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Abstract

Tremendous population growth, serious impacts of climate change and globally endangered
ecosystems require sustainable intensification of agricultural productivity. Therefore, international
efforts have been dedicated to enhance genome-driven research strategies to accelerate im-
provement of crop varieties. So far, large genome sizes, high sequence repetitivity and complex
genome constitutions have delayed the comprehensive analyses of Triticeae genomes including
the major cereals rye, barley and wheat. Especially the allohexaploid genome structure of bread
wheat (Triticum aestivum) impeded the development of genome-wide resources needed for a
function- and systems-level understanding of the genome biology and transcriptional regulatory
mechanisms of one of the world’s most important crop. By exploiting advances in high-throughput
genome and transcriptome sequencing technologies, this thesis presents bioinformatic strategies
for overcoming those barriers and for generating genomic resources for the complete gene cata-
logue of hexaploid wheat.

To assemble the protein-coding space of the 17 gigabase pair large bread wheat genome, while
maintaining highly similar homoeologous sequences as distinct copies, | developed and imple-
mented a novel computational strategy integrating whole genome shotgun sequences into an
orthologous gene family framework. Comparative analyses of the gene repertoire of bread wheat
with the orthologous gene family sizes in the reference grasses Brachypodium distachyon, Oryza
sativa and Sorghum bicolor as well as in Aegilops tauschii, the diploid wheat D-genome progeni-
tor, revealed considerable genome dynamics including an abundance of pseudogenes and gene
fragments. Despite a substantial retention of homoeologous genes in single-copy gene families
and a general reduction of large gene family sizes in hexaploid wheat, various expanded gene
families were identified after polyploidization. This expansion might be a result of domestication
as the affected gene families were related to agriculturally important traits and crop productivity
including defence response and disease resistance, energy metabolism and photosynthesis as
well as compounds controlling grain filling and maturation.

Chromosome flow cytometry allowed the International Wheat Genome Sequence Consor-
tium to isolate, sequence and assemble DNA of individual wheat chromosome arms, thus facili-
tated the homoeologous-specific annotation of gene sequences and structures. By incorporating
extrinsic sequence information from closely related grass genomes and wheat transcriptome data
sets, an overall comparable number of protein-coding genes were identified across the homoe-



ologous genomes in this thesis. However, differences were observed in the gene density, the
syntenic conservation and the gene family constitutions for individual chromosomes and chro-
mosome arms. In addition to 124,201 high-confidence genes with homology support from other
plant genomes, thousands of deteriorated, potentially non-functional gene ruins were detected,
which indicated high activity of pseudogenization mechanisms in Triticeae genomes. Deep RNA-
sequencing revealed abundance of novel (non-protein-coding) transcriptional active regions and
extensive tissue-specific alternative splicing, frequently generating premature termination codon-
containing transcripts. Conservation of the observed splicing patterns across the wheat genomes
suggested that post-transcriptional processing constitutes an additional important regulatory layer
in Triticeae genomes.

By using these previously unknown genomic resources | investigated the gene expression
in different cell types of developing endosperm and elucidated the contributions of homoeologous
transcripts to the entire wheat grain transcriptome. Partitioning of gene expression for homoe-
ologs in the spatiotemporal progression of grain development indicated subfunctionalization of
redundant gene copies or pre-existing transcriptional differences in the parental genomes. Rather
than global transcriptional dominance, the observed gene expression differences were dependent
on cell type and developmental stage. Functional compartmentalization of the wheat transcrip-
tome and genome asymmetry for single gene families affecting baking quality suggested that
individual genomes contribute differently to specific cellular functions and agricultural important
traits. The organization of the wheat genome into transcriptional active chromosomal domains,
often associated with homoeologous gene expression bias and genome dominance, indicated a
complex regulatory interplay of genetic and epigentic mechanisms orchestrating gene expression
in a polyploid cereal.

This thesis provides novel insights in the genome architecture and transcriptional organization
of bread wheat, the agricultural most important Triticeae. The established genomic resources
will support to gain a better understanding of the biological mechanisms that control a polyploid
cereal genome and will enable both system-level and targeted analyses of single genes or gene
families and their association to traits of economic and scientific interest.



Zusammenfassung

Weltweites Bevoélkerungswachstum und ein sich anderndes Klima verlangen eine nachhaltige
Anpassung aktueller landwirtschaftlicher Produktionsweisen. Diese sollen zu einer deutlichen
Ertragssteigerung fiihren, jedoch gleichzeitig bedrohte Okosysteme schiitzen und einen Verlust
an Biodiversitat vermeiden. Vor allem genomorientierte Forschungsanséatze sind ein wesentlicher
Bestandteil fir eine beschleunigte Verbesserung bestehender Getreidesorten. Bislang wurden
diese Strategien jedoch durch einen hohen Anteil repetitiver Sequenzelemente und einer kom-
plexen Genomstruktur der Triticeae, zu denen Gerste, Roggen und Weizen zahlen, erschwert.
Besonders die allohexaploide genetische Ausstattung des Brotweizens (Triticum aestivum) hat
die Entwicklung genomischer Ressourcen verlangsamt und ein umfassendes Verstandnis uber
die Genomik und Systembiologie eines der weltweit wichtigsten Getreidearten beeintréchtigt.
Diese Arbeit stellt neue bioinformatische Ansatze fiir die Erstellung eines umfassenden Gen-
kataloges des Brotweizengenoms vor. Um die bisherigen Schwierigkeiten in der Analyse des
hexaploiden Brotweizengenoms zu liberwinden, wurden unterschiedliche Hochdurchsatzsequen-
zierungsdaten verwendet.

Um den proteinkodierenden Anteil der 17 Milliarden DNA-Bausteine des Brotweizengenoms
zu charakterisieren wurde in dieser Arbeit ein neuartiges Assemblierungsverfahren imple-
mentiert.  Dieses integriert genomische Sequenzfragmente aus Whole-Genome-Shutgun-
Sequenzierungen in ein orthologes Genfamilien-Gerust, um zusammengehdrende genomische
Sequenzfragmente zu assemblieren und gleichzeitig homoeologe Kopien, die zueinander eine
hohe Sequenzahnlichkeit aufweisen, zu unterscheiden. Vergleichende Analysen des Genkatalo-
ges von Brotweizen mit der Genfamilienzusammensetzung in Brachypodium distachyon, Oryza
sativa und Sorghum bicolor, sowie mit Aegilops tauschii, dem diploiden Vorgénger des Weizen-
D-Genoms, deuten auf ein hohes MaB an Genomplastizitédt hin, gepragt durch eine Vielzahl
von Pseudogenen und Genfragmenten. Nach der Polyploidisierung wurden polyploide Gene
in kleinen Genfamilien meist erhalten, wohingegen fir gréBere Genfamilien tendenziell eine Re-
duktion der Genanzahl festgestellt wurde. Desweiteren konnten zahlreiche Genfamilien ermit-
telt werden, die eine deutlich erhéhte Anzahl an Genkopien im hexaploiden Weizen aufweisen.
Diese konnten mit wichtigen Getreideeigenschaften wie Widerstandsfahigkeit, Energiestoffwech-
sel, Photosynthese und Kornentwicklung in Verbindung gebracht werden und reflektieren somit
maoglicherweise Selektionseffekte wahrend der Ziichtung und Kultivierung des Brotweizens.



Durchflusszytometrie ermdglichte eine getrennte Sequenzierung und Assemblierung
einzelner Brotweizen-Chromosomenarmen und somit die genomspezifische Annotation
von Genstrukturen und -sequenzen im Rahmen des Internationalen Weizen-Genom-
Sequenzierungskonsortium.  Unter Berlcksichtigung von Proteinsequenzen nahverwandter
Graser und Weizen Transkriptom-Sequenzierungsdaten konnte in dieser Arbeit eine
gesamtheitlich ausgeglichene genetische Ausstattung der Genome bestimmt werden. Allerdings
wurden auch deutliche Unterschiede in der Gendichte, der Syntenie und der Zusammenset-
zung von Genfamilien zwischen einzelnen Chromosomenarmen und Chromosomen festgestellt.
Zuséatzlich zu 124201 proteinkodierenden Genen wurde eine gro3e Zahl an degenerierten Gen-
fragmenten gefunden. Dies lasst auf eine hohe Aktivitdt Pseudogen-erzeugender Mechanis-
men in Triticeae-Genomen schlieBen. Eine Vielzahl von neuartigen (nicht-proteinkodierenden)
transkribierten Sequenzbereichen wurden mittels Hochdurchsatz-Transkriptom-Sequenzierung
definiert. AuBerdem wurde ein hohes MaB an alternativen Splei3en gefunden, welches haufig in
Transkripten mit vorzeitigem Translationsende resultierte und in groBem Umfang flir homoeologe
Genkopien konserviert war. Diese Ergebnisse deuten auf mdgliche regulatorische Funktionen
der posttranskriptionalen Modifikation in Triticeae-Genomen hin.

Mittels des erstellten Sequenzentwurfs einzelner Brotweizen-Chromosomen und der da-
rauf basierenden Genannotation untersucht diese Arbeit im Weiteren die Genexpression in ver-
schiedenen Zelltypen und Stadien der Weizenkornentwicklung. Dabei wurde ein besonderer
Fokus auf die Regulation, das Verhalten und den Beitrag homoeologer Genkopien gelegt. Fur
durch Polyploidisierung duplizierten Gene wurde eine spezifische Aktivitat zu unterschiedlichen
Entwicklungsstadien gefunden, was auf eine teilweise Subfunktionalisierung oder bereits beste-
hende Unterschiede in den Elterngenomen schlieBBen lasst. Es konnten keine Anzeichen flr eine
genomweite Dominanz eines Genoms festgestellt werden, wohingegen zelltyp- und zeitpunktbe-
stimmte Expressionsunterschiede zwischen homoeologen Genen deutlich wurden. Eine asym-
metrische transkriptionelle Regulation einzelner Genome konnte fiir einzelne molekulare Funk-
tionen im gesamtheitlichen Weizentranskriptom, sowie in einer gezielten Analyse von Genfami-
lien, die zu den charakteristischen Merkmalen und Backeigenschaften des Brotweizens beitra-
gen, ausgemacht werden. Diese Beobachtungen deuten auf eine Aufgabenverteilung in der
Weizenkornentwicklung hin und lassen somit spezifische landwirtschaftlich wichtige molekulare
Eigenschaften einzelner Genome und Genkopien zuordnen. Genomspezifische transkriptionelle
Unterschiede, welche oftmals auch fir chromosomale Doméanen gefunden wurden, lassen auf
ein komplexes regulatorisches Wechselspiel von genetischen und epigenetischen Mechanismen
zur Steuerung der Genexpression im polyploiden Brotweizen schlie3en.

Diese Arbeit gibt neue Erkenntnisse in die genetische Ausstattung und transkriptionelle Organi-
sation des groBBen polyploiden Genoms von Brotweizen, dem landwirtschaftlichen und industriell
wichtigsten Vertreter der Triticeae. Die vorgestellten Werkzeuge und genomischen Ressourcen
bilden die Basis fir weitere globale und systembiologische Analysen sowie die gezielte Analyse
einzelner Genfamilien und Gene, wodurch diese Arbeit zu einem detaillierteren Verstandnis der
biologischen Mechanismen in einem wichtigen polyploiden Getreidegenom beitragt.
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A transcriptome map of perennial ryegrass (Lolium perenne L.)

B. Studer, S. Byrne, R. O. Nielsen, F. Panitz, C. Bendixen, M. S. Islam, M. Pfeifer, T. LUbberstedt
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M. Valarik, J. Dolezel and K. F. X. Mayer

The Plant Journal. 69:377-386, 2012.

A series of inter- and intra-chromosomal rearrangements shaped the structures of chromosomes 4A, 5A and 7B of
bread wheat (Triticum aestivum). On basis of second generation sequencing reads generated for flow-sorted chro-
mosome arms and by exploiting conserved synteny between bread wheat and Brachypodium, rice and sorghum, this
paper reports the bioinformatic analysis of the evolutionary history for these chromosomes.

Personal contributions: In this work | contributed to the computational analysis of the wheat gene content of chro-
mosome 4A. The findings in this study corroborate the observations reported in Chapter 4 of this thesis, which will
provide further insights in the homoeologous relationships for these chromosomes.

Analysis of the bread wheat genome using whole-genome shotgun sequencing

R. Brenchley*, M. Spannagl*, M. Pfeifer¥, G. L. A. Barker*, R. D’Amore*, A. M. Allen, N. McKen-
zie, M. Kramer, A. Kerhornou, D. Bolser, S. Kay, D. Waite, M. Trick, |. Bancroft, Y. Gu, N. Huo,
M. C. Luo, S. Sehgal, B. Gill, S. Kianian, O. Anderson, P. Kersey, J. Dvorak, W. R. McCombie, A.
Hall, K. F. X. Mayer, K. J. Edwards, M. W. Bevan and N. Hall

Nature. 491(7426):705-710, 2012.

High sequence similarity among homoeologous gene copies represents a major barrier for the analysis of the bread

wheat genome ( Triticum aestivum). This manuscript presents a novel comparative genomics-based assembly protocol,
which enabled distinguishing homoeologous genomic shotgun sequences and quantifying gene family sizes and gene



copy numbers for bread wheat. Comparative analysis between the gene family sizes of hexaploid wheat and diploid
reference grasses as well as the diploid D-genome progenitor Aegilops tauschii revealed a dynamic genome content
with retention of homoeologous single-copy genes, a general trend for gene loss in larger gene families, presence of
gene families with expanded copy numbers related to agricultural important traits and an abundance of gene fragments.
Personal contributions: This study constitutes the major publication for Chapter 3 of my thesis. On basis of an
orthologous gene family framework, which was defined by known protein sequences of related grass genomes, |
designed, implemented and performed the orthologous group assembly by using whole genome sequencing reads
obtained for the genomes of hexaploid bread wheat and diploid Aegilops tauschii. Moreover, | conducted two in silico
experiments to calibrate the assembly parameters and to evaluate the presented procedure. Furthermore, | was
responsible for the computation and statistical analysis of the wheat gene copy number and the identification and
analysis of sub-assemblies forming "stacks”. Additionally, | contributed to the genome-of-origin assignment for the
generated wheat sub-assembilies by providing the training data set utilized in the machine learning algorithm.

A physical, genetic and functional sequence assembly of the barley genome

The International Barley Genome Sequencing Consortium (IBSC)

Gene annotation: M. Spannagl, M. Pfeifer, H. Gundlach and K.F.X. Mayer

Transcriptome sequencing and analysis: M. Pfeifer, M. Spannagl, P. Hedley, J. Morris, J. Russell,
A. Druka, D. Marshall, M. Bayer, D. Swarbreck, D. Sampath, S. Ayling, M. Febrer, M. Caccamo,
T. Matsumoto, T. Tanaka, K. Sato, R. P. Wise, T. J. Close, S. Wannamaker, G. J. Muehlbauer, N.
Stein, K. F. X. Mayer and R. Waugh

Nature. 491(7426):711-716, 2012.

Integration of whole genome shotgun sequence assemblies with information of genetic and physical map facilitated
generating an ordered draft genome sequence and gene annotation for barley (Hordeum vulgare). Deep RNA-
sequencing provided novel insights in the transcriptome of an agriculturally important member of the Triticeae in-
cluding, besides expression of protein-coding genes, a high abundance of tissue-dependent alternative splicing, post-
transcriptional gene regulation and thousands of novel (non-protein-coding) transcriptional active regions.

Personal contributions: In this project | was mainly responsible for the development and the implementation of a
computational workflow for the structural gene annotation of the barley genome sequence assembly by using a multi-
tissue RNA-seq data set and public available fl-cDNA sequences. The here implemented gene annotation pipeline
was further refined and adapted for the annotation of the bread wheat genome described in Chapter 4 of my thesis.
Furthermore, | conducted the presented transcriptome analysis including quantitative and qualitative characterization
of barley gene expression and the investigation of alternative splicing patterns as well as post-transcriptional gene
expression regulation. Based on the results observed for the barley genome in this study, my dissertation will further
elucidate to which extend the complex transcriptional patterns are also evident in other Triticeae as exemplified by the
bread wheat genome (Chapters 4 and 5).

2013

MIPS PlantsDB: a database framework for comparative plant genome research

T. Nussbaumer, M. M. Matrtis, S. K. Roessner, M. Pfeifer, K. C. Bader, S. Sharma, H. Gundlach
and M. Spannagl|

Nucleic Acids Research. 41(D1): D1144-D1151, 2013.

This manuscript describes the web services implemented for data retrieval and data visualization of genomic resources
established in the PGSB group for a diverse spectra of plant genomes.

Personal contributions: In this project | contributed to the implementation of the web-based visualization for
GenomeZipper results, in particular, for the perennial ryegrass genome.



The perennial ryegrass GenomeZipper — targeted use of genome resources for compara-
tive grass genomics

M. Pfeifer, M. M. Martis, T. Asp, K. F. X. Mayer, T. Libberstedt, S. Byrne, U. Frei and B. Studer
Plant Physiology. 161(2):571-582, 2013.

In absence of a reference genome sequence, this study applied the GenomeZipper approach to order transcriptome
sequence assemblies generated for perennial ryegrass (Lolium perenne) by integrating high-density genetic marker
maps of Lolium and known genome information of the related grasses Brachypodium, rice and sorghum. The obtained
ordering provided previously unknown insights into the genome architecture of an agricultural and industrial important
turfgrass. Moreover, sequence divergence analysis deepened the knowledge of the evolutionary relationship in the
Triticeae spanning an evolutionary time frame of approximately 50 million years.

Personal contributions: In this work | was responsible for the comparative genome analysis between perennial
ryegrass, barley and available high-quality reference grass genomes. Subsequently, | carried out the GenomeZipper
approach, which has been previously established for the analysis of the barley and wheat genomes. This ordering of
perennial ryegrass transcriptome sequence assemblies allowed me analysing macro- and micro-synteny relationships
between the perennial rye grass genome and the barley genome. Furthermore, | conducted the sequence divergence
analysis among related grass genomes.

Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation
J. Jia¥, S. Zhao*, X. Kong#, Y. Li*, G. Zhao*, W. He*, R. Appels*, M. Pfeifer, Y. Tao, X. Zhang, R.
Jing, C. Zhang, Y. Ma, L. Gao, C. Gao, M. Spannagl, K. F. X. Mayer, D. Li, S. Pan, F. Zheng, Q. Hu,
X Xia, J. Li, Q. Liang, J. Chen, T. Wicker, C. Gou, H. Kuang, G. He, Y. Luo, B. Keller, Q. Xia, P. Lu,
J. Wang, H. Zou, R. Zhang, J. Xu, J. Gao, C. Middleton, Z. Quan, G. Liu, J. Wang, International
Wheat Genome Sequencing Consortium, H. Yang, X. Liu, Z. He, L. Mao and J. Wang

Nature. 496(7443):91-95, 2013.

This paper presents the draft genome sequence for Aegilops tauschii, the diploid progenitor genome of the bread wheat
D genome. By using high-depth next generation sequencing technology, the authors generated genomic resources
providing useful information, e.g., for comparative analysis with the hexaploid wheat genome and related extant diploid
genomes that will allow gaining insights into the evolution of the tribe Triticum.

Personal contributions: By incorporating genetic marker map information and synteny between Aegilops tauschii,
barley and related reference grasse genomes, | participated in the anchoring and linear ordering of the predicted
genes. In addition, | contributed to the comparative gene family analysis including the computation of orthologous
gene relationships and identification of gene families with expanded sizes in the D-genome lineage.

Molecular and immunological characterization of ragweed (Ambrosia artemisiifolia L.)
pollen after exposure of the plants to elevated ozone over a whole growing season

U. Kanter, W. Heller, J. Durner, J. B. Winkler, M. Engel, H. Behrendt, A. Holzinger, P. Braun, M.
Hauser, F. Ferreira, K. F. X. Mayer, M. Pfeifer and D. Ernst

PLoS ONE. 8(4):¢61518, 2013.

Barley whole exome capture: a tool for genomic research in the genus Hordeum and be-
yond

M. Mascher, T. A. Richmond, D. J. Gerhardt, A. Himmelbach, L. Clissold, D. Sampath, S. Ayling,
B. Steuernagel, M. Pfeifer, M. D’Ascenzo, E. D. Akhunov, P. E. Hedley, A. M. Gonzales, P. L.
Morrell, B. Kilian, F. R. Blattner, U. Scholz, K. F. X. Mayer, A. J. Flavell, G. J. Muehlbauer, R.
Waugh, J. A. Jeddeloh and N. Stein

The Plant Journal. 76(3):494-505, 2013.
The manuscript describes the targeted sequencing of mRNA-coding exons for the barley genome. This approach
reduces genomic complexity towards the protein-coding part of the genome and provides a valuable tool, also for the



analysis of other Triticeae genomes.
Personal contributions: In this study | contributed to definition of exon sequences for the design of the capturing
array on basis of structural transcript assemblies of mapped RNA-seq short reads.

Analysing complex Triticeae genomes — concepts and strategies
M. Spannagl, M. M. Martis, M. Pfeifer, T. Nussbaumer and K. F. X. Mayer
Plant Methods. 6;9(1):35, 2013.

This review summarizes the different bioinformatic approaches for the sequence analysis of complex Triticeae
genomes.

Personal contributions: | was mainly responsible for the section discussing the orthologous group assembly, which
is described in Chapter 3 of this thesis.

2014

Ragweed (Ambrosia artemisiifolia) pollen allergenicity: SuperSAGE transcriptomic analy-
sis upon elevated CO2 and drought stress

A. E. Kelish, F. Zhao, W. Heller, J. Durner, J. B. Winkler, H. Behrendt, C. Traidl-Hoffmann, R.
Horres, M. Pfeifer, U. Frank and D. Ernst

BMC Plant Biology. 14:176, 2014.

A chromosome-based draft sequence of the hexaploid wheat genome

The International Wheat Genome Sequencing Consortium (IWGSC)

Gene annotation: M. Pfeifer, Manuel Spannagl and K. F. X. Mayer

Transcriptome sequencing and expression analysis: M. Pfeifer L. Pingault, K. F. X. Mayer and E.
Paux

miRNAs: P. Faccioli, M. Colaiacovo, M. Pfeifer, A. M. Stanca, H. Budak and L. Cattivelli
Comparative analysis of diploid, tetraploid and hexaploid wheat: M. Pfeifer, S. R. Sandve, T.
Nussbaumer, K. C. Bader, F. Choulet, C. Feuillet and K. F. X. Mayer

Science. 345(6194):1251788, 2014.

In frame of the International Wheat Genome Sequencing Consortium (IWGSC), chromosome flow cytometry facilitated
isolating DNA of individual chromosomes and chromosomes arms of bread wheat. Each chromosome arm was sepa-
rately sequenced by using high-depth next generation sequencing technology and subsequently assembled de novo.
The generated chromosome arm survey sequence assembly facilitated a comprehensive analysis of the bread wheat
genome revealing high organizational and structural conservation across homoeologous genomes, chromosomes and
chromosome arms. Comparative analysis with six extant diploid and tetraploid wheat genomes allowed investigating
the phylogenetic relationships and gene family evolution across different Triticum genome lineages. These previously
unknown genomic resources also enabled elucidating the gene expression patterns with a homoeologous resolution,
which revealed a high degree of transcriptional autonomy and no global genome dominance.

Personal contributions: This manuscript constitutes the major publication for the results presented in Chapter 4 of my
thesis and defines the underlying genomic resources utilized in Chapter 5. On basis of the generated chromosomal
survey sequence assembly, | was mainly responsible for the design and the implementation of an extrinsic gene
annotation pipeline and the identification and subsequent classification of high- and low-confidence genes (Chapter
4). On basis of the defined gene sequences and structures | performed a gene expression analysis including five
distinct wheat tissues. In particular, | focussed on investigating the transcriptional similarities and differences among
homoeologous genes by using similar methods as presented in Chapter 5 of this thesis. Furthermore, | conducted a



comparative sequence analysis of related extant diploid, tetratraplid and hexaploid wheat genomes, implemented the
computational workflow for the automated identification of single nucleotide variants and performed the subsequent
phylogenetic analysis. Additionally, | was involved in the miRNA analysis and performed the in silico prediction of
potential gene targets for mature miRNA sequences and the identification of miRNA loci associated with transposable
elements.

Ancient hybridizations among the ancestral genomes of bread wheat

T. Marcussen, S. R. Sandve, L. Heier, M. Spannagl, M. Pfeifer, International Wheat Genome
Sequencing Consortium, K. S. Jakobsen, B. H. Wulff, B. Steuernagel, K. F. X. Mayer and O.-A.
Olsen

Science. 345(6194):1250092, 2014.

This paper reports a genome-wide comparative analysis investigating the evolutionary relationships among the wheat
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By using RNA-sequencing technology, this study presents a detailed analysis of the bread wheat grain transcriptome
for dissected cell types of three different stages in endosperm development. Distinct co-expression clusters were iden-
tified, which characterize gene expression in aleurone cells, starchy endosperm and transfer cells during endosperm
differentiation and maturation, in which the industrial important characteristics of wheat grains are set. Furthermore,
this manuscripts provides previously unknown insights into the contribution of the homoeologous genomes to the
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a complex interplay of genetic and epigenetic mechanisms orchestrating gene expression in hexaploid bread wheat
grain.

Personal contributions: This study is the major publication for Chapter 5 of this thesis. On basis of the previously
unknown genomic resources, which are described in Chapter 4, | updated the existing bread wheat gene annota-
tion by incorporating the novel transcriptome data set generated for wheat endosperm. Therefore, | developed the
computational workflow for the mapping of paired-end RNA-seq short reads against the bread wheat draft genome
sequence assembly. Furthermore, | conducted an in silico evaluation experiment to exclude a bias in the gene expres-
sion measurements. | contributed major parts to the statistical analysis of qualitative and quantitative gene expression
in developing wheat grain as well as to the interpretation of the observed transcriptional patterns. Additionally, | was
mainly responsible for the k-means co-expression cluster analysis of the entire wheat transcriptome as well as the
network-based analysis of gene expression regulation for single-copy homoeologous genes. Also, | contributed to the
identification and analysis of gene families affecting bread wheat baking quality.






Contents

1

Introduction

1.1
1.2

1.3

1.4

1.5

1.6
1.7

New challenges for agriculturalresearch . . . . . ... ... ... ........
The grasses and the tribe Triticeae . . . . . . . . . . . ... ... ... .....
1.2.1  Agricultural and economic importance of the Triticeae . . . ... ... ..
1.2.2 Taxonomy and phylogeny ofthegrasses . . . . .. .. .. ... .....
1.2.3 Constitution of grass genomes and syntenic relationships . . . . . . . ..
1.2.4 Evolution and phylogeny of cultivatedwheats . . . . . . .. .. ... ...
Formation and implications of polyploidy . . . . . .. .. ... ... ... ....
1.3.1 Formation and incidence of polyploidy . . . . ... ... ... ......
1.3.2 Polyploidy affects plant vigour and phenotype . . . . . ... . ... ...
1.3.3 Implications of polyploidy on the bread wheat genome and transcriptome
1.3.4 Genome asymmetry and homoeolog expressionbias . . . . ... .. ..
Genome and transcriptome sequencing technologies . . . . . .. ... ... ..
1.4.1 The "evolution” of sequencing technologies . . . . . . . .. .. ... ...
1.4.2 Bioinformatics — a key discipline for genome and transcriptome analysis .
Plant genome sequencingand analysis . . . . . . .. .. ... ... .......
1.5.1 Progress in plant genome sequencing . . . . . . . .. ... ... ...
1.5.2 Challenges and approaches for the analysis of Triticeae genomes
Research questions and objectives of thisthesis . . . .. .. ... ... .....
Overview of thisthesis . . . . . . . . . . . .. ... ... ... ..

Bread wheat genome and transcriptome resources

2.1
2.2
2.3

Whole genome shotgun sequencing . . . . . . . .. . .. ... ... ..
Chromosomal survey sequence assembly . . . .. ... ... ..........
Bread wheat endosperm transcriptome . . . . .. ... oL oo

Genome dynamics of polyploid bread wheat

3.1

Homoeologous-specific sequence analysis . . . . .. .. ... ... .......
3.1.1  Definition of an orthologous gene family framework for the grasses . . . .
3.1.2 The orthologous group assembly and calculation of the wheat gene copy

number . . . . . . e e e e e e e
3.1.3 Gene copy number estimations for different OGAs . . . . . .. .. .. ..

O N O O & = =

©

11
13
13
13
16
19
19
20
21
23

25
26
27
29

31
32
32



CONTENTS

3.1.4 Calibration of the OGA with in silico simulations . . . . ... . ... ...

3.2 Genome dynamics in diploid and hexaploidwheat . . . . .. ... ... .. ...
3.2.1 Orthologous group assemblies for Ae. tauschii and bread wheat . . . . .
3.2.2 Distribution of gene family sizes in wheat genomes . . . . . . .. .. ..
3.2.3 Estimation of gene number in diploid and hexaploid wheat genomes . . .
3.2.4 Genome change in polyploidwheat . . . . . .. ... ... ........
3.2.5 Functional analysis of expanded gene families in Ae. tauschii and bread
wheat . . . . . .

3.3 Signatures of pseudogenes in the wheatgenome . . . . . . . ... ... ... ..
3.3.1 Identification of pseudogene candidates . . . . . ... ... ... ....
3.3.2 Signatures of selection pressure on stack sub-assemblies . . . . . . . ..
3.3.3 Over-representation of pseudogenes among domain families . . . . . ..

3.4 Conclusions . . . . . ..

A chromosomal survey of the bread wheat genome
4.1 Exon detection and consensus gene modelling . . . . . . ... ... ... ....
4.1.1 Reference-based gene structure prediction . . . . . ... ... ... ...
4.1.2 |dentification of tissue-specific transcript structures . . . . . . . .. .. ..
4.1.3 Confidence classification of wheat gene predictions . . . . . ... .. ..
4.2 Evaluation of the wheat gene annotation . . . ... .. ... ... ........
4.2.1 Influences of sequencing depth and assembly quality on the HC gene set
4.2.2 Completeness of the predicted bread wheatgeneset . . . ... ... ..
4.2.3 Estimation of the bread wheat gene number . . . . . . .. ... ... ..
4.3 Characteristics of bread wheatgenes . . . . . . ... ... ... L.
4.3.1 Structural characteristics of high- and low-confidence wheat genes . . . .
4.3.2 Genome distribution of protein-codinggenes . . . . . . ... ... .. ..
4.3.3 Analysis of homoeologous genes retained in each genome of polyploid
breadwheat . .. ... ... .. ... ...
4.3.4 Composition of wheat gene families . . . . . . ... ... ... ... ...
4.4 Alternative splicinginbreadwheat . . . . . ... ... ... o0 oL
4.4.1 Distribution of alternative splicinginbreadwheat . . . . . . ... ... ..
4.4.2 Analysis of post-transcriptional gene expression regulation . . . . . . ..
45 DIisCusSiON . . . . . . .
4.5.1 A comprehensive annotation of protein-coding bread wheat genes based
on extrinsic sequence information . . . .. .. ... o000
4.5.2 Identification of thousands of gene fragments, pseudogenes and non-
coding transcriptional active regions in the wheat genome . . . . . . . ..
4.5.3 Dynamics of the bread wheatgenome . . . . .. ... ... ... ....
4.5.4 A highly complex and conserved alternative splicing landscape . . . . . .
4.6 ConClUSIONS . . . . . . o e e

49
52
52
55
57
58

59
60
61
63
66
72
72
74
75
77
77
79

80
83
84
85
87
90

90



CONTENTS

5 The transcriptome of hexaploid wheat endosperm 97
5.1 Thenuclearendosperm . . . . . . . . . . ... 98
5.2 Dissecting the transcriptome of wheat endosperm . . . . . ... ... ... ... 100

5.2.1 RNA-seqread mapping and filtering . . . . . . . ... ... ... L. 101
5.2.2 Refinement of the wheat gene annotation. . . . . ... ... ... .... 103
5.2.3 Reproducibility of expressionmeasures . . . . . . ... ... ... ... 105
5.2.4 In silico validation of gene expression measurements . . . . . .. .. .. 107
5.2.5 Computation of gene expression and differential expression tests . . . . . 108
5.8 Gilobal transcriptional landscape . . . . . . . . . ... oo 109
5.3.1 Quantitative analysis of gene and transcript expression . . . . . ... .. 109
5.3.2 Identification of preferentially expressedgenes . . . . . . .. ... .. .. 110
5.3.3 Spatiotemporal differences in gene expression . . . . . .. ... ... .. 111
5.3.4 Qualitative analysis of differential gene expression . . . . . .. ... ... 111
5.4 Co-regulation of gene expression . . . . . ... ..o 113
5.4.1 Identification of endosperm co-expression clusters . . . . . .. .. .. .. 113
5.4.2 Functional characterization of the identified co-expression clusters . . . . 116
5.4.3 Gene expression regulation of homoeologousgenes . . . . . . . ... .. 117
5.5 Module-associated genome dominance . . . . . . . ... ... oL 119
5.5.1 Global patterns of homoeologous gene expression regulation . . . . . . . 120
5.5.2 Cell type and stage specific homoeologous gene expression bias . . . . . 122
5.5.3 Sequence evolution vs. expression evolution . . . . . . . ... ... ... 125
5.6 Chromosomalregulation . . . . .. ... .. ... .. ... 126
5.6.1 Construction of Triticeae prototype chromosomes . . . . . .. .. .. .. 127
5.6.2 Chromosomal regulation of endosperm gene expression . . ... .. .. 130
5.7 Profiling wheat baking qualitygenes . . . . . . . .. ... ... . L L. 133
5.7.1 Cataloguing genes affecting wheat baking quality . . . ... ... . ... 133
5.7.2 Gene family compositions and gene expression patterns for seed and stor-
age proteins during endosperm development . . . . . . ... ... 134
5.8 DisCUSSION. . . . . . . . 138
5.8.1 Highly complex and flexible alternative splicing in bread wheat . . . . . . 139
5.8.2 Large differences in spatiotemporal gene expression patterns of wheat en-
dosperm . . ... 139
5.8.3 No global transcriptional dominance for wheat genomes . . . . . . . . .. 140
5.8.4 Subfunctionalization of homoeologousgenes . . . . . . ... ... .. .. 141
5.8.5 Homoeolog gene expression divergence and functional genome asymmetry 142
5.8.6 Chromosomal regulation of wheat gene expression . . . .. ... .. .. 143
5.8.7 Dominance of the B and D genomes for genes affecting baking quality . . 144
5.9 Conclusions . . . . . . . e 144

6 Summary and perspectives 147



Bibliography

Appendix
A Abbreviations
B Additional figures

C Additional tables

CONTENTS

149

179

179

183

191



List of Figures

1.1
1.2

1.3
1.4

1.5

1.6

2.1

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12
3.13

Past successes and new challenges for agricultural research . . . . . . ... ..
Taxonomy of the Poaceae family and contribution of economically important
grasses to worldwide food production . . . . .. .. .. ... L L
Evolution of di-, tetra- and hexapolyploid wheat genomes of the genus Triticum

Evolutionary scenarios of the formation of polyploids and bivalent pairing of chro-
mosomes during MeiosiS . . . . . . . . . . e
Possible mechanisms affecting the fate of homoeologous genes in polyploid
JEBNOMES .« v v v et e i et e e e e
The progress in plant genome sequencing . . . . . . . . . . . .. ... ... ..

Datasets analysed in this thesis with respect to projects and biological questions

The orthologous group assembly and the estimation of gene copy number . . . .
Repeat-masking, filtering and mapping statistics of genomic shotgun sequence
reads . . . . . e e
Alignment depth of OGRs by wheat genomic shotgun reads and sub-assemblies
and calculated gene copy number for different assembly parameters . . . . . . .
Workflow for evaluation of the OGA and the gene copy number predictions based
on simulated whole genome shotgun sequencing data for the maize genome . . .
Workflow for evaluation of the OGA and the gene copy number predictions based
on an artificially created hexaploid gene catalogue ofrice . . . ... ... .. ..

Relationship between observed and predicted gene copy number for the simulation
experiments . . . . .. L

Coverage of orthologous group representatives by raw sequencing reads and sub-
assemblies . . . . ..

Gene family sizes in orthologous assemblies Ae. tauschii and hexaploid wheat
Gene retention rates for diploid Ae. tauschii and hexaploid wheat . . . . . . . ..
Amalgamation of diploid and hexaploid wheat gene copy numbers . . . . . . ..

Significant over-represented gene ontology categories of expanded gene families
in Ae. tauschii and hexaploidwheat . . . . . .. ... ... ... .. ... .. ..

Example of an OGR with associated wheat sub-assemblies and a "stack” region .
Gene coverage and localization of identified stack regions . . . . . . ... .. ..

11
20

25

34

35

39

41

42

43

45

46

48

49

51
53



3.14

4.1

4.2

4.3
4.4

4.5

4.6

4.7

4.8

4.9
4.10
4.11

412
4.13

4.14
4.15
4.16
417
4.18
419

5.1
5.2
5.3

5.4

5.5
5.6

LIST OF FIGURES

Sequence diversity analysis of wheat sub-assemblies in stacks and non-stack re-

Workflow for the reference-based identification of potential gene structures and
wheat transcripts not represented inthe CSSassembly . . . ... ... ... ..
Workflow for RNA-seq based gene prediction and detection of tissue-specific tran-
scriptsvariants . . . .. L
Alignment statistics for RNA-seq reads against the wheat CSS genome assembly
Classification of the consensus gene set into high- and low-confidence gene cate-
QOMES . o o o e
Pipeline for joining of fragmented gene loci based on the alignments to the asso-
ciated template reference peptide . . . . . . . ..o
Template reference gene coverage and sequence similarity of high-confidence
geneloci . . . . .
Sequencing depth, assembly quality and distribution of high-confidence gene loci
foreach chromosomearm . . . . . . . . . .. . ... ..
Comparison of bread wheat genes against publicly available wheat EST sequence
assemblies of the HarvEST database . . . . . . .. ... ... ... .......
Identification of parameters for estimation of the bread wheat gene content . . . .
Distribution of high-confidence wheat genes across genomes and chromosomes

Gene density and syntenic conservation of high-confidence genes and low-
confidence supported genes for individual chromosomearms . . . . . .. .. ..
Structural and functional characteristics of identified homoeologous gene triplets

Distribution of molecular function categories for homoeologous gene ftriplets and
the entire wheat gene repertoire . . . . . . . . . ..o L oo
Composition of wheat gene families . . . . . . .. ... .. .. ... ... ...,
Distribution of alternative splicing across genomes and chromosome arms . . . .
Frequency of alternative splicing events in bread wheat . . . .. ... ... ...
Conservation of alternative splicing among homoeologous gene triplets . . . . .
Gene expression regulation by unproductive splicing and translation . . . . . ..
Conservation of PTC* /NMD gene candidates among homoeologous triplets . . .

Structure and developmental stages of the nuclear endosperm of cereals
RNA-seq mapping of individual endosperm samples to the wheat CSS assembly
Classification of RNA-seq read pair mappings to nine alignment scenarios for strin-
gentreadsfiltering . . . . . . ...
Gene ontology categories analysis of genes with novel alternative splicing variants
in the endosperm transcriptome . . . . . . ... ... oo
First and second principal component of gene expression among replicates
Validation of homoeologous gene expression measurements . . . . . .. .. ..

55

62

64
65

67

70

72

73

74
76
79

80
81

82
83
85
86
87
88
90

99
102

103

105
106



LIST OF FIGURES

5.7 Distribution of endosperm gene and transcript expression across the A, B and D

JENOIMES . . . . o i e e e e e e e e e e e 109
5.8 Spatiotemporal hierarchical cluster analysis of endosperm gene expression . . . 111
5.9 Spatiotemporal analysis of differentially gene expression . . . . . . . ... .. .. 112
5.10 Selection of the cluster sizes and silhouette plot for co-expression clustering . . . 114
5.11 Gene expression profiles of co-expressionclusters . . . . . . . ... ... .... 115
5.12 Diverged co-expression cluster assignments for homoeologous gene triplets . . . 118
5.13 Spatiotemporal distribution of homoeolog expression transitions . . . . . . .. .. 120
5.14 Analysis of gene expression for single-copy homoeologous gene triplets . . . . . 121

5.15 Weighted gene co-expression network analysis for homoeologous gene triplets . 122
5.16 Cell type- and developmental stage-specific gene expression and genome domi-

nance in the homoeologous co-expression network . . . . . . . . ... ... ... 123
5.17 Functional compartmentalization of homoeologous gene expression . . . . . . . 125
5.18 Comparison of transcriptional and sequence-based differences for homoeologous

0ENES . . . . e 126
5.19 Construction of the Triticeae prototype chromosomes . . . . . . . ... ... .. 128

5.20 Anchoring statistics of wheat genes to the seven Triticeae prototype chromosomes 129
5.21 Structural comparison between the Triticeae prototype against the wheat

GenomeZIpper . . . . . e 130
5.22 Chromosomal regulation of gene expression along the Triticeae prototype gene
order exemplified for chromosomes 1 . . . . . . . . . ... 131

5.23 Exemplified analysis of chromosomal domains with non-balanced gene expression 132
5.24 Analysis of members of the glutenin and puroindole gene families and the seed

storage protein activatorgenes . . . . . . ... Lo oo 135
5.25 Analysis of the a-, y- and w-gliadin gene families . . . . . . ... ... ... ... 138
A.1 Structural analysis of homoeologous gene triplets between genomes . . . . . . . 183
A.2 Frequency of GOSIim biological processes observed for the entire wheat genome

and for homoeologous gene triplets . . . . . . .. ... ... L L. 184
A.3 Characterization of the co-expression modules inferred for the homoeologous

gene expressionnetwork . . . . ... oL Lo L 185
A.4 Correlation of co-expression module eigengenes with pre-defined cell type and

time point expression profiles . . . . . . ... oo oo 186
A.5 Gene expression profiles of the identified co-expression modules for the homoeol-

ogous gene expression network . . . ... Lo oL 187
A.6 Distribution of gene expression correlation, gene expression level dominance and

sequence divergence in for homoeologous triplets . . . . . .. ... ... .. .. 188

A.7 Distribution of gene expression levels for 10 DPA W along the Tp chromosomes . 189
A.8 Distribution of gene expression levels for 20 DPA W along the Tp chromosomes . 189
A.9 Distribution of gene expression levels for 20 DPA AL along the Tp chromosomes . 189
A.10 Distribution of gene expression levels for 20 DPA SE along the Tp chromosomes 190



LIST OF FIGURES

A.11 Distribution of gene expression levels for 20 DPA TC along the Tp chromosomes 190
A.12 Distribution of gene expression levels for 30 DPA TC along the Tp chromosomes 190
A.13 Distribution of gene expression levels for 30 DPA SE along the Tp chromosomes 190



List of Tables

2.1

2.2

2.3

24

3.1

3.2

3.3
3.4

41

4.2

4.3

4.4

4.5
4.6
4.7
4.8

5.1
5.2

Sequence statistics of the bread wheat whole genome shotgun data set generated
within the UK collaboration . . . . . . . . ... ... ... .o
Sequence and assembly statistics of the chromosomal survey sequence assembly
generated by the IWGSC . . . . . . . . . . .. .
Sequence statistics of the multi-organ RNA-seq generated for gene annotation by
the IWGSC . . . . . . . . e
Sequence statistics of the wheat endosperm transcriptome data set generated
within the Norway collaboration . . . . . ... . ... ... ... ... ......

Number of orthologous groups defined in the gene family framework built on basis
of high-quality protein sequences of relatedgrasses . . . . . . .. .. ... ...
Newbler assembly statistics of orthologous group assemblies with different strin-
gencylevels . . . . .
Analysis of of gene fragments and sub-assemblies forming local stacks . . . . . .
Functional analysis of OGRs with pseudogene-stacks . . . . ... ... ... ..

Assembly statistics of the de novo assembly of wheat RNA-seq reads obtained for
fiveorgans . . . . . .
Exon, transcript and gene structure prediction statistics for the reference-based
annotation, the gain of information with RNA-seq data and the consensus structure
Sel . . . e
Reference proteome data sets and parameters used for identification of high- and
low-confidence wheatgenes . . . . . . . . . .. ... L
Alignment statistics for comparison of predicted wheat transcripts positioned within
the CSS assembly against the reference proteome datasets . ... ... .. ..
Statistics for template based joining of mutually completing gene loci . . . . . . .
Overview of the confidence classification for predicted wheat gene loci . . . . . .
Structural characteristics of high-confidence and low-confidence wheat genes . .
Alternative splicing and transcripts containing PTCs across high-confidence gene
oo

Overview of the refined high-confidence gene set of bread wheat . . . . . . . ..
Pearson’s correlation coefficient (R?) of gene expression levels estimated for bio-
logical replicates grown in the same and in different greenhouses . . . . . . . ..

26

28

28

29

33

37

54
57

62

65

68

69
71
71
78

89

104



5.3

5.4
5.5

AA
A2
A3
A4
A5
A.6

A7

A8

LIST OF TABLES

Gene expression level statistics for high-confidence wheat genes (HC1-3) for indi-
vidual endospermsamples . . . . . . . . ... Lo 108
Identification of preferentially expressed genes for individual endosperm cell types 110
Number of Brachypodium, rice and sorghum genes building the seven Triticeae

prototype chromosome scaffolds . . . . . . ... ... ... ... o 128
Functional enrichment analysis of preferentially expressed genes (PEGs) . . .. 191
Functional enrichments for individual k-means co-expression clusters . . . . . . . 191
Expression transitions between homoeologs of the A and B genomes . . . . . . . 191
Expression transitions between homoeologs of the A and D genomes . . . . . . 192
Expression transitions between homoeologs of the B and D genomes . . . . . . 192
Number of aggregated transitions of homoeologous genes between the identified

k-means co-expression clusters and significancetests . . . . . . ... ... ... 192

Number of significant differentially homoeologous genes grouped in co-expression
modules identified by the network-based analysis of homoeologous gene expression193
Functional enrichments for co-expression modules inferred for the homoeologous
gene expressionnetwork . . . . . .. L L 193



Chapter 1

Introduction

"To avoid encroaching into already-stressed ecosystems, societies will have to
almost double the existing rate of agricultural producti'vity growth
while minimizing the associated environmental damage. This requires
dedicated eﬁorts to deploy known but neglected practices, zdentzfy
CTrop varieties able to withstand climate shocks, diversify rural liveli-
hoods, improve management of forests, and invest in information systems.”
The World Bank. World Development Report 2010. World Bank, page 133, 2009

1.1 Filling the yield gap — new challenges for agricultural research

Worldwide agriculture has been revolutionized in the past 50 years by huge financial investments
and international efforts in modern scientific research of crop and livestock production, global dis-
tribution of novel technologies, improved infrastructure and systematic market development (7).
Breeding of new plant varieties, application of chemicals and fertilizers, irrigation and mechaniza-
tion of agriculture, significantly increased productivity (2,3) and lead to an enormous reduction
in global starvation, from approximately one third of the world’s population in 1950 (1) to one
out of eight people in 2012 (4). Due to the indisputable achievements in reducing hunger, US-
AID Administrator W. S. Gaud designated this era of ground-breaking changes in farming, food
processing and management as the "Green Revolution” (5). However, as worldwide population
has rapidly doubled within fifty years from three billion in 1960 to seven billion nowadays, the
relative decrease in undernourishment is not reflected in terms of absolute numbers (6,7). Most
recent estimations of the FAO revealed that still approximately 840 million (mio) people suffered
from chronic hunger in 2013 (4). Furthermore, pronounced imbalances exist between different
regions and geopolitical areas of the world. Hunger is mainly prevalent in developing countries,

1



2 CHAPTER 1. INTRODUCTION

where 827 mio people are undernourished (14% of population). On the contrary, less than 5%
of population (16 mio people) insufficiently meet daily dietary needs in more developed coun-
tries (4,7) (Fig. 1.1a). Modernization of agriculture has been successfully implemented in Latin
America and the Caribbean as well as Asia and Oceania, which are expected to reach the World
Food Summit target that aims at half the absolute number of hungry people of 1990 till 2015 as
well as the more challenging Millennium Development Goal that aims at half the proportion of
hungry people in the same time frame (4). On the contrary, in Africa the relative decrease in star-
vation is slowing down and the total number of people suffering from chronic hunger is growing,
particularly in Sub-Saharan countries. This trend is also reflected by the significant differences in
cereal yield growth during the Green Revolution, which stagnated in Africa, but almost triplicated
for other parts of the world (7) (Fig. 1.1b).

. Latin America and . . .
Developed regions the Caribbean Africa Asia and Oceania

a undernourished

oo GERRREEEEEE - AEE W 0
s GOROBRERAL D03 WoicassE bR e0

preoman K WES 86 WFS 1888666658668 WFS 806686850651

Population
(100 mio people)

(op

Demand
increase
since 1970

(100 kg/capitala)

(2]
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yield
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o

yield

Worldwide wheat
(t/Ha)

Q O ) ° Wheat yield change (%)
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————
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Fig. 1.1. Past successes and new challenges for agricultural research.

