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Abstract

This thesis focuses on the Lie theoretical foundations of controlled open quantum sys-
tems. We describe Markovian open quantum system evolutions by Lie semigroups,
whose corresponding infinitesimal generators are part of a special type of convex cone -
a Lie wedge. The Lie wedge associated to a given control system therefore consists of
all generators of the quantum dynamical semigroup which are physically realisable as
a result of the interplay between the coherent, and incoherent processes the quantum
system is subject to. For n-qubit open quantum systems, we provide a parametrisation
of the largest physically relevant Lie algebra, i.e. the system algebra, which these Lie
wedges are contained in - the Lindblad-Kossakowski Lie algebra. This parametrisation
provides several useful benefits.

Firstly, it allows us to construct, for the first time, explicit forms of these system
Lie wedges and their respective system Lie algebras. The comparison between these two
provides new information which one cannot get from only considering the usual system
Lie algebra - thereby providing evidence that the Lie wedge is the true fingerprint of an
open quantum system.

Secondly, we analyse which control scenarios yield Lie wedges that are closed under
BCH-multiplication and therefore generate Markovian semigroups of time-independent
quantum channels. Lie wedges of this form are called Lie semialgebras and we completely
solve this open problem by proving Lie wedges only specialise to this form when the
coherent controls have no effect on both the inherent drift Hamiltonian and incoherent
part of the dynamics.

Thirdly, the parametrisation of the Lindblad-Kossakowski Lie algebra points to an
intuitive separation between unital and non-unital dissipative dynamics. Namely, the
non-unital component of the open system dynamics is described by an affine transform-
ation, a part of which can be interpreted as a translation. These translation operators
are then exploited to construct purely dissipative fixed-point engineering schemes to
obtain either pure or mixed states as a system’s unique fixed point. Precisely, we intro-
duce the novel concept of relating the target state’s symmetries to translation operators,
which then provides a geometric interpretation of the fixed point analysis. This yields
a unified procedure for determining many possible purely dissipative dynamics which
drive any initial state to any desired final state which has its non-zero eigenvalues being
non-degenerate. The generalisation to obtain any target state as the unique fixed point
is briefly remarked upon as an extension of this work.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit den Lie-theoretischen Grundlagen kontrollierter
offener Quantensysteme. Wir beschreiben die Entwicklung Markovscher offener
Quantensysteme durch Lie-Halbgruppen, deren zugehörige infinitesimale Generatoren
Teil eines konvexen Kegels - nämlich des Lie-Keils - sind. Der Lie-Keil für ein bestim-
mtes Kontrollsystem besteht daher aus allen Generatoren der quantendynamischen Hal-
bgruppe, die physikalisch erzeugt werden können, indem das Quantensystem einem
Zusammenspiel zwischen kohärenten und inkohärenten Prozessen ausgesetzt wird. Für
ein offenes Quantensystem mit nQubits geben wir eine Parametrisierung der größtmöglichen
relevanten Lie-Algebra, d.h. der Systemsalgebra, in der diese Lie-Keile enthalten sind,
an: dies ist die Lindblad-Kossakowski Lie-Algebra. Diese Parametrisierung bietet mehr-
ere nützliche Vorteile.

Erstens erlaubt sie uns erstmalig, explizite Formen dieser System-Lie-Keile und ihrer
entsprechenden System-Lie-Algebren zu konstruieren. Der Vergleich zwischen diesen
beiden liefert neue Erkenntnisse, die nicht allein durch die Betrachtung der üblichen
System-Lie-Algebra gewonnen werden können. Dies weist darauf hin, dass der Lie-Keil
der wahre Fingerabdruck eines offenen Quantensystems ist.

Zweitens analysieren wir, für welche Kontrollszenarien Lie-Keile unter BCH-Multi-
plikation abgeschlossen sind und deswegen Markovsche Halbgruppen zeitunabhängiger
Quantenkanäle erzeugen. Lie-Keile dieser Form werden Lie-Halbalgebren genannt. Wir
lösen dieses offene Problem durch den Beweis, dass Lie-Keile nur dann diese spezielle
Form annehmen, wenn die kohärenten Kontrollen keinen Effekt auf sowohl den inhären-
ten Drift-Hamiltonian als auch den inkohärenten Teil der Dynamik haben.

Drittens deutet die Parametrisierung auf eine intuitive Trennung zwischen unitaler
und nicht-unitaler dissipativer Dynamik hin. Die nicht-unitale Komponente des offenen
Quantensystems wird durch eine affine Transformation beschrieben, deren einer Teil als
Translation interpretiert werden kann. Diese Translationsoperatoren werden dann gen-
utzt, um rein dissipative Fixpunkt-Konstruktionsschemata zu erstellen, um entweder
reine oder gemischte Zustände als den eindeutigen Fixpunkt eines System zu bestim-
men. Konkret führen wir als neues Konzept ein, die Symmetrien des Zielzustandes mit
Translationsoperatoren in Verbindung zu setzen, was uns dann eine geometrische Inter-
pretation der Fixpunktanalyse erlaubt. Dies liefert ein vereinheitlichtes Verfahren zur
Bestimmung vielfältiger rein dissipativer Dynamiken, die einen beliebigen Ausgangszus-
tand in jeden gewünschten Endzustand lenken, dessen von Null verschiedene Eigenwerte
nicht-degeneriert sind. Als Erweiterung dieser Arbeit wird kurz besprochen, wie dieses
Verfahren so verallgemeinert werden kann, dass jeder beliebige Endzustand as eindeuti-
ger Fixpunkt erreicht werden kann.
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Introduction

Typical quantum systems are inevitably bombarded by neighbouring systems which alter
their current state and drive them into another. Usually, the interaction between the
environment and a quantum system which is encoding some information results in a loss
of information or coherence. Nonetheless, this environmental noise has recently been
shown to provide some remarkable advantages in many areas of quantum computation.
Concomitantly to some general foundations mostly on Markovian dynamics [10, 8, 55,
56, 49, 50, 16, 54, 45, 9, 48, 51, 46, 47, 52], relaxation may actually be exploited as
an additional resource, in particular in dissipative quantum computing [32, 14, 53, 33],
fixed-point engineering [10, 8, 9], memory design and simulation [7, 44] as well as noise-
switching [11].

From a control theorists perspective, one can ask certain fundamental questions
such as controllability, accessibility, reachability, and stabilizibility of a quantum system
subject to the open environment - certainly, an overarching question is: to what extent
can we manipulate the quantum system to do as we desire while outside influences
interfere with our controls? An overarching framework of systems theory comprising
coherent and incoherent dynamics is therefore desirable to answer such questions. Here
we set out for a unified picture in terms of Lie theory. Following the well-established use
of Lie groups for characterizing closed quantum systems (see, e.g., Jurdjevic [28], Dirr
and Helmke [15] or d’Alessandro [12]), we take the next step towards the open system
picture by applying Lie semigroup theory [23, 38, 24, 36], to describe open Markovian
quantum systems. First steps in this direction were made for controllability of single
qubit systems [2] and beyond [35]. Furthermore, Markovian quantum maps can be
defined as being infinitesimally divisible [55, 56] or exponentially generated [16]. In
fact, one can further show that (in the connected component), the Lie and the Markov
properties of quantum maps are one-to-one in the sense that every Markovian quantum
map has a representation as a Lie semigroup, while non-Markovian maps do not [16].

Having this property allows many powerful Lie theoretic tools which were already
developed in the mathematics literature (see, e.g., [23]) to be used for solving problems
related to Markovian semigroups of quantum maps. For example, the set of Lindblad
generators which generate the corresponding one parameter semigroups of quantum
channels form a closed convex cone called a Lie wedge. Clearly then, this Lie wedge is
contained in some smallest vector space - which turns out to be the systems dynamic
Lie algebra. This system Lie algebra is usually considered to be the main algebraic
structure that describes the open (or closed) system - however, in this work we show
that the Lie wedge associated to a given system yields geometric and algebraic properties
of the control system which arn’t visible by analysing the system Lie algebra alone.
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2 CONTENTS

This thesis is structured as follows:

In Chapter 1 we provide the reader with the necessary tools and background on Lie
semigroups, quantum control theory, Markovian quantum maps and their generators -
and in particular, the overarching connection between all of them.

In Chapter 2 we set out to provide a useful parametrisation of the so-called Lindblad-
Kossakowski (LK) Lie algebra. This is the largest physically allowed system algebra
which can be generated by any quantum control system. For the case of n-qubit sys-
tems, we explicitly parameterise the different components in terms of a Pauli basis.
This parametrisation is then inherited by the overall LK-wedge (the largest physically
possible) which generates all coherently controlled Markovian quantum maps as well as
by all the individual (sub)wedges of Markovian control systems. Another benefit of the
parametrisation is that it allows one to interpret certain geometric time evolutions that
the Lindblad generator induces. Namely, we show that part of the dissipative dynamics
for non-unital systems can be expressed as a translation-type operator (an affine shift)
which drives elements of the set of states along directions of the state space.

In Chapter 3 we provide a systematic way of engineering unique fixed points of the
Markovian quantum system using purely dissipative noise. We use the translational part
of the (non-unital) system algebra to our advantage and relate it to the symmetries of
the target fixed point. This turns out to be part of a unified symmetry picture which we
show provides solutions for obtaining either pure or mixed state fixed points uniquely. In
particular, we obtain new solutions for obtaining GHZ states, W States, Stabilizer States
(or for example the toric code subspace) as well as certain Dicke States as unique fixed
points (or subspaces) of a system. We finally show that using this symmetry picture and
allowing for full Hamiltonian control, one can arrive at any target state - which has its
non-zero eigenvalues being non-degenerate - by a multitude of ways. Thereby opening
the door to future work in optimising the choice of these different solutions.

Chapter 4 then considers Hamiltonian drift control at large. It is devoted to char-
acterizing a plethora of concrete examples of unitarily controlled unital and non-unital
Markovian systems in terms of their explicit Lie wedges. The structures emerge from
one-qubit and two-qubit examples and are discussed in view of extensions to general n-
qubit systems. Several illustrative tables are provided where a collection of information
is given such that the dimension of each systems system algebra and the relative dimen-
sion of the systems Lie wedge can be compared. We use these notions to argue that a
systems Lie wedge can truly be regarded as a fingerprint of the open quantum system
since its structure is more unique to the system setup than the systems Lie algebra itself.

In Chapter 5 we focus on systems that simplify to solutions of time-independent
Lindblad master equations. They are characterized by Lie wedges that are closed under
Baker-Campbell-Hausdorf (BCH) multiplication and thus specialise to the form of Lie
semialgebras. As shown earlier in [16], evolutions generated by those Lie semialgebras
can be realized as time-independent Markovian maps. In turn, this is a necessary (but
not sufficient) precondition for experimental implementation without switching controls.
We show that Lie wedges only specialize to this form of Lie wedge when the coherent
controls have no effect on both the inherent drift Hamiltonian and incoherent part of
the dynamics.



Chapter 1

Background

We start out by recalling some basic notions and notations of Lie subsemigroups [23] and
their application for characterising reachable sets of quantum control systems modelled
by controlled Lindblad-Kossakowski master equations [16].

1.1 Introduction to Lie Semigroups

Let G be a linear Lie group, i.e. a path-connected subgroup of the general linear group
GL(H), where H is a finite dimensional real or complex (Hilbert) space, and let g be its
corresponding matrix Lie algebra. Thus g is a Lie subalgebra of gl(H). For H = Rn or
H = Cn we write as usual GL(n,R ) and GL(n,C ), respectively, instead of GL(H) as
well as gl(n,R ) and gl(n,C ), respectively, instead of gl(H).

Then a subset S ⊂ G which is closed under the group operation in the sense S ·S ⊆ S
and which contains the identity 1l is called subsemigroup of G. The largest subgroup
within S is written E(S) := S ∩ S−1. Moreover, a closed convex cone w ⊂ g is called
a wedge with the largest linear subspace of w, E(w) := w ∩ (−w), denoting the edge
of the wedge w. Now, w ⊆ g forms a Lie wedge of g if it is invariant under the adjoint
action of the subgroup generated by the edge E(w), i.e. if it satisfies

eadA(w) = eAw e−A = w (1.1)

for all A ∈ E(w). Clearly, the edge of a Lie wedge always forms a Lie subalgebra of g.
For any closed subsemigroup S of G consider its tangent cone L(S) at the identity

1l given by
L(S) := {A ∈ g | exp(tA) ∈ S for all t ≥ 0} . (1.2)

Then L(S) is a Lie wedge of g satisfying E
(
L(S)

)
= L

(
E(S)

)
. Yet, the ‘local-to-global’

correspondence between Lie wedges and closed connected subsemigroups is much more
subtle than the correspondence between Lie (sub)algebras and Lie (sub)groups: for
instance, several connected subsemigroups may share the same Lie wedge w in the sense
that L(S) = L(S′) for S 6= S′, or conversely there may be Lie wedges w which do not
correspond to any subsemigroup, i.e. w = L(S) fails for all subsemigroups S ⊂ G.

Hence one introduces the important notion of a Lie subsemigroup S characterised by
the equality

S = 〈expL(S)〉S , (1.3)

where the closure is taken in G and 〈expL(S)〉S denotes the subsemigroup generated by
expL(S), i.e. 〈expL(S)〉S := {eA1 · · · eAn |A1, . . . , An ∈ L(S), n ∈ N}. Thus, precisely

3



4 CHAPTER 1. BACKGROUND

this type of subsemigroup can be completely ‘reconstructed’ by its Lie wedge. Moreover,
a Lie wedge w is said to be global in G, if there is a Lie subsemigroup S ⊂ G such that

L(S) = w . (1.4)

Thus, one has the identity S = 〈expw〉S .
Whenever a Lie wedge w ⊂ g specialises to be compatible with the Baker-Campbell-

Hausdorff (BCH) multiplication

A ? B := A+B + 1
2 [A,B] + · · · = log(eAeB) ∀A,B ∈ w (1.5)

defined via the BCH series, it is termed Lie semialgebra. For this to be the case, there has
to be an open BCH neighbourhood B ⊂ g of the origin such that (w∩B) ? (w∩B) ⊆ w.
An equivalent useful definition for being a Lie semialgebra is the tangential condition

[A, TAw] ⊆ TAw for all A ∈ w , (1.6)

with TAw denoting the tangent space of w at A. For more detail see Chapter 5.
Only in Lie semialgebras the exponential map of a zero-neighbourhood relative to

L(S) yields a 1l-neighbourhood relative to S. In contrast, as soon as w is merely a Lie
wedge without the stronger structure of a Lie semialgebra, there are elements in S that
are arbitrary close to the identity without belonging to any one-parameter semigroup
completely contained in S. Hence the conceptual importance of Lie semialgebras lies in
the fact that at least locally around the identity 1l the image of w under the exponential
map yields S without taking further products, cf. Eqn. (1.3). For details, a variety of
illustrative examples, and a lucid overview of the entire subject, see [23] and [24].

For later applications of the above concepts to controlled open quantum system and
the computation of their associated Lie wedges (see Theorem 2) the following corollary
which results from the so-called Globality Theorem in [23] will be of vital importance.

Corollary 1.1.1 ([23]). Let G be a (linear) Lie group with Lie algebra g and let w′ ⊂ w
be two nested Lie wedges in g. Then w′ is global in G if the following conditions are
satisfied:

(a) w is global in G;

(b) the edge of w′ is given by E(w′) = E(w) ∩w′;

(c) the edge of w′ is the Lie algebra of a closed Lie subgroup of G.

In other words, if the edge of the wedge w′ follows the intersection E(w′) = E(w)∩w′
and w is global, then w′ is also a global Lie wedge, provided expE(w′) generates a closed
subgroup.

Thus we set the frame to analyse the time evolution of Markovian (i.e. memory-less)
open quantum systems in the differential geometric picture of Lie wedges. The first
connection between Lie wedges and time-independent Markovian quantum maps was
detailed in [16].

1.2 Markovian Quantum Dynamics in Terms of Lie
Semigroups

Markovian quantum dynamics follows the Lindblad-Kossakowski master equation

Ẋ(t) = −LX(t) (1.7)
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where usuallyX(t) is identified with the density operator ρ(t), (i.e. ρ(t) ≥ 0, and tr ρ(t) =
1). Here and henceforth, (·)† denotes the adjoint (complex-conjugate transpose). For
ensuring complete positivity, L has to be of Lindblad form [37], i.e.

L(ρ) = i adH(ρ) + Γ(ρ) , (1.8)

with adHj (ρ) := [Hj , ρ] and

Γ(ρ) := 1
2

∑
k

V †k Vkρ+ ρV †k Vk − 2VkρV
†
k . (1.9)

Since we restrict to finite dimensional systems in the following, the Hamiltonian H
is represented by a Hermitian N ×N matrix while the Lindblad terms {Vk} may be
arbitrary N ×N matrices. The equation of motion given by Eqn. (1.7) acts on the
vector space of all N ×N Hermitian operators, her(N) leaving the set of all density
operators pos1(N) := {ρ ∈ her(N) | ρ ≥ 0, tr ρ = 1} invariant.

In [16] we showed that the set of all Lindblad generators −L allowing a representation
as in Eqn. (1.8) has an interpretation as a Lie wedge. To see this, consider the group
lift of Eqn. (1.7), where now X(t) denotes an element in the general linear group
GL(her(N)). Moreover, define the set of all completely positive (cp), trace-preserving
(tp) invertible linear operators acting on her(N) as TCPTP, i.e.

TCPTP := {T ∈ GL(her(N)) |T is cp and tp}

and let TCPTP
0 denote the connected component of the identity. Then, TCPTP is exactly

the set of so-called invertible quantum maps. A quantum map T is said to be time
independent Markovian if it is a solution of Eqn. (1.7), or more precisely, if T = e−tL

for some fixed Lindblad generator L and some t ≥ 0. More generally, T is time dependent
Markovian if it is a solution of Eqn. (1.7), where now L = L(t) may vary in time (see
also [55, 56, 43]). Let us denote the set of all time independent Markovian and time
dependent Markovian quantum maps by TIM and TDM, respectively.

Trivially, one has TIM ⊂ TDM. Note that in the literature, sometimes just the
time independent Markovian maps TIM are briefly called ‘Markovian’. This leads to
confusion when it comes to ‘non-Markovian’ quantum maps: In accordance with the
divisibility criteria in [55, 56], which can be taken over to Lie semigroups [16] and a
recent review including broader discussions of terminology [43], here and henceforth,
we call a quantum map non-Markovian if it is not time dependent Markovian (TDM)
and thus (by TIM ⊂ TDM) not time independent Markovian (TIM) either. In turn,
in this terminology Markovian quantum maps comprise both, time dependent and time
independent Markovian maps. Thus all Markovian quantum maps arise as solutions of
time dependent or time independent Lindblad-Kossakowski equations of motions, while
the non-Markovian quantum maps can only be represented by Kraus maps and not by
solutions of Eqn. (1.7). These stipulations are made precise in the following fundamental
result:

Theorem 1 ([16]). The setting of Lindblad [37] and Kossakowski [18] and the divisibility
characterisations by Wolf and Cirac [55] can be embraced by the following formulation
in terms of Lie semigroups:

(a) The Lie wedge of TCPTP
0 denoted by L(TCPTP

0 ) is given by the set of all Lindblad
generators, i.e. by the set of all operators of the form

−L := −
(
i adH +Γ

)
(1.10)



6 CHAPTER 1. BACKGROUND

with H ∈ her(N) and Γ as in Eqn. (1.9). It is global and generates a Lie semigroup
that exactly coincides with the closure of all time dependent Markovian quantum
maps in the sense

TDM = 〈expL(TCPTP
0 )〉S . (1.11)

Thus TDM excludes all non-Markovian maps in TCPTP
0 , as the non-Markovian

maps are exactly those that prevent TCPTP
0 from being a Lie subsemigroup.

(b) The set of time independent Markovian quantum maps TIM is by definition a
collection of one-parameter subsemigroups, i.e.

TIM = expL(TCPTP
0 ) . (1.12)

Neither TIM takes the form of a semigroup nor L(TCPTP
0 ) the form of a Lie semial-

gebra. However, TIM comprises (at least near the identity) all Lie subsemigroups
of TCPTP

0 the Lie wedges of which specialize to Lie semialgebras.

(c) The results can be connected as

TDM = 〈expL(TCPTP
0 )〉S = 〈TIM〉S , (1.13)

where all closures are taken relative to GL(her(N)).

Proof. The above statement is largely a rearrangement of results already proven in
previous works. Part (a) and (c) follow immediately from Theorems 3.2 - 3.4 as well
as Corollaries 3.1 and 3.2 in [16]. While Eqn. (1.12) of part (b) follows by definition,
Corollary 3.3 in [16] implies that neither L(TCPTP

0 ) constitutes a Lie semialgebra nor
TIM a subsemigroup, see also Theorem 2.2 in [16]. Finally, the remarkable fact that
TIM includes (at least locally) all Lie subsemigroups with Lie wedges taking the form
of semialgebras follows from Theorem 2.2 in [16].

To summarize in simplified terms: Even close to identity (i.e. in the connected com-
ponent TCPTP

0 ) the completely positive, trace-preserving maps TCPTP do not form a
Lie subsemigroup of GL(her(N)). Moreover (in the connected component TCPTP

0 ), one
finds two important division lines: (i) the border between (time dependent) Markovian
maps and non-Markovian maps (i.e. neither time dependent Markovian nor time inde-
pendent Markovian) is drawn by the Lie-semigroup property, while (ii) the demarcation
between time dependent and time independent Markovian maps results from the fact
that L(TCPTP

0 ) does not specialize to a Lie semialgebras.
A similar result as Theorem 1 holds for the closed subgroup TCPTP

u of all unital
invertible quantum maps and it connected 1l-component TCPTP

u,0 . Since the corresponding
Lie wedges are of the utmost importance for the further presentation of our results we
henceforth denote them by

wLK := L(TCPTP
0 ) and wLK0 := L(TCPTP

u,0 ) . (1.14)

We note that the notation between the distinction of unital and non-unital wedges will
hold throughout this thesis. Namely, any Lie wedge related to a unital system (Σ) will be
denoted w0, whereas one which is related to a non-unital system will lack the subscript.

Furthermore, we can define the so-called Lindblad-Kossakowski Lie algebra as fol-
lows. It is the smallest Lie algebra which contains the Lindblad-Kossakowski Lie wedge
i.e.

gLK := 〈wLK〉Lie , and gLK0 := 〈wLK0 〉Lie , (1.15)
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for non-unital and unital systems, respectively. Providing a parametrisation of the basis
elements of these Lie algebras will be the focus of Section 1.3 since we can then explicitly
describe the structure of Lie wedges which are contained within them.

Next, let us recall some implications of the above semigroup theory to coherently
controlled open quantum systems, i.e. to quantum system of the following Lindblad-
Kossakowski form

(Σ) Ẋ(t) = −Lu(t)X(t), X(0) ∈ GL(her(N)) (1.16)

where now Lu(t) depends on a possibly time-dependent control u(t) ∈ Rm. More pre-
cisely, Lu(t) is given by

Lu(t)(ρ) = i adHu(t)(ρ) + Γ(ρ) , (1.17)

with the operator Γ as given by Eqn. (1.9) and

Hu(t) := Hd +

m∑
K=1

uk(t)Hk (1.18)

Here, the term ‘coherently controlled’ accounts for the fact that the controls affect
only the Hamiltonian part of Eqn. (1.17). By the above discussion, we have established
that that solutions of Eqn. (1.16) are Markovian quantum maps, and thus we can define
the system semigroup PΣ and system group GΣ associated to (Σ) as

PΣ = 〈Tu(t) = exp(−tLu) | t ≥ 0, u ∈ Rm〉S , and GΣ = 〈PΣ〉G , (1.19)

respectively, and hence GΣ is just the Lie group generated by system semigroup. In this
group lifted scenario, the reachable set of (Σ) is defined as the set of all maps X(T ) for
T ≥ 0 that can be reached from the unity X(0) = 1l under the dynamics of (Σ), i.e.

Reach Σ(1l) :=
⋃
T≥0

Reach (1l, T ) . (1.20)

Since Reach (1l, T1) · Reach (1l, T2) = Reach (1l, T1 + T2), its clear that Reach Σ(1l) is a
subsemigroup of GL(her(N)). The following well-known result [36, 16] allows us to
associate to each coherently controlled open quantum system (Σ) a unique Lie wedge
wΣ.

Theorem 2 ([36, 16]). Let (Σ) be given as in Eqn. (1.16), PΣ and GΣ be the system
semigroup and system group given by Eqn. (1.19) and assume that GΣ is a closed
subgroup of GL(her(N)). Then for the closures taken relative to GL(her(N)) we have
that

(a) PΣ = Reach Σ(1l)

(b) PΣ ⊂ TDM is a Lie subsemigroup of GL(her(N)).

(c) The interior of PΣ and the interior of Reach Σ(1l) coincide.

(d) The Lie wedge wΣ := L(PΣ) ⊂ wLK is the smallest Lie wedge of gl(her(N)) which
is global and covers all evolution directions of the form Lu = i adHu +Γ, u ∈ Rm

Due to the property that wΣ is also the largest subset of gl(her(N)) to which the
evolution directions can be extended without enlarging the closure of the reachable set,
it is often called the Lie saturate of (Σ) in control theory cf. [30, 29, 36]. Furthermore,
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we will refer to wΣ (later dropping the index Σ) as the Lie wedge associated to the
control system (Σ), and they will be the focus of Section 4.1. There, we will provide an
explicit form of these Lie wedges for any given control system and then provide several
illustrative examples.

Remark 1. 1. A main result of this thesis is the parametrisation of the Lindblad-
Kossakowski Lie algebra gLK (and its unital subalgebra gLK0 ) cf. Eqn. (1.15).
This Lie algebra is the largest possible system algebra any open quantum system
may have. In Section 1.3 we provide an explicit representation of gLK (and hence
gLK0 ), and show that they are equivalent to Eqns. (1.45) and (1.46), respectively.
A simple criterion which guarantees that the system group GΣ is a closed subgroup
of GL(her(N)) is the accessibility of (Σ) which is equivalent in the non-unital case
to the fact that the system algebra gΣ coincides with gLK and in the unital case
with gLK0 , where gLK

2. If (Σ) does not meet the above closedness assumption of GΣ one can restate The-
orem 2 relatively to GΣ, i.e. all closures have to be taken with respect to GΣ.

1.3 Lindblad-Kossakowski Operators: Representations
and Properties

Given a Lindblad-Kossakowski operator L : her(N) → her(N) as in Eqn. (1.7), i.e.
L is the infinitesimal generator of a completely positive semigroup of linear operators
T (t) := e−tL, t ≥ 0. As already mentioned, it is well-known by the seminal work of
Lindblad [37] that L can be represented in the following forms:

L := i adH + Γ with Γ(ρ) := 1
2

m∑
k=1

(
V †k Vkρ+ ρV †k Vk − 2VkρV

†
k

)
, (1.21)

where H is Hermitian and Vk ∈ gl(N,C ). Equivalently, Kossakowski, Gorini and Su-
darshan [18] have shown that L allows the representation

L := i adH′ + Γ′ with Γ′(ρ) := − 1
2

N2−1∑
j,k

ajk

(
[Bj , ρB

†
k] + [Bjρ,B

†
k]
)
, (1.22)

where H ′ is Hermitian, A := (ajk)j,k=1,...N2−1 is a positive semi-definite (N−1)×(N−1)
matrix, and B1, . . . , BN2−1 is an orthonormal basis of sl(N,C ). Here and henceforth,
the matrix A is called GKS-matrix of L (relative to B1, . . . , BN2−1), where GKS stands
for Gorini-Kossakowski-Sudarshan [18].

Remark 2. Note that the Vk terms given by Eqn. (1.21) are not at all unique even if
phase factors are disregarded and renumbering is admitted. In contrast, the GKS-matrix
A of Eqn. (1.22) is uniquely determined once an orthogonal basis B1, . . . , BN2−1 is fixed.
This follows from a somewhat tedious calculation, see e.g. [34], Lemma 2.4 and Prop.
2.24.

Another straightforward calculation yields that GKS-matrices with respect to dif-
ferent orthogonal basis sets differ only by a unitary conjugation and thus Eqn. (1.21)
can be obtained from Eqn. (1.22) via a diagonalising transformation of A. Conversely,



1.3. LINDBLAD-KOSSAKOWSKI OPERATORS: REPRESENTATIONS AND
PROPERTIES 9

expanding Eqn. (1.21) in an orthonormal basis B0 = 1lN , B1, . . . , BN2−1 of gl(N,C )
readily yields Eqn. (1.22), cf. [34].

The subsequent largely known results clarify some further uniqueness aspect of the
above representations. First, let us introduce the following terminology: a Lindblad-
Kossakowski operator L is called purely dissipative if L is orthogonal to adsu(N2) :=
{i adH | H ∈ her0(N)}, i.e. if

〈L, i adH〉 = 0 (1.23)

for allH ∈ her0(N), where, 〈·, ·〉 denotes the Hilbert-Schmidt scalar product on gl
(
her(N)

)
.

That is

〈Φ,Ψ〉 := Tr(Φ∗Ψ) :=

N2−1∑
k=0

tr
(
Φ∗(Bk)Ψ(Bk)

)
, (1.24)

where B0, . . . , BN2−1 is any orthonormal basis of her(N). Likewise, Γ in Eqn. (1.21) is
called purely dissipative if Γ is orthogonal to adsu(N). Note that the expression Tr(Φ∗Ψ)
in Eqn. (1.24) boils down to the ordinary trace of matrices once a matrix representation
of the linear maps Φ and Ψ is fixed. A simple sufficient characterisation for Γ being purely
dissipative is given by the following result, the proof of which is shifted to Appendix A.

Lemma 1.3.1. If V1, . . . , Vm ∈ sl(N,C ), i.e. if V1, . . . , Vm are traceless, the operator
Γ given by Eqn. (1.21) is purely dissipative.

Next, we associate to each representation of Γ as in Eqn. (1.21) a R -linear map κ :
Cm → her(N) defined by

κ(α) := i
2

m∑
k=1

(
αkV

†
k − αkVk

)
. (1.25)

The map κ allows us to characterise how the shifting Vk → V ′k = Vk + αk1lN effects the
representation given by Eqn. (1.21) and to obtain a necessary and sufficient condition
for Γ being purely dissipative.

Lemma 1.3.2. Let V ′k = Vk + αk1lN and let

Γ(ρ) = 1
2

m∑
k=1

(
V †k Vkρ+ ρV †k Vk − 2VkρV

†
k

)
(1.26)

and

Γ′(ρ) = 1
2

m∑
k=1

(
V ′k
†
V ′kρ+ ρV ′k

†
V ′k − 2V ′kρV

′
k
†)
. (1.27)

Then one has the identity

Γ− Γ′ = i adH0 , with H0 = κ(α) , (1.28)

where α := (α1, . . . , αm).

Proposition 1.3.1. The operator Γ given by Eqn. (1.21) is purely dissipative if and
only if α := (trV1, . . . , trVm) is in the kernel of κ.

Proof. “=⇒”: Let Γ be purely dissipative and define V ′k := Vk − tr(Vk)1lN . Then, by
Lemma 1.3.2, we obtain the equality

Γ = i adH0
+ Γ′ with H0 = κ(α) and α := (trV1, . . . , trVm) . (1.29)
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By Lemma 1.3.1, Γ′ is purely dissipative, too, and therefore adH0
has to vanish. Since

H0 = κ(α) is by construction traceless, adH0 = 0 implies H0 = 0. i.e. α is in the kernel
of κ.

“⇐=”: Assume that α is in the kernel of κΓ. Then Eqn. (1.29) reduces to Γ = Γ′, where
Γ′ is purely dissipative by Lemma 1.3.1. Hence, Γ is purely dissipative.

The above considerations suggest to decompose any Lindblad-Kossakowski operator
into a “Hamiltonian” and a “purely dissipative” part. The following theorem clarifies
the uniqueness to this decomposition.

Theorem 3. Let L := i adH +Γ be a Lindblad-Kossakowski operator given by Eqn.
(1.21). Then there exists a unique decomposition of the form

L := i adH0 +Γ0 (1.30)

with H0 ∈ her0(N) and Γ0 purely dissipative. Moreover, if the non-vanishing eigenvalues√
λ1 > · · · >

√
λm0

of a GKS-matrix of L (and thus of all GKS-matrices of L) are
distinct then there exist orthonormal C1, . . . , Cm0

∈ sl(N,C ), which are unique up to
phase factors, such that

Γ0(ρ) = 1
2

m0∑
k=1

γk
(
Ck
†Ckρ+ ρCk

†Ck − 2CkρCk
†) (1.31)

Proof. Existence and Uniqueness (part 1): Let L := i adH +Γ. As in the proof of Pro-
position 1.3.1 one has the representation Γ = i adH0 + Γ′, where Γ′ is purely dissipative.
Hence

L = i adH +Γ = i adH + i adH0
+ Γ′ = i adH+H0

+ Γ′ (1.32)

and therefore H ′0 := H + H ′ and Γ0 := Γ′ prove existence of Eqn. (1.30). Moreover,
the two components i adH0’ and Γ0 are uniquely determined as Eqn. (1.30) constitutes
an orthogonal decomposition of L. Thus H ′0 is also unique since the map H 7→ adH

restricted to her0(N) is one-to-one.

Existence and Uniqueness (part 2): Now, let B1, . . . , BN2−1 be an orthogonal basis of
sl(N,C ) and let A ≥ 0 be the corresponding GKS-matrix. Assume that A has the
following non-vanishing distinct eigenvalues

√
λ1 > · · · >

√
λm0 . Then it is well-known

that A can be decomposed as

A =

m0∑
k=1

√
λkαkα

†
k , (1.33)

where αk ∈ CN2−1 are orthonormal eigenvectors which are unique up to phase factors.
Then the substitution of Eqn. (1.33) into Eqn. (1.22) yields Eqn. (1.31) with Ck :=∑N2−1
l=1 αklBl and k = 1, . . . ,m0. This settles the existence of Eqn. (1.31). Uniqueness

follows readily from the fact any two GKS-matrices are unitarily conjugate. More pre-
cisely, if D1, . . . , Dn0

and
√
µ1 > · · · >

√
µn0

give rise to another representation of the
form Eqn. (1.31). Then, one has

√
λ1 0

0
. . .

. . .

. . .
√
λm0

0

0 0
. . .

. . .
. . .


= U



√
µ1 0

0
. . .

. . .

. . . √
µn0

0

0 0
. . .

. . .
. . .


U† (1.34)
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where U is the unitary matrix which describes the change of basis from C1, . . . , CN2−1

to D1, . . . , DN2−1, i.e.

Ck =

N2−1∑
l=1

uklDl (1.35)

Here, C1, . . . , CN2−1 and D1, . . . , DN2−1 denote arbitrary orthonormal extensions of
C1, . . . , Cm0 and D1, . . . , DN2−1, respectively. Equation (1.34) implies immediately
m0 = n0 and λk = µk for all k. Moreover, if all λk are distinct, U has to be of
the block form

U =

(
U1 0
0 U2

)
with U1 =

eiϕ1

. . .

eiϕm0

 and U2 ∈ U(N2−1−m0)

(1.36)
and thus C1, . . . , CN2−1 and D1, . . . , DN2−1 differ only by a phase factor.

Remark 3. Note again that in general the Lindbald terms Vk of the representation
given by Eqn. (1.21) are by no means unique unless orthogonality is required. This is
comparable to the fact that a positive matrix can be decomposed in may different ways
into rank-1 projectors if the projectors are not mutually orthogonal.

Based on Theorem 3, the operators i adH0
and Γ0 in Eqn. (1.30) are called the Hamilto-

nian part and the (purely) dissipative part of L, respectively. In particular, the above
proof has shown (via diagonalisation of the GKS matrix A) that Eqn. (1.22) already
constitutes the unique decomposition into Hamiltonian and (purely) dissipative part
whenever all Bk are traceless. Moreover, one has the following trivial consequence.

Corollary 1.3.1. Let L := i adH0
+Γ0 be the unique decomposition of L given by Eqn.

(1.30) and let Γ0 be purely dissipative. Then one has the equivalence

L purely dissipative ⇐⇒ H0 = 0 (1.37)

Furthermore, a Lindblad-Kossakowski operator L is said to exhibit no intrinsic Hamilto-
nian dynamics if there exists a representation of the form L = Γ.

Lemma 1.3.3. Let Γ be of the general Lindblad-Kossakowski form as in Eqn. (1.9).
Then decomposing each Lindblad operator Vk ∈ gl(N,C) as Vk = Ck+iDk with Ck, Dk ∈
her(N) gives

Γ = 1
2

∑
k=1

( (
ad2
Ck

+ ad2
Dk

)
+ i
(
adCk ◦ ad+

Dk
− adDk ◦ ad+

Ck

) )
, (1.38)

where ad+
Ck

and ad+
Dk

are anti-commutator super-operators and moreover, if {Ck, Dk}+ =
0, then

Γ = 1
2

∑
k

( (
ad2
Ck

+ ad2
Dk

)
+ 2i

(
adCk ◦ ad+

Dk

) )
. (1.39)

Proof. Equations (1.38) and (1.39) follow by straightforward algebra and that fact that
adCk ◦ ad+

Dk
= − adDk ◦ ad+

Ck
if CkDk = −DkCk.
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Define the Lie algebra isomorphisms

voc : gl
(
her(N)

)
→ gl(N2,R ) (1.40)

and
(̂·) : gl

(
CN×N)→ gl(N2,C ) (1.41)

as follows: Let B := B0 ∪ {1lN}, where B0 is any (orthogonal) basis of her0(N), and let
E := {Ekl | 1 ≤ k, l ≤ N} be the standard basis1 of gl(N2,C ). Then,

Φ 7→ voc(Φ) := [Φ]B (1.42)

and
Φ 7→ Φ̂ := [Φ]E (1.43)

where [Φ]B and [Φ]E denote the matrix representation of Φ with respect to B and E .
For simplicity, we always presume that B is ordered such that 1lN corresponds to the
last basis vector and that E carries the standard lexicographic order. Clearly, then
Φ̂ is given by the usual Kronecker product formalism, e.g. for the adjoint operator
adA : gl(N2,C )→ gl(N2,C ), B 7→ adA(B) := [A,B] one has

âdA = (1lN ⊗A−A> ⊗ 1lN ) . (1.44)

In the following, we refer to Eqns. (1.42) and (1.43) as vector of coherence and super-
operator representation, respectively. We also have the following result which describes
the inclusions of four special Lie algebras in operator representation.

Lemma 1.3.4. Let gLK and gLK0 denote the Lindblad-Kossakowski algebra and its unital
subalgebra. Moreover, let gE and gE0 denote the following subsets of gl

(
her(N)

)
:

gE :=
{

Φ ∈ gl
(
her(N)

) ∣∣ Im Φ ⊂ her0(N)} (1.45)

and
gE0 :=

{
Φ ∈ gl

(
her(N)

) ∣∣ Im Φ ⊂ her0(N), 1lN ∈ ker Φ} . (1.46)

Then gE and gE0 are real (Lie) subalgebras satisfying the inclusion relation:

gLK
0

inc−−−−−→ gE0yinc

yinc

gLK inc−−−−−→ gE

For an in depth analysis of these Lie algebras, the dimensions of their respective
Cartan-decompositions and their natural embeddings into larger Lie algebras see Ap-
pendix A. Notably, the extended version of Lemma 1.3.4 in Appendix A provides explicit
relations between the representations of the above Lie algebras in operator, superoper-
ator and coherence vector representations.

One of the central points presented in this extended Lemma 1.3.4 is that we have
the isomorphism

gE
iso
= gl(N2 − 1,R )⊕s RN2−1 , (1.47)

where ⊕s is given by the semidirect sum. Clearly, elements of the form (0, b) which

belong to the abelian ideal of gl(N2 − 1,R ) ⊕s RN2−1, are regarded as (infinitesimal)

1Note that gl
(
her(N)

)
is a real vector space, while gl(N2,C ) is regarded as complex vector space.
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translations acting on RN2−1. To carry over this picture to gE we define τ ∈ gE to be
an (infinitesimal) translation if

τ
∣∣
her0(N)

≡ 0 and τ(1lN ) ∈ her0(N) . (1.48)

Note, that the second condition is always fulfilled since we assume τ ∈ gE . Then, for
any Hermitian matrix ρ := 1lN + ρ0 with ρ0 ∈ her0(N) one has

exp(τ)(1lN + ρ0) = 1lN + ρ0 + τ(1lN ) , (1.49)

where exp(τ) :=
∑∞
k=0

τk

k! , i.e., exp(τ) acts as a translation on the hyperplane 1lN +
her0(N), which does explain the above terminology. Moreover, denote by iE ⊂ gE the
set of all infinitesimal translations. We now provide a few simple results to provide some
insight to the characteristics of these operators.

The first result will be expressed here in its general form, but proved later in Section
2.3.2 as part of Theorem 5.

Lemma 1.3.5. The set iE of all infinitesimal translations is an abelian ideal of gE,
which splits gE into a semi-direct sum gE = gE0 ⊕s iE.

Lemma 1.3.6. Let τ1 and τ2 be infinitesimal translations acting on her(N1) and her(N2),

respectively. Then τ1 ⊗ τ2 is an infinitesimal translation acting on her(N1)⊗ her(N2)
iso
=

her(N1N2). However, for non-trivial τ1 and τ2, the local operators id1 ⊗ τ2 and τ1 ⊗ id2

do not yield infinitesimal translations.

Proof. We have that (τ1 ⊗ τ2)(H1 ⊗ H2) = τ1(H1) ⊗ τ2(H2) = 0 for H1 ∈ her(N1)
and H2 ∈ her0(N2) or vice versa. Similarly, (τ1 ⊗ τ2)(id1 ⊗ id2) ∈ her0(N1N2). Thus
τ1⊗ τ2 is an infinitesimal translation acting on her(N1N2). Now let H2 ∈ her(N2). Then
(τ1⊗ id2)(id1⊗H2) = τ1(id1)⊗H2 = H1⊗H2 6= 0 for some non-zero H1 ∈ her(N1) and
therefore τ1 ⊗ id2 is not an infinitesimal translation. The same argument shows that
neither is id1 ⊗ τ2.

Based on the above conventions, the image of iE under the (̂·)-operation (superoper-

ator representation) is denoted by îE and (by abuse of terminology) elements in îE are
again called infinitesimal translations.





