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Abstract—An adaptive calibration technique based on the least
mean squares (LMS) algorithm is presented which does not rely
on integrated calibration networks and is therefore suitable for
e.g. array-fed reflector (AFR) antenna systems. Using hardware-
implemented algorithms, makes the calibration real-time capable
and independent of external computation.

Possibilities to enhance the LMS by step-size controlling tech-
niques are introduced and compared by simulation, regarding
their adaption speed. The work focuses on the transition of
the presented algorithms towards digital hardware, especially
field-programmable gate arrays (FPGAs). The implementation
feasibility of the proposed techniques is assessed and timing con-
siderations as well as resource-effective realization are discussed.
Suitable algorithms are selected and their implementation on an
FPGA is described. Differences to simulation are outlined and
optimization through pipelining is explained.

The performance of the realized algorithms is evaluated on a
Ka-band receiver system. Figures of merit are the adaption speed
and the resulting signal-to-noise ratio (SNR) improvement. Step-
size control offers slight performance improvements over basic
LMS with fixed step-sizes. This comes at the expense of higher
resource demand and implementation effort.

I. INTRODUCTION

In this paper, the calibration of antenna arrays in receiving
mode is considered where no built-in calibration network can
be used. This is the case for e.g. horn antennas or array-fed re-
flector (AFR) systems. The work focuses on implementations
in digital hardware which allow to calibrate in real-time using
the received signals. This makes calibration independent of ex-
ternal and/or offline signal processing. Especially for systems
which need frequent recalibration, this is advantageous.

Starting from the well-known LMS algorithm, deterministic
and adaptive algorithms to control its step-size parameter are
compared by simulation. For suitable methods, a transition
from simulation to hardware is described by breaking down
the algorithms into basic building blocks like adders and mul-
tipliers. The resulting implementation concepts are realized on
a Xilinx R© Virtex-4TM FPGA, showing possible optimizations.
The realizations are then tested in a demonstrator system and
the results are compared to the simulation. Finally, further
possible improvements and research are discussed.

II. CALIBRATION AND STEP-SIZE CONTROL METHODS

The calibration shall equalize any phase differences between
the signals of K antenna elements. This is achieved by essen-
tially doing adaptive beamforming. Therefore, it is necessary

Fig. 1. Block diagram of the calibration unit. i ∈ 2, ...,K. The 1st channel
is used as reference.

to have a signal from a known direction incident on the array.
Adaption is based on the LMS algorithm described in [1].
Fig. 1 shows a block diagram of the calibration unit containing
an antenna, an analog-to-digital converter (ADC) and an
adaptive filter structure. The dotted connection indicates the
probable necessity of analog front-ends to mix the signal down
before the ADC. The i-th filter input at discrete time n, is the
signal vector xi(n) of length L which is connected to the finite
impulse response (FIR) filter hi(n) whose L coefficients are
adapted by the Update block. For this the input signal vector
xi(n), a scalar error signal ei(n), and the step-size parameter
µ are necessary. To create ei(n), a reference signal is needed.
In this work, it is assumed that the output signal of the 1st
array element, y1(n), serves as reference. The filter update
equation is as follows

hi(n+ 1) = hi(n) + µei(n)x
∗
i (n) (1)

whereby {·}∗ denotes the complex conjugate. In the standard
approach, µ has a fixed value whose influence is shown by
simulation. In Fig. 2a, two curves show the adaption of a
filter coefficient for both, a large and a small value of µ. It
can be seen that there is a trade-off: For a high step-size, the
magnitude of the coefficient converges rapidly to a final value
but then, oscillation around this optimum occurs. Moreover,
large step-size values carry the risk of divergence of the whole
adaption process. With a low step-size on the other hand,
convergence is far slower, but the final state is held more
steadily. Because of this, it is obvious that the use of a variable
step-size µ(n) is favorable, which should be high when the
optimum value is far away but diminishes as the coefficients



approach the optimum.
In the following, several step-size controlling techniques are

presented. The evolution of the filter coefficient magnitudes
is shown in Fig. 2b. Since the curves are very steep in the
beginning, a detailed view of the initial development of the
magnitudes for all methods is depicted in Fig. 2c. Finally, the
step-size values over time are plotted in Fig. 2d.

