Behavioural Safety of Technical Systems

Mario Gleirscher

Fakultat fiir Informatik
der Technischen Universitat Minchen

Software & Systems Engineering

Behavioural Safety of Technical Systems

Verhaltenssicherheit technischer Systeme

Mario Gleirscher

Vollstdndiger Abdruck der von der Fakultdt flir Informatik der Technischen

Universitat Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Hans-Arno Jacobsen
Priifer der Dissertation:
1. Univ.-Prof. Dr. Dr. h.c. Manfred Broy
2. Univ.-Prof. Dr. Jan Peleska,

Universitdat Bremen

Die Dissertation wurde am 25.06.2014 bei der Technischen Universitdat Miinchen

eingereicht und durch die Fakultat flir Informatik am 22.10.2014 angenommen.

» A
Short Biography Mario Gleirscher (mario.gleirscher@tum.de) owns professional edu-
cation in mechanical engineering (core area: production technology). He received a
diploma degree in informatics (core area: theoretical computer science, subsidiary sub-
ject: mathematics) from the Technische Universitdt Miinchen (TUM, www.tum.de).
He collected three years of professional experience in commercial software develop-
ment, and eight years of experience in doing research and education in systems, re-

quirements and process engineering. His research in quality assurance of software-
intensive technical systems was supported by the Software & Systems Engineering

chair of Prof. Dr. Manfred Broy at the TUM Department of Informatics.

For his

doctoral thesis, he worked on a method for safety analysis.

Copyright Waiver (Urheberrechtsvermerk gem. §106ff UrhG)

The reproduction, distribution and utilisation of
this document as well as the communication of
its contents to others have to comply with §19 of
the regulations for the award of doctoral degrees
at the TUM (status: 2010). Deviations thereof
require express authorisation. Offenders will be
held liable for the payment of damages. All rights
reserved in the event of the grant of a patent,
utility model or design.

(© Mario Gleirscher 2014

v

Computer science is no more
about computers than
astronomy is about telescopes.

(Edsger W. Dijkstra)

Wednesday 3'¢ December, 2014

Weitergabe sowie Vervielfdltigung dieses Doku-
ments, Verwertung und Mitteilung seines In-
halts sind durch §19 der Promotionsordnung
der TUM (Stand: 2010) geregelt. Abweichun-
gen davon bediirfen der ausdriicklichen Autho-
risierung. Zuwiderhandlungen verpflichten zu
Schadenersatz. Alle Rechte fiir den Fall der
Patent-, Gebrauchsmuster- oder Geschmacksmus-
tereintragung vorbehalten.

All rights reserved / Alle Rechte vorbehalten O

mario.gleirscher@tum.de
www.tum.de

Abstract Producers of technical systems are obliged to identify and treat hazards
of these systems and their software-intensive control subsystems. Hazard analysis
is an indispensable task in system specification and development. Practices, such as
improper modelling, insufficient support and use of analysis methods, bias to reliability
goals, and neglect of the system environment promote specification defects that can
compromise software and system safety. Hence, there exists a demand for methods
to effectively carry through safety-oriented requirements validation.

This thesis presents a validation method for specifications extending the guidance
for achieving safety of technical systems. The method fosters (i) the encoding of
safety-related domain knowledge, (ii) the identification and characterisation of haz-
ards and (iii) the specification of safety measures as an input to system and software
development. The formal approach applies behavioural modelling of the system and
its environment, and provides patterns to disclose and remove hazardous specification
defects. The evaluation is achieved by a case study, a literature review and expert
interviews.

Kurzzusammenfassung Hersteller technischer Systeme sind verpflichtet, das Gefahr-
dungspotential ihrer Anlagen und deren softwarebasierten Steuerungen zu untersuchen.
Die Gefdhrdungs- und Ristkoanalyse ist eine unerlassliche Aufgabe der Spezifikation
und Entwicklung solcher Systeme. Praktiken, wie z. B. unzulangliche Modellbildung,
wenig Unterstiitzung durch Analysemethoden, Konzentration auf Zuverlassigkeitsziele
und mangelnde Beriicksichtigung der Systemumgebung begiinstigen Spezifikationsde-
fekte und erschweren die Sicherheitsiiberpriifung insbesondere softwarebasierter Sys-
temteile. Es besteht daher ein Bedarf an Hilfsmitteln zur effektiven Absicherung von
Anforderungs- und Systemspezifikationen.

Die vorliegende Arbeit stellt eine Absicherungsmethode fiir Spezifikationen vor,
um das Gefahrdungspotential technischer Systeme zu verringern. Diese Methode
unterstiitzt (1) die Abbildung von sicherheitsbezogenem Domé&nenwissen, (ii) die Iden-
tifikation und Charakterisierung von Gefdhrdungen sowie (iii) die Spezifikation von
Sicherheitsmafnahmen als Gegenstand der System- und Softwareentwicklung. Der for-
male Ansatz basiert auf einer Verhaltensmodellierung des Systems sowie seiner Umge-
bung und bietet Muster zur Erkennung und Behandlung gefdhrlicher Spezifikations-
defekte. Die Evaluierung erfolgt durch eine zweiteilige Fallstudie, Literaturrecherche
und Expertenbefragungen.

Acknowledgement I spend sincere gratitude to my supervisor Prof. Dr. Dr. h.c. Man-
fred Broy for his mentorship, steady patience, helpful feedback and organisational
support throughout these advancing years. I also thank Prof. Dr. Jan Peleska for his
critical review, for perceptive hints and his second opinion.

All my colleagues at the chair delighted me with a cordial work climate during
my whole affiliation. Special thanks go to: Alarico Campetelli, Georg Hackenberg,
Benedikt Hauptmann, Florian Holzl, Maximilian Irlbeck, Diego Marmsoler, Birgit Pen-
zenstadler, Daniel Ratiu, Andreas Vogelsang, Sebastian Winter and Xiuna Zhu who
were tenacious to keep me on track, and for their plenty of time for mind-boggling,
stimulating and philosophic discussions during recreational tea, coffee and foosball
sessions—Andreas Bauer, Johannes Holzl, Benjamin Hummel, Leonid Kof and Maria
Spichkova who helped me orientate in the jungle of formal methods and who en-
lightened me with their specialist hints—Katharina Spies for her insight into how to
get along with everyday troubles of doctoral students—all technical staffs for their
indispensable service keeping me perfectly productive. Further thanks go to several
scholars whom I owe valuable knowledge: Bernhard Schétz and Stefan Wagner for
their insights into doing scientific work on software modelling, development and qual-
ity assurance—David Parnas for a discussion about the commonalities of classical and
software engineering—Peter Struss for his expertise in qualitative physics.

[thank all my industrial partners, among them engineers from Airbus Group (for-
merly EADS), BMW AG, IBM Deutschland GmbH, ITK Engineering AG, Validas AG
and six unstated Munich SMEs, for their supportive information on software practice
and safety standards, valuable insight into daily engineering tasks, and for financial
support of the projects I attended. Without this support, my first publication on
hazard analysis (Gleirscher 2013b) and my case on road vehicle safety (Section 6.2)
would hardly have been possible. My cordial gratitude goes to the safety practitioners
who shared their experience by giving me an interview. For discussions and helpful
feedback, I am also thankful to: Oscar Daigeler, Christian Facchi, Hartmut Hencke,
Stefan Rink, Frank Sommer and Bernd Spanfelner about software quality assurance
in the telecommunication and finance sectors, and formal methods—my student team
from the UnternehmerTUM business plan workshop (Andreas Gerd, Clemens Ernst-
berger and Lukas Stacheder) for a great team performance—master students Sonila
Dobi and Carmen Carlan for discussions about physical modelling and safety cases.

Moreover, Maximilian Irlbeck, Ursula Leiter, Klaus Lochmann, Felix von Ranke
and Tobias Zimmermann gratified me with reviews, thoughtful questions and hints—
Ed Robinson helped me a lot with improving my English writing—Sebastian Kienzl,
Clemens Lanthaler, Franz Strasser and Christian Miiller had an open ear in many
situations of this era of gruelling uncertainty—Nina J&dger proved patience in one of
the toughest stages of this lengthy and questionable project, farewell to these wonderful
years of heartfelt trial: I am sorry. Not least, I owe my family invaluable gratitude for
their support which made possible many things across the years.

Contents

Abstract and Acknowledgement Lo oL

1 Motivation and Overview
1.1 Safety of Technical Systems
1.2 Thesis SUMmMATY v ¢ v v o e e e e e e e e
1.3 Research Design and Outline

I Theory and Approach

2 Technical Systems
2.1 Systems Engineering e
2.2 System Theory, Modelling and Specification
2.3 Formal Preliminaries
2.4 System Specification: A Generic Framework
2.5 Notes and Further Reading

3 Safety
3.1 Safety Viewpoints and Standards
3.2 Hazard Analysis Techniques v v
3.3 Safety Measures i e e e
3.4 More Recent Related Work

4 Behavioural Safety: Concepts
4.1 System Specification: A Safety-related Framework
4.2 Safety-related Defects
4.3 Mishaps, Hazards and Causal Factors
4.4 Behavioural Safetyo
4.5 Responsibility and Restriction.
4.6 Safety Measures. e
4.7 A Stop Criterion for Safety-oriented Validation
4.8 Notes and Further Reading

5 Behavioural Safety: Procedure
5.1 Modelling Stage: Understand System
5.2 Analysis Stage: Identify Hazards

5.3 Assurance Stage: Improve System Functionality
5.4 Notes and Further Reading

Il Application and Evaluation

6 Case Study
6.1 Pilot Case: Automated Teller Machine
6.2 Approval Case: Commercial Road Vehicle

7 Discussion
7.1 Evaluation of the Case Study,
7.2 Improvements on Related Work
7.3 Some Limitations of the Approach
7.4 Challengesand Hints
7.5 Conclusions
7.6 Further Work

Bibliography

A Library, Evidence and Excursions
A.1 Transition System Patterns and Guide Words
A.2 Procedure and Data on Interviews of Safety Practitioners
A.3 Data on the Systematic Map of Related Work
A .4 Data on the Comparison with Other Procedures
A5 Data on the Automated Teller Machine Case
A.6 Data on the Commercial Road Vehicle Case
A.7 Application and Evaluation of the Defect Taxonomy
A.8 Defects and Model Validity

B Indices
B.1 Glossary of Symbols and Notation
B.2 List of Figures
B.3 Listof Tables
B.4 List of Examples e
Index oL

Motivation and Overview

Contents
1.1 Safety of Technical Systems L. 1
1.2 Thesis Summaryo e 5
1.3 Research Design and Outline 8

1.1. Safety of Technical Systems

Technical systems (e.g. plants, machines, vehicles) provide functionality which can
harmfully impact assets in their environment (e.g. operators, users). Safety—the
degree of freedom from hazards—is a critical property of such systems and their
software-intensive control subsystems (Leveson 2012, McDermid 2002). Producers
face the pressure of high expectations, accident statistics, product liability claims and
competition in safety innovations (Rasmussen 1997). This pressure is mirrored by na-
tional laws (Luksch 2012), standards such as IEC Std. 61508 (2011) or ISO Std. 26262
(2011), EU directives (Gehlen 2010) or process guidelines. Table 1.1 indicates how
safety requirements arise from applications as an issue of systems engineering.! Sys-
tems engineering includes requirements engineering to specify the system interface
and functionality, and architecture design in order to structure development.?

Challenges in Safety Engineering For system validation and verification (V&V), during
requirements engineering a safety engineer gains an understanding of hazards. He
or she identifies and assesses hazards (e.g. failure of a road vehicle or a pre-crash
state) using various sources of information, such as human error classifications®, ac-

!See, e.g. Nader (1965), Neumann (1995), Perrow (1984) for further historical accident data.
2See, e.g. Bhrlenspiel and Meerkamm 2013, Jackson 1983, Lunze 2010, van Lamsweerde 2009.
3See, e.g. Cacciabue 2004, Hall and Silva 2008, Leveson 2012, Shappell and Wiegmann 2000.

Technical system
Safety

control subsystem

1. Motivation and Overview

Application or System Category No. of Incidents/Accidents Causal Factors

German nuclear power plants, > 4k incidents of INES

in last 30 years (Spiegel 2012) level <3 technical flaws or maloperation

German trucks, 2003 ~ 38K traffic accidents 6% technical reasons, > 40% inade-
(BEvers 2012) ~ quate speed, inattention or fatigue

U.S. motor vehicles, 2005-'07 ~ 2.0M traffic accidents 3% technical reasons
(NHTSA 2008) - incl. 0.75% defective brakes

German production plants,

2007-10 (BAUA 2012) 983 fatal work accidents = 15% technical flaws

German road vehicles and a2 306k traffic accidents maloperation,
traffic, 2011 (ADAC 2012) with personal injury ~ 1% technical flaws
Buenos Aires railways, Feb one train accident (657

2012 (Focus 2012) injured, 49 casualties) defective brakes

Table 1.1.: Data on incidents and accidents of technical systems and their severity

cident databases*, reliability statistics, injury severity scorings, the international nu-
clear event scale (INES; IAEA 2008), expert discussions, driving situation registers
and insurance models. By consulting architecture design documents, he or she relates
potential defects to hazards at the system interface. These steps enable the engineer
to recommend measures to treat hazards and their causal factors. These measures
also constrain the software-intensive control subsystem. Furthermore, he or she cre-
ates plans for safety-oriented V&V, acting as a requirements engineer to validate the
specification for safety and as a V&V engineer to prepare for the verification of
safety (Ericson 2005, Lutz 1993, 2000). This procedure involves several questions:
Which hazards can and must be considered? Which defects may exist from a safety
viewpoint and how can they be handled? How can safety goals and responsibilities be
derived and justified? How can safety measures be specified? Example 1.1 objectifies
these questions.

Example 1.1 (Car Airbag) What is the intent behind a car airbag? Does it release only
and ezactly in the right driving situations? Which hazards arise also in these situations?
Which causal factors obstruct release as intended? How can they be avoided or kept
at minimum risk? Are all intended, extreme, unezpected or defective situations known
and handled? How can airbag behaviour be specified in such situations? How can these
sttuations be covered during verification? Which obstacles arise from separate VEV of
the airbag?

“For example, from AOPA Air Safety Institute (www.aopa.org/Education/Accident- Case-Studies.
aspx), U.S. DoT Federal Motor Carrier Safety Administration (ai.fmcsa.dot.gov, NHTSA 2008),
or “Institut fiir Unfallanalysen” (unfallforensik.maindev.de).

www.aopa.org/Education/Accident-Case-Studies.aspx
www.aopa.org/Education/Accident-Case-Studies.aspx
ai.fmcsa.dot.gov
unfallforensik.maindev.de

1.1. Safety of Technical Systems

Problems in Safety Engineering As discussed in the literature®, the presence of specifica-
tion defects (i.e. incompleteness, incorrectness, inconsistency and wrong abstraction)
reduces the conclusiveness of V&V results. The following two problem statements
indicate that current safety engineering practices do not well prevent safety engineers
from missing, causing and promoting specification defects:

Pl Lack of modelling guidance, abstraction and precision.

Hazard analysis can determine the impact of defects in software, electronic and me-
chanical components on safety. The relationship between system safety goals and
component requirements, however, is often imprecisely modelled. The same holds for
the relationship of hazardous failures at system level and component defects.

Standards, such as IEC 61508 or ISO 26262 for functional safety, contain exten-
sive process guidelines but have drawbacks: these guidelines focus on providing safety
evidence by process prescription and measurement (e.g. Layman et al. 2011), and ne-
glect the use of rigorous methods and behavioural system models. This issue has been
stressed by Parnas et al. (1990) and McDermid (2001, 2002). Such methods would
improve the detection of specification defects because of their necessity of making
safety knowledge explicit. These standards concentrate on reliability and risk analy-
ses of a design, loosing sight of validating specifications with respect to hazards. For
the assessment of hazardous failures, for example, failure mode and effects (FMEA) or
fault tree (F'TA) analyses are common in many disciplines: defects, their causal factors
and propagation are determined from a structural system model to support design for
reliability (see, e.g. Dugan et al. 1992, Ericson 2005, Goddard 2000). Applications
of these methods are often prone to, for example, subjective assessments with impre-
cise measures, and the used models lack expressiveness in capturing subtle hazards:
Leveson (2012) emphasises the regard of multiple modes of system operation (i.e.
non-linear causal chains) instead of single modes (i.e. linear causal chains).

Atlee and McDermid (1995) indicate an overlap of requirements validation, hazard
analysis and system verification. Nevertheless, rigorous methods (e.g. Haxthausen
et al. 2011, Heitmeyer et al. 1998) seem to be only used sparsely in practical safety
engineering although helpful for correctness, completeness and consistency checks.
Goddard (2000) notices that techniques for applying software FMEA at control system
level during specification and architecture design have been largely missing in the
literature. Aside from defect and hazard analyses, Schétz et al. (2005) show tool-
supported modelling of specifications, whereas Utting et al. (2012) complain that there
is a lack of guidance for building such specifications. Safety and reliability tools® often
miss a behavioural semantics for the modelling of abstractions of technical systems.
Moreover, modelling physical systems for simulation” and synthesis of realisations can
be too expensive for early stage hazard analysis.

5See, e.g. Beizer 1995, Hoffmann 2013, Lutz 1993, McDermid 1991, Parnas et al. 1990, Pyle 1991,
Smith 1995, van Lamsweerde 2009, Zave and Jackson 1997.

8For example, Isograph FaultTree+/Hazop+ (www.isograph-software.com), APIS IQ-FMEA (www.
apis.de), ReliaSoft Xfmea (www.reliasoft.de), medini analyze (www.ikv.de).

"MathWorks Simulink® (www.mathworks.com) or Modelica® (www.modelica.org).

specification defects

functional safety

www.isograph-software.com
www.apis.de
www.apis.de
www.reliasoft.de
www.ikv.de
www.mathworks.com
www.modelica.org

automation paradox

1. Motivation and Overview

P2 Neglect of properties of the system environment.

Behavioural models, which capture interaction between the system and its environ-
ment, are rarely used to represent hazard knowledge.® Such models can help more
precisely investigate observable system behaviour before and after hazardous events,
and consider temporally distant or even ezternal causal factors aside from system
defects. Rasmussen (1997, 1999) pointed out this issue in accident analysis and risk
management: he stipulates investigations of long-term combination of environment
misbehaviour, maloperation and potentially defective system functionality.

For example, in the automotive domain, safety measures are split into preventive
(e.g. avoidance of crash situations by means of a pre-crash safety function) and passive
(e.g. mitigation of crash consequences by means of a car airbag) categories (HeiRing
and Ersoy 2007). Diaconescu (2011) reports that except for physical simulation, the
automotive industry desiderates well-founded and standardised guidance for evaluation
of preventive measures. Even ISO 26262 neglects to indicate specific techniques.

In addition, safety engineers have to deal with human factors and the automation
paradoz (Bainbridge 1983): an increased degree of automation pushes the role of
human operators to perform safety-critical interactions in case of failures. Hence, au-
tomation requires qualified operators to react to failures with preventive safety mea-
sures. The paradox becomes worse if the specification assumed by the operator
differs from the one actually realised (Wagner et al. 2010).

Both problem statements are supported by, for example, Braun et al. (2009), Broy
(2012), Leveson (2012) and McDermid (2001, 2002). Leveson confirms these problems
by questioning presumptions of safety engineering, such as “highly reliable [software]
systems are safe,” “accidents occur from single chains or simultaneous occurrence of
random events,” or “assigning blame to or punishing operators reduces incidents.”

Experience of Safety Practitioners I interviewed several practitioners to gain further
insight into safety engineering practice. Four findings® resulting from these interviews
strengthened my motivation for this work:

(F1) Producers are responsible for the safety of the entire systems they build. For
example, in the automotive industry, compliance with product liability law increases
the demand for safety of novel vehicle functions and control automation. (F2) Nev-
ertheless, suppliers struggle to maintain control of assuring their subsystems to not
compromise safety requirements imposed by the producer. Underspecification, erro-
neous documentation, intellectual property rights, and other legal and social issues
complicate safety assurance among these contractors. (F3) Current practice seems to
be shifting this responsibility to the human operator mainly by justifying safety by
reliability. Maloperation seems to be treated with insufficient urgency. In this respect,
standards for road vehicle safety, such as ISO 26262, have not yet caught up with the
usual guidelines and practices of industrial machinery and aeronautics. (F4) Method

8The interview transcripts underlying these findings are summarised in Table A.7.

1.2. Thesis Summary

and tool support is an uncritical problem. Specialty models and tools will, never-
theless, gain importance because safety engineers will retain individual procedures
according to safety cases. These procedures can be improved by concise and reusable
system models.

Demands of Safety Methods For example, Broy (2012) outlines artefacts useful for
safety-oriented requirements validation, such as a system specification, environment
and defect models, assumptions about the environment, and the realised system. From
the findings described above, I conclude: Safety analysis models should be (i) com-
prehensible by control, safety and reliability engineers of various technology domains,
(ii) affordable to create, use and reuse, and (iii) scalable through modular hierarchical
construction. Safety methods should provide a stop criterion to measure the com-
pleteness of analysis steps and the verification coverage for safety measures, as well as
a clear procedure and work items for unimpeded adoption in practice.

A literature review (cf. Sections 3.4 and 7.2) shows that only few of the more recent
safety approaches particularly combine multiple disciplines, behavioural modelling
of the system and its environment, engineering guidance and logical rigour. The
approaches from industry and academia, as summarised in Chapter 3, can be improved
to more effectively address the questions stated above (cf. Example 1.1).

Research Goal The problem statements P1 and P2 motivate my research goal:

RG Support safety-oriented requirements validation to improve the safety
of a technical system.

This goal is refined by two research questions about guidance for hazard analysis, and
improving the safety of specifications and the effectiveness of safety measures:

RQl How can a technical system be modelled for hazard analysis? RQ1.1: Which
abstraction can be chosen to identify hazards, that is, to describe how the system
is able to behave respecting physical, social and computational laws? RQ1.2:
Which part of the system boundary has to be considered?

RQ2 How can hazards be identified and a safe specification be derived? RQ2.1:
How can extreme, unexpected and defective situations be derived from a spec-
ification in order to assess hazards? RQ2.2: How can a valid (i.e. sufficiently
complete, correct and consistent) specification be derived which assures safety
for each conforming realisation? RQ2.3: How can safety goals be decomposed
with respect to the system boundary? RQ2.4: How can the required safety
measures be derived?

1.2. Thesis Summary
Based on three preliminary studies (Dobi et al. 2013, Gleirscher 2011, 2013b), I de-

scribe a method for safety-oriented validation of specified and defective behaviour
observable for a system and its environment.

behavioural safety

world model

1. Motivation and Overview

Specification and Realisation

Requirements Defect Model S
Knowledge R (RQ1) |Safety Goals T | Environ| [System

Modelling ‘V&V ment [

—>
Intent, Use Cases, World Model M -
Needs for Safety, (RQ2) Environ- System
Safety Guidelines, Validation ment Model [
Model
Stakeholders for Safety Requirements & Safety Engineers Developers & Stakeholders

Figure 1.1.: A setting for safety-oriented requirements validation

Concepts The proposed method follows a human-centric viewpoint (see below in Sec-
tion 3.1). This viewpoint leads to the term behavioural safety to emphasise

1. the behavioural view of a system including its safety measures

2. the end-to-end view of the control loop (i.a. physical processes, sensors, control
software, actuators, fault tolerance mechanisms) across several disciplines

3. the regard of the system environment for the negotiation of responsibilities.

Behavioural safety addresses the problems stated in Section 1.1 through safe concep-
tion of functionality by using safety measures as well as reliable design, realisation
and operation of these measures. Behavioural safety can enhance functional safety.

Figure 1.1 depicts the setting for RQ1 and RQ2: Let the set R, called requirements
knowledge, contain assertions of intended functions and properties of a technical sys-
tem. From R, we derive a specification and defect model S comprising a set of safety
goals T and a world model M describing the system and its environment. The world
model is a mode transition system whose behaviour is described by actions produc-
ing events at the system boundary, altering states of physical or data entities. A defect
model included in M describes deviations from the specified functionality. Mishaps
model physical states to be avoided or alleviated. Hazards comprise causal factors
which are temporally and stochastically related to mishaps. The system model is an
abstraction of the system to be built and operated including its potential operational
defects. The environment model contains similar knowledge on the environment
including the assets that can be harmed in certain mishaps.

