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Abstract— With this contribution to the study of electric
power system behavior we bring into focus the role of eigenvalue
sensitivity under incremental changes of stationary power flow
solutions. This analysis is motivated by the ubiquity of high
spectral sensitivity in a large class of physical systems that
are distributed in space, where the underlying mechanism is
related to the nonnormality of the linearized dynamics. To
this end we relate high sensitivity in stressed power grids to
elements in the analysis of nonnormal systems, namely the ill-
conditioning due to spatial transport processes. In doing so we
present two recently, and independently derived novel formulas
for eigenvalue deviations under changes in operating point and
relate them to each other. It turns out that these eigenvalue
sensitivity formulas play a fundamental role for power system
behavior and we establish relations to recently proposed phase-
coupled oscillator models for power systems. To conclude we
discuss the use of the proposed eigenvalue sensitivity formulas
for more flexible operation architectures in which PMU data
may be incorporated for real-time coordination of local controls.

I. SENSITIVITY IN NONNORMAL AND ELECTRIC POWER
SYSTEMS: SIMILARITIES AND DIFFERENCES

The term nonnormality in systems refers to linear dy-
namics, where the system matrix A is nonselfadjoint,
i.e. A∗A 6= AA∗, where (·)∗ denotes the adjoint. A pro-
totypical example is given by

ẋ = Ax, A =

(
−α 0
γ −β

)
, (1)

where nonnormality is caused by the coupling term γ.
When A is regarded as system operator of a distributed
system described by a PDE, (i.e. α, β, γ are differential
operators, or appropriately fine discretizations of it), then
coupling, and by that nonnormality, can be related to con-
vective transport of mass, (or any quantity that has a density),
which is directed in space, see e.g. [1] and [2] for a
collection of examples. It is well-known that these cross
terms may be a source of high sensitivity of the spectrum
of A with respect to matrix disturbances or external forcings.
For asymptotically stable small perturbation dynamics this
sensitivity becomes manifest in the time domain by the
transient amplification of system energy over several orders
in magnitude, which results in a small domain of attraction.

To see this, suppose A ∈ R2×2 with stable eigenvalues,
i.e. λ1,2 = −α,−β ∈ R−. The response of an eigenvalue λi
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with respect to an internal perturbation, i.e. A + ε∆A
determines the dynamics, can be expressed for small ε as

δλi =
〈wi,∆Avi〉
〈wi,vi〉

, (2)

where vi,wi are the right (direct) and left (adjoint) eigen-
vectors associated to λi of A, and ||∆A|| = 1. For non-
selfadjoint A the common support of the direct and adjoint
eigenvectors may become very small resulting in a small di-
visor in (2). This leads to a large δλi, because a perturbation
structure ∆A, may be chosen such that 〈wi,∆Avi〉 ≥ 1, cf.
to [1].

The effect of an external disturbance d, s.t. ẋ = Ax+ d,
can be understood from considering d(t−),−∞ < t− ≤ 0,
driving the (stable) system to some state x0 = x(t = 0) 6= 0.
The transient behavior of ||x(t)||, i.e. the square root of the
system energy, is bounded from above by

||x(t)|| ≤ ||eAt|| ||x0|| ≤ ||T || · ||T−1||max
λi

e<(λi)t||x0||,
(3)

where T represents the eigenbasis s.t. A = Tdiag(λi)T
−1.

That is, the upper bound of any energy defined by a bilinear
form 〈x,Px〉, P � 0, essentially depends on the condition
number of the eigenbasis

κ(T ) = ||T || · ||T−1|| = σmax(T )

σmin(T )
≥ 1, (4)

where σ means singular value. Whenever the eigenvectors
contained in T are nonnormal, i.e. mutually not orthogonal,
the value of κ will be strictly greater than one; it will be
much larger than one and increases when the strength of
cross coupling is high and increasing. Thus, a nonnormal
matrix A may exhibit large transient amplification of system
energy before the decaying behavior sets in due to negativity
of the real parts of the eigenvalues.

An alternative bound can be derived from an input-
output view, where x0 as input is mapped via the transition
operator eAt to the output x(t), which results in

||x(t)||
||x0||

≤ σmax(eAt). (5)

Remark 1: In the control community, the transient behav-
ior and energy amplification has been studied in [3] in the
context of fluid flows.