Geographic overview of the development of a, population size, growth and undernourishment [the re-
gional World Food Summit (WFS) targets aiming at halving the number of undernourished people between
1990/92 and 2015 are indicated by green arrows], b, increase in per-capita calorie consumption and c,
cereal yield growth. d, Population growth and changed diets demand for global improvement of agricultural
productivity as a “yield gap” emerge by divergence between actual and required increase in cereal yields
(red area in inset). e, Global statistical predictions indicate strong negative effects of climate change on
agroecological conditions especially in Sub-Saharan Africa and South-East Asia in the last quarter of the
218t century. [Used data sources: Population size: (4,7); Yield growth: (7); Food demand: (8); Estimations of wheat
yield predictions: (3); Yield change under climate change: (9,10) (median wheat yields 2070-99 compared to 2005-10;
model settings: EPIC, HADGEMZ2-ES, RCP8.5, SSP2, CO2)|



1.1. NEW CHALLENGES FOR AGRICULTURAL RESEARCH 3

Although the Green Revolution constitutes a major improvement, the high number of peo-
ple suffering from chronic hunger requires further concerted efforts to accomplish global access
to protein and energy sufficient for a daily diet (4). Achieving this ambitious goal is impeded by
inadequate agroecological capabilities of certain geographic regions, by economic, structural and
political constraints of individual countries as well as by limited technology transfer or insufficient
international investments in research and development (4,71,72). Furthermore, new challenges
will additionally impact on improving the worldwide nutritional situation and will impede ensur-
ing long-term food security. Population growth is predicted to add 3.9 billion people within this
century expanding world population to 8.1 billion in 2050 and to 10.9 billion in 2100 (6). While
the population in developed countries will stagnate, developing countries rise significantly (3.8
billion) and, in particular, the population size of the least developed countries is assumed to dou-
ble within the next century (Fig. 1.1a). Moreover, per capita demands for calories and proteins
are growing slightly in developed and substantially in developing regions (Fig. 1.1b). Generally,
diets are shifting towards increased consumption of livestock products (i.e. meat and dairy) that
are generally more resource-intensive to produce (8,73). In combination, population growth and
changes in nutritional behaviour cause rising worldwide food demands, which are expected to
double until 2050 ( 714). However, the development of economic needs contrasts with the past and
current rates of annual crop yield increase (Fig. 1.1c). Consequently, only approximately 75%
of the required calories are predicted to be satisfied in future leading to concerning differences
between current and required cereal yield and to the emergence of a “yield gap” (3) (Fig. 1.1d).
This imbalance indicates that "the world faces a looming and growing agricultural crisis” (3) and
asks for significant improvements in agricultural production (2,15).

However, closing the yield gap by an adequate increase in agricultural production is chal-
lenging. Changing climatic conditions "will depress agricultural yields in many regions, making
it harder to meet the world’s growing food needs” (page 133) (13). Recent statistical models
predict strong negative effects of warming and increased nitrogen concentration on agriculture,
which may cause regional yield losses up to 50% (9) (Fig. 1.1e). Furthermore, competing de-
mands of natural resources by food production, bioenergy and biofuel technology or urbanization
will increase water and land scarcity (13). At the same time, the established technological in-
ventions and agricultural improvements during the Green Revolution have been associated with
environmental damage and pollution (2). For example, extensive use of fertilizes and other chem-
icals as well as irrigation contributed to pollution of ground water and coastal areas, reduction of
biodiversity and increased emission of green house gases (2,73). In conflict with global goals
to maintain biodiversity and healthy ecosystems, "modern agricultural land-use practices may be
trading short-term increases in food production for long-term losses in ecosystem services” (16)
causing strong negative impacts on agricultural production as well as animal and humankind’s
life.

Refinement of current proceedings and establishment of new technologies are essential
to further reduce worldwide undernourishment and to ensure global food security. The disad-
vantages of the first Green Revolution and a growing set of other challenges require a sec-
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ond Green Revolution (17) and the ”sustainable intensification” of agricultural productivity (18).
Future agriculture has to persistently increase food production independent from environmental
perturbations and demographic structures in order to maintain ecosystem services (15,17,18).
Besides changes in human mode of behaviour and improvements in organization and infras-
tructure, biological sciences will play an important role in achieving significant advances in crop
yields (15,19). Comprehensive genetic and phenotypic analysis of crop plants provide valuable
information to determine and target genes of agricultural importance as well as to identify vari-
eties with favourable traits. Thereby, genome sequencing and analysis are fundamental to unravel
an organism’s molecular and genetic architecture (15,18,20-22). A complete or draft reference
genome sequence of a target crop enables myriad applications including, for example, analysis
of evolutionary and phylogenetic relationships, comparative (structural) analysis or the discovery
of single nucleotide polymorphism (SNPs) and copy number variation (CNVs) between popula-
tions, cultivars or species (23,24). Extensive transcriptome studies investigating plant responses
under different environmental conditions can be combined with metabolic and phenotypic data to
associate genes with functions, their epigenetic and genetic control mechanisms and underlying
regulatory networks and biological pathways (25,26). On-going improvement of high-throughput
sequencing technologies and the implementation of bioinformatic approaches integrating different
data resources substantially impact genome-wide discovery of key genes and molecular mark-
ers (20,22). Studies on a functional and systems level will accelerate conventional or genetic-
based plant breeding and will support the identification of "improved varieties with improved yield
and quality, tolerance to unfavourable environmental conditions and resistance to disease” (20).

1.2 The grasses and the tribe Triticeae

1.2.1 Agricultural and economic importance of the Triticeae

About 10,000 years ago the start of agriculture marked a turning point in history changing humans
lifestyle from nomadic hunterer-gatherer to a sedentary, agrarian lifestyle (27). Beginning with the
cultivation of barley, emmer wheat and einkorn wheat in the Near East, farming and cultivation
of cereals and other food plants expanded across the globe (27,28). The wild progenitors of
the firstly cultivated species and their modern varieties belong to the tribe Triticeae, which groups
about 300 species including, besides turf and forage grasses, the major cereals Triticum aestivum
(bread wheat), Triticum durum (pasta wheat), Secale cereale (rye) and Hordeum vulgare (barley)
and modern xTriticosecale (Triticale) (29). Triticeae are morphologically characterized by open
leaf sheaths, membranous sessile spikelets with simple starch grains and hairy ovaries (30,31)
and are grown in almost all temperate regions around the world (7).

Triticale, barley, rye and wheat provide raw material for myriad industrial applications and
livestock feeding and contribute essentially to human diet as staple food of the major civilizations
of Europe, West Asia and North Africa (32). In 2012 the Triticeae brought in a collective harvest
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of approximately 830 mio tonnes and accounted for more than one third of worldwide agriculture
land usage (7) (Fig. 1.2). Wheat is the most grown Triticeae contributing about one quarter to
worldwide crop production (670 mio tonnes in 2012) and generating a trade volumne of more
than $200 billion. Barley (132 mio tonnes) and rye (14 mio tonnes) constitute approximately six
per cent to global crop production. Despite more than three fold increase in annual yields during
the first Green Revolution (Fig. 1.1d), further productivity improvement of agricultural relevant
Triticeae species is required to satisfy globally increasing demands in a challenging environmental
context (3,16).

1.2.2 Taxonomy and phylogeny of the grasses

The Triticeae is a subgroup of the Poaceae family, one of the largest and ecological dominant
families of flowering plants encompassing agricultural important turfgrasses and crops like, for
example, millet, sorghum, maize or rice (34,37) (Fig. 1.2). The grasses split from a common
ancestor approximately 77 mio years ago (mya) (34) and have been taxonomically grouped into
six major and several smaller subfamilies (34,38). The anomochlooids represent the most early
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Fig. 1.2. Taxonomy of the Poaceae family and contribution of economically important grasses to
worldwide food production.

The dendrogram visualize the general taxonomy of the major economical and scientific important grasses.
Estimated divergence times are given in million years ago (mya). Species studied and used for compar-
ative analysis in this thesis are highlighted in red. The relative contribution of each species to worldwide
food production in 2012 is shown by the dark portion of the circle diagrams (others: 1%). [Taxonomy and
divergence estimates are based on (33-36). Cereal production statistics are taken from (7).]
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diverged subfamily. The remaining subfamilies are organized in two monophyletic clades, which
split approximately 50 mya and group the Panicoideae, Arundinoideae, Chloridoideae and Cen-
tothecoideae into the "PACC-clade” and the Bambusoideae, Ehartoideae and Pooideae into the
"BEP-clade”. Both clades include ecologically important grasses like, for example, millet, maize
and sorghum in the PACC-clade and rice, wheat and barley in the BEP clade. About 46 mya
the Bambusoideae and Ehartoideae diverged from the Pooideae separating rice (Ehartoideae)
from the Pooideae, which include the model grass Brachypodium, the oats, the turfgrasses and
the Triticeae (34). The oats split first from the Triticeae (approximately 25 mya) (34), followed
by Brachypodium (approximately 23 mya) (35) and the Lolium and Festuca lineages (approxi-
mately 22 mya) (36). The Triticeae itself partitioned from a last common ancestor into barley
(approximately 13 mya), rye (approximately 11 mya) and wheat (34).

1.2.3 Constitution of grass genomes and syntenic relationships

Genome sizes and chromosome numbers of the grasses are substantially different between and
within individual subfamilies, tribes and genera (29,39). This highlights the evolutionary instability
and plasticity of plant genomes, which are shaped by frequent changes in the deoxyribonucleic
acid (DNA) sequence and chromosomal constitution (34). For example, within the PACC clade
the two Panicoideae species Sorghum bicolor (40) and Zea mays (41) have 10 chromosomes
and genome sizes of approximately 0.7 Gb and 2.3 Gb, respectively. Pronounced differences are
also present within the BEP clade with 5 chromosomes and approximately 0.4 Gb genome size
for Brachypodium distachyon (42), 7 chromosomes and about 5 Gb genome size for (diploid)
Triticeae species (43,44) or 12 chromosomes and approximately 0.4 Gb genome size for Oryza
sativa (45). Often, these differences originated from intra- and interspecies hybridization events
and whole genome duplications, which give rise to polyploid organisms with multiplied chromo-
some numbers. As further discussed in the following (Section 1.3), genome merging and du-
plication constitute a "genome shock” (46), which triggers rapid genomic changes in the DNA
sequence of particular chromosomes (47-50) and consequently may alter chromosome num-
ber (34). Moreover, grass genomes vary considerable in the proportion of repetitive DNA se-
qguence, which mainly account for the differences in genome sizes (517). Individual lineages and
species have specific rates for amplification and removal of repetitive sequences and distinct sig-
natures to the activity of transposable elements (TEs) (52), a special class of non-genic DNA
elements that can replicate, amplify and move to new sites in the genome by a cut-and-paste
mechanism or via a RNA intermediate (53).

Despite these large differences, numerous comparative studies that incorporate a diverse
spectra of different species revealed high synteny and colinearity in corresponding chromosomal
segments of same ancestral origin among the grasses (54). In 1995 Moore et al. (55) split the
chromosomes of six major grasses (rice, wheat, maize, foxtail millet, sugar cane and sorghum)
into 19 linkage blocks, which show significant conservation of gene order, and aligned these seg-
ments into concentric “crop circles” allowing to compare inter-species relationships. The first ver-
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sion of this evolutionary model was based on low-resolution restriction fragment length polymor-
phism marker maps and was limited in detecting small- and medium-sized structural rearrange-
ments. Accompanied by the improvement of marker maps and DNA sequencing technologies,
the crop circle model was further refined by considering additional species and by increasing the
resolution using high-density genetic markers, established physical maps and reference genome
sequences as well as comprehensive EST collections (34,35,56—58). This allowed inferring the
putative arrangement of syntenic blocks in the ancestral grass genome and elucidating the under-
lying constraints driving speciation and genome evolution. For example, Bolot et al. (35) devel-
oped an evolutionary scenario, in which the grasses share a whole genome duplication followed
by two interchromosomal duplications and fusion events. These events led to an intermediate
grass genome consisting of n = 5 + 5 + 2 = 12 chromosomes before the split of the PACC and
BEP clades. This basic chromosome number is maintained in rice, however, maize and sorghum
experienced two additional fusion events (n = 12 — 2 = 10), while five subsequent fusion events
resulted in an ancestral Triticeae genome of seven chromosomes (n = 12 — 5 = 7). Nowadays,
the crop-circle model represents a powerful concept facilitating to project positional information
from a known grass genome onto a related target genome. This comparative-based approaches
have been successfully applied to support molecular genomics and positional cloning (59) and
improving marker map developments (60) or structural genomics (67-63) (Section 1.5).

1.2.4 Evolution and phylogeny of cultivated wheats

The genus Triticum L. is the economically most important subgroup of the Triticeae accounting for
80% of the tribe’s total agricultural productivity (7) (Fig. 1.2). It includes wild and cultivated vari-
eties of six species and has been substantially shaped by alloploidization via natural hybridization
[Refs. (64—67) and references therein] (Fig. 1.3), an evolutionary phenomenon further discussed
in the following section of this dissertation. Based on different ploidy levels, the genus Triticum has
been organized into three sections. The section Monococcon includes two species with diploid
genome constitutions (2n=2x=14), Triticum monococcum L. (A"A™ genome) and Triticum urartu
L. (AYAY genome). These diverged about one million years ago and, whereas wild and cultivated
forms of T. monococcum are known, only cultivated varieties of T. urartu exist. Species with
tetraploid genomes (2n=4x=21), Triticum trugidum L. (AABB genome) and Triticum timopheevii
Zhuk. (AAGG genome), are grouped into the section Dicoccoideae. For both tetraploids wild and
cultivated forms are known. The remaining species, Triticum aestivum L. (AABBDD genome) and
Triticum zukovsky L. (AAAAGG genome), group in the section Triticum, have hexaploid genome
constitutions (2n=6x=42). For both hexaploid wheat genomes only cultivated forms have been
reported so far.

The complex structure of the genus originated in multiple, independent hybridization events
(64,65,67). About 0.8 mya, incidental hybridization between wild T. urartu and diploid species
belonging to the Aegilops genus, believed to be related to Aegilops speltoides (2n=2x=14; SS
genome), resulted in tetraploid T. turgidum (AABB genome) and T. timopheevii (AAGG genome).
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Subsequently, with the beginning of farming, these tetraploid varieties were cultivated and free-
threshing forms evolved from the hulled genotypes, having soft glumes and being easier to
harvest (65,68). Simultaneously, hexaploid T. aestivum [bread wheat (AABBDD genome)] and
T. zukovsky (AAAAGG genome) emerged from hybridizations between the two domesticated
tetraploid wheat genomes with the wild diploid species Aegilops tauschii (2n=2x=14; DD genome)
and with the cultivated form of T. monococcum, respectively.
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Fig. 1.3. Evolution of di-, tetra- and hexapolyploid wheat genomes of the genus Triticum.

For each species nomenclature within circles provide a schematic representation of the genome consti-
tution. Thin lines indicate linear evolution of ancestral diploid genomes in the A-, B-/G- and D-genome
lineages, while bold lines visualize hybridization events resulting in tetra and hexapolyploids. [Phylogeny
and time estimates are based on (64,65,69,70).]

Moreover, recent comparative analysis utilizing molecular data and genomic sequence re-
sources suggested incongruent, reticulate evolution of the different Triticeae lineages and re-
ported introgressive events like, for example, hybridization, gene flow or horizontal gene trans-
fer (71—73). Based on genome resources established within this thesis, Marcussen et al. (69)
conducted a genome-wide analysis of the evolutionary relationships between the A, B and D
genomes of bread wheat and related diploid genomes. Inconsistent patterns across gene trees
were observed with a higher frequency of B(A,D) and A(B,D) tree topologies suggesting ancient,
inter-lineage hybridization between species of the A and B genome lineages and homoploid hy-
brid speciation of the diploid wheat D genome progenitor approximately 5.5 mya.



1.3. FORMATION AND IMPLICATIONS OF POLYPLOIDY 9

1.3 Formation and implications of polyploidy

1.3.1 Formation and incidence of polyploidy

Polyploid organisms have genomes with an increased number of basic chromosomes (74,75),
an evolutionary phenomenon common to many eukaryotes including plants (76,77), fish (78),
vertebrates (79) and fungi (80). Cells with multiplied genome sets derive from somatic doubling
or the incidental formation and fusion of gametes that contain more than one set of chromosomes
(74). Based on the type and origin of the multiplied chromosome sets, Kihara and Ono (87)
proposed a classification of polyploids into "autopolyploids” and “allopolyploids” (74) (Fig. 1.4a).
The former type, autopolyploids, arise from doubling the chromosomes of a diploid genome by, for
example, fusion of two diploid gametes. On the contrary, the latter type, allopolyploids, result from
the merger of chromosome sets of different genomes, for example, by interspecific hybridization
of two haploid gametes followed by chromosome doubling, of two diploid gametes or of gametes
from distinct autopolyploids. However, with higher similarity of the parents, the distinction between
auto- and allopolyploidy becomes blurred (82).

Most eucaryotic genomes are innate polyploids and experienced one or more whole
genome duplication (WGD) events (76—80). Generally, plants have a relatively high polyploid
tolerance and formation rate (approximately one formation per 100,000 individuals) (74). Evi-
dences of polyploid ancestry have been found for more than 70% of flowering plants (84) and
many species, including Arabidopsis (85), maize (86) or rice (87), have secondarily diploidized
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Fig. 1.4. Evolutionary scenarios of the formation of polyploids and bivalent pairing of chromo-
somes during meiosis.

a, Possible evolutionary alterations resulting in the transition of diploid species to allo- and autotetrapoly-
ploid organisms. Hybridization events are visualized by fusing lines and whole genome duplication (WGD)
events are marked by "2x”. Dashed lines depict the haploid forms of a diploid or tetraploid organism. For
simplicity not all possible path are shown. b, Schematic illustration of bivalent chromosomal pairing during
meiosis exemplified for allohexaploid T. aestivum (bread wheat). Homoeologous chromosomes derived
from different parental genomes are distinguished and, in a diploid-like behaviour, only identical (homolo-
gous) chromosomes pair. For simplicity only two of the seven homoeologous chromosomes are shown for
each genome. [Manually adapted on basis of schematic illustrations in (82,83).]
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genomes and returned to a diploid genome constitution after the polyploidization event. Several
plant lineages encompass di- and polyploid members, formed by inter-specific hybridization be-
tween genomes from the same genera [e.g. Brassica (47), Gossypium (88) and Triticum (67)]
or between genomes from different taxa [e.g. Triticum and Hordeum (89)]. Complex evolution-
ary patterns and multiple subsequent hybridization events have contributed to speciation like, for
example, in the genus Triticum with allohexaploid bread wheat (Fig. 1.3).

Auto- and allopolyploids usually differ in chromosomal pairing during meiosis (82). Mul-
tiplied chromosomes of each type are present in autopolyploids as identical, so called "homol-
ogous”, copies, which usually exhibit multivalent pairing. Contrarily, in allopolyploids the corre-
sponding "homoeologous” chromosomes, which are similar but differ in their parental origin, are
distinguished and pair as bivalents. In principle, this mimics a diploid-like behaviour during meio-
sis preventing inter-genomic recombination. For example, individual chromosomes of the A, B
and D genomes of hexaploid bread wheat pair only with their corresponding homolog (i.e. 1A
and 1A) and never with the homoeologous counterparts (i.e. nor 1A and 1B, nor 1A and 1D,
nor 1B and 1D) (Fig. 1.4b). In wheat, such accurate and efficient bivalent pairing is controlled
by two independent systems (90). The Ph1 (Pairing homoeologous 1) gene constitutes a ge-
netic control instance, which facilitates distinguishing between chromosomes of different origin
while allows for intragenomic pairing (91,92). Ph1 has been suggested to be involved in control-
ling the interactions between centromers and microtubles and to affect sister chromatid cohesion
through alterations in the heterochromatin decondensation. Complementary, a second control
instance distinguish homoeologous chromosomes due to physical differences set by rapid al-
terations in DNA sequence (48,49). These cause genome down-sizing and re-patterning and
generate unique chromosomal signatures enabling the distinction between homoeologous chro-
mosome during meiosis (Section 1.3.3).

1.3.2 Polyploidy affects plant vigour and phenotype

Some of the major agriculturally important plants are ancient or innate polyploids. No wild form
of allohexaploid wheat is known so far and, thus, one of the major crops is assumed to be a
polyploid product of human farming and domestication (93) (Fig. 1.3). The worldwide distribution
and agricultural importance of polyploids mirrors beneficial effects of genome doubling or merger,
which often result in heterosis, i.e. more vigorous characteristics of a polyploid species compared
to its parents (82,94). For example, superior traits and phenotypes could arise by increased
heterozygosity, which normally declines in the generation of diploid F1 hybrids, but is maintained
in allopolyploid progeny. Furthermore, duplications of homoeologous chromosomes lead to a
redundant gene pool, which has protective effects by masking recessive alleles derived from one
parental genome or allows increased diversification by evolving of one homoeologous gene, while
another copy still exerts the innate gene functions.

Morphologically, cell volume increases with ploidy level changing cell structure and the ar-
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rangement of cellular components (95). Such changes in the geometric relationships within cells
may affect the cellular biochemical mechanisms and, for example, trigger changes in enzyme ac-
tivity (96), metabolism rates (97) and cell-surface related processes (98). However, the increase
in cell size may not necessarily result in changes of body size (82,99,7100) and most phenotypic
variations have been suggested to be caused by genetic or epigenetic mechanisms (83), which
trigger up- or down-regulation of genes involved in energy and starch metabolism, growth and
flowering pathways (101,102).

1.3.3 Implications of polyploidy on the bread wheat genome and transcriptome

Genome doubling or merger constitute a "genome shock” (46), which is accompanied by severe
changes in the cellular architecture (95) and irregulations during cell division (104) as well as
causes novel intra- and intergenome interactions and altered regulatory mechanisms (105-108)
(Fig. 1.5). Based on research in the Triticeae and the wheat lineage, Feldman and Levy (90) dis-
tinguished between “revolutionary changes”, which are initialized instantaneously during or imme-
diately after polyploid formation, and “evolutionary changes”, which occur during the polyploid’s
evolution. Extensive chromosomal re-patterning and massive changes in the DNA composition of
the inherited chromosomes include often loss of coding and noncoding DNA sequences (48,49)
or activation of transposable elements (709). Those revolutionary changes constitute improved
fertility and polyploid establishment, ensuring intragenomic (bivalent) pairing and rapid elimina-
tion of detrimental genetic intra-genomic incompatibilities, whilst mid- and long-term evolutionary
changes tend to contribute to beneficial environmental adaption and improved fitness (90). How-
ever, immediately induced genomic changes and the following evolutionary processes may lead

D\versmcat\on DNA/ gene loss

Genet,c Che, Chromosomal
N,
e,
&

Heterozygosity rearragements

9 Activation
Dosage effect of transposable
9 %e@ Eplgenetlc cna® %gg elements

Methylatlon Chromatin remode\lmg

P‘dd iti ve
effects

Fig. 1.5. Possible mechanisms affecting the fate of homoeologous genes in polyploid genomes.
Polyploid formation triggers alterations in the genomic and transcriptional landscape of the inherited
genomes, which has substantial implications on the fate of duplicated genes. Beneficial additive effects
may result from an extra gene dosage and increased or heterozygosity. Genetic changes include chro-
mosomal rearrangements, loss of non-coding and coding DNA sequences or other sequence changes.
Mutations in the coding sequences or in the regulatory elements may cause functional diversification of
homoeologous genes. Epigenetic changes involve chromatin remodelling and alterations of methylation
patterns, which provides flexible control mechanism for the transcriptional activity of homoeologous genes.
[Manually adapted on basis of a schematic illustration in (103).]
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to genome fractionation and structural diploidization, which might be biased towards preferential
retention and losses of genes from either parental origin (770,711).

Several possible mechanisms could effect the fate of homoeologous genes in a polyploid
genome [Refs. (83,90,103,112) and references therein]. On the one hand, homoeologous gene
copies may be retained in the genome as an additional gene dosage might provide advantageous
effects on some gene functions or beneficial intergenomic interactions are established by differ-
ent regulation of homoeologous genes. On the other hand, gene duplications may disturb the
cellular products and pathways with negative implications on the polyploid’s fitness. This requires
adequate mechanisms compensating for detrimental effects and orchestrating polyploid gene
regulation. Genomic changes through the accumulation of mutations, evolution of cis-regulatory
elements or changes in DNA sequence cause the removal, inactivation or pseudogenization of
one gene copy, but may also trigger functional divergence of homoeologs (i.e. sub- and neofunc-
tionalization). In addition, epigenetic mechanisms like, for instance, alterations in the methylation
patterns of homoeologous genes, may contribute to the evolutionary advantages of polyploids as
flexible, potentially reversible markings allowing development of novel traits and faster response
to changed environmental conditions.

Differences in the relative expression levels have been observed for a substantial fraction
of duplicated genes in various polyploids including allotetraploid cotton (1713—116), Arabidop-
sis (101,117,118) or Tragopogon miscellus (119) as well as synthetic and natural wheat al-
lopolyploids (7120—-125). Immediately after genome merger, Kashkush et al. (121) and He et
al. (122) found approximately 5% of genes with altered gene expression in synthetic allotetra-
and allohexaploid wheat genomes. Analysis of genome-specific nucleotide polymorphisms, which
discriminated between homoeologous cDNA sequences, revealed 12% (of 90 analysed genes)
(123) and 27% (of 236 analysed genes) (124) of genes to be homoeologous-specific silenced
in natural wheat polyploids. Consistent with studies in other polyploids (113,126,127), notably,
the higher percentage of silenced genes in established polyploids suggested increasing impact of
polyploid evolution on gene expression of homoeologous genes over time. Moreover, homoeolo-
gous genes have been found to be regulated differently in different wheat organs. By investigating
the gene expression of 79 genes in ten tissues of hexaploid wheat, Mochida et al. ( 123) observed
for no gene predominant expression from a specific genome in all tissues. Only 15 genes from
each genome (19%) were uniformly expressed across tissues, while the remaining homoeologs
exhibited preferentially expression of one genome in at least one tissue. Similar observations
have been made by Bottley et al. (124) in wheat or by Adams et al. (126) in cotton. So far, how-
ever, current knowledge is restricted to a limited number of genes and the underlying regulatory
mechanisms have not been fully resolved yet. Preferential expression of homoeologous genes in
certain tissues might be already established in the parental genomes and the responsible regu-
latory networks inherited by and maintained in the polyploid hybrid. Alternatively, tissue-specific
expression may also suggest functional divergence and indicate sub- and neofunctionalization of
homoeologs (128—130), caused by alterations in the genetic regulatory elements (e.g. mutations
in transcription binding sites) (737) and by epigenetic modifications (132).
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1.3.4 Genome asymmetry and homoeolog expression bias

Genome asymmetry and homoeolog expression bias, i.e. favourable expression of homoeologous
genes, is common to many polyploids. A genome-wide bias towards one compound of the poly-
ploid genome has been shown for allotetraploid cotton (113,174,133), paleoploid maize (111),
mesoploid Brassica (134) and synthetic Arabidopsis polyploids (101,118,127). On the contrary,
no overall transcriptional dominance for one genome has been evident from small-scale studies in
allohexaploid bread wheat (723,724). However, genome asymmetry has also been observed in
the control of distinct agricultural and industrial important traits. Thereby, the individual genomes
contribute differentially to individual morphological, physiological and molecular characteristics:
The A genome has been associated with morphological characteristics including plant and spike
growth and determining non-brittle rachis (68). As investigated and summarized by Feldman et
al. (135), tolerance to environmental challenging conditions and responses to abotic and biotic
stresses are more contributed by the B and D genomes, which exclusively contain genes re-
sponsible for boron tolerance, iron deficiency or low cadmium uptake (B genome) or aluminium
and salinity (D genome). Wheat baking quality and controlling the production of starch and stor-
age proteins during grain filling, which have been associated with B and D genome encoded
genes (136).

1.4 Genome and transcriptome sequencing technologies

1.4.1 The "evolution” of sequencing technologies

The field of genome and transcriptome analysis has dramatically changed during the last two
decades. Since the release of the first plant genome sequence for Arabidopsis thaliana in
2000 (137), which was generated by using automated Sanger sequencing (138—140), novel
high-throughput genome and transcriptome sequencing techniques have evolved to meet the
increasing demand in sequence information (741,142). These "next generation sequencing”
(NGS) methods allow cost-efficient generation of comprehensive genome and transcriptome se-
quences resources for myriad applications in fundamental, industrial or medical research. On-
going improvements and the advantageous combination of first and second generation sequenc-
ing methods have accelerated the release of draft or complete reference genome sequences for
many species (Fig. 1.6). These have built the basis for accelerated crop improvement (143) by
identification of genes and their function allowing to make further associations between geno-
types (24,144) and phenotypic variations (23).

First generation sequencing: classical DNA sequencing technologies
The history of DNA sequencing methods is distinguished into three epochs. Beginning in the
1970s, DNA sequencing technologies of the first generation were developed utilizing polyacry-
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lamide gel electrophoresis to separate fragments of different sizes generated from a target DNA
template (138,139,145). Therefore, each fragment is terminally primed with a radioactive or flu-
orescence markers that specify each nucleotide type. Spatial ordering by fragment size allows
to read the encoded DNA sequence from the emitted signal. Simultaneously, two methods were
developed, mainly differing in the methods for cutting the DNA template and for labelling those.
Maxam and Gilbert (145) applies a series of chemical reactions to cleave a terminally radiola-
beled DNA fragment at distinct base positions and infers the sequence along the electrophoretic
banding patterns. On the contrary, the method developed by Sanger and Coulson (138,139)
applies DNA synthesis with polymerase reactions to generate primed fragments from a DNA
template. Each nucleotide type is replaced by fluorescently labelled, chain-terminating analogs
in one reaction. These impede chain elongation and cause disruption of the DNA polymerase
reaction, thus, generating DNA fragments of any size marked by the corresponding termination
nucleotide. The DNA fragments are spatially separated by gel-electrophoresis and the DNA se-
quence inferred from the combination of the four parallel dideoxy reactions.

Due to less laborious sample preparations, reduced chemical requirements and increased
sequence read length, the Sanger method has became the favourably used sequencing strat-
egy. Further technological improvements like, for example, capillary gel electrophoresis (146)
or sequencing of complementary DNA (cDNA) sequences to obtain expressed sequence tags
(ESTs) (147), automation of Sanger sequencing (7140,148) as well as advances in computa-
tional data management and bioinformatic analysis (749) have contributed to the exponential
growth of nucleotide sequence data bases (750). This data increase mirrors also the valuably of
genome and transcriptome sequence data for myriad applications.

Second generation sequencing: state of the art technologies

Sanger-based DNA sequences are of high-quality and have approximately 1,000 base pairs (bp)
length and less than 0.001% error rate (151). However, relatively elaborative sample prepa-
ration and high costs (approximately $500 per megabase) are confronted with an increasing
demand for comprehensive genomic and transcriptome data sets. This has driven the devel-
opment of alternative sequencing methods, known as second or next generation sequencing
technologies (142,151-153). Various technologies that differ in template preparation, sequenc-
ing biochemistry and imaging procedures have been implemented including micro-electrophoretic
methods, sequencing by hybridization, real-time sequencing and cyclic-array sequencing. In this
thesis the utilized genome and transcriptome sequence resources were generated with two ma-
jor commercial NGS implementations, Roche 454 pyrosequencing ( 154) (Roche Applied Science,
Basel, Switzerland) and Solexa/lllumina sequencing technology (755) (lllumina Inc., San Diego,
California, USA). The two methods differ substantially in the applied chemicals and underlying
biochemical processes, however, they share with "cyclic-array sequencing” the basic technologi-
cal principle (142,153). Prior to sequencing the DNA sample is randomly fragmented into smaller
pieces, which are ligated to DNA primers attached to a support or solid surfaces and amplified.
This allows parallelisation of the sequencing reactions for billions of identical DNA fragments in a
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series of sequencing cycles to read the DNA sequences from the superimposition of the observed
imaging signals.

Emulsion polymerase chain reactions / pyrosequencing — 454 pyrosequencing technology,
implemented in the Roche 454 Genome Sequencers (Roche Applied Science, Basel, Switzer-
land), uses emulsion polymerase chain reactions (emPCR) to amplify DNA fragments (142,154).
DNA fragments are bound to primer-coated beads forming complexes, which are enclosed in
droplets and spatially separated in an oil-aqueous emulsion. Within each compound individual
polymerase chain reactions (PCR) reactions are performed to amplify the DNA fragments. There-
after, the emPCR beads are dissociated and partitioned into millions of wells that are located on
a PicoTiterPlate. Supplementary chemistries, including a DNA primer, sulphurylase, luciferase
and apyrase, are added to the sequencing reaction. In a series of cycles dideoxynucleotides
are disposed across the wells facilitating chain elongation by the DNA polymerase and triggering
a chemical reaction resulting in light emission by the luciferase. The intensity of the generated
light signal is measured by a high-resolution charge-coupled device camera allowing to read the
complementary nucleotide encoded by the DNA template.

Solid-phase ampilification / cyclic reversible termination — In Solexa/lllumina sequencing,
implemented in the lllumina Genome Analyzers (lllumina Inc., San Diego, California, USA), solid-
phase amplification and cyclic reversible termination are applied to read the sequence of a DNA
template (142,155). During template preparation the DNA fragments are bound to 5’-primers
on a glass slide. Denaturation breaks the double stranded templates and the single stranded
DNA strands bind to adjacent 3’-primers to form bridges between primer pairs. These newly
formed amplicons are extended by polymerases forming double-stranded bridges. Subsequent
denaturation result in two covalently bound single stranded DNA copies. The cyclical repetition
of this process generates millions of template copies, which are spatially separated in template
clusters on the solid surface of the flow cell. Then, the sequencing reaction is initiated by hy-
bridization of the free ends of the DNA templates with sequencing primers. Fluorescently labelled
dideoxynucleotides are added and, complementary to the free position of along the DNA tem-
plate, a single nucleotide is captured and attached by the DNA polymerase. The chain elongation
process terminates and, after removal of the remaining nucleotides, the identity of the bound nu-
cleotide is determined by the emitted fluorescence signal. The chemical constraint blocking DNA
polymerase activity are released and the sequencing cycle is repeated.

The two sequencing technologies vary considerably in instrument costs (approximately
$500,000 for 454 pyrosequencing and $540,000 for Solexa/lllumina), per megabase sequenc-
ing costs (approximately $60 and $2), run time (10 to 23 h and 5 to 65 h), throughput per run
(700 Mb and up to 1.8 Tb) and sequencing read length [up to 1,000 bp (mode 700 bp) and max-
imum 2 x 300 bp] (142,156,157). Each technology has its individual advantages and limitations
that significantly influence the downstream analysis. For example, longer reads generated with
454 pyrosequencing technology may improve mapping of repetitive genome regions or facilitate
to distinguish between highly similar homoeologous sequence copies obtained for a polyploid
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genome. Contrarily, Solexa/lllumina sequencing allows cost-efficient high-depth genome and
transcriptome profiling to quantify messenger RNA abundances as well as to detect sequence
variations between individuals of a population, cultivars or species.

Third generation sequencing: the future of DNA sequencing

This thesis as well as most current genome and transcriptome sequencing projects rely on data
resources obtained with NGS technologies. However, third generation sequencing (TGS) plat-
forms became available recently. These aim at an increase in read length, the removal of am-
plification artefacts, a simplified sample preparation and a decrease in run time (153,158). TGS
mainly implement strategies for identification of nucleotides from unmodified DNA strands via
physical recognition with nano pores (759), single molecule real time sequencing (760) or di-
rect imaging of DNA with electron microscopy (161). Especially improved read length of several
thousand kilobases, will be valuable for future genome analysis and will improve the assembly of
complex, repeat-rich and polyploid genomes (162).

1.4.2 Bioinformatics — a key discipline for genome and transcriptome analysis

The automation of DNA sequencing and emergence of high-throughput NGS technologies re-
quired computation approaches for efficient organization and interpretation of an overwhelming
amount of data (742). Thus, bioinformatics developed rapidly into an important, interdisciplinary
scientific area with key responsibilities in sequence-driven biological research. The following para-
graphs briefly exemplify some fundamental bioinformatic challenges concerned with this thesis.
These include the assembly of individual sequencing reads by using de novo or reference-guided
approaches and the investigation of transcriptome responses based on high-depth cDNA se-
quencing (RNA-seq).

Basic principles of de novo sequence assembly algorithms

As the DNA templates are usually (much) longer than obtained sequencing reads, contiguous
sequences have to be reconstructed by using reference-guided methods or de novo assem-
bly strategies. Whereas algorithms of the former type require prior genome information and
are based on alignments of reads against a known reference genome sequence, de novo ap-
proaches reconstruct the original sequence on basis of mutually completing sequence informa-
tion among reads (763). This is a computationally complex and and resource-intensive task,
especially, for NGS data sets with shorter and manifold higher sequencing depth compared to
Sanger-based resources. Additionally, missing parts in the generated sequence data or sequenc-
ing errors complicate the computation of overlaps between reads. However, various approaches
and software tools have been developed to assemble reads into contiguous sequences ("con-
tigs”) (154,164,165). Due to underlying algorithmic principles, these could usually be categorized
into "overlap - layout - consensus” (OLC) assemblers and de Bruijn graph assemblers (166,167 ).
OLC assemblers construct an overlap graph connecting reads with shared sequences identified
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by all-vs-all pairwise sequence alignments. This graph is layouted and a consensus sequence
inferred by merging connected reads. On the contrary, de Bruijn graph assemblers split the reads
into k-mers and connect those with (k-1) identical sequences. This translates into a directed graph
structure facilitating to compute the minimal "Hamilton cycle” of the graph, which is the path going
exactly once to each node and ending at the starting node. Accordingly to this ordering, k-mers
are concatenated to reconstruct the original sequence.

Different assembly methods are differently suited for individual sequencing technologies
and read types (167). OLC algorithms favour longer reads to reliable detect overlaps and,
thus, are the methods-of-choice for the assembly of reads generated with Sanger sequencing
or 454 pyrosequencing. As the computational complexity in determining pairwise alignments
among reads increases with genome size and with sequencing depth, de Bruijn graph assem-
blers become more attractive for Solexa/lllumina sequences that usually are produced in high
depth to compensate for shorter read length. Thereby, large-scale evaluation studies have shown
enormous variations in performance and correctness between current assembly software pack-
ages (168—170). Besides a strong impact of data quality and library design, in particular, the
specific characteristics and sequence composition of the analysed genome (Section 1.5) itself
significantly influence assembly quality. Therefore, the reconstruction of most plant genomes
from sequences is a general challenge for de novo strategies due to large genome sizes and high
amounts of repetitive sequences (171,172).

Next generation short read alignment

With increasing availability of (draft) reference genome sequences (Fig. 1.6), cost, time and ef-
fort considerations make the analysis of NGS data via the alignment of obtained reads against a
sequence of the target genome or a closely related species interesting for various biological appli-
cations (142,173). This approach provides nucleotide-level resolution information usable, for ex-
ample, in reference-guided assemblies of closely related genomes, in re-sequencing projects in-
vestigating genetic variations in populations or between species, in structural annotation of genes
and transcripts, or in expression studies. Similar to de novo assembly approaches, technical
factors (e.g. billions of short reads, sequencing errors and gapped or spliced alignments) and
biological aspects (e.g. large genome sizes, genetic variation, repetitive non-coding sequences,
duplicated sequences) make alignment approaches computationally difficult. To overcome these
challenges, special algorithms and software packages, so called "short-read aligners”, have been
designed (174—-177). Different in implementation and application, however, all these programs
apply indexing-strategies, which increase time- and memory efficiency and allow fast identification
of shorter sequences in a large DNA sequence.

For example, this thesis utilizes Bowtie (7174), one of the most frequently applied short-
read aligners for the mapping of RNA-seq reads. Prior to the search phase, Bowtie creates a
memory-efficient representation of the reference genome sequence by computing an index with
the Burrows-Wheeler Transformation (BWT) (7178). Then, query sequences are mapped in a
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character-by-character search aiming at narrow the set of potential alignment positions in the
BWT index. To account for mismatches caused by sequencing errors or genetic variations be-
tween reference and query, Bowtie implements a backtracking algorithm identifying and substitut-
ing the minimum number of positions that do no exact match in the BWT index. Despite on-going
improvement of NGS data quality and associated high-performance software packages, balanc-
ing accurate alignment of reads and computational efficiency remains challenging, demands for
further technological improvements and requires a cautious interpretation of the obtained re-
sults (179).

Assembly of gene and transcript structures and quantitative expression analysis

NGS technologies not only revolutionized genomic studies. Furthermore, monitoring messenger
RNA (mRNA) abundances by high-depth cDNA sequencing (RNA-seq) facilitates sensitive and
accurate analysis of transcriptional landscapes (780—182). In addition to quantitative and qual-
itative expression analysis, RNA-seq is also particularly valuable for the identification of genes
and the structural annotation of transcripts. The nucleotide-level resolution enables to detect and
investigate alternative expression for distinct splicing variants, which has been recently shown to
contribute important cellular functions in both, mammals ( 783) and plants (184).

Besides general difficulties in handling NGS short reads, computational analysis of RNA-
seq reads is faced with substantial variances in sequencing depth caused by differences in ex-
pression levels and difficulties in the unambiguous assignment of reads to individual exons and
distinct splicing variants (785). In absence of a suitable reference genome sequence, RNA-
seq reads can be assembled de novo into partial or full-length transcript sequences following
similar approaches as described above. However, reference-guided approaches utilizing align-
ment of RNA-seq reads against a known reference genome sequence are favourably applied for
reconstructing gene and transcript structures as well as quantifying expression levels. These ap-
proaches demand for less sequencing depth and computational requirements, are more sensitive
and accurate especially for annotation of low abundant transcriptions as well as allow the detailed
structural definition with exon/intron boundaries of transcripts (185).

With TopHat (7186) and Cufflinks (181), Trapnell et al. implemented two open-source soft-
ware packages that nowadays belong to the major computational workflows for the alignment of
short RNA-seq reads against a reference genome sequences (TopHat) and subsequent transcript
reconstruction and expression quantification (Cufflinks). As short RNA-seq reads are generated
on basis of processed mRNA (i.e. introns have already been removed by the spliceosome), the
alignment requires specialized algorithms that consider also reads spanning exon-exon junc-
tions (173). While some tools apply machine learning approaches to identify reads bridging
introns, but rely and are trained on known structural gene annotations (787), TopHat applies an
incremental alignment strategy. First, reads are detected that fall entirely into single exons and,
secondly, potential splice sites between introns are determined and multi exon-spanning reads
mapped. Based on these alignments Cufflinks implements a graph-based representation that
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connects mutually compatible reads, which overlap at same exon-exon boundaries and belong to
same transcripts. This strategy enables distinguishing between incompatible reads, which align to
different exons and consequently origin from different transcripts. Accordingly to Dilworth’s Theo-
rem (188) the minimum number of paths through this overlap graph including each node at least
once explains all incompatibilities among fragments, an assumption, which allows Cufflinks recon-
structing a minimum set of transcript structures for each gene loci in polynomial runtime (7181).
Moreover, Cufflinks implements a statistical model to estimate the transcript abundances as a
function that best explains the observed transcript coverages by compatible RNA-seq fragments.

1.5 Plant genome sequencing and analysis

1.5.1 Progress in plant genome sequencing

The field of plant biology and genome research was revolutionized with the completion of the
A. thaliana genome sequence in 2000 (137). The authors applied classical DNA sequencing
utilizing hybridization and PCR-based approaches to sequence individual bacterial artificial chro-
mosome (BAC) clones. Considering the arrangement along the minimal tiling path, overlapping
BAC sequences were merged and contiguous DNA sequences reconstructed for each chromo-
some arm. Such BAC-based physical mapping strategies using Sanger sequencing technology
are time- and cost-expensive, however, a high-quality genome sequence of the first genome of
an agroecological cereal, Oryza sativa (rice), was released in 2005 (45). Thereafter, alternative
sequencing methods were developed and "whole genome shotgun” (WGS) strategies applied to
generate large collections of random DNA fragments resampling the entire genome. These li-
braries are produced with a high genome coverage. The redundancy in the obtained genomic
data set allows assembling overlapping sequencing reads into contigs. However, the subsequent
ordering of the obtained contigs remains challenging and requires, for examples, high-quality
genetic maps or comparative approaches utilizing synteny between genomes.

Accompanied by on-going improvement in DNA sequencing technologies, WGS ap-
proaches considerably accelerated plant genome research. The first WGS-based genome se-
guences were generated for, e.g., black cottonwood (789) and grapevine (190) (Fig. 1.6). Fur-
thermore, hybrid approaches, which combined classical Sanger sequencing and high-throughput
NGS methods as well as BAC-by-BAC and WGS strategies, were also successfully applied to
generate draft genome assemblies including, for example, the barley genome (191), the potato
genome (192) and the tomato genome (793). During the time of this thesis, high-depth NGS
whole-genome sequencing utilizing different technologies and library constructions allowed gen-
erating draft genome assemblies for the diploid Triticeae Ae. tauschii (43) and T. urartu (44).
Today, more than 50 draft genome sequences have been published (794) encompassing a wide
range of different species including model plants [e.g. Brachypodium distachyon (42)], non-model
plants [e.g. Phyllostachys heterocycla (195) or Capsella rubella (196)], and agroecological im-
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Fig. 1.6. The progress in plant genome sequencing.

Since the release of the A. thaliana genome more and more draft or complete plant genome sequences
have became available. The progress in plant genome sequencing has been considerably accelerated
with second generation sequencing technologies. Future genome sequences will additionally make use
of third generation sequencing methods and will profit from significantly larger read length. Green labels
mark Triticeae genomes. Dot size corresponds to genome size and red dots depict genome resources
utilized in this thesis. Rectangular borders highlight my personal contributions to the genome sequencing
projects. [This overview is a summary of selected genomes based on listings in (22,194).]

portant crop genomes [e.g. Oryza sativa (45), Zea mays (41), Gossypium raimondii (88) or
Solanum tuberosum (192)].

1.5.2 Challenges and approaches for the analysis of Triticeae genomes

Despite successful application of different first- and second generation sequencing technologies,
the high genome complexity still constitutes major bottlenecks for grass genome research. On
contrary to many other plant genomes that have been sequenced so far, grass genomes are con-
siderable larger, usually up to several gigabases (Gb) for diploid Triticeae genomes like barley
(approximately 5 Gb) and rye (approximately 8 Gb) (49,51,197) (Fig. 1.6). Moreover, different
degrees of polyploidy inflate grass genome sizes to approximately 10 Gb for allotetraploid T.
turgidum (pasta wheat) or 17 Gb for allohexaploid T. aestivum (bread wheat). In particular, the
assembly of ancient or innate polyploid genomes is essentially aggravated by high sequence simi-
larity between duplicated regions that are retained in the (partially) diploidized genome or between
homoeologous chromosomes. For example, coding regions of the A, B and D genomes of bread
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wheat differ in less than 3% of nucleotide positions (723), which complicates determining the
genome-of-origin for the obtained short NGS reads. Therefore, homoeologous sequence reads
obtained with WGS approaches might be collapsed during sequence assembly (798). Moreover,
grass and Triticeae genomes are dominated by repetitive sequences (57). Up to 80% of Trit-
iceae genomes are related to transposable elements (TEs) (199), a significant higher proportion
compared to other genomes like Arabidopsis with less than 10% TE genome sequences (137).
Limitations in sequencing large DNA fragments spanning repetitive sequences impede the com-
plete reconstruction of a contiguous genome sequences (171,172). Therefore, current genome
sequences are often restricted to gene containing and low-copy regions, although increased se-
quencing depth and usage of long-distance mate pair sequencing libraries improve the length of
assembled contigs and scaffold (41,7191,192).

Large public sequence repositories were established aiming at supporting Triticeae genome
(200,201) and transcriptome (202) analysis through EST (203) and full length (fl)-cDNA (204)
collections. Furthermore, isolation of single chromosomes with flow cytometry sorting technology
reduces the complexity of an whole genome approaches to individual chromosome arms, allowing
to construct chromosome-specific BAC or NGS libraries (205—208). This approach proves partic-
ularly valuable to separate the A, B and D genomes of bread wheat prior to sequencing (209,210)
and facilitates to assemble each chromosome separately without risking to collapse homoeolo-
gous copies (198).

Furthermore, the emergence of high-quality genomes of the closely related species Brachy-
podium distachyon (42), Oryza sativa (45) and Sorghum bicolor (40), allowed implementation of
bioinformatic approaches investigating and comparing the structure of Triticeae genomes. One
approach, termed the "GenomeZipper”, exploits large-scale syntenic conservation of gene order
among grass genomes (Section 1.2.3) and combines the known gene orders in Brachypodium,
rice and sorghum with genetic maps in order to approximate a linear positioning along chromo-
somes. This approach has been successfully applied for the barley genome (61,62), single wheat
chromosomes (63), rye (72) and perennial ryegrass (36) and provided accurate structural infor-
mation beneficial, for example, construction of physical maps (271), accelerated development of
genetic marker maps (60) or identification of quantitative trait loci (212).

