
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Dissertation

Automatic Characterization of
Performance Dynamics with Periscope

Yury Oleynik

Technische Universität München





FAKULTÄT FÜR INFORMATIK
Lehrstuhl für Rechnertechnik und Rechnerorganisation

Automatic Characterization of
Performance Dynamics with Periscope

Yury Oleynik

Vollständiger Abdruck der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Michael Bader

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Hans Michael Gerndt

2. Univ.-Prof. Dr. Wolfgang E. Nagel,

Technische Universität Dresden

Die Dissertation wurde am 23.06.2014 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 02.02.2015 angenommen.





Ich versichere, dass ich diese Dissertation selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

München, den 17.06.2014 Yury Oleynik





Abstract

It was observed that for some High Performance Computing (HPC) applications the lo-
cation and severity of performance bottlenecks change over the course of execution. With
applications and hardware becoming more complex and, in particular, more dynamic,
such effects will become even more widespread and paramount. Understanding of tempo-
ral performance dynamics becomes, therefore, important in the process of the development
and tuning of HPC applications.

However, extending performance measurements into the temporal dimension leads to
linearly growing overheads, size of collected data, visualization volumes, and analysis
efforts. This makes manual investigation tedious and motivates the development of tools
providing valuable insights into the dynamic characteristics of performance and at the
same time mitigating the challenges mentioned above.

This thesis presents concepts and an iplementation allowing automatic analysis of tem-
poral performance dynamics. For the first time in the field, advanced signal processing
algorithms are applied in order to evaluate dynamic properties of performance bottle-
necks. The approach significantly reduces the analysis efforts by the user by detailing the
location, severity and high-level qualitative description of the relevant performance degra-
dation trends. Alternatively, the results can be used to shrink the visualization volume
by limiting it to the relevant time intervals.

Furthermore, the thesis presents a novel scheme for collection and analysis of dynamic
profiles. The technique extends dynamic phase profiling by an on-line retrieval and on-
line remote analysis of measurements. When compared to other approaches, such as
compression and post-mortem analysis or visualization, the approach allows to solve the
problem of the linearly growing size of stored data by making it independent from the
time dimension.

In order to mitigate the overheads introduced by the direct source-level instrumenta-
tion, a novel dynamic instrumentation adaptation mechanism is presented. It is based
on instrumentation strategies that automatically evaluate and adapt the granularity of
the instrumentation based on the severity of the introduced overheads as well as the
requirements of the iterative on-line analysis algorithm.

iii





Acknowledgments

First and foremost, I would like to thank my supervisor Prof. Dr. Michael Gerndt
for creating such a supportive and enthusiastic research environment and giving me an
opportunity to realize my potential. I express my deepest gratitude for his wise and
insightful guidance, for his unwavering support, for the trust and for the freedom he gave
me in my work.

I would also like to thank my second supervisor, Prof. Dr. Wolfgang E. Nagel, for his
valuable feedback and for a warm welcome at Technische Universität Dresden (TUD).

Furthermore, I would like to thank Prof. Dr. Arndt Bode, the leader of the Chair of
Computer Architecture (LRR), for creating a friendly and creative atmosphere at the
chair.

I would like to express my gratefulness to all my friends and colleagues at LRR. It was
a pleasure and honor to be part of this community. Thank you for fruitful discussions,
support and simply great time.

Furthermore, I would like thank all my former teachers and supervisors, notably Prof.
Dr. Vladimir B. Parashin and Prof. Dr. Sergey I. Shchukin, who helped me build solid
background in many fields which greatly served me in this work.

Special thanks go to my friends, Dr. Sergey Matushkin, Dr. Alexey Maystrou, Victor
and Anastasia Rupp, for their support and great moments together.

Last but not least, I owe my deepest gratitude to my family for their love and care. You
were the source of my strengths and determination in pursuing my goals through all the
obstacles on the way. Thank you so much.

Yury Oleynik
Munich, Germany

2014

v





Contents

1 Introduction 1

1.1 Contribution of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Study context: Periscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Analysis Automation . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Online Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Distributed Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.4 Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Tools-Aided Performance Engineering 7

2.1 Software Development Life-Cycle . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Performance Tuning Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Monitoring Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Direct Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Measurement Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Mitigation of Overheads . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Performance Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Profiling vs Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Post-mortem vs Online Analysis . . . . . . . . . . . . . . . . . . . . 14

2.5 Performance Analysis Automation . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Tools for Performance Engineering . . . . . . . . . . . . . . . . . . . . . . 15

2.6.1 Score-P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.2 Scalasca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.3 Vampir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



Contents

2.6.4 ParaDyn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.5 Pathway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 State of the Art 25

3.1 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Clustering of Dynamic Profiles . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Wavelet Compression of Load Balance Measurements . . . . . . . . 26

3.1.3 Compressed Complete Call Graphs . . . . . . . . . . . . . . . . . . 27

3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Detection and Application Structure Extraction . . . . . . . . . . . 29

3.2.2 Root Cause Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Automatic Instrumentation Adaptation 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Overhead Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Instrumentation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Total Overhead Reduction Strategy . . . . . . . . . . . . . . . . . . 39

4.3.2 Prolog Overhead Reduction Strategy . . . . . . . . . . . . . . . . . 41

4.3.3 Analysis Guided Overhead Reduction Strategy . . . . . . . . . . . . 43

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Nested Loop Example . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.2 PEPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Temporal Scalability of Performance Dynamics Analysis 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Dynamic Phase Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Online Access Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Online Processing of Temporal Performance Data . . . . . . . . . . . . . . 55

5.6 Improved Periscope Analysis Engine . . . . . . . . . . . . . . . . . . . . . 57

viii



Contents

5.6.1 Requesting and Storing Temporal Performance Data . . . . . . . . 58

5.6.2 Accessing Temporal Performance Data . . . . . . . . . . . . . . . . 59

5.6.3 Backward Compatibility with Legacy Properties . . . . . . . . . . . 60

5.6.4 Handling Missing Values . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6.5 Online Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Automatic Analysis of Performance Dynamics 65

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Example Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.2 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Wavelet Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.1 Discrete Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . 69

6.2.2 Implementation in Periscope . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Qualitative Representation of Trends . . . . . . . . . . . . . . . . . . . . . 71

6.3.1 Geometrical Interpretation . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.2 Scale-Space Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.3 Scale-Space Image . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3.4 Scale-Space Qualitative Representation . . . . . . . . . . . . . . . . 76

6.3.5 Qualitative Summarization . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.6 Implementation in Periscope . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Performance Dynamics Analysis Strategy . . . . . . . . . . . . . . . . . . . 80

6.4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4.2 Analysis Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4.3 Adapted APART Property Specification Language . . . . . . . . . . 84

6.4.4 Performance Dynamics Properties . . . . . . . . . . . . . . . . . . . 84

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Evaluation 95

7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 CX3D - Czochralsky Crystal Growth Simulation . . . . . . . . . . . . . . . 96

7.2.1 Automatic Analysis of Performance Dynamics with Periscope . . . 96

ix



Contents

7.3 SPEC MPI2007 129.tera tf . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3.1 Visual Analysis of Raw Temporal Performance Data . . . . . . . . . 100

7.3.2 Automatic Analysis of Performance Dynamics with Periscope . . . 102

7.4 PEPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4.1 Visual Analysis of Raw Temporal Performance Data . . . . . . . . . 105

7.4.2 Automatic Analysis of Performance Dynamics with Periscope . . . 107

7.5 INDEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.5.1 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.5.2 Automatic Analysis of Performance Dynamics with Periscope . . . 111

8 Summary and Outlook 115

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

x



List of Figures

1.1 A schematic illustration of the Periscope analysis model. . . . . . . . . . . 5

1.2 A simplified schematic illustration of the Periscope architecture. . . . . . . 6

2.1 Performance Tuning Cycle Methodology. . . . . . . . . . . . . . . . . . . . 8

2.2 Score-P architecture[8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 CUBE GUI[7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Vampir GUI[11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 ParaDyn Time Histogram Display[6] . . . . . . . . . . . . . . . . . . . . . 21

2.6 ParaDyn GUI[6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Pathway workflow editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Pathway experiment browser . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 A schematic process of the incremental on-line clustering into a maximum
of 4 cluster. (i) The first four call-path profiles are collected and categorized
in two equivalence classes. (ii) The profile 5 is collected and categorized
to the equivalence class of profile 1. (iii) Call-paths 3 and 4 are merged
together as they are the closest ones according to the distance function. [59]. 26

3.2 CCG of an example function[37]. For the compressed version see Figure 3.3 28

3.3 Compressed version of the example function shown in Figure 3.2 [37]. . . . 29

3.4 Time line diagram showing simplified event sequence on three processes.
Shaded rectangles indicate certain activities defined by the corresponding
events. These are circles for region enter and exits and squares for send
and receive events. The arrows indicate the direction of the messages. It
can be observed that extended execution time of the “comp” activity on
process A leads to direct waiting time in the process B. This waiting time
plus an additional delay caused by the receive operation on process B is
then responsible for the waiting time in the process C [19]. . . . . . . . . . 31

xi



List of Figures

4.1 Pseudo code of the monitoring functions and the overheads. . . . . . . . . 37

4.2 Break down of the total, reported and pure times of a region nest (labeled
as R1 and R2) together with the generated prolog and request overheads. . 38

4.3 Control flow of the TOR Strategy. . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Specification of the “Excessive Total Relative Overhead“ property . . . . . 41

4.5 Specification of the “Excessive Prolog Overhead“ property . . . . . . . . . 41

4.6 Control flow of the AGOR strategy. . . . . . . . . . . . . . . . . . . . . . . 42

4.7 Example code with three nested loops. . . . . . . . . . . . . . . . . . . . . 45

5.1 Online dynamic profile collection and analysis scheme design. . . . . . . . . 52

5.2 Online temporal performance data processing scheme. . . . . . . . . . . . . 56

5.3 Data Provider class diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Performance Data Base class diagram. . . . . . . . . . . . . . . . . . . . . 59

5.5 Simplified online analysis process flow diagram for the MPI wait-states
analysis strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Example signal plotting severity values of the property “Hot Spot of the
Application” for 128 iterations of the CX3D progress loop. The values are
normalized to the [0, 1] interval. . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Scaleogram of the example signal. It shows the energies of the wavelet
coefficients in percentages to their sum plotted against corresponding scale
and temporal location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Geometric primitives for the 7 basic qualitative descriptors of the qualita-
tive representation language. A: concave increase, B: concave decrease, C:
convex decrease, D: convex increase, E: linear increase, F: linear decrease,
G: constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 Qualitative representation of the smoothed example signal. The original
signal is plotted with cyan bars; the zeros of the second and first derivatives
of the smoothed signal are shown with red dots; the qualitative representa-
tion by both alphabetical labels and geometric primitives is plotted above
with blue color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5 Slices of the example signal’s Scale-Space Image at the given set of scales, σ. 75

6.6 Contours of zero-crossings of the example signal’s SSI. . . . . . . . . . . . . 76

6.7 Interval tree of the example signal’s SSI. . . . . . . . . . . . . . . . . . . . 77

6.8 Class diagram of the SSF algorithm and related data-structures. . . . . . . 79

6.9 Algorithm of the Performance Dynamics Analysis Strategy . . . . . . . . . 82

xii



List of Figures

6.10 Specification of the “Significant Variability“ property . . . . . . . . . . . . 86

6.11 Grouping specification of two “Significant Variability“ properties . . . . . . 86

6.12 Specification of the ”Degradation Peaks” property . . . . . . . . . . . . . . 87

6.13 Grouping specification of two ”Degradation Peaks” properties . . . . . . . 88

6.14 Specification of the ”Degradation Trends” property . . . . . . . . . . . . . 90

6.15 Grouping specification of two ”Degradation Trends” properties . . . . . . . 91

6.16 (a) Specification of the ”Degradation Pattern” property, (b) re-evaluation
of the ”Degradation Pattern” property for the extended dynamic context . 93

7.1 Value map of the phase region execution time over the first 128 iterations
of the progress loop (x-axis) and 32 MPI ranks (y-axis). . . . . . . . . . . . 101

7.2 Value map of the communication time in the MPI Wait call over the first
128 iterations of the progress loop (x-axis) and 32 MPI ranks (y-axis). . . . 102

7.3 Value map of the communication time in the MPI Allreduce call over the
first 128 iterations of the progress loop (x-axis) and 32 MPI ranks (y-axis). 103

7.4 Value map of the communication time in MPI Allgather call over the first
2048 iterations of the progress loop (x-axis) and 64 MPI ranks (y-axis). . . 105

7.5 Value map of the communication time in the MPI Alltoall call over the
first 2048 iterations of the progress loop (x-axis) and 64 MPI ranks (y-axis).106

7.6 CPU time of the time step iterations . . . . . . . . . . . . . . . . . . . . . 110

7.7 Time step widths over the iterations of the time step loop . . . . . . . . . 111

xiii





List of Tables

4.1 Phase region execution time during overhead estimation and the subsequent
analysis step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Relative total and prolog overheads of the code regions in % of the pure
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Properties found by the SCA analysis strategy supported by the TOR and
POR instrumentation adaptation strategies. . . . . . . . . . . . . . . . . . 46

4.4 Phase time and the number of high-overhead regions removed for the anal-
ysis runs with no instrumentation strategy, TOR strategy, POR strategy
and a reference run without any instrumentation. . . . . . . . . . . . . . . 47

4.5 Properties and their severities found by the SCABF analysis strategy in
PEPC with and without instrumentation strategies. . . . . . . . . . . . . . 48

7.1 Properties detected in iterations interval [1-64] of the CX3D progress loop. 98

7.2 Properties detected in iterations interval [65-128] of the CX3D progress loop. 99

7.3 Final set of properties reported for the CX3D application. . . . . . . . . . 99

7.4 Properties reported for the 129.tera tf application . . . . . . . . . . . . . . 104

7.5 Properties reported for the PEPC application . . . . . . . . . . . . . . . . 108

7.6 Convergence phases detected for adaptation strategy 1. . . . . . . . . . . . 112

7.7 Convergence phases from adaptation strategy 1 converted to the time steps
of the adaptation strategy 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xv





Chapter 1

Introduction

A hundred billion neurons interconnected by a hundred thousand billion synapses, the
extreme complexity of the human brain makes it one of the most challenging subjects
to study. At the time this thesis is written the neuroscience is still not able to deliver
a precise understanding of how the brain works. Experiments are needed to unveil the
hidden mechanisms, the experiments that are difficult or even impossible to perform using
tissue samples or living animals. A computer simulation of the brain currently developed
in the Human Brain Project [5] will make such experiments possible. It is estimated that
such a simulation has to run at the speed of a quintillion, 1018, operations per second.
Development of both software and hardware capable of achieving such computational
performance is the core activity of High Performance Computing, for short, HPC.

The current 10 fastest HPC systems, typically referred as supercomputers, [10] are still,
however, in the peta-scale range, i.e. 1015 operations per second, which is a factor of
1000 below the target above. Nevertheless, even at this scale the performance comes
at the costs of massive parallelism, customized and sophisticated system design and a
power budget measured in megawatts. Application development complexity for these
architectures scales proportionally making programming anything but easy.

A particular aspect of application development is traditionally and naturally an important
concern for the HPC field, namely, performance optimization. In its simplest interpre-
tation performance optimization typically strives for more simulation work computed in
less time. For the scientist interested in the results of the simulation it means less time
waiting for the experiment data or more detailed simulation results within the reasonable
time. For the system provider a more efficient usage of the resources results in a higher
utilization of the system and cost savings.

As the performance of any system has a theoretical maximum, the optimization process
requires input knowledge about existing inefficiencies in order to transform optimization
potential encapsulated in them into performance gains. Providing this knowledge is the
task of performance analysis.

1



Introduction

In many cases performance analysis relies on an empirical evaluation of execution perfor-
mance when run on an HPC system. Taking into account the parallelism and the com-
plexity of the supercomputers, the amount of generated empirical data is overwhelming.
This makes manual investigation prohibitively tedious and arguments for the tools-aided
performance analysis process.

Performance analysis with tools typically involves instrumentation, measurement collec-
tion and analysis steps. During the instrumentation the application being analyzed is
augmented by inserting probe-functions capable of registering relevant execution events.
During the runtime the events generated by the probe-functions are processed by the
measurement tool which results in raw performance measurements. The knowledge about
optimization potential is then obtained during the analysis phase either by interpretation
of the results by the user based on visualization or through an automatic evaluation.

The picture becomes, however, very complex, when realized that the performance charac-
teristics might change over the course of the execution. This concern rises its importance
with the increase of the application runtime which can go up to month of non-stop simula-
tion. In such cases, performance dynamics is an essential phenomena allowing to identify
performance optimization potentials that are missed should the information be ignored.
An interesting case study [57] describing an MPI communication performance bottleneck
migrating from one process to another and degrading with runtime supports the state-
ment above. With applications and hardware becoming more complex and, in particular,
more dynamic, such effects will become even more widespread and paramount.

Temporal dynamics adds additional complexity level to performance analysis. Tools are
highly valuable in this case, however, have to face challenges themselves. Adding the
temporal dimension leads to linear increase in overheads, size of measurements, analysis
complexity and visualization volumes. In this thesis we present concepts and their im-
plementation in the context of the Periscope performance analysis tool allowing valuable
insight in performance dynamics and at the same time mitigating the above challenges.

The rest of the thesis is composed as follows: the reminder of this chapter states the
contributions of this work and gives an overviews to the Periscope performance analysis
tool which was a context for the study. In Chapter 2 we give an introduction to the tools-
aided performance engineering. Here we introduce main concepts, techniques and tools for
performance analysis. Chapter 3 overviews the state-of-the-art techniques addressing the
issue of temporal performance measurements and analysis. In the next chapter we propose
a concept for automatic adaptation of instrumentation as well as its implementation
and detailed evaluation. Chapter 5 presents a novel technique for an online collection
and analysis of dynamic profiles allowing time-dimension-scalable processing of temporal
performance data. In the next chapter we propose a number of algorithms for evaluation
of performance dynamics as well as an automatic analysis strategy. The evaluation of the
two techniques with four real-world applications is given in Chapter 7. Finally, chapter 8
provides a summary and a future work outlook.

2



Introduction

1.1 Contribution of This Work

This work presents new techniques for low-overhead, time-dimension-scalable and auto-
matic performance analysis of dynamic performance properties of HPC applications.

For the first time in the field advanced signal processing algorithms are applied in order
to automatically evaluate dynamic properties of performance bottlenecks. These are used
to quantify the amount of variability in time-series of performance measurements; to an-
alyze dynamic properties at different time intervals and scales; to detect and characterize
degradation trends both quantitatively and qualitatively. The results reduce the analysis
efforts by the user by detailing the temporal location, severity and high-level qualitative
description of the relevant performance degradation patterns. Alternatively, the results
can be used as an input to a visualization tool to shrink the visualization volume by
limiting it to the relevant time intervals.

Furthermore, the thesis presents a novel scheme for an efficient collection and analysis of
series of dynamic profiles. It allows to mitigate the issue of linearly growing data sizes
with analysis time. We achieve this in two steps. First, we extend the dynamic profiling
technique with an online retrieval of samples for the remote analysis. This guarantees
that the amount of measurements buffered on the monitoring side, i.e. the processes
where the application is actually running, is invariant to the time dimension. Second, the
time-series of measurements accumulated on the remote analysis side are automatically
evaluated using the techniques described above in bursts of predefined length. It allows
the analysis procedure to be scalable along the time dimension as well. Here the size of
measurements stored is a function of the burst length and not the time. Thanks to the
choice of multi-scale algorithms, the resulting dynamic properties can be merged together
over multiple bursts.

We solve the problem of overheads mentioned above by developing automatic instrumen-
tation adaptation strategies. The uniqueness of the presented approach is in enhancing
source-level instrumentation with an ability to adapt to both generated overheads and
online measurement requirements. This allows to combine efficient overhead reduction
with a better granularity of instrumentation and a wider portability when compared to
other approaches based on dynamic binary re-writing. The concept offers two strategies
for trading-off measurement granularity versus introduced overheads. In the first strategy
the introduced overheads are automatically evaluated and limited according to a given
threshold. In the second case the overheads are reduced by minimizing the instrumenta-
tion to the absolute minimum needed to fulfill the requirements of the current state of
the online measurement process.

The aforementioned concepts were implemented in the context of the Periscope perfor-
mance analysis tool. We holistically improve the tool’s capabilities in respect to time
dimension in all the three major aspects of performance analysis: instrumentation, mea-
surements, analysis. Moreover, the implementation allows to resolve critical limitations

3



Introduction

and flaws in the analysis model of the tool vulnerable to performance dynamics.

1.2 Study context: Periscope

The context for this work is the Periscope [33], [34] performance analysis tool developed
at the Technische Universtät München. The main purpose of the tool is to automatically
detect and quantify performance inefficiencies suffered by applications when running in
large scale HPC systems. A short introduction to the main concepts of Periscope is given
below.

1.2.1 Analysis Automation

A distinctive feature of Periscope is the automatic search for performance inefficiencies.
The automation is achieved through formalization of typical performance inefficiencies in
terms of performance properties. An example property could be “Excessive MPI wait
time in receive due to late sender”.

In order to test for the presence of an inefficiency, each property contains a condition
expression. The degree of certainty in a found property is estimated using the confi-
dence expression. Finally, each property quantifies the negative impact on the overall
performance by means of the severity expression. This is an important value allowing to
prioritize multiple performance properties and, therefore, guide the tuning process.

In addition to a high-level qualitative description of the problem, the property specification
also carries the information about the property context. It is composed of a source code
location specified by a file name and a line number, as well as, an execution location,
which is an MPI process rank and an OpenMP thread number.

Searching for a property is equivalent to testing a hypothesis about the property holding
in a specific context. Since the number of hypotheses to test is the cross product of the
set of available properties and the set of contexts, sophisticated analysis strategies are
used to perform the search efficiently.

1.2.2 Online Analysis

The analysis model of Periscope is an iterative online process when the measurements are
configured, obtained, and analyzed on the fly, while the application is running.

The model is presented in Figure 1.1. It resembles the typical process of the closed-loop
iterative hypothesis driven analysis. It starts with a root hypothesis stating the presence
of the root performance issue within a set of contexts. Experimental data is needed in
order to accept or decline the hypothesis. In order to obtain it, a performance experiment

4



Introduction

Hypothesis

(cand. 
properties)

Experiment 
Configuration

Raw 
Performance 

Data

Proven 
properties

Request

MeasureEvaluate

Refine

Where?

What?

Start Stop

a

Figure 1.1: A schematic illustration of the Periscope analysis model.

is configured by sending measurement requests to the remote monitoring library linked
to the application. The experiment is then carried out by measuring one phase of the
application. The phase typically corresponds to one iteration of the main loop. The
resulting raw performance data is then returned to the analysis agent for evaluation of
the hypothesis. Based on the outcome, the accepted hypothesis (i.e. proven properties)
is refined into a new set of hypotheses. During the refinement process Periscope explores
the space of the potential performance issues by trying to narrow down the location of
the problem, i.e. answering the “where?” question, as well as to precisely identify the
type of the issue, therefore, answering the “what?” question. The cycle is then repeated,
unless all the hypotheses are evaluated.

1.2.3 Distributed Analysis

A simplified diagram of the Periscope architecture is shown in the Figure 1.2. The tool is
composed of multiple hierarchically distributed agents which are functionally categorized
into the layers shown in the figure.

The top functional layer is composed of the GUI, which is a part of the Eclipse integrated
development environment. This allows for a closer integration between the application
development and the performance analysis processes.

The next layer is represented by the Periscope frontend agent. This is the agent that is
responsible for the start-up and global control of the online analysis process.

The reduction layer is represented by a n-ary tree of command propagation and results

5



Introduction

Reduction

Analysis layer

Monitoring layer

Control

GUI

Figure 1.2: A simplified schematic illustration of the Periscope architecture.

aggregation agents. The leaves of this tree form the analysis layer which is composed
of the agents responsible for carrying out an automatic iterative analysis in a subset of
application processes.

At the bottom of the hierarchy are the application processes linked with the monitoring
library. Currently Periscope supports two libraries: an internally developed MRIMonitor
as well as Score-P - the joint measurement infrastructure used by a number of other tools.

The number of agents at each level is not constant and scales together with the num-
ber of application processes. This flexibility in size and configuration of the distributed
architecture guarantees scalability of the analysis process.

1.2.4 Current Limitations

The design of Periscope allows to efficiently address most of the challenges in the perfor-
mance analysis of HPC applications. Nevertheless, Periscope completely disregards the
temporal dimension of performance. Moreover, temporal performance variability leads to
incorrect analysis results. Additionally, the valuable insights about performance dynamics
cannot be produced within the original design. This makes Periscope an interesting con-
text for developing and testing new technologies making performance dynamics analysis
possible.

6



Chapter 2

Tools-Aided Performance
Engineering

The complexity of HPC applications, on one side, together with the complexity and mas-
sive parallelism of HPC systems, on the other side, argue for a structured and methodical
approach to the performance optimization process. Here various tools play an important
role in making it less tedious, allowing otherwise missing insights or even automating
parts of it.

In this chapter we give an overview of the tools-aided performance engineering process
with a focus on performance analysis tools. We discuss the major tool technologies and
briefly introduce several prominent examples.

2.1 Software Development Life-Cycle

As a part of the application development process, performance optimization activity has
to be put in the context of a software development life-cycle. According to the IEEE Stan-
dard for Software Maintenance [12] and its revision in 2006 [13] performance optimization
is one of the activities of the maintenance phase. The maintenance phase is entered after
the software is released and is typically the longest phase of the development. In addition
to performance optimization activities, the phase also covers repairing defects, i.e. fixing
bugs, and porting the software to new environments.

2.2 Performance Tuning Cycle

Although the tuning can be performed without a well-defined process, which is, unfor-
tunately, quite often the case, it is certainly not the most productive approach. Figure

7



Tools-Aided Performance Engineering

Define
requirements

Prepare
experiment

Measure
performance 

Analyze
bottlenecks

Tune
application

Validate
results

Figure 2.1: Performance Tuning Cycle Methodology.

2.1 presents a high-level diagram of a cyclic tuning process offering a more structured
workflow. It consists of the following steps:

Define requirements. Before jumping directly to modifying source code, it is highly
recommended to specify optimization objectives. An example could be a reduction of
the application execution time by a certain factor. Since the execution time of the same
application can vary depending on the machine, data set, application or environment
configuration used, it is also important to fix this parameters beforehand. When this
step is entered after one cycle again, it is additionally a pivotal point when the decision
whether to abort or continue tuning has to be taken. If the decision is to continue the
requirements might have to be refined.

Prepare experiment. During this step a performance analysis experiment is prepared.
It includes selecting and configuring a tool to be used for instrumentation and mea-
surement of the application, instrumenting the application, configuring the system and
preparing a reference for a later validation step.

Measure performance. During this steps the instrumented application is executed on
the target HPC system. While running, performance measurements are collected by the
tool. As the result of this step raw performance measurements are produced. The size,
high-dimensionality and complexity of this data make the knowledge about performance
inefficiencies obscure.

