26 (Aerobic incubation), Table 27 (addition of Fructose) and Table 28 (co- cultivation with *Candida humilis*). Additionally to the data in Table 28, the change in gene expression of *L. sanfranciscensis* TMW 1.1304 incubated with *Candida humilis* TMW 3.191 was visualized in a metabolic pathway in Figure 23.

Table 26: Differentially expressed genes expressed as log2 fold changes during aerobic incubation of *L. sanfranciscensis* TMW 1.1304 ordered alphabetically by COG functional categories. Anaerobic conditions were used as reference condition and set as 1. Up- regulated genes are shaded in grey, downregulated genes are left blank. Genes which were also differentially expressed during incubation with fructose are marked bold. Differentially expressed genes which are denominated as "hypothetical proteins" or "pseudogenes" as retrieved from gene annotation were omitted.

LSA number	COG functional category	Aerobic log2 fold changes	Up/down	gene name
LSA_00330	Amino Acid Metabolism	1.7043	1	aminopeptidase
LSA_00420	Amino Acid Metabolism	0.5993	- 1	Diaminopimelate epimerase
LSA_00430	Amino Acid Metabolism	0.606	- 1	aspartokinase
LSA_00490	Amino Acid Metabolism	0.6239	- 1	aspartate- semialdehyde dehydrogenase
LSA_00870	Amino Acid Metabolism	0.6468	- 1	aminotransferase A
LSA_04660	Amino Acid Metabolism	0.4425	- 1	Homocysteine S- methyltransferase
LSA_12900	Amino Acid Metabolism	1.6976	1	glycerate kinase 2
LSA_01530	Carbohydrate Metabolism	0.6536	- 1	beta- phosphoglucomutase
LSA_01770	Carbohydrate Metabolism	1.7087	1	oligo- 1,6- glucosidase
LSA_02830	Carbohydrate Metabolism	0.6336	- 1	ribokinase
LSA_04670	Carbohydrate Metabolism	2.2737	1	L- 2- hydroxyisocaproate dehydrogenase
LSA_05480	Carbohydrate Metabolism	0.6434	- 1	glucosamine fructose- 6- phosphate aminotransferase
LSA_11920	Carbohydrate Metabolism	0.538	- 1	acetyl- CoA carboxylase carboxyl transferase
LSA_12040	Carbohydrate Metabolism	0.6159	- 1	Fumarate hydratase class II
LSA_12680	Cellular processes	1.6135	1	ATP- dependent Clp protease ATP- binding subunit
LSA_12130	Central intermediary metabolism	2.2485	1	Glyoxal reductase
LSA_09450	Energy Metabolism	1.5196	1	ATP synthase subunit c
LSA_01280	Genome plasticity	0.4475	- 1	transposase insK for insertion sequence element
LSA_02280	Genome plasticity	0.6283	- 1	transposase insK for insertion sequence element
LSA_12430	Genome plasticity	0.6031	- 1	transposase insK for insertion sequence element
LSA_2p00550	Genome plasticity	1.5206	1	Transposase for insertion sequence element
LSA_07400	Lipid Metabolism	0.6134	- 1	glycerol- 3- phosphate acyltransferase PlsY
LSA_11910	Lipid Metabolism	0.5416	- 1	acetyl- CoA carboxylase carboxyl transferase
LSA_11940	Lipid Metabolism	0.5357	- 1	(3R)- hydroxymyristoyl- ACP dehydratase
LSA_11960	Lipid Metabolism	0.6313	- 1	3- oxoacyl- ACP synthase
LSA_11970	Lipid Metabolism	0.5916	- 1	3- oxoacyl- ACP reductase
LSA_11980	Lipid Metabolism	0.5723	- 1	[acyl- carrier- protein] S- malonyltransferase
LSA_11990	Lipid Metabolism	0.6078	- 1	acyl carrier protein
LSA_12010	Lipid Metabolism	0.653	- 1	(3R)- hydroxymyristoyl- ACP dehydratase
LSA_00280	Membrane Transport	1.7772	1	oligopeptide transport ATP- binding protein oppD
LSA_00290	Membrane Transport	2.191	1	oligopeptide transport ATP- binding protein oppF
LSA_00300	Membrane Transport	2.6472	1	oligopeptide transport system permease oppB
LSA_00310	Membrane Transport	1.9903	1	oligopeptide transport system permease oppC
LSA_00320	Membrane Transport	2.2859	1	oligopeptide- binding protein oppA
LSA_00940	Membrane Transport	0.5636	- 1	D- methionine transport system substrate- binding protein
LSA_02790	Membrane Transport	0.5762	- 1	amino acid permease

LSA number	COG functional category	Aerobic log2 fold changes	Up/down	gene name
LSA_04650	Membrane Transport	1.7185	1	amino acid permease
LSA_05640	Membrane Transport	0.5699	- 1	cobalt import ATP- binding protein cbiO 2
LSA_05660	Membrane Transport	0.6123	- 1	cobalt/nickel transport system permease protein
LSA_11030	Membrane Transport	0.597	- 1	cobalt/nickel transport system permease protein
LSA_13190	Membrane Transport	1.737	1	phosphonate transport system substrate- binding protein
LSA_01900	Metabolism of Cofactors and Vitamins	0.632	- 1	methylenetetrahydrofolate reductase (NADPH)
LSA_11890	Metabolism of Cofactors and Vitamins	0.3898	- 1	BirA family transcriptional regulator, biotin operon repressor / biotin- [acetyl- CoA- carboxylase] ligase
LSA_12060	Metabolism of Cofactors and Vitamins	0.5161	- 1	4'- phosphopantetheinyl transferase
LSA_00350	Nucleotide Metabolism	0.4773	- 1	2',3'- cyclic- nucleotide 2'- phosphodiesterase
LSA_01810	Nucleotide Metabolism	1.6935	1	GMP synthase
LSA_12870	Nucleotide Metabolism	1.968	1	GMP reductase
LSA_1p00080	Nucleotide Metabolism	1.9469	1	Adenine deaminase 1
LSA_02010	Other	0.5607	- 1	nrdI-like protein
LSA_13160	Other	0.3265	- 1	Hemolysin- 3
LSA_00930	Protein fate	0.5624	- 1	peptidase T
LSA_03230	Protein fate	0.6095	- 1	serine/threonine exchanger
LSA_05190	Replication and Repair	1.5031	1	UvrABC system protein A
LSA_07160	Transcription	0.6399	- 1	RNA methyltransferase ypsC
LSA_03720	Translation and protein synthesis	0.5855	- 1	ribosomal RNA small subunit methyltransferase
LSA_04620	Translation and protein synthesis	1.7749	1	50S ribosomal protein L7/L12
LSA_06490	Translation and protein synthesis	0.6505	- 1	tRNA Delta(2)- isopentenylpyrophosphate transferase
LSA_07930	Translation and protein synthesis	0.654	- 1	50S ribosomal protein L11 methyltransferase
LSA_13510	Translation and protein synthesis	0.5646	- 1	tRNA modification GTPase mnmE

Table 27: Differentially expressed genes expressed as log2 fold changes during incubation with fructose of *L.* sanfranciscensis TMW 1.1304 ordered alphabetically by COG functional categories. Anaerobic conditions were used as reference condition and set as 1. Up- regulated genes are shaded in grey, downregulated genes are left blank. Genes which were also differentially expressed during aerobic incubation are marked bold. Differentially expressed genes which are denominated as "hypothetical proteins" or "pseudogenes" as retrieved from gene annotation were omitted.

LSA number	COG functional category	Fructose log2 fold changes	Up/down	gene name
LSA_00870	Amino Acid Metabolism	1.7333	1	aminotransferase A
LSA_04660	Amino Acid Metabolism	1.646	1	Homocysteine S- methyltransferase
LSA_05370	Amino Acid Metabolism	0.5581	- 1	phosphate acetyltransferase
LSA_00660	Carbohydrate Metabolism	1.7381	1	6- phosphogluconate dehydrogenase
LSA_01530	Carbohydrate Metabolism	0.5382	- 1	beta- phosphoglucomutase
LSA_02830	Carbohydrate Metabolism	0.5221	- 1	ribokinase
LSA_05480	Carbohydrate Metabolism	0.5385	- 1	glucosamine fructose- 6- phosphate aminotransferase
LSA_12190	Carbohydrate Metabolism	0.594	- 1	alcohol dehydrogenase
LSA_12980	Carbohydrate Metabolism	0.6311	- 1	citrate lyase subunit alpha

LSA number	COG functional category	Fructose log2 fold changes	Up/down	gene name
LSA_10170	Cellular processes	0.619	- 1	S- adenosyl- L- methionine- dependent methyltransferase
LSA_05320	Folding, Sorting and Degradation	0.6432	- 1	ribonuclease R 1
LSA_01280	Genome plasticity	0.5267	- 1	transposase insK for insertion sequence element
LSA_02280	Genome plasticity	0.6597	- 1	transposase insK for insertion sequence element
LSA_2p00110	Genome plasticity	0.543	- 1	transposase
LSA_2p00550	Genome plasticity	1.6931	1	Transposase for insertion sequence element
LSA_09330	Glycan Biosynthesis and Metabolism	0.6192	- 1	D- alanine- D- alanine ligase
LSA_07400	Lipid Metabolism	0.5987	- 1	glycerol- 3- phosphate acyltransferase PlsY
LSA_12070	Lipid Metabolism	0.5884	- 1	acyl carrier protein
LSA_00850	Membrane Transport	0.3501	- 1	D- methionine transport system substrate- binding protein
LSA_02730	Membrane Transport	0.5242	- 1	ribose uptake protein rbsU
LSA_04650	Membrane Transport	5.606	1	amino acid permease
LSA_05640	Membrane Transport	0.6365	- 1	cobalt import ATP- binding protein cbiO 2
LSA_05660	Membrane Transport	0.6443	- 1	cobalt/nickel transport system permease protein
LSA_13030	Membrane Transport	0.5759	- 1	citrate- sodium symporter
LSA_07110	Metabolism of Cofactors and Vitamins	0.6437	- 1	1,4- dihydroxy- 2- naphthoate octaprenyltransferase
LSA_12060	Metabolism of Cofactors and Vitamins	0.5267	- 1	4'- phosphopantetheinyl transferase
LSA_08430	Nucleotide Metabolism	0.6448	- 1	Deoxyguanosine kinase
LSA_1p00080	Nucleotide Metabolism	1.5236	1	Adenine deaminase 1
LSA_04140	Other	1.5761	1	multidrug resistance protein mdtG
LSA_13160	Other	0.5192	- 1	Hemolysin- 3
LSA_2p00170	Other	1.514	1	Protein crcB-like protein 1
LSA_03230	Protein fate	0.6266	- 1	serine/threonine exchanger
LSA_02420	Regulatory functions	0.5932	- 1	regulatory protein spx
LSA_08880	Regulatory functions	0.6424	- 1	catabolite control protein A
LSA_05360	Replication and Repair	0.4925	- 1	uracil- DNA glycosylase
LSA_12960	Signal Transduction	0.5298	- 1	protein citXG
LSA_12990	Signal Transduction	0.6238	- 1	citrate lyase subunit beta
LSA_04620	Translation and protein synthesis	1.7588	1	50S ribosomal protein L7/L12
LSA_05840	Translation and protein synthesis	0.5362	- 1	30S ribosomal protein S14
LSA_06310	Translation and protein synthesis	0.6578	- 1	50S ribosomal protein L32
LSA_07930	Translation and protein synthesis	0.6359	- 1	50S ribosomal protein L11 methyltransferase
LSA_11170	Translation and protein synthesis	1.6157	1	50S ribosomal protein L18
LSA_11230	Translation and protein synthesis	1.5344	1	50S ribosomal protein L14
LSA_11240	Translation and protein synthesis	1.8691	1	30S ribosomal protein S17
LSA_11270	Translation and protein synthesis	1.5488	1	30S ribosomal protein S3
LSA_11300	Translation and protein synthesis	1.6819	1	50S ribosomal protein L2

LSA number	COG functional category	Fructose log2 fold changes	Up/down	gene name
LSA_11310	Translation and protein synthesis	1.6253	1	50S ribosomal protein L23
LSA_11330	Translation and protein synthesis	1.6477	1	50S ribosomal protein L3
LSA_02080	Xenobiotics Biodegradation and Metabolism	0.533	- 1	aldehyde- alcohol dehydrogenase 2

Table 28: Differentially expressed genes expressed as log2 fold changes during incubation with *Candida humilis* (1/10 and 1/100) of *L. sanfranciscensis* TMW 1.1304 ordered alphabetically by COG functional categories. Anaerobic conditions were used as reference condition and set as 1. Up- regulated genes are shaded in grey, downregulated or not regulated genes are left blank. Differentially expressed genes which are denominated as "hypothetical proteins" or "pseudogenes" as retrieved from gene annotation were omitted.

LSA number	COG functional category	1/ 100 Candida Log2 fold changes	1/ 10 Candida Log2 fold changes	Up/down	gene name
LSA_00330	Amino Acid Metabolism	1.5575	2.623	1	aminopeptidase
LSA_00870	Amino Acid Metabolism	0.923	0.5813	- 1	aminotransferase A
LSA_04660	Amino Acid Metabolism	0.7435	0.4433	- 1	Homocysteine S- methyltransferase
LSA_07350	Amino Acid Metabolism	1.0277	1.9945	1	peptide methionine sulfoxide reductase peptide methionine sulfoxide
LSA_07360	Amino Acid Metabolism	1.0668	2.0955	1	reductase
LSA_08580	Amino Acid Metabolism	1.0007	1.5493	1	aminotransferase A
LSA_09790	Amino Acid Metabolism	0.7578	2.1507	0	glutathione peroxidase
LSA_10470	Amino Acid Metabolism	0.8549	0.4943	- 1	argininosuccinate synthase
LSA_12900	Amino Acid Metabolism	1.0275	2.2412	1	glycerate kinase 2
LSA_00860	Carbohydrate Metabolism	0.8536	0.5362	- 1	D- lactate dehydrogenase
LSA_01530	Carbohydrate Metabolism	0.7706	0.583	- 1	beta- phosphoglucomutase
LSA_01770	Carbohydrate Metabolism	1.175	2.6919	1	oligo- 1,6- glucosidase
LSA_02830	Carbohydrate Metabolism	0.7096	0.6156	- 1	ribokinase
LSA_04670	Carbohydrate Metabolism	1.1575	3.3204	1	L- 2- hydroxyisocaproate dehydrogenase (malate DH)
LSA_10640	Carbohydrate Metabolism	0.658	0.5927	- 1	gluconokinase
LSA_10990	Carbohydrate Metabolism	1.0426	1.9668	1	D- lactate dehydrogenase
LSA_11920	Carbohydrate Metabolism	0.623	0.4125	- 1	acetyl- CoA carboxylase carboxyl transferase
LSA_11950	Carbohydrate Metabolism	0.6581	0.3995	- 1	acetyl- CoA carboxylase biotin carboxyl carrier protein
LSA_09310	Cellular processes	1.2809	1.915	1	universal stress protein
LSA_10410	Cellular processes	0.9966	1.5128	0	ATP- dependent Clp protease ATP- binding subunit
LSA_12680	Cellular processes	1.1821	2.5252	1	ATP- dependent Clp protease ATP- binding subunit
LSA_12130	Central intermediary metabolism	1.3178	3.5219	1	Glyoxal reductase
LSA_04980	Folding, Sorting and Degradation	1.1059	1.9091	1	molecular chaperone GroES
LSA_04990	Folding, Sorting and Degradation	0.9989	1.9172	0	molecular chaperone GroEL
LSA_01280	Genome plasticity	0.6264	0.4783	- 1	transposase insK for insertion sequence element
LSA_12430	Genome plasticity	0.7473	0.6295	- 1	transposase insK for insertion sequence element
LSA_11900	Lipid Metabolism	0.6018	0.4447	- 1	enoyl- ACP reductase

LSA number	COG functional category	1/ 100 Candida Log2 fold changes	1/ 10 Candida Log2 fold changes	Up/down	gene name
LSA_11910	Lipid Metabolism	0.6105	0.3679	- 1	acetyl- CoA carboxylase carboxyl transferase
LSA_11930	Lipid Metabolism	0.6987	0.4047	- 1	Pyruvate carboxylase subunit A
LSA_11940	Lipid Metabolism	0.6528	0.3654	- 1	(3R)- hydroxymyristoyl- ACP dehydratase
LSA_11960	Lipid Metabolism	0.6032	0.4182	- 1	3- oxoacyl- ACP synthase
LSA_11970	Lipid Metabolism	0.602	0.4242	- 1	3- oxoacyl- ACP reductase
LSA_11980	Lipid Metabolism	0.6312	0.4611	- 1	[acyl- carrier- protein] S- malonyltransferase
LSA_11990	Lipid Metabolism	0.6839	0.414	- 1	acyl carrier protein
LSA_12000	Lipid Metabolism	0.5953	0.3808	- 1	3- oxoacyl- ACP synthase
LSA_12010	Lipid Metabolism	0.6831	0.3451	- 1	(3R)- hydroxymyristoyl- ACP dehydratase
LSA_12070	Lipid Metabolism	0.7189	0.6441	- 1	acyl carrier protein
LSA_00280	Membrane Transport	2.0757	3.1814	1	oligopeptide transport ATP- binding protein oppD
LSA_00290	Membrane Transport	2.0714	3.713	1	oligopeptide transport ATP- binding protein oppF
LSA_00300	Membrane Transport	2.8302	5.1172	1	oligopeptide transport system permease oppB
LSA_00310	Membrane Transport	2.0343	3.4509	1	oligopeptide transport system permease oppC
LSA_00320	Membrane Transport	2.0552	3.3517	1	oligopeptide- binding protein oppA
LSA_00340	Membrane Transport	1.2018	1.5698	1	proton/sodium- glutamate symport protein
LSA_00530	Membrane Transport	1.7179	1.0668	0	amino acid permease
LSA_00920	Membrane Transport	1.2173	1.5389	1	phosphonate transport system substrate- binding protein
LSA_01080	Membrane Transport	1.015	0.6181	0	cobalt/nickel transport system permease protein
LSA_02730	Membrane Transport	0.8049	0.6499	- 1	ribose uptake protein rbsU
LSA_04650	Membrane Transport	2.1503	8.1993	1	amino acid permease
LSA_05640	Membrane Transport	0.8318	0.6321	- 1	cobalt import ATP- binding protein cbiO 2
LSA_05650	Membrane Transport	0.8542	0.6078	- 1	cobalt import ATP- binding protein cbiO 1
LSA_05660	Membrane Transport	0.8702	0.5742	- 1	cobalt/nickel transport system permease protein
LSA_01900	Metabolism of Cofactors and Vitamins	0.7607	0.5515	- 1	methylenetetrahydrofolate reductase (NADPH)
LSA_11830	Metabolism of Cofactors and Vitamins	1.1118	1.764	1	phosphomethylpyrimidine kinase
LSA_11890	Metabolism of Cofactors and Vitamins	0.736	0.3517	- 1	BirA family transcriptional regulator, biotin operon repressor
LSA_12060	Metabolism of Cofactors and Vitamins	0.7155	0.5181	- 1	4'- phosphopantetheinyl transferase
LSA_00350	Nucleotide Metabolism	0.9239	0.6226	- 1	2',3'- cyclic- nucleotide 2'- phosphodiesterase
LSA_1p00080	Nucleotide Metabolism	1.5684	1.6539	1	Adenine deaminase 1
LSA_2p00480	Nucleotide Metabolism	0.9384	1.7206	0	cytosine deaminase
LSA_04140	Other	1.32	1.579	1	multidrug resistance protein mdtG
LSA_05020	Other	1.2703	1.7323	1	multidrug resistance ABC transporter ATP- binding
LSA_08950	Other	1.1376	1.7859	1	thioredoxin
LSA_13160	Other	0.5829	0.3363	- 1	Hemolysin- 3
LSA_03230	Protein fate	0.6879	0.5321	- 1	serine/threonine exchanger

RESULTS

LSA number	COG functional category	1/ 100 Candida Log2 fold changes	1/10 Candida Log2 fold changes	Up/down	gene name
LSA_06360	Regulatory functions	1.2889	2.0022	1	HTH- type transcriptional regulator YodB
LSA_08880	Regulatory functions	0.7903	0.6429	- 1	catabolite control protein A
LSA_05190	Replication and Repair	1.4872	1.7448	1	UvrABC system protein A
LSA_09040	Replication and Repair	1.6417	0.882	0	DNA polymerase IV
LSA_09710	Replication and Repair	0.9194	1.5252	0	DNA polymerase III subunit delta
LSA_05840	Translation and protein synthesis	0.626	0.8632	0	30S ribosomal protein S14

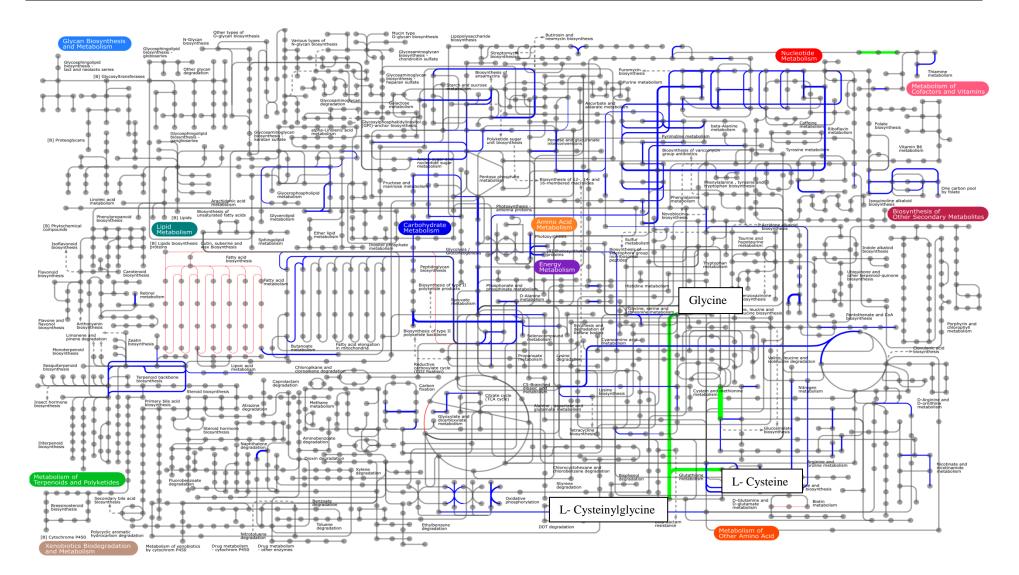


Figure 23: Metabolic pathway visualization of the change in gene expression of *L. sanfranciscensis* TMW 1.1304 incubated with *Candida humilis* TMW 3.191 created with *iPath2* (Letunic, Yamada, Kanehisa, & Bork, 2008), website: <u>http://pathways.embl.de/</u> Accessed: 03/28/2014. The colors of the pathways indicate the level of gene expression; red mark the underexpressed genes [expression ratios ≤ 0.5]; green are the overexpressed genes [expression ratios ≥ 2] and blue lines show no differential expressed genes [expression ratios > 0.5 < 2). The thickness of the lines represents the level of gene expression ratios, the thicker the colored lines, the higher the corresponding gene expression ratios and vice versa.

4.16 Results of transcriptional analysis using RNA sequencing

4.16.1 RNA quantity and quality check after RNA isolation

The quantity and quality of the extracted RNA samples was again checked using Nanodrop and Bioanalyzer before (Table 29) and after DNAse treatment (Table 30 and Figure 24).

Nanodrop analysis as well as Bioanalyzer results revealed that the sample requirements concerning RNA quality and quantity were sufficient for library construction and sequencing at BGI.

Table 29: RNA quantity and quality measured with Nanodrop® and Bioanalyzer. Visible are the sample names with corresponding RNA quantity and quality values after isolation on two different days. The "+" indicates the treatment with diamide, "- " marks the untreated samples.

Nanodrop®				Bioanalyzer			
sample name	ng/ μL	260/ 280	260/ 230	sample name	ng/ µL	rRNA ratio	RIN
WT + 11- 041	264,2	2,08	2,5	WT + 11- 041	265	2	10
WT + 28- 033	48,8	2,1	2,61	WT + 28- 033	109	2,1	10
WT - 28-034	106,1	2,14	2,19	WT - 28-034	91	2,1	10
WT - 11-042	113,5	2,11	2,19	WT - 11-042	97	2,1	10
$\Delta t cyB + 21 - 031$	130,9	2,09	2,42	$\Delta t cyB + 21 - 031$	138	2,3	10
$\Delta tcyB$ +19- 032	154,4	2,1	2,22	$\Delta tcyB$ +19- 032	150	2,4	10
$\Delta tcyB - 19-033$	184,3	2,08	2,52	$\Delta t cy B - 19 - 033$	163	2,3	10
$\Delta tcyB - 21 - 034$	103,4	2,06	2,45	$\Delta tcyB - 21 - 034$	116	2,3	10

Table 30: RNA quantity and quality measured with Nanodrop® and Bioanalyzer. Visible are the sample names with corresponding RNA quantity and quality values after DNAse treatment and precipitation. The "+" indicates the treatment with diamide, "- " marks the untreated samples.

Nanodrop®				Bioanalyzer	1		
sample name	ng/ μL	260/ 280	260/ 230	sample name	ng/ µL	rRNA ratio	RIN
WT + 11- 041	102,7	1,92	2,61	WT + 11- 041	84	2	9,9
WT + 28- 033	86,8	1,95	2,54	WT + 28- 033	72	2	9,9
WT - 28-034	80,6	1,9	2,62	WT - 28-034	67	2	9,9
WT - 11-042	88,4	1,9	2,64	WT - 11-042	65	2	9,9
$\Delta t cyB + 21 - 031$	70,5	1,94	2,48	$\Delta t cyB + 21 - 031$	60	2,3	10
$\Delta tcyB$ +19- 032	109,3	1,94	2,54	$\Delta tcyB$ +19- 032	100	2,4	9,9
∆ <i>tcyB</i> - 19-033	85,3	1,92	2,59	$\Delta tcyB - 19-033$	70	2,3	10
$\Delta tcyB - 21-034$	225	2,01	2,5	$\Delta tcyB - 21 - 034$	225	2,3	9,9

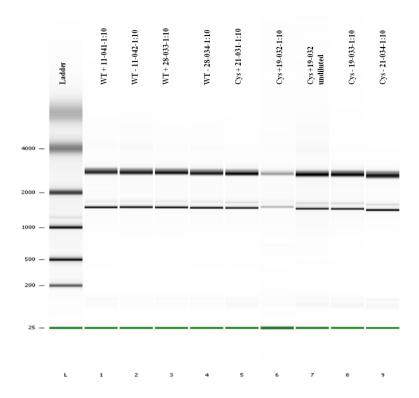


Figure 24: Gel Image (from the Agilent 2100 Bioanalyzer) for total RNA of WT and total RNA of $\Delta tcyB$ (= Cys) after precipitation. Lanes 1 – 4 show the RNA of the WT of duplicate isolation on two different days (11- 04 and 28- 03), Lanes 5 – 9 show RNA of $\Delta tcyB$ (= Cys) of duplicate isolation on two different days (19- 03 and 21- 03). Lane L includes the appropriate ladder of the supplier.

4.16.2 FPKM values after quantification

Based on the experimental design, the WT and $\Delta tcyB$ were treated with diamide, the application of distilled water served as reference (untreated group). Thus, sequencing provided mainly three results of transcriptional responses: 1. Information regarding the treated vs. untreated WT (Table 31), 2. Information about the treated $\Delta tcyB$ mutant vs. treated WT (Table 32, corresponding bar plot visible in Figure 25) and 3. Information regarding the transcriptional response of the control condition for the untreated WT vs. untreated $\Delta tcyB$ (Table 33).

Table 31: Significantly differentially expressed genes for WT treated (+) **vs. untreated** (-). Depicted are the FPKM (Fragments Per Kilobase of transcript per Million mapped reads) values, log2 fold changes and gene descriptions; Upregulated genes are shaded in grey, downregulated genes are left blank. Isoforms of the genes *amt,ywnH; grpE, hrcA* and *glnH, glnM* are marked in bold.

gene	WT +	WT -	log2 (FPKM 2 / FPKM 1)	Gene description
	FPKM 1	FPKM 2		
adh2	3190.67	6685.8	1.0672	aldehyde- alcohol dehydrogenase 2
amt,ywnH	191.365	443.352	1.2121	ammonia channel
glnR	296.214	602.319	1.0239	HTH- type transcriptional regulator glnR
glnA	969.914	1856.07	0.9363	glutamine synthetase
groS	621.735	310.704	- 1.0008	molecular chaperone GroES
groL	2350.43	1268.35	- 0.8899	molecular chaperone GroEL
LSA_05000	1897.37	917.327	- 1.0485	pseudogene
glmS	3711.31	1068.47	- 1.7964	glucosamine- fructose- 6- phosphate

gene	WT +	WT -	log2 (FPKM 2 / FPKM 1)	Gene description
	FPKM 1	FPKM 2		
				aminotransferase
clpE	1600.8	479.74	- 1.7385	ATP- dependent Clp protease ATP- binding subunit clpE
LSA_04150	588.707	350.071	- 0.7499	hypothetical protein
clpP	8092.43	3903.38	- 1.0519	ATP- dependent Clp protease proteolytic subunit
dnaJ	2412.99	1477.14	- 0.7080	molecular chaperone DnaJ
dnaK	6356.13	4093.29	- 0.6349	molecular chaperone DnaK
grpE,hrcA	2775.15	1610.84	- 0.7848	protein grpE
mnmA	3075.42	1789.11	- 0.7815	tRNA- specific 2- thiouridylase mnmA
clpC	1663.07	854.001	- 0.9615	Negative regulator of genetic competence clpC/mecB
ctsR	3916.56	1993.09	- 0.9746	transcriptional regulator ctsR
glnP	270.813	567.37	1.0670	glutamine ABC transporter permease glnP
glnH,glnM	604.404	1415.37	1.2276	glutamine ABC transporter permease glnM
glnQ	381.824	791.555	1.0518	glutamine transport ATP- binding protein glnQ

Table 32: Significantly differentially expressed genes for WT treated (+) and $\Delta tcyB$ treated (+). Depicted are the FPKM (Fragments Per Kilobase of transcript per Million mapped reads) values, log2 fold changes and gene descriptions; Upregulated genes are shaded in grey, downregulated genes are left blank. Isoforms of the genes *oppD*, *F* and *glnH/M* are marked in bold.

gene	WT +	$\Delta tcyB +$	log2 (FPKM 2 / FPKM 1)	Gene description
	FPKM 1	FPKM 2		
oppD, oppF	3226.82	9794.01	1.6018	oligopeptide transport ATP- binding protein oppD
oppB	1740.2	4865.5	1.4833	oligopeptide transport system permease oppB
oppC	1610.97	4592.21	1.5113	oligopeptide transport system permease oppC
oppA	3515.92	7098.13	1.0135	oligopeptide- binding protein oppA
gltT	311.406	509.371	0.7099	proton/sodium- glutamate symport protein
LSA_00850	1063.21	10840.1	3.3499	hypothetical protein
LSA_02330	44.7525	266.704	2.5752	hypothetical protein
spxA	549.505	953.57	0.7952	regulatory protein spx
LSA_03800	652.628	340.516	- 0.9385	hypothetical protein
LSA_03810	445.03	225.341	- 0.9818	hypothetical protein
glnR	302.21	599.889	0.9891	HTH- type transcriptional regulator glnR
glnA	989.525	1721.88	0.7992	glutamine synthetase
LSA_04670	181.256	559.443	1.6260	L- 2- hydroxyisocaproate dehydrogenase
pyrB	412.165	185.494	- 1.1519	aspartate carbamoyltransferase
pyrC	1510.67	690.227	- 1.1300	pseudogene
LSA_05910	440.341	241.258	- 0.8680	pseudogene
yqhL	678.485	1272.45	0.9072	hypothetical protein
LSA_00240	43.453	248.435	2.5153	hypothetical protein
LSA_00590	142.035	708.803	2.3191	hypothetical protein
yxkA	1648.85	2671.09	0.6960	hypothetical protein
nrdH	5508.4	2971.28	- 0.8905	glutaredoxin-like protein nrdH
prsA	4964.1	3008.27	- 0.7226	Foldase protein prsA
dtd	1175.87	2186.74	0.8951	hypothetical protein
relA	260.218	542.357	1.0595	GTP pyrophosphokinase
LSA_08440	132.533	219.523	0.7280	hypothetical protein
LSA_08570	375.05	622.749	0.7316	hypothetical protein

gene	WT +	$\Delta tcyB +$	log2 (FPKM 2 / FPKM 1)	Gene description
	FPKM 1	FPKM 2		
patA	114.716	457.585	1.9960	aminotransferase A
mnmA	3137.22	5048.64	0.6864	tRNA- specific 2- thiouridylase mnmA
adhA	4132.93	8055.41	0.9628	alcohol dehydrogenase
pyrE	652.102	281.127	- 1.2139	Orotate phosphoribosyltransferase
pyrF	576.405	269.738	- 1.0955	Orotidine 5'- phosphate decarboxylase
glnP	276.29	561.852	1.0240	glutamine ABC transporter permease glnP
glnH, glnM	616.766	1255.13	1.0250	glutamine ABC transporter permease glnM
glnQ	389.391	662.733	0.7672	glutamine transport ATP- binding protein glnQ
mnmG	3529.33	1909.38	- 0.8863	tRNA uridine 5- carboxymethylaminomethyl modification enzyme mnmG
mnmE	3122.92	1711.74	- 0.8674	tRNA modification GTPase mnmE

A graphical representation as bar plot of the significantly differentially expressed genes is depicted in Figure 25. The genes with the highest change in gene expression of the treated $\Delta t cyB$ mutant compared to the treated WT are *oppBCD*, LSA_00850, LSA_02330, LSA_04670, LSA_00240, LSA_00590 and *patA* (marked with black arrows).

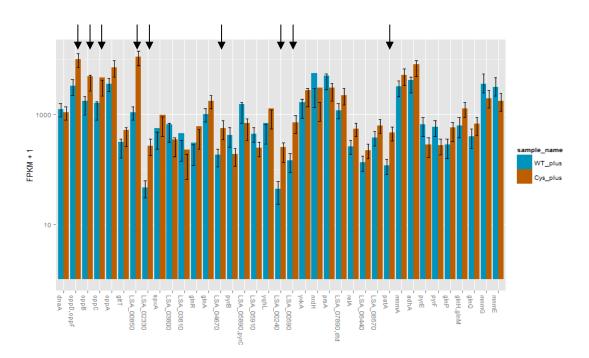


Figure 25: FPKM (Fragments per Kilobase of transcript per Million mapped reads) value bar plot of significant differentially expressed genes of WT treated (WT_plus; blue bars) vs. $\Delta tcyB$ treated (Cys_plus; orange bars). Visible are the FPKM values including standard deviations plotted against gene names. Black arrows mark the genes with the highest upregulation in the treated $\Delta tcyB$ mutant.

Using *cummeRbund* package, differential expression of gene isoforms can also be accessed. The different obtained FPKM values of *oppD* (A) and *glnM* (B) are visible in Figure 26. In both images it can be seen that in the treated $\Delta tcyB$ mutant, the FPKM values for the isoforms TCONS_00000027 and TCONS_00001438 were higher compared to the treated WT.

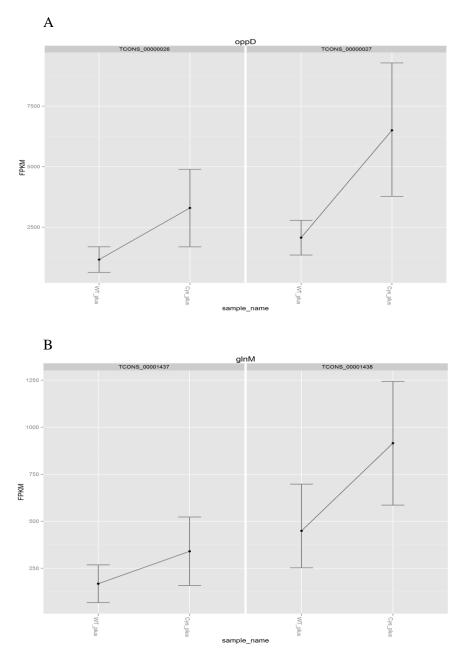


Figure 26: Differential expression of *oppD* (A) and *glnH/M* (B). Isoforms of *oppD* and *glnH/M* visualized with *cummeRbund* package of *R*. Plotted are the FPKM (Fragments per Kilobase of transcript per Million mapped reads) values against the samples; the abbreviations WT_plus and Cys_plus reflect the wildtype (treated) and $\Delta tcyB$ (treated). Mean values and standard deviations are displayed of in each case two independent experiments.

Table 33: Significantly differentially expressed genes for WT and $\Delta tcyB$ **untreated** (-). Depicted are the FPKM (Fragments Per Kilobase of transcript per Million mapped reads) values, log2 fold changes and gene descriptions. Upregulated genes are shaded in grey, downregulated genes are left blank.

gene	WT -	$\Delta t cyB$ -	log2 (FPKM 2 / FPKM 1)	Gene description
	FPKM 1	FPKM 2		
LSA_03800	766.695	343.807	- 1.1570	hypothetical protein
LSA_13190	517.663	949.523	0.8752	hypothetical protein
nrdH	4977.65	2282.22	- 1.1250	glutaredoxin-like protein nrdH

4.17 Results of *in-silico* protein prediction analysis

Altogether 287 proteins could be found containing one or several CXXC, CXXS or CXXT motifs. Most of the proteins had molecular weights of 4,500 - 24,000 (30 %) and 25,000 - 49,000 (45.6%) (Figure 27).

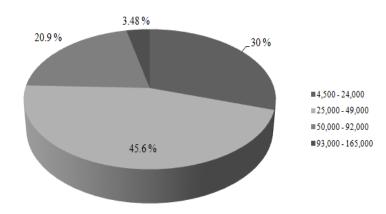


Figure 27: Distribution of *in-silico* predicted proteins with CXXC, CXXS and CXXT motif in the genome of *L. sanfranciscensis* TMW 1.1304 classified in groups with different molecular weights (MW) with corresponding percentages (total of 287 proteins was set as 100 %).

The total number was reduced to 59 selecting only proteins with CXXC (25 proteins), CXXS (21 proteins) and CXXT (13 proteins) motif near the N- terminus of the protein (amino acid position 1 - 40) as known to be specifically redox- active as summarized in Table 34 (Iqbalsyah et al. 2006).

Table 34: Selected overview of predicted proteins with CXXC, CXXS and CXXT motif(s) of <i>L. sanfranciscensis</i> TMW
1.1304. Shown are the corresponding gene numbers from NCBI and protein identification numbers, protein annotations, the
specific CXX_ signature motifs including amino acid positions, the existence of a thioredoxin-fold (marked in bold, retrieved
from PSI- BLAST) and complete length of the proteins.

