
Lehrstuhl für Produktentwicklung
der Technischen Universität München

A Method for Product Architecture Management

In Early Phases of Product Development

Frank R. Deubzer

Vollständiger Abdruck der von der Fakultät für Maschinenwesen

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. habil. Boris Lohmann

Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Udo Lindemann

2. Prof. Tyson R. Browning, Ph.D.,
Texas Christian University, Fort Worth, USA

Die Dissertation wurde am 22.12.2014 bei der Technischen Universität München

eingereicht und durch die Fakultät für Maschinenwesen

am 24.06.2015 angenommen.

FOREWORD OF THE EDITOR

Problem

The paradigm of mass production is being continuously challenged due to the growing
relevance of niche markets, saturated unpredictable markets and shorter use phases and
lifecycles of products. The resulting challenges for the development of products show before
all in the shortened development cycles, continuous need for innovations and increased
product complexity. Different strategies emerged to meet these requirements. While business
and production strategies such as mass customization address the later phases of the product
lifecycle, research in engineering design and systems engineering provide promising and
applicable methods and approaches for the early phases of the product lifecycle. The product
architecture plays an important role in the early phases of product development: as the result
of the business process to fulfill the requirements of the market. Since existing approaches
address different aspects and steps of the process, a comprehensive procedure and model are
necessary, to allow for the integrated application of different methods and models along the
iterative and recursive design process.

Objectives

With respect to the described challenges, the presented work has to provide an entity
framework of the product architecture, underpinned by a suitable modeling approach. The
framework must further contain suitable methods and approaches to support the early phases
of product architecture development. To enable the implementation of methods and
approaches proposed, a procedural model needs to be introduced, capable to support the
system architect comprehensively during the development process. Given the dynamic and
manifold requirements, the approach is required to be consistent, comprehensive and flexible.
To achieve these goals, an intensive discussion of the role of product architecture and the
existing approaches and methods to cope with the product architecture is required. In
addition, the area and understanding of complexity management should give valuable
insights. To complete the overall approach, identified gaps are to be closed by developed and
tested solutions. The underlying scientific approach has to be based on generally accepted
scientific qualities and include the reasonable application of descriptive and prescriptive
studies.

Results

The presented work provides a comprehensive overview on the role of product architecture
and means to cope with complexity in the context of engineering design. With the conducted
method review, different schools of thought and fields of research are characterized and their
suitability for product architecture management in the early phases analyzed. Based on the
discussion, appropriate conclusions are drawn and missing constituents developed, such as the
coupling of methods and models and the coping with recursive procedures, integrating

analysis and synthesis during the design phase. The presented research results in three main
outcomes: the architecture entity framework, architecture model, and procedure for
architecture management. The architecture framework enables a comprehensive situation
analysis, start into the architecture project and structuring of architecture information. The
results of each activity of the procedural model provide a substantial part of information to the
overall picture, depicted in the architecture model accessible for involved stakeholders. The
case study-based example gives a practical insight of the application of the approach for the
management of product architectures. The procedural steps and underlying methods of the
approach are validated within the example. The overall approach and combination of
framework, model, and procedural model prove to be feasible. Especially the coupling of
different methods for analysis, synthesis and depiction of solution space are conducted
systematically based on the defined procedure for architecture management.

Conclusions for industrial applications

For system architects in industry, the framework alone gives insights into which product
architecture entities to consider and how they are related, both within and between the
entities’ domains. The procedure and provided methods can be applied in projects of different
nature, for analysis or synthesis for example, due to the flexibility of the approach. Since the
presented research results in an integrative approach supporting recursive and iterative
processes, common methods in industrial application are increased in value. Their results can
be reused and are integrated in preceding and subsequent processes. The overall approach
turns out to be comprehensive yet pragmatic and flexible in its application to suit different
situations and challenges in industry.

Conclusions for scientific research

Researchers of related fields may find the discussions on product architectures, coping with
complexity, and insights on potential methods for the managing of product architectures of
major interest. The mentioned fields of research are discussed in sufficient depth and set into
a consistent scientific context and interrelated with each other. The focus on product
architectures is giving the discussion a fresh momentum and is linking methods together in a
novel fashion. The additionally developed methods provide a sound supplementation of
research in Systems Engineering and Multiple Domain Modeling. The challenges in industrial
application and scientific gaps are coherently deduced and result in accurate conclusions. The
framework and procedure are generally applicable and comprehensive, allowing following
researchers to build upon the results and continue the presented trains of thought.

Garching, June 2016 Prof. Dr.-Ing. Udo Lindemann

 Institute of Product Development
 Technische Universität München

ACKNOWLEDGEMENT

This work is based on my research conducted at the Institute of Product Development at the
Technische Universität München from September 2004 to April 2010. I would like to thank
Prof. Dr.-Ing. Udo Lindemann for providing a research environment based on trust, freedom,
and encouragement, enabling me to develop ideas and research in different areas and
directions. The possibility to work with academic and industrial partners both nationally and
internationally considerably enriched the presented work. With continuous belief and
patience, Professor Lindemann helped to overcome one or the other inevitable dry spell.
Additionally, I would like to thank Professor Tyson Browning for his valuable input on the
thesis and for widening the view onto the presented problem based on his experience; and
Professor Boris Lohmann, who acted as chairperson of the examination board and managed
the dissertation process fast and smoothly.

Very important for my work was the collaboration with the colleagues at the institute, who
not only were great to work with, but with whom lasting friendships emerged. I would like to
thank my friend Matthias Kreimeyer for the numerous shared hours in and outside the
institute, due to the many projects and publications we worked on together. The intensive
input on the research and the proof reading of my dissertation are only two examples for
which I am thankful. This applies accordingly to the friends and colleagues whom I could not
share my full research-time with: Ulrich Herfeld, Thomas Braun, Mike Maurer, Christoph
Baumberger, Josef Ponn, and Andreas Gahr supported my research at the institute at any time
and gave valuable input in common projects and publications. I have been blessed to share the
office with such great colleagues as Luc Felgen, Frank Hoisl and Stefan Langer. I am grateful
for the time together and fortunate to have gained such close friends. The same goes for my
friends Martin Graebsch, Clemens Hepperle, and Holger Diehl.

I would also like to thank the personnel at the institute for their support, and of course the
numerous students, whose work has contributed to this thesis. Armin Förg, representative for
many others, is worth mentioning due to his valuable contribution to different projects over
the years.

In the end, it is my family to whom I want to express my deepest gratitude: to my parents, not
only for the education I was offered, but also for the support over the years in both my
personal and professional life, and to my sister and her family for the support and
comprehension over many years.

Above all the aforementioned, I want to thank my wife Veronika. She has been the most
patient, supporting, and understanding person I know. Her character, affection, and energy
backed me up during all the stressful and downcast days and long nights. I am truly blessed
with her and our children.

Munich, June 2016 Frank Deubzer

CONTENTS

1.	 Introduction 1	

1.1	 The role of product architecture in engineering design 1	

1.1.1	 Markets and requirements 3	

1.1.2	 Companies and organizational structure 8	

1.1.3	 Engineering design processes 13	

1.1.4	 Product architecture in industry 16	

1.2	 Objectives and problem description 17	

1.2.1	 Vision 17	

1.2.2	 Development process and lifecycle requirements 18	

1.2.3	 Requirements from the stakeholder perspective 18	

1.2.4	 Requirements on the modeling of systems architectures 18	

2.	 Background and classification within the academic domain 19	

2.1	 Background of the author 19	

2.2	 Research method 20	

2.3	 Classification within the academic domain 23	

2.4	 Structure of the thesis 24	

3.	 Understanding and coping with complexity 27	

3.1	 Understanding complexity 27	

3.1.1	 Anatomy of a system 28	

3.1.2	 Influences on complexity 31	

3.1.3	 Concept of complexity 32	

3.2	 Approaches to complexity 33	

3.2.1	 Systems Theory 34	

3.2.2	 Operations research 40	

3.2.3	 Network Science and Graph Theory 42	

3.2.4	 Systems engineering 44	

3.2.5	 Engineering design research and design theory 49	

II Contents

3.3	 Summary 51	

4.	 Product architecture model and domains 53	

4.1	 Scope of the product architecture 53	

4.2	 Modeling product architectures 57	

4.3	 Product architecture model and framework – outline 62	

4.3.1	 System of goals 64	

4.3.2	 System of objects 65	

4.3.3	 System of action 66	

5.	 Coping with product architecture 69	

5.1	 Structuring the state of the art 69	

5.2	 Comprehensive approaches in systems engineering 71	

5.2.1	 Architecture frameworks 71	

5.2.2	 Systems Modeling Language (SysML) 75	

5.3	 Goals and requirements 77	

5.3.1	 Identification of requirements 78	

5.3.2	 Requirements analysis 79	

5.3.3	 Requirements management 80	

5.3.4	 Requirements verification and validation 81	

5.3.5	 Conclusion 82	

5.4	 Product architecture analysis 83	

5.4.1	 Process of product architecture analysis 83	

5.4.2	 Fundamental principles 86	

5.4.3	 Networked system analysis 93	

5.5	 Product architecture definition and synthesis 103	

5.5.1	 Process of product architecture synthesis 105	

5.5.2	 Functional modeling as a prerequisite 107	

5.5.3	 Conventional methods 115	

5.5.4	 Creativity-supporting techniques 116	

5.5.5	 Systematic approaches to creative problem solving 118	

5.5.6	 Matrix-based synthesis methods 121	

5.5.7	 Computational synthesis and support 127	

Contents III

5.5.8	 Conclusion 135	

5.6	 Concept and properties evaluation 136	

5.6.1	 Decision-making in product architecture management 136	

5.6.2	 Methods for decision-making and evaluation 139	

5.6.3	 Criteria for decision-making 143	

5.6.4	 Conclusion 149	

5.7	 Downstream activities 149	

5.7.1	 Coping with variants 149	

5.7.2	 Conclusion 160	

5.8	 Overall requirements to the solution 160	

5.9	 Conclusion 161	

6.	 Constituents of the solution approach 163	

6.1	 Modeling in MDM notation 163	

6.2	 Coupling of methods and models 164	

6.3	 Coping with hierarchies and recursive procedures 166	

6.4	 Supporting synthesis of product architectures 172	

6.5	 Depiction of the solution space 177	

6.6	 Conclusion 181	

7.	 Solution approach: methodology to manage product architectures 183	

7.1	 Overview 183	

7.2	 Framework for product architecture domains 184	

7.3	 Model for product architectures 190	

7.4	 Procedure and methods for product architecture management 193	

7.4.1	 Interpretation of the procedural model 193	

7.4.2	 Steps and methods of the procedural model 194	

7.5	 Conclusion 212	

8.	 Validation 215	

8.1	 Case study: automotive drivetrain development 215	

8.1.1	 Goals and objectives 216	

8.1.2	 System decomposition 221	

IV Contents

8.1.3	 Information acquisition 223	

8.1.4	 System modeling 228	

8.1.5	 Architecture analysis 230	

8.1.6	 Validation 234	

8.1.7	 Implementation 234	

8.1.8	 Solution search 236	

8.1.9	 Systematic exploration 237	

8.1.10	 Evaluation and decision 244	

8.2	 Discussion 247	

9.	 Discussion 249	

9.1	 Conclusions 249	

9.2	 Outlook 251	

10.	 References 253	

11.	 List of dissertations 279	

ACRONYMS

ADT Axiomatic Design Theory

AF Architecture Frameworks

C4ISR Command, Control, Communications, Computers, Intelligence, Surveillance, and
Reconnaissance

CAD Computer-Aided Design

CADM C4ISR Architecture Data Model

CAE Computer-Aided Engineering

CPM Characteristics-Properties-Modeling

DfX Design for X

DMM Domain mapping Matrix

FBS Function-Behavior-Structure

FMEA Failure Mode and Effect Analysis

HIL Hardware in Loop

IAF Integrated Architecture Framework

IDEF0 Integration Definition for Function Modeling

MDM Multiple Domain Modeling

MoDAF Ministry of Defense Architecture Framework

OOA Object-Oriented Analysis

QFD Quality Function Deployment

SADT Structured Analysis and Design Technique

SIL Software in Loop

SysML Systems Modeling Language

UML Unified Modeling Language

VDI Association of German Engineers [Verein Deutscher Ingenieure]

1. Introduction

The role of product architecture in the manufacturing industry, as well as in engineering
design research and other research areas such as business management, is diverse. Different
concepts and perceptions exist in both worlds, underlining the versatile nature of product
architectures and the many perspectives that can be taken to understand, to describe and,
finally, to be able to “manage” product architectures. The “Management of Product
Architectures” in the context of this work will be intensively discussed in the following
sections and can be briefly outlined as the coping with the complexity of the product
architecture itself and with the complexity resulting from its interrelations with the various
interacting surroundings. The surroundings are mainly influenced by the interconnectedness
of the product architecture with the company organization structure and the process
architecture, as well as the challenging and dynamic economic environment. Given the many
different phases of a product’s lifecycle and the numerous different classes of artifacts of
product architecture, the complexity is clear. Different methods, methodologies, and theories
have emerged, due to these circumstances. This first chapter will clarify not only the
underlying terminology of this work, but also point out the recurring challenges and the
resulting objectives, despite the existing efforts and solutions.

1.1 The role of product architecture in engineering design
It would be a considerable understatement to report that the challenges for engineering design
in industry are underlying change over time. In fact, the dynamic changes in both corporate
financing and real economy, as well as the worldwide developments in society, legislation
and ecology all serve to increase and multiply the demands for all corporate activities. For
decades, the challenge for engineering design in industry was described as the area of conflict
between the three major co-dependent issues of time, cost (or productivity) and quality
[BROWNING 1998, pp. 260 ff., CLARK & FUJIMOTO 1991, p. 70, EHRLENSPIEL et al. 2007, p.
21, LAWSON & KARANDIKAR 1994, WILDEMANN 1999, p. 18], resulting in compromises for
the company, customer or product.1 Efforts in all three directions manifested in research
approaches and methods or methodologies, some of which have, by now, become standards in
industry. Examples for these efforts are the numerous approaches for the optimization of
workflows and business processes [CLARKSON & HAMILTON 2000, EPPINGER et al. 1997,
KREIMEYER 2010, WYNN 2007] aiming for the understanding of causes for the origin of
delays and iterations2 in processes, as well as measures for their identification and prevention.

1 The challenges of “time, cost and quality“ do not apply exclusively to development, but can also be found in
business processes, manufacturing and other areas of the manufacturing firm as well. The presented work
focuses on the challenges related to the development of technical products.

2 The reduction of delays and iterations in processes can only serve as an example for the optimization of
processes. The term “waste” (originating from the lean production philosophy) is increasingly applied, not only
for the processes in manufacturing, but in development as well. On the basis of this definition, the field of

2 1. Introduction

The reduction of cost, aside from being a side effect of the reduction of time in business
processes, produced different efforts in understanding the origin of cost and the economical
design of products [ZIRKLER 2010, EHRLENSPIEL et al. 2007]. Efforts to increase quality in
product development are most visible in industry, whereas the application of the methods
“Quality Function Deployment” (QFD) and “Failure Modes and Effects Analysis” (FMEA) is
very common and, in the case of FMEA, a substantial part of the development process and the
Supplier-OEM (Original Equipment Manufacturer) relationship.3 Quality efforts exceed the
field of product development and can be found in process management and manufacturing, as
well as other fields.

The major issues of time, cost and quality can only provide the coarse boundary conditions
for engineering design. The Design for X (DfX) methodology [see e.g. HUANG 1996,
LINDEMANN 2007, WEBER 2007] embraces numerous other issues to be considered in
engineering design. The different “X” or “aspects” [LINDEMANN 2007] of Design for X stand
for different design purposes. Design for Manufacturing or Design for Assembly are
considered to be the most investigated DfX aspects [BOOTHROYD et al. 2002], while PAHL et
al. [PAHL et al. 2007, p. 234 and pp. 308ff.] present for example ergonomics, recycling,
maintenance, safety and others as further aspects.4 The process of dealing with the various
DfX aspects is still described as “chaotic” [LINDEMANN 2007]. The interdependencies
between different aspects are one cause. Research is ongoing regarding how to cope with the
different existing guidelines and rules of each single aspect and their interdependencies [see
for example BAUER & MEERKAMM 2007 or WEBER 2007].

As dynamic changes drive the different competing aspects of engineering design to new
levels, the emerging complexity turns out to be the main factor summarizing the challenges in
engineering design. Thus, research in different areas about the management of complexity has
reached a new high. Systems engineering and Systems Theory gained importance in recent
years and, according to reviews in industry, will be increasingly important in the following
years [BULLINGER et al. 2003, DEUBZER et al. 2005]. The coping with complexity is
conducted from different perspectives, such as the human perception of complex systems
[DÖRNER 1992] as well as the management [CLARKSON et al. 2004, EPPINGER & SALMINEN
2001, SCHUH 2005, WILDEMANN 1999] or structural considerations of complex systems
[BROWNING 2001, MAURER 2007].

For the area of product development, the market, organization, process and product were
defined as the four relevant fields where complexity occurs and emerges [MAURER 2007, p.
3]. LINDEMANN et al. take a similar position, stating that products and processes have become

process optimization far exceeds the reduction of delay and iterations, but aims for profound management and
goal orientation (“customer value”) of processes.

3 FMEA is a substantial part of the contract between the OEM and the supplier as a required service to be
performed by the supplier.

4 Huang describes a pattern to define and differentiate the aspects by the equation “X = x + bility”, where “x”
stands for a certain lifecycle business process while “bility” is to be replaced by performance measures, for
example “Design for Assembly Cost” [HUANG 1996, p. 3].

1.1 The role of product architecture in engineering design 3

more and more complex, due to the increase and diversification of customer needs in the
buyers’ markets [LINDEMANN et al. 2006, p. 1, PINE 1993, p. 31]. A similar conclusion is
reached in business management by DANILOVIC & SANDKULL, who differentiate between
people, technology and functionality as sources of complexity and transfer those into the
aspects of product, organization and process as “basic dimensions” of the management of
complexity, in which the market aspects are inherent in the functionality demands placed on
the product and by the process [DANILOVIC & SANDKULL 2004]. EPPINGER comes to the same
conclusion, describing product, process and organization as the three relevant interrelated
domains in product development [EPPINGER 2001]. WILDEMANN describes complexity from a
business management perspective as an issue in requirements, technology, product and
development methods [WILDEMANN 1999, p. 11]. YASSINE & WISSMANN add the knowledge
portfolio and production and distribution on the company side, as well as the brand portfolio
and marketing on the consumer (or market) side [YASSINE & WISSMANN 2007]. DANILOVIC &
BROWNING set the product architecture into the context of the following aspects: process and
organization (in the following companies and organizational structure), goals (in this work
considered within the chapter “Markets and requirements”), and tools [DANILOVIC &
BROWNING 2007].5

Here, the product architecture is understood as the result of the business process, performed
by the organization and successfully fulfilling the requirements of the market. Based on this
understanding, the following chapters will clarify the implications of the three fields on
product architectures. The implications will point out the need for action in the context of
product architecture management and lead to the discussion of a precise understanding of
product architectures in industry and research.

1.1.1 Markets and requirements
As the first field of impact on the product architecture’s complexity, the market provokes the
most critical implications, dominating other origins of complexity [MAURER 2007, p. 4]. The
dynamic developments of the market underlie a continuous change, which can be roughly
characterized as an interaction of the technical possibilities in development, technology and
production, on the one hand, and the accordingly increasing customer requests on the other
[MCKENNA 2000, p. 17, PINE 1993, p. 27, WILDEMANN 1999, p. 62]. This interplay is
characterized as the feedback loop of mass production (see Figure 1-1) by PINE for the period
of the mid 20th century [PINE 1993, pp. 25-32].

The underlying assumption is therefore that new products are produced in such a quantity that
mass production processes can be implemented to produce standardized products with
reasonable quality and costs. These products are introduced to a homogenous market with

5 The extensive area of tools, albeit highly relevant especially for the practical application of methodical
approaches, will not be considered as separate section in this work, yet the implications will be considered when
relevant.

4 1. Introduction

stable demands6 and thus lead to long product lifecycles with accordingly long product
development cycles. Until the 1970s, the elements of the feedback loop were reinforcing one
another, leading to the highest possible volumes and most efficient processes in
manufacturing, serving only the largest possible markets with products [PINE 1993, p. 27].

Market dynamics increased over the past years, as different developments caused changes to
multiple elements within this circle, so that the described reinforcing characteristic is no
longer a valid model of reality. After the high of mass production, market saturation was
reached in the identified homogenous markets [LÖSCH 2001, p. 32]. The “typical” customer,
being the largest market share, was replaced by a number of niches, which became more
important to further increase the sale of products.7 Markets have become more heterogeneous,
diverse and unpredictable [MCKENNA 2000, p. 23]. Causes of the diversity of markets are the
growing and diverse customer demands, accompanied by increasing quality standards and
international competitors, due to globally distributed markets and know-how [LÖSCH 2001, p.
32]. More individualized products are required for the resulting niche markets with “similar”
products, but differentiated customer specifications [PINE 1993, FRICKE & SCHULZ 2005].
Individualization in terms of tailored products was closely related to craftsmanship and
consequently higher prices during times of mass production. Customers today demand
products of increasing quality and reasonable prices that closely match their individual needs
[PINE 1993, pp. 45-46, MCKENNA 2000, pp. 17-18]. This customer behavior is intensified by
the access to information and knowledge about worldwide offers and the changing social
standards and values [LÖSCH 2001, p. 32-34]. According to PINE, the paradigm of mass

6 The stabilization of homogenous markets is in that case achieved by ignoring niche markets [PINE 1993, p. 27].

7 The continuous growth of sales and thus markets was one of the major principles of mass production to keep
the established systems profitable [PINE 1993, p. 27].

Figure 1-1 Paradigm of Mass Production [PINE 1993, p. 27]

New
Products

Mass Production
Processes

Low-Cost,
Consistent Quality,

Standardized
Products

Homogenous
Markets

Stable
Demand
Levels

Long
Product

Lifecycles

Long Product
Development

Cycles

1.1 The role of product architecture in engineering design 5

customization represents the inversion of the paradigm of mass production. Instead of the
approach of unified markets, long lifecycles and standardized products, niche markets and
shorter lifecycles demand customized products [PINE 1993, p. 48].8

The tailoring of products to market niches was achieved in postproduction and aftersales
during the period of mass production. Due to the cost of aftersales services, the intention of
the philosophy of mass customization was to shift the tailoring of products upstream. As a
result, production has to provide increased variety, which evoked different approaches in
manufacturing to enable flexibility in manufacturing and assembly [see e.g. DE LIT &
DELCHAMBRE 2003]. Requirements for flexible production are more expensive and capable
machinery, new technologies and highly skilled workers [PINE 1993, p. 46]. Until today, the
concept of mass customization could not yet be fully implemented, especially when technical
products are involved. The complexity of technical products and their production could not
yet be handled to produce individualized and customized products economically.9

As niche markets are smaller and changing both constantly and rapidly, the increasing variety
has to be achieved more rapidly. A dramatic reduction of product development times is
required, as product lifecycles also shorten accordingly. Shortened lifecycles are accompanied
by the continuous improvement of products and the replacement and improvement of
technologies, both in products and in production [PINE 1993, p. 46]. Currently, the half-life of
technologies tends to be even shorter than the lifecycle of products, increasing the pressure on
the length of development cycles [FRICKE & SCHULZ 2005].10 The customer demands, on the
other hand, are growing with the technological possibilities [ENGEL & BROWNING 2008].

To maintain this reinforcing circle, companies are required to provide continuous innovation
in their products. Customer demands are one driving factor; others include the field of
worldwide competitors [LÖSCH 2001, p. 32] or the threat of product piracy due to known and
manageable technologies [WILDEMANN et al. 2007]. Innovative solutions more often turn out
to be incremental, rather than radical or breakthrough11 innovations, although continuous
incremental innovation can lead to breakthrough innovations [PINE 1993, p. 114]. The

8 The relevance of niche markets for the producing companies is documented in numerous works, such as
“Markets of One” [GILMORE & PINE 2000], “The Long Tail Phenomenon” [ANDERSON 2008], or the expression
“selling big by selling small” [MCKENNA 2000, p. 24] .

9 PILLER provides examples of the implementation of mass customization and discusses failed attempts. The
presented cases, successful or not, deal with individualized products which are rarely technical. The approaches
of mass customization consider mainly the economical and customer relationship point of view, rather than the
development and production of technical products. Examples stem primarily from clothing, food, furniture,
luxury, or service industries (such as airlines or web-based products) [PILLER, 2001, pp. 393-409, PILLER &
STOTKO 2003].

10 FRICKE & SCHULZ identify the integration of electronics and software - both with very short half-times - into
products as a major cause of this gap [FRICKE & SCHULZ 2005].

11 The terms “radical innovations“ and “breakthrough innovations” will be used equivalently throughout this
work.

6 1. Introduction

coherence of the need for innovations and the limited available development time increases
this trend, so that radical innovations12 are less likely in the prevailing environment, leading to
the conflict between the demand for radical innovations, on one hand, and the lack of ability
to develop radical innovations, due to the given constraints, on the other.

The implications of the market as a driver of complexity can be summed up as the growing
relevance of niche markets, saturated unpredictable markets, shorter use phases and lifecycles.
The relevance for development and manufacturing shows in the shortened development
cycles, continuous innovations in products, required flexibility in manufacturing and
increased product complexity and quality losses. Figure 1-2 shows some of these
implications, on the basis of the introduced paradigm of mass production (clockwise). The
counterclockwise arrow depicts the paradigm of mass customization, introduced by PINE in
the early 90s [PINE 1993, p. 45]. The two general principles of mass customization i.e. close
customer relationships and moving the customization of products further upstream, seem to
be valid reactions to dynamic markets. With mass customization being a business strategy,
those two components are necessary but not sufficient for a successful application. The
information-intensive proceeding must be supported by a management and depiction of
information flows in product design, such as the solution space [PILLER et al. 2004]. The

12 A radical innovation requires both a changed linkage between system elements (architectural innovation) and
overturned core concepts according to HENDERSON & CLARK 1990 [for a detailed discussion and differentiation
also see HENDERSON & CLARK 1990, p. 12].

Figure 1-2 Recent implications on the paradigm of mass production and mass customization

New
Products

Mass Production
Processes

Low-Cost,
Consistent Quality,

Standardized
Products

Homogenous
Markets

Stable
Demand
Levels

Long
Product

Lifecycles

Long Product
Development

Cycles
Available Product Technologies,
Process Improvement,
Product Piracy, …

Shorter Use Phases,
Fast-Changing Environment, …

Process Technologies,
Flexible Manufacturing, …

Increasing Complexity,
Quality Losses,
Worldwide Competitors, …

Continuous Innovation,
Quality Standards, …

Saturation of Markets,
Unpredictable Customer Behavior,
Changing Social Standards …

Growing Relevance of Niche Markets,
Diverse Customer Demands,
Globally Distributed Knowledge, …

Solution Information
(Product Architecture)

1.1 The role of product architecture in engineering design 7

missing link when considering the manufacturing and marketing of customized products turns
out to be the product architecture and valuable knowledge about its variants, alternatives,
functions, requirements etc. The product architecture thus moves into the center of the
existing paradigms in Figure 1-2 as a central enabler and necessary for the provision of
customized, variant-rich products.

Based on the simplified model of a product lifecycle, Figure 1-3 depicts the upstream shift of
product customization relevant for a successful offering of products for niche markets, based
on a reduced product lifecycle model.13 During mass production, customization according to
customer demands was achieved throughout aftersales and service, focusing on the
distribution, utilization and maintenance of the product. The mass production paradigm left
the customization untouched during production to achieve the explained cost and mass
effects. The business model of mass customization shifted the customization of products to
flexible manufacturing systems and emphasized the relevance of customer relationships and
the integration of customer needs into production and other business processes. The relevance
of customization during product planning, development and design as a key factor for
successful product customization is emphasized by the outstanding position at the beginning
of the product lifecycle. Extensive research was conducted for the design and development of
variant-rich products, due to these circumstances. Different authors provide an overview on
the current state of existing methods and approaches [see for example FIXSON 2007, JIAO et
al. 2006, or RENNER 2007, pp. 49-90]. A detailed discussion of the different methods and
techniques and the relevant phases of the product lifecycle to which they apply will be
conducted in the later chapters of this work.

With the customer requirements being the main focus14 of activities of the producing industry
and engineering design, the different Design for X aspects state even more requirements and

13 The depicted phases of the product lifecycle are derived from HEPPERLE et al., who developed an integrated
and networked product lifecycle model based on different existing lifecycle models [HEPPERLE et al. 2009a].

14 EHRLENSPIEL ET AL. describe “function fulfillment” as the factor for successful product development, followed
directly by achieving the time and cost goals [EHRLENSPIEL et al. 2007, p. 21].

Figure 1-3 Upstream shift of product customization in the product lifecycle

8 1. Introduction

functions to be fulfilled by a product architecture not visible for or knowingly recognized by
the customer. LINDEMANN lists a large number of Design for X aspects in alphabetic order,
extendable at will. Among them are manufacturing and assembly, but also different types of
cost (lifecycle, operating, general), technical aspects (noise, robustness, tolerances, vibration
etc.), functional (cleaning, comfort, ergonomics, safety, usability etc.), strategic (company
targets, corporate identity etc.), organizational (logistics, sub suppliers etc.) and other aspects
[LINDEMANN 2007]. More tangible, HERFELD gives a practical example, citing GRABNER &
NOTHAFT, with requirements to be considered in car body design (e.g. package, design,
guidelines, acoustics, corrosion, surfaces, body shell, statutory requirements), as well as the
downstream activities of the product lifecycle (e.g. testing, simulation, controlling, assembly,
manufacturing) [HERFELD 2007, p. 19, GRABNER & NOTHHAFT 2002, p. 1].15 CRAWLEY et al.
differentiate between “direct” design to achieve the main functions (required immediate for
the product’s purpose), and the planning of the lifecycle (posing requirements such as
manufacturing, upgrade etc.), plus the so-called “ilities” (reliability, flexibility etc.)
[CRAWLEY et al. 2004].

Connecting these findings to the product architecture, the resulting complexity and the
challenges in engineering design are evident. This complexity requires a reasonable handling
of variant-rich product architectures with multilayered requirements and numerous existing
points of view, stemming both from the market, as well as from the comprehensive lifecycle
perspective.

1.1.2 Companies and organizational structure
The complexity of the organization has gained an important impact, both in terms of the
organizational structure and the process architecture [LAWSON & KARANDIKAR 1994].
Organizational complexity has become one of the key challenges in profitable economic
activities [EPPINGER 2001]. Markets and requirements, as was argued in the previous chapter,
pose a significant cause for the companies’ internal complexity. The shortened lifecycles and
development cycles, as well as the broadening of the product portfolio, both on the market as
well as in manufacturing, evoke and require an equally dynamic and multi-faceted
organization. The resulting division of labor in concurrent engineering16 processes causes
difficulties in establishing an efficient organizational structure, as well as in the process
architecture. Two different aspects are largely relevant in this context: the establishment and
cooperation of multidisciplinary teams [SOSA et al. 2004] and the parallel or multiple project
environments [LAWSON & KARANDIKAR 1994]. Further aspects include the spreading of
knowledge across the company and, in the case of globally operating companies, spread

15 HEMEL & KELDMANN propose a reasonable yet simple categorization of Design for X aspects into “virtues”
(such as cost, efficiency, quality etc.) and “life phases” (e.g. assembly, distribution, production etc.), in the given
example referred to as “requirements” and “downstream activities of the product lifecycle” [HEMEL &
KELDMANN 1996, p. 73, compare also CRAWLEY et al. 2004].

16 Concurrent Engineering is in this context interchangeable with Simultaneous Engineering [PAHL et al. 2007, p.
139].

1.1 The role of product architecture in engineering design 9

across the world. This invokes the complexity in making decisions from an organizational
view regarding the information, the question of cost efficiency and cost-related knowledge
and the company surroundings, in terms of suppliers, customers, competitors, legislation etc.

The task of team organization is closely related to the character and complexity of the product
architecture when discussing the context of product design and development [SOSA et al.
2004]. After the definition of processes, workflows and related tasks, the difficulties of team
organization show in the assignment of tasks to the right persons. In general, the assignment
can be supported through the definition of different models of tasks, roles and the interrelation
of the two. To give an example, CHEN derived a team member model, based on a
comprehensive literature review, incorporating the functional expertise, teamwork experience,
communication skills, the flexibility in job assignment and personality traits [CHEN 2005]. In
engineering design, different authors come to the conclusion that the product architecture is
the key communication catalyst among people involved in the design process. BRADLEY &
YASSINE point out the relevance of the composition of design teams, based on the product
architecture characteristic. When comparing the team structures and product architecture, the
different clusters in both structures match for more than 60 % in the presented use case. As a
conclusion, BRADLEY & YASSINE state that the efficiency of communication is equal to that
value, probably resulting in issues during the design process, due to lack of communication
channels resulting from the mismatch of more than 30 % between organizational and product
structure [BRADLEY & YASSINE 2006]. KREIMEYER et al. come to the same conclusion when
analyzing the collaboration between engineers in design and simulation (Computer-Aided
Design (CAD) and Computer-Aided Engineering (CAE)), stating that more than 60 % of
engineers do not have access to the information required for their task, largely resulting in
poor results within their work [KREIMEYER et al. 2006]. As a solution to this problem,
HERFELD introduced an approach for efficient collaboration based on the derivation of teams
according to the product architecture [HERFELD 2007, pp. 154-171]. The concept of
interdependency between product architecture and organizational structure is also stressed by
[GÖPFERT 1998]. KUNZ et al. underline these findings, stating that, according to their practical
experience, efficiency problems during the introduction of new technologies in the
automotive industry occur due to organizational, rather than technical issues [KUNZ et al.
1996]. SOSA et al. base their findings similarly on the comparison of team interactions and the
interdependencies of the components of the product architecture [SOSA et al. 2004].

The predominant multiple project environments in large companies are further intensifying
and complicating the organizational issues of concurrent engineering. DANILOVIC &
SANDKULL describe the situation as a multitude of interdependencies between projects, tasks
and activities, people and knowledge areas. Furthermore, they refer to the important role of
the product architecture in terms of technologies, products, and components [DANILOVIC &
SANDKULL 2004]. As a prime example, the automotive industry executes multiple projects in
terms of product lines, which are developed by a single manufacturer. Not only are different
components of one model designed in parallel, but also the development processes of product

10 1. Introduction

lines overlap to allow for a sequential release of different models.17 Apart from the temporal
issues of coordinating the necessary and numerous interrelated tasks, the distribution of
knowledge inherited by the involved people and the assignment to teams due to their
qualifications are the main causes for difficulties in such an environment, as discussed in the
following sections. At any point in time, the current status is different for each project, so that
the use of, for example a new technology, might be practically applicable in one project or
product line but not suitable for application in others. The reason is primarily the degree of
maturity that a product has already reached or, in the opposite case, a very immature state of
development. The same is valid for the reuse of the same parts in different product lines.
These circumstances evoke the necessity of staff functions to coordinate the carry over, as
well as the introduction of new technologies, communication of best practices etc. The briefly
described necessities create a more complex organizational environment, due to the
multidimensional character of organizations with numerous parallel tasks and projects.

In the context of the organizational structure and multiple project landscapes, information and
knowledge were identified as key issues to solve in order to manage projects successfully.
Naturally, knowledge and information is distributed across the company [PINE 1993, p. 115],
as different tasks and competences are inherited by different departments and persons. Further
enlarged by multi-project environments, the implications of spread knowledge are
omnipresent [PINE 1993, p. 115]. The volume of knowledge and information required can be
estimated using the example of car body design established by HERFELD that was presented in
the previous section, indicated the numeroud requirements to be considered during
development [HERFELD 2007, p. 19]. Surveys have shown that the search for information
consumes a large amount of an engineer’s time [KREIMEYER, M. et al. 2006]. For successful
development, existing information and knowledge has to be available and connected, as poor
availability of information creates a bottleneck in the development of products [EHRLENSPIEL
et al. 2007, p. 25]. Product development itself can be described as an information-processing
activity [KUSIAK 1999, p. 201]. If not in the design department, knowledge about cost,
production technology, customer needs and lifecycles is inherited in different departments,
causing deficiencies and disturbing the information flow between involved persons, e.g. due
to personal reasons, such as lack of time, conceitedness, shyness [EHRLENSPIEL et al. 2007, p.
25] or the individual goals of people [BLACKENFELT 2001, p. 12]. PINE underlines the
important role of the sharing and connection of information from the perspective of value
creation and innovation for the product architecture. The close collaboration of departments,
for example design and production, can result in immediate profit for the organization in
terms of the creation of innovative solutions. At least, according to PINE, continuous
(incremental) innovations are more likely to occur in environments where different
departments collaborate closely [PINE 1993, p. 15]. In general, knowing, understanding and
considering the downstream effects of decisions is a critical aspect of successful engineering,

17 According to RENNER, the number of derivates offered by the BMW Group grew from 6 in 1985 to 19 in 2005
[RENNER 2007, p. 19]. At the same time, market segmentation in the automotive sector grew from 9 segments in
1987 to 35 segments in 2007 [RENNER 2007, p. 33], according to HERFELD even more than 40 segments existed
in 2005 [HERFELD 2007, p. 8].

1.1 The role of product architecture in engineering design 11

underlining the role of knowledge and information in understanding organizational
complexity; the application of appropriate methods of e.g. data and knowledge management,
is also an important aspect [BLACKENFELT 2001, p. 11-12].

The numerous and continuous decisions that are an important element in the design process
are closely connected to the characteristics of knowledge and information availability and
distribution in companies’ organizations [DE BOER 1989, p. 59]. Decisions regarding a
product architecture are required at the end of every step of the process, as well as recursively
during the steps [ROPOHL 1975, p. 58]. SIMMONS describes systems architecting as a decision-
making process [SIMMONS 2008, p. 18]. Considering the complexity of product architectures,
the most important decisions include typical performance metrics such as market shares,
project success, form and function or efficiency [KRISHNAN & ULRICH 2001].18 DE BOER
points out the available knowledge as one out of four relevant factors for decision processes,
based on a questionnaire applied to practitioners [DE BOER 1989, p. 102-104].19 A similar role
of knowledge in decision-making is underlined by HATAMURA [HATAMURA 2006, p. 5]. 20
Depending on the companies’ organizational structure, decision-making processes may vary
from decisions made by individuals (primarily hierarchical structures) and groups (networked
organizational structures) [DONG 1995]. While the predominant organizational structure was
hierarchical in the past century [DONG 1995], recent dynamics of markets made networked
organizations the prevailing organizational structure. Thus, decision-making processes are, on
one hand, based on a greater amount of knowledge, due to the involvement of numerous
persons and departments; on the other hand, the decision-making itself becomes more
complex, due to the numerous prevailing opinions and goals, entitled a “lack of integration”
by BLACKENFELT [BLACKENFELT 2001, p. 12], often resulting in the “sub-optimization”, i.e.
the optimization concerning one criterion and thus reducing overall performance, resulting in
unbalanced and sub-optimal tradeoffs. As was defined, decision-making is based on valuable
information. EEKELS defines four classes of information required for a decision: factual
information (information about the available alternatives to choose from), normative
information (defining the standard against which the factual information has to be compared,
such as requirements and needs), intuitive estimation (estimated information not available as
factual information; estimations based on experience and related factual information) and
methodical information (comparing factual and normative information and rank evaluation

18 The described metrics are derived from the academic communities marketing, organizations, engineering
design and operations management by KRISHNAN & ULRICH, who provide a detailed overview of the different
perspectives on decision-making in product development [KRISHNAN & ULRICH 2001].

19 The complete model of DE BOER includes the personal qualities, fixed characteristics (physical, nature) and
external influences (e.g. customers or principals) as properties of a person influencing the decisions. Outside
influences include the problem itself and the available facilities [DE BOER 1989, p. 104].

20 For HATAMURA, experience, preference, hunch and lifestyle are the influences accompanying knowledge in
decision-making processes [HATAMURA 2006, p. 5]

12 1. Introduction

outcomes) [ROOZENBURG & EEKELS 1990, p. 8-9].21 For economic decisions, the cost
information in particular (factual and normative) is relevant to continuously compare actual
and anticipated cost performance [EHRLENSPIEL et al. 2007, p. 25-26, KRISHNAN & ULRICH
2001]. Methodical information is perceived as equally crucial. Method selection, as well as
the support of method application, are very important for successful project execution,
especially concerning costs [EHRLENSPIEL et al. 2007, p. 26]. The lack of methods, or the
application of wrong methods, are among the most critical variant and complexity drivers in
product development [BLACKENFELT 2001, p. 12].

Complex market environments do not only cause complex architectural decisions, but also
change the companies’ surrounding influences and external dependencies, apart from the
market and customers discussed in chapter 1.1.1. As an example, a change of the partnerships
with suppliers and the suppliers’ role in value networks can be observed [NOVAK & EPPINGER
2001]. In the context of the offering of product variety and mass customization in particular,
the role of suppliers has changed in recent years, as their competence and responsibility grows
and the systems supplied are accordingly significantly larger [LINDQUIST et al. 2008, compare
CLARK & FUJIMOTO 1991, p. 141]. Decision-making and communication (team-building) in
this context turn out to be by far more complex than in times before customized and highly
integrated products, requiring new methods of management and analysis of company
environments [DANILOVIC 2006]. The emerging changes are partly due to a change in
thinking and management, such as the Lean thinking movements in response to customer and
supplier integration or production [see e.g. WOMACK et al. 2007 and WOMACK & JONES
2006]. Different approaches to solve the difficulties consider the product architecture as
highly significant for a comprehensive strategy to achieve successful development projects.
For example, LINDQUIST ET AL. identify the modularization of a product architecture as the
underlying implication for the modalities and focus of the involvement of suppliers
[LINDQUIST et al. 2008]. Accordingly, DANILOVIC focuses on the cross-company team-
building on the basis of tasks and work packages based on the product architecture, rather
than the functions of business units, to allow for reasonable information flows, transparency
and situation visibility [DANILOVIC 2006]. The Lean approach describes the customer needs
and the value stream towards their fulfillment as the main focus of economic activity, which
in the end leads again to the definition of appropriate products and product architectures [see
e.g. GRAEBSCH et al. 2007, WARD 2007, WOMACK et al. 2007].

In consideration of the product architecture, the different aspects of organizational complexity
appear to be closely related to its characteristics and properties. Implications of the product
architecture on the means of organizations - team building, multiple project environments,
knowledge and decision-making, as well as the embedding of a company in value networks -
turn out to be of great influence on the success of the companies’ economic activities.

21 Factual and normative information and intuitive estimation form the knowledge required for decision-making
itself, while methodic information supports the procedure of decision-making [ROOZENBURG & EEKELS 1990, p.
9]. In this context, SIMMONS differentiates between programmed (routine, can be modeled precisely) and non-
programmed (non-routine, models of the system are imprecise) decisions, based on the available information on
the problem [SIMMONS 2008, p. 21].

1.1 The role of product architecture in engineering design 13

A simplified subsumption of the product architecture’s implications for the organization is
given in Figure 1-4, without further detailing the interdependencies between the architecture
and the organizational matters, such as the impact of product modularization and platform
strategies on multiple project environments or the existing value networks.

After focusing the discussion on the organizational structure in this chapter, the following
chapter will address the relevance of the product architecture for the process architecture. The
center of considerations in this work is the development and design phase, which sets the
boundary conditions on engineering design processes.22

1.1.3 Engineering design processes
Engineering design processes are as numerous as the different products, customer
requirements and companies. Nevertheless, engineering design research and other academic
communities, such as Systems Theory and business management, have conducted intensive
analysis of design processes in diverse fields of industry, regardless of company size, nature
and complexity of products [BROWNING & RAMASESH 2007]. The goal of the considerations is
the provision of models, methods and tools to improve future design and development
processes and their planning to enable the synthesis of successful products meeting the time,

22 The engineering design process underlies certain characteristics exclusively typical for product development,
such as the iterative and recursive qualities, which are not transferable or to be generalized for other business
processes in production, accounting or any other [WYNN 2007].

Figure 1-4 Mutual reactions of the product architecture and the organization

Product Architecture

Team
Organization

Multiple
Project

Environments

Information &
Knowledge

Decision-
Making

Value
Networks

14 1. Introduction

cost and quality requirements. Based on significant and acknowledged findings, the following
sections show how the design process is structured, how different steps relate to the product
architecture and which fundamental characteristics influence product architecture definition
and management. Of particular interest are the recent findings in market and organizational
structures and their impact on the engineering design process of complex products.

The phase of design and development is situated between the product planning and the phase
of production (planning) in the product lifecycle [VDI 2221 1993, p. 8, compare also
BROWNING & RAMASESH 2007].23 Existing engineering design process models range from
detailed descriptions of processes in companies, in the form of work packages and workflows
[see for example KREIMEYER 2010], which are often typical of the company and the product
[LINDEMANN 2009, p. 33-34], to the sequence of fundamental tasks describing the design
process in a more rudimentary or generic solution finding process than a business process.
Detailed case-specific process models may be analyzed using simulation methods, comparing
the competing targets time, cost and quality (or product performance) of processes and
resulting products [see e.g. BROWNING 1998, pp. 260 ff., LEVARDY & BROWNING 2009]. In the
following sections, the focus of considerations is placed on the generic solution finding
process models, to establish a basis for the studies of the product architecture in this work.24
The analysis of generic process models will shed light on the artifacts and characteristics of
product architectures from a process perspective and give the first hints about the
requirements for product architecture management in general. In detail, this work is based on
the early or conceptual phase, due to the fact that the most successful solutions are more
likely to emerge from the definition of the product architecture as a concept of form, function
and features [ULRICH & EPPINGER 2003, p. 15], rather than concentrating on technical details
in later phases [PAHL et al. 2007, p. 131].

Generic models serve as guidelines for engineering design and have to be adapted to each use
case [LINDEMANN 2009, p. 41, PAHL et al. 2007, p. 125, VDI 2221, p. 2]. The intention and
benefit of generic process models is comprehensively described by ULRICH & EPPINGER as
quality assurance, coordination, planning, management and improvement of processes and
their outcomes [ULRICH & EPPINGER 2003, pp. 12-13]. Similarities between different existing
models not only show in the intention, but also in the structure of the process models. Generic
models do share a sequential proposition of tasks, which are connecting the problem
description as an input with the output of the generic process model, the (technical) solution
[ULRICH & EPPINGER 2003, p. 12, PAHL et al. 2007, p. 127], the sequence of tasks is in any
model intended to detail the product from qualitative to quantitative artifacts describing the
product [PAHL et al. 2007, p. 125]. The interpretation of the task’s output as an artifact of the

23 Some authors consider the product planning phase upstream and the downstream activities of testing and
production planning/ramp-up part of the design process [see for example the model presented by ULRICH &
EPPINGER 2003, p. 14]. In this work, the implications of product planning, testing and production ramp-up are
considered as major influences on the design process, but not being part of it.

24 Detailed process descriptions and models, such as project plans are useful for project management and other
business administrative issues [LINDEMANN 2009, p. 16], which will due to that focus not be intensively included
into the considerations in this work, which is taking the perspective of engineering design primarily.

1.1 The role of product architecture in engineering design 15

product architecture is another similarity that can be observed, along with the necessity to
make decisions at the end of each step. To give an example, the Association of German
Engineers [Verein Deutscher Ingenieure] (VDI) Guideline 2221 proposes the list of
requirements, function structure, principle solution, module structure, preliminary layout,
overall layout and product documentation as the outcome of seven tasks of development and
design [VDI 2221], while PONN & LINDEMANN focus on the concretization of products with
the artifacts of requirements, functions, working principles and a building model as the
outcome of the four steps [PONN & LINDEMANN 2008].

The number of tasks, and the detailed description and outcome, differ nevertheless between
the numerous existing models, depending on the chosen level of detail, as well as the
anticipation of iterative and recursive steps already incorporated into the model. For example,
the VDI Guideline 2221 proposes that the task of defining working principles be followed by
the tasks of structuring modules and designing these modules, before defining the product as a
whole. In contrast, PONN & LINDEMANN see these steps as necessary to be conducted in
parallel during all tasks25 of designing, along with other Design for X aspects, pointing out the
relevance of the product architecture throughout all phases of design and avoiding a reduction
of the structural considerations to singular tasks [VDI 2221, p. 9, PONN & LINDEMANN 2008,
pp. 25-28].

It is critical for the consideration of generic process models to be aware that the process of
design is to be conducted iteratively (or cyclically) and recursively. ROYCE already identified
the lack of iterative properties as a major flaw in existing procedural models in software
development in 1970, pointing out that iterations not only occur between closely related steps,
but also involve three or more steps of a proceeding [ROYCE 1987].26 The recursive character
of the design process was manifested by BOEHM for the area of software development in 1988
in the spiral model of development [BOEHM 1988].27 Today, regardless of which tasks in
particular are proposed and on what level of detail, the iterative character of design processes
is stated as a fact agreed upon by renowned authors [LINDEMANN 2009, LEVARDY &
BROWNING 2009, PONN & LINDEMANN 2008, PAHL et al. 2007, p. 125-126, GAUSEMEIER et al.
2006, p. 29, VDI 2206, CRAWLEY et al. 2004, pp. 4-5, VDI 2221, BOEHM 1988, ROYCE
1987,]. Models such as the Munich Procedural Model in particular are defined as solution
finding procedures or processes in product development environments, allowing for a flexible
and recursive, as well as iterative, application [LINDEMANN 2009, p. 41]. The basic idea of,

25 The model of product design proposed by PONN & LINDEMANN is dissected into four major tasks represented
by four product models of artifacts, namely the requirements model, functional model, working model and
building model [PONN & LINDEMANN 2008, p. 24].

26 LINDEMANN proposes a flexible networked view on the modeling of processes due to that circumstances,
pointing out that the given presumptions are valid in product development as well [LINDEMANN 2009, p. 40ff].

27 “Recursivity“ is in the context of this work understood as the application of a procedure on different levels of
abstraction. As such, the Munich Procedural Model for example is applicable for the planning of the overall
design process as well as for singular solution finding processes within the overall process [LINDEMANN 2009, p.
41].

16 1. Introduction

for example the Munich Procedural Model or the VDI Guideline 2221, is the provision of
suitable models and methods for the different phases of product concretization [VDI 2221,
LINDEMANN 2009]. The use of different models supports the process of analysis and solution
finding [KNOBLICH 1997, p. 214-215] although different models rarely interrelate in an
iterative and recursive fashion. The transition of models is thus characterized by a loss of part
of the available information during transition, analyzed in detail by FUCHS under
consideration of general design principles during analytical tasks [FUCHS 2004, p. 76].

Emphasized by such models, these findings allow for the definition of a generic process
model closely related to the product architecture depicting the most relevant artifacts and a
sequence of tasks suitable for the product architecture considerations in this work. The
evaluation of different possibilities of solutions within the different steps, as a core of the
discussed models, is as relevant as the provision of appropriate models on which these
decisions are based. It is important for the further discussion of the product architecture in this
work that recursivity and iteration do have to reflect in the models representing the product
architecture’s artifacts, to allow for the required recursive and iterative proceeding. The
knowledge manifested in these models has to enable taking the correct decisions, taking into
consideration the product architecture, as well as the choice of methods. Based on the goals of
the project, the correct application has to lead to successful products, the goal of design
processes.

1.1.4 Product architecture in industry
As a summary of the previous chapters, the role of product architecture, its implications and
influences, as well as the overall challenges in industry are outlined, constituting the basis for
a detailed integration of the meaning and relevance of product architectures into a
comprehensive product architecture model. The discussion of the situation in industry has
pointed to the product architecture as one of the major pivots in product development for the
following reasons.

The product architecture poses the link between the tension of the increasing and diversifying
customer demands on the one hand, and the increasing technical possibilities on the other.
The fulfillment of the evolving market requirements, as described, is the core value of the
product. The architecture, through enabling radical innovations [compare HENDERSON &
CLARK 1990, p. 12] and functions, incorporating new technology, allowing for variant rich
products and containing valuable information, provides the possibility to resolve this conflict.

The key for the product architecture to develop its full potential lies in the considerable
upstream shift within the development process, when the influence on the product properties
is at its highest.28 It poses a major challenge in these early phases that the available product

28 Bullinger et al. consider the upstream shift of activities as one of the major premises to improve development
processes (among the use of a project master plan, management of process interfaces, and the feedback from
production and field experiences) [BULLINGER et al. 2003, p. 69].

1.2 Objectives and problem description 17

information, though highly relevant and crucial, is not yet fully available and quantifiable.
Not all Design for X aspects can be sufficiently addressed at this point.

The importance of the product architecture propagates onto the company, i.e. the
organization, processes, knowledge management, decision-making, value networks etc. The
dilemma between information availability and the importance of available information in the
early phases is thus even more crucial. As a result of these circumstances, the design
processes are conducted in a recursive and iterative manner to overcome these difficulties.
Although the clear and scientifically sound distinction of wanted and unwanted iterations is
not yet conducted, the necessity of iterations to a certain amount is commonly agreed upon.
The relevance of recursive procedures is equally acknowledged, due to the increasing amount
of information during the process. The information about the design is subject to changes, as
well as to an evolution of detail along the design process.

In literature and surveys, the comprehensive situation (as summed up in this chapter and
described in detail in the previous chapters, in addition to the numerous interdependencies of
the product architecture with its surroundings) is often plainly considered as complexity in
product development. The following chapters will not only analyze the nature of the term
“complexity” and the subject of complexity itself, but also relate that to the situation of
product architectures, to allow for an approach to successfully manage the product
architectural issues during the design process with focus on the early phases of design.

1.2 Objectives and problem description
The goal of the presented work is to support the coping with complex product architectures in
complex development environments, as described in the introductory chapters. The work
should support the overall mission of research in systems architecting, which CRAWLEY et al.,
among others, describe as “to identify a set of principles, methods, and tools that will help
systems architects in the future”; this is valid for both the process of architecting, as well as
for the product architecture itself [CRAWLEY et al. 2004, p. 9]. As CRAWLEY et al. state, there
are many methods existing that support the analysis and synthesis or other aspects of systems
architecting [CRAWLEY et al. 2004, p. 9].

1.2.1 Vision
In support of the management of complex product architectures, it is the vision of the
presented work to analyze the existing models, methods and approaches, identify the missing
constituents for a comprehensive approach, and provide a framework of methods and
approaches, underpinned by a suitable modeling approach, as well as a capable proposition of
a procedural model supporting the process of applying the methods and approaches proposed.
The fundamental requirements, stemming from the situation of product architectures in
industry elaborated in the preceding chapters, are specified in the following chapters, leading
to an intensive discussion of the modeling and coping with systems architectures in the
following work to refine the requirements for the approach.

18 1. Introduction

1.2.2 Development process and lifecycle requirements
Stemming from the discussion of the product lifecycle, the importance of the early phases
became evident, as the influence on the constitutional product properties through the design of
the product architecture is highest. Aside from that, the crucial tension between the
importance of the early phases and poor information availability has to be considered. The
difficulty in regarding the whole lifecycle, especially the evaluation of product properties and
the development of sensible variant strategies, are major challenges to be considered as much
as possible, even in these early phases.

The iterative and recursive development process poses requirements for the method. The
models and methods that are currently known pose a sequence in the process of product
architecture definition, but lack integration and transferability for iterations and especially
recursive activities. As a result, the research conducted in this work must provide the means
to cope with both iterative and recursive applications of models and methods.

1.2.3 Requirements from the stakeholder perspective
Numerous viewpoints regarding product architecture exist, which the systems architect has to
harmonize in order to provide a successful product. Relevant Design for X aspects have to be
identified and monitored, and conflicts of goals must be solved. Different stakeholders, who
evoke the numerous aspects to consider, are for example the customer and different
departments within the company, as well as partners within the value network or outside, such
as competitors or the legislative body. These circumstances have to be incorporated in a
comprehensive approach and its supplementing models and methods.

1.2.4 Requirements on the modeling of systems architectures
The systems architecture not only has to incorporate the requirements stemming from the
lifecycle and stakeholder perspective, but also support the innovation process through models,
which are of continuous use throughout the innovation process. The requirement for both
continuity and comprehensiveness stems from the lifecycle perspective. Requirements
stemming from different stakeholders have to be considered according to the multiple levels
on which they are fulfilled and evaluated within the systems architecture. Information in
general, as a crucial part of decision-making at numerous points in time of the process, has to
be incorporated, or at least being related to the approach.

2. Background and classification within the academic
domain

Given the objectives of this work and the description of the problem based on the current
situation, outlined in the introductory chapter, chapter 2 clarifies the groundwork for a
solution approach. The author’s background is detailed, providing the perspective under
which the presented work was conducted, and enabling the reader to classify the findings and
general approach. The scientific aspects include the identification of a research method to
define a reasonable approach and thematic classification of the work presented. The
classification at this point clarifies which areas of research are affected by the topic and how
they constitute the starting point for research on the subject. A brief discussion of research
areas will show the potential contributions of the different areas to the solution. Included in
this chapter is the logical structure of the thesis as a result of the chosen research approach
and relevant research areas.

2.1 Background of the author
The author conducted the presented research during his affiliation at the Institute for Product
Development at the Technische Universität München. Numerous research projects, carried
out with government funded and in cooperation with industry, were conducted from 2004 to
2010. The author’s focal research topics were the analysis, design, and improvement of
processes on one hand, and the analysis, synthesis and modularity of technical systems and
their architectures on the other. The knowledge about design process provides the foundation
for embedding the research on product architectures into a practical context.

The research directions in design processes encompassed different facets, for example the role
of people in design processes. Examples of this are the efficient communication and
collaboration in virtual product development environments and the knowledge management in
design in general, especially in the interfaces to other processes and organizational units. The
monitoring of the product maturity in virtual product development was considered from a
product perspective. A transdisciplinary research project was initiated, encompassing
numerous dynamic and complex interrelations between the multiple different entities involved
in the innovation process, considering both the temporal and contextual dependencies.
Subsuming these aspects under the notion “Management of cycles in innovation processes”,
different disciplines, such as engineering, informatics, psychology, and business management,
discuss the improvement of innovation processes from different angles. The author’s
involvement in both the research proposal and project funded by the Deutsche
Forschungsgemeinschaft (DFG) provided major insights and contributions to the research
presented in this work.

The research on the analysis and synthesis of technical systems included numerous projects in
the automotive sector, for example the analysis of noise emissions of mechatronical
components and the definition of product property profiles and comparisons. Other branches
considered are, for example electro pneumatic brakes for railway applications. Considerations

20 2. Background and classification within the academic domain

regarding synthesis, with respect to modularity issues, included for example automotive seats,
cell phone masts, standardized valve technologies, and energy-efficient drivetrains. The
definition of the approach presented in this work includes the experiences and findings of all
related projects, though not all aspects can be shown on the basis of the presented case study.
The projects in the area of product architecture analysis and synthesis allowed for the
application, definition, and evaluation of numerous methods and approaches provided by
systems engineering, design research and other research areas. The methods are discussed in
this work, as is the practicability in the context of product architectures. In general, the
findings of the presented research are based on the numerous aspects evolved in the series of
projects conducted.

In addition to the research projects discussed, the author was involved in conducting surveys
with industry partners. The survey topics include communication in design, change
management, and measures against product piracy. The survey findings are relevant for the
presented research; they underline the importance of the transparent modeling of
interdependent information, the criticality of changes and their understanding in design, and
the iterative and recursive character of the design process, especially among a wide and
ambitious field of competitors.

2.2 Research method
Different authors describe the field of engineering design as ambiguous and of fragmented
nature [TATE & NORDLUND 2001]. As part of the field of engineering design research, the
presented work aims to be classified within this field. Applied research methods often remain
unexplained and undiscussed in publications [TATE & NORDLUND 2001], which is why this
work aims for a transparent use of research methodology and a sound approach. The
following paragraphs will differentiate possible goals of engineering design research,
categories according to how the research is conducted, and the relevant subjects or areas of
knowledge to position the outcomes. Concluding the section is the discussion of different
procedures to conduct research in engineering design, ending with the introduction of the
chosen research method for the presented work and its classification.

The goals of research in engineering design claim to contribute to either the improvement of
the practice of design in industry, to design science in general (answering scientifically
relevant questions and positioning design science in the area of science overall), or to the
improvement of the education of design [HUBKA & EDER 1996, pp. 74-75].

The main subjects of consideration in engineering design research are the product and the
design process [HUBKA & EDER 1996, p. 82, BLESSING & CHAKRABARTI 2009, p. 5], while
the areas of knowledge in design theory are the design process, design object, designers,
specific field knowledge and resources (e.g. time, money) [TATE & NORDLUND 2001].

HUBKA & EDER furthermore provide three categories of how engineering design is
conducted: research into design, i.e. observations for understanding design (“experimental
research” according to BLESSING & CHAKRABARTI); research for design, including the
creation of models, methods and tools (“intellectual” according to BLESSING &
CHAKRABARTI); and research through design, i.e. self-observation (described by BLESSING &

2.2 Research method 21

CHAKRABARTI as “experiential”) [BLESSING & CHAKRABARTI 2009, p. 3, HUBKA & EDER
1996, p. 38].

Given the different foci, approaches, and subjects of engineering design research, the demand
for generic procedures to conduct and assess research results has arisen. Different authors
provide adequate procedures, many of which are based on the differentiation and coupling of
descriptive and prescriptive methods. The development of methods should, in general, include
the three steps of data gathering, theory generation (generate hypotheses, relate to theories),
and theory validation (deduce consequences, test) [TATE & NORDLUND 2001]. WOOD &
GREER, as well as BLESSING & CHAKRABARTI, largely base their approaches on the
differentiation between prescriptive and descriptive phases, accompanied by the identification
of success criteria, impact chains, and the testing of the generated outcome against these
consdierations [WOOD & GREER 2001, BLESSING & CHAKRABARTI 2009]. A cutout of the
Design Research Model of WOOD & GREER is depicted in the following figure, showing the
relevant aspects for the development of methods in engineering design research for the
presented research [WOOD & GREER 2001, p. 177].

While some of the authors mentioned provide generic, yet comprehensive, procedures,
BLESSING & CHAKRABARTI provide a framework for engineering design research; this
supports distinctive steps with appropriate methods, points out different ways to achieve
valuable results, and allows for the classification of research outcomes [BLESSING &
CHAKRABARTI 2009]. The following paragraphs include the classification of the presented
work within the above framework for the engineering design research methodology, while
other chapters incorporate the concrete overall objectives (chapter 1.2) and refined goals
(chapter 5.8).

The goal of the presented research is the improvement of design, in particular coping with
product architectures. As a secondary goal, the work aims to significantly contribute to design
science by giving answers to scientifically relevant questions regarding how to cope with
evolving architecture knowledge along iterative and recursive design processes.

The subject of consideration of this work is mainly the product architecture itself, in
reference to its entities and evolving character. The underlying design process serves as a
secondary subject, since the characteristics of design processes provide the main challenge
and demand for the presented methods and models.

Figure 2-1 Cutout of the Design Research Model according to WOOD & GREER [WOOD & GREER 2001, p. 177]

Need based on
observation and

analysis
(Description I)

Success criteria

Develop method
(Prescription)

Observe and
analyze developed

methods in use
(Description II)

define test
against

22 2. Background and classification within the academic domain

Since methods and models are the core outcome of the presented work, it is the research for
design that best categorizes the conducted research. Experiential aspects (compare chapter
2.1) additionally contributed to the procedure as well as the outcome and methods.

Based on different approaches and theories, the presented work is structured according to the
findings of previously mentioned authors. First, descriptive study I describes the role of the
product architecture as discussed in chapter 1, ending with the definition of the problem and
the according requirements for a solution. Descriptive study I closes with a discussion of
relevant fields of research in chapter 3, laying the groundwork for the first prescriptive study,
as well as the following descriptive studies. Descriptive study I clarifies why dealing with
product architectures is relevant, both from an industrial as well as scientific point of view,
based on literature research.

Prescriptive study I establishes a framework for systems architecting, reaching conclusions
based on the findings of descriptive study I. The framework identifies a modeling method, as
well as the entities of the product architecture and classes of entities relevant for the
management of product architectures (chapter 4).

The established framework is tested against the existing methods discussed in descriptive
study II. Descriptive study II discusses not only the role of the product architecture, but also
existing methods and methodologies to cope with different entities of the architecture within
the distinct phases of product development (chapter 5). Based on an extensive literature
review, descriptive study II allows for the detailed definition of the demand for action from
scientific as well as industrial perspective despite existing activities (chapter 5.8).

To meet these demands, prescriptive study II introduces the missing elements for a
comprehensive approach (chapter 6), and combines these with the methods and procedures
identified in chapter 5. The results combine the framework (chapter 4) and methods for
systems architecting (chapters 5 and 6) to allow for a comprehensive solution approach
(chapter 7).

The approach is then tested against the objectives through the application within a project-
based verification. This descriptive study III represents a use case-based example of
application (chapter 8).

2.3 Classification within the academic domain 23

In addition to the research method, the presented work is intended to fulfill the “demands of
science”, as expressed by HUBKA & EDER [HUBKA & EDER 1996, p. 75], which rightly call
for research to fulfill the following qualities [HUBKA & EDER 1996, p. 38]:

• Purposeful (identification of a problem worth researching)

• Inquisitive (seeking to acquire new knowledge or new relationships among knowledge
elements)

• Informed (conducted from an awareness of previous research)

• Methodical (planned and carried out in an efficient and disciplined manner)

• Communicable (testable and accessible results)

2.3 Classification within the academic domain
Based on the defined scope of the thesis in chapter 1, this research work is placed within
fields of research that cope with the management of complexity, engineering design and
innovation processes. The areas of research, discussed in the following chapters, are partly
overlapping and use one another’s approaches and theories. As such, the presented approach
aims for the identification of contributions from the different areas and the application within
the field of engineering design research.

To cope with complexity within organizations, processes, and products, it is clear that the
areas of systems theory, systems engineering, and networks science and Graph Theory should
be more more closely examined. While systems theory provides the groundwork for the

Figure 2-2 Research approach of the presented thesis

Descriptive
Study I

Prescriptive
Study I

Descriptive
Study II

Prescriptive
Study II

Chapter 1: Relevance of product architectures

Chapter 3: Relevant fields of research

Chapter 4: Framework for systems architecting

Chapter 5: Method review, validation of systems
architecting framework

Chapter 6: Constituents to the solution approach

Chapter 7: Solution approach

Descriptive
Study III

Chapter 8: Validation of the solution approach
(use case-based example)

D
at

a
ga

th
er

in
g

Th
eo

ry
 g

en
er

at
io

n

Th
eo

ry
 v

al
id

at
io

n

24 2. Background and classification within the academic domain

understanding of systems, network science and Graph Theory apply mathematical models
and methods to large system structures; the presented work was motivated by this area of
research. Systems engineering as part of Systems Theory philosophy provides a more
concrete means for the area of engineering design research, based on the system
understanding of systems theory.

Operations research primarily provides a means for decision-making in complex situations,
and through that contributes to the management of product architectures, as the process of
engineering design is characterized by a large number of decisions to be made throughout the
process.

Engineering design research as a broad field provides many distinct measures for product
development and development processes, ranging from social aspects, concrete methods to
improve the outcome of the respective steps of the design process, process optimization etc.
Since the field of product architecture management is a rather recent development, existing
approaches have to be discussed in that context.

The above fields of research are introduced and discussed in detail in chapter 3.2. The
methods and approaches from the fields are evaluated and discussed in chapter 5. While many
fields provide valuable input for the presented work, it to is the fields of engineering design
research and systems engineering that the results of this work intend to contribute, based on
the identified shortcomings within the discussion of the state of the art.

2.4 Structure of the thesis
Following the introduction of the topic in section 1 and the outline of the research in the
previous sections, the structure of the thesis is defined as follows:

Section 3 discusses the notion and character of complexity, as well as the areas of research in
question for coping with complex product architectures. As an outcome, the core
understanding of complexity and coping with complex systems is defined, and provides the
groundwork for the definition of the presented work, as well as for the discussion of the state
of the art.

The systems thinking perspective is narrowed down to the scope of product architectures in
section 4, appropriate modeling techniques, and a classification of architectures. Based on
relevant literature, the defined framework for this approach allows for the detailed discussion
of the state of the art in the following section.

Section 5 discusses in detail the available procedures and methods intended to cope with the
product architecture; as a result, suitable methods and gaps in actual research are identified.
As a conclusion to this section, the requirements of the approach are defined, structured
accordingly to the state of the art.

To close the identified research gaps in order to fulfill the identified requirements, section 6
proposes constituents to the approach, which are, as yet, uncovered by the state of the art.
These constituents present the completion of methods, in combination with those from the
state of the art, making a comprehensive approach on product architecture management
feasible.

2.4 Structure of the thesis 25

The comprehensive approach is presented in section 7, identifying appropriate steps for a
product architecture management approach, a comprehensive model, and feasible methods for
each step.

To validate the approach, section 8 delivers an example from the automotive industry,
providing a sample application and possible outcomes of different parts of the approach.
Concluding this section, the results are critically discussed and further requirements and
research identified.

Section 9 concludes the thesis, summing up the procedure and outcome of the research
approach, and identifying future activities for the field of product architecture management.

Figure 2-3 Structure of the thesis

2

1

3

4

6

5

7

8

9

Background and Classification
within the Academic Domain

Introduction

Coping with Complexity

Product Architecture Model
and Domains

Constituents to the Approach

Coping with Product
Architecture

Solution Approach: Manage
Product Architectures

Validation (Case Study)

Conclusions and Outlook

Situation Objectives Problem Description

Background of the
Author Classification Research Method

Understanding
complexity

Approaches to
Complexity

Scope of Product
Architecture

Modeling Product
Architectures

Product Architecture
Domains

Comprehensive
Approaches

Modeling and
Coupling of Models

Coping with
Hierarchies

Synthesis and
Solution Space

Domain Framework Model

Requirements and
Modeling Analysis Synthesis

Sc
op

e
St

at
e

of
 th

e
A

rt

Requirements and
Analysis

D
ef

in
iti

on
, V

al
id

at
io

n

an
d

D
is

cu
ss

io
n

Synthesis and
Evaluation

Procedure and
Methods

3. Understanding and coping with complexity

As outlined in chapter 1, complexity poses one of the major challenges in the development of
demanding technical products. Complexity does not only emerge from within the product
architecture itself, but occurs within or originates from different areas, such as markets,
processes etc. To define appropriate measures when dealing with complexity, the following
sections will present the perceptions of complexity from different points of view. The
discussion will clarify the influencing factors and how they contribute to an extensive
understanding of complexity. In the subsequent chapters, the focus of different disciplines will
be introduced, allowing for the comprehensive discussion of appropriate measures. Systems
Theory provides a solid basis, and Operations Research and Systems Engineering are
introduced as followers of that school of thought. Business management and engineering
design research, as well as design theory, aim for the practical application of different
approaches to manage complexity and provide subject matter of the concluding chapters.
This chapter introduces the scientific perspective of complexity, and methods that deal with
complexity from a generic perspective or can be generalized.

3.1 Understanding complexity
Complexity occurs in almost all industries. Not only is it spoken of in publications and
everyday life, but tends to dominate the human perception of its environment in the ongoing
century [VESTER 2001, p. 22]. Therefore, it is reasonable to briefly discuss the term
“complexity” in this section to gain a common understanding of its influencing factors,
properties and diverse appearance; in particular the fact that definitions of complexity slightly
vary from one another in different publications. This results in a lack of a standardized notion
of the term [WEBER 2005b], leading to the conclusion that a discussion of the term is relevant
for the context of this work to make explicit the perceptions on which the following
considerations are based. In this context, it is not the goal to provide a general definition valid
for all researchers and practitioners, but to underline the prevailing understanding of this work
and to base this perception on existing schools of thought.

In the beginning of this chapter, the system aspect of “complex system” is analyzed, and its
definitions and characteristics investigated. Based on these considerations, the subsequent
section derives the influencing values whose characteristics divide complex systems from
non-complex systems. The resulting perception of complex systems is outlined in the last
section of this chapter, allowing for a comprehensive discussion of appropriate measures in
the field of product architecture management in the following chapters. The main reason for
the abstract approach to product architectures is the possibility of identifying and applying
measures for managing complexity from different areas thus extending the range of applicable
principles, methods and methodologies. While Systems Theory evolved due to the
identification of identical phenomena in different areas [PULM 2004, p. 21], the presented
work aims to benefit from that by abstracting product architectures to discuss the applicability
of the different generalized principles.

28 3. Understanding and coping with complexity

3.1.1 Anatomy of a system
It is clear that the foundation of the definition of complexity should be based on a more
abstract definition of the object of consideration. Systems Theory therefore provides the
foundation to describe a more abstract system than the common models of systems.
Appearance and content of common models usually depend on the context in which the user
of the model requires information. A model in general is a reproduction of reality suitable for
this context [FUCHS 2004, p. 18]. The goal of the model as such is to provide the necessary
information in a way the user is able to cope with [DAENZER 1979, p. 13, PAHL et al. 2007, p.
28-29].29 To allow for a more universal description, a system has to be described in an
abstract manner, making the description applicable for different types of systems. Objects of
consideration could be, for example, different product architectures, but also systems of other
areas, such as development processes, organizational structures or systems not related to
engineering design at all, such as social or biological systems. In general, any object which
can be distinguished from its environment is considered a system [ROPOHL 1975, p. 25].
PULM identifies approaches in or closely related to Systems Theory in the areas of biology,
sociology, psychology, engineering and business management, mathematics, physics and
information technologies, as well as in philosophy and linguistics [PULM 2004, p. 23].

The first qualifying prerequisite for system definition is the possible differentiation between
the system and its environment [ROPOHL 1975, p. 25, SIMON 1996, p.11, DAENZER & HUBER
1999, p. 6], each separated from the other by the system boundary [PAHL et al. 2007, p. 27].30
Reasons for drawing a line between the system under consideration and its environment can
be numerous, especially in a technical context. Considering, for example, a technical product,
the environment might consist of another product, which the product under consideration is
part of. The environment could also consist of the situation in which the product user finds
himself, which again might be the traffic on the streets, a railroad system or the user’s house,
depending on the product under consideration. Generally speaking, the “inner system” is an
arrangement of elements to obtain the system’s goals, for which the “outer environment”
defines the prevailing conditions under which the system’s goals must be achieved [SIMON
1996, p.11]. For the designer involved, the differentiation between system and environment
helps to keep the system under consideration manageable [STEINMEIER 1999, p. 15] by
focusing on the core of the problem, viewing the environment as boundary conditions or
defined interfaces.

Systems can be decomposed into subsystems and elements [ROPOHL 1975, p. 28, DAENZER &
HUBER 1999, p. 7, PAHL et al. 2007, p. 27]. A system itself, on the other hand, is part of a
superordinate system and, in that role, is a subsystem from the point of view of the
superordinate system [ROPOHL 1975, p. 30]. Complex systems turn out to be decomposable in
most cases, enabling the viewer or operator of the system to grasp the system and its

29 The bill of materials and a CAD model, for example, are both models of a product architecture, yet address
different users (or stakeholders) and therefore appear in different representations and contain different, although
overlapping, information.

30 SIMON differentiates between “inner system“ and “outer environment“ [SIMON 1996, pp. 9 ff.].

3.1 Understanding complexity 29

complexity [SIMON 1996, p. 207]. The decomposition of a system usually takes place within
the same domain or category, such as physical parts of a product. The decomposition of
physical parts, for example, might consist of the decomposition of the assembly into sub-
assemblies and parts. Nevertheless, the superordinate system of the product might be of a
different, although still physical, type. A frequently used example is the automobile, which
can be decomposed into its assemblies and parts, but on the other hand is part of the traffic as
a superordinate system. The definition of a system’s decomposition has to be strictly
separated from the concretization of, for example, functions to working principles to physical
parts, where again the functions could be technical or user-oriented and so on. Like the
system under consideration, the superordinate system can be viewed from different angles or
perspectives; traffic as a superordinate system could be viewed from a functional perspective,
as can the automobile. The concretization of a system discussed in the context of the
engineering design processes takes a process-related viewpoint, from which the system is
pictured in different models, suiting the purpose at the given phase of the process.

System elements and subsystems are interrelated with one another through relations
[DAENZER 1979, p. 11, DAENZER & HUBER 1999, p. 5], as the system itself is equally
connected to the superordinate system and to the system’s environment. Relations across the
system boundary are usually considered to be both inputs and outputs of the system [PAHL et
al. 2007, p. 27].31 The types of possible relations are almost immeasurable, as are the
imaginable types of elements. In the context of product architecture management, a detailed
overview on relevant connection types will be given in the later chapters of this work. The
differentiation of decomposition and different perspectives of a system are even more crucial
when taking the relations into account. While the decomposition inherits hierarchical relations
between system and subsystems, the different perspectives of the system are also interrelated.
The physical parts of a product are interrelated with the functional perspective, for example.
When modeling a system with such different and diverse perspectives, it is common to
establish different models, for example a function structure and a physical layout, to be able
to cope with the structure and its characteristics. Different tasks require different models, as
was already pointed out, and, as such, a system can hardly be grasped with all of its
perspectives and inherent structure(s) simultaneously.

The interrelations of a system are highly relevant for the system structure as, according to
DAENZER, the structure of a system results from the formation of elements and relations due
to their interrelations, through which the system retains its integrity [CHECKLAND 1993, p.
121, DAENZER 1979, p. 12, DAENZER & HUBER 1999, p. 6]; i.e. given the system’s elements
and their interrelations, the resulting formation or alignment can be grasped as an abstract
attribute of the system, which can be analyzed thoroughly through computerized measures of
Graph Theory [compare MAURER 2007, p. 31-32]. The outstanding role of the structure as a
system attribute is underlined by DAENZER, stating that situations and systems can only be
understood by human perception if they can be assessed structurally [DAENZER 1979, p. 12].

31 It should be emphasized that the directed relations between elements inside and outside the system boundary
are considered as input and output, not the elements outside the system.

30 3. Understanding and coping with complexity

A system possesses further attributes,32 which can be allocated to the system itself (e.g. cost,
weight) [ROPOHL 1975, p. 26-27]. System attributes can be decomposed according to the
system, although the interrelations of the system as a whole may differ from the interrelations
existing in the decomposition of the system. For example, the acceleration of an automobile
results from a concurrence of many different subsystem attributes, such as engine power,
transmission, gear ratio etc. ROPOHL defines the consideration of attributes as inputs and
outputs of the system as another perception of attributes, describing the function of a system
by means of characterizing the difference between input and output of the system [ROPOHL
1975, p. 26-27, EHRLENSPIEL 2009, p. 23]. Although the notion of function in this context is
similar to the functional model of other authors, the given definition of function as a
generalized attribute of an abstract system is not necessarily relevant for the considerations of
this work and rather confusing considering the existing functional structures in engineering
design research. BAUMBERGER sums up the perception of ROPOHL as the hierarchical
(decomposition), networked (structure) and functional (behavior) view of a system
[BAUMBERGER 2007, p. 69].

While the presented functional view of behavior still presents the behavior of a system based
on the static interrelations of the system elements, the system dynamics are perceived from a
different, structural, point of view. DAENZER characterizes system dynamics as the
differentiation between three types of causes for dynamics: namely, the type and intensity of
interrelations (between elements of the system as well as between the system and its
environment), changes of attributes of elements and changes of the structure i.e. the formation
of elements [DAENZER 1979, p. 21]. Changes in the structure include the emergence or
dissolving of elements or interrelations. MAURER comes to the conclusion that the dynamic of
a system stems from changes occurring in the system in general [MAURER 2007, p. 31].

In the preceding sections, the discussion focused on open systems, i.e. systems that interact
with their environment. Closed or isolated systems, on the other hand, have interrelations
exclusively within their system boundary and are considered to be a highly simplified way of
perceiving a system. Closed systems rarely reflect reality and are thus not part of the
conclusion of the systems notion. The contrary point of view, a consideration of exclusively
the system environment, is another possible perspective, regarding the system itself as black
box [DAENZER 1979, p. 20, STEINMEIER 1999, p. 15]. This perception supports the
understanding of a system’s basic function and interaction with the environment, disregarding
possible complex interrelations within the system, and not considering them for later solution
finding processes [LINDEMANN 2009, p. 108]. The notion of closed systems is not an integral
part of the presented definition.