1.6 Research questions and objectives of this thesis

This dissertation focussed on a comprehensive computational-based analysis of Triticeae
genomes. In particular, the implementation and application of bioinformatic approaches to in-
vestigate the genome and transcriptome of allohexaploid T. aestivurn (bread wheat), one of the
agroecologically most important cereals, will be discussed in the following chapters. The cen-
tral question for all conducted experiments was the impact of polyploidization on the genome
structure, content and evolution and on the inter- and intra-genomic regulatory interactions or-
chestrating gene expression among the homoeologous genomes. So far, those genome-wide
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studies have been limited by the size and complexity of the bread wheat genome. However, due
to its economic and industrial importance, the upcoming demographic and environmental chal-
lenges and concerns of global food security, significant international efforts have been undertaken
to establish comprehensive genome and transcriptome sequence resources for wheat research.
Classical and NGS-based DNA sequencing technologies as well as BAC-by-BAC, chromosome-
sorting and WGS strategies have been applied and require bioinformatic approaches integrating
these heterogenous data resources to bridge structural, evolutionary and functional aspects and,
consequently, to contribute to a genome-wide understanding of Triticeae genomes.

Technical aspects of this thesis

Investigation of the biological mechanisms underlying evolution, regulation and traits of bread
wheat requires comprehensive genome resources. Therefore, the central technical aspect of
this thesis aimed at the development and application of computational workflows to establish
sequence catalogues suitable for the genome-wide analysis of polyploid genomes. Novel bioin-
formatic strategies and integrative concepts were necessary to combine first- and second gener-
ation sequencing data with available genome information from closely related reference species.
Technical challenges, including fragmentation of genes on multiple contigs during the assembly
process, and biological challenges, including highly similar homoeologous sequences, large pro-
portion of deteriorated (pseudo-)genes, asked for adequate analytical strategies. Approaches
utilizing comparative-genomics or flow cytometry-sorting to separate chromosome arms consti-
tuted major promising starting points to unlock the wheat gene catalogue with homoeolog-specific
resolution.

Biological research questions of this thesis

Based on these resources, this work aimed at contributing to an understanding of the genome ar-
chitecture and regulatory mechanisms for bread wheat. Various studies have shown considerable
effects of polyploidization on the genome sequence of ancestral, innate and synthetic polyploids,
however, the genome-wide extent of genomic alterations has remained an open question. Quan-
tification of gene loss, retention or duplication rate and subsequent comparative analysis between
the hexaploid wheat gene repertoire with that of related diploid genome will give detailed insights
in the evolutionary fate of homoeologous genes during polyploid progeny.

Furthermore, genome asymmetry and homoeolog-specific gene expression patterns have
been observed for selected genes or gene families, but at the whole genome level the extent and
patterns of gene expression divergence between genomes in different tissues has been largely
unknown. Global analysis were required to answer, whether polyploidy impacts transcriptional
regulation in a sporadic mode, is orchestrated among genomes or affects systematically certain
pathways or cellular functions. High-throughput RNA-seq of the bread wheat transcriptome during
grain development will add functional insights in order to exploit differences among homoeologous
gene expression patterns.
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1.7 Overview of this thesis

As outlined in the following, this thesis is divided into three, mostly self-contained chapters
(Chapters 3 to 5). These constitute autonomous studies with particular experimental designs
and focus on distinct research questions. Chronologically ordered, the chapters aim at providing
fundamental insights in the genomic landscape of the bread wheat genome and transcriptome,
present different but complementary approaches and cross-referencing each other. Thereby, es-
pecially chapter 5 relies on genomic resources generated within the predecessing chapter.

To begin with, Chapter 2, will introduce the genomic and transcriptomic data sets used
in this thesis. The different resources are briefly described and their main usage linked to the
individual chapters and underlying research questions.

Chapter 3 will then present the implementation, evaluation and application of a novel gene-
centric assembly strategy for the analysis of complex and polyploid genomes based on a compar-
ative genomics and whole genome shotgun sequencing. Applied on the bread wheat genome,
this approach allowed assembling a large proportion of the protein-coding genome space with-
out collapsing homoeologous sequences. Quantification of gene retention, gain and losses in
hexaploid bread wheat combined with estimates for diploid Ae. tauschii, the diploid progenitor
of the wheat D genome, and orthologous gene family sizes in fully sequenced and annotated
reference plant genomes, will reveal genome dynamics of polyploid evolution. Furthermore, for a
substantial number of genes this chapter will show that the OGA provides a suitable framework
and will discuss signatures of pseudogene formation in the grasses.

So far, high sequence similarity between homoeologous sequence copies and large
stretches of repetitive DNA have precluded the generation of a bread wheat reference genome
sequence assembly. To overcome this challenge the International Wheat Genome Sequencing
Consortium (IWGSC) applied a "divide and conquer” approach and isolated DNA of individual
chromosome arms by using chromosome sorting technology, which then were separately shot-
gun sequenced and de novo assembled. Chapter 4 will present the implementation of an ex-
trinsic gene prediction pipeline for the annotation of the "chromosomal survey sequence” (CSS)
assembly. A comprehensive gene set providing sequences and structures for more than 90%
of the bread wheat genome was generated allowing to elucidate the structural characteristics of
the identified wheat genes and to investigate the presence of thousands of putative non-coding
but transcriptional active genomic regions. Targeted gene family analysis will deepen the under-
standing of the composition of wheat gene families on a chromosome (arm) level. This chapter
will also make use of RNA-seq data to analyse and discuss the alternative splicing landscape in
bread wheat.

Chapter 5 will show how to make use of the established wheat reference genome assem-
bly and gene annotation for gene expression analysis. By applying high-throughput transcriptome
sequencing the spatio-temporal interplay of gene expression regulation in the major cell types of
developing wheat endosperm was investigated for three important time points. This chapter will
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reveal and discuss divergence in gene expression of homoeologous genes, genome asymmetry
and biased contribution of individual wheat genomes to particular cellular functions. By using
a comparative projection of the wheat genes along the ancestral gene order of seven Triticeae
prototype chromosomes, moreover, the impact of chromosomal position on gene expression and
formation of chromosomal domains was elucidated. On several layers potential genetic and epi-
genetic regulatory mechanisms that partially orchestrate inter- and intragenomic gene expression
in allohexaploid wheat will be addressed.

Finally, Chapter 6 will summarize the scientific achievements and discuss possible exten-
sions of this work as well as potential future projects.



Chapter 2

Materials — the utilized genome and
transcriptome resources

This thesis encompassed efforts of three international collaborations aiming at a comprehen-
sive characterization of the genome and transcriptome of bread wheat, the economically most
important Triticeae genome (Fig. 2.1). Two projects, one conducted together with a research
team lead by Prof. Dr. Neil Hall [University of Liverpool, Liverpool, United Kingdom (UK)] and
Prof. Dr. Michael Bevan (John Innes Centre, Norwich, UK) (Chapter 3) as well as a second in
frame of the International Wheat Genome Sequencing Consortium (Chapter 4), focussed on the
generation of genomic resources for bread wheat and the subsequent application to investigate
genome dynamics following polyploidization. The third project, initiated by researchers from the
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Fig. 2.1. Datasets analysed in this thesis with respect to projects and biological questions.
This thesis combines genome and transcriptome resources generated within three different projects and
consortia utilizing different next generation sequencing technologies.
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Norwegian University of Life Sciences led by Prof. Dr. Odd-Arne Olsen, made use of the estab-
lished resources to study the transcriptional landscape of allohexaploid wheat and conducted cell
type-specific profiling of gene expression for developing wheat endosperm (Chapter 5). Each
consortia developed and applied different experimental and analytical concepts for the comple-
mentary study of particular genomic and transcriptomic questions. As briefly summarized in the
following of this chapter, all projects utilized different next generation sequencing technologies to
generate highly heterogeneous data sets, which required different bioinformatic processing and
analysis.

2.1 Whole genome shotgun sequencing of the bread wheat genome
(UK collaboration)

Within the UK research collaboration a whole genome shotgun data set of bread wheat cultivar
"Chinese Spring” (213), the best studied wheat cultivar (198,214), was generated at the John
Innes Centre (Norwich, UK) by using 454 pyrosequencing technology (154,157) [GS FLX Ti-
tanium and GS FLX1 platforms (Roche Applied Science, Basel, Switzerland)]. The achieved
collection of shotgun sequencing reads encompassed a total of 85 Gb of sequence data and 220
mio reads corresponding to approximately five-fold genome coverage (Table 2.1).

Furthermore, the project collaborators at the Centre for Genome Research of the University
of Liverpool (UK) filtered the obtained genomic shotgun reads for repetitive sequences and com-
puted a de novo genome assembly by using the gsAssembler-tool from the Newbler package, an
overlap-graph assembly toolbox developed specially for Roche 454 sequencing projects (154).
Due to low assembly stringency, i.e. 90% minimum alignment identity for overlapping reads, large
proportion of homoeologous (protein-coding) sequence copies were expected to be collapsed
(Section 3.1.3). Thus, this assembly was termed "low-copy-number genome” (LCG) assembly.
All sequence resources have been made publicly available with study accession PRJEB217 in
the European Nucleotide Archive (ENA) hosted by the European Bioinformatics Institut of the
European Molecular Biology Laboratory (EMBL-EBI).

Table 2.1. Sequence statistics of the bread wheat whole genome shotgun data set generated within
the UK collaboration.

Raw 454 sequencing reads LCG assembly
Number of sequences (mio) 220 5
Total sequence (bp) 82,801,349,875 3,800,325,216
Minimum sequence length (bp) 18 100
Maximum sequence length (bp) 2,032 21,721
Average sequence length (bp) 389 714

Additionally, this work made use of a WGS resource obtained for Ae. tauschii, the diploid
progenitor of the wheat D genome, in a study of Luo et al. (215) (Section 1.2.4). The authors
also utilized Roche 454 pyrosequencing technology (154,157 ) to generate genomic sequencing
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reads, which encompassed a total of 12.8 Gb sequence and represented approximately three-
fold genome coverage. This data set has been made publicly available in the Sequence Read
Archive (SRA) under the study accession SRP012566 and was retrieved from there.

2.2 Resources for the gene annotation of chromosomal sequence
assemblies of the bread wheat genome (IWGSC consortium)

Aneuploid bread wheat lines derived from double ditelosomic stocks of the hexaploid wheat culti-
var "Chinese Spring” (213) were used to isolate and purify DNA of individual chromosome arms
by flow-cytometric sorting at the Centre of Plant Structural and Functional Genomics (Olomouc,
Czech republic) (205-208). Except for 3B, which could be isolated as a complete chromosome,
individual chromosome arms were sequenced to a depth between 30-fold and 241-fold with |-
lumina sequencing instruments (155,156) [HiSeq 2000 or Genome Analyser lIx (lllumina Inc.,
San Diego, California, USA)] to generate 100 or 150 base paired-end reads (Table 2.2). The ob-
tained reads were de novo assembled for each individual chromosome arm with the short-read de
novo assembler ABySS (164). The generated chromosomal sequence survey assemblies were
checked for contaminations and, if necessary, cleaned and re-assembled. Repetitive sequences
mainly assembled into small contigs with less than 200 bp length and were excluded from the
final assembly of 10.2 Gb (10.5 mio contigs). Sequencing and assembly has been carried out
by collaborators at The Genome Analysis Centre (Norwich, UK) and resources have been made
publicly available in the ENA (study accession PRJEB3955).

Repetitive sequences were masked for individual chromosomes based on sequence ho-
mology searches against the MIPS-REdat Poaceae library("), which includes repetitive sequences
from public available plant repeat databases and from de novo detection of long terminal repea-
retrotransposons in grass genomes. Matching sequences against the repeat catalogue were
masked by "N”s and contigs with stretches of less than 100 bp unmasked sequences removed.
This strategy resulted in a final repeat-masked version of the CSS assembly including 1.7 mio
contigs and with a L50 of 5,858 bp.

For gene annotation on basis of the CSS assembly a multi-organ RNA-seq collection was
prepared including five tissues (root, leaf, grain, stem and spike) of bread wheat cultivar "Chinese
Spring” each sampled at three developmental stages. RNA from the same organ was pooled and
each library was sequenced to 101 base single-end reads on the lllumina HiSeq 2000 sequencing
machines (155,156) (lllumina Inc., San Diego, California, USA) (Table 2.3). This data set was
generated by INRA (URGI — Research Unit in Genomics-Info, Versailles, France) and sequencing
reads have been made publicly available in the ENA (study accession PRJEB4750).

The MIPS-REdat Poaceae repeat library was downloaded from http://mips.helmholtz-muenchen.de/plant/recat
(version 8.6.2).
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Table 2.2. Sequence and assembly statistics of the chromosomal survey sequence assembly gen-
erated by the IWGSC.

@ e 1) Ccss© Rep.-masked CSS©
Chr.arm  Mb™  xdfold #9 S (Mb)®  LS0(bp) GC(%) #9150 (bp)”

1AS 275 137 187,49 178.1 2,242 458 34,793 4,769
1AL 523 80 197,674 250.0 2,639 44.5 26,746 6,369
2AS 391 120 264,555 255.2 2,398 45.6 34,722 6,678
2AL 508 97 321,517 328.2 2,688 45.3 45,893 6,677
3AS 360 36 242,308 201.8 1,404 452 33,943 3,846
3AL 468 30 303,844 247.2 1,346 44.8 43,823 3,789
4AS 317 241 301,954 282.3 2,782 45.6 32,079 7,499
4AL 539 116 362,01 356.0 2,969 45.3 64,364 6,601
5AS 295 67 182,938 198.8 3,509 44.0 19,719 8,713
5AL 532 48 403,265 318.1 2,078 42.9 47,572 5,355
6AS 336 106 210,388 219.2 2,669 45.6 28,041 7,091
6AL 369 92 245,867 214.4 2,154 45.0 34,03 6,589
7AS 407 28 262,653 198.0 1,47 441 44,175 4,397
7AL 407 46 233,306 252.4 2,271 44.0 35,586 5,849
XA 5,727 89 3,225,219 27,761 2,235 44,8 494,859 6,016
1BS 314 143 181,801 212.8 3,287 46.0 26,05 7,413
1BL 535 63 198,968 299.4 3,12 44.2 29,783 7,151
2BS 422 121 244,668 292.0 3,711 46.5 35,743 8,069
2BL 506 142 365,563 404.5 2,941 45.5 75,879 6,89
3B 993 89 546,922 638.6 2,655 46.0 75,022 6,855
4BS 319 196 274,504 308.2 3,463 46.4 38,515 8,755
4BL 430 55 317,294 248.7 1,974 45.0 46,576 5,883
5BS 290 146 137,38 1745 3,315 46.9 18,001 7,365
5BL 580 107 436,173 415.2 2,924 46.5 75,887 7,537
6BS 415 72 166,632 210.2 2,366 42.9 29,566 4,972
6BL 498 105 251,706 257.4 2,031 44.4 35,727 4,824
7BS 360 59 178,789 206.1 2,428 43.7 24,119 6,435
7BL 540 37 328,725 259.6 1,556 43.5 58,554 4,144
XB 6,202 103 3,505,483 36,644 2,536 45,2 545,977 6,161
1DS 224 157 126,156 128.2 2,85 46.5 17,725 6,622
1DL 381 125 292,785 254.4 2,561 43.7 35,77 6,297
2DS 316 147 245,107 166.0 1,241 44.6 43,044 4,635
2DL 411 113 508,239 261.6 701 441 110,446 3,247
3DS 321 85 314,944 145.0 515 421 46,795 1,697
3DL 449 32 326,758 186.0 967 42.1 69,259 2941
4DS 231 173 118,29 142.1 3,278 46.6 18,245 7428
4DL 416 154 454,216 254.4 816 45.7 197,398 1855
5DS 258 220 148,048 148.0 2,353 46.8 22449 5945
5DL 490 94 223,456 236.8 2,647 44.6 34622 7049
6DS 324 68 88,542 156.6 4,297 44.9 16,077 8,904
6DL 389 76 203,805 199.8 2,077 45.3 26,236 6,821
7DS 381 54 216,406 209.1 1,967 44.2 36,701 5,031
7DL 346 77 161,061 222.9 3,638 45.4 26,737 7,399
¥D 4,937 113 3,321,352 21,304 1,953 44,8 669,311 5,419

P 16,866 101 10,052,054 85,709 2,234 45,2 1,710,147 5,858

@ Estimated chromosome arm sizes were taken from (210).

® Sequencing read depth for individual chromosome arms (x-fold).

© Statistics for original and repeat-masked version of the CSS assembly.

@ Number (#) and total (X) sequence of assembled contigs >200 bp.

Table 2.3. Sequence statistics of the multi-organ RNA-seq generated for gene annotation by the
IWGSC.

Tissue ID Read length Reads (mio) Sequence
grain GRA 101 bp 117.7 11.9Gb
leaf LEA 101 bp 127.0 12.8 Gb
root ROO 101 bp 112.5 11.4 Gb
spike SPI 101 bp 140.0 14.1 Gb
stem STE 101 bp 118.1 11.9Gb

X - - 615.3 62.1 Gb




2.3. BREAD WHEAT ENDOSPERM TRANSCRIPTOME 29

2.3 Analysis of the transcriptome in developing bread wheat en-
dosperm (Norway collaboration)

Starch and storage proteins constitute the major ingredient of most cereal end-products. As these
compounds are mainly accumulated in the nuclear endosperm of flowering plants, including the
cereals maize, rice, barley and wheat, understanding the grain transcriptome is of large industrial
relevance. The cereal endosperm consists of three major cell types, aleurone (AL), starchy en-
dosperm (SE) and transfer cells (TC), which have spatially and temporally distinct morphological
structures and adopt different functional responsibilities (216,217) (Chapter 5). To investigate
gene expression in this important organ, collaborators of the Norwegian University of Life Sci-
ences (As, Norway) constructed RNA-seq libraries for distinct cell types of developing endosperm
(Table 2.4). Therefore, wheat plants were grown in two greenhouses (GH) and grains harvested
at 10, 20, and 30 days post anthesis (DPA). These were further manually dissected into aleurone,
transfer cells and starchy endosperm under the dissection microscope. Thereby, to exclude any
later bias in the analysis by using the IWNGSC genome sequence assembly as reference, seeds

Table 2.4. Sequence statistics of the wheat endosperm transcriptome data set generated within the
Norway collaboration.

by
. b
Sample GH BR Read pairs Reads Sequence (bp) read pairs sequence
(Gb)

10 DPAW 1 1 20,361,333 40,722,666 4,112,989,266

1 2 26,791,465 53,582,930 5,411,875,930

2 1 30,235,123 60,470,246 6,107,494,846

2 2 33,413,758 66,827,516 6,749,579,116 110,801,679 22,38
20 DPAW 1 1 34,617,242 69,234,484 6,992,682,884

1 2 30,517,594 61,035,188 6,164,553,988

2 1 28,011,277 56,022,554 5,658,277,954

2 2 32,249,714 64,499,428 6,514,442,228 125,395,827 25,33
20 DPA AL 1 1 32,919,785 65,839,570 6,649,796,570

1 2 30,833,988 61,667,976 6,228,465,576

2 1 27,753,881 55,507,762 5,606,283,962

2 2 31,365,012 62,730,024 6,335,732,424 122,872,666 24,82
20 DPA SE 1 1 30,009,734 60,019,468 6,061,966,268

1 2 29,714,230 59,428,460 6,002,274,460

2 1 26,664,432 53,328,864 5,386,215,264

2 2 27,602,634 55,205,268 5,575,732,068 113,991,030 23,03
20 DPATC 1 1 18,586,985 37,173,970 3,754,570,970

1 2 31,121,623 62,243,246 6,286,567,846

2 1 29,885,904 59,771,808 6,036,952,608

2 2 29,668,161 59,336,322 5,992,968,522 109,262,673 22,07
30 DPA ALSE 1 1 31,433,795 62,867,590 6,349,626,590

1 2 22,422,406 44,844,812 4,529,326,012

2 1 29,554,700 59,109,400 5,970,049,400

2 2 29,381,216 58,762,432 5,935,005,632 112,792,117 22,78
30 DPA SE 1 1 23,711,650 47,423,300 4,789,753,300

1 2 27,182,660 54,365,320 5,490,897,320

2 1 37,524,396 75,048,792 7,579,927,992

2 2 25,114,866 50,229,732 5,073,202,932 113,533,572 22,93
¥ 808,649,546 163,35
20 DPA AL 1 1* 32,374,902 64,749,804 6,539,730,204
20 DPA AL 1 1* 32,685,090 65,370,180 6,602,388,180

Numbering indicates greenhouses (GH) and biological replicates (BR). Stars mark technical replicates.
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from the same variant of T. aestivum cultivar "Chinese Spring” that was used for generating the
reference genome sequence, were provided by Bikram Gill (Kansas State University, Manhattan,
Kansas, USA).

A total of 30 mRNA samples were prepared and sequenced including two biological repli-
cates (BR) for seven samples of plants grown in two greenhouses (2 BR x 2 GH x 7 conditions
= 28 libraries) as well as two additional technical replicates for one sample by using paired-end
HiSeq2000 technology (155,156) (lllumina Inc., San Diego, California, USA) with an average in-
sert size 200 bp (Table 2.4). The high-throughput sequencing yielded in 110 mio (20 DPA TC)
to 125 mio (20 DPA AL) read-pairs per endosperm sample and in a total of 809 mio read-pairs
(163 Gb raw sequence). Sequencing data has been made publicly available in the ArrayExpress
database hosted by the EBI (accession E-MTAB-2137).



Chapter 3

Genome dynamics of polyploid bread
wheat

Whole genome shotgun sequencing is a rapid, cost and time efficient way to generate large
genomic resources by sequencing of randomly-fragmented DNA clones (218) (Section 1.4.1).
However, the assembly and computational analysis of obtained WGS sequence reads is sub-
stantially complicated for most plants because of the large genome sizes and high genome plas-
ticity due to repetitive sequences (57,219) and different degrees of polyploidy (220) (Section
1.4.2). This applies especially to allohexaploid bread wheat (T. aestivum L.), which is one of the
largest plant genomes arising by reason of two hybridization events that brought together three
diploid genomes (2n=6x=42; AABBDD) (66,67) (Section 1.2.4). The sequences of these three
homoeologous genomes were found to be highly similar among each other (123). Consequently,
distinguishing the genome-of-origin for individual reads in the pool of WGS data is substantially
hampered, if not impossible.

To overcome this challenge a novel comparative genomics-based assembly concept, the
"orthologous group assembly” (OGA), was developed in this thesis. The major goal of the OGA
was to generate homoeologous-specific sequence assemblies based on WGS sequence data
for highly complex and polyploid genomes. In contrast to traditional de novo genome assembly
and analysis concepts, the OGA focused primarily on the protein-coding portion of a genome.
Therefore, available protein sequences of closely related grass genomes were used to define an
orthologous gene family framework restricting the search space onto genes that are conserved
among related taxa. The obtained bread wheat WGS sequencing reads were projected onto
orthologous protein sequences and, separately for each protein, assembled applying highly strin-
gent criteria. This approach minimized collapsing homoeologous sequence copies and allowed
further quantification of distinct gene copies for the bread wheat genome.

On the one hand, this chapter will describe the underlying technical concepts of the OGA
including the definition of an orthologous gene family framework for bread wheat, the computa-

31
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tional estimation of gene copy numbers and the evaluation of the implemented strategy using in
silico simulation experiments. On the other hand, gene content dynamics following polyploidiza-
tion will be investigated by comparing the gene family sizes in the hexaploid wheat genome with
that in the diploid D-genome progenitor Ae. tauschii (2n=2x=14; DD). Furthermore, this chap-
ter will discuss the extent and the potential influence of pseudogene formation on the genome
structure and the evolution of gene families of one of the world’s most important crops.

All results shown in this chapter are part of following publications:

« Analysis of the bread wheat genome using whole genome shotgun sequencing
R. Brenchley*, M. Spannagl*, M. Pfeifer¥, G. L. A. Barker¥, R. D’Amore¥, A. M. Allen, N.
McKenzie, M. Kramer, A. Kerhornou, D. Bolser, S. Kay, D. Waite, M. Trick, I. Bancroft, Y.
Gu, N. Huo, M. C. Luo, S. Sehgal, B. Gill, S. Kianian, O. Anderson, P. Kersey, J. Dvorak, W.
R. McCombie, A. Hall, K. F. X. Mayer, K. J. Edwards, M. W. Bevan and N. Hall
Nature. 491(7426):705-710, 2012.

* joint first authors

+ Analysing complex Triticeae genomes — concepts and strategies
M. Spannagl, M. M. Martis, M. Pfeifer, T. Nussbaumer and K. F. X. Mayer
Plant Methods. 6;9(1):35, 2013.

3.1 Homoeologous-specific sequence analysis of the bread wheat
genome

All methods described in this chapter were specifically developed for the analysis of the bread
wheat genome. However, the underlying concept can be transferred to any other complex or
polyploid genome. The following experiments were based on whole genome shotgun sequences
obtained for the bread wheat genome with approximately five-fold genome coverage by using
Roche 454 pyrosequencing technology (Section 2.1). Importantly, the obtained reads (average
read length of 388 bp) were expected to be of sufficient length to distinguish homoeologous
(protein-coding) sequences based on genome-specific SNPs, which have been reported to occur
with a frequency of one per 145 base pairs reported for coding sequences of homoeologous
genes (123).

3.1.1 Definition of an orthologous gene family framework for the grasses

The orthologous group assembly aimed at reducing the analysis complexity by focussing towards
the protein-coding sequences of the genome. Therefore, the construction of an orthologous
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gene family framework, which represents comprehensively the wheat gene space, was a key re-
quirement of the OGA that enabled screening for gene candidates in the WGS data("). For this
purpose the reference genomes of Brachypodium (Brachypodium distachyon) (42), rice (Oryza
sativa) (45) and sorghum (Sorghum bicolor) (40) as well as a collection of more than 23,000
public available barley (Hordeum vulgare) fl-cDNAs (221) provided particularly valuable protein
sequence information to reconstruct conserved gene families from different grass sub-families
spanning an evolutionary time frame of approximately 45 mio to 60 mio years (42) (Fig. 1.2). A
total of 86,944 sequences, derived from protein-coding genes of these three grass genomes and
peptide predictions (222) of the barley fl-cDNAs (221), were clustered into 20,496 orthologous
groups of putative orthologous genes and close paralogs by using the OrthoMCL software (223)
(version 1.4). These groups were defined by proteins of at least two species, thus, represented
a set of well-conserved gene families among the grasses. Almost all orthologous groups [20,051
(98%)] were detected by stringent peptide sequence comparison to the LCG assembly of the
bread wheat genome utilizing the "Basic Local Alignment Search Tool” (BLAST) with a maximum
Expect (E) value of 107'% and the BLASTX option. This assembly was provided by the UK collab-
oration partners, who filtered repetitive shotgun sequencing reads and assembled the remaining
genomic sequences de novo using a classical OLC-based assembly approach with relaxed over-
lap thresholds (Section 2.1). For each orthologous group the reference protein that was best
represented in the wheat sequences was defined as orthologous group representative (OGR)
serving as a template protein in the OGA and the subsequent analysis (Table 3.1).

The protein sequences of the selected OGRs were further compared against metabolic
genes in A. thaliana (137) (90% detected), publicly available wheat fl-cDNAs (204) (92% de-
tected) and cDNA assemblies from the wheat HarvEST database (203) (version 1.19 stringent)
(78% detected). The high level of captured genes participating in major plant pathways, good cov-
erage of wheat cDNA sequences and high detection rate by the wheat LCG assembly suggested
that the selected OGRs provided a suitable framework for further comprehensive analysis.

Table 3.1. Number of orthologous groups defined in the gene family framework built on basis of
high-quality protein sequences of related grasses.

Number of groups Alignment identity®
Total orthologous groups clusters 20,496 -
Total orthologous groups with OGR 20,051 -
Brachypodium 7,996 75%
Barley fl-cDNAs 5,337 80%
Rice 3,136 70%
Sorghum 3,582 70%
Total orthologous groups without OGR (no 445 i

homology support in the wheat LCG assembly)

@ Minimum alignment identity thresholds for alignments of genomic wheat sequencing reads.

M| gratefully acknowledge Manuel Spannag! for the definition of the orthologous gene family framework and his
close collaboration in the selection of the orthologous group representatives and in the evaluation of the comprehen-
siveness of the defined framework.
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3.1.2 The orthologous group assembly and calculation of the wheat gene copy
number

The analytical workflow of the orthologous group assembly included three consecutive steps: (i)
pre-processing of the raw sequencing reads, (ii) identification of genic wheat sequences and their
allocation to OGRs and (iii) stringent assembly of the assigned genomic shotgun sequence reads
individually for each OGR (Fig. 3.1a). Based on coverage and alignment depth of the orthologous
group representatives by the consensus assemblies ("sub-assemblies”), the gene copy number in
bread wheat (Fig. 3.1b) was predicted, further enabling to monitor and quantify genome dynamics
in the polyploid genome.

a Pre-processing of genomic shotgun sequences b Alignment of sub-assemblies
repeat-masking and filtering against orthologous gene representative
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Fig. 3.1. The orthologous group assembly and the estimation of gene copy number.

a, Genomic shotgun reads were repeat masked and assigned to corresponding orthologous gene rep-
resentatives. Each sequence bin is separately assembled and consensus ("sub-assembly”) sequences
generated based on overlaps between reads. b, The sub-assembly sequences were aligned to the cog-
nate OGR and ordered along its protein sequence. Then, the alignments were transferred into a position-
specific hit count profile that counts the number of distinct sub-assemblies mapped to each amino acid
of the template protein. The wheat gene copy number was computed as the maximum number of dis-
tinct sub-assemblies covering a defined proportion of the protein-coding sequence of the OGR, which was
defined by a coverage cut-off C. Grey boxes represent the protein sequence of orthologous group repre-
sentative, whereas lines connecting boxes depict exon boundaries. Coloured boxes visualize sequencing
reads and assembled sequences, respectively. The colour code groups sequences that originate from the
same genome and light colouring visualize non-coding regions.
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Pre-processing of genomic shotgun reads

Repetitive sequences represent the largest fraction of DNA sequences in grass genomes
(51,219) and considerably extend search space and computational complexity. Since this study
was primarily focussed on the protein-coding portion of the wheat genome, reads related to known
repeat sequences were filtered prior to the search phase of the OGA. Besides an improved com-
putational efficiency of the implemented assembly protocol by decrease in memory and time
requirements as well as simpler data handling and processing (e.g. homology search against the
OGRs), the removal of repetitive sequences also avoided overestimation of the computed wheat
gene copy numbers. Repetitive mechanisms and transposable element activity have been re-
ported to capture, integrate and amplify gene fragments and were frequently associated with the
generation of pseudogenes (199,224,225). Thus, repetitive sequences would substantially effect
downstream analysis and might inflate gene family sizes.

To identify repetitive sequences, | compared the entire collection of sequence reads against
the MIPS-REdat Poaceae repeat library® by using VMATCH (226) with default parameters and
minimum 70% sequence identity over at least 100 bp length (parameters: -identity 70 -1 100).
Matching sequences were masked by "N”s. Additionally, reads without stretches of at least 50 bp
unmasked nucleotides were removed and excluded from further analysis.

Overall, a total of 62.3 Gb out of 82.8 Gb (75%) raw genomic sequence showed significant
homology to known repeat elements (Fig. 3.2a). This was largely consistent with an estimated
repeat content of about 70% for bread wheat (51,274,219). Cleaning highly repetitive sequencing
reads reduced the search space by more than two thirds and passed 65.8 mio reads [24 Gb out
of 83 Gb (29%)] to the subsequent step in the OGA (Fig. 3.2b).

removed

reads
(repetitive)

shotgun
reads
(in mio)

sequence
(Gb)

1 - Barley
20+ -o- Brachypodium
- Rice

non-genic 1 = Sorghum

reads 0 = Overall
- iti genic reads T T T T

non-repetitive |— 2.7 (1%) multiple OGRs 0 20 40 60 80 100

DNA L 1.3 (1%) single OGR Coverage of OGR (%)

Fig. 3.2. Repeat-masking, filtering and mapping statistics of genomic shotgun sequence reads.

a, Fraction of raw genomic sequence data identified as repetitive. b, Shotgun sequences that are entirely
composed of repetitive DNA were removed, whereas the remaining reads were aligned against the OGRs.
¢, Cumulative coverage distribution of OGRs by aligned genomic shotgun reads.

@The MIPS-REdat Poaceae repeat library was downloaded from http://mips.helmholtz-muenchen.de/plant/recat
(version 8.6.2).
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Allocation of non-repetitive shotgun reads to orthologous gene groups

Next, the remaining shotgun reads were allocated to OGRs based on protein sequence homology
deduced from stringent BLASTX alignments (E <107'0), which were filtered for alignment length
(>30 amino acids) and sequence similarity. Therefore, | applied different identity thresholds to ac-
count for different evolutionary distances between bread wheat and the reference plant genomes
used for the definition of the respective OGR (42) (Table 3.1). In case of valid alignments of a read
to multiple OGRs, the wheat sequence read was assigned to the OGR with the highest-scoring
BLASTX (227) alignment.

In total, 4 mio shotgun sequences (2%) were aligned and allocated to 19,483 OGRs (97%)
(Fig. 3.2b). Approximately two-third (68%) of the mapped genomic shotgun reads matched a sin-
gle representative gene with the specified alignment parameters. Generally, wheat reads covered
the protein-coding sequence of OGRs with high coverage and more than two third of the template
proteins in full-length with at least 70% coverage (Fig. 3.2c). However, minor variations in the
coverage of OGRs from different genomes reflected the evolutionary distances to wheat and the
respective reference species. Whilst barley reference proteins were covered best, OGRs selected
from rice and sorghum were less represented in the wheat data set. This observation corrobo-
rated recent studies showing that the evolution in gene structure is an important mechanism for
functional diversification and gene novelty additionally to exchanges of amino acids (228—-230).
Overall, high detection rate of OGRs and almost full-length coverage of their protein sequences
indicated that the chosen OGRs constituted suitable templates for capturing genic wheat se-
quences from the WGS data set, which allowed further orthologous-guided analysis.

Generation of gene-centric sub-assemblies

Sequence information and quality scores of aligned shotgun reads were extracted from the orig-
inal sequence library files and individual assemblies were computed for each OGR by using
Newbler (154), a de novo overlap-graph assembler optimized for the assembly of shotgun reads
obtained with Roche 454 pyrosequencing technology (Section 1.4.2). The detection of overlaps
among reads is a major and critical step, in particular, for the assembly of polyploid genomes with
highly redundant sequences of different parental origin. While too relaxed minimum overlap iden-
tity (mi) for accepting overlaps between reads would collapse homoeologous sequence copies,
too stringent parametrization would be sensitive to sequencing errors and, consequently, imply
overestimation of the gene copy number.

Therefore, | evaluated the impact of different stringency levels on the OGA and performed
separate assemblies using 97% mi, 99% mi and 100% mi, respectively. Although the applied
minimum overlap alignment identity parameters differed only by three percent, the resulting OGAs
were influenced considerably (Table 3.2). Whereas more than three quarters (76%) of reads were
assembled into contigs for 97% mi, the number of assembled reads dropped to 51% requiring per-
fect alignments between overlapping reads (100% mi). On the contrary, the number of genomic
sequencing reads remaining singletons almost doubled between 97% mi and 100% mi and the
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total assembled sequence increased by 1.6-fold (498 Mb to 794 Mb). Already these statistics em-
phasized the importance of correctly setting up set-up and evaluation of the assembly protocol,
which will be further discussed in the following sections.

Table 3.2. Newbler assembly statistics of orthologous group assemblies with different stringency
levels.

Three orthologous group assemblies were performed by using different minimum alignment identity (mi)
thresholds to accept overlapping genomic shotgun sequencing reads.

97% mi 99% mi 100% mi
No. of excluded reads® 75,440 (2%) 90,254 (2%) 247,330 (6%)
No. of assembled reads 3,038,943 (76%) 2,689,502 (67%) 2,057,928 (51%)
No. of remaining singletons®) 887,615 (22%) 1,222,242 (31%) 1,696,740 (42%)
No. of assembled contigs 205,817 172,039 120,501
No. of sub-assemblies® 1,093,432 1,394,281 1,817,241
total sequence (bp) 497,965,174 630,756,335 793,978,129
min. / max. length (bp) 52/7,415 52/7,312 52 /4,386
mean length (bp) 455.41 452.39 436.91
L50 /L90 (bp) 482 /323 479 /326 471 /322

@ Problematic, too short or repetitive sequencing reads excluded for the assembly by Newbler.
® Sequencing reads without any significant overlap to any other sequencing read.
© Combined set of sequencing reads remaining singletons and assembled contigs.

Calculation of wheat gene copy numbers

To determine the gene copy number, the wheat consensus sub-assemblies were aligned against
their cognate OGRs [BLASTX (227) (E <107'%)] (Fig. 3.1b). Therefore, the same alignment
parameters were applied as used for mapping the raw sequencing reads (Table 3.1). All con-
secutive high-scoring segment pairs of the returned alignments were accepted to account for
stretches of non-coding sequences in sub-assemblies, which represent introns and connect two
or more neighbouring exons of the OGR. For each OGR the alignments were transferred into
a position-specific hit count profile by counting the number of aligned sub-assemblies at each
amino acid position along the template protein sequence. Then, the profile was converted into
a cumulative coverage distribution, ranging from one to the maximum hit-count in the profile by
only considering sequence positions that were tagged by at least one sub-assembly. Finally, the
wheat gene copy number was defined as the maximum hit count assigned to C' percent cover-
age of the protein-coding sequence of the cognate OGR. For all subsequent statistical analysis
data set was constrained to OGRs that were covered in full-length by wheat sequences (C' =
70%) to avoid wrong copy number estimates due to the large number of gene fragments and
pseudogenes, which have been shown to be highly abundant in the wheat genome (799).
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Calculation of the gene retention rate in hexaploid wheat

To globally characterize the degree of retention, gain or loss of genes on basis of the OGA, the
gene retention rate (r) was computed as the ratio between the number of predicted gene copies
(cpredicted) @nd the respective gene family size in the reference genomes (creference):

Cpredicted

r=——— (3.1)
Creference
For example, in the naive expectation for the gene retention rate of hexaploid wheat, which as-
sumes complete absence of any genome dynamics, a single gene copy would be present in each
wheat genome [¢(A) = ¢(B) = ¢(D) = 1] that corresponds to one gene in the diploid reference
genomes [c¢(2n) = 1], i.e.
c(A)+cB)+eD) 1+1+1 3

Tna’l’ve(6n) = c(2n) 1 I =3

In this study, the gene family sizes of the diploid reference genomes were determined
from the number of proteins that clustered with the selected OGRs. These were paired with
the predicted gene copy numbers. Then, a locally-weighted polynomial regression (231) of the
median copy number predictions for each reference gene families size was determined by using
the lowess-function (232) implemented in the R package stats®). Thereby, only reference gene
families with up to 75 copies were considered as beyond genes were likely to constitute repeat
sequences resulting from transposable element activity (799). Hence the steepness of the re-
gression fit defined the gene retention over the whole sample size, the gene retention rate was
calculated as the mean gradient of the polynomial approximation at each data point.

3.1.3 Gene copy humber estimations for different OGAs

By measuring the alignment depth that specifies the number of distinct sequences aligned over
the protein-coding regions of an OGR, a median depth of 13 was observed for repeat-masked
genomic shotgun sequence reads (Fig. 3.3a). This was largely consistent with the five-fold cover-
age of the underlying whole genome sequencing experiment and a hexaploid genome constitu-
tion. Furthermore, substantial differences in alignment depth and estimated gene copy numbers
were also evident for different minimum overlap identity thresholds (Fig. 3.3b). As already indi-
cated by the assembly statistics before (Table 3.2), applying different assembly stringency levels
had also considerable impact on the orthologous group assembly. Due to the high similarity of
homoeologous sequences among the A, B and D genomes (123), the majority of homoeologous
gene copies were collapsed in the OGA with 97% mi. On the contrary, requiring perfect over-
laps among shotgun reads resulted in an alignment depth about six. This indicated that distinct
homoeologous gene copies were maintained, however, the observed alignment depth for 100%
mi exceeded the expectations for the gene count in an hexaploid genome. Most probable this

®http://stat.ethz.ch/R-manual/R-patched/library/stats/html/lowess.html
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was caused by sequencing errors, which have been estimated to affect up to one percent of
nucleotides in typical genomic fragments generated by using Roche 454 pyrosequencing tech-
nology (233). These prevented the assembly of conjugating shotgun reads and, consequently,
increased artificially alignment depth as well as the estimated gene copy number.

The alignment depth was also measured for the LCG assembly, which was generated with
90% mi, the default Newbler assembly parameter (Section 2.1). The observed constant median
alignment depth of one suggested entire collapse of homoeologous sequences (Fig. 3.3a). This
demonstrated the inapplicability of traditional assembly approaches for bread wheat and likely
any other complex, young polyploid genome.

Taken together, the distribution of alignment depth over the OGR and the observed fre-
quency distribution of gene copy numbers suggested that assemblies with 99% minimum se-
quence identity between overlapping shotgun reads would result in the most appropriate se-
guence collection, which accurately discriminate between homoeologous sequences while simul-
taneously accounting for technical limitations in form of sequencing errors. However, the absence
of genome-wide studies in bread wheat, which would provide a reference for calibration of the
assembly parameters, required further calibration and evaluation of this assembly protocol.
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Fig. 3.3. Alignment depth of OGRs by wheat genomic shotgun reads and sub-assemblies and
calculated gene copy number for different assembly parameters.

a, Median alignment depth over protein-coding regions of OGRs obtained for the repeat-masked wheat
shotgun sequences, the LCG assembly and OGAs with different mi thresholds (amino terminus = 0%;
carboxy terminus = 100%). b, Distribution of hexaploid wheat gene copy numbers predicted predicted for
different OGAs.
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3.1.4 Calibration of the OGA with in silico simulations

The mi parameter is the major factor for the assembly quality, thus impact further quantitative
gene family analysis. To optimize the OGA and to calibrate this important parameter, | performed
two complementary in silico simulations, which were based on established reference genome
sequences and gene annotations of related grass genomes. For both approaches, which are
discussed below, different mi thresholds were tested under consideration of the complex genome
structure, the high level of repetitive sequences as well as the redundant sequences origin in
three highly similar homoeologous genomes.

Simulation of a whole genome shotgun experiment

The first evaluation experiment simulated a whole genome shotgun experiment based on the
maize (Zea mays) genome. Similar to bread wheat, maize belongs to the grass family Poaceae
(Section 1.2), has a large genome size (approximately 2.3 Gb) and contains an extensive degree
of structural complexity (several genome duplications including an ancient tetraploid state) as
well as a high fraction of repeat sequences (approximately 85%) (41). In 2009, the draft maize
genome sequence and gene annotation were released (41) providing a "gold standard” reference
for evaluation of the OGA when applied to WGS data obtained for a highly complex genome with
similar sequence characteristics.

This approach comprised two steps (Fig. 3.4). First, the maize gene set was catalogued
and the maize gene family sizes determined, which then were paired with the previously defined
orthologous group representatives. These values constituted references to compare the observed
gene copy numbers in the OGA with the expected counts as annotated in the released draft
genome sequence and, finally, to calibrate of the mi assembly parameter. The repeat-masked
maize genome sequence (2.1 Gb) and the corresponding gene annotation incorporating 39,656
protein-coding genes (41) (ZMb73 version 5b.60) were retrieved and the maize proteins clustered
with the protein sequences, which were also used for the definition of the orthologous grass gene
set by using OrthoMCL (223). This strategy identified a total of 23,086 orthologous clusters con-
taining 28,751 (73%) maize genes. Maize gene copies with highly-similar coding sequences and
sequence identity higher than the applied mi assembly parameters can not be discriminated in
the OGA and would result in underestimation of the gene copy number predictions. Thus, a strin-
gent nucleotide sequence similarity filtering of the maize gene set was additionally undertaken.
Accordingly to the tested mi parameters, the maize cDNAs were clustered by using Cd-Hit (234)
with 97%, 99% and 100% sequence similarity thresholds (parameters: -n 8 -¢ 0.97/0.99/1.00)
and only the longest sequence of each cluster was retained as representative. Afterwards, the
orthologous groups suitable for evaluation of the gene copy number were determined as defined
by unambiguous clustering of OGRs (i.e. exactly one OGR per group) with one or more maize
protein(s). This resulted in the selection of 15,134 (97% redundancy clustering) to 15,148 (100%
redundancy clustering) groups, for which the reference gene family sizes in the maize genome
was determined by counting the number of grouped maize proteins. These values were assigned
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to the respective OGRs.

Secondly, the OGA was applied on sequencing reads, which were computationally gener-
ated from the maize draft genome sequence using MetaSim (235) (version 0.9.5). The artificial
reads simulated a whole genome sequencing experiment with five-fold genome coverage, se-
quencing error rate of 0.5% and the same empirical read length distribution as found for the wheat
genomic shotgun reads. Then, repetitive sequences were filtered, the remaining reads allocated
to the OGRs and maize consensus sub-assemblies generated. Thereby, | adapted the alignment
parameters for the evolutionary distances between maize and the OGRs (>70% sequence iden-
tity against barley, >67% against Brachypodium, >64% against rice and >68% against sorghum).
Three runs of the OGA were performed, each with a different assembly stringency (97% mi, 99%
mi and 100% mi). Additionally, the maize gene copy numbers were computed for each OGR and
each assembly iteration.

Maize (Zm) reference genome and gene annotation
10 chromosomes; 39,656 genes; 32.1Gb
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Fig. 3.4. Workflow for evaluation of the OGA and the gene copy number predictions based on
simulated whole genome shotgun sequencing data for the maize genome.
See text for a detailed description.

Simulation of a hexaploid gene set

Complementary, | performed a second evaluation experiment to emulate the OGA on a polyploid
genome that consists of multiple, highly similar homoeologous gene copies (Fig. 3.5). Therefore,
a hexaploid reference gene repertoire was computationally generated based on the annotation of
protein-coding genes in rice (45,236). These triplicated sequences were in silico "evolved” with a
comparable degree as expected for bread wheat homoeologs (723) in order to monitor the effect
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Fig. 3.5. Workflow for evaluation of the OGA and the gene copy number predictions based on an
artificially created hexaploid gene catalogue of rice.

of high sequence similarity among homoeologs on the OGA and the copy number predictions.
In detail, complete locus sequences of 28,236 rice gene models (45,236) (version RAP2), which
were composed of coding sequences, 5 and 3’untranslated regions (UTRs) and introns, were
aligned against the previously defined OGRs by using BLASTX (227) and adapted sequence
identity thresholds (first-best blast hit with >65% sequence identity against barley, >65% against
Brachypodium OGRs, >80% against rice OGRs and >55% against sorghum OGRs and at least
30 aa alignment length). Considering only high-confidence alignments with at least 70% coverage
of an OGR, a total of 11,757 rice transcripts mapped to 8,995 OGRs. Then, the expected gene
copy number in rice was determined by counting the number of aligned rice sequences per OGR.

To generate a hexaploid gene repertoire the set of aligned rice transcripts was triplicated
and the divergence of homoeolog sequence copies simulated. Therefore, single nucleotides
were randomly mutated with a probability of 1% (one nucleotide change per 100 bp) in protein-
coding sequence regions and 4% (four nucleotide exchanges per 100 bp) in non-protein-coding
sequence regions, respectively (123). From these sequences artificial 454-like shotgun reads
were generated with an expected five-fold genome coverage and 0.5% sequencing error rate by
using MetaSim (235). The obtained in silico reads were aligned against the corresponding OGRs
[BLASTX (227) with E value <107'° and same alignment thresholds as for the rice transcripts],
sub-assembled with 97% mi, 99% mi and 100% mi and the gene copy number predicted for each
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OGR and each assembly stringency.

Assessment of different assembly parameters

To evaluate the OGA approach | compared the predicted gene copy number with the gene family
sizes determined by the two simulation experiments (Fig. 3.6). OGAs with 100% mi clearly ex-
ceeded the estimated one-to-one relationship for diploid maize (mean ratio of polynomial median
fit 1.42) and one-to-three relationship for triplicated rice (mean ratio of polynomial median fit 7.51).
When requiring perfect alignments between overlapping reads, sequencing errors predominated
the OGA and prevented assembly of erroneous reads. This was consistent with the high number
of singleton reads and the increased alignment depth of OGRs, which was reported previously for
this setting (Table 3.2 and Fig. 3.3). On the contrary, applying minimum overlap identity of 97%
underestimated substantially the gene copy numbers and resulted in a mean ratio of polynomial

A 151 0GA97% mi 7 OGA 99% mi ] OGA 100% nji

Predicted copy number

1.2 3 4 5 6 7 8 9 10

Maize gene family size

(o2

%1 0GA 97% mi

Predicted copy number

© |
o

1.2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8
Rice gene family size Rice gene family size Rice gene family size

Fig. 3.6. Relationship between observed and predicted gene copy nhumber for the simulation exper-
iments.