8



Tools-Aided Performance Engineering

Analyze bottlenecks. The goal of this step is to discover the potential for performance
improvement (in terms of the optimization objective) contained in present bottlenecks.
This is achieved by interpretation of the raw performance data collected at the previous
step by computing derived metrics, visualization techniques or even automatic analysis.
By searching for inefficiencies one has to answer the following questions: “Where?” -
location in source code and in system topology; “What?” - detailed understanding of
the problem type; and “When?” - location in the time domain. Importantly, one has to
quantify the severity of the problem which gives an estimation for potential optimization
gains.

Tune application. Based on the detailed information about performance inefficiencies,
one can take an informed tuning decision on choosing the targets for optimization. How-
ever, a specific tuning action to be performed is often not trivial and is typically produced
by the application developer. An example could be selecting proper compiler flags or even
completely replacing some poor-performing algorithms. Nevertheless, the tools start to
arise that allow for automatic tuning of certain aspects of performance.

Validate results. After the tuning action was implemented, one has to make sure that
the tuning has not corrupted the application logic and that the results are still correct.
It is also at this point when the achieved performance improvement is compared against
the acceptance criteria set in the beginning. In order to keep track of the applied analysis
and tuning it is highly recommended to protocol completed steps and achieved results.

Motivated by ever growing complexity of the tuning process, various tools have emerged.
Some support users in one of the aforementioned steps, some target to automate parts
or even the complete workflow. There is also a broad spectrum of technologies differenti-
ating the way tools perform similar tasks. In the following writing we discuss the major
technologies and provide some examples of tools. We give the overview under the angle
of performance dynamics.

2.3 Monitoring Performance

As any other observation, the process of performance monitoring requires active acquisi-
tion of information. This means that the execution of the application has to be interrupted
and the state of the execution together with other relevant information recorded. Based
on the way the interruptions are performed and the way obtained information is processed
and stored one can differentiate the main techniques of performance monitoring.

9



Tools-Aided Performance Engineering

2.3.1 Sampling

Sampling is a technique using asynchronous (in respect to the program execution) inter-
ruptions of an application in order to obtain statistical information about performance.
Interruptions can be done regularly with a certain frequency, or irregularly, based on
external events. In the second case the interruption event is typically an overflow of a
hardware counter.

After the interrupt was triggered the monitoring library function is called. It accesses
the currently executed instruction by looking at the program counter. The monitoring
library then increments the sample counter associated with the interrupted instruction.
Additionally, other metrics such as encountered cache misses or completed floating point
operations can be recorded.

The advantage of the technique is that the overhead introduced by sampling is typically
low and proportional to the frequency of interrupts which can be easily controlled. On
the other hand, the measurements collected this way are distributions of samples over
instructions, which might miss a rare but an important event. It also fails to record the
information about dependencies between the events such as parent-child.

2.3.2 Direct Instrumentation

The limitations of the sampling approach can be overcome with the direct instrumenta-
tion, however, at the cost of higher and less manageable overheads.

In this case the interruptions are synchronous and are triggered internally by probe func-
tions inserted in the application code. This approach allows a very precise measurements
since every instance of the event is intercepted and processed. Additionally, a valuable
information about the order of events is captured.

Based on the way the probe functions are inserted one can distinguish the following direct
instrumentation techniques:

Source Code Instrumentation

As it follows from the name, in this case instrumentation is inserted into the source codes
before the compilation happens. This can be done manually by the user or automatically
by a source modification tool or a compiler (often referred as compiler instrumentation).

This approach features several important advantages. First, it allows a granularity down
to a line number. Second, the approach offers maximum flexibility in selecting code
regions to be instrumented. And finally, the mapping between the source code entities
and the generated measurements is straightforward.

The disadvantages is the dependency on the availability and the programming language of

10



Tools-Aided Performance Engineering

the source code. Additionally, re-compilation is unavoidable should the instrumentation
be changed.

This approach is taken in Periscope [18] but also by Tau [56] and the OPARI [46] instru-
menter. Within the Tau project a generic source level instrumenter was developed that
can be used by other tools to insert their own instrumentation code in FORTRAN and C
applications. OPARI is a source level instrumenter for OpenMP. It allows to instrument
all OpenMP regions in FORTRAN and C codes.

Object Re-writing

Another approach would be to insert probe functions directly into the machine code
of a compiled application. This way the application can be instrumented even when the
source code is not available. Moreover, the machine code can be modified in on-line mode.
This adds a capability to modify instrumentation without recompiling and restarting the
application.

The disadvantages are limited portability, coarse function-level granularity and sophisti-
cated mapping of measurements back to source code.

This approach is followed by two widely known tools: DynInst [3] and DPCL [24].

Library Interposition

This approach is based on creating a wrapper function around a library function. Mon-
itoring of commonly used library functions such as MPI functions or memory allocation
functions is performed this way. In case of MPI functions weak symbol mechanism is
used to transparently substitute the library symbol with a wrapper symbol at link time.
The actual library function is then called from within the wrapper using the P prefix.
Instrumentation is placed in the wrapper before and after calling the original function.

2.3.3 Measurement Overhead

The instrumentation techniques discussed above require interruption of application, thus
the consequence are overheads. One can break down negative effects of overheads into
the following categories:

• Prolongation of the execution time

• Artificial load-imbalance

• Alternated cache behavior

11



Tools-Aided Performance Engineering

From this list, the first two are the most common and severe problems. The typical
reason for the prolonged execution time is the instrumentation of a relatively “tiny”
but frequently executed function, e.g. C++ getter function. In this case the overheads
of calling the probe function are comparable to the amount of the time spent in the
function itself. Since the function is frequently executed the overhead times sum up into
a significant slow-down, which can be in orders of magnitude.

The artificial load-imbalance problem arises when the amount of overheads varies be-
tween the tightly communicating processes. Additional overhead in one process will lead
to waiting time in the other one. An example here could be asynchronous flashing of
measurement buffers to the discs when the allocated memory is exhausted.

In the context of analysis of performance dynamics in long running applications over-
heads are an important concern. First of all the amount of overheads (though in absolute
numbers) linearly grows with the analysis time. The consequences are twofold: first,
the analysis time is extended proportionally; second, the risk of measurements corruption
increases due to non-linear effects, such as a trace flush. The last factor is particularly im-
portant, taking into account potential loss of significant computational resources invested
in a corrupted and therefore useless measurements.

2.3.4 Mitigation of Overheads

In order to reduce the risks of corrupted measurements data, overheads have to be mit-
igated. Mitigating overheads in general means choosing the acceptable balance between
instrumentation granularity, dictated by measurement requirements, and overheads. This,
however, requires the knowledge about the both parts of the equation. Additionally, mea-
surement requirements are not static during the analysis and might change during the
on-line analysis process (for more details see Section 2.4.2).

So what are the alternatives for mitigating overheads? The alternatives are either to
compensate the already introduced overheads or to decrease it. The first case requires
a model of the overheads and its influences on the application. Taking into account
that overheads impact application performance non-linearly, like in case of artificial load-
imbalance discussed in the previous session, developing such a model is very complicated.

Therefore, most of the techniques follow the second approach of reducing the overheads.
Here we again have two options: reduce the amount of overhead caused by one interrupt,
or to reduce the number of interrupts.

In the first case the goal is to make the probe-functions as light-weight as possible but still
capable of capturing the necessary information. In this trade-off the two main approaches
to processing the measurement data have emerged: profiling and tracing. We discuss the
two techniques in more details in Section 2.4.2. Nevertheless, the overhead caused by one
interrupt cannot be completely removed, therefore the total impact can be only decreased
by a certain constant factor.

12



Tools-Aided Performance Engineering

The second option of reducing the number of interrupts but still being able to capture
the relevant information is more promising in this respect.

In case of sampling this is achieved easily by reducing the frequency of interrupts. The
relation between the frequency and the resolution of measurements is also straightforward.

However, in case of direct instrumentation this is not that trivial. Here the number
of interrupts is defined by the number of source code locations instrumented and the
number of times each location is executed. Since the number of executions is dictated by
the application logic, this part of the equation cannot be affected. So, we are left with
the first option. The main overhead mitigation techniques utilize this approach.

The main question here to answer is which source code locations have to be instrumented
and which not? The answer to this question is the intersection of two sets: the locations
relevant in terms of the analysis and the locations which generate less overhead when
instrumented.

There are different strategies to answer this question. Tools like Score-P answer this
question by estimating the overheads first by performing a light-weight performance mea-
surement, and then filtering out (though, not completely eliminating) the instrumentation
of locations that are responsible for most of the overhead and leaving everything else. The
estimation here is based on the number of times the location is executed. Therefore rel-
atively short but frequently executed functions are eliminated from the more detailed
follow up analysis.

It is important to mention that the knowledge about this tiny functions is already a
valuable insight. Even a slight improvement to the performance of this functions, or
ideally complete elimination, might result in significant speed-ups.

The ParaDyn tools takes a different approach of dynamically instrumenting only those
locations which are of interest at the current state of the on-line analysis. After the
analysis of the location is completed the tool removes instrumentation. This approach
allows to reduce the overhead to the absolute necessary minimum.

2.4 Performance Measurement

After the necessary events are captured by the instrumentation relevant information has
to be processed by the measurement tool and stored away for a consequent analysis. Based
on what is stored and when it is analyzed there are two dimensions to categorize the
tools.

2.4.1 Profiling vs Tracing

There are two main approaches to answering the “what?” question.

13



Tools-Aided Performance Engineering

In the first case, called profiling, the structural entities of application are mapped onto
aggregated values of measurements. The aggregation can be done over multiple dimen-
sions. In the most typical case the aggregation is done over the time dimension. Also
other types of aggregation are possible, e.g. processes, threads. The structural entities of
application are determined by the instrumentation applied and are called regions. Based
on the type of interrupt processing applied one can distinguish flat and call-path profiles.
In the last case the parent-child relation between the regions is preserved and the entities
are the unique sequences of regions where a parent region calls a child. The advantage
of this approach is that the amount of measurements generated is relatively low. This
comes at the price of losing the information due to the aggregation procedure.

An extension of the profiling allowing to capture the temporal evolution is called dynamic
profiling. It exploits the iterative nature of many scientific applications to create a time
series of profiles, where each sample is a profile of one iteration of the progress loop.
Though, the size of the dynamic profile per iteration is low, it grows linearly with time
and therefore not scalable in case of long running applications.

Alternatively, tracing allows to process every event captured by the instrumentation.
Every time an interrupt occurs, a time-stamp is read from a timer. The event is then stored
in to the trace buffer together with the time-stamp and the relevant context information.
This can be, for example, the message size or the destination rank of a MPI send function.
Traces allow full sequence of events at the cost of linearly growing with time trace size.

2.4.2 Post-mortem vs Online Analysis

There are two alternatives to answering the question of when to analyze the collected
measurements.

Post-mortem analysis, as it follows from the name, it is delayed after the end of the
application run. In this case the performance measurements are collected and stored
into internal buffers (sometimes flushes to the disk have to be done when the buffers are
exhausted) while the application is running and then dumped to the disk. The data is
then read and either visualized for a manual investigation or automatically analyzed by
the analysis tools. The advantage of this approach is that at the analysis time all the
data is already available so a complete analysis can be guaranteed.

Online analysis, alternatively, is happening while the application is running. Typically
it is performed in batches, where the application is monitored for a period of time and then
the collected measurements are immediately evaluated by the tool. The results, which
are typically less dimensional, are kept and the raw performance data is discarded. After
the analysis of the batch is completed, it can be either aborted or refined. Here lies one of
the main advantages of the online analysis. It does not require a complete run in order to
produce valuable results, or can collect more information within one run, when some parts
of this information cannot be obtained within a single run. It also allows to tremendously

14



Tools-Aided Performance Engineering

reduce the amount of output information. The disadvantages of this approach are that
the online analysis will cause additional overheads. This problem, though, can be solved
by moving analysis process to a remote location. Also, the online analysis is performed
only on a subset of measurements, which limits the scope.

2.5 Performance Analysis Automation

The ultimate goal of performance analysis is the knowledge about the performance im-
provement potential. This is, however, not immediately available from the raw perfor-
mance data collected during the measurements. One needs to perform analysis step in
order to extract it.

Due to the variety and complexity of the data and the underlying performance phenomena
there is no standardized analysis procedure. There are, however, some steps which can be
automated. The degree of analysis automation is, therefore, another important character-
istic of performance analysis tools. The two extremes here are a solely manual analysis,
when the raw data is presented to the user, and a completely automated approach, when
the precise information about the detected improvement potential is presented. As usual
the extremes are either impractical or impossible. Therefore a combination of a manual
analysis by the user supported through an efficient automation is the most promising
approach.

Many tools support automatic computation of relevant metrics derived from raw data.
In addition to that, Scalasca [42] automatically searches traces for predefined inefficient
communication patters. The data is then presented for the interactive exploration using
the CUBE [30] browser. Tools like ParaDyn [45] and Periscope go one step further and
automatically search and quantify predefined and formalized inefficiencies.

In essence, automation allows achieving the following benefits:

• Improved time to solution

• Less error-prone

• Compensates missing in-depth knowledge

• Enables analysis of large-scale real-world applications

2.6 Tools for Performance Engineering

In this section we give an overview of a number of tools, where each represents one of
the typical tool’s classes. These are differentiated by their purpose as well as the used

15



Tools-Aided Performance Engineering

Figure 2.2: Score-P architecture[8]

combination of technologies described above. In the following writing we will discuss in
more details the following tools:

• Score-P - Multi-mode instrumentation and measurement infrastructure

• Scalasca - Post-mortem trace-based automatic analysis

• Vampir - Post-mortem visualization trace-based manual analysis

• Paradyn - Online automatic profile-based analysis

• Pathway - Performance optimization workflow automation and execution

2.6.1 Score-P

Score-P [38],[14] is a joint instrumentation and measurement infrastructure supporting
most of the technologies described above. The motivation behind developing Score-P
was to create a common measurement platform for a number of analysis tools, namely
Periscope, Scalasca, Vampir and TAU. Supporting all the instrumentation and measure-
ment techniques described in the previous section, the tool additionally offers higher
quality, scalability and portability.

High-level architecture of the tool is shown on Figure 2.2. Score-P consists of an instru-
menter, showed in the lower part of the picture, a measurement library linked to the
application, shown in the middle, and a number of output interfaces and data formats

16



Tools-Aided Performance Engineering

enabling an efficient consumption of measurements by the analysis tools, shown in the
upper part.

The tool supports both direct and indirect, i.e. sampling, instrumentation modes. The
direct instrumentation can be done at the source, library and binary levels. The per-
formance aspects that can be instrumented are MPI calls, OpenMP constructs, CUDA
kernels, function calls as well as user defined source code regions. The instrumentation
functions inserted in the application resolve to the corresponding Score-P measurement
adapter functions. These translate the instrumentation calls to a set of events which are
processed by the measurement core. Here additional information such as hardware coun-
ters or timings are read and associated to the event. This information is then consumed,
depending on the given Score-P measurement configuration, by the call-path profile mod-
ule or the tracing module. After the application terminates the collected profile data
is stored in the CUBE4[31] profile format and the trace is stored in the OTF2[25] trace
format. Alternatively, on-line consumption of the measurements is supported by means of
the Online Access Interface. This allows remote configuration, extraction and execution
control over sockets.

2.6.2 Scalasca

Scalasca [42] is an open source scalable trace-based automatic performance analysis tool
developed at Forschungszentrum Jülich (FZJ). The main purpose of the tool is to support
the user in identifying communication and synchronization bottlenecks in MPI, OpenMP
and hybrid applications.

Scalasca performs post-mortem automatic analysis of traces. It relies on Score-P measure-
ment infrastructure for instrumenting, monitoring and producing traces of an application.
The results of the analysis are visualized and interactively explored using a browser called
CUBE.

The analysis algorithm of Scalasca automatically searches and localizes wait states. These
situations are very typical inefficiencies encountered in parallel applications. A wait state
is suffered by an application process that needs some data from another application process
in order to continue with the computations. When the data is not yet available because the
other process is being late with delivering it, the first process has to pause the execution
and enters the wait state.

Since the size of the trace and thus the analysis effort grows depending on the number of
application processes, Scalasca employs parallel trace replay mechanism for the identifi-
cation of wait states. After the monitoring of the application is finished and the trace is
written to the disk, Scalasca trace analyzer is started with exactly the same amount of
application processes. In the beginning, each process of the analyzer loads the trace of
the respective application process. After this is done, the forward replay of the recorded
communication is initiated. During the replay each analyzer process repeats the com-

17



Tools-Aided Performance Engineering

Figure 2.3: CUBE GUI[7]

munication operations performed by the application, but instead of the original payload
the time-stamps are exchanged. Having this information the wait states are computed
by taking the difference of the time-stamps. Since the trace contains also the informa-
tion about call-paths and processes, the wait states can be properly attributed to the
locations where they were encountered. The scalability of the approach was proven with
experiments with up to 294,912 processes.

Figure 2.3 shows the CUBE [30] interactive performance browser which serves as a graph-
ical user interface for Scalasca. The data model of CUBE consists of three dimensions:
metrics, program (i.e. call-paths) and system (i.e. processes, threads). Each dimension
is represented as a hierarchy allowing different levels of granularity. An example of a
hierarchy in the metric dimension could be a parent child relation between a metric MPI
communication time which is included in the metric Total Execution Time. A severity
function defines a mapping of the entities (metric m, call-path c, process p) of the three
dimensions onto the accumulated value of metric m. The dimensions are represented by
three tree-browsers, representing from left to right the metric, the program and the system
dimensions. Two actions are available to the user: selecting a node and collapsing/ex-
panding a node. At each point in time, there are two nodes selected: one node in the
metric tree and a node in the program tree. Selection of a node in the system tree is not
supported. Each node is labeled with a severity value which is color-coded. A typical use
case is to read the tree-views from left to right. A value shown in the metric tree is a sum
of a particular metric over all call-paths and system entities. A value shown next to the
node (i.e. a particular call-path) in a program tree is a sum of the values of the selected
metric over all processes. And finally, the value shown next to a node in the system tree

18



Tools-Aided Performance Engineering

Figure 2.4: Vampir GUI[11]

is a value of the selected metric measured in the selected call-path on a particular process.
All values could be either absolute or percentages of a maximum value.

2.6.3 Vampir

Vampir [47] is a post-mortem trace visualization tool for a manual interactive investigation
of the application performance. Vampir uses Score-P in order to instrument, monitor and
produce traces of an application execution.

The main purpose of the tool is to translate events and corresponding measurements con-
tained in the trace into various graphical representations. These allow detailed insights
in various aspects of the application performance by means of powerful user-interaction
functionality. Additionally, the tool offers cross-experiment comparative analysis. Pro-
viding maximum possible level of details Vampir enables the user to identify performance
optimization potentials which are often missed by other tools.

Vampir GUI shown on Figure 2.4 offers two types of displays: time-line and chart views.
The first one presents events as a chain of color- coded blocks and supporting symbols
over an arbitrary interval of the time dimension. Charts, alternatively, show summarized
values of various performance metrics computed from the events contained in the trace.
Vampir GUI can be configured to display multiple views, both time-line and charts, within
one window. What is important is that all the currently visible views are coupled. This

19



Tools-Aided Performance Engineering

means that when the user changes one view configuration, e.g. zooming or scrolling
displayed time interval, Vampir automatically adjusts other views.

Vampir is a powerful exploration tool offering full information about the recorded per-
formance behavior. When the right “angle of view” is selected performance inefficiencies
clearly stand out, often with the eureka effect. However choosing the “right angle” is not
straightforward, especially in case of long running applications with dynamic performance.

2.6.4 ParaDyn

ParaDyn [45] is an online automatic performance analysis tool. It employs automatic
dynamic binary instrumentation for inserting and removing probe functions only in those
locations and time intervals that are relevant for the online analysis process. The instru-
mentation infrastructure of ParaDyn, called DynInst, is available as a standalone tool and
is also used in a number of other tools, such as VampirTrace [47] Open SpeedShop[54],
TAU [56] to name few.

The tool also employs a distributed architecture consisting of the main Paradyn process
and one or more Paradyn daemons. The main process is responsible for performing data
management, automatic analysis process, visualization and user interface. The daemons
perform instrumentation, measurement collection, measurement delivery and process con-
trol of a subset of application processes. When running in large-scale HPC systems,
Paradyn uses MRnet [53] for a scalable data reduction.

The Paradyn process responsible for the automatic analysis is called Performance Consul-
tant (PC). PC utilizes the W 3 analysis model, where the search for performance bottle-
necks is performed along the three “W” dimensions depicted by the pronouns: “Why?”,
“Where?” and “When?”.

The first “Why?” dimension defines the space of potential performance problems which
can be encountered in an application. Each point in this dimension is represented by a hy-
pothesis stating a particular problem and a condition expression used to prove or disprove
the hypothesis. The hypothesis encode general problems and thus are independent of the
program and the algorithms being analyzed. The hypotheses are organized hierarchically,
which allows an efficient way of evaluating the space of hypotheses by going down from
the root to the leaf hypotheses.

The “Where?” dimension covers all the execution locations where a hypothesis is evalu-
ated. These are composed of application regions, machine resources, parallel programming
language constructs. The components are typically organized in hierarchies of entities and
can be statically defined as well as added at runtime dynamically. For example code lo-
cations are defined by a module, which in its turn is a collection of procedures. Therefore
a particular performance can be first checked for the whole module and then be refined
to one of the procedures inside.

A distinctive feature of Paradyn is the “When?” dimension. This was one of the first

20



Tools-Aided Performance Engineering

Figure 2.5: ParaDyn Time Histogram Display[6]

tools to tackle performance inefficiencies along the time dimension automatically. The
goal of the analysis is to locate bottlenecks in multiple time intervals called execution
phases. Search for bottlenecks is then performed independently and detected bottlenecks
are attributed to the phase where they were found. Within each phase Paradyn records
measurements into a time-series buffer. The size of the buffer is constant and is allocated
for each phase regardless of the temporal duration of the phase. Naturally, this leads
to the situations when the buffer space is sooner or later exhausted. Paradyn solves the
problem by dynamically doubling sampling period and corresponding coarsening of the
already recorded data. This leads to logarithmic decrease in sampling rate and loss of
higher frequency details of the signal. The resulting signal still reflects important temporal
behavior since the short term changes lose their significance for the analysis with the phase
time growing. Recorded time-series can be then plotted for each phase independently and
visually analyzed by the user. Figure 2.5 shows a time-series measurements recorded for
some application.

The analysis is performed by the Performance Consultant (PC). It searches for perfor-
mance bottlenecks by automatically evaluating and refining hypotheses following the W 3

model. During the refinement step a new set of possible refinements is generated following
the hierarchy down from the hypotheses proved in the previous steps. The possible refine-
ments are grouped into sets that can be evaluated at once, since all cannot be evaluated
together due to monitoring limitations. Additionally, evaluation costs are estimated for
each of the refinements which are ordered accordingly. This way a part of the refinements
is selected for the evaluation and is proven or disproven based on the collected measure-
ments. The whole process of the refinement can be done completely automatically or
semi-automatically. The executed refinements and the results of the evaluation are then
presented to the user inside the search history graph (SHG) shown in Figure 2.6.

21



Tools-Aided Performance Engineering

Figure 2.6: ParaDyn GUI[6]

2.6.5 Pathway

Pathway [52] developed at Technische Universität München is a tool that supports the
user in structuring, executing and tracking the process of performance engineering. The
tool is built around the notion of workflows defining typical steps and transitions between
them which is borrowed from the field of business intelligence. The tools is implemented
as an Eclipse plug-in and relies on a palette of technologies such as Business Process
Model Notation (BPMN), Parallel Tools Platform, source code revision control as well as
a number of performance analysis tools.

Workflow editor is a central part of Pathway and is used to construct, execute and monitor
performance engineering processes such as the optimization cycle described above. Work-
flows are constructed using custom domain-specific nodes that formalize typical steps in
performance analysis and optimization. The nodes are connected by arrows which indicate
transitions between them.

Figure 2.7 shows the scalability analysis workflow implemented in Pathway. Scalabil-
ity analysis is a common analysis procedure which requires multiple experiments with a
varying number of processes. Often done manually, it is known to be a tedious process.
Alternatively, Pathway completely automates this process by automatically instrument-
ing the application, configuring and executing a series of experiments on a remote HPC
system, retrieving, storing and visualizing results using the tool of choice. The only input

22



Tools-Aided Performance Engineering

Figure 2.7: Pathway workflow editor

required from the user are the HPC platform, performance tool and the range of number
of processes.

Another important feature of Pathway is a very detailed protocoling of the executed
experiments. For each experiment executed Pathway automatically collects a large set of
metadata. These include a snapshot of the application sources; HPC system configuration
such as the values of environment variables and loaded modules; configuration of the
applied performance analysis tool; as well as user comments provided at the beginning
of the experiment. This data is a valuable information allowing to track performance
engineering efforts over long running projects as well as ensuring reproducibility of results.
The historical data of all executed experiments could be explored using the browser shown
in Figure 2.8

23



Tools-Aided Performance Engineering

Figure 2.8: Pathway experiment browser

24



Chapter 3

State of the Art

In this chapter we present state of the art techniques addressing the temporal dimension
in performance measurement and analysis.

3.1 Compression

The size of performance data linearly growing with time is an important concern to the
most of performance analysis tools. Hence the number of techniques were developed to
cope with the issue. Most of the techniques address the problem by compressing the data.
In this section we present a number of promising compression techniques.

3.1.1 Clustering of Dynamic Profiles

A compression algorithm allowing to mitigate the problem of linearly growing size of the
dynamic profiles is presented in [58]. The technique is based on an on-line incremental
semantic clustering of dynamic call-path profiles. The lossy compression algorithm ex-
ploits the repetitive behavior of the application in order to group similar iteration profiles
together.

The clustering is performed locally in each process. This allows to avoid overheads in-
troduced by communication and synchronization required otherwise. With every new
iteration of the progress loop, a new iteration call-path profile is created. This initially
constitutes a new cluster. This process continues until the maximum number of clusters
is achieved. After that, the two nearest clusters are merged. Each cluster stores mean
metric values and the iterations of the individual elements aggregated in the cluster.

In order to calculate the similarity of two clusters, a distance function is used. Since
calculating the distance function based on metric values of all call-paths in a profile
iteration is inefficient, condensed metric values are used instead. These are obtained

25



State of the Art

Figure 3.1: A schematic process of the incremental on-line clustering into a maximum of 4
cluster. (i) The first four call-path profiles are collected and categorized in two equivalence
classes. (ii) The profile 5 is collected and categorized to the equivalence class of profile 1.
(iii) Call-paths 3 and 4 are merged together as they are the closest ones according to the
distance function. [59].

by aggregating them across the call-paths of the profile. Additionally, this allows to
reduce the dimensionality, which leads to a better clustering quality. Manhattan distance
operator is then used to capture the distance value.