The first and easiest possibility to achieve a diminishing
µ, is the step-wise reduction algorithm (SRA) which can be
described by the formula

µsra(n+ 1) =

{
µsra(n)/D for mod(n,M) = 0

µsra(n) else
(2)

It is assumed that the adaption starts at n = 1, whereby D > 1,
D ∈ R is the reduction factor and M defines the number of
samples during which the step-size value is hold. Since the
algorithm can only reduce the step-size, it makes sense to
introduce a lower limit. In the magnitude plots of Fig. 2, it
can be seen that the performance improves over fixed step-
size parameters: The initial convergence is as fast as for the
high step-size value while in the end the optimum is held
without fluctuations. Due to the simplicity of the method, the
implementation effort is low. Despite good results, the method
has a considerable drawback, namely that there must be some
knowledge about the convergence speed, in order to decide
on the parameter M . Also divergence can occur if the initial
step-size is chosen too large.

A more sophisticated algorithm is the one proposed by
Kwong [2], given by

µKw(n+ 1) = αµKw(n) + γ‖e(n)‖2 (3)

with α < 1, an automatic step-size decrease is introduced.
Choosing γ appropriately, this degradation is annihilated when
the errors become large. By balancing the two parameters,
the desired step-size behavior can be achieved. From the plot
in Fig. 2c, it can be seen that initial convergence is slower
than for SRA or large fixed step-size values. However, it
is considerably faster than for low step-size and the final
optimum is held steadily (Fig. 2b). The advantage of this
algorithm over SRA is, that it is truly adaptive, i.e. the step-
size will react to unexpected changes. A difficulty is the choice
of the parameters α and γ. Appropriate values have to be
found by experiment and the algorithm reacts very sensitively
to inappropriate choices. Additionally, the method demands for
floating-point arithmetics which can be problematic in FPGA
design.

Another step-size control technique is the gradient sign
changes algorithm (GSA) [3], [4]. Assuming that hi(n) are
filters of length L, the algorithm uses an individual step-size
parameter for each filter tap. This leads to a step-size vector
µGSA(n) = [µGSA,1(n), ..., µGSA,L(n)]

T for each filter. The
magnitude changes of each coefficient are monitored. If it
is monotonic increasing or decreasing over a certain number
of samples, it is assumed that the coefficient is far from
optimum. Therefore, the respective step-size is made larger in

order to speed up convergence. If the magnitude changes are
not monotonic, the coefficient fluctuates around an optimum.
The step-size is then reduced to reach the final value more
accurately. Each element µGSA,j(n), j ∈ 1, ..., L of the step-
size vector µ(n) is updated according to

µGSA,j(n+ 1) =


µGSA,j(n)/D for cfluct =Mfluct

µGSA,j(n) ·D for cmon =Mmon

µGSA,j(n) else
(4)

whereby cmon and cfluct are counters for adjacent samples
where magnitude is monotonic or fluctuating, respectively.
Mmon and Mfluct determine the number of samples after which
a step-size adaption is performed. From the curves in Fig. 2
it can be seen that convergence is not as fast as that of
SRA but faster than the algorithm presented by Kwong. An
advantage of the GSA is that it is adaptive. Also the parameter
choice is not as critical since only integer values are possible.
The implementation effort, on the other hand, is considerably
higher compared to that of the SRA.

Regarding the beginning of the adaption process in Fig. 2c,
it is clear that the SRA yields the fastest convergence. It
suggests that the hold time for the step-sizes can even be
shortened. GSA is slightly slower, but excels the technique
presented in [2]. The final values are held steadily by all three
algorithms. For the hardware implementation of the calibration
unit, SRA and GSA are selected since they show the best per-
formance while the implementation effort seems manageable.
These approaches will be discussed in the following.