Chapter 2

The Lindblad-Kossakowski Lie
Algebra

2.1 Introduction

As a starting point for any type of mathematical analysis, which in particular involves
explicit representations of the objects which we are to consider, it is of fundamental
importance to know the structural details of the underlying Lie algebra. In our case,
this body of work will focus on various properties of linear operators which act on the
convex set of density matrices. As thoroughly discussed in the introduction, here we will
be concerned with geometric structures known as Lie wedges which can be associated
to a closed subsemigroup in (almost) the same way a Lie algebra can be associated to
a Lie group. Since we are computing Lie wedges for a given quantum control system
(Σ) to determine properties of the corresponding subsemigroup of quantum channels it
generates, it is imperative that for any kind of explicit computations a parametrisation
of the vector space which the wedge is contained in must be chosen.

Recall that the Lie wedges associated to quantum control systems are contained in
the so-called Lindblad-Kossakowski Lie algebra (cf. Eqn. (1.15)) given by

gLK := 〈wLK〉Lie , and gLK0 := 〈wLK0 〉Lie , (2.1)

where wLK and wLK0 are the Lindblad-Kossakowski Lie wedges for non-unital and unital
systems, respectively. Lemma 1.3.4 then introduced the Lie algebras gE and gE0 and
proved that gLK ⊆ gE and gLK0 ⊆ gE0 . The central results of this chapter are Theorems
4 and 5 which will provide the equalities

gLK = gE =
{

Φ ∈ gl
(
her(N)

) ∣∣ Im Φ ⊂ her0(N)} (2.2)

and
gLK0 = gE0 =

{
Φ ∈ gl

(
her(N)

) ∣∣ Im Φ ⊂ her0(N), 1lN ∈ ker Φ} . (2.3)

In fact, we prove the above equalities in a different, more approachable representation
to the interested physicist - one which immediately follows from the types of operat-
ors physically allowed to make up Lindblad generators L (cf. Eqn. (1.17)). Due to
these equalities, the extended version of Lemma 1.3.4 in Appendix A then provides the
isomorphisms

gLK
iso
= gl(N2 − 1,R )⊕s RN2−1 , and gLK0

iso
= gl(N2 − 1,R ) , (2.4)

15
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which demonstrate that the LK-Lie algebra and its unital subalgebra are isomorphic
to the Lie algebras which contain Lindblad-Kossakowski generators in coherence vector
representation (also known as Bloch sphere representation). For describing single qubit
open quantum systems, the coherence vector representation is highly intuitive since the
system dynamics can be envisaged as compressions, rotations and translations of a three-
dimensional sphere. The classic work of Altafini [2] focused on this representation and
provided analysis of notions of controllability, accessibility and reachability of quantum
systems subject to additional dissipative noise induced by the environment. There he
also provided an explicit basis of gl(3,R 3)⊕s R 3 which the Lindblad-Kossakowski gen-
erators could be decomposed into for a single qubit system.

Here we take a different approach by focusing on an alternative representation of
gLK and gLK0 . As noted earlier by Eqn. (1.43), we can represent an abstract operator
as a matrix via the isomorphism

(̂·) : gl
(
CN×N)→ gl(N2,C ) , (2.5)

which yields the superoperator representation of a linear operator via the “vec ”-operator.
The focus of this Section will be to provide a complete parametrisation of the n-qubit
Lindblad-Kossakowski Lie algebra in this representation. As we will show, we use a para-
metrisation based upon the Pauli matrices since many standard examples of quantum
operations use them in both open and closed quantum systems, and their commutation
properties allow for several nice algebraic results to emerge.

First, in Section 2.2 we provide the parametrisations of gLK0 and gLK for single qubit
unital and non-unital systems (cf. Propositions 2.2.1 and 2.2.2, respectively). We also
make an important connection regarding the structure of the non-unital part of the dis-
sipative dynamics - that which is responsible for the affine shift of the identity (density)
matrix. We provide a matrix representation of these operators which is immediately
visible from the decomposition of non-unital Lindblad-Kossakowski generators in oper-
ator form. This matrix representation can be envisaged as the matrix operator version
of the “usual” vector in R 3 from the coherence vector picture that describes the iden-
tity shift for non-unital systems. The operators can be explicitly obtained by the new
decomposition of the Lindblad generator given in Lemma 1.3.3.

Section 2.3 then extends this representation to n-qubit systems. The structure of
the unital Lindblad-Kossakowski Lie algebra given by Theorem 4 remains relatively
simple, however, the operators which are the direct generalisations of those which make
up the non-unital part of the single qubit LK-Lie algebra require special treatment for
multi-qubit systems. Namely, these so called quasi-translation operators arise in even
simple non-unital Lindblad-Kossakowski generators and they induce both unital and
non-unital dynamics jointly. This is in striking contrast to their behaviour in single qubit
systems. After investigation these new types of operators, Theorem 5 in Section 2.3.2
provides a complete representation of the n-qubit non-unital Lindblad-Kossakowski Lie
algebra. Knowing the explicit structure of this Lie algebra allows one to see, for example,
the interplay between symmetric dissipative components and how they can interact
via commutation relations to give new skew-symmetric operators - either a coherent-
type Hamiltonian generator, or more exotic skew-symmetric operators (for multi-qubit
systems).

Finally, Section 2.4 then considers some of the deeper structural aspects related to
the purely non-unital part of this Lie algebra and is a fundamental part of this thesis.
We provide a novel parametrisation of its basis elements, which we refer to as translation
operators. Explicitly, we parametrise the different possible translation operators by an
associated direction. This parametrisation is extremely useful throughout the thesis
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since it provides a geometric picture of which “direction” the identity is shifted along
by the non-unital noise. Using this concept, we therefore obtain a new intuition of
non-unital dynamics which we use in the following chapter to design purely dissipative
non-unital noise to drive a system to a target fixed point.

2.2 Single-Qubit Systems

Define the sets I := {1, x, y, z} and fix the following ordering 1 < x < y < z. Then the
Pauli basis for her(2), the set of all Hermitian 2×2-matrices, is given by B := {σp | p ∈ I}
where σ1 := 1l2 and

σx :=

[
0 1
1 0

]
, σy :=

[
0 −i
i 0

]
, σz :=

[
1 0
0 −1

]
. (2.6)

Likewise, for I0 := {x, y, z} we obtain B0 := {σp | p ∈ I0} as a basis for the traceless
Hermitian 2× 2-matrices denoted by her0(2). Moreover, we introduce the shortcuts

σ̂ν := 1
2 (1l2 ⊗ σν − σ>ν ⊗ 1l2) (2.7)

σ̂+
ν := 1

2 (1l2 ⊗ σν + σ>ν ⊗ 1l2) (2.8)

for âdσν
2

and âd
+
σν
2

, respectively. In the remaining of this work we will omit the “hat”
when dealing with such matrix representations of operators other than those in Eqns.
(2.7) and (2.8). Only unless it is necessary will we explicitly use it. Due to the prefactor
1
2 in Eqn. (2.7) one easily recovers the su(2) commutation relations

[i σ̂p, i σ̂q] = −εpqr i σ̂r (2.9)

where (p, q, r) is any permutation of (x, y, z) and εpqr is the Levi-Civita symbol, i.e. εpqr =
+1 if (p, q, r) is an even permutation, εpqr = −1 if (p, q, r) is an odd permutation, and
εpqr = 0 in any other case. Thus,

adsu(2) := 〈iσ̂x, iσ̂y, iσ̂z〉
iso
= su(2) . (2.10)

For a single open qubit system in the above super-operator representation, the group
lift of the controlled master equation (cf. Eqn. 1.7) takes the form

Ẋ(t) = −
(

i
(

adH0
+
∑
j

uj(t) adHj
)

+ Γ
)
X(t) . (2.11)

Here, X(t) may be regarded as a qubit quantum channel represented in GL(4,C ).
Subsequently, we refer to the well-known generators of unital and non-unital single

qubit quantum channels as standard single-qubit generators. For these systems, the
Hamiltonians Hj and the components Ck, Dk of the Lindblad terms Vk (cf. Eqn. (1.9))
take a particular simple form in the sense that Hj , Ck, Dk are given as scalar multiples
of the Pauli matrices σx, σy and σz. This implies {Ck, Dk}+ = 0 for Ck 6= Dk and
therefore by Lemma 1.3.3, we obtain the form

Ẋ(t) = −
(

i
(
σ̂d +

∑
j∈I0

uj(t)σ̂j
)

+ Γ
)
X(t) . (2.12)

with
Γ = 2

∑
p,q∈I0
p 6=q

γp,q
(
σ̂2
p + σ̂2

q + 2iσ̂pσ̂
+
q

)
∈ gl(4,C ) . (2.13)
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and if each Lindblad operator Vk is Hermitian, and hence Dk = 0, then Eqn. (2.13)
reduces to the unital dissipation term

Γ = 2
∑
p∈I0

γpσ̂
2
p ∈ gl(4,C ) , (2.14)

which is well known and sometimes called “of double commutator form” in related
literature.

Afer these preliminary considerations, we start to characterise the Lie algebraic struc-
ture of Lindblad-Kossakowski algebra for single qubit systems in detail. We distinguish
to cases: unital and the non-unital systems. The ideas presented in the following will
serve us a guideline for the n-qubit case.

2.2.1 Unital Single-Qubit Systems

For unital single qubit systems, the Lindblad-Kossakowski algebra ĝLK0 clearly contains
the standard generators iσ̂ν and σ̂2

ν due to Eqns. (2.12) and (2.14). Moreover, it has to
embrace all commutators of the form [iσ̂ν , σ̂

2
µ]. Hence the relation

[iσ̂ν , σ̂
2
µ] = −ενµλ{σ̂µ, σ̂λ}+ , (2.15)

where (ν, µ, λ) is any permutation of (x, y, z), implies that actually the span〈
iσ̂ν , σ̂

2
ν , {σ̂ν , σ̂µ}+ | ν, µ ∈ I0〉 , (2.16)

belongs to ĝLK0 . Then the commutation relations in Appendix E, and the fact that σ̂2
ν

and σ̂2
µ commute suggest the following result.

Proposition 2.2.1. The unital single qubit Lindblad-Kossakowski algebra ĝLK0 is a 9-
dimesional real Lie subalgebra of gl(4,C ) given by

ĝLK
0 =

〈
iσ̂ν , σ̂

2
ν , {σ̂ν , σ̂µ}+ | ν, µ ∈ I0, ν < µ

〉
, (2.17)

where the nine elements listed in Eqn. (2.17) form a basis of ĝLK0 . Moreover, ĝLK
0 is

isomorphic to gl(3,R ) and admits a Cartan decomposition into skew-Hermitian and

Hermitian components, i.e. ĝLK0 := k̂0 ⊕ p̂0, where

k̂0 := 〈iσ̂x, iσ̂y, iσ̂y〉
iso
= so(3) (2.18)

p̂0 := 〈σ̂2
ν , {σ̂ν , σ̂µ}+ | ν, µ ∈ I0, ν < µ〉 (2.19)

with maximal abelian subalgebra

â0 := 〈σ̂2
ν | ν ∈ I0〉 ⊂ p . (2.20)

Furthermore, â0 contains the one-dimensonal center ẑo = 〈C0〉 of ĝLK0 and splits into
an orthogonal sum

â0 := 〈σ̂2
ν − σ̂2

µ | ν ∈ I0, ν < µ〉 ⊕ 〈C0〉 , (2.21)

with C0 := σ̂2
x + σ̂2

y + σ̂2
z .
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Proof. The above considerations show that the span in Eqn. (2.16) has to be contained in
ĝLK0 . Moreover, a straightforward computation shows that the set

{
iσ̂ν , σ̂

2
ν , {σ̂ν , σ̂µ}+ | ν, µ ∈

I0, ν < µ
}

is an basis of Eqn. (2.16) . Therefore, Lemma 1.3.4 already implies
Eqn. (2.17). And in fact, the commutation relations of Appendix E, Tabs. E.1-E.4
demonstrate that the span in Eqn. (2.16) coincides with its Lie closure and admits the
specified Cartan decomposition and isomorphy. For Eqn. (2.18), we simply refer to
Eqn. (2.10).

Remark 4. Note that the basis

{iσ̂ν , σ̂2
ν , {σ̂ν , σ̂µ}+ | ν, µ ∈ I0, ν < µ} (2.22)

given in Proposition 2.2.1 is “almost” orthogonal in the sense that all elements are mutu-
ally orthogonal except σ̂2

x, σ̂2
y, and σ̂2

z among each other. Clearly, one could orthogonalize
σ̂2
x, σ̂2

y, and σ̂2
z – but this is in geneal not useful. It is better to pass from σ̂2

x, σ̂2
y, σ̂2

z to
σ̂2
x − σ̂2

y, σ̂2
y − σ̂2

z , C0 := σ̂2
x + σ̂2

y + σ̂2
z as this basis provides further insight into the Lie

algebraic structure of ĝLK0 , cf. Eqn. (2.21).

2.2.2 Non-Unital Single-Qubit Systems

In contrast, for non-unital single-qubit systems Eqn. (2.13) shows that additional terms
of the type iσ̂ν σ̂

+
µ with µ 6= ν must be taken into account. Thus for non-unital systems

we consider the linear span〈
iσ̂ν , σ̂

2
ν , {σ̂ν , σ̂µ}+, iσ̂ν σ̂+

µ , | ν, µ ∈ I0
〉
.

By the commutation relations in Appendix E, Tabs. E.5 and E.6, and noting that
iσ̂ν σ̂

+
µ = −iσ̂µσ̂

+
ν , we obtain a 12-dimensional Lie-subalgebra of gl(4,C) which contains

all possible dimensions a single qubit Lie wedge may explore. More precisely, one finds
the following:

Proposition 2.2.2. The non-unital single qubit Lindblad-Kossakowski algebra ĝLK is
a 12-dimesional real Lie subalgebra of gl(4,C ) given by

ĝLK =
〈
iσ̂ν , σ̂

2
ν , {σ̂ν , σ̂µ}+, iσ̂ν σ̂+

µ | ν, µ ∈ I0, ν < µ
〉
, (2.23)

where the twelve elements listed in Eqn. (2.23) form an orthogonal basis of ĝLK . Moreover,

ĝLK takes the form of a semidirect sum ĝLK = ĝLK0 ⊕s î, where

î := 〈iσ̂ν σ̂+
µ | ν, µ ∈ I0, ν < µ〉 (2.24)

is an abelian ideal of ĝLK .

Proof. As mentioned before, the Lie subalgebra structure of the right-hand side of
Eqn. (2.23) can be read off the commutation tables in Appendix E. Again, Lemma 1.3.4
and the orthogonality of the listed elements show that one has equality in Eqn. (2.23).

Moreover, ĝLK is obviously the direct sum of the Lie subalgebra ĝLK0 and vector space î.

Hence, for establishing the semidirect sum structure of ĝLK , we still have to show that î
is an abelian ideal of ĝLK . Yet, this follows again from the commutation relations given
in Appendix E and the fact that [i σ̂ν σ̂

+
µ , i σ̂µσ̂

+
λ ] = 0 for all ν, µ, λ ∈ I0.
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Example 1. Consider the dynamics of a system governed by a Lindblad-Kossakowski
operator of the form L = i adHd +Γ, where Hd = σz and the only Lindblad term of Γ is
given by

V =

[
1 1
0 −1

]
. (2.25)

Then writing V = C + iD, where C = 1
2σx + σz and D = 1

2σy and changing to the
“vec”-representation of L, we obtain

L = iσ̂z + âd
2

C + âd
2

D + i(âdC âd
+

D − âdDâd
+

C)

= iσ̂z + 2
(

1
4 σ̂

2
x + σ̂2

z + 1
2{σ̂x, σ̂z}+ + 1

4 σ̂
2
y + i

(
1
2 σ̂xσ̂

+
y + σ̂zσ̂

+
y

))
.

Since any single qubit V can be expressed as a sum of a Hermitian matrix and skew-
Hermitian matrix, the above type of splitting into basis elements consisting of Pauli
elements is always possible. In this example, it’s immediately obvious how the operators
which make up L relate to the basis elements of ĝLK as expressed in Proposition 2.2.2.

The above results allow us directly see the relationship to the coherence vector
representation. Recall that the coherence vector/Bloch sphere representation of single
qubit dynamics consists of a unital part (which leaves unity invariant) and a non-unital
part (which is described by a vector in R3) such that the overall generator generates a
Markovian semigroup of quantum maps. The system (Σ) given by Eqn. (1.16) is then
lifted to a bilinear control system on GL(3,R) o R3, whose Lie algebra elements are of
the general form[

A a
0 0

]
∈ gl(3,R)⊕s R3 , such that A ∈ gl(3,R) and a ∈ R3 , (2.26)

where we say (in shorthand notation) that for elements (A, a), (B, b) ∈ gl(3,R) ⊕s R3,
the Lie bracket is given by [(A, a), (B, b)] = ([A,B], Ab−Ba). Thus, in order to generate
a Markovian semigroup of quantum maps, elements (A, a) ∈ gl(3,R) ⊕s R3 obviously
must have a special form [2]. As an alternative point of view to this intuitive single
qubit picture, we now know that

ĝLK = ĝLK0 ⊕s î
iso
= gl(3,R)⊕s R3 , (2.27)

thus making elements of the ideal î isomorphic to elements of the form (0, a) ∈ gl(3,R)⊕s
R3 with a ∈ R3.

Therefore, the unique Lie subgroup Ĝ
LK
⊂ GL(4,C) with Lie subalgebra ĝLK can

be thought of as a semidirect product on the group level

Ĝ
LK

= Ĝ
LK

0 ⊗s T̂
LK iso

= GL(3,R) oR3 , (2.28)

where Ĝ
LK

0 and T̂
LK

denote the unique Lie subgroups which correspond to ĝLK
0 and î,

respectively.
In the next section, we focus on expanding these notions to n-qubit systems. We will

see that the direct generalised versions of the basis elements of the single qubit ideal î
are not elements of the n-qubit ideal î. Instead, the generalisation of operators of the
form iσpσ̂

+
q with p, q ∈ {x, y, z} such that p 6= q not only contain a non-unital part, but

also a unital part. This extremely interesting property then forces us to use a projection
operation onto these generalised operations in order to determine a basis for the n-qubit
ideal î.
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2.3 n-Qubit Systems

2.3.1 Unital n-Qubit Systems

Let In := {1, x, y, z}n and In0 := In \ {(1, 1, . . . , 1)}. Moreover, we extend the ordering
1 < x < y < z of I, which proved very useful in the single qubit case, lexicographically
to In. For compact notation, we make use of the multi-index p := (p1, p2, ..., pn) ∈ In
to define

σp := σp1 ⊗ σp2 ⊗ · · · ⊗ σpn−1 ⊗ σpn , (2.29)

so that

Bn := {σp | p ∈ In} , and Bn0 := {σp | p ∈ In0 } (2.30)

are basis for her(2n) and her0(2n), respectively. Moreover, the natural extensions of
Eqn. (2.7) are given by

σ̂p := 1
2 (1l2n ⊗ σp − σ>p ⊗ 1l2n) (2.31)

σ̂+
p := 1

2 (1l2n ⊗ σp + σ>p ⊗ 1l2n) . (2.32)

In the following three Lemmas, we collect a few straightforward results which will
be quite helpful in the subsequent proofs.

Lemma 2.3.1. Let p := (p1, p2, ..., pn), q := (q1, q2, ..., qn) and σp, σq be defined as in
Eqn. (2.29). Then

σ2
p = 1l2n and σpσq = (−1)εσqσp , (2.33)

where ε is the number of indices k in pk, qk ∈ I0 with pk 6= qk and pk 6= 1, qk 6= 1. (NB:
σ2
p = 1l2n , but in the ad-representation σ̂2

p 6= 1l4n .)

Proof. Both statements are immediate consequences of well-known properties of the
Pauli matrices σx, σy, and σz.

Lemma 2.3.2. Let σp, σq ∈ Bn. Then

1. [σp, σq] = 0 if and only if {σp, σq}+ 6= 0 ,

2. For a fixed σp 6= 1l, |B
n|
2 = 4n

2 elements of Bn commute with σp, and the remaining
half of the elements anti-commute with σp.

Proof. 1) By Lemma 2.3.1, its clear that if ε is even then [σp, σq] = 0 and {σp, σq}+ =
2σpσq whereas if ε is odd then [σp, σq] = 2σpσq and {σp, σq}+ = 0. Hence [σp, σq] = 0
if and only if {σp, σq}+ 6= 0.
2) We prove by induction. Clearly, the statement holds for n = 1. Now let σp, σq ∈ Bn
such that σp 6= 1l. Without loss of generality, choose the element σp ⊗ 1l ∈ Bn+1. Then
for any σq ⊗ σα, with α ∈ {1l, x, y, z} we have that [σp ⊗ 1l, σq ⊗ σα] = [σp, σq]⊗ σα. By

the induction hypothesis, there are |B
n|
2 = 4n

2 elements σq ∈ Bn such that [σp, σq] = 0

and since α ∈ {1l, x, y, z} we get that there are 4n

2 · 4 = 4n+1

2 elements in Bn+1 which
commute with the fixed σp ⊗ 1l ∈ Bn+1. Since [σp, σq] = 0 if and only if {σp, σq}+ 6= 0,
the remaining half of the basis elements of Bn+1 must anti-commute with the fixed
element.
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Lemma 2.3.3. Let σ̂µ, σ̂ν , σ̂p, σ̂q be defined as in Eqn. (2.31) and let 〈A,B〉tr := trA†B
denote the Hilbert-Schmidt inner product between matrices A and B. Then

(a) The set {σ̂2
p | p ∈ In0 } is linearly independent.

(b) The matrices {σ̂µ, σ̂ν}+ and {σ̂p, σ̂q}+ are orthogonal, i.e.〈
{σ̂µ, σ̂ν}+, {σ̂p, σ̂q}+

〉
tr

= 0 (2.34)

if and only if one of the following conditions is met

(i) µ = ν, p 6= q,

(ii) µ 6= ν, p = q

(iii) µ 6= ν, p 6= q, (µ,ν) 6= (p, q), (µ,ν) 6= (q,p).

Proof. (a) From the equality

σ̂2
p = 1

2 (1l4n − σTp ⊗ σp) (2.35)

one easily sees that σ̂2
p and σTq ⊗ σq are orthogonal for all p,q ∈ In0 with p 6= q. This

clearly implies that the set {σ̂2
p | p ∈ In0 } is linearly independent.

(b) “⇐=”: Here, we exemplify only the case µ = ν, p 6= q, because the same arguments
can be applied in all other cases. Note that

{σ̂p, σ̂q}+ = 1
4

(
1l2n ⊗ {σp, σq}+ + {σ>p , σ>q }+ ⊗ 1l2n

)
− 2
(
σ>p ⊗ σq + σ>q ⊗ σp

)
. (2.36)

Then by Eqn. (2.35) and the trace identity tr(A ⊗ B) = trA · trB for square matrices
A, B, one has

〈σ̂2
µ, {σ̂p, σ̂q}+〉tr = 1

8 tr
(
1l2n ⊗ {σp, σq}+

)
− 1

8 tr
(
σ>µ ⊗ σµ{σp, σq}+

)
+ “six more terms”

= 1
8 tr(1l2n) tr({σ>p , σ>q }+)− 1

8 tr(σ>µ ) tr(σµ{σp, σq}+) + “six more terms” .

Since the Pauli matrices are traceless, it easily follows from Lemma 2.3.1 that each of
the above terms vanishes and thus 〈σ̂2

µ, {σ̂p, σ̂q}+〉tr = 0.

“=⇒”: If none of the above conditions (i)–(iii) is met then one has µ = ν, p = q and
therefore orthogonality fails by Eqn. (2.35).

With these technical Lemmas out of the way, we are now ready to prove our first
main result. Recall that Lemma 1.3.4 introduced the Lie algebra gE0 which was given by

gE0 =
{

Φ ∈ gl
(
her(N)

) ∣∣ Im Φ ⊂ her0(N), 1lN ∈ ker Φ} , (2.37)

and proved that gLK0 ⊆ gE0 . Then, Proposition 2.2.1 proved that for a single qubit
we have gLK0 = gE0 . The following result then proves this equality for general n-qubit
systems.

Theorem 4. The unital n-qubit Lindblad-Kossakowski Lie algebra ĝLK0 ⊂ gl(4n,C) is
a (4n − 1)2-dimensional real Lie algebra given by

ĝLK0 = ĝE0 = 〈iσ̂p, σ̂2
p, {σ̂α, σ̂µ}+ |p,α < µ ∈ In0 〉Lie . (2.38)

Moreover, it admits a Cartan decomposition into Hermitian and skew-Hermitian ele-
ments ĝLK0 = k̂0 ⊕ p̂0 where

k̂0 := 〈[{σ̂p, σ̂q}+, {σ̂α, σ̂µ}+] |p ≤ q,α ≤ µ ∈ In0 〉 (2.39)
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p̂0 := 〈{σ̂α, σ̂µ}+ |α ≤ µ ∈ In0 〉 , (2.40)

with maximally abelian subalgebra â0 ⊂ p̂0 given by

â0 := 〈σ̂2
p |p ∈ In0 〉 . (2.41)

Proof. It is clear that ĝLK0 must contain operators iσ̂p and iσ̂2
p due to the generalizations

of Eqns. (2.12) and (2.14). Moreover, the extension of Eqn. (2.15) to multi qubit systems
is given by

[iσ̂p, σ̂
2
µ] = {[iσ̂p, σ̂µ], σ̂µ}+ , (2.42)

which follows from the identity [A,B2] = {[A,B], B}+ for arbitrary square matrices A,
B. Therefore, we have the inclusion g̃0 ⊆ ĝLK0 ⊆ ĝE0 , where

g̃0 := 〈iσ̂p, σ̂2
p, {σ̂α, σ̂µ}+ |p,α < µ ∈ In0 〉Lie . (2.43)

Next, define p̃0 := g̃0 ∩ her(4n) and recall p̂E0 := ĝE0 ∩ her(4n), cf. Eqn. (A.16). Then one
has obviously the inclusion p̃0 ⊂ p̂E0 . Moreover, a straightforward computation shows
that all elements of p̂0, cf. Eqn. (2.40), are Hermitian and therefore p̂0 ⊂ p̃0. Finally,
Lemma 2.3.3 and Corollary A.0.1 yield the following estimates

(4n−1)(4n)
2 ≤ dimR p̂0 ≤ dimR p̃0 ≤ dimR p̂E0 = (4n−1)(4n)

2 ,

which implies p̂0 = p̃0 = p̂E0 and thus p̂E0 ⊂ g̃0.

Now, according to Lemma 1.3.4 the Lie algebra ĝE0 is isomorphic to gl(4n − 1,R ) and

therefore one has k̂E0 = [p̂E0 , p̂
E
0 ] or, equivalenty, ĝE0 = [p̂E0 , p̂

E
0 ] ⊕ p̂E0 . Hence, by the

inclusion p̂E0 ⊂ g̃0 we conclude k̂E0 ⊂ g̃0 and thus g̃0 = ĝLK0 = ĝE0 .

So finally, we have to show that

â0 := 〈σ̂2
p |p ∈ In0 〉 , (2.44)

is a maximal abelian subalgebra of p̂0. The fact that â0 is abelian easily follows from
Eqn. (2.35) and Lemma 1.3.4. Furthermore, Lemma 2.3.3 implies that â0 is 4n − 1-
dimensional and therefore maximal due to the isomorphy of ĝLK0 to gl(4n − 1,R ).

Corollary 2.3.1. The Lie algebra k̂0 = [p̂0, p̂0] given by Eqn. (2.39), can be alternatively

generated as k̂0 = [â0, p̂0] and therefore,

k̂0 = 〈[σ̂2
p, {σ̂α, σ̂µ}+] |p,α < µ ∈ In0 〉 . (2.45)

Proof. Since ĝLK0 is isomorphic to gl(4n − 1,R ) by Theorem 4 we know that k̂0 and p̂0

are isomorphic to so(4n − 1) and sym(4n − 1), respectively. Here, sym(4n − 1) denotes
the set of all symmetric matrices in gl(4n − 1,R ). Now, for gl(4n − 1,R ) the relation
so(4n − 1) = [a, sym(4n − 1)], where a is a maximal abelian subalgebra of sym(4n − 1),

is well-known. Therefore, by the above isomorphy, we conclude k̂0 = [â0, p̂0].

By the following Lemma, we are able to provide a necessary and sufficient condition
on how to generate elements in adsu(2n) ⊂ k̂0 from basis elements of p̂0.
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Lemma 2.3.4. Let p,α,µ,∈ In0 such that α 6= µ. Then [σ̂2
p, {σ̂α, σ̂µ}+] ∈ adsu(2n) if

and only if either p = α or p = µ.

Proof. First, we remark that A := [σ̂2
p, {σ̂α, σ̂µ}+] can be expressed as A = B−B†−C

with

B := 1
4

(
(σασp)> ⊗ σpσµ − (σpσµ)> ⊗ σασp

)
, and (2.46)

C := 1
4

(
σ>p ⊗ [σp, {σα, σµ}+]− [σp, {σα, σµ}+]> ⊗ σp

)
.

Note that B is either Hermitian or skew-Hermitian and therefore B −B† is either zero
or 2B. With these definitions at hand we are prepared to proof our statement.

The “⇐=” direction is straightforward. If p = α (or p = µ) then C = 0 in Eqn.
(2.46) and A = (B −B†) ∈ adsu(2n), since σpσα = 1l2n (or σpσµ = 1l2n).

The “=⇒” direction is deduced from the decomposition A = B −B† −C as follows.
As in the proof of Lemma 2.3.3 (b), and the fact that the Pauli matrices are traceless,
one has 〈B,C〉tr = 〈B†, C〉tr = 〈iσ̂p, C〉tr = 0 for all p ∈ In0 . Therefore, C = 0 is
necessary for A ∈ adsu(2n). Using the same techniques, we see that B−B† is orthogonal
to adsu(2n) whenever p 6= α and p 6= µ. Therefore, we have shown that A ∈ adsu(2n)

implies p = α or p = µ.

Corollary 2.3.2.
adsu(2n) = 〈[σ̂2

p, {σ̂p, σ̂µ}+] |p 6= µ ∈ In0 〉 . (2.47)

Proof. The inclusion “⊃” follows from Lemma 2.3.4. On the other hand, for p = α one
has σpσα = 1l2n and C = 0 and therefore it is easy to see that by an suitable choice of
p and µ the matrix B − B† can represent (up to a sign factor) any iσ̂q where q ∈ In0 .
Hence, we obtain the desired equality.

2.3.2 Non-Unital n-Qubit Systems

In Section 2.2 we considered the Lindblad generators for “standard” single qubit unital
and non-unital noise. Recall that the corresponding Lindblad terms were of the form
Vk = Ck+iDk, where Ck and Dk are scalar multiples of Pauli matrices. We showed that
by considering these especially simple, yet common, Lindblad terms we could provide
an elegant representation of the Lindblad-Kossakowski Lie algebra ĝLK . In that situ-
ation, it turned out that the non-unital part of the dissipative dynamics could easily be
interpreted as elements of an (abelian) ideal î of ĝLK given by the (real) span

î = 〈iσ̂yσ̂+
z , iσ̂zσ̂

+
x , iσ̂xσ̂

+
y 〉 (2.48)

Furthermore, these elements which make up the ideal are immediately visible from the
decomposition given by Lemma 1.3.3 applied to a Lindblad generator which describes
standard single qubit noise i.e.

Γ = 2
∑
p,q∈I0
p 6=q

γp,q
(
σ̂2
p + σ̂2

q + 2iσ̂pσ̂
+
q

)
∈ gl(4,C ) , (2.49)

where we recall that I0 = {x, y, z}.
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To address the situation of non-unital n-qubit systems, we can generalize Eqn. (2.49)

and we will show that there again exists an abelian ideal î such that ĝLK admits a
semidirect sum decomposition ĝLK = ĝLK0 ⊕s î, where ĝLK0 denotes the unital n-qubit
Lindblad-Kossakowski Lie algebra cf. Eqn. (2.38).

A standard multi-qubit dissipative process can be separated into a unital component
and an additional mixed unital and non-unital component in the following sense. For
Lindblad terms of the form Vk =

√
γk(σpk + iσqk), such that pk 6= qk and γk ∈ R+ for

all k, we can use the decomposition of Γ given by Lemma 1.3.3 to provide the splitting
Γ = Γ0 + Γm where

Γ0 := 2
∑
k

γk

(
σ̂2
pk

+ σ̂2
qk

)
, and Γm := 2i

∑
k

γk

(
σ̂pk σ̂

+
qk
− σ̂qk σ̂

+
pk

)
. (2.50)

Again by Lemma 1.3.3, if {σpk , σqk}+ = 0 for all k we obtain

Γm = 4i
∑
k

γkσ̂pk σ̂
+
qk
. (2.51)

Since we are focused on the operators which make up Eqn. (2.51), unless explicitly
stated, we will omit the factor of four for simplicity. Furthermore, denoting the real
linear span of operators Γm given in Eqn. (2.50) as m̂ ⊂ gl(4n,C), i.e.

m̂ := 〈i(σ̂pσ̂+
q − σ̂qσ̂+

p ) | p,q ∈ In0
〉
,

we arrive at the following decomposition result.

Proposition 2.3.1. The subspace m̂ ⊂ gl(4n,C) can be decomposed as m̂ = m̂qt ⊕ m̂s,
where

m̂qt := 〈iσ̂pσ̂+
q | [σp, σq] 6= 0〉 , and m̂s = 〈i(σ̂pσ̂+

q − σ̂qσ̂+
p ) | [σp, σq] = 0〉 ,

and in particular, m̂s ⊆ k̂0 ⊆ ĝLK0 , where k̂0 is the skew-Hermitian part of the Cartan

decomposition of ĝLK0 = k̂0 ⊕ p̂0.

Proof. The set m̂qt follows by Lemma 1.3.3 and clearly by Lemma 2.3.2, m̂qt∩ m̂s = {0},
thus the direct sum follows. Furthermore, note that when k = 1 in Eqn. (2.50) we
obtain Γm = 2iγ(σ̂pσ̂

+
q − σ̂qσ̂+

p ) and hence

Γm = iγ
(
σ>q ⊗ σp − σ>p ⊗ σq

)
+ iγ

2 âd
+

[σp,σq] , (2.52)

where as usual γ ∈ R+. Thus, if [σp, σq] = 0, then Γm ∈ k̂0 ⊂ ĝLK0 .

Remark 5. If σq = 1l2n , then the skew-Hermitian element Γm ∈ m̂s is contained in
adsu(2n), whereas in a generic case, Γm is a more exotic type of skew-symmetric opera-
tion. This skew-symmetry motivates the definition of the set m̂s.

For reasons which will become clear later, elements in m̂qt will be called quasi transla-
tions. The following Lemma provides a useful fact which will be relevant in the remaining
of the thesis.

Lemma 2.3.5. (iσ̂pσ̂
+
q )2 = 0 for all elements iσ̂pσ̂

+
q ∈ m̂qt.
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Proof. By direct computation we obtain σ̂pσ̂
+
q = 1

4 (1l ⊗ σpσq + σ>q ⊗ σp − σ>p ⊗ σq −
(σqσp)> ⊗ 1l) and therefore

σ̂pσ̂
+
q σp = 1

4 (1l⊗ σpσqσp − σ>p ⊗ σpσq + σ>q ⊗ σ2
p − (σpσq)> ⊗ σp − σ>p ⊗ σqσp + (σ>p )2 ⊗ σq

− (σqσp)> ⊗ σp + (σqσp)> ⊗ 1l) .

Clearly σ2
p = σ2

q = 1l and by 1) of Lemma 2.3.2 (and its proof), we know that σpσq =
−σqσp since [σp, σq] 6= 0. Thus we obtain σ̂pσ̂

+
q σp = 0 and hence (iσ̂pσ̂

+
q )2 = 0.

The above Lemma makes intuitive sense when we consider the single qubit case.
That is, in Proposition 2.2.2 we proved that operators of the form iσ̂pσ̂

+
q with p, q ∈

I0 = {x, y, z} such that p 6= q (and noting that iσ̂pσ̂
+
q = −iσ̂qσ̂

+
p ) are a basis for

the abelian ideal î. That is, elements Γm can only be elements of m̂qt in this single

qubit case, and by counting degrees of freedom we see that in fact m̂ = m̂qt = î.
Furthermore, recall that these ideal elements can be represented in the coherence vector
representation as elements of the form (0, a) ∈ gl(3,R) ⊕s R3 with a ∈ R3 (cf. Eqn.
(2.26)). Thus, it is immediately apparent that these ideal elements are nilpotent matrices
since (0, a) · (0, a) = (0, 0) for all a ∈ R3. Finally, we note that unlike the single qubit
case, for multi-qubit systems, the product of two quasi-translation operators is not always
zero.

Now we finally arrive at a crucial distinction between operators Γm ∈ m̂qt when we
are comparing the single qubit scenario to multi-qubit systems. Appendix C provides a
detailed description of the kernel and range of such an operator which then leads us to
the following result.

Proposition 2.3.2. For multi-qubit systems, the elements Γm = iσ̂pσ̂
+
q ∈ m̂qt are not

contained in the ideal î, nor are they contained in the unital subalgebra ĝLK0 . That is,

iσ̂pσ̂
+
q ∈ ĝLK = ĝLK0 ⊕s î (2.53)

such that iσ̂pσ̂
+
q /∈ î and iσ̂pσ̂

+
q /∈ ĝLK0 .

Proof. First we show that the operators iσ̂pσ̂
+
q ∈ m̂qt are non-unital and therefore and

not elements of ĝLK0 by proving that iσ̂pσ̂
+
q (1l) 6= 0. Since [σp, σq] 6= 0, then by (the

proof of) Lemma 2.3.2, we know that [σp, σq] = 2σpσq. Thus, in operator representation
we immediately get i adσp ◦ ad+

σq
(1l) = 2i[σp, σq] = 4iσpσq and thus the operator is not

in ĝLK0 .

Now we prove that these operators are not contained in the ideal î ⊆ îE . Recall that
an element τ ∈ iE is called an (infinitesimal) translation element and by definition it
satisfies

τ
∣∣
her0(N)

≡ 0 and τ(1lN ) ∈ her0(N) , (2.54)

(for more details see the paragraphs following Lemma 1.3.4 in Section 1.3). Proposition
C.0.1 in Appendix C provides the range of such an operator and proves it’s always the
case that i adp ad+

q (σm) = 4iσpσqσm whenever [σp, σm] = [σq, σm] = 0. The operator
clearly violates the first (infinitesimal) translation element condition which implies it is

not contained in îE and therefore not in î either.

The above result implies that for multi-qubit systems, operators of the form iσ̂pσ̂
+
q ∈

m̂qt describe a dynamic on the system which has a unital and non-unital component to it.
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Furthermore, since they are not contained within the ideal î, they are not infinitesimal
translations as they are in the single qubit case. We therefore aim to introduce a
projection operator to “project out” the unital part of these quasi-translation operators
thereby leaving only the translational component which is contained in the ideal.

Recall Lemma 1.3.4 where we introduced the Lie algebra gE which contains gLK .
Furthermore, in the introduction to this chapter we noted that we will in fact prove the
equality gLK = gE . This is essential because it proves that gLK is isomorphic to the
Lie algebra gl(N2 − 1,R) ⊕s RN

2−1 which is the Lie algebra which contains Lindblad-
Kossakowski operators L in the coherence vector representation.

Proposition 2.3.3. Recall that ĝE can be decomposed into the semidirect sum ĝE =
gE0 ⊕s îE, where îE is an abelian ideal of ĝE. Moreover, define the operatorχ : ĝE −→ ĝE,
as χ(A) = [C0, A], where

C0 :=
1

22n−1

∑
p∈In0

σ̂2
p . (2.55)

Then χ : ĝE −→ ĝE is an orthogonal projection such that χ(ĝE) ⊆ îE.

Before we prove Proposition 2.3.3, we establish a Lemma which shows that the
projection operator does indeed project out the unital parts of the quasi-translations
and leaves only the (infinitesimal) translation part.

Lemma 2.3.6. Let χ be the operator defined in Proposition 2.3.3. Then

χ(ĝE0 ) = {0} and χ(m̂qt) 6= {0} , (2.56)

and hence χ(m̂qt) ⊆ îE

Proof. The result is proved in operator representation in Lemma B.0.1 in Appendix
B.

Proof of Proposition 2.3.3. First we state the obvious that since σ̂2
p ∈ ĝE for all p ∈ In0 ,

then χ(ĝE) ∈ ĝE .

Throughout the remaining of the proof we will exploit the fact that ĝE
iso
= gl(4n −

1,R) ⊕s R4n−1 and hence we change to the coherence vector representation. Recalling
Eqn. (2.26), a generic element A ∈ ĝE can be represented as[

A′ a
0 0

]
∈ gl(4n − 1,R)⊕s R4n−1 , (2.57)

such that A′ ∈ gl(4n − 1,R) and a ∈ R4n−1. Thus, the product of two elements
(A′, a), (B′, b) ∈ gl(4n − 1,R)⊕s R4n−1 is given by (A′, a) · (B′, b) = (A′B′, A′b).

To prove that χ is an orthogonal projection, we will use the fact that C0 in Eqn.
(2.55) is itself an orthogonal projection. This follows immediately by Remark 15 in
Appendix B where we see C0

∣∣
her0(2n)

= 1l2n and therefore in the coherence vector rep-

resentation we see that (under a slight abuse of notation) C0 = (1l4n−1, 0). Thus, clearly

we have that C2
0 = C†0 = C0 and hence χ† = χ.

Now we show that χ2 = χ and χ(ĝE) ⊆ îE . For any A ∈ ĝE0 and B ∈ îE , we have

χ2(A+B) = [C0, [C0, A]] + [C0, [C0, B]] = [C0, [C0, B]] , (2.58)
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sinceχ(A) = 0 by Lemma 2.3.6. In the coherence vector representation it is immediately
obvious that BC0 = 0 and C0B = B and hence χ2(A + B) = [C0, [C0, B]] = C2

0B =

C0B = B = χ(A+B) ∈ îE .

Using this projection operator, we can now describe the structure of the abelian ideal
î and the (infinitesimal) translation operators which it’s made up of. In doing so, we
now have all the tools to prove a central result of this chapter - that we have in fact the
equality ĝLK = ĝE and hence we have obtained a complete description of the n-qubit
non-unital Lindblad-Kossakowski Lie algebra ĝLK .

Theorem 5. The non-unital n-qubit Lindblad-Kossokowski Lie algebra ĝLK ⊂ gl(4n,C)

decomposes into a semidirect sum ĝLK = ĝLK0 ⊕s î = ĝE, where ĝLK0 is given by Eqn.

(2.38) and î ⊂ ĝLK is a 4n − 1 dimensional abelian ideal defined by

î := χ(m̂qt) = 〈χ(iσ̂pσ̂
+
q ) | [σp, σq] 6= 0〉 = îE . (2.59)

Proof. We already know the following inclusions/equalities: ĝLK ⊆ ĝE , ĝLK0 = ĝE0 , ĝE =

ĝE0 ⊕s îE and î ⊆ îE , where the last inclusion is given in Proposition 2.3.3 since

î := χ(m̂qt). Hence, we only need to prove î = îE ⊂ ĝLK . Let A ∈ ĝLK and iσ̂pσ̂
+
q ∈ m̂qt.