However, the structure of the call-path profiles collected in two different iterations is
not necessarily identical. In order to avoid introducing phantom branches or, oppositely,
losing others, the grouping is only performed among the profiles with equivalent structure.
Authors offer two ways do define equivalence:

• Weak equivalence - both profiles have identical call-paths

• Strong equivalence - both profiles have identical call-paths and the numbed of visits
of those in both profiles is the same.

The schematic depiction of the algorithm is presented in Figure 3.1.

The presented algorithm provides an elegant solution to the problem of storing temporal
performance profiles. It allows the user to control the size of the generated data by limiting
it with the maximum number of clusters. Compression however comes at the price of lost
information.

3.1.2 Wavelet Compression of Load Balance Measurements

A technique for scalable reduction of performance data volumes based on two-dimensional
wavelet compression is presented in [28], [27]. The authors recognize that the size of col-

26



State of the Art

lected performance measurements is not scalable across processes and over time dimension
and therefore has to be reduced.

The technique is based on a parallel, lossy, two dimensional wavelet compression [50] to
gather performance data from all processes of a highly-parallel application. The dimen-
sions are the processes and progress loop iterations, which can be also seen as execution
time. The time required for the compression is low enough, which makes it possible to
use the technique in real-time monitoring at scale.

At the end of the measurement collection, each process has a local vector of measurements.
In order to perform the parallel transform the vectors are consolidated by a nearest-
neighbor communication. During this step every S process receives S rows from the
neighbor processes. The number of rows is selected in the way that it is large enough to
half it L times, where L is the level of the Wavelet transform, and still be above the half
width of the Wavelet filter. For more information on the Wavelet transform see Section
6.2. Afterwards, the wavelet transform is applied in parallel on each consolidated block
of rows.

The resulting coefficients are then encoded using the Embedded Zerotree Wavelet (EZW)
[55]. An important advantage of the algorithm is an efficient trade-off between the size
and the accuracy. At the heart of the algorithm is an incremental thresholding using
a successively smaller threshold. On each pass of the threshold one bit is stored in the
output value indicating whether the coefficient is higher or lower than the threshold.
Taking into account the compactness property of the wavelet transform the resulting
encoding preserving the large coefficients is very space-efficient.

In the final stage, the locally EZW codded coefficients are merged with a parallel reduction.
Huffman encoding [36] is then applied to the resulting buffer.

The authors demonstrate that the compression time is nearly invariant with system size
and allows to preserve significant qualitative features of the data even for very large
compression rates.

3.1.3 Compressed Complete Call Graphs

Another approach to compression based on the semantic information contained in the
trace is called compressed Complete Call Graph (cCCG) [37] and is implemented in Vam-
pirNG [20].The approach is based on the graph data structure, called Complete Call Graph
(CCG), which is used to hold the trace. In CCG every node is one instance of a function
call storing the function metadata plus the time duration of the call. All function calls
from within the given function will be added as children to the current node. Additional
information such as MPI messages are added as special (leaf nodes). The example of a
CCG is shown in Figure 3.2.

However, when a function is being called from within a loop it will result in as many sub-
graphs as there are loop iterations. Usually these sub-graphs are almost identical, which

27



State of the Art

Figure 3.2: CCG of an example function[37]. For the compressed version see Figure 3.3

allows to represent all similar sub-graphs by only one instance. The process of searching
similar sub-graphs is done in parallel. Furthermore, the comparison operator, producing
the similarity measure is implemented in a very efficient way such that it has a constant
computational complexity regardless of the number of comparisons. The similarity func-
tion performs the comparison of the sub-graphs using hard and soft properties. The hard
properties are the semantic properties such as a function id and have to be identical in
order to merge two sub-graphs together. The soft properties, such as execution time,
are similar when the difference is within a certain error-range. The requirement of exact
match of hard properties allows to use hashing, which enables the constant comparison
complexity mentioned above. The error of matching the soft properties is propagated up
the hierarchy and accounted in the parent node. This allows to ensure that the over-all
error for any sub-graph will not exceed the allowed limit. The compressed version of the
example given in Figure 3.2 is shown in Figure 3.3.

The experiments on the real-world application traces showed compression ratios (in terms
of memory reduction) from 2.7 with an error tolerance interval of 0, i.e. no information
loss, up to 262 in case of a lossy compression.

Furthermore the cCCG features a straightforward querying mechanism. Since the struc-
ture of the cCCG is similar to the original CCG, no decompression is needed. This makes
cCCG an important infrastructure enabling efficient interactive trace exploration inside
VampirNG.

28



State of the Art

Figure 3.3: Compressed version of the example function shown in Figure 3.2 [37].

3.2 Analysis

The compression techniques presented above allow to mitigate the issue of data size grow-
ing with time. This makes possible recording and storing performance measurements of
longer application runs. However, it doesn’t solve the bottleneck associated with the tem-
poral dimension, but rather shifts it to the next stage, namely the analysis process. Now,
the collected and compressed performance measurements have to be evaluated. Often this
tedious task is left to the user. In this section we present a number of techniques assisting
the user in overcoming this challenge.

3.2.1 Detection and Application Structure Extraction

One of the approaches assisting the user in analysis of long traces is the automatic de-
tection of the trace structure. The value of the resulting information is two-fold. First,
it allows an easier comprehension of the traces and a faster identification of intervals of
interest. Second, in case of a repetitive behavior, the technique, instead of presenting mul-
tiple repetitions of the same pattern, presents only one - the most representative instance
of the pattern.

29



State of the Art

Structure Extraction Using Signal Processing

In [21] a technique based on signal processing algorithms is presented. The technique
automatically extracts the internal structure of an application by analyzing periodical
and hierarchical properties of performance signals generated from a trace.

In the first step the full trace of an application is collected. This is then used to generate
a set of relevant performance signals which characterize the temporal evolution of a given
metric. Authors find the following metrics useful in detecting the application structure:
instantaneous number of application processes performing computation, point-to-point
communications or collective communications; instructions per cycle, instantaneous num-
ber of outstanding messages.

In the next step the computation phase of the application is detected and separated
from the initialization and the finalization ones. The differentiation is made based on
the assumption that the computational phase contains higher frequencies in the above
metrics. Since the temporal location of high frequencies is of interest, in order to detect
the beginning and the end of the computational phase, Wavelet analysis was used (for more
details on the Wavelet analysis see Section 6.2). Actual detection of the computational
phase is done by selecting time intervals based on the wavelet coefficients characterizing
high frequencies. The selection of the intervals is parameterized using two parameters λ
and δ. The first parameter defines a threshold for selecting significant coefficients. For
example, the value λ = 0.3 means that all the coefficients which are greater or equal
to 30% of the maximum value are selected. The value of the δ parameter defines the
width of the time interval around the selected coefficient to be marked as a part of the
computational phase. Therefore, the union of all the intervals gives the temporal domain
of the computational phase.

After the temporal location of the computational phase is identified the performance
signals are further analyzed in order to identify repetitive patterns. This is achieved by
means of the autocorrelation function A(k) [60]. The function reaches its local maximums
near the values k equal to the main periods observed in the signals. By selecting maxi-
mums of the autocorrelation function one can detect periodicity of the present repetitive
patterns. In order to make sure that the selected maximums correspond to a meaningful
pattern, authors apply two heuristics. The first one requires that the detected maximum
is at least 10% higher than any other local maximum. The second checks the value of
the autocorrelation function for the second harmonica which is a multiple of the detected
period. If the period 2T is also a maximum, then the period T is accepted as the period
of the detected iterative pattern. The analysis is then performed recursively within the
single iterations of the detected pattern searching for the nested repetitive patterns.

30



State of the Art

Figure 3.4: Time line diagram showing simplified event sequence on three processes.
Shaded rectangles indicate certain activities defined by the corresponding events. These
are circles for region enter and exits and squares for send and receive events. The arrows
indicate the direction of the messages. It can be observed that extended execution time
of the “comp” activity on process A leads to direct waiting time in the process B. This
waiting time plus an additional delay caused by the receive operation on process B is then
responsible for the waiting time in the process C [19].

3.2.2 Root Cause Analysis

Another approach to the automatic analysis of temporal performance dynamics originat-
ing from the propagation of MPI wait states over the time and process dimensions is taken
in Scalasca [19], [42]. The technique scalably identifies the original cause of the observed
wait states as well as quantifies induced direct and indirect costs.

Figure 3.4 shows a fragment of the application trace highlighting a wait state situation
and how it evolves over time and processes. Here one can see that an extended execution
time of the “comp” activity on process A leads to a delayed send operation which in
its turn is responsible for the waiting time in the corresponding receive on process B.
The wasting of time in waiting is, however, not limited to process B. The delay in the
completion of the receive on process B delays also the send operation to the process C,
which is already delaying the corresponding receive. Here one can see that part of the
waiting time suffered in the receive on process C is indirectly caused by the original delay
in the completion of the “comp” activity on process A. This example nicely demonstrates
how wasted time in waiting is evolving over the time and migrating from one process to
another.

Based on the cause and the consequences, authors formalize the three following types of
a wait state:

31



State of the Art

• Direct wait state - a wait state caused by any activity which is not a wait state itself

• Indirect wait state - a wait state caused by another wait state

• Terminal wait state - a wait state which doesn’t cause other wait states

The activity or a part of an activity causing the process to be late at the synchronization
point and therefore causing a direct wait state on the peer process or set of processes is
called a delay. Using the terms presented above authors define a causation chain as a
sequence of a delay, a direct wait time, indirect wait times and a terminal wait time.

In order to quantify the wasted resources due to a delay along the causation chain a notion
of costs is introduced. It is further refined into the short-term costs covering the time
wasted in direct wait states and the long term costs which are the sum of all indirect wait
states.

Therefore, the goal of the root cause analysis is to map the costs of a delay onto the
call-path and the processes where the delay occurs. This is achieved by the following
algorithms:

1. Collection of a trace

2. Parallel forward trace replay

3. Parallel backward trace replay

During the trace collection the execution of the application is monitored and the relevant
events, including the communication events, are stored into a trace file. During the second
step the trace file is read by a parallel analyzer and it is “replayed”, i.e. the communication
events stored in the trace are consequently repeated, but instead of the original payload the
time stamps of the respective communication functions are communicated. This allows to
detect wait states by comparing the time-stamps of the peers. In the third step, the trace
is replayed again, but now in the backward direction. Here the wait states identified in
the previous step are classified according to the aforementioned types and linked together
into causation chains. The beginnings of the causation chains point to the delays, i.e. the
root cause.

Root cause analysis is a powerful technique directly pointing to the location of the inef-
ficiency and not the symptoms of it, which are wait states in this case. Additionally, it
quantifies the associated costs. However, authors recognize that the application of the
technique is not scalable along the time dimension [19] due to the limitations of the trac-
ing approach. The solution they suggest is to limit the tracing, and therefore the root
cause analysis, to particular time intervals where the wait states manifest themselves. In
particular they suggest to use dynamic profiling in order to identify these intervals.

32



State of the Art

3.3 Summary

The techniques described above target the challenges arising when the temporal resolution
in performance analysis is of interest. The most critical issue is the size of performance
data linearly growing with time. Therefore, many techniques were developed to cope with
it by means of data compression along the time dimension. The compression techniques
like cCCG and Dynamic Profile Clustering utilize repetitiveness in performance mea-
surements to shrink the data size both exact and lossy. Alternatively, the compression
algorithm for load-imbalance measurements described in Section 3.1.2 relies on proven
signal processing algorithms such as Wavelet analysis. Described techniques demonstrate
significant compression rates, in some cases even time-independent constant size of the
compressed datasets is achieved.

However, the compressed raw performance data has to be analyzed in order to extract the
knowledge about performance inefficiencies and optimization potentials. The bottleneck
of the time-dependent growth in data size is now shifted to this step. We overviewed two
different techniques simplifying the analysis of temporal performance data. The first one
automatically detects regularities in the trace data. This simplifies comprehension of the
measurements. Additionally it allows to limit the analysis time window to an interval
which is a representative of a repetitive pattern. The second technique takes another
approach. It focuses on the specific problem of MPI wait state analysis. This can dy-
namically degrade over time and migrate to other processes. The technique automatically
parses the trace in order to first identify the wait states and then track them back to the
originating cause which is responsible for the problem. Moreover the direct and indirect
costs in terms of the time wasted in wait states are quantified.

The information about how does the performance change with time, however, cannot be
easily available from the techniques described above. The evolution of characteristics is
particularly difficult to extract manually since it requires analysis of the time-dependent
data. On the other hand, this information is valuable for performance tuning, since it
allows to answer the following questions:

• Is a particular performance characteristic dynamic?

• When and where are the performance degradations suffered?

• How do they impact the overall performance?

In the next chapters we present a number of techniques and their implementation capable
of providing answers to the questions above automatically.

33





Chapter 4

Automatic Instrumentation
Adaptation

4.1 Introduction

Performance monitoring, as any other measurement process, relies on the insertion of
probes which distort the original behavior of the observed system. In this case the inserted
probe functions are executed by the same core and by that affect the application behavior.
This negative influence, called overhead, affect different aspects of the execution. Time is
one of the most impacted characteristic which can grow by orders of magnitude when too
much instrumentation is introduced. However the aspects like memory behavior, parallel
coordination between processes and branch prediction are being corrupted as well. The
automatic overhead elimination technique proposed in this work is targeting overheads
which manifest themselves in increased execution time due to measurement intrusions. It
could be also extended to address other aspects of performance measurement overheads.

The techniques presented in this chapter improve the method of direct instrumentation
discussed in Section 2.3.2. In particular, source level direct instrumentation was the main
focus for the development of the novel automatic instrumentation adaptation approach.
Until now overhead mitigation and instrumentation adjustment was the task carried out
manually by the user. In case of Score-P (a joint instrumentation and measurement
infrastructure for Scalasca, Vampir, Periscope and TAU) user can filter out high-overhead
regions by manually inserting high-overhead instrumentation regions to the black-list of
a filter file. In case of the commodity instrumentation and measurement infrastructure
of Periscope, called MRIMonitor, the only possibility to control inserted instrumentation
was to allow instrumentation of particular region types, e.g. loops, subroutines, calls,
for each source file separately. Although, the mechanisms proved to be efficient in many
cases, the manual approach requires significant efforts by the user.

Another significant disadvantage of the existing techniques for overhead reduction, are

35



Automatic Instrumentation Adaptation

that they don’t consider the type of the measurements and analysis being performed.
For example, the artificial wait-states created by an un-even amount of overhead on two
tightly communicating processes are of course a severe problem when MPI performance
is of interest. However, one can live with the negative effect when the single-core or the
node-level performance is a subject of the performance analysis. Moreover, tools like
Periscope collect measurements at different instrumentation locations at different stages
of the on-line analysis process. This makes instrumentation of other locations needless.
The novelty of the proposed automatic instrumentation adaptation strategies presented
in this work lies in the ability to consider the specifics and the run-time needs of the
performance analysis executed by the tool.

In order to demonstrate our techniques we implemented them in the framework of the
Periscope instrumentation and measurement infrastructure MRIMonitor. In comparison
to Score-P, it allows selective recording, i.e. measurements can be configured to be col-
lected on a specified sub-set of instrumented regions. Also the implementation of the
probe functions, allowing cancellation of a part of the introduced overhead, makes over-
head estimation more difficult in case of the MRIMonitor. Finally, the multi-step online
analysis process performed by Periscope together with the automatic restarting of appli-
cations allows a tight integration of the proposed instrumentation adaptation strategies
and the analysis ones.

4.2 Overhead Model

In the first step we develop a model of overheads introduced by monitoring an application.
Though, the model was developed for the monitoring infrastructure of Periscope, it can
be easily adapted to other tools.

Following the direct instrumentation approach calls to the probe functions start region

and end region are inserted before and after the region. Typical activities performed
by a monitoring library within the start region are shown in Figure 4.1. The monitor
function end region has a similar structure.

First the Periscope monitoring library checks whether there are any measurement requests
(1) for the region to be entered. If the analysis agent did not request any measurements,
there is no need to enter the measurement management. Second, it checks whether the
region is the phase region. If so, the application might be suspended for on-line measure-
ment configuration. If both conditions are false, the application can directly continue.
The overhead for these two checks is called the prolog overhead.

In the next, measurement counters are stopped (3) and read (4), in order to be config-
ured according to the requests specified for the region to be entered (5,6), the necessary
monitoring bookkeeping is performed (7) and finally the counters are started again (8).
This part of the overheads is denoted as request overhead.

36



Automatic Instrumentation Adaptation

Function start region(Region reg)

{

1. Check whether there are request for region

2. if (no request and no control point) return
prol ovhd

3. Stop counters

4. Read counter values

5. For all request

6. Configure counters

7. Perform measurements bookkeeping

8. Start counters

req ovhd

}

Figure 4.1: Pseudo code of the monitoring functions and the overheads.

By stopping and starting the counters the major part of the request overhead is canceled
out from the local measurements. Nevertheless, this time is still amortized in the extended
execution time of the monitored application and potentially in other processes due to
delayed synchronization. The overhead for the request management depends very much
on the number of request and the request type.

The composition and comparison of the pure execution time, observed and measured
execution times as well as the prolog and request overheads of an arbitrary region nest
are shown schematically in Figure 4.2. Here the execution time, in abstract time units,
goes from top to bottom. In the opposite direction cumulative values for the metrics
above are plotted with hatched rectangles.

The estimation of the introduced overheads is based on the number of calls to instru-
mentation functions. These are easy to obtain and associated overheads are very low.
For an arbitrary region nest the following two metrics are needed to estimate introduced
overheads:

• Exclusive instances (excl instances) - the number of instances when the overhead
was introduced due to the probe functions before and after the given region.

• Nested instances (nested instances) - the sum of excl instances of all nested
overhead occurrences during the execution of the given region.

In order to obtain the time spent due to each type of overhead, Periscope is calibrated
at the configuration time. In this procedure the time associated with a single instance of
the prolog overhead (prol ovhd) and the request overhead (req ovhd) are measured.

37



Automatic Instrumentation Adaptation

Pure
time

Reported
time

Request
ovhd.

Prolog
ovhd.

Total
time

E
x
ec
u
ti
o
n
ti
m
e
in

ab
st
ra
ct

ti
m
e
u
n
it
s

R1

R2

R1

R2

R1

R1

R2

R1

A
ccu

m
u
la
ted

tim
e
in

a
b
stra

ct
tim

e
u
n
its

Figure 4.2: Break down of the total, reported and pure times of a region nest (labeled as
R1 and R2) together with the generated prolog and request overheads.

38



Automatic Instrumentation Adaptation

4.3 Instrumentation Strategies

Based on the overheads model presented above three strategies for automatic minimization
of overheads were designed and implemented in Periscope:

• Total Overhead Reduction (TOR) Strategy: limits the increase of the observed
execution time

• Prolog Overhead Reduction (POR) Strategy: limits the increase in measured time
due to the prolog overhead, i.e., the non-corrected part of the measurements.

• Analysis Guided Overhead Reduction (AGOR) Strategy: adjusts instrumentation
according to the on-line needs of the analysis strategy.

In the next sections we describe each strategy in details.

4.3.1 Total Overhead Reduction Strategy

Figure 4.3 illustrates the algorithm of the TOR Strategy. This strategy is based on the
monitor’s own overhead estimations and limits the increase of the execution time, as it
can be measured on the application level.

First, all the regions of interest are instrumented. This is controlled by the programmer
via the configuration file. This instrumented version is then started by the frontend. The
frontend instructs the analysis agents to search for regions with excessive overhead. Thus,
the agents request appropriate measurements and the application’s phase is executed. The
measurements are then retrieved and the agents compute overhead estimations according
to the model above. Then the Excessive Total Relative Overhead property is evaluated
against the overhead estimates for all instrumented regions and is accepted when the total
overhead relative to the pure execution time of a region is greater than a certain threshold.
The specification of the property is provided in Figure 4.4.

In order to evaluate the property, the pure execution time of a region is computed. It is
computed from the measured execution time of the region (exec time). While measuring
it the request overhead was already canceled out, however, it still includes the prolog
overhead, which has to be accounted for. First we subtract the prolog overhead of the
probe function end region behind the region itself. This overhead is included in the
execution time since the counters are only stopped after the prolog of this probe function.
The prolog overhead of the start region is not included in exec time as one can see
in Figure 4.2. Thus, we multiply the estimate of the prolog overhead (prol ovhd) with
the exclusive instrumentation instances of the region (excl instances). We also have to
subtract the prolog overhead of all dynamically nested monitor library calls. Since in this
case both region start and region end polluted the measurements with their prolog

39



Automatic Instrumentation Adaptation

Instrument all 
regions

Start the application

Measure absolute 
overhead

Switch off 
instrumentation of 
regions with more 
than 5% exclusive 

overhead

Recompile and 
restart application

Start selected 
analysis strategy

Figure 4.3: Control flow of the TOR Strategy.

overheads we have to account two prol ovhd per instance of a nested instrumentation.
Using the estimation of the region’s own total overhead and the computed pure time we
can compute the relative overhead of the measurements for this region.

After the Excessive Total Relative Overhead property is evaluated for all the regions, the
instrumentation is removed for those regions where the property was found. Then the
application is recompiled and the standard analysis process of Periscope is continued.

The TOR strategy limits the increase in execution time of the application due to overheads
of the direct instrumentation. It can be used in combination with any search strategy,
but, in particular, it is highly beneficial in case of MPI or OpenMP analyses. The expla-
nation is that it reduces the artificial load imbalance introduced by an un-even growth in
the application execution time due to overheads on different processes or threads. The
effectiveness of the strategy is easy to check via direct wall clock time measurements of
the application. The drawback of the strategy is that it might remove instrumentation
with high total overhead but still allowing valid measurements achieved by the built-in
cancellation of the request overheads (see Section 4.4 for an example). The next strategy
provides a compromise solution for this problem.

40



Automatic Instrumentation Adaptation

PROPERTY Total_overhead(int exec_time, int excl_instances, int

nested_instances)

{
LET

pure time = exec time - excl instances * prol ovhd -

2 * nested instances * prol ovhd;

rel ovhd = excl instances * 2 * (prol ovhd + req ovhd) * 100 /

pure time;

IN

condition : rel ovhd > threshold

confidence : 1.0;

severity : rel ovhd;

}

Figure 4.4: Specification of the “Excessive Total Relative Overhead“ property

PROPERTY Prolog_overhead(int exec_time, int excl_instances, int

nested_instances)

{
LET

pure time = exec time - excl instances * prol ovhd -

2 * nested instances * prol ovhd;

rel ovhd = excl instances * 2 * prol ovhd * 100 / pure time;

IN

condition : rel ovhd > threshold

confidence : 1.0;

severity : rel ovhd;

}

Figure 4.5: Specification of the “Excessive Prolog Overhead“ property

4.3.2 Prolog Overhead Reduction Strategy

The Prolog Overhead Reduction strategy, for short POR strategy, limits the impact of
overheads on the measurements produced by the monitoring library. It follows the same
steps as the TOR strategy described above, but instead of removing instrumentation with
high total overhead, it eliminates overhead sources responsible for severe alternation of
measurements due to the non-corrected overhead part, i.e., the prolog overhead. Following
the property-based analysis approach of Periscope, the property Excessive Prolog Over-
head was created to automatically detect the regions where instrumentation is responsible
for high prolog overheads. The specification of the property is presented in Figure 4.5.

Similar to the Excessive Total Relative Overhead property described in Section 4.3.1, the
pure execution time (pure time) of a region is computed first using the same formula.

41



Automatic Instrumentation Adaptation

Instrument all regions

Start the application

Determine regions with 
excessive overhead

Remove all 
instrumentation except 

for phase region

Recompile and restart 
application

Start selected analysis 
strategy

Next 
strategy step 

required?

Determine required 
regions

Request instrumentation 
of required regions

Reinstrument if 
necessary

Request measurements, 
execute phase, analyze

Output found 
properties

Figure 4.6: Control flow of the AGOR strategy.

The relative overhead (rel ovhd) is , however, computed accounting only for the prolog
part of the overhead generated by the region instrumentation. In this case the rel ovhd

would be much lower than the value of the relative total overhead computed for the same
region. This results in less instrumentation being removed by the strategy.

POR strategy allows more fine-grained measurements, but at the same time it ensures that
the overheads introduced to process-local measurements are within acceptable limits. This
makes it a perfect instrumentation adaptation solution in case of a single core performance
analysis.

42



Automatic Instrumentation Adaptation

4.3.3 Analysis Guided Overhead Reduction Strategy

The AGOR instrumentation strategy implements another alternative approach to the
overhead reduction. As it follows from the name, the overheads are reduced by means of
adapting instrumentation to the ongoing analysis process of Periscope guided by a given
analysis strategy. The control flow of the AGOR strategy is shown in Figure 4.6.

First, all regions of the application are instrumented. Then either the TOR or the POR
strategy is used to filter out the regions which instrumentation generates unacceptable
overheads. These regions are then added to the black list and are never instrumented.

After the high-overhead regions are identified, instrumentation of all regions except the
root region, called the phase region, is removed and the control is given to the requested
analysis strategy.

Typically the analysis strategy is a multistep strategy. In each step it automatically
determines the regions which need to be evaluated in the current step. These regions are
then transparently communicated to the instrumentation strategy which checks whether
the regions are in the black list, and if not, their instrumentation is enabled. Whenever
a new region needs to be instrumented, the instrumentation of the regions which are not
anymore needed by the analysis strategy is removed. In the Periscope implementation,
every time the new instrumentation is added or removed, the application is recompiled
and restarted. After that, the analysis strategy collects the necessary measurements and
evaluates current hypotheses against them. Based on the results of this evaluation another
round of analysis on a new set of regions might be requested by the analysis. In this case
the procedure of instrumentation adaptation is repeated.

AGOR strategy features the lowest possible overhead among all the known direct instru-
mentation techniques. It is achieved by, first, removing all instrumentation which is not
of interest at the current state of the analysis. The instrumentation in this case is en-
tirely removed, which is different to the approach taken in ParaDyn. Second, only the
instrumentation of the regions which are currently of the analysis interest (typically a
very small set) are instrumented and only in the case when the associated overheads are
within a certain threshold. The obvious drawback of this strategy is that the entire time
for the analysis might dramatically increase due to multiple recompilations.

4.4 Results

We demonstrate the effectiveness of the proposed automatic adaptation of instrumentation
strategies using two applications. The first one is a synthetic benchmark simple enough
to ”look under the hood” and to demonstrate step by step our approach. Then with
the second application - a large particle simulation code - we show the benefits of our
technique in a real-world setup.

43



Automatic Instrumentation Adaptation

We run our experiments on the Altix 4700 supercomputer which was operational at Leibniz
Supercomputing Centre (LRZ) in Garching from 2007 till 2012. Although, at the time
this thesis is written the system is not anymore in service, the results presented below
can be easily extrapolated to current machines, since the performance and the actual
characteristics of the system used for the experiments are irrelevant to the techniques
presented here.

We combined the instrumentation strategies presented above with two analysis strategies:
the multi-step Stall Cycle Analysis (SCA) strategy and the single step Stall Cycle Analysis
Breadth First (SCABF) strategy.

