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Abstract  

My main research interest described here is toward scientifically exploring the manner in 

which information is processed in the nervous system. The early visual system offers a 

prominent model to explore how information regarding the visual stimuli is 

encoded/decoded and transmitted from retina to cortex through the lateral geniculate 

nucleus (LGN). The retinogeniculate synapse holds a major advantage – to study 

fundamental aspects of information processing by neurons. Beside the similarity of the ON-

OFF center surround arrangement of the receptive field for both retinal ganglion cells 

(RGCs) and LGN neurons, there is one main RGC that drives the response of its LGN 

neuron counterpart. This advantage of one-to-one synaptic connectivity is lost as advancing 

toward higher stages at the geniculo-cortical synapse. Here many LGN cells send 

convergent projections to one single cortical neuron.   

However, in spite of this one-to-one connectivity, LGN neurons do not simply relay the 

input received from their RGCs counterparts; on the contrary, the incoming RGC spike 

trains are converted into new spike trains by the LGN cells in their editing process before 

transmitting the visual information further on toward the cortex. About half of the retinal 

spikes are lost in transmission at the retinogeniculate synapse.   

How do LGN cells decide which retinal action potential (AP) deserves to be kept and which 

to be deleted so that the visual information to be preserved from an RGC to the LGN and 

transmitted further on? What is the mechanism responsible for this information processing?   

To answer these questions and other issues emerging from the particular manner in which 

the LGN edits retinal input, I focused on a prominent example of information processing at 

the retinogeniculate synapse: direction of stimulus motion.   

Here I employ computational modeling, experimental extracellular recordings and applied 

mathematics for data analysis, in order to explore: (i) the sharpening in directional 

selectivity as a prominent example of information processing, (ii) the neural mechanisms 
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involved in establishing functional and effective connectivity and (iii) the degree of 

efficiency in information transmitting between neurons.  

However, as the findings emerged from these scientific hypotheses are raising new 

questions, I further asked whether these neural mechanisms involved in information 

processing hold true for other types of neurons and/or other laboratory conditions. To this 

end, I explored spontaneous neural activity in cultures of dissociated hippocampal and 

cortical neurons using extracellular recordings from multi-electrode arrays (MEAs).   

Paired spiking (PS) enhancement plays a key role in the concept of sparse coding efficiency. 

It acts as a temporal filter that deletes less informative spikes in the process of establishing 

functional and effective connectivity between neurons along their synaptic pathways and 

thus preserving information from one stage to the next.   

Since PS activity is present not only under stimuli conditions (both in vivo and in vitro), but 

also under a spontaneous activity paradigm and in cultured neurons, presumably it 

represents a ubiquitous response property of neurons of different species and under different 

conditions (in vivo and in vitro, spontaneously and stimuli induced) involved in information 

processing within the nervous system.   

Because this hypothesis holds true in cultured neurons, not only at local sites (single cell 

level) but also at network level, PS may be of help in understanding the manner in which 

neurons of different types perform synaptic plasticity (with implication in exploring learning 

and memory) and process information. Furthermore, PS activity may be valuable in shaping 

the network response control to obtain the desired output (i.e. by offering PS - like external 

stimuli) with possible applications in neurally-controlled artifacts (robotics, 

neuroprosthetics).   
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Zusammenfassung  

Der Schwerpunkt der vorliegenden Arbeit lag auf der Untersuchung der 

Informationsprozessierung im Nervensystem. Das frühe visuelle System ist ein gut 

untersuchtes Modelsystem, an dem sich untersuchen lässt, wie Informationen über visuelle 

Reize von der Retina zum Kortex über den Metathalamus (LGN) übertragen sowie kodiert 

und dekodiert werden.  

Die ‘retinogeniculate synapse’ erlaubt es, grundlegende Aspekte der neuronalen 

Informationsverarbeitung zu studieren. Ähnlich zum ON-OFF Arrangement des 

Wahrnehmungsfeldes sowohl der Retinalganglienzellen (RGCs) als auch der LGN 

Neuronen gibt es eine RGC, die die Antwort ihres LGN Neurons Gegenstücks antreibt. 

Diese synaptische eins-zu-eins-Verknüpfung geht an höheren Ebenen an der ‚geniculo-

kortikalen‘ Synapse verloren. Dort projizieren mehrere LGN Zellen konvergent auf ein 

einziges kortikales Neuron.  

Trotz der eins-zu-eins Verknüpfung leiten LGN Neurone nicht einfach die von den RGC 

Zellen erhaltene Eingabe weiter. Im Gegenteil, die LGN Zellen konvertieren die RGC 

Aktionspotenzialreihen in neue Reihen in einem Editierungsprozess bevor die visuelle 

Information an den Kortex weitergeleitet wird. Fast die Hälfte der retinalen 

Aktionspotenziale gehen dabei an der ‘retinogeniculate synapse’ verloren.  

Wie entscheiden LGN Zellen, welches Aktionspotenzial behalten werden muss und welches 

gelöscht werden kann, ohne den visuellen Informationsfluss zu beeinträchtigen? Welcher 

Mechanismus liegt dieser Informationsprozessierung zugrunde?  

Um diese und andere Fragen zu beantworten, die dem LGN Editierungsprozess des retinalen 

Eingangssignals entspringen, habe ich ein bekanntes Beispiel der Informationsverarbeitung 

an der „retinogeniculate synapse“ aufgegriffen: die Richtungserkennung eines sich 

bewegenden Stimulus.  
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Mittels Computermodellierung, extrazellulären Ableitungen und angewandter Mathematik 

für Datenanalyse wurden folgende Aspekte untersucht: (i) die Schärfung der 

Richtungsselektivität als bekanntes Beispiel der Informationsverarbeitung, (ii) die 

neuronalen Mechanismen der funktionalen und effektiven Verbindungsherstellung und (iii) 

der Effektivitätsgrad der Informationsweiterleitung zwischen Neuronen.  

Da die Ergebnisse neue Fragen aufwarfen, wurde untersucht, ob diese neuronalen 

Informationsverarbeitungsmechanismen auch bei anderen Neuronentypen oder 

Laborbedingungen zu finden sind. Daher wurden die Untersuchungen auf extrazellulär 

abgeleitete spontane Aktivität in kortikalen und hippokampalen Neuronenkulturen 

ausgedehnt.  

Dem ‘paired spiking’ (PS) spielt beim Konzept der Effizienzsteigerung durch Ausdünnung 

(sparse coding efficiency) eine Schlüsselrolle. Sparse coding übernimmt dabei die Rolle 

eines zeitlichen Filters, der weniger informative Aktionspotenziale bei der Etablierung 

funktioneller und effektiver Verbindungen zwischen den Neuronen entlang ihres 

synaptischen Pfades löscht, wobei die transportierte Information von der einen zur nächsten 

Stufe erhalten bleibt. Da PS nicht nur unter Stimulationsbedingungen auftritt (sowohl in 

vivo als auch in vitro), sondern auch in Spontanaktivität und in neuronalen in vitro 

Netzwerken zu finden ist, scheint es sich um einen weitverbreiteten Antworttyp neuronaler 

Informationsverarbeitung in Nervensystemen unterschiedlichen Spezies und unter 

unterschiedlichen Bedingungen (in vitro, in vivo, Spontan- oder stimulus-induzierte 

Aktivität) zu handeln.  

Die Beobachtung, dass PS sowohl bei einzelnen Neuronen als auch auf Netzwerkebene 

gefunden wurde, könnte dabei helfen, synaptische Plastizität, Informationsverarbeitung und 

PS als einen stimulusartigen Kontrollmechanismus von Netzwerkaktivität besser zu 

verstehen, der sich in neuronal kontrollierten Artefakten (z.B. Robotik, Neuroprothesen) 

ausnutzen ließe.  
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I. Introduction  

Overview  

 Focusing on investigating the manner in which information is processed within the nervous 

system by merging leading technologies in computational neuroscience, neurobiology, 

neuroengineering and neuroinformatics, this research work carries a high degree of 

complexity. The various modes of neurons to process information has gained substantial 

attention and become a priority for research groups worldwide. Research on this topic 

pursues many different goals − starting with multidisciplinary fundamental research and 

ending with evolutionary computing, with outstanding bio-inspired solutions already 

successfully applied in cutting edge technologies used in different and important fields 

nowadays (i.e. machine learning, artificial intelligence, medical image processing, and so 

forth). Despite the fact that computational neuroscience represents a relatively new science, 

huge international scientific efforts have brought it rapidly on an ascendant slope, with 

prominent results successfully assimilated worldwide.   

 In a highly multidisciplinary approach, the research efforts described here aim to gain new 

insights into topics such as spontaneous neural response in cultured neurons (spatiotemporal 

patterns of activity, functional and effective connectivity) and stimulated neural activity 

(with early visual system as a convenient model, elegantly envisaging the topic of direction 

selectivity (DS)) and thus to suggest models in bio-inspired information processing as well 

as in studying biological development and plasticity.   

 One of the steps is to characterize the neural activity at different temporal stages during 

development of neural networks. Investigating spontaneous electrophysiological activity of 

neuronal populations during development is one of the key issues for understanding the 

functional and effective neuronal connectivity formation and their implication in network 
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plasticity and adaptability. Moreover, spontaneous activity plays an important role in 

information processing and thus in influencing the stimulus induced activity, sometimes 

adding substantial noise (that has to be subtracted) or sometimes containing important 

information. A characteristic of spontaneous activity in developing neural networks is the 

occurrence of intermittent bursts, separated by periods of reduced activity. One of the 

scientific hypotheses tested in this research work is self-organization of cultured neurons 

under a spontaneous activity paradigm with the paired spiking activity (PS) concept playing 

a key role in revealing the manner in which neurons form functional and effective 

connectivity within the culture (and thus process information) and develop neural plasticity. 

Interspike interval (ISI) distribution, burst distribution and firing rate were also analyzed in 

detail for activity pattern analysis within the cultured neural networks at different stages of 

development. For this, we used the multielectrode array technique MEA (having the great 

advantage of allowing recordings and thus observation of activity at different sites in the 

network simultaneously) to extracellularly record the neural activity and thus realize a long 

term characterization of spontaneous activity in dissociated cultured cortical and 

hippocampal neurons.   

 Another important step was to investigate the stimuli induced neuronal activity. A 

prominent example of information processing within nervous system is represented by the 

early visual system. Of a large interest for me is to investigate the manner in which neurons 

at early stages of visual system edit information concerning direction of motion from time 

varying images.   

 Visual information is firstly encoded in trains of action potentials (APs) at the output of the 

retina by retinal ganglion cells (RGCs). Their axons project toward the higher brain areas 

via thalamus, the lateral geniculate nucleus (LGN). Here, excitatory and inhibitory synapses 

are already formed in both directions between the LGN and the primary visual  

cortex.   
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  The estimation of motion direction from time varying retinal images is a 

fundamental task of visual systems. Neurons that selectively respond to directional visual 

motion are found in all species. In many of them already in the retina direction selective 

neurons signal their preferred direction of movement. Recent evidence suggests that 

direction selectivity is carried from the retina to higher brain areas. Here we used light 

stimuli and the extracellularly recorded neural response of direction selective neurons in 

order to understand how information regarding motion is carried on from one stage to 

another within the early visual system.   

 Using not only mechanistic but also descriptive approaches in this work and employing 

several recently introduced theoretical concepts in modern neuroscience (i.e. conditional 

firing probability (CFP), information rate (IR), transfer entropy (TE) and spike timing 

dependent plasticity (STDP), these research efforts will presumably not only improve the 

knowledge in biophysics of neural computation, but also suggest biologically inspired 

models which can be implemented in different related fields (for example  image 

processing) by revealing fundamental aspects of how neurons encode and decode 

information at different synapses under different paradigms (i.e. spontaneous activity versus 

stimuli induced activity).  

 

Stimuli induced activity - Direction selectivity  

The first stages of the visual system are represented by the retina, the lateral geniculate 

nucleus (LGN) and the primary visual cortex. Visual information is firstly encoded in trains 

of APs at the output of the retina by one type of retinal cells called retinal ganglion cells 

(RGCs). Their axons are grouped together and leave the retina through the optic disc passing 

through the optic chiasm and ending (mostly) in the LGN (Hubel and Wiesel, 1961; Cleland 

et al, 1976; Kuffler, 1953). Excitatory and inhibitory synapses are then formed in both 
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directions between the LGN and the primary visual cortex (Hubel and Wiesel, 1962; 

Buehlmann et al., 2010; Kara and Reid, 2003).  

  

Information flow through the retina is following a direct path, from light receptors to bipolar 

cells and then to ganglion cells, and an indirect path, in which horizontal cells may be 

interposed between the receptors and bipolars, and amacrine cells between bipolars and 

retinal ganglion cells.  

The direct path is highly specific or compact, in the sense that one receptor or only relatively 

few of them feed into a bipolar cell, and only one or relatively few bipolars feed into a 

ganglion cell. The indirect path is more complex, involving lateral connections. The main 

interest of my work is focused on RGCs. Ganglion cells receive the incoming signals and 

produce spike trains that contain precise temporal and spatial information about the patterns 

of light initially detected by the photoreceptors. There are numerous types of ganglion cells, 

each of which conveys information about a specific feature of an image detected by the 

photoreceptors. It has been established that the structure, function, and central projections of 

RGCs are highly correlated (Berry et al., 1997).  

The receptive field (RF) of a cell is defined as the area of visual space within which one can 

influence the activity of a neuron. The RF is very often used by neurophysiologists to study 

the function of visually responsive neurons, because it characterizes the transformation 

between the visual image and neuronal activity (Hubel and Wiesel, 1961). To describe how 

a neuron processes the visual image, one must characterize its RF in the joint space-time 

domain (Usrey et al, 1998). It is also well known that the LGN and RGCs have similar 

centersurround receptive fields.   

The mammalian retina contains several different types of ganglion cells, most of which 

respond to one or more specific features of a visual image, such as contrast, color, or 

motion. Particular ganglion cell types (of some but not all mammalians) are motion 
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sensitive, meaning they respond to temporal changes in luminance within their receptive 

fields, corresponding both to images moving across the field of vision as well as to self-

motion of the organism.  

 A subset of motion sensitive cells responds differentially to the directions of stimulus 

motion. These direction selective (DS) ganglion cells show interesting properties, most of 

which have been subject to extensive research efforts over the last 40 years. Firstly, Barlow 

and Levick in 1964 (Barlow et al., 1963; Barlow and Levick; 1964) deduced that inhibitory 

inputs to a DS cell make ineffective excitation for movement in the cell’s null direction, 

while excitatory inputs are strongly enhanced for movement in the preferred direction. 

Movement in intermediate directions produces intermediate levels of inhibition or excitation 

which are used to calculate the degree of directional tuning (Taylor and Vaney, 2002).  

Research efforts conducted on rabbit retinas have revealed two different types of DS 

ganglion cells in the retina – ON OFF DS cells and ON DS cells. ON OFF DS cells show 

the response to the movement of a stimulus that is lighter or darker than the background 

field, while ON DS cells are excited only by objects that are lighter than the background. 

Several other discrepancies between these two cell types’ responses construct a particular 

spike train signature for each of them (Zeck et al., 2007).  

ON OFF DS cells respond to high values of stimulus speeds. ON DS cells, in contrast, 

respond optimally to stimuli moving at slow speeds, have larger receptive fields and are less 

encountered than ON-OFF DSRGCs.  

  Four subtypes of ON OFF DS cells can be classified by the orientation of the 

preferred direction of the cell, which points to one end, either onto the horizontal or vertical 

ocular axis.   Each of the four types responds preferentially to objects moving either to the 

left, right, top, or bottom. The retina is completely covered by the receptive fields of each 

subtype of ON-OFF DS cell (Devries and Baylor, 1997). ON DS cells comprise only three 
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distinct subtypes; the preferred directions of each ON DS cell points in one of three 

directions aligned with a different set of axes.  

The ON-OFF and ON cell types send the directional information to different nuclei, the 

ONOFF DS cells to the dorsal LGN and the superior colliculus, whereas the ON DS cells 

represent the main input to the accessory optic system. The functional properties of cells in 

the accessory optic system are consistent with their input from ON-DS cells in many species 

including primates (Vaney et al., 1981a; Vaney et al., 1981b; Ackert et al., 2006; Oyster et 

al., 1968; Amthor et al., 1989a; Amthor et al., 1984; Jagadeesh et al., 1997; Jensen et al., 

1983; Buhl and Peichl, 1986; Cleland et al., 1971; Cleland et al., 1976; Danjanovic et al., 

2009; Dann et al., 1987; Grasse et al., 1984; He and Masland, 1998; Hoffmann and Distler, 

1989; Heberman et al., 2009; Kim et al., 2008).  

 

Barlow et al., 1965, characterized ON-OFF direction selective ganglion cells in the rabbit 

retina and proposed for the first time a model for direction selectivity, in which asymmetry 

of either excitation or inhibition is required. After many research efforts on this topic, there 

is not yet known exactly where and how direction selectivity in ON-OFF DSRGCs is 

achieved. Over the years it has been generally accepted that direction selectivity is mediated 

mainly by the suppression of excitation during movement in the null direction, but not in the 

preferred direction. Recent results show that excitation and inhibition are already direction 

selective, that is, excitation is larger during the preferred direction while inhibition is larger 

during the null direction. This implies that direction selectivity is already computed 

presynaptically to DSRGCs and an important role has been distributed to starburst amacrine 

cells (SbAC). SbACs are suggested to offer the spatial asymmetry needed for computation 

of motion direction by generating larger dendritic Ca2+ signals when motion is from their 

somata towards their dendritic tips rather than for motion in the opposite direction. 

However, evidences of direction selectivity computation at postsynaptic level were also 
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revealed, consisting mainly in postsynaptic interaction of the excitation with spatially offset 

inhibition. Presumably pre- and post-synaptic mechanisms, at multiple layers and 

sophisticated connectivity, both determine direction selectivity at DSRGCs (Stasheff and 

Masland, 2002, Amthor and Grzywacz, 1993, Fried et al., 2002, Taylor and Vaney, 2002; 

Euler et al., 2002; Koizumi et al., 2004).  

In a decisive work, Levick (Levick et al., 1969) demonstrated that neurons postsynaptic to 

DSRGCs are signaling the direction of the visual stimulus motion more selectively than 

their counterparts. He found direction selective neurons in the LGN of rabbits to be more 

directional selective. Levick’s model proposed a sharpening in directional selectivity at an 

LGN neuron based on convergent input of different DSRGCs, with similar receptive field, 

but with opposite preferred direction, upon the same LGN neuron. Blitz and Regehr (Blitz 

and Regehr, 2003 and 2005) have shown that most of the LGN cells are receiving inputs 

from one to three RGCs.   

However, it is generally agreed that there is one single RGC that mainly drives one LGN 

neuron counterpart (Cleland et al. 1971, Kaplan et al. 1987, Usrey et al. 1998, Sinchich et 

al. 2007) so that one third of LGN neurons could receive also inhibitory inputs from the 

same RGC counterpart, but with 1 ms delay (so called locked inhibition) while two thirds 

could receive inhibitory inputs with different time delay from different RGCs – the so called 

nonlocked inhibition (Blitz and Regehr; 2005).  

Recently, Casti et al. 2007, and Carandini et al. 2007, have shown that using simple models 

one could investigate the retinogeniculate synaptic mechanism. They are based on the idea 

that the most important factor influencing information transmission from RGCs to LGN 

neurons could be post-synaptic summation whereas presynaptic plasticity might not be a 

primordial mechanism in the editing of retinal spikes.  

Paired spikes efficacy enhancement was already shown at the retinogeniculate synapse. 

Sequences of rapid firing activity have a better chance to induce postsynaptic spikes than 



  14 

isolated input spikes (Carandini 2007, Usrey et al., 1998; Bair, 1999). While single 

excitatory postsynaptic potentials (EPSPs) on their own do not reach threshold, rapid 

spiking activity in the DSRGC can trigger LGN spikes. The role of synaptic plasticity at the 

retinogeniculate synapse is not yet well understood since additionally inputs other than 

retinal afferents (cortical, reticular or brainstem) can complicate modeling of the LGN 

neuron discharge. In a simplified approach, taking into account only direct synaptic 

connections between DSRGCs and their postsynaptic counterparts, we showed further on in 

this work, that sharpening in direction selectivity at postsynaptic level is achieved based on 

intrinsic properties of ON-OFF DSRGCs combined with postsynaptic summation and spike 

threshold.  

Receptive fields (RFs) become progressively more sophisticated along the synaptic 

hierarchies from retina to cortex. However, for the LGN cells the center surround RFs are 

similar to those of retinal afferents (Hubel & Wiesel, 1962; Kuffler, 1953; Reid et al., 2004). 

With this advantage in mind, together with the fact that the receptive field center of LGN 

cells receives its main input from only one retinal ganglion cell (RGC) (Cleland et al., 1971; 

Sincich et al., 2007; Usrey et al., 1999), the retinogeniculate synapse is of major interest for 

studying the role of interspike interval (ISI) based mechanisms for spike filtering and visual 

information processing (Casti et al., 2007, Rathbun et al., 2007; Carandini et al., 2007; 

Sincich et al., 2009; Rathbun et al., 2010). Already at the next stage within the early visual 

system, neurons in layer 4 of the primary visual cortex receive many more convergent inputs 

from LGN counterparts (Reid and Usrey, 2004) and thus they rely more on the interaction 

between different inputs than on the ISIs of individual inputs as part of the mechanism to 

reach the spike threshold (Usrey et al., 2000).  

Retinal spikes with preceding short ISIs have greater chances to induce APs at their 

postsynaptic target than “isolated” spikes. The efficacy to evoke APs at the postsynaptic 

target in the LGN decreases considerably with an increase of retinal ISIs. For retinal ISIs 
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longer than about 30 ms there is no detectable influence of ISIs on the production of 

postsynaptic spikes (Usrey et al., 1998; Sincich et al., 2007). Furthermore, recent studies 

suggest that this temporal filter acting upon retinal spiking activity is correlated with a visual 

stimulus. Therefore visual information regarding optimal stimulus features is preserved and 

transmitted further on at the postsynaptic target (Rathbun et al., 2007, Uglesich et al., 2009, 

Sincich et al., 2009; Rathbun et al., 2010).   

  
To investigate the manner in which RGCs of different types process information in 

response to light stimuli I have used data sets recorded from retinal ganglion cells of the 

adult isolated rabbit retina. The data acquisition using a 60 channel multi-electrode array 

(Multichannelsystems, Reutlingen, Germany) and off-line analysis has been already 

described in (Zeck and Masland 2007).   

Direction selectivity was tested using a square wave spatial grating moved in N = 8  

equally separated directions ϕi = i⋅(2π/N) , i = 0,1,…,N-1. For each direction the grating (spatial  

frequency 1 cycles/mm) was presented for 7 seconds at a temporal frequency of 1 Hz 

followed by a stimulus-free interval of the same length. The total stimulus length ranged 

from 600 to 1200 seconds. The spatial extent of the moving grating was ~ 7 µm2 on the 

retina. Thus, multiple cells were stimulated and recorded simultaneously.  

Individual tuning curves were obtained considering the firing rate of each cell for each of the 

eight equidistant directions.  

To quantify the directional tuning of a neuron, we used the direction selectivity index  

(DSi) as described by Taylor and Vaney (2002),   
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 is a vector pointing in the direction of the stimulus with the length equal to the number 

of spikes recorded during presentation of the stimulus (ri ). The DSi explains the directional 

tuning based on the firing rates for different particular movement directions of the visual 

stimulus. The minimum value of 0 characterizes a non-directional neuron, whereas the 

maximum value of 1 characterizes a neuron that responds to a single direction of movement. 

The higher the DSi, the higher is the direction selectivity. For ON-OFF DSRGCs usually the 

DSi is around 0.5 while for ON DSRGCs the DSi was found to be around 0.3 (Zeck et al.,  

2007; He and Masland, 1998).  

I then looked into more details and investigated intrinsic properties of RGCs like rapid boats 

of firing activity. In the literature, burst-like neural activity was described as (at least) two 

spikes occurring after a prolonged period of silence, i.e. inter spike interval (ISI) larger than 

50 ms, followed by an ISI shorter than 5 ms (Godwin et al. 1996b; Guido et al. 1995; Lu et 

al. 1992). Burst rate rburst was defined as the number of burst-like firing events per time. The 

index of selectivity for bursting activity was then calculated similarly to that for the firing 

rate:  

 

To check the sharpening in direction selectivity, we modeled the postsynaptic neuron 

representing the LGN cell which receives recorded input from retinal ganglion cells. To do 

so I used an ‘Integrate and Fire’ model with afterhyperpolarization effect and varied the 

conductance values within a biophysically reasonable range as described in the literature  

(Casti et al, 2008):  



  17 

 

The time-dependent conductances are modeled using a model described by (Rall 1967; Jack 

et al. 1975):  

 

While the relay cells in the LGN do not simply pass the incoming retinal input further on 

toward the striate cortex we defined a transfer ratio which let us know the percentage of 

successful retinal spikes in generating APs at s postsynaptic simulated neuron:  

 

To compare the direction selectivity of the output of the simulated postsynaptic neuron 

(SPN) with that of the driving neuron, we define the index of sharpening iS as:  

 

iS > 1 means that the SPN shows higher directional selectivity than the presynaptic neuron.  

For spike transfer ratios below 0.07, or above 0.7, we set iS to zero.  

 

Further on, in order to investigate which properties of spike trains effect sharpening, 

we also generated “artificial spike trains”. These spike trains have the same average spike 

rates for different stimulus directions - and thus the same DSi - as spike trains recorded from 

DSRGCs. The firing probability was equally distributed over time according to a Poisson 
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process except for defined refractory periods after each spike event. Spike trains with a 

refractory period of 2 ms, 5 ms and 20 ms were generated.  

  

In the next investigation I asked how time spiking is shaping the neural activity already 

presynaptic to LGN cells? I used the data generated by extracellularly stimulation of RGCs 

with a white noise stimulus. The experimental set-up consisted in a sixty channel 

multielectrode array MEA with a 30 µm spatial resolution (Multichannelsystems, 

Reutlingen, Germany) for electrophysiological recordings.   

The receptive field was mapped using a white noise stimulus (temporal flat power 

spectrum in the 1–30 Hz range) which comprised a 16×16 array of squares (pixels) with a 

frame rate of 50 Hz. The luminance of each square was independently modulated by an 

msequence (Reid et al., 1997). The size of each square was 75 µm and the size of the 

receptive field of each cell was calculated by reverse-correlating the stimulus and spike 

response, and considering checkers whose intensity at the temporal maximum of the mean 

effective stimulus exceeded by a factor of 3 the SD of the squares in the background 

(DeVries & Baylor, 1997). The stimulus duration was T= 30 s and the stimulus was repeated 

n = 30 times.  

A spike-triggered average (STA) was calculated after the spikes were sorted into 

different categories according to ISI values 0 < ISI ≤ 10 ms; 10 < ISI ≤ 20 ms; 20 < ISI ≤ 50 

ms; 50 < ISI ≤ 100 ms. In the last category, the STA was calculated for all spikes in the 

spike trains.   

We calculated the STA  as the average over all the stimuli which shortly preceded a 

spike (Paninski, 2003; Schwartz et al., 2006).  
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, where Nsp is the number of spikes, ti is the time of occurrence 〈Nsp〉 i=1 of spike i, s(t) is the 

stimulus at time t, and the angle brackets represent averaging over trials.  

We represent the spike train ρ(t) as a sum of infinitesimally narrow, idealized spikes in the 

form of Dirac δ functions:  

 

Thus, STA(τ) can be expressed as an integral of the stimulus times of the neural 

response function:  

 

, where T is the total duration of a trial and r(t) is the firing 〈Nsp〉0 rate at time t.  The 

correlation function of the firing rate r at time t and stimulus s at time (t+τ) is denoted by:  

 

Finally, the STA(τ) as the correlation between stimulus and neural response was 

calculated by:  

The maximum of an STA (τ), given by MCorr (Martiniuc and Knoll, 2012), was indicating 

the maximum correlation between a stimulus and a neuronal response, for each of the ISI 

categories, and has the dimension of light intensity.  

 To compare the direction selectivity for different ISI values with the direction selectivity for the 

entire recorded activity we defined the following index as ISI directional index (SI):  
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DSi(ISI) 

 SI =  .   
DSi(DSRGC) 

DSi (DSRGC) represents the index of selectivity calculated for all recorded activity as and 

DSi(ISI) represents the directional tuning calculated for the separated retinal spikes 

according with different ISI values, as mentioned above. This index is quantified similarly 

to the DSi as described by Taylor and Vane (2002) taking into account that for each stimulus 

movement direction we took the total number of ISIs (of a certain value) into account 

instead of the total number of spikes.  

 To calculate the post stimulus time histograms (PSTH) we aligned the spike sequences with the 

onset of stimuli that repeated n times. For periodic stimuli (grating bars), we moved the response 

sequence back to time zero after each time period T, and counted n as the total number of periods 

of data. We then divided the stimulus period T into N bins of size ∆ and counted the number of 

spikes ki from all n sequences that fall in the bin i. The optimal bin size ∆ results from minimizing: 

(2k-σ)/∆2, where k is the mean of ki and σ is the variance of ki (Shimazaki and Shinomoto, 2007).   

We then averaged the calculated PSTH for the n stimuli repetitions (n = 30 for white 

noise stimulus and n = 7 for grating drifting bars stimulus) and obtained the time-varying 

average firing rates <r(t)>.  

In order to evaluate the information about the stimulus carried by single spikes we 

used the above calculated time varying average firing rates <r(t)> and computed the 

estimates of entropy (H) as follows (Strong et al., 1998; Brenner et al., 2000; Sincich et al., 

2009; Casti et al., 2009; Rathbun et al., 2010):  
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We calculated H for n = 20 cells for a white noise stimulus and n = 12 cells for a drifting 

grating bar stimulus and for each of the ISI categories mentioned at the beginning. 

Additionally, for the second stimulus we calculated H for each of the eight equidistant 

directions of stimulus movement.  

Thus, we could estimate the entropy tuning for each cell, and evaluate the amount of 

information carried at each direction of stimulus movement similarly with the equation we 

used to estimate the direction selectivity index (DSi) as described by Taylor and Vaney  

(2002):   

 

Hi represents the entropy for each of the stimulus direction of movement.  