To summarize, spatially distributed systems that have
directed transport in space, e.g. convection terms, yield
nonnormal system matrices. By that, linear models may
show high sensitivity and fragility of the behavior w.r.t.



external and internal uncertainty. This sensitivity becomes
manifest in a large maximal singular value of the transition
operator and/or in a large condition number of the associated
eigenbasis, resp. an ill-conditioned system matrix.

In electric power systems, experience shows that the
dynamic behavior “moves from being elastic to brittle”, i.e.
the system looses the inherent tolerance or robustness to
small disturbances, when the grid becomes highly loaded [4].
However, the commonly adopted linear dynamic models do
not show large amplification of perturbation energy, and
the system operators that are classically studied are highly
symmetric. By that the condition number of the eigenbasis
is close to or equals one, and σmax of the transition oper-
ator coincides with the maximal real eigenvalue, which is
negative for stable systems. Thus, while for many examples
of distributed physical systems high sensitivity is reflected
in the nonnormality of the system matrix obtained from lin-
earization, in electric power systems fragility of the dynamic
behavior is not reflected in classically adopted models of
small signal dynamics.

Yet, in certain problems discussed in the power systems
literature similarities can be found. In [5] it is argued that
interacting complex modes may cause subcritical oscillatory
behavior, especially in situations when two modes are almost
collinear, hence the eigenbasis is far from being normal. The
analysed models, however, rather serve academic purposes
than practical considerations. Another interesting feature of
power systems is that processing real data sets using power
flow equations leads to ill-conditioned problems [6]. In [7]
it is observed that the power flow Jacobian becomes ill-
conditioned for a variety of grid structures when the grid is
highly loaded. To make this point more precise, we introduce
by zT = (θT ,V T ) the vector of angles and voltage magni-
tudes in a power grid. Using the scalar potential function

Π(z) =−
∑

(i,j)∈E

=(Yij)ViVj cos(θi − θj)

−
n∑
i=1

(Piθi +
1

2
=(Yii)V

2
i +Qi lnVi), (6)

where E denotes the set of edges or lines (i, j) with ad-
mittance Yij , and i, j are network buses, the power flow
equations can be stated as ∇zΠ(z) = 0. Then, solving this
equality for the active and reactive powers P and Q, the
Jacobian JPF is obtained as the operator that maps small
increments in angles and voltage magnitudes to incremental
powers such that (

dP
dQ

)
= JPF

(
dθ
dV

)
. (7)

Note that JPF is a Hessian of the terms in Π relating to
differences across lines. Similar to nonnormal systems, κ is
of the order 103 in stressed grids and approaches infinity at
the point of voltage collages, see [7]. However, the power
flow Jacobian is an element in solving a static problem,
e.g. in an iterative scheme such as the Newton Raphson

method; in that it is important to note that a particular
node has to be taken as constant reference (“infinite mass”)
with respect to which all other variables are computed.
The relation to dynamics represented by LTI models is not
clear. Another difference to ill-conditioning of nonnormal
LTI system models is the source of ill-conditioning: here it
is not a large maximum singular value of the “input-output”
mapping JPF, but a small σmin(JPF) cf. to [7].

II. DYNAMICS OF ELECTRIC POWER SYSTEMS AND
EIGENVALUE DEVIATIONS UNDER INCREMENTAL POWER

FLOW CHANGES

A. Multi-Machine Power System Model

The simplest dynamic model is that of oscillating masses
(generators) that are coupled through the electric network.
Let n denote the number of buses in the power systems,
and m the number of generator buses, Then the dynamics of
a generator can be written as

miθ̈i + diθ̇i = −∂Π

∂θi
, i = 1, . . . , n (8a)

0 = − ∂Π

∂Vi
, i = m+ 1, . . . , n (8b)

Note that for i = m + 1, . . . , n (8a) becomes a balance
equation for active power.

Speaking about stability of small signal dynamics, one
has to look at the small perturbation dynamics that evolve
about a steady state zss. A steady state is obtained from
solving the power flow equations. The solution zss then
serves as setpoint or operating condition, e.g. for locally
controlled dynamics. Denote by ∆z small perturbations of
the equilibrium point zss. The small signal dynamics of the
multi-machine system satisfy the quadratic equation

M∆z̈ +D∆ż +L(zss)∆z = 0, (9)

where M ,D are diagonal matrices, and L = D2Π(z)|zss ,
where D2 denotes the Hessian, is symmetric.