The plots show the observed reference gene copy number compared against the predicted gene copy
number for different orthologous group assemblies using minimum overlap identity (mi) of 97%, 99% and
100%, respectively. For each reference copy number the boxes and wiskers contain 50% and 90% of the
orthologous group assembly genes, respectively. Box colors indicate the number of genes for a given copy
number. The black lines represent expected gene copy numbers and the red lines show the predicted
gene copy determined from the orthologous group assembly, derived by a polynomial regression fit. Only
groups up to ten members are shown. a, Maize gene family sizes predicted from orthologous assembly
of simulated genomic sequencing reads. b, Gene copy number predicted from orthologous assembly of
simulated genomic sequencing reads derived from triplicated rice genes.
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median fit 0.79 for diploid maize and 1.09 for triplicated rice.

In agreement with the observed alignment depth along the protein-coding-sequences of
OGRs and the genome-wide gene family size distribution (Fig. 3.3), 99% mi outperformed the
other tested assembly parameters. In both simulations, the predicted gene counts reached most
closely the real gene family size distributions. Almost an one-to-one relationship between ex-
pected and predicted copy humber was observed for the maize simulation (mean ratio of polyno-
mial median fit 0.97) and the best approximation of the one-to-three relationship for "hexaploid”
rice (mean ratio of polynomial median fit 2.02). However, absence of sequence polymorphisms
discriminating homoeologous gene copies caused local collapse of highly similar reads during
the assembly of the triplicated rice gene set. Therefore, the predicted gene copy numbers were
likely to be underestimated. Nevertheless, using this parametrization predicted the correct gene
copy number within an interval of plus and minus one copy for three quarters of the OGRs.

Generally, the results highlighted that already small scale changes in the mi parameter
largely affected the OGA and the predicted gene copy numbers. Consequently, a key require-
ment for the entire analysis was the selection of the best possible settings, which influenced
significantly the interpretation of the results. Both simulation experiments showed that using 99%
mi would result in a sequence assembly with the most accurate gene copy number predictions
for hexaploid bread wheat. This set-up allowed compensating for sequencing errors by simulta-
neously maintaining distinct copies that share high sequence similarity in coding regions. Still,
highly similar or identical gene copies, especially from multi-copy gene families, may have been
collapsed into single assemblies and implied reduced accuracy in estimating the copy number.
Therefore, the statistical analysis was restricted to gene families with maximum ten members in
the diploid reference genomes.

3.2 Genome dynamics in diploid and hexaploid wheat

The previous section has demonstrated that the orthologous group assembly was suitable for the
comprehensive assembly of the gene space of hexaploid bread wheat. Therefore, the presented
strategy constitutes a cost-efficient method to analyse other complex plant genomes on basis of
low- and medium-coverage WGS data set produced with Roche 454 pyrosequencing technology.
The following section will be focussed on the investigation of the gene catalogue of bread wheat,
in particular, considering the genome dynamics that happened since hybridization of the wheat
lineages and subsequent cultivation. In addition to the bread wheat data set, the OGA was
applied on WGS sequence reads obtained for Ae. tauschii (Section 2.1), the diploid progenitor of
the bread wheat D genome (67). The predicted gene copy numbers in Ae. tauschii were used as
bridge to the ancestral genome state of the diploid progenitors, which enabled to elucidate gene
gain, loss and duplication in the Triticum and Aegilops lineages and to monitor genome dynamics
following polyploidization.
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3.2.1 Orthologous group assemblies for Ae. tauschii and bread wheat

A similar a degree of coverage of the orthologous gene representatives was observed for simu-
lated maize and rice shotgun sequences, experimental shotgun sequencing reads of hexaploid
wheat and diploid Ae. tfauschii and the generated sub-assemblies (Fig. 3.7a). This indicated a
high comparability between the different data sets. The simulated 454 shotgun sequences of trip-
licated rice and the experimental sequencing reads obtained for bread wheat followed the same
alignment depth distribution suggesting that the experimental data was a suitable representation
of a polyploid gene catalogue sequenced with five-fold coverage (Fig. 3.7b). Contrary, simulated
maize reads and experimental reads for diploid Ae. tauschii covered the OGRs with a median
depth of five and three, consistent a diploid gene repertoire and an expected sequencing cover-
age of five-fold and three-fold, respectively. Both, comparable levels of coverage and alignment
depth over the protein-coding regions further corroborated the previous results suggesting that
the orthologous gene representatives provided a suitable proxy for comparative analysis of the
diploid and hexaploid wheat genomes.
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80

60

OGR (%)

20

| = wheat genomic shotgun sequences (5-fold coverage)
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Fig. 3.7. Coverage of orthologous group representatives by raw sequencing reads and sub-
assemblies.
a, Cumulative coverage of OGRs by repeat-masked 454 sequencing reads of bread wheat and Ae. tauschii
and simulated sequences from maize and hexaploid rice. b, Median alignment depth over protein-coding
regions of OGRs (amino terminus = 0%; carboxyl terminus = 100%).

3.2.2 Distribution of gene family sizes in wheat genomes

To investigate the impact of polyploidization on the gene content of hexaploid wheat, | determined
and compared the gene copy number distributions between diploid Ae. tauschii and hexaploid
bread wheat. For both genomes the gene copy numbers were predicted based on OGAs with 99%
minimum overlap identity, which has been shown to measure gene family sizes most accurately
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(Fig. 3.6). Then, | paired the observed gene family sizes in the used reference plant genome
species Brachypodium, rice and sorghum with the predicted gene copy numbers for Ae. tauschii
and bread wheat, respectively. Considering only OGRs with at least 70% coverage by sub-
assemblies, the predicted copy number distributions were opposed to the orthologous gene family
size determined for the diploid reference grass genomes.

Despite a tendency to underestimate the gene copy number for larger gene families, gen-
erally, high agreement and an almost perfect one-to-one relationship was observed between the
orthologous gene family sizes in the diploid reference grasses Brachypodium, rice and sorghum
and the predicted gene copy number in Ae. tauschii (Fig. 3.8a). Interestingly, high retention of
homoeologous single-copy genes in hexaploid wheat was found to a similar extend as seen in Ae.
tauschii (Fig. 3.8b). This was consistent with studies in cotton (237) and southern blot analyses
of single-copy genes in bread wheat (238) suggesting only slow elimination of duplicated gene
copies in small gene families. Although strong conservation of the gene family sizes was found,
the results also indicated substantial variation in the gene repertoire of Triticeae genomes. In
both, diploid and hexaploid wheat, numerous gene families were identified with more members
than expected (genes with copy numbers above 95% confidence interval of a reference gene
family size) as well as with less members than expected (genes with copy number below the
5% confidence interval of a reference gene family size). The functional biases for the expanded
gene families will be investigated in more detail in Section 3.2.5. However, a general trend of
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Fig. 3.8. Gene family sizes in orthologous assemblies Ae. tauschii and hexaploid wheat.

Gene family sizes were determined by orthologous assembly of a, Ae. tauschii and b, hexaploid bread
wheat. The boxes and whiskers contain 50% and 90% of the orthologous group assembly genes, respec-
tively and box colors indicate the number of genes in diploid gene families of different sizes. The black lines
represent expected gene family sizes, and the red lines show the gene family sizes determined from the
orthologous group assembly, derived by polynomial regression fit. Only gene families with up to ten mem-
bers are shown. Green dots indicate expanded gene families and brown dots contracted gene families,
respectively.



3.2. GENOME DYNAMICS IN DIPLOID AND HEXAPLOID WHEAT 47

gene family size reduction was apparent in bread wheat compared to the orthologous reference
genomes. Thereby, the reduction was more pronounced for larger gene families, while homoe-
ologous duplicates of single-copy genes were more likely retained. This suggested substantial
loss of duplicated genes in the hexaploid genome in line with studies in bread wheat and syn-
thetic polyploids of Brassica lines, which have shown that polyploids generate extensive genetic
diversity by loss of DNA sequences already at an early stage of alloploydization (47,239).

3.2.3 Estimation of gene number in diploid and hexaploid wheat genomes

Recent analysis of the related diploid genomes of T. urartu (A-genome progenitor) (44,240) and
Ae. tauschii (D-genome progenitor) (43) (Section 1.2.4) as well as studies in bread wheat
(63,241) have estimated each homoeologous genome to contain between 28,000 to 38,000
genes. However, the gene content of bread wheat has only been extrapolated from sequences
of single chromosomes so far (63,241). Based on the copy number predictions and the compari-
son to the orthologous gene family sizes, this work allowed to determine the gene number of the
diploid Ae. tauschii genome (2n) and, for the first time on a genome-wide level, the hexaploid
bread wheat genome (6n). Therefore, the observed gene retention rates (rpredicted) Were defined
from the slopes of the polynomial regression fit of the gene family distributions of Ae. tauschii
[7predicted(2n) = 0.91] and hexaploid bread wheat [rpredicted (6n) = 1.83] (Fig. 3.8). These rates
were additionally corrected for technical limitations in the estimation of the gene copy number,
which caused underestimation of gene counts by partial collapse of highly similar sequences in
the assemblies (Fig. 3.9). The corresponding correction factors (9) were inferred from the devi-
ations of the predicted to the expected copy numbers in the simulation experiments of a diploid
gene set using maize [deviation to an expected one-to-one relationship; 4(2n) = 0.97/1] and
for a hexaploid gene set from triplicated rice [deviation to an expected three-to-one relationship;
0(6n) = 2.21/3 = 0.74]. The corrected gene retention rate r were computed as:

Tcorrected = Tpre(i% (3.2)
This resulted in a corrected gene retention rate of 0.94 : 1 for Ae. tauschii and 2.48 : 1 for bread
wheat, respectively.

A total of 18,508 and 58,758 distinct high-confidence copies (Gxc) were identified for Ae.
tauschii and hexaploid wheat, respectively. These covered the protein-coding sequence of 7,116
(Ae. tauschii) and 12,481 (bread wheat) OGRs with at least 70%. For the remaining 12,885 and
7,570 low-confidence OGRs (G¢) with medium- or low-coverage the gene copy number were
extrapolated from the corrected gene retention rate (r¢orrected) @nd the average orthologous gene
family size (s = 1.46) observed in the orthologous reference genomes Brachypodium, rice and
sorghum, respectively. As determined in Section 3.1.1, considering 92% of wheat genes to be
detectable by using the defined orthologous gene framework (d = 0.92) allowed to estimate the
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Fig. 3.9. Gene retention rates for diploid Ae. tauschii and hexaploid wheat.

Predicted gene retention rates of Ae. tauschii and bread wheat were computed and corrected for technical
limitations, which were deduced from the deviations (red arrows) to the perfect prediction of gene copy
numbers for diploid and hexaploid genomes (dashed lines).
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This calculation resulted in an estimate of 39,000 genes Ae. tauschii and 94,000 genes for
hexaploid wheat, which was reasonable consistent with independent estimates of other studies
(43,44,63,240,241).

3.2.4 Genome change in polyploid wheat

To further investigate the genome change in the polyploid wheat, | directly compared the copy
number distributions of Ae. tauschii, a proxy for the diploid wheat progenitor genomes, and bread
wheat. As shown by the amalgamation of the diploid and hexaploid wheat gene copy numbers
in Fig. 3.10, for all orthologous gene family sizes on average less copies were predicted in the
hexaploid genome as compared to the diploid genome. The lower number of detected ortholo-
gous gene copies suggested substantial gene loss in bread wheat, which is indicated by the grey
zone between the regression fits. Based on the previously calculated gene retention rates for
Ae. tauschii and hexaploid wheat, the hexaploid-to-diploid gene family size ratio was estimated
to be 2.48/0.94 : 1/1 = 2.64 : 1. Therefore, the comparison of the observed hexaploid-to-diploid
gene family size ratio with a naively expected ratio of 3 : 1 allowed to estimate the loss of ap-
proximately 12,000 genes (12%) in hexaploid wheat compared to the ancestral diploid progenitor
genomes. This estimate was largely consistent with earlier studies of gene loss in newly syn-
thesized wheat polyploids (242) and the erosion of genetic diversity during domestication (48).
Moreover, the predictions corroborated recent estimates of Dvorak et al. (243), who detected 26
out of 155 investigated loci (17%) to be deleted during the evolution of polyploid wheat by hy-
bridization mapping of expressed sequence tags with bread wheat deletion stocks. This study
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substantially increased comprehensiveness and resolution compared to previous analysis and,
therefore, allowed further genome-scale monitoring with robust statistical testing and analysis for
functional implications of polyploidy.
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Fig. 3.10. Amalgamation of diploid and hexaploid wheat gene copy humbers.

Observed gene copy number of bread wheat and Ae. tauschii for respective orthologous gene family sizes.
The boxes contain 50% (lower and upper quantiles) of the orthologous group assembly genes. The black
line indicates the expected gene family sizes (one-to-one for Ae. tauschii and three-to-one for hexaploid
wheat, respectively). Red lines show the polynomial regression fit of observed copy numbers. The grey
zone between the regression lines estimates the extent of gene loss in hexaploid wheat. For each family
size, the left-hand boxes represent hexaploid wheat and right-hand boxes represent Ae. tauschii.

3.2.5 Functional analysis of expanded gene families in Ae. tauschii and bread
wheat

Loss, retention and amplification of gene copies may influence the proteome in various ways
(244). On the one hand, recent studies have shown deleterious effects of gene duplications
and identified genes that were convergently restored to singleton status following polyploidization
(245,246). On the other hand, duplicated genes might retain in the genome and preserve their
original gene functions (247) or provide a redundant gene pool allowing the development of
new functionalities with strong advantageous effects on a species’ fitness (248). Thus, genome
duplications and polyploidzation may constitute beneficially to, for example, the adaption of to
changing environments (249).

In this study, various gene families were identified with expanded copy numbers in diploid
Ae. tauschii as well as in hexaploid wheat (Fig. 3.8, green dots). To further test for functional
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implications of gene family expansion, the gene ontology (GO) categories were inferred for these
genes from the cognate Brachypodium, rice, sorghum and barley OGRs as annotated in "The
Similarity Matrix of Protein” database (250). Significant over-represented ontologies were de-
termined by functional enrichment analyses, which were independently performed for expanded
Ae. tauschii and bread wheat gene families®). Subsequently, the identified over-represented GO
terms were opposed to each other (P <0.05).

A large fraction of the significantly over-represented functional categories were shared be-
tween Ae. tauschii and hexaploid wheat (Fig. 3.11). These included, for example, proteins related
to "manganese ion binding” (251), “flavin-containing monooxygenase activity”, "nicotinamide ade-
nine dinucleotide dehydrogenase activity” (252) or “oxidoreductase activity” (253), which sug-
gested expansion of gene families for basal cellular reactions and developmental processes in
Triticeae genomes. Genes encoding for components involved in photosynthesis [e.g. "chlorophyll
binding” or “electron carrier activity” (254)] as well as genes function in immune and defence
responses as well as resistance against pathogen invasion [e.g. "MHC class | protein binding”,

“chitin binding”, "cysteine-type endopeptidase activity” (255,256)] were also more abundant in
Ae. tauschii and hexaploid wheat compared to other closely related grasses.

On the contrary, some molecular functions were found to be exclusively expanded for Ae.
tauschii. For example, gene families encoding for hydrogen ion transmembrane transporters and
different subunits of ATPases ("proton-transporting ATPase activity”) may provide proton gradients
to support Na* exclusion in Ae. tauschii (257 ) and the accumulation of minerals in other Aegilops
species (258). Vice versa, proteins involved in the responses to biotic and abiotic stresses [e.g.
"pattern binding” (259), "methyl jasmonate esterase activity” (260) or "methyl salicylate esterase
activity” (261,262)] were found to be expanded in bread wheat only. Additionally, an increased
gene copy number in bread wheat was also found processes related to seed and storage com-
pounds like, for example, "protein tyrosine kinase activity”, which is involved in the mobilization of
seed proteins and lipid reserves (263), or "glutathione transferase activity”, which is important for
grain filling and embryo development (264).

In summary, these observations showed that gene families related to essential molecular
processes and functions are commonly expanded for the Triticeae (265,266) indicating that at
least part of the genetic characteristics of bread wheat were already defined in the diploid pro-
genitor genome(s), inherited to hexaploid wheat and maintained during polyploid evolution. How-
ever, many gene families of agricultural importance were exclusively expanded in bread wheat.
Assuming that those observed gene family expansions not origin in the diploid genomes of the
other progenitors for the wheat A- and B-genome, which could not be excluded with the current
data set, this finding suggested that selection during domestication might have contributed to the
expansion of agriculturally important gene families in the bread wheat genome.

@ gratefully acknowledge and thank co-author Manuel Spannagl, who implemented and performed the functional
enrichment tests based on the selected gene families with expanded sizes in Ae. tauschii and bread wheat, respec-
tively.
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Ae. tauschii

Bread wheat

Gene ontology category GO enrichment
(P value)
G0:0003746 translation elongation factor activity -.:|
G0:0016779 nucleotidyltransferase activity 0 0.05
GO:00: 39 4 iron, 4 sulfur cluster binding .

G0:0003682 chromatin bindin? .

G0:0003862 3—|sopr¢l)\fkllmala e dehydrogenase activity

G0:0004844 uracil DNA N-glycosylase activity

G0:0048038 quinone binding . . . .
G0:0046933 hydrogen ion transporting ATP synthase activity, rotational mechanism
G0:0080044 quercetin 7-O-glucosyltransferase activity

G0:0003964 RNA-directed DNA polymerase activity

G0:0080118 brassinosteroid sulfotransferase activity

G0:0045158 electron transporter, transferring electrons within cytochrome b6/f complex of photosystem
G0:0047216 inositol 3-alpha—galactosyltransferase activity
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G0:0004497 monooxygenase activity

G0:0030371 translation repressor activity
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G0:0031386 protein tag

G0:0050734 hydroxycinnamoyltransferase activity o X .
G0:0016709 oxidoreductase activity, acting on paired donors, with incorporation or reduction of molec
G0:0030228 lipoprotein receptor activity
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G0:0004197 cysteine—type endopeptidase activity
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G0:0004713 protein tyrosine kinase activity
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Fig. 3.11. Significant over-represented gene ontology categories of expanded gene families in Ae.

tauschii and hexaploid wheat.

Orthologous group representatives were identified that had significant elevated copy number in Ae. tauschii
or in bread wheat and were subjected to functional analysis using GO enrichment test. All significant over-
represented molecular functions with P values <0.05 are shown.
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3.3 Signatures of pseudogenes in the wheat genome

In 1977 Jacq and co-workers identified a truncated and not expressed copy of the 5S ribosomal
RNA gene in Xenopus laevis (267). They characterised this genomic sequence to be most proba-
ble "a relict of evolution” and, hence, termed it "pseudogene”. Ever since then pseudogenes have
been detected in almost all analysed genomes within the three kingdoms of life (268-270). Pseu-
dogenes have been defined as genomic sequences derived from a functional RNA or protein-
coding gene, which lost their potential to encode for functional products (271,272). They exhibit
substantial sequence similarity to a functional gene, but also degenerative sequences features
are present, such as truncations of the full-length gene or deleterious mutations resulting in
premature stops and frame-shifts (272-274). Based on the underlying causative mechanism
pseudogenes can be classified into two major groups: processed pseudogenes, which are de-
rived from duplication of genomic DNA by whole genome, tandem or segmental duplications
and non-processed pseudogenes, which origin from retro-transposition of a RNA intermediate
back into the genome (270). Several classes of plant DNA transposons (224,275) and retroele-
ments (275) as well as the double-strand break repair mechanism (199,225) cause and amplify
gene fragments and have been discussed to disrupt genes and generate pseudogenes.

The role and function of pseudogenes is not entirely understood. While pseudogenes have
been shown to evolve neutrally (276) and are by definition non-functional at the protein level,
recent studies have demonstrated that some pseudogenes are expressed (277) and potentially
exert regulatory functions (270,278). However, independently from their functional relevance,
pseudogenes may provide a reservoir of genetic diversity supporting the evolution of new genes
and contribute to the formation of gene families (274,279).

Manual inspection of alignments between wheat sub-assemblies against the cognate or-
thologous group representatives revealed frequent occurrence of local “stacks” of gene frag-
ments, which were aligned to the same protein-coding region of an OGR (Fig. 3.12). These
stacks comprised several distinct sub-assemblies, which were sufficiently divergent not to assem-
ble. While intact gene assemblies would cover the almost entire protein sequence of the OGRs,
increased alignment depth covering only a local segment of a protein-coding gene might origin
from amplification of genomic sequences by pseudogene-causing mechanisms like, for example,
retro-transposition of RNA intermediates back into the genome (799). The following sections will
specifically investigate the formation of pseudogenes in the bread wheat genome and discuss
and characterize the sequences forming local stacks.

3.3.1 Identification of pseudogene candidates
Local stacks were systematically identified based on the relative mapping depth along the protein-

coding sequence of each OGR. This measure was defined and calculated by normalizing the hit
count profile (i.e. the number of aligned sub-assemblies per amino acid) to the previously pre-
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Fig. 3.12. Example of an OGR with associated wheat sub-assemblies and a ”stack” region.
Visualization of the alignment depth of repeat-masked genomic shotgun sequencing reads (top track) and
wheat sub-assembly sequences (second track) along the protein sequence of an OGR. Alignments for5
wheat sub-assemblies are shown. The heat map depicts the protein-region of stacked gene fragments.

dicted wheat gene copy number. Stacks were defined as protein-coding regions of OGRs, which
showed at least five-fold increase in the number of aligned sub-assemblies relative to the pre-
dicted copy number over a continuous stretch of minimum 30 amino acids (Fig. 3.12). These
were further categorized into two types. Stacks of the first type overlapped with a known protein
family (Pfam) domain (280) of the orthologous group representative, thus were termed "Pfam-
stacks”. Since these stacks were associated to well-conserved protein domains, they might have
originated from genomic sequence reads of related genes, which were absent in the ortholo-
gous gene framework used for the OGA, but shared fractional sequence homology. The second
type of stack was not overlapping with any Pfam domain and, due to their multiple fragmentary
composition, this type of stacks was termed "pseudogene-stacks”.

A total of 5,538 stacks were identified for 3,648 OGRs (29%), which were covered at least
70% by wheat sub-assemblies (Table 3.3). The majority of these were classified as pseudogene-
stacks (72%). Furthermore, almost one third of the sub-assemblies (232,877) were detected to
overlap by at least 90% of their sequence with an identified stack regions (Table 3.3). A total of
162,930 sub-assemblies (21%) were contained in pseudogene-stacks. This observed proportion
was largely consistent with the classification of 27 pseudogenes out of 148 predicted gene can-
didates (18%) in the analysis of 13 Mb-sized BAC contig sequences of chromosome 3B (241).
The identified gene fragments had a mean length of 165 bp and most of the stacks covered
between 5% to 15% of an OGR’s length (Fig. 3.13a). Corroborating previous studies, the re-
duced coverage of genes by stacks indicated that these sub-assemblies might represent gene
fragments originating from transposable element capturing and double strand break repair mech-
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anisms (199,224,225,275). On average, stacks were present with nine-fold greater depth than
the predicted gene copy number. A strong trend for pseudogene stacks to be preferentially lo-
cated at the terminal regions of the orthologous group representatives was evident and contrasted
with the distribution of Pfam-stacks, which were found equally located across the protein-coding
sequences of OGRs (Fig. 3.13b).
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Fig. 3.13. Gene coverage and localization of identified stack regions.

a, Frequency distribution of identified stack regions relative to their coverage of protein-sequence of the
OGRs. b, Localization of identified stacks compared to their relative sequence position in the protein-
sequence of the cognate OGRs (amino terminus = 0%; carboxy terminus = 100%). The protein-coding
sequence of each OGR was divided into four segments and the number of stacks located within each
segment was counted.

Table 3.3. Analysis of of gene fragments and sub-assemblies forming local stacks.

Local stacks were identified based on the relative exceed in alignment depth compared to the predicted
gene copy number. Only well-covered orthologous group representatives (i.e. >70% coverage by sub-
assemblies) were considered in this analysis.

Pfam-stacks Pseudogene- Total®
stacks

Analysed OGRs (>70% coverage) - - 12,518
Analysed sub-assemblies - - 761,470
Identified stacks 1,661 3,877 5,638
OGR with stacks 1,266 (10%) 2,631 (21%) 3,648 (29%)
Su-bassemblies associated to stacks 69,947 (9%) 162,930 (21%) 232,877 (31%)
Mean coverage of OGR by stacks 12.19% 10.85% 11.25%
Mean length of stacks 171bp 163bp 165bp
Mean depth of stacks® 35.64 32.51 33.45
Mean exceed of depth(© 9.43 8.79 8.98

@ Orthologous group representatives including Pfam-related and "pseudogene” stacks were counted once.
® Depth measured as number of aligned sub-assemblies at a sequence position of the OGR.

© Exceed of depth was calculated as the mean ratio of the alignment depth® compared to the predicted
gene copy number of an OGR.
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3.3.2 Signatures of selection pressure on stack sub-assemblies

By definition, pseudogenes are released from functional constraints and expected to evolve neu-
trally (271). Those changes either promote functional divergence or lead to inactivation and
silencing of the gene. To gain insight in the evolutionary fate of the detected wheat sequences
forming stacks, pairwise protein alignments were computed and analysed between the wheat sub-
assemblies and their cognate orthologous group representative. Sequence conservation of sub-
assemblies in Pfam- and pseudogene-stacks decreased approximately ten percent compared to
those sequences, which were not associated to any stack (Fig. 3.14a). This significant decrease
in protein similarity indicated substantial divergence in protein sequence of wheat sub-assemblies
forming stacks compared to sub-assemblies representing intact gene copies [Wilcoxon-Mann-
Whitney-Test (P <1020)].

Furthermore, | performed a sequence divergence analysis to elucidate the relationship
between the coverage of OGR by individual sub-assemblies and the evolutionary constraints on
those sequences. Therefore, the number of nhonsynonymous substitutions per nonsynonymous
site (K,) and the number of synonymous substitutions per synonymous site (Ks) were determined
between sub-assemblies and the respective orthologous group representatives. The ratio of both
values (K,/K;) measures the strength of selection acting on the assembled wheat sequences.
Values below one indicate stabilizing or purifying selection (K,/K, < 1), values greater than
one indicate positive selection (K,/Ks > 1) and values around one suggest neutral selection
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Fig. 3.14. Sequence diversity analysis of wheat sub-assemblies in stacks and non-stack regions.
a, Cumulative frequency distribution of protein alignment similarity between the predicted protein sequence
of sub-assemblies and the respective OGRs. b, Identified sub-assemblies with disrupted protein se-
quences by premature stop codons. ¢, K,/K distribution for sub-assemblies that are out of stacks
and assigned to pseudogene- and Pfam-stacks, respectively. For gene sub-assemblies (out of stacks),
the K, /K, distribution is shown respective to the coverage of the OGR. Only single exon OGRs were
considered.



56 CHAPTER 3. GENOME DYNAMICS OF POLYPLOID BREAD WHEAT

(Kq/Ks = 1). Generally, the OGA was limited in the assembly of sequences bridging intros and
complete gene sequences could only be assembled for single exon OGRs (Fig. 3.1). Therefore,
the subsequent analysis was restricted to OGRs, which protein-sequence was encoded by a
single exon, thus could have been assembled in full-length. The computed protein sequence
alignments between OGR and sub-assemblies were translated into the corresponding nucleotide
alignments and the K, K, and K,/ K rates determined by using the yn00-tool implemented in
the PAML4 package (281,282).

Significant differences in the K,/K distributions were evident with respect to the cover-
age of the OGR by gene sub-assemblies [Wilcoxon-Mann-Whitney-Test (P <0.01)] (Fig. 3.14b).
K,/ K values of sub-assemblies that cover only up to 20% of the OGR were significantly in-
creased compared to those covering the OGRs in full-length. This indicated that sub-assemblies
covering only local regions of their cognate OGR were less functionally constrained and sug-
gested these fragments were biased towards neutral evolution. However, mean K,/K values
lower than 1 were observed. The deviation from this expected value for pseudogenes, which
would indicate complete release from any functional restraint, can be explained in two ways.
First, the wheat sub-assemblies were compared against the orthologous genes in Brachypodium,
rice, sorghum or barley, rather then to the true parental (wheat) gene. The sequence evolution of
the relatively distant reference genes resulted in increased K values, which lowered the K, /K
ratios. Secondly, this work focussed only on relatively young pseudogene candidates due to
the stringent alignment thresholds used for the alignment of wheat sequences against the OGRs.
Thus, the considered evolutionary time frame was too short and only small changes in the K,/ K
were observable.

Accumulation of nucleotide substitutions causing premature stop codons are the most rad-
ical changes, which truncate and disrupt the encoded amino acid sequences and result most
probable in inactivation and non-functional proteins. Strikingly, one third more sub-assemblies
with disrupted protein sequences were associated to pseudogene-stacks (15%) and Pfam-stacks
(14%) compared to sub-assemblies, which were not associated to stack regions (Fig. 3.14c). In
addition to increased protein divergence and reduced functional constraints, this observation sup-
ported the hypothesis that stacks are potentially formed by wheat sequences, which resulted from
generation and amplification by pseudogene-forming mechanisms. However, this study could not
entirely exclude that these sequences also constituted fragments of functional genes that were
not completely represented in the defined orthologous gene family framework. Vice versa, some
of the sub-assemblies, which were not assigned to stacks and covered only small portion of a
OGR, might also be gene fragments or pseudogenes that have not sufficiently been amplified to
form stacks.
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3.3.3 Over-representation of pseudogenes among domain families

To investigate the extent to which certain functional classes, gene families or traits have been af-
fected by pseudogene formation in bread wheat, a GO enrichment test was performed comparing
the Pfam domain designations of OGRs with identified pseudogene-stacks versus the entire set
of all OGRs®. This analysis revealed several protein family signatures to be over-represented
(Table 3.4) including proteins that are known to be involved in pseudogene formation and gene
transposition and encode zinc-finger motifs in mutator transposons (224) and plant mobile do-
mains (283). Furthermore, genes encoding nucleotide-binding site leucine-rich repeat proteins,
which are involved in plant resistance and defence response to environmental stimuli and biotic or
biotic stresses (284—-286), members of the F-box protein family, which are important for protein-
protein interactions (287,288), and proteins with kinase domains were also significantly enriched
for stacks. This was in large agreement with the rapid evolution and high diversification reported
for these gene families (42,137,285) and studies in Arabidopsis (289,290) and rice (289), which
have demonstrated that especially defence gene families are affected by pseudogene formation
and shaped by lineage-specific tandem duplication and subsequent selection (291).

Table 3.4. Functional analysis of OGRs with pseudogene-stacks.
OGRs with identified pseudogene-stacks were subject to GO enrichment analysis. The table summarizes
the over-represented Pfam domains up to a maximum Bonferroni corrected P value of 0.1.

PFAM-Id P value C;r‘::ﬁ:zd Description

PF00646 4.0x 1070 3.6x10°7 F-box domain

PF04578 9.4x1078 8.4x107° Protein of unknown function

PF00560 6.3x 107 5.7x10~*  Leucine Rich Repeat (LRR)

PF00069 1.3x 1076 1.2x 1073 Protein kinase domain

PF10551 7.7x107° 6.9x 1072 Mcl-1 ubiquitin ligase E3 (MULE) transposase domain
PF10536 7.9x107° 7.1x1072 Plant mobile domain

Although that some pseudogene-stacks might have originated from an incomplete repre-
sentation of wheat genes in the utilized orthologous gene family framework or double strand
break filling mechanisms using reverse transcribed mRNAs (199,225), especially gene families
involved in plant resistance and defence response generated stacks, thus were frequently affected
by gene duplication and pseudogenization. This observation constituted an indicator for the for-
mation of new gene functions via gene duplications mechanisms in wheat (297). As proposed in
the gene "birth-and-death” evolution model (292), such mechanisms impose a high redundancy
in the gene pool and might facilitate rapid modifications on protein sequence level providing a
reservoir for selection in consequence of adaption to ever-changing environment (2917).

®)| gratefully acknowledge Manuel Spannagl, who implemented and performed the functional enrichment test based
on the list of candidate OGRs.
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3.4 Conclusions

Whole genome shotgun strategies utilizing NGS technologies provide a rapid and cost-efficient
way to obtain large collections of fragmented genomic DNA sequences. However, especially the
assembly and analysis of the generated data sets for large, complex and, in particular, polyploid
plant genomes has been a severe challenge. Based on low-coverage whole genome sequencing
of the bread wheat genome, a novel bioinformatic assembly strategy was developed exploiting
comparative-genomics to generate comprehensive genomic sequence resources. Comparison
with the sequence of the diploid D-genome progenitor Ae. tauschii revealed high retention of ho-
moeologous genes, but also a general trend in gene family size reduction, which was consistent
with small-scale analyses (48,293). The observed degree of gene loss in hexaploid wheat was
considerably smaller as compared with paleopolyploid maize (777) and mesopolyploid Brassica
rapa (50). This might be caused by its relatively recent origin and the absence of intergenome re-
combination (294) (Section 1.3.1). However, pronounced gene loss in large gene families wheat
corroborated rapid genomic changes as observed for allopolyploid Tragopogon miscellus (295).
This work also identified several classes of gene families with increased sizes in the Triticum and
Aegilops lineages, which were linked to important agricultural and industrial characteristics of
bread wheat including defence, nutritional content, energy metabolism and growth. High abun-
dance of gene fragments, often forming “stacks”, highlighted the plasticity of the bread wheat
genome and indicated that gene duplications may have contributed to the formation of new gene
functions and the rapid evolution of gene families related to environmental responses (292).

Major efforts are underway to improve wheat productivity by increasing genetic diversity
in breeding materials and through genetic analysis of traits (27). All developed genomic re-
sources were made public available and deposited in the European Nucleotide Archive (ENA)
with project accession PRJEB568. Although the produced assemblies are fragmentary, they will
constitute a framework for identification of genes, supporting further genome sequencing and
facilitating genome-wide analyses. However, alternative strategies are needed to establish a
(draft) reference genome sequence and structural gene annotation for the bread wheat genome.
In particular, distinguishing homoeologous chromosomes prior to sequencing by using chromo-
some flow-sorting technology (205—-207 ) constitute a powerful technologies allowing to assemble
homoeologous chromosomes individually (798). This complementary strategy will be further dis-
cussed in the following chapter of this thesis.



Chapter 4

A chromosomal survey of the bread
wheat genome
— Gene annotation and genome analysis —

The previous chapter discussed opportunities and limitations of whole genome shotgun sequenc-
ing for the analysis of the bread wheat genome. While algorithms that allow quantification of the
gene repertoire of hexaploid wheat were developed and applied to measure globally genome
change following polyploidization, sequencing the whole genome at once could not be used to
generate a suitable draft reference genome sequence. The majority of homoeologous sequence
copies were collapsed in the genome-wide de novo assembly of WGS reads, which restricts
genome-specific identification of full-length protein-coding sequences and structural annotation.
Moreover, assignment of the genome-of-origin has been constrained only to a subset of assem-
bled sequences, thus limiting further investigation of homoeologous relationships and phyloge-
netic analysis. To overcome these challenges the IWNGSC employed a “divide-and-conquer” ap-
proach and utilized flow-cytometry technology to isolate, purify and sequence DNA of individual
wheat chromosome arms (209,296). This strategy allowed generating a "chromosomal survey
sequence” assembly based on lllumina short reads (297) (Section 2.2), which constituted a valu-
able draft genome sequence and permitted to distinguish homoeologs and to structurally annotate
the bread wheat genome.

In the following sections, the annotation and characterization of the bread wheat genome
will be described. Therefore, | implemented an extrinsic gene prediction pipeline to identify
protein-coding gene loci, alternative transcript usage and novel (non-protein-coding) transcrip-
tional active regions (nTARs). For the first time, this annotation allowed large-scale comparative
analysis between the wheat A, B and D genomes and investigation of syntenic conservation and
gene family composition on a chromosome (arm) level. Here, structural attributes of homoeol-
ogous genes and transcripts will be described, patterns of alternative splicing elucidated and
aspects of post-transcriptional gene expression regulation discussed.

59
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In its first version the gene annotation pipeline was implemented for the annotation of the
barley draft genome sequence assembly (797). An adapted version, which will be described in
this chapter, was applied on the CSS assembly of bread wheat.

All methods and results shown in this chapter are part of following publications:

« A physical, genetic and functional sequence assembly of the barley genome
The International Barley Genome Sequencing Consortium (IBSC)
Nature. 491(7426):711-717, 2012.

+ A chromosome-based draft sequence of the hexaploid wheat genome
The International Wheat Genome Sequencing Consortium (IWGSC)
Science. 345(6194):1251788, 2014

4.1 Exon detection and consensus gene modelling

Computational approaches for the discovery and annotation of gene structures on basis of a
reference genome sequence are mainly divided into two categories: ab initio (or intrinsic) and
homology-based (or extrinsic) methods (298). Ab initio gene finders apply statistical models
to detect genes based on characteristic genomic sequence features. In contrast, homology-
based approaches utilize alignments of external evidences, for example cDNA or protein se-
quences from closely related species, to annotate genes and corresponding structures. Hybrid
approaches that combine advantageous of intrinsic (no additional data required) and extrinsic
methods (increased sensitivity due to experimental evidences) were applied for the annotations
of the high-quality reference genomes Arabidopsis (137), Brachypodium (42), sorghum (40) or
rice (45). However, assessments of both approaches have demonstrated that ab initio gene
finders are highly susceptible to an appropriate selection of a training data set and, in particular,
rely on a high quality (at best complete) reference genome sequence (299,300). Many gene
models obtained by ab initio methods have been shown to be gene fragments or false positive
predictions (301). Therefore, additional computational methods and experimental evidences are
required to filter incorrect gene predictions or potential pseudogenes (302). For bread wheat
both, technical and biological factors, complicate ab inito gene prediction on basis on the CSS
assembly. Short contigs with a L50 length ranging between 515 bp (3DS) and 4,297 bp (6DS) for
individual chromosome arms (Section 2.2) and incomplete assembly or fragmentation of genes
on multiple contigs would substantially hamper de novo annotation. Additionally, the high abun-
dance of gene fragments and pseudogenes (7199) may frequently result in false-positive gene
predictions. Accompanied by the availability of high-quality reference genomes, decreasing costs
and increasing sequencing depth of high-throughput mMRNA sequencing enable to generate large-
scale transcriptome resources (742). Such data sets open new possibilities for homology-based
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annotation approaches, which have also been shown to result in the most accurate gene predic-
tions (299,300).

Therefore, in frame of the IWGSC, | implemented a semi-automated extrinsic gene predic-
tion pipeline, which combined different external evidences, including annotated proteins of the
closely related reference grasses barley, Brachypodium, rice and sorghum, more than 17,000
publicly available wheat fl-cDNAs and a multi-organ wheat RNA-seq data set. Briefly, this gene
annotation pipeline consisted of three subsequent steps: First, a set of "reference-based” gene
and transcript structures were generated by merging spliced-alignments of protein sequences of
reference genomes and wheat transcriptome sequences (fl-cDNA sequences and de novo tran-
scriptome assemblies). Secondly, the initially obtained structures were refined utilizing wheat
RNA-seq short reads. Third, the predicted genes were classified in "high-confidence” (HC) cate-
gories, including protein-coding/functional genes, and "low-confidence” (LC) categories, including
nTARs, highly degenerated genes, pseudogenes and gene fragments, based on sequence ho-
mology and coverage of available reference plant protein sequence data set.

All subsequent steps and analysis were performed on the repeat-masked version of the
CSS assembly (Section 2.2). By using the original, non-masked version of the genome assem-
bly, repetitive and low-complexity sequences would seed spurious alignments, which most likely
constitute adverse evidences for the gene annotation (303). Furthermore, the repeat masking
reduced the entire search space by 86% and, consequently, decreased the computational time
and memory requirements.

4.1.1 Reference-based gene structure prediction

To guide the later assembly of transcript structures by using short RNA-seq reads (Section 4.1.2)
and, in particular, to identify non- or low-expressed genes, potential loci were first annotated
based on alignments of protein sequences from related grass genomes and from peptide transla-
tions of wheat fl-cDNAs and a comprehensive de novo transcriptome assembly (Fig. 4.1). Protein-
coding wheat fl-cDNAs and assembled transcripts, which were not represented in the CSS as-
sembly, were also identified and completed the set of structurally annotated wheat genes.

De novo assembly of the wheat transcriptome

A comprehensive de novo wheat transcriptome assembly was generated independently of the
CSS assembly, utilizing lllumina RNA-seq short reads sampled from five different organs (leaf,
root, grain, stem and spike) (Section 2.2). Therefore, | pooled the raw RNA-seq reads, resulting
in a comprehensive collection of 615 mio reads (62 Gb), and assembled this data set with the
de Bruijn-graph assembiler Trinity (304) (release 2012-06-08) and default parameters. The reads
clustered into a total of 389,276 contigs (267 Mb) with a mean length of 687 bp and a L50 length
of 1.1 kbp (Table 4.1). Utilizing homology supported selection against a combined data set in-
cluding Brachypodium (42), rice (45), sorghum (40), maize (41) and Arabidopsis (137 ) protein
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sequences the most reliable open reading frames (ORF) were predicted applying the OrfPredictor
software (222).

A total of 128,549 contigs were aligned to 94% of public available wheat EST sequences
(203) (version 1.19 stringent) by using BLASTN (227) with an E value threshold of 107, which

RNA-seq samples Public cDNAs Reference protein data sets
00000 @ @ @ O @
12Gb  13Gb  11Gb  14Gb  12Gb 16,807 26,159 26,552 28,236 27,640 /

v v
De novo assembly Redundancy filtering
(Trinity) (CD-Hit)
v 389,276 v 16,607

Protein sequence prediction
(OrfPredictor)

v 387,123 v 16,604

Spliced alignments to CSS assembly
(GenomeThreader)

58,026 329,097 3,177 13,427 24,119 20,936 19,077 19,731
61,203 ¢ 3,284,507 46,623 312,802 157,568 589,100 136,34¢
Filtering of low-confidence mapping structures (repeat associated and internal stop codons)

293,961 12,143 22,607 20,801 18,916 19,581
56,762 1,767,091 33,327 188,244 156,748 138,766 130,402

Redundancy filtering Merging spliced alignments of all evidences
(CD-Hit) (cuffmerge)
A A
e — e candidate gene loci
e o —
“unmapped” —— ] 908,149 loci
i 698,964 single exon loci
wheat transcripts M 209,185 multi-exon loci

49,736 I N 1,041,709 transcript structures

[ | 1,573,747  exons

Fig. 4.1. Workflow for the reference-based identification of potential gene structures and wheat
transcripts not represented in the CSS assembly.

External protein sequences were spliced aligned against the CSS assembly and stringently filtered for
protein-coding potential. Alignments leading to truncated translations of the respective query proteins
caused by internal stop codons were removed. A non-redundant structure data set was generated by
clustering of structures of different evidences sharing same intron boundaries. Additionally, wheat tran-
scripts were identified, which could not be aligned to the CSS assembly. Black and grey numbers count
aligned cDNAs/proteins (RNA-seq assemblies, wheat fl-cDNAs and protein sequences of reference grass
genomes, respectively) and distinct GenomeThreader alignments, respectively.

Table 4.1. Assembly statistics of the de novo assembly of wheat RNA-seq reads obtained for five
organs.

Number of assembled contigs 389,276
Total assembled sequence 267,459,986 bp
Minimum / maximum contig length 201 bp /31,162 bp
Mean contig length 687 bp

N50 / N90 contig length 1,106 bp / 272 bp
GC content 47.72%
Number of contigs with predicted ORF 387,123
Assembled contigs matching HarvESTs (v1.19) 128,549 (33%)

Matched HarvESTs (v1.19) by assembled contigs 85,618 of 90,786 (94%)
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suggested an almost complete representation of the wheat transcriptome. However, the mean
length of obtained wheat sequences (approximately 700 bp) was substantially reduced as com-
pared to Brachypodium transcripts (approximately 3,000 bp) (42), which indicated highly frag-
mented transcript sequences. Furthermore, the large number of assembled sequences also in-
dicated that the data set included a significant portion of non-protein-coding transcripts requiring
further filtering to distinguish between protein-coding and other transcripts.

Reference-based gene structure prediction

Next, the predicted proteins of wheat cDNA sequences [publicly available wheat fl-cDNAs (204)
and the de novo assembly] and the protein sequences of barley, Brachypodium, rice and sorghum
were aligned against the CSS assembly with GenomeThreader (305) (version 1.5.1 with param-
eters: —exondistri —refseqcovdistri —prseedlength 7 —species rice —gcmincoverage 0 -force) (Fig.
4.1). The obtained alignments were stringently post-processed to eliminate false positive pre-
dictions, which were most likely caused by repetitive mechanisms generating gene fragments
or pseudogenes (199). GenomeThreader-alignments were discarded with less than 70% cov-
erage of the query protein or that result in protein translations interrupted by a stop codon, the
most radical change leading to inactivated proteins. Furthermore, loci related to repetitive se-
quence elements were identified and removed by screening the human readable descriptions of
the reference protein data sets for the terms “retrotransposon”, "transposon”, "helicase” and ”in-
tegrase” as well as by comparing the predicted wheat transcript sequences against the "Triticeae
Repeat Sequence Database”") with BLASTN (227) (E <10®). Finally, a non-redundant set of
transcript structures was built by merging the filtered alignments for each reference data set with
cuffmerge (306) (version 2.0.2).

More than 80% of the wheat transcriptome sequences [329,097 de novo assembled tran-
scripts (85%) and 13,427 public available wheat fl-cDNAs (204) (81%)] and, corresponding to
the evolutionary distances to wheat, between 68% (rice) to 92% (barley) of the reference grass
proteins were aligned against the CSS assembly (Fig. 4.1). The reference-based gene structure
data set included a total of 908,149 potential gene loci with 1,041,709 distinct transcript struc-
tures and 1,573,747 exons. Additionally, 61,203 wheat fl-cDNAs and transcript assemblies were
identified, which could not be aligned to the wheat reference genome sequence (15%). Redun-
dant sequences were removed by nucleotide sequence clustering utilizing Cd-Hit (234) with 98%
nucleotide identity, which resulted in 49,736 wheat transcripts (12%).

4.1.2 Identification of tissue-specific transcript structures

Alternative splicing has been shown to be highly specific for individual tissues or cell types and
might be regulated differentially under changing environmental influences (184,191,307). There-
fore, | performed reference-guided transcript assemblies of the RNA-seq reads individually for

The Triticeae Repeat Sequence Database was downloaded from http:/wheat.pw.usda.gov/ITMI/Repeats; version
08/22/2012
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each of the five sampled wheat organs (Fig. 4.2). To define the exact alignments of reads across
the genome and to avoid wrong mapping of reads to their homoeologous counterparts, an iterative
alignment procedure was applied using different stringency levels. Then, transcripts structures
were assembled based on the coordinates of these read alignments and supported by the previ-
ously defined reference-based gene loci. These provided particularly useful, additional evidence
for the definition of low-expressed transcripts or genes absent in the RNA-seq data set.

Reference-based structures

Wheat RNA-seq @ Consensus gene models

v
“ ‘ 1ZGb“ > 48 mig. 943,000 Clustering of redundant gene structures
(Cuffcompare)
I O
S m 97907 | poence NN RN N
‘ 13Gb | — —> S —— ———
LEA —
Iterative ROO
mapping to 56mio Reference-guided | 043327 Sl r——
‘ 11Gb | = | chromosomearm | —> assembly —> ' ' '
assemblies (Cufflinks) Structures ™= em—\— R " — A, N
(Bowtie / TopHat) ——
‘ 14Gb | = 57mig 943,085
976,962 loci
746,370 single exon loci
59mio 037 540 230,592 multi-exon loci
‘ 12Gb| —» — 7 1,265,548 transcript structures
| | 2,054,166  exons
Mapped RNA-seq reads Predicted gene loci

Fig. 4.2. Workflow for RNA-seq based gene prediction and detection of tissue-specific transcripts
variants.

Consensus genes and transcript models were created based on reference-based structures and individual
transcript assemblies for wheat RNA-seq data of five tissues. See text for a detailed description of individual
steps.

lterative alignment of RNA-seq reads against the genomic reference assembly

For each sampled wheat tissue, the generated RNA-seq reads were aligned in three successive
runs against the repeat-masked CSS assembly using Bowtie2 (174) (version 2.0.0-beta6) and
TopHat (186) (version 2.0.3) allowing no, one and two read mismatches, respectively (param-
eters: read-mismatches 0/1/2 segment-mismatches 1 max-multihits 100). After each iteration |
removed reads mapping with best quality score to two or more locations in order to eliminate
those for which the genome location and homoeologous genomic origin could not be unambigu-
ously determined. The remaining alignments of uniquely mapped RNA-seq reads were iteratively
accepted beginning with the most stringent alignment.