By the Jacobi identity,

χ([A,χ(iσ̂pσ̂
+
q )]) = [A,χ(χ(iσ̂pσ̂

+
q ))]− [χ(iσ̂pσ̂

+
q ),χ(A)] (2.60)

= [A,χ2(iσ̂pσ̂
+
q )] (2.61)

= [A,χ(iσ̂pσ̂
+
q )] ∈ îE ∩ ĝLK , (2.62)

which follows from the fact that îE is abelian and so [χ(iσ̂pσ̂
+
q ),χ(A)] = 0 and χ2 = χ

by Proposition 2.3.3. Therefore [ĝLK , î] ⊆ îE ∩ ĝLK = îE ∩ (ĝLK0 ⊕s ˆ̂
i) = î and hence

î ⊆ îE is an ideal.

Since gl(4n−1,R) acts transitively on R4n−1, and gl(4n−1,R)⊕sR4n−1 iso
= ĝE0 ⊕s îE

by Lemma 1.3.4, then îE contains no other ideals except for itself and 0. By Proposition
2.3.3, î 6= {0} and thus î = îE ⊆ ĝLK which finally shows that ĝLK = ĝE .

Here and henceforth, we call î the Lindblad-Kossakowski (LK) ideal. As we will
shall see throughout this thesis, this operator representation of the LK-Lie algebra will
provide us with new insights into the interplay between the coherent and incoherent
operators/parts of an open systems dynamics. In particular, the next section will further
investigate the exact structure of the (infinitesimal) translation operators which make

up the LK-ideal î.

2.4 Translation Operators and the Lindblad-Kossakowski
Ideal

As exemplified in the last section, the quasi-translation elements which make up the
“mixed” part Γm of Γ = Γ0+Γm induces both unital and non-unital dissipative dynamics
for multi-qubit systems (cf. Proposition 2.3.2). We then showed in Theorem 5 that
the unital component of these quasi-translation operators needed to be projected out,
thereby leaving only the non-unital (infinitesimal) translation component to define a
basis of the Lindblad-Kossakowski ideal. As discussed prior to Lemma 1.3.5 in Section
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1.3, elements τ ∈ i are called (infinitesimal) translations due to the following reasoning.

For any Hermitian matrix ρ := 1l2n + ρ0 with ρ0 ∈ her(2n) and exp(τ ) :=
∑∞
k=0

τ k
k! ,

we see that exp(τ )(1l2n + ρ0 + τ (1l2n)). Now, since τ (1l2n) ∈ her(2n) its clear exp(τ )
acts as a translation on the hyperplane 1l2n + her0(2n). The LK-ideal then consists of
(infinitesimal) translation elements and the goal of this section is to parametrise its
basis. As we will see, this can be done by determining the form of translation operators
τ ∈ i such that

τ (1l2n) = σm , for σm ∈ Bn0 . (2.63)

First we must introduce some notation that ultimately will simplify the discussion and
then be used throughout this thesis.

Define as usual the local Pauli operators by

σp,k := 1l2 ⊗ · · · ⊗ 1l2 ⊗ σp ⊗ 1l2 ⊗ · · · ⊗ 1l2 , (2.64)

where σp appears at the kth position. Thus, σp,k = σp, where p := (1, . . . , 1, p, 1, . . . , 1) ∈
In0 with p ∈ I0 at the kth position. Then the corresponding “localized” extensions of
Eqns. (2.31) and (2.32) are given by

σ̂p,k := 1
2

(
1l2n ⊗ σp,k − σTp,k ⊗ 1l2n

)
(2.65)

σ̂+
p,k := 1

2

(
1l2n ⊗ σp,k + σTp,k ⊗ 1l2n

)
(2.66)

Define the sets

I := {±x,±y,±z,±1} and I0 := {±x,±y,±z} , (2.67)

and note that for some p ∈ I, then −p ∈ I and we define −σp := σ−p. Moreover, for any
p, q ∈ I we define a “product” as follows

p ? q :=


1 if p = q ,

±p if q = ±1 ,

±q if p = ±1 ,

±r else, where ±r is determined by σpσq = ±iσr .

(2.68)

Furthermore, we can extend the above star-product over n-indices for p,q ∈ In as

m := p ? q , where mk = pk ? qk for all k = 1, . . . , n. (2.69)

Remark 6. Note that by Eqn. (2.68), each mk ∈ {1,±pk,±qk,±rk} and thus we can
define a notion of positivity of the product m = p ? q. We say that p ? q > 0 ( resp.
p ? q < 0) whenever there are an even (resp. odd) number of negative indices of m.
Moreover, we remark that this star-product does not induce a group structure on the set
I since it is clearly not an associative operation.

The motivation for introducing such a product is the following. For any σp, σq ∈ Bn0
such that [σp, σq] 6= 0, then by Lemma 2.3.1 we get [σp, σq] = 2σpσq = 2iσm, where
m = p ? q. Therefore, this star-product serves as a shortcut to identify the index of the
Pauli matrix resulting from a commutation between two other Pauli matrices and the
positivity/negativity of the product is simply the corresponding sign of the commutator.
This is extremely useful for our purposes throughout the paper.
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Now we are ready to apply this concept to the single qubit ideal elements. For a
single qubit we know that for p, q ∈ {x, y, z} such that p 6= q then iσ̂qσ̂

+
p ∈ î since

[σq, σp] 6= 0 and hence in operator representation we see

i
4 adσq ◦ ad+

σp(1l2) = i
2 [σq, σp] = iσqσp = −iσpσq = σm , (2.70)

since σpσq = iσm for m = p ? q as defined above.
For p, q ∈ I0 such that [σq, σp] 6= 0 we can therefore define a translation operator in

the mth direction as

τm := iσ̂qσ̂
+
p , where m = p ? q (2.71)

and hence via the star-product, m = ±r where τ−r := −τ r. As we have seen in
Proposition 2.2.2 in Section 2.2.2, operators of this type form the basis of the single
qubit Lindblad-Kossakowski ideal.

Remark 7. The ordering of the product which the translation is defined as may look
like it should be reversed due to the fact that we have defined the direction m to be given
by m = p ? q. However, due to Eqn. (2.70) we see that (in operator representation)
τm(1l2) = σm and hence if for example p ? q = −r we get τ−r(1l2) = −τ r(1l2) = −σr as
expected.

This brings us to a fundamental concept of this thesis which is highlighted in the
following example.

Example 2. Consider a single qubit Lindblad generator whose only dissipative term is
given by V = 1

2 (σx + iσy). It is well known that this noise generator describes amplitude
damping noise, see for instance [39, 6]. Following Eqn. (2.13) by writing Γ in super-
operator representation we obtain

−L = −Γ = − 1
2 (σ̂2

x + σ̂2
y)− iσ̂xσ̂

+
y = − 1

2 (σ̂2
x + σ̂2

y) + τ z , (2.72)

where τ z = −iσ̂xσ̂
+
y = iσ̂yσ̂

+
x . This leads to the following intuitive picture. It’s also

well known that in the Bloch sphere representation, amplitude damping noise contracts
the Bloch sphere and then translates the states upwards along the z-axis towards the
north pole (the |0〉-state) [39]. Usually, this translation is described by a vector in R3 -
however here, we have provided the operator picture which describes this affine shift and
its corresponding direction.

Since the translation direction drives the system towards its unique fixed point, a
main result of this thesis will be to use this intuition to our advantage. Namely, in
Chapter 3 we will use generalisations of these translation operators to engineer purely
dissipative noise that drives n-qubit systems to desired unique fixed points.

Thus, we now aim to generalise the single qubit translation operators to n-qubit
systems. The immediate extension is then to introduce a “local quasi-translation” in
the mth direction on the kth qubit as

τm,k := iσ̂q,kσ̂
+
p,k , for [σq, σp] 6= 0 , and m = p ? q (2.73)

where we again identify τ−r,k := −τ r,k. We stress that by Proposition 2.3.2 these

are indeed quasi-translations and are not translation elements (i.e. not contained in î)
although they carry the tau-notation. The notation has a benefit which we will see in
the following.
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Proposition 2.4.1. Denote the span of all local quasi-translations by m̂loc ⊆ m̂qt ⊆ m̂.
Then m̂loc is an abelian Lie subalgebra and furthermore, for a single qubit system we
have

î = m̂loc = m̂qt = m̂ . (2.74)

Proof. For a single qubit system the equality î = m̂loc = m̂qt = m̂ follows immediately
from the fact that no Pauli matrices commute and hence there are no quasi-translations.

Now we consider the multi-qubit case. Local quasi-translations on separate qubits
commute. We need to only consider the case of two local quasi-translation on the
same qubit. Then on a fixed qubit k and for all r1, r2 ∈ I0, we get that τ r1,kτ r2,k =
(σ̂p1,kσ̂

+
q1,k

σ̂p2,k)σ̂+
q2,k

. Now if p2 = p1 we get that (σ̂p1,kσ̂
+
q1,k

σ̂p1,k) = 0 by the proof

of Proposition 2.3.1. If p2 = q1 then (σ̂p1,kσ̂
+
q1,k

σ̂q1,k) = 0 since by direct computa-

tion one sees that σ+
q1,k

σ̂q1,k = 0. Finally, if p2 6= p1 and p2 6= q1 then σp1,kσq1,k =

iεp1q1p2σp2,k and the direct computation shows that again (σ̂p1,kσ̂
+
q1,k

σ̂p2,k) = 0 and
hence [τ r1,k, τ r2,k] = 0.

Remark 8. Consider n local quasi-translations τm1,1, τm2,2, . . . , τmn,n each acting on
different qubits. Then

n∏
k=1

τmk,k ∈ î , (2.75)

where î is now the n-qubit LK-ideal. This is a generalized statement of Lemma 1.3.6 that
for n translation operators acting on n separate single qubit systems, taking the tensor
product (n− 1) times we have that τ ⊗ τ ⊗ · · · ⊗ τ is again an infinitesimal translation
but now acting on her(2n). See Lemma B.0.2 in Appendix B for additional details.

With these new parameterisations, we then arrive at two important Corollaries of
Theorem 5. The first will be of fundamental importance in this thesis and is a straight-
forward consequence of the star-product defined above.

Corollary 2.4.1. For any quasi-translation operator iσ̂pσ̂
+
q ∈ m̂qt define

τm := χ(iσ̂qσ̂
+
p ) , where m = p ? q . (2.76)

Then the 4n − 1 dimensional n-qubit LK-ideal is given by

î =
〈
τm |m ∈ In0

〉
. (2.77)

Corollary 2.4.1 is powerful since it provides the direct connection between the quasi-
translation elements iσ̂qσ̂p ∈ m̂qt which are visible in the Lindblad generators of non-
unital noise, and the associated translation operator along the “direction” m. In light
of Remark 8, we can give an alternative representation of the translation elements τm

given by Eqn. (2.76) in terms of local quasi-translations τ r,k ∈ m̂loc as defined by Eqn.
(2.73). In a sense, this is a finer decomposition since m̂loc ⊆ m̂qt.

Recall that m ∈ In0 is expressed as m = (m1,m2, . . . ,mn) where mk ∈ {x, y, z, 1}
such that m 6= (1, 1, . . . , 1).
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Corollary 2.4.2. For a fixed m ∈ In0 we have the equality

τm = χ(
∏
k

τmk,k) , for m = (m1,m2, . . . ,mn) , (2.78)

where k varies over the index numbers of m which have mk 6= 1. Furthermore, for a
fixed m ∈ In0 which has no kth element mk equal to one, Eqn. (2.78) simplifies to

τm =

n∏
k=1

τmk,k , for m = (m1,m2, . . . ,mn) . (2.79)

Proof. The proof is simpler in operator representation and thus is relegated to Appendix
B.

Example 3. Consider the quasi-translation operator for a three-qubit system given by
iσ̂qσ̂

+
p ∈ m̂qt, where p = (1, x, z) and q = (x, x, y). Then p ? q = m = (x, 1,−x) and

therefore

−τx1x = χ(iσ̂qσ̂
+
p ) = −χ(τx,1τx,3) , (2.80)

Furthermore, if instead p = (z, 1, 1), and q = (y, 1, x), then we obtain p ? q = m =
(−x, 1, x) and hence again −τx1x = χ(iσ̂qσ̂

+
p ) = −χ(τx,1τx,3). Thus, there exist mul-

tiple operators in m̂qt which, post-projection, give the same basis element of the LK-ideal

î.

Now we give the number of degenerate choices of the pairs (p,q) ∈ In0 × In0 which
give a single m ∈ In0 .

Lemma 2.4.1. Define the set of pairs of p, q ∈ In0 which under the star-product give
the same m ∈ In0 element as

Sm := {(p, q) ∈ In0 × In0 | p ? q = m 6= q ? p} . (2.81)

Then |Sm| = 4n−1.

Proof. We prove by induction. For n = 1, its clear that |Sm| = 1 for m ∈ I0 since
σpσq = iεpqrσr. Now assume that for general n, (and hence m ∈ In0 ), |Sm| = 4n−1.
Therefore for n′ = n + 1 ( and m′ ∈ In+1

0 ) we want to show that |Sm′ | = 4n. Without
loss of generality we choose m′ ∈ In+1

0 such that σm′ = σm ⊗ 1l where m ∈ In0 . By
assumption, there are 4n−1 pairs (p,q) ∈ In0 × In0 such that σpσq = iσm and clearly
for any σp ∈ {1l, σx, σy, σz} we have that (σp ⊗ σp)(σq ⊗ σp) = iσm ⊗ 1l and hence
|Sm′ | = 4n−1 · 4 = 4n.

Section 3.3 in Chapter 3 applies this degeneracy of associated quasi-translation
terms (for a fixed translation) to fixed point engineering. Namely, we show that for
a fixed translation direction τm, the degeneracy in its conversion to the multiple quasi-
translation operators iσ̂qσ̂

+
p ∈ m̂qt such that m = p ? q results in the fact that the

fixed point sets of different Lindblad generators with V = 1
2 (σp + iσq) are all equivalent.

Thereby showing that although the unital part of Γ differs between different realisations
of V in terms of σp, σq Pauli matrices, the fact that the associated translation direction
is the same implies equality of the fixed point sets. We then expand on this notion by
constructing sets of Lindblad terms which overall result in specific translation directions
to obtain unique target fixed points.



Chapter 3

Purely Dissipative State
Engineering

3.1 Introduction

This chapter will focus on various aspects relating to fixed points of Markovian semig-
roups of quantum channels which are generated purely dissipative Lindblad-Kossakowski
operators. We prove a variety of results which allow us to provide a new connection
which relates the geometric interpretation of a Lindblad-Kossakowski operator and the
corresponding fixed points of the Markovian semigroup it generates. Explicitly, this
geometric interpretation is a result of the ideal structure introduced in Section 2.4 as we
can consider the elements of the abelian ideal of the Lindblad-Kossakowski Lie algebra
(cf. Theorem 5) as translation directions. These operators describe the overall affine
shifts the initial state undergoes as it evolves towards the fixed point state(s) of the
systems dynamics. Using this intuition, we are able to provide several new insights and
results to this very active current field of research.

In Section 3.2 we introduce the general theory of fixed points of these Markovian
semigroups. We first establish important notions and concepts such as invariant sub-
spaces of the underlying Hilbert space, special forms of a generator which is restricted
to such subspaces and necessary and sufficient conditions for when these subspaces sup-
port fixed points (cf. Proposition 3.2.1, Theorem 6 and Corollary 3.2.2). The core
of these results can be found both implicitly and explicitly in the existing literature
[49, 32, 10, 8, 9, 50, 45, 51, 48, 52]. With these insights, we provide a complete classific-
ation of subspaces which support pure state fixed points - so-called “generalised ” dark
state spaces - and are those which are a direct generalisation of the dark state spaces
defined in [32]. We then provide a unique decomposition of the support space of the fixed
point set which shows that fixed points belong to two distinct sets whose supports are
orthogonal to one another - the vector space composed of generalised dark state spaces
and that which supports “intrinsic” higher rank fixed points (cf. Theorem 7). The latter
are a class we are seemingly the first to consider in this manner and are those which
cannot be decomposed into pure states which themselves are fixed points. The Hilbert
space decomposition implied by the fixed point decomposition is of a similar form to
that considered in [9], but here the splitting we use has an immediate consequence in
simplifying the problem of engineering arbitrary pure or mixed state fixed points. That
is, by showing that there are two distinct classes of fixed points - generalised dark state
fixed points and intrinsic higher rank fixed points - each of which have orthogonal sup-

33
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port to one another, we can provide several useful results showing when either of these
classes do or do not exist, and most importantly, when the fixed point is unique (cf.
Corollary 3.2.3, Propositions 3.2.2, 3.2.3, 3.2.4, and 3.2.5).

In Section 3.3 we apply the previous results to purely dissipative systems which
undergo a general class of noise processes - those which have Lindblad terms {Vk} which
are of Canonical Form (cf. Eqn. (3.36)). These are matrices which are generalisations
of the usual atomic raising and lowering operators σ+ and σ−. We prove that the fixed
point sets of noise processes which are described by Lindblad terms of this form are
simple to determine and simplify many of the general results of Section 3.2. In particular,
Theorem 8 provides a necessary and sufficient condition for when any given pure state
fixed point is the systems unique fixed point. We finish this section by providing a
general construction scheme which relates the centraliser of the target pure state fixed
point to a Lindblad-Kossakowski operator which generates a Markovian semigroup of
quantum channels with the target state as its unique fixed point (cf. Algorithm 1).

In Section 3.4 we then apply all the previous results by providing illustrative examples
of how to obtain several states which are useful in quantum information processing.
Namely, we make use of Algorithm 1 and show how one can obtain a plethora of purely
dissipative noise processes which drive the system uniquely to: the n-qubit GHZ state,
W State, Stabiliser/Graph States and the Toric Code Subspace. As an outlook, we
show how to obtain the 4-qubit Symmetric Dicke State and outline how to generalise
the procedure to n-qubits. We compare and contrast our findings to those existing in
the current literature and show that many of the existing techniques are but special
cases of this general construction.

Finally, in Section 3.5 we show that using a slight generalisation of the Lindblad terms
in canonical form presented in Section 3.3 and used in Section 3.4, we are able to engineer
dissipative processes which have a unique mixed state fixed point. These mixed state
fixed points are exactly the “intrinsic” higher rank fixed points, the second and last class
of fixed points categorised in Section 3.2. We then provide several sufficient conditions
for obtaining any diagonal mixed state (with its non-zero eigenvalues non-degenerate)
fixed point as the unique fixed point of the system (see for instance Theorems 9 and 10).
By providing a scheme to obtain entire classes of Lindblad-Kossakowski operators which
have these diagonal states as the systems unique fixed point, we provide a constructive
method to obtain any target state (which has its non-zero eigenvalues non-degenerate)
as a systems unique fixed point (cf. Theorem 11). We conclude the section with several
non-trivial examples and an algorithm which provides the Lindblad term construction
to obtain these diagonal mixed state fixed points as the unique fixed points.

3.2 Fixed Point Sets and Invariant Subspaces

In Section 1.3 we rigorously discussed the basic concepts and notions of a Lindblad-
Kossakowski operator (henceforth referred to as a LK-operator)

L := i adH + Γ with Γ(ρ) = 1
2

m∑
k=1

(
V †k Vkρ+ ρV †k Vk − 2VkρV

†
k

)
, (3.1)

which is the infinitesimal generator of a completely positive semigroup of linear operators
t 7→ Φ(t), t ≥ 0. We called a LK-operator “purely dissipative ” whenever it induced no
Hamiltonian dynamics on the system which geometrically can be described as

〈L, adH〉 = 0 , for all H ∈ su(2n) . (3.2)
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Furthermore Lemma 1.3.1 provided the sufficient condition that Γ given in Eqn. (3.1) is
itself purely dissipative if each of the Lindblad terms are traceless i.e. V1, V2, . . . , Vm ∈
sl(N,C ). Proposition 1.3.1 then strengthened this condition by proving that Γ is purely
dissipative if and only if the vector α := (trV1, trV2, . . . , trVm) is contained in the

kernel of the operator κ, where κ(α) := i
2

∑m
k=1

(
αkV

†
k − αkVk

)
. By Theorem 3, we

can decompose the LK-operator uniquely into a purely dissipative Lindblad term Γ and
“intrinsic ” Hamiltonian term via

L = i adH0 +Γ , where H0 ∈ her0(N). (3.3)

With these preliminaries out of the way we can discuss concepts relating to the fixed point
set of a Markovian semigroup of quantum channels generated by a purely dissipative LK-
operator. Since a purely dissipative LK-operator is equivalent to a purely dissipative
Lindblad generator i.e. L = Γ, we will often say that Γ is a purely dissipative LK-
operator.

We express a Lindblad generator Γ which is associated to multiple Lindblad terms
{Vk} as

Γ =
∑
k

ΓVk , (3.4)

where ΓVk is the Lindblad generator corresponding to a single Lindblad term Vk. Let
ΦΓ(t) = etΓ be the Markovian semigroup of quantum channels generated by Γ and define
its fixed point set to be

F(ΦΓ) := {ρ ∈ pos1(N) | ΦΓ(t)ρ = ρ for all t ≥ 0} = ker(Γ) ∩ pos1(N) . (3.5)

In a slight abuse of language, we will often say that ρ is a fixed point of Γ.
An important concept we will make use of is the support of a density matrix. Let

ρ ∈ her(H) be any Hermitian operator acting on H. Its range is called support and
denoted by supp ρ. Since ρ =

∑
k λkPk can be uniquely written as a linear combination

of orthogonal projections Pk having mutually orthogonal ranges ImPk, one has the
equality supp ρ =

⊕
k ImPk. Furthermore, let S ⊂ H be any subspace of H and let

ρ be a density operator with support in S. Since ρ can be uniquely identified with an
element in her(S), in the following we do not distinguish between her(S) and the set
of all Hermitian operators acting on H but being supported in S. Certainly, the same
applies to pos1(S) and the set of all density operators acting on H but being supported
in S.

We also define a reduced Lindblad generator as Γ
∣∣
S : her(S)→ her(S) which is given

by
Γ
∣∣
S(ρ) := PS ◦ Γ(ρ) ◦ PS , (3.6)

where PS denotes the orthogonal projection onto S. In particular, if S is equal to the
span of the first r standard basis vectors of Cn then there exists basis in which ρ and
{Vk} have block decompositions (by choosing an appropriate unitary transformation) of
the form

Vk :=

[
Ak Bk
Ck Dk

]
and ρ :=

[
ρA 0
0 0

]
, (3.7)

where ρA is an r × r full rank matrix and the reduced Γ
∣∣
S is then given by

Γ
∣∣
S(ρ) =

∑
k

ΓAk(ρA)− 1
2 (C†kCkρA + ρAC

†
kCk) , (3.8)
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where ΓAk is the Lindblad generator with the single Lindblad term Ak.
With these introductory concepts established, we first consider the relationship

between invariant subspaces of the Lindblad generator, the corresponding Markovian
semigroup of quantum channels and the Lindblad terms {Vk} which are associated to
each generator. Let S ⊆ H = C2n be a subspace of the underlying Hilbert space. We say
that S is an invariant subspace of a 2n× 2n matrix A if Av ∈ S for all v ∈ S (and hence
AS ⊆ S). Clearly then, the span of an eigenvector of the matrix A is a one dimensional
invariant subspace and the range of the matrix A is another example of an invariant
subspace of A. We then have the following Proposition.

Proposition 3.2.1. Let Γ be a (purely dissipative) Lindblad-Kossakowski operator with
Lindblad terms {Vk} and let S be a subspace of H. Then the following statements are
equivalent:

1. One has the inclusions

VkS ⊆ S for all k and
∑
k

V †k VkS ⊆ S . (3.9)

2. her(S) is an invariant subspace of Γ.

3. pos1(S) are invariant under ΦΓ(t), t ≥ 0.

Proof. (1) =⇒ (2): For any M ∈ her(S) we have that range(VkM) ⊆ S, range(MV †k ) ⊆
S, range(

∑
k V
†
k VkM) ⊆ S, and range(M

∑
k V
†
k Vk) ⊆ S for all k so clearly her(S) is an

invariant subspace of Γ.

(2) =⇒ (1): If S = H the implication is trivial so therefore we assume that dimS <
dimH. For any matrix M ∈ her(S), there exists a block decomposition as in Eqn.
(3.7) of each Vk and M such that M = diag(MA, 0), where MA has support in S and
is full rank. Now if supp(Γ(M)) ⊆ S, then this imposes the off-diagonal block and

lower diagonal block conditions 1)
∑
kMA(A†kBk + C†kDk)− 2(AkMAC

†
k) = 0 and 2)∑

k CkMAC
†
k = 0. Since MA is a rank r, r× r matrix then

∑
k CkMAC

†
k = 0 if and only

if Ck = 0 for all k which implies VkS ⊆ S for all k. Substituting Ck = 0 for all k into
condition 1), we obtain the condition MA(

∑
k A
†
kBk) = 0 but since MA has full block

rank then
∑
k A
†
kBk = 0. Using the relation∑

k

V †k Vk =

[∑
k A
†
kAk

∑
k A
†
kBk∑

k B
†
kAk

∑
k B
†
kBk +D†kDk

]
,

we see that
∑
k A
†
kBk = 0 if and only if

∑
k V
†
k VkS ⊆ S.

(2) =⇒ (3): Note that the power series of the exponential function is given by
eΓ =

∑∞
k

1
k!Γ

k, for k ∈ N and since her(S) is an invariant subspace of Γ, and hence that
her(S) is invariant under ΦΓ(t) for t ≥ 0. Moreover, since pos1(H) is trivially invariant
under ΦΓ(t) for t ≥ 0 then we have that the intersection pos1(S) = her(S) ∩ pos1(H) is
as well.

(3) =⇒ (2): Since pos1(S) is invariant under ΦΓ(t), t ≥ 0, then so is her(S) =
pos1(S) − pos1(S) and hence we have that etΓ(M) ∈ her(S) for all M ∈ her(S). The
derivative of the flow at time t = 0 must also be invariant and hence d

dt (e
tΓ)
∣∣
t=0

(M) =
Γ(M) ∈ her(S).



3.2. FIXED POINT SETS AND INVARIANT SUBSPACES 37

Due to Proposition 3.2.1, a subspace S ⊆ H is called an invariant subspace of Γ if it
satisfies one and therefore all of the above conditions.

Remark 9. In general, the invariance of S does not imply that S⊥ is an invariant
subspace of Γ. Consider k = 1, V1 := σx + iσy and S := spanC {e1}.

It is a well known fact that as a standard application of Brouwer’s fixed point theorem
(see for example Chap. V, Prop. 22.13 in [4]) we obtain the following.

Corollary 3.2.1. If S ⊂ H is an invariant subspace of Γ then Γ (resp. ΦΓ) has at least
one fixed point in pos1(S).

Using the invariant subspaces considerations presented above, a more detailed ana-
lysis shows that one can obtain necessary and sufficient conditions for the existence of
a rank r fixed point. This can essentially be found implicitly in terms of attractivity of
invariant subspaces in [49] but here we present it in the (new) manner which explicitly
makes use of the invariant subspace inclusions given by Eqn. (3.9) in Proposition 3.2.1.

Theorem 6. Let Γ be a (purely dissipative) Lindblad-Kossakowski operator. A density
operator ρ ∈ pos1(H) is a fixed point of Γ if and only if the following conditions are
satisfied:

1. S := supp ρ is an invariant subspace of Γ.

2. ρ|S is a fixed point of Γ
∣∣
S .

Proof. Again for full rank fixed points the result is obvious. We prove it for existence of
a fixed point ρ ∈ pos1(H) with rank r < d. Block decomposing ρ and each Vk as in Eqn.
(3.7), and noting that ρ is a fixed point if and only if Γ(ρ) = 0, each of the 4-blocks of
Γ(ρ) = 0 must be zero and therefore we obtain the necessary and sufficient conditions
that ∑

k

ΓAk(ρA)− 1
2 (C†kCkρA + ρAC

†
kCk) = 0∑

k

ρA(A†kBk + C†kDk)− 2(AkρAC
†
k) = 0∑

k

CkρAC
†
k = 0 .

The second and third equations are true if and only if VkS ⊆ S for all k and
∑
k V
†
k VkS ⊆

S as shown in the proof of Proposition 3.2.1 which is true if and only if condition 1.
holds. Moreover, the first equation is precisely the reduced Lindblad generator given in
Eqn. (3.8).

When dim(S) = 1, this result gives the purely dissipative analogue of Theorem 1 of [32]
as an immediate Corollary.

Corollary 3.2.2. For a (purely dissipative) Lindblad-Kossakowski operator Γ, a pure
state ρ = |ψ〉〈ψ| is a fixed point if and only if the following conditions are satisfied:
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1. |ψ〉 is a simultaneous right eigenvector of all Vk, i.e.

Vk|ψ〉 = λk|ψ〉 for all k and some λk ∈ C. (3.10)

2. |ψ〉 is a left eigenvector of V∑ :=
∑
k λkVk to the eigenvalue λ∑ :=

∑
k |λk|2, i.e.

〈ψ|V∑ = 〈ψ|λ∑ . (3.11)

Remark 10. The above conditions 1. and 2. are obviously equivalent to 1. and 2’.
which is given by

2’. |ψ〉 is a right eigenvector of
∑
k V
†
k Vk to the eigenvalue λ∑ :=

∑
k |λk|2, i.e.(∑

k

V †k Vk

)
|ψ〉 = λ∑|ψ〉 . (3.12)

Proof. Theorem 6 gives necessary and sufficient conditions for existence of a fixed point
of rank r so here we consider the case where r = 1 and the subspace S = spanC {|ψ〉}.
Condition (1) in Theorem 6 implies that the invariance conditions given by Eqn. (3.9)

take the form of Vk|ψ〉 = λk|ψ〉 for all k and some λk ∈ C and
∑
k V
†
k Vk|ψ〉 =∑

k λkV
†
k |ψ〉 = λ̃|ψ〉 and λ̃ ∈ C. Right multiplying this equation by 〈ψ| we get that∑

k |λk|2 = λ̃. Note that the second condition in Theorem 6 becomes trivial since for a
rank one fixed point, the same block decomposition of ρ used in the proof shows that
ρA = 1 and thus the reduced Lindblad term is trivial.

Let Γ be a (purely dissipative) Lindblad-Kossakowski operator. For Λ := (λ1, . . . , λm) ∈
Cm, we define the set DΛ as follows

DΛ :=
{
|ψ〉 ∈ H

∣∣∣ Vk|ψ〉 = λk|ψ〉 for all k = 1, . . . ,m and 〈ψ|V∑ = 〈ψ|λ∑} , (3.13)

where V∑ and λ∑ are defined as in Corollary 3.2.2. Moreover, we define the complete
dark space as

D :=
⊕

Λ∈Cm
DΛ . (3.14)

Note that for almost all Λ one has DΛ = {0}. But, whenever DΛ 6= {0} it is called
a generalized dark space of Γ. Therefore, every pure state fixed point gives rise to a
generalized dark space. Conversely, if DΛ is a generalized dark space, then any density
operator in pos1(DΛ) is a fixed point of Λ.

The following result provides a special decomposition of any fixed point into two
distinct types of fixed points. Those whose supports are contained within the general-
ised darks state spaces - and therefore can be decomposed into a convex combination of
pure state fixed points - and, “intrinsic” higher rank fixed points which are those whose
supports are orthogonal to the generalised dark state space. This splitting provides an
orthogonal decomposition of the total Hilbert space subspace which supports all the
systems fixed points. The details regarding these types of subspace splittings were thor-
oughly worked out in [8, 9] and discussed relative to fixed point engineering in [45]. In
Theorem 3 of [9] the authors prove that the Hilbert space subspace which consists of
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the supports of all the systems fixed points can be represented as an orthogonal decom-
position where each subspace supports one and only one fixed point. Their Theorem
7 then provides a further explicit decomposition of this support space and they prove
that any arbitrary fixed point of the system can be expressed as a special linear com-
bination of fixed points whose individual supports are related to the special subspace
decomposition.

Here we present an alternate formulation of these two results by using the notions
of generalised dark state spaces and intrinsic higher rank fixed points - thus providing
a different overall decomposition of the total fixed point support space which is more
suited for engineering arbitrary pure and mixed state fixed points.

Theorem 7. Let Γ be a (purely dissipative) Lindblad-Kossakowski operator and let
ρ ∈ pos1(H) be any fixed point of Γ. Moreover, let DΛ1 , . . . ,DΛr be the generalized dark
spaces of Γ. Then the following assertions are fulfilled:

1. DΛ1 , . . . ,DΛr are mutually orthogonal.

2. ρ can be decomposed as a convex combination of the form

ρ = α0ρ0 +

r∑
j=1

αjσj , (3.15)

where ρ0, σ1, . . . , σr ∈ pos1(H) satify the conditions:

(a) For j = 1, . . . , r, the inclusion suppσj ⊆ DΛj holds and hence each σj is a
convex combination of rank-1 fixed points and thus itself a fixed point of Γ.

(b) The operator ρ0 is an intrinsic higher rank fixed point of Γ with supp ρ0 ⊥ D,
i.e. ρ0 cannot be decomposed as a convex combination of a rank-1 fixed point
and another fixed point ρ′0.

The above decomposition then immediately yields the generalisation of Theorem 2 in
[32].

Corollary 3.2.3. Let DΛ be a generalized dark space of Γ. If there exists no subspace
S ⊆ H such that S ⊥ DΛ and VkS ⊆ S for all k, then the only fixed points of Γ are
those with support in DΛ.

Proof. This is a direct consequence of Eqn. (3.15) and Theorem 6.

For the proof of Theorem 7 we need two technical Lemmas.

Lemma 3.2.1. Let ρ be a fixed point and let DΛ be an arbitrary generalized dark space.
Moreover, assume dim

(
supp(ρ) ∩ DΛ

)
= r ≥ 1. Then there exists fixed points σ and ρ′

such that supp(σ) ⊂ DΛ and supp(ρ′) ⊥ DΛ (and hence supp(ρ′) ⊥ supp(σ)) such that
ρ = µσ + (1− µ)ρ′ with 0 ≤ µ ≤ 1.

Proof. Assume w.l.o.g. that ρ has rank r′ and that supp(ρ) ∩ DΛ = spanC {e1, . . . , er}
such that σk := eke

†
k are generalised dark state fixed points. By a change of basis, we

obtain the block decompositions in Eqn. (3.7) of each Vk and ρ, where Ck = 0 for all k.

By assumption, since ek ∈ supp(ρ) and σk = eke
†
k are pure state fixed points such that

Vkek = λkek for all k, we can further decompose each Ak block and ρA as

Ak :=

[
λkIr B′k

0 D′k

]
and ρA :=

[
ρ11 ρ12

ρ†12 ρ22

]
, (3.16)
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and thus we have to show that ρ12 = 0. By Theorem 6, the reduced Γ has ρA as a
full rank fixed point and hence

∑
k ΓAk(ρA) = 0 which implies each of the 4 blocks of∑

k ΓAk(ρA) = 0 must be zero. For the upper-left block, the condition is then given by∑
k

−λkB′kρ
†
12 − λkρ12B

′†
k − 2B′kρ22B

′†
k = 0 . (3.17)

Since |ψ〉 is a pure state fixed point, the conditions in Corollary 3.2.2 imply that
〈ψ|
∑
k λkAk = 〈ψ|

∑
k |λk|2 = (

∑
k |λk|2, 0). Also note that 〈ψ|

∑
k λkAk = (

∑
k |λk|2,

∑
k λkB

′
k)

for |ψ〉 = ei for i = 1, . . . , r, which implies that
∑
k λkB

′
k = 0. Therefore Eqn. (3.17)

reduces to ∑
k

B′kρ22B
′†
k = 0 , (3.18)

and since ρA is full rank then so is ρ22 which implies that B′k = 0 for all k. Using this
fact then the upper right block of

∑
k ΓAk(ρA) = 0 yields

0 =
∑
k

2λkρ12D
′†
k − |λk|

2ρ12 − ρ12D
′†
k D
′
k , (3.19)

right multiplying by ρ†12, and taking the trace gives

0 =
∑
k

2 Re tr
(
λkρ12D

′†
k ρ
†
12

)
− |λk|2‖ρ†12‖2 − ‖D′kρ

†
12‖2 = −

∑
k

‖λkρ†12 −D′kρ
†
12‖2 .(3.20)

Thus one has D′kρ
†
12 = λkρ

†
12 for all k. Now we see that each jth row of the (rect-

angular) matrix ρ12 is a generalised dark state of the same Λ-type as |ψ〉 and therefore
each row must be in spanC{e1, . . . , er}. However, this is only possible when each row
consists of zeros and hence the entire block matrix ρ12 is zero. This finally implies that
the matrix σ := diag(ρ11, 0) is a fixed point with support in DΛ. Furthermore, defining
ρ′ = diag(0, ρ22) we obtain Γ(ρ) = µΓ(σ) + (1− µ)Γ(ρ′) = Γ(ρ′) = 0 for 0 ≤ µ ≤ 1 and
hence ρ′ is again a fixed point such that supp(ρ′) ⊥ DΛ.

This result provides an immediate Corollary which is interesting in its own right.

Corollary 3.2.4. Let σ = |ψ〉〈ψ| be a pure state fixed point such that |ψ〉 ∈ DΛ.
Moreover, let ρ be any other fixed point of Γ such that supp(ρ) ∩ DΛ is spanned by |ψ〉.
Then |ψ〉 is an eigenvector of ρ.

Proof. Without loss of generality, assume that the pure state fixed point is given by σ =
e1e
†
1 and that ρ is rank r with 1 ≤ r ≤ 2n. Then we have that supp(ρ)∩DΛ = spanC {e1}

and hence by Lemma 3.2.1, ρ = e1e
†
1 + ρ′ (w.l.o.g neglecting the scalar coefficients) such

that supp(ρ′) ⊥ spanC {e1}. Therefore ρe1 = λe1 for λ ∈ R since e†1e1 = 1 and ρ′e1 = 0.

Lemma 3.2.2. Let σ = |ψ〉 ∈ DΛ correspond to a pure state fixed point and let ρ be
any other fixed point of Γ. Moreover, let PS and PS⊥ be the orthogonal projectors onto
S := supp(ρ) and S⊥. Then each of the vectors

|ψ1〉 := PS |ψ〉 and |ψ2〉 := PS⊥ |ψ〉 (3.21)

is either zero or gives rise to a generalised dark state in DΛ.
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Proof. As usual, for ρ being rank r with 1 ≤ r ≤ 2n, we can block decompose the
Lindblad terms and ρ as in Eqn. (3.7) and we can decompose |ψ〉 = |ψ1〉 + |ψ2〉,
where |ψ1〉 := PS |ψ〉 = (|ψ′1〉, 0)> and |ψ2〉 := PS⊥ |ψ〉 = (0, |ψ′2〉)>. Furthermore, by

Theorem 6, we know that
∑
k V
†
k VkS ⊆ S for S = supp(ρ) and hence

∑
k A
†
kBk = 0.

Corollary 3.2.2 implies that Vk|ψ〉 = λk|ψ〉 for all k and
∑
k V
†
k Vk|ψ〉 = λ∑|ψ〉, where

λ∑ =
∑
k |λk|2 which gives the conditions

Vk|ψ〉 =

[
Ak|ψ′1〉+Bk|ψ′2〉

Dk|ψ′2〉

]
= λk

[
|ψ′1〉
|ψ′2〉

]
, for all k , (3.22)

and ∑
k

V †k Vk|ψ〉 =

[ ∑
k A
†
kAk|ψ′1〉∑

k(B†kBk +D†kDk)|ψ′2〉

]
= λ∑

[
|ψ′1〉
|ψ′2〉

]
. (3.23)

Eqn. (3.22) implies that Dk|ψ′2〉 = λk|ψ′2〉 for all k and hence Eqn. (3.23) gives the

condition
∑
k(B†kBk + λkD

†
k)|ψ′2〉 = λ∑|ψ′2〉. Multiplying from the left by 〈ψ′2| gives∑

k ‖Bk|ψ′2〉‖2 + λ∑〈ψ′2|ψ′2〉 = λ∑〈ψ′2|ψ′2〉 and hence
∑
k ‖Bk|ψ′2〉‖2 = 0 which implies

Bk|ψ′2〉 = 0 for all k and therefore |ψ1〉 and |ψ2〉 also satisfy the conditions of Corollary
3.2.2.

Proof of Theorem. 7. 1) Without loss of generality, assume that there are only two gen-
eralised dark state spaces, DΛ and DΛ′ where Λ 6= Λ′ and consider the fixed points
σ = |ψ〉〈ψ| and ρ = |ψ′〉〈ψ′| where |ψ〉 ∈ DΛ and |ψ′〉 ∈ DΛ′ . Note that clearly
supp(σ) ⊆ DΛ and S := supp(ρ) ⊆ DΛ′ . By Lemma 3.2.2, we know that |ψ1〉 := PS |ψ〉
is either zero or again corresponds to a pure state fixed point of the same Λ-type. Since
|ψ1〉 ∈ DΛ, then if |ψ1〉 6= 0 this would imply that supp(ρ) 6⊆ DΛ′ which is a contradiction
and therefore |ψ1〉 = 0. Then we have shown that |ψ′〉 ⊥ |ψ〉 and so DΛ′ ⊥ DΛ.

2a) Holds by construction of the generalised dark state spaces.

2b) If DΛ = {0} for all Λ ∈ Cm i.e. if there are no generalised dark spaces of Γ then
clearly every fixed point ρ is an intrinsic higher rank fixed point. Therefore, we can
assume w.l.o.g. that there exists some Λ1 ∈ Cm such that DΛ1

6= {0}. Now, consider
any fixed point ρ of Γ whose support is not contained in DΛ1 . We will first show that ρ
can be decomposed into the two fixed points

ρ = σ1 + ρ′ (3.24)

with supp(σ1) ∈ DΛ1 and supp(σ1) ⊥ supp ρ′. Let S := supp(ρ) and define the subspace
D̃Λ1

:= PS(DΛ1
), where PS is the orthogonal projector onto the support of ρ. Assume

that D̃Λ1
6= {0}. By Lemma 3.2.2, every non-zero element in D̃Λ1

corresponds to a
pure state fixed point of the same Λ1-type and moreover, by Lemma 3.2.1, we have the
splitting ρ = σ1 +ρ′. Since ρ′ is fixed, we can again ask if now supp(ρ′) ⊆ DΛ2

, for some
Λ2 6= Λ1. If it is contained then we know that ρ is decomposed into pure state fixed
points and we are done. Assume that it is not contained. Then using the same argument
as before it follows that ρ = σ1 +σ2 +ρ′′, with supp(ρ′′) ⊆ DΛ2

. Iterating this procedure,
we eventually exhaust all fixed points belonging to the generalised dark state spaces and
are left with an intrinsic higher rank fixed point ρ0 such that supp(ρ0) ⊥ D.