As mentioned in Section 1.1, safety methods are performed on known system de-
signs. Less demanding, S abstracts from mechanics, electrics, electronics and control
software to identify potential mishaps (e.g. car accidents) and hazards (e.g. pre-crash
situations), and to perform mishap alleviation (e.g. airbag) and hazard treatment (e.g.
fault prevention, failure warning, safe braking). S constrains behaviour at the safety-
related part of the system boundary, that is, the part which can be engaged in causal
factors, hazards or mishaps. Hazard analysis consists in identifying hazards based
on mishaps conceivable in the world model. Mode transition systems allow reasoning
about the satisfiability of behavioural properties to especially determine consistency

1.2. Thesis Summary

Modelling Stage Analysis Stage Assurance Stage
Understand System Identify Hazards Improve System Functionality
Step 1: Step 2: Step 3: Step 4: Step 5: Step 6:
Model System Model Identify Assess Specify Safety Derive Safety
& Environment Defects Mishaps Causal Factors Goals Measures
Specification ar;i Defect Model Hazard Knowledge Safe Spesciflcatlon

Figure 1.2.: An iterative procedure for safety-oriented requirements validation

of safety goals, probabilistic reachability’ of hazardous and safe states, and stabil-
ity of safe modes. See Example 1.2.

Example 1.2 (Car Airbag) The temporal logic formula

F<350m5

P>0.9999[G(crashed « absorbedBydrvr,airb)]

1s one formalisation (see Section 2.3.2) of the behavioural property assertion

“With a chance of at least 99.99% ff a vehicle crash occurs and within at
most 850 ms, an airbag has to be released to alleviate driver harm. [With the
residual chance that the airbag may release too late or fail totally.J'°”

which forms a safety goal for a car airbag. The airbag is a running ezample revived several
times 1n the following chapters.

Procedure Safety-oriented validation of S comprises the identification of potential
mishaps, hazards and causal factors as well as the planning of safety measures. Fig-
ure 1.2 depicts a three-staged procedure proposed to address RQ2. In the following,
each stage is outlined by its characteristic steps, questions and tasks. First, the mod-
elling stage aims to understand the system as operated in its environment:

Step 1 (Model system and environment) Which actions describe the specified behaviour?

Task: From the set R, capture and derive use cases and specify functionality.
Build up the world model M. Put known safety goals into the set T'.

Step 2 (Derive defect model) Which actions could be performed in an unexpected man-
ner? Which operational defects are possible or even unavoidable? How could
the system or the environment deviate from the specified behaviour?

Task: Make a guess of unexpected behaviour and potentially defective function-
ality. Transition system patterns (Table A.2) help model defect knowledge.

Second, the analysis stage aims to identify hazards by assessing mishaps and their
causal factors:

9For example, to answer at which probability a state can be reached from a set of initial states.
10The square bracket indicates tacit information.

1. Motivation and Overview

Step 3 (ldentify potential mishaps) Which mishaps are possible? Which actions can be
involved in a mishap? How severe is their impact on the environment?

Task: 1dentify mishaps based on M by using guitde words (Table A.3).

Step 4 (Assess causal factors) Which actions endanger the environment by being per-
formed hazardously? How can causal factors (i.e. operational and specification
defects) of mishaps be identified and combined to define hazards?

Task: Use guide words (Table A.1) to search for hazards, investigate their causal
chains and factors, and conduct their assessment in M.

Third, the assurance stage aims to improve system functionality through safety
measures based on the identified hazards and their causal factors:

Step 5 (Specify safety goals) How can hazards and mishaps be treated descriptively?
Whereto has responsibility as well as safety integrity to be allocated?

Task: Transform hazards and mishaps into new safety goals in I'. Discover
inconsistencies among safety goals and maintain realisability. Decompose new
and existing safety goals into safety requirements comprising assumptions on
the environment and guarantees of the system.

Step 6 (Plan and design safety measures) How can hazards and mishaps be treated in an
operational way? How can effective safety measures be derived?

Task: Enhance M by safety measures. Transition system patterns (Table A.4)
help treat operational and specification defects.

The Steps 2, 3 and 4 aim for the exploration of defects in S; the Steps 5 and 6 use the
results for the treatment of hazardous defects. This procedure supports the iterative
transformation of S into a safe S’ which, after one or more iterations, should contain
the necessary safety measures. Hach iteration is to be initiated at Step 1 without a
model of defects or safety measures. To perform an iteration, we assume that safety
measures derived in a previous iteration are converted into specified functionality and
that defects treated by safety measures are hidden or removed from S. Note that only
in the V&V stage, we can assure that a realisation exhibits these safety measures.

1.3. Research Design and Outline

The present work takes a theoretical perspective (Part I) as well as an applied and
evaluative perspective (Part II). Motivated by Shaw (2002), I explain the approaches
chosen to put the quality of the results gained from these two perspectives into context:

First, Section 1.1 includes the results from interviews with safety practitioners
to document a state-of-practice snapshot. Insight into the daily challenges of the
engineers underpins my motivation for this thesis. Data from the transcripts are
classified by content analysis and evaluated in Appendix A.2; I, however, omitted the
application of grounded theory (see, e.g. Trochim and Donnelly 2008).

1.3. Research Design and Outline

Second, the research questions in Section 1.1 have been derived in a way similar to
the goal-question-metric approach (Basili et al. 1994): the metrics part is left out
because the collection of quantitative data is out of scope of my studies. According
to Shaw (2002), the research questions can be classified as “method for analysis,”
the research contributions as “procedure or technique” and “analytic model,” and the
validation results as “analysis” and “example.”

Third, the Chapters 2 and 3 summarise the fundamentals by giving an introduction
to the terminology and definitions used throughout the thesis.!! Based on these
fundamentals, the Chapters 4 and 5 use formalism (see Sections 2.3 and 2.4) to gain
precision for the introduced concepts. In Chapter 4, the reader will find a discussion
of concepts for behavioural safety as an answer to RQ1 and RQ2. Chapter 5 presents
a procedure as an answer to RQ2. That chapter describes the modelling, analysis and
assurance stages. Details on the proposed method can be found in the Appendices A.1
and A.7. The Chapters 2, 4 and 5 close with notes and further reading.

Fourth, a literature review in Section 3.4 enhanced with a systematic map of re-
lated work aims at an appreciation of established and more recent research in the field.
This review underpins the competitiveness of the proposed approach by indicating its
strengths in Section 7.2. Details on the systematic map and a comparison with two
other procedures can be found in the Appendices A.3 and A.4. This review can be a
basis for an exhaustive literature survey on the field of system safety analysis.

Fifth, a case study in Chapter 6 demonstrates and evaluates the approach; it pro-
vides evidence to indicate efficacy in practice. The thesis, however, leaves undone a
controlled statistical experiment to confidently gain stronger empirical evidence needed
for performance questions on the proposed method. The study is set up and conducted
along the lines of Yin (2009): The planning of the study is done by stating research
questions (Section 1.1). The Sections 6.1 and 6.2 form a two-case holistic design
with a single unit of analysis per case. To prepare the study, the procedure is docu-
mented in Chapter 5 such that the first case (Section 6.1) acts as a pilot case and the
second case (Section 6.2) as an approval case. The data collected during application
of the proposed method is directly presented in Chapter 6 and in further detail in the
Appendices A.5 and A.6. The way of modelling and graphical representation chosen
for the case study is compatible with SysML (Friedenthal et al. 2008) and has been
exemplified for a road vehicle adaptive cruise control (Lochmann and Gleirscher
2009), an automated teller machine (Broy et al. 2012), a coffee vending machine
(Gleirscher 2011, 2012), and road vehicle driving dynamics and assistance.'? Sec-
tion 7.1 provides an analysts of the study results. These results can be shared through
the cross-case conclusions drawn in the Sections 7.3 to 7.6.

Sixth, the discussion in the Sections 7.2 to 7.4 points at both premises and argu-
ments for the contribution and gives hints on how to eliminate shortcomings of the
proposed method. Final conclusions and suggestions for further work are supplied in
the Sections 7.5 and 7.6.

11Some of the bibliographic references, particularly in the Chapters 2 and 3, are exemplary even
if not explicitly indicated. It should, however, be possible for the reader to determine from the
context whether a certain reference points to an exemplary or a specific source.

128ee Dobi et al. 2013, Gleirscher 2013b, Gleirscher and Fuhrmann 2012, Gleirscher et al. 2014.

10

Part I.

Theory and Approach

...the true mark of a humane
society must be what it does
about prevention of accident
injuries, not the cleaning up of
them afterward.

(Ralph Nader 1965)

Technical Systems

This chapter introduces systems engineering, system theory and provides the formal
preliminaries for system specification and safety engineering.

Contents
2.1 Systems Engineeringo 11
2.2 System Theory, Modelling and Specification 13
2.2.1 System Concepts and Modelling Techniques 13
2.2.2 System Specification and Frameworks therefor 15
2.2.3 Defect Modelling and Analysis. 16
2.3 Formal Preliminaries 17
2.3.1 System Modelling 17
2.3.2 Behavioural Property Specification 27
2.4 System Specification: A Generic Framework 28
2.5 Notes and Further Reading 29

2.1. Systems Engineering

Technical systems are engineered for many purposes and can have complex func-
tions. Such functions must obey constraints induced by the physical dynamics of the
control loop. These systems are built from various technologies such as mechanical
subsystems, electrics, analogue and digital electronics, software, sensors and actua-
tors. We speak of mechatronics if control is realised by electrical and electronic
means (Harashima et al. 1996). Cyber-physical (Lee and Seshia 2011), robotic and
software-intensive systems enhance this notion by integrating computation with phys-
ical, social and mental processes. A technical system usually has a control subsystem
whose behaviour is governed by software, depends on and affects states of physical
processes and human activity in its environment. Control systems often incorporate
models of the environment and the system itself to facilitate state observation and to

11

Technical system

system life cycle

Specification

systems engineering

goal

2. Technical Systems

Requirements| (b) >
(a)y» asspecified | ..
xtegt, Lste‘da/"SES’ and modelled <-(d)->5 Desian : System
eeds, Guidelines : gn as realised
as known

: ified -(fy o
' as spedified i<&-(f) and operated

and considered _/®-="mmmmemeeee () R » and modelled }
(c) >
Stakeholders | Requirements, Safety, Verification Architects, Developers, Safety, Verification, Unit Test | Stake-
| and System Test Engineers Supply Chain and Integration Test Engineers 1 holders

Figure 2.1.: Analytic quality assurance assuming a requirements specification but leaving the
separation of requirements and design specifications optional (dashed lines)

achieve properties of control loops such as stability and reliability (Lunze 2010, Struss
2003).

In this work, we use the term system for any technical system under consideration,
environment as a synonym for system environment or system contezxt, and domain
for an application domain. In addition, the term world signifies the embedding of a
system into its environment.

A system life cycle includes the activities of specification, realisation, V&V and
operation, conducted by several disciplines such as mechanical, electrical and software
engineering (see, e.g. Ehrlenspiel and Meerkamm 2013, Jackson 1983). Many techni-
cal systems have to be long-term operated. Specifications representing mechanical,
electrical, electronic and software requirements, have to be kept consistent to facili-
tate realisation. Both complexity and extensiveness of a system demand hierarchical
decomposition of specifications into manageable pieces to perform development and
quality assurance in isolation. This demand promotes models, methods and tool
support across multiple abstractions. Long-lasting efforts, volatile customer needs
and maintenance require ag:lity of the involved organisations. The applied engineer-
ing methods should be scalable (architecture analysis and design without accidental
complexity), hierarchical and modular (derivation of stable overall conclusions from
piecewise evaluations), and incremental (realisation in several steps). Specifications
should be well communicable (professional representation) and efficiently evolvable
(support of requirements changes via traceability; Gleirscher et al. 2007). In summary,
systems engineering refers to the planning of a system and the management of its
life cycle, prior to its realisation or series production, and operation.

System Quality Assurance The quality of a system comprises several properties, for
example, functionality and safety (Liggesmeyer 2009, Wallmiiller 2011). van Lam-
sweerde (2009) perceives specifications as sets of goals which describe such properties.
Any deviation of these properties can be seen as a defect. Hoffmann (2013) describes
constructive and analytic measures to achieve the required level of quality: Analytic
measures assess the results on the way to realisation (Figure 2.1a—f) and can be con-
tinuously applied as a combination of several techniques (e.g. code inspection, design
reviews; Gleirscher et al. 2014). Such measures can be performed in reaction to known

12

2.2. System Theory, Modelling and Specification

but previously unexpected defects (e.g. debugging) or as an investigation of presumed
defects (e.g. testing). Constructive measures such as systems, requirements and
software engineering, guide the design decisions on the way to realisation. IEEE
Std. 830 (1998) and ISO Std. 9126 (2001) guide through the quality assurance of
software specifications and implementations.

Requirements engineering fosters the achievement of a walid specification, its
maintenance and communication (van Lamsweerde 2009) through the conduct of:

1. Elicitation: Exploiting sources of information including stakeholders.

2. Analysis: Deriving knowledge of the system environment, the application do-
main (domain analysis), the system boundary (context analysis) and the problem
(usage analysis); solution restriction; structuring; evaluation of use, priorities,
cost-efficiency and feasibility; finding consensus; removal of inconsistencies and
conflicts; revealing rationale; negotiation and decision.

3. Specification: Documenting committed goals (van Lamsweerde 2009), require-
ments and use cases (Cockburn 2000) to constrain system behaviour; an en-
vironment model to determine the system boundary; functions, conceptual and
physical constraints of entities and their states as a basis for realisation.

4. Assurance: Requirements validation (Figure 2.1a) and verification of the sys-
tem (Figure 2.1b,d).

We will use the following terms: Goal for any “prescriptive statement of intent,” guar-
antee for a goal to be satisfied under the responsibility of the system and assumption
for a goal whose satisfaction falls under the responsibility of the environment (van
Lamsweerde 2009). The term requirement refers to an assumption/gquarantee pair.
The word specification (also requirements specification) is used for both the require-
ments engineering task and its artefact.

2.2. System Theory, Modelling and Specification

System, control and automation theories® describe technical systems in many areas
of life. System models are artefacts which engineers use throughout the life cycle of
a technical system to specify and analyse its properties.

2.2.1. System Concepts and Modelling Techniques

How can a system model assist in the life cycle? = Models help understand, communi-
cate and reason about system properties. Models can support analytic steps such
as abstract interpretation, diagnosis (Reiter 1987), model checking (Baier and Ka-
toen 2008), qualitative spatio-temporal reasoning (Reiter 2001, Struss 2003), runtime

1See, e.g. Forrester 1961, Luhmann 2006, Lunze 2010, Paynter 1960, von Bertalanffy 1957, Wang
1964, Wiener 1965.

13

Requirements engineering

properties

transformation

behavioural properties

behaviour

structural properties

hierarchical decomposition

abstraction

2. Technical Systems

verification (Leucker and Schallhart 2009), simulation?, testing or theorem proving.?
Models can assist with constructive steps (also transformations) such as decomposi-
tion, refinement (Broy and Stglen 2001), composition and abstraction. Both kinds of
steps need to be hierarchically performed to scale up to large systems and to regard
multiple levels of abstraction. Some methods care for property preservation across
these abstractions and for modularity of these steps to reduce dependencies.

What has to be modelled for the chosen purpose? According to Beizer (1995), system
“models are mental tools and [...] there is no fundamental right or wrong with them.”
These models can refer to any concepts of thought or perception (Stachowiak 1973,
Wittgenstein 1922). Modelling includes the definition of variables, types and entities
to observe or measure (Trochim and Donnelly 2008). The variables can be interpreted
for states of physical or conceptual entities such as processes (Forrester 1961), busi-
ness or data objects. Variables can reify channels (Broy and Stglen 2001) or shared
phenomena (Jackson 2001) modelling the interfaces and interaction of these entities.
Entities can be passive, with variables forming their state space, or active, monitor-
ing and reactively manipulating variables via their interface and changing their own
state (Agha and Hewitt 1985, van Lamsweerde 2009).

Modelling can help express behavioural properties of a system, its functionality,
role or purpose in its environment (Umeda et al. 1990): system functions relate
dependent (also output, written, controlled or manipulated) with :ndependent (also
input, read, monitored or observed) variables.* It has been argued to describe such
functions by specifying behaviour, either using behavioural properties or executable
models (Broy and Stglen 2001). Transitions between states can represent system
actions and structure complex behaviours. While every entity can incorporate states,
transitions can only be performed by active entities. The abstraction of a system to
its boundary is known as behavioural, interface or black-boz view (Wiener 1965).
Generic behavioural properties are, for example, causality, indeterminacy, liveness,
probability, realisability and safety.®

Aside from behavioural properties, structural properties can be modelled as a
structural or glass-bozr view to understand distribution and causal chains (Broy and
Stglen 2001). According to Broy (2005, 2010), architecture denotes the hierarchical
decomposition of a system into components, the definition of their interfaces and their
connection via channels. Interaction takes place via transmission of information (e.g.
communication by message or signal flow), energy (e.g. force flow or mechanical load,
electric voltage, light) and material (e.g. fluid, workpiece or data flow, electric current)
at defined connection points or areas (Paynter 1960). Generic structural properties
are, for example, causal nets, communication, cooperation, coordination, modularity
and resource optimisation.

We use the term abstraction for the act of reducing variable types and rela-

2See, e.g. Ljung 1998, Sargent 1999, Schneider et al. 2001, Waters and Ponton 1989.
3See, e.g. Hoffmann 2013, Liggesmeyer 2009, Wallmiiller 2011.

4See, e.g. Courtois and Parnas 1993, Parnas and Madey 1995.

5See, e.g. Broy and Stglen 2001, Lamport 2002, Manna and Pnueli 1995, Rushby 1994.

14

2.2. System Theory, Modelling and Specification

tionships among entities to a low number of distinguishable values being discretely
observed, thus reducing the world under consideration to a qualitative model.?

How can a system model be represented? Many modelling techniques are available to
represent the above concepts (Davis 1988, Friedenthal et al. 2008). We can distinguish
structural, behavioural and mized techniques.

Structural techniques specialise in conceptual or data modelling of passive enti-
ties (Baader et al. 2003, Chen 1976), regard the architecture of active entities (De-
Marco 1979, Jackson 1983) or consider both aspects (Kifer et al. 1995).

Behavioural techniques focus on active entities using interaction sequences (Harel
and Marelly 2003), input/output functions (Parnas and Madey 1995) or stream func-
tions (Broy 2005). Transition systems provide a versatile way to model active enti-
ties with output capabilities, known as transducers, and without output capabilities,
known as acceptors.” Action languages provide a formal logic representation of tran-
sition systems (Reiter 2001, Thielscher 2011).

Among the mixed techniques, data flow models put emphasis on communication
within a distributed system (Kahn 1974). Control flow and process models® focus
on sets of actions and preorders of these sets. The combination of data and control
flow as well as hierarchical decomposition enables the investigation of concurrency and
architecture (Beizer 1995, Broy 2010).

Models can carry formal semantics using mathematical structures such as traces (van
Glabbeek 2001), streams (Broy and Stglen 2001), situations (Reiter 2001), KRIPKE
structures (Baier and Katoen 2008), metric and probability spaces and differential
equations (Paynter 1960, Wang 1964). For example, system, control and automation
theories apply structural techniques to visualise control loops formalised by differential
equations (Lunze 2010) or bond graphs (Secchi et al. 2007).

2.2.2. System Specification and Frameworks therefor

Requirements engineering (Section 2.1) can use system models: We can distinguish op-
erational (also procedural, executable, explicit, model-based) from descriptive (also
declarative, constraining, implicit, property-based) styles of specification combinable
with the above modelling techniques. Transducers are given operational semantics and
goal graphs (Kelly 1998, van Lamsweerde 2009) carry descriptive semantics. Sequence
charts (Harel and Marelly 2003), transition systems and architectures (Broy 2005) can
be used with both styles.

Regarding the structure and environment of a system, the pre- /postcondition style,
a variant of both styles, started as a way to attach meaning to programs (Floyd 1967)
and was enhanced for systems as the assumption/gquarantee style (e.g. Broy 1998,
van Lamsweerde 2009): a system has to fulfil a guarantee if its environment fulfils the

6See, e.g. Forrester 1961, Ostroff 1997, Sampath et al. 1996, Struss 2003, Wonham 1976.

"See, e.g. Baier and Katoen 2008, Harel and Politi 1998, Hopcroft et al. 2006, Kaynar et al. 2010,
Mealy 1955, Moore 1956.

8See, e.g. Agha and Hewitt 1985, Hoare 1985, Milner 1973, Petersen 1981.

15

Specification framework

defect
fault

failure

defect model

2. Technical Systems

assumption associated with this guarantee. This style simplifies modular verification
and helps clarify responsibilities among contractors.

Specification frameworks (Zave and Jackson 1997) aim at correct and concise sys-
tem description including careful underspecification to leave freedom to developers.
Specifications can be represented informally (e.g. using natural language or sketches),
in a controlled way (e.g. abstraction into formal, semi-structured grammar; Dwyer
et al. 1999) and formally (e.g. using temporal logic and transition systems; Baier
and Katoen 2008). Formal methods for specification and control system design of-
ten contain elements of both styles of specification to allow a comprehensive descrip-
tion of intent behind and usage of a system, for example, 4-Var (Parnas and Madey
1995), B (Abrial 1998), CORE (see, e.g. Jureta et al. 2008), Focus (Broy and Stglen
2001), Gist (Feather 1987), KAOS (van Lamsweerde 2009), Problem Frames (Jackson
2001), SCR* (Heitmeyer et al. 1998), SpecTRM (Leveson et al. 1998), TLA™ (Lamport
2002), TTM/RTTL (Ostroff 1997), Z (Spivey 2008), the method described by Hatley
and Pirbhai (1987) and hybrid® models for behavioural verification. Many of these
methods support hierarchical decomposition.

2.2.3. Defect Modelling and Analysis

A failure can be perceived as a deviation of an actually observed behaviour from the
one tdeally specified. Faults act as causes of such deviations. Gartner (1999), Ligges-
meyer (2009) and Wallmiiller (2011), for software systems, and Struss and Fraracci
(2011), for physical systems, classify defects according to their position in causal
chains based on a structural view. Consequently, faults may initiate causal chains con-
taining erroneous states and result in failures. According to IEEE Std. 610 (1990),
the life cycle of a defect essentially starts with a programming error or hardware
fault ending up in either a visible failure or being intercepted and handled. Taking
a behavioural view, ANSI and IEEE Std. 792 (1983) perceives a software defect as
a “software-related discrepancy between a computed, observed, or measured value or
condition and the true, specified, or theoretically correct value or condition.”

For defect models, two system views can be considered: actual and :deal behaviour.
Both may use system modelling. Hence, a defect model is a system model which
describes known or imaginable defects in the chosen modelling technique. Such a
model allows the estimation of failure impacts, defect treatment at runtime (Gértner
1999) and safety analysis of many defective realisations of a system at once. Defect
models are used in reliability (Dugan et al. 1992) or fault tolerance (Gértner 1999)
analyses, testing, diagnosis (Reiter 1987, Sampath et al. 1996), runtime verification
and fault localisation, using techniques such as fault injection or mutation.

Sampath et al. approach diagnosts by modelling a technical system as a transition
system and building an abstraction of this model based on the available sensors. Using
this abstraction, the authors distinguish observable from unobservable events (i.e.
action effects). Unobservable events can include defects. A system is diagnosable if
it is possible to detect, with a finite delay, occurrences of defects using the record of

9See, e.g. Henzinger 2000, Lee and Seshia 2011, Platzer 2010, Schneider et al. 2001.

16

2.3. Formal Preliminaries

observed events. The task to identify such occurrences, given partial observations, is
performed by a transition system called the diagnoser.

Similarly, defect models can stem from the abstraction of system designs. For ex-
ample, Reese and Leveson (1997) apply qualitative modelling in safety analysis to
calculate the propagation of input deviations of a program to deviations in its out-
puts. Struss and Fraracci (2011) apply a deviation model as a defect model of a
physical system to perform diagnosis. Negative testing (Das et al. 2012) and fault
injection (Peikenkamp et al. 2006) are controlled ways of diagnosis enforcing defective
system states to perform fault localisation and assess fault tolerance. Moreover, fault
model-based testing uses modified transition systems.'® Géartner (1999) introduces
fault actions into his model for reasoning about fault detection and tolerance at run-
time. Diagnosis has been applied to software debugging: failed test runs are analysed
to aid in localising faults (Mayer and Stumptner 2007). Obtaining a defect model
by mutation analysts means applying erroneous modifications to a system model. In
software testing, mutations are modifications of source code which aid in finding faults
and defining test stop criteria (Liggesmeyer 2009).