Between 25% to 31% of reads were unambiguously aligned to the CSS assembly con-
sidering only perfect alignments of RNA-seq reads and 10% to 17% matched multiple genomic
locations (Fig. 4.3a). Both proportions increase up to 49% of unique mapped reads and 27%
of multiple mapped reads allowing maximum two mismatches in the read alignments. Overall,
the proportion of aligned reads (55% to 71%) was in line with other analysis (797). The iterative
alignment strategy identified a total 274 mio high stringency read alignments against the CSS
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Fig. 4.3. Alignment statistics for RNA-seq reads against the wheat CSS genome assembly.

a, Distribution of unique, ambiguous mapped and unmapped RNA-seq reads for each sample with different
alignment stringency levels. b, Number of accepted RNA-seq read alignments for each sample using the
iterative alignment strategy.

assembly, of which the majority were contributed by perfectly aligned reads (Fig. 4.3b).

Transcript reconstruction and consensus gene modelling

Cufflinks (306) (version 2.0.1) was applied for each tissue to assemble the mapped RNA-seq
reads into transcript structures utilizing the previously identified homology-based transcript struc-
tures as reference annotation (parameter -g). Nucleotide sequences were extracted from the CSS
assembly, the most reliable open reading frame determined with OrfPredictor (222) and strand
direction of individual structures re-defined in accordance to the predicted protein sequence. Fi-
nally, all transcript models were clustered based on identical intron boundaries, which were iden-
tified in multiple tissues, by using cuffcompare (306) (version 2.0.1).

This procedure identified a total of 976,962 loci including 1,265,548 alternative transcripts
(i.e. splicing variants) (Table 4.2). Between 29,391 (spike) and 34,851 (grain) novel loci were
predicted for individual wheat tissues from RNA-seq short reads alone and not present in the

Table 4.2. Exon, transcript and gene structure prediction statistics for the reference-based annota-
tion, the gain of information with RNA-seq data and the consensus structure set.

Novel predictions based on aligned RNA-seq reads

(@) (b)
Re. grain leaf root stem spike Cons.
Loci 908,149 34,851 29,758 35,178 34,946 29,391 976,962
Transcripts 1,041,709 91,198 82,276 87,388 92,018 87,792 1,265,548
Exons 1,573,747 280,937 266,337 269,864 281,422 278,951 2,054,166

@ Reference-based gene structure prediction (Section 4.1.1).
® Consensus gene set determined by clustering transcript structures based on common intron splice sites.
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previously defined reference-based structures. In combination, the RNA-seq predictions of the
five tissues contributed 68,813 (7%) gene loci to the consensus annotation. Notably, substantial
larger relative fractions of additional distinct exons (23%) and alternative splicing variants (18%)
were identified. These findings underlined that RNA-seq technology is a valuable resource for the
discovery of previously unknown alternatively spliced genes (184,307,308).

4.1.3 Confidence classification of wheat gene predictions

With more than 900,000 predicted loci in the CSS assembly, the consensus set exceeded ap-
proximately ten-fold previous estimates of the hexaploid wheat gene repertoire reported in this
thesis (Section 3.2.3) and other studies (43,44,63,241). However, this significant increase was
triggered by technical and biological factors. Especially for genomes with highly repetitive se-
guences, NGS-based assemblies are limited in contig length and some gene loci might not be
assembled in full-length or split onto multiple contigs. Moreover, besides the high abundance of
gene fragments and pseudogenes, which increase substantially gene estimates (7199,241) (Sec-
tion 3.3), usage of RNA-seq data evokes the discovery of nTARs in addition to expressed protein-
coding genes (191,309). Therefore, | implemented a multi-step bioinformatic pipeline for the fur-
ther post-processing and confidence classification of the predicted proteins (Fig. 4.4). Based on
peptide-homology analysis against high-quality reference plant protein sequences, which served
as templates for full-length genes, fragmented wheat loci were identified and the predicted pro-
teins grouped into high-confidence categories (functional, protein-coding genes) as well as low-
confidence categories (highly diverged genes, pseudogenes, non-protein-coding transcribed re-
gions).

Identification of template reference genes
First, for each predicted wheat transcript | selected one "template” peptide from high-quality plant
reference gene annotations, which covered comprehensively the flowering plants (angiosperms)
and include monocot as well as dicot species (Table 4.3). These template peptides were further
used to assess the protein-coding potential of the wheat transcripts, locus fragmentation or pseu-
dogenization. | aligned the wheat sequences against each reference gene set [BLASTP (227)
(E <107°)] and identified the best scoring alignment for each search. In case of multiple matched
reference databases the most suitable template protein was selected on basis of an alignment
identity score, which adjusted for different evolutionary distances between bread wheat and the
respective reference species (s) by multiplication of the obtained protein alignment identities (7)
with a correction factor (C). The corrected alignment scores of a wheat transcript (¢) against the
reference plant databases (S) were ordered and the reference protein with highest value was
selected as template 7

T(t) = maxges [ C(s) i(t, s) ] (4.1)

The species-specific correction factors were defined by the sequence similarity distribution be-
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Fig. 4.4. Classification of the consensus gene set into high- and low-confidence gene categories.
The predicted wheat gene set was partitioned into high-confidence classes (red box) and low-confidence
classes (grey boxes) on basis of conserved sequence homology against public available plant proteins. A
detailed description of individual steps is given in the main text. Number of transcripts that were detected
in the CSS assembly are shown in black. Number of unmapped wheat transcripts are shown in grey.

tween public available wheat fl-cDNAs (f € F') (204), which were used as "gold standard” repre-
sentation of wheat proteins, and each reference species (s € S):

100

meanser i(f,s)

C(s) = (4.2)

Confidence class assignment for predicted wheat gene loci

This work distinguished between HC wheat genes, which were most likely protein-coding genes,
and LC wheat genes, which were non-functional or non-protein-coding transcripts. Therefore, |
defined a minimum alignment identity cut-off, which represented the expected protein identity for
functional wheat genes, by subtracting one standard deviation from the mean alignment iden-
tity of wheat fl-cDNAs against each reference proteome [first-best BLASTP (227) alignment with
E value <107°] (Table 4.3). Gene predictions without any match against the reference plant
protein sequences were classified as "unsupported loci” (USL). Furthermore, | screened the
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Table 4.3. Reference proteome data sets and parameters used for identification of high- and low-
confidence wheat genes.

Set Species Description »@ o) > ¢

Peptide predictions for a publicly
available wheat fl-cDNAs (204)
Barley high-confidence gene

1 Wheat 16,604 - 90% 1.00

2 Barley set (191) 26,159 88% + 14% 74% 1.12
Brachypodium, Conserved grass orthologous gene
3  rice, sorghum,  representatives which were defined 20,401 81% £ 16% 65% 1.23

barley (fl-cDNAs) by orthologous clustering (3710)
Ensemble gene set that incorporates

Maize, the proteomes of the more distant

Arabidopsis plant species maize (41) and
Arabidopsis thaliana (137)

95,876 74% £ 15% 59% 1.35

@ Number of sequences

@
®) Mean BLASTP (227) alignment identity and standard deviation to wheat fl-cDNAs.
© Minimum alignment identity threshold used for confidence assignment.

)

9 Correction factor applied for selection of reference template genes.

selected template genes of all transcripts for repeat associated descriptions (’retrotransposon”,
"transposon”, "helicase” or “integrase”) and collected those genes in a separate class of "repeat-
associated” (REP) loci. All remaining transcripts, which had reduced protein sequence homology
(i.e. alignment identity <cut-off), were grouped in the "low-confidence supported” (LCS) category,
while transcripts with the expected protein sequence homology (i.e. alignment identity >cut-off)
were grouped in the HC gene set.

Overall, an alignment against at least one reference protein was identified for 439,976 out
of 1,254,489 (35%) wheat transcripts, which were predicted in the CSS assembly and 15,589 out
of 49,736 (31%) unmapped cDNA sequences (Table 4.4). Two thirds of these transcripts (292,561
and 9,084, respectively) satisfied the defined alignment identity cut-off for HC transcripts. Barley
proteins were selected as template for the majority of wheat transcripts (174,606 and 2,885, re-
spectively) reflecting the close evolutionary distance of the two genomes (Section 1.2.2). Whilst
less then three percent of wheat transcripts with high alignment identity above the defined cut-off
were associated to repeat elements, almost 20% of the annotated transcripts with low align-
ment identity fell into the REP confidence class. Thereby, the repeat-association was far less
pronounced for unmapped wheat transcripts.

Template based joining of fragmented gene loci

The defined template reference genes were also utilized to detect gene loci, which have been split
on two or more contigs in the CSS assembly, or unmapped wheat transcripts, which were only par-
tially assembled de novo. Therefore, | computed protein alignments between wheat transcripts
and the cognate template peptides (Fig. 4.5a) and determined the coverage of the reference
genes (Fig. 4.5b). If two or more splicing variants of a gene were aligned, | selected the transcript
with highest coverage as representative and discarded all other alignments. Then, | constructed a
directed graph for each template protein representing all accepted alignments with respect to the
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Table 4.4. Alignment statistics for comparison of predicted wheat transcripts positioned within the
CSS assembly against the reference proteome data sets.

Set 1@ Set 2@ Set 3@ Set 4@ Total
Predicted wheat transcripts located in the CSS assembly
Aligned transcripts 323,992 399,430 404,488 332,538 439,976
Low sequence similarity alignments
Aligned transcripts 221,457 162,857 186,529 121,362 147,415
Transcripts with template® 16,980 49,935 61,104 19,396 147,415
Selected references 2,474 3,712 2,795 3,377 12,358
Transcripts associated to repeat© - 19,477 7,504 757 27,738
Gene loci with template(s) 12,156 43,046 54,843 15,238 122,382
High sequence similarity alignments
Aligned transcripts 102,535 236,573 217,959 211,176 292,561
Transcripts with template® 36,051 174,606 48,895 33,009 292,561
Selected references 10,855 20,185 7,712 7,841 46,593
Transcripts associated to repeat(© - 6,002 963 47 7,012
Gene loci with template(s) 19,794 78,471 30,885 20,969 132,554
Predicted wheat transcripts not found in the CSS assembly
Aligned transcripts 12,680 13,694 13,753 13,213 15,590
Low sequence similarity alignments
Aligned transcripts 8,419 7,952 7,706 6,680 6,505
Transcripts with template®) 367 386 948 4,804 6,505
Selected references 246 309 704 3,559 4,818
Transcripts associated to repeat(© - 39 33 33 105
High sequence similarity alignments
Aligned transcripts 4,261 5,742 6,047 6,533 9,084
Transcripts with template® 3,140 2,885 1,052 2,007 9,084
Selected references 2,955 2,303 793 1,556 7,607
Transcripts associated to repeat(© - 37 8 10 55

@ For definition of reference protein resources see Table 4.3.
® Transcripts with selected templates from respective reference proteome.
© Repeat information was not available for the wheat fl-cDNA reference data set (204).

exact start and end alignment coordinates (Fig. 4.5¢). Aligned genes were represented as nodes
weighted by the observed template coverages. Potentially neighbouring genes were connected
by edges, if the two loci (i) aligned to the same template gene, (ii) were annotated on different
contigs of the same chromosome arm, (iii) had non-overlapping alignments along the template
protein and (iv) were separated by gaps with less than 30 amino acids length. | directed the edges
based on the alignment coordinates along the template proteins, starting from the amino termi-
nus to the carboxyl terminus. Fourth, the entire graph was split into connected components, for
which | computed all possible paths that include all nodes at least once using a top-down search
algorithm (Fig. 4.5d). These paths were scored by the sum of the node weights to determine the
total coverage of the template gene obtained by the combination of the aligned transcripts. Then,
| selected the path with maximum score as most-likely combination of split genes, marked the
combined loci as fragmented and defined the gene with maximum template coverage as repre-
sentative for the path (Fig. 4.5¢e). Finally, used nodes and edges were removed from the graph
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Fig. 4.5. Pipeline for joining of fragmented gene loci based on the alignments to the associated
template reference peptide.
See main text for detailed description of individual steps.

and the identification of maximum scoring routes repeated until no nodes remained.

A total of 285,549 non-repetitive wheat transcripts, which were positioned in the CSS as-
sembly and corresponded to 127,093 gene loci, as well as 9,029 unmapped wheat transcripts had
high-confidence alignments (alignment identity >cut-off) against the reference proteins (Fig. 4.4).
These were subjected to the template-based joining algorithm (Table 4.5), whereupon 40,387
and 7,560 template reference genes were selected. By using the above-defined criteria 3,929
and 162 edges between two gene loci form an initial set of 92,257 and 7,560 connected com-
ponents. The graph traversal determined 5,643 and 273 mutually completing HC gene loci and
transcripts, respectively. This resulted in a final HC protein set of 133,090 genes of which 124,201
were positioned within the CSS assembly (93%) and 8,889 were represented by unmapped wheat
transcripts (7%).

Assignment of confidence classes to predicted wheat gene loci

Finally, the predicted genes were grouped into different confidence classes based on sequence
homology and protein coverage of the previously selected template reference genes (Fig. 4.4).
For alternatively spliced loci the confidence class of the best supported transcript was passed to
the entire gene locus, i.e. to all splice variants. A total of 133,090 loci showed high-similarity ho-
mology with related grass proteins and, thus, were classified as high-confidence, protein-coding
gene predictions (Fig. 4.6 and Table 4.6). These were further subdivided into four levels based
on the coverage of the template reference gene (Fig. 4.6a). 59,426 gene loci covered at least
70% of the reference template gene and were classified as HC level 1 (HC1) genes (Fig. 4.6b).
This group represented the most reliable confidence class level and included (almost) full-length
wheat gene predictions. Three further HC confidence levels were defined, of which the protein
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Table 4.5. Statistics for template based joining of mutually completing gene loci.

Transcripts found in the Transcripts not found in
CSS assembly CSS assembly

High-similarity alignments to reference proteomes
Transcripts 285,549 9,029
Gene loci 127,093 9,029
Template reference gene set
Set 1 (wheat fl-cDNAs) 9,471 2,955
Set 2 (barley) 18,893 2,272
Set 3 (Brachypodium, rice, sorghum) 6,030 785
Set 4 (maize, Arabidopsis) 5,993 1,548
Total 40,387 7,560
Template reference gene set
Created nodes (loci) 127,093 9,029
Created edges (connection of loci) 3,929 162
Connected components 92,257 7,560

Loci joined by traversal of graph
structures

Final number of gene loci after traversal
of graph structures

5,643 273

124,201 8,889

coding confidence decreases with decreasing template reference gene coverage. While levels
HC2 (>50% and <70% coverage) and HC3 (>30% and <50% coverage) represented medium
confidence class levels, level HC4 was the least reliable confidence level, which loci spanned
only a small proportion of a reference protein sequence (<30% coverage). With decreasing con-
fidence levels a trend for higher divergence of the corresponding transcripts was observed (Fig.
4.6¢). Loci with detectable but substantially reduced sequence similarity to the reference proteins
were defined as low-confidence supported gene loci (95,398 loci). The remainder were classi-

Table 4.6. Overview of the confidence classification for predicted wheat gene loci.
Found in the Not found in

Confidence class Description CSSs the CSS
assembly assembly
High-confidence (HC) genes: High sequence similarity alignments against plant reference protein sequences
HCA Level 1 HC Reference coverage >70% 55,249 4,177
HC2 Level 2 HC Reference coverage >50% and <70% 14,367 662
HC3 Level 3HC Reference coverage >30% and <50% 15,475 1,053
HC4 Level 4 HC Reference coverage <30% 39,110 2,997
by 124,201 8,889

Low-confidence loci: Reduced or no sequence similarity against plant reference protein sequences

. Aligned to a reference gene which was
repeat-associated

REP loci classified as repeat based on its gene 32,412 160
' description ]
LCS low-confidence- Aligned to g rgferfence gene with low 88,998 6,400
supported sequence similarity
. No match against reference proteomes,
USL unsupported loci but ORF predicted 718,048 34,147

NCL non-coding No ORF predicted by OrfPredictor 10,411 0
b)) 849,859 40,707
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Fig. 4.6. Template reference gene coverage and sequence similarity of high-confidence gene loci.
a, Based on template reference gene coverage the high-confidence wheat gene loci were categorized into
four confidence classes, HC1 to HC4. b, Frequency distribution of predicted HC genes. ¢, Mean and
median alignment identity of predicted wheat genes against the selected template protein.

fied as repeat-associated genes (32,572), non-coding loci (10,411) or unsupported loci without
homology to any reference plant protein sequence (752,195).

4.2 Evaluation of the wheat gene annotation

4.2.1 Influences of sequencing depth and assembly quality on the HC gene set

The sequencing depth varied considerable for individual chromosome arms and ranged from 28-
fold for the short arm of chromosome 7A up to 242-fold for the short arm of chromosome 4A (Fig.
4.7a). Also, the assembly quality, here defined by the L50 contig length of the repeat-masked
CSS assembly, differed largely between 1.7 kbp (3DL) and 8.9 kbp (6DS) (Fig. 4.7b). However,
no significant correlation between these technical criteria was observed [Pearson’s correlation
coefficient (R?) of 0.04]. With respect to the gene annotation | further tested each chromosome
arm for dependency between sequencing depth, assembly quality and the absolute number of
predicted HC gene loci as well as the proportion of HC1 genes, respectively (Fig. 4.7c).
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Neither technical measurements showed a significant influence on the total number of pre-
dicted high-confidence genes (R? <0.02). This indicated that the general detection of genes was
not substantially influenced by the differences in sequencing depth and contig L50 length between
single chromosome arms suggesting saturation and completeness for all chromosome arm gene
sets. In contrast, the relative number of HC1 genes predicted for individual chromosome arms
had weak correlations with sequencing-depth (R? of 0.31) and assembly L50 (R? of 0.46). Al-
though there was no direct correlation between the two technical measurement themselves, the
increased proportion of predicted HC1 suggested that gene loci were more likely to be assembled
in full-length for chromosome arms with improved quality measures. This indicated that increased
sequencing depth has been beneficial in particular for the complete assembly of gene loci and
reduced the fragmentation of genes into multiple contigs.
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Fig. 4.7. Sequencing depth, assembly quality and distribution of high-confidence gene loci for each
chromosome arm.

a, Sequencing depth, b, assembly quality represented by the contig L50 length of the repeat masked
CSS assembly and ¢, the proportion of the high-confidence gene loci in among confidence class levels for
individual chromosome arms.
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4.2.2 Completeness of the predicted bread wheat gene set

To further evaluate the completeness of the gene annotation, | compared the predicted wheat
transcripts against an independent set of bread wheat EST sequences, which are publically avail-
able in the HarvEST database (203) (version 1.19 stringent), by using BLASTN (227) with a
maximum E value of 10°. A total of 206,778 wheat genes annotated in the CSS assembly and
8,148 unmapped wheat transcripts matched 87,389 and 8,148 out of 90,786 HarvESTs, respec-
tively (Fig. 4.8a). In combination, 61% of all high-confidence gene loci (81,274) contributed to the
detection of more than 90% of the EST sequences. Ninety-seven percent of the EST sequence
were tagged by considering both, high- and low-confidence genes (87,963). The large majority
of HarvEST sequences (85%) were already matched by considering HC1 genes only.

With decreasing (protein-coding) reliability of individual confidence classes less annotated
genes were aligned against the HarvESTs (Fig. 4.8b). Approximately half of the HC4 and less
than 20% of low-confidence gene loci exhibited significant BLAST (227) matches and did not
significantly contribute to the overall detection of EST sequences. The reduced representation
of HC4 and LC gene predictions in a comprehensive public wheat database provided further
evidence that, most likely, the majority of these gene calls constituted non-expressed gene frag-
ments and pseudogenes, a conclusion that was supported by the decreased in protein sequence
conservation (Section 4.1.3). In summary, these findings indicated that the structurally defined
high-confidence gene set was highly representative for the entire gene inventory of the bread
wheat genome and that more than 90% of wheat genes have likely been captured in this study.
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Fig. 4.8. Comparison of bread wheat genes against publicly available wheat EST sequence assem-
blies of the HarvEST database.

a, Cumulative number of matched (filled proportion of bars) and not matched wheat EST sequences (non-
filled proportion of bars) for different confidence classes. Dark and light grey represent the fraction of ESTs,
which were matched by HC gene(s) and exclusively by LC gene(s), respectively. b, Fraction of annotated
wheat genes of which at least one transcript was aligned to publicaly available wheat EST sequences.
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4.2.3 Estimation of the bread wheat gene number

The total gene number of the bread wheat genome was estimated on the basis of the level of com-
pletion of the CSS assembly and the detection of HC1 genes. Therefore, a "gold standard” wheat
reference set was defined utilizing approximately 17,000 publicly available wheat fl-cDNAs (204).
These were first allocated to individual chromosome arms via the "Chromosome arm Assigner”
(CarmA) method, a computational approach originally developed for barley (797) and subse-
quently adapted to distinction of homoeologous relationships and chromosome-of-origin within
hexaploid wheat. Briefly, CarmA homology-searches were conducted for the fl-cDNA sequences
against the CSS assembly and the most likely chromosomal origin was determined®. Ninety-
one percent (15,300) of the fl-cDNAs were allocated to individual chromosomes, with a relative
even distribution between the homoeologous genomes [A genome: 5,023 fl-cDNAs (32.8%), B
genome: 5,344 fl-cDNAs (34.9%) and D genome: 4,933 fl-cDNAs (32.2%)].

Subsequently, | evaluated the completeness of the CSS assembly by comparing four differ-
ent genome data sets obtained for chromosome 3B against 966 wheat fl-cDNAs assigned to this
chromosome: (i) the original, non-masked version of the CSS assembly, (ii) the repeat-masked
version of the CSS assembly, (iii) the raw lllumina 3B sequence reads and (iv) 3B scaffolds pro-
duced in a BAC-based sequencing project (371) (Fig. 4.9a). All queries were mapped against the
fl-cDNAs using VMATCH (226) and alignments were filtered requiring 100% sequence identity
spanning at least 50 bp. Furthermore, to elucidate the loss of protein coding information during
assembly, | compared the expected coverage of reference proteins by direct alignments of wheat
fl-cDNAs with the obtained coverage with respect to the representation of a fl-cDNA in the CSS
assembly (Fig. 4.9b). For each fl-cDNA | identified a template reference gene using the same
procedure as previously described (Section 4.1.3). Additionally, | identified the best-coverage
spliced-alignment of a fl-cDNA against the repeat-masked CSS assembly (Section 4.1.1) and
adjusted the direct peptide alignments for the observed representation of the fl-cDNA in the ge-
nomic sequences. Reduced coverage of fl-cDNAs and reference grass genes was obtained for
alignments via the CSS assembly in comparison to the direct peptide alignments.

On the one hand, the detection and coverage of fl-cDNA sequences varied substantially
between different sequence types and sources, whilst only minor differences between the original
and repeat-masked versions of the CSS assembly were observed (Fig. 4.9c). Compared to the
CSS raw reads and assemblies, on which the fl-cDNA chromosome assignment was based, a
total of 101 fl-cDNAs were not detected using the 3B BAC-based scaffolds, which was in line with
the reported completeness of this data set (377) . FI-cDNAs were best covered by raw lllumina
sequencing reads and 3B BAC-based scaffolds, whereas the coverage of fl-cDNAs by contigs
of the CSS assembly decreased 10% compared to the raw reads indicating loss of sequence
information during the assembly process. Consequently, 90% of the entire gene space on basis

@) gratefully acknowledge Heidrun Gundlach for performing the CarmA analysis. Following parameters were used
for CarmA assignment of individual fl-cDNAs assignment to chromosome arms: (i) homology search: forward and
reverse strand search, minimum hit length 120 bp and perfect matches; (ii) chromosome arm assignment: highest
coverage bin, signal noise ratio between the highest and second highest bin >1.5.
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of the CSS assembly could be predicted as at least 70% coverage of the template genes was
required for assignment of gene predictions to confidence class HC1. On the other hand, the
comparison between direct alignments of wheat fl-cDNAs to high-quality reference plant protein
sequences and indirect alignments via the CSS assembly indicated approximately 20% loss of
protein-coding sequence in the CSS assembly (Fig. 4.9d). Therefore, requiring at least 70%
coverage of the template protein would classify 58% of the gold standard wheat fl-cDNAs as
full-length (HC1) genes.

These two estimators, the assembly completeness (cpc1 = 0.90) and the detection rate
(duc1 = 0.58), were used to compute the estimated gene number G of bread wheat with respect
to the 55,249 predicted HC1 gene loci (Guc1) (Table 4.6) as follows:

Gruct 55, 249
G= cnel = 0.90 = 105, 841 (4.3)
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Fig. 4.9. Identification of parameters for estimation of the bread wheat gene content.

The bread wheat gene content was estimated based on a, completeness of the genomic reference se-
quences and b, the detection rate for HC1 genes in the CSS assembly. ¢, Detection and cumulative
coverage of chromosome arm assigned wheat fl-cDNAs by different genomic sequence types and sources
for chromosome 3B. d, Comparision of the cumulative coverage of template proteins obtained in direct
alignments with wheat fl-cDNAs as well as indirect alignments of wheat fl-cDNAs via the CSS assembly.
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4.3 Characteristics of bread wheat genes

4.3.1 Structural characteristics of high- and low-confidence wheat genes

As discussed in the previous sections of this chapter, the CSS assembly made it possible to
structurally define genes for almost the entire wheat genome. For the first time, this annotation
allowed analysing the structural characteristics of wheat genes on a genome-wide level. Besides
the ability to encode for functional, protein-coding genes the structural features differed substan-
tially between high- and low-confidence genes and transcripts (Table 4.4).

Locus, transcript and exon length

The mean locus length (including UTR, exon and intron sequences) and mean transcript length
(including UTR and exon sequences) were 2.2 kbp and 1.3 kbp for HC loci and substantially
longer as for LC loci (0.7 kbp mean locus and transcript lengths). The gene length and transcript
length differed also for individual HC confidence levels, ranging from a mean of 3.3 kbp (gene)
and 1.6 kbp (transcript) in the HC1 set to 0.9 kbp (gene) and 0.7 kbp (transcript) in the HC4
set. This finding was consistent with the observed template gene coverages for genes of different
confidence class levels. Remarkably, almost no variation were found in the median exon sizes
among all four HC levels (168 bp to 171 bp) indicating that individual exons of protein-coding
genes were most likely assembled complete and fragmentation of genes occurred predominantly
in introns. Considering only HC1 genes the observed length were largely in line with predictions
in the model grass species Brachypodium (42), rice (45) and sorghum (40). In contrast to the
reduced locus and transcript sizes, the median exon lengths were considerably increased for
low-confidence loci (207 bp to 282 bp).

Exon frequency

Between 17% (HC1) to 52% (HC4) of HC loci were single exon genes. Again, the variances
between genes of the four HC levels could be explained by the respective template coverages
and locus lengths. However, the observed fractions of single and multi exon genes were largely
consistent with observations in other sequenced grass genomes, like Brachypodium (21%) (42)
or barley (25%) (191). Contrarily, approximately three out of four LC loci consisted of a single
exon. On average, HC protein-coding transcripts were composed of 5.1 exons, consistent with
predictions in Brachypodium (42) (5.5 exons per transcript), while LC transcripts consisted in
average less exons (2.1 exons per transcript).

Alternative splicing

Accompanied with increased exon frequency, alternative splicing was more prevalent for HC
genes compared to LC loci. Two or more alternative transcripts were annotated for approxi-
mately half of the HC genes (49%), whilst multiple transcripts were predicted for only 24% of LC
genes. This was even more pronounced for HC1 gene loci, of which almost 70% had alternative
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Table 4.7. Structural characteristics of high-confidence and low-confidence wheat genes.

High-confidence HC1 HC2 HC3 HC4 by
Gene loci 55,249 14,367 15,475 39,110 124,201
Single exon 9,181 (17%) 3,230 (22%) 4,906 (32%) 20,375 (52%) 37,692 (30%)
Multi exon 46,068 (83%) 11,137 (78%) 10,569 (68%) 18,735 (48%) 86,509 (70%)
Alternatively spliced 38,059 (69%) 7,916 (55%) 6,465 (42%) 8,728 (22%) 61,168 (49%)
Mean size (bp) 3,319 2,204 1,608 901 2,216
Median size (bp) 2,747 1,681 1,105 458 1,398
Transcripts 194,624 37,116 31,957 61,450 325,147
Mean® 3.52 2.5 2.07 1.57 2.62
Median® 3 2 1 1 21
Maximum® 46 43 30 27 46
Mean size (bp) 1,626 1,196 983 675 1,334
Median size (bp) 1,422 1,020 794 435 1,112
Distinct exons® 538,250 94,864 74,630 117,530 825,274
Mean® 9.74 6.60 4.82 3.01 6.64
Median®© 8 5 3 1 4
Maximum® 99 85 71 81 99
Mean® 6.29 4.45 3.52 2.56 5.1
Median@ 5 3 3 2 4
Maximum® 76 38 39 29 76
Mean size (bp) 321 315 314 281 314
Median size (bp) 168 171 187 186 172
Low-confidence LCS REP USL NCL b))
Gene loci 88,998 32,412 718,048 10,411 974,070
Single exon 59,790 (67%) 28,386 (88%) 9,212 (85%) 9,212 (88%) 745,010(76%)
Multi exon 29,208 (33%) 4,026 (12%) 108,118 (15%) 1,199 (12%) 229,060 (24%)

Alternatively spliced
Mean size (bp)
Median size (bp)
Transcripts
Mean®
Median®
Maximum®
Mean size (bp)
Median size (bp)
Distinct exons®
Mean®
Median®©
Maximum®
Mean©®
Median@
Maximum©®
Mean size (bp)
Median size (bp)

9,798 (11%)
862
478

113,507
1.28
1
58
815
519
192,304
2.16
1
64
2.19
1
28
396
264

1,210 (4%)
570
350

35,285
1.09
1
20
568
357
45,886
1.42
1
58
1.54
1
33
391
282

28,484 (4%)
423
273

777,010
1.08
1
30
390
271
970,698
1.35
1
61
1.34 /1
1
25
293
234

20 (0%)
287
229

10,433
1.00
1
3
252
221
11,935
1.15
1
10
1.14
1
8
220
207

100,680 (10%)
695
308

1,261,382
1.29
1
58
675
350
2,046,097
21
1
99
2.39

76
313
222

3 Number of transcripts per locus.

b

d

(

® Exons of two or more transcripts were counted once if they have identical start and stop positions.
© Number of exons per locus.

@ Number of exons per transcript.
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transcript structures. This remarkable level of alternative splicing, which was generally consis-
tent with recent estimates in Arabidopsis (184) and barley (191), and its potential impacts on
gene expression regulation will be further investigated and discussed the following section of this
chapter.

4.3.2 Genome distribution of protein-coding genes

Overall, 124,201 HC protein-coding genes were structurally defined in the bread wheat genome
assembly. Thereby, similar number of genes were obtained for the wheat A genome [40,253
genes (33%)] and D genome [39,425 genes (32%)], while a higher number of genes was detected
in the B genome [44,523 genes (35%)] (Fig. 4.10a). This relative distribution was also found only
considering genes of an individual confidence class [e.g. A genome: 17,635 HC1 genes (32%),
B genome: 20,144 HC1 genes (34%) and D genome: 17,470 HC1 genes (33%)]. Interestingly,
the overall gene content distribution was not retained at the chromosomal level. For instance, the
gene distribution over homoeologous group 3 chromosomes was 30% for the A genome, 42%
for the B genome and 28% for the D genome, whereas the D genome contained the highest
proportion of genes for homoeologous group 7 chromosomes (Fig. 4.10b).
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Fig. 4.10. Distribution of high-confidence wheat genes across genomes and chromosomes.

a, Number of predicted HC wheat genes cumulative for different confidence classes across the A, B and
D genome. Numbers for wheat transcripts not found in the CSS assembly are shown by grey bars. b,
Number of high-confidence genes (HC1-4) for individual chromosome arms or chromosomes (group 3).
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The gene density varied up to 2.4-fold between different chromosome arms ranging from
4.4 loci per Mb (5AS) up to 10.4 loci per Mb (2DL) (Fig. 4.11). To investigate the degree of syn-
tenic conservation of individual wheat chromosome arms and Brachypodium, rice and sorghum, |
further compared the overall gene density against the density observed in the GenomeZipper®), a

® | gratefully acknowledge Mihaela M. Martis, who developed, implemented and performed the GenomeZipper for
the bread wheat genome.
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synteny-derived approximation of the linear gene order along each chromosome (Section 1.5.1).
On average, 53% of the HC genes were located at syntenic positions in the GenomeZipper (Fig.
4.11) on a genome-wide level. The degree of syntenic conservation varied considerably between
34% (6BS) and 67% (5DL) for individual chromosome arms as well as between the A, B and D
genomes. The average level of synteny for genes located on the D genome chromosomes (58%)
was higher than the average for those on the A chromosomes (51%) and on the B chromosomes
(50%). Furthermore, compared to HC genes, LCS genes showed substantially reduced syntenic
conservation across all chromosome arms.
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Fig. 4.11. Gene density and syntenic conservation of high-confidence genes and low-confidence
supported genes for individual chromosome arms.

Triangles and squares visualize gene density against syntenic conservation for individual short and long
chromosome arms (entire chromosome 3B is represented as square). Solid lines show the average syn-
tenic conservation for low-confidence supported (LCS) and high-confidence (HC) genes.

4.3.3 Analysis of homoeologous genes retained in each genome of polyploid
bread wheat

Numerous comparative analyses between the bread wheat A, B and D genomes require the
identification of homoeologous genes, which were derived from the diploid progenitor genomes
and have been retained in hexaploid wheat. In particular, the definition of lhomoeologous gene
triplets”, which are formed by genes present in a single-copy in each genome, would permit to
investigate, for example, conservation in genome structure, sequence evolution, phylogenetic re-
lationships or homoeolog-specific gene expression regulation. However, current studies aiming
at answering these questions have been mostly based on a few (selected) homoeologs due to
the lack of comprehensive and suitable genomic resources (123,312). Here, on the basis of



4.3. CHARACTERISTICS OF BREAD WHEAT GENES 81

the previously unknown gene annotation, a total of 7,228 homoeologous gene triplets were gen-
erated® by using a best-bidirectional hit approach among A-, B- and D-genome encoded HC
protein sequences (313). These represented almost twenty percent of the of the entire wheat
gene catalogue and incorporated a total of 21,684 (7,228 x 3) genes.

Synteny relationships in homoeologous gene triplets

The large majority of the identified homoelogous gene triplets [6,926 triplets (96%)] consisted of
genes that were located on corresponding homoeologous chromosome arms (Fig. 4.12a). Only
302 triplets were formed by unexpected chromosome arm pairings and showed mainly inter-
change of arm assignments for one member (e.g. 11 triplets were formed by genes of chromo-
somes 7AS, 7BL and 7DS). Most probably this was caused by contaminations during the chro-
mosome flow-sorting process, which purity has been estimated to be approximately 90% (70).
Notably, the findings reflected well the known evolutionary dynamics of chromosomes 4A and
5A, respectively (63,314,315) (Fig. 4.14b and the following section). Consistent with the translo-
cation of a chromosomal segment between the long arms of chromosomes 4A and 5A, only 13
(4AS-4BS-4DS) and 35 (4AL-4BL-4DL) gene triplets were identified to be shared between the
short and long arms of the homoeologous group 4 chromosomes, whereas 121 and 100 triplets
were formed by genes from chromosome arms 4AL-5BL-5DL and 5AL-4BL-4DL, respectively. A
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Fig. 4.12. Structural and functional characteristics of identified homoeologous gene triplets.

a, Number of homoeologous gene triplets for each linkage group. b, Structural comparison of the distri-
bution of homoeologous genes. The Venn diagram counts number of triplets anchored in and visualizes
overlap in between the GenomeZippers for the A, B and D genomes. The dotplot depicts the linear order-
ing of homoeologous genes between the GenomeZippers of the A and B genomes. The corresponding
structural comparisons between the A and D genomes and B and D genomes are shown in Fig. A.1.

“)| gratefully acknowledge Sapna Sherma for implementation and identification of homoeologous gene triplets.
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total of 416 and 445 gene triplets consisted of genes from chromosome arms 4AS-4BL-4DL and
4AL-4BS-4DS, respectively, which mirrored the two pericentric inversions happened between the
short and long arms of chromosome 4A.

Furthermore, at least one gene was anchored in the wheat A, B and D wheat GenomeZip-
pers for 6,196 (86%) triplets and all three homoeologs for 4,133 (57%) triplets (Fig. 4.12b). Most
homoeologous genes were positioned in high co-linearity except for the previously described
chromosomal re-arrangements involving chromosomes 4A, 5A and 7B (63,314,315) (Figs. 4.12b
and A.1). However, small-scale interruptions in the micro-synteny were also evidentin pairwise
comparisons of the ordering of homoeologs between chromosomes.

Distribution of protein function categories among homoeologous gene triplets

Besides genome-wide structural representativeness of the identified homoeologous triplets, | also
evaluated the functional representativeness of protein function categories among single-copy ho-
moeologous triplets. Therefore, | compared the general distribution of molecular function and bi-
ological process gene ontologies for proteins forming homoeologs gene triplets against the entire
wheat gene catalogue utilizing GOSIim analysis (316), which projects the granular gene ontology
classification onto a more broad abstraction level [R/Bioconductor GSEAbase package (version
1.24.0) using the provided mapping file "goslim_plant.obo”]. To test if the defined homoeologous
triplets were biased towards specific GOSIlim categories, | also performed a permutation test and
compared the observed distributions against those computed for random selections of homoe-
ologous triplets from the entire bread wheat gene space (1,000 iterations). Notably, the relative
distributions of molecular function (Fig. 4.13) and biological process gene ontology categories
(Fig. A.2) did not deviate for homoeologous triplets, the entire wheat gene space and the permu-
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Fig. 4.13. Distribution of molecular function categories for homoeologous gene triplets and the
entire wheat gene repertoire.

Comparison between the distributions of molecular function categories for homoeologous gene triplets,
the entire wheat gene repertoire and a permutation of randomly selected gene triplets (1,000 iterations).
Corresponding distributions for biological processes are shown in Fig. A.2.
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tation test. This suggested that the defined set of homoeologous triplets constituted a robust and
representative framework for genome-wide comparisons among wheat genomes.

4.3.4 Composition of wheat gene families

To test the extent of gene conservation across homoeologous chromosomes, the 133,090 pre-
dicted HC genes were clustered into protein families by sequence similarity using TribeMCL
(317). This identified a total of 10,684 TribeMCL groups and 5,606 singletons, i.e. wheat genes
without sufficient sequence homology to others®. | merged both sets into a total of 16,290 gene
family groups, which contained between 1 and 2,996 genes with a geometric mean of 3.1 genes
per group and a median of 3 genes per group, respectively. Furthermore, | evaluated the genome
composition of predicted wheat gene families and, therefore, converted the gene family grouping
into a binary matrix. This matrix encoded the composition of the TribeMCL groups with respect to
presence and absence of family members on individual chromosome arms. Then, | determined
conservation in the gene family structures by hierarchical clustering analysis of the matrix with
the pvclust-function (378) in R (binary distance and the "average” linkage method as well as
500 bootstrapping replications in order to estimate the uncertainty in the hierarchical clustering)
(Fig. 4.14).
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Fig. 4.14. Composition of wheat gene families.

a, Genome- and chromosome arm contribution to gene family clusters was subject to hierarchical cluster
analysis. Color coding in the outer ring indicates relatedness of the respective branches. Red stars
mark significant edges (boot strapping values >0.95). The "?” represents the set of wheat transcripts
not found in the CSS assembly. b, Evolution and structure of chromosome 4A, which structure has been
shaped through two translocation events (5AL to 4AL and 7BS to 4AL, respectively) and three subsequent
peri- and paracentric inversions (63,314,315). The coloring indicates chromosome-of-origin for individual
chromosomal segments. [The evolution of chromosome 4A is based on schematic drawings in (63,315).]

®)| gratefully acknowledge Manuel Spannagl for computing the TribeMCL clustering and providing the gene family
groups for further analysis.



84 CHAPTER 4. A CHROMOSOMAL SURVEY OF THE BREAD WHEAT GENOME

With the exception of chromosome 4AL, all chromosome arms clustered with their corre-
sponding homoeologous counterparts (Fig. 4.14a). However, the pattern of clustering observed
for homoeologous chromosome group 4 was consistent with the patterns observed for the ho-
moeologous gene ftriplets (Fig. 4.12). It reflected a known pericentromeric inversion, which in-
terchange a segments native to the short and long arms, respectively, and two translocations of
segments from chromosome arms 5AL and 7BS (63,314,315) (Fig. 4.14b).

Considering only the grouping of homoeologous chromosome arms, all possible cluster
topologies between genes in the A, B and D genomes were apparent. For example, 7A and
7D shared more homoeologues than they shared with 7B. In contrast 5B and 5D shared more
genes than they did with 5A or 2A and 2B shared more genes than they did with 2D. Thereby,
notably, the topologies occurrence in unbalanced frequency. Whereas five and six homoeologous
groups formed the topologies A(B,D) and B(A,D), respectively, only for the short and long arms
of the homoeologous chromosome group two the A genome and B genome showed highest
conservation in gene content. Overall, these patterns indicated that A and B chromosomes were
most different with respect to gene content, with the D chromosomes being about equally similar
to A as to the B chromosomes. This finding was consistent with other phylogenetic studies by
Marcussen et al. (69) on basis of the genomic resources generated in this thesis.

4.4 Alternative splicing in bread wheat

Alternative splicing (AS) of precursor (pre-)ymRNAs constitutes a major transcriptional mecha-
nism, which is common to all eukaryotic organisms, to increase the functional diversity of the
proteome (308,319). For example, the generation of multiple splice variants from one gene has
shown to be important in the response to environmental stresses allowing efficient and rapid
adaption to changing conditions (184,307). Furthermore, transcriptome-wide studies have not
only shown that AS provides myriad of additional protein variants, emerging evidences sug-
gest that AS plays a major role in post-transcriptional gene regulation and impacts transcript
stability, translation and transcript localization through, for example, generating different ezy-
matic products (320), microRNA-mediated gene regulation (25,321) and nonsense-mediated
decay (184,307,322,323). Previously, genome-wide analyses of AS have been hampered by the
lack of comprehensive, sufficient deep and multi-tissue transcriptome data sets. This has dra-
matically been changed with the emergence of high-throughput mRNA-seq technology. Recently,
more than 60% of multi-exon genes have been reported to be alternatively spliced in Arabidopsis
under normal growth conditions (784). However, this might be a conservative estimate as AS is
often regulated specifically in individual tissues or in changing environmental conditions (324).

Usage of RNA-seq transcriptome data of five organs (leaf, grain, root, stem and spike)
revealed high abundance of AS in the bread wheat genome (Table 4.7). A total of 61,168 alter-
natively spliced HC wheat genes were predicted and a total of 262,114 distinct splicing variants
structurally annotated. In the following, the observed splicing patterns will be investigated, AS
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compared among homoeologous wheat genomes and the conservation and impact of potential
post-transcriptional regulatory mechanisms discussed.

4.4.1 Distribution of alternative splicing in bread wheat

As large variations in the structural characteristics of genes from different confidence classes
were evident (Section 4.3.1). Therefore, the following analysis were restricted to the highest
confidence class level HC1 including protein-coding, full-length genes (HC1), in order to avoid
biased observations due to fragmentation and incomplete assembly of transcript structures.

Genome-wide distribution of alternative splicing

Overall, a comparable degree of AS was detected for the A genome (69% alternatively spliced
genes), B genome (68%) and D genome (69%) (Fig. 4.15a). Also, a similar number of transcript
variants per gene was predicted across genomes (A genome: 3.5, B genome: 3.5 and D genome:
3.6) (Fig. 4.15b). However, slight variations were evident in proportion of alternatively spliced
genes [63% (3DS) to 75% (5AL)] and in the mean number of splicing variants per locus [3.0
(1AS) to 4.0 (7DL)] for individual chromosome arms.
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Fig. 4.15. Distribution of alternative splicing across genomes and chromosome arms.

For the A, B and D genome and individual chromosome arms the figure visualizes a, the number of HC1
wheat genes with single transcript, alternative transcripts or with at least one PTC*/NMD candidate and b,
the mean number of annotated transcripts per gene for individual chromosome arms. Black lines depict
the mean over all genes of the respective genome.
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Distribution of splice types

The different types of AS events were analysed for the HC1 wheat genes with the ASTALAVISTA
software package (325). Intron retention was found to be the most common type explaining
approximately one quarter of all splicing events (Fig. 4.16). The next most frequent splicing events
were alternative 3’ acceptor sites (19%) and 5’ donor sites (16%). Exon skipping was only rarely
observed in wheat (6%). Additionally, this analysis revealed a large number of complex constructs
built up by the combination of different single splicing events like, for example, multiple skipped
exons. However, the observed splicing events were similar frequent for the wheat A, B and
D genomes and, moreover, largely consistent with observations in Arabidopsis (184,307,326),
which indicated high conservation of exon splice types across the angiosperms.
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Fig. 4.16. Frequency of alternative splicing events in bread wheat.

Frequency distribution of the most frequent types of alternative splicing events in the predicted wheat
transcripts across the A, B and D genomes. For comparison the observed frequencies for the Arabidopsis
gene annotation are shown (184).

Conservation of alternative splicing across homoeologous wheat genes

So far, no global differences in the fraction of alternatively spliced genes were evident. There-
fore, | analysed if strictly single-copy homoeologous gene triplets were affected differentially by
AS. Only considering the 3,797 homoeologous triplets that were formed by HC1 wheat genes
(Section 4.3.3), all three homoeologs were alternatively spliced in 2,829 cases (76%) (Fig. 4.17).
Only 14% and 7% of the analysed triples showed a mixture of normally and alternatively splicing
genes in the A, B and D genomes, respectively. Significant differences were observed compared
to a permutation test using randomly defined gene triplets (1,000 iterations). All three homoeolo-
gous genes to be alternatively spliced was observed for approximately one third of the randomly
generated triplets, which assumed complete independence among genes forming triplets. On the
contrary, significantly more genes with non-balanced alternative splicing patterns among homoe-
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Fig. 4.17. Conservation of alternative splicing among homoeologous gene triplets.

Number of homoeologous triplets for which multiple alternative transcripts variance were predicted for all
three homoeologs, for two or one homoeologs and any homoeolog. Only homoeologous gene triplets
formed by HC1 wheat genes were considered. The observed frequencies were compared to a the fre-
quencies observed for randomly formed triplets (1,000 permutations).

ologs than observed for bread wheat would be expected by assuming a random occurrence of
AS.

4.4.2 Analysis of post-transcriptional gene expression regulation

Regulation of eukaryotic gene expression is a complex network of myriad different mechanisms
and pathways including transcription, RNA processing and export, translation as well as protein
folding (25,320-323). Strict control of the involved participants and individual steps is particu-
larly crucial for an organism’s vitality and for orchestrating and maintaining all cellular processes
like, for example, adaptation to changing environmental conditions or response to external stim-
uli (327,328). The nonsense-mediated decay (NMD) pathway is one of these important quality-
control mechanisms and detects, targets and degrades alternatively spliced transcripts, which
contain premature termination codons (PTCs) (323,329) (Fig. 4.18). Those PTC* transcripts
arise by a nonsense stop codon that occurs before the authentic stop codon of the functional
transcript and, consequently, encode truncated proteins. The NMD surveillance pathway ensures
removal of potentially non-functional transcripts. Furthermore, the generation of premature stop-
codon containing mMRNAs has been also demonstrated to be an important post-transcriptional
regulator of gene expression, especially in response to environmental stresses (307,330,331).
In contrast to transcriptional regulation of gene expression, which controls the transcription of
genes into pre-mRNA, this type of gene expression regulation is controlled by the splice envi-
ronment and has been termed "regulated unproductive splicing and translation” (RUST) (332).
Thus, the generation of alternatively spliced transcripts, which are differentially subjected to NMD,
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Fig. 4.18. Gene expression regulation by unproductive splicing and translation.

Simplified scheme of gene expression regulation via unproductive splicing and translation (RUST). On
contrary to transcriptional regulation, which controls the transcription of DNA into pre-mRNA via activation
or repression by transcription factors, splicing factors determine exon usage and, thus, the generation
of productive (upper pathway) mRNAs or non-productive (lower pathway) mRNAs, respectively. Exon-
junction complexes were placed to the splice sites during pre-mRNA processing and mark gene structure.
Whilst productive mRNAs are translated into functional proteins, in the RUST pathway the ribosome stops
at the (nonsense) premature termination codon (PTC). Release factors interact with the remaining exon-
junction complexes and trigger degradation of the PTC* transcript by the nonsense mediated decay (NMD)
pathway. [This figure is based on background information of (332), which has been provided by the authors on
http://compbio.berkeley.edu/people/ed/rust.]

represents an additional layer of complexity regulating protein expression.