As an application of the ideas presented above, the following result concerns pure state
fixed points of a purely dissipative Lindblad generator which consists of a single Lindblad
term.
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Proposition 3.2.2. Let Γ be a (purely dissipative) Lindblad-Kossakowski operator with
a single V -term. Then the following results on pure state fixed points hold.

1. σ := |ψ〉〈ψ| is the only pure state fixed point (possibly among other mixed state
fixed points) if and only if one of the following conditions is satisfied:

(a) kerV ⊆ spanC {|ψ〉} and spanC {|ψ〉} is the only simultaneous eigenspace of
V and V †.

(b) kerV = spanC {|ψ〉} and there are no simultaneous eigenvectors of V and V †.

Moreover, the “only-if” direction in 1. can be strengthened as follows:

2) If a) is satisfied then a second (mixed state) fixed point ρ with supp ρ = {|ψ〉}⊥ is
given by

ρ :=
(V †⊥V⊥)+

tr{(V †⊥V⊥)+}
(3.25)

with V⊥ := P⊥V P
†
⊥ and P⊥ := 1l− |ψ〉〈ψ|. Here, ( · )+ denotes the Moore-Penrose

inverse.

3) σ is the unique fixed point of Γ if and only if case b) is satisfied and V has no
eigenvector x ∈ spanC {|ψ〉}⊥.

Proof. 1) Since there is only a single Lindblad term V , the necessary and sufficient con-
ditions on the existence of a pure state fixed point given by Eqns. (3.10) and (3.11) in
Corollary 3.2.2, simplify to V |ψ〉 = λ|ψ〉 for λ ∈ C and 〈ψ|λV = 〈ψ||λ|2, respectively.
Clearly then the only time these equalities can be satisfied are with either λ = 0 or |ψ〉
is a simultaneous left and right eigenvector of V .

2) Without loss of generality assume that |ψ〉 = e1 and hence V⊥ = diag(0, D) where

D is a full rank (d−1)× (d− 1) matrix. Then σ := (tr{(V †⊥V⊥)+})−1 · (V †⊥V⊥)+ is given

by the state σ := (tr(D̃))−1 ·diag(0, D̃) where D̃ := (D†D)−1 and its clear that Γ(σ) = 0.

3) If case 1b) is satisfied and there is no eigenvector x ∈ spanC {|ψ〉}⊥ then there
cannot exist an invariant subspace S ⊆ H such that S ⊥ spanC {|ψ〉} such that V S ⊆ S
and hence by Corollary 3.2.3 it is unique. If the fixed point is unique then clearly case
1b) must be satisfied since if case 1a) was satisfied then the fixed point is not unique
by 2). Furthermore, since the fixed point is unique then by Corollary 3.2.3 there cannot
exist such an orthogonal subspace and therefore neither an eigenvector contained in
it.

In light of the decomposition given in Theorem 7, we can now make the crucial class
distinction between the fixed points whose supports are contained in generalised dark
state spaces and those which are intrinsic higher rank fixed points. The set of fixed
points associated to the generalised dark state spaces is given by

FD := {ρ ∈ pos1(N) | Γ(ρ) = 0, such that supp(ρ) ⊆ D} , (3.26)

where D is defined by Eqn. (3.14) and hence this fixed point set consists of all density
matrices that are either pure states or mixed states which are a convex combination of
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pure states which are themselves fixed points. Furthermore, we can define the set of
intrinsic higher rank fixed points as

FD⊥ := {ρ ∈ pos1(N) | Γ(ρ) = 0, such that supp(ρ) ⊆ D⊥} , (3.27)

which consists of density matrices that are mixed states that cannot be decomposed into
a convex combination which contains any pure state which is also a fixed point. Clearly
then have the set inclusions FD ⊆ F(ΦΓ) and FD⊥ ⊆ F(ΦΓ) and hence the entire fixed
point set is given by

F(ΦΓ) = conv {FD ∪ FD⊥} . (3.28)

Therefore, the goal of constructing arbitrary unique pure state fixed points boils down
to finding a Lindblad generator with appropriate Lindblad terms {Vk}rk=1 ∈ sl(N,C )
such that

1) FD⊥ = ∅ and 2) FD = {|ψ〉〈ψ|} , (3.29)

and hence

F(ΦΓ) = FD = {|ψ〉〈ψ|} . (3.30)

In general, it is useful to have conditions which guarantee the necessary condition
1). Once condition 1) is satisfied, adding additional Lindblad terms (while maintaining
condition 1) ) to reduce the fixed point set F(ΦΓ) = FD to a single unique element can
be used to engineer desired fixed point states. Thus, we have the following immediate
but useful result which is a consequence of Theorem 7.

Proposition 3.2.3. FD⊥ = ∅ and hence F(ΦΓ) = FD if there exists no invariant
subspace S of Γ such that S ⊆ D⊥.

Note that the existence of an additional invariant subspace S ⊆ D⊥ of Γ requires that
VkS ⊆ S for all k and

∑
k V
†
k VkS ⊆ S by Proposition 3.2.1. The problem of determining

whether a set of matrices A1, . . . , Am have a common invariant subspace of dimension
r < N is a non-trivial problem. Motivated by the fact that a quantum channel is
irreducible if and only if its Kraus operators do not have a non-trivial common invariant
subspace, Jamiolkowski and Pastuszak have made very recent progress on this problem
[27]. Namely, they provided a necessary and sufficient condition to check whether a
set of matrices have a common eigenvector (a one dimensional invariant subspace) by
providing a subspace which will always be a common invariant subspace (which may be
trivial) for each matrix Ak. They also provide a computable criteria for the existence of
a simultaneous invariant subspace of dimension larger than one in the case the matrices
A1, . . . Am each have pairwise different eigenvalues. For an excellent summary of this
subject we refer the reader to [27] and the references therein. Nonetheless, the general
problem of determining whether a common 1 ≤ r ≤ N dimensional invariant subspace
exists for a set of matrices was solved entirely by Arapura and Peterson using techniques
from algebraic geometry and Gröbner base theory [5]. However, since by Proposition
3.2.3 we are looking for the non-existence of a subspace which is orthogonal to an already
existing invariant subspace D, the application of these results to our scenario remains
an open problem.

To conclude this section we now present two useful results which provide partial
solutions to the invariant subspace problem outlined above. They provide sufficient
conditions guaranteeing no such invariant subspace S ⊥ D exists and hence serve as key
tools allowing us to make use of Proposition 3.2.3 to engineer unique pure state fixed
points.
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Proposition 3.2.4. Let L be a Lindblad-Kossakowki generator with associated (square
matrix) Lindblad terms {Vk}rk=1. The fixed point set is given by

F(ΦΓ) = FD

if there exists no eigenvector |ψ〉 ∈ D⊥ of the matrix
∑r
k Vk.

Proof. It is a standard linear algebra result that for a finite-dimensional matrix A, if
there exists a subspace S ⊆ H such that AS ⊆ S then S must contain an eigenvector
of A. Thus, if there is no eigenvector |ψ〉 ∈ D⊥ of

∑r
k Vk, then there exists no subspace

S ⊆ D⊥ such that
∑r
k VkS ⊆ S and therefore there exists no subspace S ⊆ D⊥ such

that VkS ⊆ S for all k. By Theorem 6, VkS ⊆ S for all k is a necessary condition for
pos1(S) to support a fixed point and therefore by Proposition 3.2.3, F(ΦΓ) = FD.

A main application of these results in this paper will focus on Lindblad-Kossakowski
operators whose Lindblad terms are nilpotent. Since the eigenvalues of each Lindblad
term are zero, Corollary 3.2.2 implies that the pure state fixed points are composed
from vectors which are simultaneous nullvectors of each Lindblad term. Therefore, the
generalised dark state spaces DΛ as defined by Eqn. (3.13) reduce to that of the “usual”
dark state space [32] given by

D0 :=
{
|ψ〉 ∈ H

∣∣∣ Vk|ψ〉 = 0 for all k = 1, . . . ,m
}
, (3.31)

and hence since Λ = (λ1, . . . , λm) = (0, . . . , 0) ∈ Cm we get that the complete dark state
space generically defined by Eqn. (3.14) simplifies to

D = D0 =
⋂
k

ker(Vk) . (3.32)

Proposition 3.2.5. Let Γ be a (purely dissipative) Lindblad-Kossakowski operator with
nilpotent Lindblad terms {Vk}rk=1. Then if r = 1 or if for r ≥ 2, [Vi, Vj ] = 0 for all
1 ≤ i, j ≤ r then the total fixed point set is given by

F(ΦΓ) = FD0 , (3.33)

and hence the only fixed points are those which are convex combinations of pure dark
state fixed points.

Proof. For the r = 1 case, all the eigenvectors of a single Lindblad term are null vectors
and hence the result follows by Proposition 3.2.4. For the r ≥ 2 case, recall that
Proposition 3.2.3 states that F(ΦΓ) = FD0 if there exists no subspace S ⊆ D⊥0 which
satisfies the conditions of Theorem 6. Assume by contradiction there does exist such a
subspace and hence VkS ⊆ S for all k. Note that since D0 = ∩k ker(Vk), then if for some
x ∈ D⊥0 , Vkx = 0 for all k this would imply x ∈ D0 which would be a contradiction. We
will show this will always eventually occur.

Clearly, there must exist a vector x ∈ D⊥0 such that Vkx ∈ S and Vkx /∈ D0 for all k.
If at this stage, Vkx = 0 for all k then we obtain our contradiction. Assume there are
non-zero elements of this form and define the subspace S1 ⊆ S as

S1 := 〈x, Vkx | ∀ Vk s.t Vkx 6= 0〉 . (3.34)

By assumption VkS1 ⊆ S for all k and hence iterating this process by either obtaining
a contradiction and if not, adding the non-zero elements into the successive subsets of
S we eventually obtain the element s0 ∈ S given by

s0 := V n1−1
1 V n2−1

2 . . . V nr−1
r x 6= 0 , (3.35)
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where {nk}rk=1 are the degrees of nilpotency of each Lindblad term Vk. Then Vks0 = 0
for all k which gives the final possible contradiction.

3.3 Engineering Pure State Fixed Points

3.3.1 Motivation and Lindblad Terms of Canonical Form

This subsection will present a collection of results on the structure of fixed point sets
which arise from choosing the Lindblad terms of a Lindblad generator to be of a special
form. As we will see, they greatly simplify the discussion of the previous subsections
on the theory of engineering fixed points. Specifically, we will use these special forms
of Lindblad terms to show one can completely characterise the fixed point set. Later,
in Section 3.4 we will use these results by providing explicit examples showing how to
obtain several well known pure states as unique fixed points.

Let p,q ∈ In be three n-tuples of indices which define the Kronecker product of
Pauli matrices σp, σq, σm ∈ Bn0 as defined in Eqns. (2.29) and (2.30). Then define a
Lindblad term to be of Non-Unital Canonical Form when it is given by

V =
√
γ

2 (σp + iσq) , such that [σp, σq] 6= 0 , (3.36)

for γ ∈ R+. We can now immediately provide a useful Lemma which shows Lindblad
terms of this form admit a special kind of decomposition which we will later generalise
for mixed state fixed point engineering.

Lemma 3.3.1. Let V be in canonical form. Then it can be decomposed as

V =
√
γσpP , where P = 1

2 (1l− σm) , (3.37)

is an orthogonal projection and m = p ? q for the star-product defined by Eqns. (2.68)
and (2.69).

Proof. Note first that V =
√
γ

2 (σp + iσq) =
√
γ

2 σp(1l + iσpσq) =
√
γ

2 σp(1l − σm) where
m = p ? q since σpσq = iσm. Clearly P is Hermitian, and furthermore, since σ2

m = 1l
we see that P 2 = 1

4 (21l− 2σm) = P .

These types of matrices are the natural generalisation of atomic raising and lowering
operators given by σ± := 1

2 (σx± iσy) and are known to describe a non-unital dissipative
process. For the remaining of the thesis we will suppress the terminology “non-unital”
and simply call them canonical Lindblad terms. Moreover, by Lemma 2.3.2, [σp, σq] 6= 0
if and only if {σp, σq}+ = 0 and thus by Lemma 1.3.3 the corresponding Lindblad
generator is given by

ΓV = γ
2

(
σ̂2
p + σ̂2

q

)
+ iγσ̂pσ̂

+
q ∈ gl(4n,C ) , (3.38)

whose coefficient follows from the fact that Γσp = 2σ̂2
p due to the scaling of σ̂p (see Eqn.

(2.31) and the subsequent plus commutator). Thus, Eqn. (3.38) is the generalisation of
the single qubit Lindblad generator given by Eqn (2.13) whose Lindblad terms were said
to have been in single qubit standard form - which is non-other than the canonical form
restricted to a single qubit. This decomposition of the Lindblad generator allows one
to directly see the connection to the representation theory of the Lindblad-Kossakowski
Lie algebra provided in Chapter 2 - and in particular the quasi-translation operators
iσ̂pσ̂

+
q ∈ m̂qt (cf. Proposition 2.3.1). We now present a Lemma which will be of utmost
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importance in simplifying pure state fixed point engineering. Recall that a square matrix
V which is nilpotent is one which satisfies V a = 0 for some minimal positive integer a.
We call this smallest number a the degree of nilpotency of V .

Lemma 3.3.2. Let V be in canonical form. Then V is nilpotent of degree 2.

Proof. First note that σ2
p = σ2

q = 1l and by the definition of a Lindblad term of canonical

form we know {σp, σq}+ = 0 since [σp, σq] 6= 0 by Lemma 2.3.2. Then V 2 = (
√
γ

2 (σp +
iσq))2 = γ

4 (σ2
p − σ2

q + 2i{σp, σq}+) = 0.

Since every Lindblad term which is in canonical form is nilpotent (and therefore
every eigenvalue is zero), Corollary 3.2.2 implies that a pure state ρ = |ψ〉〈ψ| is a fixed
point of Γ =

∑
k ΓVk if and only if Vk|ψ〉 = 0 for all k. Therefore, the fixed point set of

the associated Markovian semigroup is given by

F(ΦΓ) = conv {FD0
∪ FD⊥0 } , (3.39)

where by Theorem 7, FD0 is the fixed point set containing the pure state fixed points and
their convex combinations (cf. Eqn. (3.26)) whereas FD⊥0 is the set of mixed state fixed
points which are not associated to the eigenvalue zero and hence are intrinsic higher
rank fixed points (cf. Eqn. (3.27)).

Clearly, by analysing the fixed point set of a Lindblad generator which has a single
Lindblad term (in canonical form), later, we can consider the more general problem of
when a Lindblad generator has multiple Lindblad terms (in canonical form). Essentially,
this “piecewise” understanding of a Lindblad generator allows us to selectively add
additional Lindblad terms to a pre existing set that ultimately narrow down the fixed
point set until it yields the correct target fixed point state. We will now show that we
can obtain a complete classification of the fixed point set F(ΦΓ) when the Lindblad
generator has a single Lindblad term and is of canonical form.

Recall the star-product p?q = m as defined by Eqns. (2.68) and (2.69). Furthermore,
Remark 6 provided a notion of positivity/negativity of the product p?q since for example
we can have cases where m = (−x, 1, x) ∈ I30. That is, p ? q > 0 whenever there are
an even number of negative index terms of m, and p ? q < 0 whenever there is an odd
number of negative index terms of m. In this example, σm is not a Pauli matrix since
not every index element is positive and thus we cannot discuss its matrix properties. To
get around this small technicality, consider the following.

For r ∈ {x, y, z} we defined σ−r := −σr and thus for a generic m ∈ In0 we can
define a “factored” version of m in the sense that σm = −σm′ where m′ now has all the
same index letters (i.e. x, y, z, 1) as m except now they all come as positive entries, i.e.
m′ ∈ In0 . That is,

σm =

{
σm′ if p ? q > 0

−σm′ if p ? q < 0 .
(3.40)

Since m′ ∈ In0 then σm′ ∈ Bn0 is indeed a valid Pauli matrix. With this concept in mind,
we now have the following result.

Lemma 3.3.3. For V in canonical form we have

ker(V ) =

{
E1(σm′) if p ? q > 0

E−1(σm′) if p ? q < 0 ,
(3.41)

where E1(σm) and E−1(σm) are the +1 and −1 eigenspaces of σm′ , respectively.
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Proof. By Lemma 3.3.1 we know that a Lindblad term in canonical form (and recall the
additional condition that [σp, σq] 6= 0) can be decomposed as

V =

{√
γ

2 σp(1l− σm′) if [σp, σq] = 2iσm′√
γ

2 σp(1l + σm′) if [σp, σq] = −2iσm′ ,
(3.42)

and therefore ker(V ) = ker(1l± σm′) and the result follows.

Recall from the introduction of Section 2.2 that we defined the index set I0 =
{x, y, z}. For any m ∈ I0, let |0〉m and |1〉m be the +1-eigenvector and −1-eigenvector,
respectively, of σm. Moreover, we denote |0〉 := (1, 0)> = |0〉z, |1〉 := (0, 1)> = |1〉z and
set |0〉1 := |0〉 and |1〉1 := |1〉. Now, for a fixed m′ ∈ In0 , define a generic vector of the
form

|φm′〉 := |φ(1)〉m1
⊗ |φ(2)〉m2

⊗ · · · ⊗ |φ(n)〉mn ∈ (C2)⊗n , (3.43)

where φ(k) ∈ {0, 1} for all k. Since every σm′ has 2n−1 plus one and minus one eigen-
values, a simple counting argument shows that the eigenspaces of σm′ are given by

E1(σm′) = spanC { |φm′〉 |
n∑
k

φ(k) is even } and (3.44)

E−1(σm′) = spanC { |φm′〉 |
n∑
k

φ(k) is odd } , (3.45)

where
∑n
k φ(k) = 0 is considered even. This observation along with Lemma 3.3.3 gives

a complete account of the set of fixed points of the Markovian semigroup generated by
the associated Lindblad generator. The discussion can be summarised by the following
Proposition.

Proposition 3.3.1. Let Γ be a (purely dissipative) Lindblad Kossakowski operator with
a single Lindblad term V which is of canonical form. Then the fixed point set is given
by

F(ΦΓ) = {ρ ∈ pos1(N) | supp(ρ) ⊆ ker(V )} , where (3.46)

ker(V ) =

{
spanC { |φm′〉 |

∑n
k φ(k) is even } if p ? q > 0

spanC { |φm′〉 |
∑n
k φ(k) is odd } if p ? q < 0 ,

(3.47)

and where
∑n
k φ(k) = 0 is considered even.

Proof. As noted in the preceding paragraphs, since V is nilpotent then F(ΦΓ) = conv {FD0
∪

FD⊥0 }. Moreoever, by Proposition 3.2.5, we in fact have F(ΦΓ) = FD0
= {ρ ∈

pos1(N) | supp(ρ) ⊆ ker(V ) = D0}. Lemma 3.3.3 combined with the observation in
Eqn. (3.44) provides the kernel of the Lindblad term V .

Remark 11. It’s important to note that dim(ker(V )) = 2n−1 and therefore the fixed
point set F(ΦΓ) above is not a unique fixed point.

For a complete analysis of how these fixed points relate to the decomposition of the
Lindblad generator into its unital and non-unital components we refer the reader to
Appendix C. We also show there that specific (possibly mixed) fixed points related to
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a Lindblad generators associated translational component are always contained in the
fixed point set (See Proposition C.0.2).

Recall that Lemma 2.4.1 introduced the set of pairs of element p,q ∈ In0 which under
the star-product give the same (fixed) m ∈ In0 element as

Sm := {(p,q) ∈ In0 × In0 | p ? q = m 6= q ? p} . (3.48)

and stated that there are 4n−1 such pairs. Note that the inequality on the right hand
side implies that [σp, σq] 6= 0. Since the fixed point set of a Markovian semigroup of
quantum channels generated by a Lindblad generator of canonical form depends solely
on m by Proposition 3.3.1, we immediately obtain the following result.

Proposition 3.3.2. Let V1, V2, . . . , V4n−1 be Lindblad terms of canonical form such that
pk ? pk = m for a fixed m ∈ In0 for all k. Then the fixed point sets of the Markovian
semigroup of quantum channels generated by each ΓVk are equal, i.e.

F(ΦΓV1
) = F(ΦΓV2

) = · · · = F(ΦΓV
4n−1

) . (3.49)

Thus, we have shown the relationship between the kernel of a Lindblad term in
canonical form and the fixed point set depends only on the associated m index. One
can also interpret this as a dependence on the associated translation direction, i.e. the
associated ideal element τm ∈ î, in the following way.

A Lindblad generator whose (single) Lindblad term is of canonical form is given by
Eqn. (3.38). Now, recall that in Section 2.3.2, we proved that each quasi-translation
operator iσ̂pσ̂

+
q ∈ m̂qt (cf. Proposition 2.3.1) is associated to an ideal element in the

sense that χ(iσ̂pσ̂
+
q ) = χ(τm) ∈ î, where χ is a projection operator (cf. Proposition

2.3.3 and Corollary 2.4.1). This observation, combined with Proposition 3.3.2, provide
the following conclusion.

Proposition 3.3.3. For a fixed translation element τm ∈ î, there are 4n−1 different
Lindblad generators ΓVk ∈ wLK , each of which have the same fixed point set, and are

associated to τm ∈ î.

As a final result, we consider the case when we have multiple Lindblad terms, each
of which are in canonical form. Since the fixed point set is dependent on the existence
of simultaneous invariant subspaces of each Lindblad term i.e. VkS ⊆ S for all k and
S ⊆ H (cf. Proposition 3.2.1 ), and not just the kernel of the single Lindblad term
anymore, in general we have that

F(ΦΓ) = conv {FD0 ∪ FD⊥0 } , where D0 = ∩k ker(Vk) . (3.50)

However, we do know the exact structure of the kernels of each individual Lindblad term
Vk and therefore we obtain the following.

Theorem 8. Let Γ be a (purely dissipative) Lindblad-Kossakowski operator with Lind-
blad terms {Vk}rk=1 in canonical form for some r ∈ N. Then ρ = |ψ〉〈ψ| is the unique
fixed point if and only if |ψ〉 ∈ H is the only vector which satisfies

σm′k |ψ〉 = ±|ψ〉 , ∀ σm′k , (3.51)

where m′k has only positive index elements of mk = pk ? qk and there exists no subspace
S ⊥ spanC {|ψ〉} with dim(S) ≥ 2 such that VkS ⊆ S for all k.
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Proof. The “ if ” direction. If ρ is the unique fixed point then spanC {|ψ〉} =: S is the
only (non-trivial) invariant subspace of Γ and hence D0 = S. Trivially, this also implies
that there exists no other invariant subspace S ′ ⊥ C|ψ〉 which has dimension greater
than or equal to two since D⊥0 = (spanC {|ψ〉})⊥ supports intrinsic higher rank fixed
points by Theorem 7. Now, since D0 = spanC {|ψ〉}, then by Proposition 3.3.1 this
implies that Vk|ψ〉 = 0 and therefore σm′k |ψ〉 = ±|ψ〉 for all k by Proposition 3.3.1.

The “ only if ” direction. Since D0 = ∩k ker(Vk) and |ψ〉 ∈ H is the only simultaneous
eigenvector of each σm′k , then by the structure of the kernel of each Lindblad term given
in Proposition 3.3.1 this implies that in factD0 = ∩k ker(Vk) = spanC {|ψ〉} and therefore
ρ = |ψ〉〈ψ| is the only pure state fixed point. By Theorem 7, every other fixed point
must have support S ⊆ D⊥0 = spanC {|ψ〉}. If there exists no subspace S ⊆ D⊥0 such
that VkS ⊆ S for all k, then by Proposition 3.2.1, her(S) is not an invariant subspace of
Γ and therefore all the fixed points have support in D0 and therefore the fixed point is
unique.

3.3.2 Summary and Pure State Symmetry Considerations

We remark that Theorem 8 implies that we have to prove the non-existence of an invari-
ant subspace contained in D⊥0 = (spanC {|ψ〉})⊥ in order for ρ = |ψ〉〈ψ| to be the unique
fixed point. Propositions 3.2.4 and 3.2.5 in Section 3.2, provide two useful conditions
which guarantee this holds. We use these three key results in Section 3.4 where we
provide a plethora of useful examples in which we engineer many well-known quantum
states useful in quantum information processing as unique fixed points. The following
illustrative example demonstrates the relationship between invariant subspaces, choices
of canonical Lindblad terms, and the uniqueness of a pure state fixed point. It should
be considered as a toy-model since as we will later show in Section 3.4 there is a much
easier and intuitive solution.

Example 4. Let Γ := ΓV1
+ ΓV2

be the Lindblad-Kossakowski operator with Lindblad
terms V1 and V2 such that the corresponding translation directions (upon projecting the
unital component of the dynamics out cf. Proposition 2.3.3) are given by χ(ΓV1

) =
χ(τ z1l) and χ(ΓV2) = χ(τ zz), respectively. By Proposition 3.3.3 we can realise the
operators V1 and V2 each in four different ways, and thus for example V1 := σx1 + iσy1

and V2 := σx1 + iσyz, without loss of generality by setting the normalisation factors to
one. Note that [V1, V2] 6= 0 and hence we cannot apply Proposition 3.2.5 to show that
FD⊥0 = ∅ (and hence to show there are no intrinsic higher rank fixed points).

Since σm1 = σz1 and σm2 = σzz, have |00〉 as their only simultaneous eigenvector
(even to the same eigenvalue of one), then D0 = ∩ ker(Vk) = spanC {|00〉} and hence
the first necessary condition of Theorem 8 is satisfied. Furthermore it can be verified
that V1 + V2 has two eigenvectors perpendicular to |00〉 given by v1 := |01〉 + |11〉 and
v2 := −|01〉+ |11〉, thus we cannot use Proposition 3.2.4 to show that FD⊥0 = ∅. In fact,

S := spanC {v1, v2} = spanC {|01〉, |11〉} is an invariant subspace in D⊥0 and therefore
by Theorem 8 the target fixed point is non-unique since there exists an intrinsic higher
rank fixed point (given by ρ = 1

2 (|01〉〈01|+ |11〉〈11|)).

In order to make the pure state the unique fixed point, we can use an alternative
realisation of the Lindblad terms. That is, keeping V1 the same but instead choosing
V ′2 := σ1x+iσzy, clearly the first necessary condition of Theorem 8 is satisfied and hence
D0 = ∩ ker(Vk) = spanC {|00〉}. Furthermore, the only non-trivial eigenvector of V1 +V ′2
is |00〉 and therefore by Proposition 3.2.4 there exists no invariant subspace S ⊆ D⊥0 and
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hence by Theorem 8, the fixed point is unique i.e.

F(ΦΓ) = FD0
= {|00〉〈00|} .

As a final culminating result, we now outline a systematic method in which one
can engineer the purely dissipative dynamics to drive the system to the target pure
state fixed point. In many scenarios, this general method produces elegant solutions
which reproduce and generalise the current state-of-the-art known solutions. Moreover,
it connects the entirety of Chapter 2 and Sections 3.2-3.3 by considering the symmetries
of the target pure state fixed point and their relations to translation directions, invariant
subspaces and in many cases, Lindblad terms of canonical form.

Let ρ = |ψ〉〈ψ| be a target pure state fixed point. Moreover, the centraliser of ρ (with
respect to the su(2n) Lie algebra) is given by

sρ := {s ∈ su(2n) |[s, ρ] = 0} , (3.52)

and is a Lie subalgebra of su(2n). Note that if [s, ρ] = 0 then |ψ〉 is an eigenvector of
s ∈ su(2n), i.e. s|ψ〉 = λ|ψ〉 for λ ∈ C. We now want to compute non-normal Lindblad
terms from this centraliser and thus obtain a non-unital noise operation.

For λ 6= 0, define a shifted centraliser element PS as

PS := |λ|1l± is , such that PS |ψ〉 = 0 , (3.53)

which will always exist since the eigenvalue λ to |ψ〉 has the form λ = iλ̃ where λ̃ ∈ R.
Clearly it’s still true that [PS , ρ] = 0, except now PS /∈ su(2n). By including the extra
complex factor within PS this implies that in fact PS is Hermitian. We can now define
a Lindblad term which is centraliser generated as one which has strength coefficient
γ ∈ R+ and is of the form

V :=
√
γσpP

S =
√
γσp(|λ|1l± is) , where s ∈ sρ such that [σp, s] 6= 0 , and tr(σps) = 0 .(3.54)

A few remarks are in order. First note that the condition [σp, s] 6= 0 guarantees that
V 6= V † since V † =

√
γ(|λ|σp ± isσp) which follows from the fact that s ∈ sρ is skew-

Hermitian. If V = V † then the Lindblad term would describe a unital noise process -
which we want to avoid. Furthermore, the last condition that tr(σps) = 0 imposes that
V is traceless and hence describes a purely dissipative process. Finally, its clear that
Lindblad terms constructed in this fashion satisfy V |ψ〉 = 0. Therefore, constructing a
set of Lindblad terms this way guarantees that |ψ〉 ∈ D0, the dark space of Γ, and thus
ρ = |ψ〉〈ψ| is indeed a fixed point.

As we will see soon, Lindblad terms of canonical form (and hence are nilpotent) are
indeed a special type of these centraliser generated Lindblad terms. However, in general,
it is easy to provide examples where general Lindblad terms constructed in this fashion
are not nilpotent, let alone nilpotent of degree two.

Remark 12. A general s ∈ sρ is given by s := i
∑
i riσmi with ri ∈ R. The index mi of

each element in the sum does not always equal every induced translation direction i.e.
if s = i(σz1 + σ1z) then one cannot immediately deduce that the projection of the total
Lindblad generator Γ onto the ideal of translation directions yields only the translations
τ z1 and τ 1z. That is, there may be induced translation directions τm whose m index
does not equal one of those of the elements of the sum s = i

∑
i riσmi .

For example, let ρ = |ψ〉〈ψ| be a target pure state fixed point and suppose there is a
centraliser element given by s = i(σz1 + σ1z) such that s|ψ〉 = −i|ψ〉 and hence λ = −i.
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Then |λ| = 1, and therefore PS |ψ〉 = 0 where PS = 1l − is is the shifted centraliser
element. By choosing σp = σx1 and without loss of generality set the overall strength
coefficient of the noise γ = 1, we get a Lindblad term of the form

V = σpP
S = σp(1l− is) = σx1(1l− i(iσz1 + iσ1z)) = σx1 − iσy1 + σxz = (σx1 + σxz)− iσy1 .(3.55)

Decomposing as V = C + iD with C := σx1 + σxz and D := −σy1, the associated quasi-
translation operator adC ◦ ad+

D − adD ◦ ad+
C (as expressed in the decomposition of Γ in

Eqn. (1.38)) can be constructed, from which, one can identify the translation elements
associated to each quasi-translation operator within the summation. That is, the first
term gives

adC ◦ ad+
D = adσx1+σxz ◦ ad+

−σy1 = − adσx1 ◦ ad+
σy1 − adσxz ◦ ad+

σy1 , (3.56)

whereas the second term gives adD ◦ ad+
C = − adσy1 ◦ ad+

σx1 − adσy1 ◦ ad+
σxz . On each

piecewise element of the total quasi-translation term we can perform a star-product cal-
culation to determine the induced translation direction. For example, setting p1 := (x, 1)
and q1 := (y, 1) to correspond to the indices from the first term we get that p1 ? q1 =
(x, 1)?(y, 1) = (z, 1) =: m1. Continuing in this fashion, we see that the translation direc-
tions induced by the total quasi-translation term are τ z1 and τ zz (each with a pre-factor
of −2).

However, this non one-to-one correspondence between centraliser elements and trans-
lation directions is not always the case. It turns out for several useful states in quantum
information processing we are able to simplify the discussion greatly and are able to
immediately identify the associated translation directions. Consider the following.

Suppose there are “bare” generators of the algebra su(2n) contained in the centraliser
of a target pure state fixed point in the sense that iσm ∈ sρ. Since this implies iσm|ψ〉 =
±i|ψ〉, then λ = ±i and we obtain PS = (1l ± σm) such that PS |ψ〉 = 0. Assume that
for example PS = (1l + σm), then the Lindblad term is given by

V =
√
γσpP

S =
√
γσp(1l + σm) =

{√
γ(σp + iσq′) if p ?m > 0
√
γ(σp − iσq′) if p ?m < 0 ,

(3.57)

where q′ ∈ In0 is the positive version of q = p ?m and hence V is a Lindblad term of
canonical form (mod the normalising coefficient) as introduced in Section 3.3. As we
will see in the next section, in many cases one can select such a “bare” element of the
centraliser which is often even an element of a maximally abelian subalgebra which we
denote aρ ⊆ sρ.

In conclusion, one can distill an algorithm from the above considerations which
provides sets of Lindblad terms that drive the system to a unique target pure state
fixed point. The procedure is given by Algorithm 1.
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Algorithm 1: Unique Target Pure State Fixed Point
Via State Symmetries

Input: Target state ρ = |ψ〉〈ψ|
Output: Set(s) of Lindblad terms

1. Calculate the centraliser sρ
2. Determine maximally abelian subalgebra aρ ⊆ sρ
If possible,

2a. Identify translation directions τmk
from iσmk

∈ aρ
2b. Construct Vk := σpk(1l± σmk

) such that Vk|ψ〉 = 0
2c. Ensure ρ is unique fixed point via Theorem 8
2d. If ρ not unique, chose another of the 4n−1 choices of σpk

such that [σpk , σmk
] 6= 0

2e. Repeat 2b-2d
Else,
3. Determine eigenvalue λk 6= 0 via sk|ψ〉 = λk|ψ〉 for sk ∈ sρ
4. Construct Vk := σpk(|λk|1l± isk) such that Vk|ψ〉 = 0

4a. Ensure D0 = ∩k ker(Vk) = spanC {|ψ〉}
4b. Ensure ρ is unique fixed point via Proposition 3.2.3
4c. If ρ not unique, go to 3. and choose new sk ∈ sρ

5. Return Lindblad term solution set(s) {Vk}

3.4 Applications

This section will focus on applying the general theory of pure state fixed point existence
and uniqueness discussed in Section 3.2, and in particular, make use of of the results in
Section 3.3 where we presented the the problem in detail. The goal here is to provide the
reader with a summary of the previous results which culminate in a simple overarching
procedure to determine sets of Lindblad terms {Vk} which drive a purely dissipative
system into a given desired target fixed-point state ρ = ρ∞. The full algorithm is given
by Algorithm 1 in Section 3.3.2, however here we present it again in its most basic
form. We recall that it is just based on the symmetries of ρ (i.e. its centraliser) and
on exploiting the structure of canonical Lindblad terms ensuring uniqueness of the fixed
point. In the canonical case, its basic steps are the following:

(0) fix target state ρ

(1) characterize ρ by its symmetries given by the centraliser of ρ in su(N),

sρ := {s ∈ su(N) | [s, ρ] = 0 }

(2) choose a convenient maximally abelian subalgebra aρ ⊂ sρ

(3) pick an appropriate set of translations {τ (k)
m } according to the {am} ⊆ aρ

(4) convert selected translations {τ (k)
m } into a set of canonical Lindblad terms

{Vk := σ(k)
p (1l± σ(k)

m ) = (σ(k)
p + iσ(k)

q )} ,
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(5) ensure uniqueness of fixed point ρ∞ by satisfying Theorem 8 or Proposition 3.2.3:
Typically n nilpotent terms Vk with [Vk, Vk′ ] = 0 are needed (see Propositions 3.2.4
and 3.2.5).

In fact, Section 3.5 will later provide the details outlining how this algorithm can
be generalised to also encompass the mixed state scenario. This shows that, most
remarkably, this scheme provides a unified frame for both pure-state and mixed-state
fixed-point engineering at the same time encompassing the stabilizer formalism for graph
states and topological states. Clearly, the centraliser sρ of the target state generates
the corresponding stabilizer group Sρ := exp sρ. Therefore, to every set of Lindblad
terms V = {Vk} driving a purely dissipative system into the (unique) target state ρ,
one immediately finds (infinitely many) equivalent sets of Lindblad terms (driving the
system also into ρ) by coordinate transformation under the stabilizer group in the sense
V ′ = SVS† with S ∈ Sρ. This paves the way to a systematic way of simplifying Lindblad
terms.

We start the examples with a method to engineer dissipation which drives the system
to the ground state of an n-qubit system uniquely. Though well known, the connection
to translation directions will give a new intuition for later examples.

3.4.1 n-Qubit Ground State

Trivially, a purely dissipative n-qubit system with n local amplitude damping Lindblad
terms {Vk}nk=1 = {σ+

k } drives into the ground state ρ0 := diag (1, 0, . . . , 0). Here we use

the shorthand notions σ+
k := 1

2 (σ
(k)
x + iσ

(k)
y ) with σ

(k)
x := 1l

⊗(k−1)
2 ⊗σx⊗1l

⊗(n−k)
2 so that

σx appears at the kth place. — A geometric way to see this will be useful in the sequel.

The centralizer to the ground state ρ0 in su(N) can be viewed as an embedding of
u(N − 1) in su(N) of the form

sρ0 = {(a⊕M) ∈ su(N) |M ∈ u(N − 1) and a = − trM} , (3.58)

consisting of (2n − 1)2 basis elements and where a convenient choice for a basis to the
maximal abelian subalgebra (torus) is given by all the n-fold products of 1l2 and σz
except 1l⊗n2

aρ0 = spanR {iσm ∈ su(N) |mk ∈ {z, 1}} , (3.59)

which is generated from 2n − 1 basis elements in total.
We note that the state vector |ψ〉 = |00 . . . 0〉 is contained in each of the +1 eigen-

spaces of each basis element of the maximally abelian subalgebra aρ0 in Eqn. (3.59).
By the procedure outlined following Remark 12 in Section 3.3.2, steps (3) and (4) of the

above algorithm yield the known n Lindblad terms of the form Vk := 1
2 (σ

(k)
x (1l−σ(k)

z )) =

σ+
k such that Vk|ψ〉 = 0 for all k. The geometric interpretation is now obvious. Each

Lindblad term induces a local z-translation towards the north pole of that states Bloch
sphere - the |0〉 state. Remarkably, each of these translation directions are one-to-one
with the parametrisation of the abelian subalgebra basis aρ0 . The connection between
the individual translation directions, the abelian subalgebra element and each amplitude
damping term is

Vk := 1
2 (σ(k)

x (1l− σ(k)
z )) = σ+

k −→ τ (k)
z . (3.60)

Recall that in Section 3.3 we introduced the concept of Lindblad terms in canonical

form, which were those of the form Vk =
√
γ

2 (σp + iσq), where [σp, σq] 6= 0 and γ ∈ R+
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is the damping coefficient. Since the Lindblad terms obtained here are precisely of
this form, we can readily apply the fixed point theory provided in the same section
to ensure the fixed point is unique and hence satisfy step (5) of the algorithm above.
Precisely, since every Lindblad term is nilpotent and commutes with every other, then
by Proposition 3.2.5 we see that ρ0 is the only pure state fixed point. Moreover, it is
unique (i.e. there are no mixed state fixed points) by Theorem 8.

Algorithm 2: Determining the Centraliser of a Target Fixed Point

Input: Target state ρ = |ψ〉〈ψ| and {σm} ∈ Bn0 basis of su(2n)

Output: Centraliser sρ of ρ

1. Compute âdρ relative to su(2n) basis by
1a. Computing matrix element Mij := tr([ρ, σmi

], σmj
), for σmi

, σmj
∈ Bn0

1b. Constructing the matrix M ≡ âdρ
2. Determine ker(M) with (2n − 1)2 basis elements {nk}
3. Determine basis elements sk :=

∑2n−1
j=1 nk[j] · σmj

4. Return centraliser basis elements {sk | k = 1, . . . , (n2 − 1)2}

3.4.2 GHZ States

For a purely dissipative n-qubit system, we wish to determine sets of Lindblad terms
driving any initial state uniquely to the n-qubit GHZ state ρ := |ψ〉〈ψ| with |ψ〉 :=
1√
2
(|00 . . . 0〉 + |11 . . . 1〉). Following the algorithm presented above, step (1) and (2)

requires we determine the centraliser and its maximally abelian sub algebra denoted
by sGHZ and aGHZ ⊂ sGHZ, respectively. By unitary similarity to the ground state
centraliser, clearly the two structures will again have dimensions (2n− 1)2 and (2n− 1),
respectively. Furthermore, although an analytic representation of the n-qubit centraliser
is difficult to obtain, one can easily compute its basis by Algorithm 2.

We can however provide a closed form expression for the associated maximally abelian
subalgebra as

aGHZ = spanR {iσxx...x, iσm, iσn ∈ su(N) | mk ∈ {z, 1} , nk ∈ {x, y} ,
with even # of both mk = z and nk = y terms} ,

(3.61)

where we note that there are n choose k for all even k ≤ n terms of the form σm as well
as σn and thus including the σxx...x term there are a total of (2n − 1) basis elements as
expected.
By step (3) of the algorithm, we now want to identify basis elements of the abelian
subalgebra which act locally on a joint system of qubits. However, by choosing all the
elements which depend on z and unities one would see that the fixed point fails to be
unique by Theorem 8 as there would exist more than one, one dimensional invariant
subspace of the dynamics. Therefore, here we choose n abelian subalgebra elements
such that by step (4) we obtain canonical Lindblad terms given by

τx...xxxx −→ V1 = 1
2 (σp1

(1l− σxx...x))
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τ 1...11zz −→ V2 = 1
2 (σp2

(1l− σ1...11zz))

τ 1...1zz1 −→ V3 = 1
2 (σp3

(1l− σ1...1zz1))

... −→
...

τ zz1...11 −→ Vn = 1
2 (σpn(1l− σzz1...11)) ,

where σpk terms can each be chosen in 4n − 1 ways such that [σpk , σmk
] 6= 0 (and

thus making each Vk a canonical Lindblad term). The goal is to now choose the σpk
terms appropriately to ensure uniqueness of the target state fixed point by establishing
the conditions of Theorem 8 are satisfied. Since the target state is the only pure state
simultaneously in every eigenspace of each σmk

term, we see that it is the only pure
state fixed point. Now we have to show there are no “intrinsic” higher rank fixed points
by showing there exists exists no invariant subspace S ⊆ H such that VkS ⊆ S for all k.
It can easily verified that even in the 3-qubit case, there does not exist a set of {σpk}
terms which make {Vk} commute with one another and thus we cannot use Proposition
3.2.5 as in the ground state scenario. Since there are n Lindblad terms and 4n−1 choices
of realising each Lindblad term (via the choice of σpk such that [σpk , σmk

] 6= 0), there

are 4n(n−1) possible sets of {σpk} terms to choose from in order to make the fixed point
unique. Below we will show some concrete examples proving it is very easy to obtain
the fixed point uniquely by invoking Proposition 3.2.4.