No	Gene id.	Protein id (NCBI)	Description (annotation)	Signature motif	Location <u>CXXC,S,T</u> (amino acid positions)	Thioredoxin fold (yes/ no)	Length (aa)
1	LSA_04490	YP_004840829.1	DNA repair protein radA-like protein	CSNC CPNC	9- X- X- 12 24- X- X- 27	no	460
2	LSA_04700	YP_004840850.1	glutaredoxin-like protein nrdH	CIQC	21- X- X- 24	yes	88
3	LSA_06080	YP_004840964.1	thioredoxin-like protein ytpP	CPDC	39- X- X- 42	yes	117
4	LSA_08950	YP_004841227.1	thioredoxin	CGPC	28- X- X- 31	yes	101
5	LSA_09640	YP_004841296.1	ATP- dependent Clp protease ATP- binding subunit ClpX	CSFC CNEC	15- X- X- 18 37- X- X- 40	no	433
6	LSA_06150	YP_004840970.1	transcriptional repressor nrdR	CPKC CNNC	3- X- X- 6 31- X- X- 34	no	162
7	LSA_07350	YP_004841081.1	peptide methionine sulfoxide reductase	CFWC	14- X- X- 17	no	176
8	LSA_06030	YP_004840959.1	protein hit	CIFC	8- X- X- 11	no	145
9	LSA_11920	YP_004841502.1	acetyl- CoA carboxylase carboxyl transferase subunit beta	CPIC CPEC	27- X- X- 30 45- X- X- 48	no	278

No	Gene id.	Protein id (NCBI)	Description (annotation)	Signature motif	Location <u>CXXC,S,T</u> (amino acid positions)	Thioredoxin fold (yes/ no)	Length (aa)
10	LSA_06310	YP_004840986.1	50S ribosomal protein L32	CPNC CPSC	30- X- X- 33 43- X- X- 46	no	60
11	LSA_06420	YP_004840997.1	50S ribosomal protein L33	CTEC	9- X- X- 12	no	49
12	LSA_04560	YP_004840836.1	50S ribosomal protein L33	CTIC	10- X- X- 13	no	49
13	LSA_11100	YP_004841430.1	50S ribosomal protein L36	CEQC	11- X- X- 14	no	39
14	LSA_11200	YP_004841440.1	30S ribosomal protein S14	CEHC CRIC	24- X- X- 27 40- X- X- 43	no	61
15	LSA_05840	YP_004840946.1	30S ribosomal protein S14	CERC CRIC	24- X- X- 27 40- X- X- 43	no	61
16	LSA_02490	YP_004840640.1	hypothetical protein	CTRC	16- X- X- 19	no	61
17	LSA_02610	YP_004840651.1	hypothetical protein	CGPC	28- X- X- 31	yes	111
18	LSA_03130	YP_004840700.1	hypothetical protein	CKSC	3- X- X- 6	no	539
19	LSA_03750	YP_004840756.1	hypothetical protein	CLGC	34- X- X- 37	no	62
20	LSA_05060	YP_004840879.1	hypothetical protein	CRWC CDKC CVDC CQDC	10- X- X- 13 38- X- X- 41 54- X- X- 57 67- X- X- 70	no	230
21	LSA_06230	YP_004840978.1	hypothetical protein	CIGC CQRC	8- X- X- 11 42- X- X- 45	no	368
22	LSA_11380	YP_004841458.1	hypothetical protein	CTVC	30- X- X- 33 55- X- X- 58	no	216
23	LSA_08850	YP_004841218.1	hypothetical protein	CVIC	6- X- X- 9	no	352
24	LSA_10270	YP_004841357.1	hypothetical protein	CLKC CKVC	12- X- X- 15 31- X- X- 34	yes	189
25	LSA_10290	YP_004841359.1	hypothetical protein	CPIC	24- X- X- 27	no	355
1	LSA_04040	YP_004840784.1	Bifunctional protein glmU	CGKS	29- X- X- 32	no	459
2	LSA_09640	YP_004841296.1	Clp protease ATP- binding subunit ClpX	CGKS	18- X- X- 21	no	433
3	LSA_11940	YP_004841504.1	(3R)- hydroxymyristoyl- ACP dehydratase	CLKS	10- X- X- 13	no	153
4	LSA_06360	YP_004840991.1	HTH- type transcriptional regulator YodB	CLCS	14- X- X- 17	no	115
5	LSA_10040	YP_004841335.1	Isoleucyl- tRNA synthetase	CRRS	11- X- X- 14	no	956
6	LSA_13530	YP_004841638.1	membrane protein OxaA	CSNS	23- X- X- 26	no	278
7	LSA_11930	YP_004841503.1	Pyruvate carboxylase subunit A	CIGS	50- X- X- 53	no	456
8	LSA_08520	YP_004841190.1	S- adenosyl- methionine synthetase	CETS	43- X- X- 46	no	396
9	LSA_02130	YP_004840610.1	transposase insF	CYLS	30- X- X- 33	no	178
10	LSA_13500	YP_004841635.1	tRNA uridine 5- carboxymethyl- aminomethyl modification enzyme mnmG	CNPS	20- X- X- 23	no	604
11	LSA_00180	YP_004840441.1	hypothetical protein	CVLS	9- X- X- 12	no	267
12	LSA_01700	YP_004840572.1	hypothetical protein	CLSS	23- X- X- 26	no	322
13	LSA_01720	YP_004840574.1	hypothetical protein	CLQS	21- X- X- 24	no	322

No	Gene id.	Protein id (NCBI)	Description (annotation)	Signature motif	Location <u>CXXC,S,T</u> (amino acid positions)	Thioredoxin fold (yes/ no)	Length (aa)
14	LSA_02490	YP_004840640.1	hypothetical protein	CRHS	5- X- X- 8	no	61
15	LSA_02600	YP_004840650.1	hypothetical protein	CVMS	39- X- X- 42	no	246
16	LSA_03540	YP_004840738.1	hypothetical protein	CITS	8- X- X- 11	no	317
17	LSA_09320	YP_004841264.1	hypothetical protein	CFKS	49- X- X- 52	no	291
18	LSA_10270	YP_004841357.1	hypothetical protein	CLNS CNSS	15- X- X- 18 147- X- X- 150	yes	189
19	LSA_2p0013 0	YP_004841649.1	hypothetical protein	CVCS CSIS	59- X- X- 62 61- X- X- 64	no	236
20	LSA_2p0056 0	YP_004841685.1	hypothetical protein	CSTS	35- X- X- 38	no	189
21	LSA_1p0014 0	YP_004841703.1	hypothetical protein	CGVS	26- X- X- 29	no	438
1	LSA_07050	YP_004841055.1	ATP- binding/permease cydC	CLAT	21- X- X- 24	no	580
2	LSA_04510	YP_004840831.1	cysteinyl- tRNA synthetase	CGPT	29- X- X- 32	no	472
3	LSA_07490	YP_004841094.1	dihydrofolate reductase	CGYT	42- X- X- 45	no	163
4	LSA_04700	YP_004840850.1	glutaredoxin-like protein nrdH	СКМТ	24- X- X- 27	yes	88
5	LSA_10350	YP_004841365.1	glycerol phosphate lipoteichoic acid synthase 1	CLKT	3- X- X- 6	no	663
6	LSA_11550	YP_004841472.1	Lysine- specific permease	CIGT	25- X- X- 28	no	486
7	LSA_04890	YP_004840867.1	O- sialoglycoprotein endopeptidase	CDET	37- X- X- 40	no	366
8	LSA_06150	YP_004840970.1	transcriptional repressor nrdR	CQHT	6- X- X- 9	no	162
9	LSA_10220	YP_004841353.1	tRNA/rRNA methyltransferase	CAGT	23- X- X- 26	no	174
10	LSA_06500	YP_004841005.1	hypothetical protein	CKKT CNWT	7- X- X- 10 85- X- X- 88	no	172
11	LSA_06800	YP_004841035.1	hypothetical protein	CLLT	24- X- X- 27	no	119
12	LSA_01110	YP_004840525.1	hypothetical protein	CELT	14- X- X- 17	no	52
13	LSA_13440	YP_004841629.1	hypothetical protein	CFFT	27- X- X- 30	no	211

Already known genes which participate in oxidation and reduction reactions like glutaredoxin-like protein *nrdH*, thioredoxin-like protein *ytp* and thioredoxin consist of the characteristic thioredoxin-fold (Table 34). The so far uncharacterized hypothetical proteins LSA_02610 and LSA_10270 with a similar size included a thioredoxin-fold at the N- terminus of the protein. Three-dimensional structure analysis of both proteins using 3D-JIGSAW and SWISS-MODEL revealed that the typical thioredoxin-like fold with a three-layer α - β - α sandwich confirmed the previous results (see Appendix A 21 and A 22).

Applying the tight constraints of Gopal et al. (2009), taking proteins with one CXXC motif and with < 130 amino acids resulted in nine proteins for CXXC, two proteins for CXXS and three proteins for

CXXT. The hypothetical protein LSA_10270 would not have been included because it comprised of two CXXC and CXXS motifs and a size of 189 amino acids.

5 DISCUSSION

The present work demonstrates that the cystine transport permease (TcyB) and glutathione peroxidase (Gpo) regulate the redox homeostasis in *L. sanfranciscensis* besides e.g. the NADH oxidase (Nox) and glutathione reductase (GshR).

Nox is needed for a balanced NADH: NAD⁺ pool during aerobic conditions. The generation of NAD⁺ ensures the reoxidation of compounds via e.g. (lactate or alcohol) dehydrogenase reactions.

In comparison to *nox*, the mode of actions for *tcyB* and *gpo* are different which exert effects even during anaerobic growth conditions. TcyB is essential for maintenance of the intracellular thiol homeostasis through import of cystine with possible reduction to cysteine. Cystine acts not only as nutritional source in *L. sanfranciscensis;* it directly detoxifies H_2O_2 and balances the intracellular thiol pool especially during thiol stress.

Gpo degrades H_2O_2 directly via formation of GSSG and water. The dysfunction of the gene leads to metabolic pathways in which NAD⁺ generation is favored. Thus, a possible influence of the NADH: NAD⁺ ratio using so far unknown mechanism(s) besides the elimination of H_2O_2 can be suggested.

A detailed description of these findings is explained in the following sections to shed light on the general response to oxidative stress in *L. sanfranciscensis* with special focus on the role of glutathione peroxidase (Gpo) and the cystine transport permease (TcyB).

5.1 Construction of knock-out mutants, distinct growth behavior and quantification of H₂O₂

The construction of deletion mutants for thioredoxin reductase (*trxR*), redox- sensing repressor (*rex*), glutathione peroxidase (*gpo, gpx*) and cystine transport permease (*tcyB*) in *L. sanfranciscensis* DSM20451^T was carried out to further characterize their role in the redox homeostasis of *L. sanfranciscensis*. The insertional inactivation failed for *trxR* and *rex* although transformation procedure; used competent bacteria and chemicals were identical.

As all bacteria exhibit low-molecular-weight thioredoxin reductase, also *L. sanfranciscensis* possesses with <u>CAVC</u> at amino acid positions 133 - 136 the typical active site- containing CXXC motif (Lu & Holmgren 2013). Low-molecular-weight *trxB* are known for their high substrate specificity. It is known from the literature that this enzyme is essential especially under aerobic growth conditions and that reducing agents can improve the survival of deletion mutants (Serata et al. 2012). Despite the addition of DTT to mMRS plates and anaerobic incubation of the plates did not result in any knock-

out transformants for *trxR* so that it can be assumed that an inactivation in *L. sanfranciscensis* is lethal. As no deletion mutants could be obtained with *pME-1* Δ *rex*, an essential role in *L. sanfranciscensis* can also be proposed for *rex*.

For characterization of the mutants, growth in 8 different media was determined. The absence of specific media components which can be involved in redox homeostasis should give first insights in the response of the mutants. It was hypothesized that the deletion of *gpo* and *tcyB* leads to growth limitations during aerobiosis compared to the WT. Growth is impaired if an increased accumulation of ROS occurs if Gpo and TcyB are involved in detoxification mechanisms.

Looking at the minimum μ values for Δgpo and $\Delta tcyB$ indicated that Δgpo grows worst in mMRS3 (without Mn²⁺, cysteine and fructose), mMRS4 (without Mn²⁺ and fructose) and mMRS7 (preculture without Mn²⁺) during aerobic and anaerobic conditions. The $\Delta tcyB$ mutant in mMRS8 (preculture without cysteine), mMRS4 (without Mn²⁺ and fructose) followed by mMRS3 (without Mn²⁺, cysteine and fructose) and mMRS7 (preculture without Mn²⁺). The growth of Δgpo was therefore more affected by Mn²⁺, whereas growth of $\Delta tcyB$ was impaired if cysteine and Mn²⁺ were absent.

Cysteine and manganese are already known to be protective for growth and survival of LAB. Mn^{2+} acts as radical scavenger. In the published genome of *L. sanfranciscensis* TMW 1.1304, a *MntH* gene could be identified which codes for a putative manganese transporter which belongs to the family of *Nramp* (natural resistance- associated macrophage protein) proteins. The expression of Mn^{2+} transporters *MntH1* and *MntH2* during aerobiosis could be proven in *L. sanfranciscensis* TMW 1.53 in MRS with added Mn^{2+} (Jänsch et al. 2011). Cysteine with its redox active – SH group has in general distinct roles in protein folding, redox signaling and in antioxidative actions (Hung et al. 2003; Hochgräfe et al. 2007; Netto et al. 2007; Aguirre & Culotta 2012; Horsburgh et al. 2002; Rodrigues et al. 2011). However free intracellular cysteine can also be pro- oxidative in acting as reductant of free iron which leads to DNA damage (Park & ImLay 2003). Regarding the fact that the requirement for iron in LAB is low as already investigated in chemical defined media (Imbert & Blondeau 1998), the protective role of cyst(e)ine in LAB dominates.

The effect of oxygen and resulting ROS formation depended on the media as well. Diminished growth of Δgpo and $\Delta tcyB$ during aerobic incubation could only be observed in media without Mn²⁺ because μ values were lower compared to the values for anaerobic incubation. This effect was not observable for the WT. The involvement of cystine transport during aerobiosis could be already investigated. A cystine transport permease mutant (*bspA*) of *L. reuteri* BR11 [formerly classified as *L. fermentum* BR11] reached lower OD values than the WT after aerobic incubation (Hung et al. 2003).

An intracellular GSH accumulation and increased Gpo activity during aerobiosis could be seen in *Lactococcus lactis* subsp. *cremoris* SK11 (Fernándes & Steele 1993). It is not known if there exists a similar GSH accumulation mechanism in *L. sanfranciscensis*. An essential role of GSH in *L.*

sanfranciscensis seems likely as the enzymes GshR/ Gor (LSA_2p00270) and Gpo (LSA_09790) are present in the genome. As GSH synthesis is not possible, most likely GSH is transported intracellularly via specific transporters as already known from other bacteria. In *L. sanfranciscensis* TMW 1.1304 the *cydDCA* genes are present, which are organized in an operon and annotated as "ATP- binding/ permease protein". In *E. coli* this ATP- binding cassette- type transporter (*cydDC*), which is also required for cytochrome bd assembly, mediates GSH and to a minimal extent also cysteine transport (Cruz- Ramos et al. 2004; Pittman et al. 2002). The existence of *cydDC* transporter in the genomes of other LAB proposes that GSH is imported and processed (Pophaly et al. 2012b). This assumption is supported by the fact that *L. sanfranciscensis* DSM20451^T tolerance against cold stress induced by freeze- drying, freeze- thawing is increased after previous incubation with GSH (Zhang et al. 2010). The authors demonstrated that GSH prevented oxidation of membrane fatty acids through acting as electron donor for peroxide reduction which is essential in maintaining the structural and functional properties of the membrane (J. Zhang et al. 2012).

Molecular oxygen is converted into superoxide, which cannot be detoxified by SOD in *L.* sanfranciscensis. It lacks this enzyme and also the enzymes catalase, alkyl hydroperoxide reductase (Ahp) and NADH peroxidase. The elimination of superoxide and H_2O_2 can only be executed by free available Mn^{2+} . As the used mMRS2 media did not contain Mn^{2+} , especially the mutants Δgpo and $\Delta tcyB$ were not able to accumulate Mn^{2+} which is known to scavenge ROS (Archibald 1986; Archibald & Fridovich 1981; Archibald & Duong 1984). The mutants reached lower OD values because they had to face increased ROS levels. The phenomenon of Mn^{2+} accumulation is widely distributed in LAB which is proposed to be an efficient strategy as the energy for costly defense regulons can be saved (Horsburgh et al. 2002).

Due to lower growth during aerobic conditions in the absence of Mn^{2+} , it was assumed that an accumulation of H_2O_2 occurs particularly in $\Delta tcyB$ and Δgpo . It could be evidenced in LAB that H_2O_2 accumulation leads to an early entry into stationary growth phase (Torre & Garel 2000a). Inhibition of enzymes (oxidation of cysteine residues) which mediate glycolysis with concomitant decrease in biomass formation after H_2O_2 treatment could already be shown by Serrano et al. (2007a) and Vido et al. (2005). That *L. sanfranciscensis* is affected by H_2O_2 , is supported by the fact that aerobic growth of the WT in the presence of catalase resulted in faster growth (data not shown). The growth arrest after H_2O_2 shock could also be experimentally shown in this work (see results section 4.9). To experimentally validate this theory, accumulated H_2O_2 was quantified in mMRS and mMRS without Mn^{2+} using plates and a quantitative peroxide assay kit.

Significant effects for both mutants could be seen in mMRS without Mn^{2+} and during aerobic incubation. This effect could also be verified using plates with TMB and HRP because the color change for Δgpo and $\Delta tcyB$ occurred in a shorter time with an increased color intensity compared to the WT.

As the enzyme glutathione peroxidase (Gpo, Gpx) eliminates organic hydroperoxides (ROOH) and H_2O_2 with formation of water and GSSG, the higher concentration of H_2O_2 after gene loss appears intuitive. Consequently, a dysfunction in this enzyme resulted in elevated H_2O_2 levels in *L. sanfranciscensis*. A BLASTP search of the Gpo of *L. sanfranciscensis* TMW 1.1304 indicated a moderate to high (44 – 65 %) homology to glutathione peroxidase of other LAB.

The involvement of the cystine transporter in prevention of H_2O_2 accumulation was already described for a *bspA* mutant of *L. reuteri* BR11 (Hung et al. 2003). It is suggested that H_2O_2 breakdown depends on the level of extracellular cystine which changes between reduced and oxidized forms.

The color change on plates in the absence of Mn^{2+} could hardly be detected. It is known from the literature that Mn^{2+} - containing TMB- peroxidase plates with heterofermentative *Lactobacillus* species increased H_2O_2 formation (Rabe & Hillier 2003). The authors proposed that a stimulation by Mn^{2+} accounts for higher H_2O_2 levels. Nevertheless, Mn^{2+} itself can catalyze H_2O_2 formation as already outlined in the introduction section. In the present work, higher H_2O_2 formation in the presence of Mn^{2+} could also be detected using the Pierce Quantitative Peroxide Assay Kit. Thus, Mn^{2+} increased non- enzymatically the H_2O_2 production besides its role as detoxification agent.

Another observation in the plate assay was that H_2O_2 accumulation by Δnox was not detectable in the plate assay because colonies remained white. Comparing this observation with the results of the Pierce Quantitative Peroxide Assay Kit revealed, that values for both media types (mMRS, mMRS – Mn^{2+}) were above the ones quantified for the WT. Due to the deletion of NADH oxidase-2, increased H_2O_2 accumulation occurred in this strain even in the presence of Mn^{2+} and under anaerobic growth conditions. The generation of H_2O_2 within LAB is carried out by flavoproteins and different enzymes (lactate oxidase, pyruvate oxidase, NADH oxidase-1, L- amino acid oxidase etc.) as already explained in the literature (Marty- Teysset et al. 2000; Anders et al. 1970; Murphy & Condon 1984; Seki et al. 2004b). The *nox-2* activity in *L. sanfranciscensis* does not account for this effect as water instead of H_2O_2 is produced (Jänsch et al. 2011). The higher H_2O_2 levels in the Δnox mutant propose the participation of other enzymes involved in H_2O_2 accumulation in this strain as mentioned above. Retrieving genome data of *L. sanfranciscensis* TMW 1.1304, no lactate oxidase *pox-5* (EC 1.2.3.3/ LSA_00220) in H_2O_2 generation seems likely but a frameshift results in loss of gene function as described earlier (Vogel et al. 2011).

Although differences between the two detection methods existed, observations should not be overrated because the Quantitative Peroxide Assay Kit was more sensitive and reliable compared to TMB and HRP. The insolubility of TMB (solved in DMSO) in aqueous solutions, the different enzyme activity of HRP after incubation of the plates and restrictions in exact quantification are only three reasons which reduce the regular applicability.

5.2 Functional characterization of *tcyB*

The analysis with *Phobius*, which is a transmembrane protein topology and signal peptide predictor revealed, that the cystine transporter TcyB in *L. sanfranciscensis* TMW 1.1304 (LSA_08550) possesses of four predicted transmembrane segments with no signal peptide (Käll et al. 2004). A BLASTP search indicated 74% to 76% homology to cysteine ABC transporter permeases of *L. fructivorans* and *L. florum* which are part of the same phylogenetic group as *L. sanfranciscensis* (Endo et al. 2010; Salvetti et al. 2012). An integral membrane protein encoded by *bspA* locus and which is part of the L- cystine uptake system of *L. reuteri* BR11, shared 55 % homology to TcyB. Sequence homologies of 48 to 69 % to other *Lactobacillus* species proposed that *tcyB* of *L. sanfranciscensis* codes for a cystine/ cysteine ABC transporter permease.

The dysfunction of the cystine transporter in $\Delta tcyB$ was verified in mMRS and CDM with additional cystine. No growth could be detected in either mMRS (without cysteine) or CDM compared to the WT. The fact that the $\Delta tcyB$ mutant failed to grow in mMRS – cysteine proposes that the used peptone, yeast and meat extract contained only cystine and no cysteine. This assumption could be confirmed by HPLC measurement in which the cystine concentration ranged between 0.25 - 0.6 mM in used mMRS and cysteine concentrations were to low for quantification. The $\Delta tcyB$ was still able to transport cysteine which could be investigated in CDM with different concentrations of cysteine (see results section 4.7). There, $\Delta tcyB$ could even grow little better with 0.285 mM cysteine than the WT which could be an adaptation mechanism in which the cysteine transport in the mutant is increased. Proposed genes which code for proteins involved in cystine transport include LSA_01990, LSA_08550, LSA_08540 and LSA_10490 (Vogel et al. 2011). Taking the results from growth measurements in CDM, tcyB seems to be the sole transporter for cysteine in *L. sanfranciscensis* DSM 20451^T. Generally, the OD values in CDM were very low due to the absence of (oligo) peptides which are preferentially transported and metabolized in *L. sanfranciscensis*. Another reason could be the auxotrophy for twelve amino acids in this strain. Due to this, also the WT depended on cysteine.

5.3 Response of WT, Δgpo and $\Delta tcyB$ to oxidant treatment

The number of viable cells of stationary and exponentially grown bacteria after H_2O_2 and diamide treatment was tested in mMRS media. As visible in the corresponding results section 4.8, no differences in survival between WT and mutants could be detected. One possible explanation for this finding could be the nutritious incubation media. The used mMRS media comprised of components which can interfere with ROS formation (Mn²⁺, cysteine, activity of catalase in yeast and meat extract etc.) and therefore indirectly protected the mutants as already mentioned above. The survival and

shock experiment were therefore repeated in CDM which resulted in immediate cell death after application of the agents.

Another explanation for a comparable number of viable cells could be the low concentration (1 mM) of oxidants used. However, it was clearly visible in the results section 4.9, that 1 mM of H_2O_2 is sufficient to cause growth arrest in the WT and mutants during the exponential phase compared to the untreated cells. The reasons were already discussed above. Pre- experiments indicated that much higher concentrations of H_2O_2 led to cell death. Further, it is possible that effects of H_2O_2 and diamide treatment are not visible in the number of viable cells and OD measurements. The bacteria overcome these stresses without changes in cfu. Therefore, extracellular and intracellular thiol groups were determined after H_2O_2 and diamide challenge which will be described in the next passage. The last explanation would be the time of oxidant treatment. It is already known from the literature that the growth phase has enormous influence on bacterial resistance mechanisms (Merrell et al. 2003; Guzzo et al. 2000). As stationary and exponentially grown cultures were tested, an experiment with cells treated with oxidizing and reducing agents at the very beginning of the growth phase was conducted, which is discussed later.

The determination of extra- and intracellular thiol groups should clarify if thiol homeostasis of Δgpo and $\Delta tcyB$ was affected after H₂O₂ and diamide challenge. In general, thiol groups include all molecules with free –SH group like glutathione, cysteine, possible low-molecular-weight thiols etc.

 H_2O_2 treatment increased the extracellular thiol groups in $\Delta tcyB$ compared to the WT. Simultaneously intracellular thiol groups were significantly lower after H_2O_2 challenge in $\Delta tcyB$. The same trend could be observed for the WT although it was not a significant effect. Because intracellular thiol groups of $\Delta tcyB$ were not significantly lower compared to the WT, action at the outside of the bacterial cell could be one explanation. Due to the deletion of the transporter, cystine remained at the outside of the bacterial cell and interfered with H_2O_2 . Due to the missing –SH group, cystine was not captured with the used method using DTNB for quantification, although extracellular and/ or intracellular reduction into cysteine could not be excluded. Nevertheless, effective H_2O_2 elimination by cystine could be already investigated for *L. reuteri* BR 11 (Hung et al. 2003) in which cystine changed between oxidized and reduced forms, depending on the environmental conditions. This finding is supported by the fact that cystine addition prior to H_2O_2 quantification decreased the production of H_2O_2 to undetectable levels (data not shown). Another possibility of unchanged intracellular thiol groups in $\Delta tcyB$ after H_2O_2 challenge is a more effective import and cleavage of peptides to tightly control the intracellular thiol metabolism.

Another interesting finding was that the extracellular thiol groups of the untreated Δgpo were higher compared to the WT. H₂O₂ led to decreased extracellular thiol levels in this strain. An increase of intracellular thiol groups through thiol import could be excluded as a possible explanation because intracellular thiol groups were not significantly changed between the treated and untreated group. As Gpo also catalyzes the formation of GSSG and water from GSH and H_2O_2 , a deletion leads to higher intracellular levels of GSH, ROOH and H_2O_2 . To balance intracellular GSH/ GSSG levels, an export of the increasing thiols (GSH) seems likely. GSH is able to protect membrane SH groups as evidenced before (Hightower et al. 1989). However, a decrease in intracellular thiol levels could not be measured. An explanation could be that H_2O_2 led to a decrease of extracellular bound thiols (GSH) through oxidation of membrane proteins responsible for thiol binding and/ or import or simply oxidation of GSH. The increased extracellular oxidation of GSH into GSSG in the presence of H_2O_2 could already be shown in *E. coli* (Smirnova et al. 2005). As GSSG is not captured by DTNB and GSH is not oxidized in the untreated cells, higher extracellular thiol levels in the control could be measured.

Consequently, untreated bacteria seemed to have more extracellular bound thiols. It is already known that gram- positive aerobic *Firmicutes* tend to exclude cysteine residues from their exported and cytoplasmic proteins (Daniels et al. 2010). It was said that this mechanism could be of advantage because the outer membrane could function as additional barrier, which aids in regulation of cytoplasmic redox homeostasis in extreme environments. Exofacial thiol groups present in membrane proteins and/ or cell wall- bound proteins were also described in *Lactococcus lactis* (Michelon et al. 2010). They are responsible to decrease the redox potential and protect the bacterium during emerging oxidative stress. This fact evidenced that membrane (bound) proteins were so far overlooked to combat damages caused by oxidative stress in *L. sanfranciscensis*. The disturbance in the GSH/ GSSG pool, which was caused by the deletion of *gpo* could probably have opposite effects testing the *gshR* mutant of *L. sanfranciscensis* which accumulates GSSG instead of GSH. A decrease of thiol levels after fermentation of wheat dough with $\Delta gshR$ compared to the WT could be found which strengthens this assumption (Jänsch et al. 2007).

Looking at thiol groups after diamide treatment showed that the $\Delta tcyB$ mutant had significantly more extracellular thiol groups than the WT independent of the treatment. The impaired ability to transport cystine increased extracellular thiol levels in mMRS without addition of diamide. A slight trend of $\Delta tcyB$ having lower intracellular thiol groups as the WT was visible although the effect is not significant. A possibility would be that after 1 hour of diamide challenge the bacteria already adapted through other mechanisms to combat thiol stress efficiently which increased intracellular thiols. The thiol balance is kept tightly balanced to prevent possible enzyme loss, cell arrest and lethality. No significant differences in extra- or intracellular thiol groups could be observed for Δgpo . Thus thioloxidizing agent diamide seemed to have no influence on the thiol levels in this mutant. Comparing both oxidant treatments, changes in extra- and intracellular thiol groups for Δgpo and $\Delta tcyB$ were more pronounced after H₂O₂ exposure. Although no differences in cfu after oxidant challenge in mMRS could be obtained using bacteria from exponentially and stationary phase, the response of WT and mutants were also tested at the beginning of growth. For that purpose, exposure to H₂O₂, paraquat and diamide in a plate assay was carried out. Using mMRS and mMRS5 plates, Δgpo and $\Delta tcyB$ showed different growth sensitivities against oxidants in both media types compared to the WT and the control condition. Growth of Δgpo and $\Delta tcyB$ was affected in the presence of 2.5 and 5 M H₂O₂ in both media types. The presence of H₂O₂ to growing cells of Δgpo and $\Delta tcyB$ drastically affected their growth. Due to the deletions of gpoand tcyB, the mutants' resistance against H₂O₂ was strongly impaired because thiol metabolism seems to be affected as discussed above. The findings found for *L. sanfranciscensis* in the present work overlap with previous work in *L. reuteri* BR11, where cystine prevented the formation of H₂O₂ (Hung et al. 2003). The authors proposed that the breakdown of H₂O₂ depended on exogenous cystine. H₂O₂ treatment of *E. coli* cells resulted in induction of the *btuE* gene which codes for a *gpo* (Arenas et al. 2010). A *gpxA* deletion mutant in *Neisseria meningitides* showed increased sensitivity against H₂O₂ treatment whereas aerobic growth was unaffected (Moore 1996).

The Δgpo mutant was more tolerant to high concentrations of paraquat (250 and 500 mM) than the WT. Superoxide stress is better tolerated by Δgpo which is supported by the fact that in the growth tests aerobic incubation in mMRS media increased OD values in a similar way as for the WT. Contrary to these findings are the results in the literature. The deletion of the *gpoA* gene in *Neisseria meningitides* and *Streptococcus pyogenes* increased sensitivity to paraquat (King et al. 2000; Moore 1996). A $\Delta gshR$ mutant of *L. sanfranciscensis* DSM20451^T showed growth defects in the presence of paraquat in MRS media without added cysteine (Jänsch et al. 2007). One explanation for the obtained results could be the presence of Mn²⁺ in the media or an adaptation reaction which occurred in the preculture where the mutant already encountered increasing concentrations of superoxide radicals and acquired effective antioxidative mechanisms. As an increased resistance against paraquat in mMRS could be observed for $\Delta tcyB$, the last explanations could also account for the observation made in $\Delta tcyB$.

Significant effects of growth inhibition could be observed for $\Delta tcyB$ when cells were incubated with paraquat and diamide onto mMRS5 plates compared to the WT. The mutant is not able to overcome superoxide and thiol stress. Increased sensitivity to paraquat was already described in a *bspA* mutant of *L. reuteri* BR11 (Turner et al. 1999). Experiments in *Bacillus subtilis* proposed that diamide causes significant changes in the cysteine biosynthesis pathways with possible S- thiolations in protein thiols (Pöther et al. 2009). Thus, in *L. sanfranciscensis* diamide also affected the thiol metabolism. Cysteine and cystine are interconvertible sulfur- containing amino acids with sites for redox activity and electron transfer, a clear prediction regarding the efficiency of one substance over the other can't be clearly stated.

The mutants $\Delta tcyB$ and Δgpo had severe problems to grow if the surrounding milieu was oxidative. The tolerance against H₂O₂ ($\Delta tcyB$ and Δgpo) and diamide ($\Delta tcyB$) was diminished at the beginning of the growth phases. Treating the mutants in the exponential phase had no influence on the number of viable cells but changed extracellular and intracellular thiol groups. The question if the bacteria prefer reductive or oxidative growth environments should be answered applying different oxidative and reductive agents.

5.4 Effect of oxidizing and reducing agents on the growth of WT, Δgpo and $\Delta tcyB$

Testing the effects of present oxidizing (H_2O_2 , diamide) and reducing (GSH, cysteine, DTT) agents, compounds were added to mMRS before inoculation with bacteria followed.

The $\Delta tcyB$ mutant reached low OD values in the presence of 1 mM diamide, a finding which was not observable for WT and Δgpo . The sensitivity of $\Delta tcyB$ to diamide as seen in the plate assay could be confirmed in mMRS. The effect of diamide was therefore more pronounced if cells were incubated from the beginning of the growth phase. The thiol- oxidizing agent probably changed the oxidation state of present thiols like GSH, cysteine, coenzyme A etc. (Kosower & Kosower 1995). It seems that especially at the beginning of the growth phase, free SH groups were essential for *L. sanfranciscensis*. Thus, TcyB bound and transported cystine which could be reduced under specific environmental conditions to cysteine. If this mechanism was disturbed, less cysteine became available and increased thiol oxidation through diamide occurred which therefore interfered with the bacterial transport and/ or metabolism. As diamide does not selectively act on cysteine (Kosower & Kosower 1995), overall increase of oxidized thiols (GSSG, protein disulfides etc.) could have significant effects on $\Delta tcyB$. A change in extracellular or intracellular thiol groups of $\Delta tcyB$ after 1 hour of diamide challenge could not be measured. Possible reasons were already discussed in the corresponding chapter. The WT and Δgpo reached similar OD values in the presence of diamide. These results confirmed the findings of the plate sensitivity assay.

The Δgpo and $\Delta tcyB$ mutants reached higher OD values than the WT after 16 hours in the presence of H_2O_2 . This effect was contradictory to the findings already discussed in which a higher sensitivity of Δgpo compared to the WT was reported. As it could be shown in this work that Δgpo and $\Delta tcyB$ accumulated more H_2O_2 compared to the WT, the mutants possibly adapted because they were used to higher levels of H_2O_2 . The adaptation in the preculture probably helped during incubation with manually applied H_2O_2 . Nevertheless, OD values remained low already at 1 mM H_2O_2 for all strains. Another possibility lay in the fitness of the preculture of the strains which influenced the follow up culture. If the bacteria experienced stress already in earlier steps (e.g. impaired survival after cryo

culture), their response to oxidants was strongly affected. This is supported by the fact that the OD values for the WT for 5 mM – 100 mM of H₂O₂ looked similar. Due to that, the experiment was repeated for WT and Δgpo . After 5 hours, the Δgpo mutant reached OD values of 0.6 – 0.7 whereas OD values for the WT remained at 0.1 – 0.2. However, as H₂O₂ is a sensitive and active chemical which degrades rapidly, side products resulting from oxidation of media components present in mMRS during the incubation time have to be considered. The resistance against H₂O₂ was further tested in CDM to exclude possible effects of media components. Neither WT nor Δgpo showed any detectable growth, the treatment was lethal for both strains as outlined before.

Results for application of reducing agents (GSH, cysteine, DTT) between WT and mutants looked similar for the concentrations of 1 mM and 5 mM. The WT reached higher OD values with 20 mM GSH but lower values with 20 mM of cysteine compared to $\Delta tcyB$. Probably the higher extracellular thiol concentrations for $\Delta tcyB$ hinder the mutant to import further GSH. The $\Delta tcyB$ mutant failed in cysteine transport but probably acquired mechanisms increasing cysteine transport if cysteine was present in the media. This could be proven using CDM (see results section 4.7) with added cysteine where $\Delta tcyB$ reached higher OD values compared to the WT. In *L. sanfranciscensis* DSM 20451^T, GSH prevented the loss of activities of enzymes involved in glycolysis which occurred after cold challenge (J. Zhang et al. 2012). GSH had positive effects on the intactness of the membrane with increased fraction of unsaturated fatty acids which protected the bacterium against different cold treatments (Zhang et al. 2010b).

The growth effects of WT and mutants using 100 mM of reducing agents showed also differences mainly between WT and Δgpo , although the effects were not significant due to high standard deviations. The Δgpo mutant reached lower OD values after 16 hours with 100 mM GSH and DTT. A possible explanation would be that deletion of gpo increased intracellular GSH which was exported as already stated before (see section 4.10 for quantification of extracellular thiol groups). Therefore, sufficient reducing agents were present, thus the application of additional reductants impaired the growth of Δgpo . It is generally known that *Firmicutes* tolerate high concentrations of reductants (up to 100 mM) whereas growth of other bacteria is already severely affected (Daniels et al. 2010).

5.5 Changes in ORP, pO₂, pH and metabolites during fermentation

Viability and shock tests revealed no differences in the number of viable cells between WT and mutants during the exponential phase. Therefore, strains were fermented in mMRS with recording of ORP, pO_2 and pH values to detect possible differences. Further, the experiment should verify if there exist any connections between the concentration of extracellular thiol groups and redox potential

development as described for *Lactococcus lactis* (Michelon et al. 2010), *E. coli* and *Bacillus subtilis* (Oktyabrskii & Smirnova 2012).

The redox potential curves for WT and Δgpo looked similar. It was assumed that Δgpo reaches lower E_h values compared to the WT due to its ability to increase extracellular thiol levels through GSH export. However, this assumption could not be confirmed as the redox potential between hour 4 and 18 lay above the E_h of the WT. The mutant needed little longer than the WT to reduce present oxygen, which goes along with previous investigations that the strain has additionally to cope with increased ROS (due to higher H₂O₂). The strain was in a more oxidative state than the WT which therefore would explain the more positive ORP values. As these were not significantly different between WT and Δgpo , the importance should not be overrated.

The redox potential of $\Delta tcyB$ looked different to the E_h of the WT. The $\Delta tcyB$ mutants needed much longer for reduction of present oxygen in the media. The explanation could be again the delayed growth in mMRS because lower E_h values were firstly reached in the exponential phase of growth. The mutant needed longer to adapt, possibly due to the disturbance of cystine transport which allocates reducing equivalents and minimizes produced H₂O₂.

The redox potential curve of Δnox stayed relatively constant (E_h values > 270 mV) and the pO₂ curve was similar to the one observed for $\Delta tcyB$. In the exponential phase of growth (between hour 4 and 10), E_h even rose. Consequently, deletion of NADH oxidase-2 (H₂O producing) resulted not in a decrease of E_h in *L. sanfranciscensis*. When all oxygen was reduced, E_h values dropped again to initial values. These results confirmed the ones obtained from of a $\Delta noxE$ mutant of *Lactococcus lactis* (Tachon et al. 2010). The authors suggested that elimination of oxygen by *noxE* was necessary to reduce the media especially during the early growth phase and that enzymes of the ETC also contributed slightly to oxygen removal. As *L. sanfranciscensis* has no functional ETC, the oxygen elimination potential in this strain depends possibly on *nox-2* activity (Jänsch et al. 2011). This is an interesting finding because redox potential measurements have not been carried out before in this mutant. Further, the results for Δnox evidenced that the hypothesis of extracellular thiol groups which can also account for the reducing activity could not be confirmed. The increase in thiol groups of Δnox (0.034 mM) did not lead to a fall in E_h values. Similar thiol levels (0.029 – 0.030 mM) could be found for WT, Δgpo and $\Delta tcyB$ which support this finding.

Significant differences between WT and mutants in produced metabolites could be measured for lactate, ethanol and mannitol. In the first 8 hours, all mutants produced less lactate compared to the WT. The Δnox mutant reached lower lactate concentrations after 8 and 24 hours. As Δgpo and $\Delta tcyB$ grew slower than the WT, this effect was probably due to delayed growth because after 24 hours the concentrations equal the ones for the WT. As *nox-2* of *L. sanfranciscensis* forms H₂O and NAD⁺ from NADH and oxygen, a deletion results in higher NADH₂ and lower NAD⁺ levels. The formation of

lactate from pyruvate via lactate dehydrogenase generates NAD^+ which is important to balance the $NAD^+/NADH_2$ pool as visible in Figure 28.

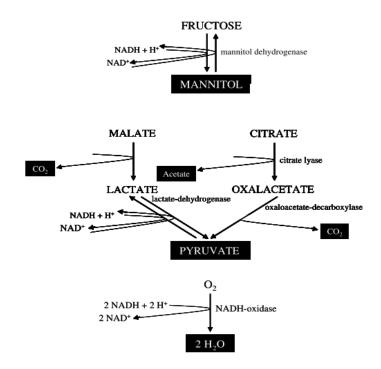


Figure 28: Reactions of potential electron acceptors upon carbohydrate fermentation by *L. sanfranciscensis*, taken from Corsetti & Settanni (2007).

Simultaneously, ethanol concentrations after 8 and 24 hours of Δnox were significantly increased compared to the WT. It is said that *L. sanfranciscensis* directs the carbon flux towards ethanol when reduced pyridine nucleotides were sufficiently regenerated in glycolysis (Jänsch et al. 2011; Knorr und Ehrmann 2001). A significantly higher ethanol concentration after 24 hours fermentation could also be seen for Δgpo . A possibly high and newly regenerated NADH₂ pool could explain this. The involvement of Gpo in generation of NADH₂ was not described in the literature, although an indirect link to GshR could be found in which NAD(P)H₂ served as electron donor to generate GSH.

WT and mutants showed no big differences in maltose, fructose and glucose consumption. The $\Delta tcyB$ mutant needed longer to make use of maltose, glucose and fructose because of its slower growth. Although it is known that *L. sanfranciscensis* uses fructose exclusively as an external electron acceptor (Jänsch et al. 2011, see also Figure 28), it can be assumed that it can also be converted to generate energy due to discrepancies in conversion rates from fructose to mannitol.

Significant differences could be seen for the quantity of produced mannitol. Exclusively Δgpo and Δnox produced significantly more mannitol compared to the WT. The regeneration of reducing equivalents via NAD(P)H- linked mannitol dehydrogenase and finally ATP generation from acetyl phosphate could represent the reasons for mannitol production (Martinez et al. 1963; Korakli & Vogel 2003).

Probably Δgpo and Δnox produced more mannitol to dispose of a high NADH₂ pool which is concomitantly regenerated and which supports also the previous observation of increased ethanol production. External electron acceptors were necessary to balance the overall electron flow. Consequently, both strains benefited somehow from increased mannitol production, firstly in the regeneration of NAD⁺ and secondly in increased mannitol formation. Mannitol is known to scavenge hydroxyl radicals in bacteria (Efiuvwevwere et al. 1999), yeasts (Chaturvedi & Bartiss 1997), plants (Shen et al. 1997; Jennings et al. 1998), fungi (Ruijter et al. 2003) and others. Besides its antioxidative capacity this sugar alcohol can serve as carbon source, osmoregulator, as compatible solute etc.. As Δgpo and Δnox produced more H₂O₂ as investigated in this work, the role of mannitol accumulation as antioxidative agent was likely as it already occurred in plants after different stress stimuli (Hare et al. 1998; Chiang et al. 2005) and it played a significant role in the survival of *Lactococcus lactis* after heat stress (Efiuvwevwere et al. 1999).

Similar end concentrations of fructose but higher concentrations of mannitol for Δgpo and Δnox after 24 hours could also lead to the assumption that mannitol was not only produced from fructose. Maybe other sugars from peptone, yeast or meat extract were equally converted. However, the mannitol dehydrogenase (MDH) of *L. sanfranciscensis* is known to take only fructose because no reduction activity for glucose, arabinose, xylose or mannose could be seen (Korakli & Vogel 2003). Another possibility would be that MDH which uses NADP⁺ or NAD⁺ as cofactor has different activities in the presence of increased NAD(P)H levels.

No differences in quantification of amino acids could be seen. As mMRS as complex media included yeast and meat extract with peptides and proteins, conclusions in respect of consumption and synthesis of single amino acids was not possible.

5.6 Distribution of "redox genes" in different LAB

Redox genes which were widely distributed mainly in *L. plantarum*, *L. brevis* and *L. paracasei* strains included *trxR*, *gpo*, thioredoxin-like protein (*ytpP*), *npx*, transcriptional regulator *spx* and genes probably involved in reactions of ETC (cytochrome B, nitrate reductase, *nox*).

The ubiquitous nature of thioredoxin reductase and thioredoxin-like proteins explained the high amount of positive PCR signals. Nevertheless, negative results occurred in some *L. paralimentarius* and *L. fermentum* strains.

Only a selection of formerly designed primers could be used for screening purposes. The problems in primer design included the description of gene annotations in the LAB genomes and diminished sequence similarities especially in dehydrogenase genes or small genes involved in actions against oxidative stress. For example, conserved regions in ferredoxin reductase genes were minimal, which resulted in limitations in primer design and many negative results. Even the use of protein sequences for primer design and application of different concentrations of magnesium to increase primer binding could only marginally improve this discrepancy. False- negative results occurred which is supported by a negative signal for the *gpo* gene in *L. sanfranciscensis* TMW 1.53 although the gene is present in the genome. Another problem was the finding of a suitable positive control because primer design was carried out on the basis of DNA or protein sequences of several LAB.

The screening of aroma relevant genes like phenolic acid decarboxylase (Pdc), alpha-L-Arabinfuranosidase (AFN) and ferulic acid esterase (Fae) is not connected to redox homeostasis or antioxidative actions in LAB but shall give additional information about the usability of "redox-active" strains in dough fermentations with possible reactions involved in formation of aroma compounds besides the strains' "redox activity".

Based on the number of positive PCR results, selected strains were classified into five groups. The growth in presence of H_2O_2 and diamide was tested to get information if there are any connections between positive PCR results and tolerance against peroxide and thiol stress. Analyzing the growth curves indicated that results were not clear. Three of five groups (*L. plantarum*, *L. sanfranciscensis* and *L. fermentum*) showed no differences between presence of "redox genes" and tolerance against applied stressors, whereas PCR results for *L. brevis* and *L. pontis* of a different "antioxidative potential" could be confirmed. PCR Screening has several limitations besides the ones mentioned above. The only presence of "redox" genes does not imply that transcription and translation occurs resulting in "redox- active" proteins. Further, it is not sufficiently known if all of the above chosen "redox genes" used for PCR screening are involved in tolerance against peroxide and thiol stress in the chosen LAB.

In general, the PCR screening was conducted to give a first overview of the distribution of "redox" genes in different LAB. So far, many of the examined strains could be successfully applied in buckwheat sourdoughs including metabolite analysis and thus their practical usability even in gluten-free matrices could be successfully confirmed in our group (Capuani et al. 2014).