Based on the presented discussion, a number of general conclusions can be made. A system in
general comprises of elements interrelated with one other and is connected to an environment
through inputs and outputs dissected by the system boundary, while the system itself is part of
a superordinate system. The system, as well as its elements, inherits attributes. When working
with systems, four distinct views can be differentiated, which are best considered separately.

32 LINDEMANN defines attribute as the combination of a certain property (e.g. cost or structure) and a determined
specification (e.g. 100 € or networked) [LINDEMANN 2009, p. 146].

3.1 Understanding complexity 31

A system’s structure is given by the formation of its elements (structural view). A system can
be decomposed into smaller parts (hierarchical view). Input and output of a system describe
its overall behavior (performance view).33 System dynamics are characterized by changes
within the system (dynamic view).

3.1.2 Influences on complexity
In the context of this work, the influence values on complexity are considered to be appointed
system properties that characterize a system as complex. A distinction has to be made
between the influencing values and the origin or causes of complexity, which were discussed
in the introductory chapter. The definition of complexity or complex system has to be closely
related to the definition of the term system. To bridge the gap between the two notions, the
influencing values discussed drive the qualities of a system, so that it is perceived as a
complex system. The influencing values are closely related to the definition of a system and
its origin. Elements and interrelations are derived from the system definition, and pose the
structure and thus the nucleus of a system, its attributes, behavior and dynamics. In
accordance with this definition, the consideration of complexity follows the same train of
thought.

It is clear that the number of elements and interrelations is considered to be characteristic for
complex systems. While the number of elements is considered a necessary characteristic of a
complex system, the accompanying influence value is in different disciplines considered to be
the variety both of elements and interrelations [see e.g. VON BERTALANFFY 1976, p. 54,
SIMON 1996, pp. 183 f., STEINMEIER 1999, p. 17, MAIER & RECHTIN 2000, p. 6, CRAWLEY et
al. 2004, p. 14, WEBER 2005B, DANILOVIC 2006, EHRLENSPIEL 2009, p. 36, LINDEMANN 2009,
p. 9]. A large number of elements interrelated with one other through many interrelations is
far more likely to be considered a complex system if the elements and interrelations differ
greatly from one another. The resulting variety leads to multiple perspectives of the system,
which are all connected and thus influence each other. Examples of this are the complex
interactions of product parts from different disciplines in mechatronic systems [e.g. FELGEN
2007, pp. 42-47, VDI 2206, p. 14], or the interaction of tasks, tools and people [e.g.
KREIMEYER 2010] in engineering processes etc. In addition, CRAWLEY ET AL. point out that
eventually hidden or unrecognized interdependencies contribute to complexity due to their
barely tangible nature [CRAWLEY et al. 2004, p. 14]. MAURER underlines the existence of such
interrelations (or elements) by emphasizing the importance of information acquisition in the
process of analyzing complex systems [MAURER 2007, p. 94ff].

The given system structure based on elements and relations evokes the behavior of a system,
as was stated in the system definition. The behavior is considered an influencing value of
complexity; the desired behavior of a system interferes with undesired behavior due to
required or hidden interrelations, which provoke unwanted side effects. Systems architects
take the undesired behavior into account and accept its existence, which is described as the

33 The term performance view is chosen to avoid misunderstandings with the term function as in functional
models etc.

32 3. Understanding and coping with complexity

curse of complexity (in contrast to the value of complexity due to the desired behavior) by
CRAWLEY ET AL. The system behavior is not the sum of behaviors presented by the selection
of subsets; it is only achieved by the interrelation of all subsets. Designers accept undesired
behavior to achieve the desired behavior [CRAWLEY et al. 2004, p. 2]. Attributes of
subsystems and elements might further increase the conflicts of objectives observed in system
behavior [LINDEMANN 2009, p. 89ff].

The occurring changes in systems increase complexity even further, contributing in an
important manner to overall system complexity [CRAWLEY et al. 2004, p. 14]. Changes of
interrelations and elements, noticed or unnoticed, cause changes in both the system structure
and behavior, according to the system definition. AHLEMEYER & KÖNIGSWIESER describe
changes or uncertainty as the selectivity of the system, i.e. not all possible interrelations exist
at the same time [AHLEMEYER & KÖNIGSWIESER 1998, p. 26-27]. Changes occurring over
time may be due to the behavior and structure of the system or generated by the systems
architect or user, and, together with hidden interrelations, cause the main uncertainties in
handling systems in most cases.

3.1.3 Concept of complexity
A working definition of complexity for the field of product architectures is derived from the
system definition and the influencing values. Influencing values can be summarized as
number, variety, uncertainty and undesired behavior. In accordance with the different
perspectives of systems, different types of complexity can be derived.

Structural complexity is caused by the number and variety of system elements and
interrelations, leading to different possible perspectives of the system and increasing the
chance of unintentionally ignoring certain types of elements or interrelations, due to an
perspective of the system not taken. Behavioral complexity results from the interplay of
subsets of a system, which causes the occurrence of undesired and/or unexpected behavior,
due to hidden or undesired, but necessary, interrelations. Dynamic complexity occurs due to
the number and variety of known or unknown, desired or undesired changes to the system.
Dynamic complexity is intensively affected by the uncertainty or selectivity of a system,
causing unforeseeable changes and thus unexpected dynamics.34

While the definitions above are, in principle, objective measures of complexity35, CRAWLEY et
al., as well as EHRLENSPIEL, introduce interface complexity as a subjective matter of
complexity [CRAWLEY et al. 2004, p. 14, EHRLENSPIEL 2009, p. 36]. Interface complexity is

34 The consequential progression of the different views of the system definition would imply the existence of
hierarchical complexity as well. As hierarchical decomposition as such is one of the most common principles to
reduce complexity [see e.g. AHLEMEYER & KÖNIGSWIESER 1998, p. 22], it does present a different view of the
system, but does not add further aspects to the concept of system complexity beyond that.

35 CRAWLEY ET AL. state that the mentioned types of complexity are objective measures because they are
theoretically measurable. Constraints for the measurability are the availability of concrete measures and a
common agreement on those measures [CRAWLEY et al. 2004, p. 14].

3.2 Approaches to complexity 33

experienced by people interacting with the system, e.g. people involved in the downstream
activities of a technical system, such as users, operators or assemblers [CRAWLEY et al. 2004,
p. 14]. EHRLENSPIEL describes this situation as complicated for the user, but not necessarily
complex [EHRLENSPIEL 2009, p. 36].

3.2 Approaches to complexity
The numerous concepts of complexity evoked distinct approaches to deal with the subject in
different disciplines or schools of thought. While each discipline identified complexity in its
own field and developed adequate measures to deal with it in its respective environments,
theories and approaches developed over time, approaching complexity from a more general
perspective. The groundwork and basic principles to enable any common understanding stem
from Systems Theory or cybernetics.36 Systems Theory in general seeks to combine known
and familiar patterns in systems from different disciplines, such as biology, sociology,
psychology, engineering, business management, philosophy, linguistics etc. [PULM 2004, p.
21]. On the other hand, the individual disciplines withdraw dedicated elements, i.e. models,
mathematical operations or general trains of thought for problem solving etc., from Systems
Theory and incorporate these elements into their overall proceeding and methodology. It is a
ceaseless undertaking to precisely distinguish different fields of research in Systems Theory
and define which came first. Although systems thinking and Systems Theory emerged to
establish a system understanding independent of certain disciplines and application areas, the
respective disciplines nevertheless tend to differ from one another, be it by developing a
discipline-specific application and extension of general Systems Theory or the relevant
context alone in which the methods and models are presented [ROPOHL 1975, pp. 22-24].37
CHECKLAND gives an extensive historical overview on systems thinking and Systems Theory,
citing numerous groundbreaking publications from different disciplines in the past century
and shedding light on the detailed history of Systems Theory [CHECKLAND 1993, pp. 59-98].
BERTALANFFY, being one of the first researchers of the field, points out the early history of
Systems Theory [VON BERTALANFFY 1976, p. 10-17]. Systems Theory encompasses the three
aspects of systems science, systems technology and systems philosophy [PULM 2004, p. 21],
of which general systems science38 and system technology39 will be considered intensively;
although the philosophical perception and contribution is valuable, it provides no immediate
addition to the topic. The following disciplines will be outlined in the subsequent chapters and
their perspectives on Systems Theory discussed. Operations research, originating in the late
1930s in the military sector, focuses on decision-making during the planning of activities or

36 SIMON gives an even broader historical overview, including Holism and Reductionism, Catastrophe Theory
etc. [SIMON 1996, pp. 169 ff.].

37 ROPOHL for example is positioning cybernetics in the center of his considerations, defining Systems Theory,
systems engineering, operations research, informatics, organizational science and scenario planning as related
areas among “others” [ROPOHL 1975, p23].

38 The notion systems science is here used synonymously with the notions Systems Theory or cybernetics.

39 System technology is used as an equivalent term to systems engineering.

34 3. Understanding and coping with complexity

processes on the basis of mathematic models derived from descriptive models of the problem
[see e.g. DOMSCHKE & DREXL 2002, ZIMMERMANN & STACHE 2001]. Network Science,
originating in the 1990s, concentrates on structural complexity from the perspective of
networked systems, strongly based on the definition of systems as a construct of elements and
their interrelations. It is closely related to Graph Theory, providing the mathematical
groundwork for complex problems [DIESTEL 2006]. The focus of Network Science lies in
large networks with numerous elements and interrelations to identify patterns on a statistical
basis. Graph Theory or Network Science are used as means in Operations Research, of which
they were originally considered a subset [DOMSCHKE & DREXL 2002, p. 8]. Systems
engineering treats complexity application oriented from an engineering perspective with a
strong link to business administration and project management, providing concrete methods
and procedures for successfully developing and dealing with complex systems in business
[see e.g. KOSSIAKOFF & SWEET 2003]. Software engineering, business management and
engineering design research provide models, methods and tools relevant for the respective
area, derived from or combined under the notion of Systems Engineering.

The approaches cannot be discussed exhaustively in this work; the following chapters will
give an overview of each topic based on relevant literature, allowing for the discussion and
contribution of each area to the overall goal of the management of product architectures. The
overview was conducted to develop an understanding of the different schools of thought to
structure the existing approaches. Therefore, the following chapters will proceed from the
rather generic to the more specialized approaches, introducing the different approaches briefly
outlining their history, aims, subjects of consideration, methods, models and languages, and
the relevance for the research introduced in this work. The most promising models, methods
and tools, in general the relevant subsets of an approach, will be discussed in detail in the
chapter 5, highlighting existing applications and methods stemming from the discussed
schools of thought.

3.2.1 Systems Theory
Since its origin in the 1920s, general Systems Theory pursues theoretical model building
between theoretical and generic mathematical models and the specialized models of the
separate disciplines. General Systems Theory is one of the few “global theories” that is still
present in science. Although the more specialized forms of it, such as e.g. systems
engineering, are far more popular in research and practice today, it is the basic understanding
of systems, and the sensitization for the topic stemming from general Systems Theory, that is
still cited and representing the basic understanding of systems to present [BOULDING 1956]. A
historical overview on early Systems Theory is provided for example by BERTALANFFY, who,
cited by many, was also one of the first researchers of the field [VON BERTALANFFY 1976, p.
10-17], while Checkland provides a broader overview on the history of Systems Theory and
its placement in the history of science overall [CHECKLAND 1993, pp. 59-98]. Systems Theory
encompasses the three aspects of systems science, systems technology and systems
philosophy [PULM 2004, p. 21]. The following discussion will concentrate on systems science
with remarks to systems philosophy where appropriate, while Systems Technology will be
discussed as Systems Engineering.

3.2 Approaches to complexity 35

The following aims of Systems Theory, based on BERTALANFFY, BOULDING and CHECKLAND
[VON BERTALANFFY 1976, p. 38, BOULDING 1956, CHECKLAND 1993, p. 93] are loosely
ordered according to the estimated probability of achieving them: centering the integration of
various sciences to actively seek for isomorphic40 concepts, laws or models in the respective
fields; investigating of useful transfers from one field to another; enabling the development of
adequate and exact models and theories for the disciplines which lack them, especially
nonphysical disciplines; revealing gaps in existing theoretical models of individual disciplines
by providing a system of systems in science; eliminating parallel efforts in different fields;
and improving integration between specialists in science, practice and education, thus
promoting the unity of science. It is important to note that the “unity of science” does not
refer to a general encompassing theory making all specialized disciplines obsolete, but rather
to an improved integration of disciplines by common theories and models41 [BOULDING
1956]. As generality commonly causes the loss of content of an approach, method or model, it
is not the goal of general Systems Theory to substitute all other disciplines, but to provide
consolidated findings of a more generic applicability [BOULDING 1956]. Neither is it the goal
of Systems Theory to reduce all sciences to the laws of physics, as was the perception of a
unification of science before Systems Theory [VON BERTALANFFY 1976, p. 48]. The results
are meant to be applicable to different disciplines and provide insights based on the generic
theories on systems [BOULDING 1956]. STEINMEIER rightly states that, from the Systems
Engineering perspective, the system-oriented approach in practical application has to supply
solutions to specific problems, a notion which is valid in other disciplines as well. This
underlines the importance of the choice of perspectives to be taken, dependent on the system
situation- [STEINMEIER 1999, p. 14], as was determined within the discussion of the
understanding of system and complexity. The foci of research and practice, namely the
identification of generic findings and the specific application, nevertheless do not represent a
contradiction. The gap highlight the need for a more specific definition of approaches to
sufficiently apply Systems Theory in practice, culminating in research areas, such as Systems
Engineering, and leading to the implementation of the fundamental ideas of Systems Theory
into other research areas, such as engineering design research and business management.

Following the definition and goals, the subject under consideration in the conducted research
in Systems Theory, namely “the system” itself, cannot be limited to a certain number or
particularly defined systems. Instead, numerous classifications or typologies of systems were
developed by different authors, pointing out the diversity of the systems considered in
Systems Theory and allowing for an improved differentiation of applicability of particular

40 Isomorphy has varied definitions in different disciplines. In Systems Theory, especially from the perspective
of systems engineering taken in this work, it can be defined as equivalence and validity of a model or theory in
different disciplines accompanied by the possible qualitative or quantitative reproduction of a part of each
discipline’s reality.

41 The developing and sharing of models and theories in cooperation between different disciplines is typically
referred to as transdisciplinary, as opposed to interdisciplinary, i.e. the mere “working together” of disciplines,
an integration on a level above the working level of the disciplines, without sustainable long-term impact on the
disciplines [for an extensive discussion of the terms, see for example BRAND et al. 2004 or LASZLO 1995].

36 3. Understanding and coping with complexity

models and theories in different types of systems. A common differentiation is the distinction
of hard and soft systems. While hard systems are precisely definable and represented mostly
by systems in engineering, such as design problems, soft systems constitute the fuzzy problem
situations set in e.g. social systems [CHECKLAND 1993, p. 189-191]. BERTALANFFY divides
hard systems into closed and open systems, of which closed systems are, for example
thermodynamical processes, while open systems interact with their environment, allowing the
exchange of inflow and outflow across their system boundaries, if boundaries can be clearly
defined at all [VON BERTALANFFY 1976, p. 39]. PULM considers the evolution of Systems
Theory as a shift from closed to open and finally to soft systems, i.e. from general Systems
Theory to first and second order cybernetics [PULM 2004, p. 23]. It is important to recognize
this “paradigm shift” to understand that increasingly complex systems can be influenced,
rather than controlled, due to their openness, instability, dynamic, indetermination: in
summary, their increasing complexity [PULM 2004, p. 43]. Clearly, even the fundamental
distinction between hard and soft systems has blurry boundaries, as an engineering problem
can be tackled in the early requirements- and customer-interrelation phases through soft
system methodology, giving credit to the social and human aspect of a product’s purpose.
Fuzzy methods are also of increasing use in engineering [see e.g. BONJOUR et al. 2009,
WERTHNER 1994 pp. 99ff.]. In particular, Systems Engineering and the early phases of design
profit from fuzzy methods in situations where problems cannot be stated clearly [CHECKLAND
1993, p. 191]. On the other hand, concepts of Systems Engineering methods, such as the
definition of domains and their interrelations as proposed by MAURER, prove to be useful to
enhance for example the general approaches of system dynamics [MAURER 2007].

Widening the scope, MALIK provides a distinction with similar results, differentiating systems
on the basis of their origin into technical, social and natural systems. Following this
argumentation, technical (hard) systems evolve due to both human intention and action, while
complex social (soft) systems develop without human intention, but require human action. As
a third category, MALIK introduces natural systems, which evolved without human intention
or human action, such as the planetary system. To complete the picture, according to MALIK
no system exists without human action but stemming from human intention [MALIK 2008, p.
219]. CHECKLAND, besides his general differentiation of soft and hard systems, supports
MALIK’s perception of system classes, adding only human activity systems, i.e. sets of human
activities viewed conjointly as a system, to the list of natural, designed and social systems.
Human activity systems, according to CHECKLAND, are different from natural systems due to
human self-consciousness and human choice, resulting in different possible occurrences of the
system as opposed to natural systems. The difference from social systems stems from the
existence of systems associated to a human activity system, which in the majority of cases are
designed systems [CHECKLAND 1993, p. 115-118]. Though lacking the provision of a coherent
example of a human activity system,42 CHECKLAND, with his classification of systems,
underlines that different types of systems require different methods, and that boundaries
between different system types are rarely sharp.

42 CHECKLAND quotes British Rail and hypothetical experiments considering the exact analysis and prediction of
brain activities as examples [CHECKLAND 1993, pp. 115-118].

3.2 Approaches to complexity 37

BOULDING introduces what CHECKLAND calls an “informal intuitive hierarchy” of nine levels
of complex systems [CHECKLAND 1993, p. 105]. BOULDING‘s hierarchy ranges from static
structures on the first level via more complex mechanisms and control loops to open systems
and levels of differently advanced organisms, to finally reach the most complex known
systems, the class of socio-cultural systems, on level eight. BOULDING closes his
considerations with the “transcendental systems” on level nine [BOULDING 1956], giving
credit to the philosophical component of Systems Theory, the far end of second order
cybernetics, so to speak.

The vision and ambitious goals of Systems Theory prohibit the exclusion of certain system
types. The different attempts to achieve a satisfying classification show the diversity of
systems, as well as the difficulty in developing, applying and evaluating concrete approaches
suitable for all types of systems. Furthermore, the suggested system topologies lack a distinct
differentiation, implying that systems with their inherent dynamic and behavior are usually
varied in their origin and properties.

The topology of systems supports the identification of appropriate measures to analyze and
cope with a system regarding the inherent properties of a system class. One can differentiate
between the used models on one hand, and the applied methods on the other, although both
are inseparable in their application. Modeling in Systems Theory often uses mathematical
descriptions, considering mathematics to be the most generic language of all. Soft systems in
particular are hard to grasp with quantitative measures, which is why more abstract and
unspecific descriptions are chosen for that kind of systems. Not without reason, CHECKLAND
separates soft Systems Theory and hard Systems Theory, i.e. the “engineer’s contribution”
[CHECKLAND 1993, pp. 125ff]. Hard systems, such as technical or designed systems, can be
more easily described with quantitative measures once they have reached a sufficient level of
maturity, while for both soft systems as well as hard systems in early stages, appropriate
qualitative methods are required. Underlying methods or describing models and languages
reflect this differentiation and show different approaches in general.

A mathematical description of systems is not uncommon and stems from the prior idea of a
unification of science on the basis of the laws of physics. BERTALANFFY establishes a number
of mathematical laws to briefly explain fundamental system properties such as growth,
competition or centralization, and their applicability for different systems [VON
BERTALANFFY 1976, pp. 55-80]. LIN exceeds these considerations and establishes a far more
comprehensive framework based on physical knowledge, introducing different existing
theories and their application, while pointing out the shortcomings and limitations of the
approaches [LIN 1999, pp. 15ff]. Recently, Graph Theory and Network Science, as related
mathematical disciplines, emerged from Systems Theory to solve problems related to and
emerging from large networks. The mathematical models used are less physical, yet aim for
the identification of mathematical laws applicable to networked systems in different
disciplines.43 That mathematics as a language is considered capable of describing all
phenomena of the physical world turns out to be a major constituent of Systems Theory, as its

43 Frequently consulted problems of Graph TheoryGraph Theory are the Königsberg bridge problem or the
travelling salesman problem, among others [see e.g. WEST 2001, pp. 1ff].

38 3. Understanding and coping with complexity

universality suits the general purpose of Systems Theory, to be applied to systems in general.
Other authors acknowledge the importance of mathematics in Systems Theory, but emphasize
the relevance of soft systems and the soft systems approach by introducing procedures,
principles and methodologies, rather than mathematical models [CHECKLAND 1993, pp.
149ff]. Not only are these approaches meant to solve rather unspecific problems, but they are
also intended to be of use to the context of system design in general. Essentially, when entire
systems are designed and not only a small part of a product or an organization is considered,
the models introduced by soft Systems Theory benefit the design process supporting the
architect by aiding his general understanding of the system. Mathematical models and laws
are, in most cases, not introduced in combination with a procedure or guideline supporting
their application. As a result, researchers in different and diverse areas rarely apply generic
mathematical models; rather these are more specific to researchers of general Systems
Theory. The rather specific sciences related to Systems Theory, such as Systems Engineering,
largely forego generic mathematical models and provide procedural models and a general
understanding of Systems Theory as a guideline for application. Mathematical models in the
area of engineering are of course numerous, but in most cases it is the specialized laws,
findings and calculations that are of relevance for the many challenges in engineering, for
example finite elements, fatigue strength or energetic calculations and simulations. For a more
general applicability, soft Systems Theory provides models that are generally sufficient for
researchers of different areas. As examples for the understanding of soft Systems Theory,
CHECKLAND introduced a procedural model derived from action research, an approach
originating in the social sciences, which consists of a loop of different phases: expressing the
situation in which the system exists; describing the relevant systems for the problem;
establishing conceptual models; comparing the models with reality; and identifying and
implementing changes (action) [CHECKLAND 1993, pp. 162ff]. The model illustrates what
most mathematical Systems Theory concepts are missing, i.e. a clear understanding of how to
address a given vague problem in a systematic way. Nevertheless, the model lacks precise
methods and specific applicability, making it more of a problem solving process, rather than a
concrete solution for specific problems. PULM, in a similar sense, considers Systems Theory
as a mindset from an engineering perspective. Among other goals, the focus of his research is
not on mathematical laws, but rather on a number of super- and subordinate principles of
Systems Theory as its core outcome for practical application [PULM 2004, pp. 48-50], which
he applies to the case of the development and design of individualized products, embedded in
a procedural model for individualized products. In summary, the models used in Systems
Theory are predominately mathematical, while others are abstract descriptions of systems and
principles to analyze and design complex systems in general. Both mathematical and abstract
models aim for a general system understanding for all kinds of systems.

The models used constitute an important element when discussing existing approaches of
Systems Theory. Approaches can further be discussed by the methods or methodologies as an

3.2 Approaches to complexity 39

outcome of research in Systems Theory, to be applied in specialized sciences or practice.44
Additionally, two distinct procedural methods exist, allowing for the research of valid
contributions to Systems Theory. These approaches within Systems Theory provide the
foundation regarding how to conduct research in the field, and are widely recognized by
different authors, such as BERTALANFFY or LIN, who both rely on prior sources [VON
BERTALANFFY 1976, pp. 94-99, LIN 1999, pp. 6-7]. Research in Systems Theory can thus be
conducted either by observing the phenomena of one particular system to derive noticeable
findings and generalizing them to be applied to and validated on further systems (empirical-
intuitive), or by observing a large sample size in the beginning, to seek for more generic
commonalities defined as axioms of Systems Theory (deductive). While the intuitive
approach is considered to be closer to reality and the particular observed system, the
deductive approach supplies the mathematically more consistent foundation, but may or may
not describe any considered system sufficiently [VON BERTALANFFY 1976, pp. 94-99].
CHECKLAND provides a similar differentiation, but adds the application of Systems Theory in
other disciplines as an additional field as a contribution to the study of systems [CHECKLAND
1993, p. 95], from which for example systems engineering emerged. LIN describes a number
of approaches (among them, those of CHECKLAND and BERTALANFFY), which differ mainly in
terms of the perspective taken, such as human activities, computer-aided problem solving,
data analysis, system structures etc. [LIN 1999, pp. 7ff]. As in any other field of science,
different approaches to Systems Theory are valid, leading to findings that, in the future, may
allow for a consistent entity of Systems Theory. For the moment, the empirical-intuitive
approaches tend to be more applicable, providing a general systems understanding, and
principles based on that understanding. In combination with the procedural instructions, the
derived principles allow for a systematic confrontation with novel problem situations and a
purposeful means of addressing the different aspects of the problem system; without Systems
Theory, this would not be evident. Subsets of the deductive approach, such as Graph Theory
or Network Science, show that this approach provides valuable contributions relevant for both
practitioners and scientists.

In the context of the presented research on the management of product architectures, the
discussed approaches of Systems Theory provide a number of relevant contributions. The
perception of any given subject matter as a system in the definition opens up the possibility
of considering different entities, artifacts and influencing elements in product architecture as
parts of the overall system. As a result, relevant fields of consideration can widen the scope of
product architectures, enabling a more comprehensive perception of product architectures and
coping with them. Stating that a system is the “whole” of elements, Systems Theory clarifies
the need to thoroughly reflect on which elements are part of the system and which are not.
The discussion of Systems Theory further clarified that not only do different views of systems
and their complexity exist, but that they require and generate different approaches and
methods, underlining the importance and recognition of generic patterns and models

44 Different authors comment on Systems Theory, criticizing that the findings of Systems Theory are hardly
applicable to specific cases without extensive modifications [for a discussion on the topic see LIN 1999, pp. 6-
14].

40 3. Understanding and coping with complexity

throughout systems of different kind. Finally, the successful application of the results of
Systems Theory as such can only be conducted by modifying the approaches to fit the use
case in question, suggesting a search for more directly applicable approaches in the more
specialized disciplines, which will be discussed in the following chapters.

3.2.2 Operations research
The methods of operations research were developed and applied for the first time during
World War II by British and American forces, with the goal of supporting decision-making in
complex planning situations [ZIMMERMANN & STACHE 2001, p. 2]. Among the planning
problems considered during that period was for example the planning of the composition of
ships for transatlantic convoys [DOMSCHKE & DREXL 2002, p. 2]. American scientists in
particular continued research on the transfer of the developed methods to business
management; these were later subsumed under operations research [ZIMMERMANN & STACHE
2001, p. 2]. The core idea of operations research consists of applying mathematical models to
understand, simulate and objectify the rational decision-making process of practitioners
[DOMSCHKE & DREXL 2002, p. 1]. Thus, what is currently subsumed as operations research
contains methods and solutions dating back to the 18th century.45

The overall goal of operations research is to provide a systematic and methodical means for
planning in business management, where planning is primarily understood as a mathematical
support of decision-making. Operations research thus intends to provide a problem solving
process with defined aims: the depiction of a decision problem in reality, by means of
mathematical optimization models or simulation models and the application or, if necessary,
development of an algorithm to solve the problem [DOMSCHKE & DREXL 2002, p. 1].
DOMSCHKE & DREXL sum up the goals of operations research as modeling, solution finding
and the definition of appropriate algorithmic procedures [DOMSCHKE & DREXL 2002, p. 2].
Further characteristic traits of operations research are the striving for optimality, i.e. the
maximization or minimization of values, problem quantification and the preparation of
decisions. Striving for optimality is not always an option when dealing with real world
problems, as the optimum cannot always be clearly defined or reached. Thus, analytical
approaches, as well as heuristic procedures, are additional parts of operations research. It is
worth noting that, to reach these goals, in-depth information based on reliable existing data is
required to enable informed decisions, as would be true for the application of any other type
of method [ZIMMERMANN & STACHE 2001, p. 4].

Given the goals of operations research, the subjects under consideration of are numerous.
Different examples are regularly mentioned, yet operations research methods are intended to
be applied to almost any given system present in industry where economical decisions are
made. The relevant areas in which operations research has already been applied successfully,
are for example sales, production, purchasing, costing, organization, personnel, or investment.
Examples of application can also be found in the technical sector of business, such as in
development, design, project management, maintenance or stock keeping. Furthermore,

45 For early sources of operations research see for example [ZIMMERMANN & STACHE 2001]

3.2 Approaches to complexity 41

examples of operations research are found outside of the business world, as in public
administration, the sector of public utilities, public health, the energy industry, or
environmental protection [ZIMMERMANN & STACHE 2001, p. 5].

For the wide field of considered systems, mathematical modeling methods are the most
common means of modeling. Mathematical modeling requires detailed and reliable
information about the considered system to provide equally reliable solutions to the problems
under consideration. The models include analytical procedures, approximation procedures,
heuristic procedures and simulation processes [ZIMMERMANN & STACHE 2001, p. 4]. The
applied simulation processes are predominately stochastic methods, such as the renowned
Monte Carlo method [ZIMMERMANN & STACHE 2001, p. 329]. The mentioned models are
primarily considered to deliver solutions to a given problem in terms of the explanation of
recurring effects or the prediction of future circumstances. DOMSCHKE & DREXL underline the
importance of data acquisition to provide reliable solutions. They propose models intended
exclusively for information acquisition that serve the description of a system alone, i.e. they
depict strictly the real system but avoid causal relations or interpretations. On the other hand,
models intended for the explanation of effects or systems include the formulation of
hypotheses to explain circumstances that have to be positively or negatively evaluated.
Simulation models, as stated by other authors, allow for the prediction of the behavior of
systems and future circumstances [DOMSCHKE & DREXL 2002, p. 3].

The general procedure of operations research consists of a process of tasks with steps similar
to other existing problem solving processes. The first step of the proposed procedure consists
of the abstraction, i.e. in the case of operations research, the depiction of the real problem in a
mathematical model. The calculation of the model, the second step of the procedure, provides
a solution to the problem depicted in the mathematical model. The interpretation of the
calculated results finally allows for a solution to the real problem [ZIMMERMANN & STACHE
2001, p. 3]. DOMSCHKE & DREXL add the detailed recognition and analysis of the problem in
the beginning of the procedure, as well as the data acquisition during the process. They
further stress the evaluation of solutions prior to the process of interpretation [DOMSCHKE &
DREXL 2002, pp. 1-2]. CHURCHMAN et al. consider the control and eventual necessary
adaptation of the model, e.g. in case parameters have changed over time, as an additional step
after interpretation. Furthermore, the practical realization is considered as a final step,
providing personnel with required information, planning of implementation etc. [CHURCHMAN
et al. 1961, pp. 23-24]. In general, optimization algorithms of different kinds form the central
element of the procedure and serve the overall goal of operations research: the support of
decision-making in complex planning situations. Typical examples for methods used in
operations research are the critical path planning or network method [ZIMMERMANN &
STACHE 2001, pp. 6-47], as well as different methods derived from approaches in Graph
Theory [DOMSCHKE & DREXL 2002, pp. 59-73]. Due to the usually complex problems and
systems considered, software support is common in operations research to allow for different
calculations, react to different circumstances and in general reduce the time of calculations
[DOMSCHKE & DREXL 2002, p. 1].

Operations research provides a profound basis for decision-making in complex situations. As
mathematical calculations constitute the core results of operations research, it has to be

42 3. Understanding and coping with complexity

pointed out that quantitative input information has to be available, and the quality of the input
information is also crucial. Furthermore, though it is tempting to place blind trust in
quantitative results, they must be rationally and thoroughly questioned during interpretation.
The universality of the typical procedure of operations research allows for the adaption to
numerous problems, as does the generality of the mathematical models. Operations research
shows similarities in that generality to the disciplines of Systems Theory and Graph Theory,
whose methods and core system understanding it adopted. Summing up, operations research
provides widely applicable models and approaches and considers complex situations, in
which a more comprehensive view of problems is necessary, as the system as a whole is
important in the sense of Systems Theory.

3.2.3 Network Science and Graph Theory
Network Science and Graph Theory, as mentioned in the previous chapters, originally formed
a sub-group of mathematics and thus the means of Systems Theory. Due to a large number of
commonalities, which are more decisive for the presented work than their differences, both
fields of science will be discussed conjointly when possible and differentiated when necessary
in the following sections. The commonalities between Graph Theory and Network Science
include the approach of modeling the world, i.e. in graphs or networks, the reliance on similar
mathematical fundamentals, and the common goal of deriving generalized findings, patterns
and principles in the considered networks.

Graph Theory evolved in mathematics in response to apparently simple problems or puzzles
still lacking a mathematical explanation [BIGGS et al. 1999, p. 2]. The earliest retrospective
mentioning of a graph theoretical problem is that of the Königsberg Bridges from 1736
[BIGGS et al. 1999, p. 3, NEWMAN 2003, p. 169 among numerous other authors], whose
solution, the abstract depiction of the bridges and mainland/islands as nodes and edges, posed
its accessibility for mathematical considerations which are now formulated as the basis of
Graph Theory [DIESTEL 2006, p. 2, WEST 2001, p. 1-2]. The applications, approaches and
solutions that followed concerned problems which were increasingly of interest for
practitioners and scientists in other areas, most notably chemists, biologists and computer
scientists, but also sociologists, whose analysis of social networks dated back to the 1930s
[NEWMAN 2003, p. 169]. Nowadays, the influence is far-reaching and expanded to many
different disciplines, such as engineering, especially systems engineering, and others [BRAHA
& BAR-YAM 2004]. Network theory made use of the mathematical findings of Graph Theory
in large networks; the often-cited systems are biological systems, social networks and
information networks or artificial but somehow “decentralized” technical structures, such as
the world wide web or an electric power grid [NEWMAN 2003, pp. 174-180].46 The possibility
for recent findings in the field is largely due to increased computing power and advanced

46 For an overview of the findings and examples of Network Science, see for example the rather colorful and
popular books of BARABASI or WATTS [BARABÁSI 2003, WATTS 2003], while a more scientific overview can be
obtained from NEWMAN and ALBERT & BARABASI [NEWMAN 2003, ALBERT & BARABÁSI 2002], who
additionally provide numerous references on the subject.

3.2 Approaches to complexity 43

theoretical understanding [BRAHA & BAR-YAM 2004, ALBERT & BARABÁSI 2002, p. 48], as
large networks provide increased data and also follow different laws.

The goals of Network Science differ significantly from Graph Theory, though the science of
networks originated from the domain of Graph Theory [ALBERT & BARABÁSI 2002, p. 48].
While Graph Theory seeks to identify axioms and laws appropriate for graphs in general,
random networks serve as empirical validation of the results; Network Science seeks to adapt
these findings to real networks and thus reduce or expand the number of valid laws under
consideration of real world networks [ALBERT & BARABÁSI 2002, p. 48]. The significant
difference between the problems typically considered in Graph Theory and Network Science
is the size of the networks, which tends to be significantly larger in the examples of Network
Science [NEWMAN 2003, p. 169].Where Graph Theory identifies theoretical problems and
solutions in often hypothetical environments, Network Science considers the systems of the
real world as networks and pursuits the explanation and prediction of the real world by
applying and adapting the findings of Graph Theory. In addition to understanding the
structure of networks, a central goal of Network Science is to understand the dynamic
behavior of networks, such as the development of the world wide web or social networks,
which poses a marked difference to Graph Theory [CAMI & DEO 2008, p. 211]. While Graph
Theory in itself is a mathematical discipline and, essentially neutral to other fields of science,
network theory considers itself to be strongly multidisciplinary [ALBERT & BARABÁSI 2002,
p. 48] and observes effects appearing in systems of many different disciplines, not one
particular discipline.

Graph Theory and Network Science have different goals, and, as a result, different systems.
While Graph Theory perceives systems as rather static structures, Network Science considers
primarily the dynamics of systems, such as their growth. Furthermore, in Graph Theory,
random networks or hypothetical experiments prevail, as the goal is to increase the
mathematical findings, axioms and laws. It turns out that the random networks of Graph
Theory lack applicability to the large scale networks considered in Network Science; the real
world networks follow different rules, as they are uncontrolled, decentralized, and often
rapidly growing, while random networks form uniform structures and require integrity
constraints, transactions etc. [NEO & GUPTA 2003]. In contrast, Network Science considers
large-scale real world networks, of which social and biological or information networks are
the most common examples; the methods of networks science are applied to these examples.
In contrast, the consideration of technological networks to current day has been limited to
those where the distribution of some commodity or resource is the core functionality of the
system, such as electricity or the World Wide Web. The consideration of other technical
systems, for example technical products or manufacturing lines, is very rare in Network
Science, while the approaches of Graph Theory are rather applicable to problems of this kind.
The reason for this lies in the differences of goals and approaches of both disciplines: Graph
Theory seeks to identify single nodes and edges of significant meaning, rather than the
relevance of properties of the system overall, such as its centrality or connectivity. This is
instead the case in Network Science, due to the large networks studied, in which the meaning
of a single node or edge is significantly reduced [NEWMAN 2003, p. 169].

44 3. Understanding and coping with complexity

Both disciplines use similar mathematical models, but differ in the understanding of their
purpose. In accordance with the considered systems, Network Science focuses on laws
applicable to real world networks. Graph and matrix representation are commonly used by
both disciplines for visualization, as well as for calculation purposes.

The approaches of Graph Theory and Network Science differ above all in their approach to
the subject of network analysis. Graph Theory builds its foundation on empirical, artificial
and random networks, thus resulting in a large mathematical foundation [see for example
DIESTEL 2006 or WEST 2001]. Network Science, on the other hand, observes the dynamics of
real world networks and thus reduces or expands the number of valid mathematical laws of
consideration of real world networks [ALBERT & BARABÁSI 2002, p. 48]. Graph Theory
approaches networks from a strictly mathematical view, which is then applied by other
disciplines to their problems. Network Science seeks explanations for the behavior of real
world networks, thus setting the starting point of the research on the opposite end from Graph
Theory.

The results of Graph Theory and Network Science reflect their different goals and
approaches, as was discussed in the previous sections. Summing up, Graph Theory derives
axioms and laws for graphs and networks based on mathematical consideration of random
networks, resulting in a vast variety. The transfer to real world problems may or may not be
possible, depending on the respective systems and disciplines in which they are considered. In
contract, Network Science, with the declared goal of understanding and explaining the
dynamics of real world networks, seeks interpretations of occurring effects in reality and the
desirable generalization to familiar networks from different disciplines if possible.

The relevance for the presented work is given through the situation of product architectures,
which themselves can be represented as complex networks, as can their immediate and
intermediate environments. Both disciplines, Graph Theory and network theory, explain
certain behaviors and properties of networks mathematically, though from different
perspectives. While the adaptation of graph theoretical models to the problems in engineering
was already discussed and verified by MAURER and others in the context of the design
structure matrix [MAURER 2007], the application of the results of Network Science to
engineering problems is still absent, with the exception of the given examples of power grids,
the world wide web and related networks. One reason for this might be the difference of
networks considered in Network Science and technical products, for which only very few
metrics apply [see for example SOSA et al. 2005]. The usual technical products are not
decentralized and growing through the aspiration of their equal elements, but are defined from
the outside to suit a certain purpose.

3.2.4 Systems engineering
The history of systems engineering is closely related to that of Systems Theory, as systems
engineering is considered a systems approach and thus correctly set into a close relationship

3.2 Approaches to complexity 45

to Systems Theory [MAIER & RECHTIN 2000, p. 8]. Systems engineering is considered the
“engineer’s contribution” [CHECKLAND 1993, pp. 125ff] to systems science.47

As in operations research or Graph Theory, the first methods, approaches and solutions of
systems engineering date back far into the past. In retrospective, ancient undertakings such as
the pyramids might be considered as the first applications of comprehensive system
approaches in a technical context due to the broad scope of these projects [KOSSIAKOFF &
SWEET 2003, pp. 5-6]. World War II is frequently mentioned as having propelled the
development of systems engineering means, while the term itself was established in the mid
20th century, when systems engineering positioned itself as a self-contained area of science
[KOSSIAKOFF & SWEET 2003, p. 6]. The NASA Apollo missions are perceived to have driven
the systems engineering approach even further forward [MAIER & RECHTIN 2000, p. 10]. In
the history of systems engineering, the similarities to operations research show in the
importance of certain historic events for the development of the scientific approaches,
underlining the practical applicability of both areas of research, in contrast to the scientific
and abstract means of general Systems Theory or Graph Theory. As discussed in the
introductory chapter, the driving forces for complexity and the need for systems engineering
are new technologies, competitors, or the numerous specialized disciplines involved, among
other [KOSSIAKOFF & SWEET 2003, pp. 6-7].

In the past decades, a few developments put forward in the context of systems engineering are
worth mentioning. In particular, those were firstly the definition of architecture frameworks
(AF), aiming at the combination of different views of architectures, thus supporting one of the
core purposes of architectures and main tasks of systems engineering. Second, the
development of the Systems Modeling Language (SysML) in the past years aims to define a
milestone for the modeling of complex systems in the area of systems engineering. SysML
provides a modeling approach, enriching the Unified Modeling Language (UML) with
specific systems engineering views (e.g. requirements), aiming towards the modeling of the
relevant architecture entities in systems engineering [SADEK HASSANEIN 2008, p. 75]. The
Multiple Domain Modeling (MDM) approach was introduced for the same purpose, i.e.
defining a generic modeling approach for complex systems; this provides a simple, yet
effective, modeling and analysis approach without claiming comprehensive identification of
architecture entities.48

Since the late 1980s and early 1990s, so-called architecture frameworks were developed,
providing a basis for the architecting of complex systems of a different nature. A number of
approaches with origins in the field of information systems [ZACHMAN 1987] developed over
time, considering product architectures (for example the Command, Control,
Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR)
Architecture Framework [DOD 1997] or the Integrated Architecture Framework (IAF) [WOUT
et al. 2010]) and enterprise architectures [SANTE et al. 2007, MATTHES 2011], in many cases

47 HOLT & PERRY give four different definitions of the term Systems Engineering, comparing different authors
[HOLT & PERRY 2008, pp. 2-3].

48 The Multiple Domain Modeling (MDM) approach will be discussed in chapter 5.4.3

46 3. Understanding and coping with complexity

with a strong relation to information systems [compare e.g. SANTE et al. 2007, WOUT et al.
2010]. Recent research proposes the definition of process architecture frameworks by
adapting the core principles of architecture frameworks to processes [BROWNING 2009].

The discussion of architecture frameworks will continue more comprehensively in chapter
5.2.1. The approach of SysML as a modeling language for systems engineering will be
analyzed in detail in chapter 5.2.2, while the implications and benefits of the MDM approach
are presented and evaluated in chapter 5.4.3.

The overall goal of systems engineering is to guide the engineering of complex systems
[KOSSIAKOFF & SWEET 2003, p. 3, MAIER & RECHTIN 2000, pp. 5-6]. Systems engineering
considers two major aspects of this overall goal: coping with complexity by use of the
systems approach, and the guidance through the process of system development as a project
management oriented approach [DAENZER 1979, p. 8, KOSSIAKOFF & SWEET 2003, pp. 4-5,
ZÜST 1997, p. 28, compare also DAENZER & HUBER 1999]. To enable the management of
complexity in both the product and process perspective, as in Systems Theory, a goal of
systems engineering must be to consider the system as a whole [KOSSIAKOFF & SWEET 2003,
p. 4], i.e. to include the process of systems architecting and integrate the related views.
Systems engineering is further striving to support this process by means of a given systems
engineering methodology, meant to ensure the goal-oriented and efficient use of the creative
potential and expertise of the user of the methodology [ZÜST 1997, p. 24]. The purpose
orientation of systems engineering itself is an important aspect of the system of goals of
systems engineering, setting the mission of the systems architect into perspective [MAIER &
RECHTIN 2000, pp. 10-11]. As a result of the purpose orientation, the systems architect is
meant to be an agent of the client, not the builder of the technical system [KOSSIAKOFF &
SWEET 2003, p. 4, MAIER & RECHTIN 2000, p. 18]. Systems engineering activities in general
are defined to gain insight into the considered system [MAIER & RECHTIN 2000, p. 17]. This
insight is not to be considered as a strictly technical approach, but has to fully consider the
client, resulting requirements, organization and process.

The systems considered in systems engineering, similar to those of Systems Theory, are
diverse and numerous. As a result, different authors provide classifications of systems rather
than a precise definition of considered systems. From the perspective of Systems Theory, the
systems were already discussed in previous chapters, such as the classification of systems
according to CHECKLAND and others, resulting in the differentiation according to the origin of
systems, such as natural systems, designed physical and abstract systems, and human activity
systems [CHECKLAND 1993, pp. 109, compare also CRAWLEY et al. 2004 and MALIK 2008, p.
219]. These classifications reflect in the perception of systems engineering to encompass the
technical as well as the cultural and social aspects of both the system and its complexity.
ROPOHL defines three main classes of systems in engineering: the system of goals, the system
of action, and the system of objects. In brief, within the system of action, the goals of the
system of goals are realized in the system of objects [ROPOHL 1975, pp. 32-33]. The most
important system classes from an engineering perspective, according to ROPOHL, include the

3.2 Approaches to complexity 47

differentiation into concrete and abstract, natural and scientific, open and closed (or relatively
isolated) as well as static and dynamic systems [ROPOHL 1975, p. 32].49

To describe the modeling approaches of systems engineering, their importance and role in the
process of systems engineering has to be defined. The systems architect is involved in the
design process, yet does not contribute to the detail definition during the process directly. The
systems architect is therefore strongly dependent on models, substituting the system itself.
The models are “acting as surrogates” in the process [MAIER & RECHTIN 2000, p. 163].
Because of the intensively discussed broad range of effects, causes and entities of the product
architecture, the models must encompass the many existing different views of the system to
enable the systems architect to integrate all relevant constituents of a product to a functional
and purposeful system [BOARDMAN & SAUSER 2008, p. 57, MAIER & RECHTIN 2000, p. 163].
The resulting role of the models in systems engineering can be included, as done by MAIER &
RECHTIN, as the support of communication, the maintenance of the system integrity (by
coordinating design activities), the assistance in design (e.g. by providing templates,
organizing and recording decisions), the exploration and manipulation of solution parameters
and characteristics (i.e. guiding and recording aggregation and decomposition of system
functions, components, and objects), the prediction of system performance, and the
identification of critical system elements as well as the provision of acceptance criteria for the
certification for use [MAIER & RECHTIN 2000, p. 144]. In brief, MAIER & RECHTIN point out
three characteristics of models in systems engineering: first, the role of communication
between the stakeholders involved in the process (supporting the maintenance of design, i.e.
its integrity and synthesis); second, the multiplicity of views and models; and third, the
multidisciplinary, integrated modeling methods, which tie together the various views [MAIER
& RECHTIN 2000, p. 164].

KOSSIAKOFF & SWEET give the definition of three types of models in systems engineering,
depending on how the system is modeled. These types include schematic or descriptive
models (e.g. organization charts or data flow diagrams), mathematical models (e.g. statistical
distributions, differential equations used in system dynamics) and physical models (direct
reflection of the physical characteristics of the actual system or parts of it, such as physical
prototypes or mock-ups) [KOSSIAKOFF & SWEET 2003, pp. 410-411]. To complete the picture,
MAIER & RECHTIN give a classification of the models consisting of six types, depending on
what the model depicts: a model of the purpose or objective of a system (e.g. customer
demands); the form of the system (e.g. physical model of the system); behavioral or
functional models of the system; a model of the performance objectives (e.g. the effectiveness
of fulfilling the technical requirements); data models (e.g. information retained in the system
and its interrelationships); and managerial models (e.g. process charts, workflow models)
[MAIER & RECHTIN 2000, p. 146].

49 It has to be noted that a classification of systems, to become more than an end in itself, has to result in
reasonable approaches and models in accordance with the classification, so that the classes reflect certain models
and procedures to cope with the particular type of system. The following chapter will discuss this subject by the
example of product architectures.

48 3. Understanding and coping with complexity

As coping with complexity is the overall goal of systems engineering, there are naturally
numerous different methods relate to that goal. As first approximation, the approaches and
methods of systems engineering can be divided into modeling methods and process-related
methods, together forming an “architecture framework” [MAIER & RECHTIN 2000, pp. 221-
234]. A characteristic of most methods of systems engineering is their focus on qualitative
rather than quantitative knowledge, especially in the early phases of design and when dealing
with new technologies [KOSSIAKOFF & SWEET 2003, p. 4], as is the case in most systems
engineering projects. The number and outcome of methods are numerous, and some will be
discussed in detail in the following chapters; at this point of this work, the focus is on
grouping methods according to their purpose within the systems engineering process. A
cogent structuring is provided by what is called the “essentials of systems engineering” by
BOARDMAN & SAUSER [BOARDMAN & SAUSER 2008, pp. 47-61]. The authors sum up into
seven categories the crucial areas of support by systems engineering methods; the previously
discussed goals and models of other authors uphold these categories. The first aspect of
method support is described as lifecycle recognition, i.e. the recognition of the temporal
dependencies of technical systems, which includes the contextual and stakeholder dimensions.
The authors stress the fact that not only the product lifecycle has to be considered in systems
engineering, but also the lifecycles of production technology, organizations, knowledge,
technologies etc. [BOARDMAN & SAUSER 2008, pp. 48-50]. As systems architect, the tensions
between the top-down approaches of project management and control and the bottom-up
“project reality” have to be matched. Both are necessary and beneficial for the overall project,
yet the discrepancy between both has to be bridged [BOARDMAN & SAUSER 2008, pp. 50-52].
The authors further mention the ambiguity and vagueness of requirements and their
interrelation and dependence from the solution space as a major field of method application
[BOARDMAN & SAUSER 2008, pp. 52-53]. As became apparent during the discussion of the
models of systems engineering, the integration of stakeholders, their different viewpoints and
methods to a coherent methodology is of great importance for the systems architect
[BOARDMAN & SAUSER 2008, pp. 53-55]. The process of decision-making, including the
identification of feasible candidates, formulation of criteria, weighting of performance and
selection making, requires method support as well, for example through a trade-off study
[BOARDMAN & SAUSER 2008, p. 55]. To support the modeling and simulation, a family of
models is required, as was previously discussed [BOARDMAN & SAUSER 2008, pp. 55-58].
Finally, the operational effectiveness has to be considered to ensure the long term perspective
and sustainability of both the technical system and the process [BOARDMAN & SAUSER 2008,
pp. 58-61].

The outcome of successful systems engineering projects reflects the numerous models and
methods of systems engineering. The systems architect has to deliver a representation of the
systems architecture. The representation includes an abstract design of the system, which is
usually not enabling the immediate build up of the technical system. Indeed, the system has to
be refined. In accordance with the essentials of systems engineering, the results must contain,
not only the physical representation of the system, but also information about cost, behavior,
performance, human organization etc. [MAIER & RECHTIN 2000, p. 18].

In summary, the relevance of this research is confirmed through the existence of technical
systems primarily. Systems engineering takes into account the uncertainty of the early phases

3.2 Approaches to complexity 49

of the development of technical products by providing qualitative means and procedures that
aim to guide the complex process that is product development. This also is one of the goals of
the presented work. The systems engineering process requires an encompassing and
comprehensive approach to the product architecture. The results have to regard the relevant
lifecycles, bridge the tension between the top-down and bottom-up approaches, provide
different viewpoints and support decision-making, as well as modeling and simulation, and
finally provide the support of the long-term perspective. These considerations, in
combination, should guide the thoughts and results given in this work and, in the end, help to
evaluate how far these have been achieved and are relevant for the presented work.

3.2.5 Engineering design research and design theory
Similar to systems engineering, research in engineering design experienced a boost in the
early 20th century, when the characteristics and principles of engineering design recognized
since the 19th century were systematized and documented in step-by-step approaches [PAHL et
al. 2007, p. 11]. Although an urgent need for the improvement of products and processes was
previously identified, World War II boosted the efforts for efficient products and processes.
Systematic thinking and a methodical approach to design was further propelled by staff
shortages in the 1960s [PAHL et al. 2007, p. 12]. Since then, different, increasingly
comprehensive approaches evolved over the years under numerous scientists. Some of these
approaches are still used and valid as part of more recent research [PAHL et al. 2007, pp. 13-
14]. The increasing scope and multiple disciplines of products called for these sophisticated
approaches [WIESE & JOHN 2003, p. 55]. The different phases that engineering design
research went through in the 20th century can be described by three stages. The early works
are characterized as experiential, largely based on the documented experience of renowned
engineers. The intellectual stage, generating systematic approaches, started in the 1960s,
while experimental approaches in design were developed in the 1980s [BLESSING &
CHAKRABARTI 2009, p. 3]. Today, all types of research characterized by these stages are
conducted and exist in parallel. The clear definition and distinction of approaches appear to be
melding at times [BLESSING & CHAKRABARTI 2009, pp. 6-7]. The major influences on design
science, according to HUBKA & EDER, are philosophy, psychology and sociology, work
science, mathematics, cybernetics, information science, management, and invention theory,
among others [HUBKA & EDER 1996, pp. 89-93]. It is in part due to these influences and the
resulting diverse backgrounds of researchers, that a precise, consolidated and acknowledged
view on design research is difficult [BLESSING & CHAKRABARTI 2009, p. 4].50

It is the overall goal of engineering design research to collect and classify knowledge about
design in order to obtain consensus about engineering design, and furthermore to bring this
knowledge to use, i.e. understanding and supporting product design in terms of the

50 Brief historic overviews on engineering design can be found in BLESSING & CHAKRABARTI, PAHL et al. and
HUBKA & EDER [BLESSING & CHAKRABARTI 2009, pp. 2-6, PAHL et al. 2007, pp. 10-14, HUBKA & EDER 1988,
pp. 4-7]. For a more elaborate discussion see HUBKA & EDER [HUBKA & EDER 1996, pp. 49-66].

50 3. Understanding and coping with complexity

improvement of products and processes [HUBKA & EDER 1996, p. 36, BLESSING &
CHAKRABARTI 2009, p. 5]. The understanding is an especially important issue, in order to be
able to support and improve design processes and designs [BLESSING & CHAKRABARTI 2009,
p. 5]. A differentiation of three goal areas can be made: engineering design research with the
goal to improve the practice of design in industry; to contribute to design science, i.e.
answering scientifically relevant questions and positioning design science in the area of
science overall; and research to improve the education of design, i.e. enabling quicker and
better education [HUBKA & EDER 1996, pp. 74-75]. HUBKA & EDER name examples of a
number of goals to be derived from the mentioned overall goals, such as generating of optimal
quality of products, reducing of design times, reducing risks, reducing human routine work
during design, enabling and improving computer application in design etc. To give a more
generic view on design science, HUBKA & EDER describe the “demands of science” [HUBKA
& EDER 1996, p. 75], stating that research in design (and research in general) has to be
purposive (identification of a problem worth researching), inquisitive (seeking to acquire new
knowledge or new relationships among knowledge elements), informed (conducted based on
an awareness of previous research), methodical (planned and carried out in an efficient and
disciplined manner), and communicable (testable and accessible results) [HUBKA & EDER
1996, p. 38].

In accordance with the goals in design research, the product and the design processes are the
main subjects of consideration [HUBKA & EDER 1996, p. 82, BLESSING & CHAKRABARTI
2009, p. 5]. Models exist both for the areas of design research, products and processes and
usually stand in close relation to a method or methodology with a given purpose. In the
following chapters, product models will be discussed more intensively, while process models
are of marginal importance for the presented work. FUCHS gives an overview on numerous
methods and the characteristics of the models used with their application, among which are
predominately different functional diagrams and process models [FUCHS 2004, pp. 152ff]. He
further establishes a classification based on the respective content (of models as functional
models, principle models (model of working principles), component models and process
models), structure (morphology, relation, taxonomy, transformation) and purpose
(quantitative, qualitative) [FUCHS 2004, pp. 15ff]. An extensive overview on process models
is also introduced by KUSIAK or KREIMEYER [KUSIAK 1999, pp. 2ff, Kreimeyer 2010, pp.
264ff.].

On an abstract level, methods and approaches of engineering design research can be divided
into three major categories, according to HUBKA & EDER. The first category is research into
design, which can be roughly outlined as observations for understanding design and its nature,
as well as the design process. BLESSING & CHAKRABARTI describe this type of research as
experimental. Research for design as a second category in engineering design includes the
creation of tools, often computer-based, design methods and forms of modeling. BLESSING &
CHAKRABARTI describe research for design as intellectual. As last category, research through
design, i.e. abstraction through self observation during designing, hypothesizing, and testing
is described by BLESSING & CHAKRABARTI as experiential [BLESSING & CHAKRABARTI 2009,
p. 3, HUBKA & EDER 1996, p. 38].

3.3 Summary 51

To discuss the outcome of engineering design research, its goals, approaches and models of
design research need to be combined, resulting in a multidimensional space of possibilities.
Due to the multiple facets of design research, these topics could only be roughly categorized,
rather than described exhaustively in the preceding paragraphs. To conclude the chapter with
the outcome and results of engineering design research, the following outline by PULM gives a
reasonable overview on possible outcomes; however, due to the diverse categories in design
research, this cannot describe the outcomes comprehensively. The brief discussion beforehand
should enable the reader to get a picture of research in engineering design, while the
following list concludes the discussion in a reasonable, yet incomprehensive manner, as not
all facets can be considered. PULM sums up the results to which design research aspires as:
methods and strategies, results of fundamental research in the areas of empirical research
(sociology, psychology), innovation, creativity and design theory, coordination of
organizations and processes, computer support (intelligent systems, tools, models, design-
automation), different Design for X aspects and education [PULM 2004, p. 76].

The relevance of engineering design research for the presented work is significant. First of all,
the presented work seeks to provide a relevant contribution to the field of engineering design
research, as well as to systems engineering. Secondly, the models, methods and approaches
developed in engineering design research are highly relevant for a comprehensive approach to
product architectures. They will be discussed in the following chapters, acknowledging that a
complete overview can hardly be achieved in a work such as this. As a third conclusion, the
scope of engineering design research, will help to clarify the position of the presented work
within the field as well as its value to the area of science.

3.3 Summary
The previous sections defined the understanding of complexity and discussed the related
fields of research. As an outcome, a sound understanding of complexity was reached, and the
relevant fields of research identified, parts of which will be discussed more intensively in the
following sections. It became clearer that complexity as a challenge has not been ignored in
science. The following sections will discuss the feasibility of concepts and approaches.

It is worth mentioning that the areas of business management and software engineering, both
equally broad and diverse as engineering design research, also provide valuable contributions
to the topic. A reasonable overview on the engineering relevance of software engineering is
given for example in [KOSSIAKOFF & SWEET 2003, pp. 361-408]. Individual approaches and
methods from those areas are referred to and discussed in the following sections, when
appropriate.

4. Product architecture model and domains

The previous chapters laid out the situation in which product architectures are embedded and
defined both the origins, as well as the character, of the complexity that causes the need for
an intensive discussion on the topic. The general challenges of the management of product
architectures were derived based on that situation, resulting in a number of goals for
research in the area of the management of product architectures. To address these challenges
in accordance with the established research method, the following paragraphs discuss the
character and constituent parts of product architecture in detail. Together, they form the
basis for a comprehensive product architecture model. As a result, the last chapter of this
section proposes a framework for product architectures, incorporating the outlined
constituent parts of the product architecture, as well as the relevant dependencies, as a basis
for the following discussion of methods and approaches.

4.1 Scope of the product architecture
Dealing with product architectures requires a broad understanding not only of the term
“product architecture” itself, but also of the many related aspects of it. It is the purpose of this
chapter to deliver a definition of considerations for a comprehensive approach for the
management of product architectures. To form a common basis, the brief definition of
CRAWLEY et al. sums up the core perception of product architecture on an abstract level,
stating that the “systems architecture is an abstract description of the entities of a system and
the relationships between those entities” [CRAWLEY et al. 2004]. While CRAWLEY ET AL. state
that some systems can be represented quite completely by networks (relying on the works of
e.g. BARABASI and WATTS), this networked view represents just one property of systems,
though a very important one [CRAWLEY et al. 2004]. The goal of the following paragraphs is
to discuss further the entities of the product architecture as a network and how their
relationships can be described.

Although some authors define product architectures on the basis of their physical components
alone [HUBKA & EDER 1988, p. 69, RAPP 1999, p. 9, SCHUH 2005, p. 73], it is mostly the
interrelation of physical components and functions that is considered to be product
architecture [see e.g. PIMMLER & EPPINGER 1994, ULRICH 1995, SUH 2001, p. 11, CRAWLEY
et al. 2004, BONJOUR et al. 2009]. Frequently cited is ULRICH’s definition “The architecture of
the product is the scheme by which the function of the product is allocated to physical
components.” ULRICH specifies the arrangement of functional elements, the mapping from
functional elements to physical components and the specification of the interfaces among
interacting physical components [ULRICH 1995]. BAUMBERGER similarly concludes by
summing up the different definitions, and defines the product architecture as the functional,
structural and hierarchical relations of the product and its constituent parts [BAUMBERGER

54 4. Product architecture model and domains

2007, pp. 99-100, compare HANDKE 2000, p. 29].51 The following paragraphs will discuss the
constituent parts, based on relevant literature, focusing on the discussion of product
architectures, and concluding with a picture of what is understood as product architecture in
this work.

According to the definitions, the most important, significant and obvious entities of product
architecture are the physical constituents. By giving two examples, the class of physical
constituents is detailed, providing the inherent hierarchy of physical constituents or its
possible versions. WYATT et al. identify modules, components and key parameters as the
upper levels of product architecture, giving a reasonable structuring of the physical entities of
the product. Other than the physical view, WYATT et al., among others, consider functions as
equally relevant entities of product architecture [WYATT et al. 2008]. To detail the physical
architecture entities more thoroughly, HANDKE provides a hierarchy derived from a literature
review encompassing different types of machines. Bottom up, the hierarchy starts with
geometrical features (ranging from 1 to 3-dimensional features), continues with single parts
and different levels of their assemblies (e.g. sub- and main-assemblies) to machines and units.
HANDKE continues the listing for the field of production equipment with production lines,
plants and different groupings thereof [HANDKE 2000, p. 67, see also PAHL et al. 2007, pp.
27-28].

To complete the physical perspective of product architectures, a classification can be made in
accordance with the composition of mechatronic systems, i.e. mechanical, electrical and
software elements as well as feedback control systems [compare FELGEN 2007, p. 42-47,
GAUSEMEIER et al. 2001, VDI 2206, p. 14]. FUKUZAWA gives the illustrative example of
mechatronic systems by multifunction printers, focusing on the domains of hard- and
software, as well as functions and different software hierarchy levels [FUKUZAWA 2008].
SADEK HASSANEIN furthermore underlines the importance of services as an integral part of
products, which tend to increase or even partially replace traditional products in the future
[SADEK HASSANEIN 2008, pp. 5-11]. By the given definition [SADEK HASSANEIN 2008, p. 25],
the solution developed by the provider, i.e. the company, consists not only of the physical
parts of the product, but allows for the fulfillment of the required functionality through the
combination of physical and immaterial elements, intended to increase the flexibility and
upgradeability or adaptability along the lifecycle. To fulfill the user’s required functions,
service elements are treated similarly to physical elements. A more thorough classification of
the physical and service entities of the product is frequently derived from the functions
provided by the respective entities. In the spirit of a concise segregation of the product
architecture entities, the discussion of different functions will be discussed in the following
paragraphs.

The functional perspective of the product delivers many views and perceptions. In science in
general, and in cooperation with industry especially, the term “function” does not always
receive the same treatment. It is principally the degree of solution neutrality that differs across
the various definitions. Whereas in industry functions are normally considered as a

51 BAUMBERGER uses the term “product structure“ in his work [BAUMBERGER 2007], which is considered
equivalent to “product architecture” throughout the presented work.

4.1 Scope of the product architecture 55

combination of physical elements, defined by DE LIT & DELCHAMBRE as “functional subsets”
[DE LIT & DELCHAMBRE 2003, pp. 105-109], researchers claim that the close correlation to
physical elements prevents the definition of novel solutions, which is why LINDEMANN asks
for a solution neutral definition of functions [LINDEMANN 2009]. STEINMEIER discusses
different perceptions of the term “function” in the context of a systems approach to product
development [STEINMEIER 1999, pp. 73ff]. In an attempt to structure the discussion of
STEINMEIER [STEINMEIER 1999, pp. 73ff], the following characteristics allow for a
classification of functions: the function’s purpose (transformation of input to output, desired
states or behavior, influence on other functional elements), the chosen level of abstraction
(due to the chosen system boundaries, constricting boundary conditions, relation of the
considered system to the superior system) and the system purpose (main, secondary and
harmful functions). The function’s purpose describes the intended effect the function or part
has to fulfill, such as the transformation of a material, signal or energy flow, or the enabling
of another function by changing their inherent behavior. The chosen level of abstraction
influences the ability of solution-neutral formulations of functions. While the function of an
automobile in the overall social context enables the independent travelling of individuals, the
technical function would be to transfer stored energy of an undefined type to rotational energy
of the wheels. Boundary conditions might specify the stored energy (e.g. chemical, electrical)
and thus reduce the degree of neutral functional descriptions. The system purpose divides the
functions into three groups: functions necessary to fulfill the overall purpose of the system
(main functions); supporting functions required to enable the main functions (secondary
functions); and harmful functions existing due to unwanted but unavoidable side effects of the
main and secondary functions. CRAWLEY et al. define the main functions of the product as
“primary functions” and differentiate them from “ilities” such as durability, maintainability,
flexibility etc. [CRAWLEY et al. 2004], which by other authors are considered in the context of
Design for X [compare HEMEL & KELDMANN 1996, p. 73, HUANG 1996, p. 3]. DE LIT &
DELCHAMBRE largely agree with the given entities, yet add “functional subsets” as a category
for components which in combination fulfill at least one function of the integral product. As
such, the functional subset or subassembly provides a similar classification to the assembly,
yet from a functional, not strictly physical, view [DE LIT & DELCHAMBRE 2003, pp. 105-109].
LEVIS states that different architectures are required during product concretization, similar to
PONN & LINDEMANN, and relies mainly on functional and physical architecture [LEVIS 1999,
PONN & LINDEMANN 2008]. As summed up by CRAWLEY et al., LEVIS differentiates between
physical, technical, and dynamic operational architecture. The physical architecture is
composed of at least a graph or matrix representation of physical constituents and
interrelations. The technical architecture details the physical architecture using a set of rules
to achieve the requirements of the product, while the dynamic operational architecture depicts
the behavior of the product over time [CRAWLEY et al. 2004, p. 5, LEVIS 1999].

In addition to the physical entities and system functions, the so-called working principles of
the product greatly contribute to the product properties during the process of product
concretization [see e.g. PAHL et al. 2007, pp. 38ff, PONN & LINDEMANN 2008, pp. 75ff or
HANDKE 2000, p. 29]. The definition of working principles allows for the definition of
technical principles to fulfill the desired requirements and functions of the product. Yet,
working principles are detached from a precise geometrical and physical representation of the

56 4. Product architecture model and domains

product and thus allow for bridging the gap between the functional description of the product
architecture and its physical components. With product design being the activity where
physical effects play their most important role, the physical effects, too, are a matter of
standardization or innovation in the manufacturing firm, e.g. to improve manufacturability,
productivity or technology offers to the market.

KUSIAK identifies requirements other than functions and components as the core entities
during conceptual design [KUSIAK 1999, pp. 201ff]. BONJOUR similarly sums up the
previously discussed entities of the product architecture, from the perspective of variant
management as requirements (customer expectations and lifecycle requirements), functions
(functional architecture), and physical (or design) architecture (subsystems and components)
[BONJOUR et al. 2009]. BONGULIELMI differentiates between the views of the product
architecture, reaching the same conclusion, namely customer (requirements) and technical
view (functions and components). According to BONGULIELMI, both are necessary and
sufficient to capture knowledge relevant for example for configuration decisions in variant
rich design [BONGULIELMI 2003, pp. 61-63]. TRIPATHY & EPPINGER provide an example of a
systems architecture model in which they incorporate the following types of requirements:
(technical) product requirements, product performance specifications, and requirements to the
industrial design (i.e. the look and feel of the product) [TRIPATHY & EPPINGER 2007].
HANDKE structures requirements according to the product entity to which they apply, namely
the product family, product modules, product functions and different tasks, i.e. the rules to
follow when building a system [HANDKE 2000, p. 41].

The product components, inherent working principles and functions in combination result in
the system’s properties, intended to fulfill the identified product requirements. WEBER
differentiates properties from characteristics for the Characteristics-Properties-Modeling
(CPM) method, depending on how influenceable they are [WEBER 2005a]. From this
perspective, characteristics, properties, required properties and the relations between
characteristics, properties and external conditions are all relevant. The system characteristics,
such as structure, shape and material, are then directly influenceable by the designer; on the
other hand, the properties, such as weight, safety and the different existing “ilities” [WEBER
2005a], describe the product’s behavior and are not directly influenceable by the designer.
BERNARD divides product properties into classes depending on the available knowledge about
the respective properties. As a result, BERNARD provides four classes of properties: validated
properties, known in the early phases of design due to carry-over or bought-out parts; real
properties, about which knowledge is gained throughout the process;52 reliably predicted
properties, known through methods and simulation models; and unknown properties,
unidentified in early phases due to wrong predictions and assumptions [BERNARD 1999, p.
29].

In addition to the entities mentioned above, some authors name further entities that are
necessary for the approaches presented, due to the use cases studied. DEUBZER et al. provide a

52 The amount of real properties increases throughout the design process, gradually displacing both reliably
predicted and unknown properties at the end of the process, when the product is completely designed and all
properties are known [BERNARD 1999, p. 29].

4.2 Modeling product architectures 57

use case of a comprehensive approach to variant management that incorporates the views of
both design and sales department. In addition to the discussed entities of functions and
components, the authors consider a further entity in their product architecture model: meta-
data, such as part numbers, relevant to estimate product cost, as one domain of the model.
Further domains include the different equipment from which customers can choose (optional
and necessary equipment or packages), the existing segments and product types by which the
products can be classified, as well as the product lines, which inherit different product types
for different segments [DEUBZER et al. 2008]. SCHUH discusses the entities of a product family
in a similar fashion, presenting a comparable use case and considering the product family as a
relevant entity of the product architecture, summing up the entities such as packages, product
lines etc. [SCHUH 1989, p. 29]. SANDER, on the other hand, establishes a framework for a
comprehensive library for solution finding, identifying the different use cases and application
scenarios, apart from the necessity of functions, working principles (or effects), and solution
elements (components) [SANDER 2001]. The inclusion of organization or “meta-data” use
cases or application scenarios is especially important when strategic decisions are necessary.
Possible decisions include the comparison of design alternatives and judgements about
product platform or product family programs, including their design and economic value and
impact. In that sense, the integration of organizational entities of the product portfolio and
organizational maintenance into the product architectures appears to be highly relevant for the
decision-making processes during design, thus requiring a comprehensive approach, while
differing from other product architecture entities.

In contrast to the entities discussed above, the following and final considerations provide a
rather unconventional view of the product architecture. While the entities mentioned earlier
represent the product itself through differentiated perspectives of the product architecture
such as physical views, functions, requirements or organizational means (i.e. inherent meta-
data), several authors add a further dimension to the product architecture that does not
represent the product architecture, but rather the implications considered during the process.
Although CRAWLEY et al. define architecture as arrangement of entities, as discussed in the
previous paragraphs, they bring forward a second view, i.e. the “rules to follow when creating
a system” [CRAWLEY et al. 2004]. GULATI & EPPINGER define product architecture similarly,
i.e. as a “set of technical decisions (the plan) for the layout of the product, its modules, and for
the interactions between the modules” on the one hand, but follow the definition of ULRICH as
well, acknowledging both the view of entities and rules to follow when creating a system
[GULATI & EPPINGER 1996, ULRICH 1995]. YASSINE & WISSMANN define design rules as
standardized interface parameters and protocols [YASSINE & WISSMANN 2007], which provide
reasonable examples of design rules.

4.2 Modeling product architectures
The model of the product architecture and its respective entities has to encompass the results
of the discussion in the previous chapter. The task of modeling the product architecture,
including the abovementioned entities, must be executed in the sense of systems engineering
(or systems architecting). A model in general is a reproduction of reality suitable for this
context [FUCHS 2004, p. 18], while the appearance and content of models in general depend

58 4. Product architecture model and domains

on the context in which the user of the model requires information [DAENZER 1979, p. 13,
PAHL et al. 2007, p. 28-29]. Additionally, the description (or model) of a system largely
influences its appearance or perception as an either complex or simple system [SIMON 1962].
The model of the product architecture does not aim to replace all other existing
representations, but rather to allow for a comprehensive perception of the product
architecture. As a result, the product architecture model establishes a profound basis for
decision-making during the early phases of design. To approach the required model suitably,
the following sections discuss the requirements to a systems modeling approach, as well as
existing classifications of models. A modeling approach is proposed, fulfilling the discussed
requirements and providing a suitable basis for further considerations in the sense of a
comprehensive product architecture management.

In general, a model of the product architecture provides the documentation of artifacts or
entities of the product architecture, each with a given purpose suitable for the situation or
task to be executed with the aid of the model. The content of the model depends not only on
the tasks to be executed or the current situation, but also to a large extent on the stage in
which the process is and the resulting level of abstraction. The model of the product
architecture might therefore range from requirements lists in early phases to geometric models
in the later phases, which themselves evolve from sketches to simulation models.

The goals of a model of the product architecture and the inherent requirements can be derived
from the goals of the work presented in chapter 1.2, the understanding of systems architecting
presented in chapter 3.2.4 and the discussion of the product architecture itself in chapter 4.1.
It is the overall goal of the model of the product architecture to support both the process of
architecting as well as architecting itself [CRAWLEY et al. 2004, p. 9]. The detailed goals can
be derived as follows.53

As numerous approaches (i.e. principles, methods and tools) exist for the different tasks and
aspects of systems architecting, a supporting model for a comprehensive approach is
required to consider their existence. As the history of systems science has shown, it is not
possible to establish a method or model substituting the existing methods and models and
incorporating all of their different viewpoints and outcomes. It is nevertheless necessary to
acknowledge existing and recently researched approaches, to allow for the demand of
comprehensiveness. The approaches have to be represented in terms of the respectively
considered product architecture entities and interdependencies. As a result, the outcome of the
application of an approach can be pictured in the product architecture model. Based on this
information, the influences on other entities, and thus the results of other approaches, can be
identified and analyzed. In doing so, the product architecture model can provide the
applicability of existing approaches, as well as the integrity and continuity of the different
approaches supporting the process of systems architecting. As an example, the results of
FMEA in terms of failures of components reflect on affected functions and point to available
alternative solutions in the solution space in both the functional and component domain.

53 The following discussion tries to elaborately transfer the findings of different authors into the context of this
work [BOARDMAN & SAUSER 2008, p. 57, CRAWLEY et al. 2004, p. 9, KOSSIAKOFF & SWEET 2003, pp. 410-411,
MAIER & RECHTIN 2000, pp. 144-146 and 163-164].

4.2 Modeling product architectures 59

Following the argument of the integrity of existing approaches, the architecture model has to
encompass the different entities accordingly, thus tying together the various views with the
product architecture. The multiplicity of models necessary for systems architecting is thus tied
to a comprehensive model, with the coupling of different entities across domains, as well as
levels of concretization or abstraction. As such, there is interrelation between different
functional models, such as hierarchical or networked models, as well as between the different
considerations of the physical architecture, such as product families and physical effects.

Different existing views on approaches and models are relevant because of the numerous
stakeholders involved in the process of systems architecting, in brief the different
organizational entities and customers or clients inside and outside the company. It is thus an
important role of the product architecture model to establish feasible means of
communication across the different views, enabling the understanding of different
stakeholders with one another, and resulting in a vast amount of information, based on which
the systems architect is able to reach conclusions and decisions. To enable communication,
the model of the product architecture must be based on rather neutral techniques,
understandable by different people and unbiased with respect to the different professions or
specialties involved. As such, the discussed modeling approaches have to provide this
neutrality and ability to support communication. An additional requirement stems from the
necessity for the architect to be aware of the different perspectives and models. The systems
architect has to be aware of these viewpoints, and the comprehensive model has to support
this awareness.

With the different stakeholders comes their involvement in the process of design, which leads
from conceptually abstract to detailed. This continuity of stakeholders reflects in the models
and approaches used, leading to a two-dimensional evolution of the entities of the product
architecture. As a first dimension, the entities of the product architecture are refined during
the process, and as such underlie a continuous modification. As an example, the physical
domain ranges from physical principles to geometrical descriptions of components, which are
also increasingly refined up to the end of the process. Additionally, different domains are
relevant during the process, requiring a transformation of entities from one domain to another,
for example from requirements to functions, and on to physical principles. This two-
dimensional variation further complicates coping with product architectures, due to the
interconnectivity of its entities and the occurring changes of the system over time.

The purpose of the mentioned requirements for the modeling technique lies within demands
stemming from the use of the model in the early phases of design. As a result of that position
in the process, the support of design synthesis is very relevant, as is the consideration of
the product lifecycle during that phase. Synthesis is the main task in the early phases of
design, and requires the logical incorporation of the later phases of the lifecycle, to allow for
consistent product family strategies or the enabling of maintenance, recycling etc. From that
core idea stems the requirement for a comprehensive and continuous support and integration
of methods, models and tools. It is the aim of the model to provide templates and principles,
which assist the design process. Highly relevant for design synthesis is the establishment of a
comprehensive solution space, allowing for the exploration of possible solutions and the
identification of alternatives through the manipulation of characteristics and properties. In the

60 4. Product architecture model and domains

sense of systems engineering, these procedures can be described as the support of the solution
finding process by inducing and documenting the iterative occurrence of analysis and
synthesis. Parallel to design synthesis comes the evaluation of systems and alternatives the
decision-making processes of analysis. Especially in the early phases, the identification of
system properties and system performance is marked by strong traits of prediction, rather than
analysis. The gradual support of system synthesis and analysis across different entities of the
product architecture has thus to combine the knowledge of different levels of detail, e.g.
known reused subsystems and subsystems currently under development. The identification of
properties during analysis is aligned with the identification of critical system elements, which
can be critical functions, components or requirements. Identifying system elements as critical
may be necessary due to the development risks of components, due to cost or market
dynamics, conflicting goals or elements causing undesired properties or behavior etc.

The fulfillment of the previously mentioned requirements must enable the model to support
the systems architect in coordinating design activities, making appropriate decisions,
communicating with stakeholders about their requirements and further lifecycle requirements,
executing design synthesis and analysis etc. The model should further allow for continuity
and consistency by interrelating all relevant entities of the product architecture, as well as
their different levels of detail.

The requirements for the modeling of product architectures can be summed up as follows:54

• Documenting of product architecture entities

• Supporting the tasks of systems architecting by incorporating interfaces into existing
approaches

• Incorporating the different product architecture entities

• Supporting communication among stakeholders

• Enabling the continuous involvement of stakeholders by considering the detailing of
entities

• Supporting design synthesis

• Considering the product lifecycle

Different classes or types of models can be discussed regarding their suitability for a product
architecture management approach. A common classification of models proposes the classes
of graphical, tabular, textual and analytical models [see e.g. FELGEN 2007, p. 33, compare
FUCHS 2004, pp. 93-94, GÖPFERT 1998, p. 22, HOLT & PERRY 2008, p. 20]. KOSSIAKOFF &
SWEET differentiate between schematic and descriptive models (e.g. organization charts or
data flow diagram), mathematical and analytical (e.g. statistical distributions, differential
equations used in system dynamics) and physical models (i.e. direct reflections of the physical
characteristics of the actual system or parts of it such as physical prototypes or mock-ups)
[KOSSIAKOFF & SWEET 2003, pp. 410-411]. Physical models often consist of a combination

54 Based on the findings of BOARDMAN & SAUSER 2008, p. 57, CRAWLEY et al. 2004, p. 9, KOSSIAKOFF &
SWEET 2003, pp. 410-411, MAIER & RECHTIN 2000, pp. 144-146 and 163-164

4.2 Modeling product architectures 61

of graphical and analytical modeling, such as CAD-models, while descriptive models can be
represented in graphical, tabular or textual form. A system can usually be modeled in different
ways, some of which prove to be more useful in certain situations than others. Product
models, for example, exist in all different forms. Requirements lists model the product in
tabular form, functional descriptions are textual, CAD-models and manufacturing drawings
pose graphical representations of the product while numerous analytical approaches support
product analysis and synthesis, such as estimated calculations or virtual prototyping. Not only
can different entities be modeled in different ways, but also the same entity, such as product
requirements, can be modeled in a variety of manners. The change of perspective is not only
necessary, but even regarded as supportive for solution finding processes. Different
procedures and models actively incorporate that principle to find new solutions, which are
generated on the basis of existing solutions [KNOBLICH 1997, p. 214-215].