By Eqn. (3.61), the maximally abelian subalgebra for the 2-qubit system is given by

aGHZ = spanR {iσxx, iσyy, iσzz} . (3.62)

A few possible sets of Lindblad terms which drive the system to the target unique fixed
point are given in Table 3.1.

Table 3.1: Three Solution Sets of Lindblad Terms for Unique 2-Qubit Bell State Fixed Point

Translation Directions Lindblad Terms Factored Lindblad Terms

τxx V1 = 1
2 (σy1 + iσzx) V1 = 1

2σy1(1l4 − σxx)

τ zz V2 = 1
2 (σ1x + iσzy) V2 = 1

2σ1x(1l4 − σzz)

τxx V1 = 1
2 (σy1 + iσzx) V1 = 1

2σy1(1l4 − σxx)

−τ yy V2 = 1
2 (σ1x + iσyz) V2 = 1

2σ1x(1l4 + σyy)

τ zz V1 = 1
2 (σx1 + iσyz) V1 = 1

2σx1(1l4 − σzz)

−τ yy V2 = 1
2 (σxy + iσz1) V2 = 1

2σxy(1l4 + σyy)

Some remarks are in order to relate this method to known solutions which exist
in the literature. Another method of obtaining a unique pure state fixed points is via
unitary conjugation of the ground state to the target state [32, 51]. Since there exists a
unitary conjugation which rotates the ground state into the target state, we can apply
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such a conjugation to each Lindblad term that drives the system to the ground state
such that the new system will have the target state as its unique fixed point. Here we
will show that for this particular example, the change of basis approach results in the
same translation directions than if we were to engineer the Lindblad terms directly from
the centraliser method.

From the unique ground state fixed point example, we know that choosing the Lind-
blad terms Vk = σ+

k for k = 1, 2 results in the ground state as the unique fixed point.
Defining the unitary matrix

U := exp(−iπ8 (σxy + σyx)) , (3.63)

we see that U |00〉 = |ψ〉 and hence the Lindblad generator with Lindblad terms V ′1 =
Uσ+

1 U
† and V ′2 = Uσ+

2 U
† will drive the system to the 2-qubit GHZ state uniquely. Using

Algorithm 3 (given at the end of this Section), the associated translation directions are

Γ′ −→ τxx − τ yy (3.64)

Comparing with Table 3.1, we see that although the Lindblad terms are different from
those obtained via unitary conjugation, the overall translation directions are equivalent
to the second solution set in the table. This equality of the translation directions from
these two inequivalent engineering schemes does not hold in general. As we will now
show, in the 3-qubit scenario, this same unitary rotation approach does not reproduce
the simple solutions obtained by the centraliser scheme. Using Algorithm 3 again, we can
calculate the associated translation directions to a solution set of Lindblad terms. Table
3.2 gives a sample of the output sets of translation directions and their corresponding
canonical Lindblad terms which give the 3-qubit GHZ-state as the unique fixed point.

Table 3.2: Lindblad Terms for Unique 3-Qubit GHZ Fixed Point

Translation Directions Lindblad Terms Factored Lindblad Terms

−τ yyx V1 = 1
2 (σx11 + iσzyx) V1 = 1

2σx11(1l8 + σyyx)

−τ yxy V2 = 1
2 (σyzy + iσ1y1) V2 = 1

2σyzy(1l8 + σyxy)

−τxyy V3 = 1
2 (σxyx + iσ11z) V3 = 1

2σxyx(1l8 + σxyy)

τ 1zz V1 = 1
2 (σ11x + iσ1zy) V1 = 1

2σ11x(1l8 − σ1zz)

−τ yyx V2 = 1
2 (σxyx + iσz11) V2 = 1

2σxyx(1l8 + σyyx)

τxxx V3 = 1
2 (σ1y1 + iσxzx) V3 = 1

2σ1y1(1l8 − σxxx)

τxxx V1 = 1
2 (σ11y + iσxxz) V1 = 1

2σ11y(1l8 − σxxx)

τ zz1 V2 = 1
2 (σx1α + iσyzα) V2 = 1

2σx1α(1l8 − σzz1)

τ 1zz V3 = 1
2 (σαx1 + iσαyz) V3 = 1

2σαx1(1l8 − σ1zz)

where α ∈ {1, x, z}.

Using the same change of basis approach as in the 2-qubit case, we obtain the trans-



3.4. APPLICATIONS 57

lation directions

Γ′ −→ 3
4 (τxxx − τ zzz − τxyy − τ yxy − τ yyx) + 1

4 (τ 11z + τ 1z1 + τ z11) , (3.65)

which clearly is a much more complicated set of translation elements as compared to the
solution set number three in the table. Thus, using a simple change of basis approach
may, in a sense, complicate the dynamics which the system undergoes as it is driven
towards the unique fixed point. Although the form of a Lindblad term in canonical form
looks somewhat non-standard, as we will now show, they can be factored so they can
resemble typical noise.

First we need to discuss the notion of “quasi-local” Lindblad terms. Quasi-local
Lindblad terms are those which act as an identity on at least one of the individual qubit
subsystems [32]. Notably, in [51] the authors proved that GHZ states and W -states
cannot be obtained by only using such quasi-local Lindblad terms. Then in their latest
work, [52], they provided an engineering scheme where they showed that by choosing
Lindblad terms in quasi-local form and restricting the initial Hilbert space to a specific
subspace - they could drive every system with support in the subspace to the target
GHZ state. It turns out that the specific quasi-local Lindblad terms they present are
in fact in canonical Lindblad form. The difference in our method, is that we allow for
global dissipative processes i.e. they do not allow for canonical Lindblad terms which
induce translation directions of the form τm with mi 6= 1l for each mi ∈ m. Moreover,
the subspace in which every density matrix can be driven to the target state exactly
corresponds to the +1 eigenspace of the “global” element σxx...x in the abelian subalgebra
used to construct the non-local dissipative component. That being said, it seems that
our approach can provide information on which subspaces we can restrict to in using
their subspace-restricted quasi-local scheme.

Specifically, the (quasi-local) Lindblad terms that were presented were V1 = D ⊗ 1l
and V2 = 1l ⊗D, where D := 1

2 (σ+ ⊗ (σz + 1l) − σ− ⊗ (σz − 1l)). In fact, by expanding
we see that D = 1

2 (σx1l + iσyz), which is of canonical Lindblad form and thus so are V1

and V2. This solution is given by the third solution set using the centraliser method in
Table 3.2 setting α = 1l.

3.4.3 Stabiliser States

The following basic remarks on stabiliser states which can be found in [19]. Define the
n-qubit Pauli-group GBn as the group generated by the basis Bn given by Eqn. (2.30)
of tensor products of Pauli matrices and identities, along with multiplicative factors ±1,
±i. A quantum state |ψ〉 is called a stabiliser state if it is the only simultaneous state
vector to the eigenvalue +1 of a special subgroup of GBn - a so-called stabiliser group.
Given a stabiliser state |ψ〉 and its corresponding stabiliser group

S(|ψ〉) = {Sk ∈ GBn | Sk|ψ〉 = |ψ〉} , (3.66)

Therefore, for constructing a set of Lindblad terms by the algorithm presented at
the start of this section, steps (1)-(3) are essentially completed. For any stabiliser state,
taking the generators of its stabiliser group and multiplying by a complex factor of i
results in a basis set for an abelian subalgebra of the centraliser of ρ = |ψ〉〈ψ|. Then,
these elements can then be identified with the corresponding necessary translation direc-
tions. The only step remaining is to construct the canonical Lindblad terms and ensure
uniqueness of the fixed point by steps (4) and (5). To provide concrete examples, we
consider a special subclass of stabiliser states well studied in the literature known as
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Graph States [21, 20].

Consider an undirected simple finite graph G = (V,E) which is associated to a set of
vertices V := {1, 2, . . . , n} and edges E ⊂ V ×V . It is common in quantum information
processing to only consider simple graphs which are those that do not have edges which
connect a node to itself. Given some vertex k ∈ V , the neighbourhood of a is the set of
vertices b ∈ V such that an edge element (k, b) ∈ E connects the two. We denote such
a neighbourhood as Nk.

We can associate a graph to a quantum state as follows. To each graph G = (V,E),
each node represents a qubit (|V | = n) and hence the total Hilbert space represented
by the entire graph is Hn = (C2)⊗n. Next, we define the so-called stabilizer operators
which are associated to each vertex of the graph as

Sk := σx,k
∏
b∈Nk

σz,b , (3.67)

for all k ∈ V where we recall that σp,k for p ∈ {x, y, z} is an operator acting locally
on the kth qubit (cf. Eqn. (2.64)). The stabiliser group S(|ψ〉) is therefore the group
generated by these n stabiliser operators and the graph state |G〉 ∈ Hn is the unique
common eigenvector to the eigenvalue +1 of each of the independent stabiliser operators
in the sense that

Sk|G〉 = |G〉 , for all k ∈ V . (3.68)

It is known that certain types of stabiliser states - notably many graph states - can
be obtained as unique fixed points by using purely dissipative means [53, 32]. Specific-
ally, the authors of [32] showed how to construct quasi-local Lindblad terms to obtain
certain types of graph states as unique fixed points. The operators they constructed to
accomplish this task were actually in canonical form and as we will see now, fit into our
centraliser generated construction method.

Step (4) of the algorithm then dictates we construct canonical Lindblad terms by
choosing elements of a maximally abelian subalgebra of the centraliser. In this special
scenario, there is no need to compute a maximally abelian subalgebra as we have already
obtained an n-dimensional subalgebra of the centraliser. We then construct the Lindblad
terms as

Vk = 1
2σp(1l− Sk) ≡ 1

2σp(1l− σm) = 1
2 (σp ± iσq) . (3.69)

We now have a direct geometric interpretation of the stabiliser group elements in
terms of the systems translation directions induced on each qubits Bloch sphere in the
sense that

Sk ≡ σmk
−→ τmk

−→ Vk , for all k ∈ V . (3.70)

Therefore, we once again have shown that the current state-of-the-art known solu-
tions for a large class of paradigmatic quantum states used in quantum information
processing are in fact a special case of the general theory presented here using Lindblad
terms of canonical form. Specific examples are provided for 2, 3 and 4 qubit systems in
Table 4.3.
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Table 3.3: Example Graph States

Graph Abelian Subalgebra a Translation Operators Lindblad Terms

〈iσxz, iσzx〉 τxz V1 = σy1 + iσzz

τzx V2 = σ1y + iσzz

〈iσxz1, iσzxz, iσ1zx〉 τxz1 V1 = σy11 + i σzz1

τzxz V2 = σ1y1 + i σzzz

τ1zx V3 = σ11y + i σ1zz

〈iσxzz, iσzxz, iσzzx〉 τxzz V1 = σy11 + i σzzz

τzxz V2 = σ1y1 + i σzzz

τzzx V3 = σ11y + i σzzz

〈iσxzzz, iσzx11, iσz1x1, iσz11x〉 τxzzz V1 = σy11z + i σzzz1

τzx11 V2 = σ1y11 + i σzz11

τz1x1 V3 = σ11y1 + i σz1z1

τz11x V4 = σ111y + i σz11z

〈iσxz1z, iσzxz1, iσ1zxz, iσz1zx〉 τxz1z V1 = σy111 + i σzz1z

τzxz1 V2 = σ1y11 + i σzzz1

τ1zxz V3 = σ11y1 + i σ1zzz

τz1zx V4 = σ111y + i σz1zz

3.4.4 Topological-State Subspaces: Toric Code

In this section we will focus on special kinds of stabiliser states - ones which form an
invariant subspace which is usually called a toric code space. Thus instead of wanting to
engineer Lindblad terms which drive the system to a unique pure state fixed point, we
now want to drive the system to a unique invariant subspace. As a brief introduction,
we provide a basic summary of key points in [39, 1, 26] and [42].

Consider a two dimensional graph which forms an L×L square lattice with periodic
boundary conditions and hence forms a torus. Here, we place a qubit on each edge
such that the system comprises of n = 2L2 qubits. Now define the star and plaquette
stabiliser operators

As :=
⊗

i∈star(s)

σx,i , and Bp :=
⊗

i∈boundary(p)

σz,i , (3.71)

where star(s) is the set of (the 4) neighbouring qubits connected by one edge at each
vertex s and boundary(p) is the set of (the 4) qubits on each edge of a plaquette face p.
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Define the graph code space Cn ⊂ Hn as

Cn := spanC {|ψ〉 | As|ψ〉 = |ψ〉 and Bp|ψ〉 = |ψ〉 , for all s, p} , (3.72)

and furthermore, noting that
∏
sAs = 1l⊗n and

∏
pBp = 1l⊗n, it common knowledge

that the dimension of the code space Cn is four. To determine the basis states of this
subspace it is useful to define the logical operators which act on the subspace Cn as

X :=
∏
k∈c

σx,k and Z :=
∏
k∈c′

σz,k , (3.73)

where c is a loop on the lattice and c′ is a cut on the dual lattice. Since the toric code is
a 4-dimensional subspace, we see that there are 4 logical operators X1, X2, Z1, Z2 which
act on two two qubit encoded states in Cn. Furthermore, it can be shown that a basis
for Cn is given by

|ψ1〉 :=
∏
s

1√
2
(1l +As)|00 . . . 0〉 , (3.74)

and |ψ2〉 := X1|ψ1〉, |ψ3〉 := X2|ψ1〉, and |ψ4〉 := X1X2|ψ1〉.
Another way to describe the code space is by defining a system Hamiltonian as

H = 1
2

n/2∑
s

(1l−As) +

n/2∑
p

(1l−Bp) = 1
2

n∑
k

(1l− Sk) (3.75)

where Sk is any stabiliser operator and therefore the code space is then given by the
kernel of H i.e. ker(H) = Cn. As in the graph state case, we can again easily obtain a
purely dissipative way to now drive any initial state to the protected code space Cn ⊂ Hn
by associating the stabiliser group of the subspace to an abelian subalgebra of the now,
joint centraliser of the code subspace. The relationship can be summarised as

Sk ≡ σmk
−→ τmk

−→ Vk , for all Sk , (3.76)

and thus we obtain steps (1)-(4) of the algorithm presented at the beginning of this
section and all that remains is to prove there are no other fixed points (and hence no
other subspace is invariant). Since the corresponding fixed point space associated to pure

state fixed points is given by D = ∩k ker(Vk) = ker(
∑
k V
†
k Vk) = ker(

∑
k(1l − Sj)2) =

ker(
∑
k 2(1l − Sj)) = ker(H) = Cn, step (5) then requires we would have to show that

there is no other invariant subspace contained in D⊥ via Theorem 7 and Corollary
3.2.3. Depending on the specific example and size of the lattice, this can be proven
by invoking Propositions 3.2.4 or 3.2.5 using the degeneracy of the canonical Lindblad
terms cf. Propositions 3.3.2 and 3.3.3.

3.4.5 W States

Suppose we want to obtain the n-qubit W-state ρ = |ψ〉〈ψ|, where

|ψ〉 = 1√
n

(|100 . . . 00〉+ |010 . . . 00〉+ · · ·+ |000 . . . 01〉) (3.77)

as the unique fixed point. Furthermore, it is a classic result that the W -state is not a
graph/stabiliser state (see for example [20]) and thus the considerations of the previous
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examples cannot be applied here. Nonetheless, the algorithm presented in the intro-
duction to this section allows us to obtain many solution sets of Lindblad terms which
allows us to obtain the target state as the unique fixed point.

First, we note that Proposition 3.3.1 shows that the only Lindblad generator with
a single Lindblad term of canonical form which contains the W-state in its fixed point
set is one which is associated to the centraliser element σzz...z (with the target state
being contained in the −1 eigenspace of σzz...z). Since there does not exist a further
n− 1 Lindblad terms of canonical form its clear that we cannot obtain it as the unique
fixed point by only Lindblad terms of canonical form. Here we present one particularly
simple method of obtaining the fixed point uniquely based on choosing special operators
contained in the W-states centraliser (which are not contained in the maximally abelian
subalgebra). Thus this example (and the following symmetric Dicke state example) will
serve to illustrate that by knowing the centraliser, one can use a wide variety of possible
solutions including those of the flavour presented here.

Either by calculating the centraliser directly by Algorithm 2, or by noticing the fact
that

(1l− σz)⊗ σ⊗n−1
x |ψ〉 = |11 . . . 1〉 ,

σx ⊗ (1l− σz)⊗ 1l⊗n−2|ψ〉 = |11 . . . 1〉 ,
...

σ⊗n−1
x ⊗ (1l− σz)|ψ〉 = |11 . . . 1〉 ,

and hence operators made by differences of the form

s(1,2) := (1l− σz)⊗ σ⊗n−1
x − σx ⊗ (1l− σz)⊗ 1l⊗n−2 , (3.78)

are contained in the centraliser (by including the complex factor i) sW of the target state
such that s(1,2)|ψ〉 = 0. Henceforth we let s(i,j) ∈ sW denote the difference operator of

the above form where 1
2 (1l−σz) acts on the ith and jth qubit. By the procedure outlined

prior to Remark 12 in Section 3.3.2, we can associate these elements to Lindblad terms.
That is, in this case the “shifted ” centraliser terms are actually trivial in the sense that

Ps(i,j) := |λ|1l± s(i,j) = s(i,j) , since s(i,j)|ψ〉 = 0 , and hence λ = 0 . (3.79)

Therefore, the Lindblad terms are given by Vk := σpkPs(i,j) = σp(s(i,j)) such that
[σp, s(i,j)] 6= 0 and tr(σps(i,j)) = 0. The easiest choice of σpk terms is to set σpk =
σxx,...,x for all k and hence each Lindblad term is of the form (in a slight abuse of
notation)

Vk := σxx,...,x(s(i,j)) = σ+
i − σ

+
j , (3.80)

where we recall that σ+
i and σ+

j are the amplitude damping terms acting locally on
qubits i and j, respectively, such that i 6= j. Choosing V1 to be of canonical Lindblad
form such that the associated global translation direction is given by −τ zz,...,z and the
remaining n−1 Lindblad terms of the local form of Eqn. (3.80) acting on separate qubit
subsystems one then has completed steps (1)-(4) of the algorithm (without requiring a
maximally abelian subalgebra) and therefore all we need to show is that the fixed point
is unique (via step (5)).

Choosing the n − 1 Lindblad terms {Vk}nk=2 which are of the form of Eqn. (3.80)
such that i = 1, . . . , n − 1 and j = i + 1 and therefore V2 = σ+

1 − σ
+
2 , V2 = σ+

2 − σ
+
3 ,
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etc. we have that

n⋂
k=2

ker(Vk) = spanC {|00 . . . 0〉, |ψ〉} , (3.81)

and since |00 . . . 0〉 is not contained in the nullspace of the canonical Lindblad term
V1 = 1

2σp1
(1l + σzz...z), the target state is the unique pure state fixed point since

n⋂
k=1

ker(Vk) = spanC {|ψ〉} . (3.82)

By choosing an appropriate σp1
term, Proposition 3.2.4 can be used to show that there

exists no other invariant subspace perpendicular to |ψ〉 and hence by Proposition 3.2.3
the fixed point would be unique.

Alternatively, we provide one more example of a non-trivial solution for a 3-qubit
system. First note that there exists a (non-trivial) three dimensional abelian subalgebra
of the centraliser spanned by (here ignoring their complex coefficients of i)

a1 := σzzz ,

a2 := σxx1 + σx1x + σ1xx + σyy1 + σy1y + σ1yy , and

a3 := σxxz + σxzx + σzxx + σyyz + σyzy + σzyy .

Using the same construction as before by shifting the centraliser elements (cf. Eqns.
(3.79) and (3.80)) we see that step (4) of the algorithm gives

V1 := 1
2 (σx11(1l + a1)) = 1

2 (σx11 − iσyzz) , V2 := σ1x1(41l− a2) , and V3 := σ11x(41l− a3) ,(3.83)

which suffice to drive the system to the unique target state.

To conclude, some remarks on the relation of these methods to known solutions
are in order. As the final details of this solution method were being completed, the
authors of [52] provided two (quasi-local) engineering schemes to obtain the W-state
as the unique fixed point (1) by purely dissipative means while restricting the initial
states to a particular subspace and (2) by using an additional quasi-local Hamiltonian
term and no longer restricting the initial support space. Here our method differs in
the sense that we allow for environment dynamics to act globally on the system and
hence do not restrict any of our Lindblad terms to act as an identity on any number of
individual qubits (which would make them quasi-local). We briefly note that scheme (2)
involved quasi-local Lindblad terms which were precisely of the form used in our first
method here which were the difference of neighbouring qubit atomic raising operators.
By including the global Lindblad term V1 we were able to obtain the target fixed point
purely dissipatively without resorting to adding additional Hamiltonian drift dynamics.
Finally, the short proof of principle 3-qubit case example solution given by Eqn. (3.83)
is one example of a new solution this centraliser method yields.

3.4.6 Outlook: Symmetric Dicke State

Suppose we would like to obtain the target state ρ = |ψ〉〈ψ|, where

|ψ〉 =

(
n

n/2

)− 1
2

(|11..10 . . . 0〉+ all permutations) ,
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Algorithm 3: Determining the Associated Translation Directions

Input: Lindblad terms {Vk}rk=1 and {σm} ∈ Bn0 basis

Output: Translation direction and scaling factor

1. Calculate Γ̂ in vec-representation

2. Change the basis to coherence vector representation by calculating

Γ′ := U Γ̂U†, with U := (vec (σm1
), . . . , vec (σmn−1

), vec 1ln)

3. For 1 ≤ k < n, if the matrix elements [Γ′]k,n 6= 0,
then return “Scaling factor of [Γ′]k,n in the mk direction”

where there are an even number of both 1 and 0 states. Exactly as in the W-state case,
it can be shown that the only Pauli basis matrices which have |ψ〉 in their eigenspaces
are σzz...z, σxx...x, and σyy...y thus determining the maximally abelian subalgebra of the
centraliser in order to use its “bare” Pauli matrix generators will not suffice for this class
of states either.

For one possible solution set we identify the first Lindblad term to be in canonical
form and be associated to the centraliser element σxx...x and hence translation direction
τxx...x. For the remaining Lindblad terms we use those which are precisely the ones
which are generalisations of those chosen to obtain the W-state uniquely. That is, we
select centraliser elements which are differences of operators which contain n

2 terms of
the form (1l − σz) and the remaining n

2 terms in the tensor product being equal to σx.
Since |ψ〉 is then a nullvector of each of these centraliser elements, we can construct the
Lindblad terms in step (4) of the algorithm again by simply multiplying each of them
by a global σxx...x term to obtain terms of the form (for example)

Vk = σ+ ⊗ σ+ ⊗ · · · ⊗ σ+ ⊗ 1l⊗(
n
2 ) − σ+ ⊗ σ+ ⊗ · · · ⊗ 1l⊗ σ+ ⊗ 1l⊗(

n
2−1) , (3.84)

where in general the Lindblad terms will be composed of the difference of two operators
each of which will have n

2 amplitude damping terms. To complete the algorithm and
satisfy step (5) we must have that |ψ〉 as the unique element in the joint kernel of each
Lindblad term and that there exists no invariant subspace perpendicular to |ψ〉 which
by by Proposition 3.2.3 would imply the fixed point would be unique.

For an explicit example, one possible solution set of Lindblad operators to obtain the
4-qubit symmetric Dicke state is given by (using the previously introduced shorthand
notation)

V1 = 1
2 (σy111 + iσzxxx) , V2 = σ+

1 σ
+
2 − σ

+
1 σ

+
3 , V3 = σ+

2 σ
+
3 − σ

+
2 σ

+
4 , V4 = σ+

3 σ
+
4 − σ

+
1 σ3 .

It is very simple to arrive at other possible solutions for the four qubit case. However,
at the time of this thesis submission, we have yet to determine a simple solution set for
the six qubit scenario. The simplest generalisations of the four qubit solution set result
in dim(∩k ker(Vk)) ≥ 8. Thus it is currently an open problem to determine possible sets
of five Lindblad terms which consist of atomic raising operator differences - a simple
calculation reveals there are 190 possible Lindblad terms of the desired form.
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3.5 Engineering Mixed State Fixed Points

3.5.1 Motivation and Lindblad Terms of Generalised Canonical
Form

This section will focus on techniques to engineer mixed state fixed points using a gen-
eralised method of the one used in Section 3.3 to obtain pure state fixed points. We
recall that the fixed point set of a Markovian semigroup of quantum channels admits
the splitting F(ΦΓ) = conv {FD ∪ FD⊥} where

FD := {ρ ∈ pos1(N) | Γ(ρ) = 0, such that supp(ρ) ⊆ D} ,

and

FD⊥ := {ρ ∈ pos1(N) | Γ(ρ) = 0, such that supp(ρ) ⊆ D⊥} , (3.85)

where D is given by Eqn. (3.14) and called the complete dark state space. The fixed
point set FD consists of all density matrices that are either pure states or mixed states
which are a convex combination of pure states that are themselves fixed points whereas
FD⊥ consists of so called intrinsic higher rank mixed state fixed points - precisely those
which can not be decomposed into pure state fixed points. This splitting was of central
importance to engineer pure state fixed points (e.g. see Proposition 3.2.3) since the trick
was to show that there were no intrinsic higher rank fixed points (and hence FD⊥ = ∅)
which implied F(ΦΓ) = FD. Some preliminary results showing sufficient conditions
for when FD⊥ = ∅ were given by Propositions 3.2.5 and 3.2.4. Once these could be
established, Corollary 3.2.2 gave a necessary and sufficient condition for pure states to be
fixed points and therefore one could engineer precise Lindblad terms which would drive
the system to a target pure state fixed point i.e. ensuring that F(ΦΓ) = FD = {|ψ〉〈ψ|}.

In Section 3.3 we were able to show that using Lindblad terms of canonical form (cf.
Eqn. (3.36)), one could reduce the complexity of the task greatly since each Lindblad
term of this form was nilpotent of degree two (cf. Lemma 3.3.2). Recall that a Lindblad
term in canonical form was given by

V = 1
2 (σp + iσq) such that [σp, σq] 6= 0 . (3.86)

Furthermore, by recalling the star-product p?q = m defined by Eqns. (2.68) and (2.69)
one arrives at the equivalent factorized form

V = σpP , where P = 1
2 (1l− σm) (3.87)

is an orthogonal projection. Now, given a set of these nilpotent Lindblad terms, the
generalised dark state spaces DΛ (cf. Eqn. (3.13)) and subsequently the complete dark
state space D reduced to

D = D0 =
⋂
k

ker(Vk) . (3.88)

Therefore, the fixed point set is given by F(ΦΓ) = FD0
whenever the set of intrinsic

higher rank fixed points FD⊥0 = ∅. Now we will show how to engineer Lindblad terms
which instead will be used to obtain unique intrinsic higher rank fixed points. That is,
the fixed point set will be given by

F(ΦΓ) = FD⊥0 = {ρ} , (3.89)
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and we will see that this category of fixed points can be obtained by using a slight
generalisation of the canonical Lindblad terms used to obtain unique pure state fixed
points.

First we make an important observation. Whenever m in Eqn. (3.86) is given by
m = (m1,m2, . . . ,mn) such that mj ∈ {1, z} for 1 ≤ j ≤ n, we see that there exists a
choice of the pairs (p,q) such that the p n-tuple is fixed as p = (p1, p2, . . . , pn) with
pj ∈ {1, x} for 1 ≤ j ≤ n. The Lindblad term in canonical form is then given by

V = 1
2 (σp + iσq) = 1

2 (σp(1l− σm)) = σpP , (3.90)

thereby making P an orthogonal projection into the orthogonal complement of the target
state. Note that rank(P ) ≥ 1 with equality if and only if we are considering a single
qubit system i.e. n = 1 and hence V = |0〉〈0| or V = |1〉〈1|. We want to generalise this
construction of Lindblad term such that the orthogonal projection P can be rank one for
more than a single qubit system - this entails that we no longer are restricted to having
a single σm in Eqn. (3.90), but now a summation of such diagonal Pauli matrices.

An important first step that will be useful later is to notice that Pauli matrices of
the form σp = (p1, p2, . . . , pn) with pk ∈ {1, x} for 1 ≤ j ≤ n are elements of the group
defined by

Gn := {g1 ⊗ g2 ⊗ · · · ⊗ gn | gj ∈ {1l, σx} for all 1 ≤ j ≤ n} . (3.91)

Now let P be any diagonal orthogonal projection which has rank µ. Notice that any
such projection can be decomposed into a linear combination of the identity and Pauli
matrices which has the form

P =
1

2n
(µ1l +

∑
i

ciσmi
) , (3.92)

where the coefficients ci ∈ Z and each n-tuple mi = (m1,m2, . . . ,mn)i only has indices
which consist of unities and z’s. Finally, identifying an element of the group G ∈ Gn as
G ≡ σp, we define Lindblad terms of generalised canonical form with strength coefficient√
γ ∈ R+ as

V :=
√
γGP (3.93)

Note that now rank(P ) ≥ 1 for any n as compared to the Lindblad terms in canonical
form where even though they admitted a similar factorized form, the projection P was
only rank one in the single qubit case.

Example 5. Let P = diag(1, 1, 1, 0) = 1
4 (31l+σz1 +σ1z−σzz) be a rank three orthogonal

projection and let G ≡ σx1 ∈ G2 be a group element. Then we can construct a Lindblad

term of generalised canonical form as V =
√
γσx1P =

√
γ

4 σx1(31l + σz1 + σ1z − σzz) =
√
γ

4 (3σx1 + σxz + i(σyz − σy1)) which in explicit matrix representation gives

V =
√
γ


0 0 1 0
0 0 0 0
1 0 0 0
0 1 0 0

 . (3.94)

We lastly note that V =
√
γ

4 (3σx1 + σxz + i(σyz − σy1)) is truly a type of generalised
version of a Lindblad term of canonical form (which was defined as V = 1

2 (
√
γ(σp+iσq))

where [σp, σq] 6= 0) since there are now multiple σp and/or σq terms which compose the
Lindblad term.
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With this notion in hand we can now make the great connection between Lindblad
terms in canonical form, generalised canonical form and those which are centraliser
generated. That is, recall that in Section 3.3.2 we provided a systematic way of con-
structing Lindblad terms from the centraliser (with respect to su(2n)) of a target pure
state ρ = |ψ〉〈ψ| given by

sρ := {s ∈ su(2n) |[s, ρ] = 0} , (3.95)

which allowed us to give an algorithm to determine sets of Lindblad terms that drove
the system to the unique target fixed point. This was accomplished by first choosing a
centraliser element s ∈ sρ and noticing that since [s, ρ] = 0 then s|ψ〉 = λ|ψ〉 for λ ∈ C.
Selecting an element s ∈ sρ such that λ 6= 0 we then defined its shifted form as

PS := |λ|1l± is , such that PS |ψ〉 = 0 . (3.96)

A Lindblad term which was said to be centraliser generated was then defined as

V :=
√
γσpP

S =
√
γσp(|λ|1l± is) , such that [σp, s] 6= 0 , and tr(σps) = 0 ,(3.97)

and we showed that canonical Lindblad terms were a special case of this form (see for
example the discussion following Remark 12).

We now turn our attention to a target state ρ which is a diagonal mixed state fixed
point. A maximally abelian subalgebra of the centraliser of such a diagonal state spe-
cialises to

aρ = spanR {iσm | mk ∈ {1, z} for k = 1, . . . , n} . (3.98)

A Lindblad term of generalised canonical form was constructed by first decomposing
a diagonal orthogonal projection into its linear combination of the identity matrix and
Pauli matrices which are tensor products (for multi-qubit systems) of the identity and
σz terms i.e. P = 1

2n (µ1l +
∑
i ciσmi), where µ = Rank(P ), the ci elements are real

coefficients and the mi n-tuples contain only 1’s and z’s. For any strength coefficient
γ ∈ R+, the Lindblad term was then given by

V :=
√
γGP , where P =

1

2n
(µ1l +

∑
i

ciσmi
) , (3.99)

where G ≡ σp was a special Pauli matrix whose elements of the p n-tuple consisted
of only 1’s and x’s. Taking the Pauli matrix decomposition component of the diagonal
orthogonal projection P and multiplying by a factor of i we get the new element s :=
i
∑
i ciσmi

. Now it’s indeed clear that this element “s” is contained in the maximally
abelian subalgebra (given by Eqn. (3.98)) of the state centraliser of a diagonal target ρ!
Therefore, in a sense we can identify the projection P used to construct a Lindblad term
of generalised canonical form (used for diagonal mixed states) as a type of “shifted”
centraliser element PS similar to those used to construct Lindblad terms which were
centraliser generated (used for pure states).

Just as Lindblad terms which are centraliser generated, not every Lindblad term
of generalised canonical form is nilpotent and the induced translation directions are
not simply given by the index of the abelian subalgebra elements (See Remark 12)
which make up the projection P in V =

√
γGP . The following Lemma establishes the

conditions in which the Lindblad term is nilpotent of degree two, just like Lindblad
terms of canonical form.



3.5. ENGINEERING MIXED STATE FIXED POINTS 67

Lemma 3.5.1. Let V =
√
γGP be a Lindblad term of generalised canonical form where

G ∈ Gn such that G 6= 1ln and the diagonal orthogonal projection is given by P =
∑
k Pk

with Pk = eke
†
k such that each ek is standard basis vector of R2n . Let S denote the set of

basis vectors which compose the rank one projections which make up P . If 〈G(ei), ej〉 = 0
for all ei, ej ∈ S, then V is nilpotent of degree two.

Proof. Clearly V 2
k = γ(GP )(GP ) = γ(

∑
iGPiG)

∑
j Pj = γ

∑
i

∑
j G(ei)(G(ei))

†eje
†
j =

γ
∑
i

∑
j〈G(ei)|ej〉G(ei)e

†
j = 0 since 〈G(ei), ej〉 = 0 for all ei, ej ∈ S.

As a final remark, we note that in a slight abuse of notation, we will often say that
a Lindblad generator is proportional to its associated translation direction(s) and will
denote the relationship by ΓVk ∝

∑
i τmi

. With these considerations, we will show to to
construct Lindblad terms in generalized canonical form which allow us to obtain unique
mixed state fixed points.

3.5.2 Full Rank Fixed Points

As further motivation, we consider the single qubit scenario since it will provide the
general structure of the n-qubit generalisation.

Example 6. For a purely dissipative system, suppose we want to obtain any unique fixed
point of the form ρ = diag(λ1, λ2) where 0 < λ1, λ2 < 1 such that λ1 + λ2 = 1. Defining

the two orthogonal projections P1 := e1e
†
1 = 1

2 (1l + σz) and P2 := e2e
†
2 = 1

2 (1l − σz), we
can construct the Lindblad terms in canonical form

V1 =
√
γ1σxP1 =

√
γ1
2 (σx(1l + σz)) =

√
γ1
2 (σx − iσy) and

V2 =
√
γ2σxP2 =

√
γ2
2 (σx(1l− σz)) =

√
γ2
2 (σx + iσy)

such that ΓV1
and ΓV2

each induce an individual translation direction of −γ1τ z and
γ2τ z, respectively. Note that for a general diagonal mixed state fixed point of the form
ρ̃ = diag(ρ̃11, ρ̃22) we have that

Γ(ρ̃) = −1

2

∑
k

V †k Vkρ̃+ ρ̃V †k Vk − 2Vkρ̃V
†
k =

∑
k

γkPkρ̃− Vkρ̃V †k (3.100)

= diag(γ1ρ̃11, γ2ρ̃22)− diag(γ2ρ̃22, γ1ρ̃11) = 0 (3.101)

since V †k Vk = P 2
k = Pk and [Pk, ρ̃] = 0 for k = 1, 2. Thus, ρ̃11 = γ2

γ1
ρ̃22, which results in

the normalised fixed point ρ′ = 1
γ1+γ2

diag(γ2, γ1) and hence choosing γ1 = λ1, γ2 = λ2

or γ1 = 1−λ1

λ1
and γ2 = 1 gives the target fixed point ρ := ρ′. Since each Vk is nilpotent

and ∩k ker(Vk) = {0} then by Corollary 3.2.2 there are no pure state fixed points and in
the proof of the following theorem we will prove that fixed points obtained from this type
of construction will always be unique.

First we make the observation that

V1(e1 + e2) =
√
γ1σxP1(e1 + e2) =

√
γ1e2 and (3.102)

V2(e1 + e2) =
√
γ2σxP2(e1 + e2) =

√
γ2e1 , (3.103)

and hence by considering the group G1 = {1l, σx}, and defining G1 = G2 = σx ∈ G1, it
holds that {Gkek

∣∣ k = 1, 2} = {ek
∣∣ k = 1, 2} and Gkek 6= ek for k = 1, 2. These two
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group conditions were the keys to obtaining the mixing of diagonal elements in Eqn.
(3.101) which resulted in the desired unique fixed point. We can now use the notion of
Lindblad terms in generalised canonical form in order to engineer intrinsic higher rank
mixed state fixed points for more than one qubit using a straightforward extension of
these two group conditions.

Define the index set of all diagonal elements of a (target) 2n × 2n matrix as Itar :=
{1, . . . , 2n}, and define the set of index subsets IP := P(Itar) \ {Itar, ∅}, where P(Itar)
is the power set of Itar. Thus IP contains 4n− 2 elements (sets). Noting that the group
Gn (cf. Eqn. (3.91)) acts transitively on the set {ek

∣∣k = 1, . . . , 2n}, we can define two
group element conditions which we will show will guarantee uniqueness of the target
fixed point.

(1) Existence of Target Subspace:

{Gkek
∣∣ k ∈ Itar} = {ek

∣∣ k ∈ Itar} (3.104)

(2) Uniqueness of Target Invariant Subspace:

{Gkek
∣∣ k ∈ S} 6= {ek ∣∣ k ∈ S} for each index set S ⊂ IP . (3.105)

Furthermore, a set of group elements {Gk} ∈ Gn which as a whole, satisfy Eqns. (3.104)
and (3.105) can then define the sets

Sol(Itar) := {G1P1, . . . , G2nP2n
∣∣ {Gk}2nk=1 satisfies Eqns. (3.104)

and (3.105) and Pk := eke
†
k ∀ k} . (3.106)

Theorem 9. Let ρ = diag(λ1, . . . , λ2n) be any diagonal mixed state of full rank with
non-degenerate eigenvalues and let Sol(Itar) be a solution set of operators as given by
Eqn. (3.106) where Itar = {1, 2, . . . , 2n}. Then ρ is obtained as the unique fixed point
of a purely dissipative Lindblad-Kossakowski operator with 2n Lindblad terms given by
Vk :=

√
γkGkPk, where GkPk ∈ Sol(Itar) and γk = λ2n

λk
for all k.

Proof. Condition one given by Eqn. (3.104) guarantees that

Γ(ρ) =
∑
k

(γkPk(ρ)− γkGkPk(ρ)PkG
†
k) = λ2n1l− λ2n

∑
k

Gk(eke
†
k)G†k = 0 , (3.107)

since V †k Vk = P 2
k = γkPk and [Pk, ρ̃] = 0 for all k and therefore ρ is a fixed point.

Furthermore, condition two given by Eqn. (3.105) implies that Gkek ⊥ ek and hence
by Lemma 3.5.1 each Lindblad term Vk is nilpotent and thus the dynamics are purely
dissipative.

Now we prove uniqueness of the fixed point. First we will show that there cannot
exist any rank degenerate fixed point. Suppose there exists a rank degenerate fixed point
ρ′ and let S ′ := supp(ρ′). By Proposition 3.2.1 and Corollary 3.2.1 this would imply

VkS ′ ⊆ S ′ for all k and
∑
k V
†
k VkS ′ ⊆ S ′. Since the second condition simplifies to∑

k

V †k Vk =
∑
k

γkPk = diag(γ1, γ2, . . . , γ2n) , (3.108)

we know that the non-trivial invariant subspaces of
∑
k V
†
k Vk are

S1 := spanC {e1} , S2 := spanC {e2} , S3 := spanC {e1, e2} , . . . etc. (3.109)
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and thus are all combinations of spans of standard basis vectors. We will show that
condition two given by Eqn. (3.105) guarantees that no such subspace is simultaneously
invariant for each Vk.

Condition two ensures that no group elements which comprise the Lindblad terms
satisfy relations such as {G1e1, G2e2} = {e1, e2} with G1e1 = e2 and G2e2 = e1. Defin-
ing S := spanR {e1, e2}, we would then have that V1S ⊆ S, V2S ⊆ S and VkS ⊆ S for
k = 3, . . . , 2n trivially since S ⊆ ker(Vk) for k = 3, . . . , 2n. Therefore, S would be an
invariant subspace which supports a fixed point since it is also a simultaneous invariant
subspace of the matrix given by Eqn. (3.108). Condition two then ensures there are no
invariant subspaces which are spans of unit vectors. This implies there cannot exist any
rank deficient fixed point.

Now suppose that the additional fixed point ρ′ is full rank. Taking the affine com-
bination of ρ and ρ′ gives Γ(a1ρ+a2ρ

′) = 0 for all a1, a2 ∈ R such that a1 +a2 = 1. Note
that there exists some choice of a1 and a2 such that σ := a1ρ+a2ρ

′ lies on the boundary
of the set of density matrices and hence has rank r < 2n which implies σ would be a
rank degenerate fixed point. By the previous discussion, we know this cannot occur and
therefore we are done.

Example 7. Suppose we want to obtain a unique full rank diagonal (with non-degenerate
eigenvalues) 2-qubit mixed state fixed point. Choosing the group elements G1, G2, G3, G4 ∈
G2 as

G1 = 1l⊗ σx , G2 = σx ⊗ σx , G3 = 1l⊗ σx , G4 = σx ⊗ σx , (3.110)

since G1e1 = e2, G2e2 = e3 , G3e3 = e4, G4e4 = e1 one sees that they satisfy the
conditions given by Eqns. (3.104) and (3.105) therefore we have one particular solution

set given by Sol(Itar) = {GkPk | Pk = eke
†
k , k = 1, . . . , 4} which can then be used to

construct the Lindblad terms

V1 =
√

λ4

λ1
(1l⊗ σx)P1 = 1

2

√
λ4

λ1

(
(1l + σz)⊗ σ−

)
, V2 =

√
λ4

λ2
(σx ⊗ σx)P2 =

√
λ4

λ2

(
σ− ⊗ σ+

)
,

(3.111)

V3 =
√

λ4

λ3
(1l⊗ σx)P3 = 1

2

√
λ4

λ3

(
(1l− σz)⊗ σ−

)
, V4 = (σx ⊗ σx)P4 = σ+ ⊗ σ+ ,

(3.112)

where the equalities follows from P1 = 1
4 (1l ⊗ 1l + σz ⊗ 1l + 1l ⊗ σz + σz ⊗ σz), P2 =

1
4 (1l ⊗ 1l + σz ⊗ 1l − 1l ⊗ σz − σz ⊗ σz), P3 = 1

4 (1l ⊗ 1l − σz ⊗ 1l + 1l ⊗ σz − σz ⊗ σz) and
P4 = 1

4 (1l⊗ 1l− σz ⊗ 1l− 1l⊗ σz + σz ⊗ σz).