5.7 Transcriptional response of *L. sanfranciscensis* TMW 1.1304

Transcriptional analysis has the potential to quantify the mRNA levels and give information, which other genes besides the ones so far described participate in redox reactions. *L. sanfranciscensis* as typical sourdough bacterium is exposed to different environmental stimuli during fermentation. Microarray analysis was used to get insight into the overall transcriptional response of *L. sanfranciscensis* in MRS media in the presence of oxygen, fructose and *Candida humilis*, consequently factors which typically occur in sourdough environments. The dominance of *Candida humilis* in sourdough fermentations besides *L. sanfranciscensis* was described in the literature (Meroth, Walter, et al. 2003; Meroth, Hammes, et al. 2003). Especially the question should be answered if the cultivation with maltose- negative *C. humilis* has positive or negative effects for *L. sanfranciscensis*.

Overall, the majority of genes were not regulated to a statistically significant extent. Significant differentially expressed genes code for small hypothetical proteins and pseudogenes with the highest variation in gene expression (see Appendices A 17 - A 19). Also a high number of differentially expressed genes coding for hypothetical proteins could be found after high pressure treatment of *L. sanfranciscensis* (Pavlovic 2006). This fact exemplified that many genes which code for small proteins or even partially functional proteins played a significant role in this minimalistic bacterium.

As oxygen and fructose both function as electron acceptors, it was expected that the transcriptional response after incubation of *L. sanfranciscensis* was similar. This hypothesis can be partially confirmed. Genes involved in carbohydrate metabolism (glucosamine-fructose-6-phosphate aminotransferase, ribokinase and β -phosphoglucomutase) were downregulated. Due to increased ATP levels, carbohydrate binding (glucosamine-fructose-6-phosphate aminotransferases) and degradation of pentoses (ribokinase) were downregulated. Further amino acid permease and adenine deaminase were upregulated to increase amino acid availability and purine metabolism which are important for cell division. Transcriptional changes of hypothetical proteins in the presence of oxygen and fructose were comparable (see A 17 and A 18) which supports the growth promoting effect of oxygen and fructose through ATP generation (Stolz et al. 1995). Contradictory findings could also be found; the

gene expressions of aminotransferase and homocysteine S- methyltransferase were upregulated in the presence of fructose and downregulated during aerobic incubation.

Distinct differences between the transcriptional response after aerobic incubation and presence of fructose included genes involved in proteolysis, lipid metabolism, nucleotide metabolism and stress response.

Only in the presence of oxygen, genes coding for peptide and amino acid transport (*oppABCDF*, amino acid permease) and protein cleavage (aminopeptidase *pepN*) were overexpressed compared to the control condition. Oligopeptides are internalized and used as carbon and nitrogen source and to replenish damaged cell wall peptides. Microarray data from *L. helveticus* CNRZ32 grown in milk also showed upregulation of genes involved in oligopeptide transport and proteolysis (Smeianov et al. 2007a). The proteolytic system of *L. sanfranciscensis* DSM 20451^T has been partially characterized and it could be shown that expression of peptide transporters was favored during exponential growth in dough (Vermeulen et al. 2005). In *L. sanfranciscensis* it is stated that limited peptide supply in dough rather than increasing nitrogen demand is responsible for this effect (Vermeulen et al. 2005). As oxygen leads to increased ATP generation, faster growth and thereby to a higher biomass, the enhanced need for (oligo) peptides seemed reasonable.

If oxygen was present, genes for fatty acid synthesis (acyl carrier protein, acetyl-coenzyme A carboxylase, (3R)-hydroxymyristoyl-ACP dehydratase) were downregulated. A repression of fatty acid synthesis could also be detected after bile stress in *L. delbrueckii* subsp. *lactis* (Burns et al. 2010), *L. rhamnosus* GG (Koskenniemi et al. 2011) and *L. casei* BL23 (Alcántara & Zúñiga 2012). A change in the composition of bacterial membrane fatty acids resembles a resistance mechanism for many bacteria against diverse stressors as already outlined in the introduction section 1.7.3.

The overexpression of ATP and GMP synthase, adenine deaminase and GMP reductase in *L. sanfranciscensis* indicated that the nucleotide metabolism is activated if oxygen was present. The additional ATP formed via acetate kinase reaction (Knorr et al. 2001; Stolz et al. 1995) was used to form purines which were necessary for further growth of this bacterium.

It appeared that fructose represented less stress for *L. sanfranciscensis* than aerobic incubation because the regulatory protein *spx* and replication and repair enzyme uracil-DNA glycosylase were downregulated. In contrast, aerobic incubation activated *Clp* protease and *uvrABC* system protein A. A similar upregulation of *Clp* proteases could be seen after high pressure treatment in *L. sanfranciscensis* DSM 20451^T (Hörmann et al. 2006). Further, they were induced during heat, salt, oxidative stress, oxygen and glucose limitation in *Bacillus subtilis* (Völker et al. 1994; Gerth et al. 1998). Generally, they were also important for protein quality control in non- stressed cells (Frees et al. 2007). The same role could be observed in *Lactococcus lactis* (Frees & Ingmer 1999; Ingmer et al. 1999). The presence of oxygen accelerated distinct metabolic steps to generate ATP production. However it can also have side effects because an increase of ROS (e.g. by H_2O_2) occurred which can further lead to damages on proteins, DNA and lipids.

The *uvrABC* complex is involved in DNA repair through excision of a 12 - 13 nucleotide fragment which is replaced by DNA polymerase (Sancar & Rupp 1983). DNA damages which induce *uvrABC* occur after acid stress and stress caused by UV light in *L. helveticus* CNBL1156 (Cappa et al. 2005). A significant higher expression of *uvrABC* could also be measured after H_2O_2 stress in *Bacillus subtilis* (Mostertz, Scharf, Hecker, Homuth 2004). A finding which could not be supported in *E. coli* (ImLay & Linn 1987). In summary, *L. sanfranciscensis* compensated stress caused by oxygen and therefore ROS exposure with increased protein folding/ degradation and DNA repair mechanisms.

The transcriptional response of *L. sanfranciscensis* in co- cultivation with *C. humilis* resembled the response after aerobic incubation in respect of protein, carbohydrate and lipid metabolism. The whole *opp* operon (*oppABCDF*), the aminopeptidase *pepN*, aminotransferases A and amino acid permease were upregulated whereas genes for carbohydrate (β -phosphoglucomutase, gluconokinase, ribokinase) and lipid metabolism (enoyl-ACP reductase, acetyl-CoA carboxylase carboxyl transferase, S-malonyltransferase) were downregulated.

Remarkably, the number of genes involved in stress responses was increased during co- cultivation with *C. humilis* compared to aerobic incubation. Besides upregulation of *Clp* protease and *uvrABC* as observed in the presence of oxygen, gene expressions of thioredoxin, universal stress protein (*uspA*), molecular chaperone *GroES*, multidrug resistance protein and ABC transporter and peptide methionine sulfoxide reductase (*msrA*) were increased.

Thioredoxins are small proteins which become oxidized during oxidative stress as already outlined in the introduction section 1.3.2.2. The essentiality of thioredoxin- thioredoxin reductase system as major thiol/disulfide redox system in LAB was described in the literature (Serata et al. 2012). In *Bacillus subtilis*, thioredoxins act as thiol- disulfide oxidoreductases on the outer side of the cytoplasmic membrane (Möller & Hederstedt 2008). Expression of thioredoxin was induced after H_2O_2 and diamide challenge (Jobin et al. 1999; Uziel et al. 2004) and sensitivity against both oxidants was increased in *trxA* mutants of *Rhodobacter sphaeroides* (Li et al. 2003). It seemed that the co-cultivation with *C. humilis* caused partially a stress response in *L. sanfranciscensis* which is comparable to peroxide and thiol stress known from other bacteria.

It is known from previous work that upregulation of *uspA* occurred during different stress stimuli. The *uspA* was upregulated during p- coumaric acid and peroxide stress in *L. plantarum* (Reverón et al. 2012; Stevens 2008). A significant higher expression of *uspA* after cold challenge supplemented with GSH was also observed in *L. sanfranciscensis* DSM 20451^T (J. Zhang et al. 2012). No overexpression of *uspA* could be seen for *L. helveticus* CNRZ32 during normal growth conditions (Smeianov et al.

2007b) which supports the fact that *L. sanfranciscensis* encountered stress in the presence of *C. humilis*.

The overexpression of the molecular chaperone *groES* indicated that this bacterium was damaged by false protein folding and/ or protein accumulation and degradation. The so- called typical heat shock genes are known to be upregulated during high temperature (Li et al. 2011; Walker et al. 1999). An overproduction of *groESL* in *L. paracasei* NFBC 338 led to improved cell integrity after spray- and freeze- drying (Corcoran et al. 2006). An involvement during acid stress and subsequent adaptation was discussed for *L. bulgaricus* (Fernandez et al. 2008). The co- cultivation probably changed intracellular proteins in *L. sanfranciscensis* with possible effects on cell integrity.

The multidrug resistance systems (MDR) prevented the import of harmful compounds like antibiotics which are necessary for bacterial survival (Konings et al. 1997). The upregulation of multidrug resistance protein and multidrug resistance ABC transporter proposed that *C. humilis* produced compounds which were toxic for *L. sanfranciscensis* because proteins for active export of these compounds were activated.

Peptide methionine sulfoxide reductases (*msrA*, *msrB*) reduce oxidized methionine residues back into methionine as already described in introduction section 1.7.1. Increased expression could be detected after peroxide and superoxide stress in *Bacillus subtilis* (Mostertz, Scharf, Hecker, Homuth 2004). Two mutants ($\Delta msrA$ and $\Delta msrB$) of *Enterococcus faecalis* showed elevated sensitivity to H₂O₂ (Zhao et al. 2010). These facts evidence that co- cultivation with *C. humilis* led somehow to increased oxidations of methionine. One possibility was the increased production of oxidants (H₂O₂, superoxide etc.) in *C. humilis* which can permeate freely through membranes and damage intracellular proteins of *L. sanfranciscensis*. As this bacterium prefers a reductive environment during growth, the co-cultivation probably oxidizes the surroundings with the described effect of methionine oxidation.

Beside the involvement of oxidative stress genes, one lactate dehydrogenase (LDH) was over- , the other underexpressed. The gene L-2-hydroxyisocaproate dehydrogenase (Malate DH, LSA_04670) was overexpressed as well. The formation of lactate or malate from pyruvate is regulated depending on the intracellular NAD⁺/ NADH ratio.

The visualization with *iPath2* revealed that besides the downregulation of lipid metabolism, the conversion and formation of the glutathione precursor peptide cysteine-glycine was upregulated. The synthesis of glutathione is unfeasible due to the absence of enzymes like γ -glutamyl-cysteine synthetase (GshA), glutathione synthetase (GshB) or glutathione biosynthesis bifunctional fusion gene (GshA/B/ GshF) and proposes therefore a role of the mentioned dipeptide. As the reactive thiol group of cysteine is still present, a role in thiol redox homeostasis in *L. sanfranciscensis* could not be excluded. The presence and "antioxidative" potential against ROS formation of low-molecular-weight thiols (LMWT) like bacillthiol (BSH) in *Bacillus subtilis* (Gaballa et al. 2010; Zuber 2009) or x-glutamylcysteine (x-GC) in *Leuconostoc* spp. (Kim et al. 2008) could already be evidenced. A possible

role of redox- active dipeptides is confirmed by the fact that several low-molecular-weight thiol compounds were detected in bacteria lacking GSH synthesis (Gaballa et al. 2010; Kim et al. 2008; Liebert et al. 2006).

Altogether, aerobic incubation represented a similar stimulus as fructose addition. The co- cultivation was not beneficial for *L. sanfranciscensis* as many genes involved in stress response were upregulated. Probably, the bacterium faced a more oxidized environment when incubated with the yeast. As the transcriptional response of the yeast could not be analyzed, the question could not be answered if it was somehow stimulated or even negatively affected by the bacterium.

Despite several advantages in the use of microarray analysis, some limitations of the experimental design have to be taken into account. The sample collection was carried out on one time point during the exponential phase. Therefore, conclusions have to be drawn carefully because changes in gene expressions are only specific for this particular growth phase. What happens during other growth phases lies beyond the informational value of this work. Lastly, as the experiment was conducted only one time, the informational value concerning the inter- assay reproducibility is limited. However, the primary aim of this experiment was to get an overview about the overall transcriptional response of *L. sanfranciscensis* during stimuli typically present in sourdough- like fermentations.

5.8 Transcriptional response of *L. sanfranciscensis* WT and $\Delta tcyB$ after diamide treatment

As diamide had several effects on $\Delta tcyB$ as observed in this work (increased sensitivity on plate assay, growth disturbances), RNA sequencing should shed light on changes in the intracellular thiol metabolism and possible adaptation reactions which can hardly be seen using other experimental methods. For this purpose, WT and $\Delta tcyB$ were treated with diamide and therefore gene expression changes could be compared (1) from the treated vs. untreated wildtype and (2) the stress responses of treated wildtype vs. treated $\Delta tcyB$ mutant. The experiment was conducted with 1 mM of diamide which seemed reasonable because growth effects on *E. coli* could be seen using 2–3 mM diamide (Hondorp & Matthews 2004).

5.8.1 Thiol stress response of the WT

The majority of upregulated genes resembled the bacterial response after thiol stress induction. Higher FPKM values could be detected for molecular chaperones *dnaJK*, the heat shock protein *grpE* and the heat shock response transcriptional regulator *hrcA*; the chaperones *groESL*, the ATP- dependent *clp* proteases *clpEPC* and the transcriptional regulator *ctsR*. In *E. coli*, the chaperones *dnaK* and *dnaJ* degrade misfolded proteins (Kandror et al. 1994). In other bacteria the proteins were induced during heat stress (Han et al. 2005; Homuth et al. 2000; Koch et al. 1998; Okamoto- Kainuma et al. 2004). High pressure treatment of *L. sanfranciscensis* DSM 20451^{T} caused overexpression of proteins with sequence homologies to heat shock proteins *dnaK*, *groEL* and *clp* proteases (Hörmann et al. 2006) as already mentioned above. The operon structure *hrcA-grpE-dnaK-dnaJ* could be described in *Bacillus subtilis* (A. Schulz 1996), *Enterococcus faecalis* (Laport et al. 2004), *Streptococcus mutans* (Lemos et al. 2001) and others. This operon was activated after heat, salt and ethanol stress in *L. sakei* (Schmidt et al. 1999).

The role of *Clp* proteases in the presence of different stressors and in general protein quality control was already described above. *Clp* expression is controlled by the regulator *ctsR* through specific binding to the promoter regions of *clpC*, *E* and *P* as known for *Bacillus subtilis* after heat stress and from several other gram- positive bacteria (Derré et al. 1999). In *Oenococcus oeni dnaK* and *groESL* are controlled by *ctsR* (Grandvalet et al. 2005), in *Streptococcus salivarius* the control of *clp* and chaperone expression was mediated through *ctsR* and *hrcA* (Chastanet & Msadek 2003). Previous findings indicated that besides *hrcA*, two *ctsR* repressor homologues exist in the genome of *L. sanfranciscensis* which also seems to be important during sublethal high pressure treatment (Pavlovic 2006).

Thiol stress in *L. sanfranciscensis* induced stress- inducible proteins which overlapped with stress responses after heat and/ or cold treatment. A tailor made stress response does not seem to exist in *L. sanfranciscensis*, a finding which could already be observed after high pressure treatment (Pavlovic et al. 2005).

Looking on amino acid metabolism, glutamine transport genes (*glnHM*, *P*, *Q*), the glutamine synthesis (*glnA*) gene and the transcriptional regulator (*glnR*) in *L. sanfranciscensis* were repressed. This unexpected mechanism was quiet surprising because a connection between thiol stress and glutamine metabolism seemed far from obvious. Glutamine represents an important nitrogen source. The function of *glnR* depends on *glnA* as investigated for other bacteria (Kormelink et al. 2012). *GlnR* regulates transcription of genes which are connected to glutamine and glutamate synthesis as well as glutamine uptake. The activity depends on intracellular glutamate, glutamine and ammonium levels (Kloosterman et al. 2006). It could be shown that *glnR* regulated ammonium transport in *L. plantarum*, *Lactococcus lactis* and others (Doroshchuk et al. 2006; Fink et al. 2002; Kormelink et al. 2012). Glutamine formation from glutamate and ammonium was carried out by glutamine synthetase (*glnA*), the equal repression of glutamine and ammonia import lowered therefore intracellular glutamine levels in *L. sanfranciscensis*.

Further, overexpression of *glmS* (glucosamine-fructose-6-phosphate aminotransferase) occurred in the WT. The formation of D-glucosamine-6-phosphate and L-glutamate from D-fructose-6-phosphate and L-glutamine is catalyzed by this enzyme. However, as the reaction goes in both directions, the generation of D-fructose-6-phosphate and L-glutamine was favored because feedback regulation repressed genes involved in glutamine synthesis and uptake as mentioned before. Thiol stress downregulated *adh2* which reflected a physiological mechanism in which the bacteria balanced its NAD⁺/ NADH pool.

5.8.2 Thiol stress response of $\Delta t cy B$

Looking at the transcriptomic data for $\Delta tcyB$, a slight upregulation of *spxA* could be observed. The *spx* protein as explained in the introduction section 1.5.3, is a member of the arsenate reductase family, which is known to be activated after different stress stimuli (low pH, presence of antibiotics, high temperatures, detergents and ROS). It leads to repression or activation of transcription of genes involved in diverse processes in several low- GC gram- positive bacteria (Nakano et al. 2003; Kajfasz et al. 2012; Smith et al. 2010). The deletion of *spx* increased sensitivity during low pH, high temperature and in the presence of oxygen, H₂O₂ and diamide (Kajfasz et al. 2012). Similar observations could be seen in *Bacillus subtilis, Staphylococcus aureus* and *Streptococcus mutans* in which *spx* influenced transcription of genes, which were associated with oxidative stress (Kajfasz et al. 2010; Pamp et al. 2006; Zuber 2009). It is known from *Bacillus subtilis* that *spx* controls cysteine

biosynthesis genes, a finding which could also be possible in *L. sanfranciscensis* regarding the fact that no upregulation of *spx* could be detected for the treated WT. The WT tolerated thiol stress much better compared to $\Delta tcyB$. Diamide disturbed the intracellular cysteine and methionine pool as investigated in *Bacillus subtilis* and *Staphylococcus aureus* (Pöther et al. 2009) by leading to posttranslational protein modifications like protein S- cysteinylation or oxidation of protein thiols (Hochgräfe et al. 2007). The redox- active thiol groups from cysteine or from converted cystine are used to reduce the increasing number of disulfide bonds. Due to the absence of a cystathionine-x-lyase in the genome of *L. sanfranciscensis* TMW 1.1304, another mechanism seem to exist for the liberation of cysteine than that one described for *L. reuteri* BR11 (Hung et al. 2003).

The expression of *nrdH* (Glutaredoxin-like protein) was significantly higher in the WT than in $\Delta tcyB$ independent of the diamide treatment (see Table 32 vs. Table 33 in results section). The mutation in the cystine transporter caused expressional changes in *nrdH* which are not influenced by diamide treatment. An increased sensitivity of $\Delta nrdH$ mutant of *Staphylococcus aureus* against H₂O₂ and diamide stress could not be observed which excluded the possibility of participation in actions against oxidative stress (Rabinovitch et al. 2010). The present work supported the finding that the *nrdH* protein seems to be connected with cystine transport and/ or metabolism in *L. sanfranciscensis*. As efficient reductant, *nrdH* proteins act on disulfide bonds of small molecules and serve as electron donors with high specificity for class Ib ribonucleotide reductases (RNR) (Rabinovitch et al. 2010). They can be found in bacteria lacking GSH, thus an effective reduction of low-molecular-weight thiols through *nrdH* in *L. sanfranciscensis* seems reasonable.

Interestingly, the whole *opp* operon (*oppD*, *oppF*, *oppB*, *oppC* and *oppA*) was higher expressed in $\Delta tcyB$ stressed with diamide. Due to a decrease in cystine transport, the bacterium adapted by increasing the oligopeptide transport to release cystine from oligopeptides. The aminopeptidase *pepN* is located right after the *oppA* gene and it could already be evidenced that both are part of the same operon (Vermeulen et al. 2005). During thiol stress the $\Delta tcyB$ mutant required more oligopeptides than the WT. Thus, cystine itself participated in balancing the thiol state in this bacterium. The increase of extracellular thiol levels of $\Delta tcyB$ vs. WT as evidenced and discussed above support this assumption. The in- time cleavage of imported oligopeptides into amino acids seems therefore highly probable and explains the unchanged concentration of intracellular thiol groups after diamide challenge discussed in section 5.3.

The higher expression of *oppD*, *oppF*, *oppB*, *oppC*, *oppA* and *pepN* in *L*. *sanfranciscensis* could already be seen during aerobic incubation and in co- cultivation with *C*. *humilis* (chapter 5.7). Thus, it seems that in the presence of different stressors (oxygen, presence of *C*. *humilis*, thiol stress), the strain expressed its oligopeptide transporters and aminopeptidase to increase tolerance against damages. Peptidases are used as carbon and nitrogen sources but are also used to recycle damaged peptides in the bacterial cell wall. In *L. sanfranciscensis*, the expression was favored during exponential growth

and when peptide supply was limited (Vermeulen et al. 2005). Nevertheless, these effects would have also been occurred in the control conditions in the WT which supports the hypothesis that increasing oligopeptide transport and cleavage has other effects in this bacterium besides replenishment of peptides and/ or amino acids. In the literature, chaperone-like functions were described in which oligopeptide transporters can assist in protein (re)folding and renaturation (Richarme & Caldas 1997). An involvement in signaling was also described as so- called peptide pheromones which were imported by oligopeptide transporters, interacted with intracellular receptors and changed gene expressions especially in gram- positive bacteria (Azcarate- peril et al. 2005; Lazazzera 2001). Thus, increased expression of oligopeptide transport could be also a stress induced mechanism. This finding could be seen for *L. bulgaricus* in which oligopeptide transport and peptidase expression were decreased after acid adaption (Fernandez et al. 2008) but also in the present work for *L. sanfranciscensis* in which *opp* was only significantly higher expressed after different challenges.

A high increase in gene expression could be measured for the hypothetical protein LSA_00850 in the $\Delta tcyB$ compared to the WT. Using BLASTP an 85 % homology of an uncharacterized lipoprotein which probably transports methionine in *L. florum* could be found. The close phylogenetic relationship of *L. florum* and *L. sanfranciscensis* could already be evidenced (Endo et al. 2010). Thiol stress caused depletion in cystine and methionine levels in $\Delta tcyB$. The significant higher expression of *relA* supports the result that starvation of intracellular amino acid occurred. An accumulation of guanosine-3'-diphosphate-5'-triphosphate [(p)ppGpp] after *relA* activation which is known as the alarmon of the stringent response could be seen after disulfide stress and amino acid deprivation (Pöther et al. 2009). The importance of *relA* in balancing growth, control of catabolic pathways and in survival was described for *Streptococcus mutans* (Nascimento et al. 2008). An accumulation of (p)ppGpp in *Enterococcus faecalis* interfered with amino acid synthesis, stress survival and tolerance against antibiotics (Abranches et al. 2009).

Diamide treatment and oxidative stress in general led to inactivation of a cobalamin- independent methionine synthase (*MetE*) in *E. coli* through oxidation of cysteine 645 (Hondorp & Matthews 2009; Hondorp & Matthews 2004). The changes in enzyme activity with a decrease in methionine synthesis led to lower intracellular methionine concentration. Diamide treatment caused S- thiolations as known for *Staphylococcus aureus* and *Bacillus subtilis* (Pöther et al. 2009). Signal transduction and enzyme activities were influenced by oxidation of thiol groups in proteins or low-molecular-weight thiols as stated for *E. coli*. A damage of free or protein- bound methionine was supported by the fact that expression of *msrB* (methionine sulfoxide reductase B) was significantly higher in treated vs. untreated $\Delta tcyB$ mutants (see A 20 in Appendix section). Oxidized methionine can be reduced back by *msrA* and *msrB*. An increase in *msrB* expression could not be detected for the WT. A similar differential expression of *msrA* could not be seen for the WT or $\Delta tcyB$ independent of the conditions. It could already be tested that *L. sanfranciscensis* TMW 1.1304 is auxotroph for cysteine and

methionine in chemical defined media (data not shown). Thus, the higher need for methionine is rather carried out via methionine transport and increase in methionine reduction through *msrB* than *de novo* methionine synthesis.

The proteins LSA_03800 and LSA_03810 have sequence homologies (52 to 79%) to branched chain amino acid (BCAA) transporters of other Lactobacillus spp. as retrieved from BLASTP search. Aligning the nucleotide sequence of LSA_03800 of L. sanfranciscensis with an azlC protein (branched chain amino acid transporter, Accession no. AJ937238) of L. reuteri LTH5531 indicated 72 % homology. Thiol stress caused by diamide resulted in a decrease of gene expression values in $\Delta t cyB$. An upregulation of genes which participated in BCAA breakdown in L. sanfranciscensis LSCE1 could be detected after acid stress (Serrazanetti et al. 2011). The cellular redox homeostasis is tightly controlled; decreasing the concentration of BCAAs similarly to glutamine concentration could be a possible mechanism. It is described for other gram- positive bacteria that changes in BCAA biosynthesis pathways occurred after diamide challenge with accompanied alleviation of valine and isoleucine concentrations (Pöther et al. 2009). The activation of the alarmon of the stringent response through (p)ppGpp accumulation was already mentioned above. It could be seen that a (p)ppGpp deletion mutant ($\Delta relAPQ$ strain) of *Streptococcus mutans* failed to grow in media without leucine and valine (Lemos et al. 2007). Besides a decrease of intracellular methionine levels, reduced BCAA levels caused relA activation. Consequently, a higher (p)ppGpp pool led to decreased expression of BCAA transporters. It was investigated for *Bacillus subtilis* that BCAAs activated *codY*, which on the other hand repressed genes involved in BCAA synthesis (Molle et al. 2003). However, this mode of action can not be transferred to L. sanfranciscensis because no codY homologue could be found in the genome of L. sanfranciscensis TMW 1.1304.

Diamide treatment increased expression of alcohol dehydrogenase adhA in $\Delta tcyB$. In the presence of external electron acceptors like fructose, citrate or oxygen, acetate formation occurred in heterofermentative LAB. As the growth media contained fructose, the formation of ethanol seems implausible because normally acetate and ATP formation via acetate kinase reaction is favored. The oxidation of ethanol generated acetaldehyde and NADH. Probably the demand of reducing equivalents like NADH of the $\Delta tcyB$ mutant was increased during thiol stress; thus, the cell boosted its ethanol formation via activation of adhA.

The genes carbamoylphosphate synthase (*pyrA*), aspartate transcarbamylase (*pyrB*), dihydroorotase (*pyrC*), dihydroorotate oxidase (*pyrD*), orotate phosphoribosyltransferase (*pyrE*) and orotidine monophosphate decarboxylase (*pyrF*) take part in de novo biosynthesis of pyrimidine nucleotides. A decrease in gene expression could be measured for *pyrB*, *C*, *E* and *F* in $\Delta tcyB$ after diamide challenge compared to the WT. In *L. sanfranciscensis* the genes *pyrDA*, *B* and *C* seem to be part of one operon whereas *pyrE* and *F* are located in another area on the chromosome. As the bacterium faced increased damages caused by thiol stress, survival had supreme priority. Therefore, pyrimidine synthesis as

energy costly process was shut down. In *L. plantarum* the *pyr* operon is regulated by transcription attenuation (Elagöz et al. 1996). It is proposed that initiation of transcription depends on the presence of uracil in the growth media (Nicoloff et al. 2005). The gene responsible for uracil transport in *L. sanfranciscensis* is called uracil permease and is not part of the *pyr* operon. It could be already investigated in CDM that *L. sanfranciscensis* is unable to grow without additional uracil, pyrimidine and purine bases (data not shown). The RNA binding regulator *pyrR*, which is part of one operon in *Bacillus subtilis* and *L. plantarum*, repressed the expression of *pyr* genes in uracil- free media (Arsène-Ploetze et al. 2006). Uracil has probably other functions in *L. sanfranciscensis* besides repressing pyrimidine synthesis because in contrast to *Bacillus subtilis* and *L. plantarum*, the *pyrR* regulator could not be found within the *pyr* operon.

One of several other advantages of RNA- sequencing was the analysis of regulations of gene isoforms. Significantly differentially expressed isoforms could be extracted from the sequencing files. Exemplarily the isoforms of *oppD/ oppF* and *glnH/ glnM* were visualized in this work. Interestingly, both gene isoforms of WT and $\Delta tcyB$ responded differently after diamide treatment. The isoforms *oppD* and *glnM* showed significant higher FPKM values in the $\Delta tcyB$ mutant compared to the WT which indicated that the deletion of the cystine transporter even influenced their gene expression. The importance of present isoforms expands the functional properties of enzymes especially in a bacterium with a minimalistic genome. However, general information about the role of specific isoforms in LAB is lacking.

Diamide led to a transcriptional response in *L. sanfranciscensis* which is known from other bacteria to occur after heat, cold or high pressure challenge. The thiol metabolism seemed to be not affected as long as thiol homeostasis can be kept balanced through extracellular thiol binding and import. Changes in the intracellular thiol homeostasis in *L. sanfranciscensis* appeared after deletion of the cystine transporter. The typical adaptation reaction included increased import of oligopeptides which are immediately cleaved into amino acids, which can partially compensate for increased intracellular thiol oxidation. Unchanged intracellular thiol levels (see results section 4.10) after diamide challenge support this statement. However, typical known "antioxidative" genes like *trxR*, *gpo* etc. were not differentially expressed in WT or $\Delta tcyB$. Probably, the bacterium performs its reactions in different steps depending on the severity of the oxidative insult and related damages.

5.9 Predicted proteins involved in thiol- disulfide reactions in L. sanfranciscensis

The constraints chosen by Gopal et al. (2009) were also used in the present work to get a first overview of proteins involved in thiol- disulfide redox metabolism in *L. sanfranciscensis*. Additionally, proteins with CXXS and CXXT motif were chosen and analyzed.

Altogether 287 proteins with CXXC, CXXS or CXXT motif could be found in *L. sanfranciscensis*. Only four proteins out of 78 have a single CXXC motif near the N- terminus, a thioredoxin-fold and consist of less than 130 amino acids. The glutaredoxin-like protein *nrdH* has also one CXXT motif. Three out of these four proteins have already been annotated as glutaredoxin-like protein *nrdH*, thioredoxin-like protein *ytp* and thioredoxin. The other remaining hypothetical protein (LSA_02610) seemed to be a thiol- disulfide isomerase or thioredoxin-fold, two CXXC and two CXXS motifs and with 189 amino acids in total, resulted in 30 – 40 % homology to a dithiol- disulfide isomerase in other gram- positive bacteria. It could be verified using 3D structure modeling that the typical thioredoxin-fold existed and that both cysteines of CXXC motif were located at the N- terminus of the α -helix. Thus, besides so far known proteins, LSA_02610 and LSA_10270 are possibly involved in thiol-disulfide redox metabolism in *L. sanfranciscensis* and require further investigations.

The other proteins with CXXC, a size smaller than 130 and no thioredoxin-fold include ribosomal proteins, LSA_02490 and LSA_03750. LSA_02490 seemed to be a cell wall anchor (cell surface) protein (30 - 40 % homology) whereas LSA_03750 is an uncharacterized hypothetical protein (63 - 81 % homology) as retrieved from BLASTP selecting only *Lactobacillales* as organisms.

The additional search for CXXS and CXXT motifs yielded no additional proteins as only two proteins with thioredoxin-fold (LSA_10270 for CXXS and LSA_04700 for CXXT) which were already selected using the CXXC motif could be obtained. This observation further reflects the importance of the proteins with CXXC motif in *L. sanfranciscensis*.

The content of Table 35 connects data received from transcriptome analysis with the results from the *in-silico* prediction protein analysis.

Table 35: Summarized table of predicted proteins which were significantly differentially expressed in transcriptome experiments using microarray and RNA- sequencing as investigated in the present work. Only proteins have been included which showed up- or downregulation (marked in grey with "yes") after microarray analysis and RNA- sequencing. The other proteins were omitted.

Gene id.	Description (annotation)	Microarray			RNA- seq
		Aerobic	Fructose	Candida	
LSA_04700	glutaredoxin-like protein nrdH	no	no	no	yes
LSA_08950	thioredoxin	no	no	yes	no
LSA_07350	peptide methionine sulfoxide reductase	no	no	yes	no

Gene id.	Description (annotation)	Microarray			RNA- seq
		Aerobic	Fructose	Candida	
LSA_04040	Bifunctional protein glmU	no	no	no	yes
LSA_13500	tRNA uridine 5- carboxylmethylaminomethyl modification enzyme mnmG	no	no	no	yes
LSA_11940	(3R)-hydroxymyristoyl-ACP dehydratase	yes	no	yes	no
LSA_06360	HTH- type transcriptional regulator YodB	no	no	yes	no
LSA_11930	Pyruvate carboxylase subunit A	no	no	yes	no
LSA_06310	50S ribosomal protein L32	no	yes	no	no
LSA_05840	30S ribosomal protein S14	no	yes	yes	no
LSA_02490	hypothetical protein	no	yes	no	no
LSA_11380	hypothetical protein	no	no	yes	no
LSA_10270	hypothetical protein	no	yes	yes	no
LSA_10290	hypothetical protein	no	no	no	yes
LSA_09320	hypothetical protein	yes	yes	no	no
LSA_2p00560	hypothetical protein	no	no	yes	no
LSA_06500	hypothetical protein	yes	no	yes	no
LSA_01110	hypothetical protein	yes	yes	yes	no

Most of the proteins with CXXC, CXXS and CXXT motif seemed to be differentially expressed when *L. sanfranciscensis* was co- cultured with *C. humilis* and in the presence of fructose. The hypothetical proteins LSA_02610 and LSA_03750 were not differentially expressed during the applied conditions which reflect that redox metabolism is complex with participation of small, not yet characterized proteins with possible diverse route of actions. The proteins LSA_02490 and LSA_10270 were downregulated when incubated with fructose (see A 18 in Appendix); the latter protein was upregulated after co- cultivation with *C. humilis* (see A 19 in Appendix). This evidences that also proteins larger than 130 amino acids can participate in thiol- disulfide reaction and that limitations of the used *in-silico* method have to be taken into account. Nevertheless, this approach illustrated an easy and cost-efficient way to screen available protein sequences without advanced knowledge in bioinformatics or the performance of extensive and time consuming experiments.

During the next step in characterization of "redox genes" in *L. sanfranciscensis*, possible gene targets for construction of knock-out mutants are given in this work. However, as redox reactions occur in many different ways and mostly intracellular, the establishment and application of suitable experimental methods which are sensitive and cost-saving should be a first objective.

6 SUMMARY

LAB are widely used as fermentation starters in the food industry. The application of suitable strains requires knowledge about their practical suitability during different environmental stress conditions. Different strain dependent mechanisms exist about the tolerance against diverse stressors like temperature, pH, pressure and presence of oxygen etc.

L. sanfranciscensis as typical wheat and rye sourdough bacterium comprises of a small genome. Despite this fact, the strain evolved a set of "antioxidative" genes which assist in the presence of variable stressors. So far the redox- active genes glutathione reductase (gshR) and NADH oxidase (nox) have already been characterized in this bacterium. They participate in thiol homeostasis and oxygen elimination.

The previous work should shed light on the importance and mode of actions of thioredoxin reductase (trxR), redox- sensing transcriptional repressor (rex), cystine transporter permease (tcyB) and glutathione peroxidase (gpo). For that purpose, knock-out construction caused by gene deletions was used to get insight into possible actions.

The distribution of genes involved in redox reactions in other LAB should provide knowledge about strains, which probably tolerate stress to a better extent. Also valuable information was required if there are any connections between the number of (positive) PCR signals and an (increased) tolerance against peroxide and thiol stress during growth.

Finally, transcriptional and *in-silico* protein prediction analysis were applied to identify unknown genes with possible participation in redox reactions.

The achieved mutants $\Delta tcyB$ and Δgpo showed diminished growth during aerobiosis in media without manganese. Quantification revealed an increased production of H₂O₂ which probably accounted for an early entry into stationary phase. Thus, cystine transporter and glutathione peroxidase were both responsible for peroxide detoxification in *L. sanfranciscensis* amongst others.

Growth experiments of WT and $\Delta tcyB$ in mMRS and CDM were carried out to investigate the specificity of the cystine transporter. It can be stated that tcyB is the sole cystine transporter in *L*. *sanfranciscensis*. The transporter can also transport cysteine.

Shocking tests were conducted to receive information if the number of viable cells between WT and mutants is affected. Neither H_2O_2 nor diamide led to changes in the viable cell number in the exponential phase of growth. However, H_2O_2 treatment during this phase resulted equally in growth stagnation for WT and mutants. The extracellular thiol groups in $\Delta tcyB$ were increased after H_2O_2 treatment whereas intracellular thiol groups were lower compared to the WT. In contrast, extracellular thiol groups of the untreated Δgpo mutant were increased. An elevated sensitivity against H_2O_2 and diamide could be seen using cells at the beginning of the exponential growth phase. Especially the

plate sensitivity assay revealed that $\Delta tcyB$ and Δgpo were more sensitive to H₂O₂ than the WT and specifically $\Delta tcyB$ tolerates diamide to a lower extent in mMRS compared to the WT. The tolerance against reducing agents (cysteine, DTT and GSH) between WT and mutants was mainly comparable and reflects the strains ability to grow much better in the presence of reducing agents compared to growth with oxidizing agents.

Fermentations with measurement of ORP, pH and pO₂ showed no significant differences between WT, $\Delta tcyB$ and Δgpo . Only $\Delta tcyB$ needed longer to reduce the present oxygen. The hypothesis of extracellular thiol groups which lead to a fall of ORP could be refused through application of the Δnox mutant. Fermentations with Δnox resulted in a positive ORP course although thiol group concentrations increased as high as for the WT, which showed a fall in ORP. Metabolite analysis was conducted to investigate possible differences in consumed substances or produced metabolites. The most remarkable differences were measured for ethanol and mannitol. An increased ethanol production after 24 hours of fermentation could be seen for Δgpo and Δnox due to increased NADH levels. Similarly, a significantly increased mannitol production could be measured for both strains although the initial fructose concentration was equal. A possible ROS scavenging mechanism in both mutants as described for other organisms could be one explanation besides an increase in NAD⁺ generation.

The PCR screening of "redox" genes using degenerated primers should lead to first conclusions about the presence and distribution of chosen "redox" genes including "antioxidative" stress genes, peptidase, dehydrogenase, and genes involved in ETC in other LAB. It could be shown that the strains *L. plantarum*, *L. brevis*, *L. pontis* and *L. paracasei* had most positive results. Testing the growth of strains with a different number of positive PCR signals in the presence of oxidative agents revealed that only for two (*L. brevis*, *L. pontis*), out of the tested five groups, the results of PCR screening could be connected to the results from growth experiments. These give first insights into the complex route of "antioxidative" actions in LAB.

The transcriptional response of *L. sanfranciscensis* was investigated using microarray analysis after stimuli, which can occur during typical sourdough fermentation (presence of oxygen, fructose and *Candida humilis*). Predominantly, hypothetical proteins and pseudogenes were differentially expressed in all tested conditions which exemplified the potential role of so far uncharacterized proteins in a bacterium with a small genome. In the presence of oxygen, the oligopeptide transport system, *Clp* proteases and exinuclease protein *uvrABC* were upregulated wheras fatty acid synthesis was downregulated. The co- cultivation with *C. humilis* led to a similar transcriptional response (e.g. upregulation of *opp*) as in the presence of oxygen. Further, genes which are associated with stress (thioredoxin, *GroES, msrA, uvrABC, uspA*) were upregulated which assumes that *L. sanfranciscensis* was negatively influenced during co- cultivation with a maltose- negative yeast.

This work focused also on the transcriptional response after thiol stress caused by diamide in the WT and the generated $\Delta tcyB$. The transcriptional response of the WT resembled the mechanisms which were known to occur after cold, heat and high pressure treatment because typical stress- associated genes were upregulated (*dnaJK*, *grpE*, *hrcA*, *groESL*, *Clp*, *ctsR*). The deletion in cystine transporter caused higher expression of *spx*, methionine transport and purine synthesis and again an upregulation of the *opp* operon. Probably, this transporter has other functions besides the replenishment of amino acids because that upregulation could already be detected after oxygen exposure and in the presence of *C. humilis*. A chaperone-like function or participation in import of signal peptides were proposed. Significantly differentially expressed isoforms could be identified.

Using *in-silico* protein prediction, proteins with CXXC, CXXS and CXXT motif near the N-terminus, a small size (< 130 amino acids) and a possible thioredoxin-fold from the published protein sequences of *L. sanfranciscensis* TMW 1.1304 were chosen. After analysis, two hypothetical proteins (LSA_02610, LSA_10270) out of 287 remained, with possible involvement in thiol- disulfide redox metabolism in *L. sanfranciscensis*.

The previous work evidenced that the cystine transporter TcyB in *L. sanfranciscensis* has an essential role during peroxide stress and in balancing the intracellular thiol homeostasis during thiol stress. Gpo participates in peroxide detoxification besides influencing the bacterial metabolism in direction to NAD⁺ generation. Therefore, both proteins are involved in the redox metabolism in *L. sanfranciscensis*. The stress response of *L. sanfranciscensis* after different stimuli tested in this work overlapped with mechanisms described before. A tailor made stress response in this minimalistic bacterium could not be observed. Transcriptional analysis and *in-silico* protein prediction revealed that many hypothetical proteins with unknown function participated in redox reactions. Based on these results, the characterization of hypothetical proteins involved in redox reactions through knock-out construction in *L. sanfranciscensis* could be the next step in future applications.

7 ZUSAMMENFASSUNG

Milchsäurebakterien werden in großem Umfang als Starterkulturen in Fermentationen der Lebensmittelindustrie verwendet. Die Anwendung von geeigneten Stämmen setzt Wissen über deren praktische Anwendbarkeit bei unterschiedlichen Umweltbedingungen voraus. Es existieren verschiedene Stamm- abhängige Mechanismen, welche an der Toleranz gegen bestimmte Stressoren wie Temperatur, pH- Wert, Druck, Anwesenheit von Sauerstoff etc. beteiligt sind.

L. sanfranciscensis als typisches Bakterium, welches sehr häufig in Weizen und Roggensauerteigen zu finden ist, verfügt über ein sehr kleines Genom. Nichtsdestotrotz entwickelte dieser Stamm ein eigenes Set an "antioxidativen" Genen, welches ihn während des Einflusses von variablen Stressoren unterstützt. Bisher wurden die redoxaktiven Gene Glutathionreduktase (gshR) und NADH oxidase (nox) in diesem Bakterium charakterisiert. Diese sind am Thiolhaushalt und in der Sauerstoffelimierung beteiligt.

Die vorliegende Arbeit sollte die Bedeutung und Wirkungsweise der Gene Thioredoxinreduktase (trxR), Redox- sensing transkriptionaler Repressor (rex), Cystintransporter (tcyB) und Glutathione peroxidase (gpo) aufzeigen. Zu diesem Zweck sollten Deletionsmutanten konstruiert werden um Einblicke in vorliegende Mechanismen zu erhalten.