III. IMPLEMENTATION CONCEPT AND HARDWARE
SYNTHESIS

For the implementation of the calibration unit, two assump-
tions are made: First, single tap filters are employed, i.e.
hi(n)⇒ hi(n). Second, the step-size multiplication is realized
as a bit shifter which introduces the constraint µ = 2b, b ∈ Z.
This simplifies the implementation considerably, but the algo-
rithm performance is still sufficient. Under these premises, the
adaptive calibration system shown in Fig. 1 can be converted
into the one in Fig. 3. The different parts are now discrete
components. Each connection has a certain word width W
(number of parallel bit lines). In contrast to simulations, where
all components work without delays, each block introduces
an individual time delay by N samples. During simulation,
all signals are available without delay. That means, the whole
filter and update procedure is completed before the next input
is processed and the update rate equals the data rate of the
whole system. When implementing the system in hardware
this is no longer the case. There are two crucial points in
the system depicted in Fig. 3: First, the input signal has
to be delayed such that it is multiplied with the according
error signal, i.e. Ndelay = Nh + Nadd. Second, the filter
coefficients must be held constant until the update cycle is
completed. This period is defined by the length of the critical
path Ncrit = Ndelay + Nxe + Nshift + Ninnov. Therefore, the
update rate in the realization is Ncrit times lower than the data
rate. These delays seem to be a disadvantage because adaption
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Fig. 2. Simulated evolution of the filter coefficient magnitude for different step-size concepts. Phase plots are not shown for space reasons but phase adapts
faster in general. The upper row shows the adaption process for (a) high and low fixed step-size values and (b) for variable step-size techniques. (c) shows a
detailed plot of the initial magnitude development for all techniques. Evolution of the step-size itself over the whole time is shown in (d).

Fig. 3. Implementation concept of the calibration unit. Component delays
and word widths are taken into account.

needs more time. However, it can be exploited by serializing
processes which normally run in parallel as shown later on.

Since it decides the costs in terms of resource demand,
the implementation of the different step-size techniques is of
special interest. For SRA this is straight forward, employing
an iteration counter which causes an arithmetic shift of µ
on overflow. Due to the more complex update process in
(4), things are more complicated for GSA. First, it is nec-
essary to compare the magnitudes of the last filter coefficient
hi(n−Ncrit) and the actual one. Since it is insignificant for the
comparison, the squared magnitudes will be used. This avoids
taking the square root which is a non-trivial task to realize in
digital hardware. According to the comparison result, one of
the counters ci,mon, ci,fluct is altered while the other is set to
zero.

‖hi(n−Ncrit)‖2 < ‖hi(n)‖2
{
ci,mon ≥ 0→ inc(ci,mon)

ci,mon < 0→ inc(ci,fluct)

(5)



Fig. 4. Implementation scheme of the GSA. The calculation of
‖hi(n−Ncrit)‖2 is analog to that of ‖hi(n)‖2 and was left out for reasons
of space.

and

‖hi(n−Ncrit)‖2 ≥ ‖hi(n)‖2
{
ci,mon ≤ 0→ dec(ci,mon)

ci,mon > 0→ inc(ci,fluct)

(6)

Here, inc(·) and dec(·) denote increment and decrement of
a counter respectively. In this scheme, negative values of
ci,mon indicate monotonic decrease of the magnitude while
positive values show increase. ci,fluct is always non-negative.
A schematic implementation structure is given in Fig. 4. Real
and imaginary part of the current coefficients are squared and
added. The same happens for the old coefficients hi(n−Ncrit)
which have to be stored beforehand. In two comparator stages
the necessary alteration of the counters is decided.