Botaschanjan and Hummel (2009) propose extension patterns for modular data flow
spectfications to derive a defect model for control systems (Breitling 2000, Das et al.
2012, Pister 2008). These extensions capture sensor and actuator faults, and failure
modes, claimed to be applicable to FMEA. Das et al. (2012) use fault vartables to
model the indication of faults, for example, in FTA.

2.3. Formal Preliminaries

This section explains the formal modelling and specification of technical systems ap-
plied in the remainder of this work.

2.3.1. System Modelling

Let V = {vq,v2,...,vn} be a set of variables and T be a set of countable types
including the type B = {1, T} as the set of truth values. Given a map type: V — T
for type declaration, we write v : T to declare type(v) =T forve Vand T € T.

Definition 2.1 (State) Given the set U2 Urer T, a state @s a map 0:V — U which
fulfils Vv € V : o(v) € type(v).

The expression [Vi — X1,...,Vn — X,] stands for a state associated with the values
X1y...,Xn. The set of all states over V is called the (observable) state space of V. Let
Y be a set of states in the remainder of this section.

Definition 2.2 (Run) Let n € Nyo. A run (of length n) is a map p :{0,1,...,n} —
Y. For any set of runs (with equal state p(0)), we also use the term behaviour
(computation tree'l).

105ee, e.g. Bsser and Struss 2007, Godskesen 1999, Petrenko 2000.
!1See, e.g. Baier and Katoen (2008) or Pnueli and Kesten (2002) on branching temporal logic.

17

2. Technical Systems

Definition 2.3 (Behavioural Spectrum) Let [V]; denote the set of all runs over V of
length i € No. We write [V] £ UieNo [V]i to denote the (infinite, discrete and
timed) behavioural spectrum over V.

Definition 2.4 (State Constraint) A state constraint is a quantifier-free formula ¢ of
first-order logic only using variables in V.

Interpretation of State Constraints Let C be the set of all state constraints. Suppose
that the map 7 : C x £ — B wnterprets and evaluates any state constraint based on
substituting its variables with values determined by a given state. For convenience,
we use a state constraint ¢ as a predicate ¢ : £ — B on states: the biconditional
c(0) < Z(c,0) then explains when c holds for a state o.

Projection Given a state o and a set V C V, we denote by o]y : V — U the projection
of o onto the state space of V with Vv € V : o]y (v) = o(v). Accordingly, we obtain
the projection of £ by Z|v = {o]v | 0 € X} and the projection of a run p by

plv:{0,1,...,n} = X|y with Vie{0,1,...,n}:plv(i) =p{)lv
Definition 2.5 (Action) Given V CV and abbreviating ¥ — X|y with £y, an action
(pre, delay, trig, prio,t,post) € C x Ny x C x [0,00) % (0,1] x Ey
consists'? of
e a state constraint pre specifying when its execution is possible
e a parameter delay defining the least number of time steps being inactive
e a state constraint trig specifying when its execution is necessary
e a parameter prio defining the priority of its choice among other actions

e a parameter Tt defining the probability of its choice among other actions

a total function post specifying the effects of its execution.

The semantics of action specifications is described below on page 19.

Properties and Use of Variables Let V,, C V and V. C V be sets of variables with
Vim N Ve = 0. We call V,,, the set of mode channels and V. the set of (event)

channels. We divide V. into a set Ves of functional channels and a set Ve of control
channels. Let t: Ng € V with p(n)(t) = n for each run p to track global time.

Definition 2.6 (Mode Transition System, MTS) An MTS (u, A, A, wo, Zo) s defined by

e a set u of labels denoting modes (of operation)

12\We can use short cuts for the tuples, see Example 2.1.

18

2.3. Formal Preliminaries

e a set A of actions according to Definition 2.5
e a relation A C u x A x u describing mode transitions
e a set wo C w of initial modes and

e a set Lo C X of initial states.
Well-formedness of a mode-specific action set s described below on page 20.

Let M be the set of all MTSs and M = (i, A, A, 1o, Zo) be an MTS in the remainder
of this section. For M, we have two variables mu, : L € Vi and tp : No € V to track
modes and local time. For no and Xy, we assume that

Yme podo € Lo:o(muy) =m (2.1)

Furthermore, suppose that we have two maps mon : M — P(V) and ctr : M —
P(V \ Vi) which associate sets of monitored and controlled variables with each MTS.

Definition 2.7 (Mode, Event) Given a run p, m € u and a vartable my; € Vy,, we
say that the mode m is active at time t uff p(t)(mps) = m. Consistent with
Formula (2.1), we require that p(0)(mpg) € Ho. Furthermore, we denote the set
of all actions available in mode m by

An2{acAlIm €pn: (myam’) €A}

Then, for any action a,

/\ —b.pre, if A, #0,

a.pre = { beAm\{a} abbreviated by a.pre = x,

T, otherwise,

which stands for the “default case” or “else”. The same pattern applies to a.trig.
Given an event e: V., — U, we say that we observe e at time t ¢ff p(t)ly, =e.

Semantics of Action Execution Given an action a € A,,, a.delay defines the shortest
period of activity of mode m after which a gets available. The state constraint a.pre
defines when it is possible (also permissive) for M to perform a whereas a.trig defines
when it is necessary (also coercive) to perform a. For a run p, the evaluation of

Z(a.pre A a.delay < tpy A a.trig, p(t))

determines the necessity of a in the state at time t (cf. Table 2.1 below). The parameter
a.prio determines whether a is among the possible actions with the highest (i.e.
smallest) priority. We call a set A C A, a bunch iff all actions in A are equal in their
pre, delay, trig and prio elements. Let a € A. Given that A is associated with a
probability distribution, the parameter a.7t defines the probability of a to be chosen
from A and of a.post to be performed. The function a.post maps fractions of states
to successor states and can be written as a formula coding this map via assignment
or temporal operators and equality (cf. Section 2.3.2). This procedure is formalised in
Corollary 2.1 at page 22. Finally, the runs in [V] result from consecutively executed
actions of a modelled or realised system observable through V.

19

_I

2. Technical Systems

Classes of Actions For each action a € A, we assume that a.post : Eg(aq). In particu-
lar, NOP : Eqr(a) is @ map which retains the value of any variable v € ctr(M)N(V\Vec),
and retains or possibly quiesces'® any control channel v € ctr(M) N Ve.. Table 2.1
classifies basic actions executable by M: We consider the set A¢ of functional actions
which affect functional channels and the set A. of control actions which produce
events on control channels. The effect post of a functional or idle action always
carries an implicit conjunct (tyq := ta¢ + 1). For a control, spontaneous or time-
triggered action, post is implicitly extended by the conjunct (mus ;= m’' Aty :=0).
Example 2.1 applies Definition 2.6 to the modelling of a car airbag system.

Example 2.1 (MTS of a Car Airbag)
K ezpand
- Remarks:
We set
ctr(Airbagg) U mon(Airbagg) = {
energy : B, crashed : B,
€2 gas : {—=1 = defective,0 =
empty, 1,...,5 = full},
released : {0 = no, 1,...,5}
}.
The transition diagram shows that
po = {standby}.
The function NOP stands for ‘“no
effect” and 1s described above.

maintain

activate

—>(standby

<
maintaing

ezpands

Action Specifications of the MTS Airbags (only actions in solid lines)

Label pre delay trig prio T post

activate energy /\ crashed 0 crashed 2 1 NOP

€1 —crashed 0 T 2 1 NOP

T T 0 1 2 1 NOP

ezpand gas # empty 0 T 2 1 released += 1, gas -= 1
€2 gas = empty 0 T 2 1 NOP

maintain gas # full 10 1 2 .95 gas := full

maintaing gas # full 10 1 2 .05 gas := defective

ezpands T 0 1 1.5 .01 released += 1, gas -= 1
repair T 0 1 1.5 1 released := no, gas := full

Well-formedness and Construction of Modes We call M basic if A only consists of Ay¢
and A., with AN A, = 0. Given that M is a basic MTS and for a mode m € u, we
only consider definitions of A, which fulfil the following conditions:

1. For an action a € A,,, the formula

(a.trig — (a.pre Aty > a.delay)) V (a.pre A a.trig Aty > a.delay))

13For example, assigning to v a value not in type(v).

20

2.3. Formal Preliminaries

Action Action Specification Enabling Conditions (i.e. guards, triggers and other
Class (mya,m’) € A with a = conditions) for execution in state o
f1:1nc— (pre, 0, T, prio, 7, post) Execu‘!:lon is necessary iff Z(pre, f)‘).
tional dm—=m' Coerciveness is mandatory by trig = T. post only
(Af CA) an B uses variables in V \ (Vec U {t, maq,tm}).
Execution is
R <
control (pre, delay, trig, prio, 7t, post) possible 1ff.§(§elay *EM /\/pire,_a) and
(Ac CA) andm£m/ necessary i (delay < ta Atrig, o).
€= Coerciveness can be modelled through pre = trig.
post only uses variables in V \ (Ves U {t, mar, tm}).
idle . e-completion (pre = %), universally (pre = T) or
(e € Ay) (pre, 0, T, prio, m, NOP) individually enabled, without effects (post = NOP).
sponta- Execution is always possible, quiescing or retaining
neous (T,0,L,prio,1,NOP) values of variables in Vec, that is, pre = T,trig =
(teA) 1,post =NOP, delay =0 and mw = 1.
time- . Only applicable to control actions (€ Ac),
triggered (pre, delay, T, prio, 7, post) with delay > 1 and trig =T.
trig = * denotes k-completion, prio = * and post =
chaos (k) (T,0,%,%, %, %) * denote any priority and arbitrary effects, m = *

completes any probability distribution.

Table 2.1.: Classes of basic actions to be found in M

is satisfiable. If pre,trig and tp are evaluated at time t, the results of post in
time t 4+ 1 only depend on valuations at time t. Moreover, we require

Vas € Ay NArac € Ay NAC : as.prio > ac.prio

. A, can be totalised unless pre, trig and delay cover the state space. For subsets
of the state space not covered (residual), the chaos action k € A, is implicitly
enabled (k-completion). A, can then be

e strongly underspecified: pre and delay only achieve partial coverage;
strong k-completion applies to the residual.

e weakly underspecified: complete state space coverage by pre and delay,
but trig is incongruent with pre and delay; weak k-completion applies.

o fully specified: complete state space coverage by trig and delay which
removes weak underspecification; k-completion ceases to apply.

Independent of totality, we assume variables not referenced by post or ctr(M)
to be unchanged or quiesced, equivalent to using NOP (e-completion).

. A, can be non-deterministic**, that is, multiple actions can become enabled
if their elements pre, delay, trig and prio overlap instead of partitioning the
state space, and their 7t parameters equal 1.

14An MTS can generate two runs which contain the same monitored events (i.a. stimuli) but exhibit
different controlled events (i.a. reactions).

21

2. Technical Systems

4. To a set A, C A,, of non-deterministic actions congruent!® in their pre, delay,
trig and prio can be assigned a probability'® distribution on their effects and
target modes. k-completion extends to the probabilistic case such that

Z amn=1

acA U{k}
if there are no effects specified for a portion of A,’s probability distribution.
In analogy to Definition 2.3, we characterise the runs of M as follows:

Corollary 2.1 (Runs of an MTS) Given the set Ay, by Definition 2.7, suppose that

available(o) ={a € Ag(m, | (tam > a.delay)(o)}
necessary(o) ={a € available(o) | (a.pre N a.trig)(o)}

necessary(o), if necessary(o) # 0
{a € available(o) U{k}| a.pre(o)}, otherwise

possible(o) = {

Let =g C A x A and <,rio CP(A) x P(A) be relations such that

a; =g a; & aj.(pre,delay, trig,prio) = a.(pre, delay, trig, prio)
A1 <prio A2 & Vag € Aj,a; € Az ag.prio < ap.prio

Suppose that infr and supg return all least upper and greatest lower bounds with
respect to a partial order R. Given the equivalence =g and the partial order
<prio, we define

bunches(o) = sup{A C possible(o) | Vaj,az € A:a; =g az}
C

cbunches(o) ={A | (A € bunches(o) A\ Z ant=1)\V

(3A’ € bunches(o) : A’ U{k}=AA Z ant<1)}
acA’
enabled(o) = U inf cbunches(o)

Sprio

to return the set of actions enabled in a state 0 € L. Leti € Ny and —~: [V]ixX —
[V1ii1. Then, we obtain the set of all runs of M by the inductive definition

Mo ={p € Vo | p(0) € Lo}
Mliy1={p~0clpeMliNceEZAN
Jda € enabled(p(i)) : Oler(m) = a.post(p(i))}

We define [M] = ey, [Mli as the set of runs of M. It follows that [M] C [V].

22

2.3. Formal Preliminaries

Example 2.2 (MTS of a Car Airbag) We continue with Ezample 2.1: Each mode contains
indeterminacy, for ezample, the choice between T and the other actions in mode standby,
the choice between expands and repairi. Moreover, weak k-completion applies to the
standby mode, particularly for the case —energy /A crashed, and to the mode failing. The
defective functional action expands leaves a probabilistic k-completion of 99%.

Let M; = (Wi, Ai, Aiy Ho,, Z0,) € M for i € {1,2}. The operator @ : M x M — M
denotes the superimposition of two MTSs; the operator ® : Ml x M — M denotes the
composition of two MTSs into a concurrent MTS. The following definitions describe
how M; ® M, and M; ® M, are defined and how M can be abstracted from:

Definition 2.8 (Superimposition) Suppose that In € N: py,u; C U™, wyy Nuy #0 and
Mo, UMo, 0. M; & M, = (1A A 1o, Xo) s defined by the equations

= Up A=A UA;
A=A UA; Ho = Ho; U Ho,
ZOZZOI U):O2

Then, we call M; and M, fragments of the superimposition M, & M,.

The map merge : Eqat,) X Ear(M,) — Ecr(M,oM,) defines mergers of pairs of action
effects (Definition 2.5). For each action effect, P : v, @01,) — [0, 1] yields the
probability to observe it. Given two actions a; € A; and a; € A;, we denote by
a1 ® a; a composite action.

Definition 2.9 (Parallel Composition) M; ® M, = (u, A A o, Xo) s defined by the
equations

H=H1 X K2

A={a1®a|
Vi €{1,2}a; = (pre;, delays, trigi, prioi, m, posti) A a; € A A
a1 ®a; =(prey Aprez, max{delay;, delay,}, trig; /A triga,

prio; + prioa, 7 * M2, merge(posty,posta)) A

(pre; Aprey ¥ L) A
P(merge(post;,post,)) = 1y * 112}

A ={((my,m2), a1 ® az, (mj,m;)) |
a1 ® az € AN (my,ar,m}) € Ay A (mz,az,m}) € Ay}

Ho = Ho; X Ho,

Lo = {G ex| /\ do; € ZOJmon(Mi) 0y = 0-|mon(Mi)}
ie{1,2}

5Incongruent pre and trig constraints can be avoided by splitting state constraints accordingly.
16An MTS can generate an infinite set of runs which contain the same monitored events but exhibit
controlled events according to the probability distribution assigned to the action effects.

23

2. Technical Systems

Well-formedness for superimposition and parallel composition is discussed on page 25.

Definition 2.10 (Complex Action) Given an MTS (u, A, A, 1o, Xo), a complex action A
18 an expression defined by

As=al| AA|AA|(A) AT |A*|A™].

with each a € A, and the non-terminals A;A for concatenation, A|A for alter-
native choice, A" for optional repetition, A* for omission or optional repetition,

A™ for repetition of n times, and . as the wildcard. For a set{ai,...,an} C A, we
say that the expression ai;...;a, denotes an action trace if

El(mO) AR »mn) € PLTH_] Mo € Mo /\vai € {Cl] y ey an} : (mifh ai)mi) €A
and that the ezpression ai|...|an stands for a bundle of actions f

dm,m’' € uVa; € {ar,...,an}: (Mya;,m') €A

Abstract Transition Systems Let o: M — M assign an abstraction to each MTS.

Definition 2.11 (State Abstraction) We define an abstract state o, to be a state con-
straint (Definition 2.4). An abstract mode (event) is an abstract state only using
variables in Vi, (V.) in its state constraint. Let n € Ny and L4 C C be a set of
abstract states which partition L; we call £, an abstract state space. Then, an
abstract run s a map py : {0,1,...,n} — L.

Definition 2.12 (Action Abstraction) An abstract action a, s defined by
1. a composite action according to Definition 2.9, or
2. a complex action (Definition 2.10), or

3. a combination of 1., 2. and state abstraction.

Based on X, we can define an abstract state space X, according to Definition 2.11. For
M, « yields an abstract transition system M, = «(M) = (fa, Ay D, Loy, 20,)
with £y, C X4 according to Definition 2.12. A map L: X — P(C) can show for any
run p € [M] which constraints and abstract state hold in some state. Whenever a
transition in A is taken with an action a, € Ay, M executes the actions of A being
part of a,. The results are abstract runs modelling behavioural properties.

Definition 2.13 (Mode Transition System, algebraic Representation) Based on the Defi-
nitions 2.8 to 2.12, a mode transition system M is an expression defined by

M= M, | M| M; M o= Me | M. @ M,
M, i=f| a(M,) M =M, | My & M,
with each f € M. This definition complements Definition 2.6.

24

2.3. Formal Preliminaries

Legend:
@—— composition (®)
[TR superimposition (®)

— mode channel

mode transition system

Figure 2.2.: Exemplary visualisation of hierarchical decomposition of M

Definition 2.14 (Aspect) An aspect is a set Mg, C M. M., denotes the removal
of all MTSs from M which are not in Magp.

Well-formedness and Construction of MTSs Hierarchical decomposition of M can be
visualised, see Figure 2.2. Aside from the Definitions 2.8, 2.9 and 2.13, we require
that the operator & precedes ®, that @ preserves graph connectedness in A and, thus,
reachability of modes from py. Moreover, we only consider a composition M; & M,
or M; ® M, if this composition preserves well-formedness of modes as described
on page 20.

We call M closed iff mon(M) = ctr(M), open otherwise. We can close an open
M finitely by providing a set of runs {plmon(A)\ctr(M), - - - | Of sufficient length starting
In Zolmon(M)\ctr(M), OF tnfinitely by composing M with all required MTSs. For the
remainder of this work, we suppose yo # 0 and Zy # 0 for any closed and well-formed
MTS. The discussion of how to maintain well-formedness is out of scope of this work.

Corollary 2.2 From Definition 2.8 follows commutativity of &.

Properties and Use of Modes and Actions Based on Definition 2.7, we call a mode m
o stable iff Va€ A :(a€ A Na=¢€)V (a€ A, N\a#T), unstable otherwise
e ynknown iff m is only reachable by T and A,, =0
e finalif Va € Ay Zm/:m#m/ A (m,aq,m’) € A
e dead iff m is stable and final, that is, € models deadlock behaviour.

Modes can be used to model enabled, continued, paused or disabled phases of a sys-
tem function (Section 2.2.1). The modelling of functional actions can be guided by

25

2. Technical Systems

modelling modes in advance. If indeterminacy in A¢ is unresolvable because of a lack
of observability then prio (0 is highest) can be equal among all functional actions
of a mode. A reduction of this lack can make the mode deterministic. k allows any
realisation to have arbitrary!” effects in post, for example, none if k = €. The control
action T gives opportunity for the modelling of unknown (internal) activity. The well-
formedness conditions on page 20 permit the use of incompleteness and indeterminacy
for underspecification and, moreover, for refinement.

Each control action should be defined such that its pre constraint is disjoint from
every functional action in the same mode, or its trig constraint totally covers the
cutting set of its pre constraint and the pre constraints of the functional actions in this
mode. Otherwise, it might happen that a possible control action is ignored although
its priority is higher than that of any other functional action in that mode (cf. well-
formedness condition 1). This way, control is assumed to take priority over function.
In contrast to hybrid models (e.g. Henzinger 2000), MTSs neglect the concurrency of
control and functional actions during mode transitions.

Properties and Use of Composition in MTSs Concurrency. Two MTSs composed in
parallel (Definition 2.9) can not contain superimposable fragments (Definition 2.8)
in their sub-hierarchies. Modes of a concurrent MTS are composed of the modes of
its comprising MT'Ss. Based on strong k-completion, a composite action models the
concurrent'® execution of all involved MTSs. Totality of a mode (see page 20) is
needed for realisable!® parallel composition. e-completion is one way to achieve fully
specified modes.

Effect Interference. Such interference can arise from the execution of composite
(1) functional or (ii) control actions. We only consider cases where two isolated func-
tions post; and post, are merged into a composite effect by merge(posty,post,),
regarding, for example, domain properties of variables for (i), the parameter prio or
exclusive resource assignments for (ii), and idempotencies of two interfering effects.
Vet N Ve = 0 rules out interference of functional and control effects. For two MTSs
M, and M,, ctr(M;) Nctr(M,) = 0 can be a solution'® to avoid effect interference.

Dependency and Interaction. A mode dependency between two parallel MTSs
can be modelled by referring to a mode channel in the pre or trig constraints of
an action specification. Mode channels are only affected by control actions of an
MTS and can be monitored by other MTSs: M; and M, are mode dependent iff
{mag,, Mag, } N (mon(M;) Umon(M,)) # 0 and independent otherwise. Suppose that
n composed MTSs M, ..., M, are applied to state o: all possible effects of M; to
the successor state o' are determined by the modes of M, (1 # j), the actions of M,
enabled in mode G(mMj) and effect interference.

Superimposition can be used for pending modifications, for example, union, update,
addition and removal of actions, modes and indeterminacy. Priorities help resolve in-
determinacy arising from superimposition and effect interference of concurrent MTSs.

17 An arbitrary choice can be hazardous. Anyway, this situation is different from the implicit denial
of side effects, that is, variables not referenced by post shall stay unchanged.

18 A run makes action effects of all comprising MTSs observable for each time interval [t,t 4 1).

19Notions of realisability and interference freedom are discussed in Broy and Stglen (2001).

26

2.3. Formal Preliminaries

Prioritisation can be applied to aspects (Definition 2.14). Part of the overlaps which
model indeterminacy can be resolved by trig constraints or priorities.

2.3.2. Behavioural Property Specification

The following chapters adopt full probabilistic computation tree logic (PCTL*; e.g.
Baier and Katoen 2008) for asserting temporal and behavioural properties.

Definition 2.15 (Behavioural Property) Let V be a set of variables, V. C V be a set
of channels and M be an MTS (Definition 2.13). We can assert a behavioural
property ¢ (of M) using a PCTL* state formula defined by

di=TlcldAD [~ P[] [ED|AY

contarning path formulae defined by

$r=d [HAY =P [X [U [FE | 6=y | x
and past formulae defined by

< —r —=[<k] —=[<Kk]
X:=TlelxAx|=xIXxIxU™Mx | F="x |G~ "x|alldPpl
and action effect formulae defined by
asz=3Ixg,...,xn : XcAc’

with ¢,c¢’ € C (Definition 2.4), p € [0,1], ~€ {<,>,<, >}, {x1,...,xn}NV =0 and
k,n € N. P_;[\] yields the probability of P (in M). & is called interface property
1f each state constraint in ¢ only uses variables in V..

For a brief introduction, the operators of PCTL* are explained in the following. Let
CT C [M] be a computation tree according to Definition 2.2, p be a run of CT, o be
a state of p and oy = p(0):

e The atomic statements T, ¢ and c¢’, the connectives A and —, and the quantifier
3 inherit their meanings from first-order logic.

e By annotating CT with the 7t parameters of the action set A of M, CT can be
associated with a probability space. This space contains for any path formula
1 the probability of its satisfying subset of CT: The expression CT = P_,[i]
denotes that the probability, that { is true for a run of CT, satisfies ~p. The
formula E1 denotes that 1\ is true for at least one run in CT; Ay denotes the
truth of ¢ for all such runs. We have the equivalences E\p = P[] and, for
finite computation trees, A = P> [].

e The formula X1 denotes that 1 is true for the next state of a run p, that is,
p(1). The formula {7 U, asserts that 1 is true from the start of a run p until
U, gets true in p. The formula Fip describes that { is true in some state of p;
Gy describes truth in all of p’s states.