Weiterhin sollte die Verteilung von Redoxgenen in anderen Milchsäurebakterien Auskunft darüber geben, ob bestimmte Stämme mit einem höheren Set an "Redoxgenen" oxidativen Stress (Peroxidund Thiolstress) besser tolerieren können oder nicht. Es sollte überprüft werden, ob die Ergebnisse des PCR- Screenings auf eine erhöhte Toleranz gegenüber Peroxid- und Thiolstress in Wachstumsversuchen übertragen werden könnnen.

Abschließend wurden Transkriptionsanalysen und *in-silico* Proteinsequenzanalysen angewendet um bisher unbekannte Gene zu identifizieren, welche an Redoxreaktionen beteiligt sein können.

Die Mutanten $\Delta tcyB$ und Δgpo zeigten schlechteres Wachstumsverhalten in der Anwesenheit von Sauerstoff im Medium ohne Mangan. Eine erhöhte Bildung von H₂O₂ in den Mutanten konnte durch Quantifizierung von H₂O₂ gemessen werden, welches wahrscheinlich zu einem verfrühten Eintritt in die stationäre Phase führte. Demnach sind der Cystintransporter und die Glutathionperoxidase in *L. sanfranciscensis* u.a. für die Detoxifizierung von H₂O₂ verantwortlich.

Wachstumsexperimente des Wildtyps und der $\Delta tcyB$ Mutante in mMRS und CDM wurden durchgeführt, um die Spezifität des Cystintransporters zu bestimmen. Es konnte gezeigt werden, dass tcyB der einzigste Cystintransporter in *L. sanfranciscensis* ist. Dieser kann ebenfalls Cystein transportieren.

Durch Schockexperimente sollte untersucht werden, ob es Unterschiede zwischen WT und Mutanten in der Zahl an lebenden Zellen gibt. Weder H₂O₂ noch Diamid führten zu Veränderungen der Lebendzellzahl in der exponentiellen Wachstumsphase. Die Behandlung mit H_2O_2 führte im WT, als auch den Mutanten, gleichermaßen zu Wachstumsstagnation. Die extrazellulären Thiolgruppen von $\Delta tcyB$ nach Behandlung mit H_2O_2 waren erhöht, wohingegen die intrazellulären Thiolgruppen, verglichen mit dem WT geringer waren. Demgegenüber waren die extrazellulären Thiolgruppen der unbehandelten Δgpo Mutante erhöht. Eine zunehmende Sensitivität gegenüber H_2O_2 und Diamid konnte bei Zellen in der Anfangsphase des exponentiellen Wachstums beobachtet werden. Besonders der Plattensensitivitätsassay zeigte, dass $\Delta tcyB$ und Δgpo sensitiver gegenüber H_2O_2 sind, verglichen mit dem WT. Speziell $\Delta tcyB$ toleriert Diamid im mMRS Medium weniger gut als der WT. Die Toleranz gegenüber reduzierenden Agenzien (Cystein, DTT und GSH) zwischen WT und Mutanten war im überwiegenden Maße vergleichbar und stellt die Fähigkeit der Stämme dar, sehr viel besser in der Anwesenheit von reduzierenden Agenzien zu wachsen, verglichen mit dem Wachstum in der Anwesenheit von oxidierenden Agenzien.

Fermentationen mit Messung des ORP, pH und pO₂ zeigten keine signifikanten Unterschiede zwischen WT, $\Delta tcyB$ und Δgpo . Nur $\Delta tcyB$ brauchte länger um den verfügbaren Sauerstoff zu reduzieren. Die Hypothese, dass die Zunahme der extrazellulären Thiolgruppen zu einer Verringerung des ORP führt, konnte unter Verwendung der Δnox Mutante nicht bestätigt werden. Die Fermentation mit Δnox resultierte in einem positiven ORP Verlauf, obwohl die extrazellulären Thiolgruppen ähnlich anstiegen wie beim WT, welcher jedoch ein deutliches Absenken der Redoxpotenzialkurve zeigte. Um Unterschiede in konsumierten bzw. produzierten Substanzen zu erhalten, wurden ebenfalls die Metabolite analysiert. Die größten Unterschiede wurden für Ethanol und Mannitol gemessen. Eine Zunahme der Ethanolproduktion nach 24 Stunden konnte für Δgpo and Δnox beobachtet werden, welches wahrscheinlich das Ergebnis eines erhöhten NADH Pools ist. In ähnlicher Weise konnte eine signifikant erhöhte Mannitolproduktion für beide Stämme bestimmt werden, obwohl die initiale Fruktosekonzentration vergleichbar war. Neben einer erhöhten Generierung von NAD⁺ könnte ein direkter Scavenging- Mechanismus der erzeugten ROS, wie bereits beschrieben für andere Organismen, eine weitere mögliche Erklärung sein.

Das PCR- Screening von "Redoxgenen" unter Verwendung von degenerierten Primern sollte zu ersten Aussagen führen bezüglich der Ausstattung und Verbreitung von ausgewählten "Redoxgenen", wie antioxidativen Stressgenen, Peptidasen, Dehydrogenasen und Genen der Elektronentransportkette in anderen Milchsäurebakterien. Stämme mit den meisten positiven PCR- Signalen waren *L. plantarum*, *L. brevis*, *L. pontis* und *L. paracasei*. Das Wachstum bestimmter Stämme mit einer unterschiedlichen Anzahl an positiven PCR- Signalen wurde in Anwesenheit von oxidativen Agenzien untersucht. Nur bei zwei (*L. brevis*, *L. pontis*) von den getesteten fünf Gruppen gab es Übereinstimmungen zwischen der Anzahl an positiven PCR- Signalen und dem Wachstum. Diese Ergebnisse erlauben erste Einblicke in die Komplexität "antioxidativer" Mechanismen in Milchsäurebakterien. Die Microarray- Analyse wurde angewendet, um die transkriptionale Antwort von *L. sanfranciscensis* auf bestimmte Stimuli zu erhalten, welche in typischen Sauerteigfermentationen vorkommen können (Anwesenheit von Sauerstoff, Fruktose und *C. humilis*). Die Mehrzahl der unterschiedlich exprimierten Gene kodierte für hypothetische Proteine sowie Pseudogene in allen getesteten Bedingungen, welches die potentielle Bedeutung der bisher uncharakterisierten Proteine in einem Bakterium mit einem sehr kleinen Genom veranschaulicht. In der Anwesenheit von Sauerstoff waren das Oligopeptidtransportsystem, die *Clp* Protease und die Exinuklease *uvrABC* hochreguliert, die Fettsäuresynthese hingegen runterreguliert. Die transkriptionale Antwort der Co- Kultivierung mit *C. humilis* ähnelte der in Anwesenheit von Sauerstoff (z. B. Hochregulation von *opp*). Weiterhin waren stress- assoziierte Gene (thioredoxin, *GroES, msrA, uvrABC, uspA*) hochreguliert, welche für einen negativen Einfluss der maltose – negativen Hefe auf *L. sanfranciscensis* sprechen.

Diese Arbeit beinhaltete ebenfalls die transkriptionale Antwort auf Thiolstress (hervorgerufen durch Diamid) des WT und der generierten $\Delta tcyB$ Mutante. Die transkriptionale Antwort des WT ähnelt den Mechanismen, die nach Kälte-, Hitze- und Hochdruckbehandlung induziert werden, da typische stressassoziierte Gene hochreguliert waren (*dnaJK*, *grpE*, *hrcA*, *groESL*, *Clp*, *ctsR*). Die Deletion des Cystintransporters führte zu erhöhter Expression von *spx*, des Methionintransporters, der Purinsynthese und erneut von *opp*. Wahrscheinlich hat dieser Transporter neben der Anreicherung von Aminosäuren andere Funktionen, da eine Hochregulierung auch in der Anwesenheit von Sauerstoff und *C. humilis* detektiert werden konnte. Eine Chaperon- ähnliche Funktion sowie die Beteiligung am Import von Signalpeptiden erscheinen wahrscheinlich. Signifikant unterschiedlich exprimierte Isoformen wurden ebenfalls identifiziert.

Ausgehend von den veröffentlichten Proteinsequenzen von *L. sanfranciscensis* TMW 1.1304 wurden Proteine mit CXXC, CXXS und CSST Motiv am N- Terminus, mit einer Größe von < als 130 Aminosäuren und mit Thioredoxinfaltung ausgewählt. Zwei hypothetische Proteine (LSA_02610, LSA_10270) von insgesamt 287 verblieben, mit einer möglichen Beteiligung im Thiol- disulfid Redoxmetabolismus in *L. sanfranciscensis*.

Die vorliegende Arbeit stellt klar heraus, dass der Cystintransporter TcyB von *L. sanfranciscensis* eine essentielle Bedeutung bei der Detoxifizierung von Peroxiden und der Aufrechterhaltung der Thiolhomöostase hat. Gpo ist, neben der Beeinflussung des bakteriellen Metabolismusses in Richtung NAD⁺ Bildung, an der Entgiftung von Peroxiden beteiligt. Beide Proteine sind demnach am Redoxmetabolismus von *L. sanfranciscensis* beteiligt. Die Stressantwort von *L. sanfranciscensis* nach verschiedenen Stimuli in dieser Arbeit überlappt mit bereits bekannten Reaktionen. Eine maßgeschneiderte Stressantwort in diesem minimalistischen Bakterium konnte nicht beobachtet werden. Sowohl die Transkriptionsanalysen, wie auch die Vorhersage an Thiol- Disulfidreaktionen beteiligter Proteine legen offen, dass viele hypothetische Proteine mit unbekannten Funktionen an Redoxreaktionen beteiligt sind. Ausgehend von diesen Ergebnissen kann in zukünftigen Experimenten

durch Knock-out Konstruktion eine weitere Charakterisierung ausgewählter hypothetischer Proteine, welche möglicherweise im Redoxmetabolismus von *L. sanfranciscensis* beteiligt sind, erfolgen.

8 **REFERENCES**

- A. Schulz, W.S., 1996. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. *Journal of Bacteriology*, 178(4), pp.1088–1093.
- Abranches, J. et al., 2009. The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis. *Journal of bacteriology*, 191(7), pp.2248–56.
- Aguirre, J.D. & Culotta, V.C., 2012. Battles with iron: manganese in oxidative stress protection. *The Journal of biological chemistry*, 287(17), pp.13541–8.
- Alcántara, C. & Zúñiga, M., 2012. Proteomic and transcriptomic analysis of the response to bile stress of Lactobacillus casei BL23. *Microbiology (Reading, England)*, 158(Pt 5), pp.1206–18.
- Allgood, G.S. & Perry, J.J., 1986. Characterization of a manganese-containing catalase from the obligate thermophile Thermoleophilum album. *Journal of bacteriology*, 168(2), pp.563–7.
- Altschul, S.F. et al., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic acids research*, 25(17), pp.3389–402.
- Anders, R.F., Hogg, D.M. & Jago, G.R., 1970. Formation of Hydrogen Peroxide by Group N Streptococci and Its Effect on Their Growth and Metabolism. *Applied and environmental microbiology*, 19(4), pp.608–612.
- De Angelis, M. & Gobbetti, M., 2004. Environmental stress responses in Lactobacillus: a review. *Proteomics*, 4(1), pp.106–22.
- De Angelis, M. & Gobbetti, M., 1999. Lactobacillus sanfranciscensis CB1: manganese, oxygen, superoxide dismutase and metabolism. *Applied microbiology and biotechnology*, 51(3), pp.358–63.
- Anjem, A., Varghese, S. & Imlay, J. a, 2009. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. *Molecular microbiology*, 72(4), pp.844–58.
- Archibald, F., 1983. Lactobacillus plantarum, an organism not requiring iron. *FEMS Microbiology Letters*, 19(1), pp.29–32.
- Archibald, F., 1986. MANGANESE : its Acquisition by and function in the lactic acid bacteria. *Critical Reviews in Microbiology*, 13(1), pp.63–109.
- Archibald, F.S. & Duong, M.N., 1984. Manganese acquisition by Lactobacillus plantarum. *Journal of bacteriology*, 158(1), pp.1–8.
- Archibald, F.S. & Fridovich, I., 1981. Manganese and Defenses against Oxygen Toxicity in Lactobacillus plantarum. *Journal Of Bacteriology*, 145(1), pp.442–451.
- Archibald, F.S. & Fridovich, I., 1981. Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. *Journal Of Bacteriology*, 146(3), pp.928–936.
- Arenas, F. a et al., 2010. The Escherichia coli btuE gene, encodes a glutathione peroxidase that is induced under oxidative stress conditions. *Biochemical and biophysical research communications*, 398(4), pp.690–4.

- Arnold, K. et al., 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. *Bioinformatics (Oxford, England)*, 22(2), pp.195–201.
- Arsène-Ploetze, F. et al., 2006. Uracil salvage pathway in Lactobacillus plantarum: Transcription and genetic studies. *Journal of bacteriology*, 188(13), pp.4777–86.
- Atichartpongkul, S. et al., 2010. Analyses of the regulatory mechanism and physiological roles of Pseudomonas aeruginosa OhrR, a transcription regulator and a sensor of organic hydroperoxides. *Journal of bacteriology*, 192(8), pp.2093–101.
- Avery, S. V, 2011. Molecular targets of oxidative stress. The Biochemical journal, 434(2), pp.201–10.
- Azcarate-peril, M.A. et al., 2005. Microarray Analysis of a Two-Component Regulatory System Involved in Acid Resistance and Proteolytic Activity in Lactobacillus acidophilus. *Applied and Environmental Microbiology*, 71, pp.5794–5804.
- B H Bielski, R.L.A. and M.W.S., 1983. A study of the reactivity of HO2/O2- with unsaturated fatty acids. *The Journal of biological chemistry*, 258(8), pp.4759–4761.
- Ballal, A. & Manna, A.C., 2010. Control of thioredoxin reductase gene (trxB) transcription by SarA in Staphylococcus aureus. *Journal of bacteriology*, 192(1), pp.336–45.
- Barnese, K. et al., 2008. Manganous phosphate acts as a superoxide dismutase. *Journal of the American Chemical Society*, 130(14), pp.4604–6.
- Bartóak, T. et al., 1994. High-Speed RP-HPLC/FL Analysis of Amino Acids After Automated Two-Step Derivatization with o-Phthaldialdehyde/3-mercaptopropionic Acid and 9-Fluorenylmethyl Chloroformate. *Journal of Liquid Chromatography*, 17(20), pp.4391–4403.
- Bates, P.A. et al., 2002. Enhancement of Protein Modeling by Human Intervention in Applying the Automatic Programs 3D-JIGSAW and 3D-PSSM. *Proteins*, 46(January), pp.39–46.
- Berger, E.A. & Heppel, L.A., 1972. A Binding Protein Involved in the Transport of Cystine and Diaminopimelic Acid in Escherichia coli. *The Journal of Biological Chemistry*, 247(23), pp.7684–7694.
- Bitoun, J.P. et al., 2012. The redox-sensing regulator Rex modulates central carbon metabolism, stress tolerance response and biofilm formation by Streptococcus mutans. *PloS one*, 7(9), p.e44766.
- Boschi-Muller, S., Gand, A. & Branlant, G., 2008. The methionine sulfoxide reductases: Catalysis and substrate specificities. *Archives of biochemistry and biophysics*, 474(2), pp.266–73.
- Brekasis, D. & Paget, M.S.B., 2003. A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2). *The EMBO journal*, 22(18), pp.4856–65.
- Brenot, A. et al., 2004. Contribution of Glutathione Peroxidase to the Virulence of Streptococcus pyogenes. *Infection and immunity*, 72(1), pp.408–413.
- Brooijmans, R. et al., 2009. Heme and menaquinone induced electron transport in lactic acid bacteria. *Microbial cell factories*, 8, p.28.
- Bruno-bárcena, J.M. et al., 2004. Expression of a Heterologous Manganese Superoxide Dismutase Gene in Intestinal Lactobacilli Provides Protection against Hydrogen Peroxide Toxicity. *Applied and environmental microbiology*, 70(8), pp.4702–4710.

- Bruyneel, B., Woestyne, M. V. & Verstraete, W., 1989. LACTIC ACID BACTERIA : MICRO-ORGANISMS ABLE TO GROW IN THE ABSENCE OF AVAILABLE IRON AND COPPER. *Biotechnology Letters*, 11(6), pp.401–406.
- Bsat, N., Chen, L. & Helmann, J.D., 1996. Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. *Journal of bacteriology*, 178(22), pp.6579–6586.
- Burguière, P. et al., 2004. Three Different Systems Participate in l-Cystine Uptake in Bacillus subtilis Three Different Systems Participate in L -Cystine Uptake in Bacillus subtilis. *Journal of Bacteriology*, 186(15), pp.4875–4884.
- Burns, P. et al., 2010. Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile. *International journal of food microbiology*, 142(1-2), pp.132–41.
- Bushweller, J.H. et al., 1994. The Nuclear Magnetic Resonance Solution Structure of the Mixed Disulfide between Escherichia coli Glutaredoxin (C14S) and Glutathione. *Journal of molecular biology*, 235, pp.1585–1597.
- Cabiscol, E., Tamarit, J. & Ros, J., 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. *International microbiology the official journal of the Spanish Society for Microbiology*, 3(1), pp.3–8.
- Cachon, R. et al., 2002. Characterisation of lactic starters based on acidification and reduction activities. *Lait*, 82(82), pp.281–288.
- Cappa, F., Cattivelli, D. & Cocconcelli, P.S., 2005. The uvrA gene is involved in oxidative and acid stress responses in Lactobacillus helveticus CNBL1156. *Research in microbiology*, 156(10), pp.1039–47.
- Capuani, A. et al., 2014. Multivariate analysis of buckwheat sourdough fermentations for metabolic screening of starter cultures. *International Journal of Food Microbiology*.
- La Carbona, S. et al., 2007. Comparative study of the physiological roles of three peroxidases (NADH peroxidase, Alkyl hydroperoxide reductase and Thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. *Molecular microbiology*, 66(5), pp.1148–63.
- Carver, T. et al., 2009. DNAPlotter: circular and linear interactive genome visualization. *Bioinformatics (Oxford, England)*, 25(1), pp.119–20.
- Chastanet, A. & Msadek, T., 2003. clpP of Streptococcus salivarius Is a Novel Member of the Dually Regulated Class of Stress Response Genes in Gram-Positive Bacteria. *Journal of bacteriology*, 185(2), pp.683–687.
- Chaturvedi, V. & Bartiss, A.N.N., 1997. Expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glycerol-defective mutant from high-salt and oxidative stress. *Journal of Bacteriology*, 179(1), pp.157–162.
- Chiang, Y. et al., 2005. Overexpression of Mannitol-1-Phosphate Dehydrogenase Increases Mannitol Accumulation and Adds Protection against chilling injury in Petunia. *Journal of America Soc. Hort. Science*, 130(4), pp.605–610.

- Choi, S.-Y. et al., 2006. The global regulator Spx functions in the control of organosulfur metabolism in Bacillus subtilis. *Journal of bacteriology*, 188(16), pp.5741–51.
- Condon, S., 1987. Responses of lactic acid bacteria to oxygen. *FEMS Microbiology Letters*, 46(3), pp.269–280.
- Corcoran, B.M. et al., 2006. Enhanced survival of GroESL-overproducing Lactobacillus paracasei NFBC 338 under stressful conditions induced by drying. *Applied and environmental microbiology*, 72(7), pp.5104–7.
- Corsetti, A. & Settanni, L., 2007. Lactobacilli in sourdough fermentation. *Food Research International*, 40(5), pp.539-558.
- Cosgrove, K. et al., 2007. Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. *Journal of bacteriology*, 189(3), pp.1025–35.
- Couto, J.A., Rozes, N. & Hogg, T., 1996. Ethanol-induced changes in the fatty acid composition of Lactobacillus hilgardii, its effects on plasma membrane fluidity and relationship with ethanol tolerance. *Journal of Applied Bacteriology*, 81, pp.126–132.
- Cruz-Ramos, H. et al., 2004. Membrane topology and mutational analysis of Escherichia coli CydDC, an ABC-type cysteine exporter required for cytochrome assembly. *Microbiology (Reading, England)*, 150(Pt 10), pp.3415–27.
- Daniels, R. et al., 2010. Disulfide bond formation and cysteine exclusion in gram-positive bacteria. *The Journal of biological chemistry*, 285(5), pp.3300–9.
- Denkel, L. a et al., 2011. Methionine sulfoxide reductases are essential for virulence of Salmonella typhimurium. *PloS one*, 6(11), p.e26974.
- Derré, I., Rapoport, G. & Msadek, T., 1999. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. *Molecular microbiology*, 31(1), pp.117–31.
- Doroshchuk, N. a., Gelfand, M.S. & Rodionov, D. a., 2006. Regulation of nitrogen metabolism in gram-positive bacteria. *Molecular Biology*, 40(5), pp.829–836.
- Dutton, R.J. et al., 2008. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. *Proceedings of the National Academy of Sciences of the United States of America*, 105(33), pp.11933–8.
- Duwat, P. et al., 2001. Respiration Capacity of the Fermenting Bacterium Lactococcus lactis and Its Positive Effects on Growth and Survival. *Journal of bacteriology*, 183(15), pp.4509–4516.
- Efiuvwevwere, B.J.. et al., 1999. Mannitol-enhanced survival of Lactococcus lactis subjected to drying. *Applied microbiology and biotechnology*, (51), pp.100–104.
- Ehrmann, M.A. & Vogel, R.F., 1998. Maltose metabolism of Lactobacillus sanfranciscensis : cloning and heterologous expression of the key enzymes, maltose phosphorylase and phosphoglucomutase. *FEMS Microbiology Letters*, 169(1), pp.81–86.

- Eisen, J.A., 2011. The RecA Protein as a Model Molecule for Molecular Systematic Studies of Bacteria: Comparison of Trees of RecAs and 16S rRNAs from the Same Species. *Journal of Molecular Evolution*, 1995(6), pp.1105–1123.
- Elagöz, A. et al., 1996. Structure and organisation of the pyrimidine biosynthesis pathway genes in Lactobacillus plantarum: a PCR strategy for sequencing without cloning. *Gene*, 182(1-2), pp.37–43.
- Elli, M. et al., 2000. Iron requirement of Lactobacillus spp. in completely chemically defined growth media. *Journal of applied microbiology*, 88(4), pp.695–703.
- Endo, A. et al., 2010. Lactobacillus florum sp. nov., a fructophilic species isolated from flowers. *International journal of systematic and evolutionary microbiology*, 60(Pt 10), pp.2478–82.
- Ezraty, B., Aussel, L. & Barras, F., 2005. Methionine sulfoxide reductases in prokaryotes. *Biochimica et biophysica acta*, 1703(2), pp.221–9.
- Fernándes, L. & Steele, J.L., 1993. Glutathione Content of Lactic Acid Bacteria. *Journal of Dairy Science*, 76(5), pp.1233–1242.
- Fernandez, A. et al., 2008. Rerouting of pyruvate metabolism during acid adaptation in Lactobacillus bulgaricus. *Proteomics*, 8(15), pp.3154–63.
- Fink, D. et al., 2002. Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). *Molecular microbiology*, 46(2), pp.331– 47.
- Fiocco, D. et al., 2010. Characterization of the CtsR stress response regulon in Lactobacillus plantarum. *Journal of bacteriology*, 192(3), pp.896–900.
- Fomenko, D.E. & Gladyshev, V.N., 2002. CxxS : Fold-independent redox motif revealed by genomewide searches for thiol / disulfide oxidoreductase function. *Protein Science*, 42(38),pp.2285– 2296.
- Fomenko, D.E. & Gladyshev, V.N., 2003. Identity and functions of CxxC-derived motifs. *Biochemistry*, 42(38), pp.11214–25.
- Fomenko, D.E., Marino, S.M. & V., and G., 2009. Functional Diversity of Cysteine Residues in Proteins and Unique Features of Catalytic Redox-active Cysteines in Thiol Oxidoreductases. *Mol Cells*, 26(3), pp.228–235.
- Foschino, R. et al., 2001. Phenotypic and genotypic aspects of Lactobacillus sanfranciscensis strains isolated from sourdoughs in Italy. *Food Microbiology*, 18(3), pp.277–285.
- Frees, D. et al., 2007. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. *Molecular microbiology*, 63(5), pp.1285–95.
- Frees, D. & Ingmer, H., 1999. ClpP participates in the degradation of misfolded protein in Lactococcus lactis. *Molecular microbiology*, 31(1), pp.79–87.
- Gaballa, A. et al., 2010. Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli. *Proceedings of the National Academy of Sciences of the United States of America*, 107(14), pp.6482–6.

- Gaudu, P. et al., 2002. Respiration capacity and consequences in Lactococcus lactis. *Antonie van Leeuwenhoek*, 82(1-4), pp.263–269.
- Gerth, U. et al., 1998. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. *Molecular microbiology*, 28(4), pp.787–802.
- Geueke, B. & Riebel, B., 2002. NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD. *Enzyme and Microbial Technology*, 32(2), pp.205–211.
- Gobbetti, M. et al., 2005. Biochemistry and physiology of sourdough lactic acid bacteria. *Trends in Food Science & Technology*, 16(1-3), pp.57–69.
- Gobbetti, M. & Corsetti, A., 1997. Lactobacillus sanfrancisco a key sourdough lactic acid bacterium : a review. *Food Micorbiology*, 14(July 1996), pp.175–187.
- Gopal, S. et al., 2009. Prediction of proteins putatively involved in the thiol: disulfide redox metabolism of a bacterium (Listeria): the CXXC motif as query sequence. *In silico biology*, 9(5-6), pp.407–14.
- Grandvalet, C., Coucheney, F. & Guzzo, J., 2005. CtsR Is the Master Regulator of Stress Response Gene Expression in Oenococcus oeni. *Journal of bacteriology*, 187(16), pp.5614–5623.
- Groot Kormelink, T. et al., 2012. Comparative genome analysis of central nitrogen metabolism and its control by GlnR in the class Bacilli. *BMC genomics*, 13(1), p.191.
- Van de Guchte, M. et al., 1989. Construction of a lactococcal expression vector : expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. *Applied and environmental microbiology*, 55(1), pp.224–228.
- Van De Guchte, M. et al., 2002. Stress responses in lactic acid bacteria. *Antonie van Leeuwenhoek*, 82(1-4), pp.187–216.
- Guerzoni, M.E., Lanciotti, R. & Cocconcelli, P.S., 2001. Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. *Microbiology (Reading, England)*, 147(Pt 8), pp.2255–64.
- Guzzo, J. et al., 2000. Regulation of stress response in Oenococcus oeni as a function of environmental changes and growth phase. *International journal of food microbiology*, 55(1-3), pp.27–31.
- Gyan, S. et al., 2006. Regulatory loop between redox sensing of the NADH/NAD(+) ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis. *Journal of bacteriology*, 188(20), pp.7062–71.
- Hammes, W.P. & Vogel, R.F., 1995. *The genera of lactic acid bacteria* 1st, Volum. B. J. . Wood & W. H. Holzapfel, eds., Glasgow G64 2NZ: Blackie Academic and Professional.
- Han, Y. et al., 2005. DNA microarray analysis of the heat- and cold-shock stimulons in Yersinia pestis. *Microbes and infection / Institut Pasteur*, 7(3), pp.335–48.
- Hare, P.D., Cress, W. a. & Van Staden, J., 1998. Dissecting the roles of osmolyte accumulation during stress. *Plant, Cell and Environment*, 21(6), pp.535–553.

- Hebert, E.M., Raya, R.R. & De Giori, G.S., 2000. Nutritional requirements and nitrogen-dependent regulation of proteinase activity of Lactobacillus helveticus CRL 1062. *Applied and environmental microbiology*, 66(12), pp.5316–21.
- Herbig, A.F. & Helmann, J.D., 2001. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. *Molecular microbiology*, 41(4), pp.849–59.
- Hightower, K.R., Reddan, J.R. & Dziedzic, D.C., 1989. Susceptibility of lens epithelial membrane SH groups to hydrogen peroxide. *Investigative ophthalmology & visual science*, 30(3), pp.569–74.
- Hochgräfe, F. et al., 2007. S-cysteinylation is a general mechanism for thiol protection of Bacillus subtilis proteins after oxidative stress. *The Journal of biological chemistry*, 282(36), pp.25981–5.
- Homuth, G. et al., 2000. Transcriptional Analysis of Major Heat Shock Genes of Helicobacter pylori. *Journal of bacteriology*, 182(15), pp.4257-4263.
- Hondorp, E.R. & Matthews, R.G., 2009. Oxidation of cysteine 645 of cobalamin-independent methionine synthase causes a methionine limitation in Escherichia coli. *Journal of bacteriology*, 191(10), pp.3407–10.
- Hondorp, E.R. & Matthews, R.G., 2004. Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli. *PLoS biology*, 2(11), p.e336.
- Hörmann, S. et al., 2006. Comparative proteome approach to characterize the high-pressure stress response of Lactobacillus sanfranciscensis DSM 20451(T). *Proteomics*, 6(6), pp.1878–85.
- Horsburgh, M.J. et al., 2002. Manganese: elemental defence for a life with oxygen. *Trends in microbiology*, 10(11), pp.496–501.
- Hung, J. et al., 2005. BspA (CyuC) in Lactobacillus fermentum BR11 is a highly expressed highaffinity L-cystine-binding protein. *Current microbiology*, 50(1), pp.33–7.
- Hung, J. et al., 2003. Cystine uptake prevents production of hydrogen peroxide by Lactobacillus fermentum BR11. *FEMS Microbiology Letters*, 227(1), pp.93–99.
- Imbert, M. & Blondeau, R., 1998. On the iron requirement of lactobacilli grown in chemically defined medium. *Current microbiology*, 37(1), pp.64–6.
- Imlay, J. a, 2013. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. *Nature reviews. Microbiology*, 11(7), pp.443–54.
- Imlay, J.A., 2003. Pathways of oxidative damage. Annual review of microbiology, 57, pp.395-418.
- Imlay, J.A. & Linn, S., 1987. Mutagenesis and Stress Responses Induced in Escherichia coli by Hydrogen Peroxide. *Journal of Bacteriology*, 169(7), pp.2967–2976.
- Ingmer, H. et al., 1999. Disruption and Analysis of the clpB , clpC , and clpE Genes in Lactococcus lactis : ClpE , a New Clp Family in Gram-Positive Bacteria. , 181(7), pp.2075–2083.
- Iqbalsyah, T.M. et al., 2006. The CXXC motif at the N terminus of an a -helical peptide. *Protein Science*, 15, pp.1945–1950.

- Jakubovics, N.S. & Jenkinson, H.F., 2001. Out of the iron age : new insights into the critical role of manganese homeostasis in bacteria. , pp.1709–1718.
- Jänsch, A. et al., 2011. Contribution of the NADH-oxidase (Nox) to the aerobic life of Lactobacillus sanfranciscensis DSM20451T. *Food microbiology*, 28(1), pp.29–37.
- Jänsch, A. et al., 2007. Glutathione Reductase from Lactobacillus sanfranciscensis DSM20451T: Contribution to Oxygen Tolerance and Thiol Exchange Reactions in Wheat Sourdoughs. *Applied and environmental microbiology*, 73(14), pp.4469–76.
- Jennings, D.B. et al., 1998. Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. *Proceedings of the National Academy of Sciences of the United States of America*, 95(25), pp.15129–33.
- Jobin, M.P. et al., 1999. Expression of the Oenococcus oeni trxA gene is induced by hydrogen peroxide and heat shock. *Microbiology (Reading, England)*, 145, pp.1245–51.
- Johnsson, T. et al., 1995. Cellular Fatty Acid profiles of lactobacillus and lactococcus strains in relation to the oleic Acid content of the cultivation medium. *Applied and Environmental Microbiology*, 61(12), pp.4497–4499.
- Jones, D.P., 2002. Redox potential of GSH/GSSG couple: assay and biological significance. *Methods in enzymology*, 348(1999), pp.93–112.
- Jordan A, Aslund F, Pontis E, Reichard P, Holmgren, A., 1997. Characterization of Escherichia coli NrdH. A GLUTAREDOXIN-LIKE PROTEIN WITH A THIOREDOXIN-LIKE ACTIVITY PROFILE. *Journal of Biological Chemistry*, 272(29), pp.18044–18050.
- Jordan A, Pontis E, Fredrik A, Hellman U, Gibert I, R.P., 1996. The Ribonucleotide Reductase System of Lactococcus lactis: CHARACTERIZATION OF AN NrdEF ENZYME AND A NEW ELECTRON TRANSPORT PROTEIN. *Journal of Biological Chemistry*, 271(15), pp.8779– 8785.
- Joseph Sambrook, D.W.R., 2001. *Molecular cloning : a laboratory manual* 3rd. ed., New York: Press, CSHL.
- Kajfasz, J.K. et al., 2012. The Spx regulator modulates stress responses and virulence in Enterococcus faecalis. *Infection and immunity*, 80(7), pp.2265–75.
- Kajfasz, J.K. et al., 2010. Two Spx Proteins Modulate Stress Tolerance, Survival, and Virulence in Streptococcus mutans. *Journal of bacteriology*, 192(10), pp.2546–2556.
- Käll, L., Krogh, A. & Sonnhammer, E.L.L., 2004. A combined transmembrane topology and signal peptide prediction method. *Journal of molecular biology*, 338(5), pp.1027–36.
- Kandler, O., 1983. Carbohydrate metabolism in lactic acid bacteria. *Antonie van Leeuwenhoek*, 49, pp.209–224.
- Kandror, O. et al., 1994. Rapid degradation of an abnormal protein in Escherichia coli involves the chaperones GroEL and GroES. *The Journal of biological chemistry*, 269(38), pp.23575–82.
- Kang, T.S., Korber, D.R. & Tanaka, T., 2013. Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1. *AMB Express*, 3(1), p.1-9.

- Kankaanpää, P. et al., 2004. Effects of Polyunsaturated Fatty Acids in Growth Medium on Lipid Composition and on Physicochemical Surface Properties of Lactobacilli. *Applied and Environmental Microbiology*, 70(7), pp.129–136.
- Kehres, D.G. et al., 2000. The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. *Molecular microbiology*, 36(5), pp.1085–100.
- Kehres, D.G. & Maguire, M.E., 2003. Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. *FEMS Microbiology Reviews*, 27(2-3), pp.263–290.
- Kim, E.-K. et al., 2008. Synthesis of gamma-glutamylcysteine as a major low-molecular-weight thiol in lactic acid bacteria Leuconostoc spp. *Biochemical and biophysical research communications*, 369(4), pp.1047–51.
- King, K.Y., Horenstein, J.A. & Michael, G., 2000. Aerotolerance and Peroxide Resistance in Peroxidase and PerR Mutants of Streptococcus pyogenes. *Journal of bacteriology*, 182(19), pp.5290–5299.
- Kloosterman, T.G. et al., 2006. Regulation of glutamine and glutamate metabolism by GlnR and GlnA in Streptococcus pneumoniae. *The Journal of biological chemistry*, 281(35), pp.25097–109.
- Knorr, R., Ehrmann, M. a & Vogel, R.F., 2001. Cloning, expression, and characterization of acetate kinase from Lactobacillus sanfranciscensis. *Microbiological research*, 156(3), pp.267–77.
- Koch, B., Kilstrup, M. & Vogensen, F.K., 1998. Induced Levels of Heat Shock Proteins in a dnaK Mutant of Lactococcus lactis. *Journal of bacteriology*, 180(15), pp.3873–3881.
- Kolter, R., 1997. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. *Journal of bacteriology*, 179(16), pp.5188–5194.
- Konings, W.N. et al., 1997. The role of transport processes in survival of lactic acid bacteria. *Antonie* van Leeuwenhoek, 71, pp.117–128.
- Kono, Y. & Fridovich, I., 1983. Isolation and characterization of the pseudocatalase of Lactobacillus plantarum. *The Journal of biological chemistry*, 258(10), pp.6015–9.
- Korakli, M. & Vogel, R.F., 2003. Purification and characterisation of mannitol dehydrogenase from Lactobacillus sanfranciscensis. *FEMS Microbiology Letters*, 220(2), pp.281–286.
- Koskenniemi, K. et al., 2011. Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. *Molecular & cellular proteomics : MCP*, 10(2), p.M110.002741.
- Kosower, N.S. & Kosower, E.M., 1995. Diamide: an oxidant probe for thiols. *Methods in enzymology*, 251(1969), pp.123–33.
- Kowalczykowski, S.C. et al., 1994. Biochemistry of homologous recombination in Escherichia coli. *Microbiological reviews*, 58(3), pp.401–65.
- Kullisaar, T. et al., 2002. Two antioxidative lactobacilli strains as promising probiotics. *International journal of food microbiology*, 72(3), pp.215–24.
- L., L. & Mirna, A., 1959. Das Redoxpotenzial von pökelladen. Die Fleischwirtschaft, 8, pp.659-666.

- Langmead, B. et al., 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome biology*, 10(3), p.R25.
- Laport, M.S. et al., 2004. Transcriptional analysis of the groE and dnaK heat-shock operons of Enterococcus faecalis. *Research in microbiology*, 155(4), pp.252–8.
- De las Rivas, B. et al., 2009. Molecular screening of wine lactic acid bacteria degrading hydroxycinnamic acids. *Journal of agricultural and food chemistry*, 57(2), pp.490–4.
- Lazazzera, B. a, 2001. The intracellular function of extracellular signaling peptides. *Peptides*, 22(10), pp.1519–27.
- Lee, J.-W. & Helmann, J.D., 2006. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. *Nature*, 440(7082), pp.363–7.
- Lemos, J. a et al., 2007. Three gene products govern (p)ppGpp production by Streptococcus mutans. *Molecular microbiology*, 65(6), pp.1568–81.
- Lemos, J.A.C., Chen, Y.M. & Burne, R.A., 2001. Genetic and Physiologic Analysis of the groE Operon and Role of the HrcA Repressor in Stress Gene Regulation and Acid Tolerance in Streptococcus mutans. *Journal of bacteriology*, 183(20), pp.6074–6084.
- Letunic, I. et al., 2008. iPath: interactive exploration of biochemical pathways and networks. *Trends in biochemical sciences*, 33(3), pp.101–3.
- Li, J. et al., 2011. Transcriptome analysis of adaptive heat shock response of Streptococcus thermophilus. *PloS one*, 6(10), p.e25777.
- Li, K., Pasternak, C. & Klug, G., 2003. Expression of the trxA gene for thioredoxin 1 in Rhodobacter sphaeroides during oxidative stress. *Archives of microbiology*, 180(6), pp.484–9.
- Liebert, M.A. et al., 2006. The many faces of glutathione in bacteria. *Antoxidants and Redox Signaling*, 8(5 & 6).
- Lim, M., Dusko, E. & Emmanuelle, M., 2000. Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. *Electrophoresis*, 21, pp.2557–2561.
- Lin, J.J. & Sancar, a, 1989. A new mechanism for repairing oxidative damage to DNA: (A)BC excinuclease removes AP sites and thymine glycols from DNA. *Biochemistry*, 28(20), pp.7979– 84.
- Liu, C.-G. et al., 2012. Redox potential control and applications in microaerobic and anaerobic fermentations. *Biotechnology advances*, pp.1–9.
- Lo, R. et al., 2009. Cystathionine gamma-lyase is a component of cystine-mediated oxidative defense in Lactobacillus reuteri BR11. *Journal of bacteriology*, 191(6), pp.1827–37.
- Lu, J. & Holmgren, A., 2013. The thioredoxin antioxidant system. *Free radical biology & medicine*, pp.1–13.
- Marnett, L.J., 2002. Oxy radicals, lipid peroxidation and DNA damage. *Toxicology*, 181-182, pp.219–22.

- Martin, J.L., 1995. Thioredoxin--a fold for all reasons. *Structure (London, England : 1993)*, 3(3), pp.245–50.
- Martinez, G., Barker, H.A. & Horecker, B.L., 1963. A Specific Mannitol Dehydrogenase from Lactobacillus brevis Mannitol Dehydrogenase. *The Journal of biological chemistry*, 238, pp.1598–1603.
- Marty-Teysset, C., De la Torre, F. & Garel, J.-R., 2000. Increased Production of Hydrogen Peroxide by Lactobacillus delbrueckii subsp . bulgaricus upon Aeration : Involvement of an NADH Oxidase in Oxidative Stress. *Applied and Environmental Microbiology*, 66(1), pp.262–267.
- Mary, J. et al., 2004. Enzymatic reactions involved in the repair of oxidized proteins. *Experimental Gerontology*, 39(8), pp.1117–1123.
- Meaney, D.F., Morrison, B. & Bass, C.R., 1990. CHEMISTRY AND BIOCHEMISTRY OF 4-HYDROXYNONENAL, MALONALDEHYDE AND RELATED ALDEHYDES. *Journal of biomechanical engineering*, 11, pp.81–128.
- Meroth, C.B., Walter, J., et al., 2003. Monitoring the Bacterial Population Dynamics in Sourdough Fermentation Processes by Using PCR-Denaturing Gradient Gel Electrophoresis Monitoring the Bacterial Population Dynamics in Sourdough Fermentation Processes by Using PCR-Denaturing Gradient Gel Ele. *Applied and environmental microbiology*, 69(1), pp.475–482.
- Meroth, C.B., Hammes, W.P. & Hertel, C., 2003. Identification and Population Dynamics of Yeasts in Sourdough Fermentation Processes by PCR-Denaturing Gradient Gel Electrophoresis. *Applied and environmental microbiology*, 69(12), pp.7453–7461.
- Merrell, D.S. et al., 2003. Growth Phase-Dependent Response of Helicobacter pylori to Iron Starvation. *Infection and immunity*, 71(11), pp.6510–6525.
- Michel, A. et al., 2006. Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. *Journal of bacteriology*, 188(16), pp.5783–96.
- Michelon, D. et al., 2010. Contribution of exofacial thiol groups in the reducing activity of Lactococcus lactis. *The FEBS journal*, 277(10), pp.2282–90.
- Molle, V. et al., 2003. Additional Targets of the Bacillus subtilis Global Regulator CodY Identified by Chromatin Immunoprecipitation and Genome-Wide Transcript Analysis. *Journal of Bacteriology*, 185(6), pp.1911–1922.
- Möller, M.C. & Hederstedt, L., 2008. Extracytoplasmic processes impaired by inactivation of trxA (thioredoxin gene) in Bacillus subtilis. *Journal of bacteriology*, 190(13), pp.4660–5.
- Montanari, C. et al., 2010. Synthesis of cyclopropane fatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses. *Food Microbiology*, 27(27), pp.493–502.
- Moore, T.D.E., 1996. Interruption of the gpxA gene increases the sensitivity of Neisseria meningitidis to paraquat. *Journal of Bacteriology*, 178(14), pp.4301–4305.
- Moriya, Y. et al., 2007. KAAS: an automatic genome annotation and pathway reconstruction server. *Nucleic acids research*, 35(Web Server issue), pp.W182–5.