The multistep SCA strategy is based on the Itanium’s stall cycle counters. They count the
number of stall cycles in the processor’s pipeline due to different reasons and are organized
in a hierarchy. For example, the BACK END BUBBLE ALL counter determines the number of
all lost processor cycles. On the next level, special counters determine stall cycles due to
special events. For example, BE EXE BUBBLE.GRALL determines the stall cycles for waiting
for the delivery of data to a general purpose register. BE EXE BUBBLE.FRALL determines
the stall cycles for waiting for the delivery of data to a floating point register.

The two search strategies basically follow the incremental search of refining performance
properties down this hierarchy. The SCA strategy starts for the program’s phase region.
It first checks whether there is a significant number of stall cycles. If not, the search
terminates. Otherwise, the search refines in the property hierarchy, looking for stall cycles
due to memory access overhead, exceptions, TLB misses, and so on. Thus, counters are
not wasted for checking unnecessary performance properties.

The second strategy SCABF generates in the first search step all stall cycle-related prop-
erties for all regions of the program. Due to the 12 Itanium counters, all can be measured
in a single execution of the phase.

4.4.1 Nested Loop Example

The first example is a little program shown in Figure 4.7. It has an iterative phase (line
22) which is marked by the directives USER REGION and END USER REGION indicating
the repetitive analysis phase of Periscope. This phase region is executed 30 times. It
consists of a single loop in line 24 which has two nested loops in line 27 and line 31. The
second loop is more compute intensive since it has 30.000 iterations while the first only
modifies the first 1000 elements. The execution time of the phase is externally measured
via the inserted wall clock time functions of MPI. Thus, we can compare the information
measured by the monitor with the reference measurement in the phase region.

First, we let Periscope instrument all the regions in the test code. In this case the regions
starting at lines 22, 24, 27 an 31 are automatically instrumented by inserting calls to the
probe functions region start and region end immediately before and after the region.
We evaluate only the TOR and the POR instrumentation strategies, since the code has

44



Automatic Instrumentation Adaptation

20: do k=1,30

22: !$MON USER REGION

ts=MPI_WTime()

24: do l=1,1000

s=0.0

27: do i=1,1000

a(i)=500*i

enddo

31: do i=1,30000

s=s+a(i)

enddo

enddo

te=MPI_Wtime();

write(*,*) te-ts

!$MON END USER REGION

enddo

Figure 4.7: Example code with three nested loops.

only three regions inside the user region and, therefore, is not suitable for the multi-step
refinement supported by the AGOR strategy.

Table 4.1 shows the execution time of the phase region (line 22) measured via MPI Wtime
as well as the corresponding value measured by the monitoring library. The presented
values are obtained after the instrumentation was adapted by the TOR and POR strategies
respectively.

Here we can see that in the first case the reference execution time is equal to 0.17 seconds
which is equal to the execution time of the uninstrumented application. In case of the
POR Strategy the reference measurements show much higher values indicating severe
growth in the execution time due to overheads. Nevertheless, the values reported by the

Table 4.1: Phase region execution time during overhead estimation and the subsequent
analysis step

Instrumentation Strategy
Reference time,

sec.
Reported time,

sec.
No instrumentation 0.17 –
POR Strategy 0.35 0.18
TOR Strategy 0.17 0.17

45



Automatic Instrumentation Adaptation

Table 4.2: Relative total and prolog overheads of the code regions in % of the pure time.

Strategy
Total overhead,

% of the phase time
Prolog overhead,

% of the phase time
User region at line 22 0.3 0.003
Loop at line 24 0.3 0.003
Loop at line 27 1085 18.4
Loop at line 31 100 2.7

Table 4.3: Properties found by the SCA analysis strategy supported by the TOR and
POR instrumentation adaptation strategies.

Region Property
Severity

TOR Strategy POR Strategy
User region at line 22 IA64 Pipeline Stalls 28.5 27.8

Stalls due to L1D TLB misses 23.1 23.0
Loop at line 24 IA64 Pipeline Stalls 27.7 27.8

Stalls due to L1D TLB misses 23.1 23.0
Loop at line 27 – – –
Loop at line 31 IA64 Pipeline Stalls

–
24.9

Stalls due to L1D TLB misses 21.2

monitoring library are valid.

The observations above can be explained by the estimated overheads presented in Table
4.2. Here we can see that the overheads of the regions at lines 27 and 31 are very high
compared to the respective execution times. As discussed above it is responsible for the
growth in the execution time but at the same time it is almost completely canceled out
from measurements collected by the monitoring library.

In case of the TOR strategy the instrumentation is removed from both regions. This
explains why we observe almost no overhead, neither in the reference measurements nor
in the monitor ones.

In case of the POR Strategy, the relative prolog overhead, as it can be expected, is not that
severe. Since it is above the threshold of 5% for the loop at line 27 the instrumentation
of this region is removed. For the loop at line 31 it is only 2.7%, which is below the
threshold and, thus, the instrumentation is preserved. However, the loop at line 31 still
has a total overhead of 100% which explains the severe growth in the reference time. The
values delivered by the monitor are, nevertheless, correct.

Table 4.3 compares the performance properties found. The second column identifies
the property either IA64 Pipeline Stalls identifying a situation where many stall cycles
occurred and Stalls due to L1D TLB misses where TLB misses induce stall cycles. The
next two columns report the severities of these properties for analysis runs combined with

46



Automatic Instrumentation Adaptation

Table 4.4: Phase time and the number of high-overhead regions removed for the analysis
runs with no instrumentation strategy, TOR strategy, POR strategy and a reference run
without any instrumentation.

Instrumentation strategy
Phase time,

sec.
#regions removed

None 150 n/a
TOR Strategy 3.26 110
POR Strategy 3.47 62
Uninstrumented 3.18 n/a

the TOR and POR strategies. We see that both analysis runs report the same properties
with almost the same severity for the user region and the loop in line 24. For Loop 27
none of the runs report any properties. Obviously, the reason is that in both cases the
instrumentation was removed. Nevertheless, by comparing the severities of properties
found for the user region and the loop at line 31 (which is together with the loop at line
27 nested) we can conclude that the contribution of the loop at line 27 is insignificant.
For Loop 31 only the second analysis run reports properties since the instrumentation
was removed by the TOR strategy in the first run.

The results presented in this section demonstrate the difference between the TOR and the
POR instrumentation strategies. The first one allows efficient elimination of the overhead
manifesting itself both in the execution time growth as well as in the analysis results
produced by Periscope. On the other hand, the POR strategy, still ensuring correct
analysis results, allows more fine grained analysis by preserving more instrumentation.

4.4.2 PEPC

PEPC [35] is one code in the DEISA Benchmark Suite [2]. It is a parallel tree-code
for rapid computation of long-range (1/r) Coulomb forces for large ensembles of charged
particles. The heart of the code is a Barnes-Hut style algorithm employing multipole
expansions to accelerate the potential and force sums, leading to a computational effort
O(NlogN) instead of the O(N2) which would be incurred by direct summation. Parallelism
is achieved via a ‘Hashed Oct Tree’ scheme, which uses a space-filling curve to map the
particle coordinates onto processors. The version we used in our experiments is PEPC-E
which consists of 66 FORTRAN 90 files (13.000 LOC) plus a library for tree management.

The first column of the Table 4.4 presents the execution times of the phase region of PEPC-
E for the analysis runs with and without instrumentation strategies as well as a reference
run with no instrumentation at all. Here we can see that when no instrumentation strategy
is used, the execution time of the phase time grows by a factor of 45. By applying the
instrumentation strategies the extreme growth in the execution time is cured and becomes
almost equal to the reference run with no instrumentation. In the second column we can

47



Automatic Instrumentation Adaptation

Table 4.5: Properties and their severities found by the SCABF analysis strategy in PEPC
with and without instrumentation strategies.

Region Property
Severity

TOR POR None

pepce.f90:82
IA64 Pipeline Stalls 60.2 58.2 50.7
Stalls due to L1D TLB misses 37.8 32.4 –

fields.f90:15
IA64 Pipeline Stalls 60.1 57.7 50.7
Stalls due to L1D TLB misses 37.7 32.4 –

fields.f90:209
IA64 Pipeline Stalls 52.9 53.1 42.9
Stalls due to L1D TLB misses 32.6 30.1 –

see the number of instrumentation regions removed by the TOR and POR strategies.
Although, the TOR Strategy removes almost twice the amount of regions removed by
the POR Strategy, the difference in the overhead reduction is not as dramatic as in the
previous example. This can be explained by the fact that most of the regions removed
by the TOR Strategy and kept by the second one are slightly above the threshold and
do not generate significant overheads. Nevertheless, when compared to the analysis run
with no instrumentation strategy, the phase time drops from 150 to 3.26 seconds in case
of the TOR strategy and 3.47 seconds in case of the POR Strategy.

Table 4.5 presents the performance problems found in PEPC on process 0. The results of
the other processes were similar. The analysis algorithm used was SCABF which checks
all the properties for all regions in one phase execution. The threshold for a property to
become a performance problem is a severity value of 30% of the phase time. As we can
see from the table, the reported severities for both runs with an instrumentation strategy
are quite similar and significantly higher than those reported without using an instru-
mentation strategy. We can also see that the analysis with an instrumentation strategy
reports one more specific performance problem for the three first regions. The reason is
that the prolog overhead influencing the measurements leads to the underestimation of
the severity of evaluated properties and thus to false-negatives, i.e. the situations when
some relevant properties are not reported.

4.5 Summary

Measurement overheads is an important concern for performance analysis tools. When
too many intrusions perturb observed application execution, obtained results may be
corrupted. Particularly, direct source code instrumentation techniques are vulnerable in
this respect since no simple mechanism for controlling overheads is available. The existing
techniques based on selective instrumentation or runtime filtering of high-overhead regions
require manual input from the user and often require multiple try and error iterations.

48



Automatic Instrumentation Adaptation

In this chapter we presented an automatic instrumentation adaptation strategies for over-
head reduction. The novelty of the presented approach is two-fold.

First, it presents a model and a lightweight scheme for overhead estimation. Here the
overheads introduced by the monitoring system are broken down into two components:
prolog overhead and request overhead. The first one comprises the overheads accumulated
in the observed performance measurements due to executing a probe function. The second
component represents the overheads introduced by reconfiguring measurement counters
and performing intensive bookkeeping typical to on-line analysis tools. This part of the
overhead is often much bigger than the prolog one, but, when properly implemented, is
canceled out from the measurements. In order to compute the estimates we propose to
extend the monitoring library to provide lightweight measurements of the probe func-
tion calls exclusively for each instrumentation region as well as the number of nested
instrumentation calls.

Second, we develop three automatic instrumentation adaption algorithms, called instru-
mentation strategies. The novelty of our approach is that the decision on automatic
removal of the instrumentation is based not only on overhead estimations but also on the
type and the runtime needs of the employed performance analysis process. This allows to
mitigate exactly the impacts of the introduced overhead which are critical for the current
analysis.

For example, when the MPI wait-state analysis is of interest it is important to minimize
the un-even extensions of the application execution time due to introduced overheads.
This is achieved by the Total Overhead Reduction strategy which removes instrumenta-
tion regions when total overhead, comprising both prolog and the request one, is above a
certain threshold. In contrast, when single core performance is of interest, the precision
of the obtained measurements and the granularity of the instrumentation are important.
Prolog Overhead Reduction strategy achieves this by only removing regions which gener-
ate high prolog overheads, which are typically only a small subset of the regions removed
by the previous strategy. Finally, when multi-step on-line performance analysis is per-
formed, the instrumentation is needed only around the regions which are currently in
the focus. For such scenarios the Analysis Guided Overhead Reduction strategy was
developed.

The concepts presented in this chapter were implemented in Periscope performance analy-
sis tool and evaluated with a real-world application. Our experiments show that by auto-
matic reduction of overheads with the presented instrumentation adaptation strategies we
achieve more precise performance analysis results. First, the severity of the performance
problems found in experiments with instrumentation strategies are corrected to higher
values when instrumentation strategy is applied in comparison to experiments when no
strategies were used. Second, in experiments with instrumentation strategies Periscope
detects additional performance problems which are blurred by overheads otherwise.

49





Chapter 5

Temporal Scalability of Performance
Dynamics Analysis

The size of temporal performance data growing linearly with time poses a severe challenge
specially in case of long running applications. The technical difficulty of collecting it as
well as associated overheads are prohibitive factors making performance dynamics a hard
aspect to evaluate.

5.1 Introduction

Various schemes were developed to handle the issue. The profiling technique solves the
problem by simply shrinking the time dimension by taking various statistics over the time.
This solves the problem of the linearly growing size at the cost of compromising the time
resolution and could be seen as one extreme. The other extreme would be tracing where
every single event is recorded and stored explicitly in a time-stamped buffer. This gives
the best possible resolution but suffers most from the poor temporal scalability.

The solutions lying in between of the two extremes were presented in Chapter 3. Although,
relying on different principles and properties of the application, the common approach
is based on the on-line compression of the temporal data by exploiting the repetitive
behavior of the application which is typical for numerical simulations. The result is a
trade-off between the size of the data and the obtained temporal resolution at the cost of
additional computations required for the on-line processing.

In this chapter we present a new scheme for the analysis of temporal performance data
called Online Dynamic Profile Analysis (ODPA) allowing to overcome the issues men-
tioned above. The technique features time-independent constant data size; temporal res-
olution of dynamic phase profiling; and zero processing overheads on the application side
due to remote on-line processing. The benefits come at the cost of additional resources

51



Temporal Scalability of Performance Dynamics Analysis

Online Processing of Temporal Performance Data

Dynamic Phase Profiling

Init Iteration 1 Iteration N…Iteration k…Iteration 2 Finalize

A
p

p
lic

at
io

n
M

o
n

it
o

ri
n

g
lib

ra
ry

Online Access
Interface

R
em

o
te

 A
n

al
ys

is
A

ge
n

t

Sk

Execution time

…

Measurement
requests

Performance
measurements

Performance Dynamics 
Properties

Performance Dynamics 
Properties

…

S1 S2
…

Chunk 1 Chunk n
…

…

Figure 5.1: Online dynamic profile collection and analysis scheme design.

for remote analysis units.

5.2 Design Overview

A high-level overview of the ODPA scheme is presented in Figure 5.1. In our approach
we separate the processes of temporal performance data generation, performed by a mon-
itoring library, and its analysis which is happening on the fly on a Remote Analysis Agent
(RAA). This is different to other approaches to the performance dynamics analysis where
the data is compressed online in order to be postmortem analyzed, either manually or
automatically.

On the monitoring side of the scheme we utilize the repetitive nature of applications to
obtain samples of temporal performance measurements. Here we extend the Dynamic
Phase Profiling technique which is used to collect a separate profile sample for each iter-
ation of the progress loop of the application. At the end of the iteration a profile sample
is transferred over an Online Access Interface (OAI) to the (RAA) and immediately dis-
carded on the application side. Thus, the amount of data stored on the application side
is decoupled from the number of profiled iterations.

52



Temporal Scalability of Performance Dynamics Analysis

By sending samples of the dynamic profile to the RAA the bottleneck, however, is not
completely removed but only shifted to another location. In order to completely resolve
it, the temporal performance data has to be also processed in online. We achieve this
by accumulating a predefined amount of samples of dynamic profiles and then processing
them in chunks. During the processing the chunks are searched for relevant performance
dynamics characteristics and patterns. These are then preserved as Performance Dynam-
ics Properties (PDP). The temporal raw performance data is discarded after the analysis
is completed. When the results of the next chunk are available, the two sets of found
PDDs are merged. In the following writing we describe each element of the scheme in
more details.

5.3 Dynamic Phase Profiling

In this section we give a formal definition of the Dynamic Phase Profile and the profile
time-series. The brief introduction and the history of the method was given in Section
2.4.1.

Performance profiling is a technique for collecting and aggregating statistics of perfor-
mance related data within a context defined by the applied instrumentation. The context
could be also seen as a point in the space given by the instrumentation dimensions (e.g.
MPI process, OpenMP thread, code region). The performance data is further classified
into metrics. Each metric has a particular semantic, for example: execution time, number
of messages and others. In our work we consider only non-decreasing metrics and their
derivatives, which is a limitation of the profiling technique itself and not the techniques
proposed in this thesis. First we give a formal definition of the common profiling technique
and then extend it for the dynamic one.

Let C be a set of all instrumented source code locations, P a set of processes used to
execute an application and M a set of performance metrics measured by a performance
analysis tool. Then the Static Profile is a mapping of a particular source code location
c ∈ C executed on a process p ∈ P onto a sum of metric values vn of a metric m ∈ M
measured N times during the measurement period:

StaticProfile : (c× p×m) 7→
N∑

n=0

vn, (5.1)

The Static Profile is convenient to find a metric value (e.g. communication time) observed
during the execution of a particular source code location on a particular process. How-
ever, this mapping does not include any information about the temporal behavior of the
performance since the sum operation shrinks the time dimension.

Dynamic phase profiling utilizes the iterative nature of scientific applications, which is
typically represented by a progress loop[29], e.g. the loop over simulation time steps.

53



Temporal Scalability of Performance Dynamics Analysis

Therefore, the dynamic phase profiling produces a separate profile for each iteration of
the progress loop. Let {1, 2, ..., N} be the set of progress loop iterations, then Dynamic
Profile is defined as an extension of (5.1)

DynamicProfile : (c× p×m× i) 7→
Ni∑
n=0

vn, (5.2)

where in addition to a source code location and a process, we map a progress loop iteration
i ∈ I onto a sum of metric values vn of a metric m ∈ M which was measured Ni times
during the iteration i and is called dynamic profile sample. For simplicity, we will denote∑Ni

n=0 vn =: vi, since we do not distinguish single readings vn beyond the granularity of
one iteration of the progress loop.

The technique proposed in this work focuses on the analysis of performance changes
along the iteration dimension I independently of other three dimensions. Therefore, we
simplify the mapping above by fixing the source code location c, process p and metric m
and represent dynamic profile only as a function of i:

DynamicProfilec,p,m : (i) 7→ vi, (5.3)

Taking into account that the domain of the new mapping (i.e. iteration) is equidistantly
sampled and represents time, we can denote dynamic profile as a time-series.

5.4 Online Access Interface

The OPDA scheme achieves constant time-independent size of temporal performance data
by separating the processes of measurement collection and measurement analysis. This
requires the monitoring library and the RAA to be able to exchange information.

We describe the part of the analysis scheme allowing this on the example of the Score-P
performance measurement system which was extended with the Online Access Interface
(OAI) for this purpose. The Score-P OAI, which is part of the measurement system,
enables RAA to connect to the Score-P over TCP/IP sockets and to operate the mea-
surement process remotely.

The part of the application execution for which performance measurements can be config-
ured through the OAI interface is called online phase. The online phase has an associated
user region containing the part of application source code which is of interest for the
analysis and therefore has to be marked manually by the user with the provided prepro-
cessing directives. In order to benefit from multi-step measurements, this region should
be an iteratively executed part of the code (e.g. the body of the progress loop) with the
potential for global synchronization at the beginning and at the end. Each phase region
will become a root for a call-tree profile during one measurement iteration. Data exchange

54



Temporal Scalability of Performance Dynamics Analysis

with the RAA takes place at the beginning and at the end of the phase, thus it does not
affect the measurements within the phase.

The communication with the RAA is done over TCP/IP sockets using a text-based moni-
toring request interface language which is a simplified subset of the request language used
by Periscope. The syntax of the language covers a broad range of online analysis scenarios
by means of three kinds of requests:

• Measurement configuration request,

• Execution request, and

• Measurement retrieval request.

The first category of requests allows enabling or disabling of performance metrics available
in Score-P. The scope of enabled metrics is global, i.e. they are measured for every region
within the online phase. Also some measurement tuning adjustments like depth limits
for profile call-trees or filtering of high-overhead regions can be done with these requests.
Execution requests are used to control multiple experiments by ordering Score-P to run
to the beginning or to the end of the phase or, if the analysis is done, to terminate the
application. Measured performance data, stored inside the Score-P call-tree profile, can
be accessed by means of measurement retrieval requests. The profile data can be returned
to the RAA in two ways: as a call-tree profile, where each node represents one call-path
of the source code region with associated measurements attached, or as a flat profile,
where measurements performed on some source code region are aggregated regardless of
the call-path.

In addition to allowing scalable analysis of temporal performance data, the Score-P OAI
has further benefits:

• Possibility for multiple experiments within one application run

• Avoiding dumping all measurements to a file at the end

• Faster measurement process: one iteration of the application could be sufficient

• Monitoring configuration refinement based on already received measurements

5.5 Online Processing of Temporal Performance

Data

Figure 5.2 depicts online processing of temporal performance data in more details. The
scheme can be broken down in three major parts:

55



Temporal Scalability of Performance Dynamics Analysis

PDB

tuple k

derivates

Digital Signal Processing

AlgorithmAlgorithmDSP
Algorithm

sample Data
Provider

dynamic & 
static context

features

Hypothesis

Evaluation

requests

Property

Refinement

Aggregation

Result

Automatic AnalysisTemporal Performance Data Management

OAI

Figure 5.2: Online temporal performance data processing scheme.

• Temporal Performance Data Management

• Digital Signal Processing

• Automatic Analysis

The Analysis sub-system, shown with dark-green, defines the logic of the online automatic
performance dynamics analysis. The algorithm is following a hypothesis-driven rule-based
search for performance degradations.

Each hypothesis requests the raw performance data which it requires for the evaluation,
e.g. MPI wait-state measurements. They also specify the length of the experiment in the
iterations of the progress loop. Consequently this defines the size of the analysis chunk
against which the hypothesis will be evaluated.

While the experiment is running the temporal performance data is being received, stored
and manipulated by the data management sub-system drawn with the brown color. It

56



Temporal Scalability of Performance Dynamics Analysis

includes the Data Provider (DP) - a module which is responsible for accepting data
arriving over the OAI. After a sample of the dynamic profile is received it is stored in the
Performance Data Base (referred to as PDB). DP also provides an interface for accepting
measurement requests from the Analysis sub-system which are then forwarded to the
monitoring library over OAI.

However, the time-series of profiles received from the monitoring library can not be used
to evaluate the hypothesis directly. Instead the evaluation rules are defined in terms of
high-level features of the signal, e.g. the hypothesis might test the presence of a peak in
the time-series. Therefore, the features have to be first extracted from the raw time-series
data.

The features required by the hypothesis are defined on a Dynamic Context (DC). It
specifies a subset of the time-series samples where the feature has to be computed and an
interpolation algorithm to be used to handle missing values.

Depending on the static context, a chunk of profile samples is queried from the PDB and
passed to the Digital Signal Processing (DSP) module. The module consists of a set of
advanced algorithms for time-series analysis that implement requested transformations.
After applying the transformation, the features are computed and returned to the analysis
module for the evaluation. Although, the raw data is discarded after its analysis is
completed, some derived statistics and transformations (in order to prevent temporal
scalability bottlenecks these have to grow sub-linearly with respect to time) are preserved
for the purpose of merging analysis results over multiple chunks or to prevent recalculating
the same transformation twice.

Depending on the evaluation results the hypothesis can be accepted or rejected. In the
first case we say that a performance property was found. In the next step the property
can be refined into a set of new hypotheses. Those are then evaluated against the current
chunk and, if needed, an additional burst of experiments can be requested.

The found properties however are only valid for the chunk where they were detected.
Therefore, when the next chunk is analyzed and a new set of properties is found they
have to be merged with the properties found in the previous step. After all chunks were
analyzed the resulting set of properties constitutes the final report.

5.6 Improved Periscope Analysis Engine

In this section we present an implementation of the Online Dynamic Profile Analysis
scheme in Periscope. The implementation adds new capabilities and ensures temporal
scalability of the analysis.

57



Temporal Scalability of Performance Dynamics Analysis

DataProvider
+strategies: Strategy

+request(metric:Metric)
+startExperiment(duration:int)
+subscribe(strategy:Strategy,metric:Metric)
+subscribe(strategy:Strategy,reg_type:RegionType)
+unsubscribe(strategy:Stragety)
+notifyStrategies()

Strategy

+notify(ct:Context)

requests

PerformanceDataBase
+tuples: Tuple

+store(metric:Metric,ct:Context,iteration:int)

measurements

Figure 5.3: Data Provider class diagram.

5.6.1 Requesting and Storing Temporal Performance Data

As described above, the task of requesting and receiving temporal performance measure-
ments on the RAA side is carried out by the Data Provider. The class diagram of it is
presented in the Figure 5.3.

Data Provider exchanges messages with the monitoring library over OAI, where requests
for measurements are sent and temporal performance data is received. After being received
and processed each sample is stored in the Performance Data Base into the corresponding
chunk of samples.

In order to inform the consumers of the measurements, in our case analysis strategies,
DP implements the observer pattern. Following the pattern DP provides a subscription
mechanism where an observer, i.e. strategy, can register for a specific measurement spec-
ified either by the metric type or the region type where measurements were collected.
Although other ways to specify the measurements of interest are possible, e.g. by a mea-
surement context, in practice we found the two filtering criteria above practical. While
registering, a pointer to the observer is given to the DP and stored in the list of observers

58



Temporal Scalability of Performance Dynamics Analysis

PerformanceDataBase
-chunks: Chunk
-defaultDC: DynamicContext

+getData(dc:DynamicContext,sc:StaticContext)
+getData(sc:StaticContext)

DSP_Module

Algorithm

+perform(data:Chunk)

DynamicContext

Property
-dc: DynamicContext
-sc: StaticContext

1

0..1

StaticContext
-region
-MPIrank
-thread

1

1

1

1

Figure 5.4: Performance Data Base class diagram.

to be notified when the requested metric is received from the monitoring library.

5.6.2 Accessing Temporal Performance Data

Temporal performance data is stored and managed by the Performance Data Base. The
way the data is accessed is presented in the class diagram shown in Figure 5.4. Consumers
of the data stored in PDB are properties represented by the property class. Each property
evaluates a hypothesis within a specific context which is represented by the staticContext
class. It is a composition of the source code location, i.e. region, and an execution
location, i.e. MPI rank and OpenMP thread. Together with a metric type the static
context uniquely identifies a dynamic profile time-series.

In case of properties evaluating performance dynamics, however, the evaluation rules are
defined in terms of high-level features. These are computed from the raw temporal data
using a set of signal processing algorithms discussed in the next chapter. The input raw
data and initial preprocessing, such as interpolation, for the analysis are specified in the
dynamicContext class. Properties use the dynamic context as a query to get the necessary

59



Temporal Scalability of Performance Dynamics Analysis

data from the PDB.

5.6.3 Backward Compatibility with Legacy Properties

Periscope contains a large collection of formalized performance inefficiencies in form of
legacy properties. These test the presence of a performance problem in a specific static
context. The temporal dimension is, however, completely ignored in this case.