27

1

system view

2. Technical Systems

e The formula 1 U "*, restricts 7 U, to get satisfied in p within (<, <) or
only after (>, >) k time steps. Analogously, the bounded operators F<* and G=F
restrict F and G to get satisfied in p within k time steps. For any association
of time units, such as ms, s, min or h, with k, we assume the conversion of k
into the time unit into which runs of M are interpreted. The same holds for the
parameter delay in an action specification.

e Suppose that the map « : [V] — [V] inverts any finite run p such that p’s last
state gets 0p: the past fragment, consisting of the operators X, U,F and G, then
corresponds to the future operators X, U,F and G evaluated for p.

e The past formula [¢ P p] extends PCTL* by taking the frequency view of prob-
ability and ignoring the 7t parameter (Johnson 1993). [¢p P p] is true for a state
0 = p(n), with n,p € N, if the number of o’s previous states in which ¢ was
true divided by all its previous states in p equals p. p can also be an interval.

The operators A and E, the bounded operators U ¥, F<* and ng, past formulae and
action effect formulae serve convenience and are inexpressive for finite computation
trees: we assume that appropriate expansion or rewriting rules can be applied.

The satisfaction relation on states (o = ¢), runs (p E ¢), and computation trees
or mode transition systems (M |= ¢) is inductively defined over the structure of ¢.2°
M E ¢ can be translated into an element of the subset relation C on sets of runs.
The notation M = ¢ (spoken “M satisfies ¢”) states that each run of M is allowed
by ¢; M £ ¢ (spoken “M violates ¢”) means that some runs are prohibited. For a
behavioural property ¢, [$] stands for the set of its logically valid evaluations, with
[¢] C [V]. We call a transition system M valid iff M | ¢ or [M] C [¢]. We say
that a path formula 1 is finitely satisfiable by a transition system M iff there exists
a finite run p € [M] with p = . For a set of formulae ®, ® denotes /\¢ec1> ¢ and

® denotes \/¢E(D ¢. Consequently, we have that [®] = ﬂd)e(p[[d)]}.

2.4. System Specification: A Generic Framework

Consider a specification S = (V, M,T') and a realisation W (Figure 2.1) with
e a set V of variables through which to observe the physical dynamics of W
e a mode transition system M (Definition 2.13) which models W
e aset I' of assertions of behavioural properties (Definition 2.15) of M.

According to Section 2.2.2, M and I specify possible realisations by operationally
and descriptively constraining [V]. Given [M] C [V] and IIF]] C [V1, the behaviour
allowed by S is defined by [S] = [T] N [M], and W conforms to S iff [W] C [S].2!
Adapted from Section 2.2.3, S and W unfold two pairs of system views:

205ee, e.g. Baier and Katoen 2008, Manna and Pnueli 1995, Pnueli and Kesten 2002.
21 Consistency of S can be expressed by [M] C [and [[] # 0. Being less restrictive, [M] N [[] # @
makes it sufficient to require [W] C [M] N Irl.

28

2.5. Notes and Further Reading

Actually/ideally specified and modelled The actual/ideal description and representation
of a specification will be denoted by S/S’.22

Actually/ideally realised and operated The actual/ideal interpretation of S or S’ and the
corresponding operation of a realisation will be denoted by W/W'.

These views enable the use of three sets of variables Vpecified, Vrealised ad Videal SN
which yield three spectra (Definition 2.3). Behaviour to be specified by S belongs to
[Vspecitied]; behaviour to be actually realised in W is a member of [Vyealisedll. Behaviour
to be ideally observable in S’ or W' belongs to [Vigeal] which uses a complete set of
correctly typed variables. We do not presume the case Vspecified = Vrealised = Videal-

2.5. Notes and Further Reading

Like fluents (Reiter 2001), variables can be used to model, for example, physical or
data states, control communication, physical interaction, mode dependencies, timing
or fault indication. The term run coheres with the notions of behaviour (Lamport
2002) and stream (Broy and Stglen 2001). We assume that the sets or languages of
runs [V, [M] and IIF]] are prefix-closed (see, e.g. Sampath et al. 1996).

Courtois and Parnas (1993) and Parnas and Madey (1995) characterised modes and
mode transitions by predicates over states. By way of the pre and trig elements of
control actions, an MTS can encode may- and must-transitions for deontic reason-
ing (see, e.g. van Lamsweerde 2009). The notion of stable mode is motivated by
Pugliese and Tronci (1996); the extension of PCTL* to action effect formulae (Defini-
tion 2.15) stems from the works of Lamport (2002) and Reiter (2001).

Parallel composition allows the construction of composite actions, superimposition
enables the construction of compler actions (Lamport 2002, Reiter 2001) and action
abstraction (Definition 2.12) leverages the construction of abstract actions. Action
priorities help determine the superimposition of two MTSs. Hence, these priorities
are different from process or task priorities as, for example, used by Hoare (1985)
or Magee and Kramer (2006). Apel and Lengauer (2008) show a study on super-
imposition for software composition. Both composition operators attach meaning to
transition diagrams such as discussed by Harel and Politi (1998). State and action
abstraction have been investigated from various perspectives??; such abstractions help
simplify the representation of a system as a KRIPKE structure (see, e.g. Baier and
Katoen 2008). As defined by Broy (2005), composition (Definition 2.13) without ac-
tion abstraction induces an interface subtype relation on M whose elements have to
maintain faithful projection. Broy (2010) describes the concept of interface abstrac-
tion of transition systems: the obtained interface behaviour helps analyse interface
properties (Definition 2.15) and compose system functions.

228" denotes that the degree of quality (e.g. safety) has been increased for S.
233ee, e.g. Borger and Stirk 2003, Broy 2010, Clarke et al. 2000, Fantechi et al. 1999, Pasareanu et al.
2007.

29

2. Technical Systems

The concurrency model built on Corollary 2.1 allows investigating properties, such
as freedom of dead modes and fairness among actions, in a detailed way. Concur-
rent mode transition systems perform synchronously in time and interaction as op-
posed to asynchronous and synchronised composition as used in, for example, mode
automata (see, e.g. Rauzy 2002). These decisions reduce technological assumptions
on interaction and concurrency mechanisms as discussed by Hoare (1985) and Broy
and Stglen (2001). On the contrary, such assumptions (e.g. interleaving semantics,
synchronisation on shared events or messages) allow specific action abstractions rep-
resenting such mechanisms to obtain simplified transition systems with smaller sets of
actions.

30

Safety

In this chapter, I provide an overview of safety viewpoints, standards, analysis and
design techniques, and measures, together with a discussion of recent related work.

Contents
3.1 Safety Viewpoints and Standards00 31
3.2 Hazard Analysis Techniques 34
3.3 Safety Measures i i i e e e 37
3.4 More Recent Related Work 38
3.4.1 System Modelling for Safety 38
3.4.2 Causative Reasoning for Safety 40
3.4.3 Safety Engineering Guidance 44

3.1. Safety Viewpoints and Standards

In the history of the construction and operation of technical systems, safety engineering
originated from older engineering disciplines, such as mechanical (Ericson 2005, Luksch
2012), chemical (Sinell and Meyer 1996) and electrical (Borcsék 2011) engineering,
and found its way into computer technology and software engineering (Leveson 1986,
1995). The present work aims to stimulate readers from all these disciplines. In
the life cycle (Section 2.1), safety engineering encompasses the understanding of a
system, its potential defects and hazards, and the specification, design, realisation and
verification of safety measures (Ericson 2005, Leveson 2012).

System-centric, technological Viewpoint Parnas et al. (1990) discussed software safety
in relationship with trustworthiness, availability and reliability of computing devices
as a whole. Software can be seen as the initialisation of such devices with the entire
code running on them being safety-critical. Hence, safety is not an isolated property

31

safety engineering

3. Safety

or role of a separate code part, but a more general implication of reliability and avail-
ability (i.e. the probability of absence of operational defects), and trustworthiness (i.e.
the probability of absence of specification defects). Parnas et al. raised demand for
educational programs for software engineers in safety-critical application domains.

McDermid (1991) alluded to the impossibility of absolute system safety and assessed
techniques of how to increase trustworthiness in spite of this limitation (see also Bar-
roca and McDermid 1992). He suggested that software should be treated the same as
any other component of a technical system. In accordance with further authors!, he
stressed the use of formal methods for control system specification and safety analysis
in combination with requirements documentation and validation?, and independent
testing (McDermid 1986). It is generally accepted that formalisation helps automat-
ing tedious reasoning tasks. Based on several examples and using his own approach,
McDermid argued when and to what extent formal methods can be practiced in a
safety context.® Parnas et al. and McDermid and Pumfrey (2001) also gave reasons
why software analysts could concentrate on systematic defects. Nevertheless, for dis-
tributed software-intensive systems, one can consider random behaviour not (solely) to
be explained by physical deterioration of the underlying technology (see, e.g. Leveson
and Stolzy 1987, Schulz and Peleska 2010).

Under the assumption that no single analysis viewpoint and technique suit com-
prehensive safety analysis, Pyle (1991) and Wilson and McDermid (1995) proposed to
apply several viewpoints and techniques, and to keep consistent their results. Based on
a clear definition of the boundary of a control system, Pyle (1991) provided examples
of how to restrict programming languages to reduce fault possibilities and software
safety risks. Whereas Pyle considered the separation of safety-critical program parts
and built-in program test equipment recommendable, Parnas et al. (1990) discouraged
from such practice to simplify programs and reduce causal factors. Finally, McDermid
(2001, 2002) criticises standards to be process-centric and motivates safety engineers
to rely more heavily on product-based safety evidence.

Human-centric, holistic Viewpoint Technical systems carry behavioural properties with
severe impact on their environments. Leveson worked on an extension of safety
analysis to include causal factors in software programs (Leveson and Harvey 1983a,b).
Being influenced by accident research and in accordance with other authors (see, e.g.
Neumann 1995, Pyle 1991), she stressed software safety to be viewed as a property
not only of the software running on its computing device but also of, for example,
human operators, the environment, the control system, the entire technical system,
the organisation operating this system, and regulative laws (Leveson 1995). In fact,
hazards and accidents are often caused by multiple, complex and interwoven factors.*
Summing up, Leveson (2012) points to the identification of such factors beyond linear
causal chains or singular system faults.

!See, e.g. Bloomfield et al. 1991, Parnas et al. 1990.

2See, e.g. Atlee and McDermid 1995, Courtois and Parnas 1993, Fenelon et al. 1994.
3See, e.g. Barroca and McDermid 1992, McDermid 1986, McDermid and Pumfrey 1994.
4This has been studied by, e.g. Perrow (1984) and Rasmussen (1997).

32

3.1. Safety Viewpoints and Standards

Formal, logic Viewpoint According to Lamport, safety as a behavioural property ex-
presses that “nothing bad happens”: any violation can be observed over finite runs (see,
e.g. Lamport 2002). This more general idea was formalised, for example, by Manna
and Pnueli (1995) who have been working on a taxonomy of behavioural properties.
Pyle (1991) criticised that, in verification of safety-critical software, Lamport’s ‘bad’
is often only associated with unacceptable states in the context of mutual exclusion,
critical section synchronisation, absence of deadlock, and partial correctness. Having
in mind social system environments and life cycles, Pyle used the terms logical or
software safety for Lamport’s motivation, and physical or system safety to accom-
modate to the expectations of Leveson, McDermid and Parnas et al.

The first two viewpoints more constructively investigate hazardous causalities
among physical events and expect safety to pertain the entire system life cycle. The
third viewpoint is more concerned with possibly unwanted system behaviour under-
lying any discussion of hazardous causalities, independent of such a life cycle.

Terminology in brief Watson and Leadbetter (1964) modelled hazards as conditional
failure rates of systems. Being less abstract, according to Leveson (1995),

“a hazard is a state or set of conditions of a system (or an object) that,
together with other conditions in the environment of the system (or object),
will lead inevitably to an accident (loss event).”

Ericson (2005) has a constructive notion of hazard, combining a hazardous element
with an initiating mechanism to threaten an asset. The sk consists in a potentially
negative outcome from this mechanism’s specified or defective performance, that is, a
mashap for the asset such as human injury, environmental or system damage, or loss.
According to van Lamsweerde (2009), a “safety hazard is a risk for the safety of an
object in the environment” and a “human health hazard is a risk for the health of a
human using the system or affected by the system in his behaviour.” We use the term

hazard (also hazardous state, threat to safety, safety risk) to denote a
manimum condition on behaviour which entails a mishap at certain risk.

Then, the term causal factor will be used to denote any conjunct or whole of such a
minimum condition. An occurrence of a hazard can be seen as an incident.

Safety-related Standards Technical risk management® comprises standards covering
life cycles in many domains: ISO 12100 and DIN EN 414 provide safety considera-
tions for machinery. IEC Std. 61508 (2011) applies to non-mechanical safety-related
parts of mechatronic systems. ISO 14121 provides risk assessment guidelines for stan-
dards such as DIN 19250/1 or DoD MIL-STD-882D. IEC 61508 is applied in both
IEC 62061 for industrial machinery and ISO Std. 13849 (2006), to address the EU
guideline 2006/42/EG for machinery (Gehlen 2010). IEC 61508 has been adapted

5See, e.g. Boehm 1991, Layman et al. 2011, Lund et al. 2011, ISO Std. 31000 (2009).

33

mishap

hazard

causal factor

3. Safety

in ISO Std. 26262 (2011) to support the deployment of control systems in series-
production vehicles. [EC 61511 applies to process industry, I[EC 61513 to atomic
power plants, IEC 62304 and ISO 14971 to medical devices, EN 50128 to railway
control, and SAE aircraft recommended practices (ARP) 4754 and 4761 to aerospace
industry. The standards DO-178B, DO-248B and DO-254 (RT'CA 2001) constrain the
development of airborne control software and electronic hardware; the MISRA software
guidelines play a similar role in the automotive industry. In summary, many standards
are intentionally generic®, provide a consensual frame and refer to applicable methods
and techniques.

3.2. Hazard Analysis Techniques

Hazard analysis is a prerequisite for the derivation of safety requirements for func-
tions or parts of a system. Such analysis is required by most safety standards:
IEC 65108 speaks of PHA, ISO Std. 26262 (2011) of hazard analysts and risk assess-
ment (HARA). ISO 26262 adheres to hierarchical structural modelling of the system
and its hardware/software design for conducting safety management plans. The SAE
aircraft recommended practices (ARP) 4754 and 4761 advise the step of functional
hazard assessment (FHA) based on a function list regarding system failures and crew
actions. This step is followed by preliminary and final system safety/reliability as-
sessments (SSA) which require a mixture of techniques. In summary, safety standards
cover the system life cycle including hazard assessment for the regarded applications
and technologies. The use of these standards shall reduce unwanted relationships be-
tween safety goals of the system, subsystem requirements and component properties.

The mishaps and hazards to identify and assess can stem from defective physical pro-
cesses or architecture designs (task T1) and defective specifications (task T2). Safety
engineers apply their domain knowledge in various ways: We can distinguish deductive
(top-down, backward), tnductive (bottom-up, forward), bidirectional and non-linear
techniques (see, e.g. Borcsok 2011, Ericson 2005). Known from Section 2.2.1, these
techniques can use structural, behavioural, mized or implicit models.

Process and Design Analysis (T1) Many approaches aim at defect detection of a pre-
viously known design (e.g. Ericson 2005, McDermid and Pumfrey 1994), requiring a
structural model and a corresponding way to model defects (Section 2.2.3).

Fault tree analysis (FTA; Dugan et al. 1992, DIN 25424, IEC 61025) is performed
deductively such that it considers known or conceivable failures and tries to localise
causal factors such as component faults. This approach aims at minimal cut sets
or sequences’ by assessing design models prior to or after system operation (Bércsdk
2011, Liggesmeyer 2009). Failure probabilities can be determined by quantitative FTA

61SO Std. 26262 (2011) speaks of safety validation (cf. Table A.10 column 3) when referring to the
V&YV of the planned safety concepts. This standard, however, exhibits terminological redundancy
and inconsistencies. For example, the terms transient fault and single point fault seem to be used
in part 5 different from their definition in part 1.

"Minimal combinations of faults or shortest sequences of erroneous states leading to a system failure.

34

3.2. Hazard Analysis Techniques

if design decisions took place. FTA originated from mechanical engineering and can
be applied to software designs and implementations (Leveson and Harvey 1983a).

As opposed to FTA, failure mode and effects analysis (FMEA#) is conducted induc-
twvely for it considers the causal chain of erroneous states starting from component
faults up to their unwanted effects (Ericson 2005, VDI 2222, VDA 2006, DIN 25443).
FMEA can be applied to a design or an operated system, capturing the entire causal
chain to handle common cause failures. This technique has drawbacks in consid-
ering multiple causes at once. Originating from mechanical engineering, like FTA,
FMEA became available for software-intensive control systems (see, e.g. Goddard
2000, McDermid 2002). It can be a qualitative worst-case impact analysis, such as
hazard identification (HAZID) and preliminary hazard lists (Ericson 2005). In con-
trast, probabilistic risk assessment (PRA) and MARKOV chain techniques can produce
quantified results (see, e.g. Borcsék 2011, Kumamoto 2007). Event tree analysis (ETA,;
DIN 25419) and layer of protection analysis (LOPA) forwardly follow the causal chain
towards mishaps, like FMEA, and are particularly applied to large systems. Hazard
and operability studies (HAZOP; IEC 61882) use guitde words for hazard identifica-
tion and take account of controllability by humans (Borcsék 2011). This idea has been
adopted in accident analysis by Leveson (2012) and, for chemical plants, by Stursberg
et al. (1998). “Hazard analysis and critical control points” (HACCP; Sinell and Meyer
1996) is a variant of FMEA for processes in the food industry.

To gain an a-posterior: understanding of mishaps (Hopkins 2000), methods such as
accident cause analysis (Perchonok 1972), AcciMaps (Svedung and Rasmussen 2002),
events and causal factors (ECF; Buys and Clark 1995), human engineering (Nader
1965), human error risk management in engineering systems (HERMES; Cacciabue
2004), and root cause analysis (RCA; Cacciabue 2004) regard causal factors in the
interaction of environment, operator and system. Such analyses take use cases (e.g.
driving missions and situations), mishap scenarios (e.g. car accidents) and physical
system interfaces to investigate system operation (Luksch 2012). Causal chains be-
tween mishaps and hazards are traced backward and forward. For example, “crisis
intervention in offshore production” (CRIOP; Johnsen et al. 2011) assesses the inter-
face between operators and systems in offshore control rooms to uncover obstacles for
accident response; the international classification for patient safety (ICPS; WHO 2012)
helps assess clinical incidents and establish safety measures in health care processes.

In summary, for any distinctive event e at the system boundary (Figure 3.1),

e deductive techniques such as FTA aid posstbility questions: What are potential
causes leading to e? Which are the minimal cut sequences for e?

e inductive techniques such as FMEA aid impact and severity questions: Is e
among the consequences of a specific fault? What are the potential mishaps
resulting from e?

Requirements Analysis (T2) Requirements engineering (Section 2.1) aims at valid spec-
ifications with safety goals based on hazard reports: Hazards can motivate safety

8Including extensions for severity or detectability analyses such as FMECA or FMEDA.

35

guide words

3. Safety

Environment Technical System
External causal factor Interaction | Sens:‘rs, hutm;n— g Internal Information Processing
Humans (e.g. maloperation) P> machineinterface and causal factor Subsystem
") communication (e.g. fault)
Specified behaviour
or failure *
-¢ - L Mechanical
Subsystem <—|
other m @ e ylant) Actuators
systems Hazard £P
ccident, Risk or Impact Analysis azard, Reliability or Fault Analysis
_ Accident, Risk or | ct Analysis | Hazard, Reliabili Fault Analysi .
< < >
>
>

FTA, RCA, ARP SSA
-t ETA, FMEA:
FMECA, HACCP, HAZOP, LOPA, PRA

AcciMaps, CRIOP, ECF, ARP FHA, HAZID, HERMES

AA

\

Figure 3.1.: Approaches to hazard analysis of technical systems, mapped according to their
focused area and direction of causative reasoning; e ... distinctive event

goals. With known goals, additional hazards can be elicited by goal negation, tauto-
logical refinement and identifying necessary conditions for goals to be obstructed (van
Lamsweerde 2009). Fenelon et al. (1994), Kelly (1998) and van Lamsweerde discuss
how to specify safety goals and how to build up argumentation for goal achievement.

Safety versus Reliability Reliability engineering® aims to reduce the fraction of failures
by increasing the fraction of treated (i.e. detected, tolerated, avoided) causal defects
(T1). Safety engineering aims to reduce the fraction of hazards by increasing the
fraction of treated causal factors (T1’), and to reduce the number of unknown or
disregarded hazards (T2). Leveson (2012) argues for a careful separation of safety and
reliability viewpoints. Again, achieving safety encompasses two tasks:

e The reduction of hazardous system behaviour (i.a. system defects, T1).

e The anticipation of hazardous environment behaviour (i.a. maloperation, T2).

Hazard Characteristics Coherent with the quantification of risks (see, e.g. Boehm 1991,
Kumamoto 2007), standards such as DIN 19250 and ISO 26262 require the charac-
terisation of hazards by the severity of impact on the environment, the probabilities
of occurrence and of detection of causes (detectability), and the environments’ own
ability to avoid mishaps (controllability). IEC 61508 requires estimates of exposure
to causal factors of hazards and mishaps (Borcsdk 2011).

These characteristics lead to safety requirements, life cycle guidance and design
patterns bundled as integrity classes (IC) to be assigned to system functions and
subsystems: “Anforderungsklassen” (AK; DIN 19250), design assurance levels (DAL;
DO-178B), categories (Cat; EN 954, F/JAR 25.1309), safety integrity levels (SIL;
IEC 61508), performance levels (PL; ISO 13849), automotive SILs (ASIL; ISO 26262),

9See, e.g. Borcsdk 2011, Gaede 1977, Kumamoto 2007, Liggesmeyer 2009.

36

3.3. Safety Measures

PF————————
| Process / Plant —: Technical System
7 9! ' | ——_——-—- - -
Enyionment (© | | Control Subsystem (a)|
[HH | 1 Sensors |
Humans | i |
(operators, > : > : A |
others) |.g | | e » Information |
7y & | > Control | | Processing |
Intera I|on e 1_Interface S] Subsystem |
| == |
A - | - fommunication:—l |
""" = TTr———-—1-——-——° \ |

Other | |
Technical —™ Mechanical | I |
Systems Subsystem [Actuators | |

Y: | |
b (b) |
= | _ === 1 ==

Figure 3.2.: Safety measures of a technical system allocated to subsystems and environment:
functional (a), direct/indirect (b), organisational (c); adapted from VDI (2004)

“Besondere Merkmale bzgl. Sicherheitsanforderungen” (BM S; VDA 05/2011), etc.
Finally, a system’s safety measures and life cycle need fulfil the imposed ICs.

3.3. Safety Measures

Safety measures should keep the risk of leaving a safe state towards a mishap, for
example, below a quantified level or as low as reasonably practicable (ALARP).1°
According to Martinus (2004) and Luksch (2012), safety can be improved by construc-
tive (Figure 3.2a,b) and organisational (also indicative and personal; Figure 3.2¢)
measures. The former can be split into

a. functional measures (e.g. compensate hazardous functionality) which make up
the safety-related part of the control subsystem (Figure 3.2a)

b. direct (e.g. avoid hazardous materials) and indirect (e.g. permanently cover haz-
ardous machine areas) measures which make up the safety-related part of the
mechanical subsystem (e.g. part of a plant; Figure 3.2b).

Functional Safety To provide what we call safety functionality, functional measures
usually comprise electric, electronic and programmable electronic technologies, sen-
sors and actuators. Functional safety is the part of safety of a system realised by
functional measures (IEC 2011). Safety integrity characterises the reliable opera-
tion of functional measures for safe system operation with respect to T1 and, thus,
the degree of functional safety (Borcsék 2011). For safety integrity, IEC 61508 and
ISO 26262 recommend hardware metrics: the diagnostic coverage metric can reflect
the fraction of a defect treated by a functional measure whereas single point and
latent fault metrics can capture the robustness of a functional measure.

10McDermid (2001) weighed up the legal idea of ALARP for control software without committing
himself to a position.

37

Safety integrity

3. Safety

Design Patterns Leveson and Stolzy (1987) distinguished fault tolerance, fail-soft
and fail-safe properties of a technical system. By unifying the first two classes of
properties, Martinus (2004) explains two fail-safe patterns for Tl through reliable
transition from a hazardous defective state to a safe state:

Fail-Operational (FO) After having detected a defective state, a safe state is reached
through redundancy by recovering from the defective function to one of its
operational but often degraded alternatives.

Fail-Silent (FS) After having detected a defective state, a safe state is reached by dis-
abling the defective function. Such a mechanism can usually be realised without
redundancy or fault tolerance.