- Mostertz, J., Scharf, C., Hecker, M., Homuth, G., 2004. Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. *Microbiology*, 150(2), pp.497–512.
- Murphy, M.G. & Condon, S., 1984. Correlation of oxygen utilization and hydrogen peroxide accumulation with oxygen induced enzymes in Lactobacillus plantarum cultures. Archives of Microbiology, 138, pp.44–48.
- Nakajima, H. et al., 2003. The Screening of Hydrogen Peroxide-Producing Lactic Acid Bacteria and Their Application to Inactivating Psychrotrophic Food-Borne Pathogens. *Current Microbiology*, 47(3), pp.231–236.
- Nakano, S. et al., 2002. Multiple Pathways of Spx (YjbD) Proteolysis in Bacillus subtilis. *Journal of Bacteriology*, 184(13), pp.3664–3670.
- Nakano, S. et al., 2005. Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx. *Molecular microbiology*, 55(2), pp.498–510.
- Nakano, S. et al., 2003. Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. *Proceedings of the National Academy of Sciences of the United States of America*, 100(23), pp.13603–8.
- Narberhaus, F., 1999. Negative regulation of bacterial heat shock genes. *Molecular Microbiology*, 31(1), pp.1–8.
- Nascimento, M.M. et al., 2008. Role of RelA of Streptococcus mutans in global control of gene expression. *Journal of bacteriology*, 190(1), pp.28–36.
- Netto, L.E.S. et al., 2007. Reactive cysteine in proteins: protein folding, antioxidant defense, redox signaling and more. *Comparative biochemistry and physiology. Toxicology & pharmacology : CBP*, 146(1-2), pp.180–93.
- Neubauer, H. et al., 1994. Mechanism of maltose uptake and glucose excretion in Lactobacillus sanfrancisco. *Journal of bacteriology*, 176(10), pp.3007–12.
- Nicoloff, H. et al., 2005. Repression of the pyr Operon in Lactobacillus plantarum Prevents Its Ability To Grow at Low Carbon Dioxide Levels. *Journal of Bacteriology*, 187(6), pp.2093–2104.
- Oh, S.-Y., Shin, J.-H. & Roe, J.-H., 2007. Dual role of OhrR as a repressor and an activator in response to organic hydroperoxides in Streptomyces coelicolor. *Journal of bacteriology*, 189(17), pp.6284–92.
- Ohtsu, I. et al., 2010. The L-cysteine/L-cystine shuttle system provides reducing equivalents to the periplasm in Escherichia coli. *The Journal of biological chemistry*, 285(23), pp.17479–87.
- Okamoto-Kainuma, A. et al., 2004. Cloning and characterization of the dnaKJ operon in Acetobacter aceti. *Journal of bioscience and bioengineering*, 97(5), pp.339–42.
- Oktyabrskii, O.N. & Smirnova, G. V., 2012. Redox potential changes in bacterial cultures under stress conditions. *Microbiology*, 81(2), pp.131–142.
- Oktyabrsky, O.N. & Smirnova, G. V., 1993. Changes in redox potential of Escherichia coli culture and in extracellular glutathione status under osmotic shock. *Bioelectrochemistry and Bioenergetics*, 32(3), pp.287–294.

- Pagels, M. et al., 2010. Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus. *Molecular microbiology*, 76(5), pp.1142–61.
- Palyada, K. et al., 2009. Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni. *BMC genomics*, 10, p.481.
- Pamp, S.J. et al., 2006. Spx Is a Global Effector Impacting Stress Tolerance and Biofilm Formation in Staphylococcus aureus. *Journal of bacteriology*, 188(13), pp.4861–70.
- Pandey, A., Bringel, F. & Meyer, J., 1994. Iron requirement and search for siderophores in lactic acid bacteria. *Applied Microbiology and Biotechnology*, 40, pp.735–739.
- Panmanee, W., Vattanaviboon, P. & Leslie, B., 2006. Novel Organic Hydroperoxide-Sensing and Responding Mechanisms for OhrR, a Major Bacterial Sensor and Regulator of Organic Hydroperoxide Stress. *Journal of Bacteriology*, 188(4), pp.1389–1395.
- Park, J.-M., Han, N.S. & Kim, T.-J., 2007. Rapid detection and isolation of known and putative alpha-L-arabinofuranosidase genes using degenerate PCR primers. *Journal of microbiology and biotechnology*, 17(3), pp.481–9.
- Park, S. & Imlay, J.A., 2003. High Levels of Intracellular Cysteine Promote Oxidative DNA Damage by Driving the Fenton Reaction. *Journal of Bacteriology*, 185(6), pp.1942–1950.
- Pavlovic, M., 2006. Genexpression und -regulation bei Lactobacillus sanfranciscensis unter subletalem Hochdruck.
- Pavlovic, M. et al., 2005. Transcriptional response reveals translation machinery as target for high pressure in Lactobacillus sanfranciscensis. *Archives of microbiology*, 184(1), pp.11–7.
- Pedersen, M.B. et al., 2012. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. *Annual review of food science and technology*, 3, pp.37–58.
- Pesakhov, S. et al., 2007. Effect of hydrogen peroxide production and the Fenton reaction on membrane composition of Streptococcus pneumoniae. *Biochimica et biophysica acta*, 1768(3), pp.590–7.
- Pittman, M.S. et al., 2002. Cysteine is exported from the Escherichia coli cytoplasm by CydDC, an ATP-binding cassette-type transporter required for cytochrome assembly. *The Journal of biological chemistry*, 277(51), pp.49841–9.
- Poole, L. et al., 2000. STREPTOCOCCUS MUTANS H2O2-FORMING NADH OXIDASE IS AN ALKYL HYDROPEROXIDE REDUCTASE PROTEIN. *Free radical biology & medicine*, 28(1), pp.108–120.
- Pophaly, S.D. et al., 2012a. Current status and emerging role of glutathione in food grade lactic acid bacteria. *Microbial cell factories*, 11(1), p.114.
- Pophaly, S.D. et al., 2012b. Current status and emerging role of glutathione in food grade lactic acid bacteria. *Microbial cell factories*, 11(1), p.114.
- Pöther, D.-C. et al., 2009. Diamide triggers mainly S Thiolations in the cytoplasmic proteomes of Bacillus subtilis and Staphylococcus aureus. *Journal of bacteriology*, 191(24), pp.7520–30.

- Prasad, J., Mcjarrow, P. & Gopal, P., 2003. Heat and Osmotic Stress Responses of Probiotic Lactobacillus rhamnosus HN001 (DR20) in Relation to Viability after Drying. *Applied and Environmental Microbiology*, 001(2), pp.917–925.
- Rabe, L.K. & Hillier, S.L., 2003. Optimization of Media for Detection of Hydrogen Peroxide Production by Lactobacillus Species. *Journal of Clinical Microbiology*, 41(7), pp.3260–3264.
- Rabinovitch, I. et al., 2010. Staphylococcus aureus NrdH redoxin is a reductant of the class Ib ribonucleotide reductase. *Journal of bacteriology*, 192(19), pp.4963–72.
- Randazzo, C.L. et al., 2005. Bacterial population in traditional sourdough evaluated by molecular methods. *Journal of applied microbiology*, 99(2), pp.251–8.
- Ravcheev, D. a et al., 2012. Transcriptional regulation of central carbon and energy metabolism in bacteria by redox-responsive repressor Rex. *Journal of bacteriology*, 194(5), pp.1145–57.
- Reverón, I. et al., 2012. Genome-wide transcriptomic responses of a human isolate of Lactobacillus plantarum exposed to p-coumaric acid stress. *Molecular nutrition & food research*, 56(12), pp.1848–59.
- Richarme, G. & Caldas, T.D., 1997. Chaperone Properties of the Bacterial Periplasmic Substratebinding Proteins. *The Journal of biological chemistry*, 272(25), pp.15607–15612.
- Riebel, B.R. et al., 2003. Cofactor Regeneration of both NAD+ from NADH and NADP+ from NADPH:NADH Oxidase from Lactobacillus sanfranciscensis. *Advanced Synthesis & Catalysis*, 345(67), pp.707–712.
- Rocha, E.R., Tzianabos, A.O. & Smith, C.J., 2007. Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis. *Journal of bacteriology*, 189(22), pp.8015–23.
- Rochat, T. et al., 2006. Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk. *Applied and environmental microbiology*, 72(8), pp.5143–9.
- Rodrigues, D. et al., 2011. Influence of l-cysteine, oxygen and relative humidity upon survival throughout storage of probiotic bacteria in whey protein-based microcapsules. *International Dairy Journal*, 21(11), pp.869–876.
- Romsang, A. et al., 2013. Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress. *Journal of bacteriology*, 195(15), pp.3299–308.
- Ruijter, G.J.G. et al., 2003. Mannitol Is Required for Stress Tolerance in Aspergillus niger Conidiospores. *Eukaryotic cell*, 2(4), pp.690–698.
- Ruth Knorr, Matthias A. Ehrmann, R.F.V., 2001. Cloning, expression, and characterization of acetate kinase from Lactobacillus sanfranciscensis. *Microbiological Research*, 156(3), pp.267–277.
- Salvetti, E., Torriani, S. & Felis, G.E., 2012. The Genus Lactobacillus: A Taxonomic Update. *Probiotics and Antimicrobial Proteins*, 4(4), pp.217–226.
- Sancar, a & Rupp, W.D., 1983. A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. *Cell*, 33(1), pp.249–60.

- Sarmiento-Rubiano, L.-A. et al., 2010. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods. *BMC genomics*, 11, p.504.
- Scheirlinck, I. et al., 2007. Influence of geographical origin and flour type on diversity of lactic acid bacteria in traditional Belgian sourdoughs. *Applied and environmental microbiology*, 73(19), pp.6262–9.
- Schmidt, G., Hertel, C. & Hammes, W.P., 1999. Molecular characterisation of the dnaK operon of Lactobacillus sakei LTH681. *Systematic and applied microbiology*, 22(3), pp.321–8.
- Schomburg, I., Hofmann, O. & Baensch, C., 2000. Enzyme data and metabolic information : BRENDA, a resource for research in biology, biochemistry, and medicine. *Gene Funct. Dis*, (3-4), pp.109–118.
- Schumann, W., M. Hecker & Msadek., T., 2002. Bacillus subtilis and its closest relatives: from genes to cells- Regulation and Function of Heat-inducible genes in B. subtilis and R. L. (ed. J. A. Hoch, ed., Washington, D.C: ASM Press.
- Schurr, B.C., Behr, J. & Vogel, R.F., 2013. Role of the GAD system in hop tolerance of Lactobacillus brevis. *European Food Research and Technology*, 237(2), pp.199–207.
- Schwab, C. et al., 2008. Formation of Oligosaccharides and Polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10M in Sorghum Sourdoughs. *Cereal Chemistry*, 85(5), pp.679–684.
- Seki, M. et al., 2004a. Hydrogen Peroxide Production in Streptococcus pyogenes : Involvement of Lactate Oxidase and Coupling with Aerobic Utilization of Lactacte. *Journal of bacteriology*, 186(7), pp.2046–2051.
- Seki, M. et al., 2004b. Hydrogen Peroxide Production in Streptococcus pyogenes : Involvement of Lactate Oxidase and Coupling with Aerobic Utilization of Lactate. *Journal of Bacteriology*, 186(7), pp.2046–2051.
- Serata, M. et al., 2012. Roles of thioredoxin and thioredoxin reductase in the resistance to oxidative stress in Lactobacillus casei. *Microbiology (Reading, England)*, 158(Pt 4), pp.953–62.
- Serrano, L.M. et al., 2007a. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. *Microbial cell factories*, 6, p.29.
- Serrano, L.M. et al., 2007b. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. *Microbial cell factories*, 6, p.29.
- Serrazanetti, D.I. et al., 2011. Acid stress-mediated metabolic shift in Lactobacillus sanfranciscensis LSCE1. *Applied and environmental microbiology*, 77(8), pp.2656–66.
- Shen, B., Jensen, R.G. & Bohnert, H.J., 1997. Mannitol Protects against Oxidation by Hydroxyl Radicals. *Plant physiology*, 115(2), pp.527–532.
- Sieuwerts, S. et al., 2010. Mixed-culture transcriptome analysis reveals the molecular basis of mixedculture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. *Applied and environmental microbiology*, 76(23), pp.7775–84.

- Smeianov, V. V et al., 2007a. Comparative high-density microarray analysis of gene expression during growth of Lactobacillus helveticus in milk versus rich culture medium. *Applied and environmental microbiology*, 73(8), pp.2661–72.
- Smeianov, V. V et al., 2007b. Comparative high-density microarray analysis of gene expression during growth of Lactobacillus helveticus in milk versus rich culture medium. *Applied and environmental microbiology*, 73(8), pp.2661–72.
- Smirnova, G. V, Muzyka, N.G. & Oktyabrsky, O.N., 2005. Effects of cystine and hydrogen peroxide on glutathione status and expression of antioxidant genes in Escherichia coli. *Biochemistry*. *Biokhimiia*, 70(8), pp.926–34.
- Smith, B.T., Grossman, A.D. & Walker, G.C., 2002. Localization of UvrA and Effect of DNA Damage on the Chromosome of Bacillus subtilis. *Journal of Bacteriology*, 184(2), pp.488–493.
- Smith, W.M. et al., 2010. Molecular Mechanisms of Stress Resistance in Lactococcus lactis. *Applied Microbiology and Biotechnology*, pp.1106–1118.
- Smittle, R.B. et al., 1974. Relationship of Cellular fatty acid composition to survival of Lactobacillus bulgaricus in liquid nitrogen. *Applied Microbiology*, 27, pp.738–743.
- Stehr, M. & Lindqvist, Y., 2004. NrdH-redoxin of Corynebacterium ammoniagenes forms a domainswapped dimer. *Proteins*, 55(3), pp.613–9.
- Stevens, M.J.A. et al., 2010. Involvement of the mannose phosphotransferase system of Lactobacillus plantarum WCFS1 in peroxide stress tolerance. *Applied and environmental microbiology*, 76(11), pp.3748–52.
- Stevens, M.J.A., 2008. Transcriptome Response of Lactobacillus plantarum to Global Regulator Deficiency, Stress and other Environmental Conditions.
- Stiles, M.E. & Holzapfel, W.H., 1997. Lactic acid bacteria of foods and their current taxonomy. *International journal of food microbiology*, 36(1), pp.1–29.
- Stohl, E. a & Seifert, H.S., 2006. Neisseria gonorrhoeae DNA recombination and repair enzymes protect against oxidative damage caused by hydrogen peroxide. *Journal of bacteriology*, 188(21), pp.7645–51.
- Stolzl, P. et al., 1995. Utilization of electron acceptors by lactobacilli isolated from sourdough. *Zeitschrift für Lebensmittel-Untersuchung und -Forschung*, 201, pp.91–96.
- Streit, F. et al., 2008. Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. *Journal of applied microbiology*, 105(4), pp.1071–80.
- Sugimoto, S., Abdullah-Al-Mahin & Sonomoto, K., 2008. Molecular chaperones in lactic acid bacteria: physiological consequences and biochemical properties. *Journal of bioscience and bioengineering*, 106(4), pp.324–36.
- Suokko, A. et al., 2008. ClpL is essential for induction of thermotolerance and is potentially part of the HrcA regulon in Lactobacillus gasseri. *Proteomics*, 8(5), pp.1029–41.
- Suutari, M. & Laakso, S., 1991. Temperature adaptation in Lactobacillus fermenturn : interconversions of oleic , vaccenic and dihydrosterulic acids. *Journal of general microbiology*, 138, pp.445–450.

- Tachon, S., Brandsma, J.B. & Yvon, M., 2010. NoxE NADH oxidase and the electron transport chain are responsible for the ability of Lactococcus lactis to decrease the redox potential of milk. *Applied and environmental microbiology*, 76(5), pp.1311–9.
- Taniai, H. et al., 2008. Concerted action of lactate oxidase and pyruvate oxidase in aerobic growth of Streptococcus pneumoniae: role of lactate as an energy source. *Journal of bacteriology*, 190(10), pp.3572–9.
- Thorvaldsdóttir, H., Robinson, J.T. & Mesirov, J.P., 2013. Integrative Genomics Viewer (IGV): highperformance genomics data visualization and exploration. *Briefings in bioinformatics*, 14(2), pp.178–92.
- Török, Z. et al., 1997. Evidence for a lipochaperonin : Association of active protein- folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. *Proceedings of the National Academy of Sciences of the United States of America*, 94(March), pp.2192–2197.
- Torre, F. De & Garel, J., 2000a. Increased Production of Hydrogen Peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon Aeration : Involvement of an NADH Oxidase in Oxidative Stress, *Applied and Environmental Microbiology*, 66, pp.262–267.
- Torre, F. De & Garel, J., 2000b. Increased Production of Hydrogen Peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon Aeration : Involvement of an NADH Oxidase in Oxidative Stress Increased Production of Hydrogen Peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon Aeration: Involvement of NADH oxidase in oxidative stress. *Applied and Environmental Microbiology*, 66(1), 262-267
- Torriani, S., Felis, G.E. & Dellaglio, F., 2001. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA Gene Sequence Analysis and Multiplex PCR Assay with recA Gene-Derived Primers L. paraplantarum by recA Gene Sequence Analysis and Multiplex PCR Assay with recA Gene. Applied and Environmental Microbiology, 67(8), pp.3450–3454.
- Trapnell, C. et al., 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nature protocols*, 7(3), pp.562–78.
- Turner, M.S. et al., 1999. The bspA Locus of Lactobacillus fermentum BR11 Encodes an L-Cystine Uptake System. *Journal of bacteriology*, 181(7), pp.2192–8.
- Uziel, O. et al., 2004. Transcriptional Regulation of the Staphylococcus aureus Thioredoxin and Thioredoxin Reductase Genes in Response to Oxygen and Disulfide Stress Transcriptional Regulation of the Staphylococcus aureus Thioredoxin and Thioredoxin Reductase Genes in Response. *Journal of Bacteriology*, 186(2), pp.326–334.
- Vattanaviboon, P. et al., 2005. Important Role for Methionine Sulfoxide Reductase in the Oxidative Stress Response of Xanthomonas campestris pv. phaseoli. *Journal of Bacteriology*, 187(16), pp.5831–5836.
- Veerkamp, J.H., 1971. Fatty acid composition of Bifidobacterium and Lactobacillus strains. *Journal of bacteriology*, 108(2), pp.861–7.
- Vermeulen, N. et al., 2005. Functional Characterization of the Proteolytic System of Lactobacillus sanfranciscensis DSM 20451 T during Growth in Sourdough. *Applied and environmental microbiology*, 71(10), pp.6260–6266.

- Vesić, D. & Kristich, C.J., 2013. A Rex family transcriptional repressor influences H2O2 accumulation by Enterococcus faecalis. *Journal of bacteriology*, 195(8), pp.1815–24.
- Vido, K., Diemer, H., Dorsselaer, A. Van, et al., 2005. Roles of Thioredoxin Reductase during the Aerobic Life of Lactococcus lactis, *Journal of Bacteriology*, 187(2), pp.601-610
- Vido, K., Diemer, H., Van Dorsselaer, A., et al., 2005. Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis. *Journal Of Bacteriology*, 187(2), pp.601–610.
- Vogel, R.F. et al., 2011. Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. *Microbial cell factories*, 10 Suppl 1(Suppl 1), p.S6.
- Vogel, R.F. et al., 1994. Identification of lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. *International journal of systematic bacteriology*, 44(2), pp.223–9.
- Völker, U. et al., 1994. Analysis of the induction of general stress proteins of Bacillus subtilis. *Microbiology (Reading, England)*, 140, pp.741–52.
- Walker, D.C., Girgis, H.S. & Klaenhammer, T.R., 1999. The groESL Chaperone Operon of Lactobacillus johnsonii The groESL Chaperone Operon of Lactobacillus johnsonii †. *Applied and Environmental Microbiology*, 65(7), pp.3033–3041.
- Walter, J. et al., 2003. Identification of Lactobacillus reuteri Genes Specifically Induced in the Mouse Gastrointestinal Tract. *Applied and Environmental Microbiology*, 69(4), pp.2044–2051.
- Wang, E. et al., 2008. Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex. *Molecular microbiology*, 69(2), pp.466–78.
- Watanabe, M. et al., 2012. Effect of respiration and manganese on oxidative stress resistance of Lactobacillus plantarum WCFS1. *Microbiology (Reading, England)*, 158(Pt 1), pp.293–300.
- Wick, M. et al., 2003. Influence of Several Process Parameters on Sourdough Fermentation. *Acta Biotechnology*, 23(1), pp.51–61.
- Wiederholt, K.M. & Steele, J.L., 1994. Glutathione Accumulation in Lactococci. *Journal of Dairy Science*, 77(5), pp.1183–1188.
- Wietzke, M. & Bahl, H., 2012. The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum. *Applied microbiology and biotechnology*, 96(3), pp.749–61.
- Yamamoto, Y. et al., 2000. Role of the dpr Product in Oxygen Tolerance in Streptococcus mutans Role of the dpr Product in Oxygen Tolerance in Streptococcus mutans. *Journal of Bacteriology*, 182(13), pp.3740–3747.
- You, C. et al., 2008. Spx mediates oxidative stress regulation of the methionine sulfoxide reductases operon in Bacillus subtilis. *BMC microbiology*, 8, p.128.
- Zeller, T. & Klug, G., 2006. Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. *Die Naturwissenschaften*, 93(6), pp.259–66.
- Zhang, C. & Gänzle, M.G., 2010. Metabolic pathway of α-ketoglutarate in Lactobacillus sanfranciscensis and Lactobacillus reuteri during sourdough fermentation. *Journal of applied microbiology*, 109(4), pp.1301–10.

- Zhang, J. et al., 2010. Glutathione protects Lactobacillus sanfranciscensis against freeze-thawing, freeze-drying, and cold treatment. *Applied and environmental microbiology*, 76(9), pp.2989–96.
- Zhang, J. et al., 2012. Glutathione improves the cold resistance of Lactobacillus sanfranciscensis by physiological regulation. *Food microbiology*, 31(2), pp.285–92.
- Zhang, Y.-W. et al., 2012. Cloning and characterization of a thermostable H2O-forming NADH oxidase from Lactobacillus rhamnosus. *Enzyme and microbial technology*, 50(4-5), pp.255–62.
- Zhao, C. et al., 2010. Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. *Infection and immunity*, 78(9), pp.3889–97.
- Zitzelsberger, W., 1984. Distribution of superoxide dismutases, oxidases, and NADH peroxidase in various streptococci. *FEMS Microbiology Letters*, 21(2), pp.243–246.
- Zuber, P., 2004. Spx-RNA Polymerase Interaction and Global Transcriptional Control during Oxidative Stress. *Journal of Bacteriology*, 186(7), pp.1911–1918.
- Zuber, P., 2009. Management of oxidative stress in Bacillus. *Annual review of microbiology*, 63, pp.575–97.

9 APPENDICES

Cytochrome B - cytB ...GCGCTGAGCGCGATGTTGTGATTCATACGATTGGCCCACATTGGGATGCCAATGAAGTGT 178 Lpl ...GTGATGAACGGGACGTGGTGATTCACACGATTGGCCCACACTGGGATGCCAATGAAGTTT 178 Lpent Lbu ...GGGCTGAACGTGATACTGTCATCCAAACAATTGGCCCGCATTGGGATGGAAATGAAGTTT 178 Lca ...CTGACGAAGAAGATCAACTCGTTGCCACAATCGGCCCACATTGGGATGGGAACGAAGTTT 178 ..ATGAAGAACGTACAAAGTGATTCAAAACAATTGGACCCGTCTGGGACGGGAACGAAGTGT 178 L.f ...AATCAGAGCGTGATCAACTTGTGCGGACAATTGGACCAGTTTGGGATGCAAATGAAGTAT 178 Lreut ***** * ** ***** * ** ** ** ** ** * * Lpl GGTTGATCACTGCTGGTGGGGGGGGGGGGGGTGTTTGCGTCGTTCCCCAATGTGGTATGCTTCCTTAT 238 Lpent GGTTGATTACCGCTGGTGGGGCAATGTTCGCCTCGTTTCCAATGTGGTATGCTTCCTTAT 238 GGCTGATCACTGCCGGTGGTGCGATGTTTGCATCATTTCCAATGTGGTATGCTTCACTAT 238 Lbu Lca GGCTGATTACAGCTGGTGGCGCGATGTTTGCTTCTTATCCAATGTGGTATGCCAGCCTCT 238 Lf GGTTAATTACCGCCGGGGGGGCCATGTTTGCCTCCTTCCCGTACTGGTACGCTTCCCTGT 238 GGTTAATCACGGCTGGTGGTGCAATGTTTGCATCTTTTCCATATTGGTATGCTAGTCTTT 238 Lreut ** * ** ** ** ** ** ** ***** ** ** * ** ***** ** TCTCCGGATTCTATCTTATCTTATTGTTGATTCTAGTGGCCCTCATTATGCGAGGGGTCT 298 Lpl TCTCCGGCTTCTATCTGATTCTCTTGTTGATTTTAGTTGCCTTGATCATGCGGGGGTGTCT 298 Lpent TTTCAGGATACTACCTTGTCTTGTTCTTAATCTTGGTTGCCTTGATTTTCCGTGGCGTGT 298 Lbu Lca TCTCGGGGGTTTTACATCATGTTCTTCCTTGTGTTGTTCGGGTTTGATTGTTCGCGGCGTGT 298 Lf Lreut TCAGTGGGTATTACTTAATCTTAATGATTATCCTAGCTGGTTTAATTATCCGTGGTGTTT 298 * ** ** * * * * * * * * * * * ** ** * * Lpl Lpent CATTTGAATTCCGTAGCCGGATGGAAACTGAATCTGGTCGCAACTTCTGGGAATGGGCAG 358 Lbu CATTTGAGTTCCGTGCAAATATGCAGACGGATACTTGGCGTAATTTCTGGGAATGGGCAT 358 CGTTTGAATTTGCTGCACATGCCGAGACCAAAAGAGGTCGGAATATCTGGCGTTGGGCTT 358 Lca Lf CCTTTGAATTCCGGGCTAAGAGCCCAGCTAAGTACAAGCATG---TTTGGGACACCACCT 355 CTTTTGAATTCCGTAAAAATAGTCCAATGTCACAAAAGCGGA---TCTGGGATTGGGCAT 355 Lreut * ***** ** * * *** Lpl CTTTATTCGTCTGAAGACGACCGGGGACGTTGCGTGAACGGGCGCTTCAGTGGGCCAAACC 596 Lpent CTTCATTCGCCTGAAGACGACCGGGGACGTTGCGTGAACGAGCATTGCAATGGGCCAAACC 596 Lbu CTTCCTGCGTTTGAAGACCAGCGGTGAATTAAGAGAACGAGCAGAAAAGTGGAGTAAAGT 596 Lca CTTTATTCGTCTGAAAACGACTGGCGACTTGCGCAAGCGTGCGCGTGACTGGAACAGCAA 596 Lf CTACCTAACCTTGAAGACGGTGGGACCAATCCACGAACGGTCCAAGAGTTTTGCTAAGTT 593 Lreut TTATATTGCCTTAAAGACGACTGGTCCGGTTCAGGAACGCGCCCGGAACTACGCTGAATT 593 * ** ** ** * * ** * Lpl GTTATACTGGGTCCTGTTTGCCGGTGAAGTTGTCTTCGCAATTCTGCTGTTCTTTAACAC... 656 ACTATACTGGGTGCTCTTTGCAGGTGAAGTGGTCTTTGCGATTCTACTCTTCTAATAC... 656 Lpent Lbu GTTGTACTACTTGTTGTATGCTGGTGAAGTTGTCTTCGCTGTCCTTCTATTCTTTATGAC... 656 Lca GCTTTATTGGGTCCTTTACGCGGGTGAAGTGGTCTTCGCCCTGCTGTTGATCTTCCAAAC... 653 Lf TTTGTACTGGATTCTTTATGCTGGCGAAGTTGTCTTTGCACTATTATTAATCTTTATGAC... 653 Lreut ******* ***** * * ** *** ** * * * * *

A 1: Multiple Alignment of DNA sequences of cytochrome B gene (*cytB*) using ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Identical bases are marked with *, Because of the length of the sequences, the dashed line indicates the location of a gap; Red arrows mark the sites which were used for primer design.

Glyceraldehyde-3-phosphate dehydrogenase

orforraracitac	o phophate denyarogenabe	
Ppe	MTVKIGINGFGRIGRLAFRRIHELGAKSNDIEVVAINDLTSPALLAHLL	49
Lpent	MSVKIGINGFGRIGRLAFRRILELGEKSSDIEVVAINDLTSPALLAHLL	49
Ldel	MTVKIGINGFGRIGRLAFRRIMDLGEETKDIEVVAINDLTTPAMLAHLL	49
Lf IFO	MTVKIGINGFGRIGRLAFRRIHELNSDEIEVVAINDLTTPSMLAYLL	
Lf ATCC	MNYFPKGGNYSMTVKIGINGFGRIGRLAFRRIHELNSDEIEVVAINDLTTPSMLAYLL	1.1
Lf	SDEIEVVAINDLTTPSMLAYLL	
Lflor	MTTKIGINGFGRIGRLAFRRISOLN-SEGIEVAAINDLTTPSMLAYLL	
Lfruct	SSDIEVVAINDLTTPSMLAYLL	
Lbr	MTVKIGINGFGRIGRLAFKRIHELK-SNDIEVVAINDLTTPSMLAYLL	
weiss.cib	MTVKIGINGFGRIGRLAFRRILELKDTADDIEVVAINDLTNPAMLAYLL	
	*:.***:********************************	
	\rightarrow	
Ppe	KYDSTHGTFAGEVSATDNSIIVDGKEYRVYAEPKAQDIPWVKEDGVDFVLECTGFYTSKE	109
Lpent	KYDSTHGTLDADVSATDDSIVVNGKNYRVYAEPOAONIPWVKNDGVDFVLECTGFYTSKA	
Ldel	KYDSTHGTFDHEVSATEDSLVVDGKKYHVYAEPOAONIPWVKNDGVDFVLECTGFYTSKA	
Lf IFO	KYDSTHGKFPGEVSAYEEGI IVDGKKYPVYAERDAKNI PWVANDGVDFVLECTGFYTSAE	
Lf ATCC	KYDSTHGKFPGEVSAYEEGI IVDGKKYPVYAERDAKNI PWVANDGVDFVLECTGFYT SAE	
Lf	KYDSTHGKFPGEVSAYEEGI IVDGKKYPVYAERDAKNI PWVANDGVDFVLECTGFYTSAE	
Lflor	KYDSVHGR FPGKVE STEDA I IVDGKR I PVYAERDAKNI PWVKNDGVDFVLECTGFYT SKD	
Lfruct	KYDSVHGRFDGDVSATEDAIIVNGTRIPVYAERDAKNIPWVKNDGVDFVLECTGFYTSKE	
Lbr	KYDSTHGRFPGEVSATDTGIVVDGKEYPVYAEPKAODIPWVKNDGVDFVLECTGFYTSEE	
weiss.cib	KYDSTHGTLPVDVSADEDGIIVDGKKIRVYAERNAADLKWVANDGVEIVLESTGFYTSAE	
	****.** : .*.::**** **** .* :: ** :***:***	105
Ppe	KSOAHLDAGAKRVLVSAPAGSDLKTVVYNVNDDVLTADDRIVSAGSCTTNCLAPMAYFLN	169
Lpent	KSOAHLDAGAKRVLISAPAGSDLKTIVYNVNDDILTADDRIVSAGSCTTNCLAPLAFFEN	
Ldel	KSOAHLDAGAKRVLISA PAGNDLKTIVY SVNODTLTADDTIV SAGSCTTNSLAPMANALN	169
Lf IFO	KSQAHLDAGAKRVLISAPAG-NIPTVVPGVNLDTLKADDKIVSAGSCTTSCLAPMAYFLN	166
Lf ATCC	KSOAHLDAGAKRVLISAPAG-NIPTVVPGVNLDTLKADDKIVSAGSCTTSCLAPMAYFLN	177
Lf	KSOAHLDAGAKRVLISAPAG-NIPTVVPGVNLDTLKADDKIVSAGSCTTSCLAPMAYFLN	166
Lflor	KAOAHLDAGAKRVLVSAPAG-AMRTVVPGVNLDTLEHDDKIVSAGSCTTSCLAPMAYWLN	166
Lfruct	KAQAHLDAGAKRVLISAPAG-QMTTVVPGVNMDDLTSEDKIVSAGSCTTSCLAPMAYWLN	
Lbr	KAHAHIDAGVKRVLVSAPAG-AVTTVVPGVNLDVLSKDDIIVSAGSCTTNCLAPMAYFLN	166
weiss.cib	KSOAHLDAGAKKVLISAPAG-NIPTVVYGVNODTLTADDHIVSAGSCTTOSLAPLANALD	168
	*::**:***.*:**:***** : *:* .** * * :* ********	
Ppe	EEFGVQIGTMTTVHAYTSTQMLLDGPVRGGNFRAARAAANTIPHSTGAAKAIGLVIPEL.	229
Lpent	KEFGIKVGTMTTIHAYTSTQMLLDGPVRGGNFRAARAAGVNTIPHSTGAAKALGLVIPEL.	229
Ldel	KEFGIQVGTMTTIHAYTATQKVLDGPDRGNNFRNARAAAENIIPHSTGAAKAIGLVLPEL.	229
Lf IFO	KEFGLKAGTMTTIHAFTSTQAILDGP-RGKKMRNNRTASTNTIPHSSGAAKAIGLVIPEL.	225
Lf ATCC	KEFGLKAGTMTTIHAFTSTQAILDGP-RGKKMRNNRTASTNTIPHSSGAAKAIGLVIPEL.	236
Lf	KEFGLKAGTMTTIHAFTSTQAILDGP-RGKKMRNNRTASTNTIPHSSGAAKAIGLVIPEL.	225
Lflor	KEFGVKLGTMTTIHAYTASQSLQDGP-RSGKFRNNRAAAVNTIPHSSGAAKAIGLVIPEL.	225
Lfruct	KDFGVKLGTMTTVHAYTASQALQDGP-RSAKLQNNRAAAINTVPHSSGAAKAIGLVIPEL.	
Lbr	EEFGIKAGTMTTIHAFTATQQILDGP-RGKKMRNNRTASVNTIPHSTGAAKAIGLVIPDL.	225
weiss.cib	KEFGIEIGLMTTVHAFTSTOMILDGP-KGSKFRSNRTASANTIPHSTGAAKAIGLVVPSV.	227
	::**:: * ***:**:*::* : *** :. ::: *:*. * :***: <u>*******</u> **:*.:	

A 2: Multiple Alignment of protein sequences of glyceraldehyde-3-phosphate dehydrogenase using ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Identical bases are marked with *, Red arrows mark the sites which were used for primer design.

Peptide methionine sulfoxide reductase - msrA

Lsan	CTTCTAATGTTTTTTTTGAAGCTTCTGCAATTTTTCGTTGTTCCGGACTATTTACAA-AA 229
Ldel	CAGCTAATTCTTGTTTGGACTTCTCCGCAGCTTCCTTCTGTGCTGG-TGAGTTATAGTAA 226
Ppe	TGGCTAATTGTTCCCTAGATTTTTCAGCAATTTCACGCTGTTCAGCACTATTCACAA-AA 223
Lpent	CTGCCAATGCGTCACGTGAAGCCGTGGCGACCTTCCGTTGTTCCTCACTATTCACAA-AA 226
Lbu	CGGCGAGGGCCTTCTTTGAAGCTTCGGCAATTTTTCTTTGCTGCTCATCCTTCACGT-AA 229
lme	GAGATGCCGCTTCTTTTGAAGTGATTTCTGTCCTTG-TCATTCCTAATGA 192
	* ** * * ** * *
Lsan	ATTATAGGACGATAACTATCGCCACGATCTTGAAATTGTCCCATTGCATCAGTTGGATCA 289
Ldel	ATTACGGGACGATATTGATCGCCACGATCTTGGAACTGCCCCATTGCATCCGTGGGATCA 286
	ATTACGGGGCGGTAATTATCGCCACGGTCCTGGAACTGCCCCATTGCATCGGTCGG
Ppe	
Lpent	ATGACGGGCCGATAGCTATCACCGCGGTCTTGGAATTGACCAGAGGCGTCAGTCGGATCT 286
Lbu	ATTACCGGACGATAATTATCACCGCGATCTTGAAATTGGCCCATGGCATCGGTTGGGTCA 289
lme	ACGATCTGTATTTTCTTGTAAATGCTCGTCGTCATCGATTC 233
	* * * ** ** ** * * * * *
Lsan	GTTTGCCGCCAATAAATATCGAC-CAGTTGTTGATATGAAATTATTT-CTGGATCAAA-C 346
Ldel	GTAACCTGCCAATAA-TATTGAAGCAACTTTTGATAAGGCATTTTTT-CAGGATCGAA-A 343
Ppe	GTTTGTTGCCAGTAGAT-TTGGACTAATTGGCGATACGAAATAATTT-CCGGATCATA-C 340
Lpent	GTTTGGCGCCAATAAAT-TTCAACCAATTGCGCATAGCTAATAATTT-CAGGATCAAA-G 343
Lbu	GTTTGATGCCAATAGAT-TTCCACCAACTTATCATATGAGATTACCT-CAGGATCAAA-G 346
lme	CTTTTGTAAATGA-TGGCCAACCACAGCCGGAATCGTACTTATCCGTTGAACTAAACA 290
	* * * * * * * * * *
Lsan	GTAATTTTAACGGCTTCAGTATGTCCAGTTTTTCCGCTGCAAACT-TCTTCAT 398
Ldel	GTAATTTCAACGGCTTCTGT-ATGCCCAGTTTTACCCGTGCAGACT-TCTTCGT 395
	GTGATTTTAACGGCTTCTGT-ATGCCCTGTAGTATGACTAGTAACT-TGTTCAT 392
Ppe	
Lpent	GTGATTTCGACCGCCTCAGT-ATGACCAGTCGTATGGCTGGCAACT-TGTTCAT 395
Lbu	AAAATTTTGACCGCTTCAGT-ATGGCCAGTGGTGTGGCTGGCAACT-TGTTCAT 398
lme	ATGGTTCACCACTGACAACATCAACGAAAATACCATCCTCCCACCATTGGTCATACTTAC 350
	** ** * * * * * * * *
Lsan	AAGTTGGATTAGCCACATGTCCACCAGTATATCCAGATACAACTGATTCAATCCCTGGCA 458
Ldel	AAGTTGGATTGGCAACATGGCCACCAGTATACCCACTAACTA
Ppe	AGGTCGGGTTGGCGACATGCCCTCCTGTATAACCTGAAACAACGTTGATAATACCAGGTT 452
Lpent	AGGTCGGATTAGCAACGTGACCACCTGTATATCCAGAAATCACGGACTTGATTCCAGGCT 455
Lbu	AAGTTGGGTTGGGAACATGGCCGCCAGTATAGCCGGAAACGACCTTGTTAATACCGGGAA 458
lme	CAGT-GAACGGGCGTTCTG-TTGCC-GCATGTTGAGTCACCTCGTATTC-TTCCGG 402
	** * ** ** * * * * * * *
Lsan	TCTGGTCAAATGGTTTAACCATGCACCAGAAACAACCACCTGCAAAAATTGCAGTTTCT- 517
Ldel	GCTTATCAAATGGGCTCACCATGCACCAAAAGCATCCCCCAGCAAAGATTGCCGTGTCTA 515
Ppe	GAGTITICAAAAGGTICIACCAIGCACCAAAAACACCCCACCGGCAAAAAIAGCAGTITCI- 511
Lpent	GTTGATCAAATGGTTTGACCATGCACCAGAAACAACCGCCAGCAAAAATTGCAGTATCTG 515
Lbu	TAGTGTCAAATGGCTTGACCATGCACCAGAAACATCCACCTGCAAAAATTGCTGTATCT- 517
lme	TGTCAAACGAGCACGCAATTCTTCATCGTTATATTTT 439
TWE	
Tann	
Lsan	CAT 531
Ldel	ATGCGCCTTTAGGCTTGGTATCAGTGGCTTTGGCTTGTTGTTGTTGTTCTCTGTCAT 570
Ppe	TCCAT 516
Lpent	TCAT 519
Lbu	522
lme	GTCAT 444

A 3: Multiple Alignment of DNA sequences of peptide methionine sulfoxide reductase gene (*msrA*) using ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Identical bases are marked with *, Red arrows mark the sites which were used for primer design.

Nitrate red	uctase - narH
Lf Lreut	TTTAACAACGTCGAAACCAAGCCCGGGGTCGGGTACCCTAAGCGCTGGGAAGACGAAGAA 180 TTTAATAATGTTGAAACTAAGCCAGGTGTCGGTTATCCAAAACGCTGGGAAGATGAAGAT 180
Lpl Lpent	TTTAACAATGTCGAGACCAAACCCGGTGTCGGCTACCCGAAACGCTGGGAAGATGAAGAT 180 TTTAATAACGTCGAGACCAAACCAGGGGTCGGCTACCCGAAACGTTGGGAGGACGAAGAC 180
Lf	CAATACCACGGGGGCTGGACCTTAAATTCCAAGGGAAAATTGGAGTTAAAGGCCGGAAAC 240
Lreut	CAATACCATGGAGGGTGGACTCTTAATTCAAAAGGTAAATTAAAATTACGTGCTGGAAGC 240
Lpl	CACTATAAAGGTGGTTGGGAGTTGAACAGTAAAGGTAAACTTCAACTCCGAGCAGGTAAT 240
Lpent	CACTATAAAGGTGGTTGGGAACTCAACAGCAAGGGGAAACTTCAACTCCGGGCAGGGAAT 240
Lf	AAGTTGAACAAGATCGCCCTGGGGAAGATCTTTTA-CAACAACGACATGCCCGAATTAGA 299
Lreut	AAATTAAATAAAATCGCTCTTGGTAAGATTTTTTA-CAATAATGATATGCCAGAGTTAGA 299
Lpl	AAGGTCAATAAGATCGCACTCGGAAAGATTTTTTTTTCAACC-TGATATGCCAGAATTGGA 299
Lpent	AAAGTCAATAAGATCGCGCTCGGAAAGATTTTCTATCAACC-CGACATGCCAGAATTAGA 299
Lf	CAACTACTACGAGCCATGGACCTACGATTACAAGACCCTGTTTGGCCCGGAGAAAAAGCA 359
Lreut	TAACTACTACGAACCATGGACCTATGACTATAAGACATTATTTGGTCCTGAACAAAAGCA 359
Lpl	CGACTATTATGAACCATGGACGTATGATTACCAAACCTTATTCGGACCTGAAAAGGCCCA 359
Lpent	TGACTATTACGAACCATGGACTTATGATTATCAAACTTTATTCGGTCCAGAAAAGTCGCA 359
Lf	CCAACCAGTGGCCCGGCCAAAGTCGCAAATCACTGGTTTGGATATGGAATTAACCACCGG 419
Lreut	CCAACCCGTTGCTCGTCCTAAGTCGCAAATTACTGGCGAAGGAATGGAATTAACCACTGG 419
Lpl	TCAACCAGTTGCACGCGCGACGTCGCAGATTACTGGATTAAAGATGGATCTTAAGACGGG 419
Lpent	TCAGCCGGTTGCGCGGGCCCGTTCCCAAATTACCGGACTGAAGATGGACTTGAAGACGGG 419
Lf	ACCGAACTGGGATGATGACCTGGCTGGTTCAACGGAATACGTTAACCAGGACCCGAACAT 479
Lreut	TCCTAACTGGGATGATGACTTAGCGGGATCAACTGAATATGTCCAACAGGATCCTAACAT 479
Lpl	CCCCAACTGGGATGATGATTTAGCAGGATCACCTGAATATTTCAAAGCAGACCCGAACAT 479
Lpent	GCCTAACTGGGATGATGACTTAGCAGGCTCACCCGAATATTTCAAGGCTGACCCCAACAT 479

A 4: Multiple Alignment of DNA sequences of nitrate reductase (*narH*) using ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Identical bases are marked with *, Red arrows mark the sites which were used for primer design.