To take into account the problem of the size limitation of data and to correct the 

resulting bias, the information rates were estimated by extrapolating the entropy Hc from 

segments of the total data in an increasing order for different bin sizes (∇τ) and fit by  

(Strong et al., 1998):  

 

The linear dependence gave a good fit for all cells included in our analysis. This measure 

of information rates does not make any deduction about the number of relevant stimulus 

features. It informs about the amount of information (bits/spikes) contained in single spikes.  

 

 

Spontaneous activity – Cultures of dissociated neurons   

Both in vivo and in vitro, synchronously correlated activity, known as bursting activity, is one of 

the mechanisms which shape interconnectivity and process information, either at single cell level 
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or at multiple sites being dynamically linked in space and time (van Pelt et al., 2004; Wagenaar 

et al., 2005; Wagenaar et al., 2006; Sun et al., 2010; Rolston et al., 2007; Mazzoni et al., 2007; 

McCabe et al., 2006).   

Bursting not only occurs in brain slices with partially intact interconnectivity (Blankenship and 

Feller 2010; Rolston et al., 2007), but can be also found in neural cultures derived from 

dissociated brain tissue where it becomes predominant as cultures mature (Wagenaar et al., 

2005; Wagenaar et al., 2006). Bursting activity varies not only with culture age (Nadasdy  

2000; van Pelt et al., 2004), but also with other factors, i.e. culture density (Wagenaar et al., 

2006).   

However, different spatio-temporally recurring patterns occur in both stimulus-induced 

(Ferrández et al., 2013) and spontaneous activity.  They are usually dynamic over time (i.e. the 

spatial location of active sites may change), thereby having different, yet characteristic spatio-

temporal shapes (Shahaf and Marom, 2001; van Pelt et al., 2005; Sun et al., 2010; DeMarse et 

al., 2001; Pasquale et al., 2008; Pasquale et al., 2010; Ruaro et al., 2005; Nadasdy 2000; 

Nomura et al., 2009).   

 Without any external stimulus, cultured neurons show significant changes in their spontaneous 

neural activity at different stages toward maturity. Moreover, network activity fluctuations at 

later stages may be a consequence of repetitive internal stimuli that revive prior network activity 

and alter network connectivity to compensate for the lack of external stimuli. Such self-

organized events based on spontaneous neural activity were previously reported at different 

culture ages (Rolston et al., 2007; Pasquale et al., 2010; Sun et al., 2010).    

Both, in vivo and vitro, stimuli may trigger bursting (Krahe 2004; Akerberg 2011) and PS 

activity. The early visual system is a prominent example. There, PS activity in retinal ganglion 

cells is driving suprathreshold responses at postsynaptic targets in the lateral geniculate nucleus 

(Usrey et al., 1998; Sincich et al., 2007; Weyand, 2007). PS enhancement contributes to 

preserving the information of a visual stimulus from one processing stage to the next (Rathbun et 

al., 2010; Sincich et al., 2009; Uglesich et al., 2009). It has been shown that the second spike in 
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a pair evoked a postsynaptic potential with maximum efficacy for interspike intervals (ISIs) in 

the range of 2 - 5 ms. Efficacy rapidly decreased to zero for ISIs larger than 40 ms (Usrey et al., 

1998; Sincich et al., 2007).  

However, little is known on the evolution and role of PS activity in neural cultures derived from 

dissociated brain tissue, on its relationship to bursting activity and on its participation in the 

organization of functional and effective network connectivity. To answer these questions, I 

defined activity consisting of two spikes being separated by an interval of up to 5 ms followed 

by an inter-paired-spike interval (IPSI) larger than 40 ms as PS activity. I then analyzed 58 

streams of continuously extracellularly recorded spontaneous neural activity in random networks 

for PS occurrence and for the spatio-temporal evolution of PS activity patterns over several 

weeks. In this context, I wondered whether any PS-induced effect was locally confined or led to 

changes on network level. I finally investigated PS activity robustness and independence in 

driving spontaneous neural activity concerning functional and effective connectivity and 

synaptic plasticity.  

The data for this analysis was provided by a recently developed cell culture perfusion system 

that allowed us to continuously track both network activity and morphology on the lab bench at 

ambient CO2 levels under rather well controlled environmental conditions (i.e. pH, temperature 

and osmolality).  

  

Following standard tissue dissociation protocols (Banker and Goslin, 1998), hippocampal and 

cortical neurons were harvested from dissociated brain tissue extracted from embryonic rats at 

E18. They were plated at a density of ~60,000 neurons/mm2 on autoclaved and pretreated 

microelectrode arrays (hippocampal on 8 × 8 30/200iR TiN and cortical on 6 × 10 30/500iR 

TiN, , Multi Channel Systems, Germany). Cultures were kept in timed perfusion culture at 35.5 - 

36.5°C during spike-train acquisition.  
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Extracellular signals were recorded and processed by a commercial 60-channel, 10 Hz - 3 kHz 

bandpass filter-amplifier data acquisition system (25 kHz sampling rate per channel) for upright 

microscopes with heating platform (MEA60, Multi Channel Systems, Germany). The recording 

environment was shielded by a grounded metal cap. To reduce data file size, only upward 

(positive) and downward (negative) spike cutouts from 57 (cortical) and 58 (hippocampal) out of 

60 recording electrodes were stored in 5 min packets. They consisted of 5 ms pre-spike and 5 ms 

post-spike fragments after first threshold crossing at ± 5.5 SD with respect to peak-to-peak 

noise. Only timestamps from downward threshold-crossings were extracted using Neuroexplorer 

(Nex Technologies). After removing simultaneous timestamps that occurred on all channels due 

to electrical or handling artefacts, subsequent 5 min datasets comprised of 58 timestamp streams 

were bundled in 12 hours timestamp packets for further analysis in Matlab (MathWorks). In the 

following, these half day packets will be called trials of duration TTrial ≤ 12 h. On some days, 

trials encompassed less than 12 h due to temporary interruptions for system reconfiguration, 

maintenance work or power failure. Our recording sessions consisted of 65 trials (32.5 DIVs) for 

the hippocampal culture and 106 trials (53 DIVs) for the cortical culture.  

  

The MEA socket in its base plate featured a resistive heating element and a Pt-100 temperature 

sensor. An external T-control unit (Multi Channel Systems HC-1) kept the temperature of the 

socket surface at ≤36.5 °C. The amplifier was mounted onto a fixed, custom-made stage of an 

inverted microscope (Zeiss Axiovert 200). To avoid the need for lifting the cap during MEA 

insertion, a custom-made spacer between the base-plate with embedded heating plate and the 

amplifier stage created a gap for the free passage of the cap tubing. For the same reason, the 

lower right corner of each MEA had been diagonally cut off with a diamond pen.  

Time-lapse pictures were taken by a remote-controlled (Breeze Systems PSRemote) digital 

consumer camera (Canon G2/G9) attached to the camera port of the microscope. Initially, 

cultures were constantly illuminated by the built-in halogen lamp of the microscope.  
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One notable advantage of this outside-incubator lab bench experimental set-up is that it did not 

require any other cell culture infrastructure such as incubators and sterile hoods which limit 

experimental possibilities. Usually, most cell culture studies, depending on experimental 

screening tools at ambient conditions, rely on taking exemplary, quasi-static data snapshots over 

limited temporal periods, mainly to prevent drifts in pH and osmolality. Instead we used a 

perfusion concept tailored to microelectrode array (MEA)-based long-term  

electrophysiology and time-lapse morphology studies of network dynamics in neural cultures 

(Blau et al., 2009).   

  

Based on the previously described findings by Ursey (Usrey et al., 1998) and Sincich (Sincich et 

al., 2007), we investigated the occurrence and effect of paired spiking on neural activity in 

network cultures. Equally, we scanned all the NSTs using the above mentioned algorithm and 

quantified the PS activity at network level for each trial. In this case, the two spikes separated by 

an interval of up to 5 ms and followed by an IPSI larger than 40 ms did not necessarily have to 

be recorded from the same electrode.  

In order to evaluate the information about the stimulus (PS) carried by individual spikes 

following a PS within the time window of TPS = 2 s, we used the above calculated time varying 

firing rates r(t) and computed the entropy estimates (H) as follows (Strong et al.,  

1998; Brenner et al., 2000; Sincich et al., 2009):  

 
where TPS = 2 s represents the duration of a stimulus set and <r> the average firing rate; the bin 

size was ∆t = 5 ms.  

For each particular trial, we obtained the average estimate for information content per spike by 

averaging the estimated entropy by the number of stimulus repetitions n:  
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To account for limited dataset size and to correct the resulting bias, the information content per 

spike was estimated as a function of bin size ∆t. We performed a linear fit to these data to 

extract the intercept corresponding to the limit when ∆t approaches zero. We used the shuffle 

verification method to check for robustness of information content per spike.  

To investigate whether PS activity plays a role in shaping the dynamic interconnectivity map at 

different developmental stages, we adopted a variant of a cross-correlation algorithm initially 

introduced as conditional firing probability (CFP; le Feber et al., 2007). This method was widely 

used in the investigation of activity relationships between different electrodes to reveal the 

formation and strength evolution of functional connectivity within in vitro networks (Zullo L et 

al., 2012; Chiappalone et al., 2007; Garofalo et al., 2009). Here, we used CFP to reveal any PS-

related cross-correlations between different sites within the network. Above mentioned concepts 

(i.e. information content per spike and CFP) quantify statistical dependences in observed 

variables (i.e. recorded spike trains) describing functional connectivity maps and does not allow 

us to investigate the direction of information flow (i.e.  

the causality) between the recorded units. By definition (Wienner, 1956), an effective 

connectivity between two neurons exists when knowledge about the past of one neuron predicts 

the future activity of its counterpart better than the prediction based on the past activity of the 

receiver (neuron) alone. This effective connectivity is quantified by the information – theoretic 

measure called transfer entropy (TE), first time introduced by Schreiber (Schreiber, 2000). TE is 

an asymmetric measure of interactions between two coupled neurons that allow us to determine 

the direction of information flow between recorded units. In our work TE is positive, and thus 

the information is directed from the recorded unit A to the recorded unit B (i.e. there is an 
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effective connectivity from the unit A to the unit B) when the information about the spiking 

activity recorded at the unit A improves prediction of the spiking activity in the future of the unit 

B better than can be predicted only by the past spiking activity recorded at the unit B alone. 

Thus, to identify and assess effective connectivity within our recorded spiking activity of the 

cultured neurons, we used a recently introduced toolbox for TE calculation (Ito et al., 2011) 

derived from original definition given by Schreiber (Schreiber, 2000) as follows:  

  

The complete description of the TE toolbox algorithm is thoroughly done in Ito et al., 2011. 

Briefly, for our work At depicts whether at time t we recorded a spike at unit A (and thus the 

value is one) or we have no spike at the same unit (and thus the value is zero). Similarly Bt and 

Bt+1 describe the status of unit B at the moments t and t+1. Conditional probabilities of 

observing the particular status of units A and B described in parentheses are marked by  

vertical bars while the sum is over all possible combinations Bt+1, Bt
k and At

l, where parameters 

k and l express the number of time bins in the past that allow us to take into account the time 

delay and the length of the message when calculating TE. For biophysical reasonability we 

chose k = 1:30 ms and l =1:250 ms.  
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Summary of the paper  

  

In this paper I explored the active implication of paired spiking activity in shaping the neural 

activity recorded from dissociated cultures of neurons from cortex and hippocampus. The work 

is original from many points of view. One major noticeable aspect is that up to my knowledge 

there are no scientific works dedicated to paired spiking activity in cultured neurons. In this 

paper I show that PS not only that exists under spontaneous activity paradigm in such neuronal 

cultures but also it establish spatio-temporal patterns that starts from early days in vitro (DIVs) 

and lasts until the end of recordings. Their shapes, however are getting more and more complex 

as the culture matures by attracting new neighbours neurons and increasing the number of 

repetitions and the inter pair spike intervals (IPSIs). Additionally, PS activity is robustly 

involved in establishing functional and effective connectivity within the neural network at 

different stages of development. Paired spiking activity (PS) was reported in vivo and in intact 

brain architecture, for different cell types and now in cultures of dissotiated tissue under 

spontaneous (non-stimulated) paradigm. Presumably it acts as an internal surrogate stimulus that 

robustly drives the neural ativity during different developmental stages reviving the activity in 

lack of any stimulus. If that holds true, exploring PS may open new doors in scientific efforts 

concerning closed-loop paradigm in controlling the neural output as response to a stimulus 

protocol with possible applications in robotics and/or neuroprosthetics.  

  

My contribution to this paper is as follows: I participated in defining the scientific project, 

analyzing the recorded neural data, writing the paper, editting the paper and I am the 

corresponding author.   
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II. Paired spiking robustly shapes spontaneous activity in neural networks in 

vitro  

Abstract  

In vivo, neurons establish functional connections and preserve information along their synaptic 

pathways from one information processing stage to the next in a very efficient manner. Paired 

spiking (PS) enhancement plays a key role by acting as a temporal filter that deletes less 

informative spikes. We analyzed the spontaneous neural activity evolution in a hippocampal and 

a cortical network over several weeks exploring whether the same PS coding mechanism 

appears in neuronal cultures as well. We show that self-organized neural in vitro networks not 

only develop characteristic bursting activity, but feature robust in vivo like PS activity. PS 

activity formed spatiotemporal patterns that started at early days in vitro (DIVs) and lasted until 

the end of the recording sessions. Initially random-like and sparse PS patterns became robust 

after three weeks in vitro (WIVs). They were characterized by a high number of occurrences and 

short inter-paired spike intervals (IPSIs). Spatially, the degree of complexity increased by 

recruiting new neighboring sites in PS as a culture matured. Moreover, PS activity participated 

in establishing functional connectivity between different sites within the developing network. 

Employing transfer entropy (TE) as an information transfer measure, we show that PS activity is 

robustly involved in establishing effective connectivities. Spiking activity at both individual 

sites and network level robustly followed each PS within a short time interval. PS may thus be 

considered a spiking predictor. These findings suggest that PS activity is preserved in 

spontaneously active in vitro networks as part of a robust coding mechanism as encountered in 

vivo. We suggest that, presumably in lack of any external sensory stimuli, PS may act as an 

internal surrogate stimulus to drive neural activity at different developmental stages.  

Keywords: cultured neurons, paired spiking activity, uninterrupted recording, bursting activity, 

neural information content per spike  
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1. Introduction  

Both in vivo and in vitro, synchronous correlated activity known as bursting is one of the 

information processing mechanisms that shape network interconnectivity, both at single cell and 

network level (van Pelt et al., 2004; Wagenaar et al., 2005; McCabe et al., 2006;  

Wagenaar et al., 2006; Rolston et al., 2007; Mazzoni et al., 2007; Sun et al., 2010).  Bursting 

not only occurs in brain slices with partially intact interconnectivity (Blankenship and Feller 

2010; Rolston et al., 2007), but is also found in neural cultures derived from dissociated brain 

tissue where it becomes predominant as cultures mature (Wagenaar et al.,  

2005; Wagenaar et al., 2006). Bursting activity varies with culture age (Nadasdy 2000; van Pelt 

et al., 2004), and other factors, i.e. culture density (Wagenaar et al., 2006).   

Different spatio-temporally recurring patterns occur in both stimulus-induced (Ferrándezet al., 

2013) and spontaneous activity.  They are usually dynamic over time (i.e. the spatial location of 

active sites may change), thereby having different, yet characteristic spatio-temporal shapes 

(Shahaf and Marom, 2001; van Pelt et al., 2005; Sun et al., 2010; DeMarse et al., 2001; 

Pasquale et al., 2008; Pasquale et al., 2010; Ruaro et al., 2005; Nadasdy 2000; Nomura et al.,  

2009).   

Without any external stimulus, cultured neurons show significant changes in their spontaneous 

neural activity at different stages toward maturity. Moreover, network activity fluctuations at 

later stages may be a consequence of repetitive internal stimuli that revive prior network activity 

and are thought to alter network connectivity to compensate for the lack of external stimuli. 

Such self-organized events based on spontaneous neural activity were previously reported at 

different culture ages (Rolston et al., 2007; Pasquale et al., 2010; Sun et al., 2010).    

Both, in vivo and vitro, stimuli may trigger bursting (Krahe 2004; Akerberg 2011) and PS 

activity. The early visual system is a prominent example. PS activity in retinal ganglion cells is 

driving suprathreshold responses at postsynaptic targets in the lateral geniculate nucleus (Usrey 

et al., 1998; Sincich et al., 2007; Weyand, 2007). PS enhancement contributes to preserving the 
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information of a visual stimulus from one processing stage to the next (Rathbun et al., 2010; 

Sincich et al., 2009; Uglesich et al., 2009). It has been shown that the second spike in a pair 

evoked a postsynaptic potential with maximum efficacy for inter-spike intervals (ISIs) in the 

range of 2 - 5 ms. Efficacy rapidly decreased to zero for ISIs larger than 40 ms (Usrey et al., 

1998; Sincich et al., 2007).  

However, little is known on the evolution and role of PS activity in neural cultures derived from 

dissociated brain tissue, on its relationship to bursting activity and on its participation in the 

organization of functional and effective network connectivity. To address these questions, we 

defined activity consisting of two spikes being separated by an interval of up to 5 ms followed 

by an inter-paired-spike interval (IPSI) larger than 40 ms as PS activity (Methods 2.3). We then 

analyzed 58 streams of continuously extracellularly recorded spontaneous neural activity in 

random networks for PS occurrence and for the spatio-temporal evolution of PS activity patterns 

over several weeks. In this context, we wondered whether any PS-induced effect was locally 

confined or led to changes on network level. We finally investigated the robustness of PS 

activity and its independence in driving spontaneous neural activity, thereby affecting functional 

and effective connectivity.  

  

2. Materials and methods  

2.1 Continuous 59-channel MEA electrophysiology and spike train assembly  

The data for this analysis was provided by a recently developed cell culture perfusion system 

that allowed us to continuously track both network activity and morphology on the lab bench at 

ambient CO2 levels under rather well controlled environmental conditions (i.e. pH, temperature 

and osmolality). Technological and procedural details will appear in a dedicated article 

(Saalfrank et al., submitted).  With this setup, the activity evolution in a hippocampal and a 

cortical network on MEAs was continuously recorded over 30 and 53 days in vitro (DIV), 
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respectively. These datasets were analyzed for PS activity. To reduce data file size, only upward 

(positive) and downward (negative) spike cutouts from 57 (cortical) and 58  

(hippocampal) out of 59 recording electrodes were stored in 5 min packets. They consisted of 5 

ms pre-spike and 5 ms post-spike fragments after first threshold crossing at ± 5.5 SD with 

respect to peak-to-peak noise (Suppl. Fig. 1(A)). Only timestamps from downward 

thresholdcrossings were extracted using Neuroexplorer (Nex Technologies). After removing 

simultaneous timestamps that occurred on all channels due to electrical or handling artefacts, 

subsequent 5 min datasets comprised of ≤ 58 timestamp streams were bundled in 12 hour 

timestamp packets for further analysis in Matlab (MathWorks). In the following, these halfday 

packets will be called trials of duration TTrial ≤ 12 h. On some days, trials encompassed less than 

12 h due to temporary interruptions for system reconfiguration, maintenance work or power 

failure. Our recording sessions consisted of 65 trials (32.5 DIVs) for the hippocampal culture 

and 106 trials (53 DIVs) for the cortical culture.  

2.2 Local and network firing and burst rates  

Firstly, we quantified the local firing rates (LFRs) at individual sites as the number of recorded 

spikes divided by TTrial for each local spike train (LST) (Suppl. Fig. 1(B)). At network level, we 

pooled all spikes from all 57 and 58 sites, respectively, for each trial into a single network spike 

train (NST) by sorting them in a time-ascending order. The NST represented the MEA-wide 

activity for each trial. The network firing rate (NFR) was then quantified as the total number of 

spikes in an NST divided by TTrial (Suppl. Fig. 1(C)) To further investigate activity dynamics, we 

used the burst rate (BR), a well-known parameter for characterizing synchronous network 

activity. We scanned all LSTs at the 57 (cortical) and 58 (hippocampal) individual sites for each 

trial and defined bursting activity as events with more than 10 subsequent spikes being 

individually separated by an ISI of less than 100 ms, followed by an interburst interval (IBI) 

larger than 200 ms (Wagenaar et al., 2005) (Suppl. Fig. 1(C)). The local burst rate (LBR) at 

individual sites was calculated by dividing the number of bursts by TTrial. Equally, the network 
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burst rate (NBR) was obtained by scanning the NST for bursts using above mentioned criterion 

and dividing the number of bursts by  

TTrial.  

2.3 Paired spiking activity  

Based on the previously described findings by Ursey (Usrey et al., 1998) and Sincich (Sincich et 

al., 2007), we investigated the occurrence and effect of paired spiking on neural activity in 

network cultures. As sketched in Suppl. Fig. 1(D), we defined PSs at individual sites as the 

neural activity consisting of two spikes recorded from the same electrode separated by an 

interval of up to 5 ms, followed by an IPSI larger than 40 ms (in order to assure that a second 

spike in a PS does not influence a first spike in a second PS for two consecutive PSs).  Equally, 

we scanned all the NSTs using the above mentioned algorithm to quantify the PS activity at 

network level for each trial. In this case, the two spikes separated by an interval of up to 5 ms 

and followed by an IPSI larger than 40 ms did not necessarily have to be recorded from the same 

electrode.  

To describe the PS activity dynamics for each trial, we calculated the number of active sites with 

PSs (NASPS) as being the number of sites with at least two PS repetitions during TTrial. Equally, 

we calculated the NASB for bursts as the number of sites with more than one burst  

per trial.  

To check if PS activity forms robust spatiotemporal patterns, we firstly calculated the IPSI as 

being the difference between two consecutive PSs at both network level and individual sites. 

From the IPSI histograms for each trial we extracted the highest number of IPSI repetitions and 

the most frequently encountered IPSI value (IPSImfo) at individual sites.  

Moreover, to confirm that PS activity was neither governed strictly by firing rates (and thus 

represented an intrinsic neural response property) nor, at network level, by chance as a 

procedural result of projecting spiking activity from individual sites onto a single NST timeline, 

we generated Poisson-like network spike trains for comparison. In these, the firing probability 
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was distributed according to a homogenous Poisson process without refractory period. If PS 

activity were strictly governed by firing rate, Poisson-like spike trains with the same firing rate 

as the recorded NSTs would give a similar PS distribution. Additionally, we shuffled the NSTs 

100 times for each trial and quantified PS activity to check the degree of randomness of NST PS 

activity. NST spike times were randomly rearranged with the randperm (Matlab, MathWorks) 

function. 100 repetitions were chosen to warrant statistical significance at acceptable 

computational costs.  

To generate above mentioned Poisson-like spike trains, we used Matlab user-written 

routines.The Poisson distribution P represents the probability that a homogenous Poisson 

process generates n spikes in a period of trial duration TTrial:  

(rTTrial )n
 

 P(n) = exp(−rTTrial )  (1-a)  
n! 

where r is the spike count rate defined as the total number of spikes divided by TTrial for each  

LST and NST.   

Timestamps were generated by the following interspike interval formula:   

 ti+1 − ti =−(1/r) ln(rand)    (1-b)  
where rand is a random number uniformly distributed over the open interval (0 : 1); ti 

represent the spike timestamps for i = 1, 2,..., n spikes (Martiniuc and Knoll, 2012).  

2.4 Post-stimulus time histogram and time-varying firing rates at network level  

To investigate the hypothesis that PS activity might replace external stimuli sources, 

we considered each PS a stimulus-resembling event for the network. Thus, for this 

particular investigation at network level, we considered PS onset (first spike) as the 

beginning of a stimulus (t = 0 s) with a duration of TPS = 2 seconds, which is close to 

the shortest IPSI duration found for each trial.  

To calculate the post-stimulus time histograms (PSTHs), the timestamps of PS-elicited 

spikes during a TPS were aligned relative to t = 0 s for each period TPS. n reflects the number 
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of PS stimuli at network level in a trial. nmin was found to be 200. We divided the stimulus 

period TPS into N bins of duration ∆t = 5 ms and counted the number of spikes ki from all n 

sequences that fall into bin i. After averaging for the n stimulus repetitions and dividing by 

bin duration ∆t, we obtained the time-varying firing rates r(t) with respect to stimulus (PS) 

onset.   

2.5 Information content per spike  

In order to evaluate the information about the stimulus (PS) carried by individual spikes 

following a PS within TPS, we used the above calculated time varying firing rates r(t) and 

computed the entropy estimates (H) as follows (Strong et al., 1998; Brenner et al., 2000; 

Sincich et al., 2009):  

  (2) 

where TPS = 2 s represents the above mentioned duration of a stimulus and <r> the average 

firing rate; also in this case, the bin size was ∆t = 5 ms.  

For each particular trial, we obtained the average estimate for the information content per 

spike by averaging the estimated entropy by the number of stimulus repetitions n:  

   (3) 

To account for limited dataset size and to correct the resulting bias, the information content 

per spike was estimated as a function of bin size ∆t. We performed a linear fit to these data 

to extract the intercept corresponding to the limit when ∆t approaches zero. We used the 

shuffle verification method to check for the robustness of information content per spike. 

Briefly, we randomly rearranged each NST as described in section 0 and computed 

estimates of the information content per spike as mentioned above (Eq. 2). For each of the 
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shuffled NSTs, we repeated this procedure100 times and obtained a standard deviation of 

estimated information content that was smaller than one standard deviation of the fitting 

intercept obtained from above mentioned linear fit.  

This measure of information content does not make any assumption about the stimulus 

features; it only reveals the information content carried by individual spikes.  

2.6 Conditional firing probability  

The highly variable spontaneous spiking activity of cultured neurons features robust patterns 

(i.e. bursting activity), which might participate in the establishment of functional 

connections between different sites within the culture. To investigate whether PS activity 

plays a role in shaping the dynamic interconnectivity map at different developmental stages, 

we adopted a variant of a cross-correlation algorithm initially introduced as conditional 

firing probability (CFP; le Feber et al., 2007). This method was widely used in the 

investigation of activity relationships between different electrodes to reveal the formation 

and strength evolution of functional connectivity within in vitro networks (Zullo L et al., 

2012; Chiappalone et al., 2007; Garofalo et al., 2009). Here, we used CFP to reveal any PS-

related cross-correlations between different sites within the network. That is, at each 

electrode i (i = 1 : 57 or 58, respectively) considered as the reference, we selected the 

second spike in each PS as a reference with new relative time ti = 0. We then calculated the 

CFP as the probability of spike occurrences at any of the other 56 or57 recording electrodes 

j (j = 1: 56 or57, respectively) within the time interval TCFP [ti : ti + 500 ms] divided by the 

total number of second reference spikes of a PS at reference electrode i over the entire trial 

duration of TTrial = 12 h. The spikes found at electrode j during TCFP were aligned relative to 

each ti and binned with a bin size of ∆t = 1 ms. If any of the resulting 57*57or 58*58 

CFP(i,j) distribution curves showed a clear peak, we considered electrode j being correlated 

to the PS activity on reference electrode i.  
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The peak amplitude was a measure of correlation strength. Its timestamp reflected the 

PSrelated synchronization delay between the two neurons.  

Additionally, two boundary conditions were chosen as restrictive validity criteria: a CFP(i,j) 

was rejected if the width at 80% of the peak value was shorter than 5 ms (five bin sizes; to 

avoid false correlations caused by outliers) and for synchronization delays larger than 250 

ms (to avoid curves that decreased to zero beyond the 500 ms window).   

2.7 Transfer entropy  

Above mentioned concepts (i.e. information content per spike and CFP) quantify statistical 

dependences of observed variables (i.e. recorded spike trains), thereby describing functional 

connectivity maps which do not allow us to investigate the direction of information flow 

(i.e.  

the causality) between the recorded units. By definition (Wienner, 1956), an effective 

connectivity between two neurons exists when knowledge about the past of one neuron 

predicts the future activity of its counterpart better than the prediction based on the past 

activity of the receiver (neuron) alone. This effective connectivity is quantified by an 

information–theoretic measure called transfer entropy (TE) that was introduced by Schreiber 

(Schreiber, 2000). TE is an asymmetric measure of interactions between two coupled 

neurons which reveals effective connectivities and indicates the direction of information 

flow between recorded units. It permits to predict the spiking activity of a post-synaptic 

neuron by taking past spiking activity of its pre-synaptic partner into account. In our work, 

TE is positive and thus the information is directed from a sender unit A to a receiver unit B 

(i.e. there is an effective connectivity from unit A to unit B) only when the information 

about the spiking activity recorded at unit A improves the prediction of the spiking activity 

in the future of unit B better than any prediction derived from past spiking activity recorded 

at the unit B alone. Thus, to identify and assess effective connectivity within the neural 
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network from recorded spiking activity, we used a recently introduced toolbox for 

calculating the TE (Ito et al., 2011) derived from the original definition given by Schreiber 

(Schreiber, 2000) as follows:  

      (4)  
  

A complete description of the TE toolbox algorithm can be found in Ito et al., 2011. Briefly, 

p describes a probability, At depicts whether at time t a spike at unit A was recorded (and 

thus At = 1) or not (At = 0). Similarly, Bt and Bt+1 describe the status of unit B at times t and 

t+1. Conditional probabilities of observing the particular status of units A and B are marked 

by vertical bars while the sum is over all possible combinations Bt+1, Bt
k and At

l, where 

parameters k and l express the number of time bins in the past that allow us to take the time 

delay and the message length into account when calculating TE. For biophysical 

reasonability, we chose k = 1:30 ms and l =1:250 ms.  

In this general framework, we exclusively considered PS activity at unit A (the sender) 

while unit B (the receiver) encompassed the entire recorded spiking activity. In this way, we 

could estimate whether PS activity at unit A was involved in information transfer toward 

unit B.  