Remark 2: More detailed models for generator dynamics
lead to nonlinear DAE systems of the form

ẋ = f(x,y) (10a)
0 = g(x,y) (10b)

where y are algebraic variables. The associated small per-
turbation dynamics evolve according to

d

dt

(
∆x
0

)
=

[
∇xf |zss ∇yf |zss

∇xg|zss ∇yg|zss

](
∆x
∆y

)
. (11)

B. Small Signal Stability and Eigenvalue Sensitivity

Asymptotic stability of the operating point zss can be
devised from negative real parts of the eigenvalues of the
quadratic eigenvalue problem

Q(λi)vi = 0, Q(·) = λ2iM + λiD +L. (12)

In the following we omit indexing of eigenpairs.



Remark 3: For certain DAE models the representation is
determined by a system matrix A(zss) = JPF|zss .

We are interested in changes of an eigenvalue λ, when
the operating point changes. That is, we want to estimate
the effect of a change δzss = zss+ − zss on an eigenvalue
resulting in δλ = λ+ − λ. In that a change in operating
point can be seen as a means of controlling δλ in terms of
exploiting the nonlinearity in the power flow equations by
which incremental power flow (setpoint) changes act.

C. Sensitivity from Externally Induced Incremental Changes
in Operating Point

Suppose an external power disturbance d affects the
system as a stationary forcing. The steady state power flows
internally rebalance such that the forced version of the power
flow equations

∇zΠ(zss+) + d = 0 (13)

holds. The variation in δλ can be formally stated as the
Gateaux differential

δλ = lim
ε→0+

λ+(zss + εδzss(d))− λ(zss)

ε
:= 〈Sd,d〉 (14)

where Sd denotes the most sensitive direction of the eigen-
value w.r.t. the action of the external disturbance d such
that ||d|| = 1. In addition, λ+ is required to satisfy the
eigenvalue problem parameterized by the post disturbance
operating point zss+. The desired gradient / sensitivity direc-
tion Sd along which d acts on δλ can be derived from the
Lagrangian

L(λ+,µ, zss+(d)) = ||λ+ − λ|| − 〈µ,Q(zss+(d))v〉, (15)

where the vector µ denotes the vector of Lagrange multipli-
ers, together with stationarity of the Lagrangian as necessary
optimality condition, i.e.

δL = ||δλ|| − δ〈µ,Q(zss+(d))v〉 !
= 0. (16)

This approach has been presented for the general system
class (10) in [8], and here we apply the method on the power
system model (8) using the associated quadratic eigenvalue
problem as constraint.

The result can be expressed by means of the power flow
Jacobian, the scalar potential Π and the external steady power
disturbance d, as

δλ =
ε

Z
〈(J−1PF)∗Sz,d〉 (17)

with Sz := ∇z[D2Π(z)v]zss ]∗v (18)

denoting the most sensitive direction of δλ
w.r.t. an internal redispatch induced by δzss; the
quantity Z := 〈v, [2λM +D]v〉 defines a necessary
scaling parameter s.t. µ = Z−1v.

D. Sensitivity from Internal Incremental Redispatch

Eigenvalue deviations from internal redispatch can be
estimated using the inner product formula

δλ =
1

Z
〈v,dLv〉 . (19)

In [9] a formula has been derived for dL. With that,
equation (19) can be expressed in terms of steady state angle
and voltage differences across lines and at buses, so that
with e = (i, j) ∈ E ,

δλ = − 1

Z

[∑
e∈E

[c1(v, e)Pe − c2(v, e)Qe]δ(θ
ss
i − θssj ) +

(20)
n∑

i=m+1

∑
j∈Ni

[c3(v, e)Qe + c4(v, e)Pe] + c5Q
ss
i

 δ lnV ss
i


(21)

where c1,...,5 are constants that depend on the entries of the
eigenvector v, Ni denotes the neighborhood of i, and

Pe = =(Yij)ViVj sin(θssi − θssj ), (22a)

Qe = −=(Yij)ViVj cos(θssi − θssj ). (22b)

That is, eigenvalue deviations depend linearly on steady
state power flows weighted by some eigenvector dependent
constants. Note that δ(θssi −θssj ) can be regarded as variation
of a new line coordinate θsse which highlights the importance
of relative changes within the network.