Identification of PTC* transcripts

The molecular mechanisms of NMD have been detailed described (323,329,333) and PTC™ tran-
scripts were defined by occurrence of a stop codon more than 50 nucleotides upstream of the
following three-prime exon/exon splice junction (334-336). By using this classification criterion,
| screened for potential PTC* transcripts on basis of the exon structures and ORF information of
the 261,881 transcripts predicted for alternatively spliced HC wheat genes.

In total, 37,196 transcripts (14%) contained a PTC and might potentially be degregated
by NMD. As recent studies in Arabidopsis suggested that transcripts with retained introns are
not sensitive to NMD (307), | filtered out a total of 9,330 transcripts, of which the premature
stop was caused by intron retention. This resulted in the final computational prediction of 27,866
PTC* transcript candidates (11%), which were annotated for 14,972 HC gene loci (23%) (Table
4.8). Considering only full-length wheat gene predictions (HC1), comparable levels of PTC*/NMD
sensitive gene loci were detected among all wheat genomes (Fig. 4.15a). A total of 3,872 out of
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17,064 alternatively spliced genes of the A genome were classified potentially to be regulated by
PTC*/NMD (23%), 4,254 out of 18,402 genes of the B genome (23%) and 3,707 out of 16,704
genes of the D genome (22%). On the level of individual chromosome arms between 19 and 24%
were classified as potential PTC™* transcripts on level of individual chromosome arms.

Table 4.8. Alternative splicing and transcripts containing PTCs across high-confidence gene loci.
HC1 HC2 HC3 HC4 %

General statistics of alternative splicing in high-confidence supported gene loci

Predicted HC genes 55,429 14,367 15,475 39,110 124,201

Predicted transcripts at 194,624 37,116 31,957 61,450 325,147

high-confidence genes

Genes with alternative 38,059 7,916 6,465 8,728 61,168

transcripts

Predicted transcripts derived

from genes with alternative 177,434 30,665 22,947 31,068 262,114

splicing

Premature stop codon analysis

Predicted transcripts used for 177,338 30,630 22,919 30,994 261,881

PTC analysis

Transcripts without PTC 153,436 (87%) 26,370 (86%) 19,703 (86%) 25,176 (81%) 224,685 (86%)

Transcripts containing PTC 23,902 (13%) 4,260 (14%) 3,216 (14%) 5,818 (18%) 37,196 (15%)
PTC (intron retention) 6,168 (3%) 1,071 (4%) 749 (3%) 1,342 (4%) 9,330 (4%)
PTC* transcript candidates 17,734 (10%) 3,189 (10%) 2,467 (11%) 4,476 (14%) 27,866 (11%)

Genes with PTC* transcripts 8,876 (23%) 1,649 (21%) 1,308 (20%) 2,139 (25%) 13,972 (23%)

@ Only transcripts were used for which a protein sequence was predicted.

Conservation of PTC* transcripts for homoeologous wheat genes

Furthermore, the presence and the conservation of PTC* transcripts were elucidated among
genes forming homoeologous triplets (Section 4.3.3). While no evidence of PTC*/NMD was
found for 2,294 triplets (60%), at least one homoeolog of 1,503 triplets encoded a PTC* tran-
script (40%) (Fig. 4.19). Only one PTC* transcript was detected for the majority of these triplets
[833 triplets (55%)]. However, for 267 of these triplets (18%) all three homoeologous genes en-
coded PTC* transcript(s), thus showed evidence for post-transcriptional regulation by the RUST
pathway across genomes. This finding was significant different to the distribution observed by
a permutation test, in which complete independence of PTC*/NMD sensitivity was assumed for
homoeologous genes forming triplets (1,000 iterations and P value <0.05). Compared to an ob-
served presence of a PTC* transcript for all three homoeologes genes of a triplet in 17% of the
cases, less than 1% would be expected by chance. On the contrary, this test revealed signifi-
cantly more homoeologous gene triplets without PTC* transcripts for all three homoeologs and
less triplets with only a genome-specific encoded PTC*/NMD gene candidate.
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Fig. 4.19. Conservation of PTC* /NMD gene candidates among homoeologous triplets.

Number of homoeologous triplets for which all three, two, one or any homoeologs were classified as
PTC*/NMD genes. Only homoeologous gene triplets formed by HC1 wheat genes were considered. The
observed frequencies were compared to a the expected frequencies for complete independence between
genes of a triplet as tested by randomly formed triplets (1,000 permutations).

4.5 Discussion

Accompanied by on-going improvement of next generation sequencing technology, which al-
lowed obtaining comprehensive genomic sequence resources with decreasing costs, chromo-
some (arm) sorting has been a milestone in wheat genomics and allowed the IWGSC to con-
struct a draft genome sequence assembly for hexaploid bread wheat. By using reference pro-
tein information of closely related grass species and a comprehensive wheat RNA-seq data set,
| developed an extrinsic gene annotation pipeline and structurally annotated the bread wheat
genome. Thereby, | took advantages of the physical separation of homoeologous genomes into
single chromosome arm bins and investigated genome-wide structural relationships among the
A, B and D genomes.

4.5.1 A comprehensive annotation of protein-coding bread wheat genes based
on extrinsic sequence information

The implemented gene finding and annotation pipeline enabled predicting a genome-wide set
of bread wheat genes. Using extrinsic sequence information 133,090 high-confidence protein-
coding wheat genes were identified, of which 124,201 genes (93%) were structurally defined the
chromosome survey sequences and assigned to individual chromosome arms. The remaining
7% corresponded to wheat transcript sequences not represented in the CSS assembly (Table
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4.6). During annotation | conducted stringent homology-based confidence analysis to consider
technical fragmentation of genes onto multiple contigs in the CSS assembly as well as to identify
and distinguish between full-length protein-coding genes and pseudogenes or gene fragments.
Thereby, | further subdivided the HC genes into four confidence levels based on sequence cov-
erage to orthologous proteins. Overall, 55,249 of the predicted wheat genes located in the CSS
assembly (44%) were assigned to the highest confidence class (HC1) and spanned at least 70%
of the length of the supporting evidence. A total of 29,842 and 39,110 wheat genes were further
identified with medium coverage of orthologous genes [<70% and >30% coverage (HC2 and
HC3)] and with very low coverage [<30% coverage (HC4)], respectively. Moreover, a homology-
based approach resulted in the definition of more than 7,000 homoeologous gene triplets, which
provided a suitable framework for in-detail analysis of homoeologous relationships between the
A, B and D wheat genomes.

Based on the number of identified HC1 genes and sequence coverage of high-quality wheat
fl-cDNA sequences by different independent genomic resources, the bread wheat genome was
estimated to contain approximately 106,000 genes (Fig. 4.9). This estimate corroborated previous
findings of this thesis on basis of WGS sequencing and the orthologous group assembly (Section
3.2.3) and was consistent with estimates of other studies ranging between 32,000 and 38,000 for
diploid wheat genome (43,44,63,241).

The predicted gene set represented almost the entire bread wheat genome. Ninety-six
percent of publicly available wheat ESTs were detected, with 89% of the ESTs already by HC
genes only (Fig. 4.8). Additional, independent confirmation of gene structure prediction was also
emerging from proteomics analyses of wheat proteins (70). From 63 genes tested, 50 (81%) were
confirmed, eight (13%) provided evidence for alternate structures and five (8%) were absent in
the structural gene calls(®).

4.5.2 Identification of thousands of gene fragments, pseudogenes and non-
coding transcriptional active regions in the wheat genome

Although the fragmentation of genes into two or more contigs in the CSS assembly, which could
not be detected by the implemented template-based joining algorithm, has to be considered,
abundance of gene fragments and pseudogenes in the wheat genome (7199,225) impeded gene
prediction and most probably cause an overestimated number of genes in the entire HC gene set.
A proportion of low (HC4) and medium (HC2 and HC3) confidence genes might have represented
true but incompletely defined genes. However, declining sequence conservation to orthologous
proteins (Fig. 4.6) and decreased representation in the public wheat HarvEST database (203)
indicated that with decreasing protein-coding-confidence, the high-confidence gene sets HC2
to HC4 included also a substantial number of deteriorated gene fragments and pseudogenes

®)| gratefully acknowledge Matthew Bellgard, Brett Chapman and Rudi Appels (Murdoch University, Australia) for
the proteomic analysis and evaluation of the predicted protein sequences.
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(Fig. 4.8). Especially, the HC4 gene set most likely accumulated relatively young pseudogenes,
whose protein-coding sequence have not been sufficient degenerated to be classified into the
LCS gene set. Median alignment similarity to the respective reference protein was reduced for
HC4 genes, of which the majority had 10% to 20% reference gene coverage. This was consistent
with previous observations discussed in chapter (Section 3.3) of this thesis, showing that repeat-
associated wheat sub-assemblies formed “stacks” after the orthologous group assembly.

Furthermore, 95,398 LCS gene loci were identified with homology to plant reference
species, but at significant reduced protein conservation levels. LCS gene loci were less frequently
located in syntenic conserved regions (Fig. 4.11). The locus sizes of LCS genes were substan-
tially shorter (519 bp) compared to high-confidence genes (1,112 bp) (Table 4.7). More than
two third of the LCS genes were single exon genes and on average 1.28 alternative transcripts
structures were annotated per locus revealing that low-confidence genes were less affected by al-
ternative splicing compared to bona-fide protein-coding genes (30% single exon genes and 2.62
alternative transcripts per locus). On the contrary, almost doubled median exons size for LCS
genes (264 bp for LCS genes compared to 168 bp for HC genes) suggested that these loci might
represent non-processed pseudogenes and originated from retro-transposition of a RNA interme-
diate back into the genome (270). Taken together, although a proportion of HC4 and LCS genes
might represent fractions of functional gene, these observations indicated that a majority of these
gene sets most likely represented non-functional genes, gene fragments or deteriorated (pseudo-
Jgenes, which resulted from generation and amplification by DNA transposons, retroelements or
double-strand break repair (199,224,225,275).

A total of 728,459 predicted loci did not share any significant homology to plant proteins
(USL confidence class) or completely lacked a reasonable open reading frame (NCL confidence
class) (Table 4.7). In part, these predictions resulted from the repetitive nature of the bread wheat
genome. Ultra-short seeds in the CSS assembly caused spurious alignments of reference pro-
teins or wheat cDNAs sequences, which bridged repeat-masked genomic sequences. The trans-
lated peptide sequences of these structures had large proportion of repeat-masked sequences
and resulted in amino acid sequences without functional relevance. However, a substantial pro-
portion of the USL and NCL loci showed transcriptional evidence. While these gene set might
also included potential species-specific genes, they more likely represented novel (non-protein
coding) transcriptional active regions, which have been also described for numerous species in-
cluding both, plants (7971,309) and animals (337).

4.5.3 Dynamics of the bread wheat genome

Overall, the gene repertoires in the A genome (40,253 HC genes) and D genome (39,425 HC
genes) were of similar size, both exceeded by the gene catalogue of the B genome (44,523 HC
genes). In contrast, considerable differences were apparent among individual homoeologous
chromosomes and chromosome arms with variations in gene counts (Fig. 4.10) and in gene
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density (Fig. 4.11). Fivty-three percent of the genes were positioned into syntenic conserved
regions and were anchored to the syntenic framework of genes from Brachypodium, rice and
sorghum in the wheat GenomeZipper, which was consistent with conservation of synteny in other
grasses (61,62). Notably, large differences in the syntenic conservation among individual chro-
mosome arms were evident. A generally higher conservation was found in the D genome (58%)
compared to the A and B genomes (approximately 50%). Although differences in the underlying
marker map that were used for construction of the individual GenomeZipper of each genome had
to be considered, the observed differences might already be set in the diploid progenitors of the
wheat A-, B- and D-genomes and, thus were inherited to tetra- and hexaploid wheat. Alterna-
tively, these findings reflected the evolutionary history of hexaploid wheat and may indicating an
increased disruption of synteny for the A- and B-genome chromosomes during common polyploid
evolution. Moreover, the different conservation rates for chromosomes indicated that the con-
trol of genome composition act locally on distinct chromosomes, chromosome arms or segments
within chromosomes rather then on the level of entire homoeologous genomes.

Protein sequence-based clustering was used to group the predicted HC genes into gene
families. The comparison between the expected gene family sizes of diploid grass genomes (in
average 1.4 genes per family) with the observed sizes of the gene families in bread wheat (in
average 3.1 genes per family) allowed estimating the hexaploid-to-diploid gene retention rate to
approximately 2.2. This finding largely corroborated the previous estimates on the basis of wheat
WGS sequencing and the orthologous-group assembly (Section 3.2).

While analysis of the paleopolyploid maize genome (1771) has been shown preferential
loss of genes from one genome, the observed patterns for bread wheat did not indicate favoured
genome dynamics acting on a particular wheat genome. Assuming almost similar genome sizes
of the diploid progenitor genomes of bread wheat (43,44), the generally balanced gene content
across wheat genomes suggested structural autonomy as a result of prevented inter-genome re-
combination due to restrained pairing of homoeologous chromosomes during meiosis (Section
1.3.1). However, incongruence in gene family composition among homoelogous chromosome
arms indicated a non-uniform interchange between wheat genomes (Fig. 4.14). Rather then
linear evolution of the A-, B- and D-lineages in the Triticeae, this could be explained by bifurcat-
ing evolutionary relationships among the diploid genome donors as shown recently in phyloge-
netic analysis of Marcussen et al. (69). Additional evidences have also suggested that Triticeae
genomes show a dynamic genome composition including non-linear, reticulated evolution and,
at least partially, have been shaped by large-scale introgressive events or incomplete lineage
sorting (69,71,73).

4.5.4 A highly complex and conserved alternative splicing landscape

Usage of RNA-seq technology allowed investigating the alternative splicing landscape of bread
wheat and the structural definition of 325,147 distinct transcript variants. Fourty-nine percent
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of HC genes were found to be alternatively spliced with on average 2.62 transcripts per locus
(Table 4.7). These observations were largely consistent with observations in barley (797) and
Arabidopsis (184,307 ) and confirmed that AS is a major regulatory mechanism, which increases
transcriptome and proteome complexity and diversity. Almost 70% of the genes of the most com-
plete gene class (HC1) were alternatively spliced with on average 3.5 transcripts per locus. This
allowed extrapolating the wheat transcriptome to contain more than 300,000 protein-coding tran-
scripts. None of the homoeolog genomes was predominately affected by AS (Fig. 4.15) or showed
differential usage of splicing events across the homoeologous wheat genomes (Fig. 4.16). Intron
retention was the most common AS event (24%), followed by alternative 3’ (15%) and 5’ donor
sites (5%), which was consistent with studies in A. thaliana (184,307,326) and indicated highly
conserved splicing patterns within the plant kingdom and over 150 mio years of evolution.

The NMD-pathway is an important surveillance mechanism, which rapidly detects and de-
grades aberrant RNA transcripts like, for example, PTC* transcripts that encode for truncated
proteins (332). PTC*/NMD also constitutes an important post-regulatory transcriptional mech-
anism, which has been shown to act often in environmental stress response (307,330). A to-
tal of 27,866 AS-transcripts (9%) contained premature termination codons and were located at
13,972 high-confidence genes loci (11%) (Table 4.8), which was largely comparable to studies in
plants (191,323) and animals (338). Across genomes, similar degree of AS and PTC*/NMD sen-
sitivity was observed (Fig. 4.15), which was also conserved among homoeologous single-copy
gene copies (Figs. 4.17 and 4.19). This suggested that both mechanisms were maintained in
the hexaploid genome and have already been evolved in the diploid progenitor genomes before
hybridization or, probable, before specification of individual genome lineages. These findings
contradicted with the “spurious transcript” model, which hypothesizes the NMD pathway is ex-
clusively a quality control mechanisms removing nonsense transcripts that are costly-to-make,
thus are potentially deleterious for the cells fitness (339). Conservation of PTC*/NMD more sup-
ported the "regulatory transcript model” that concede post-transcriptional regulatory functions to
the PTC*/NMD machinery, which modulates gene expression via splicing factors (332,339). This
finding corroborated recent observations in both mammals (340) and plants (307).

4.6 Conclusions

Working on the IWGSC chromosome sequence survey assembly facilitated to identify nucleotide
and protein sequences and transcript structures for more than 90% of bread wheat genes. The
generated genomic resources have been made publicly available for visualization and download in
the EnsemblPlants web portal (http://plants.ensembl.org/Triticum_aestivum) hosted by the EMBL-
EBI. This thesis revealed a highly complex genome structure, which was characterized by high
abundance of low-confidence genes including non-coding transcribed regions as well as deterio-
rated gene fragments and pseudogenes in addition to high-confidence protein-coding gene loci.
The determined protein sequence set allowed elucidating gene family sizes and compositions on
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a chromosome arm level in bread wheat, which supported reticulate evolution in the Triticeae.
Gene families were reduced in bread wheat confirming previous findings using whole genome
shotgun sequencing and the outcome of the orthologous group assembly. No bias towards pre-
dominant retention or loss of genes for one of the three homoeologous genomes was observed,
suggesting a high level of plasticity of the hexaploid wheat genome, while, simultaneously, each
homoeologous wheat genome is autonomously maintained. However, differences in syntenic
conservation and gene density on a chromosome arm level indicated molecular mechanisms to
shape differentially homoeologous chromosome arms or individual chromosomal regions. More-
over, this work highlighted alternative splicing to be an additional layer of complexity, which largely
increase the diversity of the bread wheat transcriptome. Conservation of splicing patterns and po-
tential premature termination codon-containing transcripts across genomes supported the "reg-
ulatory transcript model” attributing regulatory functions to the splicing machinery, which have
emerged before polyploidization and are common for the Triticum genome lineages.

The generated data resources provide a suitable genomic framework for myriad analysis
aiming at understanding the key mechanisms that shape the genome structure of allohexaploid
bread wheat. Together with the putative chromosomal ordering, the predicted gene catalogue
is of high value for targeted breeding to identify the genetic elements for the improvement of
agronomic and industrial important traits of one of the most important crops worldwide.






Chapter 5

The transcriptome of hexaploid wheat
during endosperm development

The previous chapters of thesis focussed on investigating the impact of polyploidization on
genome content and structure of bread wheat revealing pronounced retention and structural con-
servation across homoeologous genomes. However, with bringing together multiple genome sets,
polyploidization is one of the most challenging events in an organism’s evolution (Section 1.3).
Such a "genome shock” (46) has been shown to result in alterations of the regulatory mech-
anisms orchestrating inter- and intra-genome gene expression, balancing regulatory elements
and accurately controlling protein levels for a highly redundant gene set (101,107,114,121,126).
Furthermore, analysis of synthetic polyploids and paleopolyploids have demonstrated that both,
genetic (120) and epigenetic modifications (118,120,124), might result in genome asymmetry
and favoured expression of genes from a single genome (1715,116). in wheat, however, those
studies were based on a limited number of genes (121,123,124) and the extent and character-
istics of gene expression divergence between genomes in different tissues have been largely
unknown at the whole genome level.

Because of the agricultural and industrial importance of bread wheat (Section 1.2) re-
searchers have put special interest in enhancing specific grain quality attributes and in the in-
vestigation of the genetic control of grain components. For allohexaploid wheat, partial or com-
plete genome dominance has been found to affect various morphological and agronomic traits
including grain protein content (7136) and grain hardness (341). However, a major impediment to
a genome-wide understanding of transcriptional relationships among the homoeologous wheat
genomes was the absence of a suitable reference genome sequence that enables measuring A,
B and D genome-specific transcription. This restricted studies only to single genes (342—-344) or
onto a global analysis without homoeologous resolution (345,346).

In a collaboration with a research team led by Prof. Dr. Odd-Arne Olsen of the Norwegian
University of Life Sciences (As, Norway), this study made use of the genomic resources estab-
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lished by the IWGSC (Chapter 4) to investigate gene expression for three developmental stages
in different cell types of wheat endosperm. Besides providing technical guidelines for the applica-
tion of high-throughput RNA-sequencing to comprehensively analyse the transcriptome of one of
the most complex plant genomes, patterns of spatiotemporal gene expression will be examined
and functionally characterized on several levels in the following sections. Starting from a global
prospective on the wheat endosperm transcriptome, specific functional aspects of grain devel-
opment will be highlighted, potential key regulators and marker genes defined and co-expressed
genes grouped into clusters with distinct expression profiles. In particular, this chapter will fo-
cus on investigating homoeologous-specific gene expression to gain novel insights into genome
asymmetry and to elucidate positional effects on gene transcriptional regulation in a polyploid
genome. Finally, a genome-wide catalogue of industrially important genes that are known affect
wheat baking quality will be established in a targeted gene family analysis.

All methods and results shown in this chapter are part of following publications:

« A chromosome-based draft sequence of the hexaploid wheat genome
The International Wheat Genome Sequencing Consortium (IWGSC)
Science. 345(6194):1251788, 2014.

+ Genome interplay in the grain transcriptome of hexaploid bread wheat
M. Pfeifert, K. G. Kugleri, S. R. Sandve, B. Zhan, H. Rudi, T. R. Hvidsten, IWGSC, K. F. X.
Mayer and O.-A. Olsen
Science. 345(6194):1250091, 2014.
* joint first authors

5.1 Developmental stages and major cell types of the nuclear en-
dosperm

Starch constitutes about 65% to 75% of dry weight of mature cereal seeds (347). Therefore,
wheat grains belong to the major crop materials providing raw material for various industrial pro-
cesses and contributing essentially to livestock feeding and human nutrition. Changing environ-
mental conditions and worldwide population growth require an in-detail understanding of crop
physiology and grain development to satisfy global demands and ensure food security (15,719)
(Section 1.1). Cereal endosperm development partitions into three, partly overlapping phases:
early development, differentiation and maturation (277,348). During the first phase, early devel-
opment, the endosperm origins from an initial triploid nucleus as a result from a double fertilization
between a sperm cell nucleus and of two polar nuclei in the central cell of the embryo sac. Rapidly,
the initially triploid nucleus starts to divide and proliferate without formation of cell walls, which
leads to a multinucleate cell, the endosperm coenocyte (Fig. 5.1a). Subsequently, formation of
a radial microtubule system and aveolation initiate cellularization of the coenocytic endosperm
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until completion of the central vacuole with cells, which is mostly completed approximately 3 to
6 days post anthesis (DPA) (Fig. 5.1b). In the next two phases, endosperm differentiation and
maturation, the industrially important characteristics of the wheat grain are developed. Initial en-
dosperm cells specialize into different cell types (Fig. 5.1c), expand, increase water content and
accumulate starch and storage proteins (Fig. 5.1d). In the early development of endosperm cell
type specification, which has been suggested to be mainly controlled via positional signalling, and
endosperm cellularization overlap largely (217).

The mature endosperm consists of four major cell types: transfer (TC) cells, aleurone (AL)
cells, starchy endosperm (SE) cells and embryo-surrounding (ESR) cells, respectively (Fig. 5.1c).
The ESR is located in the cavity of the developing endosperm in direct proximity to the embryo.
Probably the ESR is involved in embryo nutrition and constitutes a physical barrier and commu-
nication zone between the embryo and the starchy endosperm, but the particular function of the
ESR is unknown (277). The ESR develops at an early stage and, corresponding to embryo-
growth, shrinks subsequently at later stages (350). Transfer cells are located in the basal of the
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Fig. 5.1. Structure and developmental stages of the nuclear endosperm of cereals.

a, Early development of the endosperm coenocyte in cereals. (i) The triploid endosperm nucleus is located
in the basal cytoplasm of the central cell, which encloses the central vacuole that constitute the largest por-
tion of the central cell. (ii) Division of the nucleus generate a multinucleate cell, the endopserm conocyte,
in absence of interzonal phragmoplast and cell wall formation. (iii) Eight nuclei are located in a single
plane after the third round of cell divisions. (iv) Daughter nuclei migrate to the cytoplasm surrounding the
central vacuole in uniform distances. b, Cellularization of the endosperm coenocyte in cereals starts with
the (i) formation of radial microtubule systems on all nuclei, which initiate cellularization. (ii) Microtubules
of neighboring nuclei form cell walls and generate alveoli (tube-like structures surrounding each nucleus),
which are open towards the central vacuole. (iii) Alveolus nuclei divide and periclinal cells separate the
peripheral cell and the new alveolus. (iv) Cell division continues until the central vacuole is completely filled
with cells. ¢, The three major cell types of the mature endosperm analysed in this study. d, The temporal
profile of grain development and transition points in the accumulation of starch, protein and water. e, The
sampled cell types and developmental stages (W: whole endosperm; SE: starchy endosperm; TC: transfer
cells; AL: aleurone cells). [Manually adapted on basis from of a schematic illustration in (217) (a and b) and data
from (349) (d).]
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grain and mediate transport of nutrients and photosynthate (mainly sucrose, monosaccarides and
amino acids) from vascular tissue of the maternal plant into the endosperm (217,351). They differ-
entiate early in the cellularization phase and are characterized by an increased plasma membrane
surface and extensive cell wall ingrowth that is important for efficient nutrient exchange. Aleurone
cells form a single cell layer surrounding the starchy endosperm in wheat, however, thickness
vary among grasses (e.g. three cell layers in barley or several cell layers in rice) (216,217,348).
AL cells produce hydrolases, glucanases and proteinases to mobilize starch and storage proteins
in the starchy endosperm during seed germination (217). Mature AL cells are cuboidal, rich in
lytic and protein-storage vacuoles, which contain globoid bodies (a crystalline matrix of phytin,
protein and lipid) and protein-carbohydrate bodies surrounded by lipid droplets (216). Starchy
endosperm cells compose the largest fraction of the endosperm and mainly synthesize starch in
a series of enzymatic activities from Sucrose, which is transported from the leaf source tissue
to the endosperm (352). The second major compound of SE cells are storage proteins, includ-
ing prolamins and globolins, which contribute approximately half of total protein in mature cereal
grains (353). These proteins are responsible for the viscoelastic and cohesive properties of wheat
dough, which are important for food processing and bread baking.

Cell type differentiation is completed between 12 to 15 DPA and the endosperm enters
the maturation phase, in which cells mainly increase dry weight by accumulation of starch and
storage compounds (349) (Fig. 5.1d). In the later stage of seed maturation, cell expansion and
water accumulation decline and the piled up solid compounds replace the fluid contents of the
endosperm kernel, a process which implies dehydration of wheat grains (354). Except AL cells, all
other endosperm cell types undergo programmed cell death by approximately 30 to 35 DPA, the
final stage of endosperm maturation. Membrane disassembly, DNA fragmentation and chromatin
condensation are triggered (354,355) and facilitate mobilizing nutrients to the germinating embryo
through hydrolysis of the exposed starch reserves by various enzymes that are produced and
released from AL cells.

5.2 Dissecting the transcriptome of wheat endosperm

The individual endosperm cell types are morphological and functional highly different (217). This
requires a genome-wide understanding of spatial gene activity at different development (temporal)
stages to identify key gene targets for an improved efficiency of breeding programs. Although
endosperm gene expression profiling has been done in several other species including A. thaliana
(356), maize (357) or barley (358), the characterization of bread wheat grain development was
limited in comprehensiveness (359) or restricted to a global prospective without distinguishing
homoeologous transcripts (346). Therefore, deep RNA-seq profiling was applied in this study
to monitor gene expression for different endosperm cell types at three developmental stages,
which reflected the entire progression of starch and storage protein accumulation (10, 20 and
30 DPA) (Figs. 5.1d and e). Embryos were removed and grains cut in slices for the isolation of



5.2. DISSECTING THE TRANSCRIPTOME OF WHEAT ENDOSPERM 101

aleurone cells, transfer cells and starchy endosperm by manual dissection under the microscope.
At 10 DPA, the whole endosperm (further used sample identifier 10 DPA W”) was sampled,
because individual cell types can not be isolated at this early stage. At 20 DPA a reference
sample of the whole endosperm ("20 DPA W”) was produced as well as starchy endosperm ("20
DPA SE”), aleurone cells ("20 DPA AL’) and transfer cells ("20 DPA TC”) individually sampled. Due
to tight adherence of starchy endosperm to the transfer cell layer, the TC sample included a small
proportion of sourrounding SE cells. At 30 DPA grains were dissected into starchy endosperm
(30 DPA SE”) and aleurone cells ("30 DPA ALSE”). In the latter sample, AL cells tightly adhered
to the outermost SE cells causing this sample to contain slight contamination of SE. For each of
the seven tested conditions two biological replicates were sampled from grains of bread wheat
plants grown in two greenhouses resulting in a total of 28 samples (Section 2.3).

5.2.1 RNA-seq read mapping and filtering

A reference-based strategy was applied for the analysis of gene expression on basis of the RNA-
seq data set obtained in this study and the wheat CSS assembly and gene annotation generated
by the IWGSC (Chapter 4). The separation of homoeologous chromosomes in the reference
genome sequence allowed discriminating between homoeologous transcripts by using a “first
best match”-strategy, in which the genome-of-origin for an individual RNA-seq read was defined
by the best reported alignment. Therefore, | mapped the obtained RNA-seq reads against the
repeat-masked version of the wheat CSS assembly by using the well-established Bowtie/TopHat
pipeline (174,186) (Bowtie version 2.1.0, TopHat version 2.0.8). Only the highest scoring TopHat
alignment(s) with a maximum of two mismatches were considered for each read (parameters:
--read-mismatches 2 --segment-mismatches 1 --max-multihits 20 -r 0). Subsequently, to avoid
biased expression estimates caused by spurious assignment of RNA-seq reads to the incorrect
wheat genome, | further filtered all obtained RNA-seq read alignment considering nine alignment
scenarios and the following rules:

a Alignments of uniquely mapped singletons (only one read of a pair mapped) were accepted.

b Alignments of ambiguously mapped singletons (only one read of a pair mapped) were dis-
carded.

¢ Alignments of reads were accepted if both reads of pair were mapped unambiguous to the
same contig.

d Alignments of reads were accepted if reads of pair of were mapped to different contigs of
the same chromosome arm (i.e. within the same genome).

e Read pair alignment were discarded if the individual reads were mapped to contigs of dif-
ferent chromosome arms and genomes.

f All alignments of a read pair were discarded if both reads were mapped ambiguously.
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g If one end of a read pair was mapped uniquely to contig X and the other read end was
uniquely mapped on contig X as well as to other contigs, both read alignments on contig X
were accepted. All other alignment combinations were discarded.

h If one end of a read pair was mapped uniquely to contig Y and the other read ambigu-
ously but only once to a contig Z, which originated from the same chromosome arm, the
alignments to contig Y and Z were accepted. All other alignments were discarded.

i If one read was mapped unique and the other ambiguously, but never on a contig on the
same chromosome arm, all alignments were discarded.

Overall, at least one read was aligned against the CSS assembly for 691 mio read pairs
(Fig. 5.2a). Both reads were aligned for more than two third of the pairs (70%), whilst only one
read was mapped for 16% (singletons). Thereby, the proportion of singleton read alignments
reflected approximately the loss of sequence information in the CSS assembly, which has been
previously observed by direct comparison of wheat fl-cDNAs to raw genomic shotgun sequences
(Fig. 4.9). This was also largely consistent with studies using comparable NGS-based genome re-
sources (191). The majority of aligned reads [1,023 mio (63%)] were uniquely located in the CSS
assembly (Fig. 5.2b). Ambiguous mappings (i.e. multiple alignments positions) with equal TopHat
alignment score were observed for 234 mio aligned reads (14%). Due to the high sequence
similarity between homoeologous gene copies in the bread wheat genome, the observed fraction
of multiple read alignments was significantly increased compared to transcriptome analyses in
diploid Triticeae genomes in which only around 1% of reads were ambiguously mapped (1917).
With respect to the used alignment parameters (maximum two mismatches per read allowed) and
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Fig. 5.2. RNA-seq mapping of individual endosperm samples to the wheat CSS assembly.

a, Number of RNA-seq read pairs of which both reads, one read or no read were aligned for each sampled
RNA-seq library (GH: greenhouses; BR: biological replicates). b, Distribution of unique mapped reads (ex-
act one mapping location), ambiguous mapped reads (multiple mapping locations with identical alignment
score) and unmapped reads summarized for all samples.
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a read length of 101 bp, the observed ratio between single and multiple mapped reads reflected
between 98.4% to 99.2% sequence identity of homoeologs, in line with previous observations
(Chapter 3) and other studies (123,360).

The applied filtering rules resulted in a total of 556 mio accepted alignments (81%), while
spurious alignments for 135 mio read pairs (19%) were discarded for the further analysis (Fig.
5.3). Ambiguously mapped singletons and read pairs contributed the majority of discarded align-
ments (86%). Contradictory read pair information, i.e. mapping of paired reads to different chro-
mosome arms, was far less frequently observed.
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Fig. 5.3. Classification of RNA-seq read pair mappings to nine alignment scenarios for stringent
reads filtering.

Alignment of RNA-seq read pairs were categorized into nine groups (a to i) and filtered to reduce impact of
spurious mapping of transcriptome sequences on the gene expression estimation. Contigs of the genome
assembly are visualized by bold lines and the coloring depicts chromosome arm assignment. Reads are
visualized as arrows and read-pairs connected by thin lines. The histogram shows the number of read
pairs assigned to the corresponding alignment scenario. The pie chart shows the overall number of read
pairs which were accepted and discarded for further analysis. See main text for further description of the
individual alignment scenarios.

5.2.2 Refinement of the wheat gene annotation by incorporation of the en-
dosperm transcriptome data

The IWGSC reference gene annotation (Chapter 4) provided the backbone for the transcriptome
analysis conducted in this study. Although it has been previously suggested that the established
gene annotation represented almost the entire gene catalogue of bread wheat (Section 4.2.2),
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the generated endosperm transcriptome data constituted an useful resource to refine the wheat
gene annotation and to screen for additional genes as well as alternative splicing variants, which
were completely absent or only lowly expressed in the IWGSC transcriptome resources.

For each of the seven endosperm samples the filtered RNA-seq alignments of the four
corresponding samples (two BRs for two GHs) were merged and cufflinks (306) (version 2.0.2)
applied to assemble these. The previously defined gene and transcript structures were sup-
plied as reference annotation (parameter -g). A consensus gene set was generated with cuff-
compare (306) (version 2.0.2), which clusters structures with identical intron boundaries into a
non-redundant set of gene and transcripts. Then, the nucleotide sequences of novel assem-
bled transcripts were extracted from the genome assembly and putative peptide sequences were
predicted applying the OrfPredictor software (222) with sequence homology supported ORF se-
lection against a combined set of proteins from Brachypodium (42), rice (45), sorghum (40),
maize (41) and Arabidopsis (137) [BLASTX (227) (E <10)]. All six reading frames were con-
sidered for transcripts located at previously unknown gene loci, whilst the strand direction was
inferred from the IWGSC annotation for novel splicing variants located at already defined loci.
Finally, the previously unknown gene loci were subjected to the same confidence class assign-
ment that was applied for the IWGSC gene annotation on basis of protein-homology comparisons
against high-quality gene sets of angiosperm genomes (Section 4.1.3).

This procedure identified a total of 401 novel high-confidence gene loci, of which five
were classified as HC1 genes, i.e. were defined in full-length (>70% reference protein cover-
age) and most likely represented functional genes (Table 5.1). Seventy-seven novel genes were
assigned to the medium gene confidence classes HC2 [16 genes (50%< reference protein cov-
erage <70%)] and HC3 [61 genes (30%< reference protein coverage <50%)]. The majority
fell into HC4, the lowest confidence class accumulating potential gene fragments and putative
pseudogenes [319 genes (<30% reference protein coverage)]. On the contrary, a total of 15,625
additional splicing variants were detected including almost 12,000 transcripts for HC1 genes only.
Thereby, no substantial increase was found in the total number of alternatively spliced genes
(502 additionally detected AS genes). Functional enrichment analysis of the genes with novel

Table 5.1. Overview of the refined high-confidence gene set of bread wheat.

IWGSC gene annotation Refined gene annotation
HC1 HC2 HC3 HC4 > HC1-3 HC1 HC2 HC3 HC4 > HC1-3
Gene loci 55,249 14,367 15,475 39,110 85,091 55,254 14,383 15,536 39,429 85,173
Single exon 9,181 3,230 4,906 20,375 17,317 9,160 3,237 4,937 20,578 17,334
(17%) (22%) (32%) (52%) (20%) (17%) (23%) (32%) (52%) (20%)
Multi exon 46,068 11,137 10,569 18,735 67,774 46,094 11,146 10,599 18,851 67,839
(83%) (78%) (68%) (48%) (80%) (83%) (77%) (68%) (48%) (80%)
AS@ 38,0569 7,916 6,465 8,728 52,440 38,413 8,016 6,513 8,664 52,942
(69%) (55%) (42%) (22%) (62%) (70%) (56%) (42%) (22%) (62%)
Transcripts 194,624 37,116 31,957 61,450 263,697 (206,601 38,472 32,494 62,205 277,567
Exons® 538,250 94,864 74,630 117,530 707,744 |550,031 96,383 75,273 118,376 721,687

@ Alternatively spliced gene loci
® Exons of two or more transcripts were counted once if they have identical start and stop positions
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splicing forms showed that these encoded for various functions including processes involved in
endosperm development like glutamine biosynthesis (367) or sucrose metabolism (362), but also
for more basal cellular functions like chromosome organization, protein localization and protein
folding (Fig. 5.4).
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Fig. 5.4. Gene ontology categories analysis of genes with novel alternative splicing variants in the
endosperm transcriptome.

Significant over-represented biological processes (P <0.01) were determined for high-confidence genes
with novel predicted transcripts. Grouping of enriched gene ontology categories was generated by using
the REVIGO web server (363). Box sizes correspond to significance of GO enrichment (P value).

5.2.3 Reproducibility of expression measures

To evaluate reproducibility of the expression measurements, the generated data set was tested for
technical and biological variation. Therefore, the expression levels were determined for each indi-
vidual replicate in "Fragments Per Kilobase of transcript per Million mapped reads” (FPKM) (180)
by using cufflinks (306) (parameters: —G wheat-HC-gene-annotation.gtf -b wheat-reference.fa;
version 2.0.2). Subsequently, the pairwise Pearson’s correlation coefficients among replicates of
a sample computed for the logo(FPKM+1)-transformed expression estimates.

The Pearson’s correlation coefficients between biological replicates from plants grown in
the same greenhouse ranged from 0.9078 for 30 DPA SE (greenhouse 2) to 0.9541 for 20 DPA
AL (greenhouse 1) (Table 5.2). Values above 0.95 were observed between the two technical
replicates generated for sample 20 DPA AL (biological replicate 1 for plants grown in greenhouse
1). With the exception of sample 30 DPA ALSE (R? of 0.80), slightly decreased but still good
agreement of gene expression was found among all samples (R? >0.89) in pairwise comparisons
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Table 5.2. Pearson’s correlation coefficient (R2) of gene expression levels estimated for biological
replicates grown in the same and in different greenhouses.

R? within R? within Mean R? of pairwise comparisons
Sample .
greenhouse 1 greenhouse 2 of replicates between greenhouses
10 DPAW 0.9249 0.9285 0.9110 + 0.0178
20 DPA AL 0.9541 0.9263 0.9053 + 0.1110
20 DPA W 0.9399 0.9242 0.8717 4+ 0.0026
20 DPA SE 0.9252 0.9125 0.8926 + 0.0313
20 DPATC 0.9367 0.9340 0.9018 + 0.0021
30 DPA ALSE 0.9182 0.9229 0.8033 + 0.0265
30 DPA SE 0.9163 0.9078 0.8991 + 0.0043

between greenhouses.

The generally good agreement between biological and technical replicates were also re-
flected in a principle component analysis of gene expression across samples (Fig. 5.5). However,
an unexpected sample clustering was evident for samples 20 DPA W (greenhouse 2) and 30 DPA
ALSE (greenhouse 2), which corresponded to the low correlation coefficients for 30 DPA ALSE
between greenhouses and indicated a potential swap of labels during the experimental sample
preparation before sequencing. Therefore, these two replicates were excluded from the subse-
quent analysis. Although smaller-scale variation were found in the gene expression measure-
ments for samples of plants grown in different greenhouses, overall high agreement of gene ex-
pression for technical replicates and biological replicates confirmed accuracy of RNA-seq expres-
sion quantification and demonstrated the high reproducibility of the conducted experiments (364).
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Fig. 5.5. First and second principal component of gene expression among replicates.

Numbering right to each data point represents replicate number and stars mark technical replicates. High-
lighted samples [20 DPA W (greenhouse 2) and 30 DPA ALSE (greenhouse 2)] were excluded for further
analysis due to potential swapped labels during sample preparation.
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5.2.4 In silico validation of gene expression measurements

The high similarity of coding-sequences among homoeologous genes ( 123) might be problematic
for determining the genome-of-origin of RNA-seq short reads obtained for the hexaploid wheat
transcriptome and, thus, may impact on accurate measurement of gene expression levels. There-
fore, | performed an in silico evaluation experiment to validate the accuracy of the computed ex-
pression levels and to confirm the applicability and reliability of the implemented methods (Fig.
5.6a). lllumina-like artificial short read pairs, which represented an experimental setup that is
comparable to the real data set, were generated on basis of the annotated transcript structures
from the CSS assembly by using FluxSimulator (365) (parameters: 101 bp read length, 200 bp
paired-end insertion size, lllumina read error model and random gene expression levels; version
1.2). The simulated sequencing reads were aligned against the reference genome sequence and
filtered applying the same protocol as described in Section 5.2.1. Gene expression level were
estimated in FPKM with cufflinks (182) (version 2.0.2). Polynomial regression fits of the simu-
lated and estimated log.(FPKM+1)-transformed expression values were computed for the entire
gene set as well as for a total of 19,728 genes, which formed single-copy homoeologous gene
triplets (Sections 4.3.3 and 5.4.3) using the loess . smooth-function implemented in R (parameter:
span=0.2).

Overall, 16.5 mio out of 17.5 mio simulated RNA-seq read pairs were successfully aligned
against the bread wheat genome assembly (94%). The read filtering step removed a comparable
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Fig. 5.6. Validation of homoeologous gene expression measurements.

a, Workflow for the validation of gene expression measurements in a polyploid context with a RNA-seq
simulation experiment. b, Fraction of aligned read pairs which are accepted and discarded in the filtering
step. ¢, Comparison of simulated and measured gene expression levels. Dots show single measure-
ments and lines represent a polynomial fit of the expression measurements for all genes (red solid line) for
homoeologous genes forming single-copy gene triplets (dashed lines).
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number of simulated reads as observed for real expression data (Fig. 5.6b). Less than 1% of
RNA-seq reads were aligned to a wrong contig in the CSS assembly after the filtering step.
Although expression was underestimated for low abundant genes, a generally good correlation
was observed between the simulated and measured expression levels (Fig. 5.6¢). Importantly,
the good agreement held also true for single-copy homoeologous genes, which confirmed the
correctness in calculating genome-specific expression levels. In summary, these observations
suggested a high reliability of the computed expression values, which was essential for excluding
any technical bias in the subsequent expression analysis.

5.2.5 Computation of gene expression and differential expression tests

Excluding the likely swapped samples 30 DPA W (greenhouse 2) and 30 DPA ALSE (green-
house 2) (Fig. 5.5), the expression levels of wheat high-confidence genes were calculated in
FPKM (180) and tested for significant differences in pairwise comparisons between samples.
Therefore, cuffdiff (182,306) was used (parameters: —N —b wheat-reference.fa, version 2.0.2),
which converts the alignments of RNA-seq reads into models of fragment counts combined with
an estimate of uncertainty in biological variation. All subsequent analysis were restricted on
85,173 high-confidence genes, which have been classified into levels HC1 to HC3 (Table 5.1).
Wheat genes of the HC4 gene set were not considered in this study as this class most likely
included many (deteriorated) gene fragments and pseudogenes (Section 4.3).

Considering all genes with FPKM greater than zero would overestimate presence and ab-
sence of gene expression in the qualitative analysis of gene expression. Therefore, a lower ex-
pression limit of 0.02 FPKM was defined based on the mean 10" percentile of the calculated gene
expression levels across all endosperm samples (Table 5.3). Similar to expression estimation
using microarry technology, all further statistical testing expression values were log>(FPKM+1)-
transformed to decouple the signal intensity from random error (364,366), whereupon the addition
of 1 to all estimated FPKM values avoids negative values after the log, transformation.

Table 5.3. Gene expression level statistics for high-confidence wheat genes (HC1-3) for individual
endosperm samples.

Gene expression level (FPKM) Expressed Expressed

Sample Mean  Median 5th  10th 90th 95th  genes® transcripts®

10 DPA W 2.55+44.39 0.17 0.01 0.02 1.92 458 37,046 (44%) 57,486 (49%)
20 DPA AL 1.91 £29.87 0.17 0.01 0.02 1.88 4.19 37,381 (44%) 59,880 (51%)
20 DPA' W 229 +£50.20 0.16 0.02 0.02 1.61 3.62 35,153 (41%) 51,786 (44%)
20 DPA SE 292+ 72.07 0.17 0.02 003 1.66 3.93 35,097 (41%) 51,721 (44%)
20 DPATC 218 £56.39 0.12 0.01 0.01 1.30 292 37,384 (44%) 56,017 (48%)
30 DPAALSE 1.77 £23.84 0.19 0.02 003 174 3.85 34,588 (41%) 52,487 (45%)
30 DPA SE 2.38 £55.58 0.15 0.01 0.02 1.52 3.51 35,736 (42%) 53,741 (46%)

Overall 2.28 £47.48 0.16 0.01 0.02 166 3.80 46,487 (55%) 117,620 (43%)

@ Only genes and transcripts with minimum expression level FPKM>0.02 (10th percentile of overall gene expres-
sion) were considered to be expressed.
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5.3 The global transcriptional landscape of bread wheat endosperm

5.3.1 Quantitative analysis of gene and transcript expression

Overall, 46,487 out of 85,173 high-confidence genes (55%) and 117,620 out of 277,567 tran-
scripts (43%) were detected in the RNA-seq data set (Fig. 5.7a and Table 5.3). Thereby, the three
wheat genomes contributed about equally to the number of expressed genes and transcripts in
the endosperm as a whole (18% to 19% of genes and 14% to 15% of transcripts) as well as in
individual cell types and developmental stages (Fig. 5.7b). Strikingly, significant differences were
present in the spatiotemporal expression distribution of genes (i.e. sum of all transcript variants
at a certain locus) compared to that of individual alternative splicing variants (Fig. 5.7c and d).
Whilst more than half of the expressed genes were detected in all sampled endosperm cell types
and time points, only 14% of transcripts were so. On the contrary, 10% of genes were found to be
specifically transcribed in a single condition, whereas one quarter of transcripts were detected in
a single sample. Again, no significant differences among the three genomes were evident.
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were observed to be expressed.
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5.3.2 Identification of preferentially expressed genes

Genes that are expressed at a higher level under a certain spatiotemporal condition might con-
stitute key regulators and marker genes (367) and, therefore, are interesting targets for the im-
provement of grain quality attributes. Here, such “preferentially expressed genes” (PEGs) were
identified for whole grain (W) at 10 DPA and individual cell types at 20 DPA (AL, SE and TC) as
well as 30 DPA (AL and SE) by using two complementary approaches(!). First, candidate PEGs
were defined on basis of non-overlapping 95% confidence intervals of gene expression between
each tested condition and a corresponding reference group formed by the remaining samples (Ta-
ble 5.4). Thereby, the lowest Cl of gene expression in the tested condition had to be larger than
the highest Cl in the reference group. Secondly, differential expression analysis was performed
between conditions and reference groups with cuffdiff (182). Genes with significant higher gene
expression in the tested condition were selected as candidate PEGs [false discovery rate (FDR)
<0.05]. Finally, the two sets were merged and candidate genes identified by either of these two
approaches defined as the final set of PEGs.

Across genomes a comparable low total number of PEGs was observed (Table 5.4). Be-
tween individual cell types and developmental stages the number of identified PEGs varied con-
siderably ranging from 136 PEGs in 20 DPA TC to 644 PEGs in 20 DPA AL. As revealed by a
functional enrichment analysis, the determined PEGs encoded for proteins with annotated gene
ontology categories that well agreed with the observed transcriptional activity and the known
functional characteristics of the sampled cell types (Table A.1). For example, proteins function
in carbohydrate metabolic processes and glycolysis were enriched in the set of PEGs in 10 DPA
W (346,358), whilst lipid metabolism, structural development, carbohydrate metabolic processes
and amino acid biosynthesis were predominantly detected for AL-specific PEGs (346), carbo-
hydrate and saccharide metabolism for SE-specific (368) or proteolysis and defense response
genes for TC-specific PEGs (369), respectively.