It is important to note the connection between the target mixed state fixed point
and the associated translation directions which are induced by the individual Lindblad
terms. Remark 12 explained how one can obtain the associated translation directions
from each Lindblad term. Explicitly, we discussed how one cannot simply deduce the
translation directions based upon the index m of each Pauli matrix which the (in this
case) projections {Pk} are decomposed into. It’s a simple calculation to see that the

translation directions associated to each “piecewise” part of the full Γ =
∑4
k ΓVk are

given by of Example 7 are

ΓV1
∝ 1

2
λ4

λ1
(−τ 1z − τ zz) , ΓV2

∝ 1
2
λ4

λ2
(−τ z1 + τ 1z) , (3.113)

ΓV3 ∝ 1
2
λ4

λ3
(−τ z1 + τ zz) , ΓV4 ∝ 1

2 (τ z1 + τ 1z) . (3.114)
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This fixed point engineering method allows us to obtain multiple solutions for obtain-
ing the desired mixed state fixed point. For example, to obtain the diagonal mixed state
in Example 7 as the unique fixed point we could of alternatively used a different solution
set, say, Sol(Itar) = {(σx ⊗ 1l)P1, (1l⊗ σx)P2, (1l⊗ σx)P3, (σx ⊗ 1l)P4}. This provides an
entire new set of Lindblad terms which drive the system to the target unique fixed point.
This time however, not only are the individual translations induced by each Lindblad
term different than previously, but the overall (i.e. sum) translations for Γ are different
since

ΓV1 ∝ 1
2
λ4

λ1
(−τ z1 − τ zz) , ΓV2 ∝ 1

2
λ4

λ2
(τ 1z + τ zz) , (3.115)

ΓV3
∝ 1

2
λ4

λ3
(−τ 1z + τ zz) , ΓV4

∝ 1
2 (τ z1 − τ zz) . (3.116)

We now compare this situation with the single qubit case. In the single qubit full rank
mixed state scenario in Example 6 there was only one possible solution, Sol(Itar) =
{σxP1, σxP2} which gave V1 :=

√
γ1σ
− and V2 :=

√
γ2σ

+. There we remarked that each
separate Lindblad term induced the translation directions −γ1τ z and γ2τ z, respectively,
and thus providing an intuitive geometric picture of the translation directions along the
z-axis of the bloch sphere. It is immediately apparent that the single qubit Bloch
sphere interpretation of the translation direction towards the fixed point of the system
generalises to multi-qubit systems by allowing for several different direction “paths” one
can steer the system through. The multiple paths available for the multi-qubit set of
states results in the multiple solution sets of Lindblad terms which describe different
trajectory paths towards the fixed point. Thus, this engineering method may prove to
be useful for experimental implementation due to the fact that there may be solution
sets of Lindblad terms which may easier to realise physically than the others.

3.5.3 Rank Deficient Mixed State Fixed Points

We now consider a target diagonal fixed point ρ which has rank 1 < r < 2n which
has non-degenerate non-zero eigenvalues. Recall that if the rank of the diagonal target
state was one, we would be in the situation described in Section 3.4.1 where we showed
how to obtain the ground/excited state as the unique fixed point using Lindblad terms
of canonical form. Here we present two results which provide methods of constructing
Lindblad generators which drive the system to any diagonal rank deficient (which has its
non-zero eigenvalues being non-degenerate) mixed state fixed point. The first is a slight
generalisation of Theorem 9 and we show how to obtain the desired fixed point using 2n

Lindblad terms of a specific generalised canonical form. The second result then shows
that when the rank of the target fixed point is greater than or equal to one half the
dimension size (and not equal to 2n) we can obtain it uniquely by using r + 1 Lindblad
terms.

Let ρ be the target diagonal fixed point with rank 1 < r < 2n. As in the full
rank mixed state case, define the index set of all non-zero diagonal elements as Itar :=
{1, 2, . . . , r} and the set of index subsets IP := P(Itar) \ {Itar, ∅}, where P(Itar) is the
power set of Itar. Note that IP contains 2r − 2 elements (sets). Moreover, define the
set of remaining diagonal element indices as Itar⊥ = {r + 1, r + 2, . . . , 2n}. The group
element conditions then reduce to

(1) Existence of a Target Invariant Subspace:

{Gkek
∣∣ k ∈ Itar} = {ek

∣∣ k ∈ Itar} (3.117)
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(2) Non-existence of Pure State Invariant Subspaces:

Gkek = ej for each k ∈ Itar⊥ such that j ∈ Itar , (3.118)

(3) Uniqueness of Target Invariant Subspace:

{Gkek
∣∣ k ∈ S} 6= {ek ∣∣ k ∈ S} for every set S ⊂ IP . (3.119)

Conditions one and three given by Eqns. (3.117) and (3.119) are equivalent to the
full rank mixed state conditions one and two given by Eqns. (3.104) and (3.105) just
reduced to a smaller “target ” index set Itar. The new condition given by Eqn. (3.118)
ensures that for each basis vector ek ∈ {er+1, . . . , e2n} there is an element of the solution
set that shifts ek into the support of the target rank r fixed point. This eliminates the
possibility of pure state fixed points whose support is orthogonal to S := supp(ρ) by
Corollary 3.2.2. The proof of the following result is along the same lines as that of
Theorem 9.

Theorem 10. Let ρ = diag(λ1, . . . , λr, 0, . . . , 0) be any rank r diagonal mixed state with
non-degenerate non-zero eigenavalues and let Sol(Itar) be a solution set of operators
of the form given by Eqn. (3.106), except now the elements {Gk}2

n

k=1 satisfy Eqns.
(3.117)-(3.119) with Itar = {1, 2, . . . , r}. Then ρ is obtained as the unique fixed point
of a purely dissipative Lindblad-Kossakowski operator with 2n Lindblad terms given by
Vk :=

√
γkGkPk, where GkPk ∈ Sol(Itar) such that γk = λr

λk
for 1 ≤ k ≤ r and γk ∈ R+

for r < k ≤ 2n.

Proof. Condition one given by Eqn. (3.117) guarantees that

Γ(ρ) =

2n∑
k

(γkPk(ρ)− γkGkPk(ρ)PkG
†
k) = λr

r∑
k

(eke
†
k −Gk(eke

†
k)G†k) = 0 , (3.120)

and therefore ρ is a fixed point. Furthermore, condition two given by Eqn. (3.118)
implies Gkek ⊥ ek for r < k ≤ 2n and condition three given by Eqn. (3.119) implies
that Gkek ⊥ ek for 1 ≤ k ≤ r. By Lemma 3.5.1 this implies that each Lindblad term Vk
is nilpotent and thus the dynamics are purely dissipative.

We now prove uniqueness of the target fixed point. For S := supp(ρ) = spanC {e1, e2, . . . , er},
condition two given by Eqn. (3.118) guarantees there are no ej ∈ S⊥ such that Vkej = 0
for all k and hence there exists no pure state fixed points of the system whose support
would be orthogonal to S. Thus we have that VkS⊥ ⊆ S for all k and hence there are
no fixed points with support contained in S⊥.

Suppose there exists another rank degenerate fixed point ρ′ and define S ′ := supp(ρ′).
Then either S ′ ⊆ S⊥ or S ′ ⊆ S, or simply S ′ ⊆ H such that it is not completely contained
in either S or S ′. From the above discussion we know that the first case cannot occur.
Now we consider the second scenario where we assume that S ′ ⊆ S. Along the same
lines as the proof of Theorem 9, we note that

∑
k V
†
k Vk is diagonal with unique non-zero

eigenvalues. This then implies that we know all the invariant subspaces of
∑
k V
†
k Vk

thereby showing in the same manner that there cannot exist any invariant subspace
S ′ ⊆ S which supports a fixed point.

For the third and final case we now assume instead that the additional rank degen-
erate fixed point ρ′ does not have its support entirely contained in either S or S ′. Then
clearly S ′ ∩ S ⊆ S and since S itself satisfies VkS ⊆ S for all k and

∑
k V
†
k VkS ⊆ S (by

Proposition 3.2.1), it holds that

Vk (S ′ ∩ S) ⊆ (S ′ ∩ S) , for all k, and
∑
k

V †k Vk (S ′ ∩ S) ⊆ (S ′ ∩ S) . (3.121)
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Therefore (S ′ ∩ S) ⊆ S is another invariant subspace which supports a new fixed point.
We know this inclusion cannot occur and hence there exists no other rank degenerate
mixed state fixed points.

Finally, if instead we assume there exists a full rank fixed point we can use the exact
same argument at the end of Theorem 9 to show that this implies there must exist a
rank deficient fixed point - which we know cannot exist. Thus, the target fixed point is
unique.

We can also obtain a rank r < 2n fixed point using r + 1 Lindblad terms if the rank is
larger than half the dimension of the total state space.

Corollary 3.5.1. Let ρ = diag(λ1, . . . , λr, 0, . . . , 0) be any diagonal mixed state of rank
2n−1 ≤ r < 2n with non-degenerate non-zero eigenvalues. Then ρ is obtained as the
unique fixed point of a purely dissipative Lindblad-Kossakowski operator with r+1 Lind-
blad terms given by

Vk =
√
γkGkPk where Pk = eke

†
k for k = 1, . . . , r , and (3.122)

Vr+1 =

2n∑
j=r+1

(Gr+1)Pj where Pj = eje
†
j , (3.123)

such that Eqns. (3.117) and (3.119) are satisfied, range(Vr+1) ⊆ supp(ρ) and γk = λr
λk

for k = 1, . . . , r.

Proof. The structure of Vr+1 =
∑2n

j=r+1(Gr+1)Pj and the condition that range(Vr+1) ⊆
supp(ρ) just ensures that there are no simultaneous eigenvectors contained in S⊥ which
would be a necessary condition that S⊥ contains another invariant subspace. The rest
of the proof is identical to that of Theorem 10.

After obtaining a desired diagonal fixed point it’s clear that one can apply a unitary
rotation to any other density matrix with those desired eigenvalues. Thus the discussion
above provides a general result showing how to obtain any arbitrary density matrix with
non-degenerate non-zero eigenvalues as the unique fixed point. Although Corollary 3.5.1
provides the upper bound of r + 1 terms required when r ≥ 2n−1, the following result
can be considered as a general “worst case” upper bound on the number of Lindblad
terms required.

Theorem 11. Let ρ be any rank r quantum state with non-degenerate non-zero eigen-
values {λk}rk=1. Then there exists multiple sets of 2n Lindblad terms of the form

Vk =
√
γkU(Gk(Pk))U† for all k = 1, . . . , 2n , (3.124)

where γk = λr
λk

for 1 ≤ k ≤ r and γk ∈ R+ for r + 1 ≤ k ≤ 2n and Pk = eke
†
k for all k

such that the associated purely dissipative Lindblad generator has ρ as the unique fixed
point state.

Proof. Let U be the unitary which diagonalises ρ as ρ = diag(λ1, λ2, . . . , λr, 0, . . . ),
where clearly if ρ is full rank then there are no zeros on the diagonal. The proof then
follows from a basic change of basis and Theorems 9 and 10.
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Remark 13. Theorems 9, 10 and 11 are stated in a manner which assumes the non-zero
eigenvalues of the target fixed point state are non-degenerate. The construction method
of the Lindblad terms also seem to work for degenerate eigenvalues but the final step in
this completely general proof required some details to be polished at the time of this thesis
submission. The general result will be published in follow up work.

Example 8 provides an example showing the same construction of Lindblad terms
also works.

Another remark is in order to connect this result to the current literature. In [48],
Ticozzi, Schirmer and Wang also considered the problem of determining a Lindblad-
Kossakowski operator which drives the system to a target mixed state fixed point. They
showed that it is possible using a single Hamiltonian H and Lindblad term L which
were quintdiagonal and tridiagonal, respectively. In [41], Pechen proved a similar result
to that of Theorem 11 where he considered a physical implementation of “all to one
” controls which are those which can simultaneously transfer every initial state to any
desired target state. Using a procedure motivated by the experimental use of incoherent
light, it was shown that every general initial state (i.e. those which are rank r and have
each matrix element non-zero) can be driven to the target state by using 4n Lindblad

terms which are rank one and of the form L = eie
†
j . Our method does not depend on

these types of rank one Lindblad terms which are experimentally realisable via engin-
eered radiation, instead, we have provided a general engineering scheme which extends
the pure state construction that used Lindblad terms of canonical form in Sections 3.3
and 3.4 to obtain unique pure state fixed points.

As the following example shows, we expect there is a similar bound to that of Co-
rollary 3.5.1 when the rank of the target mixed state r is less than 2n−1. Nonetheless,
knowing bounds on how many Lindblad terms are required does not necessarily simplify
an experimental implementation as they are usually more complicated and perhaps more
difficult to implement overall.

Example 8. Consider the 3-qubit target state ρtar = 1
2diag(1, 1, 0, 0, 0, 0, 0, 0). Choosing

the group elements G1, G2, G3, G4 ∈ G3 as

G1 = 1l⊗ 1l⊗ σx , G2 = 1l⊗ 1l⊗ σx , G3 = σx ⊗ 1l⊗ σx , G4 = σx ⊗ σx ⊗ σx , (3.125)

Then for H = spanR {e1, . . . , e8} and a generic element ṽ :=
∑8
k=1 akek ∈ H where each

ak ∈ R we have that G1P1ṽ = a1e2, G2P2ṽ = a2e1 and

G3(

6∑
j=3

Pj)ṽ = a6e1 + a5e2 + a4e7 + a3e8 , G4(

8∑
j=7

Pk)ṽ = a8e1 + a7e2 , (3.126)

and hence the only invariant subspaces are S = spanC {e1, e2} and H. The Lindblad
terms

V1 = 1
4

(
(1l+σz)⊗ (1l+σz)⊗ σ−

)
,

V2 = 1
4

(
(1l+σz)⊗ (1l+σz)⊗ σ+

)
,

V3 = 1
2

((
σ− ⊗ (1l−σz)⊗ σx + σ+ ⊗ (1l+σz)

)
⊗ σx

)
, and

V4 = σ+ ⊗ σ+ ⊗ σx

drive the system to the desired target state fixed point.
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We now provide concrete examples of the implementation of Theorem 10 and Corollary
3.5.1.

Example 9. Suppose we want to obtain the 2-qubit state ρtar = 1
4diag(1, 3, 0, 0) as the

unique fixed point of a purely dissipative system. Since (1l⊗σx)e1 = e2, (1l⊗σx)e2 = e1,
(1l ⊗ σx)(e3) = e1 and (1l ⊗ σx)(e4) = e2 then we can define a solution set given by
Sol(Itar) = {(1l ⊗ σx)P1, (1l ⊗ σx)P2, (σx ⊗ 1l)(P3 + P4)}. The corresponding Lindblad
terms which drive the system to the target fixed point are then given by

V1 =
√
γ1(1l⊗ σx)P1 = 1

2

√
γ1

(
(1l+σz)⊗ σ−

)
,

V2 = (1l⊗ σx)P2 = 1
2

(
(1l+σz)⊗ σ+

)
, and

V3 = (σx ⊗ 1l)(P3+P4) = σ+ ⊗ 1l ,

where γ1 = λ2

λ1
= 3. By Corollary 3.5.1, the fixed point is unique. Moreover, another

possible solution set is given by Sol(G2) = {(1l⊗ σx)P1, (1l⊗ σx)P2, (σx ⊗ σx)(P3 + P4)},
where only the third element is different. This then results in the new Lindblad term
V ′3 := (σx ⊗ σx)(P3 + P4) = σ+ ⊗ σx which can be used as an alternative to V3 without
sacrificing uniqueness of the target fixed point.

Example 10. Consider a 3-qubit target fixed point which is rank 5 and is given by
ρtar = diag(λ1, λ2, . . . , λ5, 0, . . . , 0). Choosing group elements Gk ∈ G3 as

G1 = σx ⊗ 1l⊗ 1l , G2 = 1l⊗ 1l⊗ σx , G3 = 1l⊗ σx ⊗ σx , G4 = σx ⊗ σx ⊗ σx ,
G5 = σx ⊗ σx ⊗ σx , G6 = σx ⊗ σx ⊗ σx , G7 = σx ⊗ σx ⊗ σx , G8 = σx ⊗ σx ⊗ σx ,

since

G1e1 = e5 , G2e2 = e1 , G3e3 = e2 , G4e4 = e3 ,

G5e5 = e4 , G6e6 = e3 , G7e7 = e2 , G8e8 = e1 ,

and one can immediately see that conditions given by Eqns. (3.117) and (3.118) are
satisfied. Furthermore, one can check that condition given by Eqn. (3.119) is also
satisfied (e.g. for the index set S = {1, 3, 7} we have {G1e1, G3e3, G7e7} = {e5, e2, e2} 6=
{e1, e3, e7}). Therefore Sol(Itar) = {GkPk | Pk = eke

†
k , k = 1, . . . , 8} is a solution set

which provides the Lindblad terms

V1 = 1
4

√
γ1

(
σ− ⊗ (1l + σz)⊗ (1l + σz)

)
,

V2 = 1
4

√
γ2

(
(1l + σz)⊗ (1l + σz)⊗ σ+

)
,

V3 = 1
2

√
γ3

(
(1l + σz)⊗ σ+ ⊗ σ−

)
,

V4 =
√
γ4(σ− ⊗ σ+ ⊗ σ+) ,

and V5 = (σ+ ⊗ σ− ⊗ σ−), V6 = (σ+ ⊗ σ− ⊗ σ+), V7 = (σ+ ⊗ σ+ ⊗ σ−), and V8 =
(σ+ ⊗ σ+ ⊗ σ+) with γk = λ5

λk
for k = 1, . . . , 5 and by Theorem 10 will drive the system

to the unique target state fixed point. Furthermore, since the rank of the target state is
greater than four, we remark that we can also concatenate the Lindblad terms V6, V7 and
V8 into a single term defined as V ′6 := (σx⊗σx⊗σx)(P6 +P7 +P8). By Corollary 3.5.1,
the set of Lindblad terms {V1, V2, V3, V4, V5, V

′
6} will also drive the system to the unique

target state fixed point.
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3.5.4 Summary and Mixed State Symmetry Considerations

In Section 3.3.2 we provided a systematic procedure of determining sets of Lindblad
terms which drive the system to a target pure state fixed point ρ = |ψ〉〈ψ| based on the
symmetries (centraliser) of ρ. Afterwards, in Section 3.4 we showed that it was often
the case (for several prototypical classes) that we were able to construct Lindblad terms
from the symmetries described by elements of a maximally abelian subalgebra of the
centraliser. This led to the motivation in Section 3.5.1 where we defined the notion of
Lindblad terms of generalised canonical form for obtaining diagonal mixed state fixed
points and showed that they too are related to a maximally abelian subalgebra

aρ = spanR {iσm ∈ su(N) | mk ∈ {1, z}} . (3.127)

Therefore, Algorithm 1 in Section 3.3.2 which shows how to obtain sets of Lindblad
terms which drive the system to the desired pure state fixed point can be generalised in
the following sense. For a diagonal target fixed point of full rank (resp. rank degenerate),
Theorem 9 (resp. Theorem 10) provided a means of constructing sets of Lindblad terms
which drove the system to the target fixed point uniquely by using sets of specially
selected projection operators. By the above discussion, we see that these projection
operators are shifted (cf. Eqn. (3.96)) elements of the maximally abelian subalgebra
given by Eqn. (3.127). The generalisation of Algorithm 1 for diagonal mixed state fixed
points is given by Algorithm 3.

Algorithm 3: Unique Target Diagonal∗ Mixed State Fixed Point
Via State Symmetries

Input: Diagonal Target state ρ of rank 1 < r ≤ 2n

Output: Set(s) of Lindblad terms

1. Establish aρ ⊆ sρ is given by Eqn. (3.127)
2. Construct diagonal orthogonal projections Pk

from the max. abelian subalgebra elements
3. For each Pk, identify a paired element Gk := σpk ∈ Gn
4. If rank 1 < ρ < 2n

4a. Ensure the set of all such pairs
satisfy Eqns. (3.117)-(3.119)

4b. If not, return to 3. and select different Gk elements
4c. For all k, construct Vk =

√
γkGkPk from the

solution set and γk according to Theorem 10
4d. Return Lindblad term solution set {Vk}

5. Else (and the fixed point is full rank)
5a. Ensure the set of all pairs satisfy

Eqns. (3.104) and (3.105)
5b. If not, return to 3. and select different Gk elements
5c. For all k, construct Vk =

√
γkGkPk from the solution

set and γk according to Theorem 9
5d. Return Lindblad term solution set {Vk}

∗ with its non-zero eigenvalues being non-degenerate





Chapter 4

Lie Wedges Associated to
Open Quantum Systems

4.1 Introduction

We first briefly summarise the key concepts introduced in Section 1.2. Controlled
Markovian quantum dynamics are appropriately addressed as right-invariant bilinear
control systems of the form [16, 13, 15, 17]

ρ̇(t) = −Lu(t)

(
ρ(t)

)
, ρ(0) ∈ pos1(N) , (4.1)

where Lu now depends on some control variable u ∈ Rm. Here, we focus on coherently
controlled open systems. This means that Lu has the following special from

Lu(ρ) = i adHu(ρ) + Γ(ρ) with adHu := adHd +

m∑
j=1

uj adHj . (4.2)

Note that the control terms i adHj with control Hamiltonians Hj ∈ her(N) are usually
switched by piecewise constant control amplitudes uj(t) ∈ R . The drift term of Eqn.
(4.2) is then composed of two parts, (i) the term i adHd (in abuse of language some-
times called ‘Hamiltonian’ drift) accounting for the coherent time evolution and (ii) a
dissipative Lindblad part Γ. So Lu denotes the coherently controlled Lindbladian. As
in the uncontrolled case, the system given by Eqn. (4.1) acts on the vector space of
all Hermitian operators leaving the set of all density operators invariant. Furthermore,
Eqn. (4.1) allows a group lift to GL(her(N)) which henceforth is referred to as (Σ), i.e.

(Σ) Ẋ(t) = −Lu(t)X(t), X(0) ∈ GL(her(N)) , (4.3)

where for constant control u(t) ≡ u, the solutions of which are of the form Tu(t) := e−tLu

and therefore are Markovian quantum maps. We can then consider the system semigroup
PΣ associated to (Σ) which is given by

PΣ = 〈Tu(t) = exp(−tLu) | t ≥ 0, u ∈ Rm〉S . (4.4)

Now, recall from Section 1.1 that to any closed subsemigroup S of a group G its
tangent cone L(S) at the identity 1l is given by

L(S) := {A ∈ g | exp(tA) ∈ S for all t ≥ 0} . (4.5)

77
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By Theorem 2, we obtained the following fundamental result that PΣ is a Lie subsemig-
roup and hence

PΣ = 〈exp(wΣ)〉S where wΣ := L(PΣ) . (4.6)

This motivated the terminology that wΣ is the Lie wedge associated to a control system
(Σ) since it is the smallest (global) Lie wedge which contains all evolution directions of
the form Lu = i adHu +Γ, u ∈ Rm.

With these semigroup fundamentals refreshed, we can now diverge into different
notions of controllability in open systems. To distinguish between varying degrees of
control, we define three Lie algebras: the control Lie algebra kc, the extended control Lie
algebra kd, and the system Lie algebra gΣ as follows

kc := 〈i adHj | j = 1, . . . ,m〉Lie ,

kd := 〈i adHd , i adHj | j = 1, . . . ,m〉Lie ,

gΣ := 〈Lu|uj ∈ R〉Lie = 〈i adHd +Γ, i adHj | j = 1, . . . ,m〉Lie .

(4.7)

Note that gΣ is different from kd, because it contains the total drift term comprised
of both the Hamiltonian component are dissipative component (i adHd +Γ) for the Lie
closure, whereas kd only uses the Hamiltonian component i adHd . Then (Σ) is said to
fulfill condition (H), (WH), and (A), respectively, if

(H) kc = adsu(N) (4.8)

(WH) kd = adsu(N) while kc 6= adsu(N) (4.9)

(A) gΣ = gLK (or gLK0 for unital systems) , (4.10)

where gLK and gLK0 are the Lindblad-Kossakowski Lie algebra and its unital subalgebra
which were the focus of Chapter 2.

While condition (A) respects a standard construction of non-linear control theory [28,
31] to express accessibility, conditions (H) and (WH) serve to characterize different types
of controllability of the Hamiltonian part of (Σ) in the absence of relaxation: Condition
(H) says that the Hamiltonian part is fully controllable even without resorting to the
drift Hamiltonian, whereas condition (WH) yields full controllability of the Hamiltonian
part with the drift Hamiltonian being necessary. We refer to the first scenario as (fully)
H-controllable and to the second as satisfying the (WH)-condition. Generically, open
systems (Σ) given by Eqn. (1.16) meet the accessibility condition (A) [3, 34]. Finally,
note that via ei adH (ρ) = eiHρ e−iH , the Lie algebra adsu(N) generates the Lie group

AdSU(N)
iso
= PSU(N) here acting on her0(N) by conjugation.

4.2 Computing Lie Wedges I: Approximations and
Theory

In view of the examples worked out in detail in this section (and in Appendix D) we
first sketch how to approximate a Lie wedge of a controlled Markovian system via an
inner approximation following [36, 16]. It consists of the following steps:

(1) form the smallest closed convex cone w containing i adHd +Γ i.e. w = R+
0 (i adHd +Γ);
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(2) compute the edge E(w) of the wedge and the smallest Lie algebra e containing
E(w), i.e. e := 〈E(w)〉Lie;

(3) make the wedge invariant under the Ad action of e by forming the set
⋃
A∈e AdexpA(w);

(4) update by taking the convex hull conv {S} of the set S obtained in step (3) .

The resulting final wedge w is henceforth referred to as inner approximation to the global
Lie wedge wΣ.

Now, the crucial question arises whether the inner approximation w is global or not.
If it is global, Theorem 2 guarantees that w is equal to wΣ. Proving that this inner
approximation or another type of outer approximation coincide with the associated
system Lie wedge is a delicate problem. In general, up until now there has been no
such general method to prove equalities. For completeness, we present two previous
results which partially solved the problem of determining the associated Lie wedge. The
authors of [16] assumed the system was unital and used an outer approximation to show
that for unital single qubit systems which satisfy condition (H) (i.e. fully Hamiltonian
controllable) the outer approximation was exact.

Theorem 12 ([16]). Let (Σ) be a unital controlled open system as in Eqn. (1.16). If
there exists a pointed cone c0 in the set of all positive semidefinite operators that act on
her0(N) so that

(1) Γ ∈ c0

(2) [c0, c0] ⊂ adsu(N)

(3) [c0, adsu(N)] ⊂ (c0 − c0)

(4) AdU c0 AdU† ⊂ c0 for all U ∈ SU(N),

then the subsemigroup associated to (Σ) follows the inclusion PΣ ⊆ AdSU(N) · exp(−c0)
and hence its Lie wedge obeys the relation wΣ ⊆ adsu(N)⊕(−c0), i.e. adsu(N)⊕(−c0) is
a global outer approximation to wΣ.

Corollary 4.2.1 ([16, 2]). Let (Σ) be a unital single-qubit system satisfying condition
(H) with a generic1 Lindblad term Γ. Then the system semigroup is given by PΣ =
AdSU(2) · exp(−c0), where the cone

c0 := R +
0 conv {AdU Γ AdU† | U ∈ SU(2)}

is contained in the set of all positive semidefinite elements in gl(her0). Furthermore
wΣ = adsu(2)⊕(−c0).

We now present the final result along these directions. It solves the inner and outer
approximation problem by proving the inner approximation is in fact global and is
therefore the associated Lie wedge to a control system (Σ). A version of the following
result was presented with a proof for unital systems in [40]. Here we extend the result by
adding a minor change in proof to now additionally accommodate non-unital systems.

1In [16] Corollary 4.2.1 is stated under the above genericity assumption; yet one can drop this
additional condition.
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Theorem 13 ([40]). Let (Σ) be a coherently controlled open quantum system and assume
that the Lie group K which is generated by the control Lie algebra kc := 〈i adH1 , i adH2 , . . . , i adHm〉Lie
is closed. Then the Lie wedge associated to the system is given by

wΣ = kc ⊕ (−c) , where c := R+
0 conv

{
AdU

(
i adHd +Γ

)
Ad†U | U ∈ K

}
, (4.11)

and therefore the reachable set of operators is given by

PΣ = 〈exp(wΣ)〉S . (4.12)

Proof. If the edge of the wedge E(wΣ) = wΣ ∩ −wΣ is given by the control algebra
then by construction this is a Lie wedge. We prove this equality first. Assume that
A + B ∈ E(wΣ) with A ∈ kc and B ∈ c. Hence, there exists some A′ ∈ kc and B′ ∈ c
such that −(A+B) = A′+B′ ∈ E(wΣ) which implies that A+A′ = −B−B′ ∈ E(wΣ).
It can be shown (see for Example [34]) that tr(Γ) > 0 and thus kc ∩ c = {0}. Hence the
equality A + A′ = −B − B′ ∈ E(wΣ) implies that A′ = −A and B′ = −B. Therefore,
it suffices to show that B = B′ = 0. Well, since tr(Γ) > 0 then clearly tr(C) > 0 for
all C ∈ c \ {0} and hence tr(B′) = − tr(B) which implies B′ = B = 0 and therefore
E(wΣ) = kc.

The positive trace argument again implies that the cone c is pointed and thus in light
of Proposition 5.2.1, all we need to show is that c is closed. By assumption, K is closed
(and hence is compact) which implies that the set conv {AdU

(
i adHd +Γ

)
Ad†U | U ∈ K}

is also closed (and compact), which implies that c is closed.
We now prove that the Lie wedge is global. First note that Theorem 1 shows that the

Lindblad-Kossakowski Lie wedge wLK cf. Eqn. (1.14) (which contains every possible
individual system (Σ) Lie wedge) is global. Furthermore, notice that the Lie wedge wΣ

given by Eqn. (4.11) is contained in wLK and its edge is the Lie algebra of the closed
subgroup K. Then since its edge satisfies E(wΣ) = E(wLK)∩wΣ, by Corollary 1.1.1 of
Chapter 1, wΣ is in fact global.

Now, if the system group GΣ is closed, then by Theorem 2 the global Lie wedge wΣ

(constructed via the inner approximation) is the associated Lie wedge to the system.
By Remark 1 of Chapter 1, if GΣ is not closed, then a simple restatement of Theorem
2 where the closures are now taken with respect to GΣ shows again that the Lie wedge
wΣ is the associated Lie wedge to (Σ). Finally, Eqn. (4.12) follows immediately by
Theorem 2.

For the remaining of this thesis we will neglect the subscript Σ on the associated
Lie wedge. Furthermore, if the Lie wedge is associated to a unital system (Σ) we will
use the subscript “0” as w0 = E(w0) ⊕ c0, whereas it will be omitted if the system is
non-unital.

4.3 Unital Single-Qubit Systems

We start out by analysing the structure of the simplest type of Lie wedges - those which
are single qubit and unital. Recall that for a single open qubit system, the controlled
master equation ( in fact its group lift ) is of the form

Ẋ(t) = −
(

i
(
Hd +

∑
j

ujHj

)
+ Γ

)
X(t) . (4.13)

where X(t) may be a considered a density operator (via the so-called vec -representation
or a qubit quantum channel represented in GL(4,C). To ensure complete positivity, the
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relaxation term Γ for the standard unital single-qubit systems (with Vk Hermitian) is
given by Γ = 2

∑
k γk σ̂

2
k to give the nicely structured generator

Lu = i
(
Hd +

∑
j

ujHj

)
+ 2

∑
k∈{x,y,z}

γk σ̂
2
k . (4.14)

The generator is of this form because the iH terms are in the k-part of the Cartan
decomposition of gl(4,C) into skew-Hermitian (k) and Hermitian (p) matrices, whereas
the σ̂2

k terms are in the p-part.

4.3.1 Systems Satisfying Condition (H): Single Lindblad Term

We start out by considering the class of fully Hamiltonian controllable unital single-qubit
systems whose dissipation is governed by a single Lindblad operator σ̂2

k for some k ∈
{x, y, z} i.e. two of the three prefactors γx, γy, γz have to vanish. Choosing the controls
σ̂x and σ̂y such that the system fulfils condition (H) (since 〈iσ̂x, iσ̂y〉Lie = adsu(2)), then
it is actually immaterial which single Pauli matrix is chosen as the Lindblad operator σ̂2

k

because all of the Pauli matrices are unitarily equivalent. So without loss of generality,
one may choose k = z, i.e. γx = 0, γy = 0, and γz =: γ. Therefore the fully Hamiltonian
controllable version of the bit-flip, phase-flip, and bit-phase-flip channels are dynamically
equivalent in as much as they have (up to unitary equivalence) a common global Lie
wedge

w0 := adsu(2)⊕− c0 , (4.15)

with the cone c0 being given by

c0 := R+
0 conv

{
AdU σ̂2

z AdU†
∣∣ U ∈ SU(2)

}
= R+

0 conv
{

ad2
M |M ∈ OSU(2)(σz)

}
(4.16)

where OSU(2)(σz) is the SU(2)-unitary orbit of σz.

4.3.2 Systems Satisfying Condition (WH): Single Lindblad Term

Now we investigate an important class of standard unital single-qubit systems which are
particularly simple in three regards

(i) their dissipative term is governed by a single Lindblad operator, Γ := 2γσ̂2
k for

some k ∈ {x, y, z};

(ii) their switchable Hamiltonian control is brought about by a single Hamiltonian σ̂c
for some c ∈ {x, y, z};

(iii) their non-switchable Hamiltonian drift is σ̂d for some d ∈ {x, y, z}.

Applying the algorithm for the inner approximation of the Lie wedge, we get in step
(1)

wcdk(1) := i Rσ̂c ⊕ −R+
0

(
iσ̂d + 2γσ̂2

k

)
, (4.17)

where again we note the separation by k-p components. In step (2) we identify the span
generated by the control iσ̂c as the edge E(w) of the wedge. So the conjugation has

to be by the control subgroup, i.e. by e−i2θσ̂c = e+iθσ>c ⊗ e−iθσc . Thus in step (3) one
obtains as k” component of the conjugated drift
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Kc
d(θ) := e−iθσ̂c(iσ̂d)e

iθσ̂c =

{
i σ̂d for c = d

i cos(θ)σ̂d + i εcdq sin(θ)σ̂q else
(4.18)

and as p-component

P ck (θ) := e−iθσ̂c(2γ σ̂2
k)eiθσ̂c =

{
2γ σ̂2

k for c = k

2γ
(

cos(θ)σ̂k + εckr sin(θ)σ̂r
)2

else .
(4.19)

The last expression (for c 6= k) can be further resolved using the anticommutator
{A,B}+ := AB +BA

P ck (θ) = 2γ

[
cos2(θ)

sin2(θ)
cos(θ) sin(θ)

]
·
[

σ̂2
k

σ̂2
r

εckr{σ̂k,σ̂r}+

]
= γ

2

[
2

1+cos(2θ)
1−cos(2θ)

sin(2θ)

]
·

 1l
−(σ>k ⊗σk)

−(σ>r ⊗σr)

−εckr((σ>k ⊗σr)+(σ>r ⊗σk))

 ,

(4.20)
where the latter identity gives a decomposition into mutually orthogonal Pauli-basis ele-
ments. To summarize, if the control Hamiltonian neither commutes with the Hamilto-
nian part nor with the dissipative part of the drift, one obtains in terms of the above
Kc
d(θ) and P ck (θ)

ccdk := R+
0 conv {Kc

d(θ) + P ck (θ) | θ ∈ R } (4.21)

However, if [σ̂c,Γ] = 0, then the convex cone in Eqn. (4.21) simplifies by P ck (θ) = Γ
to

ccdk = R+
0 conv

{[ cos(θ)
sin(θ)

1

]
·
[

iσ̂d
iεcdqσ̂q

Γ

] ∣∣∣ θ ∈ R
}

. (4.22)

The final Lie wedge admits the orthogonal decomposition

wcdk := iR σ̂c ⊕−ccdk . (4.23)
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Table 4.1: Controlled Single-Qubit Channels and Their Lie Wedges

Channel Lindblad Terms∗) Kraus Operators ———————— Lie Wedges ————————

WH-Controllable H-Controllable

Bit Flip V1 =
√
a11 σx E1 =

√
r11 σx wcdx = 〈iσ̂c〉 ⊕ −ccdx w0 = adsu(2)⊕− c0

E0 =
√
q11 1l [see Eqns. (4.21,4.22)] [see Eqn. (4.16)]

Phase Flip V1 =
√
a22 σz E1 =

√
r22 σz wcdz = 〈iσ̂c〉 ⊕ −ccdz ——”——

E0 =
√
q22 1l [see Eqns. (4.21,4.22)]

Bit-Phase Flip V1 =
√
a33 σy E1 =

√
r33 σy wcdy = 〈iσ̂c〉 ⊕ −ccdy ——”——

E0 =
√
q33 1l [see Eqns. (4.21,4.22)]

Depolarizing V1 =
√
a11 σx E1 =

√
r1 σx wcd,xyz = 〈iσ̂c〉 ⊕ −ccd,xyz w0 = adsu(2)⊕− cxyz

V2 =
√
a22 σy E2 =

√
r2 σy [see Eqns. (4.18,4.27,4.30)] [see Eqns. (4.31,4.32)]

V3 =
√
a33 σz E3 =

√
r3 σz

E0 =
√
r0 1l

Amplitude V1 =
√
a11 (σx + iσy) E

∗∗)
1 wcd = 〈iσ̂c〉 ⊕ −ccd w0 = adsu(2)⊕− c0

Damping E
∗∗)

0 [see Eqns. (4.40,4.41,4.42)] [see Eqns. (4.36,4.37)]

∗) Primary operators are for purely dissipative time evolutions (no Hamiltonian drift no control). Then the time
dependence of the Kraus operators roots in the GKS matrix {aii}3i=1. Define: λ1 := a22 + a33, λ2 := a22 − a33,

λ3 := a11 + a22, and thereby qii := 1
2 (1 + e−aiit), rii := 1

2 (1− e−aiit), r0 := 1
4 (1 + e−λ1t + e−λ2t + e−λ3t),

r1 := 1
4 (1− e−λ1t + e−λ2t − e−λ3t), r2 := 1

4 (1 + e−λ1t − e−λ2t − e−λ3t), r3 := 1
4 (1− e−λ1t − e−λ2t + e−λ3t).

∗∗) See for instance Section 8.4.1 of [39].
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4.3.3 Application: Bit-Flip and Phase-Flip Channels

Table 4.1 provides an overview of standard unital noise, their respective Lindblad terms
they are described by as well as the corresponding system Lie wedges. In the absence of
any coherent drift or control brought about by the respective Hamiltonians Hd = σ̂d or
Hj = σ̂j , the Kraus representations are standard. By allowing for drifts and controls,
the Kraus rank K of the channel usually increases to K=4 with exception of a single
σ̂d or σ̂j commuting with the single Lindblad operator σ̂2

k keeping K=2. Also the time
dependences become more involved. Explicit results will be given elsewhere.

Two further remarks are in order. Clearly, when the (H) condition is satisfied,
the Lie wedges of all the three channels become equivalent since the Pauli matrices,
and thus the corresponding noise generators are unitarily equivalent. Now suppose the
(WH)” condition is satisfied for a control system with a Hamiltonian drift term described
by σ̂z. Upon including relaxation, now there are two different scenarios: if the control
Hamiltonian (indexed by c ∈ {x, y, z}) commutes with the noise generator (indexed by
k ∈ {x, y, z}), one finds a situation as in Eqn. (4.22), otherwise the scenario is more
general as in Eqn. (4.21).

4.3.4 Systems Satisfying Condition (WH): Several Lindblad Terms

Consider a unital qubit system satisfying the (WH)-condition and whose Lindblad gen-
erator is associated to ` = 2 or ` = 3 different Lindblad terms σ̂2

k. Then one obtains the
following generalisations of the symmetric component P ck (θ) ∈ ccdk.

For ` = 2 and σc ⊥ σk, σc = σk′

P ckk′(θ) = 2

 γ′

γ cos2(θ)

γ sin2(θ)
γ cos(θ) sin(θ)

 ·
 σ̂2

k′

σ̂2
k

σ̂2
r

εckr{σ̂k,σ̂r}+

 (4.24)

= 1
2

 γ′

2(γ+γ′)
γ(1+cos(2θ))
γ(1−cos(2θ))
γ sin(2θ)

 ·


−(σ>
k′⊗σk′ )

1l
−(σ>k ⊗σk)

−(σ>r ⊗σr)

−εckr((σ>r ⊗σk)+(σ>k ⊗σr))

 . (4.25)

(4.26)

while for ` = 3 and σc ⊥ σk, σc ⊥ σk′ , σc = σk′′

P ckk′k′′(θ) = 2

 γ′′

γ cos2(θ)+γ′ sin2(θ)

γ′ cos2(θ)+γ sin2(θ)

(γ−γ′) cos(θ) sin(θ)

 ·
 σ̂2

k′′

σ̂2
k

σ̂2
k′

εckk′{σ̂k,σ̂k′}+

 (4.27)

= 1
2


γ′′

2(γ+γ′+γ′′)

γ+γ′+(γ−γ′) cos(2θ)

γ+γ′−(γ−γ′) cos(2θ)

(γ−γ′) sin(2θ)

 ·


−(σ>
k′′⊗σk′′ )

1l
−(σ>k ⊗σk)

−(σ>
k′⊗σk′ )

−εckk′ ((σ
>
k′⊗σk)+(σ>k ⊗σk′ ))

 . (4.28)

(4.29)

which for γ = γ′ = γ′′ simplifies to

P ckk′k′′(θ) = Γ = 2γ(σ̂2
k + σ̂2

k′ + σ̂2
k′′) . (4.30)
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4.3.5 Application: Depolarizing Channel

Clearly a system which is fully Hamiltonian controllable and subject to depolarizing
noise follows the bit-flip and phase-flip channels in the structure of its associated Lie
wedge as

w0 = adsu(2)⊕− cxyz , (4.31)

where the cone cxyz is given by

cxyz := R+
0 conv

{
AdU (γxσ̂

2
x + γyσ̂

2
y + γzσ̂

2
z) AdU† | U ∈ SU(2)

}
(4.32)

Again, the edge of the wedge is the entire algebra E(w0) = adsu(2) and note that the
Lie wedge in the fully Hamiltonian controllable depolarizing channel with isotropic noise
takes the structure of a Lie semialgebra as will be discussed in Chapter 5, whereas for
anisotropic relaxation, however, this feature does not arise.