The presented hardware concept can now be synthesized if
concrete values for word widths and delays are defined. For
this a digital receiver unit from a research project described in
[5] and [6] is taken. The system at hand aims at multiple beam
capability and has two identical receiver paths. Each of these
uses a four element antenna array to receive signals which
are mixed down before being processed inside an FPGA.
The structure shown in Fig. 3 was implemented along with
the presented step-size control techniques. The values of the
different components are shown in Table I. If the processed
signals are complex, input and output widths are doubled as
real and imaginary part need separate buses. The table also
shows the processing delay in samples. The comparator stages
have a delay of Ncom = 1. It can be seen that an adaptive cycle
takes Ncrit = 31 samples. Given a sample rate of 100 MHz
which is reasonable for a Virtex-4TM, this leads to a duration
of 310 ns per iteration.

Currently the step-size calculation for GSA as shown in
Fig. 4 uses 16 multipliers and 8 adders for all four channels.
This can be optimized as follows. The calculation of the new
step-size can start after new filter coefficients are calculated.
The result is needed after Ndelay + Nxe = 14 samples. The

Fig. 5. Pipelining scheme for GSA.

computation as shown in Fig. 4 takes Nmul + Nadd,GSA + 2 ·
Ncom = 7 samples (plus one to alter µ, if necessary). This
difference can be used to calculate step-sizes for several filters
serially instead of in parallel. This is done by pipelining as
shown in Fig. 5: At the first time instant, the coefficients of
filter 2, h2(n) and h2(n−Ncrit) are fed into the multipliers. At
the next instant, the coefficients of filter 3 are used and so on.
Pipelining means that these input changes do not interfere with
each other during processing so that after the respective delays
Nmul+Nadd,GSA the adder outputs show first ‖h2‖2, ‖h3‖2 and
so on. By applying multiplexers at the input and output of the
whole computing unit, the results can be routed to the correct
filter. By this, resource demand drops to 4 multipliers and 2
adders. The multiplexing network can be realized by cheap
standard logic. Saving resources on the FPGA is important
especially for space applications where power consumption is
a big issue. A similar pipelining could also be used for the
whole innovation calculation process in Fig. 3. However, this
would be a trade-off between saving resources and slowing
down the filter update rate.

IV. HARDWARE PERFORMANCE AND RESULTS

Measurements with the complete receiver system were con-
ducted to evaluate the performance of the different calibration
techniques.

Since the measurement procedure differs considerably from
the simulation conditions, the following points should be
noted: It is not easily possible to monitor the development of
the step-size and the filter coefficients during adaption since
these are internal values. To show the coefficient development,
the number of adaptive iterations is varied and the final values

TABLE I
COMPONENT DATA FOR THE EXAMPLE SYSTEM

Bit width
Component Input 1 Input 2 Output Delay

Delay line 2× 30 − 2× 30 Ndelay = 14
Wx ×Wh Multiplier 2× 30 2× 16 2× 47 Nh = 11
Wy-bit Adder 2× 31 2× 31 2× 32 Nadd = 3
Wx ×We Multiplier 2× 30 2× 30 2× 40 Nxe = 11
Shifter 2× 40 8 2× 16 Nshift = 1
Wh-bit Adder 2× 16 2× 16 2× 16 Ninnov = 2
Wh ×Wh Multiplier 16 16 16 Nmul = 3
Wh ×Wh Adder 16 16 16 Nadd,GSA = 2



are plotted. Although the time grid is much coarser, the
adaption speed can be attained and compared. As mentioned
in section III the step-size multiplication is implemented as
a shifter. The value of µ is the number of bit shifts, so the
step-sizes cause a multiplication of the term ei(n)x

∗
i (n) by

2µ. The result is then truncated to the coefficient word width.
With proper balance of bit shift and truncation, this leads to a
suitable innovation signal. Inside the calibration unit, signals
are truncated at several points (Table I). This is necessary to
limit component word widths but introduces noise and may
even cause information loss through clipping.