NAD(P)H dehydrogenase - Ndh2

-	AAGGCATTGTTGTCCATTGTGATTGTTGGTTCCGGTTTTACTGGGACAGAAACAATCGGT 531
LCS	AAGGCATTGTTGTCCATTGTGATTGTTGGTTCCGGTTTTACTGGGACAGAAACAATCGGT 531
Lrh	AAAGCCCTTTTGTCTATCGTCATTGTCGGTTCTGGCTTCACTGGTACCGAAACGATTGGT 531
Lpl	AAAGCCATGTTGACCTTTACAGTCTGTGGTTCTGGTTTTACTGGTTCTGAACTGATTGGT 531
Lpent	AAAGCGATGTTGACGTTCACCGTCTGTGGTTCCGGATTCACGGGGTCTGAACTGATTGGT 531
Lbu	CGTGCAATGCTCACAATTGTGGTCTGTGGTTCCGGATTTACCGGTGCCGAAACCATTGGT 528
	aa a a a a $aaaaa$ aa aa
	\longrightarrow
Lca	GAACTGCGTGACTGGCGCGACACACTGGCAAAACAGTACAAACTTGATCCAAATGAAATC 591
Lcs	GAACTGCGTGACTGGCGCGACACACTGGCAAAACAGTACAAACTTGATCCAAATGAAATC 591
Lrh	GAATTACGTGACTGGCGCGGATACCTTAGCCAAACAGTACAAGCTAGATCCGAACGAA
	GAATTAATCGAATATCGTGATGTTTTTGGCTCGAGACAACAAGCTCGATCCGAGTGAAAT- 590
Lpl	GAACTGATTGAATATCGIGATGITIIGGCICGAGACAACAAGCICGACCCAAGIGAAAT 590 GAACTGATTGAATATCGGGACGTCTTAGCACGGGACAACAAGCTCGACCCGAGCGAG
Lpent	
Lbu	GAATTAATTGATTACAAGAAAGTCCTGGCAAGAGATTACAAGCTGGATCCTGACGAGATT 588
	a_{ab} a_{b}
Lca	CA-ATTCAGCTTGATGGAAATGGCTCCGACCATTATGAACATGCTGGATCGTTCAGATGC 650
Lcs	CA-ATTCAGCTTGATGGAAATGGCTCCGACCATTATGAACATGCTGGATCGTTCAGATGC 650
Lrh	CA-ATTTAGCTTGATGGAAATGGCGCCAACGATCATGAATATGCTAGATCGTTCAGACGC 650
Lpl	CACGCTCCAATTGGTCGAAGCAGCGCCGACTATTATTAACATGCTCAACCGGACGCAAGC 650
Lpent	CACCTTACAATTAGTGGAAGCCGCCCCAACCATCATCAACATGCTCAATCGGACGCAAGC 650
Lbu	CACATT-CTCTTGGTTGAAGCTGCCCCAACAATTATCAACATGCTTGATCGAACCAACGC 647
	aa a aa aaa aa aa aa aa
Lca	CGATAAAGCTGAACGTTATATGGAAAAGCGTGGCATCAAGGTCATGAAGAACACTGGCG- 709
Lcs	CGATAAAGCTGAACGTTATATGGAAAAGCGTGGCATCAAGGTCATGAAGAACACTGGCG- 709
Lrh	GAACAAAGCCGAACGTTACATGGAAAAACGCGGCATCAAGGTCATGAAGAATACCGGCG- 709
Lpl	CGGTAAGGCCGCTAAGTACATGGAAAAACATGGTGTCAAAATCATGACGAAC-TCCATGA 709
Lpent	TGGTAAGGCTGAAACCTACATGAAGAAGCATGGTGTGGATATCATGACCAAT-TCCATGA 709
Lbu	TGCTCACGCCGAGAATTACATCAAGGATCACGACGTTGAAGTT-CGACCATCATCCATGA 706
200 4	
Lca	GTGGCTCCATCTTTCCGGCTTCTTTGCGATGTTGATGAAGCATTTGGTCAACATGCTCTA 1160
Lcs	GTGGCTCCATCTTTCCGGCTTCTTTGCGATGTTGATGAAGCATTTGGTCAACATGCTCTA 1160
Lrh	
	CTGGCTGCACCTTTCCGGTTTCTTTGCGATGTTGATGAAACATTTAGTCAACATGCTCTA 1160
Lpl	CTGGCTGCACCTTTCCGGTTTCTTTGCGATGTTGATGAAACATTTAGTCAACATGCTCTA 1160 GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169
Lpent	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169
	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCGATCAACTGGTTGTA 1169
Lpent	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCGATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGGGACTAACCTCCTGTA 1166
Lpent Lbu	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCGATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGGGACTAACCTCCTGTA 1166
Lpent Lbu Lca	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCGATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGGGACTAACCTCCTGTA 1166
Lpent Lbu Lca Lcs	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCGATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGGGACTAACCTCCTGTA 1166 **********************************
Lpent Lbu Lca Lcs Lrh	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCGATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGGGACTAACCTCCTGTA 1166 **********************************
Lpent Lbu Lca Lcs Lrh Lpl	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCGATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGGGACTAACCTCCTGTA 1166 **********************************
Lpent Lbu Lca Lcs Lrh Lpl Lpent	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCGATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGGGACTAACCTCCTGTA 1166 **********************************
Lpent Lbu Lca Lcs Lrh Lpl	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCGATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGGGACTAACCTCCTGTA 1166 **********************************
Lpent Lbu Lca Lcs Lrh Lpl Lpent	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCGATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGGGACTAACCTCCTGTA 1166 **********************************
Lpent Lbu Lca Lcs Lrh Lpl Lpent Lbu	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCGATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGGGACTAACCTCCTGTA 1166
Lpent Lbu Lca Lcs Lrh Lpl Lpent Lbu	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCGATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTAGCGACGATTATGAAGCACGGGACTAACCTCCTGTA 1166
Lpent Lbu Lca Lcs Lrh Lpl Lpent Lbu Lca Lcs	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCGATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGGGACTAACCTCCTGTA 1166
Lpent Lbu Lca Lcs Lrh Lpl Lpent Lbu Lca Lcs Lrh	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCCATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGGGACTAACCTCCTGTA 1166
Lpent Lbu Lca Lcs Lrh Lpl Lpent Lbu Lca Lcs Lrh Lpl	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCGATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGGGACTAACCTCCTGTA 1166
Lpent Lbu Lca Lcs Lrh Lpl Lpent Lbu Lca Lcs Lrh	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCCATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGGGACTAACCTCCTGTA 1166
Lpent Lbu Lca Lcs Lrh Lpl Lpent Lbu Lca Lcs Lrh Lpl	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCCATCAACTGGTTGTA 1169 CGCAAACGAGTCCGTGGCTGGCTGGCAGCGATCATGGAGGACCACCTCGTA 1169 CGCCAAACGAGTCCGTGGCTGGCTGGCAGCGATCATGGAGGACCACCTCGTA 1169 CTTCATCCAAGTTTATTCCGGTTATTATTTATTCCAGTACTTCATGCACGAATTCTTCCG 1220 CTTCATCCAAGTTTATTCCGGTTATTATTTATTCCAGTACTTCATGCACGAATTCTTCCG 1220 CTTCGTTCAGATCTATTCCGGTTATTATTTATTCCAGTACTTCATGCACGAATTCTTCCG 1220 CTCCGTTCAGATCTATCCGGTTATTATTTATTCCAGTACTTCATGCACGAATTCTTCCG 1220 CTCCGTTCAGATTTTCCTGGGTACTACCTATTCCAGGACGTACGAATTCTTCCG 1229 CTCCATGCGAATTCCCCGGGCCACCTACTCCAGGACGCAAGGTAACGTTTTGTG. 1280 GACACGTAACGGCCGTAACATGTTCCGCGGGCCATCTGTCTCGGCAAGGTAACGTTTTGTG. 1280 GACACGTAACGGCCGTAACATGTTCCGCGGGCCATCTGTCTCCGGCAAGGTAACGTTTTATG. 1280 GACCCGCAATGGCCGCAACATGTTCCGGCGGCCTGGTCTCACGGCCGGTAACGTACTTCG 1289 GACACGCAACAACCGGAACGTCTTCCGGCGGCCGGGCCG
Lpent Lbu Lca Lcs Lrh Lpl Lpent Lbu Lca Lcs Lrh Lpl Lpl Lpent	GAAGTGGAACGTCTCTGGTTTTATTGCCGTGCTTTTAAAACACGCCATCAACTGGATGTA 1169 CAAGTGGAACGTTTCAGGCTTTGTTGCCGTTCTATTGAAGCACGCCATCAACTGGTTGTA 1169 CGGCAAACGAGTCCGTGGCTGGCTGGCAACGATTATGAAGCACGCGAACCTCCTGTA 1169 CTTCATCCAAGTTTATTCCGGTTATTATTTATTCCAGTACTTCATGCACGAATTCTTCCG 1220 CTTCATCCAAGTTTATCCGGTTATTATTTATTCCAGTACTTCATGCACGAATTCTTCCG 1220 CTTCGTTCAGATCTATTCCGGTTATTATTTATTCCAGTACTTCATGCACGAATTCTTCCG 1220 CTTCGTTCAGATCTATTCCGGTTATTATTTATTCCAGTACTTCATGCACGAATTCTTCCG 1220 CTTCGTTCAGATTTTCCCGGTTACTACCTATTCCAGTACTTCATGCACGAATTCTTCCG 1220 CTACGTTCAGATTTTCCCGGTACTACCTATTCCAGTACTTCATGCACGAATTCTTCCG 1220 CTACGTTCAGATTTTCCCGGCTACTACCTATTCCAGTACTTCATGCACGAATTCTTCCG 1220 CTACGTTCAGATTTTCCCGGCTACTACCTATTCCAGTACTTCATGCACGAATTCTTCCG 1220 CTACGTCAGGATTCACCCGGCTACTACCTATTCCAGTACTTCAGGACGAATTCTTCCG 1220 CTACGTCAGGATTCACCCGGCTACTTCCCGGCAGGTAACGTTTTGTG. 1280 GACACGTAACGGCCGTAACATGTTCCGCGGGCCATCTGTCTCGGCAAGGTAACGTTTTGTG. 1280 GACCCGCAATGGCCGCAACATGTTCCGCGGGCCATCTTCCCGTCAAGGCAATGTTTTATG. 1280 GACCCGCAATGGCCGCAACATGTTCCCGCGGCTGGGTCTCACGGGCTGGTAACGTACTCTG. 1289 GACACGCAACAACCGGAACGTCTTCCCGCGGCTGGGTCTCACGGGCCGGTAACGTACCTCTG. 1289

A 5: Multiple Alignment of DNA sequences of NAD(P)H dehydrogenase (*Ndh2*) using ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Identical bases are marked with *, Because of the length of the sequences, the dashed line indicates the location of a gap; Red arrows mark the sites which were used for primer design.

NADH peroxidase -	Npox
Lrh_ATCC Lrh Lf Lf Lps Lp1 Lbu Lbu Lps Lp1	GTGGACAAGCCAAAGATCATTGTTGTTGGGGCATCACACGGCGGTCACCAAAGCGTTCTG 60 GTGGACAAGCCAAAGATCATTGTTGTTGGGGCATCACACGGCGGTCACCAAAGCGTTCTG 60 ATGGATAAAGCAAAAGTTATTATTGTTGGGGCATCACATGGCGGTCATGAATCGGCAATT 60 ATGGATAAAGCAAAAGTTATTATTGTTGGGGCATCACATGGCGGTCATGAATCGGCAATT 60 ATGAAAGTTATTGTCGTTGGTTCTTCTCATGGTGGTTATGAAACGGTTCGC 51 ATGAAAGTTATTGTTGTTGGTTCATCTCACGGTGGGTTATGAAACGGTTCGC 51 ATGAAAGTTATTGTTGTTGTTGGTTCATCTCACGGTGGGTTTGAAACTGTCAGG 51 ATGAAAGTTATTGTTGTGGTTCATCTCCACGGTGGGTTTGAAACTGTCAGG 51 ATGCAAAAATTATTATTGTCGGGGCTGCACATGGCGGCGCGCAAACGGTCAAT 54 ATGGCAAAAATTATTATTGTCGGGGCTGCACATGGCGGCCGCGAAACGGTCAAT 54
прт	** ** * *** * ** * * ** ** ** ** **
Lrh_ATCC Lrh Lf Lf Lps Lpl Lbu Lbu Lbu Lps Lpl	GAATTATTGCATCGGTATCCGGATGCAGAAATTACCATG-TTTGAA-GCGGGTGACTTTG 118 GAATTATTGCATCGGTATCCGGATGCAGAAATTACCATG-TTTGAA-GCGGGTGACTTTG 118 GAGCTGTTGGATAAATACGATAACGTCGATGTTACGATT-TATGAA-ATGGGTGATTTCG 118 GAGCTGTTGGATAAATACGATAACGTCGATGTTACGATT-TATGAA-ATGGGTGATTTCG 118 GGTATTTTAGCCGCTCAACCAGATACTGAAATT-CAATGGTATGAA-AAAGGTGATTTCC 109 GGGATTTTGGCAGCAAAAGCCGGATACCGAAATT-CAATGGTATGAA-AAAGGTGATTTCC 109 GGGATTTTGGCAGAAAAGCCGGATACCGAAATT-CAATGGTATGAA-AAAGGTGACTTCA 109 GGGATTTTGGCAGAAAAGCCGGATACCGAAATT-CAATGGTATGAA-AAAGGTGGACTTCA 109 GGCATTTTGGCAGAAAAGCCGGATACCGAAATT-CAATGGTATGAA-AAAGGTGACTTCA 109 GGCTTATTAGCAGCAAAAAGCCGGATACCGAAATT-CAATGGTATGAA-AAAGGTGACTTCA 109 GGCTTATTAGCAGCTAATACGGATAATGAGATT-CATTGGTACGAACAGGGCAA-TTCG 112 GGCTTATTAGCAGCTAATACGGATAATGAGATT-CATTGGTACGAGCACGGGCAA-TTCG 112
Lrh_ATCC Lrh Lf Lf Lps Lpl Lbu Lbu Lbu Lps Lpl	TTTCGTTTATGTCCTGCGGGATGGAATTATTCTTAGAAGATCAGGTCACAGATGTGAATG178TTTCGTTTATGTCCTGCGGGATGGAATTATTCTTAGAAGATCAGGTCACAGATGTGAATG178TATCGTTCATGTCCTGTGGGATGCAACTTTACTTAGAAGACCAAGTTACAGATGTTAATG178TATCGTTCATGTCCTGTGGGATGCAACTTTACTTAGAAGACCAAGTTACAGATGTTAATG178TGTCATTCCTCTCTGTGGGATGCAACTTTACTTAGAAGACCAAGTTACAGATGTTAATG178TGTCATTCCTCTCTGTGGGATGCAACTTACCTCGAAGGTGCCGTTAAAGACGTTAACT169TGTCATTCCTCTCTGTGGGATGCAATTATACCTCGAAGGTGCCGTTAAAGACGTTAACT169TTTCATTTCTCTCCTGTGGGATGCAGCAGTTTATCTTGAAGGGGTCGTCAAGGATGTCAACG169CGACGGCTTTGGATTGGCCTCCGGCGGATGCTGAAAAAGAG153cGACGGCTTTGGATTGGGCTCCGGCGGATGCTGAAAAAGAG153***
Lrh_ATCC Lrh Lf Lfs Lps Lpl Lbu Lbu Lps Lpl	CGGCCGAACTCACTACCGGTACCAGGCAACGACTTGAAAAATGTTTTCCTGATGCGCGGT 408 CGGCCGAACTCACTACCGGTACCAGGCAACGACTTGAAAAATGTTTTCCTGATGCGCGGGT 408 ACGCCTAAGAATTTGCCTGTCCCAGGTACAGACCTTGAAAATGTATATTTAATGCGAGGT 408 ACGCCTAAGAATTTGCCTGTCCCAGGTACAGACCTTGAAAATGTATATTTAATGCGAGGT 408 GTACCATTTGACCTACCAGTACCGGCCATGACTTAGCCAACATCTACGCAATGCGTGGA 399 GTACCATTTGACCTACCAGTACCCGGCCATGACTTAGCCAACATCTACGCAATGCGTGGA 399 GTACCGCCAAGAATTCCTGTTCCTGGCGCGCGATCTCAAAAATGTCTATGCCAATGCGTGGA 399 GTACCGGCAAAAATTCCTGTTCCTGGCGGCGATCTCAAAAATGTCTATGCAATGCGTGGA 399 GTACCGGCAAAAATTCCTGTTCCTGGCGGCGATCTCAAAAACGTCTATGCAATGCGTGGA 399 TTACCAATCCAGTTACCGATTCCCGGAGCCGAATTATCTGGTGTTCGATGCATGC
Lrh_ATCC Lrh Lf Lfs Lps Lpl Lbu Lbu Lps Lpl	TACGATTGGGCAACCAGTATCAAAGCCAAACTTGCAGATCCGGCAGTCAAGCATATC465TACGATTGGGCAACCAGTATCAAAGCCAAACTTGCAGATCCGGCAGTCAAGCATATC465TACGACTGGGCTACAAAGATTAAGGCAGCACTAACTGATGATAGT-ATTAAAAATGTT465TACGACTGGGCCACCAAAGATTAAAGGCAGCACTAACTGATGATAGT-ATTAAAAATGTT465CGCGACTGGGCCATCAAATTAAAGGCCAAGACCGTTGACCCTAGC-GTTAAGAATGTG456CGCGACTGGGCCATCAAATTAAAGGCCAAGACCGTTGACCCTAGC-GTTAAGAATGTG456CGCGACTGGGCCATCAAATTAAAGGAGAAGACGGTTGACCCCGAT-GTTCAAAATGTC456CGTGACTGGGCCATCAAATTAAAGGAGAAGACGGTTGACCCCGAT-GTTCAAAATGTC456CGTGACTGGGCCATCAAATTAAAGGAGAAGACGGTTGACCCCGAT-GTTCAAAATGTC456CGTGCCAGCATCAAATTAAAGGAGAAGACGGTTGACCCCGAT-GTTCAAAATGTC456CGTGCCAGCATCAAATTAAAGGAGTTAAATGGCCGCTAAGTCAGCAGCCATTAAAAACGTG417* * * * * * * * * * * * * * * * * * *
Lrh_ATCC Lrh Lf Lf Lps Lpl Lbu Lbu Lbu Lps Lpl	ACGGTGATCGGTGCCGGCTACATCGGGATTGAAGCCGCTGAAGCCAGTCGCAAAGCA 522 ACGGTGATCGGTGCCGGCTACATCGGGATTGAAGCCGCTGAAGCCAGTCGCAAAGCA 522 GCGGTGGTTGGTTCAGGATACATCGGGATTGAAGCAGCTGAAGT-ATTTGCTAAGAAA 522 GTGGTCATTGGCTCCGGTTATATTGGAATTGAAGCAGCTGAAGT-ATTTGCTAAGAAA 522 GTTGTCATTGGCTCCGGTTATATTGGAATTGAAGCGGCTGAAGTCTTTGCCAAAGCT 513 ACCGTCGTCGGTGCCGGCTATATTGGAATTGAAGCCGCTGAAGTCTTTGCCAAAGCT 513 ACCGTCGTCGGTGCCGGCTATATTCGGTATTGAAGCCGCTGAAGTCTTTTCCAAAGCC 513 GTCGTCGTCGGTGCCGGCTATATTCGGTATTGAAGCCGCTGAAGTCTTTTCCCAAAGCC 513 GTCGTGGTGGGGCGCGCTATATCGGTATTGAAGCCGCTGAAGTCTTTCCCAAAGCC 513 GTCGTGATTGGAGGCGGCTATATTGGGAT-GAATTTTGCAGCCTTATTTAAACAAACC 474 GTCGTGATTGGAGGCGGCTATATTGGGAT-GAATTTTGCAGCCTTATTTAAACAAACC 474

A 6: Multiple Alignment of DNA sequences of NADH peroxidase (*Npox*) using ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Identical bases are marked with *, Because of the length of the sequences, the dashed line indicates the location of a gap; Red arrows mark the sites which were used for primer design.

Oligo (endo) peptidase F	
LplWIDVVENQGK LbrAIDVVENQGK LcaYIDVVENKGK	RSGAYSSGMYDTAPYMLLNWQDNIDNLYTLVHEMGHSMHSYFTTHNQPYQ410RSGAYSSGMYDTAPYMLLNWQDNIDNLYTLVHEMGHSMHSYFTTHHQPYQ410RTGAYSGGMYDTKPYILLNWQDSLESLFTLVHEMGHSMHSHYTRTNQPYQ407RSGAYSGGAYDTNPFILLNWHDAVDELYTLVHETGHSVHSWYTRHHQPYV406RSGAYSGSYDTNPFMLLNWVDNLNNLYTLVHEMGHSVHSYQTRNNQPYQ408
	RTGAYSSGVYDTNPYILLNWQDNLDNLYTLIHETGHSMHSFYSSHNQPYQ 420 *:****.* *** *::**** * ::.*:**** ******* : :***
Lpl YGDYSIFVAEI Lbr YGDYSIFVAEI Lca YGDYPIFVAEI Wko YGDYPIFLAEI Lsan YGNYSIFVAEI	ASTTNENLLTNYFLDTEKDPKMRAYVLNYYLDGFKGTVFRQTQFAEFEQ 470 ASTTNENLLTNYFLATEQDPKMRAYVLNYYLDGFKGTVFRQTQFAEFEQ 470 ASTTNENLLTDYLLKTQTDPKVRAYVLNHYLDGFKGTVYRQTQFAEFED 467 ASTTNENLLTDYFLKNTNDPKVRAYILNYYLDGFKGTVFRQAQFADFEH 466 ASTTNENLLTDYLLKTITDPQIRAYILNQYLDGFKGTMFRQTQFAEFEQ 468 ASTTNENILTDYLLANTNDSEMKKYILSQYLEGFKGTIFRQTQFAEFEN 480 ******:**:**:**:**:
Lpl WLHEQDQEGQA Lbr YIHQQDAAGET Lca WIHQQDQHGEP Wko WMHEQDASGVP	LTADRLSKYYLQLNQRYYGDAVVSDPQIADEWSRIPHFYYNYYVYQYAT 530 LTADRLSKHYLQLNQRYYGDAVVSDPQIADEWSRIPHFYYNYYVYQYAT 530 LTADFMSDFYGKLNQRYYGDGVISDPQIADEWTRIPHFYYDYYVYQYAT 527 LTATSMSSYYADLNARYYGPDVARDPEIAFEWARIPHFYYNYYVYQYAT 526 LTAEVLDDAYLDLNQEYYGPALTVDPEIAYEWARIPHFYYNFYVFQYST 528 LTADVMSKKYKEINEKYYGDEIVSDPEIAIEWSRIPHFYYDFYVYQYAT 540 *** : * .:* .*** : **:** **:*****::**:*
Lpl GFAAASTLADR Lbr GFAAATTLSQR Lca GFAAASTLAAG Wko GFAAATALAKQ	ISSKQPDAVTDYLGYLKAGSSAFPIDVMHRAGVDMTKPDYLDDAFKVFA 590 ISTQQTDAVADYLGYLKAGSSAFPIDVMHRAGVDMTKPDYLDDAFKVFA 590 ILSGDEAKRDAYLAYLKAGSSALPLDVMKQAGVDMTQPGYLQTAFATFD 587 ISGGEPEAVSRYIGYLKSGSSKYAIDTMKAAGVDMTKPDYLEAAFSLFE 586 ILHGGTEGVAAYMSYLQAGSSDFPLEVIKKAGVDMAKTDYLQATFDVFE 588 ISSGNQNSIDAYLNYLKSGSSDTPINIMKRAGVDMTNSQYLEAAFAKFS 600 * *: **::*** .:: :: *****:. **: :* *
Lpent ERLDEFEQLVT Lpl ERLNEFEQLVT Lbr ERLAEFTQLAH Lca QRLAELEEILQ Wko QRLNEFESIID Lsan QRMDELESLI- :*: *: .:	QD- 603 ELK 601 KG- 599 TL- 601

A 7: Multiple Alignment of protein sequences of oligo (endo) peptidase F using ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Identical bases are marked with *, Red arrows mark the sites which were used for primer design.

Aminopeptidase	C/ Bleomycine Hydrolase	
Lbu	MTAEINLDOISKYOKNLDNRKDSKVIERAVTHOGILESSEDFTAEGKMSPVFSIDLSTGK	60
Lbr	MTREINLDQISKIQANLDNRKDSKVIERAVINQGILESSEDFIREGRASPVFSIDLSIGK MTSEIKLDQINKFOONLDNRKDSKVVERAVSHQGILASSEDFTREGRASPVFSIDLSIGN	
Lsan	MISEIREDQINKFQQNEDNKRDSKVVERAVSHQGIERSSEDFIRESKMFPVFSIDESIGN MDKSIEPKNITRYANNLNELADANVVRRAVTHNGILKSAADYEANAAMDPIFSVDVSSOH	
Lpl	MNOIANFOADLDORPEAKVIERSVTKNGILASSODIOAMSOTTPVFSIDLDTGD	10.00
Ppe	MSKE ISONLIDRFKOE YNGRKEAKVIERTVTKNGILNSSRNLAADVOSTPVFSIDLDTGD	
Lca	MSAE ITTGDLAOFKODLOATPGASALOKAVMNNG INATAENTDSKVAMTPTFSIELDTGS	
Lme	MISTEITIGDLAOFRODLOATPGASALORAVMINGINATAENTDSRVAMIPTFSIELDIGS MLTEITNOQIKDFRTATDDKHN-NIIRRAVTKNGIHSASFDOEIANINTPIFSIDLDTGK	
Ture	HITEIINQQIKDEKIAIDDAAN-NIIRAAVIANGIASASEDQEIANINIPIESIDLDIGA : : : : . : : * : *** :: : * ***:::::	35
Lbu	VADQKQSGRCWMFAALNTMRIHLMNTYKVPDDFELSQNYTNFWDKFEKANYFLENVLKTA	120
Lbr	VADQKQSGRCWMFAALNTMRIRLMNTFKVSDGFELSQNYTNFWDKFEKSNYFLENVLKTA	120
Lsan	VANQKQSGRCWVFAALNTMRTQVENNFNVPKDFELSQTFTFFWDKFEKSNYFLNNIINTA	120
Lpl	VANQKQSGRCWMFAALNTMRHSLAEKFNLK-HFELSQNYTFFWDKFEKANYFYENVLATA	113
Ppe	VANQKQSGRCWMFAALNTMRHDMKNQFKVPGNFELSQNYTFFWDKFEKSNWFYENIINTA	120
Lca	VANQKQSGRCWMFAALNTMRHGIQAQFKIK-DFELSQNYTFFWDKFEKSNYFYENVLKTA	119
Lme	VANQKQSGRCWMFAALNTMRHDIKDRFHISDEFQLSQSYTLFWDKFEKANYFYENVLKTA	119
	:****:*****************************	
	\rightarrow	
Lbu	DQPLDSRKVAWLMATPQQDGGQWDMLCALIEKYGIVPKSAMPETFNSNRSSQLNKFLNLK	180
Lbr	DQPLDSRKVSWLMTTPQQDGGQWDMLCALIEKYGIVPKYAMPETFNSEKSAQINKFLNLK	180
Lsan	DQPLDSRKVNFLLTTPQQDGGQWDMLCALIEKYGIVPKSAMPETYNSNMSSEINAALNTQ	180
Lpl	DQPTSSRKVAWLMTTPQQDGGQWDMLVAIIQKYGIVPKSVMPETYNSSKSAEINSTLNLK	173
Ppe	ELDTDDRKVAFLLNEPQGDGGQWDMLCALIEKYGVVPQSAYPETYNSSKSREFDTLLNEK	180
Lca	DQPLDSRKVAFLMTTPQQDGGQWDMLSALIEKYGIVPKSVMPETYSSSKSSELNGLLNLK	179
Lme	TEPLDSRRVSFLLTTPQQDGGQWDMIVSIIEKYGLVPQSIYPESKASSATAELNNTLNTL	179
	: :*: ** ******: ::*:***: **: **: *. : ::: **	
Lbu	LRHDAVALRELVADKASEAKIAETKDNMMSEVYRMLTYALGEPATKFDFEYRDKDKNYHF	240
Lbr	LRHDAVALRELVADKASDTKIAETKETMLNEIYRMLVYALGEPTTSFNFEYRDKDNNYHI	240
Lsan	LRHDAVILRKLVNDGQSEEIINAKRDDMMNEIYRMLVFAFGVPVDKFNFEYRDADKNYHI	240
Lpl	LRKDAVELRELVAAGTSDDAIQERKEKMLNEVYRMLAYAFGEPVSHFDWEYRDDKKQYHI	233
Ppe	LRKDAVTLRNLVNSGASRTDIDERKQQMLSEVYRMASYSFGEPPVQFDWEYRDADQNYHR	240
Lca	LRKDAVALRKLVADKASDADIEAAKQKMLAEDYRILAYTLGNPPTKFDFEYRDDDKQYHI	239
Lme	LRHDATVLRGLVAQQASKDKISNARNEMLANVYRLLSLTLGEPPVQFDFEYRDELHNFHV	239
	:. ** ** * * * :: *: : **: ::* * *::**** :::*	
Lbu	DAGITPOEFFKKYVNLNLEDYVSLINSPTDDKPFNKTYTIEMLGNVVNGRPVKHLNLEMS	. 300
Lbr	DKDITPODFFKKYINLNLEDYVSLINSPTADKPFNKTYTIEMLGNVVNGRQVKHLNLEMS	
Lsan	DKDLTPKDFFKKYINLDLEEYVSIINSPTADKPFNKTYTVEMLGNVVGGRDVKHFNLPIE	
Lpl	DONLTPOSFFEKYVGWNLDDYVSIINAPTDDKPYNHTYTIEMLGNVLGGREVKHLNVSMA	
Ppe	EAGITPKAFYDKYVGWNLSEYISIINAPTADKPYNOTYTIDMLGNVVNGROVKHLNLAMD	
Lca	DRELTPOTFFKKYVAWNLDDYOSIINAPTDDKPYNHLYTVEMLGNVVGGREVRHLNLDID	
Lme	EROLTPODYYOKFVSWDLDEYISVINAPTADKPFDATYNVDMLGNVVGGRDVKHLNVDIN	
	: :**: ::.*: :*::* *:** ***:: *.: <u>*****:</u> .** *:*::	

A 8: Multiple Alignment of protein sequences of aminopeptidase C using ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Identical bases are marked with *, Red arrows mark the sites which were used for primer design.

Cysteine	aminopeptidase/ Bleomycine hydrolase
Lsan Lflor Lfruct Lbu_CD Lbu_NRRL Lbr Lhil Lpent Lpj	 ANIFYDRMIALAGRPASDREVEFYLSSPGTDGGQWAMAAALVQKYGVVPRETFPETAVTE 169 ANIFYDRMIALANQPVHDREVSYYLDNPGSDGGQWAMAAALIEKYGVVPRETFPETANTE 170 ANMFYDRMITLADRPTSDRDVDFYLSMPGEDGGQWAMAAALVQKYGVIPKEAFPETAVTD 170 ANIFYDRILATASRPANDREVENYLSFPGDDGGQWAMAAALVQKYGVMPVSDFPETANVE 170 ANIFYDRILATASRPANDREVENYLSFPGDDGGQWAMAAALVQKYGVMPVSDFPETANVE 170 ANIFYSRMIATADRPTNDREVAFYLGMPGEDGGQWAMAAALVQKYGVVPVSAYPETSNVE 170 ANIYYSRMIATADRPTNDREVAFYLGMPGEDGGQWAMAAALVQKYGVVPVSAYPETSNVE 170 ANIFYRNVEQTARQPISDRLVQFLFDNPGEDGGQWAMAASLVQKYGVVPTSAMPETFNTE 167 ANIFYRNVEQTARQPIDDRLVQFLFANPGEDGGQWAMAASLVQKYGVVPASVMPESFNTD
Lbr_ATCC	ANIFYDRILRTADQPVDSREVAAILNNPGGDGGQWAMGASLVQKYGVVPVSAMPESFNTN 172
Lsan Lflor Lfruct Lbu_CD Lbu_NRRL Lbr Lhil Lpent Lpj Lbr_ATCC	DTSDLDMLLNRKMRHDAMKLRELVNRGATDAEINNLKQQYMDEIYRITGQSV 221 NTAALEQLLNRTLRSDALKLRNLIQQQASDEQLNQAKTAALATVYRMAAESL 222 DTTDYDEVMDRKLRHDGMVLRNLVNSDASDYDINQMKQKMMSEVYRMTAYSF 222 NTGAFDTVMNRKLRIDAAKLRSMVKDEKSDEAISAARKQ-MLSEVYRITAYSF 222 NTGAFDTVMNRKLRIDAAKLRSMVKDEKSDEAISVARKQ-MLSEVYRITAYSF 222 NTGAFDAVMDRKLRIDGMVLRDLVNA-GKSDDEVAAARQKMLSEVYRIAAYSF 222 NTGAFDAVMDRKLRIDGMVLRDLVNA-GKSDDEIAAARQKMLSEVYRIAAYSF 222 NTGAFDAVMDRKLRIDGMVLRDLVNA-GKSDDEIAAARQKMLSEVYRIAAYSF 222 NTGAFDAVMDRKLRIDGMVLRDLVNA-GKSAELQSLEKSMLQAVYRITAYSF 219 NTTAFQASLSRQLRKDGLKLRQLVMDGASEAELQSLEKSMLQTVYRMTAYSF 219 DTTGFAATFNLKLRKDALVLRDLVADQASEEQIAATRAQALKEVYRMAAYSF 224
Lsan Lflor Lfruct Lbu_CD Lbu_NRRL Lbr Lhil Lpent Lpj Lbr_ATCC	GVPPEKFDLEYRDDDKKYHLDRGLTPKDLYAKYIGVDLDQYVVLTNSPDKKYGELYALPS 281 GEPPAQFDFEYRDDQHQYQLDQGLTPIQFYQKYFSNDLDQYVVLSNDPSKPMQQKFALPS 282 GVPPKTFDLEYRDDDKKYHLDQGLTPKQFYDKYIGVDLNDYVVLTNSPDKKMDEMYSLPS 282 GEPPATVDFAYRDDDKKYHRVSGLTPQQFYDQYFGVDLDDYVVLANSPEKDYNQLYSLPS 282 GEPPATVDFAYRDDDKKYHRVSGLPPQQFYDQYFGVDLDDYVVLANSPEKDYNQLYSLPS 282 GEPPTTVNFSYRDDDKAYHKISGLTPQQFYDQYFGVDLDDYVVLSNSPDKDFDRLYSLPS 282 GEPPTTVNFSYRDDDRAYHRISGLTPQQFYDQYFGVDLDDYVVISNSPDKDFDRLYSLPS 282 GEPPTTVNFSYRDDDRAYHRISGLTPQQFYDQYFGVDLDDYVVISNSPDKDFDRLYSLPS 282 GEPPTSFDLAYRDDDQYHRLTDLTPQQFYQDYFGVDLDDYVVISNSPDKDFDRLYSLPS 282 GEPPTSFDLAYRDDDQYHRLTDLTPQQFYQDYFGVDLDDYVVISNSPDKDFPNRLYSLPD 279 GEPPTSFDLEYRDDEQQYHRTANLTPQQFYQDYFETDLDDYVVTNSPDKPFNRLYSLPD 279 GEPPTTFDLEYKDDNQQYHRDAGLTPQGFFEKYFDVDLDDYVVISNSPDKAFNQRYRLES 284
Lsan Lflor Lfruct Lbu_CD Lbu_NRRL Lbr Lhil Lpent Lpj Lbr_ATCC	QDNVEGGKQIEFLNESMDQLKEAAIKQLQAGETIWFGNDVLQQMDRQKGILDSELFLHDE 341 QNNVVGGREIEFINLPMSKLKQAAIKQLQAGISVWFGNDVLQQSDRQAGLLDRDLYQEAQ 342 QNNVEGGMPIEFINAPMDELKEAAIKQLKDGETVWFGNDVLLQMNRQKGYLDSKLYRQAA 342 QNNVVGGKQIAFLNLPMDVLKAATIAQLKDGETVWFGNDVLEQMDRKKGYLDSHLYRYTK 342 QNNVVGGKQIAFLNLPMDVLKAATIAQLKDGETVWFGNDVLEQMDRKKGYLDSHLYRYTK 342 QDNVAGGKQIQFLNLPMAVLKQTAIAQLKDGEAVWFGNDVLEQMDRKKGYLDSHLYRYSE 342 QDNVAGGKQIQFLNLPMAVLKQTAIAQLKDGEAVWFGNDVLEQMDRKKGYLDSHLYRYSE 342 EDNVIGGKPIEFLNVDMGVLTDVAVQQLKAGETVWFGNDVLEQMDRKKGYLDSHLYRYSE 342 EDNVIGGKPIEFLNLDMGVLTDVAVQQLAGETVWFGNDVLRQMDRQTGYLDAHLFETGQ 339 EDNVIGGKPIEFLNLDMGVLTDVAVQQLQAGETVWFGNDVLRQMDRKTGYLDAHLFETGK 344

A 9: Multiple Alignment of protein sequences of cysteine aminopeptidase using ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Identical bases are marked with *, Red arrows mark the sites which were used for primer design.

6-phosphogluco	nate dehydrogenase
Lbu Lhil Lpent Lpj Lfruct Lflor Lf Lreut Ppe weiss.cib Lme	DFVKSLETPRRIILMVKAGKPTDAVIDELLPLLDKGDVLIDGGNTNFHDTMARNARLDKS 120 DFVKSLETPRRIILMVKAGKPTDAVIDELLPLLDKGDVLIDGGNTNFHDTMARNARLDKS 120 DFVASLETPRRIIMMVKAGKPTDAVIDELLPLLDKGDVLIDGGNTNFNDTMARNARLDKS 120 DFVASLETPRRIIMMVKAGKPTDAVIDELLPLLDKGDVLIDGGNTNFNDTMARNARLDKS 120 DFVESIQKPRTILLMVKAGKPTDAVIDELLPLLDKGDTLIDGGNTNFHDTMARNARLDKS 120 DFVESIEKPRTILMMVKAGKATDAVITEILPLLDKGDVLIDGGNTNFHDTIARNQELAKS 120 DFVKSLETPRRILLMVKAGKPTDAVINELLPLLDKGDVLIDGGNTNFHDTMARNAELDKS 120 DFVNSLEKPRRILMMVQAGKGTDAVINELLPLLDKGDVLIDGGNTNFHDTMARNAELDKS 120 EFVDSLEKPRRILMMVVAGKPTDAVINELLPLLDKGDVLIDGGNTNFHDTMARNAKLDES 120 EFVDSLEKPRRILMMVKAGKPTDAVINELLPLLDKGDVLIDGGNTNFHDTMARNAKLDKS 120 EFVNSLEKPRRILMMVKAGKPTDAVIAELLPLLDKGDVLIDGGNTNFHDTMARNAKLDKS 120 EFVNSLEKPRRILMMVKAGKPTDAVIAELLPLLDKGDVLIDGGNTNFHDTMARNAKLDKS 120 EFVNSLEKPRRILMMVKAGKPTDAVIAELLPLLDKGDVLIDGGNTNFHDTMARNAKLDKS 120 EFVNSLEKPRRILMMVKAGKPTDAVIAELLPLLDKGDVLIDGGNTNFHDTMARNAKLDKS 120 EFVNSLEKPRRILMMVKAGKPTDAVIAELLPLLDKGDVLIDGGNTNFHDTMARNAKLDKS 120 EFVNSLEKPRRILMMVKAGKPTDAVIAELLPLLDKGDVLIDGGNTNFHDTMARNAKLDKS 120 EFVNSLEKPRRILMMVKAGKPTDAVIAELLPLLDKGDVLIDGGNTNFHDTMARNAKLDKS 120 EFVNSLEKPRRILMMVKAGKPTDAVIAELLPLLDKGDVLIDGGNTNFEDTMRRNKELDES 118 EFVKSIKAPRRILLMVKAGKGTDAVIELLPLLPLEKGDILIDGGNTFFEDTMRRSEKLAQS 118
	.** ::: ** *::**:** ***:* *:** *:*** *:*** *:***
Lbu Lhil Lpent Lpj Lfruct Lflor Lf Lreut Ppe weiss.cib Lme	GINFIGMGVSGGELGALQGPSLMPGGQKEAYDLVEPILKQIAAKAPADGEPCVTYIGPNG 180 GINFIGMGVSGGELGALQGPSLMPGGQKEAYDLVEPILKQIAAKAPADGEPCVTYIGPNG 180 GINFIGMGVSGGELGALQGPSLMPGGQKEAYDLVAPILEKISAKAPQDGAPCVTYIGPNG 180 GINFIGMGVSGGELGALQGPSLMPGGQKEAYDLVAPILEKISAKAPQDGAPCVTYIGPNG 179 GINFIGMGVSGGELGALQGPSLMPGGQKEAYDLVAPILEKIAAKAE-DGEPCVTYIGPNG 179 GINFIGMGVSGGELGALQGPSLMPGGQKEAYDLVAPILEKIAAKAE-DGEPCVTYIGPNG 179 GINFIGMGVSGGELGALQGPSLMPGGQKEAYDLVAPILEKIAAKAE-DGKPCVTYIGPNG 180 GINFIGMGVSGGELGALQGPSLMPGGQKEAYDLVAPILEKIAAKAE-DGKPCVTYIGPNG 180 GINFIGMGVSGGELGALQGPSLMPGGQKEAYDLVAPILTQIAAKAE-DGKPCVSYIGPNG 179 GINFIGMGVSGGELGALQGPSLMPGGQKEAYDLVAPILTKIAAKAE-DGKPCVSYIGPNG 179 GINFIGMGVSGGELGALQGPSMMPGGQKEAYDLVAPILTKIAAKAEDGKPCVAYIGPNG 180 GINFIGTGVSGGELGALQGPSMMPGGQKEAYDLVAPILTKIAAKAEDGKPCVTYIGPNG 177 GINFIGMGVSGGELGALQGPSMMPGGQRDAYDLVEPILKEIAAKAPEDGKPTVAYIGPNG 178 GINFIGMGVSGGELGALQGPSMMPGGQRDAYDLVEPILKEIAAKAPEDGKPTVTYIGPNG 178
Lbu Lhil Lpent Lpj Lfruct Lflor Lf Lreut Ppe weiss.cib Lme	AGHYVKMVHNGIEYGDEELIDESYNILRNLAGYSVDELADIFKDWNKGELDSYLIEITAD 240 AGHYVKMVHNGIEYGDEELIDESYNILRNLAGYSVDDLADIFKEWNKGELDSYLIEITAD 240 AGHYVKMVHNGIEYGDEELIDESYNIMRNVAGLSVDEMSDIFTDWNKGELSSYLIEITAD 240 AGHYVKMVHNGIEYGDEELIDESYNIMRNVAGLSVDEMSDIFTDWNKGELSSYLIEITAD 240 AGHYVKMVHNGIEYGDEELIDEFFNLLRNAAGYSVDDLAKIFKDWDKGELNSYLIEITAD 239 AGHYVKMVHNGIEYGDEELIDESYNIKRNVAGISVDDMADIFKEWNQGELNSYLIEITAD 239 AGHYVKMVHNGIEYGDEELIDESYNIKRNVAGISVDDMADIFKEWNKGELDSYLIEITAD 240 AGHYVKMVHNGIEYGDEELIDESYNIKRNVAGISVDDMADIFKEWNKGELDSYLIEITAD 240 AGHYVKMVHNGIEYGDEELIDESYNIKRNVAGISVDDMADIFKEWNKGELDSYLIEITAD 239 AGHYVKMVHNGIEYGDEELIDESYNIKRNVLGLSVDEMADIFAEWNKGELDSYLVEITAD 239 AGHYVKMVHNGIEYGDEELIDESYNIKRNVLGLSVDEMADIFAEWNKGELDSYLVEITAD 239 AGHYVKMVHNGIEYGDEELIDESYNIKRNVLKMPVDDIAKTFAEWNKGELSSYLVDITAD 240 AGHYVKMVHNGIEYGDEQLIDESYDLMRKLLGLPVKEIADIFADWNQGELDSYLIDITAD 237 AGHYVKMVHNGIEYGDMQLIAESYDLKRLLKLDKDALAGTFAEWNKGELDSYLVEITAD 238 AGHYVKMVHNGIEYGDMQLIAESYDILKRVLHLNQEQLSQTFSGWNEGELNSYLVEITAD 238
Lbu Lhil Lpent Lpj Lfruct Lflor Lbr Lf Lreut Ppe weiss.cib Lme	ILTHKDDIGDDKTKPIVDMILDRGANKGTGKWSSQDALEVGVDQSVITEAVYARYISMIK 300 ILTHKDDIGDDKTKPIVDMILDRGANKGTGKWSSQDALEIGIDQSVITEAVYARFISMIK 300 ILSRKDDLGDDKTKPIVDMILDRGNNKGTGKWSSEDALNQVPQSVITEAVYARYISMMK 300 ILSRKDDLGADKTKPIVDMILDRGNNKGTGKWSSEDALNQVPQSVITEAVYARYISMK 209 ILTRKDDLGDDKNKPIVDAILDRGANKGTGKWSSEDALDIGAPQSVITEAVYARFISMMK 299 ILTRKDDLGDDKSKPIVDMILDRGANKGTGKWSSEDALDEGAPQSVITEAVYARYISMK 299 ILTRKDDLGDDKNLPIIDAIKDRGNNKGTGKWSSEDALDQGAPQSVITEAVYARYISMK 200 ILTRKDDLGDDKNLPIIDAIKDRGNNKGTGKWSSEDALDCGAPQSVITEAVYARYISMK 300 ILTRKDDLGDDKNLPIIDAIKDRGNNKGTGKWSSEDALDQVPQSVITESVYARYISMK 299 ILTRKDDLGDDKNLPIVDAILDRGANKGTGKWSSETALDGGAPQSVITEAVYARYISMK 299 ILTRKDDLGDDKNLPIVDMILDRGANKGTGKWSSETALDGGAPQSVITEAVYARYISMK 200 ILTRKDDLGDDKNKPIVDMILDRGANKGTGKWSSQSALEVGAPQSVITEAVYARYISMK 200 ILTRKDDLGDCGNKPIVDMILDRGANKGTGKWSSQSALEVGAPQSVITEAVYARYISMK 201 ILTRKDDLGSGKPIVDVILDRAGNKGTGKWSSQSALEVGAPQSLITESVYARYISMK 296 ILTRKDDLGTDKPIVDVILDRAGNKGTGKWSSQSALEVGAPQSLITESVYARYISAMK 296

A 10: Multiple Alignment of protein sequences of 6-phosphogluconate dehydrogenase using ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Identical bases are marked with *, Red arrows mark the sites which were used for primer design.