Furthermore, we exemplarily chose the eight closest recording units as depicted in Figure 

6(A) to check if PS was involved in information transfer and thus in establishing effective 

connectivity between these eight closest neighbors within the network. Thus, each of the 

closest eight units was scanned for PS activity and considered as the sender with respect to 

the entire spiking activity of the remaining seven closest neighbors. This resulted in a TE 

map, which depicts the PS information transfer dynamics of each of the selected senders 

(eight units A) toward the selected receivers (seven units B). For computational reasons, we 

split each trial duration T into 30 minutes subsets of recorded data.   
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We applied the same algorithm at network level to investigate the effect of information 

transfer from the above mentioned eight units A toward the rest of the network. In this case, 

we calculated the PS-related TE for each of the eight selected channels with respect to the 

entire NST as the only receiver unit B.   

 Further on, we calculated the differences between the resulting TEs:  
       (5)  

When ∆TE is positive, the information transfer is directed from A to B; in the opposite case, 

the information flows from B to A.    

  

3. Results  

3.1 Evolution of firing and burst rates through different developmental stages  

  

Taking advantage of the uninterrupted extracellular recording technology for cultured 

neurons based on 59-channel microelectrode arrays (MEA), we analyzed the day to day 

evolution of spontaneous neural activity at both individual sites and network level. We 

extracellularly recorded activity from two different networks cultured under similar 

conditions. Quasicontinuous datasets from 7 DIV (first extracellularly recorded spikes 

emerged from the 5 µV noise floor and crossed the -5.5 SD of the peak-to-peak noise spike 

detection threshold) to 39 DIV for the hippocampal culture and from 24 DIV to 77 DIV for 

the cortical culture were analyzed.   

For the hippocampal culture, the evolution of spiking activity at network level could be 

clearly divided into three periods (Figure 1(A) – blue bars) as follows: 7 DIV to 14 DIV as 

the first period (C1-1), 15 DIV to 26 DIV as the second period (C1-2) and 27 DIV to 39 

DIV as the last period (C1-3). An obvious finding was a significantly increasing network 

firing rate (NFR – Methods 2.2) (p < 0.05, t-test) from one period to the next, starting with a 
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mean firing rate of 1.2 spikes/s in the first period to 12.7 spikes/s in the last as indicated by 

the yellow mean values in Figure 1(A). This increasing spontaneous spiking activity in 

maturing cultures is in accordance with previously reported results (van Pelt et al., 2005). 

Significant changes have also been found at individual sites where the number of active sites 

during the same developmental periods increased as the culture grew toward maturity. In 

contrast, we found fluctuating neural activity periods containing or terminating with high 

network firing rates (Figure 1A) – red bars) for the more mature cortical culture. We could 

distinguish six time periods marked by an increasing period followed by a decreasing trend. 

The individual periods lasted from 24 DIV to 37 DIV (C2-1) with a mean of 15±8 spikes/s, 

from 38 DIV to 45 DIV (C2-2) with a mean of 25±11 spikes/s, from 46 DIV to 50 DIV (C2-

3)with a mean of 8.5±7 spikes/s, from 51 DIV to 65 DIV (C2-4)with a mean of 7±3.4 

spikes/s, from 66 DIV to 71 DIV (C2-5)with a mean of 6±2 spikes/s and from 72 DIV to 77 

DIV with a mean of 5.5±1.8 spikes/s for the last period (C2-6).  

Firing rates are usually used to reveal characteristic communication mechanisms that are 

different for spontaneous and induced activity, respectively. In contrast, bursting activity 

plays a role in filtering spontaneous neural activity (van Pelt et al., 2004; Wagenaar et al., 

2005). In our recordings, spiking activity tended to induce bursts of synchronized activity at 

different developmental stages.     

Similarly to the network firing rate (NFR Figure 1(A) –blue trace), the hippocampal culture 

showed a significantly (p < 0.05) increasing trend in bursting activity at network level (see 

Methods 2.2, Figure 1(B) –blue bars) over the three periods. A mean of 0.018 bursts/s 

during the first period increased to a mean of 0.22 bursts/s for the last period (Figure 1(B) –

yellow dots). This developmental trend has already been reported in other network studies 

(van Pelt et al., 2004). However, while the number of active bursting sites (NASB) increased 

from the first period to the second, it returned close to the value of the first period at the end 

of the recording. It dropped sharply during a power blackout (temperature dropped and 
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stayed at room temperature for several hours), from which it recovered slowly to its 

previous value (see Figure 1(D) and corresponding yellow circles depicting means). In the 

second period, these extremely high NASB are explained by massive neural avalanches that 

take place within the network and recruit neurons at most sites (ca. 82% of the 58 recording 

electrodes) for a short time Figure 1(C) exemplarily shows such a network avalanche that 

arose at 18 DIV.    

In the more mature cortical culture, we found less bursting activity at network level than in 

the hippocampal culture at earlier developmental stages, but with a high NASB. That is, a 

larger number of neurons contributed to the network bursting, but with a lower number of 

bursts/s, which did not lead to a comparable increase in the NBR. In addition, the NBR, 

NASB and NFR of the cortical culture oscillated within each of the six periods, as indicated 

in Figure 1(A), (B) and (D)– red bars).  

  
Figure 1 Evolution of network firing rate (NFR) (A) and network burst rate (B) over time for the first 

hippocampal (blue) and second cortical (red) culture. Three (hippocampal, blue rectangular delimiters, C1-1 to 

C1-3) and six (cortical, red rectangular delimiters, C2-1 to C2-6) recording periods were distinguished by 

significant changes in their NFRs. For each period, the mean NFRs and their SDs are displayed as circles with 
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error bars. (C) Example of a network avalanche at 18 DIV.(D) Number of active sites (NASB) with respect to 

bursting activity in the hippocampal (blue) and cortical (red) culture.   

3.2 Evolution of paired spiking activity at individual sites and at network level  

  

Activity patterns consisting of PSs separated by ISIs of up to 5 ms were rarely encountered 

in the young hippocampal culture. Instead, random isolated spiking rather than synchronized 

rapid firing dominated neural activity as reported before (van Pelt et al., 2005). While spike 

pairing was very low at early DIVs, it consistently increased after 3-4 weeks in vitro (WIV). 

This trend was robust not only at individual sites (Figure 2(C) –blue bars), but also at 

network level (Figure 2(D) –blue bars). The mean of PS occurrences at individual sites 

significantly (p < 0.05) increased about thirtyfold from 193 for the first period to 5741 for 

the last period (Figure 2(C) - yellow circles indicating mean highest number of PS at 

individual sites). At network level, the mean number of PSs in the first period was 486 and 

increased tenfold to 4911 in the last period (Figure 2(D) –yellow circles). In contrast, PS 

activity in the more mature cortical culture did not grow monotonically, but fluctuated rather 

synchronously with both the firing and burst rates at network level Figure 2(C), (D) –red 

bars, and Figure 1(A), (B)).  

Interestingly, the IPSI (see Methods 2.3), a parameter which quantifies the temporal gap 

between two consecutive PS, exemplarily suggests that PS activity becomes robust as the 

culture ages. For the hippocampal culture, the duration of the most frequently occurring 

(mfo) IPSIsmfo at both individual sites (≤ 90 s, index ‘L’) and network level (≤ 48 s, index 

‘N’) was very long and fluctuated highly with a low number of repetitions in the first three 

WIVs Figure 3(A)  (individual sites), (B) (network level)–blue bars). The non-uniform 

temporal distribution of PS activity during this developmental period denotes that PS was 

not yet robust.  
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Figure 2 Highest PS activity (black circles) and highest bursting activity (orange circles) in the hippocampal (A) 

and cortical (B) culture may not necessarily be recorded from the same electrode in subsequent trials. (C) 

Number of occurrences of the most frequently, locally occurring PSL in the hippocampal (C1, blue bars) and 

cortical culture (C2, red bars) at the individual recording sites denoted on the y-axes in (A) and (B). (D) Total 

number of PSN occurrences at network level for the hippocampal (C1, blue bars) and the cortical culture (C2, 

red bars). Circles and error bars in (C) and (D) display mean PS values and their SDs (yellow: hippocampal; 

green: cortical).  

 

Remarkably, PSN activity at network level shows higher than average values exactly at those 

DIVs with strong activity avalanches (as exemplified Figure 1(C) at 18 DIV). This suggests 

that such extremely high neuronal activity at individual sites (as revealed by the NASPS in 

Figure 4(A) –blue bars) accounts for the elevated PSN activity at network level, while firing 

rates kept a uniformly increasing trend at those DIVs (Figure 1(A)). After three WIVs, PS 

activity dramatically increased (Figure 2(C)(individual sites), (D) (network level)–blue bars) 

while the duration of the most frequently occurring IPSIsmfo decreased and robustly settled 

at 2-3 s until the end of the recording session (Figure 3(A) (individual sites), (B) (network 

level)– blue bars). Interestingly, the duration of the IPSIsmfo at network level (Figure 3(B)) 
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stabilized earlier than at individual sites (Figure 3(A)). Over the same period, the number of 

the IPSIsmfo increased consistently both at individual sites and network level (Figure 3(C) and 

(D) –blue bars). These three trends (increasing overall number of PS, decreasing duration of 

IPSImfo, increasing number of the most frequently occurring IPSImfo) suggest that PS activity 

develops homogeneously and consistently throughout the network to result in robust PS 

activity patterns with an increasing number of occurrences with rather constant ISIs and 

IPSIs, especially after three WIVs.   

For the more mature cortical culture, we observed the same inverse correlation between 

duration and number of the IPSIsmfo (see Figure 3(A) and (D) –red bars), however, oscillating 

over time. There were recurring periods with large IPSI values and low numbers of IPSI 

repetitions followed by periods with lower IPSI values but high repetition frequencies.   

 

Figure 3 Duration of the most frequently occurring (mfo) IPSImfo at individual sites (A) and at network level (B) for the 

hippocampal culture (C1, blue bars) and the cortical culture (C2, red bars) and its evolution from one period to the next 

(C1-1 to C1-3 and C2-1 to C2-6, respectively). Number of the IPSImfo at individual sites (C) and at network level (D) 

(with the same color and period coding as in (A) and (B)).  
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3.3 PS activity versus burst activity  

  
In order to check if PS activity is one of the driving forces for the self-organization of 

functional network connectivity, we investigated the relationship between bursting and PS 

activity. For the hippocampal culture, on average only 11% of bursts contained PS at early 

DIVs. Their number slightly increased to 16% in the last recording period. Except for four 

trials (6.25% of total trials), PS activity could be found in less than 40% of the bursts (see 

Figure 4(B) –blue bars). The same trend was observed for the cortical culture where, except 

for seven trials (3.18% of total trials), the percentage of bursts that contained PS remained 

below 50% (see Figure 4(B) –red bars).    

  
Figure 4 (A) NAS for PS activity for the hippocampal (blue) and the cortical (red) culture. (B) Percentage of 

bursts that contained PS at individual site level.  (C) Average temporal delay in ms with which a burst followed 

a PS at individual sites.  
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For both the hippocampal and cortical network, PS and bursting activity were present at 

most sites (Figure 5(A)). However, in most cases, highest PS activity was recorded from 

different electrodes than those that recorded the highest bursting activity, as pointed out by 

the black circles (PS) and orange circles (burst) in Figure 2(A) (hippocampal) and (B) 

(cortical). For the hippocampal culture, highest PS and bursting activity were spatially 

collocated in only six trials (9.3% of total trials). In contrast, the electrodes with highest PS 

and bursting activity coincided in 42 trials (38.18 % of total trials) for the cortical culture. 

41 of them occurred after 44 DIV. In both cases, the network location with dominant PS and 

bursting activity could change over the days. Over the course of the entire recording, highest 

PS activity was detected on 12 different electrodes (21%) for the hippocampal culture and 

on 11 electrodes (19%) for the cortical culture. Highest bursting activity could be associated 

with just five electrodes (8.3%) in the hippocampal culture (Figure 2(A)) while it occurred 

on 12 electrodes (20%) in the cortical culture (Figure 2(B)).  

Importantly, in almost 92% of the recording trials PS activity preceded bursting activity 

(Figure 4(C)–blue bars) in the younger hippocampal culture and in 84% of the recording 

trials for the more mature cortical culture (Figure 4(C) –red bars). Additionally, the average 

temporal delay between a PS and a burst mostly remained below 50 ms. This suggests that 

PS presumably initiated bursting activity. Interestingly, this PS-burst coupling occurred on 

the same electrode of the cortical culture in 34 instances, suggesting robustness of PS-

dominant sites. This electrode also recorded highest PS activity in almost 50% of the trials. 

We further investigated the stability of the spatio-temporal distribution of PS patterns. The 

middle insets in Figure 5(i1 – i6) exemplarily show color-coded PS spiking activity maps at 

individual sites in the hippocampal culture for six trials at different developmental stages. 

Robust spatial patterns of PS activity were found over the entire recording period; two 

examples are highlighted by blue circles.   
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A total of 12 sites with stable PS patterns could be identified in more than 50% of the 60 

trials. Among these sites, eight lasted longer than 73% of the total recording period. They 

formed robust, long-lasting patterns that presumably recruited new neighboring sites in 

different trials. Furthermore, seven of these sites also formed robust burst patterns as 

marked by yellow circles in Figure 5(A).   

  

  

Figure 5(A) Spatial PS and burst pattern distribution with respect to the 8 x 8 electrode matrix for the 

hippocampal culture. Yellow circles mark the seven electrodes from which both PS and bursting activity could 

be recorded according to the criterion described in Methods 2.2 and 2.3. One trial represents half a DIV 

(Methods 2.1). Marked electrodes recorded activity in the majority of the trials, though not necessarily 
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consecutively. (B) Evolution of PS pattern complexity in the hippocampal culture from one period to the next: 

the NAS with PS patterns increased during development. In most cases, new PS emerged on electrodes adjacent 

to those with previous PS activity.  

  

Figure 5(B) exemplarily shows PS activity patterns that had formed during the first period  

(yellow circles) and lasted until the end of the recording session, patterns that had newly 

formed during the second period and lasted until the end (black circles) and new 

neighboring sites that emerged only during the third recording period (white circles). Thus, 

10 sites formed patterns that lasted for more than four trials during the first period, 22 sites 

for the second period and 34 sites for the last period. That is, for each new period, up to 12 

neighboring sites were recruited in generating PS activity, thereby increasing the degree of 

PS pattern complexity as the network entered later developmental stages.  

For the second, more mature cortical culture, 54 sites (93%) participated in PS activity that 

lasted for at least two trials, while in more than 50% of the trials the number of sites 

decreased to four. This suggests that at later developmental stages the role of dominant sites 

gains importance.   

3.4 Information content per spike and CFP analysis  

  
  
Next we asked to what degree spontaneous in vitro PS activity preserves its role encountered 

in vivo and thus participates in the formation of functional connectivity and in information 

processing within the cultured neural network at different developmental stages. With this 

motivation in mind, we considered PS activity as an internal stimulus and thus calculated 

the PS-related CFP (see Methods 2.6) and PS-related information content (see Methods 2.5) 

in the hippocampal network both at individual sites and at network level.  

Because 12 sites presented robust, long-lasting PS activity for more than 50% of the total 

trials (Figure 5(A)), we exemplarily calculated the PS-related correlation between eight 
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closest neighbors out of these 12 sites as indicated in Figure 6(A) (red ellipses). We used 

CFP to construct the inter-connectivity maps for both the interconnectivity strength (Figure 

6(B)) and the temporal delay (Figure 6(C)). For each trial and site i (i = 1:8), we quantified 

the PSrelated CFP (i,j) for all possible pairs (j = 1:7). Interestingly, we found no 

connectivity during the first11 DIV, coinciding with the period in which PS activity was not 

robust yet (i.e. with large IPSIs and few repetitions).   

In contrast, from 17 DIV onward the number of connections significantly increased (p < 

0.01) and remained high until 27 DIV. This corresponds to the second period, where PS 

activity gained robustness. The highest number of connections was found in this period 

(Figure 6(D)), which decreased thereafter. Moreover, the temporal delay of the correlations 

between formed pairs increased until 18 DIV with a mean of up to 45.2 ms (±20 ms) and 

consistently decreased thereafter with a mean of 16.2 ms (±10 ms) (Figure 6(E) and (F)). 

Connectivity strength stayed rather constant over several DIVs with almost identical means 

of around 0.07 (±0.03) for all three recording periods (Figure 6(E)).  

  

Next we looked at the PS-related information content per spike (Eq. 2, Methods 2.5) for 

each selected channel pair (i,j) of the eight interconnected sites. The resulting information 

content map is presented in Figure 8(A). Information content per spike was highest during 

the second period, thereby correlating with the highest numbers of connections between 

these eight most active channels (Figure 8(B) compared with Figure 6(B) and (D)). This 

trend is also reflected by the mean values (Figure 8(B)). The initial increase in information 

content per spike from 0.8±0.2 bits/spike during the first period to 2.2±0.3 bits/spike in the 

second period is followed by a decrease to 1.2±0.6 bits/spike during the last period. While 

this statistical measure associates the information content per spike with PS, it does not 

make any statement on how the content is actually carried by the PS and on whether the PS 

is the only information carrying mechanism. 
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Figure 6 (A) Spatial arrangement of the eight closest, most PS-active sites in the hippocampal culture with 

respect to the 8x8 MEA matrix layout. The first number in a pair refers to the column, the second to the row. 

The insets under (A) exemplarily show PS-related CFP curves of reference channel 31 vs. channel 42 at three 

different DIVs (14, 19 and 28). The flat CFP curve framed by a red box illustrates the lack of PS-related 

connectivity for artificial spike trains that mimic channels 31 and 42. Connectivity evolution over time 
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expressed in strength (B) and temporal response delay (C) between the exemplarily selected eight most active 

PS sites. Each pixel column represents one of the seven recording sites connected to the respective reference 

channel indicated on the x-axis and pointed out in (A). Sorting order is column, then row. The red vertical bars 

delimit the eight reference channel permutations. (D) Evolution of the number of connections between the 

selected channels. (E) Evolution of the average connectivity strength for the selected channels and their means 

for each period (yellow circles). (F) Evolution of the average connectivity time delays for the selected channels 

and their means for each period (yellow circles).  

  

The three observations, i) the decreasing trend in temporal delay between PS-induced 

correlated activity, ii) it’s almost constant interconnectivity strength at later developmental 

stages and iii) the formation of robust spatiotemporal PS activity patterns as the culture 

matured may indicate that PS activity participates in the development and stabilization of 

functional connections at individual sites. To check for the robustness of the PS-related 

connectivity map, we constructed artificial Poisson-like spike trains according to Eq. 1  

(Methods 2.3) for these eight electrodes (marked in Figure 6(A) by red circles) for all trials.  

We then investigated whether the artificial spike trains that mimic the recorded spike trains 

(i.e. artificial spike trains have the same firing rates as the recorded ones) develop similar 

connectivity maps as the real spike trains. Robustly, we found no PS-related connectivity 

between the constructed spike trains for any of the trials in the artificial spike trains. Insets 

of Figure 6(A) exemplarily show the connectivity between PS activity of channel 31 and 

spiking activity at channel 42 for three different DIVs. As mentioned before, while for the 

recorded spike trains the strength of the connectivity remained fairly constant, the time 

delay decreased during the last period (28 DIV). In contrast, the red box inset exemplarily 

shows no connectivity between the two artificial spike trains that mimic the same two 

electrode recordings over the same period.   

Next we investigated whether the PS-related connectivity trend at individual sites is also 

found at network level for the different developmental stages. Firstly, we checked the 
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robustness of each NST by asking whether PS activity at network level is a “by chance” 

result of mapping all spikes from individual sites onto a single timeline. We therefore 

shuffled all of the NSTs repeatedly for 100 times and quantified PS activity for each 

individual case. We found the PS activity for each trial to be almost zero (Figure 7(C) – blue 

bars represent PS in recorded NSTs; inset with red bars represent PS in shuffled NSTs). To 

mimic the recorded NSTs, we further constructed artificial Poisson-like spike trains with 

similar firing rates as the NSTs (Eq.1, Methods 2.1). Also in this case, such artificial NSTs 

showed statistically significant (p<0.001) different PS activity as if it was strictly governed 

by firing rates (Figure 7(C) – green bars). These Poisson-like spike trains lack a spike 

history (i.e. without refractory period). Thus, very large NST firing rates and an exponential 

ISI distribution (Eq. 1b) favor short ISIs (i.e. up to five ms), which leads to an unrealistically 

high number of PS occurrences.   

Next, we checked for PS-correlated activity at network level by calculating the CFP 

(Methods 2.6) for every NST, this time with respect to developmental evolution of network-

wide, PSinduced activity instead of local connectivity. As before, the second spike in a 

spike pair (that matched the PS criterion of ≤5 ms) of an NST served as the reference for 

calculating the CFP with respect to the following 500 ms of NST activity. This auto-

correlation-like analysis provided information on the strength and time delay of PS-related 

spiking activity for individual NSTs. If repeated for all NSTs, the evolution of PS-correlated 

activity can be plotted for all trials (Figure 7(A) and (B)). Remarkably, we found that PS-

related spiking activity startedat11 DIV for all of the trials. Its time delay increased until 18 

DIV and significantly decreased during the last recording period, which is strikingly similar 

to the previously observed trend at individual sites as reported above.   
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Figure 7 (A) Evolution of PS-related CFP strength for all hippocampal NSTs. (B) Evolution of PS related CFP 

time delay for all NSTs. (C) The number of PS for artificial spike trains at network level (green bars) and the 

number of PS at network level for recorded NSTs (blue bars). The inset shows a zoom ontothe number of PSs 

for shuffled NSTs (red trace). The insets R1 – R6(left side column) display examples of PS-related CFPs at 

network level for different DIVs (11, 12, 14, 22, and 28). The insets A1 – A6(right side column) display 

examples of PSrelated CFPs at network level for artificial spike trains for the same DIVs(11, 12, 14, 22, and 

28).  

  

The mean time delay (Figure 7(B) – yellow circles) increased during the second recording 

period to 74.5±30 ms and decreased in the third period to 12.4±10 ms while the mean 

correlation strength (Figure 7(A) – yellow circles) increased during the second period to  

0.28±0.09 and decreased to 0.14±0.09 in the last recording period.  



  55 

Furthermore, despite significantly larger PS activity found in artificial spike trains that were 

supposed to mimic NSTs, we found no correlated spiking activity in any of the trials (insets 

A1 – A6 to the right side of Figure 7). In contrast, insets R1 – R6 on the left side of Figure 7 

exemplarily show the CFP of PS-related spiking activity for six of the NSTs indicating a 

decreasing time delay of the PS-correlated spiking activity.   

 

  

Figure 8(A) Matrix of PS-related information content expressed in bits/spike between the exemplarily selected 

eight most active PS sites in the hippocampal culture (Figure 6).  Each pixel column represents one of the seven 

recording sites being connected to the respective reference channel indicated on the x-axis. Sorting order is 

column, then row. The red vertical bars delimit the eight reference channel permutations. (B) Evolution of the 

PS-related mean information content in bits per spike (blue bars) for the selected channels and its respective 

average for a given period (yellow circles). (C) Evolution of information content for PS-related activity in both 
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cultures at network level for each period. Blue bars represent the hippocampal culture with mean and standard 

deviations in yellow; red bars represent the cortical culture with mean and standard deviation in green.  

  

Finally, after noticing that PS activity is involved in developing functional connections at 

individual sites and that spiking activity at network level is correlated with each second 

spike in a PS (with a decreasing time delay) for all NSTs, we checked whether PS activity 

may also be involved in information processing at network level.   

 

We calculated the PS-related information content per spike at network level for each NST 

considering PS activity as an internal stimulus (Eq. 2, Methods 2.5). Indeed, we found that 

in both cultures PS activity is involved in information processing at network level as well 

(Figure 8(C)). Moreover, in the hippocampal culture, the trend found at local sites was 

preserved at network level. For the first period, we found a mean of 3.4 bits/spike (SD= 1.3 

bits/spike), which increased during the second period to 4.9 bits/spike (SD = 0.4 bits/spike) 

and decreased in the last period to 3.6 bits/spike (SD = 1.2 bits/spike). For the cortical 

culture, the information content increased and decreased for different periods from 4.4 

bits/spike (SD = 1.8 bits/spike) up to a value of 6.5 bits/spike (SD = 0.8 bits/spike).  

  

 

3.5 PS activity participates in controlling the direction of information flow within the 

coupled neuronal units   

 

Up to know we have seen that PS activity is involved establishing functional connectivity 

and carries information both at local side and at network level. We then asked whether PS is 

also controlling the direction of information flow within the cultured network. A TE 

analysis (Methods 2.7) may reveal how presynaptic PS activity predicts activity at its 

postsynaptic target or even at network level.   
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We exemplarily choose the eight most closest recorded units mentioned above (as depicted 

in Figure 6) and calculated ∆TE (Eq. 5) for PS activity for each of the channels with respect 

to the entire spiking activity of the remaining seven channels for different time lags and 

message lengths (Ito et al., 2011). We found that PS activity is robustly involved in 

information transfer between cultured neurons. Figure 9(A) shows the constructed ∆TE 

map, which indicates a very low effective connectivity between selected recording units at 

an early developmental stage (i.e. the first 17 DIVs) with a mean ∆TE = 0.2·10-2 bits/s and 

SD = 0.18·10-2 bits/s. Additionally, for some channels, PS activity did not established any 

effective connectivity during this period. Only three out of eight selected channels showed 

effective connectivities with their postsynaptic partners. Those disappeared and reappeared 

in different recording periods indicating that PS activity was not robust yet and 

consequently could not reliably predict or cause spiking activity at their targets. This 

situation changed dramatically from 17 DIV onward. ∆TE significantly increased (p<0.001) 

up to 29 DIV indicating that PS activity established robust and effective connectivities. Only 

on channel 51 PS activity established less effective connectivities during this developmental 

stage. For this developmental period we found a mean ∆TE = 1.13·10-2 bits/s with a SD = 

0.14·10-2 bits/s. From 30 DIV onward until the end of the recording period, ∆TE decreased 

with a mean of 0.4·10-2 bits/s and a SD = 0.13·10-2 bits/s while only four (50%) channels 

with PS activity had established effective connectivity with large ∆TEs. Remarkably, PS 

activity could predict 98.58% of the spiking activity at their targets. Only in 1.42% of the 

cases ∆TE took on negative values (Figure 9(A), dark blue pixels), which shows that PS 

activity at individual sites could be predicted reversely from the spiking activity of their 

postsynaptic partners.  Further on we asked if the local effect is preserved at network level. 

In this case, the PS activity at the eight selected channels represented now the senders and 

the NSTs were considered the receivers. As Figure 9(B) shows, the trend that was observed 

at local sites was also found at network level. Again, until 17 DIV, spiking activity of NSTs 
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could be poorly predicted by PS activity only (mean ∆TE = 0.4·10-2 bits/s with SD = 0.3·10-

2 bits/s). Only two channels (i.e. 31 and 42) could be identified in causing spiking activity in 

the NSTs. From 17 DIV to 29 DIV, the mean ∆TE significantly increased to 1.5·10-2 bits/s 

with a SD = 0.2·10-2 bits/s suggesting that PS activity at local sites increasingly drove 

network activity. However, from 30 DIV onward, PS activity increased only slightly (mean 

∆TE = 1.7·10-2 bits/s with a SD = 0.3·10-2 bits/s), mostly due to the same trend as observed 

at local sites. That is, the same four channels (50% out of the eight selected channels) 

presented larger ∆TE values and thus strengthened their influence on the spiking activity of 

each NST. Moreover, at network level, ∆TE never took on negative values, suggesting that 

PS activity at selected local sites always predicted NST activity and not vice versa.  

  

Figure 9(A) Matrix of PS-related ∆TE (Methods 2.7) for eight recording sites. Vertical red bars delimit the 

sender channel that connects with the remaining seven receiver channels. Individual pixels represent the 

PSrelated ∆TE averaged over a 30 minutes period and over the seven receiver channels. Each pixel row covers 

one DIV. (B) Matrix of PS-related ∆TE for eight senders (delimited by red bars) and the entire network as the 

receiver. Each pixel represents the ∆TE averaged over a 30 minutes period, each row covers one DIV.   
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4. Discussion   

Neurons from dissociated brain tissue are capable of self-organizing their interconnectivity 

in cell culture. They become active even in the absence of any external sensory stimuli 

(Feller et al., 1999). Besides random spiking and concerted bursting, neural networks use 

various modalities and activity patterns to both transfer information and form as well as 

maintain functional connections (Sun et al., 2010). Such spontaneous, often synchronized 

neural activity increases in firing rate and in the number of active sites from one 

developmental stage to the next as observed in vivo (Nadasdy 2000; Chiu et al., 2001; 

Weliky et al., 1999) as well as in vitro (van Pelt et al., 2004, Wagenaar et al., 2006; Rolston 

et al., 2007; Pasquale et al., 2010). Our un interrupted long-term recording study over 

several weeks confirmed this trend in two different neural in vitro networks, in a young 

hippocampal culture and for the first two periods in a more mature cortical culture. At later 

developmental stages, the activity and number of active sites slightly decreased. In addition, 

bursting frequency at network level did not increase anymore. Instead, it distributed 

spatially by involving more active sites. In contrast to previously reported snapshot activity 

recordings, our almost continuous recordings revealed large activity variations at particular 

DIVs. We therefore asked what networkinherent coding mechanisms shape and drive 

network activity.   

Interestingly, we found that predominantly robust PS activity rather than bursts drove neural 

activity in the investigated cultures. PS not only developed stable spatiotemporal patterns, 

but also participated in shaping the interconnectivity map. Previous reports on its role in 

vivo and in vitro suggest that PS activity may act as a temporal filter and be part of a 

mechanism involved in information processing at different hierarchical information 

processing stages (Krahe 2004; Akerberg 2011; Rathbun et al., 2010; Sincich et al., 2009; 

Uglesich et al., 2009).  
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In this study, the following main findings in support of these statements emerged from the 

analysis of the continuously recorded datasets:  

1. The network firing rate, network burst rate and number of active sites increased as a 

hippocampal culture grew toward maturity and slightly decreased when the 

respective cultures started to decay.  

2. At later developmental stages, spontaneous neural activity in a cortical culture 

oscillated periodically over several days. While activity could be very high at some 

DIVs, on average it evolved rather constantly.  