For the desired approach, where communication and integration of different models are to be
achieved, textual and analytical models are traditionally not feasible. Visualization and
understandability of the models are largely relevant, making textual and analytical models too
time consuming to establish as well as understand and discuss. Nevertheless, it is essential to
at least provide linkages to analytical models, in order to incorporate results from analytical
models properly. Textual descriptions, on the other hand, are useful at any time as an
explanation of documented elements.

To further structure the model of the product architecture within the context of a
comprehensive approach, MAIER & RECHTIN provide a sound classification based on the
content of the model, which in the following section is grouped in accordance with the
differentiation of ROPOHL into goal-, object- and action-system [MAIER & RECHTIN 2000, p.
146, ROPOHL 1975, pp. 32-33].

In the context of the goal-system, MAIER & RECHTIN identify the purpose or objectives as a
significant class, depicting what the client wants. The goal system is completed by
performance objectives or requirements, describing how effectively the system does fulfill its
purpose. The object system can be divided into the four following modeling aspects: form
(geometry, depicting what the system is); behavioral entities; functional entities; and finally
data, i.e. the information retained in the system and its interrelationships. The action system
contains the managerial aspects of product architecting, i.e. the process by which the system
is constructed and managed [MAIER & RECHTIN 2000, p. 146], or the rules defining the
product; respectively, the set of decisions resulting in the product [CRAWLEY et al. 2004,
GULATI & EPPINGER 1996].

The models of each entity type of the product, such as requirements, functions or components,
can be classified further using means described by SADEK HASSANEIN as the degrees of
formalization, concretization and detail [SADEK HASSANEIN 2008, p. 99, compare also FUCHS
2004, pp. 71-73]. The degree of formalization limits the possible content of the model, i.e. the
more formalized a model is, the more rules it contains. As a result, flexibility is decreased,
resulting in the omission of information in highly formalized models [compare FUCHS 2004,
p. 76]. The degree of concretization strongly connects to the entities depicted. Whereas
functional elements, whether unwanted or desired, are limited regarding their degree of
concretization, an existing physical object, e.g. a product’s part, can be described on various

62 4. Product architecture model and domains

levels of concretization. The level of detail of a model, on the other hand, is not limited by the
described entities, as the different domains can be described on any desired level of detail,
separating the degree of concretization strongly from that of detail. With the degree of
concretization, it is the overall system and the system boundaries, for example the product
architecture, which establish the limits. The level of detail, on the other hand, can be defined
for each type of entity individually.

The above section discussed in detail the product architecture requirements comprehensive
approach to develop a model. Fundamental modeling types were discussed concerning their
adequacy. It was pointed out that schematic or descriptive modeling techniques are the most
promising for fulfilling the requirements. The following chapter will detail the results and
transfer them into a model for product architecture management, which will be outlined in the
results of chapter 5.

4.3 Product architecture model and framework – outline
Subsequent to the discussion of the product architecture itself and the possibilities of
modeling systems, this chapter will combine the results of both discussions into a cogent
overview of the management of product architectures. To cope with the framework and to
detail its content, chapters 5, 6, and 7 will clarify both the usage of methods and a procedural
model on how to practically apply the framework. At this point, the product architecture
framework consists of a general modeling approach, relevant categories or domains of
entities, and a structuring of the product architecture according to the superior differentiation
into goal-, object- and action-system. The framework will be refined in the following chapter,
based on existing methods incorporated into the overall approach.

For the modeling of product architectures, the graphical and tabular modeling, i.e. graph and
matrix representation, were chosen because existing models in systems engineering
(discussed in chapter 3.2 and more thoroughly addressed in chapter 5) support these modeling
techniques of the physical architecture, as well as other aspects of the product architecture,
thus fulfilling the premise of an integrating comprehensive approach; this was discussed in
further detail in chapter 4.2. In addition, the communication among stakeholders as an integral

Figure 4-1 Modeling approach based on matrix and graph representation

4.3 Product architecture model and framework – outline 63

aspect of the process of systems architecting has to be supported by models easily understood
by different professions and able to depict their different perspectives. The chosen modeling
approach is both generic and closely related to the models used in the respective disciplines,
thus enabling the interconnection of disciplines on the one hand, and the subsequent
processing of the models within the respective disciplines.

MAURER sums up the benefits of the chosen modeling approach as follows [MAURER 2007,
pp. 109-110]: techniques based on matrices are indispensable, especially for comprehensive
analysis approaches. Systematic information acquisition is enabled through matrices; matrix
representation is then applied and shared by the involved disciplines. Graph representation as
a complementary model compensates for the shortcomings of matrix-based techniques, as
graphs can be grasped rather intuitively, and the models can be transformed into one another.
BONGULIELMI ET AL. support the importance of tabular or matrix-based approaches by giving
numerous established examples, which are also discussed later in this work [BONGULIELMI et
al. 2002].

The preceding figure depicts the domains of the product architecture model. The entities of
the product architecture are grouped into the following domains: requirements, (physical)
components, working principles, functions, properties, and organizational matters, which are
addressed within the course of the product lifecycle. The domains can again be clustered into

Figure 4-2 Domains of the product architecture model (framework)

Requirements
Domains

Customers

Stakeholders

Technical

Performance

Function

Look & Feel

Component
Domains

Parameters

Features

Components

Assemblies

Interfaces

Working
Domains

Working
principles

Effects

Functions

Primary

Secondary

Harmful

“ilities”

Property
Domains

Properties

Characteristics

Lifecycle
domains

Organization

Processes

Use Cases

Product
Family

Goals Objects Action

64 4. Product architecture model and domains

the system of goals, the system of objects and the system of actions. For the model presented,
a hierarchy within the domains was deliberately avoided. The resulting entities within the
domains represent distinct classes, separated from one another due to clearly definable
differences. The following three sections discuss these groups and entities in detail, as well as
the differences between them. The focus of the presented work is the system of objects, which
cannot sufficiently be discussed and managed without the knowledge about the systems of
goals and action. The dependencies between the different product architecture entities are
addressed in a general manner at this point. The refinement of the product architecture will be
based on a comprehensive literature review in chapter 5.

4.3.1 System of goals
The system of goals is composed solely of the domain of requirements. Within the domain of
requirements, six different classes exist, grouping requirements with distinct characteristics
and resulting in a reasonable classification.

Customer requirements stand for the voice of the customer, i.e. the company-external buyer
and often also the user of the product.55 Requirements expressed by customers can often be
described as qualitative and incomplete. As such, customer requirements usually address
performance and functional requirements or the look and feel of the product, rather than
precise technical requirements. It is the challenge of the systems architect to translate these
vague requirements into precise technical requirements, which a designer can again translate
into desired properties and characteristics realized by physical components fulfilling the
requirements.

The requirements expressed by other stakeholders, or stakeholders in general, result in
technical, performance or functional requirements. Depending on the stakeholder in question,
the requirements are expressed qualitatively or quantitatively. Stakeholders from company-
internal departments, as well as external stakeholders, may chiefly address “ilities”,
qualitative measures of manufacturability or recyclability, for example, rather than primary or
secondary functions.

Technical requirements are proposed by various sources of the goal- and action-system. Use
cases or the product family imply certain types of energy used, for example excluding nuclear
powered products in most cases, and pose other technical implications. Vaguely expressed
requirements by stakeholders result in precise technical requirements, once the technical
solution is more specified. Technical requirements themselves are quantitatively describable
and thus, in most cases, include a property and a desired value of that property, such as a
required length

55 Often, the buyer of a product is not the user. For example, the buyer of a truck is usually the trucking
company, while the user is the truck driver. The responsibility for maintenance might be with a third party etc.
The acknowledgement of these circumstances is important when classifying, analyzing and assessing
requirements and can be accessed by measures discussed in chapter 5.3.1.

4.3 Product architecture model and framework – outline 65

Performance requirements specify certain functions of the product, giving specifications on
how well the product fulfills a function. If acceleration is a desired function, the performance
requirement specifies the characteristic of that function quantitatively, i.e. in what period of
time a certain speed is to be reached.

The functional requirement, on the other hand, defines that acceleration per se has to be
possible. Functional requirements usually stem from customers or other stakeholders, but are
proposed by entities of the action system as well. The functions desired in functional
requirements might express primary or secondary requirements and “ilities” as well.

4.3.2 System of objects
The system of objects represents the levels of product concretization by encompassing
functions, working principles, and components of the product. The properties of the resulting
solution or possible alternatives complete the picture of the product representation throughout
the process of concretization.

Parameters stand for quantifiable measures, describing in detail the features, components,
assemblies or interfaces of the product architecture. They stem directly from desired
properties or characteristics of the product architecture and represent the smallest entity of the
component architecture. Parameters apply not only for mechanical entities, but also for e.g.
electronic (power, voltage etc.) or service (time for delivery etc.) components.

Features, a term stemming largely from computer aided design, represent a combination of
parameters. Features are often standardized and required for interfaces or enabling the use of
bought-in parts.

Components are the smallest inseparable unit of component architecture. The main
characteristic of components, in contrast to parameters or features, is that they are the smallest
entity that can independently provide a function of the product. They are defined through
parameters and features and inherit that defined combination. The defined combination of
features enables the adaptation of components to new requirements through an adaptation of
parameters and/or features, resulting for example in altered characteristics or properties of the
product. Within a product family, the same component can have different parameters and/or
features. This allows for the scalability of products within the family or the realization of
functions in individual products of the family that are not available to all products of the same
product family.

The existence of interfaces is regularly considered as the mere physical (or energetic,
material, geometrical, functional etc.) coupling of components (or aggregations, such as
assemblies thereof). In the context of this work, interfaces are considered to explicitly
support their definition and preservation along the process and within product families. In
highly complex and differentiated product families especially, the explicit consideration of
interfaces supports the keeping track of the defined interfaces.

Effects and working principles are inherited by the layout of components and apply to
physical components exclusively, though the transfer of the abstract idea to different areas is
not impossible. In that context, effects describe known physical or chemical behaviors, which

66 4. Product architecture model and domains

in combination can be practically applied as working principles; these again usually represent
a combination of a number of effects.

Functional entities can be differentiated mainly by their purpose, i.e. primary, secondary or
harmful functions and “ilities”. Primary functions represent the main purpose of the product
architecture, while secondary functions are required for the product to be able to fulfill the
primary function. Harmful functions, though undesired and mostly harmful, result from the
choice of useful functions, which, in combination, cannot be carried out without side-effects;
these again are often compensated for through the use of secondary functions, e.g. the
provision of a cooling system for processor chips. “Ilities” can be described as functions of a
third degree, which are neither necessary for the fulfillment of primary or secondary
functions, but are necessary from a lifecycle perspective. Typical known “ilities” are the
different existing Design for X aspects, which were already discussed, including
manufacturability etc.

The architecture properties, as the last domain of the object system, are divided into
characteristics and properties. Properties then result from characteristics, which can be
directly influenced by the designer through the variation of parameters and features.
Properties correspond with the requirements of function and behavior, while characteristics
correspond largely with technical requirements.

4.3.3 System of action
The system of action as the final part of the architecture model represents the product
architecture entities relevant to the product lifecycle. Organization and process, use cases, as
well as the product family, are all parts of the system of action. The entities of the system of
action mainly represent sources of requirements of the product, providing boundary
conditions and a basis for decision-making processes.

The organizational entities of the product architecture encompass not only the organizational
situation within the company, but state-specific entities relevant for successful product
development. These entities contain organizational and cost data and further aspects, which
translate into requirements, properties etc., depending on the considered case. These entities
are given relevance in decision-making processes, where economical and strategic decisions
are necessary. The organizational entities will be discussed further in the following chapters,
and a highly relevant to the means of variant management and the lifecycle perspective taken
in chapter 5.7.

The process domain of the product architecture model represents the documented decision-
making processes during product architecture management. As such, the process domain
enables the linkage of the product architecture to process improvement measures and the
replicability of the decisions and steps taken during product architecture management.

Use cases are generated to identify requirements stemming from scenarios in which user
interaction with the product architecture is depicted. Though the term “user” is usually
associated with the end-user of the product’s functions, use cases encompass all stakeholders
within or outside of the company who interact with the product in any way during its lifecycle

4.3 Product architecture model and framework – outline 67

including design, production, delivery, use, recycling etc. Use cases and scenarios are highly
relevant sources for functional requirements, for the identification of harmful functions or
potential for innovations.

The product family is relevant as an entity of the product architecture model because it poses
a number of boundary conditions, potentials and requirements on the product architecture. A
distinct domain of entities was chosen to complete the picture of the product architecture and
its role in the manufacturing industry today. Examples above include the sub-ordinate
domains of product lines and product types.

5. Coping with product architecture

Following the overview in the previous chapter of the character, properties and constituent
parts of the product architecture, the following paragraphs discuss existing methods,
addressing one or more aspects of the product architecture. To allow for a coherent
overview, a structuring of the later presented methods is discussed in the first chapter,
underlining once again that there are many facets to product architecture which can be
viewed from different perspectives. The following chapters discuss methods, approaches and
theories, their goals, procedures and models, focusing on the role of the product architecture
and the considered entities and their interrelations. The goal of this chapter is the refinement
of the requirements to a comprehensive approach on product architecture management and
the completion of the product architecture framework by identifying and specifying the
product architecture entities and interrelations of entities.

5.1 Structuring the state of the art
Different possibilities exist to approach the variety of methods, approaches and theories in
product architecture management. ZANKER enumerates the different possibilities to structure a
number of methods based on a literature review: namely, the steps of the problem solving
cycle; steps or phases of the design process; applicability (generic or specialized); considered
system (organization, product etc.); integratability and special criteria [ZANKER 1999, p. 44].
Some of these options were discussed in the previous chapters. The motivation for the
intensive discussion of product architectures was laid out, in accordance with the origins of
complexity when coping with product architectures, i.e. the markets, organizations and
organizational surroundings, and the inherent processes. A structuring in accordance with that
classification does not enable a differentiation of phases of the process, yet offers a
structuring of what is in the focus under consideration. To differentiate between certain
phases of the process, a structuring in accordance with the development process appears to be
feasible, yet neglects the iterative and recursive character of the process and suggests a
continuous concretization of the product architecture, which is rarely the case. As this work
focuses on the early phases of product development, a structuring according to the product
lifecycle turns out to be unreasonable, as a reduction of the focus was already conducted.

As a compromise, the outlines of a problem solving process were chosen, allowing for the
differentiation of tasks to be conducted, such as analysis, synthesis or decision-making, but
recognizing the iterative and recursive character. As a rough outline, the differentiation into
goal-, object- and action-system was chosen, with each subject detailed into different topics
with the respective state of the art. It is clearly not possible and equally undesirable to
precisely disconnect the three areas from one another. The system of action poses
requirements to be considered in the system of goals, while different limitations of the object
system might affect the system of goals etc. Nevertheless, to give an overview of the state of
the art of existing methods, the differentiation of these three areas seems to be feasible.

70 5. Coping with product architecture

In detail, the three pillars of the state of the art are structured as follows. The system of goals
is divided into the gathering of requirements and the management of requirements along the
process, while the action system covers the support through computer-assisted means as well
as the downstream-activities, i.e. the consideration of the whole lifecycle, throughout which
the issue of variant management and product families is considered explicitly. The object
system representing the product architecture, and covering different means of system analysis,
synthesis and evaluation is the most importance for the discussion in this work. The structure
of the state of the art is summed up in following figure.

The result of the following discussions will be the analysis of the extent to which the overall
requirements, discussed in chapter 1.2, are met by the existing approaches, and which
requirements remain and can be detailed. The means that are still necessary will then be
developed in chapters 6 and 7, while chapter 8 proposes a validation example and the final
discussion of results.

As was stated in the definition of requirements in chapter 1.2, it is not the goal of the
following discussions to point out the shortcomings of different approaches or to isolate the
approach that this work seeks from existing approaches. On the contrary, the presented
approaches are considered beneficial, at least in combination with one another, and thus
constitute the fragments of a comprehensive approach, which the presented work aims to
unite.

Two approaches in systems engineering were mentioned in chapter 3.2.4, which aim for a
comprehensive approach for managing product architectures as well, namely the different
Architecture Frameworks (AF) and the Systems Modeling Language (SysML). The following

 Figure 5-1 Structuring the state of the art in product architecture management

Goals

Identification

Analysis

Management

Verification

Object

Product
Architecture

Analysis

Product
Architecture
Synthesis

Concept and
Properties
Evaluation

Action System

Coping with
Variants

Lifecycle
Perspective

5.2 Comprehensive approaches in systems engineering 71

chapter will briefly introduce these two approaches and set them into context for the
following work.

5.2 Comprehensive approaches in systems engineering
Before the following chapters enter into detail regarding the system of goals, objects and the
action system, this chapter introduces two approaches that discuss architectures from similar
points of view. In particular, these approaches are the architecture frameworks and the
Systems Modeling Language (SysML). While architecture frameworks propose a
methodological outline for coping with architectures (mainly of information systems and
enterprises, yet with adaptable outcomes for product architectures discussed in this work), the
SysML states and approach for the modeling of entities especially relevant in the context of
systems engineering. Following the discussion of these two approaches, the upcoming
chapters will discuss the state of the art in detail, according to the system of goals, objects and
the action system.

5.2.1 Architecture frameworks
Briefly introduced in chapter 3.2.4, this chapter will discuss architecture frameworks more
comprehensively. Architecture frameworks can be differentiated into architecture frameworks
for product architectures [e.g. ZACHMAN 1987, DOD 1997], enterprise architectures
(organizations) [SANTE et al. 2007, MATTHES 2011], and, as proposed more recently, process
architectures [BROWNING 2009]. Integrated architecture frameworks aim for the
combination of not only different views of one type of architecture, but also strive to combine
different architectures, such as process, enterprise and product architecture [KRUCHTEN 1995,
WOUT et al. 2010]. The following paragraphs will point out the common ground on which
these architecture frameworks define their principles.56 Furthermore, differences and
commonalities between the approach presented in this work and the architecture frameworks
will be pointed out. To anticipate the results of this chapter, the philosophy of architecture
frameworks underlines the importance and goals of this work as discussed in the chapter 1.2,
chapter 4, and chapter 5.8. Yet, in the context of engineering design research, a number of
needs remain unanswered, and are addressed in this work.

Both this work and the architecture frameworks aim for the coping with complex systems
[BROWNING 2009]. Complex systems considered in architecture frameworks are large
technical systems, products in general, similar to systems engineering developed in the
context of military applications [DOD 1997, MOD 2005], or information systems and
enterprises [SANTE et al. 2007, MATTHES 2011]. The consideration of enterprise architectures

56 Popular and representative existing frameworks are e.g. The Open Group Architecture Framework (TOGAF)
[SANTE et al. 2007], the Command, Control, Communications, Computers, Intelligence, Surveillance, and
Reconnaissance Architecture Framework (C4ISR or DoDAF) [DOD 1997], the Integrated Architecture
Framework (IAF) [WOUT et al. 2010], or the Ministry of Defense Architecture Framework (MoDAF) [MOD

2005].

72 5. Coping with product architecture

is often very strongly related to the information system background [compare MATTHES
2011], i.e. the enterprise is perceived as a system to be developed with information systems
and to be provided with support from the information systems. Depending on the architecture
framework in question, the enterprise may be considered as the combination of e.g. people,
processes, physical structures, and engineering and information systems [MOD 2005, p. 10].

This also shows in the characterization of rather comprehensive architecture frameworks.
WOUT et al. for example put forward an Integrated Architecture Framework (IAF), with a
focus on comprehensiveness. The proposed IAF considers business architecture, information
architecture, information systems architecture, and technology infrastructure architecture
[WOUT et al. 2010, pp. 53 ff.], underlining the close relationship to information systems.
While information systems were the origin of architecture frameworks [see ZACHMAN 1987],
the principles are considered to be adaptable to “physical products” or other types of
products as well [BROWNING 2009].

Similar to the need identified in chapter 4.2, the purpose of architecture frameworks in
general is to structure the different views of a complex system [BROWNING 2009].
Architecture frameworks intend to give an overview of complex systems, and thus reduce the
perceived complexity through the combination of models from different viewpoints [SANTE et
al. 2007]. Thereby, each view is comprised of a number of system entities and their attributes,
a guideline and semantics (a common, defined vocabulary) for their representation
[BROWNING 2009].

Another similarity shows in the characterization of development as a decision-making
process.57 Based on that observation, an architecture framework is designed to support the
decision-making process by providing relevant information in a common description, and
tying together the different views of the architecture [compare e.g. BROWNING 2009, SANTE et
al. 2007, p. 9]. Similar to the goals of this work, a common model that unites the existing
views into an underlying models and semantics is considered a key requirement for a
successful coping with architectures [MOD 2005, p. 11].

Having established the groundwork of architecture frameworks, the following paragraphs
discuss a number of key ideas and principles of architecture frameworks, which integrate into
the presented work and accompanying challenges. The presented work does not then aspire to
compete with existing architecture frameworks. As the above discussion has shown, there are
concepts and ideas in both areas worth discussing and coupling to the approach presented in
this work.

The following paragraphs will take a closer look at the presented viewpoints and combined
within the different architecture frameworks. Further discussions will include the models used
within the architecture frameworks. The conclusion of this chapter will discuss further
characteristics of architecture frameworks, the similarities and difference of the enterprise-
driven architecture frameworks and the approach presented in this work.

57 Compare the discussion of chapter 1.1.3 and chapter 5.6.

5.2 Comprehensive approaches in systems engineering 73

Each framework tries to define a set of “model categories”, i.e. groups of previously
mentioned views or single views [MOD 2005, p. 10]. Within the Ministry of Defense
Architecture Framework (MoDAF), six viewpoints are established to categorize 38 different
views. These six viewpoints include a differentiation according to strategic (management and
planning perspective), systems (functionality, interconnectivity, etc.), technical (standards,
constraints, etc.), operational (operational processes, operational analysis, developed
requirements, etc.), and acquisition viewpoints (program dependencies, timelines, etc.). A
sixth viewpoint is defined for “all views”, which inherits summary information to be indexed
and verified [MOD 2005, p. 14]. In a similar approach, the “4+1” view model defines the
name, giving four views, plus one rather comprehensive view. The four views of the “4+1”
view model include the logical view (end-user functionality), development view
(programmers, software management), physical view (system engineers, topology,
communications), and the process view (integrators, performance, scalability). More global
entities, such as scenarios or use cases to illustrate the system, are grouped and understood
under the “+1” view [KRUCHTEN 1995, p. 2]. The C4ISR or DoDAF differentiate between
three distinct categories of views: operational (tasks, activities, information flows), systems
(descriptions and graphical representations of systems, i.e. physical representation, meta-data,
performance parameters and operational requirements), and technical views (standards and
conventions, i.e. the rules to ensure that a system fulfills its requirements) [DOD 1997, p. 2-1
ff.]. The Integrated Architecture Framework defines its views (or levels) on a rather abstract
scale. The differentiation of the levels of the IAF is provided by the leading questions to be
answered on each level. Four levels are considered in the framework, namely the levels
answering the questions “Why?” (contextual), “What?” (conceptual), “How?” (logical) and
“With what?” (physical). The question of “When?” is explicitly left out of the framework, yet
is mentioned and not considered less important [WOUT et al. 2010, p. 237].

The discussed architecture frameworks provide a comprehensive enterprise-driven view of the
architecture. While operational demands and requirements, use cases, processes etc. play an
important role in architecture frameworks, due to the enterprise context, the interplay with
those entities might vary for the purpose of the method proposed in this work. Nevertheless,
the discussed architecture frameworks give an overview of the numerous classes of the
architecture entities, and reflect not only in the structuring of this chapter 5, but also in the
chosen model and its entities in the approach presented in this work.58

Each architectural view contains implications, stating which entities of the architecture are to
be displayed within the view. These views partially overlap, resulting in the description of the
same entities in different views [DOD 1997, p. 2-1]. In addition, the views are partly
redundant and integrated views are beneficial. Within the C4ISR approach, similar to the
“4+1” view model, it is stated that integrated views, which combine multiple single views,
provide an advantage compared with the models of single views. [DOD 1997, p. 2-1 f.,
KRUCHTEN 1995, p. 2]. For the approach presented in this work, the discussion focuses on
domains, representing classes of architecture entities. The groups of views and single views,
as presented in architecture frameworks, are implicitly available through the combination of

58 Compare chapter 4 and chapter 7.2.

74 5. Coping with product architecture

domains and their interrelations within one view. As will be discussed in chapter 7, the
required views can be derived from the problem or project at hand, as well as from the
perspective of organizational units and responsibilities within the enterprise. Claiming to be
applicable in a generic fashion, the presented approach does not deliberately predefine views.

The approaches concerning the models used within architecture frameworks differ. While
within the MoDAF, the UML is the main modeling method used for the object oriented
modeling of systems [MOD 2005, p. 23], other frameworks propose different approaches. The
“4+1” view framework, for example, provides distinct notations for each view [KRUCHTEN
1995, pp. 2 ff.]. Within the C4ISR, the information on how architectures are to be modeled is
defined in the C4ISR Architecture Data Model (CADM), a meta-model or logical schema in
the form of an entity-relationship diagram [DOD 1997, pp. 4-87 ff.]. Defined notations exist
for the documentation of the specific problem domains and features of the architecture, such
as system interface descriptions, system evolution diagrams, systems functionality
descriptions, etc. [DOD 1997, pp. 4-1 ff.].

It is clear that there is a need for a defined notation for the presented architecture frameworks,
each designed for a specific enterprise. For the purpose of a modeling approach for the
presented work, a discussion of requirements of architecture modeling was conducted in
chapter 4.2. Since the approach of this work aims for a largely generic approach, with the
possibility to expand and complete the model and proceeding at will. Furthermore, the goal is
to be able to integrate a number of existing models and methods in an integrated approach.
For that purpose, the entities of the architecture are identified and modeled in an entity-
relationship diagram. The generic matrix representation was chosen for the modeling,
enabling the documentation of information of UML-diagrams, as well as different other
notations.59

The C4ISR framework includes not only the modeling approach and views for architectures,
but also proposes a six-step process of building an architecture, the “architecture description
process”, as well. The steps include the determination of the use of the architecture (1),
determination of the scope of the architecture (2), determination of the characteristics to be
captured (3), determination of the views and products to be built (4), building of the requisite
products (5), and the use of the architecture for the intended purpose (6) [DOD 1997, p. 3-5].
The process documented here points out that architecture development is often considered
separate from the design of products. Architecture frameworks aim for the phase before
design, separating architecture design from detail design [compare SIMMONS 2008, p. 18]. In
this work, the goal is to equally support the architecture development process, while
integrating its outcome with detail design and respecting the iterative interplay of the two
processes.60

To sum up, a number of beneficial impulses and commonalities show in the discussion of
architecture frameworks in the context of this work. First of all, the acknowledgement of
multiple views, and the importance of their considerations, is important. The interrelations

59 See chapter 6.1 and 6.2 for examples and the general possibilities.

60 The iterative character of the design process was intensively discussed in chapter 1.1.3.

5.2 Comprehensive approaches in systems engineering 75

between views are agreed upon, as well as the overlapping of different views and the
accompanying complexity of architectures (considered also as redundancy [DOD 1997, p. 2-
1]). All sources agree on the necessity of a comprehensive view of the architecture, aside
from the single views.

Still, two major differences show: the modeling approaches differ, although entity-
relationship diagrams prevail and are a similar approach, compared with the model chosen in
this work. The views are not predefined within the MDM approach, or within the approach
outlined in this work. While architecture frameworks provide predefined views necessary for
the considered enterprises, a generic application is not enabled, due to restricted possibilities.
As discussed earlier, the domain-based meta-model of the presented approach includes
implicit views, which can be explicitly defined if necessary. Valuable input comes from the
discussion of architecture frameworks, supporting the ideas, goals, and general direction of
the presented work.

5.2.2 Systems Modeling Language (SysML)
The Systems Modeling Language was developed as a modeling language to support systems
engineering. It enhanced the Unified Modeling Language by several items necessary for
systems engineering, and omits items unnecessary. UML itself was developed primarily as a
standard for software engineering [HOLT & PERRY 2008, p. 23, WEILKIENS 2008, p. 16]. A
prominent example of a UML enhancement is the lack of requirements modeling, for example
[HOLT & PERRY 2008, p. 27, WEILKIENS 2008, p. 16]. The following paragraphs will briefly
discuss the characteristics of SysML and its implications for the presented work.

SysML seeks to enable system engineers to capture and model system requirements, system
behavior and the system structure, while e requirements and behavior in particular required
the extension of UML [HOLT & PERRY 2008, p. 27]. A system model in SysML is comprised
of three interrelated models of the system structure (block definition diagram, internal block
diagram, parametric diagram, package diagram), system behavior (activity diagram,
sequence diagram, state machine diagram, use case diagram), and requirements
[FRIEDENTHAL et al. 2009, p. 30, HAUSE 2006, WÖLKL & SHEA 2009]. Parametrics are often
considered to be the fourth pillar of SysML [FRIEDENTHAL et al. 2009, p. 18, HAUSE 2006].
The system model is related to engineering analysis and simulation models [FRIEDENTHAL et
al. 2009, p. 18, JOHNSON et al. 2007].61

In the context of this work, especially the early phases of systems architecting are of interest.
Several authors embedded the SysML approach into a procedural model and analyzed the
capability of the language to model the process-results in the early phases. SysML itself as a
modeling language does not claim to solve the procedural aspects of designing architectures
within the approach.

61 For a detailed description of SysML language and syntax see for example the documentation of FRIEDENTHAL
et al. [FRIEDENTHAL et al. 2009, pp. 63 ff.].

76 5. Coping with product architecture

WÖLKL & SHEA choose a computational approach and provide a practical example from the
automotive sector. The findings support the general applicability of SysML, pointing out
possibilities to conveniently relate different models and entities of the architecture, based on
the possibility of the computer-aided management of architecture entities [WÖLKL & SHEA
2009]. In a similar manner, GANESAN & PREVOSTINI aim for the depiction of the Design
Solution Space in SysML, i.e. the mathematical documentation of multiple alternatives for a
given design problem [GANESAN & PREVOSTINI 2006]. The analysis of solutions and the
identification of the most suitable solution in particular turn out to be the major challenge
when designing, and thus are reflected in the application of SysML. Other works focus
equally on the early phase of design, integrating established methods and approaches into
SysML. TURKI & SORIANO successfully define an extension of SysML for the depiction of
Bond-graphs in activity diagrams, using the standard extensions available [TURKI & SORIANO
2005].

The approaches discussed above can be generalized, stating that SysML enables the
integration and/or coupling of different views of the same problem.62 SHAH et al. are trying to
assess precisely this capability by using the example of a simple mechatronic system and
domain-specific representations of it [SHAH et al. 2009]. Again, the authors reach the same
conclusion, stating that the possible mappings of views, as well as the general opportunities of
SysML, support the processing of domain-specific knowledge and models [SHAH et al. 2009].
THRAMBOULIDIS provides a similar use case, stating that challenges remain, above all the
barriers of integrating the different views of mechatronics, which can be extrapolated to the
general challenge of interrelating different views of different disciplines [THRAMBOULIDIS
2010].

To conclude this brief chapter on SysML, the implications for the presented work can be
summarized as follows. Similar to architecture frameworks, SysML provides reasonable input
regarding which domains and entities of the architecture to consider when discussing the
management of product architectures in systems engineering. SysML underlines the
importance of the interrelation of models and views of the architecture as well. The entity-
relationship character of SysML is similar to the modeling approach chosen in this work, yet
more formalized.63 Still, the intention of both approaches is the same, i.e. provide a sound and
more or less comprehensive basis for systems engineering, with the possibility of enriching
the basic model through specific needs arising from projects and use cases. Since both
approaches deliver a generic modeling approach, advantages and disadvantages show in both
cases. Depending on the level of abstraction required at each project phase, e.g. the early
phase of design, a high level of formalism may not be desired and/or feasible. On the other
hand, a common semantic ground supports the interaction between users and the exchange of
standardized models. The integration/interrelation of different models is desired and possible
in both approaches, with the approach chosen in this work striving for the integration of

62 Compare the similarity of the integration of multiple views in the discussion of architecture frameworks in
chapter 5.2.1.

63 Compare chapter 4.2.

5.3 Goals and requirements 77

different levels of abstraction as well.64 Yet, SysML does not provide the means of analysis
on a generic level, restricting the approach solely to modeling. Since both approaches claim
the ability to integrate different models and views, a coupling of SysML to models in MDM
notation may be feasible for certain aspects and needs. Either way, both approaches open the
door for the integration of different models and views: one is far more formalized than the
other, and thus possesses the advantages and disadvantages stemming from a formalized
approach.

5.3 Goals and requirements
The importance of the objectives and technical requirements for products was discussed
extensively in the introductory chapters, in particular chapter 1.1.1. The discussion of goals
and requirements in the following paragraphs is divided into four major fields, depicting the
process of requirements engineering as elicitation, analysis, management, and verification
[MALETZ 2008, p. 35, compare JIAO & CHEN 2006]. The first area covers the approaches to
identify and gain requirements and affordances of customers, while the second area structures
and interprets requirements. The third area discusses how the requirements are portrayed,
monitored and controlled along the process of design and development. The final stage
depicts the verification and acceptance of requirements in the final product. The distinction
was made firstly to be able to depict how the starting point of design is reached through
identification of requirements, and secondly how they can be considered and updated during
the process of design (i.e. the acquisition and the analysis and synthesis of requirements
according to [LIU et al. 2001]).65

A major issue in requirements management is, according to LIU et al., the large number of
existing methods and techniques for requirements acquisition and management, which lack a
systematic process and framework that integrates different approaches and ties them together
[LIU et al. 2001]. JIAO & CHEN identify incomplete and imprecise requirements as a major
issue, as well as the lack of homogeneity of requirements documentation in the sense of
quality and semantics, as well as inconsistent requirements specifications [JIAO & CHEN 2006,
see also LIU et al. 2001, MALETZ 2008, p. 36], for which LIU et al. identify the insufficient
guidance of the acquisition process as a cause. An efficient communication with the customer
and maintaining focus on the most significant requirements in terms of relevance for customer
satisfaction are further issues worth mentioning [LIU et al. 2001]. The list can be
complemented by problems arising due to numerous stakeholders, their availability and
perspectives, as well as the conflicts of requirements [JIAO & CHEN 2006, MALETZ 2008, p.
36]. When considering complex product service systems, the different involved disciplines,
their requirements models, methods and requirements management processes differ, thus
causing further difficulties.

64 Compare chapter 6 for chapters on model integration and abstraction.

65 JIAO & CHEN give a recent overview on the research issues in customer requirements management based on
comprehensive references in [JIAO & CHEN 2006].

78 5. Coping with product architecture

5.3.1 Identification of requirements
The goal of the first phase in requirements management is to make explicit the implicit
customer verbatim constructs [JIAO & CHEN 2006]. The three major activities in this phase are
the analysis of the concerns of different stakeholders, the identification of attributes and the
identification of functional requirements [LIU et al. 2001].

The concerns of stakeholders are the drivers of requirements identification.66 Especially
important is the consideration of the differences between stakeholders, such as end users,
maintainers, producers etc. Their integration into the process may be accomplished through
traditional techniques such as group sessions, e.g. creativity sessions including different
stakeholders, structured interviews with the stakeholders, questionnaires and surveys. The
creation of use cases allows for the identification of user needs in cooperation with
stakeholders or without them. The use case-based functional requirements acquisition allows
for the identification of functional requirements from user viewpoints [LIU et al. 2001,

66 In the context of concerns of stakeholders, the concept of affordance-based design is worth mentioning. An
affordance structure is intended to encompass more than merely a product’s functions, but its behavior and
interaction with users and stakeholders as well. As such, different Design for X aspects are considered within the
affordance structure, providing a broader view than functional structures [MAIER & FADEL 2001, see also MAIER

& FADEL 2006]. The affordance structure thus aims at a product representation depicting product requirements
based on different affordances (comparable to Design for X aspects).

Figure 5-2 Requirements management process, respective tasks and methods (compare [MALETZ 2008, pp.
35ff.])

Requirements
Identification

• Tasks
• Analysis of
Concerns

• Identification of
Attributes

• Designation of
Functional
Requirements

• Methods
• Traditional
Techniques

• Group Elicitations
• Prototyping
• Cognitive
Techniques

• Contextual
Techniques

Requirements
Analysis

• Tasks
• Achieve
Consensual
Agreement

• Validation
• Describe and
Specify in
Sufficient
Precision

• Derivation of
System
Requirements and
Functions

• Methods
• Traditional
Techniques

• Requirements
Lists

• Functional
Structures

• Quality Function
Deployments
(QFD)

Requirements
Management

• Tasks
• Modeling and
Classification

• Identify
Requirements
Relationships

• Tracing
• Managing Change

• Methods
• Comprehensive
Methodologies

• Lifecycle and Data
Management
Approaches

Requirements
Verification

• Tasks
• Validation
• Verification

• Methods
• V-model

5.3 Goals and requirements 79

MALETZ 2008, p. 37]. JIAO & CHEN point out numerous different ways of identifying
customer requirements through different psychology-based means, applying artificial
intelligence or methods of knowledge recovery in general [JIAO & CHEN 2006]. Concrete
measures for a systematic requirements acquisition are listed by PONN & LINDEMANN, such as
checklists and benchmarking [PONN & LINDEMANN 2008, p. 37]. KUSIAK introduces group
meetings and interviews as information gathering methods [KUSIAK 1999, p. 10].

The identification of attributes relevant for different stakeholders is another task to support
requirements identification. LIU et al. give the example of quality attributes, such as “number
of defects”, from the viewpoint of the user or maintainer, of which “reliability” would be the
superordinate concern [LIU et al. 2001]. DUHOVNIK et al. propose the use of tree diagrams to
systematically decompose the concerns of stakeholders and obtain concrete attributes
[DUHOVNIK et al. 2006].

As a third task, the definition of functional requirements is considered to be part of the
requirements identification stage by LIU et al. [LIU et al. 2001] while e.g. MALETZ defines the
derivation of functions as part of requirement analysis rather than elicitation [MALETZ 2008,
p. 36]. PONN & LINDEMANN add the use of functional models or use case-oriented functional
models for this purpose [PONN & LINDEMANN 2008, p. 40- 42].

5.3.2 Requirements analysis
The analysis of requirements should enable a prioritization and classification of requirements
[JIAO & CHEN 2006]. Apart from these, the major issue after identifying and documenting
requirements is the acknowledgement and systematic identification of requirements
relationships, i.e. positive and/or negative influences among the numerous gathered
requirements of the previous stage. In that context, LIU et al. concentrate on the analysis of
pairs of gathered requirements, with the goal of eliminating redundant requirements.
Requirements are redundant under three possible circumstances: if they are synonymous, i.e.
representing the same subject yet formulated differently; if one requirement is formulated
more generally, thus including more specific requirements; or if one requirement is stronger
than another, thus including both requirements. LIU et al. describe these relationships as
synonym, generalization, and strength [LIU et al. 2001].

The most critical relationships are those of opposing or contradictory nature. While LIU et al.
state that the elimination of one of the contradictory requirements is the only option [LIU et al.
2001], other authors seek solutions fulfilling both requirements or reasonable tradeoffs to
solve the conflict [JIAO & CHEN 2006, MALETZ 2008, p. 38, PONN & LINDEMANN 2008, p.
35].

PONN & LINDEMANN cite the Quality Function Deployment (QFD) approach for a systematic
analysis of requirements and their relationships, in which the interrelations between customer
requirements and technical properties (or characteristics) are gathered in an interrelation
matrix. The identification of requirement conflicts is therefore depicted in a second,
symmetrical, matrix of properties. These interrelations are then rated, whether the properties

80 5. Coping with product architecture

are (very) supportive or (very) contradictory [PONN & LINDEMANN 2008, pp. 41-43].67 The
approach, as proposed by PONN & LINDEMANN, appears to be more sufficient for a
comprehensive analysis of requirements than approaches that merely consider requirements
themselves. JUNG places similar importance on the relations of requirements, giving the
example of a handheld vacuum cleaner. JUNG relates the system in the form of a decomposed
component representation, different stakeholders or users, and a decomposed environment
system with one another [JUNG 2006, p. 90]. Requirements are then derived by analysis of the
resulting interrelations, the size of an identified flux of force between user and product for
example [JUNG 2006, p. 95f.].

Since requirements are not dependent on one another per se, it is their indirect codependence
that is based on the technical realization. As such, the comprehensive analysis allows for a
systematic identification of contradictory requirements, and further enables the identification
of technical characteristics and properties, which demand for innovative solutions to solve the
conflicts.

5.3.3 Requirements management
The management of requirements, the monitoring and updating along the lifecycle are highly
relevant for achieving successful and accepted products as a result [PONN & LINDEMANN
2008, p. 47, ILIE et al. 2008]; this is especially true for the development of software systems,
where requirements change rapidly [O’NEAL 2003, pp. 8ff.], as well as in information-
intensive environments such as the automotive industry [ILIE et al. 2008]. Different
possibilities exist for the management of requirements along the product lifecycle, ranging
from the administration of a dynamic requirements list [PONN & LINDEMANN 2008, pp. 47ff.]
to different comprehensive approaches that are partly computer supported [for a brief
discussion of different approaches see MALETZ 2008, pp. 42ff. and JIAO & CHEN 2006].
O’NEIL, for example, derives a graph-based mathematical approach for measuring the design
impact of requirements changes in software development [O’NEAL 2003, pp. 45ff.]. KUSIAK
describes a formalized approach for conceptual design, based on the decomposition of
requirements and a formalized derivation of solutions; this approach uses a coupling of the
functional solution space with the requirements space [KUSIAK 1999, pp. 201ff].

The difference between requirements in distinct disciplines and their management are evident,
discussed for the areas of mechanical engineering, computer science and service engineering
by BERKOVICH et al., resulting in a framework for requirements management and pointing out
different approaches of the disciplines when coping with requirements [BERKOVICH et al.
2009, compare JUNG 2006, pp. 25-60].

As a foundation of requirements management, the following paragraphs discuss the
classification of requirements, enabling a more differentiated view on requirements as a basis
for requirements management. The classification of requirements supports the process of

67 The Quality Function Deployment approach is described more comprehensively in chapter 5.6.3.

5.3 Goals and requirements 81

compiling, organizing, and analyzing the design during the design process [JIAO & CHEN
2006].

The classification of requirements, as for functions etc. can be conducted from different
viewpoints [MALETZ 2008, p. 90]. DOVE uses the differentiation of proactive and reactive
dynamics in the context of agile systems, for which the ability to react is of the highest
importance, due to influences stemming from several “reality factors”. These reality factors
include pace of technology, systems complexity, agile enterprise, globalization, human
behavior, organizational behavior and threat sources for the area of security strategy
requirements. More drivers for change, both short- and long-term, are described by STARK
[STARK 2005, pp. 55ff.]. The classification of requirements in that context also includes
requirements stemming from the needs of creation, improvement, migration or modification
on the side of the proactive dynamics and the requirements resulting from correction,
variation, expansion or contraction, and reconfiguration on the side of the reactive dynamics
[DOVE 2006].

In general, different methods exist for the classification of requirements. JIAO & CHEN cite
ontologies and taxonomies as means to systematically support the process, while PONN &
LINDEMANN rely on structured lists for requirements management [JIAO & CHEN 2006, PONN
& LINDEMANN 2008, pp. 47ff.]. MALETZ proposes a requirements classification system,
giving a reasonable overview of requirements in engineering design. The requirements are
classified in categories as product, organizational and process requirements. Product
requirements are further divided into functional requirements, reflecting stakeholder concerns,
and non-functional requirements, which directly correspond with product properties and
characteristics, such as weight, height etc. [MALETZ 2008, pp. 91-92]. The requirements can
be further classified by characteristics that apply to all previously mentioned classes of
requirements. Requirements are thus differentiated into internal and external requirements,
depending on whether the source of the requirement is company-internal or -external. Internal
requirements can be derived from customer requirements, clarifying vague or unspecific
customer requirements, for example [MALETZ 2008, p. 93]. Internal requirements might also
stem from stakeholder concerns within the company, thus are not classified as external but are
not derived from external customer requirements either. Further characteristics include
whether requirements can be described qualitatively and quantitatively, and a hierarchical of
requirements into primary, intermediate or final requirements [MALETZ 2008, p. 93].

All types of requirements represent properties of the product. The properties are defined by
attributes and parameters. Attributes identify certain properties as meta- data, while
parameters define the values and value ranges which describe properties for the particular
case [MALETZ 2008, p. 93, compare LINDEMANN 2009].

5.3.4 Requirements verification and validation
The requirements verification and validation stage compares the design to the current state of
the requirements [MALETZ 2008, p. 39]. The guideline VDI 2206 defines verification as the
assurance of properties, and underlines that the validation and verification has to be conducted
continually throughout the process, reflecting the developing design as well as the

82 5. Coping with product architecture

continuously evolving requirements against one another [VDI 2206, p. 30]. Verification
ensures that the design meets the requirements, while the requirements to be verified are
clearly measurable and the process of verification can be formalized. The validation is
constructed around the concerns of stakeholders rather than the measurable requirements.
Validation is therefore less formalized and reflects whether the requirements actually respond
to the stakeholder concerns [VDI 2206, pp. 38-39]. Different methods come into question for
verification and validation, depending on the kind of product under consideration. As an
example from the area of mechatronic products, the guideline VDI 2206 proposes a number of
possibilities, such as hardware or software in the loop (HIL and SIL) [VDI 2206, p. 41].

In literature, the verification and validation of products by measuring the meeting of
requirements is not necessarily considered to be part of requirements management but rather
as part of the overall process of design. For example, LINDEMANN considers the tasks
“Properties Assessment” and “Ensuring Goal Achievement”, of which the first can be
considered the identification of measurable properties of the developed designs, while the
second measures the final product against both the requirements and the stakeholder concerns
[LINDEMANN 2009]. Methods for ensuring the achievement of goals are characterized by a
prioritization of goals and/or requirements and the identification of effects if not achieving
them. LINDEMANN enumerates negation as an approach to identify consequences if goals are
not reached, a cause-and-effect analysis based on identified requirements, and a fault tree
analysis. All aim for the identification of potential outcomes if the fulfillment of requirements
fails, accompanied by a prioritization of requirements based on these considerations
[LINDEMANN 2009, p. 184].

5.3.5 Conclusion
The above sections introduced the process for requirements management, including the
discussion of the respective tasks and methods for each phase of the process. Based on the
given sources and considerations, the following figure delivers a rough outline of
classification requirements for the product architecture management approach.

Requirements in general may be categorized according to their target, i.e. product,
organization or process. Requirements can be further characterized as qualitative or
quantitative, address a defined level of abstraction of the product architecture (i.e. functions,

Figure 5-3 Requirements structure (compare [MALETZ 2008, pp. 91ff.])

Or
ga

niz
at

ion
 Product

Pr
oc

es
s

Functional

Non-
functional

Qualitative

Level of abstraction

Quantitative

Characteristic Category

Proactive

Classification

Reactive

Sources

Internal External

Properties
(Attributes & Parameters)

5.4 Product architecture analysis 83

working principles, geometrical solutions etc.), and define certain properties in terms of
attributes and related parameters. The sources or stakeholders of requirements can originate
from proactive or reactive behavior (for example reaction to markets or proactive
development of markets), and might stem from company internal or external sources. Further
classification of sources might differentiate according to requirements stemming from
regulatory laws, safety and security, according to departments etc.

5.4 Product architecture analysis
Systems architecting is rarely the design of a system without predecessors, already existing
subsystems or parts, similar existing systems or a product family into which the novel system
has to be integrated. For that reason, the task of system analysis, or product architecture
analysis in this case, is in any project a highly relevant step in the context of product
architecture management and synthesis [PAHL et al. 2007, p. 81].

System analysis in general is closely related to, or even understood as, the “management of
complexity” from a psychological or sociological point of view. In these areas, it is primarily
the application of general principles and procedures that is discussed. BECK gives an overview
on a number of procedures [BECK 2004, p. 57], including some which are discussed in this
work. The procedures mentioned range from networked thinking to morphological charts,
brainstorming, mind mapping, stakeholder analysis etc. BECK structures them in a fashion
similar to chapter 5 in this work. The mentioned approaches differ greatly in their general
applicability to different phases, including rather general schools of thought, as well as the
support of certain tasks or phases, such as decision-making. Selected approaches are
discussed in detail by different authors in [FISCH & BECK 2004]. For the work presented here,
the structure of chapter 5 provides a reasonable frame for the discussion, while approaches
that appear to be more from general schools of thought, such as systems thinking, rather than
applicable methods and procedures, were discussed in chapter 3.2.

In the following sections, product architecture analysis is considered from three distinct
viewpoints. First is the process of system analysis, providing the framework for a methodical
approach of the subject. Second, an overview of the core principles of system analysis is
provided, taking into consideration the fields of software engineering and psychology. In the
last section, the analysis of complex networked structures is discussed; according to the
definition of the product architecture and the systems approach, this is the most promising
approach to use in the present context. As was stated in the definition of analysis, the
boundaries separating system analysis for gaining information from coping with complexity
are not clearly defined, as the two fields show a strong overlap.

5.4.1 Process of product architecture analysis
The process of product architecture analysis in particular, or system analysis in general, can
be decomposed into a number of immanently necessary steps for a successful analysis.
Depending on both the superordinate methodology in which the system analysis is embedded
and the other characterizing circumstances of the situation, the approaches proposed by
different authors vary slightly. In general, system analysis is the process of gaining

84 5. Coping with product architecture

information about a system and coping with the inherent complexity [PAHL et al. 2007, p. 58,
compare FELGEN 2007, p. 28]. The following sections attempt to discuss a number of
approaches to system analysis, capturing the differences of the approaches and reasons for
those differences. As a result, a procedure of system analysis is presented that is suitable for
the product architecture management approach discussed in this work, encompassing the
different eventualities credited in the different discussed approaches.

PAHL et al. provide a general approach to the analysis of engineering systems with the three
pillars of problem analysis, structure analysis and weak spot analysis. PAHL et al. emphasize
the relevance of the analysis of the problem in the beginning, including the separation of the
relevant elements from the irrelevant, as well as the decomposition of the problem into more
individual parts. Structure analysis represents what is referred to by other authors as the
identification of interrelations of elements [see e.g. PIMMLER & EPPINGER 1994] and classes
of elements, i.e. similarities or repetitive features [PAHL et al. 2007, p. 58]. The analysis of
weak spots within the system should support not only the identification of flawed system
elements and working principles and their improvement, but also lead to the definition of
alternative solutions based on identified weak spots [PAHL et al. 2007, p. 58]. Causes for weak
spots can be not only system flaws, but also disturbing factors, such as changes of material
properties and others, which can be identified through appropriate means, such as fault tree
analysis or functional structures etc. [PAHL et al. 2007, p. 521].

Three steps are identified by PIMMLER & EPPINGER to detail the structure analysis referred to
by PAHL et al.: namely, the identification of elements, interrelations and chunks of elements
based on the interrelations between them. Elements are thus clustered into chunks, if the
number of logical interrelations between them exceeds the number of interrelations with
elements outside the chunk [PIMMLER & EPPINGER 1994]. The approach presented by
PIMMLER & EPPINGER is designed to provide a guideline on how to apply the Design Structure
Matrix (DSM), which is further discussed in chapter 5.4.3, for the analysis of complex
engineering systems with the goal of defining appropriate modules [see e.g. BROWNING
2001].

In his systems approach to product complexity, STEINMEIER bases his procedure for product
analysis on the system perception, i.e. a system consists of elements, system boundaries, and
relations between elements, and elements and the system environment. Derived from the
definition of the product architecture, STEINMEIER adds functions and properties, resulting in a
procedure of six steps: identifying system elements [compare with system decomposition as
in PIMMLER & EPPINGER 1994]; system boundaries; internal relations; relations to the system
environment; functions; and relevant properties [STEINMEIER 1999, p. 30].

MAURER gives credit to the fact that analysis and synthesis in projects appear to be
inseparable. Though agreeing with the general system perception of STEINMEIER, MAURER
additionally provides an approach designed for practical applicability, resulting in a procedure
of the following five steps: definition of the system under consideration, information
acquisition, modeling, the systematic (structural) analysis itself, and a discussion of practice,
i.e. the transfer of analysis results to the problem in reality [FELGEN et al. 2005b, p. 69,
STEINMEIER 1999, p. 30]. For a systematic analysis, MAURER provides a comprehensive group
of measures, based on abstract structural considerations derived from Graph Theory and

5.4 Product architecture analysis 85

Network Science [MAURER 2007, pp. 197ff.]. In doing so, the former means of structure
analysis, which were mainly considered to be the identification of chunks [PIMMLER &
EPPINGER 1994, referred to as “grouping” by FELGEN et al. 2005b] in the context of product
architectures, could be largely enhanced and broadened the possibilities and applicability of
structure analysis.

A comprehensive procedure of complex system analysis is proposed by FELGEN et al., based
on the discussion of existing procedural models [FELGEN et al. 2005b, compare PAHL et al.
2007, p. 58 and PIMMLER & EPPINGER 1994]. The resulting procedure adds a few aspects to
the previously discussed approaches. Besides the coupling of different models and methods,
all of which are based on a common database containing product information, FELGEN et al.
provide a comprehensive approach with the additional perspective of software engineering, in
which the identification of objects and classes is of high relevance [FELGEN et al. 2005b].
FELGEN et al. transfer this perspective to engineering, broadening what other authors call the
identification of elements and interrelations. Especially for more comprehensive approaches
to managing complexity, the relevance of classes (or domains) becomes apparent in
engineering as well [see MAURER 2007, pp. 71ff.]. As a last feature, FELGEN et al. rightly
emphasize the relevance of the identification of objectives as first step of the procedure, a step
which e.g. MAURER considers cleared before conducting system definition [FELGEN et al.
2005b, MAURER 2007, p. 69]. The resulting procedure comprises of the steps to identify
objectives, objects and classes, modeling the system, grouping of system elements [compare
PIMMLER & EPPINGER 1994], verification, and analysis [FELGEN et al. 2005b]. It is important
to note that misunderstandings due to the chosen wording of the authors might occur. In the
presented procedure, the step “grouping” is actually what is considered by MAURER as
“structure analysis”, while “analysis” in the wording of FELGEN et al. is considered as
“discussion of practice” by MAURER [FELGEN et al. 2005b, MAURER 2007, p. 69].

In an effort to provide a comprehensive proceeding based on the procedures outlined above,
the following figure combines different, equally relevant, aspects to give respect to all
recurring tasks and necessary aspects of system analysis. The resulting procedure
intentionally includes the identification of the situation and resulting objectives as starting
steps, as well as verification and implementation as concluding and reflecting steps. These
steps appear to be necessary, as well as useful for the intended goal of establishing an
approach for the management of product architectures. System decomposition, i.e. the
identification of relevant system entities to solve the problem, is integrated, as is the process
of information acquisition, whose importance in practice can not be stressed enough. The
modeling of the system, as well as the actual analysis, are discussed separately in two steps,
allowing for the use of existing models and methods, based on coherent information about the
system.

86 5. Coping with product architecture

In the following sections, the steps of the procedure and possible applicable principles and
methods are discussed. The methods and principles are not strictly related to certain steps of
the procedure, as the distinct steps are usually overlapping, conducted iteratively or
recursively, thus making a discrete differentiation of steps that is not only unnecessary, but
also practically impossible. As the discussion of existing approaches for system analysis has
shown, there are differences regarding how to conduct a reasonably comprehensive system
analysis, depending on the goal and the method in use. The goals of this work, the
requirements to the solution at the end of chapter 5 and the results of the discussion of the
state of the art will point to which steps of the procedure are relevant. More importantly, this
work will indicate which steps contribute to an approach, which is not only designed for
system analysis, but also for the management of product architectures, including synthesis and
portfolio maintenance.

5.4.2 Fundamental principles
Overviews of methods and principles to support solution finding processes show that
proposed solutions range from complex methods and methodologies to fundamental
principles, i.e. generically applicable logics [compare BECK 2004, p. 57]. The fundamental
principles presented in the following sections can be differentiated into two major groups,

Figure 5-4 Process of system analysis (left) derived from different approaches

Situation and
objectives Objectives Problem Analysis

Identification of
elements

System elements

System definition System
decomposition

Objects and
classes

System
boundaries

Functions

Internal relations

Relations to the
environment

Relevant
Properties

Interrelations

Information
acquisition

Information
acquisition

System
modeling Modeling Modeling

Architecture
analysis Grouping Structure analysis Chunks of

elements
Structural
analysis

Verification Verification Weak spot
analysis

Implementation Analysis Discussion of
practice

FELGEN et al. 2005 PAHL et al. 2007 PIMMLER & EPPINGER
1994

STEINMEIER 1998 MAURER 2007 References:

5.4 Product architecture analysis 87

depending on how the system analysis is approached. The first and important group of
principles for system analysis is based on a change of perspective of the system under
consideration. The second group of principles, originating largely from the area of software
engineering, is the principles focusing on certain element properties, resulting in manageable
groups of elements.68

It is important to note that the presented principles are rarely used discretely from one
another. The typical method or approach uses a number of the principles of system analysis,
as the following discussion will show. A model, for example, is a representation of an actual
situation, which is both abstracted and usually out of scale, while the modeling process often
includes a hierarchical decomposition of the system.

Abstraction

Abstraction as first principle of system analysis is, in general linguistic usage, the separation
of the relevant from the irrelevant [LINDEMANN 2009]. BOOCH describes abstraction as the
outside view of an object, separating function from realization [BOOCH 1994, pp. 60-63].
Descriptive models are regularly used as support of the first step of system analysis, being the
identification of situation and objectives and the system decomposition. From the very
beginning, abstraction is thus the fundamental principle accompanying the analysis process.

As in modeling in general, the identification of relevant and irrelevant system properties and
elements is intrinsic. Detailed checklists or procedures for the process of abstraction help
identify the relevant system elements and properties. It is important that these checklists be
based on a sound system understanding and generic principles of abstract system
considerations, as discussed in chapter 3.1. The procedure described by STEINMEIER can be
consulted as a first example: identifying system elements; system boundaries; internal
relations; relations to the system environment; functions. and relevant properties [STEINMEIER
1999, p. 30]. However, the realization of these steps turns out to be the critical measure for
success of system abstraction and the resulting assumptions. If system boundaries are defined

68 The presented principles are also summarized well by FELGEN, yet insufficiently discussed and related to each
other for the context of product architectur management (compare [FELGEN 2007, pp. 16 ff.]).

Figure 5-5 Fundamental principles of system analysis (compare FELGEN 2007, p. 17)

Principles of Analysis

Based on a varying viewpoint

Abstraction Hierarchy/
Decomposition Encapsulation Scale Selectivity

Based on elements’ properties

Classes and
attributes Associations

88 5. Coping with product architecture

insufficiently, or relations or properties are neglected or overlooked, the assumptions based on
the abstraction of the real system result in insufficient, or even misleading, system
perceptions. To overcome these difficulties, the system abstraction is to be conducted
gradually, i.e. top-down or bottom-up. The sufficient level of abstraction then depends on the
goal of system analysis. The abstract description of a product’s functions, an automotive
drivetrain for example, can be derived on numerous levels, ranging from the overall
description of the system function on the highest level of abstraction (“provide mobility”) to
solution neutral sub-functions (“store energy”, “convert energy”, “use energy”) and, bottom-
up, detailed functional descriptions (“transfer torque”, “adjust rotation speed”, etc.).
Additionally, the functional abstraction can be conducted from different viewpoints, i.e. the
abstraction of technical functions as shown, or from the perspective of the user (“drive
conventional”, “drive electric”, etc.) [compare DEUBZER & LINDEMANN 2009b].

As a conclusion, the application of the fundamental principle of system analysis, abstraction,
is accompanied by the following challenges: difficulties to identify relevant system elements,
relations and properties, importance to identify the sufficient or adequate level of abstraction,
and the need to take the right (stakeholder-) perspective of the system. All challenges are met
by accompanying the process of abstraction during analysis with further principles, such as
hierarchies for decomposition, element classes or systematic selectivity.

Hierarchy

The use of hierarchies when dealing with complex systems of any kind is frequently
conducted to provide a system overview and support the human interactors with the system in
their efforts to understand and describe the system sufficiently for different purposes
[AHLEMEYER & KÖNIGSWIESER 1998, p. 22]. In the context of product architecture analysis,
the goals of hierarchical decomposition are usually to gain system understanding to improve
or renew products or parts thereof [CRAWLEY et al. 2004, KUSIAK 1999, p. 224]. In the
context of manufacturing firms, the product decomposition, be it physical or functional, is
used to structure the organization, manufacturing and development processes etc. [see e.g.
DANILOVIC 2006, ENGEL & BROWNING 2008, GÖPFERT 1998]. Hierarchies are regularly
modeled graphically in schematic manner, typically known from organizational charts. The
aim and outcome of hierarchical decomposition is the structured breakdown of a system until
reaching its “lowest level of elementary subsystem” [SIMON 1962]. The perception might
differ as to which level is the lowest, depending on the viewpoint and purpose of the system
modeling and analysis [SIMON 1962].

The effect of a hierarchical decomposition has to be discussed critically. Firstly, the depiction
of hierarchies implies simplicity that does not actually represent the respective system.
Complex systems comprise of numerous networked interrelations among elements that are
not depicted in the hierarchical system representation.69 Secondly, groupings of elements

69 SIMON differentiates between the “formal organizational hierarchy”, in which “authority relations” interrelate
a subsystem and the system it belongs to, and hierarchies of complex systems, in which the relations are more
complex and the relation of subordination does not exist or is at least less dominant [SIMON 1962, SIMON 1996,
p. 185].

5.4 Product architecture analysis 89

according to the given hierarchy are, at best, giving hints on the real clusters of the system
structure. To give an example, the decomposition of product components can be conducted
top-down according to the physical structure, starting with the largest unit and gradually
decoupling the mechanical linkages down to smallest parts, where no further decoupling can
be accomplished. Other strategies might focus on a decoupling, according to the fulfillment of
functions, manufacturing processes or the fulfillment of requirements, assignment to
organizational entities etc. While all of these strategies are valid for certain goals and
situations, the early identification of the “right” way to decouple the system requires a
detailed knowledge of the expected outcome, the approach and the inherent entities to
consider. A change of perspective, from physical interrelations to functions for example, as is
often perceived during the process of design, results in a situation where a hierarchy
established before is useless. Decisions based on the simplified hierarchical view often cause
problems later in the process, when the unconsidered interrelations and views point at the
lacking comprehensiveness of the established model.

On the plus side, the simplified view of complex systems is sufficient in situations where only
one view of the system is required to represent and quickly grasp the elements of a system.
Further positive effects of hierarchical decomposition include the forced discussion of
different existing levels of abstraction of a system. Whereas other methods, such as the
functional models discussed in chapter 5.5.2, require a certain and defined level of
abstraction, the hierarchical decomposition follows the actual degree of user knowledge.
During the application of other models, practice has shown that users tend to mix different
levels of abstraction due to their current state of knowledge about the system. The
decomposition into hierarchies supports the process of system analysis and the complete
perceptions of a system, given that the views of the system and existing levels of abstraction
are known and defined.

Encapsulation

Encapsulation in software engineering is described as the dissociation of static from dynamic
elements. As a goal of the application of the encapsulation principle, a subjective
simplification of the object under consideration is strived for. This is to be achieved by hiding
interior system events, which are not relevant for the analysis of the overall system
(“information hiding” [COAD & YOURDON 1994, p. 30], compare also to the “Black Box”
principle [LINDEMANN 2009]).

Even in this short description, similarities, particularly those concerning the difficulties in
application, show with the principle of abstraction. In both principles, decisions must be made
regarding which entities of the system have to be considered relevant or irrelevant. While the
principle of abstraction considers the whole system on a unique level of abstraction,
encapsulation, or the black box principle, allow for certain system elements or defined system
areas to be considered on a different level of abstraction. Encapsulation can thus be
considered to be a combination of the principles of abstraction and selectivity, while even
hierarchies play a role if different system areas are modeled on different levels of abstraction.

As a result, encapsulation faces two of the three major difficulties of the principle of
abstraction, i.e. the identification of relevant and irrelevant entities, and the adjustment of the

90 5. Coping with product architecture

sufficient or required level of abstraction. An additional challenge, and typical of the
encapsulation or black-box principle, is the correct modeling of the behavior of the hidden
system area; the information from this is not displayed in the overall model. More precisely,
input and output information of the encapsulated system area have to reflect reality in order to
allow for correct results of system analysis. Encapsulation, on the other hand, supports
difficulties in strictly hierarchical decompositions, as not all elements have to be considered
on the same level of abstraction. The model does not necessarily need to present all system
entities on the same or all levels of abstraction. Again, the importance of different principles
in combination shows through the example of encapsulation.

Scale

The principle of scale does not, as the colloquial meaning suggests, represent a mere variation
of size, but according to COAD & YOURDON considers the trilateral relationship between the
system, its parts, and the viewer or user of the system model [COAD & YOURDON 1994, p. 33].
The principle of scale is thus based on the identification and modeling of numerous distinct
levels of abstraction. The system and its parts are differentiated according to the identified
levels and set in relation to the viewer, i.e. different stakeholders requiring different levels of
abstraction. A model assembled according to that notation and procedure enables the user to
sufficiently work with and navigate through a complex system model [COAD & YOURDON
1994, p. 33].

The principle of scale, set in the context of the previously discussed principles, demands the
recognition and identification of different levels of abstraction and their relation to different
stakeholders. As such, the principle of scale combines the principles of abstraction and
hierarchy to overcome challenges arising from the application of just one of these principles.
Additionally, the principle of scale brings the viewer (or different stakeholders) into the
process of analysis as an important component of the process of analysis.

Selectivity

Selectivity as a principle implies that the information of a complex system as a whole cannot
be grasped as one, but rather is reduced according to the motivational problem of the system
analysis. The resulting model is thus reduced to the relevant information, separated from the
irrelevant [FUCHS 2004, p. 18]. Abstraction, as discussed earlier, focuses on taking the outside
view of an object or reducing the information to one defined and consolidated level.
Selectivity, on the other hand, separates certain views, rather than levels of abstraction; an
example of this is analyzing a product by taking functions and form into consideration, but
ignoring material, weight and other properties. Different semantics and notations of modeling
languages and techniques imply this selectivity through the given rules and possible data to be
stored in the model [compare FUCHS 2004, pp. 152ff.]. The constraints of the model’s
possibilities already imply selectivity, which is dependent on the type of model chosen and
thus not influenceable.

The importance of selectivity as principle and its role as an enabler was pointed out during the
discussion of the principles of abstraction and encapsulation. Selectivity alone is always
accompanied by a high level of risk, implying that relevant factors are labeled as irrelevant

5.4 Product architecture analysis 91

and thus neglected in the considerations of analysis. It is thus recommended to recognize all
parts of a system by the means of scale and encapsulation, thus not neglecting certain system
elements completely but considering them with less detail [FELGEN 2007, p. 17]. The risk of
missing the influences of irrelevant elements is thus reduced and allows for the purposeful
analysis of the system.

AHLEMEYER & KÖNIGSWIESER state that selectivity is rather a necessity than an option,
assuming that selectivity must be applied for the analysis of a complex system to be able to
grasp the system at all. Again, the risk is pointed out, and thus the ambivalence of the
principle, as “wrong” selection, causes insufficient and misleading results [AHLEMEYER &
KÖNIGSWIESER 1998, p. 26-27].

In the context of other principles of analysis, selectivity proves to be rather an enabler of the
combined application of other principles, than a principle to be applied solely. Yet, the
demand for selectivity for complex system analysis is given at any point, as analysis implies
the concentration of the relevant system elements for the reaching of reasonable conclusions.

Classes

The identification of classes means establishing a hierarchy of classes, combining similar
elements of a system to classes. Similarity, that context describes elements with similar
properties and corresponding behavior. The identification of classes as a principle demands
the detailed description of classes and objects, their commonalities and differences. Even
more, the definition of classes and objects should be enforced to reach a concise system
perception [COAD & YOURDON 1994, p. 31].

The definition of classes enables a different view of systems than is possible with flow-
oriented or hierarchical models By departing from these views, new possibilities for the
combination and detachment of e.g. functions become apparent, enabling differentiated
perspectives of the system and thus leading to new solutions [FELGEN 2007, pp. 17-18].

During analysis, the neglecting of the relations between elements and the establishment of
hierarchies of classes facilitates the perception of the system. This effect is caused by the
subjective reduction of the number and variety of system elements and relations. According to
the definition in chapter 3.1, those have a major influence on complexity, thus making a more
convenient system perception possible.

Of course, the presented application of the principle of classes can only be used as a first step
in system analysis, as the neglecting of elements or objects and their interrelations is not an
option for successful system analysis.

Association

The principle of association is briefly described as the combination of conceptions due to their
similarity, and thus builds the foundation for the identification of classes and the
establishment of hierarchies of classes. Association interrelates comparable objects of systems
due to their similarity in behavior (time) or properties (physical) [COAD & YOURDON 1994, p.
31].

92 5. Coping with product architecture

Despite its importance for analysis, association is also an important means for design
synthesis and is applied as creativity method in product development. The abstraction of a
problem is thus actively associated with similar problems in nature, technology or everyday
life to enable the adaption of solutions from other areas into the problem solving process
[compare LINDEMANN 2009]. The principle of association thus not only stands for a principle
of system analysis, but also points to the close nature and interdependence of analysis and
synthesis in design.

Conclusion

The discussion of different fundamental principles points to a number of conclusions
discussed in this section. First, the origin of principles stems largely from areas of science
such as sociology, economy, or software engineering, where the systems approach and
systems thinking, as well as the human perception of systems, are more elaborately
considered in the context of system analysis and handling complexity.

Second, the definition and description of the different principles show that similarities exist
similarities between the principles, their goals and their difficulties in application. The
discussion of the principles pointed to these challenges and similarities in detail. Nevertheless,
the different principles allow for a varying approach to system analysis, and are thus all
equally relevant, pointing to the third conclusion.

As the similarities and challenges of the different principles point out, a principle of analysis
cannot stand for itself. For successful system analysis, different principles are required in
combination, leading to a more complete and sufficient model of the system. The principles
are applied sequentially, as well as in parallel in such an approach, ranging from the mere
modeling of systems to a detailed behavioral or structural analysis. Examples were given in
the detailed discussion of principles.

As a fourth conclusion, the advice for application of principles can be considered by stating
that the awareness of the different existing principles allows for a more systematic analysis
process by purposely varying the viewpoint of analysis through the application of different
principles. The knowledge of which parts of the system were successfully decomposed, which
encapsulated and on what level of abstraction, which presumptions during selectivity caused
these results and from which stakeholder perspective etc. leads to a more profound system
understanding. The results of system analysis can be discussed and judged more purposefully
and trustfully than without the knowledge of existing analysis principles.

In addition to the discussed principles, based on the selection by FELGEN [FELGEN 2007, pp.
17ff.], further principles can be considered. These were excluded due to either their lack of
generality, as they combine other principles, or due to their lack of relevance for the
preceding work. Worth mentioning are the principles of communication (i.e. the handling of
interfaces), behavioral categories (i.e. differentiation of behavior according to the
differentiation of classes and objects) [COAD & YOURDON 1994, p. 32], object-oriented
analysis (OOA) in general [BOOCH 1994, COAD & YOURDON 1994], the three step approach of
Luhmann [AHLEMEYER & KÖNIGSWIESER 1998, p. 26-27], and several approaches in product
development, which usually include numerous principles, yet combine them within a
procedure as well as a modeling approach.

5.4 Product architecture analysis 93

5.4.3 Networked system analysis
The discussion of different models, and possibilities of modeling in general, point out the
relevance of matrix-based modeling techniques in the context of product architecture
management. Matrix-based methods and modeling are very common occurrences in the
different fields of product architecture management, i.e. identification of requirements, system
analysis, synthesis and evaluation, as well as downstream activities.

While these different existing approaches are discussed in chapter 5 in general, this section
will cover the approaches used for system analysis, more precisely the analysis of complex
system structures, defined as the product architecture in the beginning of this work. As the
most elaborate and scientifically sound approach, the Design Structure Matrix was
introduced, refined, and structured, both in terms of a procedure of application and as a
classification of use cases over the past 30 years [compare STEWARD 1981, BROWNING 2001,
MAURER 2007, pp. 53-64]. The following paragraphs will focus on the evolution of the DSM
approach in the past decades, rather than give an overview of the different existing
approaches using matrix-based techniques, as done by MAURER, but include the more recent
multiple domain approaches, as introduced in his work [MAURER 2007, pp. 53-64]. While the
analysis criteria and metrics are largely based on Graph Theory and Network Science, those
areas of science are not considered more intensively, as discussed in chapter 3.2.3, due to the
reasons outlined there, i.e. lack of general applicability for product architectures and scientific
proceeding in general.

Matrix-based analysis approaches

Before the DSM became synonymous with elaborate measures in system analysis in general
[BROWNING 2001], early use of the method was motivated by process analysis, redesign and
optimization. As one of the first applications, STEWARD used the DSM to identify iterations in
design processes. In the first application of the Design Structure System, the considerations
are based on the logical interdependence of tasks. Tasks are then logically interdependent if
parameters determined in one task are required in another [STEWARD 1981]. The typical
representation of a system is conducted by matrix representation, in which the elements of a
system are represented as rows and columns, and their interdependencies as marks in the
matrix. The matrix is always a square intra-domain matrix, i.e. the diagonal contains no marks
and the elements appear in the same order, both in columns as well as rows. STEWARD
introduced the first methods, partitioning and tearing, whose application results in the DSM,
an optimized structure of the design process in which the number of iterations is reduced to a
minimum and remaining iterations are clearly pointed out and reduced to a minimum
[STEWARD 1981].

The process of partitioning aims for the reordering of rows and columns in a fashion that
allows for all marks of the DSM to be positioned on one side of the matrix, thus iterations do
not occur. If a reordering of all marks on one side of the diagonal is not possible, which is
usually the case, the remaining marks are positioned as close to the diagonal as possible, thus
minimizing iterations [STEWARD 1981, MAURER 2007, p. 231]. Other names for the process
of partitioning are sequencing or triangularization [MAURER 2007, p. 231].

94 5. Coping with product architecture

Tearing follows the process of partitioning by identifying the marks that prohibit the
partitioning process from fully completing, and removing these marks [STEWARD 1981,
MAURER 2007, p. 140, KREIMEYER 2010, p. 55]. Of course, the removal of marks represents a
change of the system, thus measures to implement this change in the real system have to be
considered, though they often do not exist. To cope with remaining iterations in processes, for
example, the assignment of senior staff is proposed by STEWARD to provide educated guesses
based on experience when needed, i.e. parameters are required but still undefined for the next
task [STEWARD 1981]. To enable the identification of most promising tear marks, the
application of other algorithms, such as the identification of feedback loops in the system can
be conducted [MAURER 2007, p. 217], as partitioning algorithms might not lead to the best
results when overlapping feedback loops occur [MAURER 2007, pp. 105-106].

After the first use in process management, DSM application spread through the different areas
of design science, resulting in what is classified by BROWNING as component- and people-
based DSM, as well as parameter- or task-based DSM [BROWNING 2001], depending on what
is depicted by the model. Application is thus possible for engineering design, process
optimization, organizational issues or basically any system describable by parameters. In
accordance with the different DSM-classes, further methods for matrix-optimization evolved.
Worth mention are the methods of clustering and banding, which are usable with different
types of systems.

Banding represents the rearrangement and markup of elements in the matrix, so that “parallel
entities remain” [KREIMEYER 2010, p. 55]. As a result, the marked elements, for example
tasks, can be executed in parallel, while components, on the other hand, might be designed in
parallel. Parallel entities in the domain of components do not directly influence one another,
although of course indirect interdependencies may occur.

Clustering, as a later evolved means of matrix analysis, helps identify elements that are
mutually related and thus densely connected with one another, yet loosely connect with other

Figure 5-6 Process of partitioning and possible mark for tearing (encircled)

5.4 Product architecture analysis 95

system elements [MAURER 2007, p. 227, KREIMEYER 2010, p. 55].70 The clustering method is
frequently applied to identify modules in products. The common definition of modules is
underlying, stating that modules are represented by highly interconnected elements with few
interrelations outside of the module [ULRICH 1995].

The main premise of the DSM approach and the above-discussed methods is the
representation and model of the system. A uniform model is required for the discussed types
of analysis, i.e. the methods demand elements and interrelations of the same type for
meaningful, i.e. interpretable, analysis results. As the discussion in the introductory chapter
1.1 pointed out, complex systems are characterized by a large number and an even larger
variation of different and numerous elements and interrelations. As a result, the DSM can
only depict a small cutout of the actual system, which was identified as relevant for system
analysis. Though PIMMLER & EPPINGER point out different dependency types for products (i.e.
spatial, energy, information, material) which are incorporated into a comprehensive product
model [PIMMLER & EPPINGER 1994], other authors include e.g. user and environmental
interfaces [YASSINE & WISSMANN 2007]. The interpretation of structural characteristics, e.g.
clusters in the resulting architecture, are difficult to interpret, whether for example spatial
interferences have priority over information flows and so on. LINDEMANN et al. provide a
similar example using the dependency type’s spatial, functional and features, yet prioritizing
the different dependency types to point out and differentiate between functional or physical
modules etc. [LINDEMANN et al. 2009, p. 185].

Although many analysis tasks can be accomplished through concise modeling, there was
growing interest in depicting the system and its interrelations across different domains. To
cope with this issue, DANILOVIC & BROWNING put forward and established the concept of the
Domain mapping Matrix (DMM), i.e. a inter-domain dependency matrix contrasting two

70 If clusters are largely overlapping, matrix representation is insufficient as the elements cannot be rearranged so
that all clusters are identifiable in the matrix. The supplementary depiction in graph-form is therefore
recommended [MAURER 2007, p. 104, compare SHARMAN & YASSINE 2007]

Figure 5-7 Banding (parallel tasks highlighted) and clustering (clusters highlighted)

96 5. Coping with product architecture

different domains with each other, e.g. product functionality and product components
[DANILOVIC & SANDKULL 2004, DANILOVIC & BROWNING 2007].

To benefit from this system representation, the concept of clustering a DSM was transferred
to the non-square dependency matrix, resulting in a DMM-clustering. The underlying
concept of DMM-clustering is the acknowledgement of the similarity of rows and/or columns.
As a result of application, rows and columns with similar marks are grouped and rearranged
accordingly, pointing out potential clusters of elements.

The introduction of the DMM as a complementary supplement to the DSM enables the
depiction of systems from different angles, as well as the interaction of those systems.
DANILOVIC & BROWNING give an example of the application by coupling five project domains
(goals, product, process, organization, tools) and five product domains (requirement,
functionality, parameters, specification, product), of which the product poses the link between
the two [DANILOVIC & BROWNING 2007].

What DANILOVIC & BROWNING described as the “periodic table of DSMs and DMMs”
[DANILOVIC & BROWNING 2007] was the multi-domain representation of a system,
representing involved domains as well as the interrelations within and between the respective
domains. Yet, the application of structural characteristics is limited to the clustering of
elements within the DMM, while the analysis of a DSM through discussed techniques and the
structural characteristics, which will be pointed out in the following sections, reveal a far
larger potential than the mere clustering. To fully tap this potential, the Multiple-Domain
Matrix (MDM) was introduced by MAURER, systematically decomposing a system into its
domains and the interrelations between them, accompanied by techniques to cope with the
resulting structures and making them accessible for thorough analyses [MAURER 2007, pp.
72ff.].

To achieve this accessibility, MAURER introduced domain mapping logics [MAURER 2007,
pp. 112-116], mathematically described by the multiplication of matrices. By applying these
logics, interdependencies across domains can be mapped onto the element of one domain,
resulting in a DSM for thorough analysis. In fact, STEWARD, in his first DSM application,
used a similar principle inexplicitly, stating that tasks are interrelated if the product
parameters defined within the respective tasks are dependent on one another [STEWARD

Figure 5-8 Process of DMM-clustering (potential clusters highlighted)

5.4 Product architecture analysis 97

1981]. Using the language of the MDM, the DMM depicting which task defines which
parameter and the DSM of parameters influencing one another are transferred into the DSM
of tasks. The six existing domain mapping logics and their mathematical and matrix
representations are depicted in the following figure, in which each case also represents a
multiple domain matrix.