Table 5.4. Identification of preferentially expressed genes for individual endosperm cell types.
Number of PEGs

S (g
Condition@ Reference group A B D 5
10 DPA' W all other samples 108 106 100 314
20 DPA AL 20 DPA SE, 20 DPATC 197 232 215 644
20 DPATC 20 DPA AL, 20 DPA SE 52 49 35 136
20 DPA SE 20 DPA AL, 20 DPATC 30 24 29 83
30 DPA AL 30 DPA SE 136 153 141 430
30 DPA SE 30 DPA ALSE 83 84 76 243

@ 20 DPA W was not tested for PEGs, because all cell types were present as individual samples.

M| gratefully acknowledge Karl Kugler for the definition of preferentially expressed genes and further gene ontology
enrichment analysis.



5.3. GLOBAL TRANSCRIPTIONAL LANDSCAPE 111
5.3.3 Spatiotemporal differences in gene expression

The morphological and functional differences of the analysed endosperm cell types (Section 5.1)
were clearly apparent from hierarchical cluster analysis of the whole endosperm transcriptome (R
package pvclust (318) with Pearson’s correlation distance; average linkage clustering and 1,000
times bootstrap re-sampling) (Fig. 5.8). Aleurone cells (samples 20 DPA AL and 30 DPA ALSE)
formed an expression cluster, which was separated from whole grain (samples 10 DPA W and
20 DPA W), clean starchy endosperm cells (samples 20 DPA SE and 30 DPA SE ) and transfer
cells (20 DPA TC). In the later group gene expression similarities related to the developmental
stages seemed to triumph over cell type similarities. Samples from the 20 DPA stage clustered
together, while clean starchy endosperm and samples containing transfer cells did not. Although
transfer cells and starchy endosperm cells are functionally highly different (216,217), the transfer
cell sample clustered with samples incorporating mainly starchy endosperm cells. However, low
bootstrapping probabilities indicated uncertain placing of 20 DPA TC in the clustering dendro-
gram, which was most likely due to tight adherence of starchy endosperm cells that hampered
the pure dissection of transfer cells (Section 5.2).
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Fig. 5.8. Spatiotemporal hierarchical cluster analysis of endosperm gene expression.

Similarity in gene expression among different cell types and developmental stages was investigated by
hierarchical cluster analysis using Pearson’s correlation distance average linkage clustering. Significance
estimates were determined and are shown for each branch. Approximated unbiased P values were calcu-
lated by multiscale bootstrapping (green numbers) and bootstrap probabilities calculated by normal boot-
strapping (red numbers).

5.3.4 AQualitative analysis of differential gene expression

The known functional differences between cell types were also apparent from analysis of differ-
ential gene expression regulation. A total of 4,384 differentially expressed (DE) genes (9%) were
identified in pairwise comparisons between the seven samples. Consistent with strong separation
of aleurone cells and starchy endosperm in the hierarchical cluster analysis discussed above, a
high number of DE genes were found between these two cell types (e.g. 1,058 DE genes between
20 DPA AL and 20 DPA SE) (Fig. 5.9a). Furthermore, a high number genes were differentially
regulated between time points with 1,993 genes between the most distant time points early dif-
ferentiation (10 DPA W) and maturation (30 DPA ALSE), 1,800 genes between the neighbouring
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phases late differentiation (20 DPA W) and maturation (30 DPA ALSE) and 1,663 between the
two differentiation stages (10 DPA W and 20 DPA W), respectively. Strong initial gene expres-
sion was found in whole endosperm at 10 DPA, which had with 1,978 the highest number of
up-regulated® genes compared to any other sample. Only 707 up-regulated genes were found
in mature starchy endosperm cells (30 DPA SE), which was consistent with decrease in gene
expression and initiated cell death in these cells (370). Contrary, transcription was continuing in
aleurone cells (1,397 up-regulated genes in 30 DPA ALSE), which actively participate in nutrition
of the growing embryo in later time points (354,355).

To further investigate the similarities in modulated gene expression across cell types and
developmental phases, a spatiotemporal analysis was performed for the identified significant up-
regulated genes. Therefore, | constructed a network, in which a node was created for each sam-
ple (Fig. 5.9b). To represent the transcriptional relationships between the seven tested conditions,
| connected the nodes by undirected edges, which were weighted by the number of commonly
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Fig. 5.9. Spatiotemporal analysis of differentially gene expression.

a, Number of significant up-regulated HC wheat genes in pairwise comparison of sampled endosperm cell
types and time points (up-regulated in sample row compared to sample column). b, Network representation
of interrelation of endosperm samples (nodes) in commonly up-regulated genes. Node sizes correlate
with the total number of significant up-regulated genes and edge width with the number of shared up-
regulated genes. Circle diagram visualize distribution among wheat genomes. The fraction of sample-
specific up-regulated genes is depicted by the filled parts of the bars. ¢, Number of up-regulated genes
shared between the three sampled developmental stages. Respective samples of individual cell types
were merged for 20 DPA and 30 DPA.

@n the following, the term "up-regulated” was used to denote the sample with higher gene expression as repre-
sentative for the direction of the DE test. In some cases this might not be correct as it could not be decidable if the
higher expressed genes has been enhanced or the lower expressed genes repressed.
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up-regulated genes. Then, the network was topologically arranged on basis of the edge weights
by using the “edge-weighted force directed” layout algorithm implemented in Cytoscape (3717)
(version 3.0.2). This strategy placed nodes with a higher number of shared genes closer to each
other.

Consistent with the previous observations, aleurone cells were separated from whole grain
and samples containing mostly starchy endosperm. The majority of up-regulated genes were
either shared with the mixed samples or between clean samples of the same cell type. Thereby,
the three homoeologous wheat genomes contributed about equally to the number of differentially
expressed genes. When comparing gene expression across the different developmental stages,
approximately half of the up-regulated genes were found to be exclusively up-regulated for each
phase (Fig. 5.9¢c). The largest overlaps were observed between adjacent time points (521 com-
monly up-regulated genes in 10 and 20 DPA and 474 genes in 20 and 30 DPA, respectively), while
only 161 genes were commonly up-regulated for 10 and 30 DPA. This underpinned the on-going,
partially overlapping functional specification of endosperm cells on the developmental course to
maturation (216). Although a large number of genes were shared for aleurone cells sampled at 20
DPA and at 30 DPA, noteworthy, for both time points a considerable amount of genes were found
to be exclusively up-regulated genes. This observation suggested substantial transcriptional dif-
ferences between aleurone cells in the differentiation phase and maturation phase. With respect
to the molecular functions determined for corresponding PEGs, the observed patterns indicated a
functional change of aleurone cells to produce other proteins and enzymes in mature seeds that
are more involved in transmembrane transport and embryo nutrition (216).

5.4 Exploring co-regulation of gene expression in wheat en-
dosperm

Identification of genes that exhibit common transcriptional activity under certain functional con-
stellations is essential for the further analysis of the regulatory mechanisms within biological sys-
tems (372). Grouping of those "co-expressed” genes into clusters allows characterizing the com-
plex interactions that concert gene expression and facilitates unravelling functional relationships
between genes. This study aimed at contributing to an understanding of bread wheat endosperm
development by the identification of well-defined co-expression clusters. Such groups of genes
constitute the starting point to further screen in detail for gene-to-gene associations and for the
regulatory mechanisms underlying common transcriptional activity of genes.

5.4.1 Identification of endosperm co-expression clusters

One method to group co-expressed genes is k-means clustering (373), which separates the di-
mension space into a pre-defined number of clusters (k). This approach aims at computing the
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most compact clustering with closest distances between commonly grouped genes by minimizing
the within-cluster sum of squares. In this study, | utilized the k-means algorithm implemented in
the R package amap (374,375) with Pearson’s correlation distance. As the resulting k-means
clustering is largely dependent on the chosen initial number of clusters, the most appropriate
value was selected by testing different parametrizations in seven independent clustering rounds
(k € [6,13]). The quality of each resulting clustering was evaluated on basis of the silhouette
coefficient (376), a numerical value measuring the discriminative power in the gene-to-cluster as-
signhments, by using the silhouette-function implemented in the R package cluster (377). Large
silhouette values (almost 1) suggest strong clustering, while small values (around 0) indicate that
data points fall between two clusters and negative silhouette values are associated with uncertain
clustering of observations. For each iteration | determined the mean silhouette coefficient over
all clusters, thereby discarding poorly-defined clusters with negative silhouette coefficient (Fig.
5.10a).
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Fig. 5.10. Selection of the cluster sizes and silhouette plot for co-expression clustering.

a, The k-means clustering was repeated for different initial cluster numbers and the mean silhouette coeffi-
cient of all well-defined cluster calculated. Maximum silhouette value was achieved for k-means clustering
with a k£ of 10 (red). b, Distributions of the silhouette coefficients obtained for each of the identified co-
expression clusters. Clusters with positive mean (©) coefficients are colored green (Clusters | to VII),
whereas clusters with negative mean coefficients are colored red (Cluster 0).

In this study an initial k£ of 10 was chosen as most appropriate clustering of the transcrip-
tome data resulting in seven well-defined co-expression clusters with positive silhouette coeffi-
cients, i.e. good separation in the dimension space and stable cluster assignments (Clusters |
to VII) (Fig. 5.10b). The remaining three clusters with negative silhouette coefficients, which in-
dicated uncertain cluster assignments, were combined into a "zero” cluster (Cluster 0) for the
further analysis.

The seven clusters with positive silhouette coefficients (Clusters | to VII) contained between
2,257 to 5,369 genes (24,826 genes in total) and showed clear and distinct gene expression
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profiles with preferential transcription in a subset of the tested spatiotemporal conditions (Fig.
5.11a). On the contrary, balanced gene expression was observed across all endosperm cell types
and developmental stages for Cluster 0. This was consistent with negative silhouette coefficients,

which already indicated poor between-cluster separation for the included genes.

Interestingly,

all clusters contained a similar number of genes from the A, B and D genome as well as similar

overall expression profiles.
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tiotemporal endosperm samples. Numbering counts clustered genes in total in for individual genomes. b,

Number of preferentially expressed genes that were assigned to the individual co-expression clusters. Red
stars indicate a significant enrichment of a cluster for PEGs (Pearson’s chi-squared test with Bonferroni ad-

justed P value <0.05).
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5.4.2 Functional characterization of the identified co-expression clusters

To investigate the biological meaning of commonly grouped genes, each co-expression cluster
was tested for significant enrichment of PEGs (Fig. 5.11b) and over-represented gene ontology
categories (Table A.2). As further discussed below, this analysis revealed distinct functionally
characteristics for each cluster, which accompanied the observed spatiotemporal gene expres-
sion profiles found for commonly grouped genes.

Early endosperm differentiation (10 DPA)

Cluster | represented the early developmental phase when cell divisions are still occurring in
the periphery of the endosperm and the transcription of storage proteins and accumulation of
starch have been initiated. Genes were found predominantly expressed in 10 DPA W and a
significant proportion of PEGs for early development were included in this cluster. Consistent
with proteomic studies of wheat endosperm development wheat (368), this cluster was enriched
for genes encoding various catabolic and metabolic processes like sucrose metabolism, glucose
metabolism, carbohydrate metabolism and nitrogen metabolism as well as proteolysis, signaling
and cellular component organization.

Endosperm differentiation (10 DPA to 20 DPA)

Clusters 1l to V grouped genes expressed predominantly during the endosperm differentiation
phase, where the accumulation of storage protein and starch accumulation reaches maximum
(Fig. 5.1d). Cluster Il showed cell type-unspecific expression profiles, but connected the early and
intermediate differentiation phases, whereas gene expression profiles Clusters Il to V character-
ized particular endosperm cell types at 20 DPA. Genes in Cluster Il were mainly expressed in
starchy endosperm cells (20 DPA SE) and encoded for proteins involved in accumulation of carbo-
hydrate and storage compounds including cellular macromolecule metabolic process, monosac-
charide metabolic process or glutamine family amino acid metabolic process. Cluster IV exhibited
increased expression in 20 DPA AL, included a significant proportion of genes preferentially ex-
pressed in 20 DPA AL and was enriched for processes related to catalytic activity, lipid metabolic
processes and carbohydrate metabolism. Cluster V grouped genes expressed primarily in trans-
fer cells, which are involved in transport (e.g. anion transport and drug transmembrane transport),
are responsive to stimuli (e.g. response to light or water stimulus) and are related to defense-like
proteins (369).

Endosperm maturation (30 DPA)

The remaining clusters showed increased expression levels in mature wheat endosperm cells.
For Cluster VI primarily gene expression was observed for aleurone cells at 30 DPA and significant
enrichment for the corresponding PEGs found. Lipid, vitamin and amino acid metabolism as well
as cellular response and transmembrane transport activity were significant over-represented gene
ontology categories. Cluster VII grouped genes, which were found to be expressed in mature
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starchy endosperm cells (30 DPA SE) and which encode mainly for proteins that negatively regu-
late various cellular processes including translation, protein metabolism, macromolecule biosyn-
thesis. Moreover, proteins encoding for signalling and stress response as well as acting in autol-
ysis and programmed cell death like chitin catabolism (378) were significantly over-represented
in Cluster VII.

5.4.3 Gene expression regulation of homoeologous genes

So far, no indications for genome asymmetry and transcriptional differences among the wheat
genomes were evident, neither in terms of number of genes nor in gene expression level. There-
fore, the congruences in the gene expression profiles and the co-regulation of single-copy ho-
moeologous genes were directly analysed. Following the same protocol as described in Section
4.3.3 of this thesis, a set of 6,576 homoeologous gene triplets [6,576 x 3 = 19,728 genes (HC1
to HC3)] was defined on basis of pairwise bi-directional protein BLAST (227) searches between
the updated genes sets of the A, B and D genomes®). Although these triplets only constituted
a snapshot of the entire wheat genome and discarded any genome dynamics (e.g. copy number
variations) that might constitute an additional layer of complexity, focussing on single-copy homoe-
ologs allowed measuring regulatory influences acting on genes, which have been retained during
common polyploid evolution. However, the previous analysis showed that these homoeologous
triplets were a good representation of the entire wheat genome (Section 4.3.3), which enabled
making conclusions of the structural and functional impacts of polyploidization on a genome-wide
level.

Global patterns of homoeologous gene expression divergence

Overall, at least one homoeologous gene was found to be expressed for 5,939 triplets (Fig. 5.12a).
Among these, all three homoeologs were transcribed for 4,912 triplets (83%), while two homoe-
ologs were expressed for 589 triplets (10%) and exclusively one homoeolog for 438 triplets (7%),
respectively. The observed distribution clearly deviated to an assumption of complete indepen-
dence of homoeologs gene expression regulation, which was tested with random assignment
of wheat genes into triplets. Significantly more triplets then expected by chance were entirely
silenced as well as more triplets completely retained expression for all homoeologs [1,000 per-
mutations (P <0.05)]. Since the analysed genes were derived from a common ancestor, these
findings reflected the relatedness of homoeologs and indicated maintained expression for genes
forming triplets and contribution of each homoeologous gene copy to the entire wheat grain tran-
scriptome.

Interestingly, while globally expression was maintained, significant differences in cluster as-
signments of homoeologous genes were evident (Fig. 5.12b). All members were placed into the
same co-expression cluster for 28% of the triplets (1,663), while only two out of three homoe-

®| gratefully acknowledge Sapna Sharma for the computation of the homoeologous gene triplets on basis of the
updated wheat gene annotation.
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ologs were assigned to the same co-expression cluster for 41% of the triplets (2,416). For almost
one third of the triplets all three homoeologous genes fell into separate clusters (1,860 triplets).
Thereby, a uniform distribution across genome pairs was found for homoeologs placed into the
same co-expression clusters (Tables A.3 to A.5). A total of 818 A- and B-genome encoded ho-
moeologs (14%), 794 A- and D-genome encoded homoeologs (13%) and 804 B- and D-genome
encoded homoeologs (14%) were placed in the same co-expression clusters. A balanced dis-
tribution was also observed for completely silenced homoeologs (1,150 genes of the A genome,
1,103 of the B genome and 1,123 of the D genome).
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Fig. 5.12. Diverged co-expression cluster assignments for homoeologous gene triplets.

All possible clustering scenarios for homoeologous gene triplets are visualized by the illustrations along the
x-axis. Colored circles depict expressed (filled) and non-expressed (blank) homoeologs. Grey backgrounds
illustrate cluster assignment, whereupon common surrounding depict grouping in the same co-expression
cluster. a, Observed overall frequency distribution of homoeolog gene copies, which retain gene expres-
sion, are partially silenced (one or two homoeologs expressed) or completely absent during endosperm
development (no homoeolog expressed). b, Total number of homoeologous triplets observed for individual
clustering szenarios including Cluster | to XIl and Cluster 0. ¢, Fraction of triplets are shown of which all ho-
moeologs were placed into co-expression clusters with endosperm-specific expression patterns (Clusters
I to Xl only). Observed distributions were compared against the assumption of complete independence
between homoeologous genes.



5.5. MODULE-ASSOCIATED GENOME DOMINANCE 119

A total of 4,180 triplets (70%) had one or more homoeolog(s) assigned to Cluster 0, which
represented unspecific gene expression during endosperm development (Fig. 5.12c). Notably,
different distributions and degrees of Cluster 0-involvements were observed for triplets of which
all homoeologs were found to be expressed and triplets of which one homoeolog was not detected
in the grain transcriptome. For more than 80% of the triplets with three expressed homoeologous
genes, at least one copy was placed in Cluster 0. On the contrary, in average two third of partially
silenced triplets were associated to endosperm-specific clusters only (Cluster | to VII).

Spatiotemporal relationships in homoeologous gene expression divergence

As shown in Fig. 5.12, the majority of homoeologous genes forming triplets were placed into dif-
ferent co-expression clusters. Such a partitioning of triplet genes indicated differences in the gene
expression profiles among homoeologous genes and clearly deviated from a naive assumption
of identical transcriptional regulation and activity for A-, B- and D-genome encoded homoeologs.
To investigate for significant differences in the cluster assignments, the number of homoeologous
expression transitions, i.e. different cluster assignments for homoeologous genes, was tallied in
pairwise comparisons of wheat genomes and the determined co-expression clusters (Clusters |
to VII) (Tables A.3 to A.5). Subsequently, the aggregation of observed transitions from one cluster
to another was tested for significance by using an one-sided Fisher’s exact test and Bonferroni
corrected P values™ (Fig. 5.13 and Table A.6).

Interestingly, clusters that are spatiotemporally related often shared a significant number
of homoeologs from the same ftriplets. For example, a significant number of transitions of ho-
moeologs was identified connecting early differentiation (Cluster I) and intermediate development
(Cluster II) (P <0.004) or aleurone cells sampled at 20 DPA and 30 DPA (P <0.021). On the con-
trary, homoeologous transitions were only rarely observed for functionally different co-expression
clusters like, for example, Cluster Il (starchy endosperm) and Cluster IV (aleurone cells).

5.5 Endosperm cell type function and module-associated genome
dominance

So far, this thesis found spatiotemporal partitioning of gene expression for homoeologous genes
in the wheat grain transcriptome, i.e. different transcriptional activity of homoeologs in different
cell types and different developmental stages during endosperm development. As the previous
analyses only considered the correlation of the spatiotemporal gene expression profiles, abso-
lute differences in transcript abundances have been disregarded. To further investigate genome
asymmetry and genome dominance in terms of expression strength, the gene expression levels
were directly compared among homoeologous genes.

“)| gratefully acknowledge Karl Kugler for performing the significance test on basis of the transition matrices.
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Fig. 5.13. Spatiotemporal distribution of homoeolog expression transitions.

The network arranges co-expression clusters with endosperm-specific expression profiles (Cluster | to VII
represented as nodes) accordingly to developmental stages. Bi-directional arrows connecting two nodes
indicate expression partitioning for a significant number of homoeologous triplets (P <0.05), i.e. that a
significant number of homoeologous triplets have homoeolog genes located in the two connected co-
expression clusters. For example, homoeologous A and B genome encoded genes were located in Cluster
I, while the D genome copy clustered in Cluster Il. Boxplots show gene expression profiles of the individual
co-expression clusters.

5.5.1 Gilobal patterns of homoeologous gene expression regulation

Triplet expression vectors were created by concatenating the logo(FPKM+1)-transformed gene
expression values observed for the A, B and D genes forming single-copy homoeologous triplets.
To determine similarities in gene expression across the spatiotemporal endosperm conditions and
genomes, these vectors were combined in a matrix, which was subjected to hierarchical cluster
analysis and principal component analysis. The hierarchical clustering was performed by using
the pvclust-function implemented in the pvclust package (378) with Pearson’s correlation dis-
tance, average linkage method and 1,000 bootstrap iterations. The principal component analysis
by using the prcomp-command in R (parameter: scale=TRUE).

Rather then clustering of the corresponding spatiotemporal samples, the columns of the
homoeologous gene expression matrix (i.e. particular endosperm cell types and developmental
stages) clustered according to genomes (Fig. 5.14a). This observation was supported by strong
two-dimensional separation of the genomes in the first and second principal components of the
homoeologous gene expression matrix (Fig. 5.14b). Such clustering patterns indicated that, on
a global scale, genome-specific gene expression dominated over cell type-specific gene expres-
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sion. Notably, each genome-group maintained the spatiotemporal separation of endosperm cell
types as observed in the genome-wide cluster analysis (Fig. 5.8).

No evidence was found for genome-wide transcriptional dominance of one genome. In all
pairwise comparisons among the A, B and D genomes, the overall gene expression logy fold-
changes were balanced (Fig. 5.14c). However, hierarchical clustering of the triplets (correlation
distance and average linkage method) partitioned the expression matrix into three segments with
preferential gene expression for genes of one genomes (Fig. 5.14d). This observation indicated
group-wise genome dominance and will be further investigated in more detail in the following
section. Furthermore, a total of 738 triplets were differentially expressed between two genomes
(A>B, A>D, B>D or vice versa) as determined by using an one-sided significance permutation
test with 1,000 iterations and P values <0.05. Thereby, again, no genome-wide bias towards
preferential expression of one genome was detected as a similar number of homoeologs were
dominated by the A genome (232 vs. B genome and 219 vs. D genome), by the B genome (223
vs. A genome and 232 vs. D genome) and by the D genome (232 vs. A genome and 231 vs. B
genome), respectively.
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Fig. 5.14. Analysis of gene expression for single-copy homoeologous gene triplets.

Similarity in gene expression profiles was analysed for homoeologous genes of the A, B and D genes
forming single-copy triplets. a, Hierarchical clustering across spatiotemporal conditions and genomes.
Red stars mark branches with bootstrapping values above 0.9. b, First and second principal component
identified for the homoeologous gene expression profiles. Pairwise genome comparison of mean log, fold-
changes ¢, in a genome wide analysis and d, for individual triplets ordered by hierarchical clustering of
the gene expression matrix. Colored dots indicate significantly differentially expressed triplets (P <0.05).
Right hand side boxes visualize the partitions of the dendrogram with biased genome expression.
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5.5.2 Cell type and stage specific homoeologous gene expression bias

Despite absence of global deviations in the logs fold-changes between homoeologous genes,
the observed patterns in the hierarchical clustering analysis (Fig. 5.14) suggested group-wise
differences in the gene expression levels for homoeologous genes. To gain deeper insights into
the systems-level transcriptional dynamics of homoeologs, a further network-based co-expression
analysis was conducted.

Network construction and identification of co-expression triplets

A weighted correlation network (379) was constructed based on the homoeologous gene ex-
pression matrix. Therefore, first, the network topology was analysed for selecting an appropriate
soft thresholding power (3) to which co-expression is raised. This parameter is used for calculat-
ing the adjacency of triplets (i.e. nodes) in the network (380). Different candidate power values
were tested and a 5 of 12 selected as lowest power that reaches a scale-free topology index of
0.90 (Fig. 5.15a). Secondly, groups of closely connected genes, so called "co-expression mod-
ules”, were identified by clustering genes based on the topological overlap matrix (387) and cut-
ting the dendrogram with the cutreeDynamic-method (382) (parameters: deepSplit=2, pamRe-
spectsDendro=FALSE, minModuleSize=50). Genes without module associations were collected
in an artificial "grey” module (379). Initial modules with very similar module profiles were merged
(eigengene correlation >0.75) (Fig. 5.15b). For visualization the weighted network was exported
with an adjacency threshold of 0.1 to Cytoscape (3717) (version 3.0.2) and nodes were arranged
by using the "edge-weighted force directed layout” algorithm.
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Fig. 5.15. Weighted gene co-expression network analysis for homoeologous gene triplets.
Gene expression of homoeologous gene triplets was investigated utilizing network-based co-expression
analysis. a, To identify most suitable clustering parameters different soft-threshold powers were tested
and the lowest power value with a scale-free topology fit index of 0.9 was used for further analysis. b,
Groups of genes with highly correlated gene expression, so called modules, were identified based on the
co-expression network. Initial modules with highly similar gene expression profiles were merged.
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Cell type specificity of the co-expression network

The computed co-expression network was partitioned into 25 clearly separated co-expression
modules [Figs. 5.16 (network in inset) and A.3]. To further analyse the network topology, cell
type- and stage-specificity was assigned to each network module. Therefore, the module eigen-
genes were correlated with pre-defined profiles specifying preferentially expression at different
developmental stages and in different cell types by using the corPvalueStudent-function imple-
mented in the R package WGCNA (379) (Fig. A.4). The assignment was then based on positive
and significant correlations and integrated with information on spatiotemporal gene expression
(Fig. A.5) as well as GO enrichment tests for over-representation of the molecular functions and
the biological processes associated with the triplets of a module (Table A.8).

This analysis revealed module-wise expression patterns and spatiotemporal clustering in
the network separating cell types and grain developmental stages (Fig. 5.16, left network). Mod-
ules related to aleurone cells (turquoise nodes) formed a large cluster of genes that were ex-
pressed at 20 DPA and 30 DPA. These were enriched for molecular functions including energy
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Fig. 5.16. Cell type- and developmental stage-specific gene expression and genome dominance in
the homoeologous co-expression network.

25 co-expression network modules were derived by weighted gene co-expression network analysis for
single-copy homoeologous gene triplets (represented as nodes). Coloring in the central inset encode for
the individual network modules. Modules enriched for hub genes are highlighted by a red backgrounds.
Network modules in the left panel were colored for cell type and and developmental stage based on their
gene expression profiles. The coloring of nodes in the right panel visualizes genome dominance for indi-
vidual triplets.
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metabolism, vitamin biosynthesis and hydrolase activity. Starchy endosperm related modules (red
nodes) were more scattered in the network and could be linked to polysaccharide catabolism, the
glyoxylate cycle and autophagy. Transfer cells (yellow nodes) formed dense, separated clusters
enriched for "response to stimulus” functionality. Transcriptional modules enriched for more gen-
eral functionalities (e.g. transport and translation) without cell type or developmental phase speci-
ficity were also found (grey nodes). In total modules with aleurone-specific expression patterns
constituted more than one third of the nodes (2,207), whereas the other cell types contributed to
a lesser extent [658 nodes for starchy endosperm (11%) and 149 for transfer cells (2%)]. The
remaining nodes grouped either with the early phase of endosperm development or unspecific
clusters.

Genome dominance for co-expression modules

Besides comparison of gene expression levels, the genome dominance of each module was as-
sessed by using an enrichment test for significantly high numbers of DE homoeologous genes
applying a one-sided Fisher’s exact test (Bonferroni corrected P value <0.05) (Fig. A.3). Further-
more, to visualize genome dominance in the correlation network, individual nodes were coloured
by a weighted mean of the genome-specific average expression across all samples (Fig. 5.16,
right network). Different genomes dominated expression for 23 of the modules, which included
92% of the analysed homoeologous triplets. Notably, no single genome proved to be overly dom-
inant corroborating the observations made with the hierarchical cluster analysis above.

Generally, highly connected nodes, so called "hubs”, display characteristic expression pro-
files for network modules (383). Therefore, the hub nodes of the inferred co-expression network
were defined as those triplets within the top 10" percentile of a centrality measure computed
with the igraph package (384). Noteworthy, significantly more hub genes showed a homoeolo-
gous gene expression bias than non-hub genes did (one sided Fisher’s exact test with Bonferroni
corrected P value <0.05). Moreover, each module was assessed for enrichment of hub genes
(one sided Fisher’s exact test with Bonferroni corrected P value <0.01). This revealed significant
enrichment for modules that served as connecting layers among different regions of the network
[Figs. 5.16 (highlighted modules in the inset) and A.3]. Considering the special roles of hub genes
in co-expression networks (383), these observations suggested that the identified hubs might play
an important role in orchestrating genome-specific expression in the grain co-expression network.

Functional compartmentalization of the bread wheat transcriptome

Furthermore, the observed genome asymmetry and cell type specificity were superimposed with
a semantic aggregation of significantly over-represented GO categories (Table A.8). Therefore,
a two-dimensional semantic distribution was computed for all biological process GO categories
that were over-represented in any transcriptional group by using the REVIGO webserver (363).
Subsequently, the distribution was compared among groups with asymmetric genome expression
by coloring those terms green, purple or orange, which were significantly over-represented in
transcriptional groups dominated by the A, B or D genome, respectively.
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This visualization strategy revealed functional specialization and compartmentalization with
subdivision of basic cellular functions as well as endosperm-specific functions for individual cell
types or developmental stages among the wheat genomes (Fig. 5.17). Fundamental functions re-
lated to translation and DNA repair were dominated by the A genome, whilst B genome-dominated
groups were enriched in genes related to chromosome organization and D genome-dominated
groups were enriched for transport activity or signal transduction. Favored expression of one
genome for specific spatiotemporal endosperm conditions was also found. For instance, lipid
metabolism was dominated by the A genome, monosaccharide metabolism dominated by the B
genome or catabolic processes and authophagy dominated by the D genome.
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Fig. 5.17. Functional compartmentalization of homoeologous gene expression.

Semantic similarities between significant enriched GO terms (biological processes) of all triplet co-
expression groups were calculated and projected onto a two-dimensional semantion space using (363).
GO categories were colored, if they have been identified to be significantly over-represented (P <0.02)
in any of the subgenome-dominanted triplet co-expression groups. a, A genome, b, B genome and ¢, D
genome.

5.5.3 Sequence evolution vs. expression evolution

In Section 4.3.4 of this dissertation, evidence of incongruence in the gene family composition was
observed on chromosome arm level, which corroborated recent genome-wide studies that inves-
tigated the phylogenetic relationships within the Triticeae and suggested non-linear, reticulated
evolution of the A-, B- and D-genome lineages (69,71,73). To elucidate if the evolutionary history
of homoeologous genes relate to genome asymmetry in gene expression, the sequence-based
features of homoeologous genes were compared with transcription-based features. Therefore,
sequence divergence analysis was conducted on basis of the number of synonymous substitu-
tions per synonymous site (K;) and the number nonsynonymous substitutions per nonsynony-
mous site (K,). These measures are proxies for the divergence in protein sequences (K,), the
evolutionary relationships and distances (Ks) and selection pressure (K,/K). For each triplet
the best scoring protein BLAST (227) (E <1071%) alignment was determined between homoeolo-
gous wheat genes and the K, K, and K,/ K values were computed (281,282).
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The levels of synonymous substitutions per synonymous site between A-D and B-D ho-
moeologous gene pairs were comparable and significantly smaller than for pairs from the A and
B genomes [Wilcoxon-Mann-Whitney-Test (P <0.001)] (Fig. 5.18). This pattern corroborated ob-
servations of Marcussen et al., who reported variation in phylogenetic relateness of the A, B and
D genomes and higher frequency of B(A,D) and A(B,D) topologies (69). However, same over-
all evolutionary patterns were found for individual co-expression modules and independent from
gene expression level dominance (Figs. 5.18 and A.6).
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Fig. 5.18. Comparison of transcriptional and sequence-based differences for homoeologous genes.
Transcriptional and sequence-based features were compared between genome-pairs for all homoeologous
gene triplets. Red stars mark significant differences in distributions of sequence-based features [Wilcoxon-
Mann-Whitney-Test (P <0.001)]. Corresponding pairwise comparisons separately for triplets dominated by
the A, B or D genome are shown in Fig. A.6.

5.6 Chromosomal regulation of wheat gene expression

In the previous sections, this work revealed significant expression differences between homoeol-
ogous genes causing transcriptional genome asymmetry that related to non-random subdivision
of functional responsibilities. Such homoeolog-specific expression patterns may have been set
already in the di- or tetraploid progenitor genomes and were inherited by hexaploid wheat or, al-
ternatively, were set following genome merger (101,133). Recent single gene studies suggested
that those changes might be a result of genetic and epigenetic regulatory mechanisms, which or-
chestrate gene expression in stochastic as well as non-stochastically modes (108,385). However,
while genetic regulatory mechanisms are expected to affect genes at different genomic locations,
epigenetic mechanisms often influence neighbouring genes (106,386,387). The impact of chro-
mosomal position on gene expression will be further investigated in this section.
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5.6.1 Construction of Triticeae prototype chromosomes

In absence of a fully sequenced and ordered reference genome for bread wheat, first, the an-
notated wheat genes were projected into a sequential ordering. Therefore, the “crop circle”
model (34,35,55-58), which describes large conservation of synteny and gene order in the
grasses (Section 1.2.3), provided a powerful principle and allowed the comparative genomics-
based construction of seven "Triticeae prototype” (Tp) chromosomes. The anchoring of wheat
genes along the Tp scaffolds reflected the virtual ancestral linear gene order of the A, B and D
genomes. This approximation allowed the comparative analysis of positional gene expression
regulation between homoeologous chromosomes.

Construction of the Triticeae prototype scaffolds

Barley and bread wheat diverged approximately 13 mya (Section 1.2.2). As large conservation
in genome structure exists between these two species (388), the chromosomal ordering of more
than 21,000 barley genes (62) served as a suitable proxy for the definition of syntenic regions
between wheat and the high-quality reference grass genome sequences of Brachypodium (42),
rice (45) and sorghum (40). To construct the Triticeae prototype scaffolds, | extracted the genes
contained in syntenic chromosomal segments from each reference genome. These segments
were linearly placed correspondingly to the ordering in the barley genome (62). Within each seg-
ment, the reference genes were arranged based on the closest evolutionary distance to wheat,
i.e. Brachypodium genes were ordered first and rice and sorghum genes were successively added
(Fig. 5.19a, steps i to v). Thereby, putative orthologous genes were assigned to a common pro-
totype locus as determined in pairwise best bidirectional protein BLAST (227) searches between
the Brachypodium, rice and sorghum gene sets (steps ii and iv) (E <10®). The remaining genes,
which miss an orthologous counterpart, were arranged next to an anchored gene with minimal
genomic distance (steps iii and v).

A total of 21,956 Brachypodium, 22,916 rice and 20,738 sorghum genes were identified
to be located in syntenic regions that are unambiguously designated to one barley chromosome
(Table 5.5). These genes were integrated into 37,608 loci along seven Tp chromosome scaffolds
ranging between 4,133 (chromosome 6) up to 6,169 (chromosome 2) loci. Overall, 11,349 pu-
tative orthologous relationships were determined between all three reference species and 5,304
orthologs pairs were found between two species only. These were anchored to same loci in
the prototype backbones (Fig. 5.19b). The extracted blocks with syntenic conservation were
clearly apparent from structural comparison between the Tp chromosomes and the Brachypodium
genome (Fig. 5.19¢).

Anchoring of wheat genes at Triticeae prototype scaffolds

To anchor bread wheat genes along the Tp chromosome scaffolds, the predicted HC proteins
were aligned against the entire gene sets of Brachypodium, rice and sorghum, respectively
(BLASTP (227) with E value <10®). Considering only the best-scoring alignment with mini-
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Fig. 5.19. Construction of the Triticeae prototype chromosomes.

a, Workflow for construction of seven Triticeae prototype (Tp) chromosomes. For each chromosome genes
located in syntenic regions were extracted from the Brachypodium (Bd, blue), rice (Os, red) and sorghum
(Sb, turquoise) genome based on comparisons to the barley gene order (the color shading of rectangles
indicates corresponding blocks). See main text for description of individual steps (i)-(vi). b, Number of
defined orthologs between Brachypodium, rice and sorghum (overlaps in Venn diagram) and singletons
that were integrated in the Tp scaffolds. ¢, Comparison of the seven Tp chromosomes to the Brachy-
podium genome. Maximum locus number and physical position is shown for each Tp and Brachypdodium
chromosome, respectively.

Table 5.5. Number of Brachypodium, rice and sorghum genes building the seven Triticeae prototype
chromosome scaffolds.

Species Tp1 Tp2 Tp3 Tp4 Tp5 Tp6 Tp7 by

Brachypodium 3,108 3,647 3,391 3,003 3,135 2,538 3,134 21,956
rice 3,158 3,806 4,003 3,306 2,991 2,651 3,001 22,916
sorghum 2,746 3,276 3,471 2,242 3,217 2,473 3,313 20,738
3 loci 5,210 6,169 5,972 4,907 5,654 4,133 5,563 37,608

mum 65% alignment identity spanning at least 30 amino acids length, the wheat genes were
associated to a reference gene in the Tp scaffolds accordingly to nearest evolutionary distance
(Section 1.2.2).

Overall, more than two third of HC bread wheat genes [57,903 genes (HC1 to HC3)] were
positioned along the seven ancestral chromosomes with a similar proportion of genes from the A
genome [18,778 genes (70%)], the B genome [20,479 genes (67%)] and the D genome [18,646
genes (67%)] (Fig. 5.20a). While a comparable number of genes of individual genomes were
assigned to chromosomes 1 and 4, the anchoring of wheat genes sightly differed for the other
chromosomes. Consistent with the extraordinary size of chromosome 3B (2471,311) the largest
differences among homoeologous chromosomes were observed for this group. A combined set
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incorporating 16,286 ordered Tp loci was defined (Fig. 5.20b), of which 59% (9,629) were sup-
ported by genes from all three wheat genomes and 22% (3,506) by combination of two wheat
genomes. For all pairwise combinations similar overlaps between the A, B and D genomes were
observed suggesting no predominant deletion or retention of genes from one genome.

By using this strategy most wheat genes were assigned to their corresponding chromosome
in the Tp (Fig. 5.20c). However, some structural re-arrangements were observed, which are not
present in the barley genome on which basis the Tp was built (Fig. 5.20c, highlighted regions).
For example, these included a translocation between chromosome 4 and 5, which is shared by all
homoeologous chromosomes, and the two well-described translocations between chromosomes
4AL/5AL and 7BS/4AL (63,315) (Section 4.3.4). Furthermore, a previously unknown deletion in
the short arm of chromosome 6D was present that will be further discuss in the following section
of this chapter (Section 5.7). Excluding these local re-arrangements, the number of anchored
genes along the Tp chromosomes did not largely deviate for individual genomes. Small local
regions with an extraordinary number of anchored genes were caused by Brachypodium, rice
and sorghum genes that are classified as transposable elements and, thus, led to an increased
number of anchored bread wheat genes attracted from all chromosomes.
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Fig. 5.20. Anchoring statistics of wheat genes to the seven Triticeae prototype chromosomes.

a, Number of anchored wheat genes to the seven Tp chromosomes. Pie chart visualizes the total number
of anchored genes. b, Number of Tp loci that are supported by genes Brachypodium, rice or sorghum. The
intersections visualize the number of identified orthologs between one, two or all three analysed species. ¢,
Number of bread wheat genes anchored per window along each Tp chromosome (sliding window including
50 loci, window shift size of 10 Tp loci). Color code of bars indicate the chromosome of the anchored genes
in the wheat genome. Minimum and maximum number of integrated genes per window is shown for each
Tp chromosome. Regions highlighted in red represent chromosomal re-arrangements in wheat that were
not shared with the barley genome.
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The Tp chromosomes represented a simplified approximation of the present linear gene
order in the bread wheat genome, which was also apparent from comparisons to the wheat
GenomeZipper generated in frame of the IWGSC consortia (70) (Section 4.3.2). Generally, a
high structural agreement was found between the Tp and the GenomeZipper for each chromo-
some (Fig. 5.21). The Tp considered only chromosomal re-arrangements that were common to
the A-, B- and D-genome lineages, whereas discarded genome-specific and small-scale interrup-
tions in microsynteny due to neglecting genetic marker information. Although this underestimated
structural variation among the three wheat genomes, however, this simplification allowed one-to-
one comparative analyses between corresponding homoeologous chromosomes. By using the
wheat GenomeZipper the most likely location in the wheat genome can be inferred for further
analysis.
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Fig. 5.21. Structural comparison between the Triticeae prototype against the wheat GenomeZipper.
For each genome dotplots visualize the position of bread wheat genes (HC1 to HC3) in the seven Triticeae
prototype chromosomes and in the wheat GenomeZipper for the a, A genome, b, B genome and ¢, D
genome. Venn diagrams count the number of wheat genes that were anchored by one or both approaches.

5.6.2 Chromosomal regulation of endosperm gene expression

To elucidate the chromosomal effects on mRNA abundances, gene expression was measured
along the Titiceae prototype chromosomes by using a sliding window approach (median expres-
sion strength for windows including 50 Tp loci and 10 Tp loci window shift size). Along all chro-
mosomes gene expression oscillated and chromosomal domains were found with increased tran-
scriptional activity during wheat grain development (Figs. 5.22 and A.7 to A.13). Generally, the
spatial patterns of chromosomal gene expression differed only minor between endosperm cell
types and developmental phases. Furthermore, the observed patterns were to a large extent
similar between genomes. However, various chromosomal segments showed apparent diver-
gent expression patterns between endosperm cell types and developmental stages as well as
between wheat genomes. As exemplified for two domains in the following, such differences might
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Fig. 5.22. Chromosomal regulation of gene expression along the Triticeae prototype gene order
exemplified for chromosomes 1.

a, Local regulatory divergence between homoeologous gene exemplified by Triticeae prototype (Tp) chro-
mosome 1 (sliding window, size 50 Tp loci; shift 10 Tp loci). Line charts show the median gene expression
measured in aleurone and starchy endosperm cells at 20 DPA. b, Pairwise log»-fold changes in gene ex-
pression for each window between wheat subgenomes. Triangles indicate chromosomal regions that are
significantly enriched for homoeologous triplets up-regulated in a single genome (Fisher’s exact test with
P value <0.05).

be triggered and influenced by numerous factors (108,385). Therefore, domains with asymmet-
ric expression patterns constitute potential targets for elucidating the underlying silencing and
enhancing mechanism in full detail and further studies.

Local deviations in gene content

One of these domains, which is indicated by a red diamond in Fig. 5.22, was located on the
long arm of Triticeae prototype chromosome 1. Gene expression significantly differed across
endosperm samples with highest abundance in aleurone cells [Wilcoxon-Mann-Whitney-Test (P
<0.01)]. D-genome encoded genes dominated expression over genes of the A and B genomes,
which were similarly expressed. A total of 169 expressed wheat genes were anchored within
this chromosomal region, of which 27 genes were significant differentially expressed between
samples (FDR <0.05). Correspondingly to the expression profile most of these DE gene were
exclusively up-regulated in aleurone cells [6 genes of the A genome, 4 genes of the B genome
and 7 genes of the D genome (17 genes)]. These encoded proteins involved in major processes
and pathways of wheat endosperm including gluconeogenesis, lipid binding and gibberellin sig-
nal transduction, an important hormone acting in development and growth control (389). Slightly
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more genes of the D genome (61 genes) were located within this chromosomal segment com-
pared to the A (56 genes) or B (52 genes) genomes. Considering the significantly enriched
functional categories for these genes, various GO terms were exclusively found over-represented
for the D-genome encoded genes, which indicated that the corresponding proteins were only
present in this genome (Fig. 5.23a). Interestingly, these genes function in processes and path-
ways characteristic for aleurone cells including gluconeogenesis (GO category “Fructose-1,6-
bisphosphatase”) (390) or vesicle-mediated transport (3917). Therefore, the in-balance and the
local variation in gene content might have caused the observed asymmetric gene expression
profile between the A, B and D genomes for this chromosomal domain.

Regulatory mechanisms acting on particular regions of homoeologous chromosomes

As a second example, the chromosomal domain indicated by a blue diamond in Fig. 5.22 showed
also considerably increased gene expression in the D genome and similar expression in the A
and B genomes. Differentially expressed homoeologous triplets, which were dominated by the D
genome, were found to be significantly over-represented in this segment (one sided Fisher’s ex-
act test with Bonferroni corrected P value <0.05). This excluded that variations in the local gene
content between genomes caused the observed gene expression differences. Moreover, it indi-
cated that common regulatory mechanism controlled the transcriptional activity for homoeologous
genes present as a single-copy in each genome.

For instance, one triplet with asymmetric gene expression was related to Dnad chaperone
proteins. All homoeologous followed a generally similar expression pattern and showed maximum
expression in SE-containing samples (Fig. 5.23b). This finding agreed with the known function
and expression patterns for this class of proteins, which was associated with important roles in en-
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Fig. 5.23. Exemplified analysis of chromosomal domains with non-balanced gene expression.

a, Functional enrichment analysis for gene ontology categories encoded by wheat genes positioned in the
red-marked chromosomal domain in Fig. 5.22 (position 66-69%). Significant over-represented GO terms
are shown for individual wheat genomes (P <0.01). b, Expression level across spatiotemporal endosperm
samples for homoeologous genes related to DnaJ class of chaperone proteins. Genes are located in the
blue-marked chromosomal domain in Fig. 5.22 (position 84-87%).
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dosperm and protein body development and was found to be highly abundant in the sub-aleurone,
where starch and storage protein accumulation occurs (392). However, correspondingly to the
observed patterns in this chromosomal domain, the D-genome encoded homoeologous gene
copy significantly dominated gene expression compared to the transcriptional activity of the A-
and B-genome encoded copies.

5.7 Targeted expression profiling of gene families affecting wheat
baking quality

White flour is the major contributor to humankind’s nutrition and one of the main ingredients for
most wheat products. Cereal seed proteins have not only nutritional importance, moreover, they
facilitate the biotechnological process of breadmaking (393). During milling seeds are separated
into their individual components. Wheat bran (aleurone cells, seed coats and pericarp) and the
embryo are removed, whereas the starchy endosperm is disposed for further flour manufacturing.
Starchy endosperm is the largest body of wheat grains and accumulates the majority of seed and
starch proteins mostly in form of prolamins, which attribute the texture and unique characteristics
of wheat dough permitting to bake bread (353,394,395). Prolamins are derived from glutamine
and rich in proline and amide nitrogen and, in wheat, can be divided into two functionally different
components, the gliadin and glutenin proteins. By adding water to flour these two proteins forms
a complex called gluten, which built-up a network structure that is simultaneously extensible and
elastic ("visco-elasticity”). Under action of baking powder or yeast gluten permits dough to stretch
and rise and, thus, is responsible for the texture of bread (393).

The wheat prolamin gene family shows enormous genetic diversity, differs largely between
wheat cultivars and includes hundreds of genes and extensive allelic variation, which composi-
tion controls and influences bread baking quality of individual wheat varieties (394). Therefore,
a global understanding of the constitution of gene families affecting dough quality is required for
improving wheat varieties. In this study, the bread wheat genome was screened for genes af-
fecting baking quality, namely the prolamins, which include the high molecular weight glutenin
(HMW) and low molecular weight (LMW) glutenin (Glu) genes, the a-, v-, and w-gliadin (Gli)
genes (353,394), the grain hardness (Ha) locus, which includes the puroindoline A (pinA) and
puroindoline B (pinB) genes (396,397 ), and the storage protein activator (SPA) proteins (398).

5.7.1 Cataloguing genes affecting wheat baking quality

Public cDNA and protein sequence information deposited in the NCBI sequence database® was
utilized to target candidate genes in the bread wheat gene annotation as well as in the CSS

O HMW-Glu: (43,399); LMW-Glu: (43,400); pinA, pinB and pinB2: (43,401); SPA: (402); o~-Gli: O. D. Anderson,
direct submission to NCBI (U50984.1), (403); w-Gli: (404); v-Gli: (344,405)
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assembly by using manual BLAST (227) and GenomeThreader (305) searches. Furthermore,
OrthoMCL (223) was applied to cluster proteins of the bread wheat, the A. thaliana (137) and
Ae. tauschii (43) genomes into gene families [OrthoMCL (223) (version 2.0) using BLASTP (E
<10°) and an inflation parameter of 1.5]. The individual evidences were manually combined and
annotated bread wheat genes associated to the corresponding target gene families. The glutenin
and gliadine genes have highly complex protein-coding sequences including multiple repetitive
protein domains (406), which substantially complicated a full-length assembly of the gene loci by
using NGS-based genomic resources. Therefore, structures and sequences of some genes and
transcripts were curated by hand with respect to the alignments of query sequences and wheat
RNA-seq transcriptome information.

For each individual gene family the orthologous relationships were investigated by us-
ing multiple protein sequence alignments [CLUSTALW algorithm (407)] and phylogenetic trees
[’neighbourhood joining” algorithm with "average percent identity” method implemented in the
Jalview software (408) (version 2.8)]. Due to the complex sequence composition (406), some
of the analysed grain quality genes have not been assigned to the high-confidence gene classes
utilizing the IWGSC gene annotation pipeline. As initially only the HC gene set was considered
for calculation of expression levels in this study (Section 5.2.5), the mRNA abundances were
re-computed for all genes of the analysed grain quality gene families. Therefore, the number of
RNA-seq reads falling within the curated gene structures were counted by using HTSeq (409)
and, subsequently, gene expression strength calculated in RPKM (Reads Per Kilobase exon
model per Million mapped reads) by normalizing the read counts to the total number of mapped
reads for individual replicates and the transcript length (780). The final gene expression levels of
the analysed genes were defined as mean RPKM across all biological replicates.