3. PS activity became robust after three WIVs when IPSIs settled down to 2-3 s and the 

number of PS occurrences significantly increased at both individual sites and at 

network level. This may signal the passing of a critical maturation stage in 

spontaneously active in vitro networks.  

4. In both cultures, highest PS activity could change its spatial location from one DIV 

to the next, which in most cases did not coincide with the location of the highest 

bursting activity. Furthermore, highest PS activity involved a larger number of 

neurons than the highest bursting activity, which stayed spatially confined to a few 

dominant electrodes throughout the entire recording period.  

5. Although PS activity was found both outside and inside of bursting activity, it is an 

independent type of neural response, typically spatially separated from bursting 

activity. For the majority of the trials, the percentage of bursts which contained PS 

activity remained below 50%.  

6. In most trials, PS activity preceded bursting activity at the same recording site with a 

lead of several tens of milliseconds. This suggests that PS may act as an internal 

surrogate stimulus, which triggers synchronized neural activity and avalanches (i.e. 

exemplified at 18 DIV, Figure 1(C)).  
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7. Its relation to other types of activity furthermore suggests that PSs act as network-

intrinsic stimulus sources also at network level. From 11 DIV onward, network 

spiking activity was strongly correlated to the second spike of a PS with decreasing 

temporal delay as cultures matured.   

8. Besides temporal patterns consisting of short IPSIs and frequent occurrence, PS 

activity formed increasingly complex spatial patterns during development by 

recruiting neighboring sites. Some of them fluctuated temporally; others lasted until 

the end of the recording session. A similar, yet activity type-unspecific increase in 

pattern complexity has been reported before (Rolston et al., 2007; Sun et al., 2010).  

These findings combined with the above mentioned results suggest that PS activity evolves 

in distinct spatiotemporal patterns within a non-stimulated, spontaneously active network. 

PS presumably initiates synchronized bursting activity that may be responsible for forming 

particular functional connections both in vivo and in vitro (Rolston et al., 2007; Sun et al., 

2010; Chiappalone et al., 2012; Blankenship et al., 2010; Mazzoni et al., 2007; Pimashkin et 

al., 2011).  

9. CFP and information content per spike have been proven to reveal the statistical 

dependency between coupled neurons (Maccione et al., 2012; le Feber et al., 2007). 

Our CFP analysis revealed that PS activity is likely involved in the establishment 

and shaping of functional connections between different individual sites within the 

network. While we found few or no PS-related correlations between different sites at 

early stages when PS activity was not yet robust, the number of connections 

increased as the culture matured. They were characterized by rather constant average 

strengths and decreasing time delays for subsequent developmental stages. 

Interestingly, the PS-related information content per spike at individual sites was 

highest for the same period that the number of connections was found to be highest. 
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These findings suggest a consolidation of PS-correlated activity at individual sites 

over time.  

10. As the elevated PS-related information content per spike indicated, PS activity was 

involved in information transmission at individual sites and at network level. This 

finding is in concordance with previous studies on the role of different spiking 

patterns in spontaneous neural activity (Wagenaar et al., 2006; Pasquale et al., 2010; 

Sun et al., 2010; Rolston et al., 2007; Nadasdy 2000). It suggests that the network 

presumably uses only a fraction of the total number of spikes to transmit most of the 

information. As mentioned earlier, this concept of sparse coding was also found in 

the early visual system. It improves the overall coding efficiency by a mechanism 

that deletes the less informative spikes from one stage to the next (i.e. from the retina 

to the lateral geniculate nucleus (LGN)) while preserving relevant information with a 

lower number of spikes (Sincich et al., 2009; Uglesich et al., 2009).  

11. The transfer entropy (Schreiber, 2000), an asymmetric information theoretic 

measure recently introduced to neuroscience, allows to estimate the direction of 

information flow within a network of locally coupled neurons (Ito et al., 2011 – for 

spiking cortical network; Gourevitch and Eggermont, 2006 – for auditory cortical 

neurons; Garofalo et al., 2009) or even between different brain areas (Battaglia et 

al., 2012 – inter-areal brain circuits; Buehlmann and Deco, 2010; Lindner et al., 

2011 – directed interactions from the retina to the tectum; Lungarella and Sporns, 

2006 – sensorimotor networks). Here we used TE to independently confirm that PS 

activity, besides forming spatio-temporal patterns and being involved in the 

formation of functional connectivity within the cultured neurons, also predicts the 

directionality of a connection at both local sites and network level Figure 9(A). TE 

analysis also strongly supported the trends revealed by information content per spike 

and CFP analysis. Presumably, PS activity was expansively involved in driving 
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neuronal communication between 17 DIV and 29 DIV to arrive at a relative stability 

after 29 DIV where the PS neurons played a key role in driving neural activity in the 

already mature network.   

The construction of NSTs by simply collecting the entire spiking activity and arranging the 

time stamps in an ascending temporal order may seem problematic at first glance. This way 

of constructing NSTs does not seem to have any biological relevance. However, using 

artificial spike trains and shuffling methods, we could show that PS in NSTs does not occur 

by chance. While artificial spike trains have similar firing rates as the recorded trains, no 

correlated activity between neurons (other than by chance) is expected due to the lack of 

connectivity between individual neurons. The absence of PS-related connectivity for 

artificial spike trains suggests that PS activity is not a random and strictly firing rate-

dependent neural phenomenon. Instead, it seems to be an intrinsic mechanism of cultured 

neurons in support of shaping neural interconnectivity. The local effect of PS activity seems 

to be preserved in NSTs as well. TE Figure 9(B) revealed a similar trend in the prediction of 

spiking activity at network level by PS. CFP analysis revealed a strong correlation between 

spiking activity at network level and each second spike in a PS. A similarity between CFP 

and information content per spike shapes strengthened the hypothesis that PS is involved in 

carrying information at network level as well. In summary, PS seems to play a key role in 

shaping the local and network-wide input-output relationship in cultured neural networks.    

The two main hypotheses stated in this study have to be tested further in future experimental 

work. Firstly, in lack of any external stimulus, does PS indeed act as an internal surrogate 

stimulus that is capable of shaping neural activity by driving the input – output relationship 

of the spiking activity at network level? If this assumption turned out to be true, controlled 

PSlike electrical stimulation (similar to Zullo et al., 2012) instead of single pulses or tetanic 

stimuli could more reliably drive a predictable neural output, i.e. in a closed-loop 

stimulation paradigm (Rolston et al., 2010; Ruaro et al., 2005; Novellino et al., 2007). PS-
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like stimulation may find possible application in neurally-controlled artefacts (robotics, 

neuroprosthetics).   Secondly, because PS activity cannot only be found downstream of a 

stimulus both in vitro and in intact brain architectures (Usrey et al., 1998; Sincichet al., 

2009), but also in spontaneously firing neural in vitro networks, it may represent an 

ubiquitous information processing response property of neurons of different species and 

organization. However, little is known on how PS depends on the neural cell type. A 

prominent example is the early visual system, where the PS contribution to information 

processing varies for different retinal ganglion cell types and the number of synaptic 

connections they are engaged in (Martiniuc et al., in preparation). A combined 

electrophysiology and imaging in vitro study on how PS depends on cell type and cell 

morphology will shed more light on this question.  
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Pictorial definition of spike train and burst parameters  

  
  

Suppl. Fig. 1 Graphical depiction of spike train and burst parameters. (A) Spike cutout: only 

upward (positive) and downward (negative) spike cutouts from 57 (cortical) and 58  

(hippocampal) out of 59 recording electrodes were stored in 5 min packets. They consisted 

of 5 ms pre-spike and 5 ms post-spike fragments after first threshold crossing at ± 5.5 SD 

with respect to peak-to-peak noise. Only timestamps from downward threshold-crossings 

were extracted using Neuroexplorer (Nex Technologies). After removing simultaneous 

timestamps that occurred on all channels due to electrical or handling artefacts, subsequent 5 

min datasets comprised of ≤ 58 timestamp streams were bundled in 12 hour timestamp 

packets for further  
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analysis in Matlab (MathWorks). These half-day packets were called trials of duration TTrial 

≤ 12 h.  

(B) We quantified the local firing rates (LFRs) at individual sites as the number of 

recorded spikes divided by TTrial for each local spike train (LST).   

(C) At network level, we pooled all spikes from all 57 and 58 sites, respectively, for 

each trial into a single network spike train (NST) by sorting them in a time-ascending order. 

The NST represented the MEA-wide activity for each trial. The network firing rate (NFR) 

was then quantified as the total number of spikes in an NST divided by TTrial. To further 

investigate activity dynamics, we used the burst rate (BR) for characterizing synchronous 

network activity. We scanned all LSTs at the 57 (cortical) and 58 (hippocampal) individual 

sites for each trial and defined bursting activity as events with more than 10 subsequent 

spikes individually separated by an ISI of less than 100 ms, followed by an interburst 

interval (IBI) larger than 200 ms (Wagenaar et al., 2005). The local burst rate (LBR) at 

individual sites was calculated by dividing the number of bursts by TTrial. Equally, the 

network burst rate (NBR) was obtained by scanning the NST for bursts using above 

mentioned criterion and dividing the number of bursts by TTrial.  

(D) Definition of a paired spike. Two subsequent spikes with inter-spike intervals (ISIs) 

between 2 and 5 ms were considered paired spikes (PS). Only PS with inter-paired-spike 

intervals (IPSIs) over 40 ms were counted.  
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MEA layout  

 

 
  

Suppl. Fig. 2 MEA electrode layout and channel association for the 8 x 8 MEA with the 

hippocampal culture (A) and for the 6 x 10 MEA with the cortical (B) culture. Grey squares 

indicate the relative position of the grounded counter electrode 15 (column, row). Blue 

squares with red numbers indicate switched-off channels.  
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Summary of the paper  

  

In this paper we scientifically investigate the sharpening in direction selectivity from retinal 

recorded output toward simulated postsynaptic target in the lateral geniculate nucleus. To do 

so we adopt a simple integrate-and-fire neuron model, inspired by recent work of Casti et al. 

(2008), to investigate how directional selectivity changes in cells postsynaptic to directional 

selective retinal ganglion cells (DSRGC).   

Our model analysis shows that directional selectivity in the postsynaptic cells increases over 

a wide biophysical parameter range. We compared the neural recorded response of DSRGCs 

with artificial poisson-like spike trains that mimic the recorded cells and demonstrated that 

the sharpening in direction selectivity is not strictly governed by firing rate. Instead intrinsic 

properties of a particular cell type (i.e. ON-OFF DSRGC) consisting in boats of rapid firing 

activity at preffered direction combined with excitatory post synaptic summation and the 

static non-linearity of spike threshold at postsynaptic target might be responsible for 

sharpening in direction selectivity, while direct excitatory feedforward (one to one 

connection) suffice.  

My contribution to this paper is as follows:   

I participated in defining the scientific project, I analyzed the recorded neural data, I 

participated in writing the paper, I participated in editing the paper, I was the corresponding 

author and I did the major and minor revisions according to peer reviewing process by 

scientific committee within the editorial board of the journal.  
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III. Sharpening of Directional Selectivity from Neural Output of Rabbit  

Retina   

  

Abstract  

  

The estimation of motion direction from time varying retinal images is a fundamental task of 

visual systems. Neurons that selectively respond to directional visual motion are found in 

almost all species. In many of them already in the retina direction selective neurons signal 

their preferred direction of movement. Scientific evidences suggest that direction selectivity 

is carried from the retina to higher brain areas. Here we adopt a simple integrate-and-fire 

neuron model, inspired by recent work of Casti et al. (2008), to investigate how directional 

selectivity changes in cells postsynaptic to directional selective retinal ganglion cells 

(DSRGC). Our model analysis shows that directional selectivity in the postsynaptic cells 

increases over a wide parameter range. The degree of directional selectivity positively 

correlates with the probability of burst-like firing of presynaptic DSRGCs. Postsynaptic 

potentials summation and spike threshold act together as a temporal filter upon the input 

spike train. Prior to the intricacy of neural circuitry between retina and higher brain areas, 

we suggest that sharpening is a straightforward result of the intrinsic spiking pattern of the 

DSRGCs combined with the summation of excitatory postsynaptic potentials and the spike 

threshold in postsynaptic neurons.  

Keywords: retina; ganglion cells; direction selectivity; integrate and fire model  

Abbreviations:   

DSRGC: direction selective retinal ganglion cell  

LGN : lateral geniculate nucleus  
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SPN: simulated postsynaptic neuron  

EPSP: excitatory postsynaptic potential  

IPSP: inhibitory postsynaptic potential  

DSi: Directional Selectivity index  

AHP: After-Hyperpolarization  

TFR: (spike) transfer ratio iS: Index of sharpening  

AOS: Accessory Optic System  

  

1. Introduction  

  

As early as in the mammalian retina the motion perception is signaled toward higher 

brain areas by so-called direction selective ganglion cells (DSRGCs). These cells signal 

stimulus motion in a preferred direction and are silent to movement in the opposite, null 

direction.   

 DSRGCs have been extensively characterized in the rabbit retina (Barlow et al. 

1964; Barlow and Levick 1965; Vaney et al. 1981b) but occur in many other species as 

well: mouse (Weng et al. 2005; Kim et al. 2008; Huberman et al. 2009), cat (Stanford and 

Sherman 1984), rat (Dann and Buhl 1987), turtle (Jensen and Devoe 1983), ground squirrel 

(Michael 1966) and teleost fish (Damjanovic et al. 2009).   

Retinal direction selective cells can be separated in ON-OFF cells - if they respond at 

the beginning and the end of an incremental or decremental light stimulus - and in ON cells 

– if they respond at the beginning of an incremental light stimulus only. In the mouse retina 

a new OFF direction selective cell type has been recently discovered (Kim et al. 2008). The 

ON-OFF and ON cell types send the directional information to different nuclei: the ON-OFF  
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DS cells project to the dorsal lateral geniculate nucleus and the superior colliculus (Cleland 

et al. 1976, Vaney et al. 1981a). The ON DS cells represent the main input to the Accessory 

Optic System (AOS, Buhl and Peichl 1986). The functional properties of cells in the 

accessory optic system are consistent with their input from ON-DS cells in many species 

including primates: cat (Grasse et al. 1984), rat (van der Togt et al. 1993), and primates 

(Mustari and Fuchs 1989; Hoffmann and Distler 1989). A study performed in the rabbit’s 

dorsal geniculate nucleus (Levick et al. 1969) reports a higher directional selectivity for 

LGN neurons compared to retinal ON-OFF DSRGCs. It remained unclear, however, how 

the sharpening of directional selectivity may be achieved. Directional selective cells in 

higher brain areas are rarely recorded in contrast to the abundant putative presynaptic 

DSRGCs (however, in cat DSRGCs are rarely encountered too, Cleland and Levick 1974).  

In this study we took advantage of simultaneously recorded DSRGCs (both ON-OFF 

and ON DS) and asked under what conditions neurons postsynaptic to the DSRGC provide a 

more accurate directional tuning than the presynaptic cells. We investigated in our 

simulations, monosynaptic connections where the recorded spike train of a single DSRGC 

provides the presynaptic input to a postsynaptic model neuron. We also tested how 

polysynaptic inputs arrangements, from multiple DSRGCs, act upon the directional tuning at 

postsynaptic target.  

Recently, Casti (Casti et al. 2008) demonstrated that using a simple approach, 

consisting in recorded retinal spikes, a variant of leaky integrate-and-fire model (firstly 

introduced by Woergoetter and Koch 1991) and excluding the diverse array of ion channels 

involved at retinogeniculate synapse and any feedback inputs, there is no need for any 

special synaptic mechanism beyond simple summation of EPSPs, necessary to accurately 

simulate the LGN discharge. Carandini, used a similar approach (he used a voltage based 

model instead a conductance based one) to indicate that “thalamic integration of spikes from 

the dominant retinal input depends primarily on postsynaptic summation and on basic 
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mechanism of spike generation” (Carandini et al. 2007). Therefore, we adopted a simple 

integrate-andfire model that has been validated recently for the retinogeniculate pathway of 

the cat and proposed for a general use (Casti et al 2008) in the same simple manner as 

described above (without taking into account neither synaptic plasticity nor feedback 

inputs), and asked how directional tuning is modified at postsynaptic level to DSRGCs. We 

also tried to give an explanation for the sharpening in DS observed under these conditions, 

based on intrinsic property of one type of DSRGC. We have explored all the parameters 

involved, under the physiological plausible range. Apparently, at presynaptic stage, the key 

role is played by burst-like activity in the ON-OFF DSRGCs while at postsynaptic stage the 

most important parameters are the height of the spike threshold relative to the PSP 

amplitude and the postsynaptic cell’s time constant.   

The simulated postsynaptic neuron (SPN) receives excitatory input and, in some 

simulations, also inhibitory input from its retinal presynaptic partners. We show that 

sharpening of directional tuning occurs over a wide range of biophysically reasonable 

parameters for ON-OFF direction selective cells but less so for ON direction selective cells. 

To explain the discrepancy we characterized the spike train properties of the two cell types.  

We found that burst-like activity, which is more accentuated in one cell type (ON-

OFF DSRGC), is one of the key factors responsible for the broad parameter range that lead 

to directional sharpening. Burst-like activity commonly found in ON-OFF DSRGCs 

apparently carries the information regarding the direction of stimulus motion. Additionally, 

the main effect responsible for the enhancement of direction-selectivity is presumably the 

spike threshold for the integrate-and-fire model, i.e. the SPN has a selective reduction in 

gain for input spike trains with long intervals, and an increase in gain for short intervals. 

Similar previous research efforts have also indicated that spike threshold at postsynaptic 

level substantially contributes to sharpening of direction selectivity in cat primary visual 
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cortex (Jagadeesh et al. 1997, Carandini et al. 2000, Volgushev et al. 2000, Priebe and 

Ferster 2005).  

Furthermore, we investigate a hypothetical case of model neurons that receive direction 

selective input from multiple DSRGCs. The parameter range describing the strength of 

presynaptic excitatory input is shifted toward lower values, in order to achieve sharpening in 

directional tuning at the SPN. Past a specific strength of presynaptic excitatory conductance, 

if two strong excitatory inputs from two cells tuned to the same direction arrive 

simultaneously at the same postsynaptic neuron, almost every EPSP will give rise to an 

action potential (AP) at the postsynaptic neuron and no sharpening in direction selectivity 

can be achieved under our simulation conditions. We also found that a SPN receiving 

convergent excitatory input from two DSRGCs with the same preferred direction will signal 

better the direction of the stimulus motion than if the two DSRGCs would hold opposite 

preferred directions.  

 

   



  81 

  

2. Methods  

2.1 Experimental Data  

We used data recorded from retinal ganglion cells of the adult isolated rabbit retina.  

The data acquisition using a 60 channel multi-electrode array (Multichannelsystems, 

Reutlingen, Germany) and off-line analysis has been described in (Zeck and Masland 2007).   

Direction selectivity was tested using a square wave spatial grating moved in N = 8  

equally separated directions ϕi = i⋅(2π/N) , i = 0,1,…,N-1.. For each direction the grating (spatial  

frequency 1 cycles/mm) was presented for 7 seconds at a temporal frequency of 1 Hz 

followed by a stimulus free interval of the same length. The total stimulus length ranged 

from 600 to 1200 seconds. The spatial extent of the moving grating was ~ 7 µm2 on the 

retina. Thus, multiple cells were stimulated and recorded simultaneously.  

Individual tuning curves were obtained considering the firing rate of each cell for 

each of the eight equidistant directions. Data from 10 ON-OFF DSRGCs and from 3 ON 

DSRGCs were used in this study.  

2.2 Direction Selectivity Index  

To quantify the directional tuning of a neuron, we used the direction selectivity index  

(DSi) as described by Taylor and Vaney (2002),   

   (1) 

 is a vector pointing in the direction of the stimulus with the length equal to the number of 

spikes recorded during presentation of the stimulus (ri ). The DSi explains the directional 
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tuning based on the firing rates for different particular movement directions of the visual 

stimulus. The minimum value of 0 characterizes a non-directional neuron whereas the 

maximum value of 1 characterizes a neuron that responds for a single direction of 

movement. The higher the DSi, the higher direction selectivity is.  

  

2.3 Measure of burst-like activity  

In order to have a better understanding of the mechanism that presumably underlies 

the sharpening in direction selectivity of neurons postsynaptic to DSRGCs, we evaluated the 

burst-like firing of DSRGCs and postsynaptic model neurons. Burst-like firing events were 

defined as (at least two) spikes occurring after a prolonged period of silence, i.e. inter spike 

interval (ISI) larger than 50 ms, followed by an ISI shorter than 5 ms (Godwin et al. 1996b; 

Guido et al. 1995; Lu et al. 1992). Burst rate rburst was defined as the number of burst-like 

firing events per time. Thus, we scanned the spike train of each cell (10 ON-OFF DSRGC 

and 3 ON DSRGC) for each stimulus direction (8 different directions) and each stimulus 

repetition (7 stimulus repetitions at each direction). The burst rate was then quantified as 

total number of calculated bursts divided by total duration of stimulus presentation for each 

cell.  

To further investigate the role of presynaptic property (i.e. burst-like activity) we 

calculated the index of directional selectivity from burst rates (DSiburst ) in the same manner 

as from firing rates in response to stimulus presented at 8 different directions of movement.  

  (2) 
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Once that we identified the bursts in presynaptic spike trains, we asked how many 

APs in the postsynaptic spike trains are at origin a spike within a presynaptic burst-like 

event. Thus, we were able to separate in the postsynaptic spike trains those APs originating 

in burstlike firing in the DSRGCs from the other postsynaptic APs and to see the 

contribution of burst-like activity in the presynaptic neurons over the edited postsynaptic 

spike trains.  

Further, we quantified the influence of the presynaptic burst-like activity in editing 

the corresponding SPN spike trains.   

 In this sense, for all pre- and postsynaptic pairs, we counted every postsynaptic AP with 

timing higher than 0 ms and lower than 5 ms (Kara et al 2003; Usrey 2002; Bair 1999) 

comparing with timing of each spike within a burst of its presynaptic counterpart. Those 

spikes in SPN trains were accounted as originating in a burst of presynaptic spikes. We 

defined burst efficacy (Be) as the number of spikes at the SPN, at the preferred stimulus 

direction, evoked by burst-like activity of the DSRGC divided by the total number of spikes 

at the SPN, at preferred direction.   

   #SPN spikes due to bursts (at preferred direction) 

 Be =        (3)  

#SPN spikes (at preferred direction) 

, where “#” stands for “number of”.  

To quantify the directional tuning of the activity in the SPN due to burst-like activity 

in the presynaptic cell, after we identified the number of APs in the SPN trains having at 

origin a presynaptic burst, we calculated the index of directional selectivity at SPN due to 

presynaptic burst-like activity (DSi SPNburst ) in the same manner as from firing rates in Eq.  

(1).  
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2.4 Modeling postsynaptic neurons   

  For modeling neurons postsynaptic to DSRGCs, we used a conductance-based  

“integrate and fire” (I&F) neuron model that had originally been introduced by Wörgötter 

and Koch (1991). A variant of this model was used by Casti et al. (2008) to describe the 

response of LGN neurons to input from retinal ganglion cells (RGCs). The membrane 

potential V t( ) of the I&F neuron is governed by:  

dV 

 Cm =−(V −Vrest )gm − (V − Ea )∑ ga (t − t f ) − (V − Ee )∑ ge (t −ts ).  (4)  

 dt f s 

An action potential is generated whenever the membrane reaches the threshold Vthresh  

(Fig.1). The first term on the right side of Eq. (4) describes the leakage current while the second 

term describes the effect of afterhyperpolarization (AHP) following each action potential. The 

input of the neuron is provided through excitatory channels (third term on right side) resulting in 

EPSPs. In a single case, we also considered “locked inhibition”, i.e. inhibition that follows 

excitation with a fixed delay ∆tie (see section 3.1, Fig. 3b), and an additional inhibitory current 

−(V − Ei )∑s gi (t −ts −∆tie ) was added.   
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Fig. 1. Simulation of a neuron postsynaptic to direction selective retinal ganglion cell (Transfer ratio for the 

presented data segment is 0.3). Upper plot shows spike sequence of a retinal direction selective ganglion cell 

that provides (excitatory) input to a simulated postsynaptic neuron. Middle plot describes time course of the 

membrane potential Vm of a SPN computed by integration of Eq. (4). Lower plot  represents spike sequence of 

the SPN. Resulting firing events of the SPN (firing threshold is Vthresh = -45mV).  

  

 

 The time-dependent conductances are modeled using “alpha-functions” (Rall 1967;  

Jack et al. 1975).  

 (5) 

  We also introduce the membrane time constant given by: 

    (6). 

Table 1 explains each model parameter and summarizes the values used for the different 

model parameters. In the majority of plots, we varied the maximum excitatory conductance 

(while other parameters were kept constant). We set all parameters that were kept constant, to 
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values found by Casti et al. (2008) to best describe the behavior of LGN neurons. The 

differential equation (4) was integrated using a first order Euler method with a time step of 0.1 

ms.  

 

 

Table 1: Parameter values used in this study (for parameter that can have different values, its typical 

value is highlighted in bold face). The membrane conductance can be calculated from Eq. (4), gm 

=τm
−1

Cm.  

Parameter  Value(s)  

Membrane time constant  τm  5 / 8 / 10 / 12 / 15 / 20 ms  

Membrane capacitance  Cm  1 nF  

(Membrane conductance  gm  0.2 / 0.125 / 0.1 / 0.07 / 0.05 µS)  

Resting potential  Vrest  -60 mV  

Threshold potential  Vthresh  -45 mV  

Excitatory reversal potential Ee   20 mV  

Inhibitory reversal potential Ei  -90 mV  

Afterhypolarisation reversal potential Ea  -95 mV  

Maximum excitatory conductance gmax,e  0.02 / 0.03 / 0.04/0.05 / 0.06/0.07 /  

0.1 / 0.15 µS  

Maximum inhibitory conductance gmax,i   0 / 0.02 / 0.03 / 0.04 / 0.06 / 0.1 /  

0.15 µS  

Maximum afterhypolarisation conductance  

gmax,a   

0.59 µS  

Excitatory time constant τe  1 ms  

Excitatory time constant τi  1 ms  

Afterhypolarisation time constant τa  0.5 ms  

Time delay for locked inhibition ∆tie  1 ms  
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2.5 Spike Transfer Ratio  

Similar to Casti et al. (2008), we define the spike transfer ratio,  

#SPN spikes 

 TFR =  ,  (7)  

#DSRGC spikes 

where “#” stands for “number of”. According to Casti et al., the biological plausible TFR values 

of LGN-cells for input from (non-direction selective) RGCs is between 0.07 and 0.7 (with 

median 0.34, see table 2 in Casti et al. 2008). Consequently, in our study, we imposed the 

constraint that TFR values of SPN spike train have to be in the above mentioned limits in order 

to be biologically plausible.   

In our simulations, the TFR usually depends on stimulus direction φi and thus DSi and  

iS  are often calculated from simulation runs with different TFR. For this reason, we use the 

maximum TFR value over all stimulus directions as the relevant parameter.     

 TFR  = maxiTFR(ϕi ) .   (8)   

  

  

2.6 Index of Sharpening  

To compare the direction selectivity of the output of the simulated postsynaptic neuron  

(SPN) with that of the driving neuron, we define the index of sharpening as:  

DSi(SPN) 

 iS =  .   (9)  

DSi(DSRGC) 

iS > 1 means that the SPN shows higher directional selectivity than the presynaptic neuron.  

For spike transfer ratios below 0.07, or above 0.7, we set iS to zero.  
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2.7 Artificial spike trains  

In order to investigate which properties of spike trains effect sharpening, we also 

generated “artificial spike trains”. These spike trains have the same average spike rates for 

different stimulus directions - and thus the same DSi - as spike trains recorded from DSRGCs. 

The firing probability was equally distributed over time according to a Poisson process except 

for defined refractory periods after each spike event. Spike trains with refractory period of  

2 ms, 5 ms and 20 ms were generated.  

  

  

3. Results  

3.1. Sharpening of direction selectivity from ON-OFF direction selective  

cells  

  We first characterized the directional tuning of a simulated postsynaptic neuron (SPN) that 

receives input from a single direction selective retinal ganglion cell (DSRGCs). The spike trains of the 

DSRGCs have been recorded with a multi-electrode array. The SPN model adopted here incorporates 

several biophysical parameters that shape the spike transfer ratio: the passive membrane properties of 

the simulated postsynaptic neuron (SPN), (i.e. the membrane time constant), the synaptic conductance 

that determines the strength of PSPs and the spike threshold.   

In a first simulation we varied the strength of synaptic excitatory conductance (parameter 

gmax,e). All other parameters were kept fixed (Table1). Similar, biological plausible values have 

been reported by Wörgötter and Koch (2001) and Casti et al. (2008).   

Fig. 2a shows an example of the directional tuning of an ON-OFF DSRGC and its SPN 

counterpart for different gmax,e values. This retinal cell had a preferred direction of 90 degrees, 
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and its DSi was 0.49. With excitatory synaptic input only, the SPN counterpart, is more 

directional selective than its retinal partner. The degree of sharpening – expressed as an index of 

sharpening (iS) – corresponds to the ratio of post- and presynaptic direction selective indexes, 

Eq. (9). We calculated iS values higher than 1 for a parameter range between gmax,e = 0.06 µS 

(iS=1.4) up to gmax,e =0.1(iS=1.2).     

The degree of sharpening for ten ON-OFF direction selective neurons is shown in Fig. 2b. For 

all simulated cells we obtain sharpening of directional selectivity up to a value of gmax,e that leads 

to a transfer ratio of 0.7 (gmax,e =0.1 µS).   