Both patterns aim to avoid or interrupt the escalation of defects to hazards with
severe impact (i.e. a mishap). For the FO pattern, fault tolerance improves reliability
or availability, and treats hazardous failures; the hand-over is controlled by a safety-
related subsystem. For both patterns, safety-related subsystems require diagnosis
equipment and can themselves be realised redundantly. See Example 3.1.

Example 3.1 (Fail-Safe Patterns) FO: steer-by-wire ezchanged by mechanical fallback steering
if a software fault s detected; primary flight-control exchanged by a secondary system if
a random fault is observed. FS: indicated switch-off of an airbag, anti-blocking system or
electronic stability control if a sensor fault is diagnosed.

Definition 3.1 (Safety-oriented Requirements Validation) By the safety-oriented validation
of a specification S, as defined in Section 2.4, we mean the hazard analysis of S
and the enhancement of S with safety measures for the tasks Tl and T2.

This definition suggests specifications of a technical system which combine necessarily
hazardous functionality and corresponding safety functionality.

3.4. More Recent Related Work

This section lists more recent research related to this thesis with respect to system
modelling, causative reasoning and engineering guidance in safety-oriented validation.

3.4.1. System Modelling for Safety

Hazard Analysis Models Aside from approaches and standards neglecting!! the discus-
sion of system models, methods using such models can be classified based on the Sec-
tions 2.2.1 and 3.2: The first class of approaches'? uses structural techniques. The

!1See, e.g. Johnsen et al. 2011, Kelly 1998, Lindholm et al. 2012, Stalhane et al. 2012, WHO 2012.

12See, e.g. Biehl et al. 2010, Bowles and Wan 2001, Catino and Ungar 1995, Chen et al. 2008, Kath
and Temple 2012, McDermid and Pumfrey 1994, Mehrpouyan 2011, Papadopoulos et al. 2001,
Pock 2012, Svedung and Rasmussen 2002, Venkatasubramanian et al. 2000, Waters and Ponton
1989, Zhang et al. 2010 and ISO Std. 26262 (2011).

38

3.4. More Recent Related Work

second class uses behavioural techniques. This class applies transition systems!®

and MARKOV models (Feather 2004, Sayre et al. 2001). The third class'* uses mized
techniques: for example, Rauzy (2002) proposes mode automata to be used as a
modular reliability formalism. Mode automata and mode transition systems share
common foundations in the direction of Harel and Politi (1998), Mealy (1955) and
Moore (1956).

The reviewed approaches consider the modelling of electronic hardware (Yenigiin
et al. 1999), mechanical and other physical views!®, software!®, and multiple domains
at once (Leveson 2012, Leveson and Stolzy 1987). Abrial (2006) verifies safety goals
of a train control system by modelling the rail environment to typify the system
interface and to understand the control problem. D’Ippolito et al. (2011) investigates
the dynamics of the environment, the technical system and its control subsystem.
In summary, the Tables A.8 and A.9 classify these approaches according to their
underlying formalism.

Safety-related Defects and their Representation Generic defect tazonomies (Chillarege
et al. 1992) are rare, vague or difficult to use in practice. The variety of perception of
defects motivates the use of specific taxonomies: defect classification has been investi-
gated to evaluate the effectiveness of testing techniques (Illes and Paech 2007, Mariani
2003) and for distributed software systems (Hummer et al. 2012). Known from system
testing and diagnosis (Section 2.2.3), fault or hazard finding scenarios do not have
to result from a defect report or a specification. In the same way, defect models for
hazard analysis can contain knowledge not derivable from a design or realisation.

Defect models can describe defective component functioning, interfaces and data
flow by wrong, missing or untimely values'”, material wear out and damage'®, and
side effects or defective physical interaction of system parts (Mehrpouyan 2011). Struss
and Fraracci (2011) and Dobi et al. (2013) model defects of physical components as
behavioural deviations propagable through a structural system model. For such com-
ponents, Catino and Ungar (1995) proposed a defect model library. Breitling (2000)
and Pister (2008) discuss modular defect modelling by modifying data flow specifi-
cations. Enhancing this idea, Botaschanjan and Hummel (2009) introduce extension
patterns for such specifications based on transition systems. Damm and Peikenkamp
(2004) and Gértner (1999) extend structural models with fault indicators for each
system component.

Leveson (2012) captures defective and hazardous states as constraints on the system

135ee, e.g. D'Ippolito et al. 2011, Gleirscher 2011, Heitmeyer et al. 1998, Neogi 2002, Probst 1996,
Stursberg et al. 1998, Voge and Bunimov 2012.

l4Gee, e.g. Esser and Struss 2007, Hall and Silva 2008, Herrmann and Krumm 1999, Leveson 2012,
Leveson and Stolzy 1987, Nissanke and Dammag 2002, Peikenkamp et al. 2006, Rauzy 2002, Roth
and Liggesmeyer 2013.

153ee, e.g. Catino and Ungar 1995, Herrmann and Krumm 1999, Mehrpouyan 2011, Struss and
Fraracci 2011, Waters and Ponton 1989.

163ee, e.g. Biehl et al. 2010, Chen et al. 2008, D'Ippolito et al. 2011, Heitmeyer et al. 1998, McDermid
2002, Pister 2008.

17See, e.g. Biehl et al. 2010, Bowles and Wan 2001, Chen et al. 2008, McDermid and Pumfrey 1994.

185ee, e.g. Botaschanjan and Hummel 2009, Catino and Ungar 1995, Struss and Fraracci 2011.

39

3. Safety

state space. Being less scalable, Voge and Bunimov (2012) directly model defective
states in a transition diagram. According to Lamport’s viewpoint (cf. Section 3.1),
Broy (2012) perceives a hazard as an unwanted behavioural property and an incident
as a run which models such a property. More specifically, Broy classifies hazardous
defects according to their relationship to the system boundary and to modes. He
speaks of extrinsic and intrinsic hazards guiding the analysis of causal factors: the
former are indirectly caused by the system and occur outside the system boundary,
the latter are directly caused by the system and occur at the boundary.

3.4.2. Causative Reasoning for Safety

From Mishap or Hazard to Internal Causal Factor Implicit model: This direction can be
carried out using deductive techniques as mentioned in Section 3.2.

Structural: Papadopoulos et al. (2001) and Chen et al. (2008) focus on reliability
analysis of electronic safety measures. The tool they propose allows FTA via synthesis
of fault trees based on fault-to-failure propagation through a design model. Biehl et al.
(2010) show early stage analysis of control software for safety-oriented redesign.

Behavtoural: Neogi (2002) describes a transition system-based technique (Leveson
et al. 1998) to search backwards for paths leading to a previously specified hazardous
state. For an autonomous braking system, Voge and Bunimov (2012) exemplify hazard
analysis and derivation of safety goals using transition systems according to Mealy
(1955). The modelling of hazards as state labels, however, may hinder the scalable
description of hazardous behaviour.

Mized: Preceding the work of Neogi (2002), Leveson and Stolzy (1987) exper-
imented with timed PETRI nets: based on a model of a technical system, its en-
vironment and defects, they derive fault tolerance and safety requirements for the
software-intensive control subsystem. The authors, however, refrained from proba-
bilistic reasoning. Rauzy (2002) shows the transformation of mode automata into fault
trees by compilation into BooLean formulae. This step should improve efficiency in
reliability assessment and simplify the design and maintenance of BooLean models.
Nevertheless, the sequencing among events, which can aid in causal factor search,
is lost through this transformation. In summary, the author neglects safety-related
topics aside from reliability. Damm and Peikenkamp (2004) sketch verification based
on a defective transition system'® which undergoes reachability checks for hazards to
generate fault trees. The approach of these authors avoids too pessimistic fault trees
but it is constrained to software and electronic hardware. They omit any discussion
of guidance. Roth and Liggesmeyer (2013) apply a qualitative, dynamic variant of
FTA to the analysis of software safety. This extension of static FTA can encode event
sequences similar to the approach of Dugan et al. (1992). In contrast, the extension
is based on stochastic PETRI nets and further develops ideas as discussed in Leveson
and Stolzy (1987).

19The control system is modelled in IBM Rational Statemate (www.ibm.com).

40

www.ibm.com

3.4. More Recent Related Work

From Internal Causal Factor to Hazard or Mishap Implicit model: This direction can
be addressed by inductive techniques as discussed in Section 3.2. Based on textual
specification patterns and generic equipment failure modes, Stalhane et al. (2012)
sketch the derivation of HAZID and FMEA tables.

Structural: Bowles and Wan (2001) perform FMEA for a control system comprising
connected modules of electronic hardware and software. Snooke and Price (2011)
discuss abstraction of program code to perform data flow-based safety analysis. Pock
(2012) formalises fault propagation through hierarchical data flow models. Waters
and Ponton (1989) and Catino and Ungar (1995) presented propagation of component
faults (i.e. value and time deviations) through a structural model of a chemical plant
given as a set of qualitative equations. Reese and Leveson (1997) use qualitative
deviation analysis to investigate software safety. Struss and Fraracci (2011) apply
a similar method based on constraint solving to predict such propagations for the
diagnosis of a mechanical braking subsystem of a road vehicle, Dobi et al. (2013)
for a retarder subsystem. Mehrpouyan (2011) identifies hazards by classifying ways
of physical component interaction and applies SysML (Friedenthal et al. 2008) to
HAZOP.

Maized: Based on a transition system, Stursberg et al. (1998) applied reachability
analysis with high abstraction for early stage hazard analysis of a physical process
in a chemical plant and with low abstraction for verification of its control subsys-
tem. Venkatasubramanian et al. (2000) propose PETRI net based HAZOP for chemical
plants.

Moik (1999) and Bitsch et al. (1999) refine FMEA by modelling system structure
using UML class diagrams and state charts. Their aim is to derive safety requirements
(via OCL constraints) as state invariants, and reactivity or interaction requirements
(via UML sequence diagrams) as temporal logic assertions, both to be checked for a
revised system model. Adopting ideas from Dwyer et al. (1999), Bitsch (2001) provides
property patterns for a taxonomy of safety requirements. The authors exemplify their
approach for a vehicle braking subsystem and a train subsystem for assistance in
passing crossings. Their approach lacks precise notions of hazard and mishap, and
details on hazard treatment.

Esser and Struss (2007) apply constraint solving to fault model-based testing of
control software by refuting transition system defects. Such defects represent neg-
ative hypotheses about system behaviour. They follow an approach to behavioural
modelling in accordance with Stursberg et al. and the present work. Pister (2008)
combines the formalism of Broy and Stglen (2001) with software FMEA.

David et al. (2010) perform FMEA based on SysML. The authors derive a defect
model from a system design using a defect pattern library. For reliability analysis, the
formalisation of SysML uses transition system and MARKOV chain semantics. Failure
modes of components are obtained from the defect model and the FMEA results.
From the defect model and the failure modes, which are added to the nominal SysML
model, failure probabilities are calculated. The authors apply their approach to a
system controlling the fill level of a tank. Mhenni et al. (2012) apply the approach
of David et al. to aileron actuation for an aircraft. Mhenni et al. show how a safety
measure can be derived from the analysed SysML model.

41

3. Safety

Between Internal Causal Factor and Hazard (bidirectional) Structural model: McDermid
and Pumfrey (1994) and Fenelon et al. (1994) investigated a method for safe software
design where they apply HAZOP and defect classification to data flow models. After
having modelled the functionality, guide words are applied to derive component and
flow (i.e. value and time) defects which are deductively (i.e. via FTA) traced back
to causative faults. Then, the defects and faults are used to inductively (i.e. via
FMEA) determine further defects. Selected defects are treated by design modifications.
Wilson and McDermid (1995) went further in the integration of several safety analysis
techniques by way of consistency rules.

In addition to Bowles and Wan (2001), who only use FMEA, Zhang et al. (2010)
apply FTA to a data flow model of automotive control software. Similarly, Kaiser
et al. (2003) combine FMEA with FTA based on a hierarchical system model. For
the simultaneous analysis of software requirements and hazards, Feather (2004) uses a
PRA-based FMEA approach extended by an FTA: faults and their treatment are as-
signed with impacts on safety goals for cost-benefit calculations of design alternatives.
Yenigiin et al. (1999) formalise hazards as defective signals causing circuit failure. The
authors apply model checking to electronic circuit designs to assure hazard freedom.

Mazed: Johnson (1993) proposed a probabilistic extension of computation tree logic
to characterise maloperation of human operators when using technical systems, partic-
ular, in the event of system failures. He aimed to overcome weaknesses of FTA, FMEA
and MARKOV models which are also addressed by, for example, dynamic FTA (Dugan
et al. 1992) and Rauzy (2002). Johnson'’s logic combines the contingent and frequency
views of probability, that is, historic frequencies of states are taken as best approxima-
tions for the probabilities of next states. He presents PROLOG-based MONTE CARLO
simulation support for his method. More recently, Peikenkamp et al. (2006) discuss
tool support for a combination of FTA, fault injection and FMEA.

Heitmeyer et al. (1998) apply a method to detect defects in software requirements
by model checking safety properties of transition systems. Like Snooke and Price
(2011), they use program abstraction to improve efficiency. Probst (1996) investi-
gated a similar approach based on checking temporal logic assertions on a transition
system model of a chemical plant. Abrial (2006) derives model refinements to fulfil
safety requirements. He, however, refrains from defect modelling and hazard analysis.
Herrmann and Krumm (1999, 2000) exemplify hybrid, modular property verification
of control systems based on TLA (Lamport 2002). These authors show a proof pattern
for a control subsystem of a chemical plant; this subsystem realises a fail-safe pattern
(see page 38) that ensures hazard-avoiding state invariants. Herrmann and Krumm
express hazards as constraints on variables defining the physical state space.

Nissanke and Dammag (2002) show for a nuclear reactor control system how safety
analysis can be done using the formalism of Harel and Politi (1998). The authors
distinguish functional from safety requirements and use a defect model. The defect
model captures equipment failures by a non-operational state reached after a failure
event and left again via a maintenance/repair action. Transitions can be safe, unsafe
and neutral, and can be annotated with timed safety clauses. Nissanke and Dammag
propose a risk-based ordering and classification of states to identify both analysis gaps
and unpredictable non-deterministic behaviour. The concept of risk distance resolves

42

3.4. More Recent Related Work

such behaviour by preferring transitions which reduce hazards.

Haxthausen et al. (2011, 2014) approach safety analysis by using a verifiable transi-
tion system technique for the abstraction of low-level program text into a behavioural
model of the control system. Based on this model, temporal safety properties are veri-
fied using bounded model checking. The authors apply their approach to the software
parts of a train control system.

Between Hazard and Mishap (bidirectional) Implicit model, mainly linear causal chain:
Approaches such as AcciMaps, CRIOP, ECF, HERMES and ICPS (Section 3.2) drop
into this category although they selectively use physical simulation. As in CRIOP,
Sayre et al. (2001) extend MARKOV chain based usage profiles of medical device con-
trol systems to identify, quantify and mitigate hazardous maloperation. Sayre et al.,
however, refuse to explain whether they apply a system model in addition to their
model of usage processes. In this class of approaches, the functional resonance acci-
dent model (FRAM; Hollnagel 2004) is the only non-linear approach known to me.

Behavtoural, non-linear: Mode transition systems and A/G style (Section 2.2.2)
capture interaction relationships between the system and its environment, and make
subtle defects explicit. Dasgupta (2012) verifies safety properties of a combined model
of the electronic controller and its environment. He applies A/G style to restrict
the behaviour of the combined model. Defective and hazardous states are specified
as behavioural properties. Dasgupta (2006) reports on fallacies (e.g. hidden vacuity)
when specifying such properties.

D’Ippolito et al. (2011) apply controller synthesis from temporal logic formulae:
under certain assumptions, such a controller allows its actuations being erroneous
(e.g. wrongly affecting the environment and temporarily violating these assumptions)
and, though, guarantees achieving its prescribed safety properties.

Maized, non-linear: Inspired by Rasmussen (1997) and FRAM, the “system-theore-
tic accident model and processes” approach (STAMP; Leveson 2012) perceives safety
as a control problem in a collaboration of humans and technical systems (cf. Sec-
tion 3.1). Mishaps and hazards are explained by a non-linear model of causation
where interactions within this collaboration violate safety constraints and lead to haz-
ardous states. Applying the SpecTRM method (Leveson et al. 1998), STAMP classifies
human errors, identifies inadequate control aside from system failures and derives re-
quired constraints. In addition to preventing failures and technical root causes, these
constraints shall be enforced by the collaboration. Dulac (2007) applies qualitative
modelling to STAMP; Stringfellow (2010) extends STAMP using HAZOP-like guide
words to identify maloperation.

Inspired by Zave and Jackson (1997), Hall and Silva (2008) show a model for mishap
analysis of technical systems for guiding safety analysis meetings. The authors consider
environment modelling, design- and operation-time views, and a deviation model of
states and actions for defect classification (i.e. human errors, environmental defects).
They also distinguish operator and actual system views.

43

3. Safety

3.4.3. Safety Engineering Guidance

Pyle (1991) proposed a safety analysis comprising the viewpoints victim, plant and
control subsystem, regarding situations where the entire technical system operates as
intended and where it ceases doing so. Based on these viewpoints, he described form-
guided steps to analyse safety for victims, dangers and protection mechanisms of
the plant, and detection equipment, actuators and guards of the control subsystem.
This approach is complementary to the ideas of Wilson and McDermid (1995), who
put emphasis on the integration of several safety analysis techniques to reduce the risk
of oversights.

Kelly (1998) refines the concept of safety cases: A safety case forms a hierarchy
of arguments?® built on evidence using various measures to achieve safety goals on
top of this hierarchy. The author discusses argumentation patterns (e.g. for hazard
avoidance) and fits FMEA into his method. Rushby (2010) and Hall et al. (2007)
formalise such argumentations. Safety cases provide a generic way to build up indi-
vidual lines of argumentation whereas safety standards (see below and page 33) often
carry a specific line of argumentation for an application domain. Being applied in a
safety case, standards and modelling techniques can contribute to “the argument that
a system is acceptably safe to operate in a particular context” (Kelly 1998). Leveson
(2011) identifies the possibility of confirmation biases of such argumentations. Hauge
and Stglen (2014) discuss procedural patterns for planning specific safety engineering
activities in control systems engineering. The authors discuss the use of safety cases
in their approach. In connection with safety cases, van Lamsweerde (2009) uses goal
graphs to perform hazard analysis. Similar to the use of guide words in HAZOP, he
provides a taxonomy of obstacles which aids in hazard identification.

Lund et al. (2011) describe a stepwise approach to the analysis, documentation,
probabilistic assessment and treatment of risks. The authors describe a graphical
language for the modelling of assets, threats and risks. Risk graphs are formalised
using a trace-based probability space similar to probabilistic linear temporal logic.
Likelihoods can be given by probabilities and frequencies. In addition to the work of
Johnson (1993), the authors use frequency intervals to approximate the probabilities of
events. Frequencies include times of exposure and relate to probabilities of occurrence;
consequences of risks concern severity. Lund et al. apply A/G style by splitting risk
graphs into assumption and guarantee parts, meaning: if any vulnerability of an asset is
exploited then some asset will be harmed, both exploitation and harm within specified
probability intervals.

Thramboulidis and Scholz (2010) present hazard analysis based on SysML and a
mechatronics engineering process, exemplified for a self-propelled train. Methods such
as preliminary hazard analysis (PHA), FMEA and FTA are mapped to the stages of
requirements analysis, architecture design, and component specification and design.
Among the concepts for hazard analysis, they use the term system misbehaviour to
hint at specification defects.

20Kelly applies the goal structuring notation (GSN) to depict such a hierarchy.

44

3.4. More Recent Related Work

Experience on Application of Standards and Methods Feather and Markosian (2011) de-
scribe the elaboration of a safety case for a space vehicle failure warning system. They
report on problems when initialising the argument structure. Wagner et al. (2010)
discuss an application of GSN-based safety cases (Kelly 1998) and propose assurance
patterns similar to the goal refinement patterns of van Lamsweerde (2009). Wagner
et al. propose several patterns to be applied in the construction of safety cases: For
example, a fail-safe pattern includes the transition to a safe state after detection of a
hazardous defect. A failed expectations pattern prescribes documented specifications
for hazards to be identified. Operators mostly or unconsciously expect that the spec-
ification, they assume, is actually realised by the system. This pattern corresponds
to the operator and actual system views considered by Hall and Silva (2008). Wagner
et al. perform an FMEA and match the results with the safety case structure, leaving
it unclear whether this step was done inductively.

Kath and Temple (2012) report on a tool-based application of ISO 26262 to a vehicle
steering support system. Their procedure, shown in Table A.10, is traceable but lacks
the use of behavioural models as opposed to, for example, the work of Abdulkhaleq
and Wagner (2013) or the present work. Abdulkhaleq and Wagner use goal graphs
to decompose safety goals into safety requirements, after item definition and HARA.
Then, they assign integrity classes to these requirements and the underlying system
parts. An FTA of a preliminary architecture design is followed by the design of safety
measures together with quantitative reliability assessments using FTA and FMEA to
verify the given integrity classes.

For an avionic subsystem, Mannering et al. (2007) use problem frames (Jackson
2001) to make ARP 4761 traceable during requirements validation. Hence, the authors
apply lightweight FMEA and FTA. Lindholm et al. (2012) studies the application of
ISO 14971 for analysing risks of patient monitoring systems. The authors identified
software risks according to Boehm (1991) by the help of textual use cases, and together
with an observed and interviewed safety analysis team. Their analysis neglects the
use of models and the classification of operational situations. Lindholm et al. report
on the problem of an unclear system boundary, difficulties in slicing of causal chains
and imprecise assessment due to missing knowledge of the environment.

45

Behavioural Safety: Concepts

This chapter introduces safety-related system modelling, discusses kinds and repre-
sentation of defects and provides instruments for hazard analysis and treatment.

Contents
4.1 System Specification: A Safety-related Framework 46
4.2 Safety-related Defects oo oL 48
421 Taxonomy 49
4.2.2 Representation oL oL 51
4.3 Mishaps, Hazards and Causal Factors 53
4.4 Behavioural Safetyo 56
4.5 Responsibility and Restriction 59
4.6 Safety Measures 0 i e e e 60
4.6.1 Treatments for Mode Transition Systems 61
4.6.2 Treatments for Behavioural Property Assertions 62
4.7 A Stop Criterion for Safety-oriented Validation 65
4.8 Notes and Further Reading 65

4.1. System Specification: A Safety-related Framework

We apply the framework of Section 2.4 to a technical system and its environment:

Definition 4.1 (World Model) We define M = Ag ® As to be the world model con-
sisting of a system agent As and an enuvironment agent Ag.

Adapted from Figure 3.2, M abstracts from control software, sensors and actuators
to the system boundary, see Figure 4.1. V holds states, events and modes of physical
or conceptual entities to be monitored or controlled by the system, the environment,
both (e.g. temperature of a metal bar, fill level of a water tank) or none (e.g. state of

46

4.1. System Specification: A Safety-related Framework

Other Environment World
-- (physical/social Model M
A implicit interaction " TTTTees, A processes) (all variables)
A : A y
i human'senses/ Environment . T
[cognition machinef _ machine
human abilities i sensors | actuators \

: Y. y | v flow of
Operators, others i | raw da'ta,
(mental processes; machine displays or Technical material

human sensors ’ 1 sensible attributes or energy
of the machine) — ! » System
machine controls or K
1Y manipulable attributes i‘ 1 seff-managed
... self-managed variables ~--+" variables

Figure 4.1.: World model; channels (solid arrows) constitute the system boundary, dotted
arrows indicate self-managed variables

fatigue strength, a constant threshold). The set Vi C V., given by
Vi = (ctr(Ag) N mon(As)) U (ctr(As) N mon(Ag))

forms the interface between the two agents. V,, is internal, that is, Vi N Vi = 0. We
call a variable self-managed if it is element of V,,, models a timer, or is monitored
and controlled by the same agent. M uses functional channels to embody physical
or information processes to be controlled and control channels® for sensors, controls,
actuators and displays to observe and affect such processes. Both agents comprise
three disjoint aspects (Definition 2.14):

o Mg, functionality or specified behaviour

e M., a defect model comprising operational defects based on Mg

o Mave, Safety measures for the treatment of hazards in Mg and Mg, .

We call an MTS (Definition 2.6) a function if it is part of Ag and a tactic if it is part
of Ag. If an MTS is an element of

e M, it comprises specified functional and control actions. Its modes constitute
distinct operational phases described by functional actions.

e My, it comprises defective actions, and modes reachable by such actions.

e Mq,ve, it comprises safety actions maintaining or achieving safe states, and
modes reachable by such actions.