Measurements are conducted using a complete receiver
system: The chain starts with a 26.4 GHz sinusoidal signal
generator which drives a transmit horn antenna. The signal is
received by an AFR whereby four patch antennas are used.
Analog front-ends perform the downmix to base band where
the signal is digitized and processed. After the calibration
unit, there is a single output sum signal which is measured
by a signal analyzer. Besides the magnitude of one filter
coefficient, the SNR level at the output of the beamformer
is measured to have a criterion for the adaption quality. The
results are shown in Fig. 6. Since there are many sources for
random variations, all measurement points are averaged over
20 successive adaption passes.

To cover the necessary number of adaption steps and keep
track of the initial behavior, the number of iterations was
varied non-linearly: The first 16 variants increased the iteration
number from 10 to 160. Afterwards, there were 16 variants
from 28 to 223, each doubling the number of iterations. Six dif-
ferent calibration techniques were analyzed: Three with fixed
step-size values of µ ∈ {8, 12, 16}, one with SRA starting at
µSRA = 16, and two using the GSA with µGSA ∈ {8, 16}.

Regarding the coefficient magnitudes for fixed step-size
values in Fig. 6a, the simulated behavior shown in Fig. 2a is
reproduced. The higher the step-size, the faster the adaption
takes place. Smaller step-sizes show less variation of the final
value. The techniques with variable step-sizes (Fig. 6b) reach
adaption speeds close to that of fixed µ = 16. The final values
are held more stable in general. SRA and GSA with µ = 8
attain a quality similar to the low fixed step-sizes. Interestingly,
the initial choice of µGSA has a long lasting influence on
performance. This is influenced by the choice of the counter
limits in (4). If these are rather large, the step-size can only be
changed slowly as shown here. Given a large start step-size,
GSA can then adapt faster than SRA. In Fig. 6c and 6d, it can
be seen that for all methods the coefficient phase adapts faster
than the magnitude. This comes from the coefficients getting
near zero during the adaption process.

From a system point of view, it is important in how far cal-
ibration improves the SNR of the output. For the uncalibrated
system, i.e. with equal filter coefficients, SNR is around 34 dB.
In Fig. 6e and 6f, it can be seen that the SNR performance
depends rather on phase than on magnitude. Regarding the
final values, all methods are capable of increasing the SNR
by more than 6 dB. The methods with variable step-size
have a slight advantage both in speed and final performance.

Especially for few iteration steps, the attained values are better.

V. CONCLUSION

In this paper the complete design cycle of an adaptive
calibration unit with step-size control for antenna arrays was
shown, starting from simulations over an implementation
concept to validation and measurement on actual hardware.
Additionally, some optimizations were presented regarding the
usage of hardware resources. Due to the final implementation,
timing analysis, and resource effectiveness were of interest.
It was shown that step-size control offers an advantage over
fixed step-sizes. The final coefficient values can in general
be reached faster and/or held more steadily. Moreover, in
terms of calibration performance, measured by SNR, step-size
control methods yield better results. This comes at the expense
of additional implementation effort and resource demand.
Depending on the application, it has to be decided if better
performance justifies the additional cost. As long as it can be
assured that the adaption does not diverge for large step-sizes,
a fixed µ is an attractive choice due to simple implementation.
If this is not the case, the use of the GSA is a good alternative
since its performance is even slightly better and it is a truly
adaptive technique in contrast to SRA.

For further investigations, the calibration unit should be
made robust against interference from unwanted directions.
The use of a known training sequence may be an option. An
additional optimization could be the introduction of pipelining
in the innovation calculation part.
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Fig. 6. Results of adaption processes with different length. (a) and (c) depict the coefficient development for fixed step-sizes, magnitude and phase respectively.
In (b) and (d) the same is shown for step-wise reduction and gradient sign algorithm, the latter with two different initial step-size settings. The magnitude
plots are normalized to the maximum value defined by the coefficient word width. Calibration starts with −3 dB in order to have enough margin for adaption.
Phase adapts more quickly than magnitude. (e) and (f) show the SNR of the receiver output signal after calibration for the different techniques. As can be
seen in (e) for the low step-size, SNR for the uncalibrated system is around 34 dB.