Weak synaptic inputs (i.e. gmax,e < 0.04 µS) did not lead to sharpening in direction 

selectivity, because most of the spikes were not transmitted any more across the synapse 

(transfer ratio, Eqs. (7) and (8) below 0.07). As the strength of excitatory synaptic input grew, 

for four (out of ten) cells iS exceeded 1 already at gmax,e =0.04 µS (Fig 2b). Excitatory synaptic 

inputs with gmax,e ≥0.05 µS always led to iS>1. The mean value of iS =1.30 (std=0.20, n=10) at 

gmax,e =0.05 µS, slightly decreased to iS=1.11 (std=0.06, n=10) at gmax,e =0.1 µS. For a strong 

synapse (gmax,e =0.12 µS) the transfer ratio ( TFR) exceeds the maximum value of 0.7. At this 

value almost every EPSP is capable of evoking an action potential at the SPN. Thus the DSi of 

the SPN approaches the DSi of presynaptic cell resulting in iS≈1. This is shown by blue dashed 

lines in Fig. 2b which point out that iS stays close to 1 if TFR was ignored. Mean iS (at gmax,e 

=0.12 µS without taking into consideration TFR) = 0.97(std= 0.02, n=10).  

The degree of sharpening depends also on the tuning of the presynaptic cell. For an 

excitatory synapse of gmax,e = 0.06 µS, the iS decreases for increasing direction selectivity indices 

of the retinal driver as indicated in Fig 2c. For ON-OFF DSRGCs with low DSi, sharpening at 

the postsynaptic neuron is stronger than that observed for high presynaptic DSi. Fig. 2d 

illustrates the finding that less sharpening is obtained if the retinal ganglion cell itself is highly 

tuned. In conclusion, sharpening in directional selectivity was achieved for all tested ON-OFF 

DSRGCs and was more prominent for presynaptic inputs with a lower DSi.   
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Fig.2 The directional tuning of model neurons increases if ON-OFF direction selective cells provide monosynaptic 

input. Index of Sharpening iS = DSi(SPN)/DSi(DSRGC), Eq. (9). Red dots indicate the values for which transfer ratio 

was between the considered limits of 0.07-0.7  

a) Normalized (mean) responses (averaged over 7 trials) of an ON-OFF (blue curve) and of SPNs receiving 

excitatory input from the DSRGC for different synaptic conductances gmax,e. While the DSRGC has direction 

selectivity index DSi = 0.49, the simulated neurons have higher DSi values and thus iS > 1: For gmax,e = 0.1 µS (red 

curve) we have DSi=0.59 resulting in iS = 1.2. For gmax,e = 0.08 µS (green curve), we have DSi = 0.66 and iS = 1.34, 

for gmax,e = 0.06 µS (black curve) DSi = 0.72 and iS = 1.4  

b) Index of sharpening (iS) computed for 10 ON-OFF DSRGCs and their simulated postsynaptic counterparts 

for different maximum excitatory conductance gmax,e (gray curves). On the average, we find sharpening (iS > 1) for 

gmax,e  ≥ 0.04 µS up to 0.1 µS. For gmax,e  ≥ 0.12 µS no significant sharpening is observed (DSi(SPN) ≈  

DSi(DSRGC), iS ≈ 1)  because each input spike triggers an output spike in the simulated postsynaptic neuron for high 

synaptic conductances, see blue dashed lines. For DSRGCs with high DSi, maximum iS=DSi(SPN)/DSi(DSRGC) is 

usually lower than for DSRGCs with low DSi.   

c) Direction selectivity index for postsynaptic model neuron is higher than direction selectivity index of ON-

OFF DSRGCs (for all cells). For this figure gmax,e = 0.06 µS.  

d) The degree of sharpening depends on presynaptic direction selectivity. The higher the DSi of presynaptic cell 

the lower the iS at SPN.  
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In a next set of simulations, we investigate how robust sharpening is, with respect to 

variations (of postsynaptic parameter) of the EPSPs’ time constant (Fig 3a) and the introduction 

of an additional inhibitory conductance (Fig 3b).   

We varied the EPSP’s time constant and analyzed the additional effect that this 

parameter has on the iS. As EPSP time constant increases we found that sharpening is achieved 

at low gmax,e values (Fig.3a, red contour indicates the areas where sharpening at postsynaptic 

target was achieved). For a constant strength of excitatory conductance we always find that 

sharpening is reduced as time constant of EPSP is increasing. This finding is simply explained 

by the fact that if the EPSP is prolonged the temporal summation of EPSPs will give rise to a 

large number of spikes at SPN and thus to a lower iS.  By contrary, at low τe values, sharpening 

is achieved for strong excitatory synaptic input only.   

 

  

  

Fig. 3 Index of sharpening for a postsynaptic model neuron that receives input from a ON-OFF DSRGC in 

dependence on maximum excitatory conductance gmax,e and EPSP time constant τe a) or maximum inhibitory 

conductance gmax,i  b). The red contour line highlights areas where TFR is within the range [0.07, 0.7] and index 

of sharpening is higher than 1.  

 
A stimulus that is larger than the center of the receptive field could provoke additional 

inputs from neighboring retinal cells directly or by mean of local interneurons (Alitto and Usrey 

2005, Carandini et al. 2007). To investigate the effect of such a situation we added, in addition 

to excitatory input, inhibitory synaptic input convergent on the same postsynaptic model neuron. 
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For the inhibitory conductance we used a fixed time delay of 1 ms with respect to the excitatory 

inputs. Both, excitatory and inhibitory synaptic inputs are sent by the same DSRGC. Time 

locked excitation and inhibition has been found in the retinogeniculate pathway (Regher et al. 

2005). Variation of these parameters under the transfer ratio restriction (i.e. 0.07≤TFR≤0.7) 

demonstrates that over a wide range of model parameters the postsynaptic neuron has a higher 

index of direction selectivity than its presynaptic main driver.  

As expected, if gmax,i increased (strong inhibition) gmax,e must also increase in order to 

achieve sharpening at SPN. Thus, if gmax,e takes low values (gmax,e <0.05 µS, Fig.3b) no 

sharpening at the postsynaptic level can be obtained.  

Altogether, the scenarios presented so far suggest that direct monosynaptic excitatory 

input is sufficient to achieve sharpening at postsynaptic neuron for a wide range of biologically 

plausible synaptic strengths. Additional parameters, describing postsynaptic neuron properties or 

involving polysynaptic mechanism, do not radically change the sharpening in direction 

selectivity at the SPN.  

 

 

3.2. Sharpening of direction selectivity from ON direction selective cells  

In addition to the ON-OFF direction selective neurons, we investigated a second type of 

direction selective cells – the ON DS cells. These cells have broader directional tuning and thus 

smaller DS indices than ON-OFF DS cells.   

In contrast to the extensive sharpening of small DS indices from ON-OFF cells (Fig 2c) 

we find little sharpening for the three ON DS cells investigated (Fig.4a). The simulations were 

performed analogous to the ON-OFF DS cells with the constraint on the transfer ratio. For one 

of the cells we found sharpening at SPN only for a single gmax,e value (Fig. 4a, gmax,e = 0.1 µS, iS 

= 1.1) while the other two cells presented iS higher than 1 for a restricted range of gmax,e values 
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(gmax,e ≥ 0.07 µS and gmax,e ≤ 0.1 µS for one cell and gmax,e ≥ 0.06 µS and gmax,e ≤ 0.1 µS for the 

other cell). The degree of sharpening is less pronounced than in the case of ONOFF DSRGCs 

and in mean it starts exceed 1 only at gmax,e =0.07 µS when iS = 1.11. Beyond gmax,e = 0.1 µS no 

sharpening is achieved due to the fact that such strong synaptic input is generating almost at each 

EPSP an AP at SPN so that iS tends to be almost 1 (as indicated by the blue curve in Fig 4a if 

TFR were ignored). Thus, for ON DS RGCs we found less sharpening when comparing with 

ON-OFF DSRGCs in the same simulation conditions.  

  

3.3. Sharpening of directional selectivity from artificial spike trains 

mimicking direction selective neurons.  

  

Apparently, the presynaptic degree of directional tuning does not provide evidence how 

the sharpening works. We therefore considered artificial spike trains that mimicked the firing 

rate and thus directional tuning of ON-OFF as well as ON DS cells. The spike trains followed a 

Poisson distribution. We calculated the postsynaptic sharpening for a total of ten artificial spike 

trains. Each spike train mimicked the directional tuning of the ten recorded ON-OFF DS. 

Additionally, we built artificial spike trains with similar index of selectivity as one ON DS cell 

having DSi=0.34. For each of the firing rates we consider three refractory periods: 2ms, 5 ms 

and 20 ms.   

Among the artificial spike trains, both, sharpening obtained for the widest gmaxe range 

and the highest iS values are found for short ISIs (i.e. refractory period of 2 ms). For spike trains 

with short refractory periods (minimum 2 ms) the sharpening at SPN, for all ten simulated spike 

trains, is achieved for an interval of gmax,e =[0.07 – 0.1] µS (Fig4b, red curve) more restricted 

than for the real ON-OFF DSRGCs for which we found sharpening for a larger interval gmax,e 

=[0.05 – 0.1] µS (Fig. 2b). For these artificial spike trains, at gmax,e =0.06 µS mean iS = 0.53 
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(std= 0.69, n=10), while at gmax,e =0.06 µS the recorded ON-OFF DSRGCs show a much higher 

mean index of sharpening, iS=1.30. The best sharpening for all ten artificial spike trains has its 

mean iS value iS= 1.39 (std= 0.22, n=10). For the ten recorded spike trains the maximum value 

of sharpening is higher, iS=1.41(std=0.23, n=10).  

 

  

  

Fig. 4 Index of sharpening for ON DS and artificial spike trains  

a) Index of sharpening for 3 ON DSRGCs . For ON-DSRGCs, sharpening is obtained only for 

conductances larger gmax,e  ≥ 0.07 µS. Red dots in the plots indicate gmax,e values for which TFR is in the 

validation domain, while blue dashed lines indicate the iS value if TFR were ignored.  



  95 

b) Index of sharpening for 10 artificial spike trains mimicking the 10 ON-OFF DSRGCs recorded and 

post-synaptic model counterparts. Refractory period is 2 ms. Mean iS (red curve) is indicating a sharpening for 

a more restricted gmax,e  interval than for recorded cells (Fig 2b) regardless the fact that they have similar firing 

rates and DSi. Best sharpening among artificial spike trains, is obtained for 2 ms refractory period spike trains 

and is less present as refractory period increase. At 20 ms iS>1 only at gmax,e = 0.1 µS.  For ON DSRGC we 

found iS>1 only for a single gmax,e value = 0.1 µS.   

c) Index of sharpening for 10 artificial spike trains mimicking the 10 ON-OFF DSRGCs recorded with a 

refractory period of 5 ms. For these artificial spike trains the sharpening at SPN is even more restricted.  

  

Increasing the refractory period to 5 ms we found, the mean, sharpening for a more 

restricted interval of gmax,e = [0.08 – 0.1] µS (Fig. 4c, red curve). Mean iS indicates the highest 

sharpening for these artificial spike trains at gmax,e =0.08 µS, mean iS= 1.21 (std= 0.47, n=10). 

Thus for longer refractory periods, the sharpening achieved is also more restricted compared to 

recorded ON-OFF DSRGCs.   

For the spike trains with 20 ms refractory period we found sharpening only for gmax,e =0.1 

µS(data not shown here). For the artificial spike trains mimicking ON DS cell we achieved 

sharpening only at gmax,e =0.1 µS and only if the refractory period was set at 2 ms (data not 

shown here).   

If firing rates of the presynaptic cell would be responsible for sharpening at postsynaptic 

neuron, subsequently one would expect similar iS (for similar gmax,e values) to be obtained at the 

output of artificial spike trains with the same DSi as the recorded cells. Instead, we found a more 

restricted parameter range for which sharpening can be achieved for the artificial spike trains.  
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3.4. Burst-like spiking activity carries the directional-selective information  

The results from the artificial spike trains indicate that sharpening of directional tuning 

does depend on the short inter spike intervals encountered in some direction selective cells. It 

does not depend on the neuron’s firing rate that is different for the different recorded DSRGCs 

and artificial spike trains (compare Fig.2b and Fig.4). We therefore investigated the intrinsic 

spike train properties of DSRGCs. We selected a parameter often used in the analysis of LGN 

neurons: the percentage of bursting. Burst-like events were identified and quantified as described 

in Methods (Methods 2.3). We calculated the burst-rate in the response of ONOFF DS cells as 

well as ON DS and artificial Poisson-like spike trains.  

We found that burst-like activity was more pronounced for the ON-OFF DSRCs than for 

the ONDS cells or for the artificial spike trains. As shown in Fig.5a burst rate at preferred 

direction for ON-OFF cells was highest, the mean for all ten cells was 2.29 +/- 0.9 (n=10) 

[bursts/sec], even ten times higher than for ONDS cells for which mean burst rate for all trials 

was only 0.07 +/- 0.06 (n=3) [bursts/sec]. For artificial spike trains we also found a lower burst 

rate at preferred direction even though the firing rate mimicked that of the ten recorded ONOFF 

DSRGCs. While for spike trains with 2ms refractory period we could find a sharpening more 

pronounced than for the spike trains with refractory period of 5ms and 20ms, we also found a 

burst rate at preferred direction higher for these spike trains with a mean of 0.54 +/- 0.15 

[bursts/sec], (n=10). As in Fig.5a, once that refractory period increased the artificial spike trains 

diminished their burst-like activity, so that we found for 5ms refractory period a mean burst rate 

of 0.04 +/- 0.04 [bursts/sec], (n=10), and for 20ms refractory period 0.03 +/- 0.02 [bursts/sec], 

(n=10).  
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Fig. 5 Burst-like activity  

a) Burst rates at preferred direction calculated for recorded cells and for artificial spike trains. The highest 

burstlike activity is obtained for ON-OFF DSRGCs. ON DS cells show almost no burst-like activity. Artificial spike 

trains also exhibit reduced burst-like activity. X axis indicate the number of cells for which the burst rate at preferred 

direction was quantified.   

b) Index of selectivity for burst-like events (Y axis) and for firing rate (X axis) shows that only for ON-OFF 

DSRGCs (dark dots) DSi Burst is higher than DSi firing rate. For ON DS cells (blue dots) and for artificial spike trains 

(with 2 ms refractory period) DSi Burst is lower than DSi firing rate.  

c) Tuning curves of firing rate (blue curve) and burst rate (green curve) for one ON-OFF DSRGC. Burst rate is 

more sharpened (DSi = 0.78) than firing rate (DSi = 0.70) and oriented at preferred direction.  
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d) Tuning curves of firing rate (blue curve) and burst rate (green curve) for one artificial spike train that mimics 

the ON-OFF DSRGC presented in Fig. a). In this case DSi
burst  (DSi = 0.30) is considerable lower than DSi firing rate 

(DSi = 0.70) and does not singularly indicate the preferred direction.  

e) Tuning curves of firing rate (blue curve) and burst rate (green curve) for one ON DS cell. Burst-like activity 

is clearly not pointing the preferred direction and it’s DSi
burst = 0.11 is lower than DSi firing rate (= 0.39).  

 

Beside this discrepancy there are two more factors that worth to be noted –one is that 

burst-like activity for ON-OFF DSRCs was tuned at preferred direction (Fig.5 c show the tuning 

curves for one ON-OFF DSRGC calculated from firing rate (blue) and burst rate (green) - the 

preferred direction indicated by maximal firing rate coincides with the preferred direction 

calculated from burst rate). That is, at preferred direction ON-OFF DSRGCs show burst-like 

activity more than at intermediate directions. In this way the probability of evoking an AP at 

SPN becomes higher at preferred direction while two (or more) closed (in time) EPSPs are more 

successful in rising membrane potential of SPN above the threshold. This phenomenon is known 

as paired spike enhancement and has been demonstrated at many synapses (Usrey et al. 1998, 

Carandini et al. 2007). The burst rate for ON DS cells and artificial spike trains was almost equal 

zero and pointing non-preferred directions (Fig.5d, e).  

We used burst rate for each presentation direction to calculate the degree of directional 

selectivity. Once we calculated the burst rate at each direction of stimulus presentation we next 

used DSi
burst as described by Eq. (2), in a manner similar to that used for firing rate, and we 

calculate the direction selectivity index for burst-like spiking.   

The other important factor is that tuning curves for burst rate were more sharpened than 

the tuning curves of firing rates for ON-OFF DSRGCs, so that the index of selectivity for burst-

like activity (DSi
burst) was always higher than DSi firing rate (black dots Fig.5b). By contrary 

DSi
burst for ONDS cells (Fig.5b blue dots) and for artificial spike trains with 2ms refractory 

period (Fig.5b red dots) was lower than DSi calculated from firing rates.   
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In summary, for the ten ON-OFF DSRGCs we found a mean burst rate at preferred 

direction significantly higher than for ON DS cells or artificial spike trains. Burst-like activity is 

tuned at preferred direction and has a higher DSi than firing rate for ON-OFF DSRGCs as 

compared with ON DS or artificial spike trains which show the opposite results.   

It is already well known that these two different RGC types possess different spike train 

signatures (Zeck et al 2007). Our analysis shows also that ON-OFF cell type exhibit burst-like 

activity at preferred direction while ON cell type has less or no burst-like activity.   

That short ISIs in the presynaptic spike trains are recognized to be very important in 

transmitting information at different stages within the brain is already well known (Sincich et al. 

2007, Rathbun et al. 2007). In our example burst-like activity seems to be the key in signaling 

better the direction of motion of visual stimulus at the output of retina.   

We went further into more detailed analysis and calculated the number of postsynaptic 

APs due to presynaptic burst-like firing. We scanned the spike trains of both, presynaptic and 

postsynaptic cells, and counted the spikes at SPN due to burst-like activity in presynaptic spike 

train for each pair of pre- and post-synaptic cells. In this manner we could quantify the efficacy 

and influence of the presynaptic burst-like activity (Be) as the number of spikes at SPN due to 

bursts at preferred direction divided by the total number of spikes at SPN, at preferred direction, 

for each pair of cells (Eq.3).   

For the ten recorded ON-OFF DSRGCs we found that mean Be has its maximum at the 

best sharpening observed. Remarkably, once that gmax,e increases, mean TFR also increases, 

while both, mean Be and iS decrease (Fig.6a, Fig.2b). This is explained by the fact that at low 

gmax,e  the number of postsynaptic spikes, at preferred direction, due to burst-like activity of the 

presynaptic cell is the highest compared with the total number of spikes at SPN, at preferred 

direction. At this point the best sharpening is observed. Once gmax,e increases, the number of 

spikes at SPN increases, but the number of spikes at SPN due to a burst in presynaptic cell 

decreases and we notice a less pronounced sharpening. While for the best observed sharpening, 

Be has a maximum, for less sharpening the number of spikes at nonpreferred direction increases 



  100 

and the influence of the burst-like activity of the presynaptic cell is diminished. It is crucial to 

point out that these findings bring us to the following remark – burst-like spiking activity is 

carrying the information about direction selectivity. Thus, at best sharpening this component of 

the spike train that can inform about direction of stimulus movement at preferred direction is 

preserved (Be has its maximum) while the components signaling the movement of stimulus at 

intermediate directions are lost.  

The mean Be for the ON-OFF DSRGCs was at its maximum 0.45 +/- 0.25 (n=10) and it 

decreased to 0.36 +/- 0.18 (n=10) at its minimum.  

For the artificial spike trains with 2 ms refractory period mean Be at its maximum was 

only 0.12 +/- 0.06 (n=6) and decreased at 0.06 +/- 0.03 (n=6) at its minimum (Fig.6b).  

Once we calculated the number of spikes at SPN due to burst-like activity at presynaptic 

cell for each pair of cells, we then calculated (in the same manner as for firing rates) the indexes 

of selectivity of these SPN spikes, due to bursts (DSi SPN
burst). Fig.6c shows that for the ON-

OFF DSRGCs, mean DSi SPN
burst  is always higher than DSi SPN and is decreasing as gmax,e 

increases and sharpening decreases. This means that if the spike trains at SPN were only due to 

burst activity in the presynaptic cells we were having a higher degree of sharpening. Due to the 

fact that the TFR is increasing with gmax,e , the increasing number of APs at non-preferred 

directions is lowering the degree of sharpening. However, DSi SPN
burst always remains higher 

than DSi SPN and indicates the burst events control the degree of sharpening.  

For the artificial spike trains (Fig.6d) the effects are different. Firstly, we always 

observed that DSi at SPN is higher than DSi SPN
burst, so that the number of spikes due to bursts 

is not able to control the sharpening at SPN. Moreover, even if DSi SPN
burst is increasing as gmax,e 

increases (opposed as in ON-OFF DSRGCs case), the degree of sharpening is decreasing (DSi 

SPN decreases). This strengthens the fact that burst-like activity for artificial spike trains 

(substantially less present than for ON-OFF DSRGCs) does not control the sharpening at SPN.  
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Fig. 6 Burst efficacy and index of sharpening   

a) Black dots represent mean burst efficacy (Be) as described by Eq.3, for 10 ON-OFF DSRGCs. Red dots show 

the TFR course as gmax,e  increases. Be is decreasing as TFR increases due to a larger number of spikes at 

intermediate direction, as a consequence iS is decreasing too (see Fig. 2b).   

b) Black plot is mean burst efficacy and red dot is mean transfer ratio. For the artificial spike trains that mimic 

the 10 recorded ON-OFF DSRCs Be is lower than for the recorded cells and also decreases as TFR increases.  

c) DSi at SPN due to burst-like activity measured for 10 ON-OFF DSRCs (red dots) is higher than DSi at SPN 

(black dots) and is controlling the sharpening at SPN. As gmax,e increases DSi at SPN due to burst-like activity 

is decreasing and as a consequence iS is also decreasing.  

d) For the artificial spike trains that mimic the recorded cells DSi at SPN due to burst-like activity (red dots) is 

permanently lower than DSi SPN (black dots) and is increasing as iS decreases, hence proving no control 

mechanism over the sharpening at SPN.  

e) One single ON DS cell presented spikes at SPN due to burst-like activity at the presynaptic level. This cell 
has  
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Be (black dots) with a drop as gmax,e  increases.   

f) Index of sharpening (blue dots) and index of selectivity (red dots) for the same ON DS cell as above. 

Interestingly, as gmax,e increases from 0.06 to 0.07, DSi increases while iS decreases. Moreover Fig. 6e) shows 

that as gmax,e increases from 0.07 to 0.08, Be decreases but contradictory iS increases (blue dots) showing that 

there is no direct mechanism based on burst-like activity to enhance sharpening (iS) for ON DS cell.  

 

For two of the ONDS cells we did not find any spike at the SPN, at preferred direction, 

due to burst-like activity at the presynaptic level. For the third ONDS cell we found at SPN level 

a few spikes due to burst-like activity at the presynaptic level. In this case (Fig.6e, f) we found 

that while Be decreases from gmax,e =0.07 to 0.08, the index of sharpening is slightly increasing, 

for the same parameter values (Fig.6,f -blue dots). Additionally, DSi
burst increases for gmax,e = 

0.06 to 0.07 (Fig.6,f -red dots) while index of sharpening is decreasing for the same values of 

gmax,e (Fig.6,f -blue dots) . Altogether with the fact that DSi
burst was always lower than DSiSPN and 

the very low burst rate that we found, led us to the conclusion that burst-like activity is not at the 

origin of sharpening we found for ONDS cell, indeed for a more restricted parameter range than 

for the ON-OFF DSRGCs.   

 

 

3.5. How is the enhancement performed at the postsynaptic cell?  

So far we have found that burst-like activity carries the information about direction of 

stimulus movement. This intrinsic property is commonly found at ON-OFF DSRGCs and is 

predominant at preferred direction of stimulus movement. It has been already shown that PSP 

summation and spike threshold suffice to explain the transformation of the retinal input spike 

train to a new spike train output of LGN cell. In our simulation conditions, summation of the 

incoming retinal EPSPs combined with postsynaptic spike threshold act as a temporal filter to 

perform a selective reduction in gain for long ISI presynaptic discharge and to increase in gain 

for short ISI spike trains.  
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To see more in details how this filter works, we checked firstly the relation between 

spike threshold membrane potential (Vthreshold) at the SPN and index of sharpening for a typical 

input of ON-OFF DSRGC and middle value of gmax,e = 0.06 µS (Fig.7a). We varied Vthreshold 

from -55mV up to -25mV. As Vthreshold increased iS also increased, so that at -51 mV we found 

iS=1.1 and at Vthreshold = -39 mV iS increased at iS=1.58.  

This is explained very simple. Once that Vthreshold increased, at gmax,e constant, it is 

necessary to have more closed in time EPSPs to raise the membrane potential above the 

threshold value, that is, a pronounced burst-like activity (short ISI) in the DSRGC spike train. At 

the intermediary directions of stimulus movement, burst-like activity (short ISI) is lower than at 

the preferred directions for ON-OFF DSRGCs (Fig.5c) and thus the summation of EPSPs 

become less efficient as Vthreshold increases. The result is that for intermediary directions less APs 

at SPN will be evoked so that the information about these directions of stimulus movement will 

be lost. By contrary, at preferred directions, burst-like activity (short ISI) is more accentuated, 

and will be sufficient amount of closed EPSPs to sum and raise the membrane potential above 

the threshold to produce APs at SPN. Thus, this component of the input spike train, signaling the 

preferred direction, will be preserved. As expected, if Vthreshold continue to further increase, at 

some value, too little amount of APs at SPN will be evoked so that TFR will be below its limit 

and iS becomes zero (Fig.7a).   

Furthermore, we checked the relations between cell’s time constant (τm) and iS for a 

middle value of Vthresh = -45 mV and a middle value of gmax,e  = 0.06 µS (Fig. 7b). At τm = 6 ms, 

iS = 1.58, while at τm = 20 ms we found iS = 1.14. For a low τm value, if the ISi is large (slow 

input spike train) EPSPs do not sum together to force the membrane potential to reach the 

threshold. Thus, at preferred directions, where the ISI is shorter, the chance to have APs at SPN 

is greater and thus iS is higher. Once that τm increases, the ISI necessary for temporal summation 

to take place increases also, so that at intermediary directions the chances to have APs at SPN 

increases too, resulting in a decrease of iS (Fig. 7b).   
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Fig. 7. Model enhancement mechanism  

a) Relation between iS and Vthreshold for a typical input spike train of an ON-OFF DSRGC with DSi=0.49. As 

spiking threshold increases the sharpening obtained is larger due to the fact that only at preferred direction EPSPs 

summation can raise the membrane potential above the threshold. However, for large thresholds there are only a few 

APs evoked at the SPN, so that iS=0.  

b) Cell’s membrane time constant variation is depicted on X axis. Best sharpening is at low time constant 

values. Indeed for low τm values, the EPSPs are closed enough in time, in order to realize the temporal summation, 

only at preferred direction during the burst-like spiking activity.   

c) Nonlinear amplifier with a specific time constant (X axis) applied to an incoming retinal spike train with a 

middle DSi = 0.49. Index of sharpening  (Y axis) decreases as time constant increases.  

d) Nonlinear amplifier with a specific time constant (X axis) applied to an incoming retinal spike train with a 
very high DSi = 0.72. The temporal filter gives a sharpening for τm = 5ms, almost as good as for τm = 200ms.  

The influence of the temporal filter is reduced comparing with low tuned presynaptic cell.  

 

To have a better intuition over the temporal filter that acts upon the incoming retinal 

input we built a simpler mathematical model which depicts a nonlinear amplifier with a specific 

time constant and applied it over the inverse spike intervals of a typical input spike train 
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(Fig47c). Briefly, we calculated the ISI for a typical recorded spike train of one ON-OFF 

DSRGC (DSi=0.49). We established two thresholds, the low limit representing the refractory 

period and high limit representing the specific time constant (τ). Once that ISI is higher than the 

low limit and lower than the high limit, we hypothesized that PSPs summation was possible and 

we counted an AP at the SPN. We then calculated the tuning curve of the SPN and thus the 

index of sharpening. At low values of time constant τ = 5 ms we found the best sharpening iS = 

1.47. As τ increased the sharpening decreased, so that at τ = 200 ms we found iS = 1.06. 

Therefore, if τ<5 ms we found best sharpening and indicates the fact that most of the short ISI 

(ISI<5 ms) spiking activity is encountered at preferred direction strengthening the probability 

that closed EPSPs to sum and evoke APs at SPN. As τ increase sharpening becomes weaker 

indicating that large ISI spiking activity is often found at intermediate directions of stimulus 

movement, so that when cell’s time constant becomes larger, temporal summation of EPSPs will 

evoke APs at intermediate directions too, decreasing iS.   

 

We also have shown that the degree of sharpening depends on the tuning of the 

presynaptic cell so that for input spike trains with high DSi the index of sharpening obtained was 

lower than for input spike trains with low DSi (Fig. 2d). This simpler mathematical model which 

shows the ISI distribution explains why iS is low for high presynaptic DSi. Briefly, for a 

recorded spike train of one ON-OFF DSRGC with high DSi (DSi=0.72) we found a sharpening 

iS=1.06 at τ=5 ms and iS=1.04 at τ=200 ms (Fig.7d). Therefore, even that time constant varied 

with almost 200 ms the sharpening suffered only a slight change. The result indicates that for 

cells with very high DSi the distribution of short ISI is highly concentrated at preferred direction. 

The temporal filter which acts upon the input spike train and enhances the sharpening has a 

lower effect in this case, while long ISI spiking activity (component which is lost for cells with 

lower DSi in order to enhance the sharpening) is less present. Comparing Fig.7c and Fig.7d one 

can observe the difference in the influence of the temporal filter and spike threshold over the 
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index of sharpening. We found for low tuned ON-OFF DSRGC a decrease in iS of about 1.42 

since for highly tuned presynaptic cell the decrease of iS was only 1.01, and thus iS remaining 

almost the same.   

 

 

3.6. Polysynaptic directional selective input upon one model neuron  

 

So far we considered monosynaptic connections of different pairs each consisting in one 

recorded DSRGC and one model neuron. It is assumed that several retinal cells can converge on 

the same postsynaptic target (Blitz and Regehr 2005; Sincich et al. 2007; Usrey et al. 1998). In 

the following we consider the hypothetical case of polysynaptic input with equal weights from 

several DSRGCs to a model postsynaptic neuron. In this hypothetical case of polysynaptic input 

we aligned the spike trains of the two convergent inputs according to the peak measured in their 

spike trains cross- correlogram. We asked what the effect is over the sharpening at SPN of 

simultaneous convergent synaptic inputs from two ON-OFF DSRGCs with the same preferred 

directions compared with the scenario of two ON-OFF DSRGCs having opposed preferred 

direction.   