If only condition (WH) is satisfied, there are two distinctions: if the noise contribu-
tions are isotropic (i.e. with equal contribution by all the Paulis through γx = γy = γz),
one finds a cone expressed by Eqns. (4.18) and (4.30). However, in the generic aniso-
tropic case, the cone can be expressed by Eqns. (4.18) and (4.27), see also Table 4.1.

4.4 Non-Unital Single-Qubit Systems

For non-unital systems, the Lie wedge can be constructed using a mild generalization of
the concepts introduced in the previous section. Here we outline the basic construction
and illustrate some physically relevant examples. First note that by the commutation
relations of Table E.1 one obtains

[σ̂r, [σ̂r, iσ̂pσ̂
+
q ]] = iσ̂pσ̂

+
q , (4.33)

which is the precondition for the following useful relation

e−iθσ̂c(i σ̂pσ̂
+
q )eiθσ̂c =

{
i σ̂pσ̂

+
q for c 6= p and c 6= q, else,

i cos(θ)σ̂pσ̂
+
q + i sin(θ)

(
δcqσ̂[ic,p]σ̂

+
q + δcpσ̂pσ̂

+
[ic,q]

)
,

(4.34)

where p, q ∈ {x, y, z} and δcq, δcp are the usual Dirac-Delta functions.

4.4.1 Application: Amplitude Damping Channel Satisfying Con-
dition (H)

Suppose the control system (Σ) satisfies condition (H) and induces amplitude damping
noise i.e. the single Lindblad term being given by V1 :=

√
γ (σx + iσy) (neglecting

the normalising coefficient for simplicity). By Eqn. (2.13) the corresponding Lindblad
generator simplifies to

Γ = 2γ
(
σ̂2
x + σ̂2

y

)
+ 4γi

(
σ̂xσ̂

+
y

)
. (4.35)

Then the associated Lie wedge is given by

w = adsu(2)⊕(−c) , (4.36)
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where the cone c is given by (by direct calculation)

c = R+
0 conv

{
AdU ΓV AdU†

∣∣ U ∈ SU(2)
}

= R+
0 conv

{
ΓUV U† | U ∈ SU(2)

}
, (4.37)

and we note that the lack of a “0” index on the wedge w and pointed cone c is inten-
tionally omitted to emphasise the system is non-unital.

4.4.2 Application: Amplitude Damping Channel Satisfying Con-
dition (WH)

As we will now show, the Lie wedge associated to a control system which only has weak
H-controllability ( i.e. satisfies condition (WH)) and subject to amplitude damping noise,
has a very different structure than the previous scenario. Assume we have only the single
σ̂y control Hamiltonian. Then applying the algorithm for the inner approximation of
the Lie wedge, step (1) gives

wyz(1) := i Rσ̂y ⊕−R+
0

(
iσ̂z + 2γ(σ̂2

x + σ̂2
y) + 4γi(σ̂xσ̂

+
y )
)
. (4.38)

In step (3) one obtains as part of the total k component of the wedge the conjugated
drift

Ky
z (θ) := e−iθσ̂y (iσ̂z)e

iθσ̂y = i cos(θ)σ̂z + i sin(θ)σ̂x, (4.39)

as in Eqn. (4.18). The conjugation of the dissipative component Γ now has two com-
ponents: a unital contractive part and a non-unital translational part given by the term
σ̂xσ̂

+
y . The details are worked out in Section 2.2.2 where we showed that such a trans-

lation operator is isomorphic to a vector in R3 and thus applying a unitary rotation to
the operator is equivalent to rotating a vector in three dimensional space. Computing
the effect of the control on the dissipation then yields

e−iθσ̂yΓeiθσ̂y = 2γ e−iθσ̂y (σ̂2
x + σ̂2

y)eiθσ̂y + 4γi e−iθσ̂y
(
σ̂xσ̂y

+
)
eiθσ̂y

=: P (θ)yx + P (θ)yy +Ny
z (θ) ,

where P ck (θ) are given by Eqns. (4.19) and (4.20), while Ny
z describes the change in the

translation component (originally along +z-direction)

Ny
z (θ) = 4γie−iθσ̂y (σ̂xσ̂y

+)eiθσ̂y = 4γi
(

cos(θ)σ̂xσ̂
+
y + γ sin(θ)σ̂yσ̂

+
z

)
.

Finally, the conjugation of the unital component follows by Eqn. (4.19) and gives

2γe−iθσ̂y (σ̂2
x + σ̂2

y)eiθσ̂y = P yx (θ) + 2γσ̂2
y ,

so that the convex cone c is given as

c := R+
0 conv {Ky

z (θ) + P yx (θ) + 2γσ̂2
y +Ny(θ) | θ ∈ R } (4.40)

and the convex hull is taken over the rather large expression

Ky
z (θ) + P yx (θ) + 2γσ̂2

y +Ny
xy(θ) = 2



1
2 cos(θ)

1
2 sin(θ)

2γ cos(θ)
2γ sin(θ)

γ cos(θ) sin(θ)

γ cos2(θ)

γ sin2(θ)
γ

 ·


i σ̂z
i σ̂x

i σ̂xσ̂
+
y

i σ̂yσ̂
+
z

{σ̂x,σ̂z}+
σ̂2
x

σ̂2
z

σ̂2
y

 . (4.41)

Thus, the associated Lie wedge is given by

wyz := iR σ̂y ⊕ (−c) . (4.42)



4.5. OUTLOOK: LIE WEDGES COMPARED TO SYSTEM ALGEBRAS 87

4.5 Outlook: Lie Wedges Compared to
System Algebras

As a final outlook for this Chapter, we discuss an interesting connection between a
systems associated Lie wedge and its system Lie algebra. We have pointed out here that
the system semigroup of allowed quantum operations which result from the interplay
between the coherent controls and the inherent total drift term can be constructed by
the system Lie wedge. Furthermore, we have provided a concrete way to determine this
algebraic structure from only the provided control set and knowledge of the noise/drift
process the quantum system is subject to (cf. Theorem 13). Unlike in closed quantum
systems where the system Lie algebra is the main algebraic structure which provides
information such as accessibility and controllability of the system, in open quantum
systems we can obtain other useful information from the Lie wedge which cannot be
seen from the system Lie algebra.

Consider the following two simple single qubit scenarios. First suppose that the
system undergoes isotropic depolarizing noise combined with a non-switchable drift
Hamiltonian σ̂z. Furthermore, the system is fully Hamiltonian controllable in the sense
that there are two controls iσ̂x and iσ̂y and thus the control algebra is given by adsu(2).
The complete Lindblad generator is then given by

L = i(σ̂z + u1σ̂x + u2σ̂y) + Γ , where Γ = 2γ(σ̂2
x + σ̂2

y + σ̂2
z) , (4.43)

for u1, u2 ∈ R and γ ∈ R+. As outlined in Section 4.3.1, the associated system Lie
wedge wΣ has adsu(2) as its edge and since every element of the edge commutes with Γ,
the wedge is simply given by

wΣ = adsu(2)⊕(−R+
0 Γ) . (4.44)

We also see that the system algebra is 4-dimensional and is given by

gΣ = 〈iσ̂z + Γ, iσ̂x, iσ̂y〉Lie = adsu(2)⊕RΓ . (4.45)

Consider a second scenario where the system undergoes the same total drift term and
now instead of having two control Hamiltonians we restrict to having only a single control
term iσ̂y. As explained in Section 4.3.5, this would imply condition (WH) is satisfied
since kc = R(iσ̂y) is the control Lie algebra, whereas kd = adsu(2) is the extended control
Lie algebra. Moreover, the associated Lie wedge is given by

wΣ = i Rσ̂y ⊕−c where c = R+
0 conv

{[ cos(θ)
sin(θ)

1

]
·
[

iσ̂z
iσ̂x
Γ

] ∣∣∣ θ ∈ R
}

. (4.46)

However, since [iσ̂y, iσ̂z + Γ] = [iσ̂y, iσ̂z] = −iσ̂x, and then [iσ̂x, iσ̂y] = −iσ̂z it’s clear
that the system algebra is again given by gΣ = adsu(2)⊕RΓ. Thus, these two different
control systems have the same system Lie algebra but different Lie wedges. In Chapter
5 we will see that the Lie wedge from the first example is a very special type of Lie
wedge - one which is also a Lie semialgebra.

It is also useful to define a notion of “dimension” of a Lie wedge. In light of the work
of Chapter 2 where we provided a simple basis for the entire Lindblad-Kossakowski
Lie algebra for both unital and non-unital systems, one may at first glance attempt
to use this same basis. However, from the above examples we see that the isotropic
depolarizing Lindblad generator Γ = 2γ(σ̂2

x+ σ̂2
y + σ̂2

z) was a basis element of the system
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algebra gΣ which itself is composed of three basis elements of gLK0 . Furthermore, for
more complicated scenarios such as those with multiple (even simple) Lindblad terms
as discussed in Section 4.3.4 (see for example Eqn. (4.24)) it is slightly more delicate
to see how Γ itself must count as a “basis” element of the wedge - which it must since
we usually take it to be a basis element of the system algebra gΣ. Therefore, we instead
take the approach of determining the dimension of the vector space spanned by the Lie
wedge itself, i.e. dim(wΣ −wΣ), to mean the dimension of the Lie wedge wΣ.

Table 4.2 provides a comparison of the system Lie algebra and dim(w−w) (omitting
the Σ subscript now) for this example as well as several other standard single qubit
scenarios. In those special examples we see that w − w = gΣ. This is to say that the
Lie wedge “explores” every direction of the system algebra it is embedded in. As we
will see later on in Appendix D where we extend the wedge construction methods to
multi-qubit systems, this is strikingly not the case even in simple two-qubit scenarios.
This then provides further evidence that even at the two-qubit level, there is a stark
difference between an open systems Lie algebra and its associated Lie wedge and that
exploring the geometric and algebraic properties of this structure is worth investigating
in future work.

Table 4.2: Analysis of Single Qubit System Algebras subject to Ising Drift

Channel Lindblad Terms Control System Algebra dim(w−w)

Unital Noise
√
γµσµ H ĝLK0 9

Isotropic Depolarizing
√
γσx H adsu(2)⊕RΓ 4
√
γσy
√
γσy

————”———— ——”—— WH adsu(2)⊕RΓ 4

Amplitude Damping
√
γ

2 (σx + iσy) H ĝLK 12

where µ ∈ {x, y, z} and dim(ĝLK0 )=9 and dim(ĝLK)=12



Chapter 5

Lie Semialgebras Associated to
Open Quantum Systems

5.1 Introduction

Here we focus on answering the problem: which types of coherently controlled open
quantum systems (Σ) have associated Lie wedges which specialise to Lie semialgebras?
As outlined in Section 1.1, Lie wedges specialising to Lie semialgebras are important
to characterise time-independent Markovian quantum channels. In particular, it was
proven in [16] that a time-dependent Markovian quantum channel can only be regarded
as a time-independent one if the corresponding Lie wedge satisfies the stronger condition
that it is also a Lie semialgebra.

That is, a Lie semialgebra allows one to use a single time-independent Lindblad gen-
erator contained within it - considered as an “effective” Lindblad generator in connection
to effective Hamiltonian theory - which generates a one-parameter semigroup that can
describe the entire trajectory of the initial state up to some final time tf . Clearly, this
is a special scenario since usually the time evolution of an initial state to any final state
requires the switching of controls and thus uses a combination of different generators
(and products of their respective one-parameter semigroups) to arrive at the desired
state at time tf .

This section completely solves this problem by means of Theorem 15. In fact, we
prove a stronger result which shows that for a Lie wedge associated to a controlled open
quantum system to specialise to a Lie semialgebra it must also specialise to a stronger
type of Lie wedge - a so-called relatively invariant wedge. Furthermore, this occurs if and
only if every element of the control algebra has no effect on both the drift Hamiltonian
and the dissipative dynamics induced by the environment i.e.

[i adHc , i adHd ] = [i adHc ,Γ] = 0 , for all i adHc ∈ kc := 〈i adHj | j = 1, . . . ,m〉Lie ,(5.1)

where i adHj for j = 1, . . . ,m are the control Hamiltonians of the system.

5.2 General Theory of Special Forms of Lie Wedges

First we present a collection of results, which in their general form, are either inherently
found in [23] or which are applications of their results to scenarios which will be of use
in the following section. Concretely, this section will introduce the essential theory and

89
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concepts related to the algebraic analysis of Lie wedges which we will later directly apply
to solve the problem of determining when a Lie wedge specialises to a Lie semialgebra.
Although Lie semialgebras are the main area of interest here, the work of Hilgert, Hof-
mann, and Lawson [23] shows there is a finer classification of Lie semialgebras, which will
be of importance in the course of this section dealing with effectively time independent
Markovian quantum channels.

We start with the following series of notions of invariance of wedges w that are
contained within a finite dimensional Lie algebra g. Wedges w ⊆ g (with edge E(w) :=
w ∩ −w) which satisfy relations of the form

eadAw = eAwe−A = w , (5.2)

where A extends over different sets, can be classified into various types of special wedges:

(1) w is a Lie wedge if eAwe−A = w, for all A ∈ E(w)

(2) w is a Lie semialgebra if (for w restricted to a BCH-neighbourhood near the
identity), ewe−w ⊆ ew

(3) w is a relatively invariant wedge if eAwe−A = w, for all A ∈ w

(4) w is an invariant wedge if eAwe−A = w, for all A ∈ g

Since these definitions rely on the convergent power series due to the exponential, it
is essential to have an infinitesimal description of these special wedges in terms of the
Lie bracket. As a main result in [23] (Scholium II.2.15), the authors prove the useful
equivalent characterisations

(1) w is a Lie wedge, if and only if [A,E(w)] ⊆ TAw for all A ∈ w,

(2) w is a Lie semialgebra, if and only if [A, TAw] ⊆ TAw or all A ∈ w,

(3) w is a relatively invariant wedge, if and only if [A,w] ⊆ TAw or all A ∈ w,

(4) w is an invariant wedge, if and only if [A, g] ⊆ TAw or all A ∈ w.

By E(w) ⊆ TAw ⊆ (w− w) ⊆ g, one immediately gets the hierarchy of wedges via the
obvious implications:

Lie wedge ⇐ Lie semialgebra ⇐ relatively invariant wedge ⇐ invariant wedge.

With these classes of wedges in hand, we can now focus on various results and
aspects of Lie wedges and tangent spaces which will be of use. The first result focuses
on a specific type of Lie wedge w ⊆ g, which as later shown in Section 5.3, is precisely
the form obtained in the context of quantum control.

Proposition 5.2.1. Let E ⊆ g be a Lie subalgebra and let C0 ∈ g be any element in
g. If the cone given by c := R+

0 conv {exC0e
−x | x ∈ E} is closed and pointed and

E ∩ c = {0} then

w = E ⊕ (−c) , (5.3)

is a Lie wedge with E(w) = E.
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Proof. By construction, we trivially have that exwe−x = w for all x ∈ E and thus it is a
Lie wedge. Furthermore, since E is a Lie subalgebra E ⊆ E(w). Assume there exists an
elements A ∈ E and B ∈ c0 such that A+ B ∈ E(w). Then there are elements A′ ∈ E
and B′ ∈ c0 such that −(A+B) = A′+B′ ∈ E(w) and hence A+A′ = −B−B′ ∈ E(w).
Since E ∩ c = {0} then this equality implies that A+A′ = 0 and B +B′ = 0 and hence
−B = B′. Since c is pointed, B and −B cannot both be in c unless they are zero and
therefore E(w) = E.

For a Lie wedge w contained in a Lie algebra g, another notion which will arise
frequently in our discussion is that of a generating Lie wedge. We say that w is generating
whenever w − w = g. Since a Lie wedge may be contained within multiple nested Lie
algebras, it will be useful later to explicitly fix a notion of a generating Lie wedge with
respect to a fixed Lie algebra g. The following result provides an example of a Lie wedge
which is generating in the sense that w−w = 〈w〉Lie and therefore setting g := 〈w〉Lie,
the Lie wedge satisfies the generating criteria w−w = g.

Proposition 5.2.2. Let E ⊆ g be a Lie subalgebra and let C0 ∈ g be any element
in g. If w = E ⊕ (−R+

0 C0) is a Lie wedge, then w − w is a Lie algebra, and in fact
w−w = 〈w〉Lie.

Proof. We have to show that w − w = 〈w〉Lie. Note that w − w = E ⊕ RC0 and since
d
dte

adxC0

∣∣
t=0

= [x,C0] ∈ w − w for all x ∈ E, this implies that [x,C0] = A + B where
A ∈ E and B ∈ RC0 and thus w−w = 〈w〉Lie.

In the following section where we apply these Lie wedge notions to quantum control
systems we will fix a specific Lie algebra g which every Lie wedge is contained in (see the
Convention around Eqn. (5.13)). Furthermore, the following proposition is a collection
of results which will be of use and are either explicitly stated in [23] or are directly
implied by some explanations in and around related results.

Proposition 5.2.3. ([23]) Let w ⊆ g be a Lie wedge. The following collection of results
hold

(1) If w is a Lie semialgebra then w−w = 〈w〉Lie

(2) If w is generating, then w is relatively invariant if and only if it is invariant

(3) If w is an invariant wedge then E(w) and w−w are ideals of g

Proof. (1) The proof is simple but involves properties of the algebraic interior of w which
we leave out at the moment. See Proposition II.2.13 in [23].
(2) Lemma II.1.4 in the same reference implies that that a wedge w ⊆ g is relatively
invariant if and only if exwe−x = w for all x ∈ w−w and therefore if w is a wedge such
that w−w = g then w is relatively invariant if and only if it is invariant. See comments
prior to Proposition II.1.10 in [23].
(3) See the first part of Proposition II.1.10 in the same reference.

To determine whether a Lie wedge further specialises to a Lie semialgebra, relatively
invariant wedge, or invariant wedge, in light of the characterisations (1)-(4) prior to
Proposition 5.2.1 it will be necessary to know a precise formulation of what we mean
by the tangent space at a point A ∈ w. We have the following (usual) differential result
given in [23] which relates elements in the tangent and subtangent space to differentiable
curves.
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Let V be a vector space. Then a function γ : D −→ V forD ⊆ R+ with γ(D∩]0,∞[) ⊆
V is defined to be right-differentiable at 0 if 0 is a cluster point of positive numbers in
D and the right-derivative at 0 given by

γ̇+(0) := lim
t→0
t∈D

1
t

(
γ(t)− γ(0)

)
, exists . (5.4)

With this differential notion in hand, we have to establish some notions on the
geometry of wedges in Lie algebras. That is, let w be a wedge contained in g. For any
A ∈ g, we define the so-called opposite wedge of A with respect to w as

op(A) := A⊥ ∩w∗ , (5.5)

where we recall that the dual wedge w∗ is given by w∗ := {A ∈ g | 〈A,B〉 ≥ 0 for all B ∈
w}. Letting A ∈ w, we can define the subtangent space of w at A ∈ w as

LAw := op(A)∗ (5.6)

and therefore the tangent space of w at A is given by

TAw = LAw ∩ −LAw = (A⊥ ∩w∗)⊥ . (5.7)

We now have the following proposition which relates the tangent and subtangent
vectors of a wedge to the differential characterisation of tangent and subtangent vectors.

Proposition 5.2.4. ([23], Prop. I.5.3 and Cor. 1.5.4) Let w be a wedge in a Lie
algebra g. Then for A ∈ w and B ∈ g we have that

1. B ∈ LAw = w− R+
0 A if and only if there exists a right differentiable function γ

such that γ(0) = A and B = γ̇+(0)

2. B ∈ TAw = LAw ∩ −LAw if and only if there exists a right and left differentiable
function γ such that γ(0) = A and B = γ̇(0)

Clearly, it would be useful to know the exact structure of the tangent space TAw ⊆ g
at every point A ∈ w due to the characterisations of wedges which specialise to stronger
Lie-type structures. Unfortunately, a proof of the exact structure of a tangent space
TAw ⊆ g at any point A ∈ w remains elusive at the time of this thesis submission.
However, we do have the following lower bound which proves to be sufficient for our
purposes.

Proposition 5.2.5. Let w = E(w)⊕ (−c) be a Lie wedge contained in a Lie algebra g.
Then

TAw ⊇ E(w) + RA+ [E(w), A] , for any A ∈ w, and in particular , (5.8)

TAw = E(w) if A ∈ E(w) and TAw = w − w if A ∈ intw−w(w), the interior of w
relative to w−w.

Proof. By Theorem II.1.12 of [23], if w is a Lie wedge then [E(w), A] ⊆ TAw for all
A ∈ w. Clearly w∗ ⊇ A⊥ ∩ w∗ implies w∗⊥ ⊆ (A⊥ ∩ w∗)⊥ = TAw and using the fact
that w∗⊥ = E(w) (by Proposition I.1.7 in [23]) we have the inclusion E(w) ⊆ TAw for
all A ∈ w. Again since A⊥ ⊇ A⊥ ∩ w∗ then RA ⊆ (A⊥ ∩ w∗)⊥ = TAw for all A ∈ w.
Thus we have proved the lower bound.

Now let A ∈ E(w). Well, since w∗ ⊆ E(w)⊥ ⊆ A⊥, we have that x⊥ ∩ w∗ = w∗,
and thus TAw = (x⊥ ∩ w∗)⊥ = (w∗)⊥. Again by Proposition I.1.7 in [23], (w∗)⊥ =
E(w)⊥⊥ = E(w) and therefore TAw = E(w) for A ∈ E(w). The final result that
TAw = w−w is follows trivially from the fact that A is an interior point of w (relative
to the vector space w−w) and thus its tangent space is everything.
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In Section 5.3, we focus on applying these general tangent space notions to Lie wedges
which are associated to controlled quantum systems. We now consider a few more
relationships between the tangent space and the subtangent space of a point A ∈ w.
The following results outline a particularly nice equivalence which, in the end, turns out
to not be necessary for our purposes. However, the general theory may be useful for the
reader when considering Lie wedges associated to a different scenario then we do in the
context of quantum control.

Lemma 5.2.1. Let A ∈ w and let X ∈ TAw such that [A,X] 6∈ TAw. Then either
[A,X] 6∈ LAw or −[A,X] 6∈ LAw
Proof. Assume [A,X] 6∈ TAw0 and [A,X] ∈ LAw0. If −[A,X] were also in LAw0, then
[A,X] would actually be in TAw0 contradicting our assumption [A,X] 6∈ TAw0. Thus
we conclude −[A,X] 6∈ TAw0.

The above result has the immediate consequence.

Corollary 5.2.1. Let A ∈ w. Then one has the equivalence

[A, TAw] ∈ TAw ⇐⇒ [A, TAw] ∈ LAw (5.9)

Theorem 14. Let w ⊆ g be a Lie wedge contained in a Lie algebra g. Then the following
are equivalent:

(1) w is not a Lie semialgebra;

(2) There exists A ∈ w, X ∈ TAw and a linear functional λ : g → R such that
λ(LAw) ≤ 0 and λ([A,X]) > 0;

(3) There exists A ∈ w, X ∈ TAw and a linear functional λ : g → R such that
λ(w− R+

0 X) ≤ 0 and λ([A,X]) > 0.

Proof. (2) ⇒ (3) follows from the equality in Eqn. (5.6) which is a consequence of
Proposition I.1.9 in [23].
(1) ⇒ (2). If w is not a Lie semialgebra then there exists an A ∈ w and X ∈ TAw
such that [A,X] /∈ TAw which is equivalent to [A,X] /∈ LAw by Corollary 5.2.1. By
the Hahn-Banach separation theorem, we know there always exists a linear functional
λ : g −→ R such that λ(LAw0) ≤ 0 and λ(−LAw0) ≤ 0 which implies λ(TAw0) = 0.
Therefore λ([A,X]) > 0 since [A,X] /∈ LAw.
(3)⇒ (1). If λ([A,X]) > 0 then [A,X] /∈ LAw and again by Corollary 5.2.1 this implies
that [A,X] /∈ TAw and hence w is not a Lie semialgebra.

5.3 Application to Quantum Control

We first provide a brief overview of Section 4.1 which provided the background details
and notation on controlled Markovian quantum dynamics. That is, controlled Markovian
quantum dynamics are described by right-invariant bilinear control systems of the form

(Σ) ρ̇(t) = −Lu(t)

(
ρ(t)

)
, ρ(0) ∈ pos1(N) , (5.10)

where Lu depends on a control variable u ∈ Rm, and we called Lu the coherently
controlled Lindbladian. We focus on coherently controlled open systems which are defined
to be those such that Lu is given by

Lu(ρ) = i adHu(ρ) + Γ(ρ) with adHu := adHd +

m∑
j=1

uj(t) adHj , (5.11)
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where the control terms i adHj with control Hamiltonians Hj ∈ her(N) are modulated
by piecewise constant control amplitudes uj(t) ∈ R . The drift term of Eqn. (5.11) is
then composed of two parts, (i) the ‘Hamiltonian’ drift term i adHd which describes the
coherent time evolution and (ii) a dissipative Lindbladian part Γ.

Furthermore, to distinguish between varying degrees of control, we defined three Lie
algebras: the control Lie algebra kc, the extended control Lie algebra kd, and the system
Lie algebra gΣ as

kc := 〈i adHj | j = 1, . . . ,m〉Lie ,

kd := 〈i adHd , i adHj | j = 1, . . . ,m〉Lie ,

gΣ := 〈Lu|uj ∈ R〉Lie = 〈i adHd +Γ, i adHj | j = 1, . . . ,m〉Lie ,

(5.12)

where we specifically make note that gΣ is different from kd, because it contains the total
drift term i adHd +Γ for the Lie closure, whereas kd is generated by the Hamiltonian drift
component i adHd . For more details, see Section 4.1.

In Section 2.3, we provided an explicit representation of the Lindblad-Kossakowski
Lie algebras for both n-qubit unital (gLK0 ) and non-unital (gLK) systems, cf. Theorems
4 and 5, respectively. These are the largest (physically) possible Lie algebras a Lie wedge
associated to a Markovian semigroup of quantum channels may be contained in.

Convention. Let (Σ) be a coherently controlled open quantum system, gΣ the corres-
ponding system algebra and w ⊆ gΣ its Lie wedge. Thus, we are working with the overall
inclusion

w ⊆ (w−w) ⊆ gΣ ⊆ gLK , (5.13)

where w − w is the vector space generated by w and we define the Lie wedge to be
generating if w−w = gLK , (or w−w = gLK0 if it is a unital system). Furthermore, as
an application of Proposition 5.2.3, if w is a Lie semialgebra then we have the equality
w−w = gΣ.

5.3.1 Coherently Controlled Closed Systems

As a motivation for the open system scenario, it is helpful to discuss closed systems first
to show that even in this case, it is non-trivial to show which Lie wedges specialise to
Lie semialgebras. Suppose that the system (Σ) is closed in the sense that the dissipative
Lindbladian component Γ ≡ 0 and hence Lu = i adHd +i

∑m
j=1 uj(t) adHj , for uj(t) ∈ R

and note that w0 ⊆ gΣ = kd. One might ask in what situations does the system Lie
wedge satisfy w0 = gΣ = kd and thus would specialise to a Lie semialgebra.

First, suppose that there exists an x ∈ kc := 〈i adHj | j = 1, . . . ,m〉Lie such that
eadx(i adHd) = −λi adHd for some λ ∈ R+. Then i adHd , i adH1

, . . . , i adHm ∈ E(w) since
E(w0) = w0 ∩ −w0. Moreover, since E(w0) is a Lie algebra we then get that E(w0) =
w0 = kd = gΣ and hence [A, TAw0] ⊆ TA for all A ∈ w0 where TAw0 = E(w0) = gΣ

by Proposition 5.2.5 we see that w0 is trivially a Lie semialgebra. Furthermore, a
classic result (see for example [31] and Prop. V.0.18 in [23]) shows that every compact
subsemigroup (with non-empty interior) of SU(2n) is in fact a subgroup and therefore if
the group 〈exp kd〉G is closed, then w0 is a Lie algebra and thus also a Lie semialgebra.

In the context of open quantum systems i.e. when the Lindblad generator Γ is non-
zero, the situation is much more delicate. For example, the first scenario described above
cannot occur since the Lindblad generator which describes the irreversible processes
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the environment induces on the system cannot be inverted. Moreover, the semigroup
argument used in the second scenario above also cannot be used. Thus we must use a
different tool-set to tackle this problem, namely, the concepts of tangent and subtangent
spaces of the systems associated Lie wedge.

5.3.2 Coherently Controlled Open Systems

Now we consider the general open system scenario where (Σ) is given by Eqn. (5.11) such
that the dissipative Lindbladian component Γ 6= 0 and hence Lu = i(adHd +

∑m
j=1 uj(t) adHj )+

Γ, for uj(t) ∈ R . Theorem 13 of Section 4.1 proved the form of the Lie wedge associated
to such a control system. We restate it here for convenience.

Theorem 13. Let (Σ) be a coherently controlled open quantum system and assume that
the Lie group K which is generated by the control Lie algebra kc := 〈i adH1

, i adH2
, . . . , i adHm〉Lie

is closed. Then the Lie wedge associated to the system is given by

w = kc ⊕ (−c) , where c := R+
0 conv

{
AdU

(
i adHd +Γ

)
Ad†U | U ∈ K

}
, (5.14)

and therefore the reachable set of operators is given by

PΣ = 〈exp(wΣ)〉S . (5.15)

The fact that Lie wedges for coherently controlled open quantum systems take this
form where the convex cone c is pointed, closed and in a sense generated by the single
element i adHd +Γ allows us to prove several remarkable properties. The first is that we
can provide a necessary and sufficient condition for when a Lie wedge is simultaneously
a relatively invariant wedge.

Proposition 5.3.1. Let (Σ) be a coherently controlled open quantum system with total
drift term D := i adHd +Γ, where Γ can be unital or non − unital. Furthermore, let
gΣ denote the corresponding system algebra, w ⊆ gΣ its Lie wedge and kc = E(w) its
control Lie algebra. Then w is relatively invariant if and only if w = E(w)⊕ (−R+

0 D).

Proof. If w is a relatively invariant wedge then [A,w] ⊆ TAw for all A ∈ w by the
condition prior to Proposition 5.2.1. We will show that by the choices of A ∈ w for a
Lie wedge w of the form given by Eqn. (5.14) will impose that w = E(w)⊕ (−R+

0 D).
First let A ∈ E(w) = kc. Then TAw = E(w) by Proposition 5.2.5 and hence the

commutation inclusion implies that it must be true that [E(w),w] ⊆ E(w). Now since
D = i adHd +Γ ∈ w this shows that [A,D] ∈ E(w) for all A ∈ E(w) and therefore∑
k

1
k! adkA(D) ∈ E(w) also. By series expansion of the exponential, we then know that

eadA(D) = D +
∑
k

1
k! adkA(D) ∈ E(w) ⊕ RD for all A ∈ E(w). By Theorem 13 of

Section 4.1, Lie wedges for our quantum control scenario are given by w = E(w)⊕ (−c)
where c := R+

0 conv{eadA(D) | for all A ∈ E(w)}. Thus, c ⊆ E(w) ⊕ RD which im-
plies that w ⊆ E(w)⊕ RD, which finally shows that the Lie wedge must have the form
w = E(w)⊕ (−R+

0 D).

Alternatively, suppose that w = E(w)⊕ (−R+
0 D) is the Lie wedge of the system - we

want to prove that the Lie wedge is relatively invariant by showing that [A,w] ⊆ TAw
for all A ∈ w. We now will go through the possible scenarios for the choice of A ∈ w.

First let A ∈ E(w) and note again that TAw = E(w) by Proposition 5.2.5. By the
structure of c its clear that the edge of the wedge leaves the total drift termD = i adHd +Γ
invariant and hence [A,D] = 0 for all A ∈ E(w). Since E(w) is a Lie algebra, it’s clearly
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true that [A,E(w)] ⊆ E(w) and thus [A,w] ⊆ TAw for A ∈ E(w). Now for any other
A ∈ w such that A /∈ E(w), the subspace inclusion given by Proposition 5.2.5 implies
that TAw = E(w) ⊕ RA = w − w. Furthermore, by the structure of the Lie wedge,
Proposition 5.2.2 then implies that TAw = w − w = 〈w〉Lie. It’s clearly true that
[A,w] ⊆ 〈w〉Lie for all such A ∈ w and thus the Lie wedge is relatively invariant.

In fact, we can prove a something stronger. The following result proves that for
coherently controlled (Markovian) quantum systems, a Lie wedge is a Lie semialgebra
if and only if it is also a relatively invariant wedge - which we completely characterised
in the previous result.

Theorem 15. Let (Σ) be a coherently controlled open quantum system with total drift
term D := i adHd +Γ, where Γ can be unital or non − unital and assume that the
group generated by the control Lie algebra kc is closed. Furthermore, let gΣ denote
the corresponding system algebra and w ⊆ gΣ its Lie wedge. Then the following are
equivalent

(1) w is a Lie semialgebra

(2) w is a relatively invariant wedge

(3) w = kc ⊕ (−R+
0 D)

(4) [i adHc ,D] = 0 for all i adHc ∈ kc

Proof. (1) ⇒ (4). Suppose that w is a Lie semialgebra but [E(w),D] 6= 0. By as-
sumption we know that [A, TAw] ⊆ TAw for all A ∈ w. Thus for A := D we have
that [A, [E(w), A]] ⊆ TAw since [E(w), A] ⊆ TAw by Proposition 5.2.4. Now let
A′ := i adHc +A for any i adHc ∈ E(w), and note that by including the edge ele-
ment, the tangent space doesn’t change in the sense that TA′w = TAw since LA′w =

LAw = w− R+
0 A by Proposition 5.2.4. Using the tangent space commutation rela-

tion again we have that [A′, [E(w), A′]] = [i adHc , [E(w), i adHc ]] + [i adHc , [E(w), A]] +
[A, [E(w), i adHc ]] + [A, [E(w), A]] ⊆ TAw. Clearly then the first, third and fourth terms
are all already contained in TAw (the fourth from the previous discussion) and thus
we must also have that the third term [i adHc , [E(w), A]] ⊆ TAw. We can now check
that [A′, [i adHc , [E(w), A]]] ⊆ TAw which would show that ad3

x(A) ∈ TAw for all x =
i adHc ∈ E(w). Iterating this procedure, we have that eadxA = A+

∑
k

1
k! adkx(A) ∈ TAw

for all x ∈ E(w). This implies that w ⊆ TAw, and hence w−w ⊆ TAw. Since trivially
we know that TAw ⊆ w− w this implies that TAw = w− w. However, by Proposition
5.2.3, since w is a Lie semialgebra, we know that w − w = gΣ and hence TAw = gΣ.
Due to the fact that A := D is a boundary point of the Lie wedge, this equality of the
tangent space and the system algebra cannot occur. Hence, this contradiction implies
[E(w),D] = 0.

(4) ⇒ (3). If [E(w),D] = 0 then the controls have no effect on the total drift term.
Then eadx(D) = D for all x ∈ kc and hence by Theorem 13 of Section 4.1 the associated
system Lie wedge is given by w = kc ⊕ (−R+

0 D).

(3)⇒ (2). Follows by Proposition 5.3.1.
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(2)⇒ (1). This direction follow from the hierarchy of Lie wedges discussed prior to
Proposition 5.2.1 in Section 5.2.

This result then has some immediate implications.

Corollary 5.3.1. Suppose we have the same preconditions as Theorem 15 and addi-
tionally assume that the edge of the wedge is non-zero. Then there exists no Lie wedges
which specialise to invariant Lie wedges.

Proof. Recall that an invariant Lie wedge in our context is one which satisfies [A, gLK ] ⊆
TAw for all A ∈ w for non-unital systems (or [A, gLK0 ] ⊆ TAw for all A ∈ w for unital
systems). By the hierarchy of types of invariance a wedge can take, we know that an
invariant wedge must be relatively invariant. Since Theorem 15 shows that all relatively
invariant wedges are of the form w = E(w)⊕(−R+

0 D) this implies that invariant wedges
are those of the same form which satisfy the tangent space commutation inclusion just
described. Letting A ∈ E(w) shows that for a Lie wedge to be an invariant Lie wedge
it must be true that [A, gLK ] ⊆ E(w) (or [A, gLK0 ] ⊆ E(w) for unital systems) since
TAw = E(w). Clearly this cannot always occur and thus we are done.

Corollary 5.3.2. Suppose we have the same preconditions as Theorem 15 and addi-
tionally assume that (Σ) is accessible (i.e. gΣ = gLK or gLK0 for non-unital or unital Γ,
respectively). Then the corresponding Lie wedge w is not a Lie semialgebra, relatively
invariant wedge, or invariant wedge.

Proof. If gΣ = gLK or gLK0 then clearly we must have that there exists at least one
i adHc ∈ E(w) such that [i adHc ,D] 6= 0 and thus the result follows from Theorem
15.

Which then leaves us with a final (now) trivial result.

Corollary 5.3.3. Suppose we have the same preconditions as Theorem 15. If there
exists an i adHc ∈ kc such that [i adHc ,D] 6= 0 then w is only a Lie wedge in the sense
that it does not specialise to a Lie semialgebra, relatively invariant wedge, or invariant
wedge.

5.4 Examples

Theorem 15 completely solves the problem of how to determine which Lie wedges
specialise to Lie semialgebras. However, it is nonetheless illuminating to consider several
illustrative examples which show other means of proving whether a Lie wedge fails to
be a Lie semialgebra . Notably, the application of Theorem 14 may be useful in other
contexts related to the Lie wedges we considered here.

Example 11. (Two-Qubit Lie Semialgebra)
As a simple example of a Lie wedge which specialises to a Lie semialgebra, we consider
a two qubit system corresponding to

ρ̇ = −
(
iσ̂d +

∑
j

uj iσ̂j + Γ
)
ρ , with Γ = 2

∑
µ,ν

σ̂2
µν , and u1 ∈ R , (5.16)

for all µ, ν ∈ {x, z, y} such that the drift Hamiltonian is given by iσ̂d := i(σ̂z1 + σ̂1z), and
the control Hamiltonians are σ̂j ∈ {σ̂x1, σ̂y1; σ̂1x, σ̂1y}. This system undergoes non-local
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isotropic depolarising and since 〈iσ̂x1, iσ̂y1〉Lie = adsuA(2)⊗1lB, and 〈iσ̂1x, iσ̂1y〉Lie = 1lA ⊗
adsuB(2), there is full H-controllability on qubit A and B individually. The corresponding
Lie wedge is given by

w0 = adsuA(2)⊕̂suB(2)⊕− R+
0 (Γ) , (5.17)

since iσ̂d ∈ E(w0) and [E(w0),Γ] = 0. By Theorem 15, w0 is a Lie semialgebra (and
relatively invariant wedge). The interested reader may see Table D.2 for a comparison
between the wedge dimension and system algebra.

Example 12. (Invariant Dissipative Component & Non-invariant Drift Hamiltonian)
Consider the single qubit system described by

ρ̇ = −
(
iσ̂z + u1iσ̂y + Γ

)
ρ , with Γ = 2(σ̂2

x + σ̂2
y + σ̂2

z) , and u1 ∈ R , (5.18)

which is WH-controllable and undergoes isotropic depolarising noise. The system Lie
algebra is given by gΣ = 〈E(w0), iσ̂z + Γ〉Lie = adsu(2)⊕RΓ, and the corresponding Lie
wedge is given by w0 = Riσ̂y ⊕−c0, where

c0 = R+
0 conv {cos(θ)iσ̂z + sin(θ)iσ̂x + Γ | for all θ ∈ R} , (5.19)

since [E(w0),Γ] = 0. Thus by Theorem 15 we already know w0 is no Lie semialgebra,
but this particular wedge is almost one in the sense that the controls have no effect on
the dissipative component Γ. We will show we inevitably obtain a contradiction that
[A, TAw0] ⊆ TAw0 for all A ∈ w0. Let A := Γ. Since the system algebra has dimension
four, the tangent space inclusion given by Proposition 5.2.5 is in fact an equality and
hence we obtain

TAw0 = Riσ̂y ⊕ RΓ⊕ R[iσ̂y,Γ] , (5.20)

and since [Γ, [iσ̂y,Γ]] ∈ Riσ̂y (by the Cartan k − p commutation relations) we do have
that [A, TAw0] ⊆ TAw0. Now define A′ = iσ̂y+iσ̂z+Γ. Then [E(w0), A′] = −iσ̂x ∈ TAw
which gives [A′, [E(w0), A′]] = −[iσ̂y, iσ̂x]− [Γ, iσ̂x] = −iσ̂z /∈ TAw0 and therefore w0 is
not a Lie semialgebra, relatively invariant wedge, or invariant wedge.

Example 13. (H-Controllable Standard Single Qubit System)
Consider a single qubit controlled open quantum system

ρ̇ = (u1iσ̂x + u2iσ̂y + iσ̂z)(ρ) + Γ(ρ) , with Γ = 2σ̂2
y , (5.21)

where u1, u2 ∈ R and therefore the system is fully H-controllable. In Section 4.3.1,
we showed that a system of this type has its corresponding Lie wedge given by w0 =
adsu(2)⊕− c0 where the cone c0 is defined by

c0 := R+
0 conv

{
ad2
M |M ∈ OSU(2)(σz)

}
. (5.22)

Let A := iσ̂z + Γ be the total drift term. Then by Proposition 5.2.5, the tangent space at
A contains the subspace

TAw0 ⊇ adsu(2)⊕RΓ⊕ spanR
{
{σ̂x, σ̂y}+, {σ̂y, σ̂z}+

}
,

where we used the fact that [iA,B2] = {[iA,B], B}+ for general square matrices.
Defining the linear functional λ(g) := 〈(2σ̂2

x − σ̂2
y), g〉 for g ∈ ĝΣ, its clear that

λ(TAw0) = 0 since 2σ̂2
x − σ̂2

y ∈ (TAw0)⊥ = A⊥ ∩ w∗0. Checking if [A, TAw0] ⊆ TAw0

we obtain [A,−{σ̂x, σ̂y}+] = 2(σ̂2
y − σ̂2

x) and therefore λ(2(σ̂2
y − σ̂2

x)) = −24 which by
Theorem 14 implies that w0 is not a Lie semialgebra, relatively invariant wedge or
invariant wedge.