1The mechanisms underlying these channels can comprise, for example, electromechanical, elec-
trothermal, thermomechanical, hydromechanical, pneumatic, electronic and software devices.

47

4. Behavioural Safety: Concepts

Specification S S’
(aF::tua"y World Model M (operational) (safely M’
specified and As specified and A% A’
modelled) P modelled) P
....................... < <
§Mishaps O, ” Safety f ,
H endangers K
EHazards H, i e, __C_D_EHR‘-S..L Goals T ':. :
iSafety Goals ' : A v T As| o . o H @ @ H
f(descriptive) [[Bl e s oS fall o h ‘(descnphve) _c.ompensat?_S_ A '
R 7 aggravates A xS A TTitzeesill) 3
LN s a Hazard N— o M- il N ‘
"""" \ 4, ezerd / Tl Aslsve s Treatment S Y %, %, @ g @
L :‘?e/l’:/ : PR VNG00 2
VoSN %]

Figure 4.2.: Actual and safe description and representation of a specification

A defective action or a safety action can be either a functional or a control action.
Furthermore, our assumption is that the following action priorities are realised:

[2,00) or low for specified actions (M)
prio = [1,4] or medium for defective actions (M) (4.1)
[0,3] or high for safety actions (Msave)

Definition 4.2 (Operational Situation) We call an abstract state (Definition 2.11) an
operational situation ff it s used to specify a set Ly of initial states for M.

Operational situations can describe several states of the environment and the system
at once, for example, a driving situation can comprise road and vehicle conditions.

For hazard analysis (Section 3.2), we consider the abstract states defective, harm,
hazardous, safe and operational. Behavioural properties describe temporal, possi-
bly causal, relationships among these states: Hazards characterise behaviour poten-
tially leading to mishaps. Safety goals, denoted by the set T', specify the treatment
of hazards. These goals separate required and unwanted behaviour from occasion-
ally acceptable or unspecified behaviour. Domain properties help encode logical and
physical relationships among variables indirectly updated by actions, and constrain
valuations of V to be maintained by actions. According to Figure 4.2, we consider a
variant of the first pair of system views from Section 2.4:

Actually specified and modelled The actual description and representation of a specifi-
cation S.

Safely specified and modelled The safe description and representation of a specification
S’, to be finally achieved. We will use V' £ V¢ instead of Vigear.

4.2. Safety-related Defects

This section develops defect modelling (Section 2.2.3) by describing defects as devia-
tions between two artefacts, for example, a specification and a realisation.

48

4.2. Safety-related Defects

Criterion Facet Occurrence
1. Agent (s)ystem, (e)nvironment
a. Reproducibility (s)ystematic, (r)andom, (s)emi-(s)ystematic
b. System view* (r)ealised and operated, specified and (m)odelled
2. Observation , . ;
c. Causal chain pos. (w)ithin an agent or (a)t its boundary
d. Duration (p)ermanent, (t)ransient
3. Cause:effect participation 1:0, 1:n, 1A, 1:1, n:1, n.m
a. Degree (n)one, (p)artial, (c)omplete
4. Coverage -
b. Responsibility (s)ystem, (e)nvironment
5. Life cycle origin* (s)pecification, (d)esign, (r)ealisation, (o)peration
6. Mode of performance unacceptable (e)zecution or (s)uppression

Table 4.1.: Criteria for a taxonomy of safety-related defects; *... multiple choices possible

Definition 4.3 (Defect) A defect s an observable and unacceptable deviation of an
actually observed artefact from an ideal artefact.

The concepts in Section 4.1 adopt this definition in two ways: The first way, provided
by having M and I in the two system views S and S’, leads to the following definition:

Definition 4.4 (Specification Defect) A specification defect ¢s a defect of S with respect
to 8’, that is, a deviation of the actual from the safe specification.

The second way, provided by the aspect Mis,;, motivates the next definition:

Definition 4.5 (Operational Defect) An operational defect is a defect of W with respect
to M'|use,save, that is, a deviation of the realisation from the safe world model
without defects.

Let T = /\yery denote the conjunction of all safety goals. Definition 4.4 motivates
reasoning about S # S’ and M }£ T, Definition 4.5 whether W conforms to M’.

Corollary 4.1 Definition 4.4 yields that every inconsistency of the world model with-
out defects and the safety goals constitutes a specification defect, denoted by
Muse,save T. Definition 4.5 implies that Mg, s tn the class of operational
defects. The two sets of defects are neither disjoint, nor does one contain the
other.

4.2.1. Taxonomy

Defects can be characterised by the criteria given in Table 4.1 as explained below:

49

4. Behavioural Safety: Concepts

1. Agent A defect can arise internally, as a (s)ystem defect, or externally, as an (e)n-
vironment defect, depending on where the deviations are caused or observed.

2. Observation This criterion comprises four facets:

a. Concerning reproductbility, we can distinguish systematically (reproduc-
ible stimuli and state, e.g. specification, design or realisation errors), ran-
domly (unknown stimuli and state but knowable mode, e.g. hardware dam-
age or material wear out) and sem:i-systematically (reproducible stimuli
and mode but partially unknown state) recurring defects. Their first ob-
served occurrence may seem to be spontaneous.

b. A defect can be realised (observed at runtime in W, Definition 4.5), mod-
elled (observed in S, Definitions 4.4 and 4.5) or both at the same time.

c. A defect can show up within an agent (e.g. hardware or software component
fault, human operator error) or at its boundary. According to the causal
chain position, defects at the boundary are known as failures, defects
within an agent as faults, weaknesses or errors (root causal factors of
failures), and erroneous states (observations between faults and failures).

d. Concerning the duration, a defect can be transient (observable sponta-
neously at a certain point, diminishing or disappearing without treatment)
or permanent (observable during the entire period of operation, staying
unless treated).

3. Cause:Effect Participation There are defects without effect (1:0), groups of depen-
dent defects and defects caused by single or multiple factors. Dependent
defects can be split into common cause (1:n, multiple failures directly sharing
the same causative fault), common mode (1:1i, multiple similar failures directly
sharing the same causative fault) and cascading (m:n, multiple failures indi-
rectly sharing the same causative faults) failures. Regarding causal factors, one
can differentiate between single point (1:1, caused by a single fault) and muléiple
point (n:1, caused by multiple faults) failures.

4. Coverage Defects can be (a) completely, partially or not (diagnostically) covered
by safety measures of (b) the system or its environment. Partial coverage
of a single point failure leaves over a residual fault not covered by a safety-
related subsystem and leading to a failure. For multiple point failures, coverage
spans detected faults (treated by a safety-related subsystem), perceived faults
(observed by a human operator) and latent faults (not treated by a safety-related
subsystem or human operator). Safe faults are either detected faults or they do
not cause failures (1:0).

5. Life Cycle Origin Defects can originate from the stages of (s)pecification (wrong con-
ception of the control problem, Definition 4.4), (d)estgn (improper choice of
architectural means or technologies), (7)ealisation (erroneous fabrication, im-
plementation, integration or maintenance), and (o)peration (damage or wear
out after inappropriate use or lack of maintenance and repair).

50

4.2. Safety-related Defects

6. Mode of Performance Runs deviating from Ag|yse or I' (e.g. functional and timing
failures) show unacceptable? (e)zecutions or (s)uppressions of specific actions
in specific operational situations.

Relationships among the Criteria The criteria 1, 2b and 3 characterise the location where
the impacts or effects of a defect can be observed, whereas criterion 5 describes lo-
cations of potential root causes of a defect. Criterion 2b covers whether a defect
is modelled or realised, without regarding its causes. Criterion 2a captures state of
knowledge and establishment of conditions for reproducing a defect, whereas crite-
rion 2d cares about loss of these conditions. Hence, transient defects can be random
defects. The criteria 2a and 4 match “probability of occurrence” and “detectability
and controllability” from page 36. The criteria 5(s) and 6 address the Definitions 4.4
and 4.5 whereas the criteria 1 to 4 are based on Definition 4.5. Table A.15 applies the
taxonomy to safety-related classes of defects.

4.2.2. Representation

This section shows how operational defects can be modelled in M, how such defects
can be described more generally and which specification defects may appear in T.

Representation of Operational Defects by My,;; Based on Mg, we apply M TS patterns
to obtain a defect model comprising

e defective actions: actions producing defective states, for example, by under-
specification and indeterminacy using missing, erroneous or inconsistent guards
and triggers, and ill-timed, non-deterministic or probabilistic deviations from
specified effects; V stays the same.

e defective modes: MTS fragments (Definition 2.8) with only defective actions;
Vin's types are extended.

e fault indicators: values or variables affected by specified or defective actions to
model defective states (cf. Table 4.2); V’s types and V are extended.

The elements of the defect model can represent, for example,
e systematic or random failures
e sensor and actuator faults (e.g. errors in measurement or state observation)
e unwanted mode dependencies (e.g. physical interaction or message passing)
e physical side effects

e unexpected stimuli (e.g. environment misbehaviour, intentional or unconscious
maloperation, erroneous intervention).

2That is, for example, unintended, unattended, unexpected or forbidden.

51

fault
failure

4. Behavioural Safety: Concepts

pre post
mo mq my ms3 my mqg
i1 ms/o7 my/rej mg/fail my/o3 ma/— ... mg/fail
* ... mg/fail

Table 4.2.: Tabular representation of a transition system fragment with fault indicator values
rej and fail, and a defective mode mq with defective actions

Systematic failures can stem from specification defects which arise from implicit
knowledge, mistakes in domain analysis or a wrongly perceived interface (e.g. wrong
type abstraction, disregarded variables). Unexpected stimuli can stem from opera-
tional defects (Aglfil) of operators (e.g. mode confusion, distraction, fatigue, inatten-
tion) or other technical systems. Table A.2 provides MTS patterns applicable in Mg,.
Table 4.2 and Example 4.1 illustrate defect modelling.

Example 4.1 (Operational Defects of a Car Airbag) The MTS shown in Ezample 2.1 applies
twice the MTS pattern random/permanent where mq instantiates to failing, fail; to t
and maintains, and fail, to expands and k.

The following criteria are disregarded in M: Criterion 2b is only considered helpful
during V&V. The criteria 2c (i.e. defects within an agent, faults, erroneous states) and
3 are neglected as we omit structural modelling to apply these criteria. Nevertheless,
criterion 3 covers unwanted dependencies (cf. Table A.2). Criterion 4 applies to the
discussion of safety measures but is unnecessary to express further defects in M. For
criterion 5, we distinguish s and o but not d, r and o, as such details can only be
observed via several stages of V&V. Hence, the criteria 2c, 3 and 5 are difficult or even
impossible to represent and detect in S or S”.

Generic Description of Defects Using abstract states (Definition 2.11) and behavioural
properties (Definition 2.15), states and runs can be declared to be defective. Defini-
tion 4.3, the defect taxonomy and the ways of defect representation yield:

Definition 4.6 (Defective Mode and State) A mode m (Definition 2.7) is defective (1)
if the behaviour of A,, s prohibited by ', or (i) if a subset of A,, belongs to
M,;i. We use df to denote the abstract state defective including all states which
(i) are declared as defective or (it) carry a defective mode.

By this definition, we can describe a fault as a part of a state in df which activates a
defective mode. Furthermore, we define a fatlure to be a run p such that

Vp/ € [[M/|use]] : p|VC 7é pI|Ve

Hence, a failure is observable through V. and might visit states of df. Faults and
failures are operational defects (Definition 4.5).

52

4.3. Mishaps, Hazards and Causal Factors

Appearance of Specification Defects in ' The term property defect can refer to
e a missing or wrong property assertion, or an inconsistent set of assertions

e an assumption about the environment being wrong, incomplete or too strong,
or a guarantee of the system being wrong or too weak (cf. Section 2.2.2).

More specifically, a property defect can incorporate, for example,

e an tmplicit or violable independence, domain maintenance or run confor-
mance assumption

e misperception of responsibility, or a low-grade or violable range maintenance
guarantee based on such an assumption.

4.3. Mishaps, Hazards and Causal Factors

This section investigates the relationship between mishaps, hazards and causal fac-
tors to be abducted by hazard analysis in M.

Definition 4.7 (Mishap) A mishap ¢ is a state constraint (Definition 2.4) denoting
a sufficient condition for the harm state. Hence, giwven a set of mishaps ©, the
disjunction © = Vcbecp ¢ defines the harm state.

Definition 4.8 (Hazard) A past formulax (Definition 2.15) with at least one variable
in Vis 1s called a hazard iff there exists a mishap ¢ for which the formula

EF(x — P~p:[XF §]) (4.2)

1s satisfied in M, with an upper bound® of acceptable risk 0 < Pr <« 1. Then,
we say that x 1s among the preconditions to risk ¢. Given a set of hazards H,
H= VxEHX makes up the hazardous state.

As depicted in Figure 4.3, Formula (4.2) states that x searches in each run of M,
starting at 0o € X (E), for a state oy, such that x holds (Fx) and the probability of ¢
occurring after oy, (XFd) is higher than Pr (P~ p,[XF ¢]). Note that the probability of
occurrence of a hazard (discussed below on page 56) is irrelevant for its identification.
Hence, Pr can be chosen independent of a specific hazard. Pr then represents the
risk threshold which should be exceeded by M when regarding any probabilistic
relationship between two sets of states for x and ¢.

A mishap describes harmful runs (p = Fd) modelling many, possibly related causal
factors. According to Figure 4.4, these factors include defects of the system (Ag|use ®
Asuse,fail, cf. task T1 on page 36), the environment (Agluse,fail ® Asluse, T2), or both
agents (M|yse,fail), denoted by Hop, and specified behaviour of both agents (M|yse, T1,
T2), denoted by H,... Causal factors can be combined to specify one or more hazards.
Two questions can guide the characterisation of hazardous runs (p = H):

3The ALARP concept, mentioned on page 37, might constrain the choice of a guidance level for Pr.

53

causal factor

4. Behavioural Safety: Concepts

probability of =XF¢ is < 1 —Pr

0-0 _/\/\/\/\/\/_) o)
e e probability of XF¢ is > Pr

(0',...,0'}1)':)(

Figure 4.3.: A hazard X in the behavioural spectrum of M

violations any origin
of safety ’
integrity (// semi-systematic

)\ and random

- know / »
//ll /A// systematic B
—

P

originating from

_— S7
vrolah_ons of 4 h, d specification or
behavioural Hw...\pure H,, ... hazardous design
safety e operational
specified
operational
s
H ... hazardous knowable
runs defective runs Legend: Isa

Figure 4.4.: A behaviour taxonomy for causal factor and hazard analysis

Hop Which of the knowable* operational defects are causal factors?
Hpuw Which of the causal factors are pure specification defects?

The difference between H,, and H,., stems from the regard of causal factors beyond
M, (cf. Corollary 4.1). By abduction, @ highlights parts of M which indicate haz-
ardous specification defects in M¢e. For example, analyses for task T2 can consider
environment defects in combination with specified and defective system behaviour.

State Guide Words for Mishap Identification and Modelling Referring to Section 3.2, the
following guide words help specify state constraints to model mishaps:

e Areas or spaces which could be contaminated, or where objects could collide,
be distracted, sounded, glared, burned, frozen, shot, suffocated or cooped up.

e Places or parts where objects could trip, fall, sink or bump, or be clamped,
sheared, hit, scraped, cut, tired out, stuck or lost.

e Contact surfaces where objects could be burned, vibrated, dissolved, poisoned
or electrically shocked.

4T, My and k-completion can be used to gain this knowledge.

54

4.3. Mishaps, Hazards and Causal Factors

Several state constraint patterns are described in Table A.3: Both the hazardous el-
ement under control of the system and the affected asset of the environment are
captured by the variables, As and Ag share with each other. The initiating mecha-
nism corresponds to one or more actions of As and Ag affecting these variables.

Event, Mode and Action Guide Words for Hazard Identification The following list shows
exemplary gutde words for a functional or control event e:

e e not or incorrectly given/returned

e wrong timing (e.g. too late/early) or order of e

e e stopped too soon, or applied too long or even permanently

e too much/little, many/few, high/low, fast/slow, far/close or hot/cold e.
The following list shows exemplary guide words for a mode m and an action a:

¢ unintended, unattended, unezpected, untimely or denied (i.e. hazardous)
- actwation/start, deactivation/stop or change of m

- ezecution or suppresston of a (cf. criterion 6 in Section 4.2.1)
e hazardous side effect of a, or unwanted a (e.g. explosion, overheat, fire)
e maloperated a.

These guide words help specify past formulae to search for causal factors (i.e. haz-
ardous states, events, modes and actions) in harmful runs; Table A.1 provides several
property patterns. Example 4.2 applies these patterns to Example 2.1.

Example 4.2 (Mishap and Hazard Identification for a Car Airtbag) Suppose an MTS Cars = As
with a function Airbagg and its environment Ag, beyond the cutouts given by Example 2.1
and Ezample 4.1. The set of initial states is gwen by Lo = {00} with oo = [crashed —
1,energy — on, gas — full,released — no].

First, we can use the guide word “distract” (Table A.3) to derive the mishap daistract:

someEventInareq = released >=2
someSituation = mcarg = drive
enteredperson,Area = Qtdriver,seat

cbdistract = released >=2 A MCarg = drive A\ atdriver‘seat

Second, we can use event, mode and action guide words from Table A.1 to transform
Definition 4.8 into a search erpression among the behavioural spectrum defined by M.

Suppose that 5% risk (Pr = 0.05) is as low as reasonably practicable (ALARP). We can
. . —<100ms
use the pattern “e not given” to derive —F— crashed.
We maght refine our search using the pattern “unexpected activation of m” to derive a
ms
(

. =<20 ..
further search expression F— MAirbagg = failing).

55

4. Behavioural Safety: Concepts

To derive a hazard from these two causal factors, we have to check in M whether

—=<100ms —=<20ms i1
Xunexpexp = 7F~ crashed AF~ (Mairbagg = failing)

fulfils Definition 4.8 using the formula

EF(XunexpExp — P>o.05 [XFC]) dist‘ract])

which expands to

EF((ﬁ?goomscrashedAfgzoms(mA;,bags = failing)) —

P-o.05[XF(released >= 2 /A Mcarg = drive /\ atdariver,seat)])

The quantities 100ms and 20ms can indicate time intervals to leave the hazardous or harm
states, that is, to perform the treatment. Analogically, we can derive a mishap Pcottide
using the pattern “collide”: The mishap could then be observed using variables which model
shock sensors built into the system. Nevertheless, the way how to detect a colliston can
be left open for the construction of safety measures.

Hazard Characteristics As indicated on page 36, a hazard x can be characterised by
S, the severity of a mishap ¢ as x’s potential impact
W, the probability of occurrence of x or ¢ without the measures of Mgsye
A, the ezposure of vulnerable environment assets to x or ¢, and

G, the detectability and controllability by the environment or the system (without
Aslsave) if X or ¢ occur.

For a mishap ¢, S can be estimated by accident analysts. Hence, ® represents expert
knowledge. For W, the probabilities of x and ¢ can be calculated from M without
Miave. Restricted to the variables in mon(Ag) U ctr(Ag), A can be seen as the joint
probability of all operational situations where x and ¢ may occur. G can be modelled in
M. These characteristics can be used to refine the classes of runs shown in Figure 4.4.
Finally, hazards help identify safety requirements and, thus, safety measures.

4.4, Behavioural Safety

In this section, we discuss the derivation of safety goals from hazards and mishaps.
Behavioural safety implies the safe conception of M, reducing hazards and requiring
an acceptable ratio of treated to known hazards. Safety integrity (Section 3.3) can
be seen as the part of behavioural safety implying safe realisation and operation of
the system, and requiring sufficiently reliable functional measures specified by As. As
shown in Figure 4.4, hazards describe runs which violate behavioural safety through
pure specification defects and operational defects. Behavioural safety describes the
degree of freedom from hazardous defects (Definition 4.3), safety integrity the degree

56

4.4. Behavioural Safety

of freedom from operational system defects (Definition 4.5). Behavioural safety
makes a realisation safe because of safe functionality and valid, reliable safety measures,
though tolerating necessarily unreliable functionality. Safety integrity can leave a
realisation hazardous, even if functionality and functional measures are reliable.

Behavioural safety can be seen as a facet of correctness of a system’s functionality
and as a behavioural property of a system and its environment. Specialising the
notion of goal from page 12, safety goals specify this property to treat hazards and
constrain M to reduce specification defects (i.a. unexpected stimuli, T2 on page 36)
and operational defects (i.a. system defects, T1).

Definition 4.9 (Safety Goal) Given a hazard X and a mishap ¢ (Definitions 4.7
and 4.8), a safety goal v is a behavioural property (Definition 2.15) defined as

Y = P>pr[GX] (avoidance goal), (4.3)
Y = P>p:[G—d A GF—] (mitigation goal) or (4.4)
Y =P<i—p[F((d VXU k(b Vy))] (alleviation goal) (4.5)

with k €N and 0 € Pr < 1.% Let T be the set of safety goals and T= /\yEFY'

An avotdance goal requires, with a lower bound of probability Pr, that the hazardous
state is never reached. A mitigation goal requires, with a lower bound of probabil-
ity Pr, that the harm state is never reached and the safe state is visited infinitely often.
An alleviation goal demands, with an upper bound of probability Pr, that the harm
or hazardous states are visited no longer than a duration k (cf. Figure 4.5). Note that,
unlike in Definition 4.8, Pr represents the risk threshold to be met by M for a specific
safety goal. Example 4.3 applies Definition 4.9 to Example 4.2.

Example 4.3 (Safety Goals for a Car Airbag and a Car) From hazard Xunexpexp, we can derive a
matigation goal

Ytreat.distract = PZO.?O [Gﬁ(released >= 2 /\ TTLCar5 = drive /\ atdriver,seat)

A GFﬂ(ﬂfgoomscrashed /\?Szoms(mAirbags = failing))]

as defined by Formula (4.4). This goal represents a constraint for the safety measures to
be taken to treat the hazard XunexpExp-

Continuing from Ezample 4.2, the further development of an alleviation goal (For-
mula 4.5) for the mishap dcoltide can be represented by the formula

P>0.9999[G(crashed « F=>°°™ qbsorbedBydrvr,airb)]

The conjunct absorbedByarvr,airt = Teleased = full A\ atariver,seat describes the outcome
of the airbag, itself being a safety measure to alleviate Gcovtiae (cf. Ezample 1.2).

5The ALARP concept, mentioned on page 37, might constrain the choice of a guidance level for Pr.

57

1

4. Behavioural Safety: Concepts

fail*;(fail|/fs™)

pr| y df A—H fst

Dg +

(uslfail)*+

Figure 4.5.: Abstract state space L for the abstract transition system M, with operational
(—df), defective (df), hazardous (#), harm (®) and safe (—#) states, and the
safety-related action classes (us)age for Mys.-actions, fail for My.j-actions, (f)ail-
(s)afe, (pr)eventive, (re)pair, (ma)intenance and (pa)ssive for Msaye-actions, as
abstracted from M via o : M — M accepting states are encircled twice

Definition 4.10 (Behavioural Safety) For a specification S = (V, M,T'), we define be-
havioural safety as the degree of freedom from known hazards, given by

» max{|G|| G CTAM E G}
a T

BS(S) (4.6)

We speak of T'-complete behavioural safety of S if BS(S) =1.

Hazard Analysis using an Abstract Transition System Given ® and H, with at least one
X € H for each ¢ € O, we define an abstract state space £ (Definition 2.11) according
to Figure 4.5 for the remainder of this work. Furthermore, Figure 4.5 shows an abstract
transition system M (Definition 2.12). M classifies runs of M, starting from a given
operational situation (Definition 4.2), as abstract runs possibly containing the harm
state. Moreover, a mode of M is hazardous whenever its behaviour intersects with
the hazardous state in Z.

Corollary 4.2 Behavioural safety amounts to verifying M =T, that 1s, [M] C [T].
Safety goals specify safe runs of M or abstract runs ending in an accepting state
of My. We can deduce that an abstract run p, of My is safe if po ET.

58

4.5. Responsibility and Restriction

4.5. Responsibility and Restriction

Responsibility comes into play whenever the environment and the system are able to
autonomously restrict their behaviour observable in M to fit [[ﬁ] without having to be
constructively enforced. Responsibility indicates situations where such enforcements
are required. The following discussion is dispensable if [M] C [[ﬂ].

Definition 4.11 (Assumption/Guarantee Pair) An assumption/guarantee (A/G) pair is a
pair of coherent behavioural properties (Definition 2.15): an assumption about
environment behaviour and an associated guarantee of system behaviour.