Ferredoxin-NADP-reductase

T - 1	
Lpl	AATATGATTTAACAATTATTGGTGGTGGCCCGGTCGGCATGTTTGCAGCCTT 62
Lpent	ATTACGATTTAACAATTATTGGTGGCGGACCCGTGGGGATGTTTGCGGCTTT 62 ACTATATGATATCACGATTATTGGTGGTGGCCCTATAGGAATGTTTGCTGGATT 65
Lsan	ACTATATGATATCACGATTATTGGTGGTGGCCCTATAGGAATGTTTGCTGGATT 65 A-TGTATGATATTACGATTATTGGTGGGGGGCCCAGCCGGTTTATTTGCTGGATT 62
Ppe Lbr	
Lme	GCCATTGGATTTGACCGCCTCTATTAATTGATCAACCGGATGCTTTTGTGGAAAAAG 118
тше	* * * * * * * * * * * * * *
Lpl	CTATGCTGGTATGCGTAATGCACGGGTTCAG-TTATTAGAAAGTCTCCCCGAATTAGG 119
Lpent	TTATGCCGGTATGCGGAACGCCCGCGTCCAA-TTATTAGAAAGTCTGCCCGAATTAGG 119
Lsan	TTATGCAGGAATGAGAAATGCTAAAGTTCAGATTATT-GAAAGTCTTTCTGAATTAGG 122
Ppe	TTATGCTGGAATGCGCACTGCCAAAACACAAATTATT-GAAAGCCTTCCACAAGCTGG 119
Lbr	CGGTACCGCGACCGGAGCCTACCGGACATGACTTACTCGTCCAGATTATCGCAACTTCAG 133
Lme	TTATTCCCCGACCACAACCGGATAAAGATGAATTACTAGTTAAAGTTTTGGCCAGCTCTG 178
	* * * * * * * *
Lpl	GGGT-CAGGTTCAGGCT-TTGTAT-CCTGAGAAGATCATTCATGACGTTGCGGG 170
Lpent	TGGA-CAGGTTCAGGCA-CTCTAT-CCTGAAAAAATGATTCATGATGTTGCCGG 170
Lsan	AGGA-CAAGTTAATACT-TTATAT-CCAGAGAAAACGATTCTGGATGTGGCTGG 173
Ppe	TGGA-CAAGTTGCTGCA-CTTTAT-CCAGAAAAAATGATTTACGATGTCGGTGG 170
Lbr	TTAATCCCGTTGATACGGCTGTTCGCCGGAACACGGTGGGCATCCTTGAGCACCCCAA 191
Lme	TCAATCCGGTGGATACAAAAATGAGAGCCAATTATACTCATGATGGCGTTTTTCGT 234
	* ** * * ** * *
Lpl	ATATCCGGCAATCAAGGGCCGTGAACTGGTGGCACAACTTGAAAAGCAACTCACACAATT 230
	CTATCCGGCAATTAAGGGGCCGTGAGTTGGTCGCCCCAATTGGCCCAAACAGCTGGACCAATT 230
Lpent Lsan	ATTTGCTGGACTAAAGGGGTTCTGGATTGATTA-ACAATCTACAAACCCCAATTAGATACTA 232
	TTATGCTGGAATAAAAGCAGCTAATTTGGCTAAAGAACTTGAAAAAACAAACGCGCTT 227
Ppe Lbr	AGTGATTGGTTGGGATGCTTACGGAATCGTCACGGCAGTCGGAAACGACGTCATGACTT 251
Lme	AGIGATIGGTTTTGACGCAGTCGGCGTGGTTGTAGAAGTTGGTCAAAATGTTCAACA-TT 292
Diffe	* * * * * * * * *
Lpl	TCCAATTGACATTCAATTGGCGAGCCC-GGTGACGGATGTCACGGG 275
Lpent	TCCAATTGATGTCCGGTTAGCTTGCCC-GGTAACGGATGTGACGGG 275
Lsan	TGCCAGAAGTAGA-ACAACGCGTTGGAACTAAGGTAACCAATGTTATTCG 281 GGTCGGAACTGAA-AT-TCGTCTTAACGAAACCGTTGTTGATATTCAAGC 275
Ppe	
Lbr	TCAAT-CTGGTGATCGGGTCTTTTACGCCGGATCGTTCAAACGATCCGGTACGGACAG 308
Lme	TCAGCGTTGGTGATAAAGTTTACTATGCTGGAGCGCAATTGAAACCCGGTTCTAACGC 350 * *
Lpl	-AGCGATGGGTGATTTCACGATTACCACGGCGAGTGGACAGCAGTCAC-ATTCCAAAG 331
Lpent	-ggccatgggagactttacggtgacgaccgcaaatggtgaacagtcac-ataccaaag 331
Lsan	TAAAGATGA-TCATTTTGAAATCGAAACTGATCAAGCAACTTATGAAACTAAAG 334
Ppe	TCAAGCTGATTTTTACCATGTTAAAACTA-ATCGGAATGAATACGATACCCGAG 328
Lbr	CGACTATCAACTAGTCGACGAGCGAATCGTGGGGCAT-GTACCCACG 354
Lme	TGACCTTCAAGTTGTTCATGAAGCACTGGTCGGCCAT-GCCCCTACT 396
Title	* * * * * * * * *
Lpl	CGATTATCGTAGCGACTGGGAGTGGGGGCTTTTGAACCCCGGCGCTTAGCAGTCGATAATG 391
Lpent	CAATTATTGTCGCCACTGGGAGTGGGGGCGTTCGAACCCCGTCGATTGGCGGTTGATAACG 391
Lsan	CTGTGATCTTAGCTACAGGAAATGGATCATTCAAGCCGCGAGAATTACGAGCAGATAACG 394
Ppe	CAATTCTTTTAGCAACTGGTAATGGAGCATTTAATCCGCGAAAGTTAGCTGTGGA-AGGG 387
Lbr	TCACTCTCACCGGCCGAAATTGCCGCAATGCCGTTAACCTCATTGACGGCCTGGG 409
Lme	TCATTGAGTGATGAAGAAATTGCGGCTATGCCGTTAACATCAATTACAGCCTACG 451
	* * * * * * * * *

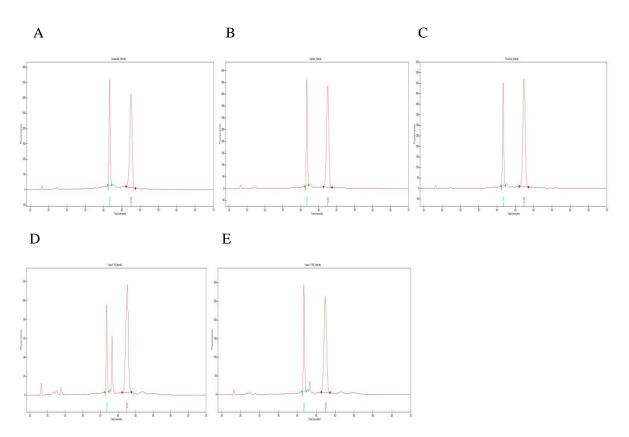
A 11: Multiple Alignment of DNA sequences of Ferredoxin-NADP-reductase using ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Identical bases are marked with *, Red arrows mark the sites which were used for primer design.

Transcriptional regulator spx

Lreut	GAAATTAAGAATATTTTACGGATGACTGAAGATGGTACTGAAGATATTATTTCAAAGCGG 180
Pcl	GAGATTAAACAAATTTTACGAATGACTGAAGATGGAACAGAAGAGAGATTGTTTCTAAGCGT 180
Lsak	GAAATTAAAACCATTTTGCGAATGACTGAGGACGGCACTGAAGAAATTATTTCAACACGT 180
Ljohn	ATGCAAGTTTTACGAATGACTGAAAACGGCACAGAAGAAATTATTTCTACTCGT 54
Lgas	GAAATCATGCAAGTTTTGCGTATGACCGAGAATGGAACGGAAGAAATAATTTCTACTCGT 180
Lbr	GAAGTTAAGCAAATTTTGCGGTTAACTGAGAACGGCAGTGAAGATATCATCTCTACCCGT 180
Lbu	GARGITARAGCARATITIGCGGITARCIGAGAACGGCAGIGARGATATCATCICTACCCGI 180 GAGGTARAACAAATTTTACGTTTAACCGAAAACGGCAGTGAAGACATTATTTCTACACGG 180
LIDU	
Lreut	TCTAAAGCTTACCAAAAGTTGAGTGTAGATCTTAATGATTTGTCAATGAAGGCTCTGTTT 240
Pcl	TCGAAAGTATTTCAAAAGTTACACGTAAATTTAGAAGATTTGCCTTTAAAACAATTAATT
Lsak	tctaagattttccaacaactaaatattaaaattgatgatttatctgttaatgaattatta 240
Ljohn	TCTCGTACTTTCCAAAACTTAAAGATTAATTTAGATGATTTATCAATTGATCAACTAATT 114
Lgas	TCTCGTACTTTCCAAAACTTAAAAATCAATTTAGATGACTTATCAATTGATCAATTGATT 240
Lbr	TCGAATGTTTTCAAGCAATTACACGTCGACTTGGACAGCTTGTCAGTTAGTCAATTGGTT 240
Lbu	TCTAACATCTACAAGAAGTTGAATTTGGACCTGGACAACTTAACTGTTTCACAGTTGGTT 240
	** * * * * * * * * * * * * *
•	
Lreut Pcl	AAGTTAATTAGTAAAAATCCAGGATTGTTACGACGTCCGATTATTATTGATGATAAACGG 300
Lsak	GATTTGATTCAGGAGAATCCTGGATTGTTGCGTCGACCAATTATGATTGACGACAAGCGA 300
	GATCTTGTTCAAGAAAATCCAGGTCTATTAAGACGACCAATTATCTTGGATGAAAAACGA 300
Ljohn	GATCTTGTTGAAAAGAATCCTAGCCTATTAAGACGTCCAATCATTATGGATGATAGACGT 174
Lgas	GATCTTGTTGAAAAAAATCCAAGTTTATTAAGACGTCCAATCATTATGGATGACAGACGT 300
Lbr	GATCTAGTTGTGAAGTATCCAGACTTGATCAAACGCCCCATCATCTTTGATGATAAGCGC 300
Lbu	GATCTTGTCGTTAAGTACCCCCGATTTGATTAAACGTCCGATTATATTTGACGATCATCGT 300
Lreut	CTTCAAGTTGGTTACAATGAAGACGAAATCCGTCGCTTCTTACCTCGAAAGGTTCGTGAA 360
Pcl	CTTCAAGTAGGATATAACGAAGATGAAATTCGTCGTTTCTTACCAAGAAGTGTTCGCCAA 360
Lsak	CTTCAAGTTGGTTACAACGAAGATGAAATTCGTCGTTTCTTACCACGCGAAGTGCGCGCA 360
Ljohn	TTACAGGTAGGCTACAACGAAGATGAAATTAGGAGATTTCTTCCTCGTAAAGTTCGTCGC 234
Lgas	TTACAAGTAGGATATAACGAAGATGAAATTAGAAGATTTCTTCCTCGAAAGGTTCGTCGT 360
Lbr	TTGGAAGTGGGGTACAACGAAGAAGAAGATTCGGCGGTTCTTACCACGTGATGTGCGGACT 360
Lbu	CTTGAGGTTGGATTTAACGAAGAAGAAATCAGAAGATTCTTGCCACGAAGTGTTCGTGAA 360
	ϕ ϕ $\phi\phi$ $\phi\phi$ $\phi\phi$ $\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi\phi$
	<
Lreut	CTTGAACTAGTAGAAGCTCAAGAAAAAGCAAATATGATTTAA 402
Pcl	CTTGAATTAGCAGAAGCTCGTCAATTAGCTAACCTTTAG 399
Lsak	CTAGAATTACAACAAGCACAATTAATGGCAGGATTCTAA 399
Ljohn	TTAGAACTTGAAGAGATCCAAGCAATGACTGCTGATTTTTAA 276
Lgas	TTGGAACTTGAAGAAATCCAAGCAATGACAGCTGATCTTTAA 402
Lbr	GCAGAGTTACACCATTTAGAATCACAATTAAGCTCATAA 399
Lbu	GCAGAACTTCGTGAACTGGAATCACAAATTAGTTAA 396
	** * * * *

A 12: Multiple Alignment of DNA sequences of transcriptional regulator *spx* using ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Identical bases are marked with *, Red arrows mark the sites which were used for primer design.

Thioredoxin li	ke protein - ytp
Lsan Lreut Lbr Lca Ppe	TTATTCTGTTGGTAAAGATTTAATAAAAATTTTCTACTTCTTCTTTACTCTTACG 54 TTACTTCAAATTGTTTAA-AAAAATCTTCAACTTGTTGCTTAGTTTTACG 48 TTAGTTGGCGTTGGTTGTCAAAGAATTGATAAATTCTTCTACCTCTGCTTTGTCTTACG 60 TTAATGCAA-GCCGTTAATGAAAATCTTCGACTTGTTGTTTCGTCTTACG 48 TTAGGCAATACCCTGAATGAATTCTTCAACTTCTTGGGGGAGTACGGCG 48
Lsan	ATCTTTGTTAACTAAACGTCCAATTTCTTTTCCATTACTAAACGCAACAAAACTTGGAAT 114
Lreut	ATCTTTATTGACAAATCGACCAATTTCTTTACCATTATCATATACAATGAAGCTTGGAAT 108
Lbr	ATCTTTGTTTACCAACCGACCAATCTCTTGACCATCGGCATAGGCAATAAAACTTGGAAT 120
Lca	ATCTTTATTCACAAAACGACCGGTTTCCTTGCCATCGTTAAAGGCAATAAAGCTCGGAAT 108
Ppe	TTCACCTTTACCAAAACGGCCGAGTTCCTTACCGTCTTCAAGGGCGATAAAACTTGGAAT 108
	** ** * ** ** ** ** * * * * ** ** **
Lsan	TCCAAAAACGTCTAAATCTTTACATAAATCAATATTATCATCTCTATCAACCTTAATGAA 174
	TCCAAATACATTTAATTCAGCAGCTAGGTCGATGTTTTCATCGCGATCAACTTCATAGAA 168
Lreut	
Lbr	GCCAAAGACATTGAGTTCTGCGGCCAAATCGATATTTTCATCGCGATCGACAGCAACAAA 180
Lca	GCCAAACACACCCATATCTTGAGCAACTTCTAAATTCTTATCGCGATCAACCGCGATGAA 168
Ppe	ACCCATCACCAAAATGTTGAGCAACTTCTAGATTGTCATCACGGTCAACCGTAATCCA 168
	** * * * * * ** ** ** ** ** *
Lsan	GGTAAATTCAGGGAATTCTTTAATAATTTCTGGCATTGCCGGCTTGATAAAATTACAA 232
Lreut	AGTATAATCACTGAAGTCTTGTTCGATCTCAGGCATTGCTGGCTTAATGAAACGGCAA 226
	CTTAAAATCAGGGTATTCCGCTTCAATTTCAGGCATGGCTGGCTTGATAAATGCGCAA 238
Lbr	
Lca	TTCATAATCTGAAAAGTCCTTCTCAATTTCAGGCATAGCTGGTTTGATAAAACGGCAA 226
Ppe	ATCATATTGATCGTACTTCTTCATGATGTCCGGCATTGCGGGCTTGATGAAGGCACAA 226
	* * * * * * * ** ***** ** ** ** ** **
-	
Lsan	TCAGGACACCAATCAGCAGTGAAAAACAAAATGTATCTGCCTTTTGCTAACTTATTTTTA 292
Lreut	TCTGGGCACCAATCAGCTGTAAAGAAAAGGACGACCTTGCCATT-GCCAATAGTTTCA 283
Lbr	TCTGGGCACCAAGTTGCCGAGAAGAACAGCATCGTTTTACCAGATTTA 286
Lca	TCCGAGCACCAATCTGCAGAAAAGAACAACATTTTTTTACCTGGTTGCT 275
Ppe	TCAGGGCACCAGCCAGCTGTAAAGAATAACATTTTCTTACCTGAATTCA 275
	** * ***** ** * ** * * * * *
Lsan	AGCTCTTTTTCATTGATTACAGCTAATTCTTCCATAGTTACATCTCTTCTTTC-T 346
Lreut	ATTAATTGATCTTCTTTTAATTGTGGTAATCTTTTCAT 321
Lbr	ACCACGTCGGTTAATTCAGTCGCTGACATTTTGGGT 322
Lca	TGACCTCATTTAAAATTGCTGCATTAGAGCCTAATTCTTTCAT 318
Ppe	TTGCTTCAAAAATTTCTTCGTTAGTTAAATTTGCTTG 312
	* ** * *
Lsan	AATTTT-AT 354
	AATCCTCAT 330
Lreut	
Lbr	AATTGTTCCAT 333
Lca	AGCCAACATCCTTTCGCTTACTAT 342
Ppe	AGTGCTCAT 321
	* *


A 13: Multiple Alignment of DNA sequences of thioredoxin-like protein (*ytp*) using ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>). Identical bases are marked with *, Red arrows mark the sites which were used for primer design.

tgatcTGatgGTncnCaATCACAGTTGTTTTTCCTTGTGGAAATTTAGCTGAAATTCCTTTGAGAACCGCTTTTTtaCCAAAACTTTTTTAATTTCATTAATTTTTAACATTAGTTCTTGTCCCCTTTCATATATCTAGA AGACTTCTTTTCTAAGTAGCGTTGTAAGACGCTTAAAATTGTACATAGCATTGCATATAAAGCAGC AACTTCAACATACATTAAAAGTGGTTCATAATTTTGTGCTGCATACTGCTGAATAATCTGAAACATT TCAGCAATCGTAATGGTACTAGCTAATGATGTATCTTTAACCAAACCAATAAATTCGTTTGATAAA **GGTGGCAAAACAATTCGAAATGCTTGAGGCATTATAATTTTCCATAGTGTTTTGGGGGGTACTAAAT** CCCAAAGTATATGCAGCATCCCACTGATCTTTATTAACTGATAACAAAGCTGAACGAATGGTTTCA <u>GAAGCATAAGCCCCAGTATTCAATGAAAAACCAATCACAGCTGCAGTGAAAGCTGGCAATTTAAC</u> **CCCAGACATAAAAACTCGCAAGTAATCGTAGAAGTTTCCATAAAATTGAAACTATTCCACTAACCT** AGGTTAACGGGAGGATCCTCTAGAGTCGATTCACAAAAAaTAGGCACACGAAAAACAAGTTAAGG GATGCAGTTTATGCATCCCTTAACTTACTTATTAAATAATTTATAGCTATTgaaAAGAGATAAGAATT GTTCAAAGCtaATATTGTTTAAATCGTCAATTCCTGCATGTTTTAAGGAATTGTtaaATTGATTTTtTGT AAATAttttcTTgtaTTCTTTGTTAACCCATTTCATAACGAAAtaATtataCTTttGTTTatcTTTgtgtggaacttTTTTTT TCtaCtTAatcTGATaagtGAGCTATTCACTttAGgTTtagGatgAA

A 14: FASTA sequence of *L. sanfranciscensis* $\Delta tcyB$ after insertional inactivation. The primer pair ABC_for/ SP6 was used. Underlined is the disrupted *tcyB* gene, the restriction site (GGATCC) is marked in bold, the erythromycin resistance gene of *pME-1* is shaded in grey.

CTTTAGTTTCATTtATACccaATCATTTTGTTTtaGGAATATATTTACCTAGTGAGATTTTATTAATTTT ATTTATTTTATTCTAATAACAGCATTCATCGGTGGTGGTCATTTGGAAATTTTTAAATAATAATAATA AATTTTTTTTTAATCAGTAATGTTCAATGCATCAATAATTTTTGGTTCAATCTTTAATGGAGAAGTT **ACTGGAGCATAGCGATGAATCAAGTTTCCCTTTTTTCCAATTAAAAATTTAGTATAATTCCATTTTA TATTTCCGTGACCAGAAAGTCCTTTTAAATAAGTAAAAAGTGGAGATTCCTCATTTCCGTTTACTTT** TATCATTTCTGTCATTGGAAACGTAACCCCATAATGTATCTTACAATATTCATCGATATCTTTACTAT CAAGTTCTTGATGAAATTGATTAGAAGGAAACCCAATTACTTCTAGTCCTTTTTGATGATATTTTTT ATACAAATATTCAAGATTTTTTAATTGAGGAGCAAGCCCACATTTACTAGCCGTATTTACAACTAA <u>AATAACTTTATTTTTAAATTTAGTAAAATCAATTTCTCGACCATTCAGGATCCTCTAGAGTCGATTC</u> AATAATTTATAGCTATTGAAAAGAGATAAGAATTGTTCAAAGCTAATATTGTTTAAATCGTCAATT CCTGCATGTTTTAAGGAATTGTTAAATTGATTTTTTGTAAATATTTTCTTGTATTCTTTGTTAACCCA TTTCATAACGAAATAATTATACTTTTGTTTATCTTTGTGTGATATTCTTGATTTTTTCTACTTAATCT GATAAGTGAGCTATTCACTTTAGGTTTAGGATGAAAATATTCTCTTGGAACCATACTTAATATAGA AATATCAACTTCTGCCATTAAAAGTAATGCCAATGAGCGTTtTGTATTTAAtAATCTTTTagcAAACCC GTaTTCCACGATTaAATAAATCTCATTAGCTATACTATCAAAAaCAATTTtGCGTATTataTCCGTACTTa tgttataagGTATATTACCAtataTTTATAGGattggtTTTTAGgaAAtTTAAaCtgcaaTATATCCTTGTTTAAAACTTGGAAATTAT

A 15: FASTA sequence of *L. sanfranciscensis* Δgpo after insertional inactivation. The primer pair Pseu_for/ SP6 was used. Underlined is the disrupted *gpo* gene, the restriction site (GGATCC) is marked in bold, the erythromycin resistance gene of *pME-1* is shaded in grey.

A 16: Electropherograms of the isolated RNA samples after anaerobic (A) and aerobic (B) incubation, with added Fructose (C), after incubation 1/10 (D) and 1/100 (E) with *Candida humilis* for microarray analysis.

LSA number	COG functional category	Aerobic log2 fold changes	Up/ down	gene name, results of BLAST search
LSA_00600	Hypothetical	1.6103	1	59 aa. hypothetical protein
LSA_00720	proteins Hypothetical proteins	2.4832	1	mRNA interferase. cell growth regulatory protein (BLAST)
LSA_00740	Hypothetical proteins	0.4499	- 1	47 aa. hypothetical protein
LSA_00760	Hypothetical proteins	0.6239	- 1	102 aa. hypothetical protein
LSA_00790	Hypothetical proteins	0.579	- 1	56 aa. hypothetical protein BLAST
LSA_01040	Hypothetical proteins	1.8672	1	121 aa. hypothetical protein BLAST
LSA_01070	Hypothetical proteins	0.5826	- 1	142 aa. phosphatidylglycerophosphatase A BLAST
LSA_01110	Hypothetical proteins	2.5635	1	transcriptional regulator (HTH. HrX. MarR) (BLAST)
LSA_01300	Hypothetical proteins	3.4366	1	oxidoreductase (NADP dependent) iolS. inositol utilization protein (BLAST)
LSA_01320	Hypothetical proteins	1.9537	1	136 aa. ribokinase. hypoth pr. transcr regulator BLAST
LSA_01570	Hypothetical proteins	0.6456	- 1	195 aa. integrase family protein. recombinase plasmid associated
LSA_01940	Hypothetical	0.541	- 1	170 aa. transcriptional regulator (TetR. ArsR) BLAST
LSA_01950	proteins Hypothetical proteins	0.6257	- 1	DegV family protein. hypothetical protein BLAST
LSA_02310	Hypothetical proteins	0.5683	- 1	rRNA pseudouridine1911/1915/1917 synthase
LSA_02390	Hypothetical proteins	0.6402	- 1	135 aa. XRE family transcriptional regulator BLAST
LSA_02440	Hypothetical proteins	3.342	1	42 aa. no information
LSA_02510	Hypothetical proteins	1.5048	1	purine nucleosidase. inosine/uridine- preferring nucleoside hydrolase BLAST
LSA_02780	Hypothetical proteins	6.4783	1	putative alcohol DH. zinc containing. oxidoreductase (BLAST)
LSA_02800	Hypothetical proteins	0.5025	- 1	47 aa. hypothetical protein BLAST
LSA_02880	Hypothetical proteins	0.4554	- 1	DegV family protein. hypothetical protein BLAST
LSA_02900	Hypothetical proteins	1.924	1	150 aa. major facilitator superfamily protein BLAST
LSA_03010	Hypothetical proteins	0.6537	- 1	hypothetical protein
LSA_03040	Hypothetical proteins	2.8649	1	123 aa. hypothetical protein (XRE family DNA binding protein) BLAST
LSA_03320	Hypothetical proteins	0.4738	- 1	superfamily II DNA/RNA helicase. DEAD/DEAH box helicase BLAST
LSA_03370	Hypothetical proteins	0.6412	- 1	membrane protein. Cyclic nucleotide- binding domain- containing protein BLAST
LSA_03450	Hypothetical proteins	0.6571	- 1	153 aa.integral membrane protein BLAST
LSA_03460	Hypothetical proteins	3.1607	1	179 aa. RNA polymerase (sigma SU) BLAST
LSA_03510	Hypothetical proteins	5.4251	1	67 aa. hypothetical protein. peptidyl- prolyl cis- trans isomerase BLAST
LSA_04280	Hypothetical proteins	0.6516	- 1	147 aa. S1 RNA binding domain protein BLAST
LSA_04640	Hypothetical proteins	0.3349	- 1	65 aa. hypothetical protein BLAST
LSA_05600	Hypothetical proteins	0.5801	- 1	115 aa. membrane protein. hypothetical protein BLAST
LSA_05670	Hypothetical proteins	0.6453	- 1	teichoic acid/polysaccharide glycosyl transferase
LSA_05750	Hypothetical proteins	2.949	1	87 aa. hypothetical protein

LSA number	COG functional category	Aerobic log2 fold changes	Up/ down	gene name, results of BLAST search
LSA_05830	Hypothetical proteins	0.5804	- 1	40 aa. hypothetical protein BLAST
LSA_06500	Hypothetical proteins	1.9388	1	2- deoxyuridine 5- triphosphate nucleotidohydrolase. dUTPase BLAST
LSA_07300	Hypothetical proteins	0.5888	- 1	155 aa. hypothetical protein BLAST
LSA_07310	Hypothetical proteins	3.3303	1	102 aa. hypothetical protein
LSA_08100	Hypothetical proteins	0.3777	- 1	hypothetical protein BLAST
LSA_08500	Hypothetical proteins	0.6202	- 1	rRNA methyltransferase (SAM dependent) BLAST
LSA_08610	Hypothetical proteins	2.0209	1	186 aa. hypothetical protein BLAST
LSA_08660	Hypothetical proteins	3.207	1	CRISPR assoc protein BLAST
LSA_08810	Hypothetical proteins	3.8391	1	144 aa. competence protein ComGF BLAST
LSA_08820	Hypothetical proteins	0.4868	- 1	56 aa. hypothetical protein BLAST
LSA_08850	Hypothetical proteins	0.4394	- 1	competence protein ComGB BLAST
LSA_08860	Hypothetical proteins	0.2713	- 1	competence protein ComGA BLAST
LSA_08910	Hypothetical proteins	0.6356	- 1	small conductance mechanosensitive channel MscS
LSA_09320	Hypothetical proteins	0.546	- 1	XRE family transcriptional regulator (HTH domain containing protein)
LSA_10200	Hypothetical proteins	0.3488	- 1	45 aa. hypothetical proteins BLAST
LSA_10400	Hypothetical proteins	0.6238	- 1	64 aa. hypothetical protein BLAST
LSA_10560	Hypothetical proteins	0.629	- 1	membrane protein. ribonuclease BN-like family protein BLAST
LSA_10580	Hypothetical proteins	1.8716	1	144 aa. cell wall teichoic acid glycosylation protein BLAST
LSA_10650	Hypothetical proteins	1.7836	1	97 aa. hypothetical protein BLAST
LSA_11880	Hypothetical proteins	0.4876	- 1	179 aa. transcriptional regulator (TetR) BLAST
LSA_12030	Hypothetical proteins	0.5892	- 1	hypothetical protein BLAST
LSA_12080	Hypothetical proteins	0.6471	- 1	alpha/beta hydrolase. putative lipase BLAST
LSA_12230	Hypothetical proteins	2.2037	1	72 aa. hypothetical protein BLAST
LSA_12670	Hypothetical proteins	0.6231	- 1	transcriptional regulator. cell envelope- related transcriptional attenuator BLAST
LSA_13250	Hypothetical proteins	0.6395	- 1	transcriptional regulator LysR BLAST
LSA_1p0001 0	Hypothetical proteins	0.6437	- 1	replication- associated protein RepB. plasmid copy control protein BLAST
LSA_2p0016	Hypothetical	0.6584	- 1	41 aa. hypothetical protein BLAST
0 LSA_2p0063 0	proteins Hypothetical proteins	0.8795	- 1	Cobyrinic acid ac- diamide synthase. replication- associated protein RepB BLAST
LSA_00220	Pseudogenes	0.6421	- 1	pseudo
	Pseudogenes	0.6099	- 1	pseudo
LSA_00620	Pseudogenes	0.6493	- 1	pseudo
LSA_01310	Pseudogenes	3.0439	1	aldo/ ketoreductase family enzyme (NCBI BLASTN)
LSA_01470	Pseudogenes	0.6544	- 1	pseudo
LSA_01490	Pseudogenes	0.6006	- 1	pseudo
LSA_01930	Pseudogenes	0.649	- 1	pseudo
LSA_02050	Pseudogenes	1.6464	1	no information NCBI, KEGG

LSA number	COG functional	Aerobic log2	Up/ down	gene name, results of BLAST search
	category	fold changes		
LSA_02120	Pseudogenes	0.5622	- 1	pseudo
LSA_02570	Pseudogenes	2.7144	1	no information NCBI, KEGG
LSA_03290	Pseudogenes	3.4602	1	putative metal ion transporter (Mn) 16.5 kDa protein NCBI
LSA_03670	Pseudogenes	0.6247	- 1	pseudo
LSA_04780	Pseudogenes	3.6782	1	putative ribose uptake protein. transcr regulator (NCBI)
LSA_04960	Pseudogenes	0.2796	- 1	pseudo
LSA_04970	Pseudogenes	0.3318	- 1	pseudo
LSA_05050	Pseudogenes	2.6247	1	DNA / RNA helicase for DNA uptake (NCBI)
LSA_05690	Pseudogenes	0.2211	- 1	pseudo
LSA_05700	Pseudogenes	0.6442	- 1	pseudo
LSA_05740	Pseudogenes	1.6585	1	pseudo
LSA_06920	Pseudogenes	1.6487	1	pseudo
LSA_08060	Pseudogenes	0.6547	- 1	pseudo
LSA_08770	Pseudogenes	0.1776	- 1	acetate kinase uncharact transporter. transposase NCBI
LSA_08780	Pseudogenes	0.5753	- 1	pseudo
LSA_11570	Pseudogenes	1.7861	1	pseudo
LSA_11710	Pseudogenes	0.4351	- 1	pseudo
LSA_12370	Pseudogenes	2.5668	1	no information NCBI, KEGG
LSA_12520	Pseudogenes	0.6465	- 1	62 bp of lactate dehydrogenase NCBI
LSA_13120	Pseudogenes	0.5813	- 1	pseudo
LSA_13210	Pseudogenes	1.92	1	pseudo
LSA_13220	Pseudogenes	5.0956	1	no information NCBI, KEGG
LSA_1p00110	Pseudogenes	0.6289	- 1	pseudo

A 17: Differentially expressed genes expressed as log2 fold changes during aerobic incubation of *L. sanfranciscensis* TMW 1.1304 ordered alphabetically by COG functional categories. Anaerobic conditions were used as reference condition and set as 1. Up- regulated genes are shaded in grey, downregulated genes are left blank. Genes which were also differentially expressed during incubation with fructose are marked bold.