In order to preserve this analysis logic we create one instance of the dynamic context class
to be used as the default dynamic context by the PDB. It specifies the default operation to
be applied when the dynamic context is not provided by the property. Since the properties
evaluate hypotheses over the whole time domain, the default operation shrinks the time
dimension by taking one of the following statistics over the samples:

• Sum

• Average

• Standard Deviation

Therefore, there are two ways to request data from the PDB. In the first case both
static and dynamic context are provided. In the second case only the static context is
provided by the property and the default dynamic context is used to perform the necessary
aggregation to shrink the time dimension. This way we achieve backward compatibility
with the legacy properties and preserve an extensive collection of formalized bottlenecks
specifications.

5.6.4 Handling Missing Values

When dynamic profile is performed it can be the case that a particular region is pro-
filed in one iteration, however, in the other one it might be not executed resulting in a
missing value. Alternatively, due to an online measurement configuration a metric might
be requested only in a subset of iterations which results in missing values as well. In
order to apply meaningful analysis to this data, missing values have to be first properly
interpolated. Following interpolation methods were implemented:

• Padding with zeros

• Piecewise constant interpolation

• Linear interpolation

60



Temporal Scalability of Performance Dynamics Analysis

Request 
MPI metrics

Set experiment 
duration

Start 
experiment

Subscribe for
MPI metrics

Wait for 
notification

Configure default 
dynamic context

Instantiate 
hypotheses

Evaluate 
hypotheses

Aggregate found 
properties

Discard tuples,
Keep statistics

Figure 5.5: Simplified online analysis process flow diagram for the MPI wait-states analysis
strategy.

The type of the interpolation to be used depends on the specific analysis configuration
defined in the dynamic context. For example, when missing values are a result of a region
not being executed in some iterations, then the zero padding interpolation is appropriate.
On the other hand, when requested metrics cannot be measured simultaneously, e.g. due
to limited number of counters, they can be multiplexed by measuring switching subsets of
metrics every iteration. In this case the measurements can be interpolated using constant
or linear methods. Of course, one has to be aware of possible aliasing effects due to
down-sampling followed by the up-sampling interpolation.

5.6.5 Online Analysis

In this section we describe the online analysis process on the example of the MPI wait-
states analysis strategy. Although, the strategy doesn’t target dynamic characteristics
of the performance, we use it as a simple example to demonstrate the main steps in the
online processing of dynamic profile chunks measured over multiple iterations. Figure 5.5
presents a simplified analysis flow chart diagram of the strategy highlighting the main
activities which are discussed below.

Request MPI metrics. In this step, the analysis strategy configures the collection of
MPI metrics including wait-states by placing corresponding requests to the DP.

61



Temporal Scalability of Performance Dynamics Analysis

Subscribe for MPI metrics. After requesting the metrics, the strategy also subscribes
for all MPI measurements to be received from the monitoring library at the end of the
experiment. A call back handling each measurement separately is given to the DP.

Set experiment duration. Here the experiment duration in iterations of the appli-
cation’s progress loop is configured. In this example the duration is not relevant form
the analysis point of view, but it is important in terms of limiting the size of temporal
performance data collected and stored on the RAA side.

Start experiment. The experiment configurations set above are now transferred to
the monitoring library over the OAI and the application is released. At the end of each
progress loop iteration collected measurement samples are sent to RAA and stored in
PDB. The experiment is run for the amount of iterations specified in the previous step.

Wait for notification. While the experiment is running the strategy is waiting for
the notification about metrics it subscribed for. The notifications are issued after the
experiment is completed.

Instantiate hypotheses. When the MPI wait-states are detected by the monitoring
library and their duration is returned as a series of measurements, the strategy is notified
about each static context where a particular type of wait-state was detected. For each
reported static context a wait-state bottleneck hypothesis is instantiated.

Configure default dynamic context. The hypotheses instantiated above verify that
the total wait time within a static context is above a certain percentage of the overall time.
However, the data stored in the PDB is a series of measurements of the detected wait-
states. Therefore, the series has to be reduced first. This is done by setting the default
dynamic context to perform summation reduction operation over the chunk. Also, the
interpolation method is selected to fill missing values with zeros since these can be only
the case when corresponding regions were not executed during the execution.

Evaluate hypotheses. During this step the hypotheses are evaluated against the values
specified by static context and aggregated according to the dynamic context configured
above. If the accumulated wait time exceeds a certain fraction of the accumulated runtime
of the iterations in the experiment, the hypothesis is proven and a found performance
property is recorded.

Aggregate found properties. Here the properties found in the current experiment are
merged along the time dimension with the properties found in previous experiments. In
order to be merged, the properties have to be of the same type and have to be reported
for the same static context. Different merging schemes are possible and depend on the
property. In case of wait-state properties a simple summation of the wait-state durations
in previous and current experiments is performed. It is then again compared against the
sum of the execution times of the two experiments. Another alternative would be to store
severities for each experiment and then perform a coarse grain analysis of the temporal
evolution of the wait-states.

62



Temporal Scalability of Performance Dynamics Analysis

Discard raw data, keep statistics. In this step the raw temporal performance data
used for the analysis is discarded. Nevertheless, some statistics like total execution time
are preserved in particular for the properties aggregation process discussed above. After
this step, the analysis cycle is repeated or terminated in case the application has finished
or the requested analysis duration exceeded a given threshold.

5.7 Summary

In this chapter we presented a novel technique for online collection and analysis of dy-
namic profiles called Online Dynamic Profile Analysis. It separates the collection and the
analysis of the temporal performance data between the monitoring library and the remote
analysis agent interconnected by the Online Access Interface. The data is produced and
processed on the fly which allows time-dimension-scalable low-overhead dynamic profiling
and online analysis. This means that the amount of data to be buffered is decoupled from
the number of measurement iterations on both sides. The proposed technique enables
efficient performance dynamics analysis discussed in the next chapter.

63





Chapter 6

Automatic Analysis of Performance
Dynamics

6.1 Motivation

In the previous chapter we proposed a scheme for the time-dimension-scalable collection
and processing of temporal performance data. The problem statement for this chapter is
how to extract relevant knowledge out of resulting numerous time-series of performance
data? A fundamental problem here is to bridge a semantic gap between the raw temporal
data and the desired high-level knowledge about performance dynamics that would be
native to the ”mental” model of the user.

The traditional approach to the analysis of such temporal data utilizes various graphical
representations (1D-, 2D-, 3D-plots, histograms and so on) and then lets the user to
”bridge the gap” on her own. Having an infinite variety of all possible realizations of
the dynamic process reflected by the temporal data, it is still remarkable how well the
humans are capable of interpreting this kind of representations. Nevertheless, we go one
step further and automate this process.

One would ask then, why should we care of automating the process of interpretation of
temporal data when humans already have outstanding capabilities for such kind of tasks?
The reason is that with both the length and the number of time-series growing with the
measurement time and the size of the experiment respectively, the effort of manual analysis
grows proportionally. This makes manual interpretation overwhelming when studying the
performance dynamics of real-world long-running applications on current or future HPC
systems.

In this work we aim at automatically detecting performance optimization potentials in the
application execution process represented by time-series of performance measurements.
This process is a combination of multiple factors, i.e. cache effects, load-balancing, exter-
nal interrupts, etc., which manifest themselves at different time-intervals and time-scales.

65



Automatic Analysis of Performance Dynamics

0 20 40 60 80 100 120
0

0.5

1

1.5

Iteration number

N
or

m
al

iz
ed

 s
ev

er
ity

 v
al

ue

Figure 6.1: Example signal plotting severity values of the property “Hot Spot of the
Application” for 128 iterations of the CX3D progress loop. The values are normalized to
the [0, 1] interval.

These result is either worsening or improving transient performance trends. Therefore,
the goal of the performance dynamics analysis is to identify, i.e. localize in space and
time, and to communicate to the user negative trends which in the following writing will
be referred to as degradations for brevity reasons.

6.1.1 Example Signal

The techniques we are using to achieve our goals are from the field of signal processing,
therefore, we us the term signal to denote a time-series of performance measurements.

In order to simplify understanding of the techniques, we demonstrate them on an example
signal collected in a performance dynamics experiment with a simulation code called
CX3D. The application is used for simulations of the Czochralski crystal growth [44] in
the silicon wafer production. The signal is shown in the Figure 6.1.

66



Automatic Analysis of Performance Dynamics

On the y-axis absolute severity values of the “Hot spot of the Application” performance
property are given. This type of property evaluates a percentage of the CPU time spent
in a region for which the property is evaluated. Therefore the absolute severity value is
nothing else as the CPU time of the region. The values shown in the figure are evaluated
for the velo subroutine implementing the solver of the application and are normalized to
the [0, 1] interval.

Nevertheless, the semantics of the signal is not essential. The algorithms we propose
in this chapter are designed to be agnostic to the performance metric being analyzed.
What is important is that, since the y axis denotes severity of a problem, we denote any
increases in the value as a degradation. The x-axis is represented by the iterations of the
progress loop in which the property was evaluated.

6.1.2 Design Goals

As mentioned above, our goal is to automatically detect and communicate performance
degradations to the user. We achieve this by automating the analysis process employed
by the user, namely we aim at automatically answering the typical questions asked by the
user when evaluating time-series of performance measurements:

• Does the performance change with time?

• What are the relevant performance degradations?

• When and where do they happen?

• How severe are they?

Quantify variability. The technique should be able to provide a measure of variability
observed in a signal. Using this measure we should be able to compare the amount of
variability between two signals. Also, since the temporal data we are working with is
not stationary, we should be able to quantify variability locally within sub-intervals of a
signal. In respect to the example shown in Figure 6.1, the answer to the first question
would be the result of the comparison of the variability measure against a given threshold.
Also one can observe that the variability in the first half of the signal is higher than in
the second one.

Declarative qualitative representation. In order to answer the second question we
need a representation model similar to the ”mental” model employed by the user. For
example, consider a representation in terms of a polynomial fitted to the example signal:

f(x) = p1 ∗ x5 + p2 ∗ x4 + p3 ∗ x3 + p4 ∗ x2 + p5 ∗ x+ p6, (6.1)

67



Automatic Analysis of Performance Dynamics

where p1 = 1.042e−09(8.71e−10, 1.213e−09), p2 = −3.795e−07(−4.35e−07,−3.241e−
07), p3 = 5.03e − 05(4.38e − 05, 5.679e − 05), p4 = −0.002921(−0.003253,−0.002589),
p5 = 0.06763(0.06065, 0.07461), p6 = 0.4032(0.358, 0.4483). Although, capturing the
dynamic behavior of the signal, such representation gives very little insight to the present
degradations when reported to the user explicitly.

Instead, we need a representation which is formulated in high-level primitives (printed in
italic below) which are declarative and readable by humans, such as:

”Signal has a peak near iteration 20, then it is followed by a flat interval until iteration
100, where it shows a step decrease.”

Quantify relevance.

The answer given above is clearly not complete, i.e. it doesn’t describe all transient
features present in the signal. When looking more precisely one can recognize numerous
small spikes or a local minimum around iteration 85. However, if we report every feature
to the user, it will be no better than presenting the raw data and again letting the user
decide what is relevant. Therefore, the technique should be able to quantify relevance
and report only those features, which would be visually found as relevant by the user in
a manual analysis.

Multi-scale analysis.

The execution process, which performance dynamics we analyze, is a combination of
numerous factors which manifest themselves at different time intervals and scales. For
example, a sudden mesh refinement can happen in a certain iteration resulting in a step
increase of synchronization losses due to a worse load balancing. On the other hand, wait-
states propagating over point-to-point communications and accumulating over several
iterations will result in gradual increase in corresponding measurements. This argues for
a systematic multi-scale approach for searching relevant features among all scales, since
there is no preferred one. Additionally, the technique should be able to locate features in
time in order to answer the third question.

Quantify severity. After detecting and localizing relevant features we need to quantify
the severity of a particular feature in respect to the overall performance. This value
puts a maximum limit on the performance improvement which can be gained in case the
degradation is prevented by optimization.

6.2 Wavelet Analysis

Wavelet transform is a promising signal processing technique[43]. When compared to
the more known Fourier transform, which analyses signals in the frequency domain, the
Wavelet transform is better suited for the representation of sudden spikes and disconti-
nuities capturing both temporal and frequency characteristics of the signal. Since such

68



Automatic Analysis of Performance Dynamics

patterns are common for the profile measurement time-series, this transform offers promis-
ing insights into performance dynamics.

6.2.1 Discrete Wavelet Transform

The discrete version of the Wavelet analysis is called Discrete Wavelet Transform (DWT).
It decomposes a one-dimensional signal into a two-dimensional representation of shifted
and scaled prototype versions of a bandpass wavelet function ψ with local support, called
mother wavelet, and shifted versions of a lowpass scaling function φ also with local sup-
port. For this work, we select a basis built from Haar wavelet [43], which is better suited
for representation of jumps in the studied signal.

Consider a discrete time-series f [i], where 1 ≤ i ≤ N , N = 2J , J a positive integer,
and sampling interval equals to 1. The wavelet basis is constructed by scaling a discrete
mother wavelet ψ with dyadic scales s = 2j, where 1 ≤ j ≤ J̃ is the scale index, J̃ ≤ J
is the level of decomposition of lower scales; and shifting it with dyadic shifts u = 2jn,
where 0 ≤ n < 2J̃−j is the shift index. Higher scales 0 < k < 2J−J̃ are captured by
the lowpass scaling function φ which is shifted with shifts u = 2J̃k. Described above
shifted and scaled wavelet functions ψj,n = 1

2j/2
ψ( n

2j
) together with the shifted versions of

the scaling function φJ̃ ,k = 1

2J̃/2
φ( n

2J̃
) form an orthonormal basis. Then a time-series f [i]

could be represented in this basis as follows [43]:

f [i] =
J̃∑

j=1

2J̃−j−1∑
n=0

Wf [j, n]ψj,n +
2J−J̃∑
k=0

Lf [k]φJ̃ ,k (6.2)

, where Wf [j, n] = f ~ ψj,n and Lf [k] = f ~ φJ̃ ,k, ~ denoting the convolution operator,
are wavelet and approximation coefficients respectively.

The sum of squares of the time-series samples is usually referred as energy. An important
property of the DWT is that the total energy of the original signal is equal to the sum of
energies of the wavelet and the approximation coefficients [43]

N∑
i=1

|f [i]|2 =
J̃∑

j=1

2J̃−j−1∑
n=0

|Wf [j, n]|2 +
2J−J̃∑
k=0

|Lf [k]|2. (6.3)

Furthermore, for the Daubechies class of wavelet functions, in particular the Haar wavelet,
the wavelet filter acts as a high-pass filter. Thus, by neglecting the Lf [k] terms, it de-
composes the sample variance of a time-series as [51]

V ar(f) =
1

N

J̃∑
j=1

2J̃−j−1∑
n=0

|Wf [j, n]|2. (6.4)

69



Automatic Analysis of Performance Dynamics

Iteration number

W
av

el
et

 s
ca

le

 

 

20 40 60 80 100 120

128

64

32

16

8

4

2 2

4

6

8

10

12

14

16

18

20

22

Figure 6.2: Scaleogram of the example signal. It shows the energies of the wavelet co-
efficients in percentages to their sum plotted against corresponding scale and temporal
location.

Figure 6.2 shows the Scaleogram of the example signal. Scaleogram is a plot of the energies
of the wavelet coefficients (here we plot percentages of the sum) against the scale, y-axis,
and the shift, x-axis. Mention the light-red rectangle at the scale 32 in the left part of the
plot. It corresponds to the high energy values which are due to the peak around iteration
20 in the example signal. Also, as expected, all the high-intensity coefficients are in the
first half of the signal meaning that we have more variability there.

6.2.2 Implementation in Periscope

In our analysis DWT is used to quantify the variability observed in the signal. Further-
more, it allows to calculate the amount of variability at different scales and temporal
locations denoted by the shift index.

We extend Periscope by implementing the DFT as part of the signal processing module.
After decomposing the signal into wavelet coefficients, the following functions can be used

70



Automatic Analysis of Performance Dynamics

to get variability measures:

• getTotalEnergy() - returns the total energy of the signal which is equal to the sum
of squares of the signal samples, or, due to the energy conservation property of the
DWT, to the sum of the wavelet and the approximation coefficients, totalEnergy =∑J̃

j=1

∑2J̃−j−1
n=0 |Wf [j, n]|2 +

∑2J−J̃

k=0 |Lf [k]|2.

• getDynamicEnergy() - returns the sum of energies of the wavelet coefficients,

called dynamic energy, dynamicEnergy =
∑J̃

j=1

∑2J̃−j−1
n=0 |Wf [j, n]|2.

• getShortScalesEnergy() - returns the sum of energies of the wavelet
coefficients belonging to the first half of scales, shortScalesEnergy =∑floor(J̃)/2

j=1

∑2J̃−j−1
n=0 |Wf [j, n]|2. We use this to quantify variability due to shorter

scale variability such as spikes.

• getWideScalesEnergy() - returns the sum of energies of the wavelet co-
efficients belonging to the second half of scales, wideScalesEnergy =∑J̃

f loor(J̃)/2+1

∑2J̃−j−1
n=0 |Wf [j, n]|2. We use this to quantify variability due long term

variability such as trends.

6.3 Qualitative Representation of Trends

Given a time-series of dynamic profile samples, a direct meaningful interpretation of the
raw values is hardly possible. Therefore, in order to automate the analysis of dynamic
performance, we need first a representation model, allowing explicit and declarative rep-
resentation of both quantitative and qualitative features which are native to the ”mental”
model employed by the user. In this section we present such a representation model
and a corresponding mapping which we adapt from the works of Backshi, Cheung and
Stephanopoulos [16],[22] from the field of Chemical Engineering.

In order to represent and reason with temporal information, we need to represent time
explicitly and concisely. In our case the iterations of the progress loop define the temporal
dimension as a sequence of strictly increasing iteration numbers:

I = 0, 1, ..., in, ..., iN

Consider a time-series of dynamic profile samples f [i], then the qualitative state of f at
i ∈ I is defined as a triplet of boolean values as follows[22]:

QS(f, i) = 〈[f [i], f ′[i], f ′′[i]]〉, (6.5)

where

71



Automatic Analysis of Performance Dynamics

[f [i]] =


+ if f [i] > 0,
0 if f [i] = 0,
− if f [i] < 0;

[f ′[i]] =


+ if f ′[i] > 0,
0 if f ′[i] = 0,
− if f ′[i] < 0;

[f ′′[i]] =


+ if f ′′[i] > 0,
0 if f ′′[i] = 0,
− if f ′′[i] < 0.

Using the definition above we define the qualitative trend of the time-series, f [i], as a
sequence of qualitative states over I.

Unfortunately, the values of the discretized function f(i) are not available outside of
I which makes exact calculation of its derivatives in I not possible. Therefore, we must
accept approximations of those, which are obtained by means of numerical differentiation.

Nevertheless, such approximations allow representations with increasing abstractions
which are very close to intuitive notions employed by humans in interpreting the temporal
behavior of functions. Indeed, the way we were taught to sketch a function in the calculus
is by segments between two nearest zero-crossings of the function or its first two deriva-
tives. In our setup it corresponds to segments of constant qualitative states. Therefore
we extend the notion of qualitative states to qualitative episodes in order to emulate this
intuitive representation:

Let the qualitative state QS(f, i) be constant ∀i ∈ Ĩ ⊆ I. Then the qualitative episode,
E, of f over Ĩ is the pair 〈Ĩ , QS(f, Ĩ)〉, with Ĩ explicitly specifying the temporal extent of
the episode and QS(f, Ĩ) = QS(f, i)∀i ∈ Ĩ characterizing the constant qualitative state
over Ĩ.

Whenever two episodes, defined over adjacent time intervals, have the same qualitative
state values, they can be merged to form an episode spanning over the union of both
temporal extents. On the other hand, if the qualitative state is constant over an interval,
then it is also constant over any of the subintervals. Using this observation we define a
maximal episode as an episode E, such that there is no episode E ′ for which the qualitative
state is equal to the one of E and the temporal extent of E is contained in the temporal
extent of E ′. From these definition we conclude, that two maximal qualitative episodes
are separated by a change in qualitative state, i.e. a critical point of the function.

72



Automatic Analysis of Performance Dynamics

A B C D E F G

Figure 6.3: Geometric primitives for the 7 basic qualitative descriptors of the qualitative
representation language. A: concave increase, B: concave decrease, C: convex decrease,
D: convex increase, E: linear increase, F: linear decrease, G: constant

6.3.1 Geometrical Interpretation

Although, the qualitative representation formalized above matches the intuitive primitives
used by humans, it is not explicitly declarative when presented in the form (6.5). Instead,
we use a language that offers declarative geometric semantics.

As one can see the maximum number of combinations of (6.5) is equal to 27. After
removing all non-valid combinations such as when f(i) = 0 and f ′(i) 6= 0 and f ′′(i) 6= 0;
when f ′(i) = 0 and f ′′(0) 6= 0 and the combinations when f(i) < 0, which are not possible
since our metrics are all positive, we are left with only 7 possible combinations. We label
each valid combination with an alphabetic character and a geometric primitive visualizing
the combination of signs of the first and second derivative by the corresponding curve.
These are shown in Figure 6.3.

As an example, consider a qualitative representation of the smoothed (in the next sec-
tion we explain why we choose to smooth the signal before extracting the qualitative
states) example signal shown in Figure 6.4. Here we plot qualitative episodes detected
in the signal depicted by both alphabetic labels and corresponding basic shapes adjusted
to the width of the detected qualitative episodes. One can mention that the resulting
representation is very close to the intuitive perception of the dynamic behavior of the
signal.

6.3.2 Scale-Space Filtering

As shown in the previous section, qualitative representation by means of the language of
qualitative episodes provides a compact and intuitive description for dynamic features.
The episodes are formed by extrema in the signal and its first two derivatives. These,
in their turn, require computation of the derivatives which have to be taken over some
neighborhood. The extent of the neighborhood is often referred as to scale and choosing
it properly appears to be a fundamental problem since there is no rule for preferring one

73



Automatic Analysis of Performance Dynamics

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D A B C B C D A B C

Iteration number

N
or

m
al

iz
ed

 s
ev

er
ity

 v
al

ue

Figure 6.4: Qualitative representation of the smoothed example signal. The original signal
is plotted with cyan bars; the zeros of the second and first derivatives of the smoothed
signal are shown with red dots; the qualitative representation by both alphabetical labels
and geometric primitives is plotted above with blue color.

against another. The reason is that the events that we find meaningful and important
tremendously vary in size and extent and depend on the overall context. In this section
we describe a systematic way for handling the scale parameter called Scale-Space Filtering
(SSF) which was introduced by Andrew P. Witkin in [61].

6.3.3 Scale-Space Image

The approach to managing the scale parameter in SSF follows the idea that (1) the amount
of details in the signal is decreasing and (2) no new details are allowed to appear as the
scale is increasing.

As it was shown in [15] a smoothing by convolution with the Gaussian filter and varying
the Gaussian standard deviation allows to achieve the desired behavior. The details being
incrementally swiped away in this context are zero-crossings of the second derivative of

74



Automatic Analysis of Performance Dynamics

0 20 40 60 80 100 120

σ =1

σ =6

σ =12

σ =38

σ =118

Iteration number

Figure 6.5: Slices of the example signal’s Scale-Space Image at the given set of scales, σ.

a signal, i.e. inflexion points. The Gaussian convolution of a signal f depending both
on argument x and the signal independent scale parameter σ, i.e. Gaussian’s standard
deviation, is given by

F (x, σ) = f(x) ~ g(x, σ) =

∫ ∞
−∞

f(u)
1

σ(2π)
1
2

e−
(x−u)2

2σ2
du, (6.6)

where ”~” denotes the convolution operator with respect to x. Function, F (x, σ), defines
a surface on the (x, σ)-plane, where each value of σ is mapped onto a smoothed version
of f and the degree of smoothing is strictly increasing with σ. Following the terminology
in [61] we call the (x, σ) domain scale-space and the function, F , the Scale-Space Image
(SSI) of f . Figure 6.5 shows a part of the scale-space image for a set of scales built from
the example signal.

An important property of Gaussian smoothing is that as we decrease scale, additional
zero-crossings can appear in pairs, as it will be demonstrated in the following writing, but
no existing ones can disappear. Moreover, the Gaussian filter is shown to be the only one
featuring this property [15].

75



Automatic Analysis of Performance Dynamics

0 20 40 60 80 100 120
1

10

100

1000

Iteration number

S
ca

le
, i

te
ra

tio
ns

Figure 6.6: Contours of zero-crossings of the example signal’s SSI.

6.3.4 Scale-Space Qualitative Representation

SSI is a multi-scale representation of a signal as a series of the smoothed versions of it.
What we need, however, is a multi-scale representation in terms of qualitative episodes
presented in Section 6.3.

An intermediate representation allowing such a transition can be obtained by connecting
inflection points over scales of SSI resulting in Contours of Zero-Crossings (CZC). CZC
for the example signal is shown in Figure 6.6

Here we can see a graphical evidence to the property of Gaussian smoothing that no
new zero-crossings can appear with increasing scale. Additionally, from the close spatial
proximity of zero-crossings belonging to the same contour we make an assumption that
they arise from the single underlying effect. This allows tracking of signal’s features over
multiple scales. The contours of zero-crossings form arches which are properly nested in
the spatial domain.

Another observation is that the contours are not vertical, i.e. the spatial location of an
inflexion point is drifting with increasing scale which is a natural effect of smoothing.

76



Automatic Analysis of Performance Dynamics

0 20 40 60 80 100 120
1

10

100

1000

Iteration number

S
ca

le
, i

te
ra

tio
ns

Figure 6.7: Interval tree of the example signal’s SSI.

Using coarse-to-fine tracking of zero-crossings we can still obtain the precise location by
taking the one from the finest scale. Therefore, we can represent each arch of a contour by
the coarsest scale till which it survives smoothing and the precise spatial location obtained
from the finest scale. Using this we redraw CZC by representing each arch of a contour
by a vertical line starting at the zero-crossing’s location at the finest scale and going to
the coarsest scale where it gets connected by a horizontal line with the second arch. The
transformed CZC, called Interval Tree, for the example signal is shown in Figure 6.7.

The hierarchical structure of zero-crossings, which we observed on the original CZC as a
perfect nesting of contours, becomes prominent in the interval tree. This follows from the
property of Gaussian smoothing stating that as we increase scale, additional zero-crossings
appear in pairs at certain scale and then never disappear.

Each rectangle in the interval tree represents an interval between two neighbor inflexion
points over a span of scales. With additionally detecting zero-crossings of the first deriva-
tive within this interval at the corresponding scales we label resulting sub-intervals with
qualitative descriptors described in the previous section. Taking into account the hierar-
chical tree-like structure of the episodes, the result is the desired multiscale representation

77



Automatic Analysis of Performance Dynamics

concisely and completely describing the qualitative structure of the signal over all scales.

6.3.5 Qualitative Summarization

Looking at the interval tree one can mention that the vertical boundaries corresponding to
the scale parameter σ vary for different episodes. The height of the rectangle corresponds
to the number of scales over which the boundary inflexion points are present in the
incrementally smoothed signal. Apparently, empirical observations indicate [61],[23],[17]
that this value, called stability, corresponds to the perceptual salience of the corresponding
qualitative episodes. In other words, the episodes with high stability tend to stand out
among others with lower stability. As a remark supporting this statement, an interesting
relation, although in a two-dimensional case, was shown between the spatio-temporal
scale-space generated by Gaussian and the spatio-temporal receptive field response profiles
registered from mammalian vision[41].