Enhancing the notion of safety goal, one can state an assumption and a guarantee (Sec-
tion 2.2.2) for each safety goal according to Definition 4.9:

Definition 4.12 (A/G-based Safety Goal, Safety Requirement) We call a safety goal v €
I' A/G-based iff there exists an A/G pair (As,Gr), denoting As — Gr with
(As ANGr) — v. We also call (As,Gr), a safety requirement.

The conditional As — Gr requires that the system Ag fulfils its safety-related guar-
antees whenever the environment Ag fulfils its assumptions. Moreover, A/G pairs
induce probabilistic responsibility relationships and enable underspecification (i.e.
k-completion) in Ag to support, for example, degrees of freedom for development:

On the one hand, responsibility can restrict the environment, the system can rely
on ([As] N [M]). By convention, the system is no more required to fulfil certain
guarantees if the environment violates the associated assumptions. Any run, where
a defect, obstructing a guarantee, occurs after an unezpected stimulus, violating the
associated assumption, ceases to fall under the responsibility of the system.

On the other hand, underspecification can be hazardous if the responsibility to avoid
unexpected stimuli for the system is imposed on the environment. Hence, in situations
where the environment abdicates from its responsibility, the system can be obliged to
provide safety measures. The responsibility to reduce hazardous reactions should then
be taken by the system.

Definition 4.13 (Practicable Behavioural Safety) Given that " only contains A/G-based

safety goals according to Definition 4.12, we adapt Definition 4.10 to obtain

max{|G||GCTAME A
T

e (As, Gr)y) wn

BGpract(S) £

In spite of this definition, a practicable set of A/G pairs should impose safety measures
in the system in as many as reasonably practicable situations where Ag violates the
assumptions. Then, BSpac expresses that S is practicably safe although s A/G
pairs tolerate hazardous runs beyond these situations.

The interest to fulfil an assumption correlates with the value (e.g. safety measure) of
the associated guarantee. We can strip down assumptions into conjuncts such that it is

59

9

4. Behavioural Safety: Concepts

possible to handle easily violable conjuncts (i.e. too strong, cf. page 53) and to exclude
heavily violable conjuncts (i.e. too weak) from responsibility assessment. This step
can raise the possibility to err in estimating the strength of assumptions and their
probability of being violated in WW. Moreover, one may come across misperceptions
of responsibility where strong assumptions are ignored by human operators and weak
assumptions imply the automation paradox (Section 1.1). Weakened assumptions
require more extensive (also conservative) safety measures to be realised by the system
than strong assumptions do. Supplementary, Example 4.4 applies Definition 4.12.

Example 4.4 (Negotiation of Responsibilities for a Car Airbag) Suppose that we have the safety
goal Yireat.distract from Ezample 4.3. We can derive the A/G pair

(As, GT)treat.distract = P<x[AsBody] — P>, [GrBody] with
As = Px[AsBody] = Po.001[Fcrashed]
GT‘ = sz [GTBOdy] = Ytreat.distract

The formula AsBody shows that the essential responsibility to treat Gaistract and XunexpExp
1s left over to the system.

In summary, the strengthening of guarantees (constraining the set of hazardous reac-
tions), the weakening of assumptions (relaxing the set of specified stimuli), and the
regard of unexpected behaviour (complementing the set of specified stimuli by unex-
pected stimuli and specifying safe reactions for the latter) are advisable to make S
safe. The proposed method helps obtain a safe specification with respect to the A/G
pairs. In particular, A/G pairs can express the treatment of maloperation. This way,
practicable behavioural safety covers safety by treatment of maloperation.

4.6. Safety Measures

This section discusses how to achieve practicable behavioural safety. Given that S =
(V, M, T), we can distinguish two strategies of hazard treatment:

1. Prevention by avoiding causal factors (e.g. defects) and, thus, hazards.

2. Maitigation by handling tolerated causal factors through preventive measures,
and by alleviating mishaps through passive measures.

Definition 4.14 (Treatment) LetS’' = (V', M',T") be a specification. We call S ~1 S’
a treatment of a hazard x and its mishap ¢ towards the A/G-based safety goal
vy € TUT’ iff the transformation T (Section 2.2.1) establishes the condition

BGpract(S) < BGpract(S) N M (As, Gr)y N M’ = (As, Gr)y

This definition allows transformations according to the strategies to be applied to the
operational (Section 4.6.1) and descriptive (Section 4.6.2) part of S.

60

4.6. Safety Measures

4.6.1. Treatments for Mode Transition Systems

To follow the two strategies in M, hazards can be treated in two ways:
1. Reduction of specification defects (Definition 4.4) such that M|, &= T

2. Compensation of operational defects (My,, Definition 4.5) by constructing safety
measures in Aslsave and assigning operator responsibilities to Ag|save.

The next two paragraphs introduce two basic techniques, called completion and in-
determinisation of a transition system:

Completion aims at fully specified modes in M to reduce hazardous k-completion.
Mgy can add defective behaviour to Myee. Mg,ve can add safe behaviour whenever
Mse allows k-completion: Aglsave enhances Aglyse fail and Aslsave enhances Ag|yse,fail -
M use,save Teduces defective system behaviour and permissive environment behaviour.
For task T2 (see page 36), completion enables safety measures for unexpected stimuli.

Indeterminisation complements defective actions (i.e. pre = ¢, trig = L, permis-
sive) by safety actions (i.e. pre = ¢,trig = T, coercive). By Equation (4.1) on
page 48, this indeterminacy is assumed to be resolved in W' such that the actions in
Mi,ve are chosen prior to those in Mg or Mgyj.

Patterns In order to treat causal factors in both agents, M can be enhanced by
1. fail-safe control actions in Aglsave, depending on system defects, and
2. preventive or passive actions in Mg,ye, independent of system defects.

Among the fail-safe control actions, we can distinguish fail-operational control ac-
tions, which activate alternative parts of M,sc to maintain functionality, from fazl-
silent control actions, which deactivate parts of Mys to achieve stability® (Sec-
tion 3.3). Preventive actions help treat reducible hazards regarding causal factors
of the system and the environment at once; mitigation takes place in the hazardous
state. Passive actions help treat irreducible hazards where the harm state can still be
alleviated; mitigation takes place in the harm state.

Completion applies to both strategies, indeterminisation helps with the concep-
tion of preventive and passive safety measures. Table A.4 describes several MTS
patterns, for example, repair MTS and safety cover:

Repair MTS in Aslsave: To reduce random operational defects (Section 4.2.1), we
can construct an MTS Mrsepair. Mrsepair has a repair mode’, idling the defective mode
mq of My through an action ey, and a control action refinish to return My to an
operational mode m. delay can define the maximum time required to repair M.

Safety cover: To reduce maloperation, a cover in Mg,,. modifies possible actions of
Ag such that the hazardous state is no more easily reachable.

6Hence, in a safe mode, the system can be defective.
" Repair actions belong to Msave, ideally start from safe modes, and take place in Ag and As.

61

4. Behavioural Safety: Concepts

4.6.2. Treatments for Behavioural Property Assertions

This section explains the treatment of missing or defective avoidance goals—see Equa-
tion (4.3)—which are considered as hazardous specification defects.

A hazard x can be treated by adding or revising an A/G-based avoidance goal y
(Figure 4.6a): If vy ¢ T (x motivates y), we can extend I' by adding y. If y € T
(x obstructs y), we can revise a violable assumption or guarantee by an alternative
decomposition of y. In both cases, we are required to make the assumption and the
guarantee explicit. In order to revise a safety goal, we can

1. identify unexpected and hazardous behaviour
2. weaken a violable assumption and
3. strengthen a low-grade guarantee.

If we can not rely on the environment to fulfil the assumption, the system may take
responstbility. The treatment of property defects can require changes in Ag and Ag.

Pattern The completion pattern helps treat specification defects such as violable
assumptions and misperceptions of responsibility (cf. page 53): Given a hazard ¥,
a safety goal v and an A/G pair (As,Gr)y, Table 4.3 depicts property defects and
treatments in I". The treatments consist of identifying an assumption, being too strong,
or a guarantee, being too weak, by characterising hazardous unexpected stimuli (Ex)
and defective reactions (Df). This assessment leads to the derivation of preventive
weakened assumptions As, and of preventive strengthened guarantees Gr including a
descriptively specified safety measure Gr'. Suppose the following axioms hold

e for definition: As = AsV Ex, Gr = Gr A Gr’

e as assumptions: —(Df A Gr), Gr' — —x, ~(DfAGr'), =(ExA\As), —(yAx),
((GrVDf)Ax) ¥ L

Corollary 4.3 The treatment for case 2 in Table 4.3 captures the most general of
these cases and yields a revised A/G pair (As, Gr)y.

By the formula As — Gr/\ (As AGr) — 7, the safety goal v can now be alternatively
imposed on M. From the axioms, we derive As — As and Gr — (Gr /A —x) for
compatibility with the original safety goal in the cases 1 and 2 of Table 4.3. Given
that V = Vipeciied and V' = Vige, Figure 4.6b illustrates the revision of A/G-based
safety goals based on [V U V'].

Completion helps treat property defects such as independence, domain maintenance
and run conformance assumptions® easily violable by Ag: For violable independence
assumptions, the treatments for the cases 1 and 4 can introduce variables in V' which
may still be disregarded in M. The treatments require to extend S via V ~»1 V' and

8See page 53. As described in Appendix A.8, such assumptions disclose an invalid system bound-
ary (Tables A.18b and A.19b), invalid ranges (Table A.19a) or invalid behaviour of As.

62

4.6. Safety Measures

Case (with respect to x and M)

Assessment Result (w.r.t. x)

Treatment (i.a. preventive)

0 Vp € [M]: M as specified, Gr safe, no
T pEAs— (GrA—y) decision on As none
3 [M]: M .generates hazardous re- As & Gr,
1. actions, Gr too weak, no
pEAs — (GrAY) decision on As safe strengthened guarantee
M generates hazardous
. As — Gr,
Jp € M]: reactions for unexpected —~ .
2. . R weakened assumption and
pE (FAsAEx) = (GrAY) stimuli, As too strong and
safe strengthened guarantee
hazardous, Gr hazardous
M ge.nerates hazardous As & Gr',
dp € [M]: reactions for unexpected —~ .
3. . . . weakened assumption and
pE (FAsAEXx) = (mGrAx) stimuli, As as in case 2, no safe but deviating guarantee
decision on Gr, Df negligible €8
. M generates hazardous de- ,
4. 30 € IMI: fective reactions, no decision As = Gr',

p E As = (—Gr Ax /A Df) safe but deviating guarantee

on As and Gr

Table 4.3.: Property defects for hazard x requiring revision of an A/G-based safety goal y

to complete S using variables in V' \ V. To reduce the change impact on M, one can
instead indeterminise® As by Mge. The treatments for the cases 1 and 4 handle
assumptions or guarantees not even to be obstructed or violated to be hazardous. The
treatments for the cases 2 and 3 also apply for violable domain maintenance and
run conformance assumptions.

Table 4.3 shows a perspective where the system takes responsibility. Treatment can
be different if the responsibility is shifted to the environment: For the cases 1 and
4, we can strengthen the assumptions. For the cases 2 and 3, we can ignore the
handling of unexpected stimuli. Such a shift, however, may raise misperceptions of
responsibility. Finally, Example 4.5 shows how MTS patterns improve a specification.

9See Section 4.6.1. As described in Appendix A.8 and Table A.18c, each realisation of Aé resolves
this indeterminacy by taking the right choices according to the given priorities and probabilities.

63

4. Behavioural Safety: Concepts

motivates or obstructs @

misperqep'(:ion of
responsibility
Sof A,

(2)

weakened

. -Gr
assumption

guarantee

(b)

Figure 4.6.: Revision of a safety goal y: (a) logical relationships, (b) sets of runs

Example 4.5 (Safety Measures for a Car Airbag)

The safety goal Yireat.distract 0f BEzample 4.3

constrains the instantiation of M'TS patterns for the treatment of the referenced hazards.
Ezample 2.1 applies the pattern ‘repair action” where re instantiates to repairy. In ad-
dition, we now use the pattern “fail-safe actions/fail-silent” twice (i.e. for the defective
control actions T and maintaing; re instantiates to repairz).

ng

exp.and

€|shutdown

Remarks: To reify active and inac-
tiwve physical states of the airbag
mechanism, we introduced the
variable active : B. The ac-
tion fsa does only compensate K-
completion but leaves a 1% prob-
ability for expands. pre.e s left
undefined as Ag is implicit.

Practicable behavioural safety
(BGpract(S) = 1) of the airbag
specification requires the success-
f’ul check Of I = {Ytreat.dist'ract}v

Safety Action Specifications of the MTS Airbags @ Airbagg, (only actions in solid lines)

Label pre delay trig prio 7 post

fs< T 0 1 1 1 NOP

maintain gas # full 10 1 1.5 .95 gas := full

maintaing gas # full 10 1 1.5 .01 gas := defective

fsms gas # full 10 1 1.5 .04 NOP

fs2 T 0 T 1.5 .99 NOP

repair T 0 1 1 1 gas := full, released := no

€ —active 0 T 1 1 NOP

shutdown active 0 T 1 1 actwve := L

repairy prere 0 1 1 1 gas := full, released := no, active := T

64

4.7. A Stop Criterion for Safety-oriented Validation

actually safely
specified specified
and and
modelled modelled
’
(v < = actually realiseiia;iz
, :
virtually observable \\\[[M]// r?::f;:gd [[v1 operated

Figure 4.7.: Consistency of ', M and W after a chain of treatments S ~», S’

4.7. A Stop Criterion for Safety-oriented Validation

Based on the set 7 (Definition 4.8), M }£ T indicates that S is hazardous (S # S');
the more that has to be done to identify hazards, the stronger it can be stated that S
is safe (S = §'). The successive improvement of behavioural safety can be regarded
as a chain of treatments S ~, S’ (Figure 4.7). The enhancement of I' and M towards
S' with M' T can suffice to declare S = S’. Note that defect treatment by Mgave
leaves a residual defect model in S’. In summary, the Definitions 4.10 and 4.13 yield
a stop criterion for treatments (Definition 4.14) in an iterative procedure.

4.8. Notes and Further Reading

Control loops or plant settings similar to Definition 4.1 and Figure 4.1 can be found
in the literature.!® Operational situations have been modelled in Dobi et al. (2013).
The criteria for the defect taxonomy are motivated by IEC Std. 61508 (2011), ISO
Std. 26262 (2011), Borcsék (2011), Neumann (1995) and Gleirscher (2011, 2013b):
Borcsok investigates criterion 2a using the term recurrence. Parnas et al. (1990) and
Snooke and Price (2011) support the treatment of software failures as random failures
unless their causative faults are detected. For the criteria 3 and 4, dependent defects
are discussed by Borcsok, and single and multiple point failures in ISO Std. 26262
(2011). For criterion 5, Damm and Peikenkamp (2004) discriminate systemic and
physical failures. For criterion 6, Pock (2012) considers spurious trips (unacceptable
execution or commission of system actions) and failures on demand (unacceptable
suppression or omission of system actions; see also McDermid 2002). For diagnosis
at runtime, Lunze (2010) regards errors in measurement and state observation. As
human operators are often responsible for recognising hazardous events and reacting
with safe control, Leveson et al. (1997) study the detection of mode confusions!!
making operators prone to maloperation; see Example 4.6. Maloperation is often
not reducible to a misperception of responsibility whereas a lack of safety measures

10gee, e.g. Feather 1987, Henzinger 2000, Jiirgensohn 2007, Leveson 1995, 2012, Pyle 1991, Secchi
et al. 2007.
11Mode confusions can be seen as an appearance of adaptivity as discussed by Broy et al. (2009).

65

4. Behavioural Safety: Concepts

usually is.

Example 4.6 (Maloperation of Electric Light) The observation of “light is off” could make a
human assume, reason, act and err twice: (i) “no electricity — light in deactivated mode
— operate switch” or (ii) “broken bulb — light in defective mode — exchange bulb.”

State guide words were inspired by Luksch (2012), mode, action and event guide
words by HAZOP (Section 3.2) and Stalhane et al. (2012). In addition to guide
words, Rasmussen (1997) describes categories of hazardous elements and causal factors.
My notion of hazard goes along the lines of Pyle, Rasmussen, Leveson (1995) and
Ericson (2005). Definition 4.8, however, accepts safety reasoning to be carried through
inductively or deductively. Moreover, it does not entail x — ¢V x « ¢ because ¢, by
further abduction, may be caused by other hazards and x does not necessarily have
to lead to ¢. The calculation of hazard characteristics (see page 56) from MARKOV
chains is discussed, for example, in (Bércsdk 2011, Section 13.2).

Safety properties are used in formal approaches to testing and reactivity.!? Al-
though avotdance goals (Definition 4.9) are closest to Lamport’s notion (cf. Sec-
tion 3.1), the present approach takes a probabilistic view and considers mztigation
goals with a liveness conjunct as well as alleviation goals. As emphasised in the
Sections 1.1 and 4.4, such goals characterise safety as the degree of freedom from
hazards and mishaps. In contrast, functional safety is concerned about the reliable
design and realisation of electronic and software-intensive safety measures as opposed
to the identification of such measures and the specification of their behaviour. In
summary, T can be seen as a variant of Pyle’s SAFE(U, V, W) predicate (Pyle 1991).

The Definitions 4.12 and 4.13 were motivated by Broy (1998) who applies A/G
style to assert relationships among behaviours; obstructions of and inconsistencies
among property assertions are investigated by van Lamsweerde (2009). Probabilistic
computation tree logic has been applied in safety analysis of technical systems by
Johnson (1993); probabilistic reachability analysis is explored, for example, by Forejt
et al. (2011) and Baier and Katoen (2008).

The realisation of MTS patterns (Section 4.6.1) by safety-related subsystems de-
pends on the kind of defect. This realisation can require state observation or runtime
diagnosis of behavioural properties (Definition 2.15) such as

e system defects, for the achievement of fault tolerance of the system, or
e environment defects, for preventive or passive measures in Aglsafe.

To such patterns, Martinus (2004) and Géartner (1999) show techniques'® and mecha-
nisms for fault tolerance. Moreover, fault indicators (see page 51) abstract from state
observation, fault detection and diagnosis (Section 2.2.3). Such variables help specify
safety measures, resolve indeterminacy and reify priorities among actions. As an ab-
straction from constructive measures (Figure 3.2a,b), Aslsave can be realised by any

128ee, e.g. Broy and Stglen 2001, D’Ippolito et al. 2011, Peled et al. 1999, Peleska 1996, Rusu et al.
2005.
13geveral techniques can be required to make Myse safe and compensate Mg,; .

66

4.8. Notes and Further Reading

technology, for example, by software. Measures for task T2 (see page 36) can incorpo-
rate an environment model; measures in Ag|safe usually consist of training, guidance
(e.g. warning signs and signals) and protection mechanisms as in Aglsafe. Luksch
(2012) describes safety directives to be followed by human operators to justify strong
assumptions. Pyle (1991) explains two kinds of functional measures, called interlocks
and guards, to be implemented by computer-based safety-related subsystems.

Broy and Stglen (2001) define a basis for refinement calculi to be applied to verify
the application of transition system and property treatments. For Section 4.6.2, van
Lamsweerde (2009) discusses property patterns for goal refactoring and refinement,
for example, refinement due to lack of control or monitoring, alternative refinement,
treatment of goal conflicts and obstacles, and optimisation.

Suppose that we have a refinement relation ~» C M x M. We write M ~» M’ (spo-
ken “M is refined to M") to denote [M] D [M’]. A defect model can be obtained,
for example, through refinement of an underspecified (i.e. either incomplete or non-
deterministic) M, or through indeterminisation of M. In the latter case, M)|yse fail
might be no refinement of M|,se because defective actions can generate runs devi-
ating from the set of specified runs [M|ysell (cf. Definition 4.6). Indeterminisation
(Section 4.6.1) can violate refinement according to Broy and Stglen even if we assume
safety actions to be performed prior to hazardous actions. Nevertheless, if we can
expect that M|yee ~» M'[yse and M|yse v M|yse fail save = M, refinement verification
should take place to show these two relationships.

A validated specification S’ can be expected to be a conditional refinement of S,
given that no defective or hazardous action is chosen in any realisation of S’. In other
words, any hazardous but correct action possible in W might change or even cease
in being performed in W'. Hence, hazard treatments cannot generally be considered
as refinements of a system’s functionality that maintain correctness (see also Gartner
1999). In summary, Definition 4.14 requires a transformation to maintain or increase
the degree of behavioural safety.

67

Behavioural Safety: Procedure

This chapter describes a possible procedure for using the presented concepts. Fig-
ure 5.1 gives an overview, and Figure 5.2 at the end of this chapter depicts the stages,
steps and sub-steps of the procedure including the elaborated artefacts.

Contents
5.1 Modelling Stage: Understand System 68
5.1.1 Step 1: Model System and Environment 68
5.1.2 Step 2: Derive Defect Model 70
5.2 Analysis Stage: Identify Hazards 71
5.2.1 Step 3: Identify Potential Mishaps 71
5.2.2 Step 4: Assess Causal Factors 71
5.3 Assurance Stage: Improve System Functionality 12
5.3.1 Step 5: Specify Safety Goals 72
5.3.2 Step 6: Plan and Design Safety Measures 72
5.4 Notes and Further Reading 73

5.1. Modelling Stage: Understand System

In this stage, Step 1 sketches® how to build M|yse, and Step 2 focuses the derivation
of defects from Ms. and their modelling in Myg,;.

5.1.1. Step 1: Model System and Environment

Prerequisite: Start with a set R of property assertions (R,) and functional require-
ments (R¢). Task: Set up M|,se and I' by performing requirements elicitation, analysis
and specification (Section 2.1). Invariant: Maintain M|, =T.

! Methods applied for system specification (Section 2.2.2) are no primary subject of investigation.

68

5.1. Modelling Stage: Understand System

Mod

Use Cases (1.1),

Step 1: g
el System & Prapf.’n‘y Requirements | jse Cases Ry Safety-related Assertions (1.5)
Y < Assertions R, Knowledge R
Environment

M Iuse
" Step 1+ 2:
Actions (1.4) Model Validation
?tep Z P Step 4:
Derive Defect Specification and Defect Model S
Assess

I\'I\I/lold-el > Safety Goals I’ World Model le—— Causal Factors
fail (if any) M= A ® As a
Operational Situations (2.4) Causal Factors (4.3)
/\ Hazards (4.6
Step 3: / .
Identify S1.:ep 5:
Potential Specify Safety
Mishaps \ Hazard Knowledge / Goals
Mishaps (3.2), Mishaps, Causal Hazardous Runs Goals, Assumptions

Further Operational

Factors, Hazards

and Guarantees (5.

2)

Situations (3.3) Step 6:
Legend: Plan & Design
genc: Safety Measures
T = 1
Validatio Safety Measures (6.1)
—u Safe Specification S’
Artefact Flow World Model Realisation
—_— Safety Goals '’ Step 6 ,or d, ode] P o
o . [« M =AT®A% < > w
Validation Link Model
Conformance Link Validation, \/—\
V&V

1.2.

1.3.

1.4.

Figure 5.1.: Overview of the procedure

. Transform R into use cases.

To model interaction via the safety-related interface, determine V from prelim-
inary physical interface designs and from domain analysis. Take note of domain
properties. Here and in the following steps, take care that the abstraction in M
stays efficiently high? but reasonably precise for validation.

Derive tactics of Agluse and functions of Agl,se from the use cases (Step 1.1)
and from R,,. According to Definition 4.1, arrange functions and tactics in two
hierarchies by extracting their independent, concurrent and common parts at
an appropriate® level of abstraction.

Going top-down the two hierarchies, specify abstract modes and actions (Def-
initions 2.11 and 2.12) of the system and the environment at selective levels
of abstraction. Going bottom-up the hierarchies, model the behaviour of both
agents: for each MTS at the lowest level and for each abstract MTS, identify
actions and their repetition and order by the help of modes, again at an ap-

2Finding this level requires experience in domain modelling, expert knowledge and should be gov-
erned by usefulness for safety analysis as well as size and complexity of the resulting MTS.

69

5. Behavioural Safety: Procedure

propriate level of abstraction.? Capture states by using and extending V and its
types.

1.5. You may start with knowledge of safety goals (Definition 4.9). If applicable, clas-
sify the property assertions in R, into (i) safety-related assertions and (ii) other
assertions. Formalise class (i) to initialise T

Repeat the Steps 1.1 to 1.4 to achieve reasonably complete hierarchies. Postcondition:
M |yse contains all functionality to be analysed. The procedure allows including results
from earlier iterations (e.g. safety measures) into M.