We recorded two ON-OFF DSRGCs in the same retinal portion responding preferentially 

to the same direction of stimulus movement (90 degrees preferred direction). In a second 

recording portion we recorded another pair of ON-OFF DSRGC with opposed preferred 

direction (180 and 0 degrees respectively). We calculated cross correlation histograms (CCH) 

for these pairs of neurons simultaneously recorded. We found a correlated activity with a time 

lag in CCH of 2 ms for which a maximum correlation between their spike trains was achieved. 

Further on we aligned the spike trains of formed pairs, extracting the peak observed in the CCH, 

in order to build simultaneous synaptic inputs to the same postsynaptic neuron.   
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Fig.8 Polysynaptic connectivity  

a) Index of sharpening at SPN for the case of two different ON-OFF DSRGCs which send simultaneous 

convergent inputs to the postsynaptic cell. Presynaptic cells have different indices of selectivity, DSi1=0.59 and 

DSi2=0.72. The two cells have the same preferred direction at 90 degrees. Index of sharpening at SPN is 

calculated as DSi SPN / DSi2 DSRGC.    

b) Index of sharpening at SPN (iS = DSi SPN / DSi2 DSRGC) for the case of two different ON-OFF 

DSRGCs which send simultaneous convergent inputs to the postsynaptic cell. Presynaptic cells have different 

indices of selectivity, DSi1=0.46 and DSi2=0.58. The two cells have opposite preferred direction at 180 and 0 

degrees, respectively.  The sharpening in direction selectivity in this case is much more restricted as in the case 

with two cells of the same preferred direction. iS>1 comprises also the areas with one of the synaptic strength 

equal to zero which leads to the monosynaptic case.  

  

Firstly, we found that the effect of hypothetical simultaneous polysynaptic input 

consisted in shifting the range of the values for gmax,e at which sharpening in direction selectivity 

was achieved. This shift was toward lower gmax,e values. As expected, if two simultaneous 

excitatory synaptic inputs converge on the same postsynaptic target, then the strength of the 

synaptic conductances must not be too high. At low values of gmax,e (even less than 0.03 µS) 

already the maximum sharpening is achieved for polysynaptic mechanism. When gmax,e is 

increased, the number of APs at SPN increased also and for relatively high values of gmax,e (>0.07 

µS) the transfer ratio is already exceeding the maximum limit of 0.7 for most of the polysynaptic 

mechanism SPN and thus iS becomes zero (Fig.8a).  
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Another important remark comparing Fig.8a and Fig.8b is that for the case of two 

simultaneous convergent inputs of ON-OFF DSRGCs with opposed directions the sharpening 

obtained at SPN is considerably reduced than iS for the scenario of two convergent inputs with 

the same preferred directions, and thus information regarding direction of stimulus motion will 

be at least not enhanced if not diminished at the postsynaptic level.   

  

  

  

4. Discussion  

The complexity of synaptic connectivity from retina to higher brain areas has been 

extensively studied (Kara and Reid 2003; Levick et al. 1969; Usrey et al. 1998).   

Recently, important findings (Casti et al. 2008, Carandini et al. 2007, Sinchich et al. 

2007) suggest that at retinogeniculate synapse the variability in response of LGN cell is mainly 

due to intrinsic properties of retinal input and moreover, no special mechanism beyond simple 

summation of PSPs combined with spike threshold is necessary to accurately describe the LGN 

cell discharge as response to an incoming retinal input. It is beyond the scope of our work to 

validate a new model to characterize retinogeniculate transmission; instead we took advantage of 

the successfully validated model of Casti (Casti et al. 2008) and their simple approach used to 

describe the information processing between two first stages of the primary visual system, and 

investigated how information regarding direction of stimulus movement is shaped at the output 

of retina.   

Sincich et al. (2007) have demonstrated that every spike within a burst at LGN neurons 

is generated by an EPSP evoked by a retinal spike. During bursts of rapid firing activity there are 

higher chances to observe more postsynaptic APs. Our simulation results show the same. Burst-

like activity at preferred direction was responsible for a higher number of APs at SPN than at the 

intermediary directions (and thus sharpening of directional tuning). We found for all tested ON-
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OFF DSRGCs burst-like activity tuned at preferred direction, substantially higher than for ON 

DSRGCs. We therefore suggest that at preferred direction ON-OFF cells have a higher 

probability to successfully elicit an AP at postsynaptic target and thus to enhance the degree of 

direction selectivity. Recent evidences suggest also, that ISI preceding a retinal spike essentially 

influence the spike transmission at retinogeniculate synapse (Rathbun et al. 2007). In our 

simulations, when short ISI was present in the presynaptic spike trains, sharpening in directional 

tuning at the postsynaptic counterpart was enhanced. At least in our simulation conditions, the 

key factor for a better signaling the direction of stimulus movement, from retina to higher brain 

areas, seems to be played by burst-like activity which is more accentuated in one type of 

DSRGCs known as ON-OFF type (Zeck and Masland 2007). This explains in part why in our 

simulations, monosynaptic excitatory connectivity between ON-OFF DSRGC and its 

postsynaptic target becomes the simplest scheme to achieve sharpening in direction selectivity.   

We found that apparently, the presynaptic degree of directional tuning does not provide 

evidence how the sharpening works - we constructed artificial spike trains mimicking recorded 

DSRGCs and thus having the same directional tuning, but at the postsynaptic level we did not 

obtained similar iS for the artificial spike trains with the same DSi as the recorded cells. Instead, 

we found a more restricted parameter range for which sharpening can be achieved for these 

artificial spike trains. We then found that burst-like activity is less present in the artificial spike 

trains than in the recorded ON-OFF DSRGCs discharge. Moreover, ONOFF DSRGCs show 

burst-like activity predominantly at preferred direction and less at intermediate directions of 

stimulus movement. The finding that each time the burst-like spiking activity at preferred 

direction was higher (as in the case of ON-OFF DSRGCs) we found the best sharpening in 

direction selectivity, lead us to the conclusion that this rapid firing activity at preferred direction 

of stimulus movement is the principal component of the spike train which carries the directional 

information. We varied most of the parameters involved in transformation of input spike train 

within the physiological plausible values. The output of all scenarios pointed toward the same 

conclusion that the sharpening in direction selectivity was at its best when the component of the 



  110 

input spike train which carried the directional information - burst like spiking activity at 

preferred direction - was preserved and the components (isolated spikes) regarding stimulus 

direction at intermediary directions were lost in spike transmission.  

 

As a conclusion of the above mentioned discussion upon the above mentioned results of 

our simulations we would like to strengthen the following remarks regarding burst-like activity:  

1. Firstly, monosynaptic input was the simplest scheme, in our simulations, to achieve 

sharpening in direction selectivity at the output of DSRGCs.   

2. We found sharpening for a larger parameters’ values interval for ON-OFF DSRGCs 

than for ON DSRGCs.   

3. Firing rate does not primordially explain the values obtained for the index of 

sharpening as we could notice from artificial spike trains mimicking DSRGCs with the 

same firing rate and DSi but showing different iS values.   

4. To explain this discrepancy we focused on an intrinsic property of the retinal spike 

trains and thus we quantified the burst-like activity. We found that burst-like activity 

was larger for ON-OFF DSRGCs than for ON DSRGCs and artificial spike trains.   

5. Burst-like activity was highly tuned at preferred direction for ON-OFF DSRGCs (DSi 

Burst > DSi Firing Rate) and thus increasing the chance to produce APs at the SPN at 

the preferred direction of stimulus motion.   

6. Every time we found the best sharpening following parameters modification, we also 

had best burst-like activity effect upon the SPN.  

Those bursts are found at many synapses within the central nervous system is already well 

known (Sincich et al. 2007, Swadlow and Gushev 2001). It is also assumed that bursts are very 

important in transmitting important information at higher level within visual system (Usrey et al. 

1999, Swadlow et al. 2002). In our case, presumably, their role is to signal the information 

regarding the direction of visual stimulus.   
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Once we learned out what component of retinal spike train is carrying the information 

about direction of stimulus movement, we asked how the simulated postsynaptic neuron does the 

enhancement of direction selectivity. The main effect responsible for the enhancement of 

direction-selectivity is presumably the spike threshold for the integrate-and-fire model and the 

cell’s time constant, which determines the effect of temporal summation of PSPs. For slow input 

spike trains PSPs do not sum and the membrane potential of postsynaptic cell remains below the 

threshold. Indeed we varied the spiking threshold (Vthreshold) and we found that the sharpening in 

direction selectivity increased as the Vthreshold took higher values. At this high threshold values 

predominantly at preferred directions, EPSPs succeed to sum together in order to raise the 

membrane potential above and evoke APs at postsynaptic level. Postsynaptic cell’s membrane 

time constant (τm) variation made even clearer the manner in which the enhancement of 

directional selectivity is performed. At low values of τm short ISI spiking activity is necessary so 

that EPSPs can sum and evoke APs at SPN level. Short ISI spiking activity is predominant at 

preferred direction enabling the temporal summation and thus increasing the sharpening. Once 

that τm increased the temporal summation was also possible for larger ISI too, commonly found 

for intermediary directions, so that we noticed a reduction in sharpening of direction selectivity.   

That enhancement of directional tuning at SPN is realized by the nonlinearity of the 

spike threshold applied with the temporal filter upon DSRGC spike train (combined with burst-

like spiking activity at preferred direction) was more simply demonstrated by using an intuitive 

mathematical model consisting in a nonlinear amplifier, with a specific time constant, applied to 

ISI distribution of the retinal input spike train. We again found that if the temporal summation of 

PSPs was allowed only for small time constant than chances to have APs at SPN were greater at 

preferred directions (were short ISIs were predominant) and thus iS was largest.   

Contribution of membrane potential threshold upon editing neuronal spike trains from 

presynaptic stage to postsynaptic level, has been intensively studied either for different neuron 

types, i.e. at retinogeniculate synapse (Casti et al. 2008, Carandini et al. 2007, Sincich et al. 

2007), at geniculocortical synapse (Carandini et al. 2000, Jagadeesh et al. 1997, Priebe and 
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Ferster 2005) or for different particularities of the visual stimulus presented to which recorded 

neurons are tuned, i.e. orientation selectivity (Volgushev et al 2000, Carandini et al. 2000), 

direction selectivity (Jagadeesh et al. 1997, Volgushev et al. 2000, Carandini et al 2000, Priebe 

and Ferster 2005). At both synapses, in order to account for the sharpening in direction 

selectivity, a nonlinear mechanism had to be taken into account (Priebe and Ferster 2008). For 

the direction selectivity, it is well known that cells in higher brain areas, i.e. primary visual 

cortex, are much more selective than cells in retina or LGN, so that V1 becomes an ideal stage to 

investigate sharpening in directional selectivity. In 1997 Jagadeesh et al, explained that 

enhancement of the direction selectivity of simple cells in V1 is generated at least in part by 

nonlinear mechanisms. Extracellular recordings from neuronal responses to moving stimulus 

could not be predicted accurately from linear combination of the responses of stationary stimuli 

presented at different spatial positions within the cell’s receptive field. To differentiate between 

several possible early nonlinear mechanisms, such as shunting inhibition, or PSP – to –spike 

transformation, i.e. spike threshold, intracellular recordings and a linear model of direction 

selectivity was used to analyze the synaptic potentials evoked by stationary sinewave gratings. 

The direction selectivity of synaptic potentials was considerably smaller than that of the 

intracellularly recorded action potential indicating a non-linear mechanism such as threshold to 

enhance the direction selectivity of the cell’s output over that of its synaptic input. Following 

Jagadeesh results, other scientific studies (Carandini et al. 2000, Priebe and Ferster 2005, 

Volgushev et al. 2000) remarked that spike threshold sharpens the direction selectivity in simple 

cortical cells evoking that spike threshold quantitatively accounts for the nonlinear component of 

direction selectivity amplifying the direction of selectivity of spike output relative to that of 

synaptic input. They have found that the spike threshold contributes substantially to the 

sharpening of directional tuning, creating a strong “iceberg effect” (Carandini et al. 2000).  

Another related scientific result was that the degree of sharpening in individual cells was 

very different; sometimes a strong sharpening was created from poor directional tuning input 
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and thus the degree of sharpening was high, and sometimes highly tuned cells provide little or no 

sharpening at the postsynaptic target (Volgushev et al. 2000). The sharpening was not correlated 

with resting membrane potential, threshold or optimal PSP amplitude and moreover was not cell 

type specific. Indeed we found this variation in degree of sharpening within the same cell type, 

ON-OFF DSRGCs. In our simulations we also found that the degree of sharpening of directional 

tuning is inversely related to the presynaptic DSi, that is, highly tuned presynaptic cells provided 

only small iS while low tuned presynaptic cells provided largest iS.   

The model we used showed that for highly tuned ON-OFF DSRGCs, short ISI spiking 

activity is very concentrated at the preferred direction (Fig.7d). For these cells we found less 

activity with large ISI even at non-preferred direction. Thus spike threshold mechanism altered 

very little to not at all the degree of directional tuning (iS was almost the same for τ =5ms as for 

τ = 20ms). For low tuned presynaptic cells, we found many more isolated spikes (with large ISI) 

at non-preferred direction. Consequently, the temporal summation and spike threshold 

eliminated more isolated spikes at non-preferred directions and sharpens the directional tuning. 

Thus, we were able to measure higher iS for these cells. A comparison of the spike threshold 

effect in these two cases can be seen from Fig. 7c (low tuned presynaptic cells) and Fig. 7d 

(highly tuned presynaptic cells).   

Presumably for highly tuned cells, it is important rather to faithfully reproduce the 

information about the stimulus and thus the degree of sharpening is almost the same, while for 

low tuned cells it is strikingly important to better improve their directional tuning and thus to 

better transmit the information about the stimulus direction at the postsynaptic level (Volgushev 

et al. 2000).  

When we varied most of the model parameters (gmax,e, gmax,i, τe) we noticed that their 

influence upon sharpening of direction selectivity, suggested two important parameters which 

characterize the temporal filter – Vthreshold and τm. Varying the other parameters the temporal 
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summation of PSPs, spike threshold and burst-like activity at preferred direction of stimulus 

movement, were acting together to dictate the best sharpening in the manner above described.  

In discrepancy with the ON-OFF DSRGCs, for the other type of direction selective cells, 

the ON DSRGCs, we found less sharpening at their postsynaptic counterparts under the same 

simulation conditions. This finding could be apparently at least counterintuitive since DSi for 

this cell type is lower than DSi for ON-OFF DSRGCs. However, the explanation is relatively 

simple and straightforward. For ON DSRGCs we found much less burst-like activity than for 

ON-OFF DSRGCs. Thus, the mechanism described above acting upon the incoming spike train, 

does not provide the same enhancement of iS since summation of PSPs at the preferred direction 

is not followed by a relatively high short ISI spiking activity in the ON DSRGC’s spike train. To 

account for an eventual sharpening at the output of ON DSRGC (which project to the AOS) 

presumably the polysynaptic connectivity arrangement (Soodak et al. 1988) is more likely to 

sharpen directional tuning at the postsynaptic target.  

Finally, we hypothetically checked how polysynaptic mechanism influences the degree 

of sharpening at the postsynaptic target. Interestingly, our simulations results show that two ON-

OFF DSRGCs sending simultaneous excitatory synaptic input onto the same postsynaptic target 

lead to a better signaling of stimulus movement direction if they have the same preferred 

direction compared with the case when they have opposite preferred direction.  

 

 

 

5. Conclusions  

Using a simple approach, consisting in recorded DSRGCs inputs combined with a 

variant of a leaky integrate-and-fire neuron model and not taking into account neither synaptic 

plasticity nor cortical feedback input, we learned out that neurons postsynaptic to directional 

selective retinal ganglion cells signal better the direction of stimulus movement. We suggest that 
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apparently, burst-like activity commonly found in the ON-OFF DSRGCs is carrying the 

information regarding direction of stimulus movement toward higher brain areas. This intrinsic 

property of presynaptic input together with temporal filter and the nonlinearity of spike threshold 

at postsynaptic target, act upon the retinal input. The result is that the information regarding 

direction of stimulus movement at preferred direction is preserved while the component of 

incoming spike train, which signals direction of stimulus movement at non-preferred directions, 

is lost in the process of input spike train editing and thus the sharpening in direction selectivity is 

enhanced. Spike threshold act as a filter allowing that an AP is produced once that the threshold 

value of the membrane potential is reached. Summation has the effect that EPSPs reach the 

threshold. In order that summation to be efficient it is needed more closed in time EPSPs, 

situation which take place mostly during burst-like activity. This burst-like activity, for ON-OFF 

DSRGCs is distributed at preferred direction. Thus, PSP-to-spike transformation has maximum 

efficacy at preferred direction, at the other intermediate directions we will notice a reduction of 

spikes and thus the sharpening increases.   
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Summary of the paper  

  

While the degree of motion direction is getting higher as advancing from one stage to the next 

within the hierarchical brain structures and I suggested that this sharpening can be explained by 

only direct one to one connectivity with excitatory feedforward input being sufficiently, I asked 

in this paper if already at presynaptic level the time spiking is shaping the neural response to 

stimuli so that the visual information is filtered and time coded before being sent toward 

postsynaptic target.  

In this paper I analyzed data recorded using two types of visual stimulus, white noise and 

drifting bars, and shown that short ISI spikes are more often related to an optimal visual stimulus 

and carry more information than longer ISI spikes. It worths to be noted that correlation between 

stimulus and recorded neuronal response is best at short ISI spiking activity and decrease as ISI 

becomes larger. I then analyzed data generated by using grating bars stimulus and found that as 

ISI becomes shorter the signaling of visual stimuli motion becomes sharpened. These findings 

suggest that ISI-based temporal filtering integrates a mechanism for visual information 

processing at the output of retina toward higher stages within early visual system.   

  

 My contribution to this paper is as follows:   

I defined the scientific project, I analyzed the recorded neural data, I wrote the paper, I edited the 

paper, I was the corresponding author and I did the major and minor revisions according to peer 

reviewing process by scientific comitee within the editorial board of the journal.     
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IV. Interspike interval based filtering of directional selective retinal ganglion 

cells spike trains   

  

Abstract  

The information regarding visual stimulus is encoded in spike trains at the output of retina by 

retinal ganglion cells (RGCs). Among these, one type known as ON-OFF directional selective 

cell (DSRGC) is signaling the direction of stimulus motion. DSRGCs’ spike trains show 

accentuated periods of short interspike intervals (ISIs) framed by periods of isolated spikes. ISI-

based filtering of the retinal spike trains has been shown to play a crucial role in transmitting 

information at postsynaptic target. Here we use two types of visual stimulus, white noise and 

drifting bars, and show that short ISI spikes are more often related to an optimal visual stimulus 

and carry more information than longer ISI spikes. Firstly, our results show that correlation 

between stimulus and recorded neuronal response is best at short ISI spiking activity and 

decrease as ISI becomes larger. We then used grating bars stimulus and found that as ISI 

becomes shorter the signaling of visual stimuli motion becomes sharpened. However, for the 

other type of DSRGC, known as ON-DSRGC short ISI distribution, burst-like activity and 

information rates revealed consistent differences when compared with ONOFF DSRGC. These 

findings suggest that ISI-based temporal filtering integrates a mechanism for visual information 

processing at the output of retina toward higher stages within early visual system.   

  

Keywords: retina, interspike interval, direction selectivity, visual information  
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1. Introduction  

The information regarding visual stimulus is encapsulated initially in spike trains at the 

output of retina by retinal ganglion cells. In some of mammals (though not general to mammals), 

here already the direction of stimulus motion is signaled by well-known directional selective 

retinal ganglion cells (DSRGCs). They respond vigorously to the movement of stimulus at the 

preferred direction and are silent when stimulus movement is toward the opposite null direction 

(Levick et al., 1969). In rabbit retina, one type of DSRGCs, the ON-OFF DSRGCs, have been 

already very well characterized (Barlow & Hill, 1963; Barlow et al., 1964; Euler, 2002; Vaney et 

al., 1981a; Vaney et al., 1981b; Amthor et al., 1984; Amthor et al., 1989a). They respond at the 

beginning and the end of an increasing or decreasing light stimulus and project to the dorsal 

lateral geniculate nucleus (LGN) and to the superior colliculus (Cleland et al., 1976; Vaney et 

al., 1981a).   

Receptive fields (RFs) become progressively more sophisticated along the synaptic 

hierarchies from retina to cortex. However, for the LGN cells the center surround RFs are 

similar with those of retinal afferents (Hubel & Wiesel, 1962; Kuffler, 1953; Reid et al., 2004). 

With this advantage in mind, together with the fact that the receptive field center of LGN cells 

receive their main input from only one retinal ganglion cell (RGC) (Cleland et al., 1971; Sincich 

et al., 2007; Usrey et al., 1999), the retinogeniculate synapse represent a major interest for 

studying the role of interspike interval based mechanism for spike filtering and visual 

information processing (Casti et al., 2007, Rathbun et al., 2007; Carandini et al., 2007; Sincich 

et al., 2009; Rathbun et al., 2010). Already at the next stage within early visual system, neurons 

in layer 4 of primary visual cortex receive many more convergent inputs from LGN counterparts 

(Reid and Usrey, 2004) and thus rely more on the interaction between different inputs than on 

the interspike intervals (ISIs) of individual inputs as part of the mechanism to reach the spike 

threshold (Usrey et al., 2000).  
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Many studies have shown that LGN cells seem to affect in an active manner the 

information relayed to cortex editing the input retinal spike trains in totally new output spike 

trains. Thus, it is already known that retinal spike trains contain much more spikes as the output 

spike trains of their LGN cells counterparts (Sincich et al., 2007; Usrey et al., 1998; Weyand, 

2007). Consequently, not every retinal spike will evoke an action potential (AP) at the 

postsynaptic target in the LGN. The length of the ISIs of the retinal spike train input represents 

an important factor in determining whether a retinal spike will evoke an AP at the LGN cell 

counterpart (Levine and Cleland 2001; Usrey et al., 1998; Mastronade, 1987; Weyand, 2007; 

Sincich et al., 2007).   

Retinal spikes with preceding short ISIs have greater chances to induce APs at their 

postsynaptic target than “isolated” spikes. The efficacy to evoke APs at the postsynaptic target in 

LGN decreases considerably with increasing of retinal ISIs so that for retinal ISI larger than 

about 30 ms there is no detectable influence of ISI on the production of postsynaptic spikes 

(Usrey et al., 1998; Sincich et al., 2007). Furthermore, recent studies suggest that this temporal 

filter acting upon retinal spiking activity is correlated with visual stimulus, so that visual 

information regarding optimal stimulus features is preserved and transmitted further on at the 

postsynaptic target (Rathbun et al., 2007, Uglesich et al., 2009, Sincich et al., 2009; Rathbun et 

al., 2010).   

To have a better intuition of how ISI-based temporal filter acts upon retinal spike trains, 

we analyzed extracellularly recorded activity of different types of RGCs  in response to two 

different types of stimuli – white noise and drifting grating bars, in rabbit retina.   

Firstly, the results show that using white noise stimulus and reverse correlation analysis, 

we were able notice that the strength of the correlation between stimulus and recorded neuronal 

response was at its maximum for shortest ISI. We also found that correlation between stimulus 

and neural response decrease with increasing ISI and thus visual information varies with ISI. 

This extremely important finding suggests that ISI based temporal filter of retinal spike trains 

may influence the spike transfer at retinogeniculate synapse and serve to filter visual information 
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from retina to LGN. These findings are in concordance with previously reported results from 

cats (Rathbun et al., 2007).   

We then went further and asked if ISI based temporal filter remains robust for a different 

type of stimulus. We used drifting grating bars moving in different equidistant directions as 

being the optimal stimulus for ON-OFF DSRGCs (Levick et al., 1969; Taylor and Waney 2002). 

Our results from recorded activity of ON-OFF DSRGCs in response to drifting grating bars, 

presented at eight different directions, indicate that short ISIs were always tuned at preferred 

direction of stimulus movement and contribute to preserve the directional information. It is 

already known that optimal stimuli induce higher firing rates and thus presumably short ISI 

spiking activity as well. To check if the tuning of short ISI is just strictly firing rate dependence 

and no other firing mechanism is involved, we built Poisson-like artificial spike trains with 

similar tuning and firing rates as the recorded ON-OFF DSRGCs. The discrepancy that we have 

noticed between the recorded cells and artificial spike trains regarding the short ISI distribution 

and firing rates lead us to suggest that there is not just a strictly dependence on firing rate and 

that another mechanism is involved. We then scanned the spike trains of the recorded cells and 

artificial spike trains and found that burst-like activity was significantly higher for the recorded 

ON-OFF DSRGCs and presumably is the key for explaining the discrepancy of short ISI 

distribution between the recorded and artificial spike trains.  

Interestingly, the other direction selective retinal ganglion cell type, the ON-DSRGC 

revealed reliable difference in short ISI distribution, burst like activity distribution and 

information rates when recorded in response to the same stimulus. This cell type is known to be 

less direction selective than ON-OFF DSRGC, have larger receptive fields, signal global motion 

and projects consistently to the accessory optic system (AOS) signaling the global retinal motion 

(Soodak and Simpson, 1988). The mechanism used here is consistently different when compared 

with the mechanism for information transmission used at  retinogeniculate synapse, at least from 

the point of view of a large convergence of many ONDSRGCs on a single AOS counterpart cell 

(Ackert et al. 2006).  
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In the last set of investigations we checked whether the information regarding visual 

stimuli carried by individual spikes varies with ISI. We found that the amount of information per 

spike decreased as the ISI increased. This together with the above presented results suggest that 

ISI based filtering of retinal spike trains is part of the mechanism that helps in preserving 

information about the important features of visual stimuli as it travels from retina to cortex, 

increasing the information efficiency to improve signaling the optimal stimulus features as has 

been suggested also by recent studies in macaque and cat (Rathbun et al., 2010; Uglesich et al., 

2009; Sincich et al., 2009).  

  

 

2. Materials and methods  

2.1 White noise stimulus   

Experiments were performed on whole-mount retinas in accordance with the animal use 

committee of the Massachusetts General Hospital. Procedures have been described previously 

(Yang & Masland, 1994; Koizumi et al., 2004).  

We analyzed the extracellularly recorded neuronal activity from ON-OFF retinal 

ganglion cells of the 4 adult isolated rabbit retinas stimulated with white noise and drifting 

grating bars. We used a sixty channel multi-electrode array, with a 30 µm spatial resolution, 

(Multichannelsystems, Reutlingen, Germany) for electrophysiological recordings. Data 

acquisition and off-line analysis has been previously described in (Zeck et al., 2007). Briefly, the 

receptive field was mapped using white noise stimulus (temporal flat power spectrum in the 1–

30 Hz range) which comprised a 16x16 array of squares (pixels) with the updating rate of the 

frames of 50 Hz. The luminance of each square was independently modulated by an m-sequence 

(Reid et al., 1997). The size of each square was 75 µm and the size of the receptive field of each 

cell was calculated by reverse correlating stimulus and spike response, and considering checkers 
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whose intensity at the temporal maximum of the mean effective stimulus exceeded by a factor of 

3 the SD of the squares in the background (DeVries & Baylor, 1997). The duration of stimulus 

was T= 30 s and the stimulus was repeated n = 30 times.  

 

2.2 Spike triggered analysis  

Spike triggered average (STA) was calculated after the spikes were sorted into different 

categories according to ISIs values 0 < ISI ≤ 10 ms; 10 < ISI ≤ 20 ms; 20 < ISI ≤ 50 ms; 50 < 

ISI ≤ 100 ms and in the last category STA was calculated for all spikes in the spike trains.   

We calculated STA as classically defined (Paninski, 2003; Schwartz et al., 2006) as the 

average over all the stimuli which shortly preceded a spike.  

 

, where Nsp is the number of spikes, ti is the time of occurrence of spike i, s(t) is the stimulus at 

time t, and the angle brackets represent averaging over trials. We represent the spike train ρ(t) as 

a sum of infinitesimally narrow, idealized spikes in the form of Dirac δ functions:  

 

Thus, STA(τ) can be expressed as an integral of the stimulus times the neural 

response function :  

 

, where T is the total duration of a trial and r(t) is the firing rate at time t. The correlation 

function of the firing rate r at time t and stimulus s at time (t+τ) is denoted by:  
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Finally, STA(τ) as the correlation between stimulus and neural response was 

calculated by:  

  (1) 

Maximum value of STA (τ), given by MCorr, was indicating the maximum 

correlation between stimulus and neuronal response, for each of the ISI categories, and has 

the dimension of light intensity.  

 

 

2.3 Grating bars stimulus  

We then used a second stimulus consisting in drifting grating bars moving in eight 

different directions 45 degrees apart.   

Thus, direction selectivity was tested using a square wave spatial grating moved in    

N = 8 equally separated directions ϕi = i⋅(2π/N) , i = 0,1,…,N-1 .   

For each direction the stimulus was presented for a duration T = 12 seconds followed 

by a stimulus free interval of the same length.   

For each equally separated direction of movement we performed n = 7 repetitions of 

the stimulus.   

The total stimulus length was 672 seconds, consisting in 12 seconds for each 

direction multiplied by 8 different directions and by 7 different trials. The spatial extent of 

the moving grating was 2500 µm on the retina and thus, multiple cells were stimulated and 

recorded simultaneously.  
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Individual tuning curves were obtained considering the firing rate of each cell for 

each of the eight equidistant directions. The firing rates for each cell and for each of the 

stimulus direction were averaged over the number of stimulus repetitions (seven repetitions 

of the stimulus presentation were done for each different direction of movement).    

In this study we used data from 20 retinal ganglion cells. Three of the cells were ON 

direction selective (ON DSRGC), twelve of the cells were ON-OFF direction selective (ON- 

OFF DSRGC) and five of the cells were non-directional selective (NON-DSRGC).  