We use this property to quantify visual ”relevance” of the signal’s qualitative episodes, al-
lowing to rank corresponding temporal features according to their perceptual significance.
Furthermore, we shrink the multiscale representation to a single-scale one by performing
summarization based on the stability value. The summarization algorithm descends the
interval tree in a breadth-first fashion and selects the level with maximum value of the
sum of stability values of the nodes at the level. This level is called maximum stability
level (MSL). The sequence of the qualitative episodes given in the beginning of this section
in Figure 6.4 corresponds to the nodes of the MSL of the example signal.

6.3.6 Implementation in Periscope

Numerical Implementation

The SSF definition given in 6.6 is for continuous signals. However, in order to be used
in practical applications we need a discretized version of the SSF technique. For our
implementation we use the scale-space theory for discrete signals developed by Tony
Lindeberg [40]. Without diving into the details, which can be found in the original paper,
we provide a short summary of the technique.

The straight-forward approach of sampling the Gaussian and discretizing the convolution
integral, may lead to violations of scale-space assumptions, such as appearance of phantom
zero-crossings. The reason is that the theory developed by Witkin [61] and for the 2D
case by Koenderink [39] was developed for continuous signals and it is not guaranteed
that the basic scale-space conditions are preserved.

Alternatively, a genuinely discrete scale-space theory is obtained by discretizing the dif-
fusion equation under the postulation of the scale-space axioms. This allows to compute
SSI of discrete signals by convolution with a family of kernels T (n, t) = e−tIn(t), where

78



Automatic Analysis of Performance Dynamics

ScaleSpaceFiltering
-rootSequence: QualitativeEpisodes

+getRootSequence(): EpisodeSequence
+getMSL(): EpisodeSequence
+buildIntervalTree(chunk:Chunk)
+searchSequence(qualDescriptor,minStab): EpisodeSequence

QualitativeEpisode
-parent: QualitativeEpisode
-children: EpisodeSequence

+getType(): char
+getParent(): QualitativeEpisode
+getChildren(): EpisodeSequence
+getDynamicContext(): DynamicContext
+getSum(): double
+getStability(): int

EpisodeSequence
-episodes: QualitativeEpisode

+getDynamicContext(): DynamicContext
+getSum(): double
+search(qualDescription:char): EpisodeSequence
+searchSequence(qualDescription,minStab,
                width): EpisodeSequence
+refine(): EpisodeSequence
+coarsen(): EpisodeSequence

1

0..1

Chunk
+samples: int

1

1..*

1
0..1

1

1

Figure 6.8: Class diagram of the SSF algorithm and related data-structures.

t ∈ R is the scale parameter and In are Bessel functions of integer order, n. These are
shown to be the discrete analog of the Gaussian kernel, leading uniquely to the Gaussian
kernel when similar argumentation applied in the continuous case.

Class Diagram

Figure 6.8 shows the class diagram of the SSF algorithm and corresponding data-
structures. The ScaleSpaceFiltering class performs the actual processing of the raw
temporal data stored in an object of the Chunk class. This includes smoothing, detection
and coarse-to-fine tracking of zero-crossings as well as the classification of the qualitative
episodes.

Each episode is represented by an instance of the QualitativeEpisode class, which stores
the following meta-data:

• Type - the qualitative descriptor of the episode which is stored as a char

• Dynamic Context - the data-structure defining the borders of the iteration interval
of the episode. These are the x coordinates of the enclosing critical points at the
finest scale.

79



Automatic Analysis of Performance Dynamics

• Sum - sum of time-series samples within the episode collected at the finest scale

• Stability - the number of scales at which the episode exists

• Parent - the parent episode in the hierarchy of episodes defined by the interval tree

• Children - a sequence of episodes which are below the current one in the hierarchy

Sequences of episodes, such as children episodes of an episode or the maximum stability
level, are represented by the EpisodeSequence class. It allows aggregation of episodes
meta-data, as well as derivation of other sequences. Thus, one can refine or coarsen the
current sequence by constructing a new sequence consisting of the children or parent nodes
respectively. Furthermore, it allows to search for a subsequence of episodes specified by
a sequence of qualitative descriptors as well as by constraints such as span, stability and
so on.

6.4 Performance Dynamics Analysis Strategy

In the previous sections we presented algorithms that allow extraction of dynamic features
from the raw temporal performance data. In this section we present a rule-based inference
algorithm, called Performance Dynamics Analysis Strategy (PDAS), capable of automatic
evaluation of temporal features and deriving high-level performance dynamics properties.

6.4.1 Design

The algorithms presented in the previous sections are capable of detecting dynamic fea-
tures in time-series of performance data regardless of their semantic. The naive approach
of applying them to all collected time-series of performance measurements will not lead
to the desired results. For example, by processing a time-series of floating point opera-
tions completed within an iteration of the progress loop we might identify a spike around
some iteration. How does this information help in identifying a potential for performance
optimization? Or, what is the value of a knowledge about present degradations in tem-
poral evolution of cache performance, when the average cache miss rate for the whole
application execution is negligible?

Therefore, before applying the dynamics analysis, we first evaluate runtime-static perfor-
mance of the application by means of available legacy analysis strategies of Periscope, here
called as Static Performance Analysis Strategies (SPAS). As runtime-static performance
we denote performance characteristics averaged over the application execution time, i.e.
application performance profiles. Since the analysis algorithms are agnostic to the type of
temporal performance data, any types of SPAS can be used, for example, MPI wait-state

80



Automatic Analysis of Performance Dynamics

analysis or OpenMP synchronization overheads analysis. Moreover an arbitrary number
of SPASs can be used when the monitoring capabilities allow this.

The result of the analysis with a SPAS are runtime-static performance properties (SPs)
which represent a particular performance problem, e.g. ”excessive MPI wait time due to
a late sender in MPI Recv”; locate it in the space of application regions and execution
units; and, finally, quantify the severity of it. Therefore, runtime-static properties answer
questions ”what” the problem is, ”where” it is located and ”how severe” it is.

By applying dynamics analysis to the time-series representing temporal development of
the performance problem we answer the missing ”when” question. This allows to locate
the problem along all search dimensions. Moreover, our approach significantly reduces
the search space for the performance dynamics analysis strategy as well as interpretation
effort for the user by filtering out performance dynamics patterns when they are not
relevant in the overall context of the application performance.

Therefore, there are three main phases in the performance dynamics analysis process:

• Analysis of runtime-static performance

• Expansion of the time dimension for the found runtime-static properties

• Analysis of performance dynamics

6.4.2 Analysis Algorithm

Analysis of Runtime-Static Performance

The algorithm of the PDAS is presented in Figure 6.9. The analysis starts by configuring
a burst of measurement experiments of length n, following the concept of Online Dynamic
Profile Analysis described in Section 5.2. Afterwards, the SPAS is asked to request the
measurements it needs for the analysis of static performance. The application is then
released and runs for n iterations of the progress loop while the requested measurements
are collected.

Upon the completion of the last iteration in the burst, the default dynamic context speci-
fying the temporal access window is positioned on the interval of iterations just executed.
This access window is then transparently used to compute aggregated values of metrics
over of measurement samples collected during the experiment. These are then evaluated
by the SPAS resulting in a set of found static properties. They specify the type of the
problem as well as its location and severity. PDAS queries them for the in-detail dynamics
analysis of the found performance inefficiencies.

81



Automatic Analysis of Performance Dynamics

Prepare experiment 
burst of length n 

iterations

StaticStrategy: 
Request 

measurements

StaticStrategy: 
Evaluate static 

properties

Run experiment burst

Get the list of found 
static properties, 

p=list.begin()

Set default 
dynamic context to

[i, i+1]

i >= 
burst_end

p.next() 
== 

list.end()

Create root dynamic 
property hypothesis 

Evaluate dynamic 
properties hypotheses

Derive next 
hypotheses from the 

proven ones

Group properties 
found in this 

experiment with 
the properties from 

the prev. experiments

Start

End

yes

n
o

, i
++

n
o

, p
=p

.n
ex

t(
)

yes

no

yes

no

yes

Analysis of runtime-static 
performance

Expansion of the time
dimension of the found 

runtime-static properties
Analysis of performance

dynamics

i=burst_start

Set default 
dynamic context to

[burst_start, burst_end]

Compute and store 
impact of p Set of

hypotheses 
empty?

Analysis 
finished?

Figure 6.9: Algorithm of the Performance Dynamics Analysis Strategy

Expansion of the time dimension for the found runtime-static properties

Before evaluating dynamics of a detected performance problem, a time-series character-
izing its temporal evolution has to be obtained. This is done in the second phase of the
analysis, shown in the middle of the Figure 6.9, where the temporal dimension of the
found performance inefficiencies is expanded. This is done by iteratively evaluating each
found SP for each iteration, i, of the experiment burst. The result is a set of time-series

82



Automatic Analysis of Performance Dynamics

of severity values which quantify relative impact of the problem as follows:

Severityi =
Impacti

PhaseT imei
, (6.7)

where Impacti is the negative influence of the problem computed in time units lost and
PhaseT imei is the total execution time of the phase region measured during iteration
i. However, a time-series of relative values of severity might be misleading when the
performance dynamics is of interest. Consider an example when the application has
two performance problems each responsible for 50% of the execution time (an artificial
example when the execution is composed of two phases both evaluated as an inefficiency).
Now when we double the time lost due to both problems, the severity of each is still
the same 50%. Therefore, what we need is a time-series of absolute severity values, i.e.
impact, which we derive from the severity values using the formula above. Furthermore,
for each time-series of SP’s impact values we create the root hypothesis about performance
dynamics which is evaluated in the next phase.

Analysis of performance dynamics

In the third phase of the analysis algorithm the hypotheses about degradations in the
temporal evolution of the detected SPs are tested. During the evaluation the impact
time-series derived above are processed by means of the signal processing algorithms
presented in the beginning of this chapter. The hypotheses are then accepted or rejected
by evaluating pre-defined inference rules against the resulting dynamic features.

When a hypothesis is accepted we say a performance dynamics property is found. In the
next step these are refined by instantiating derived hypotheses which are specified by the
hypotheses hierarchy. If the set of hypotheses is not empty, the next is evaluated and
refined until the whole hierarchy is parsed.

As a result of the evaluation, a number of performance dynamics properties are found
for the current burst of iterations. Following the online analysis scheme presented in the
previous chapter we group the properties found in this burst with the properties found
in the previous ones in order to prevent linear increase in the collected data as well as
in the effort of interpretation of the analysis results. The grouping of the properties
of the same type is performed along the time dimension according to a property-specific
aggregation specification. After grouping is completed, merged properties are kept for the
next experiment burst which is entered unless the analysis is finished. This can happen
when either the application has terminated or the requested analysis duration is reached.

83



Automatic Analysis of Performance Dynamics

6.4.3 Adapted APART Property Specification Language

We adapt the APART property specification language [26],[32] to define performance
dynamics properties.

A performance property specifies an aspect of the inefficient application behavior. Each
property is defined within a context which can include a source code region, a process
and a thread. In our extension one or more properties can serve as a context of another
property. Additionally, we need to define the temporal context for the property evaluation
which is specified by a dynamic context.

In order to simplify reading, each specification has a definition section where functions or
constants used in the following specification section are given.

The actual property specification consists of the following features:

• condition - a rule to check the hypothesis about property existence expressed in
functions and constants specified in the definition section

• confidence - an expression used to quantify the confidence in case the existence of
the property cannot be proven, otherwise it is equal to 1.

• severity - an expression quantifying the value of negative impact due to the eval-
uated performance aspect. It is normalized so that the global ranking between
multiple properties is possible. We require that the value is normalized to the exe-
cution time of the phase region aggregated over the given dynamic context.

We extend the list above with the next function which returns a set of derived hypotheses
if the condition of the property is evaluated as true. This is used to define hierarchical
relations between properties.

Furthermore, in order to specify the temporal extent of the detected dynamic property we
extend the specification with the extent expression which returns the dynamic context
of the found property. This might be equal to the input dynamic context which is used to
define the evaluation domain, or it could be a sub-context when the property is localized
within the initial domain.

6.4.4 Performance Dynamics Properties

In this section we present specifications of performance dynamics properties (DP). These
formalize possible degradations in the dynamics of performance problems represented by
SPs. In addition to the description of the problem its location and severity inherited from
the SP, each DP specifies:

• a high-level and concise description of the temporal pattern
native to the ”mental” model of the user,

84



Automatic Analysis of Performance Dynamics

• temporal location,

• severity quantifying negative impact due to the degradation.

Significant Variability Property

The first property in the hierarchy of performance dynamics properties is the ”Significant
Variability” property which specification is given in the Figure 6.10. We use this to check
whether the impact of a given SP is changing with the time.

The context for this property, provided as an input, is a SP and a dynamic context. The
first specifies the problem being observed in the application and a static context where it
was observed. We use the property id as a key to access the pre-computed time-series of
impact values.

Instead of formalizing evaluation rules for dynamic properties in raw temporal perfor-
mance data, we use dynamic features extracted from time-series of measurements by the
signal processing algorithms described in the previous sections. We use energies of the
DWT coefficients which quantify variability observed in the signal over all scales and
temporal locations. Thanks to the orthonormality of the transform, we can compare it to
the total energy of the signal to get a relative quantity which can be compared against a
predefined threshold. This rationale is used to specify the property condition.

Unfortunately, we cannot use it to quantify the severity value which has to be normalized
to the aggregated execution time of the phase region. Therefore, the severity of this
property is always zero. However, it is not a problem since the goal of the property is
to filter out SPs which do not show any dynamics with time and by this prevent the
evaluation of further DPs.

If the condition of the property is true the next function returns hypotheses about degra-
dation trends and/or degradation peaks in the dynamic behavior of the SP.

Since the significant variability was detected for the whole dynamic context provided as
an input, the extent of the found property is identical.

In order to group two ”Significant Variability” properties along the time dimension we
provide an alternative specification of the property which requires two original properties
as a context and the new dynamic context as an input. The specification is shown in
Figure 6.11.

The condition in the definition section of the property specification verifies that only two
dynamic properties belonging to the same static context can be grouped with each other.

The evaluation logic follows the original specification, except that the dynamic energy of
the aggregated property is calculated as a sum of the dynamic energies of the both input
properties. Analogously, the total signal energy is calculated. The extent of the merged
property, if positively evaluated, equals to the extended dynamic context.

85



Automatic Analysis of Performance Dynamics

PROPERTY significantVariability(Property sp, DC dynamicContex)

{
LET

staticContext = sp.getStaticContext();

metric = sp.id();

dwt = pdb.getDWT(staticContext,dynamicContext,metric);

dynamicEnergy = dwt->getDynEnergy();

totalEnergy = dwt->getTotalEnergy();

IN

condition : dynamicEnergy/totalEnergy > thresholdEnergy

confidence : 1.0;

severity : 0;

next : DegradationPeaks(sp,dynamicContext),

DegradationTrends(sp,dynamicContext);

extent : dynamicContext

}

Figure 6.10: Specification of the “Significant Variability“ property

PROPERTY significantVariability(significantVariability p1,

significantVariability p2, DC dynamicContex)

{
LET

if(p1.staticContext!=p2.staticContext)

group=false;

dynamicEnergy = p1.dynamicEnergy + p2.dynamicEnergy;

totalEnergy = p1.totalEnergy + p2.totalEnergy;

IN

condition : group && dynamicEnergy/totalEnergy > thresholdEnergy

confidence : 1.0;

severity : dynamicEnergy/totalEnergy;

next :

extent : dynamicContext

}

Figure 6.11: Grouping specification of two “Significant Variability“ properties

86



Automatic Analysis of Performance Dynamics

PROPERTY DegradationPeaks(Property sp, DC dynamicContex)

{
LET

staticContext = sp.getStaticContext();

phaseContext = sp.getPhaseContext();

metric = sp.id();

ssf = pdb.getSSF(staticContext,dynamicContext,metric);

peaks = SSF->searchSequence(’AB’,thresholdStability);

accumTime = peaks[0].getSum() + ... +

peaks[peaks.size()-1].getSum();

dwt = pdb.getDWT(staticContext,dynamicContext,metric);

shortScaleEnergy = dwt->getShortScalesEnergy();

totalEnergy = dwt->getTotalEnergy();

phaseTime = pdb.getSum(phaseContext,dynamicContex,EXECUTION TIME);

IN

condition : accumTime/phaseTime > thresholdTime &&

shortScaleEnergy/totalEnergy > thresholdEnergy;

confidence : 1.0;

severity : accumTime/phaseTime;

next : DegradationPeak(sp,dynamicContext,peaks[0]),

,...,

,DegradationPeak(sp,dynamicContext,peaks[peaks.size()-1]);

extent : dynamicContext

}

Figure 6.12: Specification of the ”Degradation Peaks” property

Degradation Peaks Property

As it follows from the name, the property checks the presence of temporarily localized
peaks in the dynamic behavior of a given SP during the time interval specified in a given
dynamic context. The specification is provided in Figure 6.12.

Considering that the analyzed dynamic behavior reflects multiple factors which result in
dynamic features of different magnitude, span and location, detection of relevant peaks
is not easy. Consider the example signal shown in Figure 6.1. Formally speaking, every
small bump in the signal value can be seen as peak. Instead, when manually evaluated
only the peak around iteration 20 appears relevant. Using the SSF technique capable of
extracting qualitative representation of signals as well as providing a quantitative measure
for visual relevance of a feature we are able to give a concise formalized rule for evaluating
such peaks in the temporal behavior of the studied performance problems.

First, we perform the SSF analysis of the time-series of impact values of the input SP.
Then we traverse the resulting interval tree in the breadth-first fashion searching for

87



Automatic Analysis of Performance Dynamics

PROPERTY DegradationPeaks(DegradationPeaks p1, DegradationPeaks p2, DC

dynamicContext)

{
LET

if(p1.staticContext!=p2.staticContext)

group=false;

shortScaleEnergy = p1.shortScaleEnergy + p2.shortScaleEnergy;

totalEnergy = p1.totalEnergy + p2.totalEnergy;

peaks.insert(p1.peaks);

peaks.insert(p2.peaks);

accumTime = peaks[0].getSum() + ... +

peaks[peaks.size()-1].getSum();

phaseTime = pdb.getSUM(p1.phaseContext,dynamicContex,EXECUTION TIME);

IN

condition : group && accumTime/phaseTime > thresholdTime &&

shortScaleEnergy/totalEnergy > thresholdEnergy;

confidence : 1.0;

severity : accumTime/phaseTime;

next :

extent : dynamicContext

}

Figure 6.13: Grouping specification of two ”Degradation Peaks” properties

88



Automatic Analysis of Performance Dynamics

”AB” sequences of qualitative geometric descriptors which correspond to the shape of a
peak. As mentioned, there are possibly dozens of peaks present in the signal. In order
to filter out those which are not relevant we impose a minimum stability constraint,
which corresponds to the visual ”relevance” of a peak. For each peak we compute the
accumulated impact value, which is a sum of the time-series samples belonging to the
peak. Since it is required that the impact values are measured in time units, these are
summed up to get the accumulated time measure and stored in the corresponding variable.

Additionally, to quantify the contribution of the short scale variability, of which the peaks
are part of, we use Wavelet transform to calculate the ratio of the energies of short scales
to the total energy of the signal. This value is used together with the accumulated time
of all detected relevant peaks in order to evaluate the condition. The severity is then
simply computed as the accumulated time normalized by the total execution time of the
phase region.

If the property is evaluated as true, a set of hypotheses is returned by the next function
which are instances of the ”Degradation Pattern” property. These evaluate each detected
peak individually.

Temporal grouping of two properties of type ”Degradation Peaks” is specified in Figure
6.13. The evaluation logic follows the original property specification except that now
the relevant peaks are obtained not from the signal (it is not anymore available for the
properties from the last experiment), but simply by concatenating the arrays of peaks
from both properties. Same holds for the energies values. Of course, only the properties
within the same static context can be merged.

Degradation Trends Property

Gradual deterioration of a performance characteristic is an important dynamic degrada-
tion pattern. These are especially difficult to detect by other techniques. When visualized
by value maps visual interpretation of trends is not easy due to low differences in the color
intensity of the neighboring points. With the ”Degradation Trends” property we formal-
ize the degradations due to gradual increase in the impact values of the detected SPs.
The specification is given in Figure 6.14.

The context of this property is defined by a SP and a dynamic context. The first argument
defines the static context and the metric id allowing to identify the time-series of impact
values to be searched for degradation trends.

Similar to the ”Degradation Peaks” property we use SSF to obtain a hierarchical qualita-
tive representation of the analyzed time-series. However, searching for all present trends
in the signal over all scales, the approach taken in the previous property specification,
most likely will result in multiple trends which are nested in each other. This happens,
for example, when a trend is shortly interrupted by a spike. One can see this as one trend
or two trends, depending on scale. Therefore, we rely on the stability value to select the

89



Automatic Analysis of Performance Dynamics

PROPERTY DegradationTrends(Property sp, DC dynamicContex)

{
LET

staticContext = sp.getStaticContext();

phaseContext = sp.getPhaseContext();

metric = sp.id();

ssf = pdb.getSSF(staticContext,dynamicContext,metric);

msl = ssf->getMSL();

trends = msl.searchSequence(’A’,’D’,’E’);

accumTime = trends[0].getSum() + ... +

trends[trends.size()-1].getSum();

dwt = pdb.getDWT(staticContext,dynamicContext,metric);

wideScaleEnergy = dwt->getWideScalesEnergy();

totalEnergy = dwt->getTotalEnergy();

phaseTime = pdb.getSUM(phaseContext,dynamicContex,EXECUTION TIME);

IN

condition : accumTime/phaseTime > thresholdTime &&

shortScaleEnergy/totalEnergy > thresholdEnergy;

confidence : 1.0;

severity : accumTime/phaseTime;

next : DegradationTrend(sp,dynamicContext,trends[0]),

,...,

,DegradationTrend(sp,dynamicContext,trends[trends.size()-1]);

extent : dynamicContext

}

Figure 6.14: Specification of the ”Degradation Trends” property

90



Automatic Analysis of Performance Dynamics

PROPERTY DegradationTrends(DegradationTrends p1, DegradationTrends p2, DC

dynamicContext)

{
LET

if(p1.staticContext!=p2.staticContext)

group=false;

wideScaleEnergy = p1.shortScaleEnergy + p2.shortScaleEnergy;

totalEnergy = p1.totalEnergy + p2.totalEnergy;

trends.insert(p1.trends);

trends.insert(p2.trends);

accumTime = trends[0].getSum() + ... +

trends[trends.size()-1].getSum();

phaseTime = pdb.getSUM(p1.phaseContext,dynamicContex,EXECUTION TIME);

IN

condition : group && accumTime/phaseTime > thresholdTime &&

wideScaleEnergy/totalEnergy > thresholdEnergy;

confidence : 1.0;

severity : accumTime/phaseTime;

next :

extent : dynamicContext

}

Figure 6.15: Grouping specification of two ”Degradation Trends” properties

scale which provides the most visually relevant representation, which is the maximum
stability level of the interval tree.

After obtaining the MSL we search it for consequent sequences of qualitative descriptors
representing rising shapes. These are the ”A”,”D” and ”E” primitives. Each detected
sequence is then stored as one trend in the array trends.

Similarly to the ”Degradation Peaks” property, we use accumulated time together with
wavelet energies to evaluate condition and severity expressions. Since with this prop-
erty we evaluate the presence of trends, we use wide-scale Wavelet coefficients to quantify
variability caused due to “slow” changes in the signal.

If the property is positively evaluated the next function returns the ”Degradation Pattern”
property which evaluates each found trend individually.

The grouping of two ”Degradation Trends” properties is shown in Figure 6.15 and fol-
lows the same logic as the original specification, except that sequences of trends are not
extracted from the signal, but directly obtained from two properties being merged. Also
the condition and the severity values are re-evaluated against the extended dynamic
context.

91



Automatic Analysis of Performance Dynamics

Degradation Pattern Property

This property refines collectively evaluated degradation patterns such as a trend or a peak
by evaluating them individually. The necessity for this property in the presence of the
collective ones is that it checks the significance of a single pattern. It can be the case
that a number of patterns together result in the parent property to be found, however, no
individual pattern is worth to be reported. The property specification is given in Figure
6.16a.

In addition to a SP and a dynamic context, a qualitative sequence, representing the
pattern to be evaluated, is provided as an input. Similarly to the previous specifications,
the evaluation is based on the accumulated impact value of the pattern which is normalized
to the total time of the phase region. The next function return an empty set, since we
don’t further refine a single pattern.

The temporal location of the degradation pattern is a sub-interval of the dynamic context
for which the property was evaluated. Therefore the extent function returns a dynamic
context describing the precise temporal location of the pattern.

Temporal grouping of the ”Degradation Pattern” property is different since it is not mean-
ingful to try to merge two independent patterns into one property of this type. However,
when a new burst of iterations is measured in the next experiment, the condition and
severity values of the property have to be re-evaluated for the extended dynamic context.
This is done using the specification given in Figure 6.16b.

6.5 Summary

The knowledge about performance dynamics is crucial in order to recognize optimization
potentials. Direct manual interpretation of raw temporal performance data is overwhelm-
ing when large, long-running applications are studied. The reason is that the effort is
proportional to the length and the number of measurement time-series which are a cross-
product of application regions, processes and metrics.

While manually analyzing the temporal evolution of a performance characteristic, typi-
cally presented as a 1D plot, 2D value map or a 3D plot, relevant degradation patterns
and their temporal locations are of interest. In this chapter we have presented a technique
for the automatic detection of such patterns.

The technique consists of an online analysis procedure, signal processing algorithms and
a set of inference rules producing high-level knowledge about performance dynamics.

Following the online analysis procedure, the performance inefficiencies are identified first
in the global context by answering the questions ”what” the problem is and ”where” it
is located. Then the impact of the detected problems is evaluated along the temporal
dimension.

92



Automatic Analysis of Performance Dynamics

PROPERTY [Peak/Trend]SingleDegradation(Property sp, DC dynamicContex,

qualSequence sequence)

{
LET

phaseContext = sp.getPhaseContext();

accumTime = sequence->getSum();

location = sequence->getDynamicContext();

phaseTime = pdb.getSUM(phaseContext,dynamicContex,EXECUTION TIME);

IN

condition : accumTime/phaseTime > thresholdTime;

confidence : 1.0;

severity : accumTime/phaseTime;

next :

extent : location

}

(a)

PROPERTY [Peak/Trend]SingleDegradation(DegradationPeak p1, DC dynamicContex)

{
LET

phaseContext = p1->getSP->getPhaseContext();

accumTime = p1->getSequence->getSum();

location = sequence->getDynamicContext();

phaseTime = pdb.getSUM(phaseContext,dynamicContex,EXECUTION TIME);

IN

condition : accumTime/phaseTime > thresholdTime;

confidence : 1.0;

severity : accumTime/phaseTime;

next :

extent : location;

}
(b)

Figure 6.16: (a) Specification of the ”Degradation Pattern” property, (b) re-evaluation of
the ”Degradation Pattern” property for the extended dynamic context

93



Automatic Analysis of Performance Dynamics

The resulting time-series are passed to the signal processing algorithms. These provide
quantification of variability both along the time and the scale dimension; multi-scale rep-
resentation; qualitative representation as well as quantification of the visual ”relevance”
of patterns. The outcomes form an intermediate representation offering a compact repre-
sentation capturing both quantitative and qualitative features of the signal.