To achieve this accessibility, MAURER introduced domain mapping logics [MAURER 2007,
pp. 112-116], mathematically described by the multiplication of matrices. By applying these
logics, interdependencies across domains can be mapped onto the element of one domain,
resulting in a DSM for thorough analysis. In fact, STEWARD, in his first DSM application,
used a similar principle inexplicitly, stating that tasks are interrelated if the product
parameters defined within the respective tasks are dependent on one another [STEWARD
1981]. Using the language of the MDM, the DMM depicting which task defines which
parameter and the DSM of parameters influencing one another are transferred into the DSM
of tasks. The six existing domain mapping logics and their mathematical and matrix
representations are depicted in the following figure, in which each case also represents a
multiple domain matrix.

Figure 5-9 Possible cases of domain mapping logics to compute an aggregated DSM [MAURER 2007, pp. 112-
116, see also KREIMEYER 2010, pp. 53-54]

98 5. Coping with product architecture

Techniques, characteristics and metrics

Based on the possibilities of the application of DSM and MDM, a number of methodologies,
analysis criteria and metrics evolved. Typical analysis processes were discussed in chapter
5.4.1, of which that of PIMMLER & EPPINGER in particular deals with the application of DSM,
while that of MAURER considers the general approach of complex systems in engineering
design, based on the comprehensive use of MDM [PIMMLER & EPPINGER 1994, MAURER
2007].

To cope with the structural system models established within the analysis processes, several
techniques, structural characteristics and metrics exist. The techniques of partitioning,
banding, tearing, clustering, and domain mapping logics were discussed in the preceding
sections. Additionally, few procedures exist, supporting the operation with the system models
for different purposes.

For the area of design synthesis, which is naturally underrepresented among DSM-
applications with a focus on system analysis, a number of techniques exist to support the
process of synthesis. DE WECK et al. show an example of technology infusion into an existing
system, introducing the ΔDSM to identify changes occurring in an existing system due to the
involvement of new components. The ΔDSM is introduced to assess the invasiveness of new
technologies in terms of a cost/performance trade-off during conceptual design [DE WECK
2007]. Of course, the generic application, as well as the abstract example in the figure below,
can only point out the general potential. For a comprehensive and analytically correct
approach, the marks in matrices are represented by numerical values, which then allow for
positive as well as negative values, to both create and remove elements and relations.
Analytically more correct, comprehensive, and systematical, the problem was approached by
EBEN et al., showing that the ΔDSM concept allows for only four out of eight possible cases
of change, i.e. the creation and removal of elements and relations, but lacking possibilities to
deal with the merging and splitting of elements, replacing relations with one or more other
relations, or replacing relations with an element [EBEN et al. 2008]. For the merging and
splitting of elements, a DMM for mapping the changes was introduced by EBEN et al., but a
comprehensive solution is still to be defined to solve all eight cases in a satisfactory manner
[EBEN et al. 2008].

Figure 5-10 Example of application of the ΔDSM: “Original System DSM + ΔDSM = Changed System DSM“
[from DE WECK 2007]

5.4 Product architecture analysis 99

From the contexts of variant management and design synthesis emerged a similar concept,
motivated by insufficient visualization of different possibilities or paths within a solution
space. BRAUN & DEUBZER proposed the addition of different matrices, each depicting one
possible product variant as a complete cluster, to achieve as a sum the overall solution space
in which every possible variant is represented by a completely interlinked cluster [BRAUN &
DEUBZER 2007]. GORBEA et al. put forth a similar concept based on the analysis of different
conceptual alternatives, which, as a result of addition, form the ΣDSM. More
comprehensively, if different domains are considered, the model can be described as the
ΣMDM. Thereby, many concept matrices are numerically added, resulting in a summation of
possible alternatives in a comprehensive solution space. The numerical values of marks
resulting from addition are considered, pointing at relations that tend to appear in all or only a
few conceptual alternatives [GORBEA et al. 2008]. The difficulty is to identify necessary and
sufficient relations to achieve a fully functioning system. A combination of both approaches
was therefore utilized by HELLENBRAND & LINDEMANN for systematic synthesis, depicting a
compatibility matrix based on existing alternatives and identifying further possible
alternatives by the identification of completely interlinked clusters [HELLENBRAND &
LINDEMANN 2008].

The existence of structural characteristics and metrics to characterize complex systems is
widely acknowledged, yet a sound classification and comprehensive overview for the context
of engineering design has long been missing. MAURER gives an overview on a number of
structural characteristics, summed up in the following table. MAURER therein differentiates
between criteria for single nodes and edges, as well as subsets of the system. The listing
additionally contains analysis criteria for graphs, which include, among others, the previously
introduced techniques of banding, clustering and partitioning [MAURER 2007, pp. 197ff.].
Methods for system analysis are included, which utilize existing analysis criteria and set them
into an operable context. For example, the structural ABC-analysis orders edges, in
accordance with their appearance in feedback loops (or hierarchies, clusters etc.) for a better
comprehension of critical system elements [MAURER 2007, p. 236]. Methods to optimize
structures are considered separately, as they inevitably include a change to the system, in
contrast to analysis methods, which solely discuss the system as is [MAURER 2007, pp.
238ff.].

Figure 5-11 Example of application of the ΣDSM: Addition of three system matrices

100 5. Coping with product architecture

Analysis criteria for nodes and edges Analysis criteria for graphs
Active and passive sum Banding
Activity Clustering
Articulation node Degree of connectivity
Attainability Distance matrix
Bridge edge Matrix of indirect dependencies
Bus Partitioning (Triangularization, Sequencing)
Closeness Methods for system analysis
Criticality Feed-forward analysis
Distance (global) Impact check list
End and start node Mine Seeking
Isolated node Structural ABC-analysis
Leaf Trace-back analysis
Transit node Methods for optimizing structures
Analysis criteria for subsets Tearing
Bi-connected component Evolutionary algorithms
Cluster (completely cross-linked)
Cluster (strongly connected parts)
Distance between nodes
Feedback loop
Hierarchy
Locality
Path
Quantity of indirect dependencies
Similarity
Spanning Tree
Strongly connected part/component

KREIMEYER provides a comprehensive overview of metrics for the analysis of processes,
based primarily on the findings of Graph Theory and Network Science, which in fact is
partially overlapping with the identified characteristics and methods compiled by MAURER
[KREIMEYER 2010, pp. 300ff., MAURER 2007, pp. 197ff.]. As the focus of the metrics lies on
the analysis of processes, an adaptation to complex systems in general or product
architectures in particular tends to be difficult. Processes are characterized by a large quantity
of similar treatable tasks, persons etc., while the numerous different elements of product
architecture, as well as their interactions, cannot in their sum provide a statistically equal basis
for analysis.

Size and density Hierarchies
Number of domains Height of hierarchy
Number of nodes Width of hierarchy
Number of edges Tree criticality
Number of classes Snowball factor

Table 5-1: Structural characteristics and methods for analysis (as compiled by MAURER 2007, pp. 197ff.)

Table 5-2: Metrics for structural analysis (as compiled by KREIMEYER 2010, pp. 300ff.)

5.4 Product architecture analysis 101

Number of interfaces between domains Forerun factor
Number of edges per node Tree-robustness
Relational density Maximum nesting depth
Number of unconnected nodes Clustering
Adjacency Number of cliques
Activity / Passivity Cluster-coefficient (local)
Degree correlation (nodes) Cluster-coefficient (global)
Degree correlation (edges) Module quality 1 (flow of information)
Degree distribution Module quality 2 (compactness)
Fan criticality Cycles
Synchronization points / distribution points Number of cycles
Number of independent sets Number of cycles per node
Attainability Number of cycles per edge
Number of reachable nodes Number of feedbacks
Reachability of a node Activation of cycle
Closeness Number of starting points for iterations
Proximity Iterative oscillation
Relative centrality (based on between-ness) Several domains
Connectivity Bipartite density
Node connectivity Number of organizational interfaces
Edge connectivity Cognition
Paths Cognitive weight
Number of paths Degree of non-planarity
Path length Boolean Operators
Weight of an edge McCabe Cyclomatic Number
Centrality of path (based on centrality) Control-Flow Complexity
Centrality of path (based on degree) Log-based Complexity
Degree of progressive oscillation

Based on the close relation Graph Theory, the discussed techniques, characteristics and
metrics are often represented in matrix-notation for mathematical processing, yet
accompanied by graph representations for visualization and communication. The coupling of
the DSM-approach and Graph Theory is largely supported by MAURER and other authors
[COLLINS et al. 2008, KREIMEYER 2010, MAURER 2007].

To conclude, techniques (or methods), characteristics and metrics can be utilized for the
analysis of complex systems. Techniques can be characterized by a change of visualization
and a rearrangement of the system elements. The characteristics point to certain patterns
within the architecture, of which the relevance and meaning must be interpreted in each use
case. Finally, metrics result in numerical values for nodes, edges or groups, which are
especially useful in statistically relevant systems like processes.

The challenge for product architecture management is to identify which of the above-
mentioned patterns are suitable for each respective domain, and how results are to be
interpreted. The compilations above, besides contributing greatly to the science of complex
systems in engineering, allow for a systematic analysis by providing checklists for the
analysis process and leading to an improved perception of the complex system in question.

102 5. Coping with product architecture

Fields of application and capabilities

Based on the previous discussion, the following fields of application for the MDM approach
can be identified, as has been proposed by BROWNING: the process, the product, the
organization, and parameterized models [BROWNING 2001].

However, the application underlies the following constraints, divided into shortcomings of the
notation and shortcomings in practical application.

Shortcomings of the notation

• DSM application is restricted to the view of one system type (i.e. “domain”, according
to MAURER 2007) with defined type of interrelations.71

• Though MDM allows for the consideration of different domains, a defined level of
abstraction is still required for application within intra- and inter-domain matrices.
Systematic guidance is missing regarding how to cope with different levels of
abstraction.

• The appropriate handling of hierarchical decomposition accompanies the coping with
abstraction and is yet unsolved [DANILOVIC & BÖRJESSON 2001, KREIMEYER 2010, p.
58].

• Changes over time are considered by different authors, as discussed by KREIMEYER,
yet not sufficiently solved [KREIMEYER 2010, p. 58 compare DE WECK 2007, EBEN et
al. 2008]. The handling of decision points in networks as a further step was recently
researched [KREIMEYER 2010, pp. 123ff.].

• The management of both conceptual variants and variants within the product portfolio
was considered using matrix-based approaches, yet a comprehensive approach is
missing, especially one employing a combination of the two [DEUBZER & LINDEMANN
2009a, DEUBZER & LINDEMANN 2009b, GORBEA et al. 2008, HELLENBRAND &
LINDEMANN 2008].

Shortcomings in practical application

• Practice has shown difficulties in application for untrained users of DSM, DMM and
MDM approaches. Though users in engineering design are accustomed to matrix and
accompanying graph representations [MAURER 2007, p. 109], tapping the full potential
is particularly difficult for untrained users.

• Information acquisition processes are highly demanding and crucial for the outcome of
any method. The problem is well-known and different approaches are introduced, yet
systematically largely unsupported [MAURER 2007, pp. 94ff.].

• The introduced generic methodologies, techniques and applications are to be adapted
for each use case. In few cases is it possible to apply the core ideas without extensions,
adaptations and trade-offs.

71 The combination of different interrelation types has to at least be considered critically [compare the example
of LINDEMANN et al. 2009, p. 185]

5.5 Product architecture definition and synthesis 103

• As it is intended for analysis, bridging the gap to design synthesis from DSM and
MDM is still a challenge. Though measures are known to induce creativity for
solution finding in a systematic way [MAURER 2007, pp. 135ff.], a coupling with
systematic methods of synthesis is still missing, hindering a combined use of existing
methodologies [DEUBZER & LINDEMANN 2009c].

Some of the issues mentioned above are also discussed from the perspective of process
analysis by KREIMEYER, where solutions are provided for the area of process analysis and
optimization, which are not easily transferable to product architecture management
[KREIMEYER 2010, pp. 57-58].

Conclusion

The methods and approaches, which evolved from the DSM to the DMM and MDM, have
proven to be powerful in numerous projects. In fact, there is no generic analysis technique for
the analysis of complex structures that is structured and capable yet easily applicable in
engineering design. Especially in comparison to matrix-based synthesis methods, such as
axiomatic design [SUH 2001, pp. 10ff.] or conceptual design synthesis [KUSIAK 1999, pp.
243ff], the efforts in analysis seem to be far more generic in their possible applications, as
well as more elaborate in their means.

Research is on the way to addressing a number of shortcomings recently: enabling the
combination of analysis and synthesis [WYATT et al. 2008, DEUBZER & LINDEMANN 2008,
GORBEA et al. 2008, HELLENBRAND & LINDEMANN 2008], refining analysis methods (e.g. in
cooperation with control engineering [DIEPOLD et al. 2009]), developing guidelines for
practical application and interpretation of characteristics [e.g. KREIMEYER 2010 for processes]
or treating different fields, such as variant management [BRAUN & DEUBZER 2007, DEUBZER
et al. 2008] or scenario analysis with existing methods.

The presented work will utilize existing approaches and enhance them, enabling them to deal
with product architectures in different phases. Focus is then placed on the interlocking of
analysis and synthesis, as well as the interpretation of known characteristics in the context of
product architectures.

5.5 Product architecture definition and synthesis
The definition and synthesis of product architectures has become one of the major challenges
in engineering design. The numerous disciplines involved in engineering developed large
volumes of knowledge, which differ increasingly in the use of language, standardized
procedures and processes, as well as undergoing paradigm shifts due to innovation,
regulations etc. Due to this “burst of knowledge” [EHRLENSPIEL 2009, p. 19], the knowledge
about the complete system becomes more important, yet more difficult to grasp for the
individuals involved. Research in systems engineering based on the understandings of
systems science in particular (compare chapter 3.2) aims at solving these shortcomings.
Nevertheless, it is the cooperation of disciplines in research, as well as industrial practice, that
puts forth the most promising and innovative solutions [EHRLENSPIEL 2009, p. 19].

104 5. Coping with product architecture

Given these recent developments, the situation of individual designers developing complete
systems from scratch is no longer the norm. In the automotive industry, for example, 60 to
80 % of parts are newly designed, while the rest are used from predecessors or other models
of the current portfolio [CLARK & FUJIMOTO 1991, p. 148]. HUBKA & EDER claim that even
95 to 99 % of all design problems are concerned with redesigning [HUBKA & EDER 1996]. As
a resulting premise, the design of products has always incorporated the fact that, from the
beginning of development onwards, the maturity or concretization and level of detail of the
respective product entities differ largely from one another. The discussion of existing methods
in the following section will show that they support the designer in an individual situation of
design on a certain level of maturity, but cannot easily be carried over to all tasks of synthesis
of complex products or easily be integrated into the process of systems architecting.

The following abilities have to be considered when adapting a system, according to CHMARRA
et al.:

• Ability to recognize the change from an old environment to a new environment

• Ability to determine the change that has to be made to the system (according to the
recognized change in the environment)

• Ability to effect the change to generate the new system [CHMARRA et al. 2008]

Against that background, ROOZENBURG & EEEKELS differentiate between four views of
synthesis [ROOZENBURG & EEKELS 1995, pp. 4-9]:

• Synthesis (and analysis) as a phase of the design process, i.e. a subsystem of the
(now outdated) view of a linear process of product concretization [compare VDI 2221]

• Synthesis as part of the problem solving process, in which “analysis” can be
understood, both as the clarification of the task based on the actual situation before
synthesis, as well as the deduction of consequences of a synthesized scenario
[compare LINDEMANN 2009, PONN & LINDEMANN 2008]

• Synthesis as assembly of subsystems, i.e. the application of e.g. the morphological
chart to problems which can be decomposed based on the system’s inherent flows
[compare EHRLENSPIEL 2009]

• Synthesis as integration of ideas, based on different sub-problems and views, such as
different Design for X aspects e.g. assembly, manufacturing etc. [compare e.g.
BOARDMAN & SAUSER 2008]

Within the design process, the problem solving process can be applied for detail design or
conceptual design, as well as any other occurring “problem” in design or entrepreneurial
activity. The assembly of subsystems, as well as the integration of ideas, can both be
considered as tasks of systems engineering (or systems architecting). The synthesis of single
design tasks and systems engineering are inseparable from one another both temporally and
logically. As a result, reactions from both areas have to be considered with their respective
counterpart, for which the method for the management of product architectures has to provide
appropriate means. The discussion of the state of the art in synthesis reflects this challenge
and discusses correspondingly critical methods.

5.5 Product architecture definition and synthesis 105

To structure the state of the art in engineering design synthesis, methods are differentiated,
according to EHRLENSPIEL, into conventional methods, creativity-supporting techniques
(intuitive procedures), and systematic approaches (discursive procedures), which include
methods for combining solutions [EHRLENSPIEL 2009, pp. 400ff., PAHL et al. 2007, pp. 77ff.].
To complete the picture for product architecture management, functional modeling and
automated approaches are added. Functional modeling is commonly described as a starting
point for design synthesis, which EHRLENSPIEL describes as “structuring the design task”
[EHRLENSPIEL 2009, pp. 390-400, compare PAHL et al. 2007, pp. 145ff.]. Functional models
aim for bridging the gap between a vaguely described requirements situation and the technical
solution to clarify the task. Automated procedures (“computational synthesis”) were
developed recently and are based on rules or grammars to synthesize product architectures
with unfortunately little generic achievements up to now.

5.5.1 Process of product architecture synthesis
The process of synthesis differs according to the chosen method and approach. Computational
synthesis varies significantly from manual procedures, due to the less time-consuming
solution generation of automated procedures, where solutions can be generated according to
rules very quickly. The challenge, therefore, is the evaluation of the different solutions’
properties as a basis for decision-making. Manual solution finding procedures, on the other
hand, require a guided process of continuous concretization with decision steps, to enable less
time-consuming processes. As a result, the manual process of solution finding results in a
limited number of feasible and elaborate solutions, while the outcome of automated
procedures shows a large number of solutions, greatly differing in feasibility, but aiming for
the depiction of an almost exhaustive solution space.

Furthermore, it is of importance to differentiate why problem solutions or design alternatives
are sought. The morphological chart [ZWICKY 1969], for example, aims at the purposeful and
comprehensive combination of solution principles to achieve functional and proper solutions
for the complete system [EHRLENSPIEL 2009, pp. 428-431]. Brainstorming, on the other hand,
is intended and suitable for problems that are precisely outlined, yet not too complex; this is
for finding not only technical solutions, but also for any sort of problem during the
development process [EHRLENSPIEL 2009, p. 406]. Accordingly, the need for a precise
description of how to apply the method differs, as does the required time and effort to conduct
method application. In the following sections, methods for synthesis are analyzed, whether
they are suitable for the definition of architectures or only for the identification of solutions
for single functional problems.

An overview on methods of synthesis can be found in classical engineering design and
business management books [PAHL et al. 2007, p. 127, PONN & LINDEMANN 2008,
EHRLENSPIEL 2009, ULRICH & EPPINGER 2003, pp. 100 ff.], as well as specialized synthesis
overviews from different authors [as provided by ANTONSSON & CAGAN 2001, CHAKRABARTI
2002, CAGAN et al. 2005].

The process of synthesis is described by ULRICH & EPPINGER in the following steps [ULRICH
& EPPINGER 2003, pp. 100ff.]:

106 5. Coping with product architecture

• Clarify problem (understand, decompose, focus on critical sub-problems)

• Search externally (lead users, experts, patents, literature, benchmarking)

• Search internally (individual, group)

• Explore systematically (classification tree, concept combination table)

• Reflect on solution and process (feedback)

MAHER identifies three steps for synthesis [MAHER 1990]:

• Decomposition

• Case-based reasoning

• Transformation

The process of synthesis, in the context of automated design synthesis, is described by CAGAN
et al. as [CAGAN et al. 2005]:

• Representation

• Generation

• Evaluation

• Guidance

TERPENNY & MATHEW focus on the required models for design synthesis and order the
process accordingly [TERPENNY & MATHEW 2004]:

• Functional model

• Solution model

• Component model

PAHL et al. identify six steps, necessary for design synthesis [PAHL et al. 2007, p. 127]:

• Confrontation

• Information

• Definition

• Creation

• Evaluation

• Decision

5.5 Product architecture definition and synthesis 107

TOMIYAMA & SCHOTBORGH point out a number of distinct circumstances, which have to be
taken into account regarding the special requirements of the synthesis of product
architectures. . Product architecting is a multidisciplinary activity performed by a team
composed of experts from various domains. The product architecture defines the boundaries
of mono-disciplinary activities, which in the following have to be coupled by systems
integration technology. The integration of disciplines represents not only the summing up
the elements of design; in contrast to the mere grouping of components, the overall
functionality of the product architecture is defined [TOMIYAMA & SCHOTBORGH 2007]. The
following sections discuss methods for design synthesis and compare those to the
requirements and circumstances of product architecture synthesis.

5.5.2 Functional modeling as a prerequisite
Functional modeling per se does not pose a method for design synthesis or the definition of
product architectures. Nevertheless, many authors recommend functional modeling as the
basis for solution finding in the early stages of design processes, especially in classical
approaches of engineering design research [e.g. EHRLENSPIEL 2009, pp. 390-400, LINDEMANN
2009, pp. 117ff., PONN & LINDEMANN 2008, pp. 53ff., PAHL et al. 2007, pp. 169ff., ULRICH &
EPPINGER 2003, pp. 101ff., STONE & WOOD 2000]. The successful application of functional
modeling was also verified by experiments [KURFMAN et al. 2001]. Later developments of
computational synthesis aim for a similar application of functional models, especially if the

Figure 5-12 Process of synthesis (left) derived from existing approaches

System
analysis Clarify problem

Decomposition

Generation Functional model

Confrontation

Solution search

Search externally

Solution model

Component
model

Evaluation

Information

Evaluation and
decision

Search internally

Definition

Explore
systematically

Case-based
reasoning Creation

Reflect on
solution/ process

Transformation

Decision

ULRICH & EPPINGER
2003, pp. 100 ff.

MAHER 1990 CAGAN et al. 2005 TERPENNY & MATHEW
2004

PAHL et al. 2007,
p. 127

References:

Representation

Evaluation

Guidance

Systematic
exploration of
solution space

108 5. Coping with product architecture

definition of product architectures is the focus. CAGAN et al., for example, define function as
well as form as necessary prerequisites for computational design synthesis, represented in the
form of graphs and rules or grammars [CAGAN et al. 2005, KURTOGLU & CAMPBELL 2006,
WOOD & GREER 2001, p. 220]. Different functional models evolved over the years, inheriting
semantics and product representations before the realizations of concepts or physical
representations of the products exist. Stemming from the understanding of design as a process
from function to form [CAGAN et al. 2005], most aim to support of creativity, for example the
relational functional models known of the TIPS72 methodology or elementary hierarchical
models [LINDEMANN 2009, pp. 117ff.].

STONE & WOOD sum up the achievements through functional modeling for design as follows
[STONE & WOOD 2000]:

• First of all, the functional modeling is inevitable for product architecture
development. Especially in the early phases, when important decisions are required
for product modularization and the assessment of possibilities across a wide product
portfolio, functional considerations are formative for the product architecture.

• The systematic function structure generation is supported by an agreed upon set of
functions and flows, eliminating the need for different models for different disciplines.
The model as such provides a unique representation and supports the later definition of
physical models.

• Based on this unique representation, the functional representation, if kept generic, can
serve as an archive and transmitter of design information. Not only can product
information be communicated more easily based on a common model, but the
information can also be stored sustainably throughout processes and different
development projects.

• For comparing products, both within the company’s portfolio as well as for the
benchmarking with competitors, functional models act as a valid basis for the
comparison of product functionality. The fulfillment of newly arising requirements
and needs can be mapped onto existing products of similar functionality. This is one of
the applications of a functional model acting as information archive.

• Functional modeling supports creativity in concept generation by aiding the
decomposition of the design task. Based on the formal abstract description, important
decisions can be made in the early phases of design.

• Being a high-level physical representation of the product, functional models help
formulating objective measures in terms of product metrics, robustness, or
benchmarks. These measures can be used for benchmarking and quality endeavors.

A number of existing functional models will be discussed in the following sections, giving an
overview of the different views provided by renowned authors of the field [compare FUCHS
2004, pp. 24-26 and ERDEN et al. 2008 for overviews]. Additionally, the models are

72 Theory of Inventive Problem Solving (TIPS), also referred to according to the Russian acronym TRIZ
[CAVALLUCCI et al. 2002]

5.5 Product architecture definition and synthesis 109

transferred into a generic modeling method based on the discussion in chapters 4.2 and 4.3.
As such, the link between the requirements model, the functional model and the models in
the following sections can be provided. The functional models considered in this overview
represent product-functions only, i.e. modeling languages depicting the functions of
processes, such as the Structured Analysis and Design Technique (SADT), or manufacturing
functions, as in the Integration Definition for Function Modeling (IDEF0) [FUCHS 2004, p.
195, KUSIAK 1999, pp. 2-7] are not discussed. Functional modeling is also a prerequisite for
different automated procedures [WOOD & GREER 2001, p. 220], which will be discussed in
chapter 5.5.7 about computational synthesis.

Hierarchical functional model

According to LINDEMANN, a hierarchical structuring of product functions is generally
possible, to limited extent even for flow-oriented, relational or user centered functional
considerations [LINDEMANN 2009, p. 119, compare PAHL et al. 2007, pp. 170ff.]. Functional
decomposition in hierarchical form is intended to provide insights for analysis and
understanding based on the system approach [ULRICH & EPPINGER 2003, pp. 101-103]. The
up- and downsides of hierarchical structuring during analysis, as discussed in chapter 5.4.2,
are of course valid for hierarchical functional decomposition.

DEUBZER & LINDEMANN provide an example of hierarchical functional decomposition, in
which the positive aspects, as well as negative aspects, of hierarchical structuring are shown.
In the given example, the functions of an automotive drivetrain are decomposed. Therefore,
two different viewpoints were chosen, that of technical (or system) functions and that of user
functions, i.e. functions actively used, chosen and experienced by the user [DEUBZER &
LINDEMANN 2009b]. The example pictorially shows the ambiguity of hierarchical
decomposition, as the different viewpoints can hardly be integrated or coupled in hierarchical
form, yet both show important views of the product architecture. The following figures show
both hierarchies more elaborately adapted from [DEUBZER & LINDEMANN 2009b]. To cope
with functional hierarchies in the chosen modeling approach, the identified hierarchies are
modeled in matrix-form as an example, using the MDM approach. Thereby, the distinct levels
of the hierarchy, as well as the branches, are modeled separately as a respective domain.

110 5. Coping with product architecture

In the above figure of a functional decomposition from the technical perspective, the
functions are classified according to their purpose. Other possibilities for hierarchical function
decomposition include an “is required for” decomposition or “is realized by” decoupling of
functions. EHRLENSPIEL describes these circumstances with the example of the evolution of a
functional model during the development process, where certain decisions, for example the
decision for a combustion engine and against an electric motor, cause the necessity of follow-
up functions, e.g. the provision of fuel, which can then be displayed hierarchically
[EHRLENSPIEL 2009, p. 396].

Figure 5-13 Hierarchical functional decomposition of an automotive drivetrain (technical view)

Providem

Store
energy

Store
electric
energy

Store
chemical
energy

Convert
energy

Chemical-
mechanical

Electrical-
mechanical

Use and
transmit
energy

Transfer
torque

Adjust
rotation
speed

5.5 Product architecture definition and synthesis 111

The positive effect of hierarchical decoupling is the quick overview to grasp a system, given
that a defined “paradigm” or classification for the hierarchy is existent and agreed upon.
Challenges remain nevertheless, especially if different paradigms coexist. Functional units or
modules are represented by branches, if the modeling paradigm is of the “is required for” type
[PONN & LINDEMANN 2008, p. 62]. The presented modeling in matrix representation is
intended to enable the interrelation of coexisting paradigms within the overall method.

The downsides can be easily retraced in the given example, as discussed in the section on
hierarchies as analysis principle in chapter 5.4.2. The following listing sums up the
shortcomings of hierarchical functional decomposition:

• The hierarchy can only depict one perspective of the system; the numerous complex
interdependencies have to be neglected, yet are important, as the following functional
models will show.

• Visualized groups, or branches of the hierarchy, depend largely on the chosen
paradigm of the hierarchy, and as such cannot represent the clusters existing in reality,
as are revealed through DSM-application, for example.

• To choose the “right” paradigm for hierarchical decomposition depends largely on
the situation and goals of analysis. As such, the choice represents the major challenge
of hierarchical analysis.

• The change of perspective or change of paradigm cannot be easily conducted, and
inevitably results in parallel models, which are difficult to interrelate or are not
interrelated at all.

Figure 5-14 Hierarchical functional decomposition of an automotive drivetrain (user view)

112 5. Coping with product architecture

Flow-oriented functional model

The flow-oriented functional model proposed by EHRLENSPIEL [EHRLENSPIEL 2009, pp. 390-
400] is well known in engineering design research, and allows for the analysis of systems by
consideration of information-, material- and energy-flows from a functional perspective [as
proposed in PAHL et al. 2007, p. 32]. Being formulated as neutral as possible to technical
solutions [LINDEMANN 2009, p. 120], the functional model provides support to design
synthesis based on the differentiation of a product’s functions [EHRLENSPIEL 2009, p. 401].

The above figure illustrates the semantics of the flow-oriented functional model. A function
describes the purposeful change of the input-state of a material-, signal- or energy-flow to an
output-state. A state represents the sum of the flow’s current properties at the respective
point. The operation describes the actual process responsible for the change of state. States
and operations are coupled with relations, which are divided into material-, energy- and
information-flows [EHRLENSPIEL 2009, pp. 390-400].

The major benefit of the presented model is the functional decomposition of a complex
product, based on the flows of material, energy and information. As a downside, products that
do not focus on flows of material, energy or information within their functional structure, or
do not contain functions of that sort at all, are hard to fully grasp using the given
methodology. In practice, it is other flows that are depicted. Those include the flow of force
and supporting forces between static parts for example, or the flow of air in pneumatic
systems. However the full potential of the method cannot be tapped in that way. Further
shortcomings, according to PONN & LINDEMANN, are the insufficient depiction of dynamic
changes over time and the limited number of available logical operators e.g. to visualize
decisions [PONN & LINDEMANN 2008, pp. 63-64].

In the following figure, a principle transformation of the flow-oriented functional model from
schematic visualization to matrix representation is conducted, as proposed by DEUBZER &
LINDEMANN, by establishing domains for each respective entity of the model (states and
operations in the given example) [DEUBZER & LINDEMANN 2008]. In step one, the
interdependencies between operations and states are deducted and represented in the
respective DMMs of the notation. Second, the relations between states are calculated through
domain mapping logics (case 3, compare with chapter 5.4.3). The same principle allows for
the calculation of the relations between operations in the third step [DEUBZER & LINDEMANN
2008].

Figure 5-15 Semantics of the flow-oriented functional model [according to EHRLENSPIEL 2009, p. 398, PONN &
LINDEMANN 2008, pp. 64-66]

5.5 Product architecture definition and synthesis 113

To complete the transformation of flow-oriented functional models, different relationship
types (energy, material, information) can be depicted in separate DMMs for a more thorough
analysis. An example of this kind of application was already cited from LINDEMANN et al.,
where different relationship types were viewed distinctly and prioritized for modularization
purposes [LINDEMANN et al. 2009, p. 185].

Relational functional model

The relational functional model, or relation-oriented functional model, offers a distinct
additional view, especially when compared with the functional models discussed in the
previous sections. While other models consider functions as positive, useful, or desired
system behavior (or the translation of requirements into product behavior), the relational
functional model introduces harmful or undesirable functions as an accompanying viewpoint
of the product [compare LINDEMANN 2009, p. 120], which are one of the causes of behavioral
complexity, as defined in chapter 3.1.3. The relational functional model is thus most
appropriate for the analysis of existing systems and their inherent functional elements and
relations [LINDEMANN 2009, p. 119], but, as such, can only contribute to the improvement of
existing systems, rather than support new product development, i.e. the development and
design of products from scratch.

In the given example, depicted to explain the semantics of the model, function B represents
the desired function of the system, for which function A is required; however, this causes the

Figure 5-16 Transformation of the flow-oriented functional model into matrix representation [DEUBZER &
LINDEMANN 2008]

Figure 5-17 Semantics of the relational functional model [compare with LINDEMANN 2009, p. 120]

114 5. Coping with product architecture

undesired function 1. To compensate for these shortcomings, function C was introduced to
prevent the negative effects of function 1 from arising.

The hierarchical functional model, as was discussed, requires a paradigm to be conducted
purposefully and concisely, while the flow-oriented functional model is based on the correct
depiction of the flows within the system. The establishment of the relational functional model,
on the other hand, follows a number of steps to achieve a thorough system representation. The
procedure proposes the main function (or one of the main functions) as a starting point,
followed by the respective closest useful and harmful functions.

The result of this procedure is the depiction of an existing system, showing its useful behavior
as well as inherent flaws or harmful effects and behavior. The resulting structure can then be
analyzed to identify conflicts to be solved (e.g. provide certain useful functions without
causing harmful effects) and support creativity by introducing suggestions based on checklists
to solve inherent conflicts [for details see PONN & LINDEMANN 2008, pp. 331 ff.]. An
example of a relational functional model is provided in the following figure, representing a
hand mixer system, and additionally introducing the transformation in matrix notation. The
relations of the DSM of useful functions represent “is required for” relations, while relations
of the type “causes” are marked “X” in the useful-harmful DMM and the DSM of harmful
functions. Relations of the type “introduced to prevent” are marked “O” in the matrix.

The most valuable benefit of the relational functional model is its view of negative functions,
providing a more thorough analysis of the system, in comparison to other functional models.
The application of the model enables the identification of flaws within the existing system,
pointing out potential for improvement and prioritization during development. As practical

Figure 5-18 Example of the relational functional model [LINDEMANN 2009, p. 120] and matrix notation

Mix batter Provide mech.
energy

Splatter
device

Move batter in
bowl

Convert el.
energy

Provide el.
energy

Heat
housing

Burn user Isolate
housing

Cause el.
shock

5.5 Product architecture definition and synthesis 115

application in industry has shown, the establishment of relational functional models supports
the interview process of knowledge carriers in a structured manner, leading to a more
complete picture than other methods with less structuring could provide. The interviewer is
enabled to ask the right questions and supported in structuring the results by the semantics at
hand.

As a downside, the relational functional model cannot be used as a substitute for other
functional models to link to the technical solution, which is more elaborate in the flow-
oriented functional model, for example, and is not easily to be provided. Therefore, it is
missing the relation to the system components, which are implicit in the harmful functions of
the relational functional model.

User-centered functional model

The user-centered functional model provides yet another viewpoint from a functional
perspective of the system. While the other functional models focus on the system itself and
the inherent functionality – useful or harmful – and behavior, the user-centered model depicts
the application of the product under different circumstances, according to the numerous
existing users along the product lifecycle [LINDEMANN 2009, pp. 118-119].

While the model cannot actively or systematically support the process of identifying relevant
stakeholders along the lifecycle, the product use by the complying stakeholder during the
respective lifecycle phase is depicted. The Unified Modeling Language provides the means to
model a use case, which in fact is only a small portion of the UML methodology [TERPENNY
& MATHEW 2004].

5.5.3 Conventional methods
The existence of conventional methods for design synthesis can be described above all from
the perspective of the engineering design of less complex products. For those, solutions can
be found “conventionally”, in a sense, as the main function or functions can be solved and
realized through already existing solutions, known as abduction [TOMIYAMA & SCHOTBORGH
2007] or TOMIYAMA et al. 2003]. EHRLENSPIEL accordingly describes conventional methods
as approaches where solutions are found from sources which provide existing solutions,
which in the following sections can be overtaken or adapted, based on the experience of the
designer [EHRLENSPIEL 2009, p. 404]. The term “solution”, instead of product, is used
intentionally at this point, since it is usually certain modules such as valves, motors or gears
that are chosen [LINDEMANN 2009, p. 138], rarely fully functioning and complex products.

While it is logical to first identify the obvious existing solutions to certain design problems, it
is just as obvious, considering the sources of conventional solutions, that the challenge of
systems architecting cannot be solved through the use of the conventional approach as the
combination of solutions, i.e. the coupling to an overall product architecture, is still unsolved
by these means.

116 5. Coping with product architecture

The above-stated shortcomings of conventional solution finding become even more obvious
when considering the possible sources of solutions, both company internal and external
[EHRLENSPIEL 2009, p. 404, ULRICH & EPPINGER 2003, pp. 104ff., ZANKER 1999, p. 130]:

• Existing solutions within the company (product portfolio, bills of material, experts)

• Existing solutions from suppliers (catalogues)

• Existing flaws and solutions from customers (lead users)

• Literature research (specialist journals, specialist books, research reports, databases)

• Solutions in patents (patent reviews)

• Solutions from competitors (catalogues, trade fairs, product benchmarks)

If, for example, a flow-oriented functional model as discussed in chapter 5.5.2 exists,
solutions for each function can be identified from sources cited above to contribute to a
solution space, which in theory provides a solution to the overall problem by combining the
individual solutions. However, the architecting of the product, i.e. the definition of the
coupling of elements, can only be achieved manually by detailing the combination of
solutions. A more comprehensive solution space from the architectural perspective, based on
the given solutions, can only be achieved by systematic variation of the functional model, i.e.
functional integration, separation etc. (for a comprehensive overview see e.g. [PONN &
LINDEMANN 2008, p. 300], compare also the principles of modularization as summed up by
[CHMARRA et al. 2008]).

As a conclusion based on the previous discussion, the conventional methods for solution
finding support the establishment of a solution space in terms of separate solutions for
individual problems, yet cannot sufficiently support the process of systems architecting
[TOMIYAMA & SCHOTBORGH 2007]. The following sections will discuss to what extent other
methods and approaches can contribute to the definition and variation of architectures.

5.5.4 Creativity-supporting techniques
Since the designer cannot rely on existing solutions available through conventional methods
in all cases of design, creativity is required for the definition of novel solutions during
problem solving cycles. To be creative during design, i.e. producing something new, or
relating known principles to novel problems, is, though highly relevant, a mostly intuitive
process. Creativity-supporting techniques aim for the provision of an environment that
supports this creative process [EHRLENSPIEL 2009, pp. 404ff.]. While EHRLENSPIEL states that
between 50 and 100 different techniques exist [EHRLENSPIEL 2009, p. 406] and the absolute
number is likely to be higher, the following sections will discuss only the characteristic
properties of creativity-supporting techniques in general, of which e.g. association or
synectics are popular representatives [ULRICH & EPPINGER 2003, pp. 109f.]. As a result, the
adequacy of creativity-supporting techniques for product architecture synthesis is evaluated.

Certain requirements are necessary to be fulfilled in order to access the design problem using
creativity-supporting techniques. First, the clarification of the problem is a necessary
prerequisite for the application of creativity-supporting techniques, i.e. define and question

5.5 Product architecture definition and synthesis 117

requirements, decompose the problem into smaller sub-problems, and focusing on the most
critical aspects of a problem, or the most promising aspects from a customer perspective. It is
absolutely necessary to meet the core of the problem to achieve solutions that generally suit
the problem. Goals and requirements should be quantified, if possible [ULRICH & EPPINGER
2003, pp. 100-104].

Equally important is the visualization of solutions (developed e.g. in brainstorming sessions
or the gallery method). Other participants can generate ideas based on the solutions proposed
by others. The organized transfer of solutions to other participants for further idea generation
is systematized by other methods as well, such as the method 6-3-5 [EHRLENSPIEL 2009, pp.
406-407].

In general, the number of solutions is initially more relevant than the quality, the evaluation
and selection. The decision-making process follows after the creativity sessions. The same is
valid for the grounding of solutions, which appear too distant from the concrete problem.
Nevertheless, solutions off the beaten track are desirable [EHRLENSPIEL 2009, pp. 404ff].

Criticism causes restraints for further solution generation among practitioners, and is thus
undesired in group sessions of any kind. Association and analogy is not only welcome, but
even supported by certain methods (e.g. method 6-3-5) or focused on in certain fields, such as
nature (e.g. in bionics). Also supported is the use of unrelated stimuli to encourage new ideas
based on photographs or objects more or less related to the task [EHRLENSPIEL 2009, pp.
404ff., ULRICH & EPPINGER 2003, pp. 109-110]. From a psychological point of view, the
change of perspective, supported e.g. by certain procedures and models, is important, since
new solutions are mostly generated on the basis of existing solutions from other fields of
applications [KNOBLICH 1997, p. 214-215]. Even systematic analogies are proposed by some
authors, for example through automated means [e.g. QIAN & GERO 1996, applying Function-
Behavior-Structure (FBS) for system comparison and analogy].

The systematized problem clarification through functional modeling was discussed in chapter
5.5.2. Special mention should be made in the context of creativity-supporting techniques to
the relational functional model, as the basis for the TIPS methodology. The formulation of the
functional model, including harmful functions, provides possibilities for systematically
expressing conflicts in existing solutions [PONN & LINDEMANN 2008, pp. 86-88]. To solve
these expressed oppositions, the TIPS methodology provides checklists containing principles
to systematically access the problems [PONN & LINDEMANN 2008, pp. 331ff.]. The overall
methodology of TIPS contains further means; compare e.g. the works of CAVALLUCCI et al.
[CAVALLUCCI et al. 2002].

In the context of product architectures, creativity-supporting techniques as discussed promise
only limited success. Precise problem formulations and the problem decomposition are
required for the application of the methods; complex architecture issues as discussed cannot
comprehensively be tackled. Creativity-supporting techniques are preferably used for (detail)
design problems, rather than composing and managing product architectures. Nevertheless,
the application can contribute to definable problems in the overall context of product
architectures, yet cannot substantially support the framework. The following sections discuss
methods more suitable and systematic methods for an overall approach.

118 5. Coping with product architecture

5.5.5 Systematic approaches to creative problem solving
Based on the discussion of creativity-supporting techniques, the shortcomings of unsystematic
approaches became apparent. Systematic approaches strive for a more rational and methodical
application of design knowledge. The foundation of this application is the existence of rules
to establish a system and existing building blocks to be combined by the rules [TOMIYAMA &
SCHOTBORGH 2007]. These building blocks can consist of one of the following:

• Components (collected as discussed in the section “Conventional methods”)

• Working principles (compare e.g. bond-graphs as in [THOMA 1975])

• Functions and systematic functional variation (compare chapter 5.5.2 and e.g. [PONN
& LINDEMANN 2008, p. 300])

• Attributes (functional requirements and design parameters [SUH 1990])

The foundation of systematic approaches is the modeling of the above-mentioned building
blocks and the provided stimuli of the designer’s creativity. Existing solutions can be
analyzed and improved, based on these representations [TOMIYAMA & SCHOTBORGH 2007].

The advantages of systematic approaches, which intend to compensate for the shortcomings
of conventional and creativity-supporting techniques, are not solely based on the
representation. ULRICH & EPPINGER sum up further reasons for systematic approaches. The
listing includes downsides that can potentially occur when synthesizing unsystematically
[ULRICH & EPPINGER 2003, p. 99]:

• Conventional methods advance the consideration of only few obvious solutions, but
fail to systematically support a more comprehensive and persistent identification of
the solution space.

• Careful analysis of solutions from competitors and other industry branches
seldom takes place within the application of conventional or creativity-supporting
techniques. Systematic procedures support this behavior.

• Systematic procedures foster the involvement of interdisciplinary teams.

• Integration of promising partial solutions into a fully functional architecture is not
supported by the conventional methods for solution finding and thus requires
systematic support.

• Since systematic procedures offer a framework for solution finding, entire categories
of solutions can be systematically explored, while otherwise individual categories
could potentially not be considered due to less obvious suitability.

For a comprehensive overview of systematic approaches in design synthesis, EHRLENSPIEL
comprehensively identifies five approaches: structuring schemes; design catalogues;
checklists of physical effects; structuring schemes for technical contradictions; and checklists
in general [EHRLENSPIEL 2009, pp. 409ff.].

Structuring schemes aim for the structuring of partial solutions of the solution space
generated through the application of conventional methods or creativity-supporting
techniques. Structuring schemes include one-dimensional structuring schemes, such as the

5.5 Product architecture definition and synthesis 119

morphological chart [EHRLENSPIEL 2009, p. 410, RITCHEY 1998, ZWICKY 1969] or the
classification tree [ULRICH & EPPINGER 2003, p. 112].

While the classification tree represents a structuring of general solutions, such as the physical
effects for a single function “Store or accept energy”, as depicted above, the morphological
chart represents a visualization of solutions for partial functions of the system and can also be
represented as a concept combination table [ULRICH & EPPINGER 2003, pp. 114ff.].

The approach of the concept combination table, as well as the morphological chart, intends to
combine partial solutions to comprehensive product concepts based on the structured
depiction of the solutions (for a procedure to cope with structuring schemes see [EHRLENSPIEL
2009, pp. 428-432]). Due to the systematic composition, the application of morphological
charts is accessible to automated approaches, resulting in a support of solution finding
[RITCHEY 2006, ÖLVANDER et al. 2009].

Design catalogues [e.g. ROTH 2001] represent structured collections of solutions, which are
in many cases structured as multi-dimensional structuring schemes. The goals of design
catalogues are summed up by EHRLENSPIEL as:

• Quick, function-oriented access to solutions

Figure 5-19 Example of the classification tree [ULRICH & EPPINGER 2003, p. 112]

Figure 5-20 Example of a concept combination table for a nail gun [ULRICH & EPPINGER 2003, p. 114]

Store or
accept
energy

Chemical

Fuel-air
systems

Explosive
systems

Pneumatic Hydraulic Electrical

Wall outlet Battery Fuel cell

Nuclear

120 5. Coping with product architecture

• Provision of a possibly complete solution space

• Identification of suitable solutions based on attributes and properties

• Support of automated procedures

Solutions are accessible through the functional characteristics of solutions and their
properties, attributes and tolerances, which are systematically structured in the design
catalogue [EHRLENSPIEL 2009, pp. 415-416].

Checklists of physical effects are structured similar to design catalogues, though they
represent more generic solutions. As the main purpose, physical effects intend to support the
creativity of designers and the finding of innovative solutions (comprehensive overviews on
the composition and application of checklists for physical effects can be found in
[EHRLENSPIEL 2009, pp. 417-426, PONN & LINDEMANN 2008, pp. 81-85]). Comprehensive
and structured physical effects are presented by PONN & LINDEMANN [PONN & LINDEMANN
2008, pp. 311ff.].

Based on the relational functional model (chapter 5.5.2), structuring schemes for technical
contradictions offer solutions for problems, which appear to be unsolvable at first glance.
The procedure includes the steps of formulation of the technical problem, the problem
abstraction, which results in a functional description based on standardized formulations, a
search for stimuli based on the pairings of functions and finally a solution finding based on
stimuli from the matrix of contradictions [PONN & LINDEMANN 2008, p. 87 and 331ff.
compare TOMIYAMA & SCHOTBORGH 2007].

Checklists are intended to stimulate creativity, similar to physical effect lists, and can be
applied during the complete problem solving cycle, depending on the information included in
the checklists. If comprehensive checklists are available, the risk of neglecting solutions and
possibilities can be minimized [EHRLENSPIEL 2009, p. 427]. Checklists are best established to
be product- and company-specific and formulated to be objective, complete and
comprehensible [EHRLENSPIEL 2009, p. 428]. A number of comprehensive checklists for
general application during design are provided by PONN & LINDEMANN, some of which have
been already referred to in the previous sections [PONN & LINDEMANN 2008, pp. 291ff.].

As a concluding remark, systematic approaches for design synthesis provide procedural
guidelines as well as models, and improve design synthesis in terms of the reuse of technical
solutions and stimuli for creativity. The advantages are those of a systematic procedure in
general, i.e. to be quicker, more comprehensive and thorough, and enabling a focus on the
most relevant aspects of the respective task.

Further approaches, such as axiomatic design or the consistency matrix, were only included as
side notes and are discussed more exhaustively in the following section. For the purpose of
product architecture management, the discussed approaches can be differentiated into
methods to support creativity and methods for the systematic structuring of the solution space.
Both types can overlap for certain methods, as is the case for the morphological chart or
design catalogues.

For the management of product architectures, the discussion of the two types of approaches
results in acknowledging that the questioning and enrichment of the solution space of

5.5 Product architecture definition and synthesis 121

individual solutions is as important as the composition of the architecture. Both tasks require
systematic support and are strongly interwoven. Therefore, they need to benefit from the
knowledge and results of their respective counterpart.

For design synthesis, components, working principles, functions, and attributes emerged as
the main domains to cope with and achieve innovative solutions, given that requirements are
clarified beforehand. To identify which method of application in which domain is most likely
to support incremental or breakthrough innovations appears to be unanswerable for generic
use. The synthesis on component- or physical-effect level can cause changes to the
architecture, resulting in breakthrough innovations, as well as the synthesis on the
architectural level, based on known principles and components. This underlines the
importance of keeping track of the interrelation of the whole and its parts, i.e. the architecture
as well as the subordinate elements.

5.5.6 Matrix-based synthesis methods
Methods using matrices are very common for system analysis, the Design Structure Matrix
(DSM) above all (compare chapter 5.4.3). Related methods applying matrices similarly, such
as QFD, have proven to be powerful measures when analyzing existing systems as well
(compare e.g. chapter 5.6.3). For design synthesis, on the other hand, the mentioned methods
and approaches were only able to make a small contribution, especially when dealing with
new, not yet existing, solutions, rather than redesign. They appear to be more of a foundation
or starting point for synthesis, rather than measures to support the process or outcome of
synthesis.

The latest approaches, such as the Multiple-Domain Matrix (MDM), allow for the integration
of different domains. That in mind, the MDM can depict functional models and their
relations, as well as their connectivity to different physical principles, desired states of a
product, attributes, components, requirements etc. Based on the modeling of the
aforementioned entities, the assumption is made that the repeatedly iterative process of
analysis and synthesis can be supported by the existing matrix-based modeling approaches.

Given that a systematic approach is required, and the interrelations between the single
entities, as well as the overall architecture, are highly relevant for synthesis, the understanding
of the linkage between the whole and its parts can be fostered through the application of
matrix-based modeling and analysis approaches.

Researchers are aware of the gap between design synthesis and the analysis with matrix-based
modeling approaches. Several authors reduce the existing limitations by expanding the
method. The following sections discuss approaches to designs synthesis, based on the DSM-
and MDM approach and other matrix-based approaches in general. Some of those expansions
were already discussed in chapter 5.4.3, such as the ΔDSM and ΣDSM.

DE WECK et al. introduce the ΔDSM to model and analyze the difference between the actual
state and the novel design state on a parts-level. This approach depends on a product as a
starting point, specified changes to the product and a physical representation of the novel
product, at least based on change propagation during the conceptual state [DE WECK 2007].

122 5. Coping with product architecture

GORBEA et al. add the functional perspective in the spirit of the MDM approach and add up
numerous existing solutions in a ΣDSM, similar to the variant management approach
introduced by BRAUN & DEUBZER [GORBEA et al. 2008, BRAUN & DEUBZER 2007]. Given
both the functional and component perspectives, a widening of the solution space is achieved
within the range of existing solutions through adding up the existing products.

Both approaches allow for the analysis of a theoretical solution space based on existing
solutions. At the same time, the introduction of novel solutions or the identification of
improvement by the introduction of new technologies is not well supported, due to the close
relation to existing solutions.

WYATT et al. introduce an approach of automated synthesis based on DSM and DMM
application. Typically for automated synthesis, a large number of solutions are generated, in
the given example airplane architectures, and existing DSM analysis methods are applied to
evaluate and compare the generated architectures. As a major novelty, WYATT et al. also use
matrices for the storage of information regarding how the architecture can be composed in
advance. The connection requirements are represented in a DMM, depicting the ports of
elements, i.e. what can be connected and how many times [compare KUSIAK 1999, p. 224].
The path requirements reflect the functions, which have to be fulfilled by the architecture
[WYATT et al. 2008]. The path “well to wheel” in automotive drivetrain development is a
typical example of a path requirement representing a function, as is described by DEUBZER &
LINDEMANN [DEUBZER & LINDEMANN 2009c]. Though based on existing components, the
presented approach allows, within these limitations, for the design of novel solutions.

In the same spirit, the consistency matrix depicts possible combinations of existing elements.
Though used in scenario management [LINDEMANN 2009, p. 79] as well as in requirements
management [STEINMEIER 1999, p. 127], applications for the synthesis and management of
product architectures are also known.

BRAUN & DEUBZER for example show a combination of the ΣDSM and the consistency matrix
for a new variant management approach. The adding up of matrices within the models, each
representing the consistency matrix of one variant of the product portfolio, composes the
ΣDSM. Within the ΣDSM, the introduced variants, as well as further possible variants based
on that information, can be identified through the application of a clustering algorithm. This
algorithm helps to identify each variant within the portfolio by pointing out completely
interconnected clusters [BRAUN & DEUBZER 2007].

5.5 Product architecture definition and synthesis 123

HELLENBRAND & LINDEMANN introduce a similar approach, applying the consistency matrix
and clustering algorithm as well, but for design synthesis. The consistency matrix is generated
through the transformation of a morphological chart of four functions and 24 partial solutions
into a consistency matrix. During that process, information is added regarding which partial
solutions can be combined and which cannot. As a result, the consistency matrix, similar to
the variant management approach previously discussed, shows a depiction of the
comprehensive solutions space, instead of a collection of discrete solutions, The clustering
algorithm helps in identifying the completely interconnected clusters of all four functions,
which represent possible solutions [HELLENBRAND & LINDEMANN 2008].

Figure 5-21 New variant management approach [BRAUN & DEUBZER 2007]

Domain-spanning cluster analysis
Variants spectrum in

multiple-domain matrix

Graph representation of variants spectrum

124 5. Coping with product architecture

Due to the extent of constrictions and strictly mathematical description, axiomatic design
theory (ADT) can be seen as an outstanding approach [SUH 1990, SUH 2001]. Though the
application for product design, especially new product design, is discussed critically [e.g.
WEBER 2005a], axiomatic design is an often cited and discussed approach. Its application
exceeds the field of product design, and is also used for organizational means [e.g. LENZ &
CHOCHRAN 2000].

Axiomatic design aims at the mathematical transformation of customer needs into functional
requirements (what has to be achieved), which are then translated into design parameters
(how to achieve it) and later into process variables for production. Constraints are introduced,
and neither the design parameters nor the process variables are meant to interfere with
them[SUH 1998]. Though a precise mapping of the mentioned entities for design synthesis
was underlined in the previous sections, as was the potential of matrix- or graph-based
modeling techniques, axiomatic design turns out to be too strict in terms of the mathematical
framework, the proposed procedure, and included theorems for application.

The core of axiomatic design is the mapping between functional requirements and design
parameters, i.e. the coupling of the functional and physical space. As the following figure
depicts, the multiplication of the design matrix and the vector of design parameters result in
the vector of functional requirements. An inversion of the equation represents the process of
design, from requirements to design parameters. The design matrix is required to be square,
reflecting the most important axiom of independence. Each functional requirement is
represented by a corresponding design parameter. As such, the theory requires unambiguous
hierarchies in both the functional and physical spaces. Additionally, these hierarchies have to
correspond precisely [SUH 1998, WEBER 2005a].

In practice, the applicability of the axiomatic design theory is only given in cases where these
hierarchies and the theorem of independence can be fully satisfied. As was discussed earlier,

Figure 5-22 Morphological chart with one combined solution highlighted and depicted in matrix notation (MDM
consistency matrix) [compare HELLENBRAND & LINDEMANN 2008]

DP1

DP2

DP3

DP4

DP5

FR1

FR2

FR3

FR4

FR5

a11 X X 0 0

0 a22 0 0 0

0 0 a33 X X

0 0 0 a44 0

0 0 0 0 a55

DP1

DP2 DP3

DP4

DP5

FR top

M2
M4

M5

s

c

Design
Matrix

DM

5.5 Product architecture definition and synthesis 125

this is rarely the case for products. In fact, the complex interrelations between requirements,
functions and physical components almost never represent one to one mappings.

Furthermore, the product needs to be decomposable into hierarchies, which follow the “is part
of” type (summation, marked “s” in the graph to the right). The design parameters of level
three, in the given example DP4 and DP5, together form the design parameter DP3, which
itself does not require any further consideration, so that in the resulting architecture the
modules M4 and M5 are considered to fulfill module M3 in the control sequence (marked “c”
in the graph). Consequently, the superordinate functional requirement is fulfilled by the sum
of the subordinate functional requirements, according to the independence axiom [SUH 1998].

While it is worth striving for the fulfillment of the independence theorem, it cannot be
satisfied in many cases, reducing the benefit of the theory for highly complex products, which
are characterized by the numerous and various interdependencies between entities.

As a last critical remark, the system entities must be known to apply the theory. The
application during the early phases of design, when not all entities and relations are known, is
impossible, thus narrowing the suitability for synthesis in early phases of design [WEBER
2005a].

Some authors, aware of the potential and shortcomings of axiomatic design, couple its
application with other methods for product redesign. GUENOV & BARKER propose an
approach for the redesign of products using axiomatic design theory in combination with
DSM, supporting the iterative decomposition-integration process during redesign. The
different levels of detail are still unsolved in this approach [GUENOV & BARKER 2005].
Similarly, MANN outlines axiomatic design potential analysis capabilities, yet compares and
couples the theory with the TRIZ approach for design synthesis. In the use case example, a
mixer tab system is considered as well as redesigning problem [MANN 2002].

For synthesis in conceptual design, KUSIAK promotes a matrix-based approach similar to
that of axiomatic design [KUSIAK 1999, pp. 223ff]. He proposes the mapping of the

Figure 5-23 Relation of functional space to physical space and resulting modularized architecture, according to
the axiomatic design theory [SUH 1998]

DP1

DP2

DP3

DP4

DP5

FR1

FR2

FR3

FR4

FR5

a11 X X 0 0

0 a22 0 0 0

0 0 a33 X X

0 0 0 a44 0

0 0 0 0 a55

DP1

DP2 DP3

DP4

DP5

FR top

M2
M4

M5

s

c

Design
Matrix

DM

126 5. Coping with product architecture

decomposed requirements to functions as a first step [KUSIAK 1999, pp. 206-219], followed
by the assignment of components to fulfill the functions.

Components, in KUSIAK’s approach, are indecomposable entities of the product and interact
through connectors, which connect the components’ ports, i.e. the in- and output of
components. KUSIAK further defines models as a set of connected components, representing
the idea of modules in other approaches [KUSIAK 1999, p. 224].

Components are further related to functions, in the sense of flow-oriented operators as in
PAHL et al., and characterized by attributes and behavior. Attributes represent constants, state
variables, dependent variables, input and output variables, conditional expressions, and
algebraic equations, which all describe the components. Dynamic behavior is described by the
generally valid functions "change", "vary", and "channel" [compare PAHL et al. 2007, p. 32],
expressible by mathematical means [KUSIAK 1999, pp. 223-227].

In contrast to axiomatic design, the approach depicted above allows for a less restrictive
modeling and synthesis, due to the lack of theorems such as the independence theorem. As a
result, complex products can be modeled, reflecting the ambiguous relationships between
functions and components. However, the approach is still largely based on existing solutions,
i.e. building blocks in the component domain. In contrast to axiomatic design, the approach
presented is more applicable for the early phases in design.

Concluding the chapter on matrix-based methods for design synthesis, a few statements can
be presented for the evaluation of the methods presented. First, the approaches are based on
systematic procedures, and are thus different from conventional and creativity-supporting
techniques (chapters 5.5.3 and 5.5.4); this is comparable with to systematic approaches
discussed in chapter 5.5.5. The advantages of systematic procedures thus apply here as well.

Furthermore, matrix-based approaches impressively pointed out the relevance of – and
suitability for – the iterative character of the processes of analysis and synthesis. The entities
of the architecture considered include requirements and functions as basis above all, as well
as components and constraints relevant for different domains.

Considering the scope of the approaches, it turns out that the suitability for product
architecture synthesis and management is strongly underlined by the examples and

Figure 5-24 Synthesis in conceptual design based on the decomposition of requirements and functions
[according to KUSIAK 1999, pp. 201ff.]

5.5 Product architecture definition and synthesis 127

procedures. The product architecture is in all cases within the focus of considerations, i.e. the
combination of existing partial solutions and effects.

Based on that, the applications consider redesign problems more often than new product
design, which can be considered the common situation in industry. Depending on the level of
detail, even the definition of partial solutions can be triggered if building blocks are missing.

5.5.7 Computational synthesis and support
Computational synthesis has become a widespread field in recent years. Many publications
are available, striving for automatism and support, e.g. by systematically showing to the
designer new solutions and possibilities, mostly based on known components or working
principles. The synthesis supported by automated means discussed in the following section is
that of system composition, rather than detail design, for which computer-aided support
exists, such as simulation and modeling applications [e.g. KORNMEIER & RUDOLPH 2006].73

Computational synthesis evolved with expert systems in the 1950s, designing e.g. electric
motors or generators [CAGAN et al. 2005]. Later on, computational synthesis was applied to
combine design parameters and evaluate the outcome, e.g. in CAD systems [see e.g. FIGEL
1988]. The optimization of static structures evolved in the following years (see examples
given by different authors in [ADELI 1994]), while the application of genetic algorithms was
carried out for production and transportation means, the optimization of scheduling and
sequencing problems, or layout problems [CHENG 1997, pp. 133ff.]. Recently, and more
relevant for the definition of product architectures, genetic algorithms were applied to depict
the solution space and optimize outcomes and single candidates thereof [CHENG 1997, pp. 16
ff.], or support the development and production of variant-rich products [e.g. SHEA et al.
2010].

From the perspective of users in industry, computational synthesis was considered to be of
little benefit until 2002, while activities in research suggested a rapid development of the field
[WOOD & GREER 2001, p. 220]. More recent reviews point out practical applications in
engineering, which are yet strongly specified but still cannot be generalized for the
application of unqualified users, i.e. users who were not involved in developing the method
and are not knowledgeable about the details and difficulties of the algorithm. As a result,
users to present day are primarily researchers [CAGAN et al. 2005].

CAGAN et al. established a generic process for computational design synthesis, as depicted in
the following figure [CAGAN et al. 2005, compare TOMIYAMA & SCHOTBORGH 2007 and
HELMS & SHEA 2010]. The steps of solution generation, evaluation, and guidance therein
describe the iterative design process. As a prerequisite, the problem description, objectives,
and constraints – in short the requirements – are to be formalized and a suitable system
representation generated.

73 Recent overviews on design synthesis with many state-of-the-art contributions are provided by CHAKRABARTI
and, with even closer focus on automated measures, ANTONSSON & CAGAN. For a brief overview see CAGAN et
al. [CHAKRABARTI 2002, ANTONSSON & CAGAN 2001, CAGAN et al. 2005].

128 5. Coping with product architecture

The following sections discuss the steps “representation” and “generation” of the generic
procedure to structure the state of the art. Thereby, different types of computational synthesis,
as well as certain approaches, are considered in detail. The discussion targets the entities of
the product architecture considered in the approaches, as well as the models used, purpose and
outcome. The focus in general is placed on the approaches for product architecture synthesis,
rather than on methods for the optimization of product geometry or energetic behavior. The
step “evaluation” is extensively discussed in chapter 5.6, while the step “guidance”, which
represents the verification of the computational synthesis system and the improvement of the
method by means of e.g. machine learning and artificial intelligence [CAGAN et al. 2005], is
not closer considered, due to its uniqueness in computational synthesis.

Representation

The representation includes not only the modeling of the entities available for solution
generation, but also the rules by which the product architectures are generated [CAGAN et al.
2005]. The models and related entities are particularly relevant for the discussion in the
context of this work. The rules for architecture generation are applicable to the
interdependencies of the entities discussed.

Representation and generation are closely interrelated, as the level of detail and focus of the
synthesis are defined by the representation, and required represented entities are defined by
the generation [CAGAN et al. 2005].

Functional structures are fundamental for the system representation for computational design
synthesis [CAGAN et al. 2005], extensively discussed in chapter 5.5.2. Due to their importance
for computational synthesis especially, the function-behavior-structure system (FBS-system)
and variations thereof are considered in greater detail in the following sections [e.g. GERO
1990, GERO & KANNENGIESSER 2004]. To give an overview, WOOD & GREER provide a
classification of function-based approaches, which are all founded on functional
considerations, differentiating between the synthesis of dynamic systems, agent-based
approaches and catalogue design methods [WOOD & GREER 2001, p. 181].

Figure 5-25 Process framework for computational design synthesis [CAGAN et al. 2005]

5.5 Product architecture definition and synthesis 129

For the synthesis of dynamic systems, both bond-graphs and impedance methods strongly
rely on the consideration of power transformation and thus form – from the perception of
function – a subset of the functional perception proposed by PAHL et al. [CAGAN et al. 2005,
PAHL et al. 2007, pp. 169ff.]. The bond-graph formalism consists of a set of elements with
single or multiple ports, each of them providing a power-flow with certain parameters, all
together representing electric circuits, mechanical systems, hydrodynamic, and thermal
systems [CAGAN et al. 2005, DAMIĆ & MONTGOMERY 2003, pp. 24-25]. The following figure
shows the set of elements and bond-graph (port- and internal) variables.

Domain Effort Flow Momentum Displacement
Mechanical
Translation

Force Velocity Momentum Displacement

Mechanical
Rotation

Torque Angular Velocity Angular
Momentum

Angle

Electrical Voltage Current Flux Linkage Charge
Hydraulic Pressure Volume Flow Rate Pressure

Momentum
Volume

Thermal Temperature Heat Flow -- Heat Energy

As introduced, the function-behavior-structure system (FBS-system) [see UMEDA et al.
1990, compare GERO 1990, UMEDA & TOMIYAMA 1995, JIAO & TSENG 1999] is applied as
part of the representation through many methods in computational synthesis. Between the
functional level and the structural level within the system, i.e. the physical or component
level, the behavior-level is introduced, which corresponds with the working model of PONN &
LINDEMANN or the level of working interrelationships of PAHL et al. [PONN & LINDEMANN
2008, p. 24, PAHL et al. 2007, pp. 38-41]. In the common understanding of FBS-systems,
function describes the purpose of the artifact or system, while the behavior depicts the way
that the artifact or system achieves its functions. Structure inherits the artifacts of the system
and their interrelations [WANG et al. 2007].

Figure 5-26 Function-based synthesis approaches – overview [WOOD & GREER 2001, p. 181]

Table 5-3: Bond-graph variables – overview [DAMIĆ & MONTGOMERY 2003, pp. 7-8]

130 5. Coping with product architecture

GERO shows that the activities in design (formulation, synthesis, analysis, evaluation,
reformulation, design description) can be depicted with the FBS-model. The above figure
gives an example depiction of the process of synthesis, in which requirements (R) are
transformed into function (F), function into expected behavior (Be), and expected behavior
into structure (S). The expected behavior is compared with the actual behavior (Bs) derived
from the defined structure, until the design description (D) is reached, based on satisfying
results of the comparison. Only “occasionally” can functions be transferred directly into a
structure. This is the case for catalogue design problems, for which the solutions already exist
[GERO 1990].

The following development of the FBS-system led in two directions. First, users added levels
to the FBS-model, such as different functional levels or the level of state [compare e.g.
CAMELO et al. 2007, HOISL et al. 2008, ZHA & LIU 2005], while the structure of the model
itself was revised [compare GERO & KANNENGIESSER 2004, WANG et al. 2007], separating the
expected artifact knowledge space from the interpreted and the working artifact knowledge
space for all levels. The former model, separating only two different behavioral spaces
(expected and actual or working level), was thus expanded to more thoroughly depict design
and design activities.

The following figure seeks to grasp the three different artifact knowledge spaces (expected,
interpreted, working), as well as the seven fundamental artifact knowledge elements (Fe, Fi,
Be, Bi, Bw, Se, and Sw). Functions are then deduced from requirements (R), which are based
on customer or developer motivation (M). As a result of design, a design description is
provided (D) [WANG et al. 2007].

An example of the synthesis procedure is composed of the following steps, based on the
visualized causal relationships: after requirements are derived from expressed needs or desires
as motivation for the design, expected functions and behavior are deduced. Synthesis may
provide an expected structure. Embodying the expected structure in the working space results
in working behavior and working functions of the system. Designers are then able to observe
the behavior and function of the system, resulting in interpreted function and behavior. These
are compared with the expected function and behavior, resulting in changes to requirements,
if needed. Otherwise, the design description can be derived from the structure in the working
space. The self-reflective arrows in the expected artifact knowledge space represent possible
decompositions of the respective artifact knowledge elements [WANG et al. 2007]. The steps

Figure 5-27 The activity of synthesis in the FBS-system [GERO 1990]

5.5 Product architecture definition and synthesis 131

of the procedure differ, depending on the respective activity and the author’s perception
[compare e.g. DORST & VERMAAS 2005].

Apart from the discussed revision of the model, authors add levels to the model to suit the
occurring challenges. For example, ZHA & LIU seek an expansion of the information
modeling of micro-electromechanical systems. The proposed levels of the model are therefore
effects, principles, states, and the environment besides the function-behavior-structure system
[ZHA & LIU 2005].

The behavior-state coupling represents the decomposition of functions into operation and
states, according to EHRLENSPIEL, as does the addition of effects and principles to realize
function, behavior, and states [EHRLENSPIEL 2009, pp. 390-400]. Structure, in that case,
equals form in the model. Though the representation of form is possible in abstract node-edge
(i.e. structure) representations, it is not the only possible representation, resulting from an
automated synthesis procedure [CAGAN et al. 2005].

ZHA & LIU understand components as essential artifacts of the product, which in hierarchical
form compose the product. Artifacts are represented in the model through the aggregation of

Figure 5-28 The activity of synthesis in differentiated spaces of the FBS-model [WANG et al. 2007]

Figure 5-29 Expanded FBS-model [ZHA & LIU 2005]

132 5. Coping with product architecture

function, form, and behavior. While function depicts what the artifact is supposed to do, form
stands for the design solution, i.e. geometry, spatial description, and its structure, as well as
on more detailed level the features (function and form) and attributes (specifications of
requirements). The behavior shows how the function is fulfilled. Each class of entities can be
decomposed into “part of” hierarchies, according to ZHA & LIU. The most important
relationships are the mapping of requirements and specifications, as well as constraints
applying to any of the mentioned entities, especially function and form [ZHA & LIU 2005].
KLEIN MAYER et al. support this understanding, defining the fulfillment of functions by
technology, realized through physical principles, each characterized by technical parameters
and their distribution for the respective effect [KLEIN MEYER et al. 2007].

CAMELO et al. seek a differentiation of functions for conceptual synthesis, separating
technical functions (action function) from user functions (purpose function) [CAMELO et al.
2007]. The differentiation thus poses a decomposition of functions as an abstract means.

HOISL et al. introduce a performance model as the linkage between the FBS-system and its
requirements, with the goal of mapping of the performance of generated solutions to the
requirements [HOISL et al. 2008].

Functional considerations, especially the concept of the FBS-system, inherit great potential
for different use cases in design, a few of which are mentioned here. In synthesis terms, not
only the design of a product [e.g. by analogy, see QIAN & GERO 1996], but also the definition
of product families, can be supported, e.g. by selecting technologies for product families
based on the functional representation of different systems [COATANEA et al. 2008]. The
analysis of systems can be supported based on the abstract representation, for assessing the
degree of novelty of solutions, for example [SARKAR & CHAKRABARTI 2007], or identifying
potentially occurring problems during the design of mechatronic systems, in which the
functionality of each discipline is usually analyzed separately and in discipline-specific
models [D’AMELIO & TOMIYAMA 2007]. Some authors aim for the integration of different
functional or port taxonomies based on the concept of FBS-systems as common ground [see
e.g. CAO et al. 2008 or OOKUBO et al. 2007].

Figure 5-30 Expanded FBS-model [CAMELO et al. 2007]

5.5 Product architecture definition and synthesis 133

While the representation of functions and the FBS-system provides the basis for synthesis, the
representation of form is considered to visualize the outcome of synthesis. As a result of
synthesis, depending on the computational synthesis approach, different representations can
be considered, ranging from geometrical representations to graph-based node-edge
representations of the system structure [CAGAN et al. 2005, compare HELMS & SHEA 2010].

Depending on the applied method of synthesis, the following representations come into
question additionally: vector-based optimization, graph structures, and shape and graph
grammars [CAGAN et al. 2005].

Generation

The extensive discussion of representation methods for synthesis pointed out the importance
of representation in the context. Nevertheless, the methods and approaches for synthesis are
large in both number and diversity. While the overview by WOOD & GREER provides a
reasonable classification of methods [WOOD & GREER 2001, p. 181], TOMIYAMA &
SCHOTBORGH point out yet another classification [TOMIYAMA & SCHOTBORGH 2007]. To
provide an overview, the following sections discuss different principles of solution finding, as
described by CAGAN et al., i.e. optimization, search trees, and agents [CAGAN et al. 2005],
while expert systems and digital solution libraries are added, representing knowledge
databases rather than synthesis approaches. Finally, grammar-based approaches are discussed
as a powerful means of application of the methods outlined above.

Database Generative mechanisms
Random selection Backward reasoning
Database lookup Abduction
Database modification rules Grammar rules
Case-based reasoning Computational models
Parametric modification Constraint solving
Generation and testing C-K theory’s operations

Optimization is a frequent approach to generating novel solutions. In most cases, they seek
the optimum solution to a given problem, based on a specified search direction. In contrast,
direct search methods explore the solution space, comparing solutions generated based on
randomness and selecting the next appropriate one. The use of genetic algorithms is very
frequent in the latter case, to enable random explorations of the solutions space in an
exhaustive fashion [CAGAN et al. 2005, compare also the concept of modification-based
design as in TOMIYAMA & SCHOTBORGH 2007].

Search trees picture design as a sequence of decisions [compare BARTON & LOVE 2000], thus
defining solutions based on a chain of decisions along the search tree, while the complete
search tree, in theory, depicts all possible solutions. The potential of the search tree unfolds
when navigating through making decisions and evaluating the state of the design. The
downside, however is that, in contrast to optimization methods, one cannot navigate and
compare horizontally to neighboring solutions, but is required to navigate back up in the tree

Table 5-4: Synthesis methods – overview [as in TOMIYAMA & SCHOTBORGH 2007]

134 5. Coping with product architecture

to reverse decisions if demanded by evaluation. After the return to a higher level within the
search tree, the detailing of the solution downwards is necessary [CAGAN et al. 2005].

Design agents, as a last principle of synthesis, reflect the ability of humans to make decisions,
which are substituted by the computational approach. A number of agents might be used to
represent different foci of design, while their collaboration can be considered deterministic,
random, or stochastic. The process is oriented on the probability of success, based on
previously identified designs [CAGAN et al. 2005].

Expert systems strive for the depiction of high level knowledge extracted from experts and
stored. Expert systems are mostly applied for the analysis of systems e.g. in medicine. Expert
systems are not solely a database of knowledge, but inherit algorithms for reasoning based on
the depicted knowledge [JACKSON 1999]. For the presented work, expert systems are not
considered more extensively, since the application to the area of engineering design is
uncommon and, as such, lacks information on reasonable models and procedures for product
architectures.

As in expert systems, digital solution libraries, as opposed to paper catalogues [see e.g.
ROTH 2001] seek for the identification of solutions in a known solution space. Highly relevant
as well as critical to both types is the process of solution finding aided by appropriate logical
semantic or automated mechanisms. The logical interdependencies between the entities of the
digital library are the foundation for the provision of mechanisms for solution finding. To
provide an example, the concept of a digital solution library is given in the following figure
[SANDER 2001, p. 98].

The concept of grammar-based approaches makes use of the linguistic understanding of
language by providing the available elements in a model and rules to combine those elements,
as well as appropriate sequences of the rules to achieve desired goals. Successful examples of
application are available in architecture, as well as in engineering. A differentiation is made
between graph-grammars, which are generating a graph representation of the structure, and
shape-grammars, modifying and depicting the actual form of the system [CAGAN 2001]. The

Figure 5-31 Structure of a digital solution library (example adapted from [SANDER 2001, p. 98]

5.5 Product architecture definition and synthesis 135

combination is possible, as well [STARLING & SHEA 2005]. The complexity of systems differs,
in average remaining low (truss structures, coffee makers) as the methods are lacking a
general applicability to different existing problems [CAGAN 2001].

Concluding the section on computational synthesis and support, insight was gained regarding
the underlying goals, models, procedures and capabilities of automated synthesis. The
dominating perception of functions as a backbone in particular, and the function-behavior-
structure models based on that perception, are frequently used for structure or architecture
synthesis. As such, important insights were gained about the required entities and procedures.
The measures on solution generation discussed provided insight about possibilities for
synthesizing architectures based on the provided entities and their model.

5.5.8 Conclusion
System integration as the act of product architecture synthesis requires the following tasks to
be conducted successfully [TOMIYAMA & SCHOTBORGH 2007]:

• Designing the product architecture

• Coordinating the mono-disciplinary design and engineering processes

• Integrating the mono-disciplinary design and engineering processes to a
comprehensive design at the end of the process

Mirroring the discussed methods against these tasks, not all emerge as feasible for the
synthesis of product architectures. Conventional methods, as well as creativity-supporting
techniques, are most suitable for mono-disciplinary design processes of subsystems and
components. Systematic approaches allow for both mono-disciplinary activities and
integrating the processes in terms of combining results of different disciplines. Matrix-based
approaches, as well as computational synthesis (as discussed here), mainly intend to design
the product architecture itself, based on the results of mono-disciplinary design results.

Though the numerous methods have shown potential, challenges still remain, one of which
being the still remaining gap between design synthesis and analysis. Matrix-based methods
and computational methods show the greatest potential for narrowing this gap, since

Figure 5-32 Method evaluation for product architecture synthesis

136 5. Coping with product architecture

evaluation means are an integral part of the approaches. As the overview has shown,
numerous methods exist that are supporting either the synthesis or the analysis. The
formalized exchange between analysis and synthesis methods, e.g. to enable the reduction of
solutions during synthesis, does exist for the evaluation of solutions within the computational
approaches, but lacks generic grounds to interrelate the different existing methods. To present
day, the evaluation differs between methods and use cases.

As a second downside, existing methods are either supportive of system integration or the
design of novel partial solutions. For successful product architecture management, the two
areas need to be integrated more closely to point out needs for novel partial solutions, as well
as potential for novel integration approaches.

Finally, a sufficient level of abstraction is required when applying a new approach
successfully, allowing for the definition of novel solutions, as well as the enhancement of
existing products.

5.6 Concept and properties evaluation
The evaluation of concepts, properties of concepts, and products marks an important step in
the procedure of design in general [ULRICH & EPPINGER 2003, pp. 123-208, PAHL et al. 2007,
pp. 106-124], as well as computational synthesis [CAGAN et al. 2005]. Even more important,
the process of design can be understood not only as information processing, but also as a
sequence of decisions based on the given and generated information [BARTON & LOVE 2000,
SIMMONS 2008, p. 18].

The following paragraphs discuss the character of decision-making in design and the different
existing methods, which come into consideration for product architecture evaluation.
Concluding the chapter, the discussion turns to examples of properties, which frequently add
to the decision-making process during product architecture management, as well as
accordingly specialized methods.

5.6.1 Decision-making in product architecture management
Since the design process is essentially a chain of decisions [BARTON & LOVE 2000, SIMMONS
2008, p. 18], the importance of decision-making at the various steps of design and
development in general is obvious and has been researched [KRISHNAN & ULRICH 2001].
During design, essentially every concretization from level to level, e.g. requirements to
functions to working principles etc., is lead to by a decision.

A comprehensive overview of product development decisions, classified according to the four
categories of concept development, supply-chain design, product design, and production
ramp-up and launch is provided by KRISHNAN & ULRICH for the purpose of structuring
research in product development [KRISHNAN & ULRICH 2001].

If one considers product architecture management as the analysis and synthesis of product
architectures, as well as the maintenance of product architecture portfolios, the relevance of
decision-making is greatest for synthesis. As such, the focus of the following considerations is

5.6 Concept and properties evaluation 137

the ability to support product architecture synthesis. Of course, important decisions are made
during analysis (compare “selectivity” in chapter 5.4.2) and maintenance (compare “variant
management” in chapter 5.7.1), which will also be recognized.