Appendix A

The Lindblad-Kossakowski Lie
Algebra: Supplementary
Proofs

Here we provide some material which had been omitted in Chapter 1 in order to avoid
that reader who is familiar with the subject gets bored. Most proofs are straightforward
computations combined with some standard arguments from linear algebra. First we
restate Lemma 1.3.1.

Lemma 1.3.1. If V1, . . . , Vm ∈ sl(N,C ), i.e. if V1, . . . , Vm are traceless, the operator
Γ given by Eqn. (1.21) is purely dissipative.

Proof. Operator approach: First, let ãdiH and Γ̃ denote the canonical extensions of adiH

and Γ, respectively, to gl(N,C ). Then, it is straightforward to show that orthogonality
of ãdiH and Γ̃ is equivalent to orthogonality of adiH and Γ. Therefore, it is sufficient to
prove that Γ̃ is orthogonal to any ãdiH . Moreover, due to linearity we can assume that
Γ̃ consists of a single Lindblad term, i.e.

Γ̃(X) = 2V XV † − V †V X −XV †V

with trV = 0. With these preliminary consideration, we obtain

〈ãdiH , Γ̃〉 =

N∑
k,l

tr
((

ãdiH(eke
†
l )
)†

Γ̃(eke
†
l )
)

=

N∑
k,l

tr
([

iH, eke
†
l

]†
Γ̃(eke

†
l )
)

=

N∑
k,l

tr
(

iH
[
ele
†
k, Γ̃(eke

†
l )
])

=

N∑
k,l

tr
(

iH
(
2ele

†
kV eke

†
lV
† − ele†lV

†V − ele†kV
†V eke

†
l

))

−
N∑
k,l

tr
(

iH
(
2V eke

†
lV
†ele

†
k − eke

†
lV
†V ele

†
k − V

†V eke
†
k

))

=

N∑
k,l

(
2i tr

(
Hele

†
kV eke

†
lV
†)− i tr

(
Hele

†
lV
†V
)
− i tr

(
Hele

†
kV
†V eke

†
l

))
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−
N∑
k,l

(
2i tr

(
HV eke

†
lV
†ele

†
k

)
− i tr

(
Heke

†
lV
†V ele

†
k

)
− i tr

(
HV †V eke

†
k

))
,

= 2i

N∑
k,l

e†kV ek · e
†
lV
†Hel − i

N∑
k,l

e†lV
†V Hel − i

N∑
k,l

e†lHel · e
†
kHV

†V ek

− 2i

N∑
k,l

e†kHV ek · e
†
lV
†el + i

N∑
k,l

e†kHek · e
†
lV
†V el + i

N∑
k,l

e†kHV
†V ek

= 2i · trV · tr(V †H)− iN · tr(V †V H)− i · trH · tr(V †V )

− 2i · tr(HV ) · tr(V †) + i · trH · tr(V †V ) + iN tr(HV †V )

= 2i · trV
(

tr(V †H)− tr(HV )
)

= 0

where the last equality follows from the fact that V is assumed be to tracelass. Thus,
the proof is complete.

Kronecker approach: Define

iâdH := i(1l⊗H −H> ⊗ 1l) (A.1)

and
Γ̂ := 2V ⊗ V − 1l⊗ V †V − V >V ⊗ 1l . (A.2)

Exploiting the fact that the (̂·)–isomorphism defined by Eqn. (1.43) is actually scalar
product preserving with respect to the standard Hilbert-Schmidt scalar product on
gl(N2,C ) one yields the following computation

〈iâdH , Γ̂〉 = 〈i(1l⊗H −H> ⊗ 1l), 2V ⊗ V − 1l⊗ V †V − V >V ⊗ 1l〉

= −i tr
(

(1l⊗H −H> ⊗ 1l)†(2V ⊗ V − 1l⊗ V †V − V >V ⊗ 1l)
)

= −2i tr(V ⊗HV −HV ⊗ V ) + i tr(1l⊗HV †V −H> ⊗ V †V )

+ i tr(V >V ⊗H −H>V >V ⊗ 1l)

= −2i trV · tr(HV ) + 2i tr(HV ) · trV + iN tr(HV †V )− i trH> · tr(V †V )

+ i tr(V >V ) · trH − iN tr(H>V >V )

= −2i trV · tr(HV ) + 2i tr(HV ) · trV = 0

where the second last equality follows from tr(A) = tr(A>) and the last one from the

fact that V is assumed to be traceless. Thus, again we have iâdH ⊥ Γ̂ and hence
i adH ⊥ Γ.

For the following results which serve as a fundamental background to the represent-
ation theory of Lie algebras used in this work, recall that for n-qubit quantum systems,
the dimension is given as N = 2n.

Lemma 1.3.4. Let gLK and gLK0 denote the Lindblad-Kossakowski algebra and its unital
subalgebra. Moreover, let gE and gE0 denote the following subsets of gl

(
her(N)

)
:

gE :=
{

Φ ∈ gl
(
her(N)

) ∣∣ Im Φ ⊂ her0(N)} (A.3)

and
gE0 :=

{
Φ ∈ gl

(
her(N)

) ∣∣ Im Φ ⊂ her0(N), 1lN ∈ ker Φ} . (A.4)

Then, one has the following results and commutative diagrams:
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(a) gE and gE0 are real (Lie) subalgebras satisfying the inclusion relations:

gLK
0

inc−−−−−→ gE0yinc

yinc

gLK inc−−−−−→ gE

(b) Commutative diagrams for gLK0 :

voc(gLK
0 )

inc−−−−−→ gl(N2−1,R )
emb−−−−−→ gl(N2,R )xvoc

xvoc

xvoc

gLK
0

inc−−−−−→ gE0
inc−−−−−→ gl

(
her(N)

)
and

gLK
0

inc−−−−−→ gE0
inc−−−−−→ gl

(
her(N)

) em−−−−−→ gl
(
CN×N

)
y(̂·)

y(̂·)
y(̂·)

y(̂·)

ĝLK
0

inc−−−−−→ ĝE0
inc−−−−−→ ĝl

(
her(N)

) inc−−−−−→ gl
(
N2,C

)
(c) Commutative diagrams for gLK :

voc(gLK)
inc−−−−−→ gl(N2−1,R )⊕s RN2−1 ems−−−−−→ gl(N2,R )xvoc

xvoc

xvoc

gLK inc−−−−−→ gE
inc−−−−−→ gl

(
her(N)

)
and

gLK inc−−−−−→ gE
inc−−−−−→ gl

(
her(N)

) em−−−−−→ gl
(
CN×N

)
y(̂·)

y(̂·)
y(̂·)

y(̂·)

ĝLK inc−−−−−→ ĝE
inc−−−−−→ ĝl

(
her(N)

) inc−−−−−→ gl
(
N2,C

)
(d) In particular, one has the following bounds on the dimensions of gLK0 and gLK :

dimR gLK0 ≤ (N − 1)2 and dimR gLK ≤ (N − 1)N . (A.5)

Here, inc : ∗ → ∗ denotes the cannonical inclsion map and

emb : gl(N2 − 1,R )→ gl(N2,R ),

ems : gl(N2 − 1,R )⊕s RN2−1 → gl(N2,R )

em : gl
(
her(N)

)
→ gl

(
CN×N) (A.6)

are natural embeddings defined by

A 7→ emb(A) :=

(
A 0
0 0

)
(A.7)

(A, b) 7→ ems(A, b) :=

(
A b
0 0

)
(A.8)

and
Φ 7→ em(Φ) , (A.9)

where em(Φ) acts on V = C + iC ∈ CN×N with C,D ∈ her(N) via em(Φ)(V ) :=
Φ(C) + iΦ(D).
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Remark 14. By the above commutative diagrams it is obvious that all result on gLK

and gLK0 can be immediately carried over to ĝLK and ĝLK0 and vice versa.

Proof. (Sketch) Due to the fact that the flow of Φ is trace-preserving one has ImL ⊂
her0(N) for all L ∈ wLK. This property clearly carries over to all L ∈ gLK and therefore
(by choosing any matrix representation) an easy counting argument shows dim gLK ≤
(N − 1)N .

For all L ∈ wLK
0 one has the additional property R 1lN ⊂ kerL, which again passes

to gLK0 . Consequently, a similar counting argument yields dim gLK0 ≤ (N − 1)2.

Consider the standard Cartan-decomposition of

gl
(
CN×N) = glskew

(
CN×N)⊕ glself

(
CN×N) , (A.10)

into skew- and self-adjont operators (with respect to the Hilbert-Schmidt scalar product)
as well as the standard Cartan-decomposition of

gl
(
N2,C

)
= u(N2)⊕ her(N2) (A.11)

into unitary and Hermitian matrices. Our next Corollary clarifies how these decompos-

itions go along with the (̂·)-operation.

The following straightforward Corollary serves as the basis for making use of Cartan-
decompositions throughout this thesis. It provides the dimensions of the k and p parts
of the Lie algebra gE - which we proved was isomorphic to the Lindblad-Kossakowski
Lie algebra for open quantum systems.

Corollary A.0.1. Let the notation be as in Lemma 1.3.4 Then the standard Cartan-
decompositions of gl

(
CN×N) and gl

(
N2,C

)
given by Eqns. (A.10) and (A.11), respect-

ively, match with the (̂·)-operation, i.e. ĝlskew

(
CN×N) = u(N2) and ĝlself

(
CN×N) =

her(N2). Moreover, they induce Cartan-decompositions of gE0 and ĝE0 in the following
way:

gE0 = kE0 ⊕ pE0 and ĝE0 = k̂E0 ⊕ p̂E0 (A.12)

with

kE0 := gE0 ∩ glskew

(
CN×N) , (A.13)

pE0 := gE0 ∩ glself

(
CN×N) , (A.14)

and

k̂E0 := ĝE0 ∩ u(N2) , (A.15)

p̂E0 := ĝE0 ∩ her(N2) . (A.16)

The dimensions of the involved subspaces are

dimR kE0 = dimR k̂E0 = (N2−1)(N2−2)
2 (A.17)

and
dimR pE0 = dimR p̂E0 = N2(N2−1)

2 . (A.18)



Appendix B

The Lindblad-Kossakowski
Ideal: Supplementary Proofs

In this Appendix we prove several results pertaining to Chapter 2 which use the abstract
operator representation of elements contained in the Lindblad-Kossakowski Lie algebra
gLK = gLK0 ⊕s i.

Remark 15. For any fixed q ∈ In0 , there exists p ∈ In0 such that ad2
σp

(σq) = 4σq.

Moreover, there exists no r ∈ In0 such that ad2
σr

(σq) = −4σq and hence
∑

p ad2
σp

∣∣
her0(2n)

6=
0. More precisely, by Lemma 2.3.1 there are exactly 22n−1 elements σp ∈ Bn0 which do
not commute with any single fixed σq ∈ her0(2n) and therefore

C0

∣∣
her0(2n)

= 1l2n , where C0 :=
1

22n−1

∑
p

ad2
σp

. (B.1)

Lemma B.0.1. For C0 defined in Eqn. (B.1), we have that

adC0

∣∣
gE0

= 0 and adC0

∣∣
gE
∈ i , (B.2)

and in particular, adC0

∣∣
mqt
∈ i.

Proof. Note that we already know that gLK0 = gE0 . Let A ∈ gLK0 and note that
A
∣∣
her0(2n)

∈ gl
(
her0(2n)

)
. Then [C0, A] ∈ gLK0 and [C0, A](σp) = (C0A − AC0)(σp) =

C0(A(σp))−A(C0(σp)) = A(σp)−A(σp) = 0 which follows from Eqn. (B.1) and hence
[C0, g

LK
0 ] = 0. To prove the second assertion we note that for B ∈ gE we have that

B
∣∣
her0(2n)

∈ gl
(
her0(2n)

)
and B(1l2n) ∈ her0(2n). Again using Eqn. (B.1) we see that

[C0, B](1l2n) = C0B(1l2n) − BC0(1l2n) = C0B(1l2n) ∈ her0(2n) since C0(1l2n) = 0. Thus,
[C0, B](σp) = C0(B(σp)) − B(C0(σp)) = 0 and therefore [C0, B] satisfies the proper-
ties of being an infinitesimal translation i.e. [C0, g

E ] ⊆ i. Finally note that the set
of quasi-translations mqt are not contained in gLK0 by Proposition 2.3.2 and therefore
[C0,mqt] ⊆ i.

Lemma B.0.2. For τ̂m,k defined in Eqn. (2.73) (which has its “hat” omitted), its
corresponding operator representation is given by τm,k := i

4 adσq,k ◦ ad+
σp,k

with m = p?q.
Then

τm,k = 1l2 ⊗ ...⊗ τm ⊗ · · · ⊗ 1l2 , (B.3)
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where τm is at the kth position in the tensor products and hence

n∏
k=1

τmk,k = τm1 ⊗ τm2 ⊗ · · · ⊗ τmn . (B.4)

Proof. For notational convenience assume that the translation acts on the first qubit.
For any σr ∈ Bn we have that

τm,1(σr) = i
4 adσq⊗1l2...⊗1l2

◦ ad+
σp⊗1l2...⊗1l2

(σr)

= i
4 (adσq ◦ ad+

σp ⊗1l2n−1)(σr)

= (τm ⊗ 1l2n−1)(σr) .

Taking n products of local operators each on different qubits then yields the equality in
Eqn. (B.4).

Now that the locality of the quasi-local translation operators is explicit, Corollary
2.4.2 from Section 2.4 follows immediately.

Corollary 2.4.2. For a fixed m ∈ In0 we have the equality

τm = χ(
∏
k

τmk,k) , for m = (m1,m2, . . . ,mn) , (B.5)

where k varies over the index numbers of m which have mk 6= 1. Furthermore, for a
fixed m ∈ In0 which has no kth element mk equal to one, Eqn. (B.5) simplifies to

τm =

n∏
k=1

τmk,k , for m = (m1,m2, . . . ,mn) . (B.6)

Proof. We prove Eqn. (B.6) in which case Eqn. (B.5) then follows from the same
principles. Let p,q ∈ In0 such that m = p ? q where mk 6= 1 for all k ≤ n. Then since
τm(1l2) = i

4 adσq ad+
σp

(1l2n) = σm, we have that

i
4 adσq ad+

σp
(1l2n) = σm1

⊗ σm2
⊗ · · · ⊗ σmn

= τm1
(1l2)⊗ τm2

(1l2)⊗ · · · ⊗ τmn(1l2)

=
(
τm1

⊗ τm2
⊗ · · · ⊗ τmn

)
(1l2n)

= τm1,1τm2,2 . . . τmn,n(1l2n)

=

n∏
k=1

τmk,k(1l2n)

where the fourth equality follows by Lemma B.0.2. Hence

( i
4 adσq ad+

σp
−

n∏
k=1

τmk,k)(1l2n) = 0 (B.7)

and therefore the difference of these two operators is unital. By Lemma B.0.1, χ(A) = 0
for all A ∈ gLK0 (i.e unital A) and hence χ( i

4 adσq ad+
σp
−
∏n
k=1 τmk,k) = 0. Now since

τm := χ( i
4 adσq ad+

σp
) and by Remark 8 in Section 2.4,

∏n
k=1 τmk,k is already contained

in the ideal we get that τm =
∏n
k=1 τmk,k.

If on the other hand, for a fixed m ∈ In0 there is some mk = 1 then we can do the
same procedure as above except now, by Lemma 1.3.6 we must include the projection
operator in the expression χ(

∏
k τmk,k) since

∏
k τmk,k is not contained in the ideal by

itself.



Appendix C

Eigenspaces of Lindblad
Generators

We would like to relate the kernel of a Lindblad generator which has a single Lindblad
term in canonical form to the kernel of the Lindblad term.

Lemma C.0.3. For σp, σq ∈ Bn0 , we have that

dim ker(σp + iσq) =

{
0 if [σp, σq] = 0,

2n−1 if {σp, σq} = 0.
(C.1)

Proof. By Lemma 2.3.2, these are the only two dimensional possibilities which can occur
and they are mutually exclusive. Moreover, note that rank(σp + iσq) = rank((σp +
iσq)(σp − iσq)) = rank(21l + i[σp, σq]). Now if [σp, σq] = 0, then σp + iσq is full rank,
otherwise, i[σp, σq] has 2n−1 negative two eigenvalues and hence rank(21l + i[σp, σq]) =
2n−1.

It will be useful to consider the both the kernel and eigenspaces of both the unital
and mixed components of the Lindblad generator as expressed by Eqn. (2.50). The
following Proposition gives a complete description of such vector spaces and will allow
us to relate the kernel of a Lindblad term in canonical form to the kernel of the entire
Lindblad generator.

Proposition C.0.1. Let Γ be a Lindblad generator which has a single Lindblad term of
canonical form, i.e. V = 1

2 (σp + iσq) such that [σp, σq] 6= 0. Decomposing Γ = Γu + Γm
into unital and mixed components via Eqn. (2.50), the unital component Γu satisfies

ker(Γu) = 〈σm | [σp, σm] = [σq, σm] = 0 , σm ∈ Bn〉 ,
range(Γu) = 〈σm | {σp, σm}+ = 0 or {σq, σm}+ = 0 , σm ∈ Bn〉

such that range(Γu) = E−2(Γu)⊕ E−4(Γu), where

E−2(Γu) := 〈σm | {σp, σm}+ 6= 0 and {σq, σm}+ = 0 ,

or , {σp, σm}+ = 0 and {σq, σm}+ 6= 0, σm ∈ Bn〉 ,
E−4(Γu) := 〈σm | {σp, σm}+ = {σq, σm}+ = 0 , σm ∈ Bn〉 ,

are the eigenspaces of Γu corresponding to the eigenvalues λ = −2 and λ = −4, respect-
ively. For the mixed component Γm, the following also hold

ker(Γm) = 〈σm | {σp, σm}+ = 0 , or {σq, σm}+ = 0 , σm ∈ Bn〉 ,
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range(Γm) = 〈σm | {σp, σm}+ = {σq, σm}+ = 0 , σm ∈ Bn〉

and hence range(Γm) = E−4(Γu).

Proof. It will be helpful to determine the eigenspaces of the operator ad2
σp

for the proof.
By Lemma 2.3.2, adσp(σm) = 0 or adσp(σm) = 2σpσm for σm ∈ Bn. Assuming that
adσp(σm) 6= 0, we get that adσp(2σpσm) = 2[σp, σpσm] = 4σm, and hence σm is an

eigenvector of ad2
σp

to the eigenvalue zero whenever {σp, σq}+ = 0, and an eigenvector
to the eigenvalue four whenever [σp, σm] 6= 0. By dimension counting using Lemma
2.3.2, we see that

ker( 1
2 ad2

σp
) = 〈σm | [σp, σm] = 0〉 , (C.2)

range( 1
2 ad2

σp
) = 〈σm | {σp, σm}+ = 0〉 . (C.3)

Since the range(1
2 ad2

σp
) = E2( 1

2 ad2
σp

), then its clear that under summation,

ker( 1
2 (ad2

σp
+ ad2

σq
)) = ker( 1

2 ad2
σp

) ∩ ker( 1
2 ad2

σq
) and hence the first claim is proved.

Now (ker(Γu))⊥ = (− ker(− 1
2 ad2

σp
)∩ker(− 1

2 ad2
σq

))⊥ gives range(Γu) = range( 1
2 ad2

σp
)+

range( 1
2 ad2

σq
). The eigenspace decomposition of the range follows immediately from the

fact that 1
2 ad2

σp
(σm) = 2σm and 1

2 ad2
σq

(σm) = 2σm if either of them are non-zero.

Now we prove statements concerning the kernel and range of Γm. Clearly adσp ◦ ad+
σq

(σm) =

0 when {σq, σm}+ = 0. Assume that adσp ◦ ad+
σq

(σm) = 0 but {σq, σm}+ 6= 0.
This implies adσp(2σqσm) = 2[σp, σqσm] = 2{σp, σm}+σq = 0, using the fact that
{σp, σq}+ = 0 and [σq, σm] = 0 in the second to last equality and hence {σp, σm}+ = 0.

Defining the subspace K(Γm) ⊆ ker(Γm) as K(Γm) := 〈σm | {σp, σm}+ = 0 , or {σq, σm}+ =
0 , σm ∈ Bn〉, and taking the orthogonal complement gives R(Γm) := (K(Γm))⊥ =
〈iσpσqσm | [σp, σm] = [σq, σm] = 0 , σm ∈ Bn〉 which is a subspace of range(Γm).
Since K(Γm) and R(Γm) are use the same preconditions on σm ∈ Bn as the range and
kernel of Γu, respectively, and no σm gives a zero element in any of these four vector
spaces then K(Γm) = ker(Γm) and R(Γm) = range(Γm). Moreover, since Γm ◦ Γm = 0
and hence is a nilpotent operator, it must be true that range(Γm) ⊂ ker(Γm). Ap-
plying the constraint for some σm ∈ ker(Γm) to iσpσqσm ∈ range(Γm) we see that
{σp, iσpσqσm}+ = {σq, iσpσqσm}+ = 0 and hence

range(Γm) = 〈σm | {σp, σm}+ = {σq, σm}+ = 0 , σm ∈ Bn〉 .

Remark 16. (Dimensions of Kernel and Ranges)
From the above calculation, one can deduce that the following hold

1. dim ker(Γu) = dim E−4(Γu) = dim range(Γm) ,

2. dim E−2(Γu) = 2 · dim ker(Γu) ,

3. dim ker(Γm) = 3 · dim range(Γm) .

Example 14. For a single qubit, let p = (x), q = (y) and hence V := σ+ = 1
2 (σx + iσy)

be the atomic raising operator which corresponds to the translation direction τ z since
p ? q = m = (z). By Proposition 2.2.2, Γm is an infinitesimal translation and hence
by Eqn. (1.48), ker(Γm) = 〈σx, σy, σz〉 and range(Γm) = 〈σz〉. Moreover, ker(Γu) = 〈1l〉
and range(Γu) = E−2(Γu) ⊕ E−4(Γu) = 〈σx, σy, σz〉, where E−2(Γu) = 〈σx, σy〉 and
E−4(Γu) = 〈σz〉.
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Noting that ker(V ) = 〈|e1〉〉, taking the inverse vectorization of this null vector then gives
ρ = 1

2 (1l + σz) = 1
2 (1l + σm). Under the action of Γ, we obtain

Γ(ρ) = Γu(ρ) + Γm(ρ) (C.4)

= 1
2 (Γu(1l) + Γu(σz)) + 1

2 (Γm(1l) + Γm(σz)) (C.5)

= 1
2 (Γu(σz)) + 1

2 (Γm(1l)) = −2σz + 2σz = 0 . (C.6)

It is well known that for this single qubit system ρ is the unique fixed point and we have
made the connection that in fact,

ker(Γ) = 〈vec−1(v) |v ∈ ker(V )〉 , (C.7)

where vec−1 is the inverse vectorization operator which maps a vector into its matrix
representation (see for example [25, 22]).

One might wonder if this relationship between the kernel of Γ and the kernel of the
single Lindblad term holds in general for n-qubit systems.

Example 15. For a two qubit system, let let p = (x, 1), q = (y, z) and hence V :=
1
2 (σx ⊗ 1l + iσy ⊗ σz) which corresponds to the translation direction τ zz = τm since
p ? q = m = (z, z). By Proposition C.0.1 we obtain

ker(Γu) = 〈1l⊗ 1l, 1l⊗ σz, σx ⊗ σy, σx ⊗ σx〉 (C.8)

E−4(Γu) = 〈σy ⊗ σy, σz ⊗ 1l, σy ⊗ σx, σz ⊗ σz〉 , (C.9)

and in general, E−4(Γu) = range(Γm) ⊂ ker(Γm). Indeed, again vec−1( 1
2 (1l ⊗ 1l + σz ⊗

σz)) ∈ ker(V ) and Γ( 1
2 (1l⊗1l+σz⊗σz)) = 0 however, by Lemma C.0.3, dim ker(V ) = 2.

We can obtain the remaining basis elements of ker(Γ) by the following. Choosing a
fixed element k ∈ ker(Γu), then there exists an r ∈ E−4(Γu) = range(Γm) such that
Γ(k ± r) = Γu(k ± r) + Γm(k ± r) = Γu(±r) + Γm(k) = 0 since r ∈ ker(Γm), and
Γm(k) 6= 0 and Γu(±r) 6= 0.

From this analysis, we easily obtain the following Proposition which goes without
proof.

Proposition C.0.2. Let Γ be a Lindblad generator which has a single canonical Lindblad

term V :=
√
γ

2 (σp + iσq) with γ ∈ R+. Then ρ = 1
2 (1l2n + σm) ∈ ker(Γ) and hence is a

fixed point of the corresponding Markovian semigroup generated by Γ.





Appendix D

Computing Lie Wedges II:
Extensions and Generalisations

D.1 Unital Two-Qubit Systems

In this Appendix we extend the notions introduced in Chapter 4 of calculating a systems
associated Lie wedge. Here we extend the wedge construction to two qubit systems
which undergo various standard noise processes. The two qubits will be denoted A and
B, respectively.

D.1.1 Controllable Channels I

A fully Hamiltonian controllable two-qubit toy-model system with switchable Ising-
coupling is given by the master equation

ρ̇ = −
(
i
∑
j

uj σ̂j + Γ
)
ρ (D.1)

where σ̂j ∈ {σ̂x1, σ̂y1; σ̂1x, σ̂1y; σ̂zz} are the Hamiltonian control terms with amplitudes

{uj}5j=1 ∈ R.

Since 〈iσ̂j | j = 1, 2, . . . , 5〉Lie = adsu(4), the edge of the wedge is E(w) = adsu(4).
Following the algorithm for an inner approximation of the Lie wedge, step (1) thus gives

w1 := adsu(4)⊕(−R+
0 Γ) . (D.2)

Conjugating the dissipative component by the exponential map of the edge and then
taking the convex hull yields the convex cone

c0 := R+
0 conv

{
adU Γ AdU† | U ∈ SU(4)

}
, (D.3)

which is the two-qubit analogue of the cone in Eqn. (4.16). The resulting associated Lie
wedge is given by

w0 := adsu(4)⊕(−c0) . (D.4)
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GENERALISATIONS

D.1.2 Controllable Channels II

By shifting the Ising coupling term from the set of switchable control Hamiltonians into
the (non-switchable) drift term, σ̂d = σ̂zz, one obtains the realistic and actually widely
occurring type of system

ρ̇ = −
(
iσ̂d + i

∑
j

uj σ̂j + Γ
)
ρ (D.5)

where now one just has the local control terms σ̂j ∈ {σ̂x1, σ̂y1; σ̂1x, σ̂1y}. Since 〈iσ̂x1, iσ̂y1〉Lie =
adsuA(2)⊗1lB, whereas on the other hand 〈iσ̂1x, iσ̂1y〉Lie = 1lA ⊗ adsuB(2), the edge of the
wedge

E(w0) = adsuA(2)⊕̂suB(2) (D.6)

is in fact brought about by the Kronecker sum of local algebras

suA(2)⊗ 1lB + 1lA ⊗ suB(2) =: suA(2)⊕̂suB(2) (D.7)

forming the generator of the group of local unitary actions

exp
(
suA(2)⊕̂suB(2)

)
= SUA(2)⊗ SUB(2) . (D.8)

Remarkably, in this important class of open quantum-dynamical systems, qubits A
and B are locally (H) controllable, respectively, while globally the system satisfies but
the (WH) condition.

The final Lie wedge in these systems reads

w2⊕2
dk = adsuA(2)⊕̂suB(2)⊕− c2⊕2

dk (D.9)

with the convex cone

c2⊕2
dk := R+

0 conv
{
K2⊕2
d + P 2⊕2

k

}
(D.10)

being given in terms of the respective k and p-components. Here we use the short-hand
notation Û2⊗2 := Ū2⊗2 ⊗ U2⊗2 to arrive at

K2⊕2
d := {Û2⊗2(iσ̂d)Û

†
2⊗2 |U2⊗2 ∈ SU(2)⊗ SU(2)} , and (D.11)

P 2⊕2
k := {Û2⊗2(Γ)Û†2⊗2 |U2⊗2 ∈ SU(2)⊗ SU(2)} . (D.12)

As before, this immediately results from the initial wedge approximation by step (1)

w2⊕2
1 := adsuA(2)⊕̂suB(2)⊕(−R+

0 (iσ̂d + Γ)) (D.13)

followed by conjugation with AdexpE(w) = Ad2⊗2 to give

K2⊕2
d + P 2⊕2

k := OSU(2)⊗SU(2)

(
iσ̂d + Γ

)
. (D.14)

Step (3) then takes the convex hull and gives the final associated Lie wedge.
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D.1.3 Controllable Channels III

In the final example of a two-qubit system, the independent local controls shall even be
limited to either x or y-controls on the two qubits according to

ρ̇ = −
(
i(σ̂d + uAσ̂c1 + uBσ̂1c′) + Γ

)
ρ , (D.15)

where now σ̂d := i
(
σ̂z1 + σ̂1z + σ̂zz

)
and σ̂c1 with a single c ∈ {x, y} and likewise σ̂1c′

with a single c′ ∈ {x, y} and uA, uB ∈ R. Furthermore, assume the system undergoes
local uncorrelated noise in each of the two subsystems in the sense that the Lindblad
operators are of local form

Vk ∈ {σk1 | k ∈ {x, y, z}} , and Vk′ ∈ {σ1k′ | k′ ∈ {x, y, z}} , (D.16)

where k and k′ are chosen independently k, k′ ∈ {x, y, z} so that one finds

Γ := 2γσ̂2
k1 + 2γ′σ̂2

1k′ . (D.17)

This system satisfies but the (WH) condition both locally and globally, the latter fol-
lowing from

〈iσ̂c1, iσ̂1c′ , iσ̂d〉Lie = adsu(4) . (D.18)

The Lie wedge is given by

wcc
′

kk′ := spanR {iσ̂c, iσ̂c′} ⊕ (−ccc
′

kk′) , (D.19)

where the cone part ccc
′

kk′ is represented as

ccc
′

kk′ := R+
0 conv

{
Kc(θ) +Kc′(θ′) +Kcc′(θ, θ′) + P ck (θ) + P c

′

k′ (θ
′) | θ, θ′ ∈ R

}
(D.20)

which is given in terms of the k- and p” components (setting θ := uA and θ′ := uB and
using the relations in given by Eqn. (4.18)) as

Kc(θ) +Kc′(θ′) +Kcc′(θ, θ′) =


cos(θ)
sin(θ)

cos(θ′)

sin(θ′)

cos(θ) cos(θ′)

cos(θ) sin(θ′)

cos(θ′) sin(θ)

sin(θ) sin(θ′)

 · i


σ̂z1
εczqσ̂q1
σ̂1z

εc′zq′ σ̂1q′

σ̂zz
εc′zq′ σ̂zq′

εczqσ̂qz
σ̂qq′

 (D.21)

and (as in Eqn. (4.20))

P ck (θ) = 2γ

[
cos2(θ)

sin2(θ)
cos(θ) sin(θ)

]
·
[

σ̂2
k1

σ̂2
r1

εckr{σ̂k1,σ̂r1}+

]
(D.22)

as well as

P c
′

k′ (θ
′) = 2γ′

[
cos2(θ′)

sin2(θ′)

cos(θ′) sin(θ′)

]
·

[
σ̂2
1k′

σ̂2
1r′

εc′k′r′{σ̂
2
1k′ ,σ̂

2
1r′}+

]
(D.23)

To see this, observe that by step (1), the initial wedge approximation is given by

w1 := spanR {iσ̂c, iσ̂c′} ⊕ (−R+(iσ̂d + 2γσ̂2
k + 2γ′σ̂2

k′)) , (D.24)
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Table D.1: Two-Qubit System Algebras Undergoing Strong or Weak Couplings

Noise Lindblad Term Control Drift dim(gΣ) dim(w–w)

Local Unital σ
∗)
µ σx1, σ1x Weak∗∗) 225 13

Local Dephasing σz1 σx1 –”– 22 6

–”– –”– σ1x –”– 5 4

Local Bit Flip σx1 σx1 –”– 16 4

–”– –”– σ1x –”– 52 4

Local Unital σ
∗)
µ σx1, σ1x Strong∗∗∗) 225 13

Local Dephasing σz1 σx1 –”– 225 6

–”– –”– σ1x –”– 225 4

Local Bit Flip σx1 σx1 –”– 124 4

–”– –”– σ1x –”– 225 4

∗) And µ 6= x1 or 1x ∗∗) Hd = i(σz1+σ1z+σzz).
∗∗∗) Hd = i(σz1+σ1z+σxx+σyy+σzz).

which has to be conjugated by Adexp(E(w)). As usual, the edge of the wedge is invariant
under such a conjugation, so we need only determine the effects on the drift components
of the system as is done in Eqns. (D.21) through (D.23).

Now, the generalisation to systems with more than two qubits satisfying the (H) or
(WH) condition is obvious: assuming uncorrelated noise, the p-parts of the Lie wedges
can be immediately extended on the grounds of the previous description, since all pro-
cesses are local on each qubit. Though straightforward, calculating the k-components
becomes a bit more tedious: but the many-body coherences have to be considered just
as in Eqn. (D.21).
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Table D.2: Analysis of Two-Qubit System Algebras

Noise Lindblad Terms Control Drift System Algebra gΣ dim(w–w)

Std. Unital σµ
∗) adsu(4) i(σz1+σ1z+σzz) gLK0 135

Std. Local Unital σµ
∗∗) adsu(2)⊕su(2) –”– gLK0 21

Local A&B Dephasing σz1, σ1z σx1, σ1x –”– gLK0 16

–”– σz1, σ1z σx1, σ1x i(σz1+σ1z) gLK0 12

Global Depolarizing {σµ}∗∗∗) adsu(2)⊕su(2) –”– adsu(2)⊕su(2)⊕RΓ 7

Completely Depolarizing {σµ}∗∗∗∗) adsu(4) –”– adsu(4)⊕RΓ 16

Amplitude Damping σx1 + iσy1 adsu(4) i(σz1+σ1z+σzz) gLK 240

–”– –”– adsu(2)⊕su(2) –”– gLK 24

∗) Any Pauli matrix. ∗) Any local Pauli matrix. ∗∗∗) The nine non-local Pauli matrices. ∗∗∗∗) All Pauli matrices.



114
APPENDIX D. COMPUTING LIE WEDGES II: EXTENSIONS AND

GENERALISATIONS

D.2 Non-Unital Two-Qubit Systems

D.2.1 Controllable Channels I

Consider a fully Hamiltonian controllable system with switchable Ising coupling given
by the master equation

ρ̇ = −
(
i

5∑
j=1

uj σ̂j + Γ
)
ρ (D.25)

where σ̂j ∈ {σ̂x1, σ̂y1, σ̂1x, σ̂1y, σ̂zz} are the control Hamiltonians which pair with their

control amplitudes {uj}5j=1 ∈ R. Moreover, Γ shall be given by an amplitude damping
term acting locally on qubit A and a bit-flip term acting on qubit B, i.e. Γ = ΓA + ΓB

where

ΓA := 2γ
(
σ̂2
x1 + σ̂2

y1 + 2iσ̂x1σ̂
+
y1

)
, and ΓB := 2γ′σ̂2

1x . (D.26)

Conjugating Γ by the exponential of the edge of the wedge E(w) = adsu(4) and taking
the convex hull as in the fully H controllable depolarizing single-qubit case of Eqn. (4.31)
yields the associated Lie wedge

w = adsu(4)⊕(−cAB) , (D.27)

where the cone cAB is

cAB := R+
0 conv

{
AdU

(
2γ(σ̂2

x1 + σ̂2
y1 + 2iσ̂x1σ̂

+
y1) + 2γ′σ̂2

1x

)
AdU† | U ∈ SU(4)

}
. (D.28)

D.2.2 Controllable Channels II

Now we consider a modified version of the previous example by limiting the number of
control Hamiltonians. The master equation is given by

ρ̇ = −
(
i(σ̂d + uAσ̂x1 + uBσ̂1x) + ΓA + ΓB

)
ρ , (D.29)

where σ̂d := i
(
σ̂z1 + σ̂1z + σ̂zz

)
, uA, uB ∈ R, and ΓA,ΓB are given by Eqn. (D.26). The

edge of the wedge is then
E(w) = spanR {iσ̂x1, iσ̂1x}, (D.30)

and those k-components of the cone that are due to conjugation of the drift Hamiltonian
can readily be calculated using Eqn. (D.21)

Kx1(θ) +K1x(θ′) +Kxx(θ, θ′) =


cos(θ)
− sin(θ)

cos(θ′)

− sin(θ′)

cos(θ) cos(θ′)

− cos(θ) sin(θ′)

− cos(θ′) sin(θ)

sin(θ) sin(θ′)

 · i


σ̂z1
σ̂y1
σ̂1z

σ̂1y

σ̂zz
σ̂zy
σ̂yz
σ̂yy

 . (D.31)

Since ΓB := 2γ′σ̂2
1x clearly remains invariant under x controls, we only have to consider

conjugation of the amplitude-damping term ΓA, which reduces to the example given in
Section 4.4.2 (by exchanging y controls against x controls) to give

P x1
y1 (θ) + 2γσ̂2

x1 +Nx1
(xy)1(θ) = 2γ


2 cos(θ)

2 sin(θ)

cos(θ) sin(θ)

1

cos2(θ)

sin2(θ)

 ·


i σ̂x1σ̂
+
y1

i σ̂z1σ̂
+
x1

{σ̂y1,σ̂z1}+
σ̂2
x1

σ̂2
y1

σ̂2
z1

 . (D.32)
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Thus in terms of the above components, in total one obtains the associated Lie wedge

w = spanR {iσ̂x1, iσ̂1x} ⊕ (−c) (D.33)

where

c := R+
0 conv

{
Kx1(θ)+K1x(θ′) +Kxx(θ, θ′) (D.34)

+ P x1
y1 (θ) + 2γσ̂2

x1 +Nx1
(xy)1(θ) + 2γ′σ̂2

1x | θ, θ′ ∈ R
}
.

D.2.3 Controllable Channels III

The previous example can easily be modified to to case where we have amplitude damp-
ing on each of the two qubits A and B expressed as

ΓA := 2γ
(
σ̂2
x1 + σ̂2

y1 + 2i σ̂x1σ̂
+
y1

)
, and ΓB := 2γ′

(
σ̂2

1x + σ̂2
1y ± 2i σ̂1xσ̂

+
1y

)
. (D.35)

The components given by Eqns. (D.30) and (D.31) remain unaltered, the only difference
to the previous example is that ΓB is no longer invariant and hence rise to the new
components

P 1x
1y (θ′) + 2γ′σ̂2

1x ±N1x
1(xy)(θ

′) = 2γ′


±2 cos(θ′)

±2 sin(θ′)

cos(θ′) sin(θ′)

1

cos2(θ′)

sin2(θ′)

 ·


i σ̂1xσ̂
+
1y

i σ̂1zσ̂
+
1x

{σ̂1y,σ̂1z}+
σ̂2
1x

σ̂2
1y

σ̂2
1z

 . (D.36)

The final wedge follows Eqn. (D.33), where c is now given by

c := R+
0 conv

{
Kx1(θ) +K1x(θ′) +Kxx(θ, θ′) + P x1

y1 (θ) + 2γσ̂2
x1 +Nx1

(xy)1(θ) (D.37)

+ P 1x
1y (θ′) + 2γ′σ̂2

1x ±N1x
1(xy)(θ

′) | θ, θ′ ∈ R
}
.





Appendix E

Commutation Relations:
Single-Qubit System Lie
Algebra

Table E.1

[
i σ̂p , σ̂

2
q

]
σ̂2
x σ̂2

y σ̂2
z

i σ̂x 0 −{σ̂y, σ̂z}+ {σ̂y, σ̂z}+

i σ̂y {σ̂z, σ̂x}+ 0 −{σ̂z, σ̂x}+

i σ̂z −{σ̂x, σ̂y}+ {σ̂x, σ̂y}+ 0

Table E.2

[
i σ̂p , {σ̂q, σ̂r}+

]
{σ̂y, σ̂z}+ {σ̂z, σ̂x}+ {σ̂x, σ̂y}+

i σ̂x 2(σ̂2
y − σ̂2

z) {σ̂x, σ̂y}+ −{σ̂z, σ̂x}+

i σ̂y −{σ̂x, σ̂y}+ 2(σ̂2
z − σ̂2

x) {σ̂y, σ̂z}+

i σ̂z {σ̂z, σ̂x}+ −{σ̂y, σ̂z}+ 2(σ̂2
x − σ̂2

y)
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Table E.3

[
{σ̂p, σ̂q}+ , {σ̂r, σ̂s}+

]
{σ̂y, σ̂z}+ {σ̂z, σ̂x}+ {σ̂x, σ̂y}+

{σ̂y, σ̂z}+ 0 −iσ̂z iσ̂y

{σ̂z, σ̂x}+ iσ̂z 0 −iσ̂x

{σ̂x, σ̂y}+ −iσ̂y iσ̂x 0

Table E.4

[
σ̂2
p , {σ̂q, σ̂r}+

]
{σ̂y, σ̂z}+ {σ̂z, σ̂x}+ {σ̂x, σ̂y}+

σ̂2
x 0 −iσ̂y iσ̂z

σ̂2
y iσ̂x 0 −iσ̂z

σ̂2
z −iσ̂x iσ̂y 0

Table E.5

[ i σ̂pσ̂
+
q , i σ̂r] i σ̂x i σ̂y i σ̂z

i σ̂yσ̂
+
z 0 −i σ̂xσ̂

+
y i σ̂zσ̂

+
x

i σ̂zσ̂
+
x i σ̂xσ̂

+
y 0 −i σ̂yσ̂

+
z

i σ̂xσ̂
+
y −i σ̂zσ̂

+
x i σ̂yσ̂

+
z 0
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Table E.6

[ i σ̂pσ̂
+
q , i σ̂

2
r ] i σ̂2

x i σ̂2
y i σ̂2

z

i σ̂yσ̂
+
z 0 i σ̂yσ̂

+
z i σ̂yσ̂

+
z

i σ̂zσ̂
+
x i σ̂zσ̂

+
x 0 i σ̂zσ̂

+
x

i σ̂xσ̂
+
y i σ̂xσ̂

+
y i σ̂xσ̂

+
y 0

Table E.7

[
i σ̂pσ̂

+
q , {σ̂r, σ̂s}+

]
{σ̂x, σ̂y}+ {σ̂y, σ̂z}+ {σ̂z, σ̂x}+

i σ̂xσ̂
+
y 0 i σ̂zσ̂

+
x i σ̂yσ̂

+
z

i σ̂yσ̂
+
z i σ̂zσ̂

+
x 0 i σ̂xσ̂

+
y

i σ̂zσ̂
+
x i σ̂yσ̂

+
z i σ̂xσ̂

+
y 0
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