5.7.2 Gene family compositions and gene expression patterns for seed and stor-
age proteins during endosperm development

The high- and low molecular weight glutenin genes

Gilutenins are polymeric proteins (470) and mainly contribute to dough characteristics (417) like
elasticity and strength through the formation of disulfide bonds (472). Based on differences in
their molecular mass glutenins were classified into the high molecular weight glutenin subunit
and the low molecular weight glutenin subunit (394), which presence, allelic variations and ex-
pression strength have been associated with dough properties and superior bread-baking perfor-
mance (342,411,413). The LMW-Glu subunit genes were found on the short arm and HMW-Gilu
subunit genes on the long arm of the group one homoeologous chromosomes (Figs. 5.24a and
b, dendrograms). Six genes were identified for the HMW-Glu subunit occurring as homoeologous
triplets, which could be further classified into two homoeologous groups representing the x-type
(1xA, 1xB and 1xD genome) and the y-type (1xA, 1xB and 1xD genome) HMW glutenins.
The two homoeologous groups differed in phylogenetic topology showing closer similarity be-
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tween the B and D homoeologs for the x-type and between the A and B homoeologs for the
y-type. On the contrary, twelve genes of the LMW-Glu subunit showed non-balanced occurrence
across genomes (2xA , 5xB and 5xD genome). Nine of these genes had intact open reading
frames (1xA, 3x B and 5x D genome), while the protein sequences of three LMW-Glu genes
were interrupted by premature stop codons due to frame shifts or nonsense mutations (1 xA and
2x B genome). Generally, these findings were in good agreement with previous characterizations
of the HMW and LMW gene families in the bread wheat cultivar "Chinese Spring” utilizing PCR-
based techniques or proteomics (400,414,415). However, one intact LMW-Glu gene reported in
the D genome was not found (400), but instead a novel glutenin gene (GluB3-*) was identified in
the B genome with closest sequence homology to the Glu-B3 gene.

Overall, the HMW-Glu and LMW-Glu genes were most abundant in starchy endosperm
(Figs. 5.24a and b, heat maps), which was consistent with the accumulation of starch and storage
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Fig. 5.24. Analysis of members of the glutenin and puroindole gene families and the seed storage
protein activator genes.

Major seed storage proteins contributing to baking quality of bread wheat were identified for a, the high
molecular weight glutenin subunit (HMW-Glu), b, the low molecular weight glutenin subunit (LMW-Glu),
¢, the puroindoline PinA, PinB and PinB2 genes and d, the storage protein activator (SPA) genes. Den-
drograms depict a phylogenetic tree for each gene family. Relative gene expression levels (row z-score)
are visualized as heat maps. Bar and pie charts visualize the relative contribution of individual genes and
genomes to total gene family expression. Stars label putative pseudogenes with interrupted by premature
stop codons, frame shifts or repetitive elements.
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proteins in these cells. However, LMW-Glu genes showed also increased mRNA abundances in
the transfer cell sample (20 DPA TC). This sample included tightly attached surrounding starchy
endosperm cells, which could not be completely removed in the dissection process (Fig. 5.1).
Therefore, the SE-contamination most likely caused the observed expression patterns, largely
line with findings of Tosi et al. (343), who reported a gluten protein gradient in the wheat en-
dosperm with higher abundance of LMW-Glu genes in the close sub-aleurone region. Besides
similar spatial expression patterns, temporal differences in gene expression of certain subunits
were also present. Whilst all six HMW-Glu subunit genes were predominantly expressed at inter-
mediate endosperm development (20 DPA), transcription LMW-Glu genes changed over time. In
contrast to GluB3-1, GluD3-1 and GIluD3-4, for which decreasing mRNA levels were measured
over developmental time, GIuA3-4, GluB3-2, GluB3-*, GluD3-2, GluD3-6 and GluD3-7 showed
increased gene expression at intermediate and late endosperm development. Thereby, similar
spatiotemporal gene expression profiles were, at least in parts, reflected in the phylogenetic rela-
tionship of LMW-Glu genes across genomes (e.g. GluB3-1 and GluD3-1).

For both glutenin gene families individual wheat genomes contributed differently to overall
gene family expression (Fig. 5.24a and b, bar and circle diagrams). Whereas the total gene
expression of the LMW-Glu was dominated by the B genome (68%), genes of the D genome ac-
counted for two third of total expression of the HMW-Glu subunit. Generally, A genome-encoded
genes contributed only marginally (2%), which supported the observed inactivation of Glu-A locus
in hexaploid wheat (416). The three identified putative pseudogenes were transcribed, although
at a considerably reduced level compared to intact proteins from the B and D genome, respec-
tively.

The puroindoline grain hardness locus

An additional major contributor to baking quality is the Ha locus controlling the physical charac-
teristics of the endosperm texture, which differentiate cultivated pasta wheat (7. turgidum, hard
endosperm) from hexaploid bread wheat (soft and hard endosperm varieties) (417). The Ha lo-
cus was exclusively detected on the short arm of chromosome 5D encoding for the puroindole A
and puroindole B genes (418) (Fig. 5.24c). The presence of the puroindolines on only one wheat
genome was consistent with the evolutionary fate of this locus and constituted the D genome a
special contribution to the kernel structure of bread wheat grains (479). The PinA and PinB genes
have been reported for the diploid A, B and D genome progenitors, but were absent in tetraploid
wheat T. turgidum and, thus, also in the A and B genomes of bread wheat. By the hybridization
of tetraploid wheat and the D genome progenitor Ae. tauschii, the Ha locus was integrated back
into bread wheat genome (341,420). In addition, a second locus, PinB2, was identified on the
short arm of chromosomes 7A, 7B and 7D, respectively. This locus showed approximately 70%
protein sequence homology to PinA and PinB proteins (401). PinB2 genes were also associated
with differences in kernel texture and wheat yield traits (421,422). However, besides substantial
differences in protein sequences, the transcriptional activity of PinB2 largely differed from the
puroindoline locus on 5DS. In agreement with experimental results (421), PinA and PinB genes
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were expressed at high levels at intermediate and late endosperm development (20 DPA and 30
DPA), whereas the PinB2 homoeoalleles were expressed substantially less and predominantly at
early endosperm development (10 DPA).

The storage protein activator proteins

Storage protein activator (SPA) genes play a crucial role in orchestrating expression of grain
storage proteins in wheat and have been correlated with grain hardness (398). Three SPA gene
copies were present, one in each genome on the long arm of chromosome 1 (Fig. 5.24d). The
gene copies of the B and D genomes were predominantly expressed only at 10 DPA, whereupon
the A genome derived SPA allele at 10 DPA and 20 DPA (W, TC and SE). This behaviour was
consistent with Wan et al. (423), who reported temporal variations in the gene expression for
SPA homoeologs and also decreasing transcriptional activity over time. On the contrary to the
counterbalanced presence of homoeologous SPA genes, asymmetric gene expression resulted
in dominance of the B genome over the A and D genomes. However, in contrast to the HMW-
Glu, LMW-GIu and puroindolines, the A genome contributed substantially to SPA gene family
expression (24%).

The gliadine gene family

The gliadins account for up to 40% of total wheat flour and, thus, are important contributors to
human diet (4715). As they are key initiators of celiac disease, an autoimmune disorder, under-
standing sequence composition and expression of these genes is of industrial and also medical
importance (344,415,424). As shown in Fig. 5.25a, this study revealed substantial variations
in the number of genes as well as in the relative expression levels between the A, B and D
genomes. Many of the query proteins could only be partially aligned against the CSS assembly.
Some of these gene fragments showed considerable deteriorated protein sequences and con-
tained in-frame stop codons, which indicated highly dynamic gene family composition including a
substantial degree of pseudogenization.

~-Gli and w-Gli gene candidates were identified on the short arm of group 1 chromosomes.
B and D genome-encoded gene copies dominated total gene family expression, while copies of
the A genome were less abundant in the wheat grain transcriptome. The «-Gli genes were en-
coded on the short arm of chromosome 6 and, strikingly, only candidate genes were found in
the A and B genomes. No «a-Gli query could be aligned to D genome-contigs in the underlying
genomic reference assembly of the braed wheat genome. Most likely, this originated in a previ-
ously undescribed deletion of approximately 200 genes in the short arm of chromosome 6D (Figs.
5.25b and 5.20). As the a-gliadine locus has been identified in Ae. tauschii, the diploid progenitor
of the D genome (43), the findings suggested a ("Chinese Spring”) bread wheat-specific deletion
of this chromosomal segment. Interestingly, in contrast to the ~- and w-gliadins as well as both
glutenine subunits, the A genome contributed essentially to the total expression of a-gliadins.
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Fig. 5.25. Analysis of the a-, - and w-gliadin gene families.

a, ldentified gene(-fragments) for the a-, v- and w-gliadin gene families in the CSS assembly. Query
sequences are indicated by black bars and detected gliadins by grey bars. Coverage of query genes is
indicated by the connectors. Bar heights in the outer circle visualize the relative contribution of all samples
to overall gene family expression. b, Structural comparison between Ae. tauschii and each bread wheat
genome. Links indicate location of putative orthologous gene pairs between Ae. tauschii (black bar) and
bread wheat (colored bars). Bold connectors highlight the deleted segment on chromosome 6DS.

5.8 Discussion

High-throughput mMRNA sequencing technology allowed to monitor gene expression in one of the
most important organs, the bread wheat grain. The nuclear endosperm was separated into the
major endosperm cell types at three developmental stages spanning the differentiation to matura-
tion phases. On basis of the IWGSC CSS draft genome sequence assembly and gene annotation
bioinformatic analysis of more than 1.6 billion paired-end mRNA-sequencing reads (>160 Gb) was
conducted to investigate the wheat endosperm transcriptome on multiple levels. Starting from a
global profiling of the transcriptional activity in individual cell types and time points, spatiotempo-
ral co-expression clusters were identified and the regulatory mechanisms and functional aspects
of homoeologous gene expression divergence and genome asymmetry were elucidated with a
network-based approach for an important polyploid cereal.
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5.8.1 Highly complex and flexible alternative splicing in bread wheat

Complementary to the structural gene annotation of the CSS assembly (Chapter 4), this work
aimed at studying the expression of genes and splicing variants during endosperm development.
In addition to the existent gene annotation the underlying data set provided evidence for 401
previously undefined high-confidence gene loci (Table 5.1). The majority of these genes fell into
the HC4 gene set and represented most likely gene fragments or pseudogenes. Only five genes
were classified as functional, full-length gene predictions and were added to the HC1 class. These
low numbers indicated saturation in the general characterization of (protein-coding) gene loci and
corroborated the high completeness of the bread wheat gene catalogue annotated in frame of the
IWGSC project (Chapter 4).

However, the detection of only a few previously undefined genes contrasted with abundance
and annotation of more than 15,000 novel alternative splicing forms mainly located at existing
IWGSC wheat gene loci (Table 5.1). Genes with novel splicing variants encoded for a broad
range of gene ontology categories incorporating basic cellular processes as well as endosperm-
specific functions (Fig. 5.4). The majority of transcripts was preferentially expressed in individual
cell types or at particular time points (Fig. 5.7), which suggested a highly complex and flexible
splicing landscape in wheat. This corroborated recent findings in plants (784,791) and mammals
(180,183,425) attributing fundamental roles and high impact to splicing regulators in the control of
cellular protein composition. Therefore, alternative splicing constitute to a considerably increase
in protein diversity and may provide a reservoir of different gene products for a broad range of
functions and pathways (307,323). In accordance with the argumentation of Reddy et al. (308),
the large number of previously unknown transcript predictions highlighted the importance of deep
transcriptome profiling to identify tissue-, cell type-, time point- or environmental-specific splicing
variants, which constitute potential targets for an in-detail investigation of expression regulation
by alternative splicing.

5.8.2 Large differences in spatiotemporal gene expression patterns of wheat en-
dosperm

Across the tested spatiotemporal samples approximately half of the high-confidence wheat genes
were found expressed during wheat grain development (Fig. 5.7), which was largely consistent
with previous observations in Arabidopsis (356) and barley (358). Preferentially expressed genes
represented only a minor fraction of the entire wheat transcriptome with a maximum of 644 for
aleurone cells at the intermediate developmental stage (20 DPA AL) (Table 5.4). A low number of
PEGs has been previously observed in Arabidopsis (356), thus, the results suggested conserved
regulatory principles in grain development across more than 100 million years of plant evolution.

The functional and morphological differences between aleurone cells, starchy endosperm
and transfer cells were also evident from the gene expression measurement (Fig. 5.8). Aleurone
cells grouped apart from the samples including starchy endosperm, which accorded well with
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early initiation of cell type specification before 10 DPA (346). Starchy endosperm-containing sam-
ples grouped and higher cluster distances were observed among SE samples reflecting different
developmental phases. Moreover, the majority of the identified significant differentially expressed
genes were exclusively up-regulated for individual time points or for subsequent time points (Fig.
5.9). This corroborated functional progression and specification in endosperm development to-
wards grain maturation over time (346,356,426). A large number of exclusively up-regulated
genes in 10 DPA indicated pronounced transcriptional activity and dynamics in early endosperm
development, while considerably less genes were up-regulated in 30 DPA SE, consistent with the
initiated cell death and decrease in gene expression in mature starchy endosperm cells compared
to aleurone that actively participate in nutrition of the growing embryo (354,355,370).

Endosperm development progresses through four phases: the syncytial and cellulariza-
tion phases (<10 DPA), the differentiation phase (10 to 20 DPA) and the maturation phase (>30
DPA) (216,217). Co-expressed genes were grouped into seven clusters characterizing gene ex-
pression in the two latter phases, in which the industrially important characteristics of wheat grains
are set. These co-expression clusters showed specific spatiotemporal expression profiles, which
were designated for individual cell types (Cluster VI: aleurone cells; Clusters Il and VII: starchy
endosperm; and Cluster V: transfer cells) and developmental stages (Cluster I: early endosperm
development; Cluster Ill, IV and V: intermediate endosperm development; and Clusters VI and
VII: endosperm maturation) (Fig. 5.11). Furthermore, the functional annotation of genes grouped
in each co-expression cluster revealed enrichment for biological processes, which were consis-
tent with literature and fit to the observed gene expression profiles for each cluster. Thereby,
aleurone cells and starchy endosperm functionally shifted and reprogrammed gene expression
over time. At 20 DPA aleurone cells mainly expressed proteins that encoded for lipid and carbo-
hydrate metabolism, but proteins involved in transmembrane transport were predominant at 30
DPA. This agreed well with initiation of aleurone cells to produce and release enzymes for mo-
bilizing nutrients to the germinating embryo in the maturation phase (346,354,355). Consistent
with the expected initiation of programmed cell death of SE cells at around 30 DPA (370), the
majority of expressed genes in starchy endosperm encoded for proteins involved in autolysis and
related apoptosis pathways.

5.8.3 No global transcriptional dominance for wheat genomes

Previously, absence of a suitable reference genome sequence and high similarity of the homoe-
ologous gene copies impeded distinguishing contribution of individual wheat genomes to entire
transcriptome composition (346). In this study, the combination of the CSS assembly and gene
annotation with next generation RNA-sequencing enabled to profile homoeolog-specific expres-
sion patterns and provided the opportunity to investigate the organization of gene expression in
hexaploid wheat. On a global scale, a similar number of expressed genes was found in the A,
B and D genome across all sampled cell types and time points (Fig. 5.7). This was consistent
with the balanced genome structure and gene content described in the previous chapter of this
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thesis (Chapter 4). No bias towards one or the other wheat genome was evident in terms of
preferentially expressed genes (Table 5.4) nor for significant differentially expressed genes (Fig.
5.9). This indicated generally conserved and balanced contributions of the A, B and D genomes
to important features and functional pathways. This contrasted to transcriptional dominance of
one progenitor genomes, which has been reported for duplicated genes derived from ancestral
whole genome duplications in allopolyploid cotton (116,427) or paleotetraploid maize (171).

5.8.4 Subfunctionalization of homoeologous genes

Microarray analysis of syntentic wheat allopolyploids have also demonstrated that rapid changes
upon polyploidization cause differential expression of homoeologous genes and non-additive
gene expression patterns (125). To test for transcriptional differences between the three wheat
genomes, the expression profiles were compared for 6,576 single-copy homoeologous gene
triplets with exactly one gene copy from each genome. Overall, a strong conservation of gene
expression was observed as all three or none of the homoeologs were expressed for the majority
of the triplets (Fig. 5.12). Silencing of one or two copies occurred less often then expected by
chance. However, partitioning into different co-expression clusters was found for genes forming
homoeologous triplets, an observation suggesting a substantial level of divergence in the gene
expression profiles between copies origin from different genomes. This largely agreed with find-
ings of Mochida et al. (123) and Bottley et al. (124), who reported organ-specific expression and
silencing of homoeologous genes (Section 1.3.3).

A significant number of expression transitions occurred only between spatiotemporally re-
lated clusters, which represented same cell types (e.g. whole endosperm and aleurone cells at
20 DPA) or connected adjacent developmental phases (e.g. whole endosperm at 10 DPA and
20 DPA) (Fig. 5.13). The predominance of non-radical alterations in the spatiotemporal dimen-
sion indicated that expression subfunctionalization, rather than neofunctionalization, is the major
evolutionary mechanism underlying expression divergence in the three bread wheat genomes.
Furthermore, as for a considerable number of triplets one or two homoeologous genes were
placed into the "zero” cluster, while the other homoeolog(s) were found in the endosperm-specific
co-expression modules (Fig. 5.12). This might indicate loss of spatiotemporally specific gene ex-
pression as an intermediate stage on the way to silencing or expression divergence. Vice versa,
such patterns could also reflect cell type- or stage-specific divergence and subfunctionalization
of homoeologous genes.

A similar numbers of gene expression transitions were found for homoeologous genes in
all pairwise genome comparisons. Interestingly, this observation did not correspond to the longer
common evolution of the A and B genomes in the tetraploid progenitor genome. Therefore, the
observed divergence could be either pre-existing in the diploid parents of the A-, B- and D-genome
lineages and maintained during common evolution in the polyploid or, alternatively, resulted from
reprogramming of gene expression in the hexaploid genome. It is noteworthy that the observed
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degree of differential expression among homoeologs between genomes was not correlated to the
time of the polyploidization events.

5.8.5 Homoeolog gene expression divergence and functional genome asymmetry

The observed divergences in the grouping of homoeologous genes to co-expression clusters
considered only correlation in spatiotemporal gene expression and disregarded differences in
the absolute mRNA abundances between homoeologous genes. Direct comparison of gene
expression levels and hierarchical cluster analysis of homoeologous gene expression revealed
striking autonomous regulation of wheat genomes, each maintaining the overall pattern of gene
expression similarity during endosperm development (Fig. 5.14). Again, the conserved genome-
specific patterns strongly contrasted with patterns of gene expression in older polyploids or in
rediploidized genomes, where one of the genomes was found to be more transcriptionally active
than others (111,113,133,134).

However, while on a global scale gene expression differences seemed to be balanced be-
tween genomes, a network-based co-expression analysis identified 25 groups of homoeologous
triplets, which showed substantial bias towards up- or down-regulation of individual genomes (Fig.
5.16). These co-expression modules were associated with distinct cell types and developmental
stages of wheat endosperm. Different combinations of genome asymmetry were observed with a
comparable amount of groups dominated by either the A, B or D genome. Furthermore, central
genes were preferentially differentially expressed between genomes indicating important function
in the control and the orchestration of polyploid genome expression.

Interestingly, functional enrichment analysis of co-transcribed groups revealed that at least
part of the expression divergence between genomes reflected subdivision of cellular functions
among wheat homoeologs (Fig. 5.17). This suggested that genome dominance is not the result
of a random process. Rather it follows a concerted schema and might be related to mechanisms
that function between genomes to balance expression of individual and groups of genes (428).
Differences related to specific functional gene categories imply that both, fundamental cellular
processes as well as major features of bread wheat grain development, were attributable to con-
tributions from single genomes.

Sequence divergence analysis of homoeologous gene pairs revealed significant increased
evolutionary distance between the A and B genomes in comparison to the A and D genomes as
well as the B and D genomes, which had similar distributions for the number of nonsynonymous
substitiutions per synonymous site. These patterns supported the hypothesis of incongruent evo-
lution in the Triticeae (71,73) (Section 4.3.4) and homoploid hybrid speciation of the D-genome
lineage (69). Evolutionary signals did not affect homoeologous gene expression in terms of spa-
tiotemporal profiles, i.e. differences in expression correlation, genome asymmetry and expression
level dominance (Fig. 5.18). Even further, the absence of correlation among transcriptional ac-
tivity and sequence-based phylogenetic signals suggested non-sequence-related genetic or epi-
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genetic regulatory mechanisms orchestrating gene expression among the three homoeologous
wheat genomes (108,385).

5.8.6 Chromosomal regulation of wheat gene expression

A high degree of regulatory orchestration between genomes, but simultaneous maintenance of
autonomous genome expression patterns, has been attributed to the evolution of cis-regulatory
elements coupled to epigenetic mechanisms (106,387). The positional effects on gene expres-
sion were investigated and, in absence of a yet complete and ordered reference genome se-
quence, almost 60,000 wheat genes anchored along seven Triticeae prototype chromosomes
(Fig. 5.20). These were built on basis of the "crop circle” model (55) utilizing conserved syn-
teny to Brachypodium, rice and sorghum and represented the virtual, ancestral state of Triticeae
genomes. Excluding known re-arrangements like, for example, the translocation of segments be-
tween chromosomes 4A, 5A and 7B (63,315), and a previously unknown deletion on the short
arm of chromosome 6D, high degree of structural conservation between homoeologous chromo-
somes and no preferential retention, gain or loss of genes from one genome were evident (Fig.
5.20). Therefore, the projections of wheat genes from individual genomes onto a common ge-
nomic axis allowed the direct comparison of positional gene expression between homoeologous
chromosomes by disregarding genome-specific and small-scale structural differences.

Variations in gene expression levels along chromosomes resulted in chromosomal domains
preferentially expressed during wheat grain development (429,430) (Fig. 5.22). Although the
chromosomal distribution of gene expression was largely synchronized between endosperm cell
types and developmental stages as well as between the A, B and D genomes, various chromo-
somal domains showed asynchronous expression patterns. These domains constitute potential
targets for further specific analysis of the underlying biological causative mechanisms of genome
asymmetry. As exemplified for two of these domains, this study indicated that a complex mixture
of genetic and epigenetic factors may regulate the expression of homoeologous genes (118,120)
(Fig. 5.23). Genetic differences led to locally diverged gene expression between the A, B and D
genomes. Variations in genome compositions resulted in a non-balanced set of encoded biolog-
ical functions, which may were caused by lineage- or genome-specific gain or loss of genes and
implied asymmetric contribution of individual genomes to the entire transcriptome. In addition,
genome-dominated chromosomal domains accumulated a significant number of differentially ex-
pressed homoeologous gene triplets. The presence of single-copy homoeologs in each genome
precluded expression differences to be caused by local gene copy number variations. It demon-
strated that there is local genome asymmetry for neighboring genes common to the A, B and
D wheat genomes. This allowed to speculate that genome level dominance, at least in parts,
might be caused by epigenetic regulatory mechanisms, which may act differently on particular
corresponding domains of homoeologous chromosomes.
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5.8.7 Dominance of the B and D genomes for genes affecting baking quality

Genes contributing to the unique visco-elastic characteristics of bread wheat are of special agri-
cultural, industrial and medical importance, since presence and expression of certain subunits
were associated to superior bread-making performance (342,413,424). Here, genes of the pro-
lamin gene families (glutenin and gliadine genes), the puroindole genes as well as the seed stor-
age activator proteins were analysed. So far, absence of a (draft) reference genome sequence
has impeded such a genome-wide investigation for bread wheat. Previous studies were mainly
focussed on single genes or gene-families utilizing, for example, PCR-based techniques, pro-
teomics or long-read sequencing technology (344,400,403,414,415,431). This work provided a
comprehensive reference gene catalogue of genes affecting baking quality combining sequences,
structural annotation and transcriptional activity to aid breeding of high quality bread wheat vari-
eties.

Consistent with single-gene analyses, large differences were found in sizes and constitu-
tions for the investigated gene families. Substantial variations in the phylogenetic relationships
and non-balanced contribution of the A, B and D genomes were present, often including deterio-
rated gene fragments and putative pseudogenes (Figs. 5.24 and 5.25). Starchy endosperm cells
showed highest transcriptional activity of baking quality genes. Thereby, the total gene family
expression was mostly dominated by genes of the B and D genomes, whereas the A genome
contributed only marginally. Pseudogene candidates showed evidence for expression, but at a
substantially lower level than intact gene copies, which indicated down-regulation of disrupted
proteins along with functional deterioration.

This study also revealed a small deletion on the short arm of chromosome 6D (Fig. 5.25),
which has not been reported for the analysed bread wheat cultivar previously. Interestingly, this
deletion included the a-gliadin gene locus and, contrary to all other gene families, the a-Gli genes
encoded in the A genome substantially contributed to total family expression. Regarding this tran-
scriptional behaviour, which was atypical for the analysed gene families, the particular contribution
of the A genes might be triggered by the loss of the D genome counterparts following a pattern
observed in syntentic tetraploid wheat, as discussed by Feldman et al. (135).

5.9 Conclusions

This study represented a major improvement for bread wheat towards a genome-wide under-
standing of gene expression in different organs, cell types, developmental stages or in plants
grown under or exposed to various different environmental conditions. Different aspects of en-
dosperm development was investigated on a genome-wide level and preferentially expressed
genes and co-expression modules were identified. The findings revealed a complex interplay
in gene expression regulation during grain development in hexaploid bread wheat that involves
several layers. Globally, genes of the A, B and D genomes contributed similarly to the wheat en-
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dosperm transcriptome. Genome-specific expression was found to dominate over tissue-specific
expression, which suggested a considerable degree of autonomous regulation of the homoeolo-
gous wheat genomes. However, substantial divergence in expression profiles of homoeologous
genes indicated spatiotemporal subfunctionalization, asymmetric contribution of genomes to par-
ticular functions as well as different regulation in particular domains of homoeologous chromo-
somes.

The wide and unpredictable variation in wheat quality and yield caused by both genetic
and environmental factors as well as their interaction, represent severe challenges to the wheat
industry. The resources and techniques developed in this thesis form an important basis for
addressing the inter- and intragenomic regulation within a polyploid genome. This study provided
a reference gene catalogue that enables studying the functional output in a wide range of wheat
cultivars and under different environmental regimes to allow the identification of the underlying
genetic and epigenetic factors and their interplay in wheat. This will impact the improvement
of agronomical and industrial traits of one of the world’s most important crops and contribute to
ensure global food security.






Chapter 6

Summary and perspectives

Recent advantages in DNA sequencing technologies have tremendously changed the field of
plant genome and transcriptome analysis. Increased availability of genomic resources opened
new dimensions for plant breeding and accelerated the identification of new varieties with im-
proved yields and improved resistance to challenging environmental conditions (432—435). How-
ever, sequence assembly and analysis of plant genomes still face severe difficulties. Especially,
large genome sizes, highly repetitive DNA sequences and polyploidy delayed the construction of
(draft) reference genome sequences for most Triticeae including allohexaploid bread wheat, one
of the world’s major cereals. By using heterogeneous data sets generated by NGS methods in
different international consortia, this thesis focussed on the development and application of bioin-
formatic strategies to establish resources necessary to overcome current limitations in wheat
genome research. The implemented approaches deepened the knowledge about structure, con-
stitution and organization of the allohexaploid bread wheat genome and enabled genome-wide
investigation of the evolutionary fate of homoeologous genes and the impact of polyploidization on
spatio-temporal expression patterns in the developing endosperm. The scientific achievements
made throughout this thesis contributed novel insights for a global understanding of the complex
genome interplay with genetic and likely epigenetic regulatory mechanisms orchestrating gene
expression of an important, polyploid cereal.

Establishment of comprehensive genome resources

Two complementary approaches were used, which allowed establishing a genome-wide overview
of genes with an assignment on chromosome and genome level. This work highlights the im-
portance of comparative genomics-based bioinformatics strategies exploiting orthologous gene
family relationships among grass genomes and, thus, facilitating stringent homoeolog-specific as-
sembly of whole genome shotgun sequences that covered essentially the entire gene repertoire
of hexaploid wheat. In addition, the implementation of an extrinsic gene prediction, suitable for
the annotation of NGS assemblies and complex plant genomes, allowed defining the coding se-
quences and the transcript structures for more than 90% of bread wheat genes. All generated

147
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data resources have been made publicly available and will support the isolation of agronomically
important genes and gene families for further systematic research supporting breeding strategies
for improved wheat varieties.

Limited, unbiased gene loss in hexaploid bread wheat

Based on independent methods utilizing different data resources the bread wheat genome was
estimated to contain between 94,000 to 106,000 protein-coding genes. Comparative gene family
analysis between allohexaploid wheat and the diploid D-genome progenitor Ae. tauschii as well
as related grass genomes indicated pronounced retention of homoeologous gene, especially for
single-copy gene families, and overall limited gene loss following polyploidization. On a global
level, the predicted genes were similarly distributed among the A, B and D genomes and not
preferentially retained or deleted in one particular genome. However, differences were evident
between homoeologous chromosomes including sporadic structural rearrangements, small-scale
chromosomal deletions as well as incongruent patterns in the constitution of individual gene fam-
ilies. These observations suggested pre-existing differences in the parental genomes or, alterna-
tively, that evolutionary mechanisms act differently on single chromosomes or individual chromo-
somal regions.

Genome dynamics following polyploidy

Although retention of homoeologous genes and structural conservation were observed, this thesis
also revealed a dynamic evolution of the bread wheat genome following polyploidy. Various gene
families with an expanded number of genes in hexaploid wheat were identified and associated
with processes that function in cellular organization and control as well as with pathways underly-
ing agricultural important traits. These genes represent candidates for further targeted analysis.
Moreover, the abundance of gene fragments related to key functions in adaptive responses to en-
vironmental stimuli and abiotic stresses suggested gene duplication as an essential mechanism
potentially providing a reservoir for rapid adaption to environmental changes.

Extensive alternative splicing and post-transcriptional expression regulation

Extensive alternative splicing was observed for A-, B- and D-genome encoded genes with similar
frequencies of distinct splicing types in each wheat genome. Furthermore, a substantial num-
ber of premature termination codon-containing splicing variants was identified, which indicated
that a considerable proportion of genes might be post-transcriptionally regulated via nonsense-
mediated decay and the RUST pathway. High tissue-specific expression of splicing variants and
significant conservation of PTC*/NMD candidate genes among homoeologous genomes sup-
ported recent observations in other species attributing important roles to splicing-based expres-
sion regulation to increase proteome range.

Homoeologous expression bias associated with functional compartmentalization
Insights into genome-wide spatiotemporal gene expression patterns on homoeologous resolution
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in allohexaploid bread wheat were gained. By using deep RNA sequencing the transcriptional
activity in the endosperm cell types during the differentiation and maturation phases was pro-
filed demonstrating a high degree of regulatory autonomy for the three wheat genomes. While
no global transcriptional bias towards the A, B or D genome was evident, network-based co-
expression analysis for single-copy homoeologos gene ftriplets indicated a cell type- and stage-
dependent homoeologous gene expression bias. Preferential transcript abundances in either
genome was associated with distinct cellular functions and biological processes and suggested
functional compartmentalization of the wheat transcriptome.

Gene expression regulation is linked to chromosomal domains

Synteny-based construction of seven Triticeae prototype chromosomes approximated the ances-
tral positional gene order in the wheat A, B and D genomes. Gene expression oscillated and
formed chromosomal domains, which were to a large extent synchronized among cell types, time
points and genomes. Presence of domains with asynchronous patterns suggested a common
regulatory mechanism for co-localized genes. Thus, epigenetic modifications might differently
affect particular chromosomal regions and contribute to gene expression dominance.

Genome asymmetry in gene families of agronomic and industrial importance

Targeted analysis of gene families affecting baking quality revealed genome asymmetry exists for
agronomic and industrial important traits. The prolamin genes were catalogued highlighting spe-
cific patterns for individual gene families, such as large variations in gene copy number, frequent
pseudogenization, genome-specific chromosomal deletions, genome-dominance and expression
bias as well as dosage compensation effects in absence of homoeologous counterparts.

Concluding remarks and perspectives

This dissertation aimed at making use of next generation sequencing to work towards reference
genome resources for complex plant genomes. The observed patterns suggested a complex in-
terplay of genetic and epigenetic mechanisms, potential trans-regulatory mechanisms and cross-
talk between genomes impacting the allohexaploid bread wheat genome. However, the origin,
causative principles and involved regulatory pathways still need to be determined and require
additional experiments, specific data sets and further bioinformatic-driven analysis. Such stud-
ies will rely on data sets generated within this work, which enable a comprehensive genetic and
functional analysis, provide starting points to analyse the regulatory principles controlling the fate
of homoeologous genes and allow a systematical study of the homoeolog’s contribution to traits
of agricultural or industrial importance. Additional comprehensive genome, transcriptome and
methylation sequencing for multiple tissues of bread wheat and related di- and tetraploid wheat
genomes or synthetic crosses between species would allow to distinguish sporadic and repeat-
able alterations, to determine short-, mid- and long-term consequences following polyploidzation,
to distinguishing between genetic and epigenetic changes as well as to identify the key com-
pounds orchestrating inter- and intra-genomic expression in a polyploid genome.
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Abbreviations

AL aleurone

ATP adenosine triphosphate

BAC bacterial artificial chromosome

bp basepair

BEP Bambusoideae, Ehartoideae and Pooideae
BLAST Basic Local Alignment Search Tool
BR biological replicate

BWT Burrows-Wheeler transformation
CarmA Chromosome arm Assigner

cDNA complementary DNA

CNV copy number variation

Cl confidence interval

contig contiguous sequence

DPA days post anthesis

CSS chromosomal survey sequence
DE differentially expressed

DNA deoxyribonucleic acid

EMBL-EBI European Molecular Biology Laboratory - European Bioinformatics Institute
emPCR emulsion PCR

ENA European Nucleotide Archive

ESR embryo-surrounding region

EST expressed sequence tag

E value Expect value
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FDR false discovery rate

fl-cDNA full-length cDNA

FPKM fragments per kilobase exon model per million mapped reads
Gb gigabase pair

GH greenhouse

Gli gliadin

Glu glutenin

GO gene ontology

Ha hardness

HC high-confidence

HMW-Gilu high molecular weight glutenin
kbp kilobase pair

LMW-Gilu low molecular weight glutenin
LC low-confidence

LCS low-confidence-supported
LCG low-copy-number genome

Mb megabase pair

mi minimum overlap identity

mio million

mRNA messenger RNA

mya million years ago

NCL non-coding loci

NGS next generation sequencing
NMD nonsense-mediated decay
OGA orthologous group assembly
OGR orthologous group representative
OLC overlap-layout-consensus
PACC Panicoideae, Arundinoideae, Chloridoideae and Centothecoideae
PCR polymerase chain reaction
PEG preferentially expressed gene
Pfam protein family

Ph1 Pairing homoeologous 1



pin
PTC
P value

REP
RNA
RNA-seq
RPKM
RUST

SE

SNP
SPA
SRA

Tb
TC
TGS
Tp

UK
USL
UTR

WGD
WGS

puroindoline
premature-termination-codon
Probability value

repeat associated

ribonucleic Acid

RNA sequencing

reads per kilobase exon model per million mapped reads
regulated unproductive splicing and translation

starchy endosperm

single nucleotide polymorphism
storage protein activators
Sequence Read Archive

terabase

transfer cells

third generation sequencing
Triticeae prototype

United Kingdom
unsupported loci
untranslated region

whole genome duplication
whole genome shotgun
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Additional figures
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Fig. A.1. Structural analysis of homoeologous gene triplets between genomes.

To evaluate the structural representativeness of the identified homoeologous gene triplets for the entire
bread wheat genome, the ordering of those genes were compared along the GenomeZippers for individual
homoeologous genome (Section 4.3.3). This figures visualizes the position of genes forming single-copy
homobeologous gene triplets between the a, A and D genomes and the b, B and D genomes.
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Fig. A.2. Frequency of GOSIlim biological processes observed for the entire wheat genome and for

homoeologous gene triplets.

To evaluate the functional representativeness of the identified homoeologous gene triplets, the GOSIlim

(316) frequency distributes for annotated GO biological process categories were compared as observed

for the entire wheat gene set, for the identified homoeologous gene triplets and for sets of randomly defined

gene triplets (1,000 iterations) (Section 4.3.3).
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Fig. A.3. Characterization of the co-expression modules inferred for the homoeologous gene ex-
pression network.

The network-based gene expression analysis for single-copy homoeologous gene triplets revealed 25
co-expression modules, which were functionally characterized based on their expression characteristics
(Section 5.5.2). a, Number of homoeologous gene triplets in each co-expression module. b, Number of
identified hub genes placed into each co-expression modules. ¢, Number of differentially expressed ho-
moeologous genes located in each co-expression module. Red stars mark co-experssion modules with
a significant number of hubs (b) or differentially expressed homoeologous genes (c) (one sided Fisher’s
exact test with Bonferroni corrected P value <0.01).
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Fig. A.4. Correlation of co-expression module eigengenes with pre-defined cell type and time point
expression profiles.

To investigate cell-type and time point specificity of the identified co-expression modules (Section 5.5.2),
the corresponding eigengene vectors were correlated against pre-defined expression profiles. Upper val-
ues and the heat map color intensity correspond to the measured Pearson’s correlation coefficients. Values
in brackets denote significance for the observed correlation (P value).
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Fig. A.5. Gene expression profiles of the identified co-expression modules for the homoeologous
gene expression network.
The boxplots visualize the gene expression distribution for each of the 25 identified co-expression modules
identified by network-based cluster analysis of gene expression for single-copy homoeologous gene triplets
(Section 5.5.2).
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Fig. A.6. Distribution of gene expression correlation, gene expression level dominance and se-
gquence divergence in for homoeologous triplets.

To elucidate relationship between asymmetric gene expression and sequence divergence, transcription-
based features [correlation in gene expression and differences in gene expression levels (a and b)] were
compared with sequence-based features [evolutionary distance and protein divergence (¢ and d)] for all
homoeologous triplets ("overall”) as well as genome-dominated co-expression groups (Section 5.5.3). a,
Correlation in gene expression measured by Pearson’s correlation coefficient of expression values. b,
Log. fold-changes averaged over all endosperm samples. ¢, Evolutionary distances measured by the
number of synonymous substitutions per synonymous site (K). d, Protein divergence measured by the
number of non-synonymous substitutions per non-synonymous site (K,). Significant differences between
distributions are marked by red stars [Wilcoxon-Mann-Whitney-Test (P <0.01)].
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Fig. A.7. Distribution of gene expression levels for 10 DPA W along the Tp chromosomes.

To investigate influence of chromosomal positioning on transcript abundances, the chromosomal distribu-
tion of gene expression was monitored along the seven Triticeae prototype (Tp) chromosomes and pair-
wise compared between the three homoeologous wheat genomes (A vs B, A vs D and B vs D) (Section
5.6). Therefore, a sliding window algorithm was applied calculating the median gene expression along the
chromosomes (window size 50 Tp loci; window shift 10 Tp loci). For each window the top three panels
count the number of significant differentially expressed (DE) homoeologous triplets between the A and B
genomes, A and D genomes and B and D genomes, respectively (Section 5.5). Chromosomal segments
that were significantly enriched for DE homoeologous genes were also identified and visualized by dots
in the following three panels (Fisher’'s exact test with P value <0.05). The heat maps show the pairwise
logo-fold change of median gene expression between two windows, whereupon increased color intensity
mark higher fold change towards one genome. The last panel show the median gene expression for each
window. In all panels the A genome is colored green, the B genome purple and the D genome orange,
respectively.
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Fig. A.8. Distribution of gene expression levels for 20 DPA W along the Tp chromosomes.
For description see legend of Fig. A.7.
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Fig. A.9. Distribution of gene expression levels for 20 DPA AL along the Tp chromosomes.
For description see legend of Fig. A.7.
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Fig. A.10. Distribution of gene expression levels for 20 DPA SE along the Tp chromosomes.

For description see legend of Fig. A.7.
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Fig. A.11. Distribution of gene expression levels for 20 DPA TC along the Tp chromosomes.

For description see legend of Fig. A.7.
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Fig. A.12. Distribution of gene expression levels for 30 DPA TC along the Tp chromosomes.

For description see legend of Fig. A.7.
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Fig. A.13. Distribution of gene expression levels for 30 DPA SE along the Tp chromosomes.

For description see legend of Fig. A.7.



Appendix C

Additional tables

Table A.1. Functional enrichment analysis of preferentially expressed genes (PEGs).

To functional interpret the identified preferentially expressed genes, GO enrichment tests were performed
for PEGs defined in individual endosperm cell types and developmental stages (Section 5.3.2). This table
is part of Pfeifer et al. (436) and available as Excel file on Science Online (Table S1):
http://www.sciencemag.org/content/345/6194/1250091/suppl/DC1

Table A.2. Functional enrichments for individual k-means co-expression clusters.

Each identified k-means co-expression cluster was subject to GO enrichment analysis to identify over-
represented functional molecular functions and biological processes related to the commonly grouped
genes (Section 5.4.1). This table is part of Pfeifer et al. (436) and available as Excel file on Science Online
(Table S2):

http://www.sciencemag.org/content/345/6194/1250091/suppl/DC1

Table A.3. Expression transitions between homoeologs of the A and B genomes.

For all identified homoeologous gene triplets assignment to co-expression clusters were analysed and the
number of observed expression transitions, i.e. different assignment to co-expression clusters for homoe-
ologous gene pairs were determined (Section 5.4.3). This table shows the number of A (rows) and B
(columns) homoeologs that were placed into the same (diagonal) or into different co-expression clusters.

| @ 0 | Il 1] v ' VI Vi

-@ 771 66 58 19 53 41 42 44 56
0 60 1840 187 251 100 85 33 133 87
| 51 150 220 58 34 21 17 22 16
I 29 199 29 77 29 42 11 21 17
] 42 106 43 32 30 18 7 12 28
v 28 120 17 37 18 78 9 24 12
v 25 31 13 12 21 8 32 12 4
VI 58 177 20 20 16 21 7 162 22
Vil 39 96 21 21 21 11 7 27 42

® No gene expression observed.
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Table A.4. Expression transitions between homoeologs of the A and D genomes.
See Table A.3 for the general description. Here, the number of A (rows) and D (columns) homoeologs that
were placed into the same (diagonal) or into different co-expression clusters are shown.

-@ 0 | Il m v v VI Vi

-@ 787 50 58 26 44 39 32 61 53
0 48 1822 169 237 98 107 28 171 96

| 61 154 202 59 41 18 21 18 15

I 29 205 35 83 34 22 11 17 18

n 34 99 37 32 44 14 17 18 23
v 28 110 25 32 18 84 8 19 19
v 33 29 15 10 9 10 29 6 17
Vi 59 168 17 18 16 24 13 152 36
Vil 44 89 25 15 14 14 14 29 41

@ No gene expression observed.

Table A.5. Expression transitions between homoeologs of the B and D genomes.
See Table A.3 for the general description. Here, the number of B (rows) and D (columns) homoeologs that
were placed into the same (diagonal) or into different co-expression clusters are shown.

-@ 0 | Il m v ' VI Vi

-@ 791 44 53 25 41 26 24 49 50
0 56 1804 173 237 102 105 42 177 89
| 58 166 217 51 40 20 15 19 22
I 23 252 38 97 32 40 15 13 17
1]] 40 100 31 29 47 17 16 18 24
v 32 104 15 33 7 77 10 25 22
v 42 20 18 9 17 7 27 6 19
VI 42 143 14 18 16 22 15 155 32
Vil 39 93 24 13 16 18 9 29 43

@ No gene expression observed.

Table A.6. Number of aggregated transitions of homoeologous genes between the identified k-
means co-expression clusters and significance tests.
The number of transitions between co-expression clusters with endosperm-specific expression profiles
(cluster | to VII) were aggregated and tested for significance. Each cell counts the number of transitions
observed among pairs of homoeologous genes between co-expression clusters (Tables A.3 to A.5 and
Section 5.4.3). Bonferroni adjusted P values are given in parenthesis calculated with an one-sided Fisher’s
exact test. Bold numbers indicate a significant number of observed transitions (P <0.05). Within-cluster
transitions and transitions with cluster 0 were not included in the analysis.

| | [ n v v Vi Vil
| - 168 (<0.001) 115 (<0.001) 59 (1.00) 53 (1.00) 59 (1.00) 53 (1.00)
Il | 102 (0.004) - 95(0.003) 104 (<0.001) 37 (1.00) 51 (1.00) 52 (1.00)
M |111(<0.001) 93 (1.00) - 49 (1.00)  40(1.00) 48 (1.00) 75 (0.275)
IV | 57(1.00) 102(<0.001) 43 (1.00) - 27 (1.00) 68 (0.005) 53 (1.00)
v 46 (1.00)  31(1.00) 47(0.173) 25 (1.00) - 24 (1.00) 40 (1.00)
VI | 51(1.00) 56(1.00) 48(1.00) 67(0.021) 35 (1.00) - 90 (<0.001)
VIl | 70(0.542) 49(1.00)  51(1.00) 43(1.00)  30(1.00) 85 (<0.001) -
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Table A.7. Number of significant differentially homoeologous genes grouped in co-expression mod-
ules identified by the network-based analysis of homoeologous gene expression.

This table lists the number of significant differentially expressed (DE) homoeologs (P <0.05) identified
for each co-expression module in pairwise comparisons of gene expression level between the A, B and
D genomes (Section 5.5). Numbers in brackets show Bonferroni corrected P values (one-sided Fisher’s
exact test) and bold indicate a significant enrichment (P <0.001).

i Avs.B Avs.D Bvs.D
Group Triplets A B A D B D Total
1 715 0(1.00) 108 (<0.001) 7 (1.00) 16 (1.00) 94 (<0.001) 4 (1.00) 124 (<0.001)
2 649 0 (1.00) 4 (1.00) 0(1.00) 63(<0.001) 1(1.00) 54 (<0.001) 70 (1.00)
3 511 53 (<0.001) 0(1.00) 46 (<0.001) 0 (1.00) 0 (1.00) 4 (1.00) 55 (1.00)
4 505 94 (<0.001) 0(1.00) 93(<0.001) 0(1.00) 8 (1.00) 3(1.00) 104 (<0.001)
5 470 4 (1.00) 2 (1.00) 2 (1.00) 9 (1.00) 1 (1.00) 20 (1.00) 26 (1.00)
6 378 1(1.00) 38(<0.001) 2 (1.00) 14 (1.00) 19 (0.960) 2 (1.00) 45 (1.00)
7 350 4 (1.00) 3(1.00) 1(51.(')%())) 5 (1.00) 4 (1.00) 8 (1.00) 16 (1.00)
8 338 30(<0.001) 1(1.00) 45(<0.001) 0(1.00) 17 (1.00) 3 (1.00) 49 (1.00)
9 287 31(<0.001) 0 (1.00) 6 (1.00) 7 (1.00) 0 (1.00) 26 35 (1.00)
10 271 4 (1.00) 1 (1.00) 4 (1.00) 0 (1.00) 2 (1.00) 1 (1.00) 7 (1.00)
11 249 0 (1.00) 10 (1.00) 6 (1.00) 3(1.00) 19 (0.013) 0 (1.00) 25 (1.00)
12 231 0(1.00) 38(<0.001) 0(1.00) 3(1.00) 33(<0.001) 0 (1.00) 42 (0.075)
13 215 2 (1.00) 2 (1.00) 1(1.00) 28(<0.001) 0(1.00) 24(<0.001) 33 (1.00)
14 184 1 (1.00) 6 (1.00) 0(1.00) 71(<0.001) 0(1.00) 70 (<0.001) 75 (<0.001)
15 161 5 (1.00) 0 (1.00) 3 (1.00) 1 (1.00) 0 (1.00) 1 (1.00) 5 (1.00)
16 142 0 (1.00) 5 (1.00) 0 (1.00) 0 (1.00) 5 (1.00) 0 (1.00) 6 (1.00)

Table A.8. Functional enrichments for co-expression modules inferred for the homoeologous gene
expression network.

Each identified co-expression module was subject to GO enrichment analysis to identify over-represented
functional molecular functions and biological processes related to the commonly grouped triplets (Section
5.5.1). This table is part of Pfeifer et al. (436) and available as Excel file on Science Online (Table S3):
http://www.sciencemag.org/content/345/6194/1250091/suppl/DC1