In general, the results of systematic decision processes in product development can be
summed up as [ULRICH & EPPINGER 2003, pp. 128-129]:

• Customer-focused product

• Competitive design

• Better product-process coordination

• Reduced time to introduction

• Effective group decision-making

• Documentation of the decision process

In this section, the basic understanding of decision-making is developed to classify decisions
in general, and decisions in product architecture management in particular. Grounded on that
understanding, evaluation and decision-making methods in the following paragraphs can be
systematically compared and assessed, depending on their suitability for the means in product
architecture management.

A decision in design can be characterized according to SIMMONS [SIMMONS 2008, p. 19]:

• A decision occurs in a controllable situation with multiple alternatives.

• A decision during design separates the solution space, i.e. eliminates classes of
solutions.

• By making a decision, the decision maker expects to achieve benefit.

While SIMMONS differentiates decisions roughly into programmed decisions (routine, well-
defined and precisely modeled, not novel) and non-programmed decisions (non-routine,
weakly defined, imprecisely modeled, solved by general problem solving methods),
HATAMURA offers a differentiation by type and elaborateness of the decision. The resulting
types of decisions are “go or no-go”, “single selection”, or “structured decisions”, while the
elaborateness separates poor from rich routes to decisions [SIMMONS 2008, p. 19, HATAMURA
2006, pp. 2 and 7, compare also EHRLENSPIEL 2009, p. 504].

Generally, it is easy to classify a decision by the criteria given above. In particular, “rich” and
“poor” decisions deserve additional explanation. The “richness” refers to the degree of clarity
in the path along which decisions are to be taken. A poor route has few alternatives, and thus,
if a disturbance occurs in one node of the process, the route disintegrates, and the disturbance
propagates until the end. Rich decision routes, on the other hand, spread over the solution
space with many branches. Since start and end are connected by multiple paths, the rich
decision route is far less vulnerable to single disturbances [HATAMURA 2006, pp. 6-7].

On the downside, it is not desirable to have many paths, for the sake of quantity. Alternative
paths are only valuable if they are kept as “active paths”, i.e. detailing the possibilities, at least
virtually, of using alternate routes if required and building them based on the actual state of
knowledge. As a result, alternative routes are to be kept modest, i.e. not too spread out, but

138 5. Coping with product architecture

flexible and able to react to disturbances [HATAMURA 2006, pp. 6-7]. In brief, the decision-
maker is asked to know the alternatives, and keep an overview about the possibilities to react
quickly.

The process of decision-making in the sense of applying a systematic evaluation method can
be roughly sub-divided into the steps of identification of criteria, rating, ranking, and
selection. The following figure depicts two more elaborate procedure examples, of which
PAHL et al. discuss the concept evaluation of a complete system, while ULRICH & EPPINGER
consider the evaluation of separate sub-problems’ solutions and the combination to an overall
concept. Both approaches are valid, and, as the comparison shows, are similar to one another,
despite the different names occasionally used [PAHL et al. 2007, pp. 110ff., ULRICH &
EPPINGER 2003, pp. 134ff.]. Additionally, LINDEMANN proposes to add plausibility and
sensitivity analysis after the discussed steps, to reflect systematically on the evaluation results
[LINDEMANN 2009].

The process of decision-making can be described in the following steps, which combine the
approaches of PAHL et al. and ULRICH & EPPINGER [PAHL et al. 2007, pp. 110ff., ULRICH &
EPPINGER 2003, pp. 134ff.]:

• Preparing (identifying evaluation criteria)

• Weighting evaluation criteria

• Compiling parameters

• Assessing values

• Determining overall value (combining and improving)

• Estimating evaluation uncertainties

• Searching for weak spots

• Selecting

Figure 5-33 Types of decisions (left) and types of decision routes (right) [HATAMURA 2006, pp. 2 and 7]

go or no-go!

single selection!

structured decision!

poor decision route!

rich decision route!

5.6 Concept and properties evaluation 139

Based on the above discussion, it can be argued that decisions during the process of product
architecture synthesis are mostly non-programmed decisions, especially during the early
phases of design. Decisions are non-routine and the models imprecise and qualitative. The
interconnectivity between product architecture entities reflects in complex structured
decisions, as opposed to “go or no-go” decisions. If decisions do not result in follow-up
problems and thus follow-up decisions, cases of single-selection rarely occur. The routes to
decisions are preferably rich, yet hard to handle and maintain. A support of decision-making
has to regard the characteristics of decisions in product architecture management.

5.6.2 Methods for decision-making and evaluation
The following sections discuss methods that intend to support decision-making in design.
Conventional approaches serve as measures for single selection problems, and form the basis
for most of the elaborate measures discussed in detail. Qualitative reasoning and
benchmarking are thus considered to be examples for other approaches.

Since evaluation is an integral part of analysis and synthesis, methods already discussed in
this work contain aspects of evaluation and decision-making, to at least support the process of
decision-making by gathering, structuring, and gaining information. Especially analysis is
often related or even equated with evaluation, which is valid for the respective processes as
well [BERNARD 1999, p. 51]. SIMMONS, for example, considers the design structure matrix
and morphological chart as methods for decision-making for comprehensible reasons
[SIMMONS 2008, pp. 31-33]. Methods already discussed in previous chapters will be cross-
referenced in the following sections, but explanations will not be repeated. The method
overview is structured in methods for single decisions and causality methods,74 while
particular frameworks for evaluation, based on certain criteria such as quality are discussed in
chapter 5.6.3. In the beginning, an overview on qualitative reasoning is given, as an adequate
introduction for decision-making for product architecture problems.

Qualitative reasoning

Qualitative information, especially in the early phases of design, is often the main source for
decision-making. Qualitative reasoning provides the means for these situations, bridging the
gap between human perception in these stages and the possibilities of quantitative calculations
in later phases. Qualitative reasoning provides possibilities to cope with vague information,
typical for human decision-making processes. This tackles the problems of the resolution and
the narrowness problems [WERTHNER 1994, pp. 2-4].

The resolution problem describes difficulties that occur when an accurate model of the reality
is not available. Numerical solutions require precise data, which is often not available.

74 EHRLENSPIEL differentiates methods for evaluation into mental models, calculation and key figure
comparison, simulation, and testing. In this classification, the discussed methods represent the first and second
groups, while the latter two can be supportively used, yet require detailed virtual or physical prototypes
[EHRLENSPIEL 2009, p. 490].

140 5. Coping with product architecture

Methods and models have to incorporate vague and partial information. Since numerical
means only allow for a precise answer to precise questions, the narrowness problem describes
the need of alternatives and answers to classes of problems [WERTHNER 1994, p. 3].

The models of qualitative reasoning are mathematical, based on graph representations. Graph
representation enables easy interpretation, as well as providing the foundation for
calculations, i.e. mathematical accessibility [WERTHNER 1994, pp. 117ff.]. The logical
interrelations, an important part of qualitative reasoning, are mainly based on ontologies
[WERTHNER 1994, pp. 13ff.].

The entities of the models are similar to those considered in the analysis of systems in general
and the prepositions in this work, i.e. the representation of values, functional relationships,
representation of time, and the representation of structure [WERTHNER 1994, pp. 44-55]. For
the context of this work, the concern is less regarding the aspect of solution finding by the
means of artificial intelligence aimed at in qualitative reasoning, but rather the underlying
principles and logics. Qualitative reasoning represents the decision-making process in a
formalized way, serving as a foundation for decision-making and evaluation in the context of
product architecture management.

The tasks of qualitative reasoning include diagnosis and monitoring of devices and their
behavior, design and modeling of artifacts to deduce expected behavior, interpretation of
results, identification of structures and representation in qualitative models, and the
explanation of cause-effect relationships [WERTHNER 1994, p. 3].

The principles of qualitative reasoning noteworthy and relevant for the systematic approach to
decision-making in general; these are summed up by WERTHNER in the following list
[WERTHNER 1994, pp. 8-9]:

• Compositionality describes the ability to compose a system on the basis of
subsystems and entities, which are interconnected. The behavior of entities can be
described by local laws, while the behavior of the overall system, in turn, follows from
the behavior of the entities and can be observed by a change of state.

• Locality stands for the acknowledgement that occurring effects are always local, and
propagate through the system through the interconnection of entities.

• Function has to be separated from behavior. Behavior is what a system does, while
function is the behavior in the context of certain goals, e.g. a blinking “check engine”
light is classified as behavior, while the function fulfilled by that behavior is the
indicating of occurring abnormalities to the user.

• Class-wide assumptions indicate that identifiable laws for one object of a class of
entities are valid for all objects within that class.

• The principle “no-function-in-structure” demands a reasonable functional
decomposition of the system. Neither the functional description of entities nor their
behavior anticipate the function of the overall system.

• A reduced quantity space is reached by the standardization of real values into
qualitative measures for system analysis. As such, a range between three (e.g. ‘+’, ‘0’,
and ‘-‘) and ten values is in most cases sufficient to differentiate and rank entities.

5.6 Concept and properties evaluation 141

• Reduced relationships reflect the reduced quantity space for describing relationships
between entities. Complex functional dependencies can be reduced to qualitative value
representation, similar to the reduced quantity space.

• Since qualitative reasoning deals with the analysis of discrete situations, a reduced
representation of time is the result. No information about certain points in time or
durations is provided, but the situation before and/or after the considered point in
time/event allows for the deduction of conclusions.

The above tasks and principles provide a promising basis for decision-making in the context
of this work. This work does not include an exhaustive application of qualitative reasoning;
however, this was considered during analysis and applies the principles as guidelines for the
academic reasoning.

Methods for single selection

Methods for single selection are similar in that they provide the means for the rating of a
number of choices, based on identified evaluation criteria. They can be characterized with
reasonably little effort for application and accordingly rough outcomes of evaluation [PONN &
LINDEMANN 2008, p. 114]. For the most part, methods of single selection aim towards the
evaluation of one “domain”, so to speak, i.e. usually the physical product entities are
evaluated, while other domains, such as functions or requirements [PONN & LINDEMANN
2008, p. 114], serve as criteria for evaluation.

An evaluation method based on the relative comparison of alternatives is the pairwise
comparison. Qualitative and quantitative criteria can be used for that approach. The
advantage is the quick and easy accessibility of both the method and the results. The criteria
can be rated for a more differentiated view. On the downside, the results can only provide a
ranking of concepts, and are thus only of reduced value for the decision maker; however, this
is sufficient in cases where a quick assessment based on vague quantifiable criteria is needed
[PONN & LINDEMANN 2008, pp. 114-115, EHRLENSPIEL 2009, pp. 510-511].

The score evaluation provides an absolute measure for evaluation. The criteria are scored for
each alternative, while the overall values of alternatives provide a support for decision-
making. Absolute values provide an improved evaluation compared with the pairwise
comparison. Alternatives are often close in the ranking, while the application of more
elaborate evaluation methods should be considered [PONN & LINDEMANN 2008, p. 115,
EHRLENSPIEL 2009, p. 511].

A more elaborate evaluation method is, for example, the weighted score evaluation, which
provides an even larger differentiation by weighting the applied evaluation criteria. In order to
sufficiently differentiate the alternatives, the range of scores should be exponentially
distributed [PONN & LINDEMANN 2008, p. 115, EHRLENSPIEL 2009, pp. 511-512]

Value benefit analysis is based on a hierarchical decomposition of evaluation criteria. The
branches of the hierarchy are then grouped according to classes of criteria, such as cost,
technical, criteria, etc. The structured approach makes an evaluation of more complex systems
possible, based on the step-by-step procedure provided by the hierarchical decomposition of
criteria [PONN & LINDEMANN 2008, p. 115, EHRLENSPIEL 2009, pp. 514-517].

142 5. Coping with product architecture

Causality methods

For structured decisions, causality methods are the means for approaching the evaluation
problem. They intend to unravel the cause-effect relationships of systems [BERNARD 1999,
pp. 64-65]. In the following, causality methods are divided into approaches based on graph
representation and matrix-based approaches. Common of all types of causality methods is the
perception of decision-making as a sequential process [SIMMONS 2008, p. 34].

Decision trees represent each possible sequence of decisions as a branch of the tree. Areas of
application are machine learning or data mining, rather than engineering or management,
where tree structures are rather the basis for the definition of rules [HAN & KUMBER 2001].
While simple decision trees are made up solely of decision nodes, more complex approaches
include chance nodes [SIMMONS 2008, p. 34]. The end nodes or leaf nodes of each branch
represent a “complete” sequence of decisions, e.g. a design concept in the context of product
development. In more elaborate approaches, where chance nodes are involved and
probabilities play a major role, algorithms support the calculation of leaf node values
[SIMMONS 2008, p. 34]. Aside from the positive effect of structuring and documenting
decisions, the downsides of decision trees outweigh the benefits. First, the hierarchical
structure makes it impossible to consider independent or parallel decisions. The underlying
assumption states that every decision is influenced by and based on the previous decision.
Second, due to that structure, decision trees become very large for even medium-sized
sequences of ten decisions or fewer [SIMMONS 2008, pp. 34-35, HAN & KUMBER 2001, p.
306]. The overview and support in decision-making by intuitive application of the tree is then
impossible; only algorithmic procedures can guide the decision-making process.

Decision trees, in most cases, depict the physical representation of product architecture, for
example during the application of product benchmarking projects [SABISCH & TINTELNOT
1997, p. 131]. BARTON & LOVE extend the concept of decision trees or design decision
chains to the impact on the organization, process, etc. [BARTON & LOVE 2000], which is also
not unusual in integrated benchmarking processes [SABISCH & TINTELNOT 1997, p. 134].75

Networked graphs, in contrast to hierarchical graphs, allow for the compensation of the
downsides of hierarchical trees; for decision-making in particular, these are the size of the
diagram, as well as the strictly sequential decision processes.

Influence diagrams, which represent the causal interdependencies between decisions and
allow for a more compact depiction of the information flow between decisions, are
representative of networked graph representation in decision-making. Additionally, there is
clear visualization of which decisions are independent from one another, and which decisions
are directly or indirectly influenced by other decisions.76 The advantages of influence

75 Benchmarking as powerful methodology for the systematic comparison of products and/or processes is not
intensively discussed in this work. The principles and methods applied during benchmarking correlate to those
discussed here. For an overview and possible application procedures [see e.g. SABISCH & TINTELNOT 1997].

76 To clarify the discussion, SIMMONS provides both representations of the same problem [SIMMONS 2008, pp.
34-36, according to COVALU & OLIVER 1995].

5.6 Concept and properties evaluation 143

diagrams show in the accessibility to structural reasoning of the representation (compare
chapter 5.4.3), as well as in the depiction of cause-effect relationships and a reduction of
required space for representation. Additionally, an optimized decision tree can be derived
from the influence diagram [SIMMONS 2008, pp. 35-36]. As an extension, the more elaborate
sequential decision diagram includes alternatives in the representation, i.e. it depicts which
relations become irrelevant due to a choice made previously [SIMMONS 2008, pp. 36-38].

The matrix-based approaches, of which SIMMONS explicitly mentions the DSM and
morphological chart [SIMMONS 2008, pp. 30-33], while ULRICH & EPPINGER propose the
selection matrix [ULRICH & EPPINGER 2003, pp. 134ff.], are equally able to represent a
network of decisions. Naturally, for decisions required during synthesis in particular, the
approaches discussed in chapters 5.4.3 and 5.5 can be applied to compare different
alternatives. The selection matrix, which was not discussed previously, allows for the
mapping of concepts to evaluation criteria and represents from the core a (weighted) score
evaluation, i.e. ratings are given for each concept and criterion, of which the sum results in an
overall rating for each concept [ULRICH & EPPINGER 2003, pp. 134ff.].

5.6.3 Criteria for decision-making
While ULRICH & EPPINGER state that evaluation criteria are meant to be derived from
customer needs [ULRICH & EPPINGER 2003, p. 131], EHRLENSPIEL mentions interviews,
interdisciplinary discussions, documentation and visualization of criteria and requirements
analysis [EHRLENSPIEL 2009, pp. 505-507]. PAHL et al. provide a checklist of areas to be
considered when aiming at the derivation of evaluation criteria, depicted in the following
table.

Checklist of evaluation criteria Quality control
Function Assembly
Working principles Transportation
Embodiment Operation
Safety Maintenance
Ergonomics Recycling
Production Cost

Thorough analysis of the table shows that it is essentially the activities along the product
lifecycle and typical classes of requirements (such as safety, ergonomics), or Design for X
aspects, which are used as classes for evaluation criteria. At the same time, the areas could
serve as classes of requirements, for example. In the end, if a thorough and comprehensive
requirements analysis was conducted, the evaluation criteria should be easily be derived from
the resulting requirements list.

The following section discusses rather unquantifiable and inexplicit means of evaluation
criteria, as they are regularly consulted in the area of complex product architectures and
firmly based on the systems and structure approach strived for in this work. These criteria are
change, quality and the class of structural criteria, and should be considered as elaborate

Table 5-5: Areas for the systematic deduction of evaluation criteria [PAHL et al. 2007, p. 193]

144 5. Coping with product architecture

examples, rather than an exhaustive list. With time, quality, and cost being the core issues and
challenges in product development [CLARK & FUJIMOTO 1991, p. 70, EHRLENSPIEL et al.
2007, p. 21, LAWSON & KARANDIKAR 1994, WILDEMANN 1999, p. 18], methods for change-
and complexity-management aim for the prevention of time-consuming and costly processes
by identifying purposeful product architectures and enabling anticipatory decisions in early
phases.

Change as evaluation criterion

Change in engineering design can be considered in two ways: either as the deliberate change
of the product architecture e.g. to better suit the customer’s needs [FRICKE & SCHULZ 2005],
which is described as redesign or design for customization [CLARKSON et al. 2004]; or the
undesired necessity to conduct changes of product entities or artifacts, which at that point
were already formally approved and considered unalterable [DEUBZER et al. 2005]. These
changes can affect product specifications, functions, components, etc. during product
development or production. Changes, especially of the first type, may occur during the whole
lifecycle of the product, which is why the product architecture has to enable changeability
[FRICKE & SCHULZ 2005]. ECKERT et al. differentiate those types of change into initiated
change and emergent change. Emergent changes are caused by problems along the lifecycle,
according to that definition, while initiated changes are caused rather by innovations and
requirements than problems [ECKERT et al. 2004]. FRICKE & SCHULZ introduce aspects of
changeability, of which flexibility, agility, and adaptability can be assigned as positive aspects
to initiated changes, while robustness reflects the protection against emergent changes, for
which adaptability might provide a supportive means in the sense of controlling emergent
changes [FRICKE & SCHULZ 2005].

This ability to cope with changes can be used as a criterion for the comparison of concept
alternatives during synthesis or in the context of variant management or customization
projects. A central concept to characterize product change is the change propagation, i.e. the
acknowledgement that changes cause further changes [ECKERT et al. 2004]. For the analysis
of change propagation in systems, networks depicting change interdependencies, as well as
matrix-based analysis methods such as the DSM, are frequently consulted. Based on the
analysis, product entities can be classified as follows, according to ECKERT et al. [ECKERT et
al. 2004]:

• Constants are neither actively nor passively affected by change.

• Absorbers are more passively affected by change than they are actively inducing
change.

• Carriers are balanced concerning their active and passive change behavior.

• Multipliers tend to cause more changes than they are able to absorb.

• Buffers are considered to be entities encompassing tolerance margins, able to absorb
change. Whether buffers emit further change depends on the changes which were
already cumulatively absorbed, i.e. if no more changes can be absorbed, propagated
changes are inevitable.

5.6 Concept and properties evaluation 145

Based on the classification of product entities, the predictability of change is improved, which
in the following section can be utilized to compare different architectures. For example, a
product architecture with more absorbers and buffers is preferred to a solution with more
carriers and multipliers [ECKERT et al. 2004]. Use cases indicate differential significance of
the respective classes. As such, simulation results based on the likelihood of changes
[CLARKSON et al. 2001] indicate that multipliers are more meaningful for change propagation
than absorbers [OH et al. 2007]. For further insight, organization as well as processes can be
assessed concerning how they impact and cope with change [ECKERT et al. 2004, LUH et al.
2011]. KOH et al. introduce an adapted house of quality for the comparison of concepts, based
on a mapping of components to features and attributes [KOH et al. 2009].

To cope with change and characterize product architectures, FRICKE & SCHULZ consult the
aspect-principle-correlation matrix, in which principles and aspects of changeability are
mapped, pointing to difficulties and goals of system analysis for the comparison of
architectures [FRICKE & SCHULZ 2005].

Quality as evaluation criterion

The consideration of quality is of high importance, especially in the early phases of
development, since shortcomings in quality, though occurring in the early phases, are
identified not until the late phases. Changes in late phases, if possible at all, are then costly
[FELGEN 2007, p. 3]. Methods for quality management are numerous [FELGEN 2007, pp. 170-
172]. In the following sections, Quality Function Deployment and Failure Mode and Effect
Analysis (FMEA) are considered, due to their comprehensiveness for a systems approach and
extensiveness in application in industry.

Quality Function Deployment is generally associated with the mapping of customer
demands to technical (or engineering) characteristics, allowing for the weighting and targeting
of values on both sides [AKAO 1992]. The overall goal is the planning of product functions, in
line with the customer’s perception of quality-relevant properties [AKAO 1992, p. 15]. As a
result, core areas of the product for development efforts are identified, necessary trade-offs
pointed out and a comparison with competitors made possible. The core of the method
consists of the so-called house of quality, a matrix-based representation of the previously
mentioned subject matter. The following figure depicts a reduced version of the house of
quality, as introduced by MAURER, showing the core features of the method [MAURER 2007,
p. 61]. Other authors highlight and add different features of the method, arranging the house
of quality in different manners accordingly, and thus showing the different capabilities and
application areas of the approach [compare FELGEN 2007, p. 85, PONN & LINDEMANN 2008,
p. 41]. The visualization includes the identification of customer requirements and the ratings
of customer importance. Customer requirements are coupled with the technical features of the
product, which are characterized by technical evaluation criteria. Technical features are
correlated within the roof of the house of quality, identifying whether technical features are
supportive of one another or conflicting. Further criteria and attributes allow for the
comparison with competitors.

146 5. Coping with product architecture

A major challenge of the method is the mapping of customer demands to the technical
characteristics, even though literature does not provide a conclusive approach regarding how
to obtain that information. As a solution, one approach is to integrate the Kano-model,
classifying requirements as must-be, one-dimensional (i.e. represented by a linear additive
function to customer satisfaction), and attractive requirements [DE POEL 2007].

Due to the generic representation of the house of quality in matrix-form, it can serve as the
foundation for different analytical approaches that can be applied. As an example, VAN DE
POEL introduces the correlation between engineering characteristics, the amount of resources
necessary to meet certain targets, available budget or overall customer satisfaction etc. as
typical variables and calculations of the approach [DE POEL 2007]. Based on the perception of
product architecture management, the following chapters will discuss this generic
applicability.

Though use cases exist (see e.g. [TSUDA 1997]), a number of difficulties remain regarding the
practical application of QFD. VAN DE POEL sums those up as the identification and
assignment of customer demands and their impact on overall customer satisfaction.
Additionally, he mentions the translation of customer demands to technical characteristics,
which can seldom be uniformly conducted [DE POEL 2007].

Failure Mode and Effect Analysis (FMEA) also aims for the elimination of a product’s
failures and shortcomings. FMEA is thus focused on the dependencies between the technical
entities, rather than on customer interaction [MCDERMOTT et al. 2009, p. 3]. This is true for
different types of FMEA, of which FELGEN names the system-FMEA, considering modular
physical product entities in the product conception phase, design-FMEA for physical
components during detail design, and the process-FMEA, considering manufacturing and
assembly during production planning [FELGEN 2007, p. 90].

Figure 5-34 QFD House of Quality [compare MAURER 2007, p. 61]

Customer Requirements

Technical Evaluation

Technical
Features

Criteria/
Attributes

Customer
Ratings

5.6 Concept and properties evaluation 147

Given the different types of FMEA and its widespread application in industry, the
methodology can best be described by a coarse outline of the process and a typical form used
for method application [see MCDERMOTT et al. 2009, pp. 23ff., FELGEN 2007, p. 90].

The first step is the preparation of the FMEA, consisting of the allocation of human resources
[MCDERMOTT et al. 2009, pp. 11ff.], a thorough system and functional analysis (see Means
for system analysis and Functional analysis in chapters 5.4 and 5.5.2). The second step is the
risk analysis on the basis of the functional decomposition. For each function, potential failure-
types, -effects and -causes are identified. Networked system analysis (see chapter 5.4.3),
depicting causal dependencies can support this process. MAURER & KESPER provide an
example for a sophisticated measure of networked system analysis in the context of FMEA,
deducting the interdependencies of functions based on FMEA analysis [MAURER & KESPER
2011]. As a third step, risk evaluation is conducted, rating the possibility of occurrence of the
failure, the impact, and the possibility of detection of the failure. The overall rating is
represented by the risk priority figure, resulting from the multiplication of the three figures
mentioned above [compare MCDERMOTT et al. 2009, pp. 23ff., FELGEN 2007, p. 90].

Structural characteristics as evaluation criteria

Based on the discussion of change and quality as evaluation criteria, the importance of the
product architecture became evident. Change and quality strongly rely on characteristics,
principles, and causalities, which are directly represented by and inherent within the product
architecture. For that reason, not all structural characteristics, as summarized in chapter 5.4.3,
will be discussed. As an example, the product architecture characteristics relevant for change
and quality will be presented in greater depth.

Following the classification of architecture entities according to ECKERT et al. [ECKERT et al.
2004], suitable structural characteristics can be assigned to the classification, underlining the
importance of the product architecture. The structural characteristics allow for a systematic
analysis of the overall product architecture and can support the comparison of architectures by
the occurrence of the respective characteristics. In the following table, the propagation node
type is listed in accordance with the classification of entities, while node characteristics and
subsets are assigned to the propagation types.

Propagation type Node characteristics Subset criteria
Constant Active and passive sum,

isolated, end and start node
 Feedback loop, hierarchy

Absorber Active and passive sum, end node Feedback loop
Carrier Active and passive sum, transit node Feedback loop
Multiplier Active and passive sum, start node Feedback loop, hierarchy
Buffer Active and passive sum Feedback loop

Constants (neither actively nor passively affected) are characterized by a low active and
passive sum, since changes are unlikely for that type of node. End and start nodes are likely to
be constant (especially start nodes), while isolated nodes are in any case constants in terms of

Table 5-6: Assignment of structural characteristics to node propagation types

148 5. Coping with product architecture

change propagation. Constants are not to be involved in feedback loops or hierarchies, i.e.
subsets predestined to cause large change propagation.

Absorbers (passively affected rather than actively) are characterized by a relatively high
passive and low active sum. End nodes are potential absorbers, while, on the other hand,
absorbers are unlikely to be part of feedback loops.

Mediators of change are carriers (balanced active and passive behavior), which inherit a
similarly high active and passive sum. Transit nodes are likely to be carriers. Feedback loops
may contain carriers.

Multipliers (causing more change than absorbing) of change are characterized by a higher
active than passive sum. Start nodes can be classified as multipliers, though not containing
input changes. Multipliers may be part of feedback loops and hierarchies of change.

Buffers (encompassing tolerance margins) are difficult to characterize by structural features,
since the changes are absorbed to a certain amount. A high passive sum is an indicator for
soon-to-be cumulatively absorbed changes, and thus the propagation of changes. The active
sum is of lower relevance for the identification of buffers. Buffers in feedback loops are likely
to turn into carriers, since feedback loops are an indicator for the consumption of the tolerance
margins.

The identification of the respective propagation types by structural characteristics cannot fully
be accomplished. However, the analysis of structural characteristics can give hints about the
overall change propagation performance of a product architecture and narrow down the
candidates for each propagation type. The structural characteristics further help to classify the
entities in detail.

The relevance of structural criteria for change can be discussed more thoroughly, based on the
principles summarized by FRICKE & SCHULZ, which are explained briefly in this work, while
their elaborate description, interaction and examples can be found in the respective source
[FRICKE & SCHULZ 2005]. Principles mentioned can be equally defined by structural
characteristics.

The propagation types and principles of change discussed above clearly show that the
structure, i.e. the product architecture, is one of the main characteristics of change and has the
strongest implication on the change behavior of the product.

Similar to the relevance for change, structural properties of the product architecture are
equally important for the assessment of a product’s quality. Within the approaches of QFD
and FMEA, the interdependence of requirements, functions and components is the major
factor and backbone of the methods. Although structural characteristics in quality
management are highly relevant, they are just as diverse and cannot be assigned in a generic
fashion. Since the coupling of entities, such as requirements, functions, and components, as
well as the interrelations within the domains, is the crucial aspect, application of structural
characteristics is very high, but has not yet been conducted [MAURER 2007, p. 61].

Due to the complexity of quality problems, individual analysis criteria cannot be directly
assigned. However, the potential of methods for system analysis can be clarified, if the
methods reveal causal relation chains (feed-forward and trace-back analysis) [MAURER 2007,

5.7 Downstream activities 149

pp. 233 and 237] and critical entities (mine seeking, structural ABC-analysis) [MAURER 2007,
pp. 235-236].

5.6.4 Conclusion
Based on the examples of change and quality, the importance of the product architecture and
the relevance of structural criteria was discussed. Given this dependency between concrete
evaluation criteria, such as change and quality, and structural characteristics, the significance
of an overall classification of product architectures is a possibility to assess generic product
architecture properties. Although different evaluation criteria are relevant in varied situations,
an overall analysis is nevertheless able to compare product architectures, because they reflect
on concrete evaluation criteria.

5.7 Downstream activities
The downstream activities discussed in this chapter focus on the perspective of the action
system, due to their position at the end of the chapter. Additionally, different aspects of the
downstream activities are relevant for the product, i.e. the object system, or pose requirements
to be considered in early phases. Although the many downstream activities could be
addressed in greater depth, the aspects such as service, production, assembly, recycling etc.,
are considered under the caption “lifecycle management”, which could also be entitled
“Design for X”. Variant management is discussed as a distinct topic, due to its importance in
recent product development projects and the acknowledgement that the design of future
products will, in most cases, be embedded in an existing product family or be the start of a
product family in the future [FRICKE & SCHULZ 2005]. The existing approaches in variant
management, product family design, modular product design etc. will provide an overview,
while at the same time pointing to potential that is yet untapped, which could be raised
through application of the approach developed in this work.

5.7.1 Coping with variants
The importance of niche markets and the resulting need for variant rich products was
extensively discussed in chapter 1.1.1. The deliberate and systematic consideration of product
architectures thus cannot be conducted without taking variants into account. The positive or
negative results of variant management activities show in the late phases of the product
lifecycle, such as manufacturing. For that reason, the coping with variants is discussed under
the notion “downstream activities” in this chapter. To avoid misunderstandings, their
placement in this chapter is not meant to give the impression that the consideration of variants
is irrelevant in the early phases. On the contrary, the groundwork for successful variant
management is laid out in the early phases of requirements management, product planning,
development, etc.

The following sections discuss the coping with variants, which are necessary to fulfill the
arising requirements. First, the definition of variant management is stated, accompanied by an
overview of frequent goals of variant management activities. The process of typical variant

150 5. Coping with product architecture

management projects is elaborated, while the concluding sections introduce an overview of
methods and models for the different goals in variant management. The overview is intended
to introduce and compare representative methods with the goal of completing the product
architecture model and identifying methods suitable in the context of product architecture
management.77

Definition and goals

Variant management as such means managing complexity caused by the market and
customers, which is why it is often seen as a subcategory of complexity management
[DEUBZER ET AL. 2008]. For a long time, variant management meant focusing on the most
frequently ordered variants; however, niche markets and individualized products gain more
importance and stand for profit for the companies at present and in the future [ANDERSON
2008]. Variant management can be defined as the sum of all measures, which are intentionally
influencing the range of variants within the company. The intentional effect on variety can be
manifested in products or product architectures and processes [PONN & LINDEMANN 2008, p.
231, KUSIAK 2002]. The overall goal of variant management is to influence the complexity, so
that the external complexity (market and environment) is high, while the internal complexity
(within the company) is as low as possible [PONN & LINDEMANN 2008, p. 231, RENNER 2007,
pp. 22-23, JIAO & TSENG 1999], representing the area of conflict between flexibility and cost.

To complete the variant management paradigm, SIMPSON differentiates platform strategies,
based on the chosen clustering of the product portfolio to cope with the internal complexity.
Three different strategies can thus be identified: horizontal leveraging (extending a platform
across different segments), vertical leveraging (extending a platform across the range of low-,
medium-, and high-priced, -quality or -performance levels), or the combination of both
[SIMPSON 2004, see also SIMPSON et al. 2001 and MEYER 1997]. JIAO et al. differentiate
between scalable or configurational product family design [JIAO et al. 2006]. Side effects of
modularization include the recycling or retrieval of products [ZHANG & GERSHENSON 2001],
or the structuring of processes accordingly to the product modularization [LUH et al. 2011].
Despite the benefits and efforts in variant management, limitations exist, especially when
discussing mechanically-dominated products in contrast to, for example, services or highly
electronic products [WHITNEY 2004].

Variant management, as well as its diversity, can be characterized by the goals and activities
typical of variant management projects and approaches. Different foci in variant management
target the product portfolio (cost), processes & organization (effort, time, competences, etc.),
development (modularization, reliability) or production (cost of manufacturability, quality,
time) as fields of activity [compare DEUBZER et al. 2008, KUSIAK 2002, RENNER 2007, pp.
118-120]. Most benefits of variant management projects are achieved by the modularization
of the product, allowing for the reuse of developed modules. As a result, development time
and competencies can be purposely appointed (reduction of effort), while the manufacturing

77 An overview of the general nomenclatures and situation is provided by DU et al. [DU et al. 2001] while
SIMPSON et al. provide a collection of methods [SIMPSON et al. 2006, see also FIXSON 2007]. An overview of
both in German language is provided by RENNER [RENNER 2007].

5.7 Downstream activities 151

and assembly processes can be conducted more efficiently and the number of required tools
reduced (reduction of cost). Since modules can be independently tested, product properties
can be improved (e.g. quality or order lead time) and the combination of modules allows for
flexible reactions to customer needs (increase of flexibility). Apart from the modularization of
the product as the main activity, approaches aim for the monetary aspects of variants by
reducing complexity within the product portfolio. In general, the reduction of complexity can
be achieved by the reduction of number and variety of elements characterizing the product
portfolio. Elements can thus be different entities of the product architecture, e.g.
requirements, functions, components, variants, etc. Frequent examples are the harmonization
of requirements and the elimination of variants not frequently requested by customers. The
following table sums up the discussed goals and activities of variant management, as well as
representative examples in literature utilizing the approaches [compare RENNER 2007, pp.
118-120, KUSIAK 2002]. To complete the picture, the different goals and activities need to be
accomplished through the close collaboration of many, usually interdisciplinary, departments
within the manufacturing company such as sales, development, manufacturing and assembly,
testing, controlling, etc. It is important to note at this point that a successful variant
management project has to incorporate interdisciplinary teams of all areas to achieve cost-
transparency, purposeful technical solutions, cost-reduction in manufacturing, and, finally,
successful products. The importance of each discipline will nevertheless differ, depending on
the prioritized goals and chosen activities.

Goal Activity Sources (examples)
Reduction of effort
(resources)
(development time, team
structures, competences,...)

 Modularization
(Use and reuse of developed
modules, functional
modularization)

 AVAK 2007, KUSIAK 2002

Reduction of cost
(manufacturing, tools,
assembly,...)

 Modularization
(Use and reuse of developed
modules)

 DE LIT & DELCHAMBRE 2003,
KUSIAK 2002, UMEDA et al.
2005, WILLIAMS et al. 2007,
ZHANG & GERSHENSON 2001,
PARK & SIMPSON 2008

Improvement of quality
(or other properties)

 Modularization
(Use and reuse of tested and
validated modules)

 KUSIAK 2002

Increase of flexibility
(customer satisfaction through
customer worth differentiation)

 Modularization
(use of existing modules,
increasing reactivity, high
number of possibilities, cost-
efficient application, increase in
degrees of freedom)

 MARTIN & ISHII 2002, KUSIAK
2002, SUH et al. 2007, DE
WECK 2007, BONGULIELMI et
al. 2002

Reduction of complexity Reduction of number and
variety of elements
(requirements, functions,
components, technologies,…)

 BONGULIELMI et al. 2002,
WILDEMANN 1999, SCHUH
2005

Table 5-7: Typical goals and related activities in variant management

152 5. Coping with product architecture

Optimization of requirements Harmonization or
differentiation of requirements
(avoidance of functional
underperforming and reducing
overperforming)

 SIMPSON et al. 2001

Simplification of portfolio Elimination of variants
(not requested or rarely
requested, exchangeable)

 THEVENOT & SIMPSON 2006,
FARRELL & SIMPSON 2008

The discussion above allows for a comprehensive differentiation of variant management
activities, according to the leveraging strategies, fields of activity and goals. The technical
realization and different possibilities will be discussed within the following sections.

Process of variant management

RENNER provides a rough yet reasonable outline for a procedure for the development of
product families, based on existing products and an existing product portfolio. Given the
variety of approaches and different directions of goals, his generic proposition of five steps
turns out to be representative and useful in projects with different emphases [RENNER 2007,
pp. 100-110].78

The first step consists of the prioritization of goals and matters, identifying which goals are
the foci of the variant management project in general. Possibilities are represented for
example by the goals, activities and their combinations, discussed in the previous section.
SUH et al., as well as SIMPSON et al., discuss the identification of markets and uncertainties,
for example [SUH et al. 2007, SIMPSON et al. 2001].

Following the prioritization of goals, the analysis of functions, requirements, boundary
conditions, components, etc. and the complex interrelations is conducted. The main goals of
analysis are to achieve transparency about existing solutions and to identify variant drivers,
cost structures, etc. Methods for analysis are discussed in chapter 5.4. SUH et al. stress the
importance of coupling of variant attributes with market segments and the resulting platform
bandwidth [SUH et al. 2007]. Additionally, the modeling during analysis to support the
following synthesis and evaluation procedures is to be conducted in this phase [SIMPSON et al.
2001]. WILLIAMS et al. propose the modeling of non-uniform demands to grasp the
distribution of requirements in the early phases of design [WILLIAMS et al. 2007].

The synthesis as the third step of the procedure includes the identification of possible
modules, i.e. core modules or platforms, and adaptive modules. The definition of a number of
different concepts allows for the identification of possible solutions, including defined
interfaces and scenarios. An important aspect of this step is the integration of concepts to a
fully functional product [SALHIEH & KAMRANI 1999]. Methods for synthesis are discussed in
chapter 5.5, while methods for the identification of modules will be discussed in the following
sections [SIMPSON et al. 2001].

78 Other authors provide comparable procedures, which are referenced within the following discussion [compare
for example SUH et al. 2007, DIAZ 1998, KUSIAK 2002, SIMPSON et al. 2001].

5.7 Downstream activities 153

The overall evaluation allows for the choice of the best-suited solution, based on a defined
business case and the application of different evaluation measures (compare chapter 5.6),
identification of necessary compromises and an optimal solution. In many cases, it is the
determination of costs that is referenced for evaluation, for example by DE WECK & SUH,
while other perspectives include time, reliability, quality and manufacturability, according to
KUSIAK [SUH et al. 2007, KUSIAK 2002]. Additionally, metrics for the evaluation of
modularity or change to define module boundaries can be applied to support the decision-
making process [MARTIN & ISHII 2002].

The implementation as last step includes the organizational and technical design solution of
the chosen approach, taking into account crucial change management steps and the expert
knowledge of design departments.

The procedure as proposed includes the steps of prioritization and implementation, which are
disregarded by other procedural models or methods [e.g. FARRELL & SIMPSON 2008, SUH et
al. 2007]. Since different methods are usually intended to suit a single purpose, the step of
prioritization is still not considered. Implementation, on the other hand, is a major challenge
to be considered in future projects [SIMPSON 2004], particularly in organizational or change
management projects.

Models

In variant management, different models occur due to the different goals and methods. As was
discussed in chapter 4.2, graphical, tabular, textual or analytical models come into question
for modeling product architectures. In variant management, product architectures and product
architecture families can be discussed by similar means. As a proposition was already made in
chapter 4.3, the following sections will not discuss the possibilities of modeling in general,
however, they will use models in graphical or matrix form as examples, according to the
product architecture model. The discussed models are intended not to repeat discussions on
product architecture modeling from previous chapters, but rather focus on product family
specific entities and properties. In order to point out characteristics of product families in
variant management, the following section cannot present a complete or exhaustive

Figure 5-35 Generic process of variant management [compare RENNER 2007, pp. 100-110]

Priorities

• Identification of
situation (markets,
uncertainties, etc.)

• Definition of goals
(reduction of
effort, cost,
complexity,
increase of
flexibility,
properties,
optimization of
requirements,
simplification of
portfolio)

• Identification of
activities
(modularization,
reduction,
harmonization,
elimination)

Analysis

• Gain transparency
• Identify variant
drivers and cost
structures

• Carry out
modeling

• Analyze
functions,
requirements,
boundary
conditions,
components

Synthesis

• Identification of
possible modules

• Definition of
concept

• Integration

Evaluation

• Business Case
• Definition of
evaluation
measures and
metrics (cost,
time, reliability,
quality,
manufacturability,
etc.)

Implementation

• Technical*Solu.on*
• Organiza.onal*
solu.on*

• Change*
management*

154 5. Coping with product architecture

overview.79 To give an impression, JIAO et al., for example, enlist numerous modeling
approaches, ranging from UML, graph representations, set-based models, knowledge-based
systems including rules and constraints, matrix-based and diagrammatic approaches, and
computer-based and parametric models [JIAO et al. 2006].

As when considering product architectures in general, different views of the product family
are feasible. JIAO & TSENG differentiate between the functional, technical (feasibility), and
physical (manufacturability) views [JIAO & TSENG 1999]. Functional decomposition and
variant trees are very common [see e.g. FOTSO et al. 2007], but have recently been replaced
by more comprehensive and structural approaches, discussed in the following “methods”-
section. Modeling of functional and physical product architecture was discussed in chapter 4.2
and is equally valid for the discussion of product architecture families. Different authors detail
the view of manufacturing, focusing on the production view of variant management. DE LIT &
DELCHAMBRE focus on product assembly and the impact on product family design. The goal
of the approach is an appropriate design of product families, which systematically considers
the assembly of the product variants. DE LIT & DELCHAMBRE define the product family as a
group of products with large similarities of the design concept, the main function and the
assembly process, within which a product variant is a (type of) product belonging to the
family [DE LIT & DELCHAMBRE 2003, p. 108]. In their work, they point out a number of
relevant entities of the product architecture, wherein the hierarchical interconnections
represent “part of” relations. The core understanding and prerequisite for successful product
family design is to perceive the product family and the underlying assembly process as that of
one unique generic product, i.e. the whole product family has to be the focus of both the
design and production processes [DE LIT & DELCHAMBRE 2003, p. 95]. Further principles
include the late definition of single variants in production, constant iteration and recursion, as
well as the quick and efficient exploration of the solution space [DE LIT & DELCHAMBRE
2003, p. 95]. For that purpose, DE LIT & DELCHAMBRE provide a hierarchy of the physical
product structure divided into the assembled product, subassemblies and components, wherein
subassemblies are what other authors perceive as modules, due to the strong
interconnectedness of the subassembly’s components. Subsets of the physical product
architecture pose a set of components necessary for the product’s integrity. The second pillar
of the approach is the functional perspective of the product, resulting in the decomposition of
the product’s main function into technical functions, necessary for the product’s internal
integrity, and functional subsets and functional subassemblies. Functional subsets are
components fulfilling at least one technical function and functional subassemblies are
subassemblies fulfilling at least one technical function of the product family [DE LIT &
DELCHAMBRE 2003, pp. 106-107].

79 For more comprehensive overviews, see the following [BONGULIELMI 2003, FIXSON 2007, JIAO et al. 2006,
RENNER 2007, SIMPSON et al. 2006]

5.7 Downstream activities 155

To complete the principles of a product family, DE LIT & DELCHAMBRE classify the entities of
the product architecture as generic and variant entities from the physical and functional
perspective. As a result, the concept of “functional entities” evolved, where common
functional entities are part of all product variants (i.e. generic) and specific functional entities
are part of specific product variants only [DE LIT & DELCHAMBRE 2003, pp. 109-117]. For the
representation of the product family, DE LIT & DELCHAMBRE use graphs, in which the
different classes are represented by the means of differently depicted nodes and edges [see
e.g. DE LIT & DELCHAMBRE 2003, p. 127]. To cope with the product family and optimize the
product portfolio, DE LIT & DELCHAMBRE introduce three independent indices for complexity,
structure and standardization [DE LIT & DELCHAMBRE 2003, pp. 136ff., compare also
SIDDIQUE & ROSEN 1999]. The discussed approach points to the relevant entities of the
product architecture in the context of product families. The methods used, though in close
relation to assembly, give hints about the potential and promising models, presented in the
case graph structures and supported by the inherent mathematical possibilities. The choice of
the model is thus supported, allowing for the integration of quantitative measures, such as
indices, for the evaluation of different product architectures and designs.

Methods

Before the discussion of methods, the different general approaches often stressed in literature
are worth mentioning. The different approaches, though inheriting different paradigms, are all
based on the idea of modularity to achieve the discussed goals. The different approaches are
summed up by RENNER as modular building blocks, common and repeat parts,
commonalities, modularity in general, platforms, product series, or variant design [for a more

Figure 5-36 Structure of the product family from the perspective of assembly design [DE LIT & DELCHAMBRE
2003, pp. 106-107]

156 5. Coping with product architecture

extensive discussion see RENNER 2007, pp. 66 ff.]. Although the different approaches make
use of the discussed leveraging strategies, a precise differentiation remains challenging.
Depending on the chosen approach, priorities in terms of goals and leveraging strategies
differ, yet cannot be discussed separately from one another [RENNER 2007, p. 79].

The following sections discuss methods for variant synthesis, analysis, metrics, and
modularization, thus addressing the key aspects of the variant management process.

For synthesis, graph grammars provide the means for variant management as well, due to the
similarity to the process of deriving possible products from a set of entities (see chapter
5.5.7). For the definition of variants, according to DU et al., the identified and predefined
modules are coupled, due to the inherent rules. A characterization of modules, as well as their
interfaces, enables the synthesis of variants. The possible combinations of modules
(configurational), as well as the variation of element attributes (scalable), cause the product
family variety. Required for successful application is the definition of a generic product
structure, stretched across a number of abstraction-levels [DU et al. 2002]. Similar to the
discussion of graph grammars for synthesis, the difficulty of application in the context of
variant definition lies within the precise and elaborate characterization and definition of rules
beforehand. Although the thorough analysis and definition is necessary, minor flaws cause
incorrect outcomes, which are hard to compensate for and identify.

Different authors propose variant definition on the basis of FBS systems. JIAO & TSENG
identify the functional, behavioral and structural view as core elements and respective entities
of the product (family) architecture. The functional features allow for the analysis and
definition of functionality (functional view), while the technical parameters represent the
technological feasibility (behavioral view) and the components and/or assemblies lead to
answering the questions of manufacturability (structural view). For an efficient application,
the paradigms of modularity and commonality are highly relevant. Modularity represents the
decoupling of architecture entities, while commonality characterizes the clustering of similar
entities or modules into classes. Both concepts apply on all levels of the FBS-system, i.e. on
functional, behavioral and structural views, resulting in e.g. functional and behavioral
modules, as well as component or functional feature classes etc. [DU et al. 2001]. UMEDA et
al. discuss the application of the Function-Behavior-Structure in the context of upgradeability
and provide a method for the deletion and addition of FBS-fragments. The principles of
configuration and scalability are stressed as well, since fragments are added or deleted due to
the demand of new functions, or attributes of FBS-fragments are changed to suit moving
targets in customer requirements which do not require the addition of a new function [UMEDA
et al. 2005]. KUMAR & ALLADA add the customer needs to the FBS model in order to derive
customer-oriented variants based on the given FBS-platform. To support that process, an ant
colony optimization algorithm is applied to identify how the function and behavior structure
should be composed. The approach shows similarities to QFD, interrelating customer needs,
functions and behavior. The product architecture, in terms of the physical representation, is
not considered in this approach. Limitations occur, in the sense that no new functions can be
generated based on customer needs, and that the demand has thus to be known a priori. The
approach of UMEDA et al., for example, aims to compensate exactly these shortcomings
[KUMAR & ALLADA 2005, UMEDA et al. 2005].

5.7 Downstream activities 157

Since the aspect of customer integration and coupling of customer requirements to the
product architecture is a key factor in variant management, other authors stress this
assumption as well. BONGULIELMI et al. discuss the K- & V-Matrix80 in the context of variant
management to depict configuration knowledge and thus support the sales processes. For that
purpose, the authors chose the intersection of customer perspective and technical
modularization as core aspects of the method [BONGULIELMI et al. 2002]. Based on a reduced
range of domain mapping logics,81 the application result displays the modular
interdependencies of architectural choices from customer or technical view. Thereby, in
contrast to variant trees, the K- & V-Matrix depicts the possibilities and validities of variants
overlapping in one matrix, similar to the approach chosen by BRAUN & DEUBZER [BRAUN &
DEUBZER 2007]. DEUBZER et al. use the domain mapping logics to interrelate physical or
functional entities of the product architecture, not by their direct interrelations, but by the
customer demand of ordering the features in combination. The result is depicted in the graph
of functions, where the most ordered features are depicted in the center of the graph (i.e. a
possible standard module or platform), while the relatively seldom ordered features (i.e.
upgrade modules or specification modules) are aligned on the outside [DEUBZER et al. 2008].

For the evaluation of concepts, synthesized on the basis of customer needs, a number of
measures and metrics can be applied. The different metrics are more or less applicable in
different situations, depending on the goals of variant management, the product, and
especially the type of cost calculation and available information. SIMPSON gives a brief
overview of suitable metrics and available sources, as well as STRYKER & JACQUES or
GERSHENSON et al. [GERSHENSON et al. 2004, SIMPSON 2004, STRYKER & JACQUES 2009].
Three main groups of metrics can be identified in variant management; namely the
commonality indices, structural metrics, and cost structures. Since cost structures are largely

80 BONGULIELMI provides a more elaborate discussion of the concept [BONGULIELMI 2003, pp. 57ff.].

81 For an exhaustive discussion, see chapter 5.4.3.

Figure 5-37 Coupling of functions of a car seat, based on customer order-behavior [DEUBZER et al. 2008]

158 5. Coping with product architecture

dependent on the type of cost accounting and other boundary conditions, the following
sections discuss examples of the first two groups.82

A comprehensive overview on commonality indices is provided by THEVENOT & SIMPSON
[THEVENOT & SIMPSON 2006]. To give additional prospects, the Generational Variety Index
will be introduced in the following section, focusing rather on the likelihood of change to
identify robust elements of a product architecture. MARTIN & ISHII discussed the Generational
Variety Index (GVI) to indicate the likelihood of changes of system elements over time. The
definition begins with a modification of QFD, in which the likelihood of changes of customer
demands is estimated, and then transferred to the system elements. The additional coupling
indices (CI) for receiving (CI-R) and supplying (CI-S) relationships between components
support the decision-making process by indicating whether or not a component is likely to
change due to customer demands (GVI) or impact from other components (CI-R). The index
for supplying relationships (CI-S), on the other hand, identifies components or modules,
which can be customized according to customer demands, without causing impact on other
system parts [MARTIN & ISHII 2002]. The identified indices for receiving and supplying
relationships represent a similar perspective, as do the active and passive sum or activity and
criticality as structural criteria, to analyze structural complexity [compare Maurer 2007, pp.
199-200 and 206]. Commonality indices, as discussed by THEVENOT & SIMPSON, mostly
relate the common parts (takeover) and distinct component parts (unique), architecture
structure levels, absolute number of components, unique and common interrelations between
components, cost, volume, etc. [THEVENOT & SIMPSON 2006].

Graph Theory and network theory provide many metrics to characterize systems (see chapter
5.4.3). Since modularity is a structural issue, from the perspective of configuration rather than
scale, a number of metrics allow for capturing the complexity and modularity (compare also
the discussion of structural characteristics as evaluation criteria in chapter 5.6.3). Examples
for the application of structural characteristics can be found in literature, for example by SOSA
et al., who explicitly utilized a number of traits to characterize modularity of product
components [SOSA et al. 2007]. In particular, SOSA et al. modify the metrics for degree (the
number of connections an element owns), distance (the indirect dependencies an element
owns), and bridge (the number of times an element appears within the path of a couple of
other elements) and apply them to the product architecture. The respective indices incorporate
the actual value for each node, divided by the maximum possible value for the architecture.
As a result, the architecture entities can be ranked and compared, depending on the inherent
“modularity”, defined by the criteria degree, distance, and bridge [SOSA et al. 2007].

The identification of modules within the product architecture is usually conducted by
structural analysis using DSM-methods, as introduced in chapter 5.4.3. Different authors
discussed and applied the approach, making DSM-based clustering the standard approach for
system analysis for identification of modules [see for example BROWNING 2001, KUSIAK
1999, p. 259ff, KUSIAK 2002, LINDEMANN et al. 2009, pp. 185ff., JIAO & TSENG 1999].

82 GAHR provides an overview of cost accounting in the context of highly individualized products [GAHR 2006];
an overview on structural metrics is given in chapter 5.4.3.

5.7 Downstream activities 159

Lifecycle perspective and stakeholders

The product lifecycle poses vital challenges for the management of product architectures (see
e.g. [STARK 2005, pp. 55ff.]). Whereas the requirements of the use phase, in the form of
variant management, were discussed in the previous chapter, the following paragraphs point
out further requirements, stemming from different phases of the use cycle.

The lifecycle itself can be perceived as a sequence of work phases, each resulting in a
progressed status of the product [HEPPERLE et al. 2009a]. The main phases of the product
lifecycle, according to different authors, can be summed up as product planning, development
and design, production (planning), distribution, utilization, maintenance, modernization,
disposal and recycling [HEPPERLE et al. 2009a, compare ARNOLD et al. 2005, VDI 2221]. The
different resulting states of the product show the product concretization during the phase of
development and design. The states, which are usually referred to in literature, are similar to
those resulting from models of the development process [see e.g. VDI 2221]. In detail, they
are summed up as the product requirements, functions, working principles, components,
prototypes and product documentation [HEPPERLE et al. 2009a].

From an entrepreneurial perspective, the lifecycle value of a product is the measurement of a
product’s success over a long time period. HONOUR & BROWNING set up a measurement
system for the lifecycle value, resulting in a number of steps to proceed, including the
identification of relevant stakeholders and key parameters [HONOUR & BROWNING 2007],
which in turn are as relevant for the product architecture design as they are for the product
value. Stakeholders mentioned are purchasers, users, activists, maintainers, owners of
interfacing systems, firms operating the system, suppliers, providers of alternative systems,
communities with certain interest in the product and firms operating the system infrastructure
or providing complementary systems and services [HONOUR & BROWNING 2007]. The
identification of the product stakeholders is just as crucial of a step in the context of this work
as it is for the definition of a system’s lifecycle value. To establish the link between the
technical product and its requirements, HONOUR & BROWNING introduce key parameters,
divided into the classes of benefits and sacrifices, wherein benefits are what the stakeholders
gain, while sacrifices represent the resulting shortcomings for the stakeholders (compare also
the differentiation between characteristics and properties as in [WEBER 2005a]). Examples of
stakeholders mentioned are corporate management, employees, shareholders, subcontractors
etc. [HONOUR & BROWNING 2007]. To complete the number of stakeholders, different
possibilities exist, for example adopting the different stakeholders from the lifecycle
perspective, yet it is as crucial undertaking to introduce the stakeholders early in the process
and with appropriate methods, as it is to identify their needs, i.e. the expected benefits and
sacrifices. The integration of different stakeholders, the appropriate methods for their
incorporation and the crucial phases of integration during the lifecycle are discussed in
numerous publications, which above all consider the integration of the customer as a
stakeholder (for an overview, see e.g. KAIN et al. 2009).

In the context of product lifecycle management (PLM), product data management (PDM) is
usually closely connected as enabler of the product lifecycle management itself [STARK 2005,
pp. 233ff.]. Product data management represents the storage and information management of

160 5. Coping with product architecture

the product data, utilized and extended with further assets, such as the workflow management,
coping with multiple versions of data, etc. [STARK 2005, p. 243].

The challenges in product lifecycle management can be summed up as the consideration of
relevant phases of the lifecycle and resulting states of the product architecture, the integration
of stakeholders and their needs (as discussed in chapter 5.3.1), the coping with changes, both
reactive and proactive, and the management of the information relevant for all lifecycle
phases.

5.7.2 Conclusion
The existing methods allow for the variant management, each from a certain perspective, to
achieve modularization, optimize cost, reduce development expenses, eliminate variants etc.
Projects with industry have shown that companies lack the ability to enable transparency for
all stakeholders involved, as well as being deficient in gaining an overview over the complex
interdependencies between the different aspects of variant management. The overall optimum
solution is thus seldom acquired. The cause-and-effect chains containing domain-spanning
linkages, in particular, are hard to grasp intuitively, and knowledge about those linkages and
related effects barely exists. The dynamic of the whole variant management system shows in
the impact of activities within one domain on other domains. For example, the management of
the variants offered within the product portfolio from a sales perspective might allow for the
satisfaction of the customer needs and thus require no further optimization. The technical
system in terms of carry-over parts, basic modules, interfaces of modules, manufacturing etc.
might nevertheless require optimization to allow for the desired company profit.

As for the management of product architectures, the lifecycle perspective and the stakeholders
within it pose a large constituent for the process of decision-making during design. The
challenge for the systems architect is to interrelate the product architecture with the demands
of the stakeholders and lifecycle, in a way that the resulting product is introduced successfully
and maintains its value over time. The translation of the needs of lifecycle and stakeholders
into product properties, i.e. measurable requirements, is the main challenge to face.
Additionally, the translation of needs and their fulfillment has to be monitored and controlled
over time, thus supporting the iterative and recursive process of design.

5.8 Overall requirements to the solution
After the discussion of the existing approaches to the separate steps of product architecture
management, the following sections point out overall requirements to the solution to be
defined, which cannot be solved by the combination of existing approaches, methods and
models. Chapter 5.9 will then combine all of the requirements, based on the discussion of the
sections in chapter 5 and will conclude with the complete description of demands to the
solution, for which chapter 6 provides the groundwork, while chapter 7 describes the overall
approach to the management of product architectures.

The description of the situation in chapter 1 and the discussion of approaches to complexity
and product architecture management in chapters 3 and 5 pointed out that the successful

5.9 Conclusion 161

coping with product architectures requires a consistent support of the product lifecycle
throughout all phases.

As such, consistency is required, not only along the process, which is to be supported, but
also for the detailing of the product architecture entities along the process.

Given the consistency throughout the process and detailing of product architecture entities,
the approach has to be able to capture the different discussed entities of product architecture,
as well as the given goals in the context of different product architecture projects. This
comprehensiveness is to be achieved by the consistent consideration of the process, as well
as the capability to cope with the upcoming relevant entities and the purposeful interrelation
of those. A solution is required that combines existing methods according to the respective
goals and circumstances [compare WEBER 2005a].

As a last overall requirement of the solution, flexibility is required to allow for the capability
to adapt to different project goals and available information, thus not forcing the user of the
approach to gain all possible information to be able to apply the method. As a second cause
for the requirement of flexibility, the adaptability during application to new situations has to
be granted. The need for adaptation can arise from recursive or iterative procedures resulting
in new results in different domains, or the change of product architecture entities, such as
requirements or technologies along the application of the approach.

5.9 Conclusion
Based on the previous discussions and elaborations, the solution requirements can be summed
up at this point, identifying the solution requirements and proposing means of addressing the
remaining gaps. The overall requirements of the solution were discussed at the end of the
previous section and in chapter 1.2, and are summed up as:

• Consistency (support of recursive and iterative procedures);

• Comprehensiveness (consideration of different relevant entities on different levels of
concretization and incorporation of stakeholder perspectives);

• Flexibility (modeling approach to couple existing methods and models, based on an
adaptable procedural model).

As a result, the approach is intended to enable:

• The capturing of reactions between levels of abstractions and across domains
(against the background of different goals);

• The disintegration of existing hierarchies within domains;

• The search for solutions on all levels, both hierarchical (consistency) and on the basis
of different entities (comprehensiveness).

6. Constituents of the solution approach

The remaining challenges for the management of product architectures require the addition
of a number of constituents to enable the existing methods to interrelate, and to fulfill the
requirements for the synthesis of product architectures. The following sections propose a
number of additions to existing solutions, with respective examples, to bridge the remaining
gaps. First, the modeling of existing approaches, previously discussed in the context of
functional modeling, is presented in combination with the MDM approach, enabling the
transfer of existing methods into a generic notation. Second, the coping with hierarchies and
underlying paradigms is discussed, proposing a procedure to incorporate hierarchical
considerations into an overall approach. To support the synthesis on the basis of existing
solutions across the entities of the product architecture, an approach is introduced to
systematically establish a model for the synthesis of product architectures. Finally, the
comprehensive modeling of the solution space is proposed, enabling a more comprehensive
overview of solutions than existing synthesis approaches.

6.1 Modeling in MDM notation
The coupling of existing methods requires the transfer of the generic modeling information
into MDM notation, to enable the application of the powerful means of analysis based on the
MDM approach and Graph Theory. The procedure can be broken down into the following
steps:

• Identification of entities (elements) of the method

• Identification of relations

• Decoupling of classes of entities and relations into discrete matrices

• Extension of information (if useful) using domain mapping

The first step includes the classification of the elements of the method. For the flow-oriented
functional model, for example, the entities’ states and operations exist. In the sense of domain
mapping, it is important to separate the different classes from one another and identify the
boundaries of each class precisely.

The same applies for the relations of model entities. For the case of the flow-oriented
functional model, directed dependencies exist between operations and states. According to the
semantics of the model, no direct relations exist between different states or different
operations.

Once the semantics of the model are clearly defined, the content of the model can be
transferred into the MDM model, incorporating all of the information from the model. For the
given example, the DMMs of states to operations and operations to states exist in the model,
as is indicated as step 1 in the following figure.

164 6. Constituents of the solution approach

As a last step, the DSMs of the model can be computed, indicated in steps 2 and 3 in the
following figure. As a result, for the given example the DSMs of states and operations can be
analyzed using the metrics and techniques described in chapter 5.5.6.

Based on these rather simple steps, many models of working methods, be they functional
models as discussed, FBS systems, or the approaches of QFD or FMEA (compare chapter
5.6.3) can be transformed into the generic modeling approach of the multiple domain matrix.
The usage of the modeling has to be discussed in each case, yet the transformation allows for
the coupling of methods, as the following sections will show, and thus supports the continuity
of information along iterative and recursive processes. As a second benefit, the models are
accessible to the numerous mathematical and structural optimization and analysis approaches.

6.2 Coupling of methods and models
If the models of a method are transferred into matrix notation, the resulting matrix model can
be interrelated with further existing models, such as relational functional models or
components [DEUBZER & LINDEMANN 2008]. Outcomes of methods reflect directly on one
another. In the case of the discussed functional models, for example, the operations pose the
linkage between both functional models. The additional adding of components results in an
even more complete picture, again enabling the coupling to methods such as QFD or FMEA,
for example. The following figure depicts the MDM as a combination of relational and flow-
oriented functional model.

Figure 6-1 Transfer of a functional model into MDM notation

op
er

at
io

ns

state A state B operation 1

states operations

st
at

es
 2

1
1

3

3

function

2

6.2 Coupling of methods and models 165

Figure 6-2 Coupling of different models in MDM notation (schematic)

Figure 6-3 Coupling of different functional models in MDM notation (example)

op
er

at
io

ns

states operations

st
at

es

harmful parts

ha
rm

fu
l

pa
rts

op
er

at
io

ns

state A state B operation 1

states operations

st
at

es
 2

1
1

3

3

function X

2

harmful

ha
rm

fu
l

harmful
function 1

„causes“

„is introduced
to prevent“

function Y

4

5

166 6. Constituents of the solution approach

6.3 Coping with hierarchies and recursive procedures
To efficiently cope with hierarchies and recursive procedures, hierarchies are required to be
incorporated into the model. The dilemma of hierarchical visualization is the one-dimensional
depiction of content. The following figure, for example, shows the hierarchical “part of”
decomposition of the power-train functions of an automobile. Additionally, a few linkages
from a networked perspective are added, pointing clearly to the limitations of the model. As
such, only one domain is depicted here, yet the depiction of a networked view is already
difficult.

The DSM approach evolved over the years, incorporating different domains horizontally.
Already a powerful means of systems engineering, DMMs were added to widen the scope of
the approach. The integration and extension of both approaches within the MDM allowed for
a comprehensive combination of domains and the active coping with them.

Figure 6-4 Hierarchical functional decomposition with denoted networked view

Move vehicle

Store energy

Electrical

Chemical

…

Convert
energy

Mechanical/
electrical

Chemical/
mechanical

Mechanical/
mechanical

Rotatory

Translatory

…

Use energy

Electrical

Chemical

…

Hierarchical view

Networked view (incomplete)

6.3 Coping with hierarchies and recursive procedures 167

However, the application of the approaches requires a defined level of abstraction before
information acquisition, which poses problems for the user. Information cannot always be
consistently captured on a defined level of abstraction in all relevant domains, thus resulting
in the need for compromises within the data quality. Since hierarchical views contain useful
information (similar to categories or classes) that is lost in networked views and vice versa, a
solution to incorporate both is necessary.

The goal of the presented approach is thus to incorporate both views into the model, and
enable not only the application across domains, but also across levels of a domain’s hierarchy.
As such, the methods are able to provide application support throughout the processing of
structures (e.g. the concretization of product architectures), and can overcome difficulties
when dealing with hierarchies and networks of systems in parallel.

The example of functional modeling is again stressed to explain the procedure. The following
figure depicts the functional model of a drivetrain in a flow-oriented manner on very abstract
level, and concretized on a more detailed level, in the sense that different energy types can be
stored, converted and used.

Figure 6-5 Development of matrix-based approaches

Figure 6-6 Adding the dimension of hierarchical layers to the MDM approach

DSM DSM DMM

Consideration
of one domain

Consideration
of two domains

DSM

Computing of
3 or more domains

DSM DMM

DSM

DMM DSM

DMM

DMM

DMM DMM

DSM

DSM

Consideration of
hierarchical layers

Computing of
various domains

Hierarchical layers
of different domains

DSM DMM

DSM

DMM DSM

DMM

DMM

DMM DMM

DSM DMM

DSM

DMM DSM

DMM

DMM

DMM DMM

168 6. Constituents of the solution approach

The depiction of an example of an automotive drivetrain is shown below, using concrete
operations and states, which in the above models were generalized and combined to depict the
higher-level view. Thus, the same system is shown in the different figures, yet on different
levels of abstraction.

Figure 6-7 High level functional models

Figure 6-8 Concrete functional model

chemical! X

Y " mechanical

Convert Energy Use Energy

chemical

electrical

Store Energy

Store energy Convert energy

Convert and
transmit

movements,
energy, and forces

X = mechanical

X

 =
 Y

Y = electrical

X = electr
ica

l

Energy
consumer

Use energy

Energy
source

Energy at
source

Stored
Energy

Converted
Energy

Energy at
consumer

Fuel in Tank

Fuel under pressure

Voltage at battery

Torque at engine
shaft

Torque at Motor

Torque at drive shaft

Torque at
shaft

Electricity

Torque at
transmission

Operating
temperature CE

Transmit drive power to road Distribute drive power to
wheels

Transfer torque and speed

Frictional connection of clutch
Electromotive energy

conversion
Combustion-engined energy

convertion

Charge battery Store fuel

Control electrical energy Introduce fuel to combustion
engine

Dissipate heat
Torque at

transmission

6.3 Coping with hierarchies and recursive procedures 169

The models depicted in the above figures all show information acquisition based on existing
approaches, i.e. the flow-oriented functional model, differentiated by the levels of abstraction.
It becomes clear that information in not available in all models, though all pose valid
contributions for structural variation for design synthesis, for example. Recurring difficulties
appear when integrating models (and their inherent information) for a comprehensive view.

Across the different models, a hierarchical model can be established, joining all three models
in a four-level hierarchical structure. The hierarchy within is composed in the sense of “part
of” relations. “Store energy”, for example, is part of the overall function “move vehicle”,
while on the other levels of the hierarchy, chemical or electrical energy can be stored. In the
given example, stored chemical energy is the storage of fuel, while the stored electrical
energy is represented by the charging of the battery.

The hierarchical model provides a valuable overview of the system, yet neglects structural or
networked information, and leaves numerous possibilities to couple the functions on level 4
for a fully functional drivetrain. As the introductory example showed, a combination of both
views within this visualization turns out to be possible.

The following steps propose a procedure to couple a hierarchical and networked view into the
model. The core idea is the definition of hierarchical levels as distinct domains, and as such
the modification of the MDM approach. The following figure depicts that process, showing
the first benefit, namely the avoidance of parallel depiction of energy types (chemical,
electrical etc.).

Figure 6-9 Hierarchical functional model

Electrical

Chemical

Use and
Transmit/

Transfer Energy

Store Energy

Convert Energy

Move Vehicle

Mechanical

Electrical !"
mechanical

Chemical "
mechanical

Transmit drive power to road

Distribute drive power to wheels

Transfer torque and speed

Electrical

Frictional connection of clutch

Electromotive energy conversion

Combustion-engined energy
conversion

Charge battery

Store fuel

Control electrical energy

Introduce fuel to combustion engine Material

Thermal Dissipate heat

170 6. Constituents of the solution approach

Based on the establishment of the MDM, the given information within the models can be
incorporated as well. The following figure shows the level 2 and 3 hierarchies into three
domains, allowing for the identification of relations within hierarchical DMMs, with the
possibility of computing the DSMs within each domain.

After the depiction of all inherent information, the computation of the domain mapping can be
conducted across the different levels of the hierarchy as well, allowing for the identification

Figure 6-10 Establishing MDM domains

Figure 6-11 Completing MDM information

Store

Convert

Use

1

2

3

Mech/El

Mech/Mech

…

Chem/Mech

A

B

C

D

Chemical

Mechanical

Thermal

Electrical

a

b

c

d

store
energy

chemical

electrical

…

convert
energy

mechanical/
electrical

chemical/
mechanical

mechanical/
mechanical

use energy

chemical

electrical

…

1 2 3

B

C

A

b

a

b

a

Store

Convert

Use

1

2

3

1 2 3

Mech/El

Mech/Mech

…

Chem/Mech

A

B

C

D

X X X X

A B C D

X
X

X

Chemical

Mechanical

Thermal

Electrical

a

b

c

d

X X

X X

X

X

X

X

a b c d

X X
X

X

X

X X
X

X X X

X
X
X X
X

Hierarchical
information

Functional
structure
(DMMs identified,
DSMs processed)

6.3 Coping with hierarchies and recursive procedures 171

of clusters in the sense of branches of the hierarchy, and, more usefully, the transfer of
detailed models into higher levels of the hierarchy.

As the above figure illustrates, the depiction of hierarchies allows for the incorporation of
different paradigms into the hierarchical model. These can coexist in an interrelated manner,
depending on the chosen domain mapping (compare chapter 5.4.3). The left part of the figure
shows the “part of” dependencies between functions, and the right shows a computed
networked view within the same level of abstraction. Since the details stem from one concrete
solution, the computed structure on level 3 depicts exactly that solution, not the complete
possible linkages depicted in the original model. As such, the hierarchical information can
serve as a filter between the different levels of abstraction, each of which contains different
original networked data.

Of course, the approach is feasible in different domains (components, functions etc.), and can
further help in uncovering inconsistencies in the model through comparison of hierarchical
and networked views (e.g. by clustering). The integration of both views, hierarchical and
networked, enables capturing the benefits from both perspectives. The calculation of matrices
allows for a completion of yet-incomplete models on different levels, adding the networked
information to formerly unconnected levels. The detailing of a model along the process is
possible, as information can be computed across hierarchical levels. The following sections
will make use of that capability. As a final benefit, the findings in later phases of the
concretization process can be aggregated to the previous levels, allowing for navigation
through the levels of abstraction.

Figure 6-12 Computing hierarchical information and networked information on the functional level 3

Functional level 3
hierarchical view
(View was computed using
hierarchical information given in
the level 2 functional domain)

Functional level 3
networked view
(View was computed using
networked information given in
the level 4 functional domain)

172 6. Constituents of the solution approach

6.4 Supporting synthesis of product architectures
To apply the framework for product architectures to synthesis, the functional modeling
approach is stressed for the following example as well, following the trains of thought of
renowned synthesis approaches (compare chapter 5.5.2). To allow for a consistent application
of different methods, the MDM is used as a backbone for application in this case as well.
Existing models can be transferred into matrix notation to allow for a consistent strategy
across the levels of abstraction, as discussed in the previous chapters. The following sections
will introduce the meta-model of the presented example and give an overview of the potential
support of product architecture synthesis, based on the meta-model.

The meta-model of the MDM, depicted in the following figure, is chosen to clarify the
support to product architecture synthesis, displaying the interplay of functions (as a
combination of operations and states, as discussed in the flow-oriented functional model
(compare chapter 5.5.2)) and physical parts.83 Considering the nearly solution-neutral
functional model as a starting point, the decomposition of a flow-oriented model is conducted,
according to chapter 6.1, resulting in the operations and states matrices of the meta-model.
The entities of the flow-oriented functional model are depicted in the domains “Operations”
(O) and “States” (S).

Accordingly to the approach of flow-oriented functional modeling, the definition of the
required system functions can be conducted by identifying the necessary types of flow of the
system (e.g. signal-, material-, information- or energy-flows). As varied types of
dependencies can be distinguished (compare chapter 5.4.3), the different types of flow can be
identified separately and integrated in a ΣMDM. The chosen level of abstraction in the given
example is that of core technical functions concerning energy flows, while other types of flow
were not considered in the presented case.

Based on such a functional model of the system, the synthesis can be conducted. In the
present case, the use of existing physical parts (P) is chosen as an example. Existing physical
entities (such as in-house solutions of predecessors, solutions of competitors etc.) can be
assigned to the combination of operations and states, depending on the main operation and
input and output states of the physical entities. Given a functional decomposition of the core
system functions, the assignment of physical parts (solutions) can be considered similar to the
composition of a morphological matrix (compare chapter 5.5.5).

83 The integration of effects and working principles is discussed in the following chapter 6.5, completing the
conventional synthesis approach.

Figure 6-13 Meta-model of the example

O S P
O O Sout OP

S Sin S Pin

P PO Pout P

Operations
States

Physical Parts

O, S, P = Operations, States and Physical Parts (DSM)
Stin, Stout = Input- and Output-States of Operations (DMM)
Pin, Pout = Input- and Output-States of Physical Parts (DMM)
PO, OP = Coupling of Operations and Physical Parts (DMM)

6.4 Supporting synthesis of product architectures 173

The resulting DSM of physical parts (P) then represents – in contrast to other approaches –
the solution space of technological solutions. Whereas other approaches allow for the analysis
and definition of discrete solutions as a combination of a selected number of parts, the
presented approach enables the depiction of the cross-linked components within the network
of solutions, allowing for the identification of potentials, overlaps and restrictions within the
solution space.

To clarify the introduced approach and meta-model, the following sections introduce an
example of the application. Similar to previous examples, the drivetrain of an automotive
vehicle was chosen, with the focus on the energy flow and the provision of relevant user
functions.

Identified user functions are “drive conventional”, “drive electric”, “boost”, and “recuperate”.
From these, the core functions need to be derived on an abstract level. To describe a system
on that level, a small set of rudimentary functions is sufficient to describe the system. The
resulting operations “store energy”, “convert energy”, and “use energy” were chosen for the
given example (compare the level 2 functional decomposition of the example in chapter 6.3).
The marks in the matrix represent energy flows from row to column.

These operations can be detailed by the systematic combination with their possible input and
output. For the chosen notation, two DMMs serve as an extension of the operations-DSM to
depict their input and output in terms of energy types, with energy flows depicted from row to
column.

According to the arithmetic matrix operation given in the following equation 6-1, the possible
conversions between different energy types can be depicted in a single DSM.

 Figure 6-14 Resulting operations (O) DSM

Figure 6-15 Input and output DMM between operations (O) and energy states (S)

O1 O2 O3 S1 S2 S3 S4
O1 Store X X X X
O2 Convert X X X X X
O3 Use X X X
S1 Chemical X X
S2 Electrical X X
S3 Mechanical X X
S4 Thermal

174 6. Constituents of the solution approach

Based on the chosen input and output energy types, individual possibilities can be identified
(for example, nuclear energy or radiation is not an issue, considering the system border in
automotive engineering) to allow only valid solutions in the following steps. As depicted in
the following figure including the resulting DSM of energy states, thermal energy output is
not reused in the current systems considering the main energy flow. Of course, secondary
systems, such as the cooling, are required to handle the thermal energy output. Considering
the main energy flow, thermal energy might be reused for gaining electrical energy in future
concepts. Structural characteristics as such can point out future improvements and priorities in
innovative product architecture design and support the creativity during the design process.

Technical subsystems are identified and coupled with operations and their respective input
and output concerning the given energy states in the established MDM. The identification of
technical subsystems can be conducted on the basis of predecessors and products of other
product lines within the company, the benchmarking of competitors’ products, and the
screening of upcoming technologies. As an example, a conventional internal combustion
engine is integrated into the model. The engine is hereby represented as a system element
with the core function of converting energy, requiring chemically-bound energy as an input
and providing thermal and mechanical energy outputs.

 Equation 6-1 S = Sin ⋅ O ⋅ Sout

Figure 6-16 Derived DSM of energy states (S) low right

O1 O2 O3 S1 S2 S3 S4
O1 Store X X X X
O2 Convert X X X X X
O3 Use X X X
S1 Chemical X X X X X
S2 Electrical X X X X X
S3 Mechanical X X X X
S4 Thermal

6.4 Supporting synthesis of product architectures 175

Based on the given information, a matrix of physical components can be derived according to
equation 6-2, showing the network of components concerning their energetic interfaces. As a
result, the DSM of physical parts (P) shows the sum of all available physical parts and their
combination.

The resulting DSM (P) of physical parts is depicted below. It shows the physical parts of three
different existing drivetrain solutions, which were considered from functional and physical
parts perspectives. The dependencies were marked within, indicating the energy type
“chemical” (Ch), “electrical” (El), “mechanical” (M) or “thermal” (Th).

 Figure 6-17 Integration of Physical Parts (P)

Equation 6-2 P = Pin ⋅ S ⋅ Pout

O1 O2 O3 S1 S2 S3 S4 ... P1
O1 Store X X X X
O2 Convert X X X X X X
O3 Use X X X
S1 Chemical X X X X X X
S2 Electrical X X X X X
S3 Mechanical X X X X
S4 Thermal
... ...
P1 ICE X X X ...

176 6. Constituents of the solution approach

Based on the information given, rules can be derived for the automated synthesis of valid
solutions. For example, starting from one physical part with the core operation “use” to one
physical part with the core operation “store”, following necessary paths through the graph,
which represents the numerous physical parts and their energetic interrelations. As a result,
solutions are derived, which can be evaluated by their fulfillment of user functions
represented by paths within the physical parts DSM. To give an example, the user function
“drive conventional” requires a storage component of the type “chemical” with a link to a
converter component of the type “chemical-mechanical” which again links to a related
component to use this energy.

The above example has methodically shown possibilities for conducting the synthesis of
product architectures, based on the methods introduced in chapters 6.1, 6.2, and 6.3. As was
discussed, the major advantages of the approach are the systematic exploration of the solution
space, on the one hand, and the continuous application of models and methods, allowing for
the depiction of functions, physical parts, and their interconnectivity. The following chapter
will discuss these exact advantages and point out further ways to interact and cope with the
networked depiction of the solution space.