The high-level knowledge about performance degradations is then derived using the infer-
ence rules represented by performance dynamics properties. These formalize degradations
such as significant peaks or trends in the severity of the detected performance inefficien-
cies.

94



Chapter 7

Evaluation

In this chapter we demonstrate the online collection and automatic performance dynamics
techniques presented in two previous chapters. For the evaluation we select four real-world
applications which we analyze, first manually and then automatically, in the four following
case studies:

• CX3D - a simple performance dynamics case study intended to explain techniques
proposed in this thesis.

• SPEC MPI2007 129.tera tf - in the presence of a complex performance dynamics
behavior we demonstrate how the automatic analysis algorithm proposed in this
study provides insights beyond the ones obtained by manual analysis.

• PEPC - an application running for 2000 iterations which is used to evaluate our
technique for performance dynamics analysis of long-running applications.

• INDEED - production metal-forming simulation code for which a knowledge about
performance dynamics obtained using our technique is used to improve overall per-
formance.

7.1 Experimental Setup

For the performance analysis experiments “SuperMUC” [9] - the IBM System x iDataPlex
(thin nodes) supercomputer maintained by the Leibniz Supercomputing Centre was used.
With more than 155.000 cores and a peak performance of 3 Petaflop/s (= 1015 Floating
Point Operations per second) in June 2012 SuperMUC is one of the fastest supercomputers
in the world.

The system consists of 18 thin node islands and one fat node island interconnected via
Infiniband network. Thin nodes were used to run the experiments. Each node consists of

95



Evaluation

two Intel Sandy Bridge-EP processes with 16 cores in total.

Intel compiler v14.0 together with IBM’s Parallel Environment (IBM MPI) were used
to compile applications. Score-P v1.2.3 and Periscope 1.6b were used to respectively
instrument, monitor and analyze performance dynamics of the test applications.

7.2 CX3D - Czochralsky Crystal Growth Simulation

The goal of this study is to have a “look under the hood” of the presented analysis
techniques. Throughout the study we will be referencing already presented intermediate
results used as an example in the previous chapter.

7.2.1 Automatic Analysis of Performance Dynamics with
Periscope

Before starting the analysis, the application has to be instrumented. This is done using
the user instrumentation macros of Score-P. The code fragment below shows applied
instrumentation:

1 #include "SCOREP_User.inc"

2 PROGRAM CX3D

...

36 SCOREP_USER_REGION_DEFINE(R1)

...

C - START OF THE TIME LOOP -

61 9999 IT=IT+1

62 SCOREP_USER_OA_PHASE_BEGIN(R1,"OP",SCOREP_USER_REGION_TYPE_COMMON)

63 T=T+DT

64 CALL CURR

65 CALL VELO(IER)

...

93 SCOREP_USER_OA_PHASE_END(R1)

94 IF( T+EPS .LE. TIME ) GOTO 9999

On the first line Score-P user instrumentation header is included. Then on line 36 a user
instrumentation region handle is declared. It is used in macros marking the beginning
and the end of the Online Access Phase region on lines 62 and 93. The latter has to be
an iteratively executed part of the application with a potential for global synchronization
at the places where the macros are inserted. Iterations of the phase region define the
temporal dimension of the applied analysis. Therefore, it is important that the phase is
placed within the body of the application progress loop.

96



Evaluation

Afterwards the application can be compiled and instrumented using the following com-
mand:

scorep --online-access --user

The analysis with Periscope is started by issuing the following command:

psc_frontend --apprun=./cx --strategy=PerfDyn-SingleCore --duration=128

--phase=‘‘OP’’

By default Periscope starts the application with 1 process and 1 OpenMP thread, which
is equivalent to a sequential execution. Without going into details we describe below the
main steps of the analysis process.

Starting Periscope agents and application process. During this step analysis agents
(and high-level reduction agents if needed) are started. Also the application is automati-
cally started. A registry service is used to identify peers for the distributed agents. After
being started the application runs until the beginning of the online access phase and is
suspended there.

Analysis initialization. After the analysis hierarchy is up and running, the analysis
agent initializes requested analysis strategy, which is the Performance Dynamics Analysis
Strategy (PDAS). As a post-fix to the strategy name in the start command we speci-
fied that Single-Core Performance Analysis Strategy (SCPAS) should be used to identify
performance properties which are then studied for temporal dynamics. From the imple-
mentation point of view the PDAS is a meta-strategy which drives the SCPAS.

Requesting measurements. In this steps the PDAS tells the SCPAS to issue measure-
ment requests. In current setup these are requests to measure execution time of the phase
region. Afterwards, PDAS requests the Data Provider (see Chapter 5.5) of Periscope to
perform a burst of 64 phase region iterations. When the requests are submitted to the
monitoring library the application is released for execution.

Monitoring. Following the Online Dynamic Profile Analysis scheme (see Section 5),
collected profile data is transmitted at the end of each iteration to the analysis agents
and stored in the Performance Data Base. Therefore, regardless of how long the analysis
is performed the amount of data buffered on the application side is not growing with time.

Analysis of single core performance. After the configured series of iterations is
completed, buffered performance data is first analyzed for the presence of single core per-
formance properties. The properties, in current example only the “Hot spot” properties,
are evaluated against the performance data reduced over the buffered series of profile
samples. As a result, one property was found which is presented in the first row in Table
7.1.

97



Evaluation

Table 7.1: Properties detected in iterations interval [1-64] of the CX3D progress loop.

Property description Iterations Region Process Severity
Hot spot of the application [1,64] velo 0 86%
Significant variability [1,64] velo 0 -
Degradation trends [1,64] velo 0 35%
Degradation peaks [1,64] velo 0 12%
Degradation trend [1,21] velo 0 35%
Degradation peak [6,21] velo 0 12%

Analysis of performance dynamics. The runtime-static performance property found
in the previous step is now analyzed for dynamic properties. Following the analysis al-
gorithm proposed in Section 6.4.2, the severity of the detected property is re-evaluated
in each iteration of the phase region. Resulting series of severity values is then used to
evaluate performance dynamics of the property. The first performance dynamics property
to be evaluated is called “Significant Variability”. By means of Discrete Wavelet Trans-
form it checks whether the temporal dynamics of the analyzed performance characteristic
is worth to be further analyzed. In our case, as it can be seen from the Table 7.1, the
property is positively evaluated. However, since the energy of Wavelet coefficients used to
evaluate the property cannot be normalized to time, the severity of this property cannot
be reported.

The found property is refined and two new properties are evaluated: “Degradation
Trends” and “Degradation Peaks”. These properties require SSF and use maximum sta-
bility level of the resulting qualitative multi-scale representation to check for increasing
trends and peaks respectively. The maximum stability level of the test signal was already
presented in Figure 6.4 in Section 6.3. As it can be seen in Table 7.1, both properties were
found meaning that the temporal development of the analyzed performance characteristic
is impacted by degradation trends and peaks. The first accounts for 35% of the total
phase execution time in iterations interval [1-64]; the latter accounts for 12% of the total
phase execution time over the same interval.

In order to analyze individual trends and peaks the two found properties are refined into
multiple “Degradation Pattern” properties, one per each found pattern. The result of
evaluation are two last rows in the Table 7.1. It appears that there is only one trend
localized in iterations interval [1,21] and one peak localized in iterations interval [6,21].
Looking at the original signal (Figure 6.1) one can clearly see both temporal features.

Analysis of the next chunk of iterations. Since there are no more properties to be
evaluated, the analysis of the first chunk of 64 iterations is complete. According to the
online analysis scheme the next burst of 64 phase region iterations are requested and,
when completed, analyzed repeating the steps presented above. The properties found in
the second half of the execution are presented in Table 7.2. As one can see, there is only
one runtime-static property detected in the second half of the execution, i.e. iterations

98



Evaluation

Table 7.2: Properties detected in iterations interval [65-128] of the CX3D progress loop.

Property description Iterations Region Process Severity
Hot spot of the application [65,128] velo 0 85%

Table 7.3: Final set of properties reported for the CX3D application.

Property description Iterations Region Process Severity
Hot spot of the application [1,128] velo 0 86%
Degradation trend [1,21] velo 0 27%
Degradation peak [6,21] velo 0 6%

65-128, and no performance dynamics properties. Indeed, comparison of the result with
the plot in Figure 6.1 shows that the temporal behavior in the second half of the signal
does not experience severe dynamics.

Grouping of properties along the time dimension. The properties detected in the
first and second chunks of iterations have to be now merged along the time dimensions.
In particular the severity values have to be recalculated against the extended dynamic
context which now includes both chunks. Merging is performed by means of corresponding
grouping property specifications presented in Section 6.4.4. In the final list we do not
include the properties which were successfully refined into more specific properties.

The final report shown in Table 7.3 contains only three properties. The first one states
the type and the severity of the detected performance inefficiency. The next two provide
valuable insights into the dynamics of the problem specified by the first property. The
second row in the table highlights a rapidly increasing trend in the absolute severity values,
i.e. execution time of the velo subroutine, in iterations interval [1-21]. It accounts for 27%
of the phase region total execution time. In other words, should the trend be prevented,
the total execution time of the phase region can be decreased by 27%. The last property
reports a peak in iterations interval [6-21] accounting for 6% of the total phase region
execution time.

7.3 SPEC MPI2007 129.tera tf

129.tera tf [1][49] is a 3D eulerian hydrodynamics application from the benchmarking
suite SPEC MPI2007. Although, the suite consists of a number of applications we chose
the 129.tera tf due to its complex performance dynamics.

The application is a relatively small FORTRAN 90 application using MPI for paralleliza-
tion. The domain is a cube with N cells in each dimension. It is split into blocks, where N
has to be divisible by the block size in each dimension. One block corresponds to an MPI
rank. The MPI implementation mainly uses point-to-point non-blocking communications

99



Evaluation

and collective reductions.

For our analysis we set the number of cells in each dimension to 120. We use 32 MPI
processes which split the global domain into 4 blocks along the first two dimension and 2
blocks along the third one. The application is run for the first 128 iterations.

We use Score-P to instrument only the MPI call sites. Then Periscope is run in debugging
mode which allows to dump raw temporal performance data in files which are then used as
reference for the automatic analysis. In the second experiment the application is analyzed
using Periscope Performance Dynamics Analysis Strategy.

7.3.1 Visual Analysis of Raw Temporal Performance Data

129.tera tf is a good example of how a relatively small application with few MPI calls
can be a hard subject for a performance dynamics study when running with only 32
processes. By measuring only MPI-related metrics the number of resulting time-series is
already 128. Obviously, it is not anymore possible to plot and visually investigate each
time-series individually. Therefore, we use value maps to plot time-series of measurements
collected for the same MPI call site together. The y-axis depicts MPI ranks and the x-axis
is the iteration of the progress-loop. The color-coded value represents the value of the
metric in seconds.

We start the analysis by looking at the execution time of the phase region, i.e. the body
of the progress loop, over the first 128 iterations of the progress loop, see Figure 7.1.
The first anomaly, immediately cached by the eye, are four vertical high-intensity lines
near iterations 10, 55, 70, 120, as well as several others with lower intensities. These are
indicates of spontaneous peaks in the execution time of the phase region. Typically such
spikes are the result of IO activities such as checkpointing.

Further investigating the value map one can see, although, looking very closely, a gradual
increase trend in the execution time. However, it is very difficult to recognize its temporal
limits since these are distorted by the short-scale variability in the second half of the
execution.

The conclusion is that the phase region execution time is rising and has four prominent
spikes near iterations mentioned above.

Point-to-point communication is represented by MPI Wait. Figure 7.2 shows the evolution
of the time spent waiting for the communications to complete over 128 iterations.

Dynamics of this metric is more complex than of the previous one. First, the dynamics
differs from one process to another. Taking into account the semantics of MPI Wait, this
could be expected since the waiting time on one process is caused by a delay on the peer
process, which, arriving later, does not have to wait itself. Another observation is that
there is a short-scale variability from one iteration to another on a subset of processes.
Finally, one can see that for a sub-set of processes the waiting time rises by the end of the

100



Evaluation

Iteration number

M
P

I r
an

k

 

 

20 40 60 80 100 120

 0

 8

16

24

T
im

e 
[s

]

0.1

0.15

0.2

0.25

0.3

Figure 7.1: Value map of the phase region execution time over the first 128 iterations of
the progress loop (x-axis) and 32 MPI ranks (y-axis).

execution, however, it is very difficult to identify exact processes as well as the specific
iterations interval where the trends manifest themselves.

Figure 7.3 presents the evolution of the collective communication time, measured for the
MPI Allreduce call, over the iterations of the progress loop. Here the pattern caught by
the eye are the four vertical lines of high intensity familiar from the analysis of the phase
execution time.

In this example we once again hit the limits of the visual analysis of performance dy-
namics. One has to look very precisely to recognize that the four lines are present on all
processes except process 0. This means that the peaks on processes 1-31 in the execution
time of the MPI Allreduce, which also serves as a global synchronization, is the waiting
time for process 0, which is apparently late. If we miss that process 0 is not affected by
the pattern, we could have concluded that the reason for the increased collective commu-
nication time around iterations 10, 55, 70, 120 is due to communication overhead and not
a synchronization issue.

101



Evaluation

Iteration number

M
P

I r
an

k

 

 

20 40 60 80 100 120

 0

 8

16

24

T
im

e 
[s

]

0.01

0.02

0.03

0.04

0.05

0.06

Figure 7.2: Value map of the communication time in the MPI Wait call over the first 128
iterations of the progress loop (x-axis) and 32 MPI ranks (y-axis).

7.3.2 Automatic Analysis of Performance Dynamics with
Periscope

In this section we present performance properties automatically detected by Periscope.
We run Periscope with the severity threshold equal to 10%. This means that only those
properties are reported for which the severity, i.e. execution time wasted due to the
reported problem in percentage to the total time, is greater than 10%.

Table 7.4 shows the properties reported by Periscope. The first three properties indicate
three MPI-related performance issues. These indicate the type of the problem and where
it was found, i.e. region and process.

The first two properties are two clusters of the same property type found in the same
MPI Wait call-site region. They are reported for two different sets of processes, since
corresponding severity values significantly differ between two sets. One can also see that
the two sets do not include all 32 processes, meaning that for some processes the problem
was not detected. Comparing the properties with the corresponding value map (Figure

102



Evaluation

Figure 7.3: Value map of the communication time in the MPI Allreduce call over the
first 128 iterations of the progress loop (x-axis) and 32 MPI ranks (y-axis).

7.2) one can see that the high severity properties correspond two high-intensity rows.
The third property report an excessive communication in the MPI Allreduce call which
is uniform over all processes.

Although being already an important piece of information, the properties do not say
anything about how and when did the problem appear. This information can be obtained
easily from the performance dynamics properties listed below. The first four of them list
four degradation trends in the severity of the excessive communication time in MPI Wait.
The semantics of the properties explicitly tells that the problem is getting worth towards
the end of the run, the conclusion we also came to during the manual analysis. In addition
to that, Periscope provides further insights by reporting precise temporal span of each
trend, the processes where it was observed, and a severity value which quantifies the
amount of cumulative process-local execution time saved, should the trend be prevented.

The last property reports degradation peaks in the excessive communication time of

103



Evaluation

Table 7.4: Properties reported for the 129.tera tf application

Property description Region Process Severity

Excessive comm. time MPI Wait

0,1,2,4,5,
8,16,27,30,

31
26%

Excessive comm. time MPI Wait
9,12,15,17,
20,23,26,29

15%

Excessive comm. time MPI Allreduce 0-31 16%
Degradation trend in excessive comm. time
in iterations [1,92]

MPI Wait 4,27,30 17%

Degradation trend in excessive comm. time
in iterations [1,128]

MPI Wait 0,1,2,31 16%

Degradation trend in excessive comm. time
in iterations [1,72]

MPI Wait 5,8,12,16 15%

Degradation trend in excessive comm. time
in iterations [1,51]

MPI Wait 23,26,29 11%

Degradation peaks in excessive comm. time
in iterations [5,7], [51,57], [67,69], [118,120]

MPI Allreduce 1-31 4%

MPI Allreduce. Although the severity of the property is below the threshold of 10%,
we decided to include it in the final report for two reasons. First, it shows that the perfor-
mance dynamics analysis is capable of detecting, classifying and quantifying such peaks
in temporal performance data. The second reason is to stress that despite the four peaks
are clearly visible and stand-out in the value map, their importance in terms of the time
lost is low. Being able to easily rank performance issues according to their potential for
performance gain, should they be optimized out, allows efficient guidance of the tuning
process.

7.4 PEPC

PEPC application was already introduced in Section 4.4.2, so we skip it here.

For the analysis only MPI call-sites are instrumented using Score-P. We use the body
of the time-stamp loop in pepce.f90 file as a phase for the dynamic phase profiling.
medium.para is used as a configuration file which is modified to run the application for
2048 time stamps, i.e. iterations of the progress loop.

104



Evaluation

Iteration number

M
P

I r
an

k

 

 

200 400 600 800 1000 1200 1400 1600 1800 2000

 0

 8

16

24

32

40

48

56

T
im

e 
[s

]

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 7.4: Value map of the communication time in MPI Allgather call over the first
2048 iterations of the progress loop (x-axis) and 64 MPI ranks (y-axis).

7.4.1 Visual Analysis of Raw Temporal Performance Data

By instrumenting MPI calls and consequent collection of dynamic profiles results in 1280
time-series with 2560000 samples of MPI performance related metrics. However, by fil-
tering out time-series collected for the MPI functions, which overall contribution to the
performance is negligible, we are left with only two: MPI Alltoall and MPI Allgather.
This shows the importance of first evaluating the significance of the problem for the overall
execution and then investigating performance dynamics of the most severe inefficiencies.
Like in the previous example we use value maps to visually investigate performance dy-
namics properties.

Figure 7.4 shows the temporal evolution of the MPI Allgather communication time over
the 2048 iterations of the progress loop recorded for all 64 processes. The most prominent
temporal patterns are vertical, presumably one-iteration-wide, high-intensity lines. These
indicate spikes in the communication time observed in the corresponding iterations. Since
they are present in all processes, one can conclude that the reason is not a process being

105



Evaluation

Iteration number

M
P

I r
an

k

 

 

200 400 600 800 1000 1200 1400 1600 1800 2000

 0

 8

16

24

32

40

48

56

T
im

e 
[s

]

0.1

0.2

0.3

0.4

0.5

0.6

Figure 7.5: Value map of the communication time in the MPI Alltoall call over the first
2048 iterations of the progress loop (x-axis) and 64 MPI ranks (y-axis).

late, but rather increased communication overhead. Another observation is that the
process-local baseline is almost the same for all processes, however, there are variations
across processes.

Temporal evolution of the MPI Alltoall communication time is shown in Figure 7.5. The
performance dynamics picture in this case appears to be more complex. First, one can
clearly see that the value of the metric is increasing for almost all processes towards the
end of the execution. However, it is difficult to grasp from the changes in the intensity
when and how the degradation trend manifests itself. Furthermore, one can mention
short-scale variability, although, low amplitude for all processes. Finally, processes 9, 18,
and 25 show different patterns with almost constant low-magnitude values. This could
be an indication of the synchronization issue, where the mentioned processes are late and
the others, since MPI Alltoall is a synchronization point, have to wait.

106



Evaluation

7.4.2 Automatic Analysis of Performance Dynamics with
Periscope

In this section we present performance properties automatically detected by Periscope.
In case of PEPC we lowered the severity threshold to 5% in order to keep performance
dynamics properties. Furthermore, in order to reduce the amount of data buffered in
the analysis agents we configured Periscope to perform online analysis in chunks of 1024
samples. Following the Performance Dynamics Analysis Strategy presented in the Section
6.4, each chunk is first automatically analyzed for the presence of performance dynamics
properties. Resulting properties are then grouped along the time dimension. Table 7.5
presents properties found in the two analysis chunks.

The first three properties indicate two MPI inefficiencies of PEPC: excessive communica-
tion time in MPI Alltoall and MPI Allgather. The severity of the first issue is different
across the processes. The first and larger group of processes shows average severity values
of 15%. The second group consisting of processes 0, 9, 18 and 25 has severity of 9.6%.
Comparing this result with the corresponding value map (Figure 7.5) in the previous
section one can see that these match the low-intensity color stripes also identified in the
manual analysis. The severity of the inefficiency detected in MPI Allgather is uniform
across processes and equals to 5%.

The next entries in the table list detected performance dynamics properties providing
additional insights into temporal degradations detected in the temporal development of
the inefficiencies presented above. The first property explicitly represents a degradation
trend in the excessive communication time in MPI Alltoall in the iterations interval
[0-2048] for the majority of the application processes. This matches the observation
made during the manual analysis. In addition to this knowledge the property reports the
severity, which is a normalized cumulative communication time caused by the trend.

The next property reports two degradation trends in intervals [1-1028] and [1650-2048]
for processes 1, 2, 6, 8, 20, 28. Apparently what was assumed a monotonous increase
in communication time during the manual analysis does not hold for all processes. In-
stead, temporal degradation of the metric is localized in two intervals for the mentioned
processes. Similarly a number of other processes deviate from the common pattern as de-
picted by the following three properties. Processes 26, 32 and 37 show increasing trend in
communication time in interval [522-2048]; process 45 in intervals [1-1028] and [1200-2048];
and processes 22 only in [1-1028]. All mentioned performance dynamics properties report
similar severity. By looking closely to the value map one can recognize that, indeed, the
mentioned processes stand out from the common pattern. Although, the severity of the
excessive communication time property in MPI Alltoall for these processes was similar
to the one reported for the majority of the processes, the dynamics of the inefficiency still
differs. Such insights are often overlooked during manual analysis. Using our technique
we were able to automatically extract this knowledge.

Finally, the last performance dynamics properties report degradation patterns observed

107



Evaluation

Table 7.5: Properties reported for the PEPC application

Property description Region Process Severity
Excessive comm. time MPI Alltoall 0,9,18,25 9.6%

Excessive comm. time MPI Alltoall
1-8,10-17,

19-24,26-63
15%

Excessive comm. time MPI Allgather 0-63 5%

Degradation trend in excessive
comm. time in iterations [1-2048]

MPI Alltoall

3-5,7,10-12,14-17,
19,21,23,24,27,29-31,

33-36,38-44,46-53,55-63
6.7%

Degradation trend in excessive
comm. time in iterations [1-1028],
[1650-2048]

MPI Alltoall
1,2,6,

8,20,28
6.7%

Degradation trend in excessive
comm. time in iterations [522-2048]

MPI Alltoall 26,32,37 6%

Degradation trend in excessive
comm. time in iterations [1-1029],
[1200-2048]

MPI Alltoall 45 5.5%

Degradation trend in excessive
comm. time in iterations [1-1028]

MPI Alltoall 22 5.2%

Degradation trend in excessive
comm. time in iterations [422-2048]

MPI Alltoall 0,25 4%

Degradation trend in excessive
comm. time in iterations [1-1200],
[1400-2048]

MPI Alltoall 54 4%

Degradation trend in excessive
comm. time in iterations [1-612],
[780-2048]

MPI Alltoall 9 2%

Degradation trend in excessive
comm. time in iterations [1,541],
[1170-2048]

MPI Alltoall 18 1.4%

108



Evaluation

on the processes 0, 9, 18, 25, which were previously identified as outliers. Although at
different time locations and with significantly lower severity, these processes still show
degradation trends towards the end of the iteration domain.

Apparently, there are no performance dynamics properties reported for the All Gather

call. The narrow one-iteration wide spikes in the metric value were disregarded due to
negligible impact on the overall performance. In this case by reporting an empty set of
performance dynamics properties, Periscope indicates that the temporal dimension is not
relevant for the further analysis.

7.5 INDEED

INDEED [4] is a commercial sheet metal forming simulation software developed by GNS
mbH. It is based on the incremental finite element method where the balance between
inner and outer loads is determined in each incremental load step of the simulation.

The major steps in the simulation algorithm are:

1. Assembly of stiffness matrices

2. Solution of stiffness systems

3. Recovery phase (computation of forces to see if equilibrium has been reached)

4. Mesh refinement

5. Analysis of contact between tools and workpiece

Further feature of INDEED is an adaptation of the time step width. This plays a crucial
role for the performance of the application by influencing the number of iterations needed
to reach the equilibrium in step 3 of the simulation algorithm presented above. The goal
of the adaptation is to find the optimal trade-off between the time step width, and thus
the number of time steps, on one side and the CPU time of the time steps, which in its
turn is determined by the convergence of the recovery phase, on the other side. In this
study we perform a performance dynamics study of the INDEED code with two time step
adaptation strategies.

7.5.1 Experimental data

Unfortunately, the source codes of the INDEED version used in this study were not
available for the direct experimentation. Therefore, the study is performed based on the
experimental performance data provided by the leading developer of the INDEED code,
Dr. Diethelm. We gratefully acknowledge the support provided by Dr. Diethelm.

109



Evaluation

0 10 20 30 40 50 60
0

0.5

1

1.5

2

Time step number

C
P

U
 ti

m
e 

[m
in

]

(a) Adaptation strategy 1

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

Time step number

C
P

U
 ti

m
e 

[m
in

]
(b) Adaptation strategy 2

Figure 7.6: CPU time of the time step iterations

Experimental data include CPU time records and time step width collected for the itera-
tions of the progress loop. The application was run with one process and identical input
data. Different time step adaptation strategies were monitored in order to find the one
allowing the shortest execution time. In our study we use experimental data collected for
the two following strategies:

• Strategy 1: Large time step at the beginning; moderate changes of time step size
when required; large range of steps allowed.

• Strategy 2: Very large time step at the beginning; moderate changes of time step
size when required; small range of time steps allowed.

The experimental data contains records of the time step width and CPU time collected for
each iteration of the time step loop for both strategies. Resulting time-series are shown
in Figure 7.6.

Both experiments were carried out for the same input configuration. This means that the
underlying simulation is identical and only the time steps are different depending on the
applied strategy.

As one can see, the CPU time profiles for both adaptation strategies look similar and
can be split qualitatively into the following phases: in the beginning low value, slowly
increasing; followed by a fast increase leading to a high-value plateau and, finally, rapid
decrease at the end.