LSA number	COG functional category	Fructose log2 fold changes	Up/down	gene name. results of BLAST search
LSA_00510	Hypothetical proteins	3.761	1	glucosyltransferase (Strepmut). serine endopeptidase BLAST
LSA_00740	Hypothetical proteins	0.348	- 1	47 aa. hypothetical protein BLAST
LSA_00790	Hypothetical proteins	1.5299	1	56 aa. hypothetical protein BLAST
LSA_01030	Hypothetical proteins	1.5932	1	168 aa. abortive infection protein. immunity protein BLAST
LSA_01100	Hypothetical proteins	2.8236	1	HxlR transcriptional regulator BLAST
LSA_01110	Hypothetical proteins	2.8763	1	transcriptional regulator (HTH. HrX. MarR) (BLAST)
LSA_01140	Hypothetical proteins	0.6473	- 1	142 aa. methylenomycin A resistance protein BLAST
LSA_01290	Hypothetical proteins	0.64	- 1	172 aa. hypothetical protein BLAST
LSA_01320	Hypothetical proteins	1.8106	1	136 aa. transcr regulator (MarR). hypothetical protein
LSA_01560	Hypothetical proteins	0.5865	- 1	120 aa. hypothetical protein BLAST
LSA_01950	Hypothetical proteins	0.6149	- 1	DegV family protein. hypothetical protein BLAST
LSA_02440	Hypothetical proteins	2.8611	1	42 aa. no information
LSA_02480	Hypothetical proteins	1.5459	1	75 aa. hypothetical protein BLAST
LSA_02490	Hypothetical proteins	0.5168	- 1	61 aa. LPXTG- motif cell wall anchor domain- containing protein

LSA number	COG functional category	Fructose log2 fold changes	Up/down	gene name. results of BLAST search
LSA_02780	Hypothetical proteins	2.4346	1	putative alcohol DH. zinc containing. oxidoreductase
LSA_02880	Hypothetical	0.5591	-1	(BLAST) DegV family protein. hypothetical protein BLAST
LSA_02890	proteins Hypothetical	1.6814	1	50 aa. hypothetical protein BLAST
LSA_02910	proteins Hypothetical	0.6495	- 1	44 aa. hypothetical protein BLAST
LSA_02990	proteins Hypothetical	1.7451	1	80 aa. hypothetical protein BLAST
LSA_03200	proteins Hypothetical	0.4615	- 1	48 aa. hypothetical protein BLAST
LSA_03320	proteins Hypothetical proteins	0.5406	- 1	superfamily II DNA/RNA helicase. DEAD/DEAH box helicase BLAST
LSA_03460	Hypothetical	3.2075	1	179 aa. RNA polymerase (sigma SU) BLAST
LSA_03470	proteins Hypothetical	5.435	1	peptidyl- prolyl cis- trans isomerase (Proteinfaltung) BLAST
LSA_03480	proteins Hypothetical	2.0047	1	hypothetical protein BLAST
LSA_03510	proteins Hypothetical proteins	3.234	1	67 aa. hypothetical protein. peptidyl- prolyl cis- trans isomerase BLAST
LSA_04640	Hypothetical proteins	1.6512	1	65 aa. hypothetical protein
LSA_05380	Hypothetical proteins	0.541	- 1	157 aa. ATP- binding protein. ATP/GTP hydrolase. Kinase BLAST
LSA_05390	Hypothetical proteins	0.5025	- 1	160 aa. acetyltransferase (GNAT family) BLAST
LSA_05500	Hypothetical proteins	0.6454	- 1	104 aa. hypothetical protein BLAST
LSA_05600	Hypothetical proteins	0.4554	- 1	115 aa. membrane protein. hypothetical protein BLAST
LSA_05830	Hypothetical proteins	0.5062	- 1	40 aa. hypothetical protein BLAST
LSA_05960	Hypothetical proteins	0.5753	- 1	110 aa. hypothetical protein BLAST
LSA_05990	Hypothetical proteins	0.6174	- 1	115 aa. hypothetical protein BLAST
LSA_06070	Hypothetical proteins	0.6218	- 1	104 aa. hypothetical protein BLAST
LSA_06470	Hypothetical proteins	0.5705	- 1	137 aa. rhodanese- related sulfurtransferase. rhodanese family protein BLAST
LSA_07140	Hypothetical proteins	0.5775	- 1	195 aa. hypothetical protein BLAST
LSA_07270	Hypothetical proteins	0.5597	- 1	DegV family protein BLAST
LSA_07300	Hypothetical proteins	0.4167	- 1	155 aa. hypothetical protein BLAST
LSA_07310	Hypothetical proteins	1.6127	1	102 aa. hypothetical protein
LSA_07690	Hypothetical proteins	0.6588	- 1	62 aa. hypothetical protein BLAST
LSA_07880	Hypothetical proteins	0.5868	- 1	N- acetylmuramoyl- L- alanine amidase. cell wall hydrolase/autolysin BLAST
LSA_07940	Hypothetical proteins	0.6156	- 1	102 aa. hypothetical protein BLAST
LSA_08040	Hypothetical proteins	1.9097	1	42 aa. hypothetical protein BLAST
LSA_08100	Hypothetical proteins	5.1912	1	hypothetical protein BLAST
LSA_08470	Hypothetical proteins	0.65	- 1	Carbohydrate kinase. YjeF-like protein. hypothetical protein BLAST
LSA_08500	Hypothetical proteins	0.6506	- 1	rRNA methyltransferase (SAM dependent) BLAST
LSA_08660	Hypothetical	1.701	1	CRISPR assoc protein BLAST

IsA_08690Hypothetical proteins0.6501-1179 aa. inner membrane protein. membrane- bound dependent hydrolase BLASTISA_08810Hypothetical proteins1.92621144 aa. competence protein ComGF BLASTISA_08820Hypothetical proteins0.464-156 aa. hypothetical protein BLASTISA_08830Hypothetical proteins4.99881competence protein ComGC BLASTISA_08840Hypothetical proteins6.6591competence protein ComGC BLASTISA_08840Hypothetical proteins0.6035-1127 aa. methyl- accepting chemotaxis-like protein. hypothetical proteinsISA_09300Hypothetical proteins0.6155-1XRE family transcriptional regulator. HTH proteir proteinsISA_09320Hypothetical proteins0.5724-1153 aa. hypothetical protein. hypothetical protein BLASTISA_09300Hypothetical proteins0.6155-1XRE family transcriptional regulator. HTH proteir proteinsISA_10200Hypothetical proteins0.5484-1153 aa. hypothetical protein BLASTISA_10270Hypothetical proteins0.586-1166 aa. hypothetical protein BLASTISA_10270Hypothetical proteins0.5983-147 aa. areide and sporulation negative r proteinsISA_10270Hypothetical proteins0.5137-147 aa. areide and sporulation negative r proteinsISA_10400Hypothetical proteins0.6078-11064 aa. hypothetical protein BLASTISA_10	
proteinsdependent hydrolase BLASTLSA_08810Hypothetical proteins1.92621144 aa. competence protein ComGF BLASTLSA_08820Hypothetical proteins0.464-156 aa. hypothetical protein BLASTLSA_08830Hypothetical proteins4.99881competence protein ComGD BLASTLSA_08840Hypothetical proteins5.66591competence protein ComGC BLASTLSA_08860Hypothetical proteins6.32711competence protein ComGA BLASTLSA_08900Hypothetical proteins0.6035-1127 aa. methyl- accepting chemotaxis-like protein. hypothetical protein BLASTLSA_09300Hypothetical proteins0.5724-194 aa. integral membrane protein. hypothetical protein BLASTLSA_09320Hypothetical proteins0.6155-1XRE family transcriptional regulator. HTH protein proteinsLSA_09890Hypothetical proteins0.5484-1153 aa. hypothetical protein BLASTLSA_10200Hypothetical proteins0.5484-1189 aa. dithiol- disulfide isomerase. hypothetical proteinsLSA_10200Hypothetical proteins0.586-1166 aa. hypothetical protein BLASTLSA_10400Hypothetical proteins0.5137-181 aa. membrane protein BLASTLSA_11720Hypothetical proteins0.5137-181 aa. membrane protein BLASTLSA_11400Hypothetical proteins0.566-1166 aa. hypothetical protein BLASTLSA_11400Hypothetical proteins <th></th>	
proteinsproteinsLSA_08820Hypothetical proteins0.464-156 aa. hypothetical protein BLASTLSA_08830Hypothetical proteins4.99881competence protein ComGD BLASTLSA_08840Hypothetical proteins5.66591competence protein ComGC BLASTLSA_08860Hypothetical proteins0.6035-1127 aa. methyl- accepting chemotaxis-like protein. hypothetical protein BLASTLSA_09300Hypothetical proteins0.6035-1127 aa. methyl- accepting chemotaxis-like protein. hypothetical protein BLASTLSA_09300Hypothetical proteins0.6155-1XRE family transcriptional regulator. HTH protein proteinsLSA_09320Hypothetical proteins0.6155-1XRE family transcriptional regulator. HTH protein proteinsLSA_09320Hypothetical proteins0.5484-1153 aa. hypothetical protein. BLASTLSA_10200Hypothetical proteins0.5484-1153 aa. hypothetical protein. BLASTLSA_10270Hypothetical proteins0.6489-1189 aa. dithiol- disulfide isomerase. hypothetical protein. BLASTLSA_10270Hypothetical proteins0.5983-164 aa. hypothetical protein BLASTLSA_10120Hypothetical proteins0.5137-181 aa. membrane protein. hypothetical protein BLASTLSA_10200Hypothetical proteins0.6078-164 aa. hypothetical protein BLASTLSA_11000Hypothetical proteins0.6078-181 aa. membrane protein. hypo	
LSA_08820Hypothetical proteins0.464- 156 a.a. hypothetical protein BLASTLSA_08830Hypothetical proteins4.99881competence protein ComGD BLASTLSA_08840Hypothetical proteins5.66591competence protein ComGC BLASTLSA_08800Hypothetical proteins6.32711competence protein ComGC BLASTLSA_08900Hypothetical proteins0.6035-1127 aa. methyl- accepting chemotaxis-like protein. hypothetical protein BLASTLSA_09300Hypothetical proteins0.5724-194 aa. integral membrane protein. hypothetical pro BLASTLSA_09320Hypothetical proteins0.5155-1XRE family transcriptional regulator. HTH protein proteinsLSA_09890Hypothetical proteins0.5484-1153 aa. hypothetical proteins BLASTLSA_10200Hypothetical proteins0.586-1166 aa. hypothetical protein BLASTLSA_10320Hypothetical proteins0.586-1166 aa. hypothetical protein BLASTLSA_10320Hypothetical proteins0.586-1166 aa. hypothetical protein BLASTLSA_10400Hypothetical proteins0.5137-147 aa. protease synthase and sporulation negative r proteins.LSA_11400Hypothetical proteins0.6078-141 aa. imembrane protein BLASTLSA_11400Hypothetical proteins0.6078-147 aa. amidase. hypothetical protein BLASTLSA_11260Hypothetical proteins0.6078-1-157	
LSA_08830Hypothetical proteins4.99881competence protein ComGD BLASTLSA_08840Hypothetical proteins5.66591competence protein ComGC BLASTLSA_08800Hypothetical proteins6.32711competence protein ComGA BLASTLSA_09300Hypothetical proteins0.6035-1127 aa. methyl- accepting chemotaxis-like protein. hypothetical protein BLASTLSA_09300Hypothetical proteins0.5724-194 aa. integral membrane protein. hypothetical pro BLASTLSA_09300Hypothetical proteins0.6155-1XRE family transcriptional regulator. HTH proteir proteinsLSA_09930Hypothetical proteins0.5484-1153 aa. hypothetical protein BLASTLSA_10200Hypothetical proteins0.6489-1189 aa. dithiol- disulfide isomerase. hypothetical proteinsLSA_10200Hypothetical proteins0.586-1166 aa. hypothetical protein BLASTLSA_10200Hypothetical proteins0.5983-164 aa. hypothetical protein BLASTLSA_11400Hypothetical proteins0.6078-147 aa. membrane protein BLASTLSA_11400Hypothetical proteins0.6078-147 aa. amidase. hypothetical protein BLASTLSA_12570Hypothetical proteins0.6471-1UDP- D- galactose:(glucosyl)LPS alpha-1.6- D- galactosyltransferase BLASTLSA_12600Hypothetical proteins0.6471-1Go aa. hypothetical protein BLASTLSA_12600Hypothetical proteins0.64	
LSA_08840Hypothetical proteins5.66591competence protein ComGC BLASTLSA_08860Hypothetical proteins6.32711competence protein ComGA BLASTLSA_08900Hypothetical proteins0.6035- 1127 aa. methyl- accepting chemotaxis-like protein. hypothetical protein BLASTLSA_09300Hypothetical proteins0.6155- 1127 aa. methyl- accepting chemotaxis-like protein. hypothetical protein BLASTLSA_09320Hypothetical proteins0.6155- 1XRE family transcriptional regulator. HTH protein proteinsLSA_09890Hypothetical proteins0.5484- 1153 aa. hypothetical protein BLASTLSA_10200Hypothetical proteins0.6489- 1189 aa. dithiol- disulfide isomerase. hypothetical proteinsLSA_10270Hypothetical proteins0.586- 1166 aa. hypothetical protein BLASTLSA_10720Hypothetical proteins0.5983- 164 aa. hypothetical protein BLASTLSA_11400Hypothetical proteins0.617- 181 aa. membrane protein BLASTLSA_11400Hypothetical proteins0.678- 147 aa. amidase. hypothetical protein BLASTLSA_12570Hypothetical proteins0.6471- 1UDP- D- galactose:(glucosy)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12600Hypothetical proteins0.6428- 1Go aa. hypothetical protein BLAST	
LSA_08860Hypothetical proteins6.32711competence protein ComGA BLASTLSA_08900Hypothetical proteins0.6035- 1127 aa. methyl- accepting chemotaxis-like protein. hypothetical protein BLASTLSA_09300Hypothetical proteins0.5724- 194 aa. integral membrane protein. hypothetical pro BLASTLSA_09320Hypothetical proteins0.6155- 1XRE family transcriptional regulator. HTH protein BLASTLSA_09890Hypothetical proteins0.5582- 145 aa. hypothetical proteins BLASTLSA_10200Hypothetical proteins0.6489- 1189 aa. dithiol- disulfide isomerase. hypothetical proteins BLASTLSA_10320Hypothetical proteins0.586- 1166 aa. hypothetical protein monooxygenase BLA proteinsLSA_10400Hypothetical proteins0.5983- 164 aa. hypothetical protein BLASTLSA_11400Hypothetical proteins0.5137- 181 aa. membrane protein BLASTLSA_11400Hypothetical proteins0.6078- 147 aa. membrane protein BLASTLSA_12270Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_12400Hypothetical proteins0.6171- 1UDP- D- galactose:(glucosyl)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12570Hypothetical proteins0.6431- 160 aa. hypothetical protein BLASTLSA_12600Hypothetical proteins0.6431- 160 aa. hypothetical protein BLAST <td></td>	
LSA_08900Hypothetical proteins0.6035- 1127 aa. methyl- accepting chemotaxis-like protein. hypothetical protein BLASTLSA_09300Hypothetical proteins0.5724- 194 aa. integral membrane protein. hypothetical pro BLASTLSA_09320Hypothetical proteins0.6155- 1XRE family transcriptional regulator. HTH protein proteinsLSA_09890Hypothetical proteins0.5484- 1153 aa. hypothetical protein. membrane protein BI proteinsLSA_10200Hypothetical proteins0.5484- 1153 aa. hypothetical protein. membrane protein BI proteinsLSA_10200Hypothetical proteins0.6489- 1189 aa. dithiol- disulfide isomerase. hypothetical proteinsLSA_10270Hypothetical proteins0.586- 1166 aa. hypothetical protein BLASTLSA_10400Hypothetical proteins0.5983- 164 aa. hypothetical protein BLASTLSA_10720Hypothetical proteins0.5137- 181 aa. membrane protein. hypothetical protein BLASTLSA_11400Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_12500Hypothetical proteins0.6471- 1UDP- D- galactose:(glucosyl)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12690Hypothetical proteins0.4631- 160 aa. hypothetical protein BLAST	
LSA_09300Hypothetical proteins0.5724- 194 aa. integral membrane protein. hypothetical pro BLASTLSA_09320Hypothetical proteins0.6155- 1XRE family transcriptional regulator. HTH protein BLASTLSA_09890Hypothetical proteins0.5484- 1153 aa. hypothetical protein. membrane protein BI proteinsLSA_10200Hypothetical proteins0.3532- 145 aa. hypothetical proteins BLASTLSA_10270Hypothetical proteins0.6489- 1189 aa. dithiol- disulfide isomerase. hypothetical protein BLASTLSA_10320Hypothetical proteins0.586- 1166 aa. hypothetical protein BLASTLSA_10400Hypothetical proteins0.5983- 164 aa. hypothetical protein BLASTLSA_10720Hypothetical proteins0.5137- 181 aa. membrane protein. hypothetical protein BLASTLSA_11400Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_11560Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_12460Hypothetical proteins0.6471- 1UDP- D- galactose:(glucosyl)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12690Hypothetical proteins0.4631- 160 aa. hypothetical protein BLAST	
LSA_09320Hypothetical proteins0.6155- 1XRE family transcriptional regulator. HTH protein proteinsLSA_09890Hypothetical proteins0.5484- 1153 aa. hypothetical protein. membrane protein BL sa. hypothetical proteins BLASTLSA_10200Hypothetical proteins0.3532- 145 aa. hypothetical proteins BLASTLSA_10200Hypothetical proteins0.6489- 1189 aa. dithiol- disulfide isomerase. hypothetical protein BLASTLSA_10320Hypothetical proteins0.586- 1166 aa. hypothetical protein BLASTLSA_10400Hypothetical proteins0.5983- 164 aa. hypothetical protein BLASTLSA_10720Hypothetical proteins0.6078- 181 aa. membrane protein BLASTLSA_11400Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_11500Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_12600Hypothetical proteins0.6471- 1UDP- D- galactose:(glucosyl)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12690Hypothetical proteins0.4631- 160 aa. hypothetical protein BLAST	tein
LSA_09890Hypothetical proteins0.5484- 1153 aa. hypothetical protein. membrane protein BI proteinsLSA_10200Hypothetical proteins0.3532- 145 aa. hypothetical proteins BLASTLSA_10270Hypothetical proteins0.6489- 1189 aa. dithiol- disulfide isomerase. hypothetical protein. motoxygenase BLALSA_10320Hypothetical proteins0.586- 1166 aa. hypothetical protein. monooxygenase BLA for aa. hypothetical protein.LSA_10400Hypothetical proteins0.5983- 164 aa. hypothetical protein BLASTLSA_11400Hypothetical proteins0.5137- 181 aa. membrane protein. GNAT family acetyltransferase BLASTLSA_11400Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_11560Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_12460Hypothetical proteins0.6471- 1UDP- D- galactose:(glucosyl)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12690Hypothetical proteins0.4631- 160 aa. hypothetical protein BLAST	BLAST
LSA_10200Hypothetical proteins0.3532- 145 aa. hypothetical proteins BLASTLSA_10270Hypothetical proteins0.6489- 1189 aa. dithiol- disulfide isomerase. hypothetical p BLASTLSA_10320Hypothetical proteins0.586- 1166 aa. hypothetical protein monooxygenase BLA ordeinsLSA_10400Hypothetical proteins0.5983- 164 aa. hypothetical protein BLASTLSA_10720Hypothetical proteins1.6564147 aa. protease synthase and sporulation negative r protein. GNAT family acetyltransferase BLASTLSA_11400Hypothetical proteins0.5078- 181 aa. membrane protein hypothetical protein BLASTLSA_11500Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_12600Hypothetical proteins0.6471- 1UDP- D- galactose:(glucosyl)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12690Hypothetical proteins0.4631- 160 aa. hypothetical protein BLASTLSA_12690Hypothetical proteins0.4631- 1replication- associated protein RepB BLAST	.AST
LSA_10270Hypothetical proteins0.6489- 1189 aa. dithiol- disulfide isomerase. hypothetical p BLASTLSA_10320Hypothetical proteins0.586- 1166 aa. hypothetical protein. monooxygenase BLALSA_10400Hypothetical proteins0.5983- 164 aa. hypothetical protein BLASTLSA_10720Hypothetical proteins1.6564147 aa. protease synthase and sporulation negative r protein. GNAT family acetyltransferase BLASTLSA_11400Hypothetical proteins0.5137- 181 aa. membrane protein. hypothetical protein BLASTLSA_11560Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_12460Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_12570Hypothetical proteins0.6471- 1UDP- D- galactose:(glucosyl)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12690Hypothetical proteins0.4631- 160 aa. hypothetical protein BLAST	
LSA_10320Hypothetical proteins0.586- 1166 aa. hypothetical protein. monooxygenase BLALSA_10400Hypothetical proteins0.5983- 164 aa. hypothetical protein BLASTLSA_10720Hypothetical proteins1.6564147 aa. protease synthase and sporulation negative r protein. GNAT family acetyltransferase BLASTLSA_11400Hypothetical proteins0.5137- 181 aa. membrane protein. hypothetical protein BLASTLSA_11560Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_12600Hypothetical proteins0.6471- 1UDP- D- galactose:(glucosyl)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12690Hypothetical proteins0.4631- 160 aa. hypothetical protein BLASTLSA_1p0001Hypothetical Hypothetical0.6428- 1replication- associated protein RepB BLAST	rotein
LSA_10400Hypothetical proteins0.5983- 164 aa. hypothetical protein BLASTLSA_10720Hypothetical proteins1.6564147 aa. protease synthase and sporulation negative r protein. GNAT family acetyltransferase BLASTLSA_11400Hypothetical proteins0.5137- 181 aa. membrane protein. hypothetical protein BLASTLSA_11560Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_1260Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_12570Hypothetical proteins0.6471- 1UDP- D- galactose:(glucosyl)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12690Hypothetical proteins0.4631- 160 aa. hypothetical protein BLASTLSA_1p0001Hypothetical Hypothetical0.6428- 1replication- associated protein RepB BLAST	.ST
LSA_10720Hypothetical proteins1.6564147 aa. protease synthase and sporulation negative r protein. GNAT family acetyltransferase BLASTLSA_11400Hypothetical proteins0.5137- 181 aa. membrane protein. hypothetical protein BLASTLSA_11560Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_12460Hypothetical proteins1.50511hypothetical protein BLASTLSA_12570Hypothetical proteins0.6471- 1UDP- D- galactose:(glucosyl)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12690Hypothetical proteins0.4631- 160 aa. hypothetical protein BLASTLSA_1p0001Hypothetical proteins0.6428- 1replication- associated protein RepB BLAST	
LSA_11400Hypothetical proteins0.5137- 181 aa. membrane protein. hypothetical protein BLALSA_11560Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_12460Hypothetical proteins1.50511hypothetical protein BLASTLSA_12570Hypothetical proteins0.6471- 1UDP- D- galactose:(glucosyl)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12690Hypothetical proteins0.4631- 160 aa. hypothetical protein BLASTLSA_1p0001Hypothetical proteins0.6428- 1replication- associated protein RepB BLAST	egulating
LSA_11560Hypothetical proteins0.6078- 147 aa. amidase. hypothetical protein BLASTLSA_12460Hypothetical proteins1.50511hypothetical protein BLASTLSA_12570Hypothetical proteins0.6471- 1UDP- D- galactose:(glucosyl)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12690Hypothetical proteins0.4631- 160 aa. hypothetical protein BLASTLSA_1p0001Hypothetical proteins0.6428- 1replication- associated protein RepB BLAST	AST
LSA_12460Hypothetical proteins1.50511hypothetical protein BLASTLSA_12570Hypothetical proteins0.6471- 1UDP- D- galactose:(glucosyl)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12690Hypothetical proteins0.4631- 160 aa. hypothetical protein BLASTLSA_1p0001Hypothetical proteins0.6428- 1replication- associated protein RepB BLAST	
LSA_12570Hypothetical proteins0.6471- 1UDP- D- galactose:(glucosyl)LPS alpha- 1.6- D- galactosyltransferase BLASTLSA_12690Hypothetical proteins0.4631- 160 aa. hypothetical protein BLASTLSA_1p0001Hypothetical0.6428- 1replication- associated protein RepB BLAST	
LSA_12690Hypothetical proteins0.4631- 160 aa. hypothetical protein BLASTLSA_1p0001Hypothetical0.6428- 1replication- associated protein RepB BLAST	
LSA_1p0001 Hypothetical 0.6428 - 1 replication- associated protein RepB BLAST	
LSA_1p00020 Hypothetical 0.6529 - 1 112 aa. hypothetical protein BLAST	
LSA_1p00030 Hypothetical 0.6498 - 1 hypothetical protein. transposase BLAST	
LSA_2p00090 Hypothetical 0.5827 - 1 40 aa. hypothetical protein BLAST	
LSA_2p00150 Hypothetical 0.5849 - 1 47 aa. hypothetical protein. short- chain dehydrogenase/oxidoreductase. 3- beta hydroxyste dehydrogenase	roid
LSA_2p0016 Hypothetical 0.628 - 1 41 aa. hypothetical protein BLAST	
LSA_2p00360 Hypothetical 2.3084 1 hypothetical protein BLAST	
LSA_2p0063 Hypothetical 0.872 - 1 Cobyrinic acid ac- diamide synthase. plasmid co control protein. replication- associated protein	
USA_02120 Pseudogenes 0.5999 - 1 pseudo	
LSA_02570 Pseudogenes 2.6589 1 no information NCBI. KEGG	
LSA_02670 Pseudogenes 2.2549 1 mannitol/chloraromatic transport system. H+/ gluo transporter NCBI	
LSA_03290 Pseudogenes 2.5215 1 putative metal ion transporter (Mn) 16.5 kDa pr NCBI	RepB

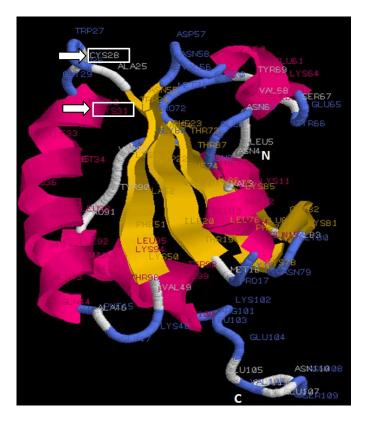
LSA number	COG functional category	Fructose log2 fold changes	Up/down	gene name. results of BLAST search
LSA_03670	Pseudogenes	0.6164	- 1	pseudo
LSA_04960	Pseudogenes	3.4054	1	10 kDa Chaperonin (NCBI). ABC transporter NCBI
LSA_04970	Pseudogenes	14.2324	1	10 kDa Chaperonin (NCBI). ABC transporter NCBI
LSA_05040	Pseudogenes	2.458	1	competence protein. helicase domain protein
LSA_05050	Pseudogenes	2.7144	1	DNA / RNA helicase for DNA uptake (NCBI)
LSA_05210	Pseudogenes	1.5267	1	pseudo
LSA_05220	Pseudogenes	1.9509	1	pseudo
LSA_05470	Pseudogenes	0.5956	- 1	pseudo
LSA_05690	Pseudogenes	0.5296	- 1	pseudo
LSA_05860	Pseudogenes	0.6542	- 1	pseudo
LSA_06920	Pseudogenes	1.6745	1	pseudo
LSA_07340	Pseudogenes	2.0916	1	ABC transporter. permease protein. peptide methionine sulfoxide reductase BLAST
LSA_08000	Pseudogenes	2.0673	1	no information NCBI. KEGG
LSA_08770	Pseudogenes	2.717	1	acetate kinase uncharact transporter, transposase NCBI
LSA_08780	Pseudogenes	1.5549	1	pseudo
LSA_12370	Pseudogenes	2.6436	1	no information NCBI, KEGG
LSA_12520	Pseudogenes	5.4422	1	62 bp of lactate dehydrogenase NCBI
LSA_12730	Pseudogenes	1.8337	1	pseudo
LSA_13210	Pseudogenes	2.3223	1	no information NCBI, KEGG
LSA_13220	Pseudogenes	2.7936	1	no information NCBI, KEGG
LSA_13230	Pseudogenes	4.174	1	UPF0324 membrane protein NCBI
LSA_13330	Pseudogenes	2.4486	1	rRNA ribosomal RNA
LSA_1p00050	Pseudogenes	0.6482	- 1	pseudo

A 18: Differentially expressed genes expressed as log2 fold changes during incubation with fructose of *L.* sanfranciscensis TMW 1.1304 ordered alphabetically by COG functional categories. Anaerobic conditions were used as reference condition and set as 1. Up- regulated genes are shaded in grey, downregulated genes are left blank. Genes which were also differentially expressed during aerobic incubation are marked bold.

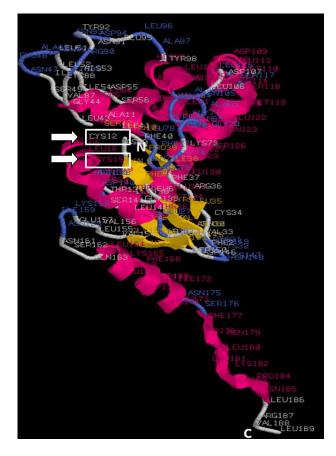
LSA number	COG functional	1/100 Candida log2 fold	1/10 Candida	Up/ down	gene name, results of BLAST search
		changes	log2 fold changes	down	
LSA_00240	Hypothetical proteins	0.5984	2.0029	0	major facilitator superfamily permease. peptide efflux protein (BLAST)
LSA_00360	Hypothetical proteins	0.8986	0.6177	- 1	Permease of the major facilitator superfamily BLAST
LSA_00510	Hypothetical proteins	1.6675	1.3863	0	glucosyltransferase (Strepmut). serine endopeptidase BLAST
LSA_00540	Hypothetical proteins	1.5267	1.2075	0	RNA- binding protein. ASCH domain. hypothetical protein BLAST
LSA_00720	Hypothetical proteins	1.3914	1.8965	1	mRNA interferase. cell growth regulatory protein (BLAST)
LSA_00740	Hypothetical proteins	0.5903	0.4822	- 1	47 aa. hypothetical protein BLAST
LSA_01030	Hypothetical proteins	1.5197	0.8746	0	168 aa. abortive infection protein. immunity protein BLAST
LSA_01040	Hypothetical proteins	0.8539	2.1651	0	121 aa. hypothetical protein BLAST
LSA_01100	Hypothetical proteins	0.9831	0.3004	- 1	HxlR transcriptional regulator BLAST
LSA_01110	Hypothetical proteins	1.9459	1.8546	0	transcriptional regulator (HTH. HrX. MarR) (BLAST)
LSA_01300	Hypothetical proteins	1.164	3.3341	1	84 aa. oxidoreductase (NADP dependent) iolS. inositol utilization protein (BLAST)
LSA_01320	Hypothetical proteins	1.2427	2.1505	1	136 aa. ribokinase. hypoth pr. transcr regulator BLAST

LSA number	COG functional category	1/100 Candida log2 fold changes	1/10 Candida log2 fold changes	Up/ down	gene name, results of BLAST search
LSA_01420	Hypothetical proteins	0.9254	1.8488	0	hypothetical protein BLAST
LSA_01570	Hypothetical proteins	0.6939	0.587	- 1	integrase/recombinase plasmid associated. DNA recombinase BLAST
LSA_01980	Hypothetical proteins	1.2807	1.664	1	uvrA; excinuclease ABC subunit A. ABC transporter protein BLAST
LSA_02330	Hypothetical proteins	1.2571	1.7315	1	GntR family transcriptional regulator. aromatic amino acid aminotransferase. aminotransferase BLAST
LSA_02430	Hypothetical proteins	1.0591	2.1175	1	HAD superfamily hydrolase. cof family hydrolase BLAST
LSA_02440	Hypothetical proteins	3.3725	9.3172	1	42 aa. hypothetical protein
LSA_02660	Hypothetical proteins	0.7627	0.6001	- 1	sugar phosphate isomerase. glutamate synthase domain- containing
LSA_02710	Hypothetical proteins	1.7497	1.3813	0	83 aa. hypothetical protein BLAST
LSA_02780	Hypothetical proteins	1.7211	7.2866	1	oxidoreductase (BLAST)
LSA_02800	Hypothetical proteins	0.6929	0.4074	- 1	47 aa. hypothetical protein BLAST
LSA_02880	Hypothetical proteins	0.6475	0.3574	- 1	DegV family protein
LSA_02890	Hypothetical proteins	1.1774	0.4332	0	50 aa. hypothetical protein
LSA_02900	Hypothetical proteins	0.9948	2.117	0	150 aa. major facility superfamily protein. multidrug efflux transporter BLAST
LSA_02990	Hypothetical proteins	1.5178	1.4827	0	80 aa. hypothetical protein
LSA_03040	Hypothetical proteins	1.1502	1.7972	1	123 aa. hypothetical protein
LSA_03080	Hypothetical proteins	1.1669	2.0374	1	universal stress protein UspA. ribose- phosphate isomerase. nucleotide binding protein BLAST
LSA_03090	Hypothetical proteins	1.0171	1.5348	1	177 aa. phospholipid- binding protein. PEBP family protein BLAST
LSA_03320	Hypothetical proteins	0.7073	0.5317	- 1	142 aa. transcriptional regulator CopR. Y BLAST
LSA_03340	Hypothetical proteins	0.6248	0.5276	- 1	41 aa. hypothetical protein BLAST
LSA_03460	Hypothetical proteins	1.0123	2.8726	1	179 aa. RNA polymerase (sigma SU) BLAST
LSA_03470	Hypothetical proteins	1.3595	1.9661	1	peptidyl- prolyl- cis- trans- isomerase (BLAST)
LSA_03480	Hypothetical proteins	0.7397	0.3807	- 1	77 aa. hypothetical protein
LSA_03500	Hypothetical proteins	0.5844	1.4032	0	peptidyl- prolyl- cis- trans- isomerase (BLAST)
LSA_03510	Hypothetical proteins	0.0505	1.7619	0	67 aa. peptidyl- prolyl cis- trans isomerase BLAST
LSA_04640	Hypothetical proteins	1.226	0.442	0	65 aa. hypothetical protein BLAST
LSA_05430	Hypothetical proteins	1.0975	1.7822	1	integral membrane protein. membrane protein BLAST
LSA_05560	Hypothetical proteins	1.4716	1.8991	1	146 aa. chorismate mutase BLAST
LSA_05600	Hypothetical proteins	0.7349	0.6307	- 1	115 aa. membrane protein. hypothetical protein BLAST
LSA_05630	Hypothetical proteins	0.8109	0.61	- 1	198 aa. hypothetical protein BLAST
LSA_05680	Hypothetical proteins	0.5951	0.571	- 1	hypothetical protein. BLAST
LSA_05750	Hypothetical proteins	1.6888	2.2981	1	87 aa. hypothetical protein
LSA_05830	Hypothetical proteins	0.472	0.6233	0	40 aa. hypothetical protein BLAST

LSA number	COG functional category	1/100 Candida1/10 Candidlog2 foldlog2 foldchangeschanges		Up/ down	gene name, results of BLAST search
LSA_05960	Hypothetical proteins	0.581	0.3235	- 1	110 aa. membrane. hypothetical protein BLAST
LSA_06450	Hypothetical proteins	0.753	0.6384	- 1	75 aa. hypothetical protein BLAST
LSA_06480	Hypothetical proteins	1.1203	1.931	1	58 aa. hypothetical protein BLAST
LSA_06500	Hypothetical proteins	1.2061	3.0231	1	2- deoxyuridine 5- triphosphate nucleotidohydrolase. dUTPase BLAST
LSA_07300	Hypothetical proteins	0.7257	0.5528	- 1	155 aa. major facilitator superfamily permease. hypothetical protein BLAST
LSA_07980	Hypothetical proteins	1.1058	2.6473	1	Transcriptional regulator BLAST
LSA_08040	Hypothetical proteins	14.2969	0.8954	0	42 aa. hypothetical protein BLAST
LSA_08100	Hypothetical proteins	0.4362	0.6923	0	104 aa. hypothetical protein BLAST
LSA_08610	Hypothetical proteins	1.056	1.8752	1	186 aa. hypothetical protein BLAST
LSA_08640	Hypothetical proteins	0.4274	0.7295	0	CRISPR- associated protein BLAST
LSA_08660	Hypothetical proteins	0.5214	1.2875	0	CRISPR assoc protein BLAST
LSA_08810	Hypothetical proteins	0.6032	0.6253	0	144 aa. competence protein ComGF BLAST
LSA_08820	Hypothetical proteins	0.7291	0.4113	- 1	56 aa. hypothetical protein BLAST
LSA_08830	Hypothetical proteins	1.4159	2.5885	1	competence protein ComGD BLAST
LSA_08850	Hypothetical proteins	0.1961	0.2313	0	competence protein ComGB BLAST
LSA_08860	Hypothetical proteins	0.9424	0.4132	- 1	competence protein ComGA BLAST
LSA_09620	Hypothetical proteins	1.0938	1.6619	1	58 aa. hypothetical protein BLAST
LSA_09750	Hypothetical proteins	1.1606	1.5251	1	108 aa. hypothetical protein BLAST
LSA_09770	Hypothetical proteins	1.1516	1.5534	1	104 aa. hypothetical protein BLAST
LSA_09890	Hypothetical proteins	0.6033	0.6546	0	153 aa. hypothetical protein BLAST
LSA_10270	Hypothetical proteins	1.0338	1.5365	1	189 aa. dithiol- disulfide isomerase BLAST
LSA_10320	Hypothetical proteins	0.8539	2.235	0	monooxygenase. hypoth prot BLAST
LSA_10400	Hypothetical proteins	0.7656	0.6556	- 1	64 aa. hypothetical protein BLAST
LSA_10650	Hypothetical proteins	0.882	1.711	0	97 aa. hypothetical protein BLAST
LSA_10740	Hypothetical proteins	1.0627	1.5623	1	123 aa. putative membrane protein. integral membrane protein BLAST
LSA_11380	Hypothetical proteins	0.5534	1.5581	0	leader peptidase (prepilin peptidase) / N- methyltransferase BLAST
LSA_11400	Hypothetical proteins	0.5921	1.6034	0	81 aa. hypothetical protein. membrane protein BLAST
LSA_11580	Hypothetical proteins	0.6138	1.0624	0	hypothetical protein BLAST
LSA_11880	Hypothetical proteins	0.8008	0.3901	- 1	179 aa. transcriptional regulator (TetR) BLAST
LSA_12230	Hypothetical proteins	1.134	3.8597	1	72 aa. hypothetical protein BLAST
LSA_12400	Hypothetical proteins	1.1593	1.7107	1	173 aa. hypothetical protein BLAST
LSA_12460	Hypothetical proteins	1.5356	0.9377	0	599 aa. hypothetical protein BLAST
LSA_12470	Hypothetical	1.5769	1.9005	1	74 aa. hypothetical protein BLAST


LSA number	COG functional category	1/100 Candida log2 fold changes	1/10 Candida log2 fold changes	Up/ down	gene name, results of BLAST search
	proteins	changes	changes		
LSA_12690	Hypothetical	0.5161	1.0364	0	60 aa. hypothetical protein BLAST
LSA_13130	proteins Hypothetical proteins	0.8883	0.586	- 1	nucleobase:cation symporter- 2. NCS2 family; xanthine/uracil permease BLAST
LSA_13170	Hypothetical proteins	0.792	0.5702	- 1	147 aa. response regulator. DNA binding BLAST
LSA_2p00160	Hypothetical proteins	0.7774	0.4156	- 1	41 aa. hypothetical protein BLAST
LSA_2p00560	Hypothetical proteins	1.116	1.533	1	189 aa. hypothetical protein. BLAST
LSA_2p00630	Hypothetical proteins	1.0089	0.9235	0	Cobyrinic acid ac- diamide synthase. replication- associated protein BLAST
LSA_01310	Pseudogenes	1.7545	2.8218	1	aldo/ ketoreductase family enzyme (NCBI BLASTN)
LSA_02120	Pseudogenes	0.7459	0.5272	- 1	pseudo
LSA_02570	Pseudogenes	1.2707	0.6272	0	pseudo
LSA_02670	Pseudogenes	1.2951	0.6421	0	pseudo
LSA_03290	Pseudogenes	0.6927	0.6265	- 1	pseudo
LSA_03300	Pseudogenes	0.6464	0.8445	0	pseudo
LSA_04960	Pseudogenes	0.7967	0.5031	- 1	pseudo
LSA_04970	Pseudogenes	2.27	1.5668	0	pseudo
LSA_05000	Pseudogenes	0.9922	1.7972	0	pseudo
LSA_05040	Pseudogenes	1.5598	1.3863	0	pseudo
LSA_05050	Pseudogenes	1.5297	0.9648	0	pseudo
LSA_05220	Pseudogenes	2.0158	2.3342	1	no information NCBI. BLAST
LSA_05590	Pseudogenes	1.5519	1.2455	0	pseudo
LSA_05690	Pseudogenes	0.1609	1.0955	0	pseudo
LSA_05740	Pseudogenes	1.1641	2.2315	1	hypothetical protein NCBI BLAST
LSA_06870	Pseudogenes	0.8808	0.5296	- 1	pseudo
LSA_06930	Pseudogenes	1.002	1.6272	1	pseudo
LSA_07330	Pseudogenes	0.7172	1.5666	0	pseudo
LSA_08000	Pseudogenes	1.5097	1.1091	0	pseudo
LSA_08600	Pseudogenes	1.1319	1.5638	1	pseudo
LSA_08770	Pseudogenes	0.1784	3.247	0	acetate kinase uncharact transporter. transposase NCBI
LSA_08780	Pseudogenes	0.6579	1.1059	0	pseudo
LSA_09780	Pseudogenes	0.9573	1.5164	0	pseudo
LSA_11710	Pseudogenes	0.4386	0.3411	- 1	pseudo
LSA_12370	Pseudogenes	0.9563	1.7109	0	pseudo
LSA_12520	Pseudogenes	1.2933	7.6293	1	62 bp of lactate dehydrogenase NCBI
LSA_13120	Pseudogenes	0.8922	0.562	- 1	pseudo
LSA_13210	Pseudogenes	1.041	0.2254	0	pseudo
LSA_13230	Pseudogenes	1.2168	2.3143	1	UPF0324 membrane protein NCBI
LSA_2p00050	Pseudogenes	0.8546	0.6062	- 1	pseudo
—	Pseudogenes	1.0098	1.9121	1	pseudo

A 19: Differentially expressed genes expressed as log2 fold changes during incubation with *Candida humilis* (1/10 and 1/100) of *L. sanfranciscensis* TMW 1.1304 ordered alphabetically by COG functional categories. Anaerobic conditions were used as reference condition and set as 1. Up- regulated genes are shaded in grey, downregulated genes are left blank.


gene	Δ <i>tcyB</i> + FPKM 1	Δ <i>tcyB</i> - FPKM 2	log2 (FPKM 2 / FPKM1)	Gene description
oppD,oppF	9766.52	2052.33	- 2.2505	oligopeptide transport ATP- binding protein oppD
oppB	4851.86	1286.68	- 1.9148	oligopeptide transport system permease oppB
oppC	4578.56	1107.24	- 2.0479	oligopeptide transport system permease oppC
oppA	7080.01	2798.42	- 1.3391	oligopeptide- binding protein oppA
pepN	4406.86	1977.21	- 1.1562	aminopeptidase
LSA_00850	10815	1481.55	- 2.8678	hypothetical protein
adh2	2835.89	6574.28	1.2130	aldehyde- alcohol dehydrogenase 2
LSA_02330	266.01	42.1457	- 2.6580	hypothetical protein
LSA_02710	248.502	69.8418	- 1.8310	hypothetical protein
LSA_03220	1134.22	574.819	- 0.9805	hypothetical protein
LSA_03680	431.888	821.115	0.9269	hypothetical protein
nupG	685.591	1134.18	0.7262	Purine nucleoside transport protein nupG
purR	373.161	752.727	1.0123	Pur operon repressor
glmU	695.932	1499.17	1.1071	Bifunctional protein glmU
LSA_04670	557.947	185.147	- 1.5914	L- 2- hydroxyisocaproate dehydrogenase
 LSA_05000	2583.78	723.188	- 1.8370	pseudogene
pta,ung,ydiB	730.017	1596.79	1.1291	uracil- DNA glycosylase
glmS	3272.26	1062.09	- 1.6233	glucosamine fructose- 6- phosphate aminotransferase
LSA_06830	5106.91	9053.6	0.8260	hypothetical protein
LSA_07110	239.53	99.371	- 1.2693	hypothetical protein
rpsT	5066.48	8464.83	0.7404	30S ribosomal protein S20
clpE	1555.83	609.537	- 1.3519	ATP- dependent Clp protease ATP- binding subunit clpE
LSA_10810	276.355	140.476	- 0.9762	pseudogene
pepX	894.959	400.234	- 1.1609	Xaa- Pro dipeptidase
рерТ	483.674	278.593	- 0.7958	peptidase T
LSA_13190	386.042	970.825	1.3304	hypothetical protein
LSA_00240	247.704	30.0654	- 3.0424	hypothetical protein
bmr	746.498	438.916	- 0.7661	multidrug resistance protein 1
LSA_00590	706.929	93.1365	- 2.9241	hypothetical protein
zwf	1781.04	3030.83	0.7669	glucose- 6- phosphate 1- dehydrogenase
LSA_03080	1239.06	704.854	- 0.8138	hypothetical protein
yxkA	2665.42	1320	- 1.0138	hypothetical protein
LSA_04150	535.922	231.707	- 1.2097	hypothetical protein
clpP	10725	6143.65	- 0.803806	ATP- dependent Clp protease proteolytic subunit
msrB	1726.35	989.532	- 0.802903	peptide methionine sulfoxide reductase
LSA_07480	351.046	113.982	- 1.6228	hypothetical protein
hup	9498.21	17155.4	0.8529	DNA- binding protein HU
rpsU	18699.9	33242	0.8299	30S ribosomal protein S21
dtd	2180.98	1136.46	- 0.9404	hypothetical protein
relA	541.004	277.122	- 0.9651	GTP pyrophosphokinase
LSA_08440	218.973	73.077	- 1.5832	hypothetical protein
LSA_08450	230.169	673.152	- 1.7736	hypothetical protein
LSA_08570	621.264	383.855	- 0.6946	hypothetical protei
patA	456.451	123.192	- 1.8895	aminotransferase A
mnmA	5036.63	2270.57	- 1.1494	tRNA- specific 2- thiouridylase mnmA
рерВ	1139.56	579.562	- 0.975443	Group B oligopeptidase pepB
clpC	1433.57	880.38	- 0.703417	Negative regulator of genetic competence clpC/mecB

gene	$\Delta t cyB +$	$\Delta t cyB$ -	log2 (FPKM 2 / FPKM1)	Gene description
	FPKM 1	FPKM 2		
ctsR	4114.49	2083.87	- 0.981448	transcriptional regulator ctsR
LSA_13130	549.028	1105.05	1.0092	hypothetical protein
pepE	6110.74	3203.13	- 0.9318	aminopeptidase

A 20: Significantly differentially expressed genes for *AtcyB* treated (+) vs. *AtcyB* untreated (-). Depicted are the FPKM (Fragments Per Kilobase of transcript per Million mapped reads) values, log2 fold changes and gene descriptions; Isoforms of the genes *oppD,oppF*; *pta,ung,ydiB*; *dtd* and *pepB* are marked in bold.

A 21: 3D structure of LSA_02610, modelled by 3D JIGSAW (Bates et al. 2002). The protein shows the characteristic thioredoxin-fold with a three-layer α - β - α sandwich, with two parallel plus two anti-parallel β -strands. The two cysteines of the N- terminal CXXC motif (white arrows), the N- and C- terminus of the protein are marked.

A 22: 3D structure of LSA_10270, modelled by 3D JIGSAW (Bates et al. 2002). The protein shows the characteristic thioredoxin-fold with a three-layer α - β - α sandwich, with two parallel plus two anti-parallel β -strands. The two cysteines of the CXXC motif (white arrows), the N- and C- terminus of the protein are marked.

10 LIST OF PUBLICATIONS DERIVED FROM THIS WORK

Peer-reviewed journals

Stetina M., Behr J., Vogel RF. (2014). The transcriptional response of Lactobacillus sanfranciscensis DSM 20451T and its tcyB mutant lacking a functional cystine transporter to diamide stress. *Appl. Environ. Microbiol.* **80**:4114–4125.

Capuani A., Stetina M., Gstattenbauer A., Behr J., Vogel RF. (2014). Multivariate analysis of buckwheat sourdough fermentations for metabolic screening of starter cultures. *Int. J. Food Microbiol.* **185**:158–66.

Poster presentations

Stetina M., Behr J., Sieuwerts S., Smid E.J., Vogel RF. "Transcriptome analysis of *L. sanfranciscensis* TMW 1.1304 in response to electron acceptors and the presence of *Candida humilis*" Poster presented at V Symposium on Sourdough- Cereal Fermentation for Future Foods 2012, Helsinki, Finland, 10-12 October 2012. Abstract published in VTT Technology 50, Helsinki: VTT Technical Research Centre of Finland. 2012: 86.

Capuani A., Stetina M., Vogel RF. "Novel approaches in gluten-free sourdough fermentations" Poster presented at Weihenstephaner Institut für Getreideforschung, Freising, Germany, 20-21 March 2014.