Figure 6-18 Portion of the resulting DSM of physical parts (P)

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
17

P
18

P
19

P
20

P
21

P1 M M Th
P2 El El El
P3 El El El
P4 Ch
P5 M
P6 M M M M M
P7 El El M El
P8 M M M
P9 El El M M M M Th
P10 M M M
P11 M M M M M
P12 M M M
P13 M M M
P14 M M M
P15 M M M M
P16 M M M M
P17 Ch Ch Th
P18 Th Th Th Th
P19 Ch Ch
P20 Th
P21 Th Th

Power Supply Transmission

Drive Side Cooling

Ch = chemical
El = electrical
M = mechanical
Th = thermal

6.5 Depiction of the solution space 177

6.5 Depiction of the solution space
Based on the approach discussed in the previous chapter, the systematic synthesis of product
architectures can be supported by systematically defining the logical dependencies of the
solution space (in the given example functions and physical parts) for the generation of valid
solutions, manual or automated. Different possibilities exist for the evaluation of solutions,
based on the graph representation of the solution space. In the example presented, those
evaluation criteria are user functions, degree of efficiency concerning the involved energy
conversions and remaining potential in terms of “leaf nodes”, such as the mentioned thermal
energy output. Additionally, a clustering of the solution space allows for a preliminary
definition of desirable modules within the space of possible solutions.

The following figure shows the portion of the solution space, depicted as a matrix in chapter
6.4. Significant modules and characteristics of the graph appear, supporting the definition of
subsystems to be discussed in the early phases of design. Since the solution space is depicted
as a whole, clustering for variants can influence decisions for or against conceptual solutions
at that early stage.

Constraints within the solution space can be depicted by the identification of structural
characteristics within the solution space. For example, bridge edges (the encircled edge in the
following figure) connect different modules of the solution space. If the connection is
necessary in terms of the realization of the system’s user functions, the existence of the
entities (in the given example physical parts) providing that edge is inevitable. If the side
effects or properties of the given physical parts are unsatisfactory, a focused search for
alternative solutions may be conducted. Alternative solutions should then allow for the
substitution of undesirable components, and at the same time enable the required
functionality.

Figure 6-19 Portion of the solution space (P) in graph depiction

178 6. Constituents of the solution approach

As well as constraints, potentials within the solution space can be depicted by the use of
structural characteristics. In the given example, user functions can be translated to paths in the
graph model of the solutions space. The user function “drive electric”, for example, requires a
complete path between relevant drive units, such as an electric motor, and the vehicles wheels
(encircled in the following figure). The different paths between these nodes describe possible
solutions and the node properties (such as degree of efficiency, cost, weight, part of a product
family etc.), which characterize the solutions and support the process of decision-making and
evaluation of solutions. The different paths can be identified based on generic graph-
theoretical algorithms. By adding further technologies and components, the solution space
widens and allows for the identification of potentials within. The number of paths increases,
as does the number of known solutions and their improvements.

Figure 6-20 Identification of Constraints (P)

6.5 Depiction of the solution space 179

The identification and evaluation of valid solutions is conducted by establishing the present
fulfillment of user functions, their requirements and quality. The recuperation of energy, for
example, requires the existence of a path from wheels to battery, whereas the user function
“boost” asks for the valid paths of “drive conventional” and “drive electric”. As in the
identification of potentials, the different paths for required user functions can be evaluated,
enabling the selection of most suitable solutions. In the given example, the choice of solutions
and the identification of user functions are realized by the identification of energy flows
within the product architecture. Other use cases might require focusing on other flows or
depending on different characteristics of the product architecture.

So far, existing solutions of the product portfolio can be depicted within the solution space.
Alternatives for physical parts or paths of energy flow within the solution space can be
allocated. An alternative search for solutions can be conducted on the functional level through
variations at the functional level, instead of or in addition to physical parts.

Figure 6-21 Identification of Potentials (Ph)

Drive Unit

Drive Unit

Wheels

180 6. Constituents of the solution approach

To exceed the level of synthesis in terms of the combination of known physical parts, the
following sections aim for the support of the solution finding, based on the design of
solutions, rather than the composition of architectural variants.84 While radical innovations
largely stem from the systematic variation of product architectures [compare HENDERSON &
CLARK 1990, p. 12], synthesis is commonly supported by functional abstraction and the
following application of working principles to physically enable the realization of functions.
The above figure shows a network of working principles (according to LAUER et al. 2008,
compare also GRAEBSCH et al. 2009 and DEUBZER & LINDEMANN 2008), interlinked by their
respective input- and output-forms, i.e. pneumatic or hydraulic pressure, electric charge, force
etc. The created solution space intends to spark creativity in a manner similar to checklists
(compare chapter 5.5.5), but couples these systematic approaches with matrix-based
techniques (compare chapter 5.5.6) and functional models (compare chapter 5.5.2 and the
approaches discussed in chapters 6.1 to 6.4).

As a result, identified shortcomings and potentials based on the application of methods, as in
chapter 6.4, can be addressed within the application of matrix-based analysis and modeling
techniques. This broadens the solution space and points to new solutions, based on the
analysis of existing functional and physical system representations.

The benefits of the approach include (compare DEUBZER & LINDEMANN 2008):

84 For an overview on different types of synthesis consult the introductory section of chapter 5.5.

Figure 6-22 Depiction of solution space in graph form (from DEUBZER & LINDEMANN 2008)

Energy Forms
(states)

Working Principles
(operations)

6.6 Conclusion 181

• The possibility to work thoroughly and systematically through the solution space and
explore possible solutions, as well as their impact on the functional and physical
system representation;

• The possibility to correlate different layers of abstraction and analysis through
coupling of e.g. states, operations, functions and physical parts;

• The identification of limitations and potentials, as well as their exchangeable
solutions;

• Reasonable decision-making processes through achieving transparency of available
solutions and their benefits or shortcomings.

6.6 Conclusion
The constituents to the approach discussed propose the use of the MDM approach for the
modeling of the product architecture and the product architecture-related domains.
Fundamental requirements were defined, such as the modeling in MDM notation, the
coupling of methods and models, and the coping with hierarchies and recursive procedures.
The methods were enhanced to suit not only analysis- but synthesis-purposes as well. The
definition of conceptual solutions was shown, based on clear functional descriptions of
existing technical systems. In the final example, focus was placed on the decoupling of a
system into operations, states, and physical parts, to enable the application of networked
models of working principles and the depiction of the solution space based on that
representation.

The use of functional modeling in matrix notation allows for the definition of design rules to
be conducted manually or automatically and for a structured comprehensive depiction of the
solution space. Approaches such as clustering for modularization, path analysis and further
structural characteristics can be applied within the overall solution space, enabling informed
decisions in early phases of design. Analysis of the different solutions is enabled through the
definition of user functions, properties of physical parts (such as weight, cost etc.), and
operations (such as the degree of efficiency for example).

Radical innovations are supported by a fundamental and systematic variation of the system
structure, as well as the possibility of adding new components (in the given example i.e. fuel
cells or thermo-electric-converters etc.), thus expanding the solution space systematically.

Whereas the implied methods alone allow for a definition of discrete solutions, the presented
approach supports the definition and depiction of the overall solution space, the visualization
of solutions therein and the comparison of possible solutions. The MDM approach was
enhanced by the cross-linking of different levels of abstraction, the composition of these
levels, and the systematic navigation through them. The original MDM approach allows for
the linking of domains as a snapshot of the current development situation, but not for the
support of the establishment of models throughout the process, their composition and
management.

From the perspective of variant management, the following advantages show (compare
DEUBZER & LINDEMANN 2009c):

182 6. Constituents of the solution approach

• The use of the matrix notation for variants enables an extremely high number of
variants to be intuitively represented and processed.

• The representation of variant spectra with strength based graphs enables connections
between variants to be recognized intuitively. Transparency is established, which,
through its absence, is one of the main causes for the existing problems in handling
variant diversity.

• The configuration rules, restrictions, and prohibitions, common when designing
product portfolios, can be represented very efficiently in the matrix.

• The methods of cluster analysis enable the identification of core structures of variants
and part numbers. This forms the basis for optimization of product programs. For
instance, when the variants available in a product range are represented with the
methodology, further opportunities for optimization show, as the variant matrix
contains all possible feature combinations. The entire product program that is possible
in theory can be derived by the analysis of the completely cross-linked clusters.

From the perspective of product architecture synthesis, the following advantages can be
summed up:

• Systematic exploration of the solution space is enabled through the comprehensive
depiction of the solution space, the coupling of domains and levels of abstraction, and
the application of powerful analysis techniques.

The evaluation of solutions based on the graph representation of the solution space enables
the comparison of solutions from a structural point of view, since methods for structural
analysis are applicable during the synthesis phase. The impact of changes and new solutions
becomes transparent on the different levels of abstraction and in all different domains.

7. Solution approach: methodology to manage product
architectures

The following chapter incorporates the previous discussions to provide a procedural model,
based on the MDM methodology, which elaborates on the relevant steps for product
architecture management, based on the tasks of systems architecting. The procedure is linked
to the methods identified in the previous chapters, and, as such, provides an outline for the
management of product architectures, supplying the relevant entities, relations and outcomes
of the respective methods. The procedure is introduced together with the product architecture
framework, providing the relevant entities, as well as an appropriate model. This approach
will be applied to an example from the automotive industry in chapter 8.

7.1 Overview
The comprehensive approach for the management of product architectures consists of three
core elements. The first pillar is a framework, depicting the different entities of product
architectures and their interrelations (compare chapter 4.3). The second element is the model
for product architectures, incorporating the discussions of the handling of product
architectures (compare chapter 4.2). As a last constituent of the approach, a procedural
model is defined, applying the framework and model. The procedure is not to be understood
as sequential approach for the management of product architectures, but identifies relevant
steps during the process, which can be chosen on demand, depending on the respective
situation. Relevant cutouts of the framework and feasible methods accompany the steps of the
procedural model (compare chapter 5).

Figure 7-1 Overview of the solution approach

Model Procedure Framework

184 7. Solution approach: methodology to manage product architectures

The following chapters introduce and discuss the three elements of the approach in detail. The
framework then builds on the entities of the product architecture identified in chapter 4.3,
differentiated into the superordinate classes of goals, objects, and action. The product
architecture model proposes the modeling technique with the capability of grasping the
complexity of the product architecture framework and relies on the proposition of graph and
matrix visualization (compare chapter 4.2). To complete the picture and enable the application
of appropriate methods, the proposed procedure allows for the identification of situation-
specific relevant cutouts of the framework and respective methods. The procedure is largely
based on the processes of system analysis (compare chapter 5.4.1) and synthesis (compare
chapter 5.5), while the aspects of functional modeling, evaluation, goal definition, etc. are
largely part of – and thus incorporated into – these steps.

7.2 Framework for product architecture domains
The framework for product architecture modeling was introduced in chapter 4.3, including the
most distinctive entities of the product architecture. The discussion of different methods for
product architecture management in chapter 5 provides numerous linkages between those
entities, based on the models and logical linkages of each method. The six major entity
domains of the product architecture framework are the domains of requirements,
components, the working and functional domains, property domain, and lifecycle domain.
While the requirements and the lifecycle stand for themselves as the system of goals and the
system of action, the domains of components, the working domain, functions, and the
property domain are grouped as the system of objects.

Different methods combine those domains, such as QFD, which combines the components
domain in terms of features with the requirements domain in terms of customer requirements
(compare the section “Quality as evaluation criterion” in chapter 5.6.3). The domains are not
only interrelated, but also detailed by a number of methods, such as a TRIZ-functional model,
which provides linkages between primary, secondary, and harmful functions, all within the
functions domain (compare the section “Relational functional model” in chapter 5.5.2). While
this differentiation is made in the meta-model of the product architecture framework (see
following full-page figure), other details are left out to allow for the framework to deliver a
clear overview. The flow-oriented functional model, for example, separates functions into
states and operations (compare the section “Flow-oriented functional model” in chapter
5.5.2), which are not depicted in such detail in the meta-model.

Figure 7-2 Major entity domains of the product architecture framework

7.2 Framework for product architecture domains 185

To complete the framework, the literature review of chapter 5 provides further linkages
between the major entity domains, resulting in a meta-model as basis for product architecture
management (see the following full-page figure). The meta-model shows the interrelations
between product architecture entities, providing the outline for product architecture
management activities. Since the meta-model provides only a rough outline, the numerous
domains can be detailed to suitable granularity for each application, in relation to the
respective step of the procedure. Not all entities are documented in the framework, to
concentrate on the most relevant. The application of the model in chapter 8 will underline this
practicability. It is important at this point to note, that particular projects require additional
entities, which in turn need to be incorporated into the framework, depending on the situation.
The following paragraphs discuss the major entity domains of the framework, the respective
domains and the interrelations in detail. The meta-model exclusively depicts direct
interdependencies, which is of great importance for the outcome of the application. Since
indirect dependencies are often within the thoughts of the users, one or the other intuitive
interdependency might be missing at first glance, yet implicitly available through indirect
dependencies.85 The meta-model is read, accordingly to the direction in the DSMs, as “row
influences column”.

The system of goals corresponds with the requirements as the major entity domain of the
product architecture framework. The sub-domains are formulated within, classifying the
occurring requirements depending on their source or category.86 The sub-domains, according
to the sources of requirements, are the customer requirements and requirements from other
stakeholders. The product requirements are further divided into technical-, performance-, and
functional-requirements, as well as requirements for the look and feel of the product (as an
example for non-functional requirements).

The inter-domain dependencies focus largely on the domains of functions and properties. The
requirements, of any sort whatsoever, demand a certain functionality or properties of the
product architecture. While this is the general rule, exceptional cases might demand certain
components or other entities of the component-domains, or certain physical effects or
principles (if customers or stakeholders are closely involved with the technical solution, likely
in business-to-business situations, for example). The hierarchical intra-domain dependencies
among requirements can be characterized as “causal” relationships, i.e. customer or
stakeholder requirements cause the existence of performance, functional or technical
requirements. Within each domain of requirements, the requirements possibly support or
contradict each other. While most of contradictions are caused by the technical solution and
are thus indirect dependencies (which is often the case for customer requirements),
requirements contradict or support each other directly as well, such as a maximum length
might contradict the sum of other desired dimensions.

85 Indirect dependencies can be visualized using domain-mapping logics, as discussed in the section on matrix-
based analysis approaches in chapter 5.4.3.

86 In comparison to the classification in chapter 5.3.5, focus was placed on product requirements (functional and
non-functional), rather than process or organizational requirements (depicted as domains in the system of
action), and the sources (here classified as customers and other stakeholders).

186 7. Solution approach: methodology to manage product architectures

Figure 7-3 Meta-model of the product architecture framework

7.2 Framework for product architecture domains 187

The entities of the domain of components can be grouped into sub-domains as well.
Parameters and features constitute the smallest entities of the sub-domains. Components and
assemblies are the larger physical entities of the components domain. For the generic
framework, assemblies were chosen as a grouping of components. In projects and applications
of the model, the hierarchies of physical entity domains often include a larger number of
levels (sub-assemblies, assemblies, modules, main-modules, products, etc.). Since the
principle behind the coupling remains the same, the components and universal assemblies
were chosen to clarify the composition of the domain.

As an inter-domain dependency, components fulfill requirements and functions (for example
stiffness, corrosion etc.), and thus are linked to the requirements domain. Furthermore, since
harmful functions are also part of the framework, the link-type “cause” is also valid for the
interrelation of components and functions. In most cases, functions of the product architecture
are not fulfilled by a single entity of the component domain, but by a number of entities.
Components, and especially assemblies, make use of physical effects and working principles,
while defining properties of the product architecture on the other hand. Again, the properties
and characteristics of the product architecture are likely to be defined by a number of entities
(compare structural characteristics in chapter 5.4.3) rather than one lone entity.

The composition of sub-domains already indicated the major intra-domain dependency type
of the components domain. Hierarchically, the smaller entities result in larger entities, such as
features result in components and components result in assemblies. Within each domain of
components, the dependency type was – admittedly vaguely – defined as “interrelate”. As was
discussed in previous chapters (compare 5.4.3), the dependencies between components can be
characterized as spatial, functional, material, energy, etc. At this point, it has to be clarified
that especially spatial dependencies have to be considered as direct dependencies, which can
hardly be deducted from other domains, while functional dependencies, material or energy
flows might as well stem from the functional domains (compare chapters 5.5.2 or 6.4).
Accordingly, the mentioned and further dependency types might apply respectively to the
project and use case. In addition, the interrelations between components can be defined by
interfaces, which then pose as an element between components.

The working domain provides the entity domains of physical effects and working principles.
Both bridge the gap between the components and the functional domains by providing
principal solutions to desired functions. Consequently, functional and component domains
represent the major interdependencies of working principles and physical effects.

While being used by components, the working domain is related by inter-domain
dependencies to functions as an enabler. To fulfill a function, working principles and physical
effects are required to provide the functionality in combination. This is an important notion,
since working principles seldom provide functionality alone, especially in the context of
complex product architectures. As was discussed in chapter 5.5.5, principles and effects pose
an important step during the synthesis process, concretizing functions to components.

Within their domain, working principles and physical effects also interrelate. Again, the intra-
domain dependencies are not further specified. The interrelation regularly focuses on the
input and output parameters of effects, but might also depend on the scale of the effects, e.g.
the amplitude of force provided as an input- and output variable.

188 7. Solution approach: methodology to manage product architectures

The domain of functions was intensively discussed in chapter 5.5.2, introducing numerous
functional models, their advantages and disadvantages. For the product architecture
framework, all relevant domains of functions were considered. Primary functions describe the
main functions of the product architecture or its main purposes. The supporting secondary
functions are required for the primary functions to take effect. As within the component
domains, more levels of hierarchy may apply for different projects, as the examples of
hierarchical functional modeling in chapter 5.5.2 have shown. Harmful functions are a major
achievement of the relational functional model. The introduction of harmful functions allows
for the identification of negative side effects as a result of desired functionality, the
identification of conflicts of objectives, and the respective sources of these effects. Since not
all of the qualities of the product architecture can be grasped by the introduced entities, the
domain of “ilities” is part of the product architecture framework, where the overall qualities
such as manufacturability, recyclability, etc. are included, to fully characterize the product’s
functionality.

Aside from the inter-domain dependencies discussed in the previous sections, the functional
domains relate to other domains in the following ways: where requirements demand a
product’s functionality, the resulting functions intend to fulfill the formulated (functional)
requirements. On the other hand, functions play their role in defining the product properties.
While components define properties, such as weight and other physical properties, functions
define the functional properties, both positive and negative, of the product architecture.

The intra-domain dependencies were intensively discussed within the context of functional
modeling. The hierarchical dependencies include the dependencies between the introduced
sub-domains, such as: primary functions require secondary functions; different functions
possibly cause harmful functions; or different functions are introduced to prevent harmful
functions.87 Since the functional models are heterogeneous in character, the dependencies
within each domain depend on the chosen dependency logic. Typical dependencies are
energy-, force-, information-, or signal-flows in the flow-oriented functional model, for
example. Other dependencies result from indirect dependencies, derived from the
dependencies of functions fulfilling components, requirements, etc.

The domains of product properties are strongly connected with the domains previously
defined, and conclude the system of objects. While properties are demanded by requirements
on the one hand, they are also defined by components and functions. Two sub-domains exist
within the product architecture framework. The first domain is provided by properties, i.e. the
general qualities of the product architecture, encompassing properties resulting from
components and functions. The product architecture characteristics describe the rather
architecture-specific properties, mainly represented by structural characteristics, as described
in chapter 5.4.3, resulting above all from the structural dependencies of the product
architecture entities. In general, properties need to be differentiated into desired and undesired
properties, while especially undesired properties result from the interplay of numerous entities
of the component and functional domains.

87 For a detailed introduction see the examples of functional modeling in chapter 5.5.2.

7.2 Framework for product architecture domains 189

While requirements propose desired properties, the resulting or actual properties possess
inter-domain dependencies to the requirements, in the sense of validating the product
properties. The validation of properties against requirements is an important part of the
framework, reflecting essential parts of the presented procedural model and other previously
discussed procedural models.88 Product properties and characteristics result from components,
functions, and the coupling of the numerous entities. In an ideal case, the resulting properties
reflect the desired properties, yet undesired properties occur frequently, especially in complex
systems. The interrelationships between properties on the one side and components and
functions on the other are deliberately documented in both directions. It is thus made clear
that the components and functions are designed to achieve desired properties, yet all
properties, whether desired or undesired, result from the interplay of architecture entities,
such as components and functions.

The intra-domain dependencies of the property domains behave similarly to the requirements.
Properties support or contradict one another, and are largely dependent on the indirect
relations resulting from the realization by physical components. Nevertheless, desired and
undesired properties contradict each other, for example material which highly stable as a
desired property but also brittle as undesired property. Such conflicts of goals have to be
solved, if possible, and allow for the comparison of solutions based on the desired and
undesired properties.

After the system of objects, the system of action represents the last group of domains within
the product architecture framework, entitled lifecycle domains. The domains within the
lifecycle group are heterogeneous and provide boundary conditions for the analysis and
synthesis of product architectures. The proposed sub-domains of the lifecycle group are the
organization, process, use cases, and the product family. Naturally, for each of these, an
individual framework could be established, but is not focus of this work.89 The presence and
incorporation of the domains stress the attention for the inherent concerns and constraints for
the product architecture. The domain organization provides information about the company
organization structure and is relevant to allocate stakeholders, concerns and viewpoints. The
process domain provides information about the process architecture, and can be detailed to
the domains of relevant tasks, information and data flows etc. The definition of use cases may
vary, from depicting the product lifecycle and the interaction of users with the product to the
use of modules within the product family. The product family itself can be depicted by a
number of entity types, such as the product lines, product types, platforms, modules, etc.

The entities within the system of action or lifecycle domain inherit inter-domain
dependencies, mainly for requirements and components. The organization and its
stakeholders, the company’s process architecture as well as the product family or numerous
use cases, define requirements of the product. Requirements stemming from the product
family can be described as boundary conditions, since parallel product lines, platform and
module strategies etc. predefine parts of the architecture. Use cases enable the derivation of

88 Different models were discussed in chapter 1.1.3 on engineering design processes.

89 Compare KREIMEYER [KREIMEYER 2010].

190 7. Solution approach: methodology to manage product architectures

requirements. The depiction of the product lifecycle and use cases of different stakeholders
therein (manufacturer, logistics, customer, disposal, etc.) is a common method for the
definition of requirements. Stakeholders within the organization and existing business and
production processes may define requirements directly, at least allowing for the derivation of
requirements. Production sites especially usually define requirements of different types, such
as the limitations of the number of units, size of the products, etc. While the
interdependencies to the domains of requirements are largely homogeneous, the dependencies
between the lifecycle domains and components are heterogeneous, as are the domains
themselves. To define the interdependencies clearly, a differentiation is made between the two
domains of organization and process on the one hand, and the domains of use cases and
product family on the other. The organization and process define aspects of the product
architecture indirectly, through the definition of requirements, which again demand functions
and properties. From the perspective of organization and processes, the business processes
and the underlying organization, such as engineering and production as common examples,
create the components. The product family and use cases require or use the physical entities
of the component domain. Use cases rely on the physical product to depict the usage during
its lifecycle. The product family incorporates all physical entities and their numerous
interrelations, i.e. commercial, technical, functional inter- and intra-domain dependencies etc.,
with the goal of offering a cost-efficient and comprehensive product portfolio.

With the lifecycle domains providing the boundary conditions for the product architecture, the
intra-domain dependencies of the lifecycle domains are a subordinate concern of the product
architecture framework. The interdependencies within the process domain alone are
numerous, considering the numerous classes of entities, such as tasks, people, information etc.
As such, the intra-domain dependencies of the lifecycle domains are not focus of this work
and are not further discussed.

The following sections will clarify in detail how to model the architecture framework and to
systematically generate the content of the model. The structured procedural model enables the
goal-oriented handling of the overall product architecture framework.

7.3 Model for product architectures
To model the entities of the product architecture framework, the core idea for a product
architecture model was introduced in chapter 4.3, based on the requirements for the modeling
of product architectures presented in chapter 4.2. The proposed modeling outline, based on
graphs and matrices, can be detailed with the information on the architecture framework
introduced in the previous chapter. The following sections will discuss the modeling approach
and introduce in detail how to cope with the model, based on the MDM approach.90

The multiple-domain mapping approach aims to depict, analyze and handle complex systems,
which are characterized by numerous (types of) domains, entities and interrelations. Within
the product architecture framework, the domains are grouped by an overall classification
(system of goals, objects, and action), and classes of domains (i.e. requirements, components,

90 For a detailed overview and introduction to the MDM approach see MAURER [MAURER 2007].

7.3 Model for product architectures 191

functions, etc.). The product architecture framework introduced the dependencies on the level
of classes of domains. The dependencies within were differentiated into hierarchical intra-
domain dependencies (e.g. dependencies between domains of the same class of domains, such
as domains of the class requirements), intra-domain dependencies between entities in general
(e.g. customer requirements), and inter-domain dependencies, e.g. between the domains of
requirements and the domains of functions. The following figure depicts the composition of
the framework.

The basic composition of the product architecture framework provides the meta-model for the
MDM application, i.e. the domains and types of interrelationships between domains. The
interdependencies provided therein can be detailed to the individual domains and their
respective interdependencies, down to the dependencies between individual entities. The
following figure gives an example of this. Whereas within the framework, “cause”,
“contradict”, and “support” are identified as the possible intra-domain dependencies between
requirements, the three possibilities can be detailed down to the respective domains, i.e.
customer- and stakeholder-requirements etc. (see top of the following figure). Within the class
of domains, the interdependencies are differentiated again into inter-domain (i.e. hierarchical
intra-domain) dependencies and intra-domain dependencies. Inter-domain dependencies are
depicted within a domain-mapping matrix (DMM) and intra-domain dependencies within a
design structure matrix (DSM). At the bottom of the following figure, the DSM shows the
interdependencies between customer requirements, all of the type “contradict”91, while the
DMM depicts the interdependencies between functional and technical requirements of the
type “cause”.

91 Such a DSM is part of the application of the method QFD, for example (compare chapter 5.6.3 on quality).

Figure 7-4 Basic composition of the framework and model

Classes of
domains Domains

Overall
classification

Intra-domain
dependencies
(class-level)

Inter-domain
dependencies
(class-level)

Intra-domain
dependencies Hierarchical

intra-domain
dependencies

192 7. Solution approach: methodology to manage product architectures

With the information given in the model, the structural analysis and synthesis methods
discussed in previous chapters can be applied, including domain-mapping logics. Domain-
mapping logics allow for the derivation and translation of dependencies between domains,
and thus the differentiation between direct and indirect dependencies.

The matrices established within the model are to read as “row influences column”, wherein
different dependency types can be differentiated and weightings of dependencies applied
(compare the discussions on matrix-based approaches in chapters 5.4.3 and 5.5.6). As the
reference to QFD in the above example has shown, existing models can be used as input for
the product architecture model (compare chapter 6.1), and the different methods and models
can be interrelated within the product architecture model (compare chapter 6.2).

The corresponding matrix and graph depiction of the same system was brought up by
MAURER [MAURER 2007] and already introduced and discussed in chapters 4.3, 6.3, and 6.5.
The graph depiction in particular turns out to be intuitive and accessible for users, while the
matrix depiction is superior in terms of a systematic approach to complex systems. Both
visualization forms provide mathematical accessibility, since the inherent information about
the system is the same. Comprehensive analysis approaches can be applied due to the
mentioned possibilities.

Depending on the analysis results, they can be more easily displayed in matrix or in graph
representation, depending on the type of characteristics to be displayed. In many cases,

Figure 7-5 Project-specific decomposition of the product architecture framework down to entity-level

R1 R2 R3 R4 R5 R6

R1 Customer "contradict" "cause" "cause" "cause"

R2 Stakeholder "contradict" "cause" "cause"

R3 Technical

R4 Performance "cause"

R5 Function "cause"

R6 Look & Feel "cause"

R
1.

1

R
1.

2

R
1.

3

R
1.

4

R
1.

5

R
1.

6

R1.1 Customer-Req. 1 X
R1.2 Customer-Req. 2 X X
R1.3 Customer-Req. 3 X X
R1.4 Customer-Req. 4 X X
R1.5 Customer-Req. 5 X X
R1.6 Customer-Req. 6 X

Te
ch

ni
ca

l-R
eq

. 1

Te
ch

ni
ca

l-R
eq

. 2

Te
ch

ni
ca

l-R
eq

. 3

Te
ch

ni
ca

l-R
eq

. 4

Te
ch

ni
ca

l-R
eq

. 5

Te
ch

ni
ca

l-R
eq

. 6

R
3.

1

R
3.

2

R
3.

3

R
3.

4

R
3.

5

R
3.

6

R5.1 Functional-Req. 1 X X
R5.2 Functional-Req. 2 X
R5.3 Functional-Req. 3 X X
R5.4 Functional-Req. 4 X X

DSM

DMM

7.4 Procedure and methods for product architecture management 193

characteristics involving a large number of entities and interrelations are easier to intuitively
grasp using graph depiction (such as paths or cause-and-effect chains, clusters, feedback loops
etc.). On the other hand, characteristics concentrating on one element, be it an entity or
interdependency, are often easier to understand employing the matrix (such as the active- and
passive sum of an entity, identification of bus-elements etc.).

To conclude the product architecture model, the requirements in chapter 4.2 can be met by the
proposed modeling approach, and the framework for product architecture management can be
depicted by the product architecture model. The following sections will introduce a
procedural model, which in turn aims at coping with both the framework and the model.

7.4 Procedure and methods for product architecture management
The procedural model and mapping of methods for product architecture management is
intended to guide the application of the discussed framework and model of the product
architecture. Depending on the project, goals and objectives, the emphasis on the different
steps may differ. The procedural model is not intended to either depict the engineering design
process or replace existing problem solving procedures (compare chapter 1.1.3). Nevertheless,
the provided procedural model supports the conduction of engineering design processes
and/or problem solving procedures. The specific aspects of the product architecture are
represented by the procedure. Coupling the procedure to engineering design projects helps to
support the incorporation of architectural aspects into the projects.

7.4.1 Interpretation of the procedural model
The procedural model is largely based on the discussions presented in chapter 5 regarding the
steps of the procedure, as well as the integrated methods. The methods were intensively
discussed in chapter 5, and their applicability for product architectures was also assessed. The
differentiation into the system of goals, objects and action was chosen for the structuring of
methods, while the procedure presented in this chapter is founded on the core activities, which
represent the design of product architectures, i.e. the interplay of analysis and synthesis.

As such, the procedural model combines those two major streams into one coherent model
(see figure at the end of this section). Further topics discussed in chapter 5, such as the goals
and requirements, evaluation, and lifecycle perspectives, are part of the two major streams,
for example requirements in the step “situation and objectives” or evaluation as part of the
step “evaluation and decision”. The potential of the combination of analysis and synthesis lies
within the coupling of powerful analysis methods with those of synthesis, all based on one
product architecture model.

Clearly, the depicted flow-orientation of the procedural model can only serve as a rough
outline. As discussed in chapter 1.1.3, the engineering design process is as much an iterative
and recursive procedure as the process of product architecture management process.
Therefore, any procedural model can only insufficiently describe the actual chronological
sequence of steps in different projects. The procedural model presented therefore aims to
provide distinct steps, each with distinct goals, whose sequence and emphasis can be

194 7. Solution approach: methodology to manage product architectures

formed by the user. While the presented sequence is based on scientific research, different
sequences might be useful for different projects. Although that the iterations and recursive
procedures are not explicitly displayed, they are still an inherent ingredient of the philosophy
of the model.

The process of analysis is naturally considered to be the first step of synthesis (compare
chapter 5.5.1), while synthesis might be considered as part of the implementation process
during analysis (compare chapter 5.4.1). Within the presented model, implementation is
considered as both: it can be either the preparation of synthesis after analysis, or the
implementation of solutions after successful recommendations from the synthesis process.
Implementation itself is not the central focus point of the model, but the inherent
recommendations and reasonable interpretation of analysis- and synthesis-results are.

The following figure displays an overview of the procedural model. The steps of the analysis
process follow the definitions and explanations of chapter 5.4.1, which is also valid for the
synthesis process and chapter 5.5.1. The following section discusses each step individually,
pointing out the goals, methods, models, and critical aspects of each step, as well as the
architecture entities of primary consideration. The steps follow the processes of analysis and
synthesis sequentially, as is depicted in following figure.

7.4.2 Steps and methods of the procedural model
To clarify intentions and focal points of the steps of the procedure, the following sections
discuss each step individually, pointing out the key factors to be taken into account. In order
to not repeat previous elaborated details, the discussions in the following paragraphs will
reference previous chapters. The procedural model intends to give an overview of how to
cope with the product architecture model and framework. Suitable methods are indicated

Figure 7-6 Procedural model for the management of product architectures (iterative and recursive procedures
not explicitly displayed)

Architecture
Management

Solution search

Evaluation and
decision

Systematic
exploration

Situation and
objectives

System
decomposition

Information
acquisition

System
modeling

Architecture
analysis

Validation

Analysis
process

Synthesis
process

Implementation

System analysis

7.4 Procedure and methods for product architecture management 195

through references to the previous chapters. The introduced constituents of the approach
(chapter 6) are aligned with the methods identified from the state of the art (chapter 5). The
combination allows for a comprehensive solution to the management of product architectures.

Goals and objectives

The definition of goals and objectives as a typical first step of the project is very crucial,
while still being required to be questioned and validated throughout the runtime of the project.
In general, the goals of projects in the context of product architecture management can vary
greatly. Projects with the focus of analysis of existing architectures primarily ask why a
certain behavior or property occurs, what the causes and/or effects of certain entities are,
which boundary conditions or degrees of freedom for synthesis exist etc. Synthesis projects
question how requirements or desired properties can be reached, which possible solutions
exist, how decisions between concepts can be reached etc. Other areas of focus, variant
management, for example, might combine the two, i.e. analyzing the existing portfolio on the
one hand, while seeking solutions based on the identified boundary conditions and
restrictions. For those types of projects, the comprehensive approach with continuous
modeling and method application is even more crucial.

To be able to define the goals and objectives of the project, it is the primary goal of this step
to grasp the current situation, the relevant stakeholders, and the existing use cases, if
necessary. For a systematic grasping of the situation, PONN established a descriptive model

Figure 7-7 Procedural model for the management of product architectures:
Step 1 “Situation and objectives” – overview

Step 1:
Situation and Objectives

Goals •  Define goals of the project
•  Identify situation, stakeholders and use cases
•  Identify relevant domains
•  Identify critical cause-and-effect chains

Architecture
Entities

•  System of goals on detail level
•  All entities on high level

Methods •  Situation characterization and analysis
•  Requirements identification
•  Requirements analysis

Models •  MDM meta-model on high level
•  Use-cases, lists, scenarios

Critical Aspects •  Strongly related to following steps (relations of objectives to
domains)

•  Choice of stakeholders

196 7. Solution approach: methodology to manage product architectures

for development situations in the context of target-oriented method selection. Direct context
(actual and desired situation) within the model is differentiated from indirect context
(influencing factors such as people, boundary conditions, tasks, and the product) [PONN 2007,
p. 123]. Different influence factors for the situation support the adaptation and application of
the descriptive model [PONN 2007, pp. 50 ff.].

To support the situation definition, the identification of stakeholders and use cases for each
stakeholder group is a powerful measure. Stakeholders can be customers using the product,
workers assembling the product, decision makers for buying products etc. Essentially, all
groups involved along the product lifecycle can be considered as stakeholders (compare
chapter 5.3). To identify objectives and goals for each stakeholder group, the modeling of use
cases for each group is applied. The use cases describe the activities each stakeholder is
conducting with the system, from which requirements for the solution or objectives for the
project (for example high level requirements for the solution) can be derived. The use cases
can be considered as application- or use-scenarios for each stakeholder group.

The identification of stakeholders as a first step describes the detailing of one domain of the
system of goals, considering the product architecture framework as a starting point. In the
following, all domains that are relevant for the considered problem can be identified, based on
the identification of stakeholders and use cases. The product architecture framework provided
in chapter 7.2 is intended to support this process by providing elementary domains of the
product architecture and their interrelations, yet does not claim to be complete or sufficient
for any problem or project.

It is important to note that it is not the system decomposition that is sought at this point, but
rather the identification of domains and interrelations between domains, based on the
architecture framework provided. The resulting meta-model of the architecture, depicting the
relevant use cases and domains, provides the basis for the following steps of system
decomposition and information acquisition. These are closely related to one another, together
with the plausibility check and validation of the meta-model defined in this first step of goals
and objectives.

To document the hypotheses defined at the beginning of the project and grasp the most
critical domains and relationships, the identification of critical cause-and-effect chains
concludes the main activities of the first step. The critical cause-and-effect chains can be
documented based on the domains and their interrelations. For example, the customer
demands functional or performance requirements, which necessitate that the system provide
certain functionality. The functionality is based on the realization through components, which
causes harmful functions, resulting in undesired properties. The undesired properties cannot
be directly tracked and eliminated, since they occur due to the interplay of all of the parts
combined, thus demanding a thorough system analysis developed around the described
primary cause-and-effect chain in terms of relevant domains and interrelations. Again, at this
point, it is not desired to identify each customer requirement, component, and function
involved, but to understand the core of the occurring challenge and set the framework for
thorough system analysis in the following steps.

The architecture entities considered at this early point, as described, focus on the system of
goals. While requirements and stakeholders to be defined are rather detailed, further domains,

7.4 Procedure and methods for product architecture management 197

such as those of the system of objects and action, are described solely on domain-level. This
procedure prepares the following steps of system decomposition and information acquisition.

The methods chosen for this step are those of situation analysis in general, as well as use case-
based approaches, as described in the above sections in the context of the step’s goals. If a
highly product-related or typical development project is chosen, the first step described is
strongly related to the typical requirements engineering approach, accompanied by the more
far-reaching domain-related framework approach. As such, the principles of requirements
identification and analysis can be applied during this step (compare chapters 5.3.1 and 5.3.2).

The models available for a step, as described, are mainly represented by a high level system
representation based on an MDM meta-model, i.e. the relevant domains and their
interrelations. To support the definition of the meta-model, which provides the basis for the
following activities, further available models, such as use case diagrams, requirements lists,
scenarios etc., can be used.

The critical aspects of the step were already indicated as crucial activities in above sections.
Above all, the close interdependence between the definition of objectives and the following
steps of system decomposition and information acquisition was stressed. To conduct these
steps sequentially is seldom the right approach, since for example the system decomposition
might reveal further required domains, which again need to be integrated into the framework
etc. The choice of stakeholders and related use cases is equally critical, since the objectives
and interrelated domains are largely based on the perception of the actual situation. Modeling
per se requires neglecting parts of the reality, accompanied by the downsides of modeling,
examples of which were discussed in chapter 4.2.

System decomposition

The definition of goals and objectives set the framework for the system decomposition. While
the system of objects was considered in detail, the remaining domains, belonging to the
systems of objects and action, were only defined at a high level.

System decomposition now strives for the detailing of these domains in two directions. The
first direction describes the identification of existing hierarchical layers within each domain,
i.e. the typical approach for system decomposition.92 The decomposition might, for example,
detail stakeholders according to organizational structures, functions or components on
different modular levels, etc. The second direction of system decomposition aims for the
detailing of the interrelations between domains, based on the given framework. Following the
example of the step goals and objectives, the customer requirements can be detailed,
displaying the cause-and-effect relationships among functional requirements etc. The
functional view of the product architecture can be detailed in many ways (compare chapter
5.5.2), enabling the linkage of customer requirements to the functional model on the required
level of detail and viewpoint. Following the train of thought of the example, the modular

92 Chapter 5.4.2 discusses hierarchies in general, while chapter 5.5.2 elaborates the concept of hierarchical
functional modeling. The downsides mentioned in those sections can be partially overcome by the concepts
provided in chapter 6.3.

198 7. Solution approach: methodology to manage product architectures

decomposition of the product can be conducted as well, pointing out which module(s) are
involved in the function fulfillment and how they are embedded in the system.

The decomposition thus allows for not only the allocation of entities on different layers of
abstraction, but also the identification of interdependencies within and across different layers
of abstraction. As a result, information acquisition and the following processes of analysis and
synthesis can be conducted on the required level of detail. The following steps, e.g. a detailed
functional modeling of the system, might nevertheless require the consideration of more than
one hierarchical layers, yet the discussion and information acquisition can be conducted
explicitly and guided within each layer. The same is valid for the solution finding on different
layers and domains of the system of objects etc. A number of examples are sufficient to
identify the differentiated layers of each domain. Again, iterations and recursions among the
steps of the procedural model have to be taken into account, not only as unwanted side
effects, but also as deliberate property of the model.

The entities to be extensively discussed and portrayed within this step are naturally all high-
level domains that were identified and discussed within the step of goals and objectives. The
spanning of the system across hierarchical layers, for example, allows for the framework to be
detailed in accordance with the given objectives, focusing on representative examples within
this step.

To systematically accomplish the system decomposition, the principles of analysis, as
discussed in chapter 5.4.2 can be used to abstract, select, scale, encapsulate, etc. the system

Figure 7-8 Procedural model for the management of product architectures:
Step 2 “System decomposition” – overview

Step 2:
System Decomposition

Goals •  Identify levels of abstraction within domains
•  Concretize interrelations between domains on identified levels of

abstraction

Architecture
Entities

•  All entities on high level
•  Focus on objective-related domains
•  Concretization in all domains and levels of abstraction, based on

examples

Methods •  Principles of analysis
•  Detailed use cases

Models •  Hierarchical system representation of each domain
•  Refined MDM meta-model

Critical Aspects •  Strongly related to previous step
•  Basis for information acquisition

7.4 Procedure and methods for product architecture management 199

and its parts. The detailing of use cases supports the system decomposition by providing
examples of comprehensive context. Further measures include available and standardized
methods already describing the system at the project beginning; the intensive analysis of these
documents and models is conducted within the step of information acquisition.

The system representation desired at this point provides the hierarchical layers of each
domain, including the interrelations within and across domains and layers of abstraction,
represented in graph and matrix form by the product architecture model. The status can be
described as a refined meta-model of the product architecture.

As was discussed in the previous step, the most critical aspect of this step is the strong
interrelation with previous and following steps. Again, the procedure has to be considered
highly iterative and recursive, especially among the first three steps described.

Information acquisition

Information acquisition is a highly complex and time-consuming activity in any analysis and
synthesis project. Within this work, the process of information acquisition is not as
intensively discussed as would be necessary to fulfill the importance of the step itself. Given
the requirements for a solution to product architecture management (compare chapters 1.2 and
5.8), the focus is placed on the utilization, transfer, and interrelation of existing models. A
brief discussion of the topic is part of chapter 5.4.1 in the context of system analysis, while
the task of information acquisition is equally required for the processes of synthesis and
evaluation, for example.

The goal of the step of information acquisition is to complete the product architecture
framework, up to now available as detailed meta-model. The completion includes the
identification of system entities (i.e. every singular relevant entity of the system) and the
identification of system interrelations (i.e. every singular relevant interrelation of the system).
The previous steps established the basis for making the right choice, in terms of both domains
and hierarchical layers.

As a consequence, the relevant entities and domains of the step reflect those identified in the
previous steps. The step of information acquisition might reveal further necessary domains
and/or hierarchical layers, which have to be included in the meta-model as well. From the
perspective of the product architecture, to achieve a sound understanding of the system, the
focus is usually placed on the system of objects during the step of information acquisition,
while the systems of goals and action are equally relevant in cases of requirements
management or variant management projects, for example.

The methods to gain information can be divided roughly into three groups. Ideally, yet in the
fewest cases, the information is available in existing databases or other IT-systems, which
allows for a direct export into neutral data-formats accessible to analysis. Aside from the
possibility of relying on automated and digitalized measures, other existing models and
system representations can be used; for example, functional models, modular structures,
results of FMEA- or QFD-application etc. Often, neither digital nor analog product
representation is available completely, making the information elicitation from individuals
necessary. Being the least reliable method, due to subjective and situational influences, highly

200 7. Solution approach: methodology to manage product architectures

systematic and professionally moderated approaches are required, for which techniques were
discussed in chapter 5.4.1. Additionally, experienced moderating factors are inevitable.

In the presented step, the information is detailed towards the meta-model, resulting in suitable
representations of the system (e.g. functional models for functions, modular structures for
components etc.). For the product architecture management approach, the product architecture
model was proposed in matrix- and graph form, capturing gathered information to establish
the product architecture model and making information available for the following steps.
Existing source models provide the basis for information acquisition, as was discussed in the
previous section.

A number of critical aspects for this step can be identified, besides the often-mentioned,
interwoven and iterative character of the first three steps. Since databases or other digitalized
formats are seldom available, the process of information elicitation turns out to be immensely
time-consuming. The preparation and conduction of workshops, for example, requires large
amounts of human resources to be successful. The choice of individuals to participate is
equally crucial, since information is often subjectively influenced and person-dependent. The
elicitation of information from non-digital models can be considered as time-consuming and
subjective as the gathering of information in workshops and interviews.

Figure 7-9 Procedural model for the management of product architectures:
Step 3 “Information acquisition” – overview

Step 3:
Information Acquisition

Goals •  Identify system entities comprehensively
•  Identify interrelations between system entities comprehensively

Architecture
Entities

•  Focus domains identified in steps 1 and 2
•  Focus on system of objects from architecture perspective

Methods •  Extraction from databases and IT-systems
•  Existing models and system representations
•  Information elicitation techniques

Models •  Existing source models of different domains (bill of material,
drawing, process and workflow models, requirements lists, etc.)

Critical Aspects •  Time consuming
•  Databases and thus convenient elicitation seldom available
•  Often person-dependant and subjective information required

7.4 Procedure and methods for product architecture management 201

System modeling

The system modeling step can be described briefly, since it provides the information that was
structured and gathered in the previous steps into one comprehensive model in MDM
notation.

Accordingly, the primary goal of the step is the establishment of such a model. Based on the
model and the project objectives, the preparation and planning of analysis is to be conducted,
i.e. the identification of relevant domains, reasonable domain-mapping approaches and means
of analysis, such as structural characteristics (compare chapter 5.4.3).

Naturally, the system modeling is conducted with a focus on the systems of goals and
objectives, as were the previous steps. Since restrictions and dependencies might occur due to
process- or product family limitations, the system of action is considered as well, though with
less priority.

As a supporting method, the modeling in MDM notation is conducted according to the
procedure described in chapters 6.1 and 6.2. Based on the procedure described there, existing
models can be transferred to MDM notation easily and efficiently, resulting in a
comprehensive model, where source models with overlapping entities are coupled
accordingly.

The resulting MDM model provides the basis for the following steps of analysis and
synthesis. Further information, which was not gathered on the basis of existing source models
and methods, can be implemented in graph and/or matrix form directly into the MDM model.

Figure 7-10 Procedural model for the management of product architectures:
Step 4 “System Modeling” – overview

Step 4:
System Modeling

Goals •  Establish comprehensive model in MDM-notation
•  Preparation and planning of analysis

(based upon focused entities)

Architecture
Entities

•  Focus on goals and object system
•  Action system with second priority

Methods •  Model transfer to MDM

Models •  MDM model

Critical Aspects •  Comprehensive information required
•  Sufficient levels of abstraction
•  Information to be transferable to MDM notation
•  Only correct input enables reasonable results

202 7. Solution approach: methodology to manage product architectures

Given the approach presented for system modeling, a number of critical aspects must be
considered in order to provide a reliable and comprehensive model for analysis and synthesis.
First of all, comprehensive information is required to provide representative results. As this
information is not naturally available in digital or non-digitalized form in most cases, there is
a probability that information will be neglected, providing invalid results. The neglecting of
information can occur on all levels of the approach, i.e. ignoring relevant domains,
hierarchical layers, interrelationships, or single entities or interrelations. Furthermore, the
identified hierarchical layers are required to be on adequate levels for the desired purpose.
Identified problems and challenges, which cause the project in the first place, need to be
addressed on the basis of the defined model. Again, iterations might occur due to insufficient
results, based on the analysis and validation results. As a next crucial element of this step, the
gathered information needs to be transferable to MDM notation. The model is designed to suit
the demands in early phases of development, thus focusing on qualitative, at times fuzzy,
information. As for any method, a reasonable outcome and sufficient results can only be
achieved by the provision of correct input information, underlining the importance of
information acquisition. The validation step should provide the means to evaluate the analysis
results and enable the assessment of the quality of information.

Architecture analysis

The step of architecture analysis represents the core step of the analysis process, together with
the step of implementation, in which the analysis results are interpreted. Relying on the
previous steps, the focus is on the properties of the architecture, in the context of product
architecture management. Those are represented mainly by the structural characteristics of the
architecture, and secondly on the properties resulting from the sum of entities of the
architecture.

The goal of the architecture analysis step can be described as the grasping of system
properties, based on the provided system representation of the MDM model. In detail, the
overall goal can be described as the identification of intra- and inter-domain characteristics of
the architecture, on one hand, and the identification of boundary conditions and degrees of
freedom on the other. The characteristics of the architecture are represented by properties of
entities and overall properties, as well as structural characteristics identified within and across
domains. Boundary conditions and degrees of freedom as a result of analysis enable the
synthesis process to concentrate on possible solutions, while at the same time, the underlying
restrictions of boundary conditions become transparent.

The most relevant entities in this step are the system of goals (what is to be analyzed) and the
system of objects (where within the system can the solution be found). The system of action
(how the solution can be realized and which boundary conditions exist) supports the process.
In general, as with the previous steps, the focus is on the relevant domains identified within
the goals and objectives step.

7.4 Procedure and methods for product architecture management 203

The methods to systematically analyze a system were extensively introduced and discussed in
chapter 5.4.3. The methods are differentiated into

• Techniques, i.e. analysis measures including rearrangements and visualizations of the
system (such as clustering, banding, ∆- and ∑-MDM etc.),

• Characteristics, i.e. patterns within the structure, usually involving a number of entities
and interrelations (clusters, leaf nodes, feedback loops, etc.)

• Metrics, i.e. numerical properties based on structural analysis that characterie the
overall system or compare entities within the system (for example, the number of
cycles, number of bridge nodes etc.)

The methods partly overlap; cluster analysis, for example, processes and rearranges the whole
system, is also applied to characterize patterns within the system, and enables the comparison
of elements, e.g. depending on the number of clusters they are in. The implications of the
method will be discussed when introducing the application example in chapter 8.

The underlying models of the system are analytical, represented in graphs or matrices for
more intuitive user perception. Due to the combination of the three models, the untrained user
is capable of grasping and modeling the system, yet algorithms can be applied, which are not
necessarily mathematically understood by the user. As such, tools are required to provide the
analysis measures, which are nowadays numerous in both science and business.

Figure 7-11 Procedural model for the management of product architectures:
Step 5 “Architecture analysis” – overview

Step 5:
Architecture Analysis

Goals •  Identification of intra- and inter-domain characteristics of the
architecture

•  Identification of boundary conditions and degrees of freedom

Architecture
Entities

•  Goals and object system as priority
•  Action system
•  Focus on domains relevant for project objectives

Methods •  Structural analysis by means of Graph Theory and matrix
methodology (techniques, characteristics, and metrics)

Models •  Matrix and graph representation
•  Analytical models

Critical Aspects •  Analyzing reasonable level of abstraction
•  Consideration of inter-domain relations
•  Focusing onto relevant domains with respect to the objectives of

analysis

204 7. Solution approach: methodology to manage product architectures

For the successful system analysis, a number of critical aspects need to be considered. As for
the modeling of the system and the precedent steps, the right choice of a reasonable level of
abstraction is required to achieve meaningful results. While most of the discussed analysis
methods deliver results for each domain, the interrelations between domains have to be
considered, also based on the application of domain mapping logics. Finally, not all domains
need to be thoroughly analyzed, since some domains provide information for interrelations
within other domains (the coupling of components delivers relationships between
requirements, for example). As a consequence, the user must focus on relevant domains with
respect to the objectives of analysis.

Validation

The validation step was introduced to evaluate analysis results before implementation, i.e.
before conclusions, based on the results are reached. Since analysis results provide the
foundation for synthesis, on one hand, and strongly rely on the input information, on the
other, a critical review before implementation is required. Since a reasonable outcome and
sufficient results can only be achieved through the provision of correct input information, the
validation step should provide the means to evaluate the analysis results and enable the
assessment of the quality of information.

While the following step of implementation aims for the comprehensive derivation of
consequences from the analysis results, the goal of the validation step is to check the

Figure 7-12 Procedural model for the management of product architectures:
Step 6 “Validation” – overview

Step 6:
Validation

Goals •  Check plausibility of analysis results
•  Compare input (situation and objectives) and output information

(analysis results)

Architecture
Entities

•  Focus on system of goals
•  All entities considered in previous steps

Methods •  Validation methods (e.g. plausibility checks, negation, cause-and-
effect analysis, fault-tree analysis, etc.)

•  Transfer to source models

Models •  On basis of MDM-model
•  Source models

Critical Aspects •  Synthesis to be conducted, based on analysis results
•  Reliable results required for following steps
•  Results are dependant on input quality

7.4 Procedure and methods for product architecture management 205

plausibility of analysis results, and compare the results with the situation and objectives
defined in the first step.

Thereby, the architecture entities within the system of goals guide the step, while all entities
considered in the previous steps are subject to validation. As was proposed for the goal-
definition of this step, the comparison of the system of goals to the other architecture entities
poses the major challenge in this step.

Different methods come into question for the validation of analysis results, which were
mainly discussed in chapters 5.3.3 and 5.3.4, based on the discussions on requirements
management, validation and verification. It has to be considered that the sufficiency of
analysis results cannot be mathematically determined, which is why verification methods are
discounted and validation methods are rather suitable. Typically, for the validation of vague
requirements or expectations, a plausibility check is conducted on the basis of the stakeholder
concerns and whether they are reflected by the analysis results. The transfer of the findings to
source models makes analysis results accessible to the stakeholders, since familiar models are
applied. To clarify the concerns and intentions of stakeholders in detail, the methods of
negation, cause-and-effect analysis, or fault tree analysis can be used. All are similarly
conducted. Identifying stakeholder concerns or requirements as a starting point, the cause-
and-effect chains through the architecture framework can be easily revealed. Negation and
fault tree analysis support the process by focusing on the consequences of a non-fulfillment of
the requirements, functions, etc. On that basis, cause-and-effect chains can be validated and
checked for plausibility.

Since the proposed architecture model is based on the identification of entities and
interrelations, the identification of cause-and-effect chains is one of the core capabilities of
the model. The analysis results can be checked for traceability and significance. If analysis
results lack reasonable interpretation or meaning from a stakeholder perspective, the previous
steps such as system decomposition and information acquisition need to be critically
reviewed, to determine whether entities, interrelations, domains, or levels of hierarchies were
missed during the first application of the procedural model.

Critical aspects of the first step are important for the following steps, such as synthesis, which
are to be conducted based on analysis results. Given the importance, reliable analysis results
are required for a successful execution of the following steps. Analysis results are highly
dependent on the input quality of information, which can be checked for plausibility and
quality using aforementioned methods.

Implementation

After the project scope has been defined, the system decomposed, modeled, and the analysis
results validated, the implementation step links analysis to synthesis. Analysis results show
the demand for action, boundary conditions, and degrees of freedom for synthesis. In some
cases, the implementation of analysis results can follow immediately after the validation,
since the scope and impact of analysis – hence the original problem – can be ad hoc grasped
and solved by the designer. In other cases, the analysis results require a structured synthesis
process, which guides the designer and enables a comprehensive and satisfactory solution of
the original project objective.

206 7. Solution approach: methodology to manage product architectures

It is the primary goal of the implementation step to identify and specify the demand for action
and the impact of the analysis results. The implications are twofold. First, strategies to
implement the analysis results need to be defined. For the immediate and manageable demand
for action, synthesis can be conducted conventionally, based on the experience of the
designers. In the case of complex problems and challenges, a detailed and structured synthesis
process is required. In particular, if an intensive change of the product architecture is needed
(e.g. for the purpose of radical innovations), a guided, thoroughly planned synthesis process is
inevitable.

For the preparation of the synthesis phase, all architecture entities are relevant. The system of
goals provides the directions and quantitative or qualitative targets, while the system of action
gives boundary conditions for synthesis. The system of objects, on the other hand, provides
the sphere of activity for the definition of solutions.

The suitable methods for the implementation of analysis results are largely dependent on the
respective case. In any case, the interpretation of structural characteristics and other
evaluation criteria (compare chapter 5.6.3) are required, independent of the scope of the
required solution. Methods for decision-making, as discussed in chapter 5.6.2 come into
question for product architecture management as characterized in chapter 5.6.1. Since
synthesis is not conducted at this point, decisions are required based on results of analysis
alone. If concrete scenarios emerge, based on the structural properties of the system, these can
be analyzed using decision-making methods. Decision-making plays an important role
throughout the process of design and development. At this stage, decisions are required

Figure 7-13 Procedural model for the management of product architectures:
Step 7 “Validation” – overview

Step 7:
Implementation

Goals •  Identify impact and demand for action on basis of analysis results
•  Define strategies to implement analysis results
•  Prepare synthesis phase

Architecture
Entities

•  All identified entities
•  System of action

Methods •  Interpretation of structural analysis and transfer to object
•  Scenario-definition and decision-making

Models •  MDM model
•  Source models

Critical Aspects •  Capability to interpret and concretize structural analysis results is
required

7.4 Procedure and methods for product architecture management 207

regarding how synthesis will be conducted, on which levels and in which domains solutions it
is necessary, which analysis results require structured synthesis, etc.

For the implementation and interpretation of analysis results as well as the decision-making,
all types of models used to up this point can deliver valuable information. Both the source
models and the MDM model help to clarify the situation’s demand for action. While the
MDM model contributes mainly structural information, more specific information and
support for the interpretation of results can be derived from the source models, which usually
serve a distinct purpose and are thus closer to the real system.

The implementation step is described as the transfer of interpreted analysis results to the
system, to derive demand for action. The parallel discussion of structural and source models is
essential. Equally critical for the implementation step is the capability to interpret and
concretize structural analysis results, which is intended to be carried out through the
application of systematic decision processes and the coupling of different models.

Solution search

The task of solution search, as the first step of synthesis, aims for the identification of
solutions to the problems analyzed during analysis phase. For problems solvable on the
solution level, the step of solution search might turn out to be sufficient; in other cases,
solution search serves as a completion of the solution space for systematic synthesis.

The overall goal of solution searching is the completion of the product architecture, based on
available solutions inside and outside of the company. The identification of existing solutions
is the first task, and is required to incorporate available entities into the product architecture

Figure 7-14 Procedural model for the management of product architectures:
Step 8 “Solution search” – overview

Step 8:
Solution Search

Goals •  Identify existing solutions for defined problems
•  Develop new (partial) solutions on component level

Architecture
Entities

•  Focus on system of objects
•  Close consideration of system of goals for directed solution search

Methods •  Functional modeling
•  Conventional solution finding methods
•  Creativity techniques

Models •  Functional models
•  Graph- and matrix depiction of object system

Critical Aspects •  System decomposition and analysis results
•  Widening of solution space

208 7. Solution approach: methodology to manage product architectures

model, thus completing the solution space. The design methodology supports the process of
defining new solutions for the design task.

Thereby, the relevant architecture entities naturally center on the system of objects, where the
entities contributing to the solution space are integrated. For the directed solution search, the
system of goals provides guidance for synthesis, while the system of action supplies the
boundary conditions for synthesis in general.

The methods for solution search were intensively discussed and evaluated in chapter 5.5. In
particular, functional modeling (chapter 5.5.2) and conventional methods (chapter 5.5.3)
come into question. Functional models thus serve as basis for solution searching.
Decomposing the system from a functional perspective, building blocks on the detail-level
can be identified, enabling the search for existing solutions, as well as novel ones. The search
for existing solutions is conducted through conventional methods, based on sources of
different kinds, both company internal and external. Creativity-supporting techniques (chapter
5.5.4) support the search for solutions by widening the scope and adding novel solutions to
the solution space. Creativity-supporting techniques are capable of supporting the definition
of novel solutions of limited complexity, and, as such, can contribute to solutions on the
component rather than the architecture level. A precise problem description or problem
decomposition is required a priori, which is provided by the exhaustive preceding analysis
process.

Suitable models for the solution search step correspond with the proposed methods. Thus,
functional models provide the basis for the solution search, while graph and matrix-depictions
– the product architecture model – allow for a comprehensive overview and directed solution
search within the product architecture model.

Critical for successful solution search is the thorough and precise system decomposition.
Based on that decomposition, both functional and physical, analysis results are derived and
point to the demand for action within the system. Finally, the outcome of the task of solution
search, i.e. the widening of the solution space, is crucial for the following steps, the
systematic exploration of the product architecture and the evaluation of solutions, to tap the
full potential and provide a comprehensive and satisfying outcome of synthesis.

Systematic exploration

The systematic exploration follows the analysis and identification of solutions in the context
of the solution search. After the objectives were clarified, the system decomposed, analyzed,
and analysis results validated, the product architecture model was established and possible
solutions for sub-problems identified or defined. Given these previous achievements, the
solution space can be systematically explored to identify the most valuable solutions on the
product architecture level, i.e. from a comprehensive view.

There are numerous goals of the systematic exploration of the solution space. Above all, the
identified solutions must be placed into context within the product architecture model, both
within their own domain, as well as in context of the other domains, such as requirements,
functions, product family etc. Based on the comprehensive visualization, the impact and
outcome of novel ideas in the different domains shows, for example possibilities to fulfill

7.4 Procedure and methods for product architecture management 209

requirements, enlarging of functional capabilities, impacts on the product family etc. Based
on the given requirements and functions, possible architectural solutions can be identified and
completed, if additional solutions are required. Aside from the completion of architectural
solutions, directed solution search can be conducted within all domains of the product
architecture and the different levels of abstraction contained within it. For example, identified
insufficiencies of the solution space can be solved on the basis of working principles,
variation of functional possibilities, definition of new components etc.

For a systematic exploration of the solution space, the system of objects has to be considered
to provide the main relevant architecture entities. Solutions show in these domains, and a
variation of the product architecture will be conducted within the system of objects. For the
previous steps, the systems of goals and action provide boundary conditions and directions for
directed and systematic solution search and need to be considered as well.

Two available methods for the systematic exploration of solutions are the introduced
systematic synthesis methods, as discussed in chapter 5.5.5, such as different structuring
schemes (e.g. morphological chart, classification tree, concept combination table, etc.), and
matrix- and graph-based approaches, introduced in chapter 5.5.6 and 6.4. As the different
discussed methods show, approaches are available for the different domains of the system of
objects, such as working principles and effects, components, etc. Computational synthesis can
be applied based on the defined model and analysis, and are able to define numerous solutions
based on a defined rule-set (compare chapter 5.5.7). In the context of this work,

Figure 7-15 Procedural model for the management of product architectures:
Step 9 “Systematic exploration” – overview

Step 9:
Systematic Exploration

Goals •  Set identified solutions into context of all domains
•  Identify impact and outcome of novel ideas in different domains
•  Systematically complete possible architectural solutions
•  Search for solutions on all levels of the system

Architecture
Entities

•  Focus on system of objects
•  Close consideration of systems of goals and action for directed

solution search

Methods •  Systematic synthesis methods
•  Comprehensive depiction of the solution space
•  Matrix- and graph-based methods
•  Computational synthesis

Models •  Graph and matrix depiction of solution space

Critical Aspects •  Completion (as far as possible) of solution space required
•  Rules and structural characteristics require valid input information

210 7. Solution approach: methodology to manage product architectures

computational synthesis is not the primary goal of application, yet can be conducted based on
information inherited from the product architecture model. To cope with the methods and
apply them in the most purposeful and directed manner, a comprehensive depiction of the
solution space is necessary (see chapter 6.5). Therefore, available information, encompassing
the whole product family within one domain (e.g. components, physical effects, functions
etc.) can be visualized by the proposed product architecture model. For example, all
components including their interrelations based on functional classification can be displayed,
an overview on physical effects can be given, based on their input- and output-values, etc.

Accordingly, the most relevant model chosen for the step of systematic exploration is the
graph and matrix depiction of the solution space, provided by the product architecture model.

On the other hand, it is critical for the systematic exploration of the solution space to have a
rather complete availability – at least where required – of the solution space within the
different domains and on different levels of abstraction. As for all models and methods, the
choice of information, as well as the sufficient amount of information, is crucial,93 yet can be
supported by the visualization of information in the product architecture model. For the
definition of rules and use of structural characteristics, the input-information is just as crucial.
If automated procedures are to be applied, the definition of rules should be based on
trustworthy input information, especially if the following decision-making is largely based on
automatically generated results.

Evaluation and decision

Concluding the procedural model for product architecture management, the task evaluation
and decision provide measures to rate the results of synthesis, which in turn were generated
on the basis of analysis results and information within the product architecture model. As an
outcome, the most promising solutions are identified, concretized and validated in the
following detail design processes.

The goal of the evaluation and decision task is the preparation of the decision-making
process, i.e. the collection of couplings between requirements and proper characteristics of the
product architecture, which enable the validation of the fulfillment of requirements. This
procedure aims for the qualification of informed decisions concerning the choice of product
architecture solutions.

Based on the previous steps, the most relevant entities of the product architecture are those
considered in the previous steps. As such, all entities of the product architecture come into
question for the evaluation of solutions. The primary areas of focus is therefore on the
coupling of requirements (stemming both from the system of goals and the system of action),
on the one hand, and the physical product architecture, on the other. The preparation of
informed decision-making thus includes the purposeful coupling of requirements to
characteristic structures within the system of objects, such as functions, components, etc.

93 Discussed for example in the context of modeling (chapter 4.2) and the principles of abstraction in chapter
5.4.2.

7.4 Procedure and methods for product architecture management 211

Methods for this step are summarized as methods for decision-making in chapter 5.6.2. While
the principles of qualitative reasoning apply to the problem of product architecture
management, the methods for single selection are suitable for smaller numbers of solutions. In
contrast, the causality methods discussed in the respective section are comprehensive and
applicable for the case of product architecture management. As the whole product
architecture model, inheriting the entities and interrelations, is based on the idea of causal
dependencies, the causality methods for decision-making can be easily connected to the
product architecture model. For the definition of the evaluation criteria, the structural
characteristics provide a reasonable means for evaluating product architecture,s based on the
inherited structural properties of the synthesis results. Chapter 5.6.3 gives examples for the
definition and use of structural characteristics as evaluation criteria.

Since causal chains based on numerous entities and their interrelations are the dominating
scope of this step, the product architecture model based on the MDM modeling approach is
the most suitable and efficient model to establish according evaluation criteria.

The most critical aspects for the successful evaluation of product architectures are the
availability and suitability of evaluation and decision criteria. However, not all requirements
can be evaluated based on the product architecture before detail solutions are available. In
practical projects, the choice of solutions will be executed iteratively, focusing on the
architecture-relevant criteria in the early phases, while reaching decisions in later phases,
based on partial solutions on more detailed level. On the other hand, requirements might
eliminate detail solutions in the early phase, e.g. based on working principles, which are out
of bounds of the solution space. As for all evaluation or decision processes, the choice and
prioritization of criteria are crucial to reach the desired results. Since all methods have to cope
with this problem, a completely satisfying solution for this challenge is hard to define.

Figure 7-16 Procedural model for the management of product architectures:
Step 10 “Evaluation and Decision” – overview

Step 10:
Evaluation and Decision

Goals •  Prepare decision.making process
•  Enable informed decisions

Architecture
Entities

•  All considered entities
•  Coupling of goals and architecture characteristics

Methods •  Methods for decision making
•  Focus on structural characteristics

Models •  On basis of MDM model

Critical Aspects •  Availability and suitability of evaluation and decision criteria
•  Choice and prioritization of criteria
•  Quality of values

212 7. Solution approach: methodology to manage product architectures

However, the comprehensive architecture model and the defined characteristics and criteria
allow for the identification of interrelated criteria, thus supporting the prioritization of criteria.
As a final critical aspect of the evaluation, the quality of values describing the characteristics
has to be named. Clearly, the often-numerical outcome of analysis, and, as such, the values of
evaluation criteria, strongly rely on the quality of input data. The too strong trust in
quantitative results is seldom purposeful and has to be reviewed critically, especially in the
early phases of product development. Combinations of criteria and comprehensive overviews
of product architecture solutions are just as valuable as the prioritization and focus on central
and highly relevant requirements.

7.5 Conclusion
The previous chapters introduced the comprehensive approach for the management of product
architectures, based on three pillars. A framework for the coping with product architectures
was introduced, providing the basis for the grasping and structuring of architecture entities
and their interrelations. To cope with the framework, a modeling method for the product
architecture was introduced, capable of capturing relevant product architecture information
resulting from existing models and modeling techniques, and fulfilling the requirements of
models in the context of systems architecting. Finally, the procedural model proposed relevant
tasks and their interdependencies, interrelating the analysis- and synthesis processes. The
iterative and recursive capabilities of the approach show in the combination of the three
constituents. The comprehensive and consistent architecture model therefore provides the
basis, coupling the domains and product architecture entities with one another. The different
steps of the procedural model, which is not to be misunderstood as a strictly sequential
process, fall back on these entities. As a result, iterative and recursive procedures can be
conducted on the basis of the comprehensive and consistent architecture model.

The product architecture framework provides the basis for the project activities. Based on
the literature reviews (chapters 1, 3, and 5), as well as project reviews during the research for
this work, a comprehensive framework was established, allowing for a clear identification of
relevant architecture entities and potential interrelations, and setting the boundary conditions
for the project. Due to its generic character, the application can be defined according to the
project, for example including sales, services, after sales or production and transport issues in
the system of action and thus in the system of goals. The interrelations can be modified as
well, yet a critical mass was defined and established on the basis of aforementioned reviews.

The product architecture model is a result of the identification of requirements in systems
engineering in general (chapter 1.2) and in the modeling in the context of systems architecting
(chapter 4.2), as well as the discussion leading to the established product architecture
framework. The modeling approach chosen is capable of translating and interrelating existing
models to provide a comprehensive and consistent product architecture model (see chapters
6.1, 6.2, and 6.3). The dual visualization through graphs and matrices provides intuitive
interpretations for stakeholders from different disciplines, and the accessibility to elaborate
mathematical analysis algorithms. Due to those properties of the model, the demand for
continuity and the support of iterative and recursive procedures can be met.

7.5 Conclusion 213

The procedural model provides guidance to systematically cope with the framework and
modeling approach. Therein, the application of different methods (compare chapter 5) is
enabled and allocated to ten distinctive tasks in product architecture management. Whether all
steps are required, and in which sequence, is determined by the respective project. This
flexibility is realized by the comprehensive and consistent modeling approach. Again, it is
important to recognize that the procedural model is not intended to be conducted sequentially
without iterative and recursive application.

The following chapter will validate the approach for product architecture management on the
basis of a project in the automotive industry. All steps will be addressed and conducted there;
however, not all aspects can be covered. This again documents the flexibility of the approach,
depending on the case of application.

8. Validation

The previous chapters elaborated methods and approaches for the management of product
architectures, which already exist in different disciplines. The product architecture
framework, model, and procedural model were introduced to tie together existing approaches
and models, and establish a comprehensive framework for the numerous interrelated phases
of product architecture management. To complete the approach, and in follow up to the
previous prescriptive study in chapters 6 and 7, the descriptive study in this chapter provides
a validation example of the defined approach. The presented case study alone cannot cover
all aspects of the approach; it does, however, point out the focal ideas and the general
practicability and validity of the approach. It should be considered as one of many use case-
based studies conducted during and after the definition of the overall approach for the
management of product architectures.

8.1 Case study: automotive drivetrain development
As an introduction to the validation example, the following sections will roughly outline the
situation and problem-description, before the following chapters start use a hands-on
approach with the procedural model to apply the framework and model to the problem. The
example of the automotive drivetrain was chosen, since the current political and social
situation demands radical innovations in that sector, yet the potential of current technologies
is almost fully tapped. As a result, variations of the product architecture are required to
provide radical innovations, based on existing mature technologies.

The increasing shortage of fossil energy resources, the increasing fuel costs as a result, stricter
emission legislation, and increasing demands for safety, all call for highest efficiency in the
context of energy consumption; these changing conditions impact the situation of the
transport sector in general, and the automotive sector in particular. Since customers in the
automotive sector demand high performance at the same time, the automotive industry has to
deal with this conflict of targets and provide sustainable long-term solutions for future
customers [LIEBL 2006].

Motivated by this situation, studies were conducted with a number of different targets. The
focus of all considerations, and as such the boundary condition and system border, is the
automotive drivetrain, i.e. the tank-to-wheel flow of energy and related requirements, physical
entities, functions, and properties. Other areas contributing both to the solution of the conflict
of targets and to efficient dynamics in general were not considered intensively within the
scope of the following considerations. Examples of these side issues are aerodynamics or
lightweight design.

The different targets will be clarified as part of the first step of the procedure, while the
overall goal is made clear in advance: the overall goal of the study is the analysis of existing
drivetrain configurations, their physical entities and entities under consideation. The function-
domain of drivetrain concepts is to be analyzed similarly. Based on the analysis results,
structured synthesis within all entity domains is to be conducted, i.e. on functional and

216 8. Validation

physical level(s). Aiming for the definition of coherent drivetrain concepts, solutions are to be
evaluated by functional capabilities and further properties. Since the evaluation through
simulation is time-intensive and costly, the focus is placed on the early phases of development
to provide rudimentary directions of possible solutions, based on key figures.

8.1.1 Goals and objectives
As proposed in the procedural model of the product architecture management approach, it is
the goal of the first step of the procedure “Goals and objectives” to identify project goals,
situation, stakeholders, use cases, relevant domains, and critical cause-and-effect chains.
Since the objectives for the presented case study are on project level, rather than product
level, typical requirements management methods are applied marginally, while the focus is
placed on use cases and scenarios. The results are documented accordingly, depicting outlines
of use cases and scenarios. As a starting point for the MDM model, the meta-model for the
overall system is defined.

With the overall goal defined in the project description, a number of subordinate goals can be
derived, which are summed up in the following points:

• Analysis of existing drivetrain concepts on the basis of their functional and physical
properties

• Decomposition of the functional and physical structure down to elementary building
blocks

• Identification of key properties of building blocks

• Analysis of existing concepts and derivation of evaluation criteria

• Validation of evaluation criteria, based on simulation and research results

• Analysis of how far waste-energy can be recovered through the introduction of
additional systems

• Search for alternative solutions of drivetrain concepts on all levels under consideration

• Evaluation and comparison of defined solutions and decisions, based on scenarios and
use cases

• Identification of possible modularity scenarios based on analysis and product family
restrictions

In the early phase, possible geometrical and commercial aspects were ignored, focusing solely
on the functional potential of solutions. As such, the fulfillment of functional requirements
and their combination was the focus of consideration, as well as the identification of potential
in terms of degrees of efficiency, boundary conditions etc.

Since the complex subject of the automotive drivetrain and its evaluation can, in the end, only
be tackled through comprehensive simulation and design measures, the results presented here
can only provide the boundary conditions and point out promising directions. The different
use cases in particular, i.e. the usage of the automobile in different situations and the
underlying drive cycles, provide boundary conditions, which are inevitable for a

8.1 Case study: automotive drivetrain development 217

comprehensive analysis and evaluation. To grasp this complexity in the early phase, a
scenario of the automotive environment was established to identify key factors characterizing
the use of the automobile in the future. The scenario includes about 80 factors, grouped by the
classes depicted in the following table.

Resources and Technologies Transport Structure
Availability of energy and resources Mobility
Usage of energy and resources Infrastructure
Technologies Market and competition
Sociodemography Characteristics of the automotive sector
Population Market situation and terms
Migration balance Economy
Population density Gross domestic product
Settlement pattern Private consumption
Number of households Consumption structure
Educational level Governmental consumption
Age pattern Import and export
Life expectancy Price level
Legislation Wages
Emission Labor productivity
Vehicle Labor market
Pollution control Net household income
Taxes
Road traffic regulations

To identify critical factors for the definition of coherent scenarios, a structural analysis of the
network of factors was conducted. The network of factors was defined based on literature
reviews, workshops, and interviews. These factors are then interlinked by directed
dependencies of the type “influences”. A number of analysis criteria come into question.
Leaf-nodes, for example, characterize active or passive factors, depending on the direction of
the dependencies. The active- and passive-sum of all nodes describes their general behavior
within the network. Typical scenario techniques provide grids for the evaluation of criteria,
both direct and indirect, to systematically identify the key factors [compare GAUSEMEIER et al.
1996, MIßLER-BEHR 1993]. The network of influence factors provides the basis for these.

The following figures depict the underlying data schematically, showing the impulsive factors
to be the most relevant. Impulsive factors show in all categories; highly relevant and of
immediate influence are those of the transport structure, which are also highest in number.
The following selection of factors was identified as relevant for the definition of realistic
drive cycles: number of vehicles, traffic volume, density of traffic, length of traffic routes,
typical path length, traffic management, and traffic performance.

Table 8-1: Classes of influence factors on the automotive environment

218 8. Validation

The chosen scenario is characterized as a likely scenario in the near future, with only
moderate changes to the key factors. Trends indicate that the number of vehicles, traffic

Figure 8-1 Grid of influence factors

Figure 8-2 Matrix of environmental influence factors for scenario definition

Active Sum

P
as

si
ve

 S
um

I Impulsive Factors
II Dynamic Factors
III Reactive Factors
IV Buffering Factors
V Neutral Factors

8.1 Case study: automotive drivetrain development 219

volume, density of traffic, traffic management measures, and traffic performance will rise
moderately, while the effects of urbanization, i.e. many short routes in cities and long routes
from rural zones to the cities, characterize the length of routes and paths. Since the underlying
drive cycles are largely relevant, use case-based scenarios were defined. The precise drive
cycles are only of limited use in the early phase, but allow for the proportional differentiation
of driving modes (brake, accelerate, etc.). The necessary information is therefore derived from
known drive cycles and simulations based on standardized drive cycles.

In accordance with the described project objectives, the relevant domains and their
interrelations were identified; this is depicted in the following meta-model of the presented
case study. The meta-model is based on the defined architecture framework, detailing the
domains and their interrelations based on the case study. The main cause-and-effect chain in
the following section describes the main relevant interrelations.

The identified use cases define the resulting customer requirements in the context of that use
case. The customer requirements, in return, cause performance and functional requirements.
Those requirements demand for either certain properties or functions to be fulfilled. Within
the domain of functions, primary functions require secondary functions, while both may cause
harmful functions. Additionally, secondary functions may be introduced to prevent harmful
functions. To fulfill the demanded functionality and to define properties, the domains of
physical entities – components and assemblies – are introduced, also potentially causing
harmful functions. Within the domains of physical entities, components result in assemblies.
Physical effects are used by the physical entities and enable the functionality. Properties
resulting from the physical entities and functions can then be validated against the
requirements regarding their fulfillment. The product family and use cases both require and
use the physical entities.

220 8. Validation

Figure 8-3 Meta-model for the presented case study

8.1 Case study: automotive drivetrain development 221

On the basis of the introduced meta-model and objectives, the following steps can be
conducted, starting with the system decomposition, i.e. the identification of entities of the
system and their interrelations.

8.1.2 System decomposition
For system decomposition, the levels of abstraction within domains (if not already defined in
the meta-model) have to be identified, and the existing entities classified and grouped within
them. According to the objectives of the case study, the hierarchies of physical entities and
functions are more elaborate than those of the other domains.

The requirements domains alone represent only a small number of entities. The leading
customer concern is the energy-efficient transportation in different use cases, i.e. situations or
drive cycles, and a dynamic performance at the same time. As a third requirement, the
cruising range of the vehicle has to be taken into account. The customer requirements directly
cause performance and functional requirements. Performance requirements include
acceleration, top speed, and energy efficiency. As functional requirements, the demand for
different driving modes results from the customer requirements.

The relevance of the requirements, especially functional requirements, largely depends on the
use case, i.e. functional requirements are weighted differently for diverse requirements. The
performance- and customer-requirements largely reflect in the properties of the architecture.

Figure 8-4 Decomposition of Requirements

Requirements

Customer

Energy-Efficient
Transportation

Dynamic
Performance

Cruising Range

Performance

Acceleration

Top Speed

Energy
Efficiency

Functional

Accelerate

Drive
Conventional

Drive Electrical

Boost

Load Point
Increase

Decelerate

Brake
Conventional

Recuperate

Start-Stop Charging

Internal

External

222 8. Validation

The domains of physical entities are largely based on a classification of entities on the
component level. A differentiation is made between energy storage and energy conversion
components. While the following figure depicts the different classes of domains, the single
entities are not depicted. Entities, i.e. existing components are assigned according to their
main purpose. A combustion engine for example converts chemical to mechanical energy, but
also to thermal energy as a side effect.

Assemblies are intended to be a result of the analysis of the architecture and thus are not
defined from the start. In general, assemblies are considered to be a grouping of components.