  

2.4 Direction Selectivity Index  

To quantify the directional tuning of a neuron, we used the direction selectivity index (DSi) 

as described by Taylor and Vaney (2002),  

 

 is a vector pointing in the direction of the stimulus with the length equal to the number of 

spikes recorded during presentation of the stimulus (ri ). The DSi explains the directional 

tuning based on the firing rates for different particular movement directions of the visual 

stimulus. The minimum value of 0 characterizes a non-directional neuron whereas the 

maximum value of 1 characterizes a neuron that responds for a single direction of 

movement. The higher the DSi the higher direction selectivity is.  
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2.5 ISI Directional Index  

Once we quantified the directional tuning of the recorded ON-OFF RGCs we asked 

what influence the ISI distribution may have over the calculated DSi. In this sense we 

isolated ISIs of each recorded spike trains as response of each direction of stimulus 

movement again into the following categories: 0 < ISI ≤ 10 ms; 10 < ISI ≤ 20 ms; 20 < ISI ≤ 

50 ms; 50 < ISI ≤ 100 ms and all spikes. To compare the direction selectivity for different 

ISIs values with the direction selectivity for entire recorded activity we defined the 

following index as ISI directional index (SI):  

DSi(ISI) 

 SI =  .   (3)  
DSi(DSRGC) 

  

DSi(DSRGC) represents the index of selectivity calculated for all recorded activity 

as indicated in the eq. 1., and DSi(ISI) represents the directional tuning calculated for the 

separated retinal spikes according with different ISI values, as mentioned above. This index 

is quantified similar with the DSi in Eq.1 having into account that for each direction of 

stimulus movement we took into account the total number of ISIs (of a certain value) instead 

of total number of spikes.  

 

 

2.6 Bursting activity  

It is already well known that optimal stimulus elicit neurons to raise their firing rates 

in response. To check if the short ISI activity is strictly firing rate dependence we scanned 

the recorded spike trains and evaluated the bursting activity. As already described burst 
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firing events were considered when at least two spikes occurred after an ISI larger than a 

threshold of 50 ms and are followed by an ISI shorter than 5 ms (Godwin et al., 1996b; 

Guido et al., 1995; Lu et al., 1992). Burst rate rburst was quantified by dividing the number 

of bursts per total duration of stimulus presentation for each trial for each cell.  

 

2.7 Artificial spike trains  

If the short ISI activity tuning at preferred direction would be strictly firing rate 

dependence one presumes that  Poisson-like artificial spike trains with the same firing rate 

as the recorded spike trains would give similar ISI distribution. Thus we generated artificial 

spike trains with the firing probability distributed according to a Poisson process with a 

refractory period of 5 ms. As mentioned before these artificial spike trains hold the same 

averaged firing rates and as a consequence the same DSi as the recorded DSRGCs.  

 

2.8 Entropy  

To calculate the post stimulus time histograms (PSTH) we aligned the spike 

sequences with the onset of stimuli that repeated n times. For periodic stimulus (grating 

bars), we moved the response sequence back to time zero after each time period T, and 

count n as the total number of periods of data. We then divided the stimulus period T into N 

bins of size ∆ and counted the number of spikes ki from all n sequences that fall in the bin i. 

The optimal bin size ∆ results from minimizing: (2k-σ)/∆2, where k is the mean of ki and σ 

is the variance of ki (Shimazaki and Shinomoto, 2007).   

We then averaged the calculated PSTH for the n repetitions of the stimuli (n = 30 for 

white noise stimulus and n = 7 for grating drifting bars stimulus) and obtained the time-

varying average firing rates <r(t)>.  
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In order to evaluate the information about the stimulus carried by single spikes we 

used the above calculated time varying average firing rates <r(t)> and computed the 

estimates of entropy (H) as follows (Strong et al., 1998; Brenner et al., 2000; Sincich et al., 

2009; Casti et al., 2009; Rathbun et al., 2010):  

 

We calculated H for n = 20 cells for white noise stimulus and n = 12 cells for drifting 

grating bar stimulus and for each of the ISI categories mentioned at the beginning. 

Additionally for the second stimulus we calculated H for each of the eight equidistant 

directions of stimulus movement. Thus, we could estimate the entropy tuning for each cell, 

and evaluate the amount of information carried at each direction of stimulus movement 

similarly with Eq. 2:  

 

, where Hi represents the entropy for each of the stimulus direction of movement.  

To take into account the problem of the size limitation of data and to correct the 

resulting bias, the information rates were estimated by extrapolating correct entropy Hc from 

segments of the total data, in an increasing order for different bin sizes (∇τ) and fit by 

(Strong et al., 1998):  

 

The linear dependence gave a good fit for all cells included in our analysis. This 

measure of information rates does not make any deduction about the number of relevant 

stimulus features and let us know about the amount of information (bits/spikes) contained in 

single spikes. 
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Statistics: To check the statistical significant differences among different recorded 

data (ON-OFF DSRGCs and ON DSRGCs) or generated data (Artificial spike trains) we 

used statistical t-test and calculated the corresponding p values. In general the data was 

summarized over cell types and different trials by using the mean and standard deviation.  

 

 

3 Results  

Maximum correlation between stimulus and neural response  

In order to investigate the correlation between visual stimulus and ISI distribution 

within neural response at the output of retina, we firstly applied white noise visual stimulus 

and recorded responses from 20 retinal ganglion cells of rabbit retina. Among them, 5 cells 

were non-directional selective (NDSRGCs) and 15 of them were directional selective cells 

(DSRGCs). Scanning the spike trains of each retinal ganglion cell in response to the 

stimulus applied, we found that for all of the cells most of the spikes were preceded by short 

time intervals, that is, the activity with short ISI was predominant. Similar results were also 

previously reported (Usrey et al., 1998).  

 

  

Fig. 1 Distribution of mean ISIs for all 20 cells. Y axis represents the percentage of all ISI for each ISI category 

distributed on X axis. Maximum of mean ISI distribution for all cells was at ISI between 0 and 10 ms.  
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Figure 1 shows the distribution of mean ISIs for all 20 cells. The majority of the ISIs 

was below 200 ms. Maximum of mean ISI distribution for all cells was at ISI between 0 and 

10 ms. Thus, we found mean ISI = 49.60% +/- 14.63  (n=20) for ISI >0 and ISI≤ 10 ms, 

mean ISI = 9.89 +/- 4.73 % (n=20) for ISI between 10 and 20 ms and consistently decreased 

for larger ISIs.  

  

 

Fig. 2 The receptive field of a retinal ganglion cells for each of the mentioned ISIs categories, in the left side, 

and the maximum correlation found between stimulus intensity and recorded spiking activity, in the right side. 
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First row correspond to 0<ISI≤ 10 ms and presents the maximum correlation between stimulus and neural 

response. Second row is for 10<ISI≤ 20 ms, third row is for 20<ISI≤ 50 ms, fourth row is for 50<ISI ≤ 100 ms 

and last row is for all ISIs included. As ISI increases the maximum correlation between stimulus and neural 

response decreases.  

  

Recent scientific results suggest that short ISIs in the retinal ganglion cell’s spike 

trains are associated with cell’s receptive field shape and stimulus intensity (Rathbun et al.,  

2007). We used white noise and reverse correlation to map the receptive field of each cell 

for different values of ISI. To do so, we selected all the spikes in each cell’s spike train with 

0<ISI ≤ 10 ms, 10<ISI≤ 20 ms, 20<ISI≤ 50 ms, 50<ISI≤ 100 ms and applied reverse 

correlation analysis to check the correlation between the stimulus intensity and recorded 

neural response. Figure 2 shows the shape of the receptive field of a recorded DSRGC for 

each of the above mentioned ISIs categories, in the left side, and the maximum correlation 

found between stimulus intensity and recorded spiking activity, in the right side.   

Firstly, we noticed that the spatial location of the ISI specific receptive field’s center 

was not changed across the ISIs categories and thus remained fairly the same regardless the 

fact that ISIs varied. It is beyond our scope to study in details how the cells receptive field’s 

size change as ISI varies. However, it worth to be noted that we also found  slight changes in 

the size of receptive field of the recorded cells for different ISI categories and for each cell, 

as previously reported. Instead, our aim is to ask how ISI distribution is correlated with 

visual stimulus applied. Thus, we used reverse correlation and mapped the ISI specific 

receptive field and quantified the maximum correlation between stimulus and recorded 

spiking activity as described by MCorr, see 2.2 Methods, Eq.1 (Fig.2 – right column).   

For all cells and cell types we found that maximum correlation between visual 

stimulus and recorded neural response was for ISIs shorter than 10 ms. As ISIs increase up 

to 20 ms (i.e. 10< ISI ≤ 20 ms) maximum correlation between stimulus and neural response 
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decreases down to about 85% of the value for 0<ISI≤ 10ms and continue to decrease for 20< 

ISIs ≤ 50 ms when it becomes slightly lower than maximum correlation found for all spikes 

in the recorded activity (all ISIs category). At this value maximum correlation is about 80% 

of the value for 0< ISI ≤ 10ms. For all spikes ISI category, maximum correlation is slightly 

higher, about 82% of value for 0< ISI≤ 10ms. For 50< ISI ≤100 ms the maximum 

correlation between stimulus and recorded neural activity decreases even more, toward 60% 

of shortest ISI category. Figure 3 shows the distribution of normalized MCorr for all ISIs 

categories and for all 20 cells recorded. Thus, for 0< ISI <10 ms normalized MCorr has the 

highest value obtained and continue to decrease as ISI increased: 10<ISI≤ 20 ms MCorr= 

0.851 +/- 0.09 (n=20), 20<ISI≤ 50 ms MCorr = 0.793 +/- 0.09 (n=20), 50<ISI≤ 100 ms 

MCorr = 0.616 +/- 0.08 (n=20) and for all spikes MCorr = 0.845 +/- 0.09 (n=20).  

 

  
Fig.3  Relationship between normalized correlations (Y axis) calculated from the recorded neural response 

following the stimulus presentation, and different ISI categories (X axis).  

 

It is already known that the efficacy to evoke an action potential (AP) at the 

postsynaptic target, is greatest for spikes preceded by short interspike intervals (ISI ≤ 10 

ms). This efficacy decreases as ISI increases so that for ISI longer than 30 ms has almost no 
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significant influence (Carandini et al., 2007; Sincich et al. 2007). This together with our 

results suggests that there is a positive association among maximum correlation between 

stimulus and ISI of the recorded spike trains and the efficacy of evoking an AP at the 

postsynaptic target. In this logic ISI based filtering of retinal spike trains varies with stimuli 

and help preserving particular visual information, which might be of a maximum 

significance, toward the next stage within early visual system. We next checked if this 

association is robust for different visual stimulus. To do so we applied drifting grating bars 

moving in 8 different directions, to the retinal ganglion cells sample. We chose this stimulus 

due to the fact that for direction selective retinal ganglion cells drifting grating bars moving 

in the preferred directions represents the optimal stimulus and thus evoke the maximum 

response. If this ISI based filtering holds true, the information regarding the preferred 

direction of stimulus movement should be preserved against the intermediate directions.  

 

 

Optimal stimulus and ISI based filtering  

In the next step we analyzed the recorded neural activity applying a different 

stimulus consisting in drifting grating bars (see 2.3 Methods). At each direction of stimulus 

motion we recorded the cells’ responses consisting in different spike trains. Thus we 

calculated the directional tuning of each cell and quantified it as directional selectivity index 

(DSi) as described in Methods 2.2, Eq.2. Twelve of the cells were ON-OFF directional 

selective (ONOFF DSRGCs), three of the cells were ON direction selective (ON DSRGC) 

while the other five cells were non-directional selective (NDS). The mean index of 

selectivity for ON-FF DSRGCs was DSi = 0.64 +/-0.08 (n=12), for ON DSRGC the mean 

DSi= 0.34 +/- 0.06 (n=3) while for NDSRGCs we found that mean index of selectivity was 

DSi = 0.06 +/-0.01 (n=5), (Fig. 4a) in accordance with previously reported results (Zeck et 

al. 2007, Taylor & Vaney 2002).   
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The results, using white noise stimulus and reverse correlation, indicated that shortest 

ISI spiking activity was associated with maximum correlation between stimulus and 

recorded spiking activity in response to the stimulus presented. That is, when short ISIs are 

present one would expect that the stimulus applied influenced at maximum the receptive 

field of the cell and thus the probability that the cell transmit further on that particular 

information about the stimulus. Direction selective cells have the property that respond 

vigorously at the preferred direction of stimulus movement and are silent for the opposite 

null direction. Thus, the stimulus feature of maximum importance for the ON-OFF DSRGCs 

is the direction of stimulus motion.  

We firstly scanned all the spike trains of each cell, quantified the ISI distribution and 

found that for ON-OFF DSRGCs the peak is obtained for 0<ISI < 10 ms and is significantly 

higher than for the peak obtained for the rest of the RGCs (ON-DS and NDS) which did not 

show a clear prominent peak in ISI distribution. The short ISI spiking activity for all ON-

OFF DSRGCs shows a mean ISI of 65.2 % for 0<ISI≤ 10ms, decreasing for 10<ISI≤ 20 ms 

at 9.48 %, for 20<ISI ≤ 50 at 2.41 % and for 50<ISI≤  100 ms at only 1.65 %. By contrary, 

NDS presented a lower mean ISI value for 0<ISI≤ 10 ms than for directional selective cells, 

about 41.1 % of total ISIs. As ISI increases we noticed higher mean ISI for NDS as follows: 

17.18 % for 10<ISI≤ 20 ms, 6.6% for 20<ISI≤ 50 ms and 4.62 % for 50<ISI≤ 100 ms 

(Fig.4b). ISI spiking activity is more concentrated on short values for directional selective 

cells than for NDS where ISI spread out toward higher values.  

Further on we scanned again the recorded spike trains of all cells and selected in to 

separate categories, spiking activities containing 0<ISI ≤ 10 ms, 10<ISI ≤ 20 ms, 20<ISI ≤ 

50 ms and 50<ISI ≤ 100 ms. For each of these selected spike trains we calculated the 

directional tuning and quantified it again with an index of selectivity similar as in Eq.2 (see 

2.4 Methods).   
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Fig.4  a) Index of Selectivity (DSi) for three different types of the recorded cells in response to moving grating bars.  

b) Total ISI distribution for directional selective neurons (DS) gray bars and non-directional selective neurons 

(NDS) blue bars.  

 

Firstly, we noticed that for ON-OFF DSRGCs, the highest activity with short ISI was 

distributed at preferred direction and thus correlating the short ISI spiking activity with 

signaling the direction of stimulus motion.  

We found the highest DSi for the spiking activity of the ON-OFF DSRGCs with 0 <  

ISI ≤ 10 ms. Moreover, once that ISI increased the DSi decreased. That is, the shorter the ISI 

is the better direction of stimulus movement is signaled by the ON-OFF DSRGCs.   

Indeed Fig.5a shows how sharpening in direction selectivity is produced for spikes 

with short ISIs. Thus for the ON-OFF DSRGC exemplified in Fig.5a, for 0< ISI ≤ 10 ms, we 

found DSi = 0.70, and decrease as ISI value increase, such as for 10< ISI ≤ 20 ms, DSi = 

0.62, for 20< ISI≤ 50 ms DSi = 0.59, for 50<ISI≤ 100 DSi = 0.56 and for all spikes DSi = 

0.49.  

The decreasing in index of selectivity as ISI increases was found for all twelve 

recorded ON-OFF DSRGCs (Fig.5b). Thus, at shortest ISI, 0<ISI≤ 10 ms we found the 
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highest DSi = 0.67 +/- 0.08 (n=12), for 10<ISI≤ 20 ms, DSi= 0.57+/- 0.1 (n=12), for 

20<ISI≤ 50 ms, DSi= 0.49 +/_ 0.08 and for 50<ISI≤ 100 ms, DSi= 0.38 +/- 0.07 (n=12).  

 

  

Fig.5 a) Example of sharpening in tuning curves for an recorded ON-OFF DSRGC for different ISI categories.  

b) Distribution of DSi for all recorded ON-OFF DSRGCs for all ISI categories.  

 

Furthermore, Fig.6 depicts the ISI distribution for all ON-OFF DSRGCs reflecting 

the finding that short ISI activity is focused at preferred directions of stimulus motion. We 

found that for 0<ISI≤ 10 ms, a percentage of 38% +/- 5.1 (n=12) from all ISIs of this 

category, was at preferred direction. At opposite direction of stimulus motion we found only 

0.9% +/- 0.5 (n=12) of all ISIs in this category.  

In the next ISI category, 10<ISI≤ 20 ms, from the total of ISIs which belong to this 

category we found at preferred direction 32.8% +/- 6.6% (n=12) since at opposite direction 

we noticed only a small percentage of 1.4% +/- 1.4 (n=12). However, one can observe a 

slight increasing in 10<ISI≤ 20 ms spiking activity at opposite direction.  

Further on, for 20<ISI≤ 50 ms, at preferred direction we found 32.16% +/- 0.8 

(n=12) and at opposed direction 2.3% +/- 2 (n=12). Finally, for the last ISI category, 50 

<ISI≤ 100 ms at preferred directions we found 23.8% +/- 4.8 (n=12) and at opposed 

direction 3.7% +/- 2.2 (n=12) of total ISIs from this category.  
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Thus, we found that the percentage of short ISIs at preferred direction becomes lower 

as ISI category increases and the percentage of short ISIs at opposed direction increases as 

ISI category increases. In this way the decreasing of DSi noticed above (Fig.5b) as ISI 

increases might have an explanation in this distribution of short ISI activity at preferred 

direction. As ISI increases we found increasing short ISI activity at the intermediate and 

opposed directions too, and thus the selectivity becomes weaker (Fig. 6).  

  

  

Fig.6 a-d) Total ISI distribution for all recorded ON-OFF DSRGCs, at preferred, intermediate and opposite 

directions of stimulus movement, for all ISI categories.   

 

In the next set of investigations, to better exemplify the relation between ISI and 

directional tuning, we quantified the ISI Directional Index (SI, Eq.3. 2.5 Methods) as a 

measure of directional selectivity for each ISI category in comparison to the entire spike 

train. Figure 7 shows how this index varies with different ISI values. Briefly, for ON-OFF 
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DSRGCs the best sharpening is observed at ISI = 5 ms where SI = 1.47 +/- 0.09 (n=12)  and 

decreases as ISI increases, down to 1 which means that signaling the direction of stimulus 

motion is as good as for all spikes in the spike train. SI = 1.30 +/- 0.08 (n=12) for ISI = 10 

ms, SI=1.25 +/- 0.08 (n=12) for ISI =15 ms, SI = 1.21 +/- 0.09 (n=12) for ISI = 20 ms, SI = 

1.18 +/-0.08 (n=12) SI = 1.13 +/- 0.08 (n=12) for ISI = 100 ms and SI= 1.07 +/- 0.08 (n=12) 

for ISI =200 ms.  

  

   

Fig.7 ISI Directional Index  variation for all ON-OFF DSRGCs.  

 

 

Firing Rate dependence   

Up to now we have seen applying white noise and reverse correlation analysis that 

for different ISI values the correlation between stimulus and neural response varies and that 

maximum correlation between stimulus and neural response is obtained for shortest ISI 

category (0<ISI≤10 ms). We then noticed that for a different stimulus, drifting grating bars, 

short ISI spiking activity was focused at preferred direction (optimal stimulus for DSRGCs) 

and that index of directional selectivity was decreasing as ISI was increasing. Our results 
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together with the already known paired spike efficacy and the major influence of short ISI 

activity in signaling information about visual stimulus at different synapses along early 

visual system (Sincich et al., 2007, Uglesich et al., 2009, Rathbun et al., 2010, Sincich et 

al., 2009) bring us to the hypothesis that ISI temporal filtering might be part of a mechanism 

responsible for preserving information in the transmission process from retina to LGN.   

Further on to check whether is just a strictly dependence of short ISI activity at 

optimal stimulus by the firing rate or presumably another mechanism is involved (i.e. burst 

firing) we constructed Poisson-like artificial spike trains with similar firing rate and tuning 

(same DSi) as the recorded ON-OFF DSRGCs (see 2.7 Methods).  

Additionally we scanned the spike trains of all 12 ON-OFF DSRGCs and quantified 

the bursting activity as described in 2.6 Methods.  

 

 

Fig.8 Distribution of spikes for all ISI categories, in number of spikes, for ON-OFF, ON and artificial spike 

trains.  

 

Figure 8 shows the number of spikes for each of the ISI categories at preferred 

direction of stimulus movement. For ON-OFF DSRGCs we noticed at preferred direction 
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within 0<ISI≤ 10 ms category, a mean number of spikes = 155 +/- 10 (n=12). For artificial 

spike trains with similar firing rates and DSi we found a mean number of spikes = 20 +/- 4 

(n=12). For the other DSRGC type, the ON-DS we found a mean of 56 +/- 8 (n=3). Further 

on, for the category 10<ISI≤ 20 ms the mean number of spikes for ON-OFF DSRGCs was 

26+/-4 (n=12) since for artificial 14+/-4 (n=12) and for ON-DS 19 +/-4 (n=3).  

As ISI increases (20<ISI≤ 50 ms) the mean number of spikes for ON-OFF decreases 

to 14 +/- 3 (n=12), for artificial spike trains 10 +/- 2 and for ON-DS to 12 +/- 2 (n=3). 

Finally for the last category, 50<ISI≤ 100 ms, for ON-OFF the mean number of spikes was 

35 +/- 5 (n=12), for artificial spike trains 57 +/- 6 (n=12), and for ON-DS 41 +/-6 (n=3).  

Since the artificial spike trains have the same firing rates and tunings as the recorded 

ON-OFF cells one would expect similar number of spikes for each ISI categories. By 

contrary we found a statistically significant difference (p<0.02) between the short ISI 

distribution of the ON-OFF recorded spike trains and the artificial spike trains. The 

difference that our findings show, consistently indicate that the increase in number of spikes 

for short ISI spiking activity cannot be predicted by stochastic Poisson process and that 

another mechanism should be involved within distribution short ISI spiking activity and thus 

it is not just a strictly firing rate dependence. Additionally, for artificial spike trains the short 

ISI spiking distribution did not show large differences between different ISI categories and 

was significantly larger just for ISI >50 ms. This could also explain the direction selectivity 

which has also an almost uniform distribution for different ISI categories except for the 

largest one (Figure 9). We found for 0<ISI≤ 10 ms a DSi = 0.76 +/-0.14 (n=12), for 10<ISI≤ 

20 ms DSi = 0.76 +/- 0.13 (n=12), for 20<ISI≤ 50 ms DSi = 0.73 +/- 0.14 (n=12) and for 

50<ISI≤ 100 ms DSi=0.53 +/- 0.14 (n=12).  
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Fig.9Variation of DSi for artificial spike trains versus different ISI categories.  

 

The results from the artificial spike trains indicate the degree of directional tuning 

does depend on the short ISI activity at preferred direction encountered in ON-OFF 

direction selective cells. It does not depend on the neuron’s firing rates that are different for 

the different recorded DSRGCs and artificial spike trains (compare Fig 5b and Fig. 9).  

Since firing rate strictly cannot explain the neural response regarding the short ISI 

spiking activity and optimal stimulus, we suggest that an intrinsic spiking property of 

ONOFF DSRGCs, namely bursting activity is carrying part of the responsibility of short ISI 

spiking activity at preferred direction (optimal stimulus).  

Next step we scanned the spike trains of the recorded ON-OFF DSRGCs and the 

artificial spike trains mimicking the 12 recorded ON-OFF cells and quantified the bursting 

activity in each spike train according to 2.6 Methods. Figure 10 shows the mean number of 

bursts per trial at preferred direction for each of the recorded cells and the simulated spike 

trains.   

We found that burst-like activity shows statistically significant difference (p<0.0001) 

between ON-OFF DSRCs spike trains and the artificial spike trains. As shown in Fig. 8 
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burst activity at preferred direction for individual ON-OFF cells was significantly larger 

than for the artificial spike trains, the mean for all twelve cells was  17.45 +/- 5.4 (n=12) 

(Figure 10corresponding red dot). For artificial spike trains we found a lower burst rate at 

preferred direction (twenty times lower than for ON-OFF) even though the firing rate 

mimicked that of the ten recorded ON-OFF DSRGCs, burst rate artificial =  2.94+/- 1.5 

(n=12) (Fig 10 corresponding red dot).   

 

  

Fig.10 Burst activity (mean number of bursts/trial) for individual cells. ON-OFF DSRGCs at right and at left 

side artificial spike trains. Red dots are  mean values for all ON-OFF DSRGCs and for all artificial spike trains, 

respectively.  

 

Beside this discrepancy there is another factor that worth to be noted – that burst-like 

activity for ON-OFF DSRCs was tuned at preferred direction (data not shown) since the 

burst rate for artificial spike trains was almost equal zero and pointing non-preferred 

directions.  
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Information Rates  

In the next set of investigations we checked how much information regarding visual 

stimuli different ISI categories carries on. Not only for white noise stimulus but also for 

drifting grating bars shortest ISI category, 0<ISI≤10 ms, carried the highest information rate. 

As ISI increased we found lower amount of information within the each increasing ISI 

categories.  

We calculated the entropy for all 12 recorded ON-OFF DSRGCs and for each ISI 

category, firstly for the drifting grating bars stimulus (Figure 11a). We found that maximum 

entropy was achieved for shortest ISI category, 0<ISI≤ 10 ms, H= 2.03 +/- 0.49 [bits/spike] 

(n=12). As ISI increased the amount of information about visual stimulus decreased so that 

for 10<ISI<20 ms H=1.26 +/- 0.52 [bits/spike] (n=12), for 20<ISI≤ 50 ms H= 0.85 +/- 0.55 

[bits/spike] (n=12) and finally for 50<ISI≤ 100 ms H=0.55 +/-0.45 [bits/spike] (n=12).  

 

  

Fig.11 a) Variation of entropy in bits/spikes for all ON-OFF DSRGCs versus different ISI categories.  

b) An example of entropy (bits/spike) tuning curve for one recorded ON-OFF DSRGC for all ISI categories.  

 

Using Eq.5 (see 2.8 Methods), similarly to index of directional selectivity for firing 

rates, we calculated the tuning of entropy for all ISI categories. Figure 11b shows one 
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example of an ON-OFF DSRGC and indicate that as ISI decreases the information tuning 

becomes more sharpened.   

 For all 12 recorded ON-OFF DSRGCs we found that index of selectivity for entropy (DSiH) 

decreased as ISI increased (see Figure 12).  For 0<ISI<10 ms DSiH= 0.54 +/- 0.17 (n=12), for 

10<ISI≤ 20 ms DSiH=0.45 +/- 0.2 (n=12), for 20<ISI≤ 50 ms DSiH=0.40 +/- 0.2 (n=12) and for 

50<ISI≤ 100 ms DSiH=0.35 +/- 0.2 (n=12).  

 

  

Fig.12 Variation of index of selectivity (DSi) of entropy for all recorded ON-OFF DSRGCs and for all ISI 

categories.  

 

All together we found for all twelve ON-OFF DSRGCs that the amount of 

information regarding visual stimulus was highest for shortest ISI category and was tuned at 

preferred direction of stimulus movement.  

Finally, for white noise stimulus we noticed the same trend in decreasing the 

information rates as ISI increased (Figure 13). Thus, for 0<ISI≤ 10 ms DSiH= 0.70 +/-0.2 

(n=20), for 10<ISI<20 ms DSiH=0.41 +/- 0.2 (n=20), for 20<ISI≤ 50 ms DSiH = 0.32 +/- 

0.2 (n=20) and for 50 <ISI≤ 100 ms DSiH= 0.15 +/- 0.1 (n=20).  
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Fig.13 Variation of entropy (bits/spike) for all 20 RGCs recorded using white noise stimulus versus different 

ISI categories.  

 

Consistent with our above mentioned results, these findings suggest that the ISI– 

based filtering of retinal spikes is part of the mechanism of information processing that  

recode the visual signal using a sparse coding (Olshausen and Field, 2004), to improve the 

overall coding efficiency from one stage to another within the visual system.  

 

 

Comparison between ON-OFF DSRGCs and ON DSRGCs  

  As we have already seen in Fig.8 the two types of DSRGCs, the ON and ON-OFF, show 

statistically significant differences (p<0.01) concerning the ISI distribution within their recorded 

spike trains. ON DSRGCs responded to the stimulus presentation at preferred direction with only 

around one third of the number of spikes as compared with ON-OFF DSRGCs for the shortest ISI 

category. For the intermediate ISI categories (10<ISI<20 and 20<ISI<50 [ms]) ON and ON-OFF 

DSRGCs showed a similar number of spikes in each ISI category. Moreover for the largest ISI 
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category, we found for the ON DSRGC a slightly larger number of spikes than for ON-OFF 

DSRGC.    

 

  

Fig.14a-d) Total ISI distribution for all recorded ON  DSRGCs, at preferred, intermediate and opposite 

directions of stimulus movement, for all ISI categories.   

 

Comparing Fig. 6 with Fig.14 we notice the differences of ISI distribution for each 

ISI category between ON-OFF and ON cell types. Thus, for ON cells we found at preferred 

direction (Fig. 14 a) for 0<ISI≤ 10 ms, a percentage of 28.12 % +/- 4.2 (n=3) from all ISIs of 

this category which represents 10% lower number of ISI than ON-OFF DSRGCs (Fig. 6a). 

At opposed direction we found a percentage of 2.1% +/- 0.4 (n=3) from all ISIs of this 

category, for ON DSRGCs which is larger than for ON-OFF DSRGCs. Thus, within shortest 

ISI category, ON DSRGCs have lower activity at preferred direction than ON-OFF 

DSRGCs and higher activity at opposed direction a discrepancy which may explain the 

weaker direction selectivity for ON DSRGCs than for ON-OFF DSRGCs. Interestingly for 
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20<ISI<50 ms category we found at preferred direction a percentage of 43.81% +/- 13 (n=3) 

of total ISIs (Fig. 14 c) which suggests that ON DSRGCs preferentially use this intermediate 

ISI category instead of shortest ISI category at preferred direction to signal the stimulus 

motion direction. By contrary for ON-OFF DSRGCs the shortest ISI category was found as 

having the highest percentage at preferred direction (Fig. 6 a). This difference is enhanced 

further on when calculating the index of selectivity for each of the ISI category (Fig.15). The 

highest direction selectivity was found for 20<ISI<50 ms category (DSi = 0.52 +/- 0.08 

(n=3)) since for the rest of the ISI categories the directional selectivity remains almost 

constant around 0.3. For ONOFF DSRGCs a different situation was encountered (Fig. 5b). 