The coarse grained temporal behavior described above is explained by differences in the
convergence rate, i.e. number of solver iterations to reach forces equilibrium, which is due
to changes in the underlying simulated metal-forming process. Additionally, the dynamics

110



Evaluation

0 10 20 30 40 50 60
0

0.5

1

1.5

Time step number

T
im

e 
st

ep
 w

id
th

 [s
im

ul
at

ed
 ti

m
e 

un
it]

(a) Adaptation strategy 1

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

Time step number

T
im

e 
st

ep
 w

id
th

 [s
im

ul
at

ed
 ti

m
e 

un
it]

(b) Adaptation strategy 2

Figure 7.7: Time step widths over the iterations of the time step loop

is also influenced by the time step adaptation strategies which result in more fine-granular
spikes and variability in the magnitude as well as in the number of steps.

7.5.2 Automatic Analysis of Performance Dynamics with
Periscope

As one could easily compute the total CPU time for strategy 1 is 32.69 min. For strategy
2 it is 36.7 min. Following a simple comparison, strategy 1 is a clear winner. In this
study we will show how our performance dynamics analysis technique allows to derive
additional insights and improve the results above.

In this study we evaluate performance dynamics of the first adaptation strategy. However,
the question arises how to split the simulation process into analysis phases. A natural
solution is to split simulation steps into phases with different convergence performance.
Since we don’t have the data explicitly providing such information, we use CPU time
measurements to detect phases based on the variability in the metric values. Here the
phases with slow convergence will result in peaks of the CPU time. Using Periscope
Performance Dynamics Analysis Strategy and more specifically the Scale Space Filtering
algorithm detecting such peaks is simple. For example, all we need in order to detect a
peak is to search for “AB” sequences of qualitative descriptors at the maximum stability
level obtained from the multi-scale qualitative representation. Therefore, we customize our
analysis strategy to search only for the above qualitative pattern. In this example we skip
evaluation of performance dynamics properties, since the available historical experimental
data is not sufficient for the complete performance dynamics analysis.

Application of the automatic peaks detection in this particular case might be considered

111



Evaluation

Table 7.6: Convergence phases detected for adaptation strategy 1.

#
Iteration
diapason

Sim.time
diapason

[sim. time units]

Cumulative
CPU time

[min.]

Simulation speed
[sim. time units / min.]

1 [1,25] (0,23.5] 4.72 5
2 [26,55] (23.5,51.22] 25.77 1.08
3 [56,62] (51.22,56.81] 2.19 2.56

as an overkill, since we have only two time-series which are both short and demonstrate
quite simple temporal behavior. However, assuming the application to be run in parallel,
where each process would show its own temporal dynamics due to domain decomposition,
manual evaluation of series of CPU time on each process becomes very costly if possible
at all.

Table 7.6 shows the detected phases of different convergence speeds for Strategy 1. In
addition to the borders detected by Periscope and specified by the iterations of the time
step loop, we further customize the search algorithm to provide the following additional
information:

• Simulation time interval corresponding to the detected time step loop iteration
phases. It is computed from the time step width records by taking cumulative sum
of the widths from the beginning of the simulation until the time step corresponding
to the beginning or the end of the converted interval.

• Cumulative sum of the CPU time within the phase

• Simulation speed. It is computed as a ratio of the simulation time inteval width
over the cumulative CPU time during the phase.

As one could expect, the second phase corresponding to the high-value plateau in the
second half of the CPU time measurements is the slowest according to the simulation
speed parameter with only 1.08 simulation time units per minute of the CPU time. On
the contrary, the first phase is the fastest with 5 units per minute. This proves another
time our assumption that performance is not constant throughout the simulation.

But how does the second adaptation strategy performs during the simulation phases
detected above? Table 7.7 shows the same parameters as in the previous one recalculated
for the second strategy using the simulation time diapason as a reference for conversion.
Since the simulation time domain is identical for both experiments, we can use simulation
time diapason to convert it back to the iterations of the second strategy. Based on that
we can compute the other parameters presented in the table.

Although, as expected, performance of the second strategy is worse in the second and
the third phase, it surprisingly outperforms the first strategy in the first phase. This

112



Evaluation

Table 7.7: Convergence phases from adaptation strategy 1 converted to the time steps of
the adaptation strategy 2.

#
Iteration
diapason

Sim.time
diapason

[sim. time units]

Cumulative
CPU time

[min.]

Simulation speed
[sim. time units / min.]

1 [1,13] (0,24] 4 6
2 [14,30] (24,51.02] 29.86 0.9
3 [31,37] (51.02,56.81] 2.84 2.04

observation can be explained by the fact that Strategy 2 uses larger time steps in the
beginning of the simulation. This appears to be more efficient for the state of the metal
forming process simulated at this phase.

We use this knowledge to come up with a hybrid adaptation strategy which would follow
strategy 2 in the beginning, namely until iteration 13, and then switch to strategy 1. By
summing up the cumulative CPU times of the phases (strategy 2 in phase 1 and strategy
1 in phases 2 and 3) we get an estimated execution time for the hybrid strategy equal to
31.96 min, which is 2.23% faster in comparison to the strategy 1.

113





Chapter 8

Summary and Outlook

This work has presented a set of techniques which holistically tackle challenges of temporal
performance dynamics in all the three major steps of the performance analysis process,
namely, instrumentation, measurement and analysis. The main features of the proposed
techniques are automation and time-dimension scalability.

Performance monitoring, as any other measurement process, requires insertion of probes in
the monitored application. This is an important step of the performance analysis process
called instrumentation. The granularity of the measurements, on one side, and the amount
of introduced overhead, on the other side, are two mutually exclusive characteristics of
the applied instrumentation. Here a trade-off has to be found, however, no common
rule is available. This means that it has to be individually tuned, often manually, in
each performance analysis study. Furthermore, for the majority of tools instrumentation
configuration is applied for the whole measurement regardless of the temporal dynamics
in the process.

In this thesis we presented a novel approach to automatically reaching such trade-offs.
We propose a number of automatic instrumentation adaptation algorithms, called instru-
mentation strategies, which are able to tune insertion of probes according to a predefined
objective. For the first time, the automatic instrumentation adaptation was proposed for
the source-to-source direct instrumentation scheme. In order to quantify the amount of
overhead introduced by the instrumentation, an overhead model was proposed for the
probe functions with selective recording and partial canceling of overheads. Using the
overhead estimations collected at runtime, the strategies evaluate overhead hypotheses
against them. The hypotheses are formulated based on one of the objectives which guide
the decision on the trade-off between the granularity and the overheads of measurements.
Two objectives were proposed in this work: reduction of the total wall-clock time prolon-
gation of the instrumented application (Total Overhead Reduction) and reduction of the
overhead adsorbed in measurements (Prolog Overhead Reduction). The first objective
is more strict and, in general, removes more instrumentation then the second one. It is
more suited for the analysis scenarios when the prolongation (potentially un-even across

115



Summary and Outlook

processes) may indirectly influence the measurements, for example in MPI wait state
analysis. On the other hand, it might be too strict when only single-core performance is
of interest. In such cases the second strategy is more appropriate. Finally, we propose the
third strategy which allows dynamic adaptation of instrumentation guided by the runtime
requirements of the on-line analysis process. This strategy allows to minimize overheads
to the absolute necessary ones. Since our approach is based on the source-to-source in-
strumentation the adapted instrumentation requires recompilation of the affected source
files. This has both advantages and disadvantages: instrumentation can be completely
removed (in comparison to filtering out high-overhead regions at runtime), however, ad-
ditional analysis time is wasted on recompilation and restarting the application.

In comparison to other techniques based on binary re-writing our approach features better
granularity of measurements, simpler mapping of measurements to the source code and
wider portability. The technique was implemented in Periscope and evaluated on a real-
world application. The results show, that using the instrumentation adaptation strategies
Periscope is able to detect performance inefficiencies which are lost due to high overheads
otherwise.

With applications and hardware becoming more complex and, in particular, more dy-
namic, runtime performance variability adds an additional complexity dimension for ap-
plication developers. Usage of tools is highly valuable and often un-avoidable for such
scenarios. However, tools are faced with challenges as well when temporal performance
is of interest. In particular, two aspects have to be addressed: how to collect and store
temporal data in a time-dimension-scalable way, and how to extract and to convey the
knowledge about dynamic performance degradations so that the analysis effort by the
user is time-dimension-scalable as well.

It is obvious that, since the amount of memory available to the monitoring library is
limited, temporal data cannot be collected for ever. Furthermore, the available memory
on the compute node has to be shared between the application and the monitoring library.
Our approach to tackling the issue called Online Dynamic Profile Analysis is twofold.
First, we minimize the impact of collection and storing large temporal buffers in the place
where it is the most critical, namely on the monitoring/application side. We achieve this
by extending the dynamic profiling method, which is a light weight alternative to tracing
for collecting coarse-grained temporal performance data. By adding on-line transmission
of data samples to a remote analysis agent we decouple the size and overheads of storing
data on the application side from the time dimension.

The bottleneck is, however, not completely removed, but shifted to another location.
On the remote agent side we address the issue with on-line processing of raw temporal
performance data in chunks of samples. This makes the amount of raw data buffered
at the analysis agent a function of the chunk size and not the analysis time. Further-
more, by applying advanced automatic analysis techniques we extract relevant high-level
knowledge about performance dynamics properties of the application and discard the raw
measurements. The resulting properties are then merged along the time dimension as

116



Summary and Outlook

well.

In order to reduce the user’s efforts in comprehending dynamics captured in the raw tem-
poral measurements we have proposed a first in its art automatic analysis technique. It is
called Performance Dynamics Analysis Strategy and allows fully-automatic extraction of
high-level performance dynamics properties from the raw temporal data. While designing
the strategy, our goal was to bridge the semantic gap between the raw data represented by
the tremendous amount of time-series and the “mental” model of performance dynamics
employed by the user. We were able to achieve this goal by employing a set of algorithms
from the fields of signal processing, computer vision and chemical process engineering
orchestrated by an automatic rule-based inference engine. The algorithms allow both
qualitative and quantitative analysis of time-series of performance data. We use wavelet
analysis from the field of signal processing to quantify the amount of variability observed in
the time-series. Scale-Space Filtering, based on incremental smoothing of the signal with
Gaussian filter, is used to obtain a multi-scale representation in terms of signal’s critical
points. Such representation is native to the human perception, since these are the basis
points we were taught to use when sketching a function. Furthermore, a unique property
of the algorithm, adhering to similarities with the biological vision mechanism, is that
it provides a quantitative measure for visual salience of the critical points. We use this
together with a geometrical qualitative trend representation primitives borrowed from the
chemical process engineering to perform qualitative summarization of the temporal dy-
namics observed in time-series of performance measurements. The representations, both
qualitative and quantitative, allow formalization of typical patterns in terms of perfor-
mance dynamics properties. These are then automatically evaluated by the Performance
Dynamics Analysis Strategy.

The Online Dynamic Profile Analysis scheme and the Performance Dynamics Analysis
Strategy were implemented in Periscope and evaluated with four real-world applications
showing complex performance dynamics. We used manual analysis using value maps, since
plotting every single time-series of measurements is impossible, as a reference. Already
in the smallest case study with only 32 application processes the visual analysis of value
maps hit the limits missing valuable performance dynamics patterns. Oppositely, the
automatic analysis with Periscope was able to deliver insights obtained in the manual
one plus the missed ones. Moreover, precise information about temporal location and
severity of the degradations were reported. In the third case study with a long-running
application the analysis was performed in chunks. Similarly, to the previous case, the
automatic analysis was able to report degradations which were not visible during the
manual investigation. In the final study, performance dynamics analysis was carried out
for a commercial metal forming simulation software. We studied the dynamic performance
of the application with two different simulation time step adaptation strategies. The first
adaptation strategy was considered as a clear winner by the developers based on the
wall-clock time. By investigating the dynamic behavior of the performance in both cases
with Periscope we were able to see that the second strategy, although being slower for
the whole execution, still outperforms the first one in the beginning of the simulation. By

117



Summary and Outlook

combining two strategies we showed an improvement of 2.3% in comparison to the fastest
one.

8.1 Future Work

The techniques presented in this thesis are one of the first steps towards automatic analysis
of performance dynamics. While already being able to provide valuable insights, a number
of possible areas for continuation and improvement exist. In particular, the grouping
of performance dynamics properties can be further improved by performing multi-scale
aggregation of patterns instead of concatenation and re-normalization of severity values.
One way to achieve this is to keep the coarse-grained down-sampled approximations for
each analysis chunk, which are then merged together in order to obtain a global picture
of the temporal performance evolution.

The other interesting direction is to investigate dependencies between the detected degra-
dations. Having multi-scale qualitative and quantitative representations proposed in this
thesis, searching for dependencies promises to be more insightful then simply computing
correlations between the metrics. In particular, adapting the Dynamic Time Warping
(DTW) [48] algorithm to qualitative sequences used in this work would allow to estimate
dependencies between the perceptually important features of the signal used to formalize
performance dynamics degradations.

118



Bibliography

[1] 129.tera tf SPEC MPI2007 benchmark description. http://www.spec.org/

mpi2007/docs/129.tera_tf.html. Accessed: 2014-05-28.

[2] DEISA benchmarking and benchmark suite. http://www.deisa.eu/science/

benchmarking/. Accessed: 2014-02-20.

[3] Dyninst. http://www.dyninst.org/. Accessed: 2014-04-28.

[4] Highly accurate finite element simulation for sheet metal forming. http://gns-mbh.
com/indeed.html. Accessed: 2014-05-29.

[5] The human brain project. https://www.humanbrainproject.eu/. Accessed: 2014-
01-28.

[6] Paradyn tools project. http://http://www.paradyn.org/. Accessed: 2014-02-20.

[7] Scalasca. http://www.scalasca.org/. Accessed: 2014-02-20.

[8] Score-p. http://www.vi-hps.org/projects/score-p/. Accessed: 2014-02-20.

[9] SuperMUC petascale system. http://www.lrz.de/services/compute/supermuc/.
Accessed: 2014-05-28.

[10] Top 500 supercomputer sites. http://www.top500.org/list/2013/11/. Accessed:
2014-01-28.

[11] Vampir - performance optimization. http://www.vampir.eu/. Accessed: 2014-02-
20.

[12] IEEE standard for software maintenance. IEEE Std 1219-1998, 1998.

[13] International standard - ISO/IEC 14764 IEEE Std 14764-2006 software engineering
2013; software life cycle processes 2013; maintenance. ISO/IEC 14764:2006 (E) IEEE
Std 14764-2006 Revision of IEEE Std 1219-1998), pages 1–46, 2006.

119

http://www.spec.org/mpi2007/docs/129.tera_tf.html
http://www.spec.org/mpi2007/docs/129.tera_tf.html
http://www.deisa.eu/science/benchmarking/
http://www.deisa.eu/science/benchmarking/
http://www.dyninst.org/
http://gns-mbh.com/indeed.html
http://gns-mbh.com/indeed.html
https://www.humanbrainproject.eu/
http://http://www.paradyn.org/
http://www.scalasca.org/
http://www.vi-hps.org/projects/score-p/
http://www.lrz.de/services/compute/supermuc/
http://www.top500.org/list/2013/11/
http://www.vampir.eu/


Bibliography

[14] Dieter an Mey, Scott Biersdorf, Christian Bischof, Kai Diethelm, Dominic Eschweiler,
Michael Gerndt, Andreas Knüpfer, Daniel Lorenz, Allen Malony, Wolfgang E. Nagel,
Yury Oleynik, et al. Score-P: A unified performance measurement system for petas-
cale applications. In Competence in High Performance Computing 2010, pages 85–97.
Springer, 2012.

[15] Jean Babaud, Andrew P. Witkin, Michel Baudin, and Richard O. Duda. Unique-
ness of the Gaussian kernel for scale-space filtering. IEEE Transactions on Pattern
Analysis and Machine Intelligence,, (1):26–33, 1986.

[16] Bhavik R. Bakshi and George Stephanopoulos. Reasoning in time: Modeling, anal-
ysis, and pattern recognition of temporal process trends. Advances in Chemical
Engineering, 22:485–548, 1995.

[17] B.R. Bakshi and G. Stephanopoulos. Representation of process trends - Part III. mul-
tiscale extraction of trends from process data. Computers & Chemical Engineering,
18(4):267–302, 1994.

[18] Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt. PERISCOPE: An online-
based distributed performance analysis tool. In Tools for High Performance Com-
puting 2009, pages 1–16. Springer, 2010.

[19] David Bohme, Markus Geimer, Felix Wolf, and Lukas Arnold. Identifying the root
causes of wait states in large-scale parallel applications. In 39th International Con-
ference on Parallel Processing (ICPP), 2010, pages 90–100. IEEE, 2010.

[20] Holger Brunst, Dieter Kranzlmüller, Matthias S. Muller, and Wolfgang E. Nagel.
Tools for scalable parallel program analysis: VampirNG, Marmot, and DeWiz. In-
ternational Journal of Computational Science and Engineering, 4(3):149–161, 2009.

[21] Marc Casas, Rosa M. Badia, and Jesús Labarta. Automatic phase detection and
structure extraction of MPI applications. International Journal of High Performance
Computing Applications, 24(3):335–360, 2010.

[22] J.T. Cheung and George Stephanopoulos. Representation of process trends - Part I.
a formal representation framework. Computers & Chemical Engineering, 14(4):495–
510, 1990.

[23] J.T. Cheung and George Stephanopoulos. Representation of process trends - Part
II. the problem of scale and qualitative scaling. Computers & chemical engineering,
14(4):511–539, 1990.

[24] Luiz DeRose, Ted Hoover Jr., and Jeffrey K. Hollingsworth. The dynamic probe
class library-an infrastructure for developing instrumentation for performance tools.
In Proceedings 15th International Parallel and Distributed Processing Symposium.,
pages 7–pp. IEEE, 2001.

120



Bibliography

[25] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolf-
gang E. Nagel, and Felix Wolf. Open trace format 2: The next generation of scalable
trace formats and support libraries. In PARCO, pages 481–490, 2011.

[26] Thomas Fahringer, Michael Gerndt, Graham Riley, and Jesper Larsson Träff. Knowl-
edge specification for automatic performance analysis: APART technical report. Cite-
seer, 2001.

[27] Todd Gamblin. Scalable performance measurement and analysis. PhD thesis, Cite-
seer, 2009.

[28] Todd Gamblin, Bronis R. De Supinski, Martin Schulz, Rob Fowler, and Daniel A.
Reed. Scalable load-balance measurement for SPMD codes. In International Con-
ference for High Performance Computing, Networking, Storage and Analysis, 2008.
SC 2008., pages 1–12. IEEE, 2008.

[29] Todd Gamblin, Bronis R. De Supinski, Martin Schulz, Rob Fowler, and Daniel A.
Reed. Scalable load-balance measurement for SPMD codes. In High Performance
Computing, Networking, Storage and Analysis, 2008. SC 2008., pages 1–12. IEEE,
2008.

[30] M. Geimer, B. Kuhlmann, F. Pulatova, F. Wolf, and B.J.N. Wylie. Scalable collation
and presentation of call-path profile data with CUBE. In Parallel Computing: Archi-
tectures, Algorithms and Applications (Proceedings of the International Conference
ParCo 2007), pages 645–652. Citeseer, 2007.

[31] Markus Geimer, Pavel Saviankou, Alexandre Strube, Zoltán Szebenyi, Felix Wolf,
and Brian J.N. Wylie. Further improving the scalability of the Scalasca toolset. In
Applied Parallel and Scientific Computing, pages 463–473. Springer, 2012.

[32] Michael Gerndt. Specification of performance properties of hybrid programs on hi-
tachi SR8000. Technical report, Peridot Technical Report, TU München, 2002.

[33] Michael Gerndt, Karl Fürlinger, and Edmond Kereku. Periscope: Advanced tech-
niques for performance analysis. In PARCO, pages 15–26. Citeseer, 2005.

[34] Michael Gerndt and Michael Ott. Automatic performance analysis with Periscope.
Concurrency and Computation: Practice and Experience, 22(6):736–748, 2010.

[35] Paul Gibbon. PEPC: Pretty efficient parallel Coulomb-solver. FZJ-ZAM, 2003.

[36] David A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[37] Andreas Knupfer and Wolfgang E. Nagel. Construction and compression of complete
call graphs for post-mortem program trace analysis. In International Conference on
Parallel Processing, 2005. ICPP 2005., pages 165–172. IEEE, 2005.

121



Bibliography

[38] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, et al. Score-P: a joint performance measurement run-time infrastructure for
Periscope, Scalasca, TAU, and Vampir. In Tools for High Performance Computing
2011, pages 79–91. Springer, 2012.

[39] Jan J. Koenderink. The structure of images. Biological cybernetics, 50(5):363–370,
1984.

[40] Tony Lindeberg. Scale-space for discrete signals. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(3):234–254, 1990.

[41] Tony Lindeberg. Generalized Gaussian scale-space axiomatics comprising linear
scale-space, affine scale-space and spatio-temporal scale-space. Journal of Mathe-
matical Imaging and Vision, 40(1):36–81, 2011.

[42] Daniel Lorenz, David Böhme, Bernd Mohr, Alexandre Strube, and Zoltán Szebenyi.
Extending Scalascas analysis features. In Tools for High Performance Computing
2012, pages 115–126. Springer, 2013.

[43] S. Mallat. A wavelet tour of signal processing. Academic press, 1999.

[44] Matija Mihelcic, Helmut Wenzl, and Kurt Wingerath. Flow in czochralski crystal
growth melts. Forschungszentrum, Zentralbibliothek, 1992.

[45] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth,
R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall. The
Paradyn parallel performance measurement tool. Computer, 28(11):37–46, 1995.

[46] Bernd Mohr, Allen D. Malony, Sameer Shende, and Felix Wolf. Towards a per-
formance tool interface for OpenMP: An approach based on directive rewriting.
Forschungszentrum, Zentralinst. für Angewandte Mathematik, 2001.

[47] Matthias S. Müller, Andreas Knüpfer, Matthias Jurenz, Matthias Lieber, Holger
Brunst, Hartmut Mix, and Wolfgang E. Nagel. Developing scalable applications
with Vampir, VampirServer and VampirTrace. In PARCO, pages 637–644. Citeseer,
2007.

[48] Meinard Müller. Dynamic time warping. Information retrieval for music and motion,
pages 69–84, 2007.

[49] M.S. Müller, M. van Waveren, R. Liebermann, B. Whitney, H. Saito, K. Kalyan,
J. Baron, B. Brantley, Ch. Parrott, T. Elken, et al. SPEC MPI2007 – an application
benchmark for clusters and HPC systems. ISC2007, 2007.

[50] Ole Møller Nielsen and Markus Hegland. Parallel performance of fast wavelet trans-
forms. International Journal of High Speed Computing, 11(01):55–74, 2000.

122



Bibliography

[51] D.B. Percival and A.T. Walden. Wavelet methods for time series analysis, volume 4.
Cambridge University Press, 2006.

[52] Ventsislav Petkov. Automatic Performance Engineering Workflows for High Perfor-
mance Computing. PhD thesis, TUM, 2014.

[53] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller. MRNet: A software-
based multicast/reduction network for scalable tools. In Proceedings of the 2003
ACM/IEEE conference on Supercomputing, page 21. ACM, 2003.

[54] Martin Schulz, Jim Galarowicz, Don Maghrak, William Hachfeld, David Montoya,
and Scott Cranford. Open SpeedShop: An open source infrastructure for parallel
performance analysis. Scientific Programming, 16(2):105–121, 2008.

[55] Jerome M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients.
IEEE Transactions on Signal Processing, 41(12):3445–3462, 1993.

[56] Sameer S. Shende and Allen D. Malony. The TAU parallel performance system.
International Journal of High Performance Computing Applications, 20(2):287–311,
2006.

[57] Z. Szebenyi, B. Wylie, and F. Wolf. Scalasca parallel performance analyses of PEPC.
In Euro-Par 2008 Workshops-Parallel Processing, pages 305–314. Springer, 2009.

[58] Zoltán Szebenyi, Felix Wolf, and Brian J.N. Wylie. Space-efficient time-series call-
path profiling of parallel applications. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, page 37. ACM, 2009.

[59] Zoltán Péter Szebenyi. Capturing Parallel Performance Dynamics, volume 12.
Forschungszentrum Jülich, 2012.

[60] Saul A. Teukolski, Brian P. Flannery, William H. Press, and William T. Vetterling.
Numerical Recipes in FORTRAN - The Art of Scientific Computing. University
Press, 1989.

[61] Andrew P. Witkin. Scale-space filtering: A new approach to multi-scale descrip-
tion. In IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP’84., volume 9, pages 150–153. IEEE, 1984.

123


	Introduction
	Contribution of This Work
	Study context: Periscope
	Analysis Automation
	Online Analysis
	Distributed Analysis
	Current Limitations


	Tools-Aided Performance Engineering
	Software Development Life-Cycle
	Performance Tuning Cycle
	Monitoring Performance
	Sampling
	Direct Instrumentation
	Measurement Overhead
	Mitigation of Overheads

	Performance Measurement
	Profiling vs Tracing
	Post-mortem vs Online Analysis

	Performance Analysis Automation
	Tools for Performance Engineering
	Score-P
	Scalasca
	Vampir
	ParaDyn
	Pathway


	State of the Art
	Compression
	Clustering of Dynamic Profiles
	Wavelet Compression of Load Balance Measurements
	Compressed Complete Call Graphs

	Analysis
	Detection and Application Structure Extraction
	Root Cause Analysis

	Summary

	Automatic Instrumentation Adaptation
	Introduction
	Overhead Model
	Instrumentation Strategies
	Total Overhead Reduction Strategy
	Prolog Overhead Reduction Strategy
	Analysis Guided Overhead Reduction Strategy

	Results
	Nested Loop Example
	PEPC

	Summary

	Temporal Scalability of Performance Dynamics Analysis
	Introduction
	Design Overview
	Dynamic Phase Profiling
	Online Access Interface
	Online Processing of Temporal Performance Data
	Improved Periscope Analysis Engine
	Requesting and Storing Temporal Performance Data
	Accessing Temporal Performance Data
	Backward Compatibility with Legacy Properties
	Handling Missing Values
	Online Analysis

	Summary

	Automatic Analysis of Performance Dynamics
	Motivation
	Example Signal
	Design Goals

	Wavelet Analysis
	Discrete Wavelet Transform
	Implementation in Periscope

	Qualitative Representation of Trends
	Geometrical Interpretation
	Scale-Space Filtering
	Scale-Space Image
	Scale-Space Qualitative Representation
	Qualitative Summarization
	Implementation in Periscope

	Performance Dynamics Analysis Strategy
	Design
	Analysis Algorithm
	Adapted APART Property Specification Language
	Performance Dynamics Properties

	Summary

	Evaluation
	Experimental Setup
	CX3D - Czochralsky Crystal Growth Simulation
	Automatic Analysis of Performance Dynamics with Periscope

	SPEC MPI2007 129.tera_tf
	Visual Analysis of Raw Temporal Performance Data
	Automatic Analysis of Performance Dynamics with Periscope

	PEPC
	Visual Analysis of Raw Temporal Performance Data
	Automatic Analysis of Performance Dynamics with Periscope

	INDEED
	Experimental data
	Automatic Analysis of Performance Dynamics with Periscope


	Summary and Outlook
	Future Work