The domain of physical effects is not further decomposed. Physical effects in general are
characterized by their input and output parameters, the respective amplitude, and the
underlying physical formula [compare PONN & LINDEMANN 2008, pp. 311 ff.].

The functional system and hierarchy was established on three layers, all below the main
function “move vehicle”. The primary functions are “store”, “convert”, and “use/transmit”
energy. Primary functions can be further detailed, based on the specification of the functions,
as depicted in the following figure. Secondary functions, for example “dissipate waste heat”,
follow the same classification as the primary functions. Harmful functions are not further
decomposed at this point; a decomposition of harmful functions will be conducted on the
basis of the information acquisition.

Figure 8-5 Decomposition of Components

Components

Energy
storage

Chemical

Electrical

Energy
conversion

Chemical-
electrical

Chemical-
mechanical

Electrical-
mechanical

Thermal-
electrical

Electrical-
electrical

Mechanical-
mechanical

8.1 Case study: automotive drivetrain development 223

Use cases and the product family are not primary subjects of consideration for the case study,
and are thus not further decomposed, but decomposed when required in the following steps.

The system decomposition reflects the early perception of the system. As was discussed
during the introduction of the procedural model, iterative and recursive procedures are
common, especially among the first three steps.

8.1.3 Information acquisition
The information acquisition aims for the identification of entities and the interrelations
between entities for the previously decomposed domains. The upcoming sections will provide
examples regarding how information for the case study can be acquired; the inter- and intra-
domain interdependencies are of special interest.

For the systematic identification of functions of existing drivetrain concepts, different
functional models were established. The flow-oriented functional model provides the
material- and energy-flows of the system. The flow-oriented model differentiates between
operations and states combined with functions (see chapter 5.5.2), while for further
processing, the operations are considered as functions. The figure on the following page
depicts an example of the flow-oriented functional model of a parallel hybrid, combining the
conventional drivetrain (top of the figure) with the electrical drivetrain, which in the given
example is also externally chargeable, as a plug-in hybrid.

Figure 8-6 Decomposition of Functions

Functions

Store energy

Electrical

Chemical

Convert energy

Chemical-electrical

Chemical-
mechanical

Electrical-
mechanical

Thermal-electrical!

Use/transmit
energy

Electrical-electrical

Mechanical-
mechanical

224 8. Validation

Figure 8-7 Flow-oriented functional (example of parallel hybrid)

w
as

te
 h

ea
t

ho
t c

oo
lin

g
flu

id

flo
w

-o
rie

nt
ed

 fu
nc

tio
na

l m
od

el
: P

ar
al

le
l H

yb
rid

 V
eh

ic
le

dr
iv

e
po

w
er

tra

ns
m

itt
ed

 to

ro
ad

cl
ut

ch

cl
os

e
flo

w
 o

f f
or

ce
s

on
 re

qu
es

t

to
rq

ue

fo
rw

ar
de

d
tra

ns
m

is
si

on

tra
ns

fe
r a

nd

tra
ns

fo
rm

 m
ot

io
n,

en

er
gy

 a
nd

 fo
rc

e
ad

ap
te

d
ro

ta
tio

na
l

en
er

gy

dr
iv

e
sh

af
t

co
nv

ey
 ro

ta
tio

n
to

dr

iv
e

ax
le

to
rq

ue
 a

t d
riv

e
ax

le

di
ffe

re
nt

ia
l g

ea
r

di
st

rib
ut

e
to

rq
ue

 to

w
he

el
s

to
rq

ue
 a

t d
riv

e
ax

le

w
he

el
s

tra
ns

m
it

dr
iv

e
po

w
er

to

 ro
ad

fu
el

 a
t g

as

st
at

io
n

fu
el

 fi
lle

r n
ec

k,
 ta

nk

ve
nt

ila
tio

n

co
nv

ey
 fu

el
 to

 ta
nk

de

-a
er

at
e

fu
el

 ta
nk

fu
el

 in
 ta

nk

fu
el

 ta
nk

st
or

e
fu

el

fu
el

 p
um

p,
 in

je
ct

io
n

pu
m

p

in
tro

du
ce

 fu
el

 to
 IC

E

fu
el

 u
nd

er

pr
es

su
re

IC

E

co
nv

er
t f

ue
l e

ne
rg

y
ch

em
ic

al
→

m

ec
ha

ni
ca

l
fu

el
 s

to
re

d
an

d
pr

ep
ar

ed

fo
r t

ak
in

g

el
ec

tri
ci

ty
 in

ne

tw
or

k
tra

ns
fo

rm
er

 re
ct

ifi
er

ad
ap

t c
ha

rg
in

g
cu

rr
en

t

ap
pr

op
ria

te

ch
ar

gi
ng

cu

rr
en

t

ac
cu

m
ul

at
or

st
or

e
el

ec
tri

ci
ty

po
w

er
 e

le
ct

ro
ni

cs

ad
ap

t v
ol

ta
ge

 a
nd

fre

qu
en

cy

en
er

gi
ze

 E
M

en

er
gy

pr

ep
ar

ed
 fo

r
co

nv
er

si
on

E
M

co
nv

er
t e

le
c.

 e
ne

rg
y

el
ec

tri
ca

l↔

m
ec

ha
ni

ca
l

el
ec

tri
ci

ty

st
or

ed
 a

nd

av
ai

la
bl

e
fo

r
tra

ns
fe

r

to
rq

ue
 a

t
en

gi
ne

 s
ha

ft

co
ld

 c
oo

lin
g

flu
id

th
er

m
al

en

er
gy

tra

ns
m

itt
ed

 to

en
vi

ro
nm

en
t

he
at

 e
xc

ha
ng

er

co
ld

-h
ot

ab
so

rb
 w

as
te

 h
ea

t

he
at

 e
xc

ha
ng

er

ho
t-c

ol
d

di
ss

ip
at

e
w

as
te

 h
ea

t

ho
t e

xh
au

st

to
rq

ue
 a

t
en

gi
ne

 s
ha

ft

w
as

te
 h

ea
t

ex
ha

us
t s

ys
te

m
s

cl
ea

n
an

d
co

nv
ey

ex

ha
us

t
ho

t,
cl

ea
ns

ed

ex
ha

us
t

tra
ns

m
itt

ed
 to

en

vi
ro

nm
en

t

8.1 Case study: automotive drivetrain development 225

Single lines within the model represent energy-flows, while double lines represent material
flows (i.e. fuel or air). The chosen level of abstraction largely influences the nature of a
functional model. An engineer involved in drivetrain development might find the model far
too abstract. For the presented case study, which is aiming for an understanding of existing
architectures and the systematic synthesis of architectures, the level of abstraction appears to
be sufficient and reasonable. The model can naturally be detailed at will. For example, the
functional model for a clutch alone can be depicted in more detail than presented example of
the overall drivetrain.

The allocation of components to the functional model (in the given example implemented
below each operation) is not uncommon. Clearly, not every system allows for the one-to-one
allocation of components to functions. In the given example, components may be either
allocated repeatedly to more than one function, or more than one component assigned to one
function.

Summing up, the functional model provides reasonable input for the interrelations between
functions, as well as the interrelation between functions and components. A solid basis is
established for the analysis and comparison between different drivetrain concepts. To achieve
a reasonable level of detail when modeling nevertheless requires experience and might require
reworking and iterations.

In the figure on the following page, the same system is depicted in the form of the relational
functional model (see chapter 5.5.2), introducing the harmful functions. The information of
the flow-oriented functional model was used as a starting point for the relational functional
model. The functions of the flow-oriented functional model are found within the relational
functional model, in which additional (secondary) functions appear, as well as harmful
functions. As a result, both types of functional models are interrelated and provide
information for the architecture model. Harmful functions in particular point out the
downsides of existing architectures and components. Additionally, directed solution search, as
proposed in the TRIZ methodology, is prepared. The coupling of components to the
functional model can also be conducted.

The information acquisition for components can be conducted in three ways. The allocation to
the functional model was already conducted. The characterization of components and the
analysis of existing architectures will be shown in the following section. For the case study,
the numerous types of components identified during system decomposition are characterized,
to enable capturing the properties of the system based on single components. The following
table shows examples of the property categories for electrical energy storages, i.e. batteries.
The values for the properties can be identified for the class by providing a value range, or for
an individual component with defined effects.

226 8. Validation

Electrical energy storages Energy efficiency (%)
Specific power (W/kg) Open circuit voltage (V)
Volumic energy (Wh/kg) Operating temperature (°C)
Charge efficiency (%) General properties

Table 8-2: Properties for component classes (example of electrical energy storages)

8.1 Case study: automotive drivetrain development 227

Figure 8-8 Relational functional model (example of parallel hybrid)

R
el

at
io

na
l f

un
ct

io
na

l m
od

el
: P

ar
al

le
l H

yb
rid

 V
eh

ic
le

cl
os
e&
flo

w
&o
f&f
or
ce
s&
on

&
re
qu

es
t&

tr
an
sf
er
&a
nd

&tr
an
sf
or
m
&

m
o2

on
,&e
ne

rg
y&
an
d&

fo
rc
e&
&

di
st
ri
bu

te
&to

rq
ue

&to
&

w
he

el
s&

tr
an
sm

it&
dr
iv
e&
po

w
er
&to

&
ro
ad
&

co
nv
ey
&fu

el
&to

&ta
nk
&

de
<a
er
at
e&
fu
el
&ta

nk
&

st
or
e&
fu
el
&

in
tr
od

uc
e&
fu
el
&to

&IC
E&

co
nv
er
t&f
ue

l&e
ne

rg
y&

ch
em

ic
al
→
&m

ec
ha
ni
ca
l&

(IC
E)
&

ad
ap
t&c
ha
rg
in
g&
cu
rr
en

t&
st
or
e&
el
ec
tr
ic
ity

&
ad
ap
t&v
ol
ta
ge
&a
nd

&
fr
eq

ue
nc
y&

en
er
gi
ze
&E
M
&

co
nv
er
t&e

le
c.
&e
ne

rg
y&

el
ec
tr
ic
al
↔

&
m
ec
ha
ni
ca
l&(
EM

)&

ab
so
rb
&w
as
te
&h
ea
t&

di
ss
ip
at
e&
w
as
te
&h
ea
t&

cl
ea
n&
an
d&
co
nv
ey
&

ex
ha
us
t&

is
 re

qu
ire

d
fo

r

ca
us

es

in
tro

du
ce

d
to

pr

ev
en

t

be
ne

fic
ia
l&f
un

c2
on

&

H
ar
m
fu
l&f
un

c2
on

&

th
er
m
al
&lo
ad
in
g&

em
it&
ha
rm

fu
l&p
ar
2c
le
s&

an
d&
ex
ha
us
t&

&&&
&&&
&p
ro
vi
de

&n
o&
to
rq
ue

&
be

lo
w
&e
ng
in
e&
id
lin
g&

sp
ee
d&

&&&
&o
ffe

r&
en

gi
ne

&s
pe

ed
&

ra
ng
e&
no

t&m
at
ch
in
g&

w
he

el
&s
pe

ed
&ra

ng
e&

co
ns
um

e&
fu
el
&

de
pe

nd
in
g&
on

&m
ot
or
&

m
ap
&p
oi
nt
&

&&&
&&p
ro
vi
de

&p
ow

er
&n
on

<
co
ns
ta
nt
&a
lo
ng
&e
ng
in
e&

sp
ee
d&

&&e
vo
ke
&b
oi
l<o

ff
&e
ne

rg
y&

lo
ss
&

&&&
lim

it&
ch
ar
gi
ng
&p
ow

er
&

&&&
&li
m
it&
po

w
er
&d
en

si
ty
&/
&

en
er
gy
&d
en

si
ty
&

&e
ffe

ct
&&c
ha
rg
in
g&
/&

di
sc
ha
rg
in
g&
en

er
gy
&lo
ss
&

eff
ec
t&t
he

rm
al
&lo
ad
in
g&

di
ss
ip
at
e&
he

at
&in
&o
il&

flo
w
&

pr
ov
id
e&
oi
l&o
pe

ra
2n

g&
pr
es
su
re
&(h

yd
ra
ul
ic
&

pu
m
p)
&

pr
ov
id
e&
po

w
er
&&

ad
ap
te
d&
to
&p
ow

er
&

de
m
an
d&
hy
pe

rb
ol
a&

al
lo
w
&fo

r&
lo
w
<lo

ss
&

en
er
gy
&c
on

ve
rs
io
n&

pr
ov
id
e&
to
rq
ue

&fr
om

&
sp
ee
d&
ze
ro
&

al
lo
w
&fo

r&
dr
iv
ea
w
ay
&

ac
tu
at
e&
/&
co
nt
ro
l&

ge
ar
bo

x&sw
itc
h&
ge
ar
s&
/&
al
lo
w
&fo

r&
flo

w
&o
f&p

ow
er
&

tr
an
sf
or
m
&e
ng
in
e&
sp
ee
d&

co
nv
ey
&ro

ta
2o

n&
to
&d
ri
ve
&

ax
le
&

&&&
&&e
ffe

ct
&p
ow

er
&d
ro
p/
&

da
m
ag
e&
at
&in
co
rr
ec
t&

te
m
pe

ra
tu
re
&

eff
ec
t&a

br
as
io
n&

eq
ui
p&
w
ith

&a
br
as
io
n&

re
se
rv
e&
fo
r&
lif
e2

m
e&

&&&
ne

ed
&lo
ng
&c
ha
rg
in
g&

2m
e&

(P
lu

g-
in

)

th
er
m
al
&lo
ad
in
g&

co
nd

i2
on

&s
to
ra
ge
&

(h
ea
2n

g/
co
ol
in
g)
&

228 8. Validation

After existing architectures were assessed from a functional perspective and on the
component level, the physical architecture of the drivetrain is considered for information
acquisition. As an example, the following architecture diagram of a parallel hybrid completes
the picture of the two functional views and the component view.

Compared with the flow-oriented functional structure, the analysis of the presented physical
architecture provides similar knowledge, since the focus is placed on the functional
interaction between the physical system elements. According to the objectives, the focus was
on the energetic-functional perspectives. Additional knowledge is likely to be built based on
models from different viewpoints. For the synthesis phase, the previously discussed models
provide a valuable and informative basis, as the following sections show.

The result of information acquisition is a comprehensive overview of the existing entities and
entity-relationships, based on different viewpoints of the different levels of abstraction in the
system. The presented functional models and architecture diagrams were established for
known drivetrain concepts and the properties of physical entities researched, by means of
examples from different makers. The information is modeled and analyzed in the following
section, preparing a systematic synthesis and a structured overview of the potentials and
restrictions for development.

8.1.4 System modeling
While the source models were used for the information acquisition process, the transfer to
MDM notation is conducted as a next step. The underlying principle was introduced in
chapters 6.1 and 6.2.

The modeling in MDM notation follows strict rules and requires that the information be
prepared accordingly. The semantics of models, such as the functional models, regularly meet
the MDM notation halfway, since types of entities and interrelations are precisely defined.
However, the relation between models, if not given through the collective use of the same
entities, such as functions, has to be established. In the given example, the models used for
information acquisition do not provide the interrelations between the requirements and the
functional and physical entities. Methods such as FMEA or QFD support the definition of
these interrelations, yet demand a demanding procedure if the outcome of the methods is not
explicitly required. To complete the picture defined by the meta-model, the lack of
information can be directly filled in within the matrix-model. To be able to estimate which
information in particular is required, the analysis must be thoroughly planned.

Figure 8-9 Architecture diagram (example of a parallel hybrid vehicle architecture)

Axle Gear

Wheel

Wheel

Gearbox Clutch Motor Engine Fuel Tank

Converter Battery

Electric energy flow

Mechanical energy flow

Chemical energy flow

8.1 Case study: automotive drivetrain development 229

The above figure shows the principle of transferring the models into the matrix notation. The
MDM depicts functions, components, and the energy states as supplements for the functional
and component descriptions. The matrices can be analyzed in the following steps. A potential
summary of the individual systems in matrix notation results in a comprehensive model of the
actual known solution space.

While the matrix in above figure displays the functional model, its energy states and
components in an MDM model, other dependencies on the level of entities and interrelations
cannot be as clearly grasped. For example, the functional requirements, i.e. the different
driving modes of potential vehicle architectures, cannot be mapped onto individual entities –
on neither the functional nor component level. Considering the system modeling as a planning
phase of the architecture analysis, the solution to such challenges can be prepared. In the
following section, a possibility is described using the example of functional requirements in
the case study.

The functional requirements were grouped under the four classes of acceleration,
deceleration, start-stop, and (electrical) charging. The entities reflect the usual driving modes
considered in automotive drivetrain development, while the conventional braking and start-
stop will be factored out for the following considerations, discussing the seven remaining
functional requirements. The goal is to reflect the functional requirements within the
functional domain, which is composed exclusively of energy flows. The solution lies within
the previously introduced functional models. A distinct path within the functional system can
depict functional requirements. The function of conventional driving, for example, can be

Figure 8-10 System modeling – principle

230 8. Validation

depicted by a path from fuel tank to wheels. The dependencies after the internal combustion
engine are required to be only mechanical. A transformation to electrical energy would result
in the function of driving electric within a serial hybrid.

The following table displays the functional requirements, the structural characteristics within
the functional system, and the restrictions for the successful identification of functional
requirements being fulfilled within the system.

Functional
requirements

Structural Characteristic within the
functional domain

Restrictions

Drive conventional Existing path from fuel tank to wheels No transfer to electric energy
Drive electric Existing path from battery to wheels -
Boost Existing paths “drive conventional” and

“drive electric”
Paths must be technically
overlayable

Load point increase Existing paths “drive conventional” and
“internal charging”

Both paths must found on the
same engine node as the
converter

Recuperate Existing mechanical path from wheels to
electric motor

-

Internal charging Existing path from the chemical-
mechanical converter to battery

Requires two electric motors to
drive electric while charging

External charging Direct interrelation between external
source and battery (through converter)

-

As a result, the path analysis for referenced entities can deliver potential solutions, which
again have to be checked for fulfillment of the given restrictions. Existing solutions, as well
as solutions defined during synthesis phase, can be evaluated by means of the introduced
structural criteria.

The above section gave an overview of how the system is modeled, and how interrelations
between domains can be deduced, even if not displayable on sole interdependencies. The
following section describes potential analyses of the architecture, based on the given
information.

8.1.5 Architecture analysis
The architecture analysis in the presented case study can be conducted in two stages. First,
existing solutions can be analyzed separately from one another, allowing for a comparison
based on the properties which result from the functional and component domain. Second, the
existing solutions can be summarized into one model using the ∑-MDM approach. Based on
the summary, the shortcomings and restrictions of all existing solutions can be derived. To set
the evaluation into context, the different use cases (announced in chapter 8.1.1) can be
consulted.

Table 8-3: Functional requirements and mapping to the functional domain

8.1 Case study: automotive drivetrain development 231

Analysis criterion Domains Relevant structural
characteristics

Number of driving modes Functions Path
Quality of driving modes Components and properties Path and path-length attributes
Structural complexity index Components Number and variety of entities and

interrelations
Modularity Components and functions Cluster analysis

The analysis of architectures allows for the identification of the number of driving modes,
i.e. the covering of the functional requirements, as discussed at the end of the previous
chapter. The quality of driving modes can be estimated based on the properties of
components being part of the path. For example, comparable values between elements based
on weights or costs can be derived. The potential of the degree of efficiency of the paths is of
the greatest interest. It is clearly only the potential of the degree of efficiency that can be
evaluated, since its actual values depend largely on the respective load point and other
dynamic factors, which cannot be generalized. The architectures can thus be compared based
on vague estimates relatively to one another, yet a conclusive decision can only be made on
the basis of the absolute values of more sophisticated concepts.

Since available space and packaging is always an issue in automotive development, a
structural complexity index was defined, based on the number and variety of entities and
interrelations. The underlying hypothesis states that the greater the number and variety of the
elements to be combined, the more difficult the realization becomes in terms of cost, effort,
and space. However, the best solution may not be the one with the smallest number of
elements, since an imaginative solution might incorporate more components into one (the
two-mode gear box, for example), solving the dilemma underlying the hypothesis. As with the
other criteria, they can only be used as a guideline for the identification and comparison of
potential solutions.

Modularity, as a last criterion, aims for the evaluation of potential solutions against the
existing product family or platform concept. The cluster-analysis shows potential interfaces
and modules, and enables the drawing of different conclusions. First, if the architecture is
compatible with the existing product family from a structural perspective, and second, if
potential solutions can be realized together within one product line or product family.

Structural analysis criterion Domains Relevant structural
characteristics

Degrees of freedom Components and functions Number of alternative paths
Restrictions Components and functions Bridge nodes and edges,

Cluster analysis, paths
Potentials Harmful functions Active- and passive sum
Modularity Components and functions Cluster analysis

Table 8-4: Analysis criteria for individual architectures

Table 8-5: Analysis criteria for the sum of considered architectures

232 8. Validation

To analyze the sum of existing solutions, the analysis criteria are partly overlapping those
defined for individual architectures. The identification of degrees of freedom, restrictions, and
potentials are explicitly defined for the sum of architectures, i.e. the solution space at this
point, while the modularity follows the same aim as for individual architectures.

The identification of degrees of freedom is conducted on the basis of the number of
alternative paths for the depicted functional requirements within the function domain. If the
identified paths for a distinctive functional requirement are numerous, a solution can be
chosen from a number of possibilities. On the other hand, if only one path is available, there is
no degree of freedom, according to prevailing knowledge, and the structure for the respective
function is set, if the function is required. This is also valid for the identification of
restrictions. If numerous paths for a function are available, yet all have one element or
interrelation in common, the element or relation is set and cannot be ignored during system
definition. Bridge nodes and edges, as well as clustering and path analysis, are the structural
characteristics that come into question for the analysis of restrictions, while the number of
alternative paths is most relevant for the identification of degrees of freedom.

Potentials for improvement can be identified on the basis of the harmful functions, for
example. Other functions or components that cause many harmful functions in different
scenarios might be considered for revisions, while, on the other hand, a harmful function with
multiple causes might be considered to turn into a positive side effect. The active- and
passive-sum of components, functions, and harmful functions can be used for that cause.

The modularity of the solution space can be viewed differently among individual solutions.
If modules show within the sum of architecture solutions, those might be considered as part of
the product family, yet maintaining enough degrees of freedom for the surrounding
architecture to realize different architectural concepts using that module. Benefits might
appear during development, leaving certain boundary conditions open for decision-making,
or, on the other hand, using modules to realize different architectures within the product
portfolio or family. An example is serial and through-the-road hybrid solutions that use
exactly the same electrical drivetrain.

The results of analysis carry different meaning for the different use cases resulting from the
initial situation analysis. The importance of drive cycles and detailed circumstances was
repeatedly underlined, and thus will be incorporated into the final evaluation. Selected results
are shown in the following graphic, displaying the potential of the presented approach. There
is insight into a few details, which are the cornerstones of the following solution search.
Focus is placed on the results of the analysis based on the sum of architectures, rather than
individual architectures, for which a property comparison based on listed results is sufficient.

The results of the architecture comparison deliver a heterogeneous picture of the strengths and
weaknesses of architectures and components. As a major insight, the analysis cannot give
preference to the architecture models on the basis of the architecture information alone. The
scenarios in which the vehicles are to be moved are inevitable. The analysis of harmful
functions underlines the hypothesis that thermal waste energy appears to posses major
potential, since in all architectures and at numerous points, thermal energy results as a non-
used energy output of components. Secondly, the harmful function “thermal loading” appears
to be the harmful function with the most causative input functions.

8.1 Case study: automotive drivetrain development 233

Based on the analysis of the sum of solutions, the degrees of freedom for embedding the
engine and motor/generator turn out to be the major advantage for the systematic architecture
variation, since actual solutions deliver a number of possibilities. The modularity analysis
shows clearly that the functional and physical modules differ, yet that a definition of modules
is possible across different architectures. As a restriction, the drive shaft and axle gear
connection turns out to be a common part of all architectures, originating from the fact that
analyzed architectures did not include options with wheel hub motors, which would render
axle gears redundant.

On the side of functions, the cooling-, fuel-, and drive-side-system are identifiable as
modules, while the conventional and electric drive-systems are strongly overlapping, since

Figure 8-11 Graph depiction of ∑-DSM of components

Figure 8-12 Graph depiction of ∑-DSM of functions

Cooling Fluid Pump

Radiator

Thermostat
Fan

Cooling Fluid

Fuel Tank

Combustion Engine

Torsional Dampers
Flywheel

Clutch

E-Motor

Planetary Gear

Generator

Battery

Power Electronics

Axle Gear

Drive Shaft
Wheels

Brakes
Differential

Differential Lock

Store fuel

Convert combustion-
engined power

Shift cooling circuit

Circulate cooling fluid
Release heat to

environment

Flow through
with ambient air

Dampen vibrations

Transmit frictional
force

Provide power split

Adjust revolution speed

Provide surface
pressure

Convert mechanical
to electrical energy

Convert electrical to
mechanical energy Adjust rotational direction

Convert voltage and
frequency

Chemical-electrical
energy conversion

Extract heat

Compensate different
wheel speeds

Decelerate vehicle
Avoid wheel slippage

Enable rolling motion

Direct torque

234 8. Validation

many architectures strongly integrate the electrical part with the conventional part. Although
the drive-side of existing hybrid architectures is highly integrated, the graph clearly shows
that the cooling system of current architectures is not set up to absorb (or reuse) all of the
waste heat of the vehicle. The independence of the cooling side from the electrical drivetrain
shows also in the component matrix.

The above discussions show valid examples of structural analysis criteria for the presented
case study. The presented examples naturally come as no surprise, yet indicate that the results
are valid. While in previous chapters (compare chapter 5.4.3 and 5.6.3), a larger number of
characteristics and possible analysis and evaluation criteria are mentioned, a reasonable
choice and planning has to be conducted as to how each criterion supports the solution finding
process. The automated conduction of a large number of analyses can be equally conducted
with respective processing power, yet the human interpretation of results is the truly time-
consuming aspect of the procedure. The meaning and interpretation are largely dependent on
the respective use case and project.

The given examples have shown that structural characteristics have to be adapted and set into
context by experienced users to cover eventualities and allow for the comprehensive
establishment and analysis of a system model.

8.1.6 Validation
For the presented use case of drivetrain development, numerous aspects that were not
demonstrated by the given example are to be considered. Those aspects, which make the
development of such complex and dynamic systems possible in the first place, include the
control strategy, drive cycle, detailed properties such as engine characteristics or battery
characteristics, basic and environmental conditions etc. Still, the statements and results above
provide directions and value as far as possible on such abstract level.

To validate the analysis results of the presented case study, two approaches were chosen. On
the basis of system and component properties, the results can be evaluated through
comparison to existing simulation results and other sources of hard figures about the
respective architectures. Relative comparisons of efficiency and structural complexity reflect
in the results of simulations and modeling efforts for simulation. The hypotheses resulting
from the structural analysis were confirmed by means of the mentioned measures of
validation.

For the results concerning the overall architecture structure, interviews with experts were
conducted, based on the retracing of findings into the source models. Based on known
representations, involved experts can evaluate and discuss results more easily, while the
MDM model provides the overview and comprehensible origin of the analysis results.

8.1.7 Implementation
The implementation step includes the drawing of conclusions based on the analysis results. In
cases of small and less complex systems, implementation may include the synthesis phase, if
analysis results are unambiguous and tasks clear.

8.1 Case study: automotive drivetrain development 235

First, the validated analysis results confirm parts of the original objectives of the case study.
The drivetrain concepts were functionally and physically analyzed, the domains decomposed,
and properties for elementary components or building blocks determined. Evaluation criteria
for existing solutions were derived, and their reliability and suitability approved. Thermal
waste energy was identified as a potential type for energy recovery or reuse from a structural
perspective. The structural characteristics derived from the analysis of the functional and
physical systems could not point to an immediate demand for action, since the restrictions
were agreed to be inevitable concerning the current state of the art. Nevertheless, synthesis
aims to tap the full potential of actual architectures and possibilities.

The remaining tasks for the synthesis steps are, in detail, the solution finding for the thermal
energy recovery, the search for alternative solutions of drivetrain concepts on levels of
decomposition, and the evaluation of concepts, including modularity, which should conclude
the synthesis phase. The following figure provides the outline for synthesis, based on the
identified domains in the meta-model.

The following sections will identify the respective domains for the remaining synthesis tasks,
and provide solutions utilizing the methods outlined in previous chapters. The following step
of solution search focuses on the physical entity domains. Solutions to complete the solution
space will be sought within the domains of components and physical effects. The “building
blocks” represent the domain of assemblies. Assemblies in the context of the case study are
understood as groupings of components, which as a group form a functional unit. Examples
for a functional unit are the functional requirements. An assembly would thus fulfill one or
more functional requirements. The systematic exploration of the solution space will demand
the consideration of both the functional and physical domains. A systematic variation of the
functional domains might, in return, demand revisiting of the task of solution search if new
solutions are required. The iterations were explicitly discussed and underlined in chapter
7.4.2. The following discussions will nevertheless be structured in a task-based manner to
clarify each step with examples.

Figure 8-13 Context of the architecture framework for synthesis

236 8. Validation

8.1.8 Solution search
The task of solution search aims for the completion of the solution space, i.e. the
identification of potential solutions to (sub-) problems of the system. In the given case study,
the sub-problems were identified by the component and functional decomposition (see
chapter 8.1.2).

The solution search to elaborate the solution space was conducted on the basis of literature
and competitor research. Numerous variants of components can be found, which fulfill the
defined functionality. The solution search can be conducted on three levels, i.e. the functional
class level, the principle level, and the specification level. Among others, a combustion
engine, for example, can fulfill the function “convert chemical to mechanical energy”. On the
principle level, a differentiation can be made between a Diesel- and Otto-engine. Both can be
detailed on the specification level, according to their number of cylinders, cylinder capacity,
power, engine characteristics, maker, etc.

The research of possibilities and potentials can be conducted on different levels, i.e.
functional class, principle, and specification levels. For the presented case study, the
specification level was chosen to find a critical number of representatives to confirm the
properties on principle and class levels. At the same time, the functional classes and
principles were critically challenged and research was carried out to determine whether
different principle solutions exist that fulfill the functional classes’ main properties. The
questioning of the functional class level was conducted during the systematic exploration of
the solution space, since then the interactions between different domains and classes of
domains show and are required for a comprehensive solution finding process.

The solution search focused on the system decomposition and potential solution elements in
the context of the functional fulfillment of requirements. The objective of energy recovery

Figure 8-14 Scope of solution search

8.1 Case study: automotive drivetrain development 237

will serve as an example in the following section, which discusses the systematic exploration
of the solution space.

8.1.9 Systematic exploration
The systematic exploration of the solution space was conducted on two levels, i.e. the
exploration of the functional architecture, as well as the physical architecture. Each of these
two directions can be decomposed as follows: the exploration of the functional architecture is
conducted on both the level of primary and secondary functions, while the exploration of the
physical architecture is conducted on all levels identified within the meta-model for the case
study, i.e. assemblies, components, and physical effects. Therefore, the assemblies and
components are chosen to enable variations on architecture level, while the synthesis on the
level of physical effects and components was conducted to identify variations on component
level.

• Exploration of the functional architecture

o On the primary functional level

o On the secondary functional level

• Exploration of the physical architecture

o On the level of assemblies

o On the level of components

o On the level of physical effects

The following sections will introduce several models and methods that were applied for each
of previously mentioned synthesis cases, discussing the outcome, as well as the observed
advantages or disadvantages.

238 8. Validation

For the variation on the primary functional level, the decomposition into operations and
states was chosen, enabling the systematic exploration of possible scenarios on the core
functional level. The above figure depicts the flow-oriented functional model on the primary
level on the top. The matrix depiction (lower half of the above figure), as one of its major
benefits, allows for a clear overview of what is and what is not considered in the current
solutions. White spots in the overview can be systematically questioned and intentionally
ruled out or reconsidered. Deliberately, the thermal output energy was introduced for the
matrix depiction, filling the obvious gap in the diagram depiction (which focuses on the main
energy flow). The DSM and DMM matrices of the model can be separately analyzed. For
example, the input states to operations DMM on the bottom left clearly show that:

• Mechanical energy storage was decided to not be a practical option (although
examples for flywheels in the automotive sector exist),

• The direct use of chemical or electric energy is not possible (a conversion to
mechanical energy is necessary),

• Thermal energy is currently not used as an input for any operation.

As a conclusion, the use of thermal energy can be discussed and incorporated accordingly into
the model. Therefore, a systematic exploration is necessary, whether concepts for “thermal-
electric”, “thermal-mechanical”, or “thermal-chemical” converters exist on the component- or
physical effects-level. The domain-mapping logics enable the derivation of dependencies and
matrices not originally part of the model, such as the DSM of states on the bottom right of the
depicted MDM.

The analysis of the secondary functional level results in the most relevant harmful and
secondary functions, yet cannot point to significantly new results. The path analysis on the
functional level for the fulfillment of functional requirements delivers few solutions. The

Figure 8-15 Exploration of the functional architecture on the level of primary functions

O1 O2 O3 S1 S2 S3 S4
O1 Store X X X X
O2 Convert X X X X X
O3 Use X X X
S1 Chemical X X
S2 Electrical X X
S3 Mechanical X X
S4 Thermal

O1 O2 O3 S1 S2 S3 S4
O1 Store X X X X
O2 Convert X X X X X
O3 Use X X X
S1 Chemical X X X X X
S2 Electrical X X X X X
S3 Mechanical X X X X
S4 Thermal

chemical! X

Y " mechanical

chemical

electrical

Store energy Convert energy

Convert and
transmit

movements,
energy, and forces

X = mechanical

X

 =
 Y

Y = electrical

X = electr
ica

l

Energy
consumer

Use energy

Energy
source

8.1 Case study: automotive drivetrain development 239

chosen functional level thus does not deliver more valuable input for the exploration of the
architecture solution space than the results from analysis (chapter 8.1.5) have shown.

The architecture variation on level of assemblies implies the systematic combination of
building blocks on the principle level, which partly overlap and were identified on the basis of
the results of analysis. Additional building blocks, for example resulting from the
identification of thermal energy recovery, widen the solution space and the number of
possible combinations accordingly.

The building blocks can be evaluated, for example depending on the degree of efficiency with
which the respective functional requirement is fulfilled, the number of entities required, or the
resulting modularity of the architecture. To identify the building blocks, a complete
architectural depiction of the solution space is required, as will be presented in the following
section.

Since the building blocks result from the analysis of the known solution space, more building
blocks or architectures can be defined by the systematic combination of components.
Typically, the decision tree or the compatibility matrix are the common methods to define the
combination of components, based on a defined set of components. The following figure
depicts the cutout of a possible decision tree with relevant decisions for the structural
combination of drivetrains.

The starting point for the decision tree of the case study, and therefore common to all variants,
is the following collection of properties: a combustion engine as part of the drivetrain, a
gearbox (manual or automatic), and the premise for all branches of the tree is to define
autarkic architectures with the combinations given with the variant tree.

Figure 8-16 Identification of building blocks within the solution space (example of component structure)

Cooling Fluid Pump

Radiator

Thermostat
Fan

Cooling Fluid

Fuel Tank

Combustion Engine

Torsional Dampers
Flywheel

Clutch

E-Motor

Planetary Gear

Generator

Battery

Power Electronics

Axle Gear

Drive Shaft
Wheels

Brakes
Differential

Differential Lock

Cooling system

Drive train

Conventional drive system

Electric drive system

240 8. Validation

The second level of the variant tree differentiates between architectures with one or two
electric motors, followed by the differentiation of drivetrains with no or one coupling
(additionally). Further down the tree, there is a decision to be made between two-wheel drive
(front or rear), four-wheel drive and hybrid four-wheel drive (for example, one axle
conventional, one electrical). The final part of the decision tree is then to differentiate
between three positions of the electric motors. If there are two electric motors, the positioning
of the motors is divided into three different cases: the first position is the wheel hub motor (or
any other form of motor close to the wheels) for one axle, with the second motor integrated in
the drivetrain; the second position is a wheel hub motor for two axles; or as a third position,
there are two motors positioned along the drivetrain. For branches with one electric motor, 12
possible combinations exist (the positioning of the electric motors allows for only two
different positions), while for branches with two electric motors, 18 possible combinations
exist, resulting in 30 mathematical possibilities overall, of which six do not lead to reasonable
architectural results.94 To evaluate the reasonability of the decision tree, selected existing
hybrid concepts were compared with the branches, depicted in the following table.

94 Based on an earlier, more detailed version of the decision tree, the differentiation was made between autarkic
and plug-in hybrid, five different gearboxes and five different energy converters, as well as two energy storage
variants. The positioning of the electric motors was combined with the two- and four-wheel-drive, resulting in
four more variants on that level, leading to a decision tree of 1600 variants.

Figure 8-17 Decision tree for the case study (example)

Two electric
motors (close

to wheel)

Two electric
motors

(drivetrain)

Two electric
motors (drive-
train & wheels)

Two electric
motors (close

to wheel)

Two electric
motors

(drivetrain)

Two electric
motors (drive-
train & wheels)

Two electric
motors (close

to wheel)

Two electric
motors

(drivetrain)

Two electric
motors (drive-
train & wheels)

Two-wheel
drive

Hybrid four-
wheel drive

Four-wheel
drive

1 additional
coupling

Two electric
motors

Start of
decision tree

One electric
motor

8.1 Case study: automotive drivetrain development 241

Hybrid concept Electric
motors

Additional
coupling

Drive
concept

Electric motor
positioning

Peugeot RC HYmotion4 1 0 Hybrid 4WD Close to wheels
Peugeot Prologue HYmotion4 1 0 Hybrid 4WD Close to wheels
Citroen HDI Hybrid 1 1 2WD Drivetrain
Citroen C Metisse 1 0 Hybrid 4WD Close to wheels
Audi A1 Sportback Concept 1 1 2WD Drivetrain
Land Rover Diesel ERAD 2 1 4WD Close to wheels
Citroen C-Cactus Concept Car 1 1 2WD Drivetrain
HHF Hybrid Concept Car 1 0 Hybrid 4WD Close to wheels
Peugeot 308 Hybrid HDI 1 1 2WD Drivetrain
Porsche Cayenne Hybrid 1 1 4WD Drivetrain
Saab Bio Power Hybrid Concept 2 1 Hybrid 4WD Drivetrain/ Close to

wheels
Touran Eco Power 1 1 2WD Drivetrain
Fiat Multipla Hybrid Power 2 0 2WD Drivetrain
X3 Efficient Dynamics 1 1 4WD Drivetrain
Audi Metroproject 1 0 Hybrid 4WD Close to wheels

The decision tree can propose the ingredients for a drivetrain, yet cannot pose the architecture
of the chosen entities. This is especially true in the case of the drivetrain, where numerous
entities possess a number of possible interrelations with other entities. The following figure
depicts two different architectures, both based on the same decision tree. Naturally, not only
the decisions for entities, but also components can be part of a decision tree. Therefore,
almost all possibilities have to be predefined, making the decision tree a medium for
visualization, rather than synthesis. The following figure depicts two solutions for one branch
of the decision tree.

Table 8-6: Comparison of existing hybrid concepts to the resulting branches of the decision tree

242 8. Validation

The compatibility matrix depicts the physical entities of the product architecture and their
compatibility with one another, i.e. the constraints and exemptions in a variant management
application. In contract to the previously mentioned applications of matrices, the
compatibility matrix does not depict the actual interrelations between entities, but rather their
general compatibility. The matrix depicts which entities are generally allowed in one
configuration of the product architecture, yet cannot visualize how the components are
connected or interrelated. The results of the compatibility matrix are similar to those resulting
from the application of the decision tree or the morphological chart. All of these approaches
share the depiction of a general compatibility of the entities, without regarding the actual
structure of the architecture.

Figure 8-18 Different structural solutions resulting from one branch of the decision tree

Electric
Motor

Wheel

Wheel

Gearbox Engine

Motor

Fuel Tank

Power
Electrics Battery

Electric energy flow

Mechanical energy flow

Chemical energy flow

Electric
Motor

Wheel

Wheel

Gearbox Engine Motor

Fuel Tank

Power
Electrics Battery

8.1 Case study: automotive drivetrain development 243

The depiction of the solution space, as proposed in chapter 6.5 intends to provide exactly the
interrelations between entities missing from the approaches above. The comprehensive
depiction of the solution space alone allows for the identification of building blocks, as
previously discussed. In additional, the overall solution space can be analyzed, e.g. via cluster
analysis, to identify modularity or constraints for modularity among the available solutions, to
intentionally decide for or against interfaces between modules. The following figure depicts
two possible definitions of interfaces, based on the differentiation of an integrated or
separated electric drivetrain (through-the-road vs. parallel hybrid). If possible, based on the
defined solution space, solutions can be deliberately defined as modular. Objectives and
further circumstances for the architecture and its evaluation define the importance of the
modularity criterion, yet in many cases, modularity poses one of the major drivers for product
architecture definition.

The systematic variation on the level of physical effects is not the first step to take when
defining architecture variations. The use of physical effects has its place and origin in design
methodology for the definition of solutions, on the basis of functionally described products.
For the systematic variation of product architectures, physical effects can be applied to cope
with constraints that cannot be dissolved by current solutions and the means discussed in
preceding sections. A precise problem description can usually be defined on the basis of the
constraint to be solved; in the use case, this is the recovery of thermal energy. As such, the
resulting objective is comparable to a typical design, rather than an architecture problem.

Existing approaches aim for the identification of individual effects to fulfill functions [LAUER
et al. 2008, PONN & LINDEMANN 2008]. For more complex problems, a combination of effects
is required to fulfill the desired function. Important for the successful application is the
identification of the desired input- and output-variables. Similar to the depiction of the

Figure 8-19 Compatibility matrix for the case study: overview (left) and
combinational logic and examples (right)

1 – Combination of solutions not possible
(technologies are incompatible)

2 – Combination of solutions not reasonable
(no benefits but redundant functions to be expected)

3 – Neutral combination
(no redundancy but no imminent effect)

4 – Reasonable combination
(combination not imperatively required but beneficial)

5 – Mandatory combination
(combination of technologies unavoidable)

244 8. Validation

solution space on the level of components and functions, the solution space within the
physical effects domain can be depicted accordingly, based on existing libraries of physical
effects. The comprehensive depiction enhances existing approaches, pointing out chains of
effects.

The following figure shows a network of physical effects coupled with energy states, i.e. the
input- and output variables of effects. Given the objective of reusing thermal energy, the
effects network shows numerous possibilities to transfer thermal energy into other desired
energy states. A systematic analysis of (short) paths between desired energy states points to
potential solutions, usually covered by existing technologies or components. The search for
existing solutions on the level of components is naturally also valid for the given objective.

The above sections introduced a number of possibilities for the systematic exploration of the
solution space, on the basis of the product architecture model. The most important benefit for
the presented task is the search for solutions within the different domains and on different
layers of abstraction within the model.

8.1.10 Evaluation and decision
The systematic exploration of the solution space in the previous step was conducted on a
number of different levels. The evaluation and choice of entities, from either the functional
domain, assemblies, components, or physical effects, behaves similarly. However, for both
the exploration and evaluation, the interplay of domains has to be considered. Novel elements
to the solution space open possibilities within related domains. Physical solutions new to the

Figure 8-20 Depiction of solution space in graph form (from DEUBZER & LINDEMANN 2008)

Energy Forms
(states)

Working Principles
(operations)

8.1 Case study: automotive drivetrain development 245

solution space, for example, open up new functional possibilities or evoke different properties
of the overall system.

Accordingly, the evaluation of properties has to be conducted on all levels of the physical
solution space, in order to grasp the impacts between domains. If the properties of
components have changed, the behavior and properties of assemblies and/or the architecture
are likely to have changed equally. The evaluation criteria are determined by approaches
defined during analysis.

The evaluation criteria for architectures were introduced in chapter 8.1.5 on analysis of the
case study. Therein, the evaluation of existing architectures was conducted, based on the
following criteria. These, in turn, can be applied to evaluate newly developed architectures
during the synthesis phase.

• Structural complexity

• Number of user-functions

• Properties (degree of efficiency)

• Modularity

The importance of each of the criteria and their weighting against one another can be
conducted based on scenarios and/or use cases, referenced at the end of this section.

On the level of assemblies, the functional building blocks in the case study, the degree of
efficiency was the main concern for evaluation. Additionally, the criteria defined for the
architecture were important considerations. The structural complexity and number of user-
functions are equally applicable, for example, while the modularity of the building blocks
requires the architectural context. The number of interfaces can give an idea of the modular
properties of each building block. It is important for all of the domains evaluated that the
evaluation not be considered in solely one domain. Requirements and/or properties are
reflected in the different levels of the architecture; thus, evaluation must be considered on all
levels accordingly.

On the level of components, the properties were defined by the example of electric storage
components. These can provide a ranking of components with similar functions, but again the
context within other levels is important for the comprehensive evaluation. The evaluation
criteria for components, if not generalized on the level of cost, weight, etc., differ between
classes and case studies, and as such must be defined based on the objectives and
circumstances of the project. Numerous possibilities were identified in chapter 5.6, which also
provides potential methods by which the evaluation can be conducted sensibly.

The rating of physical effects was previously not considered. In general, the evaluation or
rating of physical effects (or technologies, i.e. novel combinations of effects without explicit
context in products) is hardly practical. The context in which the physical effect is used has a
significant impact on the evaluation of the effect. In fact, physical effects can be rated
exclusively in the project- and product-contexts. In the following points, examples of
evaluation criteria for physical effects that were relevant for the presented case study are
provided. These can be adapted for further use in other projects and show the limited
possibilities of the evaluation of physical effects.

246 8. Validation

• Environment and boundary conditions: In the context of the automotive drivetrain,
effects have to be evaluated, whether they are dependent on certain boundary
conditions or environmental properties, and if those conditions are prevailing or
educible within the automotive context. Effects that are dependent on extremely low
temperatures, for example, are difficult to handle (e.g. the challenges concerning the
liquid storage of hydrogen).

• Threshold values: A significant concern is whether the physical effect allows for
energy turnovers of suitable amplitude for the automotive drivetrain development.
Physical effects capable of only minor forces are likely irrelevant for the presented
case study, if they cannot be scaled or multiplied (which is the case for accumulator
technologies, for example). The possibilities of scaling and multiplication of the effect
have to be considered before excluding certain effects.

• Material: The required choice of materials for the physical effect points to
disqualifying criteria for certain use cases. In the given context of the case study,
highly toxic or radioactive materials are likely not practical for the use in an
automotive context.

• Tolerances and accuracy: Physical effects often require tolerances to be within small
margins to be fully functional. These require not only appropriate production
technologies, but also the adherence to accuracy during use. The practicability of
effects needs to be controlled under those concerns, including the aspects of cost and
durability.

• Degree of efficiency: The degree of efficiency as an evaluation criterion was
considered for the evaluation of other physical domains within the product architecture
framework. Physical effects themselves can rarely be evaluated without the context of
surrounding technologies and the product itself. However, in some cases, the principle
capabilities, i.e. the potential of efficiency of certain effects, might already provide a
disqualifying criterion for the use of the respective effect.

To be able to set the aforementioned evaluation criteria of all domains into a meaningful
environment, the identification of scenarios or use cases is inevitable. Differentiated scenarios
allow for the weighting of criteria with respect to each scenario. As a result, the entities of the
architecture can evaluate if the required focus and target of the architecture is met. For the
presented case study, a major scenario was derived, within which two distinct use cases and
thus two distinct evaluation grids can be defined. With the boundary conditions and
anticipated development of the automotive environment provided in chapter 8.1.1, two
possible use cases can be briefly described as “City vehicle” and “Multi application sedan”.
While the city vehicle can be described as a small vehicle mainly used for short paths, stop
and go and potentially within zero emission zones in the near future, the multi application
sedan requires a large interior space and different applications, ranging from occasional city
rides to outer city and long distance traveling. Based on the differentiation of the use cases
depicted in following table, suitable drive cycles can be derived and a weighting of criteria
conducted.

8.2 Discussion 247

City vehicle Multi application sedan
Short distance traveling Mixture of path lengths
Potential zero emission zones Small amount of zero emission zones
Small two-person vehicle Large family space sedan
Drivetrain complexity and space critical Drivetrain complexity and space less critical
Homogeneous applications Heterogeneous applications
Small and homogeneous product family Large and diverse product family
Low price segment Medium price segment

To give an idea of how the use cases impact the weighting of evaluation criteria, a few
examples support the understanding of the mapping process. The character of traveling
distances and diversity gives the outlines for the importance of the different driving modes.
While electric driving is within the focus of a city vehicle, the driving modes for a multi
application sedan tend to be equally relevant relative to one another. Accordingly, the number
of available driving modes is of higher importance for the multi application vehicle, compared
with a drivetrain designed for single purposes. The restrictions of space and cost point to
rather low complexity solutions for a city vehicle, while the comprehensive product family,
price segment, and available space of a sedan allow for a more elaborate solution and increase
the importance of the modularity of the architecture. While the given use cases allow for the
differentiation of architectures at a high level, the evaluation criteria for the identification of
suitable physical effects and/or components are strongly dependent on the derivation of
requirements, based on the architecture surroundings.

Of course, the architectural decisions cannot be made based on the above-introduced
measures alone. The application of the case study was not limited to energetic-functional
aspects of the structure. The comprehensive evaluation requires complex vehicle dynamics
simulations, operational control strategy for engines, gears, and overall energy management,
detailed component properties, drive cycles, virtual drivers, etc. The architectural
considerations as discussed complete the comprehensive picture, give insights into where to
set focus on architectural decisions, and complete the solution space.

8.2 Discussion
The introduction of the product architecture management approach allows for the systematic
analysis of architectures and search for solutions in the context of complex architectural
problems. The real-world objectives of the problem were reduced to the architectural
measures for the case study. The application showed the potential, based on practical
examples.

The application of the architecture management approach showed the possibility of
applying different methods, such as functional models, structural analysis, and evaluation.
Synthesis was systematically conducted on different architectural levels and different
domains, spanning a comprehensive solution space. An overview of the solution space was

Table 8-7: Rough use case outlines for the case study

248 8. Validation

given on different levels and the impact between domains and levels of abstraction was
presented.

The product architecture model makes results and properties intuitive to grasp, and allows
for the mathematical accessibility, as well as the interrelating of existing models, both
important elements for analysis. For the information acquisition, the model enables a sharp
definition of entities and relations, and guides the process of acquisition.

The product architecture framework enables the comprehensive establishment of situation
analysis and structured information acquisition during the project setup and within the first
tasks. The spanning of possible classes of domains and domains the framework supports a
comprehensive overview from the start.

Limitations especially show in dynamic systems, where behavior and properties can only be
deduced using dynamic simulations. Altogether, the introduced measures can only be
understood as a support during the early phases. They point to promising directions of the
architecture and combine evaluation criteria and properties, which cannot be provided through
other means.

9. Discussion

The presented work covered numerous aspects of the management of product architectures.
Starting with the role and evolution of the relevance in industry and reflecting on the suitable
approaches in science, the work systematically identified the major challenges for coping
with product architectures. Approaching the nucleus of the challenges, aspects of complexity
in general, and in engineering design of complex products in particular, were demonstrated
by means of different schools of thought. To comprehensively cope with complex
architectures, the existing methods and approaches were incorporated into a three-pronged
approach, based on the Multiple Domain Matrix approach. The three pillars of the approach
include a framework regarding the content, a model capable of handling the complex system
information, and a procedural model for the systematic coping with complex systems. The
concluding sections of the work will sum up the findings and remaining shortcomings. The
outlook section points out potential and promising directions for future work on the subject.

9.1 Conclusions
The following summary will discuss the main findings of this work and build up to the
challenges remaining for the future. The first descriptive study discussed the role of the
product architecture, based on a literature review. From the perspective of customers and
markets, the resulting complexity and challenges in engineering design reflect on the product
architecture. A reasonable handling of variant-rich product architectures with multilayered
requirements and differentiated perspectives is required. The markets, as well as the
comprehensive lifecycle perspective, are the main causes for this diversity. The different
aspects of organizational complexity result in implications on the product architecture and
vice versa. Team definition, multiple project environments, knowledge and decision-making,
as well as existing value networks, define the restrictions and boundary conditions for product
architectures. The character of the engineering design process, its recursivity and iteration
have to reflect in the models and approaches for the product architecture. Decision-making as
a major property of the design process has to be supported by a comprehensive approach in
product architecture management. All in all, the “complexity”, which is regularly referred to
in the context of product architectures, was detailed, and its origins and implications were
discussed. As part of the descriptive study, the coping with complexity in the context of
engineering design was discussed. Different existing schools of thought and fields of research
were characterized and their suitability for product architecture management in the early
phases analyzed.

The first prescriptive study provided a framework for systems architecting, resulting from
an intensive discussion of the modeling of product architectures, its requirements and
possibilities, based on the findings of the descriptive study. At this early point in the process,
the framework provided an outlook of the product architecture management approach,
pointing to a feasible modeling approach on the one hand, and providing the entities or

250 9. Discussion

artifacts of the product architecture that are most likely to be relevant for the product
architecture on the other.

To validate the framework and provide a profound scientific basis, the second descriptive
study delivered a comprehensive method review, based on a literature review and mapped to
the requirements for the management of product architectures identified in the previous
chapters. As a result, not only were feasible methods identified, but the requirements to a
solution were also summed up as: consistency (support to recursive and iterative procedures),
comprehensiveness (consideration of different relevant entities on different levels of
concretization and incorporation of stakeholder perspectives), and flexibility (modeling
approach to a few existing methods and models, based on an adaptable procedural model).

Based on the identified requirements and boundary conditions, the second prescriptive study
introduces novel solutions to the problem in two ways. First, novel constituents to the
approach, missing from the review, are defined, including the modeling and interrelation of
existing methods in MDM notation, the coping with hierarchies and recursive procedures, and
finally the support of synthesis in general, based on the depiction of the solution space.
Second, the provision of an approach for the management of product architectures is
introduced, based on the architecture framework, model, and procedural model. The approach
is designed to fulfill identified requirements and eliminate a number of shortcomings, uniting
existing and novel methods and solutions.

The last descriptive study provides a case study-based example of the application of the
approach for the management of product architectures. A number of cornerstones of the
approach could be validated within the example, and the overall approach and combination of
framework, model, and procedural model identified as feasible.

The results of the work have shown that the demands for the management of product
architectures are apparent in industry and in science. The majority of current methods and
approaches in design are not intentionally designed to meet the requirements for the
management of product architectures. The Multiple Domain Matrix (MDM) is capable of
providing a sound backbone for systems architecting, for which models and approaches are
frequently demanded in literature, yet seldom provided. The framework and procedural model
enable the practical application of the MDM for product architecture management, and the
use of suitable methods within a coherent system and modeling context. Therein, the gap
between analysis and synthesis was partly overcome and the recursive and iterative character
of the design process was accounted for. Additionally, the search for solutions was enabled,
not only as a sequential process, as is often proposed, but also in the sense of a systematic
exploration of the solution space within and across different domains and levels of
abstraction.

The remaining shortcomings of the approach show in different points. The introductory
chapters showed the multiple and diverse demands for the management of product
architectures. While the presented work could introduce an approach to cope with the core of
the product architecture, i.e. the structure, numerous aspects exist which cannot be
considered, portrayed or optimized by the approach presented, or at least could not be
validated. As the case study showed, the consideration of dynamic aspects and system
behavior are especially difficult at present, and the interfaces of the introduced approach to

9.2 Outlook 251

further means, such as simulation etc. are not yet clearly defined. Furthermore, the approach
could not be comprehensively validated. The case study provided an example regarding the
energetic-functional questions, but left out numerous other issues such as geometrical,
manufacturing, variant management issues, etc. While those can be tackled through the means
introduced, proof of this was not given. Although the conceptual approach could be validated
with above-mentioned exceptions, its acceptance among practitioners could only be vaguely
approached in conducted projects of the author. For the approach to be a valuable contribution
to industry, the methods need to be understood and accepted.

9.2 Outlook
Based on the findings and shortcomings, the remaining potential for further development can
be identified. The framework, model, and the procedural model allow for the definition of
further means.

First of all, the framework as introduced focuses largely and in detail on the known and
strongly related entities of the architecture, i.e. components, functions, and working
principles. The other classes of domains, such as requirements, properties, and lifecycle, were
considered, but not in adequate depth, considering their importance. The requirements alone
allow for their own framework of entities, not only by considering the lifecycle requirements
stemming from e.g. service and production more comprehensively, but also by detailing and
understanding the interplay of requirements and the architecture more comprehensively. The
domain of properties was largely considered from a structural point of view, yet inherits
numerous other aspects, such as cost, behavior, manufacturability, etc. Though difficult to
grasp from the perspective of structural means, the domain of properties present important
aspects for the decision-making process in the context of the product architecture. The same is
effective for the lifecycle domains, which were only marginally considered. Production,
recycling, or transportation need to be effectively coupled, yet indications are vague as to
whether the presented approach can also cover the means of these domains. For the design
process and business processes in general, the MDM approach has proved to be reasonable.

Figure 9-1 Potential extensions of the approach (examples)

Requirements

Components

Functions

Working Principles

Properties

Lifecycle

Tasks

People

Tools

Documents

…

Energetic-
functional

view

Coupling to
process

Additional
views

Manufacturability

Cost

…
Details on
additional

views

Production

Recycling

…
Detailed
lifecycle

consideration

Service Requirements

Production Requirements

… Detailed
lifecycle

requirements

252 9. Discussion

The considerations described in the architectural model and in the case study focus on
structural and energetic-functional aspects of the architecture, yet additional views need to be
validated as well. While the presented model is very powerful for the analysis and depiction
of structural means, other approaches, likewise beneficial for the management of product
architectures, need to be considered and coupled. Since the core idea of the approach is not to
replace or contrast other methods, the integration of further means needs to be evaluated. For
example, the rule-based synthesis can be based on the analysis results of the approach, since
both are closely linked to Graph Theory. Apart from automated synthesis, further approaches
might include the dynamic simulation of architectures, based on the outcome of the discussed
measures.

For the further validation of the procedural model, discussions with practitioners are
inevitable, which can in the future lead to a profound and practical approach for the
management of product architectures, based on detailed workflow- and role-descriptions. The
main tasks are described within the procedural model, yet their weighting and balanced
application could not yet be based on empirical data. Additionally, a large amount of methods
were analyzed to be integrated into the approach, yet many approaches, for example from the
area of variant management, were not considered, and provide potential for further
considerations.

The threefold approach for the management of product architectures provides a sound basis
rooted in the MDM approach. The history and recent development of the product architecture,
its implications and dependencies, suggest that considerable work lies ahead. In industry in
particular, the awareness and need for systems architecting are vast, yet the transfer of
scientific results and the validation of their practicability in industry requires a significant
amount of effort in the future.

10. References

ADELI 1994
 Adeli, H.: Advances in Design Optimization. London: Chapman & Hall 1994. ISBN:

0-412-53730-3.
AHLEMEYER & KÖNIGSWIESER 1998
 Ahlemeyer, H. W.; Königswieser, R.: Komplexität managen: Strategien, Konzepte

und Fallbeispiele. Wiesbaden: Gabler Verlag 1998. ISBN: 978-3409193160.
AKAO 1992
 Akao, Y.: QFD: Quality Function Deployment. Wie die Japaner Kundenwünsche in

Qualität umsetzen. Landsberg: Verlag Moderne Industrie: 1992.
ALBERT & BARABÁSI 2002
 Albert, R.; Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of

Modern Physics 74 (2002) 1, pp. 47-97.
ANDERSON 2008
 Anderson, C.: The Long Tail: Why the Future of Business is Selling Less of More.

New York: Hyperion 2008. ISBN: 978-1401309664.
ANTONSSON & CAGAN 2001
 Antonsson, E.K.; Cagan, J. (Eds.): Formal engineering design synthesis. New York:

Cambridge University Press, 2001.
ARNOLD et al. 2005
 Arnold, V.; Dettmering, H.; Engel, T.; Karcher, A.: Product Lifecycle Management

beherrschen. Berlin: Springer 2005. ISBN: 978-3-540-22997-1.
Avak 2007
 Avak, B.: Variant Management of Modular Product Families in the Market Phase.

Dissertation, ETH Zürich, Zürich (2007).
BARABÁSI 2003
 Barabási, A.-L.: Linked: How Everything Is Connected to Everything Else and What

It Means for Business, Science, and Everyday Life. New York: Plume 2003. ISBN: 0-
452-28439-2.

BARTON & LOVE 2000
 Barton, J. A.; Love, D. M.: Design decision chains as a basis for design analysis. In:

Journal Engineering Design, 11(2000) 3, pp. 283-297.
BAUER & MEERKAMM 2007
 Bauer, S.; Meerkamm, H.: Decision making with interdependent objectives in Design

for X. In: Proceedings of the International Conference on Engineering Design,
ICED’07, Paris, France, 28.- 31.8.2007. Paris, France: Cite Des Sciences De
L'Industrie 2007.

BAUMBERGER 2007
 Baumberger, G. C.: Methoden zur kundenspezifischen Produktdefinition bei

individualisierten Produkten. Technische Universität München, München (2007).

254 10. References

BECK 2004
 Beck, D.: Übersicht über Verfahren zum Umgang mit komplexen Aufgabenstellungen.

In: Fisch, R. et al. (Eds.): Komplexitätsmanagement - Methoden zum Umgang mit
komplexen Aufgabenstellungen in Wirtschaft, Regierung und Verwaltung.
Wiesbaden: VS Verlag für Sozialwissenschaften 2004.

BERKOVICH et al. 2009
 Berkovich, M.; Esch, S.; Leimeister, J. M.; Krcmar, H.: Requirements engineering for

hybrid products as bundles of hardware, software and service elements – a literature
review. In: Proceedings of the 9. Internationale Tagung der Wirtschaftsinformatik.
Wien, Österreich 2009.

BERNARD 1999
 Bernard, R.: Early Evaluation of Product Properties within the Integrated Product

Development. Dissertation, Technische Universität München, Lehrstuhl für
Produktentwicklung, München (1999).

BIGGS et al. 1999
 Biggs, N. E.; Lloyd, K.; Wilson, R. J.: Graph Theory 1736-1936. New York: Oxford

University Press 1999.
BLACKENFELT 2001
 Blackenfelt, M.: Managing complexity by product modularisation: Balancing the

aspects of technology and business during the design process. Stockholm: Department
of Machine Design, Royal Institute of Technology 2001. ISBN: 1400-1179.

BLESSING & CHAKRABARTI 2009
 Blessing, L. T. M.; Chakrabarti, A.: DRM, a Design Research Methodology. London:

Springer 2009. ISBN: 978-1-84882-586-4.
BOARDMAN & SAUSER 2008
 Boardman, J.; Sauser, B.: Systems Thinking: Coping with 21th Century Problems.

Boca Raton: CRC Press 2008. ISBN: 978-1-4200-5491-0.
BOEHM 1988
 Boehm, B. W.: A Spiral Model of Software Development and Enhancement.

Computer 21 (1988) 5, pp. 61-72.
BONGULIELMI 2003
 Bongulielmi, L.: Die Konfigurations- & Verträglichkeitsmatrix als Beitrag zur

Darstellung konfigurationsrelevanter Aspekte im Produktentstehungsprozess.
Dissertation, ETH Zürich, Zürich (2003).

BONGULIELMI et al. 2002
 Bongulielmi, L.; Henseler, P.; Puls, C.; Meier, M.: The K- & V-Matrix-Method in

Comparison with Matrix-Based Methods supporting Modular Product Family
Architectures. In: Proceedings of NordDesign 2002 - Visions and Values in
Engineering Design, 14.-16.08.2002. Trondheim: Norwegian University of Science
and Technology 2002

BONJOUR et al. 2009
 Bonjour, E.; Deniaud, S.; Dulmet, M.; Harmel, G.: A Fuzzy Method for Propagating

Functional Architecture Constraints to Physical Architecture. Journal of mechanical
design 131 (2009) 6, pp. 061002.

BOOCH 1994

10. References 255

 Booch, G.: Objektorientierte Analyse und Design. Bonn: Addison Wesley 1994.
BOOTHROYD et al. 2002
 Boothroyd G., Dewhurst P., Knight W.: Product Design For Manufacture and

Assembly. Marcel Dekker Inc., New York, 2002.
BOULDING 1956
 Boulding, K.: General Systems Theory: The Skeleton of Science. Management

Science 2 (1956) 3, pp. 197-208.
BRADLEY & YASSINE 2006
 Bradley, J. A.; Yassine, A. A.: On the Use of Network Analysis in Product

Development Teams. In: ASME International Design Engineering Technical
Conferences and 18th International Conference on Design Theory and Methodology
(DTM), Philadelphia, PA, 10.-13.09.2006. New York: ASME 2007, ISBN: 0-7918-
4258-4.

BRAHA & BAR-YAM 2004
 Braha, D.; Bar-Yam, Y.: Topology of large-scale engineering problem-solving

networks. Physical Review E 69 (2004) 1, pp. 016113.
BRAND et al. 2004
 Brand, F.; Schaller, F.; Völker, H.: Transdisziplinarität. Bestandsaufnahme und

Perspektiven. Göttingen: Universitätsverlag Göttingen 2004. ISBN: 3-930457-37-7.
BRAUN & DEUBZER 2007
 Braun, T.; Deubzer, F.: New variant management using multiple-domain mapping. In:

Proceedings of the International Design Structure Matrix Conference DSM 2007.
Munich: TUM, 2007.

BROWNING 1998
 Browning, T. R.: Modeling and Analyzing Cost, Schedule, and Performance in

Complex System Product Development. Dissertation, Massachusetts Institute of
Technology, Cambridge, MA, 1998.

BROWNING 2001
 Browning, T. R.: Applying the Design Structure Matrix to System Decomposition and

Integration Problems: a Review and New Directions. IEEE Transactions on
Engineering Management 48 (2001) 3, pp. 292-306.

BROWNING 2009
 Browning, T. R.: The Many Views of a Process: Toward a Process Architecture

Framework for Product Development Processes. Systems Engineering 12 (2009) 1,
pp. 69-99.

BROWNING & RAMASESH 2007
 Browning, T. R.; Ramasesh, R. V.: A Survey of Activity Network-Based Process

Models for Managing Product Development Projects. Production and Operations
Management 16 (2007) 2, pp. 217-240.

BULLINGER et al. 2003
 Bullinger, H.-J.; Kiss-Preußinger, E.; Spath, D.: Automobilentwicklung in

Deutschland - Wie sicher ist die Zukunft? - Studie - Chancen, Potentiale und
Handlungsempfehlungen für 30 Prozent mehr Effizienz. Stuttgart: Fraunhofer IRB
Verlag 2003. ISBN: 3-8167-6388-X.

256 10. References

CAGAN 2001
 Cagan, J.: Engineering Shape Grammars. In: Antonsson, E. K.; Cagan, J. (Eds.):

Formal engineering design synthesis. New York: Cambridge University Press, 2001.
CAGAN et al. 2005
 Cagan, J.; Campbell, M.; Finger, S.; Tomiyama, T.: A Framework for Computational

Design Synthesis: Model and Applications. Journal of Computing and Information
Science in Engineering 5 (2005) 3, pp. 171-181.

CAMELO et al. 2007
 Camelo, D.; Mulet, E.; Vidal, R.: Function and Behavior Representation for

Supporting Flexible Exploration and Generation in a Functional Model for Conceptual
Design. In: Proceedings of the International Conference on Engineering Design,
ICED’07, Paris, France, 28.- 31.8.2007. Paris, France: Cite Des Sciences De
L'Industrie 2007.

CAMI & DEO 2008
 Cami, A.; Deo, N.: Techniques for Analyzing Dynamic Random Graph Models of

Web-Like Networks: An Overview. Wiley-Interscience 51 (2008) 4, pp. 211-255.
CAO et al. 2008
 Cao, D.; Fu, M. W.; Gu, Y.; Jia, H.: Port-based Ontology Modeling for Conceptual

Design. In: Proceedings of the ASME 2008 International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference
IDETC/CIE, 03.-06.08.2008, Brooklyn, NY, 2008.

CAVALLUCCI et al. 2002
 Cavallucci, D.; Lutz, P.; Kucharavy, D.: Converging in Problem Formulation: A

different Path in Design. In: Proceedings of the ASME Design Engineering Technical
Conferences DETC/DTM 2002, Montreal, Canada, 29.09.-02.10.2002.

CHAKRABARTI 2002
 Chakrabarti, A.: Engineering Design Synthesis: Understanding, Approaches and

Tools. Berlin: Springer, 2002.
CHECKLAND 1993
 Checkland, P. : Systems Thinking, Systems Practice. Chichester: John Wiley & Sons,

Inc. 1993. ISBN: 0-471-27911-0.
CHEN 2005
 Chen, S.-J.: An Integrated Methodological Framework for Project Task Coordination

and Team Organization in Concurrent Engineering. Concurrent Engineering 13 (2005)
3, pp. 185-197.

CHENG 1997
 Cheng, G.: Genetic Algorithms & Engineering Design. New York: John Wiley &

Sons 1997. ISBN: 0-471-12741-8.
CHMARRA et al. 2008
 Chmarra, M. K.; Arts, L.; Tomiyama, T.: Towards Adaptable Architecture. In:

Proceedings of the ASME 2008 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference IDETC/CIE,
03.-06.08.2008, Brooklyn, NY, 2008.

CHURCHMAN et al. 1961

10. References 257

 Churchman, C. W.; Ackoff, R. L.; Arnoff, E. L.: Operations Research: Eine
Einführung in die Unternehmensforschung. Wien: R. Oldenbourg 1961.

CLARK & FUJIMOTO 1991
 Clark, K. B.; Fujimoto, T.: Product Development Performance: Strategy,

Organization, and Management in the World Auto Industry. Boston: Havard Business
School Press 1991. ISBN: 0-87584-245-3.

CLARKSON & HAMILTON 2000
 Clarkson, P. J.; Hamilton, J. R.: Signposting', A Parameter-Driven Task-Based Model

of the Design Process. Research in Engineering Design 12 (2000) 1, pp. 18-38.
CLARKSON et al. 2001
 Clarkson, P. J.; Simons, C.; Eckert, C.: Predicting Change Propagation in Complex

Design. In: Proceedings of the ASME 2001 Design Engineering Technical
Conferences DETC 2001, Pittsburgh, 09.-12.09.2001, Pittsburgh, PA, 2001.

CLARKSON et al. 2004
 Clarkson, P. J.; Simons, C. S.; Eckert, C.: Predicting Change Propagation in Complex

Design. Journal of Mechanical Design 126 (2004) 5, pp. 788-797.
COVALIU & OLIVER 1995
 Covaliu, Z.; Oliver, R. M.: Representation and solution of decision problems using

sequential decision diagrams. In: Management Science, 41 (1995) 12, pp. 1860–1881.
COAD & YOURDON 1994
 Coad, P.; Yourdon, E.: Objektorientierte Analyse. München: Prentice Hall 1994.
COATANEA et al. 2008
 Coatanea, E.; Alizon, F.; Christophe, F.; Yannou, B.: Selecting Technology

Alternatives for Product Families Through Technological Coverage and Functional
Verification. In: Proceedings of the ASME 2008 International Design Engineering
Technical Conferences & Computers and Information in Engineering Conference
IDETC/CIE, 03.-06.08.2008, Brooklyn, NY, 2008.

COLLINS et al. 2008
 Collins, S. T.; Yassine, A. A.; Borgatti, S. P. : Evaluating Product Development

Systems Using Network Analysis. Systems Engineering (2008)
CRAWLEY et al. 2004
 Crawley, E.; de Weck, O.; Eppinger, S. D.; Magee, C.; Moses, J.; Seering, W.;

Schindall, J.; Wallace, D.; Whitney, D.: The Influence of Architecture in Engineering
Systems, MIT Engineering Systems Symposium 2004. Boston, 2004.

DAENZER 1979
 Daenzer, W. F.: Systems Engineering: Leitfaden zur methodischen Durchführung

umfangreicher Planungsaufgaben. Köln: Peter Hanstein Verlag 1979. ISBN: 3-7756-
6200-6.

DAENZER & HUBER 1999
 Daenzer, W. F.; Huber, F. (Eds.): Systems Engineering. Methode und Praxis. Zürich:

Verl. Industrielle Organisation, 1999.
D'AMELIO & TOMIYAMA 2007
 D'Amelio, V.; Tomiyama, T.: Predicting the Unpredictable Problems in Mechatronics

Design. In: Proceedings of the International Conference on Engineering Design,

258 10. References

ICED’07, Paris, France, 28.- 31.8.2007. Paris, France: Cite Des Sciences De
L'Industrie 2007.

DAMIC & MONTGOMERY 2003
 Damic, V.; Montgomery, J.: Mechatronics by Bond Graphs: An Object-Oriented

Approach to Modelling and Simulation. Berlin: Springer, 2003.
DANILOVIC 2006
 Danilovic, M.: Bring your suppliers into your projects—Managing the design of work

packages in product development. Journal of Purchasing & Supply Management 12
(2006) 5, pp. 246–257.

DANILOVIC & BÖRJESSON 2001
 Danilovic, M., Börjesson, H.: Participatory Dependency Structure Matrix Approach.

In: Proceedings of the 3rd Dependency Structure Matrix (DSM) International
Workshop, Cambridge, MA, 29.-30.10.2001, Cambridge, MA,: Massachusetts
Institute of Technology 2001.

DANILOVIC & BROWNING 2007
 Danilovic, M., Browning, T. R.: Managing complex product development projects

with design structure matrices and domain mapping matrices. International Journal of
Project Management 25 (2007) 3, pp. 300–314.

DANILOVIC & SANDKULL 2004
 Danilovic, M.; Sandkull, B.: The use of dependence structure matrix and domain

mapping matrix in managing uncertainty in multiple project situations. International
Journal of Project Management 23 (2004) 3, pp. 193-203.

DE BOER 1989
 De Boer, S. J.: Decision Methods and Techniques in Methodical Engineering Design.

De Lier: Academisch Boeken Centrum 1989. ISBN: 90-72015-32-0.
DE LIT & DELCHAMBRE 2003
 De Lit, P.; Delchambre, A.: Integrated Design of a Product Family and Its Assembly

System. Dordrecht: Kluwer Academic Publishers 2003. ISBN: 978-1402074370.
DE POEL 2007
 De Poel, I. v.: Methodological problems in QFD and directions for future

development. Research in Engineering Design 18 (2007) 1, pp. 21-36.
DE WECK 2007
 De Weck, O. L.: On the Role of DSM in Designing Systems and Products for

Changeability. In: Proceedings of the International Design Structure Matrix
Conference DSM 2007, Munich, TUM, 2007.

DEUBZER et al. 2005
 Deubzer, F.; Kreimeyer, M.; Junior, T.; Rock, B.: Der Änderungsmanagement Report

2005. CiDaD Working Paper Series 1 (2005) 1, pp. 1-12.
DEUBZER & LINDEMANN 2008

Deubzer, F.; Lindemann, U.: Functional Modeling for Design Synthesis using MDM
Methodology. In: Proceedings of the International Design Structure Matrix
Conference DSM 2008, Stockholm: KTH, 2008.

DEUBZER et al. 2008

10. References 259

Deubzer, F.; Braun, T.; Maurer, M.; Lindemann, U.: Applying the Multiple Domain
Mapping Approach to Variant Management. In: Proceedings of the 11th International
Design Conference DESIGN 2008, Dubrovnik, Croatia: The Design Society, 2008.

DEUBZER & LINDEMANN 2009a
 Deubzer, F.; Lindemann, U.: MDM Application to Interrelate Hierarchical Layers of

Abstraction. In: Proceedings of the International Design Structure Matrix Conference
2009, Charlotte, SC, Clemson University, 2009.

DEUBZER & LINDEMANN 2009b
 Deubzer, F.; Lindemann, U.: Networked Product Modeling – Use And Interaction Of

Product Models And Methods During Analysis And Synthesis. In: Proceedings of the
International Conference on Engineering Design. Stanford University, CA: The
Design Society, 2009.

DEUBZER & LINDEMANN 2009c
 Deubzer, F.; Lindemann, U.: Product Architecture Definition and Analysis using

Matrix-Based Multiple-Domain Approaches. In: Proceedings of the ASME
IDETC/CIE 2009, 30.08.-02.09.2009, San Diego, CA, 2009.

DIAZ 1998
 Diaz, C. A.: Product Re-Configurability and Product Introduction. In: Concurrent

Engineering 6 (1998) 3, pp. 172-177.
DIEPOLD et al. 2009
 Diepold, K. J.; Winkler, F. J.; Lohmann, B.; Kortler, S.: A Framework for DSM-

Based Pre-Modelling Analysis of Complex Systems. In: Proceedings of the
International Design Structure Matrix Conference 2009, Charlotte, SC, Clemson
University, 2009.

DIESTEL 2006
 Diestel, R.: Graph Theory. Berlin: Springer 2006. ISBN: 978-3-540-26183-4.
DOD 1997
 U.S. Department of Defense, C4ISR Architecture Working Group: C4ISR

Architecture Framework, Version 2.0. Washington, DC: U.S. Department of Defense
1997.

DOMSCHKE & DREXL 2002
 Domschke, W.; Drexl, A.: Einführung in Operations Research. Berlin: Springer 2002.

ISBN: 3-540-42950-6.
DONG 1995
 Dong, J.: Organization Structures, Concurrent Engineering, and Computerized

Enterprise Integration. Concurrent Engineering: Research and Applications 3 (1995)
3, pp. 167-176.

DÖRNER 1992
 Dörner, D.: Die Logik des Misslingens. Hamburg: Rowohlt 1992. ISBN: 3-499-

19314-0.
DORST & VERMAAS 2005
 John Gero’s Function-Behaviour-Structure Model of Designing: A Critical Analysis.

In: Research in Engineering Design, 16 (2005) 1-2, pp. 17-26.

260 10. References

DOVE 2006
 Dove, R.: Engineering Agile Systems: Creative-Guidance Frameworks for

Requirements and Design. In: Proceedings of the 4th Annual Conference on Systems
Engineering Research (CSER), 07.-08.04.2006, Los Angeles, CA, 2006

DU et al. 2001
 Du, X.; Jiao, J.; Tseng, M.: Architecture of Product Family: Fundamentals and

Methodology. In: Concurrent Engineering 9 (2001) 4, pp. 309-325.
DU et al. 2002
 Du, X.; Jiao, J.; Tseng, M.: Graph Grammar Based Product Family Modeling. In:

Concurrent Engineering 10 (2002) 2, pp. 113-128.
DUHOVNIK et al. 2006
 Duhovnik, J.; Kusar, J.; Tomazevic, R.; Starbek, M.: Development Process with

Regard to Customer Requirements. Concurrent Engineering, 14 (2006) 3, pp. 67-82.
EBEN et al. 2008
 Eben, K.; Biedermann, W.; Lindemann, U.: Modeling Structural Change over Time:

Requirements and first Methods. In: Proceedings of the International Design Structure
Matrix Conference DSM 2008, Stockholm: KTH, 2008.

ECKERT et al. 2004
 Eckert, C.; Clarkson, P. J.; Zanker, W.: Change and Customisation in Complex

Engineering Domains. In: Research in Engineering Design, 15 (2004) 1, pp. 1-21.
EHRLENSPIEL 2009
 Ehrlenspiel, K.: Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz,

Zusammenarbeit. München: Carl Hanser Verlag 2009. ISBN: 978-3-446-42013-7.
EHRLENSPIEL et al. 2007
 Ehrlenspiel, K.; Kiewert, A.; Lindemann, U.; Hundal, M. S.: Cost-Efficient Design.

Berlin: Springer 2007. ISBN: 3540346473.
ENGEL & BROWNING 2008
 Engel, A.; Browning, T. R.: Designing Systems for Adaptability by Means of

Architecture Options. Systems Engineerig 11 (2008) 2, pp. 125-146.
EPPINGER 2001
 Eppinger, S. D.: Patterns of product development Interactions. In: Proceedings of the

International Conference on Engineering Design, ICED’01, Glasgow, UK, 283-290.
Bury St Edmunds: Professional Engineering ISBN: 1-8605-8354-7.

EPPINGER et al. 1997
 Eppinger, S. D.; Nukala, M. V.; Whitney, D. E.: Generalised Models of Design

Iteration Using Signal Flow Graphs. Research in Engineering Design 9 (1997) 2, pp.
112-123.