The highest direction selectivity was found for shortest ISI category and decreased as ISI 

category increased.  

 

   

Fig.15 Distribution of DSi for all recorded ON DSRGCs for all ISI categories.  

 

Further on, burst analysis revealed other statistically significant difference 

(p<0.0002) regarding the burst distribution between the two directional selective cell types. 

Fig. 16 shows the mean number of bursts per trial at preferred directions for each cell and 
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cell types. ON-OFF DSRGCs have shown consistently larger number of bursts at preferred 

direction than ON DSRGCs. Mean number of bursts per trial for ON-OFF was 17.45 +/- 5.4 

(n=12) (Figure 16 -right side corresponding red dot) since for the ON DSRGCs the mean 

number of bursts per trial was 1 +/- 0.7 (n=3) (Figure 16 -left side corresponding red dot).  

  

  

Fig.16 Burst activity (mean number of bursts/trial) for individual cells. Left ON DSRGCs, right side ON  
DSRGCs. Red dots indicate mean values for all ON-OFF DSRGCs and for all ON-OFF DSRGCs, respectively.  

 

The differences between the two cell types regarding the burst activity consisted not 

only in the mean number of burst at preferred direction but also in mean number of spikes 

per burst. Fig. 17a) shows the colored coded distribution of mean number of spikes per burst 

for each cell. In the first four rows of squares are the ON-OFF cells and in the last row are 

the three ON cells. For each square the X axis depicts the stimulus directions and the Y axis 

represents the burst category as the number of spikes per burst. Thus, first row in each 

square represents the mean number of bursts with two spikes per burst for each of the eight 

different stimulus direction. Second row represents the mean number of burst with three 

spikes per burst for each direction and so on to the last row which represents the mean 

number of bursts with 10 spikes per burst for each direction.  



  154 

Shortest burst category, consisting in 2 spikes per burst, was preferred by both cell types as 

spiking activity in response to stimulus presentation. However, for ON-OFF cells the mean 

number of bursts within this burst category (with 2 spikes per burst) was larger than for ON 

DSRRGCs. Interestingly, ON DSRGCs did not respond to the stimulus presentation with 

bursting activity consisting in more than 2 spikes per burst, unless occasionally. By contrary 

ON-OFF DSRGCs showed consistent burst-like activity with bursts having more than 2 

spikes per burst. Thus, for each ON-OFF DSRGCs we found bursts consisting in 3 spikes 

per burst up to 6 spikes per burst concentrated at the preferred directions. Indeed, burst 

categories with 8, 9 or 10 spikes per burst were rarely used not only by ON DSRGCs but 

also by ONOFF DSRGCs (Fig 17 a - last rows of each square). The mean number of bursts 

for each burst category is shown in Fig. 17 b) as the mean for all 12 ON-OFF DSRGCs - left 

image, and the mean for all 3 ON DSRGCs  - right side image. One can notice how ON-

OFF DSRGCs used not only short bursts, with 2 spikes per burst, but also larger bursts with 

2, 3, 4, 5 and 6 spikes per burst in order to signal the direction of stimulus motion. By 

contrary, ON DSRGCs responded mostly with shortest burst category consisting in 2 spikes 

per burst. Additionally for ON-OFF DSRGCs we found large bursts (bursts with more than 

2 spikes) predominantly at preferred direction since at opposed and intermediate directions 

we found a lower number of bursts mostly consisting in 2 spikes per burst.  

Figure 17 c, d) show how ON DSRGCs use predominantly shortest burst category, 

with 2 spikes per burst at preferred direction. The mean number of bursts consistently 

decreased for bursts with more than 2 spikes, mean number of bursts with 2 spikes 

represented a percentage of almost 62% of total bursts at preferred direction since for bursts 

with three and four spikes per bursts we found a very low percentage around 10% of total 

bursts at preferred direction.  For larger bursts we found 0% for 5 and 6 spikes per burst and 

only around 3% for bursts with more than 6 spikes.   
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Fig.17  a) Color coded burst activity for each of the recorded cells. First four rows represent each of the 12 recorded 

ON-OFF DSRGCs since the last row stands for the three recorded ON DSRGCs. The color code represents the mean 

number of bursts per trial. For each square the Y axis depicts the burst category starting with first row as 2 spikes/burst 

following with increasing number of spikes per burst up to the last category consisting in bursts with 10 spikes per 

burst. X axis for each square represents the eight different stimulus directions of movement.  

b) Left color map represents the mean burst activity for all 12 ON-OFF DSRGCs. Y axis represents the different burst 

categories in number of spikes/burst. X axis represents the stimulus directions. Right color map represents the same 

for all 3 ON DSRGCs.  

c) Mean number of bursts for each of the burst category (in number of spikes/burst) at preferred direction for all ON 

DSRGCs.   

d) Mean number of bursts for each of the burst category (in number of spikes/burst) at preferred direction for all  

ON-OFF DSRGCs.  

 

For ON-OFF DSRGCs the largest percentage was 38%, also for the shortest burst 

category but did not decrease abruptly for larger burst where we found 27% for 3 spikes per 

burst and 18% percent for 4 spikes per burst and 8% for 5 spikes per burst. Larger bursts 
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were rarely accounted and summed remained below 10% of total bursts at preferred 

direction.  

 The differences between ON-OFF DSRGCs and ON DSRGCs were statistically significant 

(p<0.02) regarding the information about stimulus contained by each ISI category.  Fig.11-a shows 

that for ON-OFF DSRGCs as ISI increased we found lower amount of information within the each 

increasing ISI categories. For ON DSRGCs Fig.18-b shows that for two of the ISI categories, 

namely 0<ISI<10 ms and 20<ISI<50 ms the entropy was almost the same: H=0.52 +/- 0.1 

[bits/spike] (n=3) and H=0.51+/- 0.3 [bits/spike] (n=3), respectively.  

This suggests not only that the entropy did not decrease as ISI increase (as it happened 

for ON-OFF DSRGCs) but also that the highest amount of information for ON DSRGCs was 

comparable with the lowest amount of information found for ON-OFF DSRGCs at largest ISI 

category, H=0.55 +/-0.4 [bits/spike] (n=12).  

Additionally for ON DSRGCs, the index of selectivity for entropy DSiH (Fig. 18a) was 

highest for the largest ISI category50<ISI<100 ms (DSi H = 0.55 +/-0.07, n=3) and not for the 

shortest ISI category as it was noticed for ON-OFF DSRGCs.  

  

 

Fig.18 a) Variation of index of selectivity (DSi) of entropy for all recorded ON DSRGCs and for all ISI 

categories.  

b) Variation of entropy (bits/spike) for all ON DS RGCs recorded using grating bar stimulus versus different 

ISI categories.  
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4. Discussion  

Retinal ganglion cells represent the output of the retina toward higher brain areas, 

encoding in their spike trains the representation of the visual stimuli which act upon their 

receptive fields. It is already well known that their firing rate is an important parameter to 

consider how the relation between stimulus and RGC response has to be characterized. 

However many scientific evidence suggests that spike timing, within RGCs spike trains, is 

another parameter which influences how information is transmitted from retina to the lateral 

geniculate nucleus (LGN), which represents the next stage in early visual stimulus (Uglesich 

et al., 2009; Sincich et al., 2009; Rathbun et al., 2010).  Most of the neurons postsynaptic to 

a RGC, in the LGN, fire about half the number of incoming number of retinal counterparts’ 

spikes, in the process of editing the input spike trains (Hubel & Wiesel, 1961; Kaplan et al., 

1987; Usrey et al., 1998).   

Moreover, it has been showed that the precise time between two spikes, within a 

RGC’s spike train is crucial in defining the success of triggering an AP at the postsynaptic 

target in the LGN. Scientific studies demonstrated that within retinal spike trains, spikes 

following an ISI lower than 30 ms are more effective than spikes following longer ISIs in 

evoking an AP at their LGN counterparts (Sincich et al., 2007; Usrey et al., 1998). Within 

this time scale, the temporal summation of excitatory postsynaptic potentials (EPSPs) is 

mediated mostly by NMDA current so that almost all EPSPs add together to bring the 

membrane potential of the postsynaptic cell to the spike threshold, with a stronger efficacy 

at more depolarized membrane potentials (Blitz and Regehr, 2003).   

By contrary, the retinal spikes with ISI larger than 30 ms induce a source of noise 

into the retinal filter that lowers their information capacity (Sincich et al., 2009). In this 

sense, the constraint imposed by this temporal summation of closed in time EPSPs selects 

the stimuli to those that can evoke such EPSPs sequence and thus bring the LGN cell to the 

spike threshold. Thus, the transmission of visual stimulus toward the cortex is refined, 
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irrelevant stimulus features are excluded and consequently LGN cells preserve the important 

information firing less number of spikes.   

This ISI based filtering presumably represents part of the robust mechanism to 

process visual information from retina to higher brain areas (Rathbun et al., 2007) and let us 

know more information about visual stimulus with less number of spikes at postsynaptic 

counterpart within retinogeniculate synapse (Uglesich et al., 2010; Sincich et al., 2009).   

Having these into account we simply asked how this ISI based temporal filter is 

related to signaling new stimulus or important features of the visual stimulus which acts 

upon the RGCs’ receptive fields.   

Across our retinal ganglion cells sample, firstly, we found that their spike trains were 

consistently arranged in periods with high firing rate and interposed periods with isolated 

spikes (Zeck et al., 2007; Fairhall et al., 2006). Most of the ISIs were shorter than 200 ms 

and the peaks in the ISI histograms were found for ISI shorter than 30 ms for both types of 

visual stimulus we used.  

The most important result using white noise stimulus was that we found the 

maximum correlation between stimulus and RGCs neural activity for shortest ISI category 

(ISI ≤ 10 ms). As ISI increased the maximum correlation between stimulus and cells’ 

response decreased so that for ISI > 30 ms the correlation dropped below the value found for 

all ISIs in the spike trains.  

Short ISI spiking activity (ISI < 10 ms) apparently represents the cells response to 

the optimal feature of the visual stimulus presented and presumably the LGN cell 

counterpart is about to use this ISI based filtering in order to refine the visual information 

within its information processing toward higher brain areas (Sincich et al., 2009).   

Retinogeniculate synapse have the great advantage of the one to one connection 

between retinal cells and their LGN cells counterpart (a LGN cell has a single retinal main 

driver acting upon the center of the receptive field and only up to five retinal afferents which 
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affect the surroundings and have a weak influence) and thus the spike timing within the 

spike trains are of a major importance in information processing. At higher synapses, i.e. 

LGN to V1, the convergence of many more cells act together to bring the V1 cell to spike 

threshold (Cleland et al., 1971; Sincich et al., 2007; Usrey et al., 1999).  

To further investigate the influence of the ISI on signaling the optimal stimulus we 

used a second stimulus consisting in drifting grating bars moving in different equidistant 

directions. This type of stimulus is well known as being the optimal stimulus for ON-OFF 

DSRGCs with the same preferred direction as of stimulus direction of movement (Levick et 

al., 1969). We found that short ISI activity was higher for ON-OFF DSRGCs than for the 

other RGC types. Additionally, the short ISI activity was tuned at preferred direction of 

stimulus movement for all recorded ON-OFF DSRGCs.   

Another interesting finding was that the direction selectivity index for all ON-OFF 

DSRGCs was the best for shortest ISI category and decreases as ISI increases. This result is 

strengthening the idea that directional information is better signaled for shortest ISI. An 

explanation for this DSi distribution was given by the ISI distribution for each of the ISI 

categories. For the 0<ISI≤10 ms most of the short ISI were focused at preferred direction 

and thus improving the DSi. As ISI increased the distribution of short ISI activity was less 

focused at preferred direction and thus the difference between preferred, intermediate and 

nonpreferred direction diminished resulting in lower DSi.  

That ISI based filtering influence the signaling of directional information is 

supported also by the finding that ISI Directional Index (a measure of directional selectivity 

of each ISI category in respect with all spikes recorded in a spike train) consistently 

decreased as ISI increased.  

Short ISI distribution cannot be predicted by simply increasing firing rate in a 

stochastic manner as shown by discrepancy between recorded ON-OFF directional selective 

cells and the Poisson-like artificial spike trains which mimic the recorded cells. Previous 
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scientific results have also shown that short ISI spiking activity is not strictly dependent on 

firing rates and that firing events of retinal ganglion cells have a higher precision than firing 

statistics expected by a purely Poisson spike generator (Kara et al., 2000; Rathbun et al., 

2010). To explain this discrepancy we scanned the spike trains and found burst-like firing 

activity more abundant and tuned at preferred direction for ON-OFF DSRGCs and almost 

inexistent for ON DSRGCs and artificial spike trains.  We suggest that for ON-OFF 

DSRGCs burst-like firing activity plays a key role in explaining how these neurons encode 

the visual world in discrete firing events (Berry et al., 1997). The impact of burst-like 

activity was previously demonstrated also at thalamocortical synapse (Swadlow and Gusev, 

2001). Burst-like firing together with temporal summation and spike threshold act as 

mechanism to sharpen not only direction selectivity but also the selectivity for other 

stimulus features (i.e. orientation selectivity in V1) at different stages within the early visual 

system (Usrey et al., 1999; Swadlow et al., 2002; at retinogeniculate synapse - Casti et al. 

2008; Carandini et al. 2007; Sincich et al. 2007; at geniculocortical synapse - Carandini and 

Ferster 2000; Jagadeesh et al. 1997; Priebe and Ferster 2005; orientation selectivity - 

Volgushev et al. 2000; Carandini and Ferster 2000; direction selectivity - Jagadeesh et al. 

1997; Volgushev et al., 2000; Carandini and Ferster 2000; Priebe and Ferster 2005).  

Interestingly, for the other direction selective RGC type, the ON direction selective 

cell, we found less short ISI spiking activity at preferred direction. For this cell type we also 

found a lower index of selectivity too. Additionally, ON DSRGCs show the highest spiking 

activity for larger ISI category and also lower information rates than the ON-OFF DSRGCs.  

The differences between the ON-DSRGCs and the ON-OFF DSRGCs could be explained by 

the fact that for ON-DSRGCs we found much less burst-like activity than for ON-OFF 

DSRGCs. In this case the burst-like activity as part of the mechanism described above 

would give a weaker influence upon improving signaling the directional information at 

postsynaptic target. To account for an eventual improvement in directional information 
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transmission at the output of ON DSRGC (which project to the Accessory Optic System) 

presumably the polysynaptic convergent connectivity arrangement must be taken into 

account (Soodak and Simpson, 1988; Ackert et al. 2006; Oyster 1968).  

Finally, our last results show that the amount of information regarding the visual 

stimulus was highest at shortest ISI category and decreased as ISI increased. Moreover the 

entropy was tuned at preferred direction of stimulus motion having an index of selectivity 

which decreased as ISI increased. These findings clearly show that most of the information 

regarding visual stimulus are carried by shortest ISI and are robustly correlated with the 

preferred stimulus feature.   

Our results are in the same trend with other results from recent studies which have 

shown that the amount of information carried by the LGN cell spike train could be even 

similar to that of its retinal counterpart but with about half number of spikes for the relay 

spike train (Uglesich et al., 2009; Sincich et al., 2009). These findings suggest that at the 

output of LGN cell the retinal information is represented in a sparse form and thus with an 

increasing efficiency. Another recent scientific evidence supports this idea and shows that 

the average information conveyed by a single spike increases across the retinogeniculate 

synapse by selectively transmitting retinal spikes with the most information (Rathbun et al., 

2010).   

It is already well known that sparse coding used by neurons increasingly from one 

stage to another is of a fundamental importance concerning coding efficiency, energy 

efficiency, speed of information processing and increasing the storage capacity of memory 

(Olshausen and Field 2004).   

As opposed to the retinogeniculate synapse which holds the major advantage of one 

to one connection between retinal ganglion cell and its LGN cell counterpart and thus makes 

easier to study the role of ISI –based filtering in process of information transmission, at 

higher stages, i.e. V1, the large polysynaptic connectivity mechanism set hurdles in 
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evaluating the ISI influence on the visual information processing. However, some scientific 

results (Reich et al., 2000) supports the idea that ISI- based filtering plays a role in 

information transmission in visual cortex and that they are also consistent with other types 

of decoding schemes that do not make use of ISIs (averaging the firing rates across many 

neurons that convey similar information).   

 

 

 

5 Conclusions  

  

Using two different types of stimuli and extracellularly recording activity of different 

types of retinal ganglion cells, we learned out how ISI based filtering of RGCs spike trains 

helps preserving the information regarding the optimal stimulus features. Maximum 

correlation between stimulus and neural response is at shortest ISI spiking activity (Rahbun 

et al., 2007).   

Short ISIs carry the most information, are focused at optimal (preferred) stimulus 

features (in our case direction of stimulus motion) and are not strictly related to firing rate. 

Short ISI spiking activity is part of a mechanism which perform the so called “iceberg 

effect” at postsynaptic target (Carandini et Ferster 2000).   

Thus, at presynaptic level already, ISI based filtering is a part of a mechanism that 

sharpens the information from one stage to another along the early visual system. This 

mechanism is prominent for ON-OFF DSRGCs which form one to one connection with their 

postsynaptic target. However it is less evident for ON-DSRGCs which form massive 

convergence of synaptic inputs upon their postsynaptic target in AOS.  
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V. Discussions, Conclusions and Future Perspectives  

 

Within my thesis I have studied the manner in which the information is processed at 

both single cell level and neural network level, involving not only stimulus induced activity 

but also spontaneous activity.  

 

To study the information processing in spontaneous activity I investigated the neural 

activity in dissociated cultures of cortical and hippocampal neurons from rats. To do so I 

used the multielectrode array technology (MEA, Multichannel Systems, Reutlingen, 

Germany), a powerful tool which allow multisite recordings within the culture and thus 

investigations of spiking activity not only at single cell level but also at neural network 

level. The MEA set-up was arranged in a new technology outside the classical culture 

incubator and retains the main advantages of the possibility to perform uninterrupted 

(electro-) physiological and morphological data collection in long-term experiments, 

together with the reduction of handling artifacts (e.g., temperature fluctuations, evaporation 

of medium, mechanical impact, and drift in pH during culture transfer from the incubator to 

the experimental setup). Analyzing the spiking activity with this novel laboratory set-up we 

could learn about the following aspects concerning the neural activity.  

Neurons from dissociated brain tissue are capable of self-organizing their 

interconnectivity in cell culture. They become active even in the absence of any external 

sensory stimuli remarkably developing a wide range of spatiotemporal patterns of activity 

with dynamic shape and/or organization over time and spatial location, starting from the 

well-known synchronized network bursting activity (neural avalanches) to different types of 

self-organization such as depicted here, consisting in PS activity which robustly shapes the 

spontaneous activity at different developmental stages.  
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Little it is known about PS activity and its role within cultured neurons. Interestingly, 

we found that predominantly robust PS activity rather than bursts droves neural activity in 

the investigated cultures. PS not only developed stable spatiotemporal patterns, but also 

participated in shaping the interconnectivity map. Previous reports on its role in vivo and in 

vitro suggest that PS activity may act as a temporal filter and be part of a mechanism 

involved in information processing at different developmental stages, both at individual sites 

and at network level. Mainly, here we found that:  

- PS activity does exist under a spontaneous activity paradigm in cultures of 

dissociated neurons of different types,   

- PS forms spatiotemporal patterns of activity that become robust at later stages of 

development,   

- PS persistently participates in formation of functional connectivity at different sites 

within the culture,  

- PS participates in information processing within the culture and is actively involved 

in bi-directional information transfer between the neurons.  

This trend is preserved at network level where the entire network activity remarkably 

shows an auto-correlated (oscillatory-like) neural activity following (with a short time 

delay) each second spike in a PS at different stages of development. Moreover, this PS 

correlated activity at network level is strongly involved in carrying information when PS 

activity was considered as an internal surrogate stimulus.   

All these findings together suggest that PS activity may act as a stimulus for cultured 

neurons in lack of any external electrical or chemical stimulation and encourage that new 

scientific hypotheses are waiting to be tested regarding the ability of PS activity to control 

the neural response in cultures of dissociated neurons.   
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To study the manner in which the information processing is performed in stimuli 

induced activity I investigated the recorded neural response of directional selective retinal 

ganglion cells in rabbit retina.  

  

In a mechanistic approach, a model was proposed to explain the sharpening of 

direction selectivity at the output of retina. The model, consisting in recorded DSRGCs 

inputs combined with a variant of a leaky integrate-and-fire neuron model and not taking 

into account neither synaptic plasticity nor cortical feedback input, explained how neurons 

postsynaptic to directional selective retinal ganglion cells signal better the direction of 

stimulus movement. Spike threshold act as a filter that allows an AP to be generated once 

the threshold value of the membrane potential is reached. Another important key of this 

mechanistic approach is the summation of the incoming EPSPs which has the effect that 

postsynaptic membrane potential reaches the threshold. Summation becomes efficient when 

two or more EPSPs are separated by a short time interval. This situation takes place mostly 

during burst-like activity and particularly within PS activity. This burst-like activity and PS 

activity for ON-OFF DSRGCs is distributed at preferred direction. Thus, PSP-to-spike 

transformation has maximum efficacy at preferred direction, while at the other intermediate 

directions we will notice a reduction of spikes and thus the sharpening increases. These 

results are also similar to those obtained at retinogeniculate synapse, in vivo for cat and 

monkey (Casti et al., 2008,; Carandini et al., 2007) or for rabbit, in the seminal work of 

Levick et al., 1969.  

 

Further on, remarkably, the interspike interval filtering of recorded spike trains has 

been shown to play an important role in order to preserve the information concerning the 

optimal feature of the visual stimulus in the transmission process from retina to LGN. 
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Shortest ISI spiking activity retained the maximum correlation between stimulus and neural 

response. Additionally it was clearly demonstrated that short ISIs carry the most 

information, are focused at optimal (preferred) stimulus features (in our case direction of 

stimulus motion) and are not strictly related to firing rate. Thus, at presynaptic level already, 

ISI based filtering is a part of a mechanism that sharpens the information from one stage to 

another along the hierarchical stages of the early visual system. This mechanism is 

prominent for ON-OFF DSRGCs which form one to one connection with their postsynaptic 

target. However this is less evident for ON-DSRGCs, which form massive convergence of 

synaptic inputs upon their postsynaptic target in the Accessory Optic System (AOS). These 

results are in concordance with other scientific works that investigate the manner in which 

information is processed from one stage to another within the nervous system (Rathbun et 

al., 2007; Rathbun et al., 2010; Uglesich et al., 2009; Sincich et al., 2009).  

We have seen how the mechanism for sharpening in direction selectivity can be 

explained at the retinogeniculate synapse by means of PSP to spike transformation with 

great effect for burst-like activity. Moreover ISI of DSRGCs spike trains filter robustly the 

information about visual stimuli, with maximum correlation between receptive field and 

neural response at shortest ISI. However, at finer tuning, presumably the PS activity is 

playing the crucial role in explanation for all above mentioned results. For the same 

recorded RGCs within the same experimental method, as exemplified in Fig.1 for five ON-

OFF DSRGCs with different preferred directions(and described in Chapter III, Methods 2.1 

and 2.2), we scanned the recorded spike trains to quantify the PS activity (Chapter II, 

Methods 2.4) under the stimulus conditions this time. Remarkably, we found that PS activity 

was robustly involved in neural response of retinal ganglion cells of all types (ON-OFF 

DSRGCs, ON-DSRGCs and NONDSRGCs).  
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Fig. 1 Neural response extracellularly recorded of five ON-OFF DSRGCs. Stimulus presented 

consisted in drifting grating bars moved in 7 different directions 45 degrees apart. Direction selective 

neuron responses were recorded and tuning curves for all trials were built. Three of the cells have 

preferred direction at 90 degrees and two of them at 270 degrees and 315 degrees, respectively. Left 

lower side shows the neural response recorded for each trial and right side shows the tuning curves 

indicating the preferred directions.  

 

Indeed PS activity plays a crucial role in the neural response of the stimulated 

ONOFF DSRGCs holding the largest index of selectivity (DSi, Chapter III, Methods 2.2) as 

exemplified in Fig. 2a for 25 recorded RGCs. Among them 16 cells were directional 

selective and for them PS presented the highest values indicating a primordial role in 

shaping the tuning curves in response to direction of stimulus movement. Moreover, Fig. 2b 

depicts the percentage of the information about stimulus direction transmitted from RGC to 

modeled postsynaptic LGN neuron (Chapter II, Methods 2.4). For ON-OFF DSRCs PS 
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activity alone carry most of the information regarding the stimulus direction, the lowest 

information percentage found was above 50% while for some ON-OFF DSRGCs the 

information transferred by PS related activity toward LGN modeled neuron was above 90%. 

Remarkably, for NON-DS and ON-DSRGCs the information percentage transferred toward 

LGN cell was under 20% for all cases. Interestingly, despite the DSi for ON DSRGCs was 

larger for PS activity than for the entire spike train the information transferred by PS, it was 

considerably lower than for ON-OFF DSRGCs.  

 

 

Fig. 2 a) DSi (Y axis) value for 25 RGCs, 16 cells are ON-OFF DSRGC – limited by left side green 

bars, 5 cells are NON-DS – limited by middle green bars and 4 cells are ON-DS –limited by right 

side green bars. b) Mutual Information transferred by PS activity to LGN modeled postsynaptic 

counterpart for the cells mentioned in a)  

 

This finding is sustained by a morphological explanation: ON-OFF DSRGCs 

perform one-to-one connectivity with their LGN counterpart and thus PS from one single 
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cell becomes crucial, while in ON-DSRGCs multiple cells send convergent inputs toward 

their counterparts in accessory optic system (AOS) and thus, presumably, the information is 

going to be enriched as a consequence of heterosynaptic mechanisms. The latter mechanism 

holds true at higher brain areas (i.e. geniculo-cortical synapse) and suggests that presumably 

PS mechanism changes its shape from mono to polysynaptic contributions (these results are 

published in Proceedings of 9th MEA Meeting, 2014, p. 181-182).  

 

In a different approach, a descriptive model to characterize a physiological property 

called the receptive field, which is fundamental in deciphering how particular neurons 

encode the incoming visual stimulus, was built to accurately predict the direction of stimulus 

motion based on recorded directional selective retinal ganglion cells response (these results 

are accepted at CNS 2014 conference and will be published in BMC Neuroscience Suppl., in 

press). Briefly, to build the model, space-time inseparability of the receptive fields of 

ONOFF DSRGCs together with additional static non-linearities was the principal key. The 

main steps I used are: build white noise stimulus, record from ON-OFF DSRGCs stimulated 

with white noise stimulus, calculate the STA in response to white noise stimulus and extract 

the kernel, find the optimal kernel by adjusting the estimated firing rate to the recorded 

firing rate, record data with new stimulus, consisting drifting grating bars, construct the 

linear model, add static non-linearities (i.e. spike threshold and saturation), compare 

predicted with recorded data (Fig. 3).  
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Fig. 3. Recorded and predicted firing rates. The lower plot is the rate predicted by integrating the 

product of stimulus intensity and a linear filter followed by a function applied over the linear filter.  

The upper plot shows the recorded data.   

 

The kernel needed to describe direction selectivity of ON-OFF DSRGC visual 

response property was first extracted using white noise stimulus. We then used grating bars 

stimulus and constructed a complete model to predict the direction selectivity of the 

recorded cells.  

The optimal kernel produces an estimate of the firing rate that is a linear filter of the 

stimulus. In order to deal with some of the deficiencies of the linear prediction we added a 

nonlinear function (F(L)) of the linearly filtered stimulus (Dayan and Abbott, 2001). F is a 

function of the linear filter value instantaneously evaluated at the time of the rate estimation. 

Once that F is bounded from above and below, the estimated firing rate will never be 

negative or unrealistically large. Static nonlinearities are used to introduce both firing 

thresholds and saturation into estimates of neural responses. The model of spike trains 

evoked by our stimulus has been constructed by using firing rate estimate of equation below, 

to drive a Poisson process of spike generation (Fig. 4).  
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Fig. 4. Linear – Non-linear model to simulate spiking responses to stimuli. The integral of the stimulus Ixyt 

times the optimal kernel Dxyt is first computed as being the linear filter. The estimated firing rate is the 

background firing rate plus a nonlinear function of the output of the linear filter calculation.  

 

Finally, the estimated firing rate is used to drive a Poisson process to generate the 

predicted spike trains. Ultimately, the DSi for the predicted activity is indicating the 

predicted degree of direction selectivity.   
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Fig. 5. Predicted (red curve) and recorded (blue curve) tuning curves for 10 ON-OFF DSRGCs.  

  

  

Fig. 6  DSi predicted vs. DSi recorded shows a clustering along the diagonal  line which represents 

that the predicted and the recorded DSis are equals.  

 

The fact that the model was able to predict each time accurately the direction of 

stimulus motion but it slightly underestimated the degree of the direction selectivity (Fig. 5 

and Fig. 6) indicates that for such complex tasks as direction of stimulus motion and for the 

response of complex cells (i.e. ON-OFF DSRGCs in rabbit) higher order non-linearities 
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should be taken into account in order to improve the prediction. These results are in 

concordance with other scientific works for different neurons or neuronal populations and 

for different stimuli (Pillow et al., 2005; Schwartz et al., 2006).  

  

In general, the results presented here show how complex and intriguing is the manner 

in which neurons perform information processing within the nervous system. Spontaneous 

activity investigations let us know how neuronal activity develop patterns and show an 

activity which starts with an almost unpredictable manner of information processing and 

develops toward a more stabilized one, based on robust neural connectivity. Using 

parameters as described here (i.e. Pair Spiking activity, ISI distribution, Burst distribution, 

Conditional Firing Probability, Information Rate, Transfer Entropy) one can extend these 

results to better characterize the information processing under spontaneous conditions and to 

propose models – for example, to predict neural activity during different stages of network 

development. On the other hand within the stimulus induced paradigm we have learned how 

different coding strategies (i.e. firing rates, burst-like spiking activity, short ISI spiking 

activity and Pair Spiking activity) are arranged in more complex mechanisms, so that the 

retinal information is represented in a sparse form and thus with an increasing efficiency.   
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