III. DISCUSSION

A. Power Flow Jacobian and Sensitive Spectrum

From formula (19) no specific argument can be derived
about highly sensitive behavior. However, using (7) an
external, small and steady power disturbance εd induces
changes δzss via mapping with JPF. By that we can relate
formulas (19) and (17) as

δλ =
1

Z
〈v,dLv〉 =

1

Z
〈Sz, δz

ss〉 =
ε

Z
〈Sz,J

−1
PFd〉 .

(23)
Knowing that κ(JPF) ≈ 103 in stressed situations, and
using (4), we see that a weighting with J−1PF can result in
large amplification of the energy provided by the input d, be-
cause ||J−1PF|| = 1

σmin(JPF)
tends to very large numbers along

certain external disturbance patterns, because σmin → 0 with
increasing loading factor.

From this viewpoint incremental power flow changes may
indeed lead to high sensitivity and “brittle” behavior in
highly loaded situations, with the mechanism being transport
of power in space and the associated ill-conditioning of the
related Jacobian.



B. Kuramoto Dynamics and Spectral Sensitivity

Novel insights into power system behavior have been
derived from relations between Kuramoto-type coupled oscil-
lator systems and (8), see [10]. Consider the potential func-
tion U(θ) =

∑
(i,j)∈E =(Yij)ViVj(1− cos(θi − θj)), and

the associated gradient flow

θ̇i = −
∑
j∈Ni

=(Yij)ViVj sin(θi − θj) = −∇θiU(θ). (24)

The dynamics (24) represent an (unforced) Kuramoto-type
system with phase coupling according to the network struc-
ture. This system type has been applied in studying (tran-
sient) stability problems in electric power systems, see [10].
For the special case of having constant voltages, the terms
in (21) vanish. In addition, considering only those terms that
relate to active power one obtains for eigenvalue changes the
relation

δλ = − 1

Z

∑
e∈E

c1(v(θ, e))Peδθe. (25)

For small variations as δθe → 0+, edge-wise one has

Pe = −Z
c1

∂λ

∂θe
, (26)

so that
−
∑
e∈E

Pe =
∑
e∈E

Z

c1

∂λ

∂θe
, (27)

Using Pe = =(Yij)ViVj sin(θi − θj) the phase-coupled
dynamics can be related to eigenvalue sensitivity such that

θ̇i = −gradθiU = Zdivc1Ni
λ . (28)

By divc1Ni
we denote the divergence operator ∇· w.r.t. line

coordinates, weighted by c−11 (·, e), across the neighborhood
of bus i. Thus, the gradient flow of the phase-reduced first
order system has a divergence form. The dual (formal ad-
joint) to the grad operator is the negative divergence operator,
and similarly, the description in line coordinates (across) is
dual to one in nodal coordinates; within this context, λ ∈ C
appears to be dual to the additive potential U(θ) and its
(local) sensitivities drive the dynamics.

While in recent Kuramoto-type models only active powers
and constant voltage magnitudes are considered, the equiva-
lence (28) and the formulas (20) with (21) hint towards the
possibility to incorporate variations of these terms by using
spectral sensitivity methods in Kuramoto-type approaches for
the study of power system behavior.

C. Sensitivity Based Architecture

In the traditional operation architecture of power systems
there is a methodological gap between static optimization
based planning schemes and methods for the (local) control
of dynamics, cf. to Fig. 1. It is commonly believed that
coordination of local controllers at a wider geographical scale
may provide additional system flexibility that is required for

accommodating increasing stress and variability. Increased
flexibility would be obtained through the controlled transport
of power (external disturbances) from regions with high
sensitivity to regions of less fragility. The sensitivity based
combination of static optimization tools via power flow Jaco-
bians, from where sensitive regions or power flow patterns
may be computed, together with coordinated local control
action may be one approach towards a sensitivity based
novel operation architecture. In [11] the presented sensitivity
formula (17) has been applied to the much discussed area of
quantifying technical flexibility in power systems.
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Fig. 1. Traditional operation architecture

The formulas (20), (21) could be used for calculations with
PMU data, thus enabling new realt-time control schemes.
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