EPPINGER & SALMINEN 2001
 Eppinger, S. D.; Salminen, V.: Patterns of Product Development Interactions. In:

Culley, S. (Ed.): 13th International Conference on Engineering Design, ICED 01,
Glasgow, 21.-23.08.2001. Bury St. Edmunds: Professional Engineering Publ. 2001,
pp. 283-290. ISBN: 1-86058-354-7.

ERDEN et al. 2008

10. References 261

 Erden, M. S.; Komoto, H.; Van Beek, T. J.; D'Amelio, V.; Echavarria, E.; Tomiyama,
T.: A review of function modeling: Approaches and applications, 22 (2008) 2, pp.
147-169.

FARRELL & SIMPSON 2008
 Farrell, R. S.; Simpson, T. W.: A Method to Improve Platform Leveraging in a Market

Segmentation Grid for an Existing Product Line. In: Journal of Mechanical Design
130 (2008) 3

FELGEN 2007
 Felgen, L.: Systemorientierte Qualitätssicherung für mechatronische Produkte.

Technische Universität München, München (2007).
FELGEN et al. 2005a
 Felgen, L.; Deubzer, F.; Lindemann, U.: Vorgehensmodell zur Identifikation kritischer

Merkmale von mechatronischen Systemen. In: Proceedings of the Mechatronik 2005 -
Innovative Produktentwicklung, Wiesloch, 01.-02.06. 2005, pp. 253-272, Düsseldorf:
VDI-Verlag, 2005.

FELGEN et al. 2005b
 Felgen, L.; Deubzer, F.; Lindemann, U.: Complexity management during the analysis

of mechatronic systems. In: Proceedings of the International Conference on
Engineering Design ICED'05, Melbourne (Australia), Institution of Engineers
Australia, 2005.

FIGEL 1988
 Figel, K.: Optimieren beim Konstruieren: Einsatz von Optimierungsverfahren, CAD

und Expertensysteme. München: Carl Hanser Verlag 1988. ISBN: 3-446-15344-6.
FISCH & BECK 2004
 Fisch, R.; Beck, D.: Komplexitätsmanagement: Methoden zum Umgang mit

komplexen Aufgabenstellungen in Wirtschaft, Regierung und Verwaltung.
Wiesbaden: VS Verlag für Sozialwissenschaften 2004. ISBN: 3-531-14437-5.

FIXSON 2007
 Fixson, S. K.: Modularity and Commonality Research: Past Developments and Future

Opportunities. Concurrent Engineering 15 (2007) 2, pp. 85-111.
FOTSO et al. 2007
 Fotso,B. M.; Dulmet, M.; Bonjour,E.: Design of product families based on a modular

architecture. In: Proceedings of the First International Conference on Multidisciplinary
Design Optimization and Applications, 28.11.2007, Besançon, France, 2007.

FRICKE & SCHULZ 2005
 Fricke, E.; Schulz, A. p. : Design for Changeability (DfC): Principles to Enable

Changes in Systems Throughout their Entire Lifecycle. Systems Engineering 8 (2005)
4, pp. 342-358.

FRIEDENTHAL et al. 2009
 Friedenthal, S.; Moore, A.; Steiner, R.: A Practical Guide to Sysml: The Systems

Modeling Language. Waltham, MA: Morgan Kaufmann, 2009
FUCHS 2004
 Fuchs, D. K.: Prinzipien für die Problemanalyse in der Produktentwicklung.

Technische Universität München, München (2004).

262 10. References

FUKUZAWA 2008
 Fukuzawa, M.: A Generation-Selection Process of Product Architecture: A Case of

Development of the Firmware in Digital MFP. Annals of Business Administrative
Science ABAS 7 (2008) 1, pp. 1-18.

GAHR 2006
 Pfadkostenrechnung individualisierter Produkte. Dissertation, Technische Universität

München, Lehrstuhl für Produktentwicklung, München (2006).
GANESAN & PREVOSTINI 2006
 Ganesan, S.; Prevostini, M.: Bridging the Gap between SysML and Design Space

Exploration. In: Proceedings of the Forum on Specification & Design Languages FDL
2006, Darmstadt, Germany, 19.-22.09.2006. ECSI, 2006.

GAUSEMEIER et al. 1996
 Gausemeier, J., Fink, A., Schlake, O.: Szenario-Management: Planen und Führen mit

Szenarien. München: Carl Hanser 1996.
GAUSEMEIER et al. 2001
 Gausemeier, J.; Ebbesmayer, P. ; Kallmeyer, F.: Produktinnovation. Strategische

Planung und Entwicklung der Produkte von morgen. München: Carl Hanser 2001.
GAUSEMEIER et al. 2006
 Gausemeier, J.; Hahn, A.; Kespohl, H. D.; Seifert, L.: Vernetzte Produktentwicklung -

Der erfolgreiche Weg zum Global Engineering Network. München: Carl Hanser 2006.
ISBN: 3-446-22725-3.

GERO 1990
 Gero, J. S.: Design Prototypes: A Knowledge Representation Schema for Design. In:

AI Magazine 11 (1990) 4, pp. 27-36.
GERO & KANNENGIESSER 2004
 Gero, J. S.; Kannengiesser, U.: The Situated Function-Behaviour-Structure

Framework. In: Design studies, 25 (2004) 4, pp. 373-391.
GERSHENSON et al. 2004
 Gershenson, J. K.; Prasad, G. J.; Zhang, Y.: Product modularity: measures and design

methods. In: Journal of Engineering Design 15 (2004) 1, pp. 33-51.
GILMORE & PINE 2000
 Gilmore, J. H.; Pine, B. J.: Markets of One: Creating Customer-Unique Value through

Mass Customization. Boston: Havard Business School Press 2000. ISBN: 978-
1578512386.

GÖPFERT 1998
 Göpfert, J.: Modulare Produktentwicklung. Zur gemeinsamen Gestaltung von Technik

und Organisation. Wiesbaden: Gabler 1998.
GORBEA et al. 2008
 Gorbea, C.; Spielmannleitner, T.; Lindemann, U.; Fricke, E.: Analysis of Hybrid

Vehicle Architectures Using Multiple Domain Matrices. In: Proceedings of the
International Design Structure Matrix Conference DSM 2008, Stockholm: KTH,
2008.

GRABNER & NOTHHAFT 2002

10. References 263

 Grabner, J.; Nothhaft, R.: Konstruieren von PKW-Karosserien: Grundlagen, Elemente
und Baugruppen, Vorschriftenübersicht. Berlin: Springer 2002. ISBN: 3-540-43290-6.

GRAEBSCH et al. 2007
 Graebsch, M.; Lindemann, U.; Weiss, S.: Lean Development in Deutschland.

München: Dr. Hut 2007. ISBN: 978-3-89963-496-9.
GRAEBSCH et al. 2009
 Graebsch, M.; Deubzer, F.; Lindemann, U.: Graph Representation of Physical Effects

Networks in Conceptual Design. In: Proceedings of the International Conference on
Engineering Design. Stanford University, CA: The Design Society, 2009.

GUENOV & BARKER 2005
 Guenov, M. D.; Barker, S. G.: Application of Axiomatic Design and Design Structure

Matrix to the Decomposition of Engineering Systems. In: Journal Systems
Engineering 8 (2005) 1, pp. 29-40.

GULATI & EPPINGER 1996
 Gulati, R. K.; Eppinger, S. D.: The Coupling of Product Architecture and

Organizational Structure Decision. MIT Sloan School of Management Working Paper
3906 (1996)

HAN & KAMBER 2001
 Han, J.; Kamber, M.: Data Mining: Concepts and Techniques. San Francisco: Morgan

Kaufmann, 2001.
HANDKE 2000
 Handke, S.: Konzept zur Strukturplanung komplexer technischer Systeme:

Systematische Produktstrukturierung zur Vereinfachung technischer und
organisatorischer Schnittstellen im Produktentstehungsprozess. Heimsheim: Jost Jetter
Verlag 2000. ISBN: 3-931388-38-7.

HATAMURA 2006
 Hatamura, Y.: Decision-Making in Engineering Design: Theory and Practice. London:

Springer 2006. ISBN: 978-1-84628-000-9.
HAUSE 2006
 Hause, M.: The SysML Modelling Language. In: Proceedings of the Fifth European

Systems Engineering Conference EuSEC, Edinburgh, Scotland, UK, 18.-20.09.2006.
INCOSE, 2006.

HELMS & SHEA 2010
 Helms, B.; Shea, K.: Object-oriented concepts for computational synthesis. In:

Proceedings of the 12th International Design Conference DESIGN 2010, Dubrovnik,
Croatia: The Design Society, 2010.

HELLENBRAND & LINDEMANN 2008
 Hellenbrand, D.; Lindemann, U.: Using the DSM to Support the Selection of Product

Concepts. In: Proceedings of the International Design Structure Matrix Conference
DSM 2008, Stockholm: KTH, 2008.

HEMEL & KELDMANN 1996
 Hemel van, C. G.; Keldmann, T.: Applying "Design for X" Experience in Design for

Environment. In: Huang, G. Q. (Ed.): Design for X: concurrent engineering
imperatives. London: Chapman & Hall 1996, pp. 72-95. ISBN: 978-0412787504.

264 10. References

HENDERSON & CLARK 1990
 Henderson, R. M.; Clark, K. B.: Architectural Innovation: The Reconfiguration of

Existing Product Technologies and the Failure of Established Firms. Administrative
Science Quarterly (Special Issue: Technology, Organizations, and Innovation.) 35
(1990) 1, pp. 9-30.

HEPPERLE et al. 2009a
 Hepperle, C.; Thanner, S.; Mörtl, M.; Lindemann, U.: An integrated product lifecycle

model and interrelations in-between the lifecycle phases. In: Proceedings of the
International Conference on Product Lifecycle Management, PLM'09, Bath, UK, 6.-
8.7.2009. Garching, Germany: Inderscience Enterprises Ltd.

HEPPERLE et al. 2009b
 Hepperle, C.; Deubzer, F.; Wiedemann, P.; Lindemann, U.; Liebl, J.; Hallmannsegger,

M.; Hübner, W.: Customer perception of vehicle dynamics and its transfer to technical
characteristics. In: Proceedings of the International Conference on Engineering
Design. Stanford University, CA: The Design Society, 2009.

HERFELD 2007
 Herfeld, U.: Matrix-basierte Verknüpfung von Komponenten und Funktionen zur

Integration von Konstruktion und numerischer Simulation. Technische Universität
München, München (2007).

HOISL et al. 2008
 Hoisl, F.; Shea, K.; Helms, B.: Towards Representing, Evolving and Networking

Engineering Knowledge for Computational Design Synthesis. In: Proceedings of the
11th International Design Conference DESIGN 2008, Dubrovnik, Croatia: The Design
Society, 2008.

HOLT & PERRY 2008
 Holt, J.; Perry, S.: SysML for Systems Engineering. Stevenage, UK: Institution of

Engineering and Technology, 2008.
HONOUR & BROWNING 2007
 Honour, E. C.; Browning, T. R.: Dynamic Optimization of Systems of Systems Using

Value Measurement. Journal of Integrated Design & Process Science 11 (2007) 2, pp.
33-53.

HUANG 1996
 Huang, G. Q.: Design for X. Concurrent Engineering Imperatives. 1st Edition Aufl.

London: Chapman & Hall 1996.
HUBKA & EDER 1988
 Hubka, V.; Eder, W. E.: Theory of Technical Systems: A Total Concept Theory for

Engineering Design. Berlin: Springer 1988. ISBN: 978-0387174518.
HUBKA & EDER 1996
 Hubka, V.; Eder, W. E.: Design Science: Introduction to the Needs, Scope and

Organization of Engineering Design Knowledge. London: Springer 1996. ISBN: 3-
540-19997-7.

ILIE et al. 2008
 Ilie, D.; Fischer, F.; Lindemann, U.: Analysis of the Information Environment in the

Context of Target and Requirements Management in the Automotive Industry. In:
Proceedings of the ASME 2008 International Design Engineering Technical

10. References 265

Conferences and Computers and Information in Engineering Conference 2008,
Brooklyn, 03.-06.08.2008, Brooklyn, NY, 2008.

JACKSON 1999
 Jackson, P.: Introduction to Expert Systems. Bonn: Addison Wesley, 1999.
JIAO & TSENG 1999
 Jiao, J.; Tseng, M.: A methodology of developing product family architecture for mass

customization. In: Journal of Intelligent Manufacturing 10 (1999) 1, pp. 3-20.
JIAO & CHEN 2006
 Jiao, J.; Chen, C.-H.: Customer Requirement Management in Product Development: A

Review of Research Issues. Concurrent Engineering 14 (2006) 3, pp. 173-185.
JIAO et al. 2006
 Jiao, J.; Simpson, T. W.; Siddique, Z.: Product Family Design and Platform-Based

Product Development: A State-of -the-Art Review. Journal of Intelligent
Manufacturing 18 (2006) 1, pp. 5-29.

JOHNSON et al. 2007
 Johnson, T. A.; Paredis, C. J. J.; Jobe, J. M.; Burkhart, R.: Modeling Continuous

System Dynamics in SysML. In: Proceedings of the ASME International Mechanical
Engineering Congress and Exposition IMECE 2007, Seattle, Washington, 11.-
15.11.2007.

JUNG 2006
 Jung, C.: Anforderungsklärung in interdisziplinärer Entwicklungsumgebung.

Dissertation, Technische Universität München, Lehrstuhl für Produktentwicklung,
München (2006).

KAIN et al. 2009
 Kain, A.; Kirschner, R.; Goldt, M.; Lindemann, U.; Gunkel, J.; Klendauer, R.;

Schneider, M.; Wastian, M.: A method to identify relevant stakeholders to be
integrated in new product development processes. In: Proceedings of the International
Conference on Research into Design, ICoRD '09. Bangalore, India, 2009.

KLEIN MEYER et al. 2007
 Klein Meyer, J. S.; Cabannes, G.; Lafon, P.; Troussier, N.; Roucoules, L.; Gidel, T.:

Product Modelling for Design Alternatives Using Optimisation and Robustness
Analysis. In: Proceedings of the International Conference on Engineering Design,
ICED’07, Paris, France, 28.- 31.8.2007. Paris, France: Cite Des Sciences De
L'Industrie 2007.

KNOBLICH 1997
 Knoblich, G.: Repräsentationswechsel als Grundlage von Einsicht.

Experimentalpsychologische Untersuchung in der Domäne der Streichholzalgebra.
Hamburg: Universität Hamburg 1997. ISBN: 0943-5204.

KOH et al. 2009
 Koh, E. C. Y.; Keller, R.; Eckert, C. M.; Clarkson, P. J.: Change Propagation

Modelling to Support the Selection of Solutions in Incremental Change. In:
Proceedings of the International Conference on Research into Design, ICoRD '09.
Bangalore, India, 2009.

KORNMEIER & RUDOLPH 2006

266 10. References

 Kornmeier, T.; Rudolph, S.: Topological Synthesis of Shell Structures. In:
Proceedings of the ASME 2006 Design Engineering Technical Conferences DETC
2006, Pittsburgh, 10.-13.09.2006, Philadelphia, PA, 2006.

KOSSIAKOFF & SWEET 2003
 Kossiakoff, A.; Sweet, W. N.: Systems Engineering: Principles and Practice.

Hoboken: John Wiley & Sons, Inc. 2003. ISBN: 0-471-23443-5.
KREIMEYER 2010
 Kreimeyer, M.: A Structural Measurement System for Engineering Design Processes.

Dissertation, Technische Universität München, Lehrstuhl für Produktentwicklung,
München (2010).

KREIMEYER et al. 2006
 Kreimeyer, M.; Herfeld, U.; Deuber, F.; Lindemann, U.: Effiziente Zusammenarbeit

von Konstruktions- und Simulationsabteilungen in der Automobilindustrie. CiDaD
Working Paper Series 2 (2006) 1, pp. 1-13.

KRISHNAN & ULRICH 2001
 Krishnan, V.; Ulrich, K. T.: Product Development Decisions: A Review of the

Literature. Management Science 47 (2001) 1, pp. 1-21.
KRUCHTEN 1995
 Kruchten, P.: Architectural Blueprints - The “4+1” View Model of Software

Architecture. In: IEEE Software 12 (1995) 6, pp. 42-50.
KUMAR & ALLADA 2005
 Kumar, R.; Allada, V.: Customer Need Driven Function-Behavior Platform

Formation. In: Proceedings of the IDETC/CIE 2005 ASME 2005 International Design
Engineering Technical Conferences & Computers and Information in Engineering
Conference, Long Beach, 24.-28.09.2005. Long Beach: ASME, 2005.

KUNZ et al. 1996
 Kunz, J. C.; Luiten, G. T.; Fischer, M. A.; Jin, Y.; Levitt, R. E.: CE4: of Product,

Process, Facility, and Organization. Concurrent Engineering: Research and
Applications 4 (1996) 2, pp. 187-198.

KURFMAN et al. 2001
 Kurfman, M. A.; Stone, R. B.; Rajan, J. R.; Wood, K. L.: Functional Modeling

Experimental Studies. In: Proceedings of the ASME 2001 Design Engineering
Technical Conferences DETC 2001, Pittsburgh, 09.-12.09.2001, Pittsburgh, PA, 2001.

KURTOGLU & CAMPBELL 2006
 Kurtoglu, T.; Campbell, M. I.: A Graph Grammar based Framework for Automated

Concept Generation. In: Proceedings of the 9th International Design Conference
DESIGN 2006, Dubrovnik, Croatia: The Design Society, 2006.

KUSIAK 1999
 Kusiak, A.: Engineering Design: Products, Processes, and Systems. San Diego:

Academic Press 1999. ISBN: 0-12-430145-2.
KUSIAK 2002
 Kusiak, A.: Integrated product and process design: a modularity perspective. In:

Journal of Engineering Design 13 (2002) 3, pp. 223-231.
LASZLO 1995

10. References 267

 Laszlo, E.: The Interconnected Universe: Conceptual Foundations of Transdisciplinary
Unified Theory. Singapore: World Science 1995. ISBN: 981-02-2202-5.

LAUER et al. 2008
 Lauer, W.; Felgen, L.; Ponn, J.; Hübner, W.; Lindemann, U.: Support of the

Development Process by a new Approach using Multiple Views on Physical Effects.
In: Proceedings of the FISITA World Automotive Congress, 14.-19-09-2008, Munich,
2008.

LAWSON & KARANDIKAR 1994
 Lawson, M.; Karandikar, H. M.: A Survey of Concurrent Engineering. Concurrent

Engineering: Research and Applications 2 (1994) 1, pp. 1-6.
LENZ & COCHRAN 2000
 Lenz, R. K.; Cochran, D. S.: The Application of Axiomatic Design to the Design of

the Product Development Organization. In: Proceedings of the 1st International
Conference on Axiomatic Design ICAD2000, Cambridge, MA, 21.-23.06.2000,
Cambridge: MIT, 2000.

LEVARDY & BROWNING 2009
 Levardy, V.; Browning, T. R.: An Adaptive Process Model to Support Product

Development Project Management. IEEE Transactions on Engineering Management
56 (2009) 4, pp. 600-620.

LEVIS 1999
 Levis, A.: System Architectures. In: Sage, A. and Rouse W. B. (Eds.): Handbook of

Systems Engineering and Management. New York: John Wiley & Sons, pp. 427-454.
LIEBL 2006
 Liebl, J.: Energiemanagement – Ein Schlüssel für Effiziente Dynamik. In: VDI-

Berichte Nr. 1975, VDI-Tagung Innovative Fahrzeugantriebe, Dresden, Germany, 09.-
10.11.2006. Düsseldorf: VDI-Verlag 2006, S. 449-463. ISBN: 3-18-091975-2.

LIN 1999
 Lin, Y.: General systems theory: a mathematical approach. New York: Kluwer

Academic / Plenum Publishers 1999. ISBN: 0-306-45944-2.
LINDEMANN et al. 2006
 Lindemann, U.; Reichwald, R.; Zäh, M. F.: Individualisierte Produkte - Komplexität

beherrschen in Entwicklung und Produktion. Berlin: Springer 2006.
LINDEMANN 2007
 Lindemann, U.: A Vision to Overcome ''Chaotic ''Design for X Processes in Early

Phases. In: Proceedings of the International Conference on Engineering Design,
ICED’07, Paris, France, 28.- 31.8.2007. Paris, France: Cite Des Sciences De
L'Industrie 2007.

LINDEMANN 2009
 Lindemann, U.: Methodische Entwicklung technischer Produkte: Methoden flexibel

und situationsgerecht anwenden. Berlin: Springer 2009. ISBN: 978-3-642-01422-2.
LINDEMANN et al. 2009
 Lindemann, U.; Maurer, M.; Braun, T.: Structural Complexity Management. Berlin:

Springer 2009.
LINDQUIST et al. 2008

268 10. References

 Lindquist, A.; Berglund, F.; Johannesson, H.: Supplier Integration and
Communication Strategies in Collaborative Platform Development. Concurrent
Engineering: Research and Applications 16 (2008) 1, pp. 23-35.

LIU et al. 2001
 Liu, X. F.; Noguchi, K.; Zhou, W.: Requirement Acquisition, Analysis, and Synthesis

in Quality Function Deployment. Concurrent Engineering: Research and Applications
9 (2001) 1, pp. 24-36.

LÖSCH 2001
 Lösch, J.: Controlling der Variantenvielfalt - Eine koordinationsorientierte Konzeption

zur Steuerung von Produktvarianten. Aachen: Shaker Verlag GmbH 2001. ISBN: 3-
8265-9272-7.

LUH et al. 2011
 Luh, D.-B-; Ko, Y.-T.; Ma, C.-H.: A structural matrix-based modelling for designing

product variety. In: Journal of Engineering Design, 22 (2011) 1, pp. 1-29.
MAHER 1990
 Maher, M. L: Process Models for Design Synthesis. AI Magazine 11 (1990) 4, pp. 49-

58.
MAIER & FADEL 2001
 Maier, J. R. A.; G. M. Fadel: Affordance: The Fundamental Concept in Engineering

Design. In: Proceedings of the ASME 2001 Design Engineering Technical
Conferences DETC 2001, Pittsburgh, 09.-12.09.2001, Pittsburgh, PA, 2001.

MAIER & FADEL 2006
 Maier, J. R. A.; G. M. Fadel: Affordance Based Design: Status and Promise. In:

Proceedings of the International Design Research Symposium, Seoul, South Korea,
pp.67-80, 2006.

MAIER & RECHTIN 2000
 Maier, M. W.; Rechtin, E.: The Art of Systems Architecting. 2 Aufl. Boca Raton:

CRC Press 2000.
MALETZ 2008
 Maletz, M.: Integrated Requirement Modeling: A Contribution towards the Integration

of Requirements into a Holistic Product Lifecycle Management Strategy.
Kaiserslautern: Technische Universität Kaiserslautern 2008. ISBN: 978-3-939432.

MALIK 2008
 Malik, F.: Strategie des Managements komplexer Systeme. Ein Beitrag zur

Management- Kybernetik evolutionärer Systeme. Bern: Paul Haupt Verlag 2008.
ISBN: 978-325-07396-5.

MANN 2002
 Mann, D.: Axiomatic Design and TRIZ: Compatibilities and Contradictions. In:

Proceedings of the 2nd International Conference on Axiomatic Design ICAD2002,
Cambridge, MA, 10.-11.06.2002, Cambridge: MIT, 2002.

MARTIN & ISHII 2002
 Martin, M. V.; Ishii, K.: Design for variety: developing standardized and modularized

product platform architectures. In: Research in Engineering Design 13 (2002) 4, pp.
213-235.

10. References 269

MATTHES 2011
 Matthes, D.: Enterprise Architecture Frameworks Kompendium. Berlin: Springer,

2011.
MAURER 2007
 Maurer, M. S.: Structural Awareness in Complex Product Design. Dissertation,

Technische Universität München, München (2007).
MAURER & KESPER 2011
 Maurer, M.; Kesper, H.: eFMEA – Raising Efficiency of FMEA by Matrix-Based

Function and Failure Networks. In: In: Proceedings of the International Conference on
Research into Design, ICoRD '11. Bangalore, India, 2011.

MCDERMOTT et al. 2009
 McDermott, R. E.; Mikulak, R. J.; Beauregard, M. R.: The Basics of FMEA. Boca

Raton: CRC Press 2009.
MCKENNA 2000
 McKenna, R.: Marketing in an Age of Diversity. In: Gilmore, J. H. et al. (Eds.):

Markets of One. Boston: Harvard Business School Press 2000, pp. 17-52.
MEYER 1997
 Meyer, M. H.: Revitalize Your Product Lines Through Continuous Platform Renewal.

In: Research in Technology Management 40 (1997) 2, pp. 17-28.
MIßLER-BEHR 1993
 Mißler-Behr, M.: Methoden der Szenarioanalyse. Wiesbaden: Deutscher

Universitätsverlag 1993.
MOD 2005
 Ministry of Defense: MoD Architectural Framework Technical Handbook 1.0.

London: UK Ministry of Defense 2005.
NEO & GUPTA 2003
 Neo, N.; Gupta, P. : Graph-Theoretic Analysis of the World Wide Web: New

Directions and Challenges. Matemática Contemporânea 25 (2003) pp. 49-69.
NEWMAN 2003
 Newman, M. E. J.: The Structure and Function of Complex Networks. SIAM Review

45 (2003) 2, pp. 167-256.
NOVAK & EPPINGER 2001
 Novak, S.; Eppinger, S. D.: Sourcing By Design: Product Complexity and the Supply

Chain. Management Science 47 (2001) 1, pp. 189-204.
ÖLVANDER et al. 2009
 Ölvander, J.; Lundén, B.; Gavel, H.: A computerized optimization framework for th

morphological matrix applied to aircraft conceptual design. Computer-Aided Design
41 (2009) 3, pp. 187-196.

OH et al. 2007
 Oh, S.; Park, B.; Park, S.; Hong, Y. S.: Design of Change-Absorbing System

Architecture for the Design of Robust Products and Services. In: Stephanidis, C. (Ed.):
Proceedings of the 12th international conference on Human-computer interaction
HCI'07: applications and services, Beijing, 19.-21.06.2007, Beijing, China 2007.

270 10. References

O'NEAL 2003
 O'Neal, J. S.: Analyzing the Impact of Changing Software Requirements: A

Traceability-based Methodology. Dissertation, Louisiana State University,
Department of Computer Science, Eunice, LA (2003).

OOKUBO et al. 2007
 Ookubo, M.; Koji, Y.; Sasajiama, M.; Kitamura, Y.; Mizoguchi, R.: Towards

Interoperability between Functional Taxonomies using an Ontology-based mapping.
In: Proceedings of the International Conference on Engineering Design, ICED’07,
Paris, France, 28.- 31.8.2007. Paris, France: Cite Des Sciences De L'Industrie 2007.

PAHL et al. 2007
 Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K. H.; Wallace, K.; Blessing, L.:

Engineering Design: A Systematic Approach. 3 Aufl. London: Springer 2007.
PARK & SIMPSON 2008
 Park, J.; Simpson, T. W.: Toward an activity-based costing system for product

families and product platforms in the early stages of development. In: International
Journal of Production Research 46 (2008) 1, pp. 99-300.

PILLER 2001
 Piller, F. T.: Mass Customization. Ein wettbewerbsstrategisches Konzept im

Informationszeitalter. 2 Aufl. Wiesbaden: Gabler 2001.
PILLER et al. 2004
 Piller, F. T.; Moeslein, K.; Stotko, C. M.: Does mass customization pay? An

Economic Approach to Evaluate Customer Integration. Production Planning &
Control 15 (2004) 4, pp. 435-444.

PILLER & STOTKO 2003
 Piller, F. T.; Stotko, C. M.: Mass Customization und Kundenintegration: Neue Wege

zum innovativen Produkt. Düsseldorf: Symposion Publishing 2003. ISBN: 3-936608-
05-9.

PIMMLER & EPPINGER 1994
 Pimmler, T. U.; Eppinger, S. D.: Integration Analysis of Product Decompositions. In:

Hight, T. K. et al. (Eds.): ASME Design Technical Conferences, 6th International
Conference on Design Theory and Methodology, DTM '94, Minneapolis, 11.-
14.09.1994. New York: ASME 1994, ISBN: 0-7918-1282-0.

PINE 1993
 Pine, B. J.: Mass Customization: The New Frontier in Business Competition. Boston:

Havard Business School Press 1993. ISBN: 0-87584-372-7.
PONN 2007
 Ponn, J.: Situative Unterstützung der methodischen Konzeptentwicklung technischer

Produkte. Dissertation, Technische Universität München, München (2007).
PONN & LINDEMANN 2008
 Ponn, J.; Lindemann, U.: Konzeptentwicklung und Gestaltung technischer Produkte:

Optimierte Produkte - systematisch von Anforderungen zu Konzepten. Berlin:
Springer 2008. ISBN: 978-3-540-68562-3.

PULM 2004

10. References 271

 Pulm, U.: Eine systemtheoretische Betrachtung der Produktentwicklung. Dissertation,
Technische Universität München, München (2004).

QIAN & GERO 1996
 Qian, L., Gero, J. S.: Function-behavior-structure paths and their role in analogy-based

design. In: Artificial Intelligence for Engineering, Design, Analysis and
Manufacturing, 10 (1996) 4, pp. 289-312.

RAPP 1999
 Rapp, T.: Produktstrukturierung. St. Gallen: Gabler Verlag 1999. ISBN: 978-

3824470105.
RENNER 2007
 Renner, I.: Methodische Unterstützung funktionsorientierter Baukastenentwicklung

am Beispiel Automobil. Dissertation, Technische Universität München, München
(2007).

RITCHEY 1998
 Ritchey, T.: General Morphological Analysis:A general method for non-quantified

modelling. In: Proceedings of the 16th EURO Conference on Operational Analysis
1998, Brussels, 1998.

RITCHEY 2006
 Ritchey, T.: Problem Structuring using Computer-Aided Morphological Analysis. In:

Journal of the Operational Research Society, Special Issue on Problem Structuring
Methods (2006) 57, pp. 792-801.

ROOZENBURG & EEKELS 1990
 Roozenburg, N.; Eekels, J.: Evaluation and Decision in Design - Bewerten und

Entscheiden beim Konstruieren. Zürich: Heurista 1990. ISBN: 3-85693-0213.
ROOZENBURG & EEKELS 1995
 Roozenburg, N.; Eekels, J.: Product Design: Fundamentals and Methods. Chichester:

Wiley, 1995.
ROPOHL 1975
 Ropohl, G.: Systemtechnik - Grundlagen und Anwendungen. München: Carl Hanser

Verlag 1975. ISBN: 3-446-11829-2.
ROTH 2001
 Roth, K.: Konstruieren mit Konstruktionskatalogen: Band II - Konstruktionskataloge.

Berlin: Springer 2001. ISBN: 978-3-540-67026-1.
ROYCE 1987
 Royce, W. W.: Managing the development of large software systems: concepts and

techniques, Proceedings of the 9th international conference on Software Engineering.
Monterey, California, United States, 1987.

SABISCH & TINTELNOT 1997
 Sabisch, H.; Tintelnot, C.: Integriertes Benchmarking für Produkte und

Produktentwicklungsprozesse. Berlin: Springer, 1997.
SADEK HASSANEIN 2008
 Sadek Hassanein, T.: Ein modellorientierter Ansatz zur Konzeptentwicklung

industrieller Produkt-Service Systeme. Dissertation, Ruhr-Universität Bochum,
Bochum (2008).

272 10. References

SALHIEH & KAMRANI 1999
 Salhieh, S. M.; Kamrani, A. K.: Macro level product development using design for

modularity. In: Robotics and Computer-Integrated Manufacturing 15 (1999) 4, pp.
319-329.

SANDER 2001
 Sander, S.: Konzept einer digitalen Lösungsbibliothek für die integrierte

Produktentwicklung. Düsseldorf: VDI Verlag 2001. ISBN: 3-18-334201-4.
SANTE et al. 2007
 Sante van, T.; Kemmeren, J.; Rouw, E.; Kerssens, D.; den Bent van, H.: TOGAF the

Open Group Architectural Framework: A Management Guide. Zaltbommel,
Netherlands: Van Heren Publishing, 2007.

SARKAR & CHAKRABARTI 2007
 Sarkar, P.; Chakrabarti, A.: Development of a Method for Assessing Design

Creativity. In: Proceedings of the International Conference on Engineering Design,
ICED’07, Paris, France, 28.- 31.8.2007. Paris, France: Cite Des Sciences De
L'Industrie 2007.

SCHUH 1989
 Schuh, G.: Gestaltung und Bewertung von Produktvarianten. Ein Beitrag zur

systematischen Planung von Serienprodukten. Düsseldorf: VDI Verlag 1989.
SCHUH 2005
 Schuh, G.: Produktkomplexität managen: Strategien - Methoden - Tools. München:

Carl Hanser Verlag 2005. ISBN: 978-3446400436.
SHAH et al. 2009
 Shah, A. A.; Schaefer, D.; Paredis, C. J. J.: Enabling Multi-View Modeling With

SysML Profiles. In: Proceedings of the International Conference on Product Lifecycle
Management PLM 09, Bath, UK, 06.-08.07.2009.

SHARMAN & YASSINE 2007
 Sharman, D. M.; Yassine, A. A.: Architectural Valuation using the Design Structure

Matrix and Real Options Theory. Concurrent Engineering 15 (2007) 2, pp. 157-173.
SHEA et al. 2010
 Shea, K.; Ertelt, C.; Gmeiner, T.; Ameri, F.: Design-to-fabrication automation for the

cognitive machine shop. Advanced Engineering Informatics 24 (2010) 3, pp. 251-268.
SIDDIQUE & ROSEN 1999
 Siddique, Z.; Rosen, D. W.: Product Platform Design: a Graph Grammar Approach.

In: Proceedings of the IDETC/CIE 1999 ASME 1999 International Design
Engineering Technical Conferences & Computers and Information in Engineering
Conference, Las Vegas, 12.-16.9.1999. Las Vegas: ASME

SIMMONS 2008
 Simmons, W. L.: A Framework for Decision Supporting in Systems Architecting.

Dissertation, MIT, Cambridge 2008.
SIMON 1962
 Simon, H. A.: The architecture of complexity. Proceedings of the American

Philosophical Society 106 (1962) 6, pp. 467-482.
SIMON 1996

10. References 273

 Simon, H. A.: The Sciences of the Artificial. Cambridge, MA: MIT Press, 1996.
SIMPSON et al. 2001
 Simpson, T. W.; Maier, J. R. A.; Mistree, F.: Product Platform Design: Method and

Application. In: Research in Engineering Design 13 (2001) 1, pp. 2-22.
SIMPSON 2004
 Simpson, T. W.: Product platform design and customization: Status and promise. In:

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 18 (2004)
1, pp. 3-20.

SIMPSON et al. 2006
 Simpson, T. W.; Siddique, Z. Jiao, R.: Platform-Based Product Family Development.

In: Simpson, T. W.; Jiao, J.; Tseng, M. (Eds.): Product Platform and Product Family
Design: Methods and Applications. Berlin: Springer, 2006, pp. 1-15.

SOSA et al. 2004
 Sosa, M. E.; Eppinger, S. D.; Rowles, C. M.: The Misalignment of Product

Architecture and Organizational Structure in Complex Product Development.
Management Science 50 (2004) 12, pp. 1674-1689.

SOSA et al. 2005
 Sosa, M. E.; Agrawal, A.; Eppinger, S. D.; Rowles, C. M.: A Network Approach to

Define Modularity of Product Components. In: Proceedings of the IDETC/CIE 2005
ASME 2005 International Design Engineering Technical Conferences & Computers
and Information in Engineering Conference, Long Beach, 24.-28.09.2005. Long
Beach: ASME, 2005.

SOSA et al. 2007
 Sosa, M. E.; Eppinger, S. D.; Rowles, C. M.: A Network Approach to Define

Modularity of Components in Complex Products. In: Journal of mechanical Design
129 (2007) 11.

STARK 2005
 Stark, J.: Product Lifecycle Management: 21st Century Paradigm for Product

Realisation. London: Springer 2005. ISBN: 1-8523-810-5.
STARLING & SHEA 2005
 Starling, A. C.; Shea, K.: A Parallel Grammar for Simulation-Driven Mechanical

Design Synthesis. Proceedings of the IDETC/CIE 2005 ASME 2005 International
Design Engineering Technical Conferences & Computers and Information in
Engineering Conference, Long Beach, 24.-28.09.2005. Long Beach: ASME, 2005.

STEINMEIER 1999
 Steinmeier, E.: Realisierung eines systemtechnischen Produktmodells - Einsatz in der

PKW-Entwicklung. Dissertation, Technische Universität München, Lehrstuhl für
Produktentwicklung, München (1999).

STEWARD 1981
 Steward, D. V.: The Design Structure System: A Method for Managing the Design of

Complex Systems. IEEE Transactions on Engineering Management 28 (1981) 3, pp.
71-74.

STONE & WOOD 2000
 Stone, R. B.; Wood, K. L.: Development of a Functional Basis for Design. Journal of

Mechanical Design 122 (2000) 4, pp. 359-370.

274 10. References

STRYKER & JACQUES 2009
 Stryker, A. C.; Jacques, D. R.: Modularity versus Functionality: A Survey and

Application. In: Proceedings of the 7th Annual Conference on Systems Engineering
Research (CSER), 20.-22.04.2009, Loughborough, UK, 2009.

SUH 1990
 Suh, N. P.: Axiomatic Design. New York: Oxford University Press, 1990.
SUH 1998
 Suh, N. P.: Axiomatic Design Theory for Systems. In: Research in Engineering

Design 10 (1998) 4, pp. 189-209.
SUH 2001
 Suh, N. P.: Axiomatic Design - Advances and Applications. New York: Oxford

University Press 2001. ISBN: 0-19-513466-4. (MIT-Pappalardo Series in Mechanical
Engineering).

SUH et al. 2007
 Suh, E. S.; De Weck, O. L.; Chang, D.: Flexible product platforms: framework and

case study. In: Research in Engineering Design 18 (2007) 2, pp. 67-89.
TATE & NORDLUND 2001
 Tate, D.; Nordlund, M.: Research Methods for Design Theory. In: Proceedings of the

ASME 2001 Design Engineering Technical Conferences DETC 2001, Pittsburgh, 09.-
12.09.2001, Pittsburgh, PA, 2001.

TERPENNY & MATHEW 2004
 Terpenny, J.P.; Mathew, D.: Modeling Environment for Function-Based Conceptual

Design. In: Proceedings of the ASME International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference (2004), 30th
Design Automation Conference, 28.09.-02.10.2004, Salt Lake City, Utah, 2004.

THEVENOT & SIMPSON 2006
 Thevenot, H. J.; Simpson, T. W.: Commonality indices for product family design: a

detailed comparison. In: Journal of Engineering Design 17 (2006) 2, pp. 99-119.
THOMA 1975
 Thoma, J.: Bond Graphs: Introduction and Applications. München: Elsevier, 1975,

ISBN-13: 978-0080188812
THRAMBOULIDIS 2010
 Thramboulidis, K.: The 3+1 SysML View-Model in Model Integrated Mechatronics.

In: Journal of Software Engineering & Applications 3 (2010) 2, pp. 109-118.
TOMIYAMA et al. 2003
 Tomiyama, T.; Takeda, H.; Yoshioka, M.; Shimomura, Y.: Abduction for creative

design, In: Proceedings of the IDETC/CIE 2003 ASME 2003 International Design
Engineering Technical Conferences & Computers and Information in Engineering
Conference, Chicago, 02.-06.09.2003. Chicago: ASME, 2003.

TOMIYAMA & SCHOTBORGH 2007
 Tomiyama, T.; Schotborgh, W.: Yet another Model of Design Synthesis. In:

Proceedings of the International Conference on Engineering Design, ICED’07, Paris,
France, 28.- 31.8.2007. Paris, France: Cite Des Sciences De L'Industrie 2007.

TRIPATHY & EPPINGER 2007

10. References 275

 Tripathy, A.; Eppinger, S. D.: A System Architecture Approach to Global Product
Development. MIT Sloan School of Management Working Paper 4645-07 (2007) pp.
1-45.

TSUDA 1997
 Tsuda, Y.: Concurrent Engineering Case Studies Applying QFD Models. Concurrent

Engineering: Research and Applications 5 (1997) 4, pp. 337-345.
TURKI & SORIANO 2005
 Turki, S.; Soriano, T.: A SysML Extension for Bond Graphs Support. In: Proceedings

of the 5th International Conference on Technology and Automation ICTA,
Thessaloniki, Greece, 15.-16.10.2005. Thessaloniki: Dept. of Automation, 2005.

ULRICH 1995
 Ulrich, K. T.: The role of product architecture in the manufacturing firm. Research

Policy 24 (1995) 3, pp. 419-440.
ULRICH & EPPINGER 2003
 Ulrich, K. T.; Eppinger, S. D.: Product Design and Development. 3 Aufl. New York:

Irwin/McGraw-Hill 2003.
UMEDA et al. 1990
 Umeda, Y.; Takeda, H.; Tomiyama, T.; Yoshikawa, H.: Function, Behaviour, and

Structure. In: Gero, J. S. (Ed.), Applications of Artificial Intelligence in Engineering
V. Berlin: Springer, 1990.

UMEDA & TOMIYAMA 1995
 Umeda, Y.; Tomiyama, T.: FBS Modeling: Modeling Scheme of Function for

Conceptual Design. In: Proceedings of the 9th International Workshop on Qualitative
Reasoning, Amsterdam, 16.-19.05.1995, pp. 271- 278.

UMEDA et al. 2005
 Umeda, Y.; Kondoh, S.; Shimomura, Y.; Tomiyama, T.: Development of design

methodology for upgradable products based on function-behavior-state modeling. In:
Artificial Intelligence for Engineering Design, Analysis and Manufacturing 9 (2005)
3, pp. 161-182.

VDI 2206
 Design methodology for mechatronic systems, VDI Fachbereich Produktentwicklung

und Mechatronik (VDI 2206). 2004
VDI 2221
 Systematic approach to the development and design of technical systems and products,

VDI Fachbereich Produktentwicklung und Mechatronik (VDI 2221). 1993
VESTER 2001
 Vester, F.: Die Kunst vernetzt zu denken. Ideen und Werkzeuge für einen neuen

Umgang mit Komplexität. Stuttgart: DVA 2001. ISBN: 978-3421053084.
VON BERTALANFFY 1976
 Von Bertalanffy, L.: General System Theory: Foundations, Development,

Applications. New York: George Braziller 1976. ISBN: 978-0-8076-0453-3.
WANG et al. 2007
 Wang, W.; Duffy, A.; Haffey, M.: A Post-positivism View of Function Behavior

Structure. In: Proceedings of the International Conference on Engineering Design,

276 10. References

ICED’07, Paris, France, 28.- 31.8.2007. Paris, France: Cite Des Sciences De
L'Industrie 2007.

WARD 2007
 Ward, A. C.: Lean Product and Process Development. Cambridge: Lean Enterprise

Institute Inc. 2007. ISBN: 978-1-934109-13-7.
WATTS 2003
 Watts, D. J.: Six Degrees: The Science of a Connected Age. New York: W.W. Norton

& Co. 2003. ISBN: 978-0393325423.
WEBER 2005a
 Weber, C.: CPM/PDD – An Extended Theoretical Approach to Modelling Products

and Product Development Processes. In: Bley, H. et al. (Eds.): Proceedings of the 2nd
German-Israeli Symposium on Advances in Methods and Systems for Development of
Products and Processes 2005, Stuttgart, 07.-08.07.2005. Stuttgart: Fraunhofer-IRB-
Verlag pp. 159-179.

WEBER 2005b
 Weber, C.: What is “Complexity”? In: Proceedings of the International Conference of

Engineering Design (ICED 05), Melbourne, Australia, 15. - 18.08.2005.
WEBER 2007
 Weber, C.: Looking at “DFX” and “Product Maturity” from the Perspective of a New

Approach to Modelling Product and Product Development Processes. In: Krause, F.-
L. (Ed.): Proceedings of the 17th CIRP Design Conference in co-operation with
Berliner Kreis, TU Berlin / Fraunhofer-Institut für Produktionsanlagen und
Konstruktionstechnik (IPK), 26.-28.03.2007. Berlin-Heidelberg: Springer pp. 85-104.

WEILKIENS 2008
 Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, Design.

Waltham, MA: Morgan Kaufmann, 2008.
WERTHNER 1994
 Werthner, H.: Qualitative Reasoning: Modeling and the Generation of Behavior.

Wien: Springer 1994. ISBN: 0-387-82579-7.
WEST 2001
 West, D. B.: Introduction to Graph Theory. Upper Saddle River: Prentice Hall 2001.

ISBN: 0-13-014400-2.
WHITNEY 2004
 Whitney, D. E.: Physical limits to modularity. Engineering Systems Division Working

paper. Cambrdige, MA: Massachusetts Institute of Technology, Engineering Systems
Division, 2004.

WIESE & JOHN 2003
 Wiese, P. R.; John, P.: Engineering Design in the Multi-Discipline Era: A Systems

Approach. London: Professional Engineering Publishing Limited 2003. ISBN: 1-
86058-347-4.

WILDEMANN 1999
 Wildemann, H.: Produktklinik. Wertgestaltung von Produkten und Prozessen.

Methoden und Fallbeispiele. München: TCW Transfer-Centrum-Verlag GmbH 1999.
WILDEMANN et al. 2007

10. References 277

 Wildemann, H.; Ann, C.; Broy, M.; Günthner, W.A.; Lindemann, U.: Plagiatschutz.
Handlungsspielräume der produzierenden Industrie gegen Produktpiraterie. München:
TCW Transfer-Cenrum-Verlag GmbH 2007.

WILDEMANN 2008
 Wildemann, H.: Komplexitätsmanagement in Vertrieb, Beschaffung, Produkt,

Entwicklung und Produktion. München: TCW Transfer-Cenrum-Verlag GmbH 2008
WILLIAMS et al. 2007
 Williams, D. B.; Allen, J. K.; Rosen, D. W.; Mistree, F.: Designing Platforms for

Customizable Products and Processes in Markets of Non-Uniform Demand. In:
Concurrent Engineering 15 (2007) 2, pp. 201-216.

WÖLKL & SHEA 2009
 Wölkl, S.; Shea, K.: A computational product model for conceptual design using

SysML. In: Proceedings of the ASME IDETC/CIE 2009, 30.08.-02.09.2009, San
Diego, CA, 2009.

WOMACK & JONES 2006
 Womack, J. P. ; Jones, D. T.: Lean Solutions: Wie Unternehmen und Kunden

gemeinsam Probleme lösen. Frankfurt am Main: Campus Verlag 2006. ISBN: 978-3-
593-38112-1.

WOMACK et al. 2007
 Womack, J. P. ; Jones, D. T.; Roos, D.: The Machine That Changed the World: The

Story of Lean Production-- Toyota's Secret Weapon in the Global Car Wars That Is
Now Revolutionizing World Industry. New York: Free Press 2007. ISBN: 978-
0743299794.

WOOD & GREER 2001
 Wood, K. L., Greer, J. L.: Function-based synthesis methods in engineering design:

state of the art, methods analysis, and visions for the future. In: Antonsson, Cagan:
Formal engineering design synthesis. New York: Cambridge University Press, 2001.

WOUT et al. 2010
 Wout van't, J.; Waage, M.; Hartman, H.; Stahlecker, M.; Hofmann, A.: The Integrated

Architecture Framework Explained: Why, What, How. Berlin: Springer, 2010.
WYATT et al. 2008
 Wyatt, D.; Wynn, D.; Clarkson, J.: Synthesis of Product Architectures Using a

DSM/DMM-based Approach. In: Kreimeyer, M. et al. (Eds.): 10th International DSM
Conference, Stockholm, 11.-12.11.2008. Munich: Hanser 2008, pp. 349-361. ISBN:
978-3-446-41825-7.

WYNN 2007
 Wynn, D. C.: Model-based approaches to support process improvement in complex

product development. Dissertation, University of Cambridge, Cambridge (2007).
YASSINE & WISSMANN 2007
 Yassine, A. A.; Wissmann, L. A.: The Implications of Product Architecture on the

Firm. Systems Engineering 10 (2007) 2, pp. 118-137.
ZACHMAN 1987
 Zachman, J. A.: A Framework for Information Systems Architecture. In: IBM

Systems Journal 26 (1987) 3, pp. 276-292.

278 10. References

ZANKER 1999
 Zanker, W.: Situative Anpassung und Neukombination von Entwicklungsmethoden.

Dissertation, Technische Universität München, Lehrstuhl für Konstruktion (1999).
ZHA & LIU 2005
 Zha, X. F.; Liu, C. L.: Information Modeling for Computer-Supported MEMS Product

Design and Development. In: Proceedings of The 15th International CIRP Design
Seminar 2005, 22.-26.05.2005, Shnghai, China, 2005.

ZHANG & GERSHENSON 2001
 Zhang, Y.; Gershenson, J. K.: An Initial Study of Direct Relationships between Life-

Cycle Modularity and Life-Cycle Cost. In: Concurrent Engineering 11 (2003) 2, pp.
121-128.

ZIMMERMANN & STACHE 2001
 Zimmermann, W.; Stache, U.: Operations Research: Quantitative Methoden zur

Entscheidungsvorbereitung. München: R. Oldenbourg 2001. ISBN: 3-486-25816-8.
ZIRKLER 2010
 Zirkler, S.: Transdisziplinäres Zielkostenmanagement komplexer mechatronischer

Produkte. Dissertation, Technische Universität München, Lehrstuhl für
Produktentwicklung, München (2010).

ZÜST 1997
 Züst, R.: Einstieg ins Systems Engineering: Systematisch denken, handeln und

umsetzen. Zürich: Verlag Industrielle Organisation 1997. ISBN: 3-85743-990-4.
ZWICKY 1969
 Zwicky, F.: Discovery, Invention, Research: Through the Morphological Approach.

Toronto: The Macmillan Company, 1969.

11. List of dissertations

Lehrstuhl für Produktentwicklung
Technische Universität München, Boltzmannstraße 15, 85748 Garching
Dissertationen betreut von
- Prof. Dr.-Ing. W. Rodenacker,
- Prof. Dr.-Ing. K. Ehrlenspiel und
- Prof. Dr.-Ing. U. Lindemann

D1 COLLIN, H.:

Entwicklung eines Einwalzenkalanders nach einer systematischen Konstruktionsmethode. München: TU,
Diss. 1969.

D2 OTT, J.:
Untersuchungen und Vorrichtungen zum Offen-End-Spinnen.
München: TU, Diss. 1971.

D3 STEINWACHS, H.:
Informationsgewinnung an bandförmigen Produkten für die Konstruktion der Produktmaschine.
München: TU, Diss. 1971.

D4 SCHMETTOW, D.:
Entwicklung eines Rehabilitationsgerätes für Schwerstkörperbehinderte.
München: TU, Diss. 1972.

D5 LUBITZSCH, W.:
Die Entwicklung eines Maschinensystems zur Verarbeitung von chemischen Endlosfasern.
München: TU, Diss. 1974.

D6 SCHEITENBERGER, H.:
Entwurf und Optimierung eines Getriebesystems für einen Rotationsquerschneider mit allgemeingültigen
Methoden.
München: TU, Diss. 1974.

D7 BAUMGARTH, R.:
Die Vereinfachung von Geräten zur Konstanthaltung physikalischer Größen.
München: TU, Diss. 1976.

D8 MAUDERER, E.:
Beitrag zum konstruktionsmethodischen Vorgehen durchgeführt am Beispiel eines Hochleistungsschalter-
Antriebs.
München: TU, Diss. 1976.

D9 SCHÄFER, J.:
Die Anwendung des methodischen Konstruierens auf verfahrenstechnische Aufgabenstellungen.
München: TU, Diss. 1977.

D10 WEBER, J.:
Extruder mit Feststoffpumpe – Ein Beitrag zum Methodischen Konstruieren.
München: TU, Diss. 1978.

D11 HEISIG, R.:
Längencodierer mit Hilfsbewegung.
München: TU, Diss. 1979.

280 11. List of dissertations

D12 KIEWERT, A.:
Systematische Erarbeitung von Hilfsmitteln zum kostenarmen Konstruieren.
München: TU, Diss. 1979.

D13 LINDEMANN, U.:
Systemtechnische Betrachtung des Konstruktionsprozesses unter besonderer Berücksichtigung der
Herstellkostenbeeinflussung beim Festlegen der Gestalt.
Düsseldorf: VDI-Verlag 1980. (Fortschritt-Berichte der VDI-Zeitschriften Reihe 1, Nr. 60).
Zugl. München: TU, Diss. 1980.

D14 NJOYA, G.:
Untersuchungen zur Kinematik im Wälzlager bei synchron umlaufenden Innen- und Außenringen.
Hannover: Universität, Diss. 1980.

D15 HENKEL, G.:
Theoretische und experimentelle Untersuchungen ebener konzentrisch gewellter Kreisringmembranen.
Hannover: Universität, Diss. 1980.

D16 BALKEN, J.:
Systematische Entwicklung von Gleichlaufgelenken.
München: TU, Diss. 1981.

D17 PETRA, H.:
Systematik, Erweiterung und Einschränkung von Lastausgleichslösungen für Standgetriebe mit zwei
Leistungswegen – Ein Beitrag zum methodischen Konstruieren.
München: TU, Diss. 1981.

D18 BAUMANN, G.:
Ein Kosteninformationssystem für die Gestaltungsphase im Betriebsmittelbau.
München: TU, Diss. 1982.

D19 FISCHER, D.:
Kostenanalyse von Stirnzahnrädern. Erarbeitung und Vergleich von Hilfsmitteln zur
Kostenfrüherkennung.
München: TU, Diss. 1983.

D20 AUGUSTIN, W.:
Sicherheitstechnik und Konstruktionsmethodiken – Sicherheitsgerechtes Konstruieren.
Dortmund: Bundesanstalt für Arbeitsschutz 1985. Zugl. München: TU, Diss. 1984.

D21 RUTZ, A.:
Konstruieren als gedanklicher Prozess.
München: TU, Diss. 1985.

D22 SAUERMANN, H. J.:
Eine Produktkostenplanung für Unternehmen des Maschinenbaues.
München: TU, Diss. 1986.

D23 HAFNER, J.:
Entscheidungshilfen für das kostengünstige Konstruieren von Schweiß- und Gussgehäusen.
München: TU, Diss. 1987.

D24 JOHN, T.:
Systematische Entwicklung von homokinetischen Wellenkupplungen.
München: TU, Diss. 1987.

D25 FIGEL, K.:
Optimieren beim Konstruieren.
München: Hanser 1988. Zugl. München: TU, Diss. 1988 u. d. T.: Figel, K.: Integration automatisierter
Optimierungsverfahren in den rechnerunterstützten Konstruktionsprozess.

11. List of dissertations 281

Reihe	 Konstruktionstechnik	 München	

D26 TROPSCHUH, P. F.:
Rechnerunterstützung für das Projektieren mit Hilfe eines wissensbasierten Systems.
München: Hanser 1989. (Konstruktionstechnik München, Band 1). Zugl. München: TU, Diss. 1988 u. d.
T.: Tropschuh, P. F.: Rechnerunterstützung für das Projektieren am Beispiel Schiffsgetriebe.

D27 PICKEL, H.:
Kostenmodelle als Hilfsmittel zum Kostengünstigen Konstruieren.
München: Hanser 1989. (Konstruktionstechnik München, Band 2). Zugl. München: TU, Diss. 1988.

D28 KITTSTEINER, H.-J.:
Die Auswahl und Gestaltung von kostengünstigen Welle-Nabe-Verbindungen.
München: Hanser 1990. (Konstruktionstechnik München, Band 3). Zugl. München: TU, Diss. 1989.

D29 HILLEBRAND, A.:
Ein Kosteninformationssystem für die Neukonstruktion mit der Möglichkeit zum Anschluss an ein CAD-
System.
München: Hanser 1991. (Konstruktionstechnik München, Band 4). Zugl. München: TU, Diss. 1990.

D30 DYLLA, N.:
Denk- und Handlungsabläufe beim Konstruieren.
München: Hanser 1991. (Konstruktionstechnik München, Band 5). Zugl. München: TU, Diss. 1990.

D31 MÜLLER, R.
Datenbankgestützte Teileverwaltung und Wiederholteilsuche.
München: Hanser 1991. (Konstruktionstechnik München, Band 6). Zugl. München: TU, Diss. 1990.

D32 NEESE, J.:
Methodik einer wissensbasierten Schadenanalyse am Beispiel Wälzlagerungen.
München: Hanser 1991. (Konstruktionstechnik München, Band 7). Zugl. München: TU, Diss. 1991.

D33 SCHAAL, S.:
Integrierte Wissensverarbeitung mit CAD – Am Beispiel der konstruktionsbegleitenden Kalkulation.
München: Hanser 1992. (Konstruktionstechnik München, Band 8). Zugl. München: TU, Diss. 1991.

D34 BRAUNSPERGER, M.:
Qualitätssicherung im Entwicklungsablauf – Konzept einer präventiven Qualitätssicherung für die
Automobilindustrie.
München: Hanser 1993. (Konstruktionstechnik München, Band 9). Zugl. München: TU, Diss. 1992.

D35 FEICHTER, E.:
Systematischer Entwicklungsprozess am Beispiel von elastischen Radialversatzkupplungen.
München: Hanser 1994. (Konstruktionstechnik München, Band 10). Zugl. München: TU, Diss. 1992.

D36 WEINBRENNER, V.:
Produktlogik als Hilfsmittel zum Automatisieren von Varianten- und Anpassungskonstruktionen.
München: Hanser 1994. (Konstruktionstechnik München, Band 11). Zugl. München: TU, Diss. 1993.

D37 WACH, J. J.:
Problemspezifische Hilfsmittel für die Integrierte Produktentwicklung.
München: Hanser 1994. (Konstruktionstechnik München, Band 12). Zugl. München: TU, Diss. 1993.

D38 LENK, E.:
Zur Problematik der technischen Bewertung.
München: Hanser 1994. (Konstruktionstechnik München, Band 13). Zugl. München: TU, Diss. 1993.

D39 STUFFER, R.:
Planung und Steuerung der Integrierten Produktentwicklung.
München: Hanser 1994. (Konstruktionstechnik München, Band 14). Zugl. München: TU, Diss. 1993.

282 11. List of dissertations

D40 SCHIEBELER, R.:
Kostengünstig Konstruieren mit einer rechnergestützten Konstruktionsberatung.
München: Hanser 1994. (Konstruktionstechnik München, Band 15). Zugl. München: TU, Diss. 1993.

D41 BRUCKNER, J.:
Kostengünstige Wärmebehandlung durch Entscheidungsunterstützung in Konstruktion und Härterei.
München: Hanser 1994. (Konstruktionstechnik München, Band 16). Zugl. München: TU, Diss. 1993.

D42 WELLNIAK, R.:
Das Produktmodell im rechnerintegrierten Konstruktionsarbeitsplatz.
München: Hanser 1994. (Konstruktionstechnik München, Band 17). Zugl. München: TU, Diss. 1994.

D43 SCHLÜTER, A.:
Gestaltung von Schnappverbindungen für montagegerechte Produkte.
München: Hanser 1994. (Konstruktionstechnik München, Band 18). Zugl. München: TU, Diss. 1994.

D44 WOLFRAM, M.:
Feature-basiertes Konstruieren und Kalkulieren.
München: Hanser 1994. (Konstruktionstechnik München, Band 19). Zugl. München: TU, Diss. 1994.

D45 STOLZ, P.:
Aufbau technischer Informationssysteme in Konstruktion und Entwicklung am Beispiel eines
elektronischen Zeichnungsarchives.
München: Hanser 1994. (Konstruktionstechnik München, Band 20). Zugl. München: TU, Diss. 1994.

D46 STOLL, G.:
Montagegerechte Produkte mit feature-basiertem CAD.
München: Hanser 1994. (Konstruktionstechnik München, Band 21). Zugl. München: TU, Diss. 1994.

D47 STEINER, J. M.:
Rechnergestütztes Kostensenken im praktischen Einsatz.
Aachen: Shaker 1996. (Konstruktionstechnik München, Band 22). Zugl. München: TU, Diss. 1995.

D48 HUBER, T.:
Senken von Montagezeiten und -kosten im Getriebebau.
München: Hanser 1995. (Konstruktionstechnik München, Band 23). Zugl. München: TU, Diss. 1995.

D49 DANNER, S.:
Ganzheitliches Anforderungsmanagement für marktorientierte Entwicklungsprozesse.
Aachen: Shaker 1996. (Konstruktionstechnik München, Band 24). Zugl. München: TU, Diss. 1996.

D50 MERAT, P.:
Rechnergestützte Auftragsabwicklung an einem Praxisbeispiel.
Aachen: Shaker 1996. (Konstruktionstechnik München, Band 25). Zugl. München: TU, Diss. 1996 u. d.
T.: MERAT, P.: Rechnergestütztes Produktleitsystem

D51 AMBROSY, S.:
Methoden und Werkzeuge für die integrierte Produktentwicklung.
Aachen: Shaker 1997. (Konstruktionstechnik München, Band 26). Zugl. München: TU, Diss. 1996.

D52 GIAPOULIS, A.:
Modelle für effektive Konstruktionsprozesse.
Aachen: Shaker 1998. (Konstruktionstechnik München, Band 27). Zugl. München: TU, Diss. 1996.

D53 STEINMEIER, E.:
Realisierung eines systemtechnischen Produktmodells – Einsatz in der Pkw-Entwicklung
Aachen: Shaker 1998. (Konstruktionstechnik München, Band 28). Zugl. München: TU, Diss. 1998.

D54 KLEEDÖRFER, R.:
Prozess- und Änderungsmanagement der Integrierten Produktentwicklung.
Aachen: Shaker 1998. (Konstruktionstechnik München, Band 29). Zugl. München: TU, Diss. 1998.

11. List of dissertations 283

D55 GÜNTHER, J.:
Individuelle Einflüsse auf den Konstruktionsprozess.
Aachen: Shaker 1998. (Konstruktionstechnik München, Band 30). Zugl. München: TU, Diss. 1998.

D56 BIERSACK, H.:
Methode für Krafteinleitungsstellenkonstruktion in Blechstrukturen.
München: TU, Diss. 1998.

D57 IRLINGER, R.:
Methoden und Werkzeuge zur nachvollziehbaren Dokumentation in der Produktentwicklung.
Aachen: Shaker 1998. (Konstruktionstechnik München, Band 31). Zugl. München: TU, Diss. 1999.

D58 EILETZ, R.:
Zielkonfliktmanagement bei der Entwicklung komplexer Produkte – am Bsp. PKW-Entwicklung.
Aachen: Shaker 1999. (Konstruktionstechnik München, Band 32). Zugl. München: TU, Diss. 1999.

D59 STÖSSER, R.:
Zielkostenmanagement in integrierten Produkterstellungsprozessen.
Aachen: Shaker 1999. (Konstruktionstechnik München, Band 33). Zugl. München: TU, Diss. 1999.

D60 PHLEPS, U.:
Recyclinggerechte Produktdefinition – Methodische Unterstützung für Upgrading und Verwertung.
Aachen: Shaker 1999. (Konstruktionstechnik München, Band 34). Zugl. München: TU, Diss. 1999.

D61 BERNARD, R.:
Early Evaluation of Product Properties within the Integrated Product Development.
Aachen: Shaker 1999. (Konstruktionstechnik München, Band 35). Zugl. München: TU, Diss. 1999.

D62 ZANKER, W.:
Situative Anpassung und Neukombination von Entwicklungsmethoden.
Aachen: Shaker 1999. (Konstruktionstechnik München, Band 36). Zugl. München: TU, Diss. 1999.

Reihe	 Produktentwicklung	 München	

D63 ALLMANSBERGER, G.:
Erweiterung der Konstruktionsmethodik zur Unterstützung von Änderungsprozessen in der
Produktentwicklung.
München: Dr. Hut 2001. (Produktentwicklung München, Band 37). Zugl. München: TU, Diss. 2000.

D64 ASSMANN, G.:
Gestaltung von Änderungsprozessen in der Produktentwicklung.
München: Utz 2000. (Produktentwicklung München, Band 38). Zugl. München: TU, Diss. 2000.

D65 BICHLMAIER, C.:
Methoden zur flexiblen Gestaltung von integrierten Entwicklungsprozessen.
München: Utz 2000. (Produktentwicklung München, Band 39). Zugl. München: TU, Diss. 2000.

D66 DEMERS, M. T.
Methoden zur dynamischen Planung und Steuerung von Produktentwicklungsprozessen.
München: Dr. Hut 2000. (Produktentwicklung München, Band 40). Zugl. München: TU, Diss. 2000.

D67 STETTER, R.:
Method Implementation in Integrated Product Development.
München: Dr. Hut 2000. (Produktentwicklung München, Band 41). Zugl. München: TU, Diss. 2000.

D68 VIERTLBÖCK, M.:
Modell der Methoden- und Hilfsmitteleinführung im Bereich der Produktentwicklung.
München: Dr. Hut 2000. (Produktentwicklung München, Band 42). Zugl. München: TU, Diss. 2000.

284 11. List of dissertations

D69 COLLIN, H.:
Management von Produkt-Informationen in kleinen und mittelständischen Unternehmen.
München: Dr. Hut 2001. (Produktentwicklung München, Band 43). Zugl. München: TU, Diss. 2001.

D70 REISCHL, C.:
Simulation von Produktkosten in der Entwicklungsphase.
München: Dr. Hut 2001. (Produktentwicklung München, Band 44). Zugl. München: TU, Diss. 2001.

D71 GAUL, H.-D.:
Verteilte Produktentwicklung - Perspektiven und Modell zur Optimierung.
München: Dr. Hut 2001. (Produktentwicklung München, Band 45). Zugl. München: TU, Diss. 2001.

D72 GIERHARDT, H.:
Global verteilte Produktentwicklungsprojekte – Ein Vorgehensmodell auf der operativen Ebene.
München: Dr. Hut 2002. (Produktentwicklung München, Band 46). Zugl. München: TU, Diss. 2001.

D73 SCHOEN, S.:
Gestaltung und Unterstützung von Community of Practice.
München: Utz 2000. (Produktentwicklung München, Band 47). Zugl. München: TU, Diss. 2000.

D74 BENDER, B.:
Zielorientiertes Kooperationsmanagement.
München: Dr. Hut 2001. (Produktentwicklung München, Band 48). Zugl. München: TU, Diss. 2001.

D75 SCHWANKL, L.:
Analyse und Dokumentation in den frühen Phasen der Produktentwicklung.
München: Dr. Hut 2002. (Produktentwicklung München, Band 49). Zugl. München: TU, Diss. 2002.

D76 WULF, J.:
Elementarmethoden zur Lösungssuche.
München: Dr. Hut 2002. (Produktentwicklung München, Band 50). Zugl. München: TU, Diss. 2002.

D77 MÖRTL, M.:
Entwicklungsmanagement für langlebige, upgradinggerechte Produkte.
München: Dr. Hut 2002. (Produktentwicklung München, Band 51). Zugl. München: TU, Diss. 2002.

D78 GERST, M.:
Strategische Produktentscheidungen in der integrierten Produktentwicklung.
München: Dr. Hut 2002. (Produktentwicklung München, Band 52). Zugl. München: TU, Diss. 2002.

D79 AMFT, M.:
Phasenübergreifende bidirektionale Integration von Gestaltung und Berechnung.
München: Dr. Hut 2003. (Produktentwicklung München, Band 53). Zugl. München: TU, Diss. 2002.

D80 FÖRSTER, M.:
Variantenmanagement nach Fusionen in Unternehmen des Anlagen- und Maschinenbaus.
München: TU, Diss. 2003.

D81 GRAMANN, J.:
Problemmodelle und Bionik als Methode.
München: Dr. Hut 2004. (Produktentwicklung München, Band 55). Zugl. München: TU, Diss. 2004.

D82 PULM, U.:
Eine systemtheoretische Betrachtung der Produktentwicklung.
München: Dr. Hut 2004. (Produktentwicklung München, Band 56). Zugl. München: TU, Diss. 2004.

D83 HUTTERER, P.:
Reflexive Dialoge und Denkbausteine für die methodische Produktentwicklung.
München: Dr. Hut 2005. (Produktentwicklung München, Band 57). Zugl. München: TU, Diss. 2005.

D84 FUCHS, D.:
Konstruktionsprinzipien für die Problemanalyse in der Produktentwicklung.
München: Dr. Hut 2006. (Produktentwicklung München, Band 58). Zugl. München: TU, Diss. 2005.

11. List of dissertations 285

D85 PACHE, M.:
Sketching for Conceptual Design.
München: Dr. Hut 2005. (Produktentwicklung München, Band 59). Zugl. München: TU, Diss. 2005.

D86 BRAUN, T.:
Methodische Unterstützung der strategischen Produktplanung in einem mittelständisch geprägten Umfeld.
München: Dr. Hut 2005. (Produktentwicklung München, Band 60). Zugl. München: TU, Diss. 2005.

D87 JUNG, C.:
Anforderungsklärung in interdisziplinärer Entwicklungsumgebung.
München: Dr. Hut 2006. (Produktentwicklung München, Band 61). Zugl. München: TU, Diss. 2006.

D88 HEßLING, T.:
Einführung der Integrierten Produktpolitik in kleinen und mittelständischen Unternehmen.
München: Dr. Hut 2006. (Produktentwicklung München, Band 62). Zugl. München: TU, Diss. 2006.

D89 STRICKER, H.:
Bionik in der Produktentwicklung unter der Berücksichtigung menschlichen Verhaltens.
München: Dr. Hut 2006. (Produktentwicklung München, Band 63). Zugl. München: TU, Diss. 2006.

D90 NIßL, A.:
Modell zur Integration der Zielkostenverfolgung in den Produktentwicklungsprozess.
München: Dr. Hut 2006. (Produktentwicklung München, Band 64). Zugl. München: TU, Diss. 2006.

D91 MÜLLER, F.:
Intuitive digitale Geometriemodellierung in frühen Entwicklungsphasen.
München: Dr. Hut 2007. (Produktentwicklung München, Band 65). Zugl. München: TU, Diss. 2006.

D92 ERDELL, E.:
Methodenanwendung in der Hochbauplanung – Ergebnisse einer Schwachstellenanalyse.
München: Dr. Hut 2006. (Produktentwicklung München, Band 66). Zugl. München: TU, Diss. 2006.

D93 GAHR, A.:
Pfadkostenrechnung individualisierter Produkte.
München: Dr. Hut 2006. (Produktentwicklung München, Band 67). Zugl. München: TU, Diss. 2006.

D94 RENNER, I.:
Methodische Unterstützung funktionsorientierter Baukastenentwicklung am Beispiel Automobil.
München: Dr. Hut 2007 (Reihe Produktentwicklung) Zugl. München: TU, Diss. 2007.

D95 PONN, J.:
Situative Unterstützung der methodischen Konzeptentwicklung technischer Produkte.
München: Dr. Hut 2007 (Reihe Produktentwicklung) Zugl. München: TU, Diss. 2007.

D96 HERFELD, U.:
Matrix-basierte Verknüpfung von Komponenten und Funktionen zur Integration von Konstruktion und
numerischer Simulation.
München: Dr. Hut 2007. (Produktentwicklung München, Band 70). Zugl. München: TU, Diss. 2007.

D97 SCHNEIDER, S.:
Model for the evaluation of engineering design methods.
München: Dr. Hut 2008 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2007.

D98 FELGEN, L.:
Systemorientierte Qualitätssicherung für mechatronische Produkte.
München: Dr. Hut 2007 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2007.

D99 GRIEB, J.:
Auswahl von Werkzeugen und Methoden für verteilte Produktentwicklungsprozesse.
München: Dr. Hut 2007 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2007.

286 11. List of dissertations

D100 MAURER, M.:
Structural Awareness in Complex Product Design.
München: Dr. Hut 2007 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2007.

D101 BAUMBERGER, C.:
Methoden zur kundenspezifischen Produktdefinition bei individualisierten Produkten.
München: Dr. Hut 2007 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2007.

D102 KEIJZER, W.:
Wandlungsfähigkeit von Entwicklungsnetzwerken – ein Modell am Beispiel der Automobilindustrie.
München: Dr. Hut 2007 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2007.

D103 LORENZ, M.:
Handling of Strategic Uncertainties in Integrated Product Development.
München: Dr. Hut 2009 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2008.

D104 KREIMEYER, M.:
Structural Measurement System for Engineering Design Processes.
München: Dr. Hut 2010 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2009.

D105 DIEHL, H.:
Systemorientierte Visualisierung disziplinübergreifender Entwicklungsabhängigkeiten mechatronischer
Automobilsysteme.
München: Dr. Hut 2009 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2009.

D106 DICK, B.:
Untersuchung und Modell zur Beschreibung des Einsatzes bildlicher Produktmodelle durch
Entwicklerteams in der Lösungssuche.
München: Dr. Hut 2009 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2009.

D107 GAAG, A.:
Entwicklung einer Ontologie zur funktionsorientierten Lösungssuche in der Produktentwicklung.
München: Dr. Hut 2010 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2010.

D108 ZIRKLER, S.:
Transdisziplinäres Zielkostenmanagement komplexer mechatronischer Produkte.
München: Dr. Hut 2010 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2010.

D109 LAUER, W.:
Integrative Dokumenten- und Prozessbeschreibung in dynamischen Produktentwicklungsprozessen.
München: Dr. Hut 2010 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2010.

D110 MEIWALD, T.:
Konzepte zum Schutz vor Produktpiraterie und unerwünschtem Know-how-Abfluss.
München: Dr. Hut 2011 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2011.

D111 ROELOFSEN, J.:
Situationsspezifische Planung von Produktentwicklungsprozessen.
München: Dr. Hut 2011 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2011.

D112 PETERMANN, M.:
Schutz von Technologiewissen in der Investitionsgüterindustrie.
München: Dr. Hut 2011 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2011.

D113 GORBEA, C.:
Vehicle Architecture and Lifecycle Cost Analysis in a New Age of Architectural Competition.
München: Dr. Hut 2011 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2011.

D114 FILOUS, M.:
Lizenzierungsgerechte Produktentwicklung – Ein Leitfaden zur Integration lizenzierungsrelevanter
Aktivitäten in Produktentstehungsprozessen des Maschinen- und Anlagenbaus.
München: Dr. Hut 2011 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2011.

11. List of dissertations 287

D115 ANTON, T.:
Entwicklungs- und Einführungsmethodik für das Projektierungswerkzeug Pneumatiksimulation.
München: Dr. Hut 2011 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2011.

D116 KESPER, H.:
Gestaltung von Produktvariantenspektren mittels matrixbasierter Methoden.
München: Dr. Hut 2012 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2012.

D117 KIRSCHNER, R.:
Methodische Offene Produktentwicklung.
München: TU, Diss. 2012.

D118 HEPPERLE, C.:
Planung lebenszyklusgerechter Leistungsbündel.
München: Dr. Hut 2013 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2013.

D119 HELLENBRAND, D.:
Transdisziplinäre Planung und Synchronisation mechatronischer Produktentwicklungsprozesse.
München: Dr. Hut 2013 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2013.

D120 EBERL, T.:
Charakterisierung und Gestaltung des Fahr-Erlebens der Längsführung von Elektrofahrzeugen.
München: TU, Diss. 2014.

D121 KAIN, A.:
Methodik zur Umsetzung der Offenen Produktentwicklung.
München: Dr. Hut 2014 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2014.

D122 ILIE, D.:
Systematisiertes Ziele- und Anforderungsmanagement in der Fahrzeugentwicklung.
München: Dr. Hut 2013 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2013.

D123 HELTEN, K.:
Einführung von Lean Development in mittelständische Unternehmen - Beschreibung, Erklärungsansatz
und Handlungsempfehlungen.
München: Dr. Hut 2015 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2014.

D124 SCHRÖER, B.:
Lösungskomponente Mensch. Nutzerseitige Handlungsmöglichkeiten als Bausteine für die kreative
Entwicklung von Interaktionslösungen.
München: TU, Diss. 2014.

D125 KORTLER, S.:
Absicherung von Eigenschaften komplexer und variantenreicher Produkte in der Produktentwicklung.
München: Dr. Hut 2014 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2014.

D126 KOHN, A.:
Entwicklung einer Wissensbasis für die Arbeit mit Produktmodellen.
München: Dr. Hut 2014 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2014.

D127 FRANKE, S.:
Strategieorientierte Vorentwicklung komplexer Produkte – Prozesse und Methoden zur zielgerichteten
Komponentenentwicklung am Beispiel Pkw.
Göttingen: Cuvillier, E 2014. Zugl. München: TU, Diss. 2014.

D128 HOOSHMAND, A.:
Solving Engineering Design Problems through a Combination of Generative Grammars and Simulations.
München: Dr. Hut 2014 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2014.

D129 KISSEL, M.:
Mustererkennung in komplexen Produktportfolios.
München: TU, Diss. 2014.

288 11. List of dissertations

D130 NIES, B.:
Nutzungsgerechte Dimensionierung des elektrischen Antriebssystems für Plug-In Hybride.
München: TU, Diss. 2014.

D131 KIRNER, K.:
Zusammenhang zwischen Leistung in der Produktentwicklung und Variantenmanagement –
Einflussmodell und Analysemethode.
München: Dr. Hut 2014 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2014.

D132 BIEDERMANN, W.:
A minimal set of network metrics for analysing mechatronic product concepts.
München: TU, Diss. 2015.

D133 SCHENKL, S.:
Wissensorientierte Entwicklung von Produkt-Service-Systemen.
München: TU, Diss. 2015.

D134 SCHRIEVERHOFF, P.:
Valuation of Adaptability in System Architecture.
München: Dr. Hut 2015 (Reihe Produktentwicklung). Zugl. München: TU, Diss. 2014.

D135 METZLER, T.:
Models and Methods for the Systematic Integration of Cognitive Functions into Product Concepts.
München: Dr. Hut 2016 (Reihe Produktentwicklung).

D136 DEUBZER, F.:
A Method for Product Architecture Management in Early Phases of Product Development.
München: TU, Diss. 2016.

D137 SCHÖTTL, F.:
Komplexität in sozio-technischen Systemen - Methodik für die komplexitätsgerechte Systemgestaltung in
der Automobilproduktion.
TU München: 2015. (als Dissertation eingereicht)

D138 BRANDT, L. S.:
Architekturgesteuerte Elektrik/Elektronik Baukastenentwicklung im Automobil
TU München: 2015. (als Dissertation eingereicht)

D139 BAUER, W.:
Planung und Entwicklung änderungsrobuster Plattformarchitekturen
TU München: 2015. (als Dissertation eingereicht)

D140 ELEZI, F.:
Supporting the Design of Management Control Systems In Engineering Companies from Management
Cybernetics Perspective
München: TU, Diss. 2015.

D141 BEHNCKE, F. G. H.:
Beschaffungsgerechte Produktentwicklung – Abstimmung von Produktarchitektur und Liefernetzwerk in
frühen Phasen der Entwicklung
TU München: 2015. (als Dissertation eingereicht)

D142 ÖLMEZ, M.:
Individuelle Unterstützung von Entscheidungsprozessen bei der Entwicklung innovativer Produkte.
TU München: 2016. (als Dissertation eingereicht)

D143 SAUCKEN, C. C. V.:
Entwicklerzentrierte Hilfsmittel zum Gestalten von Nutzererlebnissen.
TU München: 2016. (als Dissertation eingereicht)

D144 KASPEREK, D.:
Structure-based System Dynamics Analysis of Engineering Design Processes
TU München: 2016. (als Dissertation eingereicht)

11. List of dissertations 289

D145 LANGER, S. F.:
Kritische Änderungen in der Produktentwicklung – Analyse und Maßnahmenableitung
TU München: 2016. (als Dissertation eingereicht)

D146 HERBERG, A. P.:
Planung und Entwicklung multifunktionaler Kernmodule in komplexen Systemarchitekturen und –
portfolios – Methodik zur Einnahme einer konsequent modulzentrierten Perspektive
TU München: 2016. (als Dissertation eingereicht)

D147 HASHEMI FARZANEH, H.:
Bio-inspired design: Ideation in collaboration between mechanical engineers and biologists
TU München: 2016. (als Dissertation eingereicht)

D148 HELMS, M. K.:
Biologische Publikationen als Ideengeber für das Lösen technischer Probleme in der Bionik
TU München: 2016. (als Dissertation eingereicht)