5.1.2. Step 2: Derive Defect Model

Task: Model operational defects (Definition 4.5, Section 4.2.2). Based on M]|,ge,
guess realistic (i.e. design- or realisation-based) defects and set up My, using the
following techniques:

2.1. Extend V by fault indicators (e.g. functional and mode channels) to capture
physical side effects in Mse. Modify actions and MTSs with the help of Ta-
ble A.2. Such knowledge may also be derived from Step 3.2.

2.2. Capture defective actions and modes by abstraction from, for example,

a) reliability analysis® of an architecture design

b) failed test runs during system testing or

c) hazardous specification defects known from Step 4 of previous iterations.
Use Table A.2 to derive fragments in Mg, for a), b) and c).

2.3. Identify operational situations (Definition 4.2) to describe initial states to be
manipulated through fault injection and to be used in Step 4. These situations
can be derived from use cases (i.e. their preconditions and goals) in Step 1.1 or
from Step 3.3 of previous iterations.

2.4. Introduce fragments by mutation of M according to Table A.2:

a) Identify and ezploit underspecification of M|use fail by identifying lack
of domain coverage and weakening assumptions (Step 4.4) on monitored
variables. Transform this tncompleteness being subject of k-completion
into defective actions.

b) Add indeterminacy®, for example, stimuli-driven from disregarded chan-
nels and fault-driven from disregarded self-managed variables (Step 2.1).

c) Document dependencies by adding mode channels (Step 2.1).

Postcondition: Various operational defects are modelled as fragments in M.

8Techniques such as FMEA and FTA for answering these questions are discussed in Section 3.2.
4Defective actions overrule specified actions because of the assumed priorities, cf. Equation (4.1).

70

5.2. Analysis Stage: Identify Hazards

5.2. Analysis Stage: Identify Hazards

This stage guides the reasoning about hazards. Step 3 helps study mishaps and Step 4
their causal factors.

5.2.1. Step 3: Identify Potential Mishaps

Task: Identify state constraints to specify mishaps. For each action a (Step 1.4)
descending top-down the system’s hierarchy (Step 1.3):

3.1. Determine whether a affects channels defined in the Steps 1.2 and 2.1.

3.2. Specify mishaps ¢ using state guide words from Table A.3 based on the chan-
nels affected by a. Where needed, extend V and its types to reify the harm
state. Return to Step 2.1 to capture side effects identified here.

3.3. Select and refine operational situations for each ¢. As in Step 2.3, previous
iterations and preconditions of use cases (Step 1.1) may help.

Postcondition: Mishaps are described to define the harm state.

5.2.2. Step 4: Assess Causal Factors

Assumption: Runs leading to mishaps contain some information about causal factors.
Task: Identify causal factors based on M)|yse fil. Based on Section 2.3.2, refine and
combine these factors to form hazards. Find out how, when and why a hazard can
occur (e.g. because an assumption about Ag is violated). For each pair of mishap ¢
(Step 3.2) and operational situation o, (Step 3.3):

4.1. Set L9 ={0 | 0x(0)}. From any computation tree CT (Definition 2.2) returned
from successfully checking M|yce fail = EF$, determine a set CT' C CT of short-
est and most probable runs satisfying Fo.

4.2. In each run p € CT’, check for causal factors: top-down the hierarchies (Step
1.3), apply guide words from Table A.1 to search for causal events e in ply,,
modes m, actions a and complez actions (Definition 2.10) observable in p.

4.3. To filter and refine these search results, use further guide words.

4.4, Classify each causal factor by checking, according to Figure 4.4, whether it

e obstructs assumptions or guarantees in I' (cf. case distinction in Table 4.3).
Then, put it into the set HinUHop of hazardous knowable defects. Reduce
the causal factor to an environment or system defect (Section 4.2.1).

e makes use of My, (Step 2) or k-completion. Then, put it into the set H,,
of hazardous operational defects. The defect taxonomy in Section 4.2.1
allows further classification.

71

5. Behavioural Safety: Procedure

e neither obstructs assumptions or guarantees in I' nor uses Mg,;. Then, put
it into the set H of hazardous unknown specification defects.

4.5. Specify hazards: combine causal factors in a past formula® x separating haz-
ardous from safe performance of a, activation of m or occurrence of e. Where
needed, extend V and its types to reify the hazardous state.

4.6. Prioritise the hazard x by quantification according to page 56.

Postcondition: Causal factors are known and combined to obtain the set H of hazards.

5.3. Assurance Stage: Improve System Functionality

In this stage, Step 5 and Step 6 guide through the transformation S ~, S’ to treat
hazards known from the analysis stage.

5.3.1. Step 5: Specify Safety Goals

Task: Perform a treatment I' ~», T'" (Section 4.6.2) by transforming 7 and ® into a
specification of safe behaviour. For each hazard x € H and each mishap ¢ € ®:

5.1. Based on Definition 4.9, transform x or ¢ or both into a safety goal y. This
step integrates the results of the Steps 1.5, 3.2 and 4.5.

5.2. Clarify responsibilities for y: Derive an A/G pair® (As,Gr), according to

Definition 4.12. Assign the resulting assumption and guarantee to the tactics
and functions related to each action a and event e as referenced by x (Steps 4.2
and 4.3). Where needed, extend V and its types to reify the safe state.

5.3. Based on Step 4.6, annotate y with the risk at which it is allowed to be violated.

5.4. By proving T ¥ L, assure that the safety goals are consistent. The check of
Step 4.4 and M = (I’ Ax) determines whether x requires existing safety goals
to be revised. The same has to be done at the level of A/G pairs.

Postcondition: An A/G-based safety goal for each hazard and mishap is specified.

5.3.2. Step 6: Plan and Design Safety Measures

Prerequisite: To simplify the procedure, M, and Mg,y have to be empty at the
start of an iteration. Hence, transfer an M,,., derived in a previous iteration, to M,s.
and remove or hide the part” of My, treated by Mgue. Task: Perform a treatment

5Such an expression can refer to (abstract) states (events, modes) and actions missing, being active
and performed by functions and tactics in a hazardous combination.

6Based on Step 4.6, this step identifies reasonably practicable situations as discussed in Section 4.5.

TThis part is compensated by existing safety measures formerly in Msave and now in Myge. Verifica-
tion and architecture analysis (Step 2.2) assures that this compensation is realised correctly.

72

5.4. Notes and Further Reading

M ~», M’ to increase behavioural safety (Section 4.4). For each A/G-based safety
goal y € T, take measures (i.e. functions, tactics, actions and modes):

6.1. Use v and results from Step 4.2 to modify Ms. and compensate Mt.; by Maave
using the patterns from Table A.4. Take care to identify and update MTSs
related (i.a. via mode channels) to MTSs affected by superimposition of M,ye.

6.2. If Step 6.1 results in infeasible transformations, choose an alternative way of
resolving responsibility: repeat Step 5.2, identify alternative decompositions?,
replace defective A /G pairs using Table 4.3, and proceed with Step 6.1.

6.3. By Definition 4.13, estimate the degree BSact(S) of behavioural safety. Given
a set of initial states or an operational situation: Do the safety measures bring M
back to the safe state? Is the safe state stable, do the safe modes of M assure
a stable safe state? Given modularity of composition and behavioural refine-
ment: does a safety measure perform as tndependent as required by I'? Identify
dead modes by checking for unproductive behaviour fulfilling EFGe.post. Iden-
tify underspecification by checking for chaotic behaviour fulfilling EGFk.post.
Unless BGprace = 1, return to Step 4.1.

Postcondition: The specified safety measures result in BGp,+ = 1 and S can be
declared to be S'.

5.4. Notes and Further Reading

For Step 1, Broy (2005, 2010) and Schéatz (2008) describe ways to build a specification
based on a behavioural model. Through the Steps 1 and 5, R and R, can become
aligned by using V in M and T.

Supporting Step 4.4, Section 4.5 investigates the violation of an A/G-based safety
goal v by M|yse fail, and Section 4.6.2 discusses the obstruction of y by a hazard
X. For the Steps 5.1 and 5.2, Dwyer et al. (1999) and Dobi et al. (2013) discuss
how to derive behavioural property assertions. Step 5.3 corresponds to determining
integrity classes (cf. page 36) for safety goals. These classes can represent reliability
requirements for safety measures. Some of the patterns to be applied in Step 6.1 define
such requirements for Aslssye-

For Step 6.3, Schulz and Peleska (2010) apply probabilistic reachability analysis for
train control systems: within the safe state, these systems are often required to avoid
any unnecessary activation of a stable mode.

8Determine, which parts of Myse and which uncompensated parts of Mg,; can be addressed by the
system, the environment or both agents.

73

Procedure

5. Behavioural Safety

[]

ampadoid a1y Jo sdegs-qns pue sdajs ‘safejs Jo MaIAIBAQ °g'G 2InSIg

~ —

spJezeyasiuoud

/I\I/

suoljasse »i

parejai-Aiyes

suonJasse
Auadoud
aimde) T

suoijoe
pue sapow
Ayads y'1

$2119€] pue suol}

-ouny Ajnuapl €1

(\)
aoeds ajels
ay1 Suiwuoj sa|qeuep

+

sa|qeLen
aunided 7’1

ssajuesens [| | PueAsmueno oy
¢ + suolasse piezey
MOJ} UOIE WUl o1 pue Apads gy
10 u%mwwm_m o_wm_o. :puadal Adusssisuoo jeod
’ 104 P3YD ¥'S %
uoinesal 1xau 4oy indul +mu::on $1030B4
A d |esnea ajqejeasy
Hgeqo < o3splezey
aulwIRPR(€S npsy by
uonesyoads ajes »
(sonoey
A pue suoipuny 0} S3Nsal yoieas
Y sited /v udlsse) piezey Sl €'y
sanyjiqisuod
sainseaw A1ajes -saiAjuep 7's
pue syuswieas
Apadoud jo wons
Apien payd €'9 s|eo8 A1@)es ‘suoljoe ‘sapow)
+ 510198} [ESNE)
Anpqisuodsas +
— josuondasiadsiw sieod Aajes
aAj0s3Y 79 SAIRA T'S $1010e} |esned
10} yduess z'y
SUOI1JE pue SIPO W 3JES +m_m>_m:m
V Ajjigeyoeas
uny 7'y
sainseaw
P A1ajes Ajdads 19
sdeysiin
saunsean
A
A1ajes usisaq pue ueld sle0o Aiajes “_Hnm siope4 [esne) ssassy
:9 dais . S ip dais

[enualod Aypuapl

i€ dais

suoneinw
20npoU| &'
s9181S
lerui aAnd9pep | e
/ﬁr Aynuapl £
sa1e1s |eniul
‘suonenyis jeuoljesado
A
suon el
\4 snoinaid
suonjemyis puesyinsai
|euonesado Suiisay ‘sishjeue
aulyal Ajqeras
puea3|ss €€ apnpu|Z'
A
sdeysiw $10949
Ajuap| z'e apisaimde) T'7
suolloe /l\l/
pue sapow | |g—— UOIPEAISqe pueSUOIIe (g
Ajisse|) 1€ ‘sapow ‘uonisodwo)
suol1oe
pue sapow aAnI3RQA
Y
sdeysi
CRLY |3POINI 123420 3A13Q

iz dais

sased
asnaimded T°T

sjuawalinbay

juawuoJAU3
pue waisAs |apoA
T dais

Aujeuorioun 4 waysAs anosd wi :a8eis asueinssy

spsezeH Ajpuap) :a8e3s sishjeuy

walsAs pueissopun :adeys Suyspon

74

Part II.

Application and Evaluation

People have said that
computing is a fast moving
subject and what they mean is
that the wheel of re-incarnation
goes faster.

(Roger M. Needham 2001)

75

This chapter discusses two applications of the proposed method:

machine and a commercial road vehicle.

Contents

Case Study

an automated teller

6.1 Pilot Case: Automated Teller Machine
6.1.1 Step 1. Model System and Environment
6.1.2 Step 2: Derive Defect Model
6.1.3 Step 3: Identify Potential Mishaps
6.1.4 Step 4: Assess Causal Factors
6.1.5 Step 5: Specify Safety Goals
6.1.6 Step 6: Plan and Design Safety Measures . . .

6.2 Approval Case: Commercial Road Vehicle.
6.2.1 Step 1: Model System and Environment
6.2.2 Step 2: Derive Defect Model
6.2.3 Step 3: Identify Potential Mishaps
6.2.4 Step 4: Assess Causal Factors
6.2.5 Step 5: Specify Safety Goals
6.2.6 Step 6: Plan and Design Safety Measures . . .

6.1. Pilot Case: Automated Teller Machine

The unit of analysis in the pilot case is an automated teller machine (ATM).

6.1.1. Step 1: Model System and Environment

Artefact R — Use Cases and Property Assertions As a prerequisite, the contents of R are

derived from an example discussed by Broy et al. (2012).

76

6.1. Pilot Case: Automated Teller Machine

Use case Withdraw cash (modelled below as WCg, WCs)

Goal The customer is served cash money.

Scope As, level: primary task in Ag|yse, primary actor: Ag

Preconditions There is enough money on the customer’s bank account.

Minimal Guarantees The ATM provides cash if no errors occurred during the transaction,

otherwise an error message is displayed and the balance is left unchanged.

Success Guarantees The AT'M provides the requested amount of cash and the account balance
is updated accordingly.

Trigger 1. The customer inserts his or her EC card into the ATM card slot.

Description 2. The ATM displays the default service options.

(interaction sequence) 3. The customer selects “cash withdrawal.”
4. The ATM displays several predefined amounts and an option for a
custom amount of cash.
5. The customer selects an “amount” option.
6. The ATM processes the request by reducing the customer’s balance by
the selected amount and returns both cash and the EC card.

Table 6.1.: ATM use case “withdraw cash” as a prerequisite for Step 1

Step 1.1 The Tables 6.1 and 6.2 describe two simplified use cases of an ATM.!

Step 1.2 From Step 1.1, we derive variables to whom we assign types, for example,

type(positionpanas) = {inCashSlot, atPanel, atCardslot, awayFromATM, ...}
type(positioncqsn) = {inStorage, inCashSlot, inHands, unknown}
type(lidcashsiot) = {open = 5,closed = 0, inTransition € {1,...,4}}
type(selectionyanet) = {pin(P) | P € N}U {amount(A) | A € N} U

{depose, withdraw}
type(contentcashsiot) = {cash(C) | C € N}U {empty}

Artefact V — Variables Table 6.3 describes the variables for safety analysis including
the channels modelling the safety-related interface of an ATM according to Figure 4.1.
This table also contains variables identified in Steps 2, 3 and 4 of the procedure.

We need to make domain properties explicit when building the world model: Vari-
ables in parentheses are ignored to reduce the need for properties, such as

positionngngs = inCashSlot — obstaclecgshsiot

1We use the notation (MTS)(agent)(Aspect): E for (Agent) denotes the environment, S the system.
The (Aspect) qualifier is empty for Myse, T for M,y and s for Mgave. For example, DEPgs stands
for an MT'S which is part of a use case and models a defective fragment of the tactic DEP in Mygy;.

7

6. Case Study

Use case Depose cash (modelled below as DEPg, DEPs)

Goal The customer deposed cash to his or her bank account via the ATM.
Scope As, level: primary task in Ag|yse, primary actor: Ag

Preconditions The customer has a bank account.

Minzmal Guarantees If the ATM cannot store the deposed cash then it provides an error

message and returns the cash immediately.

Success Guarantees The ATM correctly transforms the inserted and stored cash into an up-
date of the customer’s account balance.

Trigger 1. The customer inserts his or her ATM card into the card slot.
Description 2. The ATM displays the default service options.
(interaction sequence) 3. The customer selects “cash deposit.”

4. The ATM asks the customer to insert cash into the cash slot.

5. The customer inserts cash into the cash slot.

6. The ATM counts the inserted cash, displays the calculated amount,

adds it to the customer’s account balance and returns the ATM card.

Table 6.2.: ATM use case “depose cash” as a prerequisite for Step 1

which reifies the concept of physical obstacles (D24), and

positioncqrg = iINATM & statuscqrasior = pulledIn/A

positioncqrq = atSlot < statuscqrasior = atSlot

which constrains the valuations of variables related to card position (D8). It is
often possible to revise the model to eliminate redundant variables and still reflect
observability and controllability.

Step 1.3 The two agents Ag and Ag specify behaviour of a bank customer as the
human operator at the side of the environment and the ATM with the IT infrastructure
of the bank at the side of the system. Our information for the world model is provided
by R¢, that is, a set of use cases. Note that this model is set up regarding the ATM
as both a banking service and a mechatronic device. Applying Definition 4.1 for the
aspect M s, we can set

Agluse = IDE @ DEPE & WCe (6.1)
Asluse = (SRVs @ DEPs & WCs) ® IDs ® LIDs
M|u5e - AE‘use ® »AS‘use (63)

For sake of simplicity, we only consider one initial state partially given by

Yo ={o00} with 0o = [lidcashsiot — closed, positionnanas — awayFromATM, .. .]

Step 1.4 The pair of MTSs WCg and WCs for use case “withdraw cash” is depicted
in Figure 6.1. Table A.12 describes these MTSs as explained in Section 2.3.1. The

78

6.1. Pilot Case: Automated Teller Machine

[1 & mon(Ag)Uctr(Ag) mon(Ag) \ ctr(Ag) ctr(Ag) \ mon(Ag) mon(Ag) N ctr(Ag)
mon(As)U 1 (no variables identi (Po variables iden post‘Fu.)ncmd,
ctr(As) fied) tified) (positionnanas)
mon(As)\ statuscardstot, (no variables identi- selectionpanet, s
ctr(As) pincard fied) (obstaclecashsiot) posttionhands
udcash.sl.o’ty
Ctl’(.AS) \ contentcashsiot,
i) 1 1
mon(As) contentgisplay,
VOltagecasing
mon(As)N contentaeposit, . (no variables iden- .
balancegccount, lidpressurecashsiot . positioncash
ctr(As) tified)
amountiempStore

Table 6.3.: Variables in V \ Vi, for safety analysis; I...unnecessary in this model

use case “depose cash” is modelled similarly. Note that the insert action in Figure 6.1
shows up twice, in WCg and in DEPg. Multiple occurrences will be fixed by the
superimposition WCg @ DEPE.

Artefact M - Functions and Tactics M ,sc
provides further details about them.

Figure 6.1 shows several MT'Ss and Table A.12

Step 1.5 R, provides one safety goal, and we disregard goals resulting from Step 5
or a previous iteration.

Artefact " — Safety-related Assertions The informal description of I' is imported from
R, and shown in Table A.11, the formal description is developed in the next steps.

Discussion Based on the system boundary from Step 1.2, the boundary of a function
can be derived from its operational specification M. It is convenient to impose bound-
aries as a constraint for the development of an operational specification. The example
neither explains what an operational specification allows nor discusses changes of the
system boundary.

The two hierarchies resulting from Step 1.3 can be asymmetric. The example, how-
ever, approximates symmetry to ease the conduct of the method and to support trace-
ability. SRVE can be extracted from WCg and DEPg to reduce redundancy. (Issues of
tool data integrity and optimisation are out of scope.)

For Steps 1.3 and 1.4, interaction sequences can be encoded into pre constraints
or by a set of modes. Use cases to be performed in sequence can be modelled by
several modes and actions. Actions that are required to be performed independently
(i.e. minimum use of mode channels) can be put into concurrent MTSs. Modes can
be reused by superimposition.

79

6. Case Study

openlid; opening
displ ;
el display openLid; finish;
SRVg = chgDsp LIDg = > @
*
deny finish, closeLid
closeLid, @
. eject-
wait| chgDsp Card
insert|
select| with-
chsAmount| drawal2
grabMoney
WCg = WCs = K
takeMoney @&'
2’9“9
-> > waiting pro-
(removal) cessing
T reset drawln
chgDsp
takeCard]|
insert| wait| . waiting
selectDep leave ATM services (disposal)
DEPe= insCash DEPs=
ejectCard prepare
*
T0-
> cer;sing procCash
T
retry
enterPin
initiate validate
IDg — IDs =
authen-
—-> -> ticated
reset
Figure 6.1.: Pairs of MTSs in Myse; ai]...|an represents n collapsed transition arrows as a

notational convention due to lack of space (cf. Definition 2.10)

80

6.1. Pilot Case: Automated Teller Machine

opening -

wait; \?’ 5 ’\5;) wait

s,

(s
—>i closed } b i open
________ v,
2 N "
o{?é . 6&)

Figure 6.2.: LIDs¢ as a part of the defect model Mg.;

For Step 1.5, goals being part of the use cases in R¢ are omitted in both the Ta-
ble A.11 and the model.

6.1.2. Step 2: Derive Defect Model

I neglected side effects (Step 2.1) and reliability analyses (Step 2.2) as these techniques
are out of scope of the case study.

Steps 2.3 and 2.4 Mutations can capture defective behaviour of physical actions: For
closelid; in the open mode of the function LIDs, we add the actions wait, and closeLids
which carry a mutated state constraint pre = T and are subject of choice with a
probability of 50%. LIDs¢ € Mg,y (Figure 6.2) applies the patterns “random” and “cur-
rently unacceptable execution” from Table A.2 in their “permanent, non-deterministic”
variants to model the two defects. The choice between defective and specified ac-
tions is non-deterministic because a pre = T covers the mode open as opposed to
twes > 2V mgrys = welcome V mpgps = processing of closelid; (Table A.12).
The choice among the two defective actions, however, incorporates the “probabilistic”
variant of the “random” pattern. The same pattern is applied to closelid,, openlid,
and openlid, using wait;, openLids, halt and revert.

LIDss represents defects after which the ATM randomly closes and opens the lid.
Evidence for the possibility of such failures can be provided by defect analysis of the
system design (Step 2.2).

Artefact M - Defect Model My,; The defect model is depicted in Figure 6.2, actions
are specified in Table A.12. My, extends M|,se as follows:

Agluse,fail = IDg ® DEPg & WCE (6.4)
Asluse,fail = (SRVs @ DEPs @ WCs) ® IDs ® (LIDs & LIDsy) (6.5)

81

6. Case Study

6.1.3. Step 3: ldentify Potential Mishaps

Step 3.1 Going through the model, we identify the control actions openlid, and
closelid; to affect the movement of physical parts of the ATM.

Step 3.2 By applying the state guide word “clamp”, we can identify the mishap
squeezed hands (M7):

pOSitionMachinePaTts 7é wide = h.'dcash.slot 7é open
occupiedBymachineParts,BodyParts = POsitionpanas = inCashSlot

Cbsqund = lidcashslot 7é open
A positionpgngs = inCashSlot

Using the guide word “electrically shock”, we obtain the mishap electric shock (M13):

voltagecontactSurface = high = voltagecqsing = underCurrent
tOUChedByContactSurface,BodyParts = pOSitionhands = atPanel
detshock = voltagecasing = underCurrent

A positionpgngs = atPanel

Artefact ® — Mishaps The informal description is shown in Table A.11, the formal
description is provided here.

Step 3.3 Consider the operational situation o5, (Definition 4.2) for M with

T, ifo=o09
O_use(o_) = 1. else
)

Discussion Consider mishap M13 in Step 3.2: we might return to Step 2.1 to elicit side
effects as additional effects of existing actions or as an additional M'T'S producing these
effects depending on certain modes. For sake of brevity, I only discuss the assessment
and treatment of ¢qz1ina in the following.

6.1.4. Step 4: Assess Causal Factors

Step 4.1 Model checking of M (including the defect model and k-completion) can
compute how the mishap $sqzrna can be reached. From such reachability analysis,
we can derive three complex actions (Definition 2.10), (.*;grabMoney;wait™) of WCg,
(.*;drawln) of WCs and (.";closeLid;) of LIDs, concurrently executed in M. Fig-
ure 6.3 shows a run starting in oyse and its hazardous actions concerning ¢psqztna-
Figure 6.4 shows further hazardously performable actions related to ¢qztina-

82

6.1. Pilot Case: Automated Teller Machine

Steps 4.2 and 4.3 The set of runs resulting from Step 4.1 can now be searched for
hazards, for example, within the last 20 states of the runs (i.e. k = 20).

Our search starts from the conjuncts of ¢sqztina. Using the event guide word “start
of ” for the event e = lidcashsiot # Open as mentioned in ¢gqzHnd, We start looking
for causal factors:

cf) = ?gzo(e A\ X—e)

=<20 . - .
=F (lldcashslot 7é Open/\ X=lidcashsiot ;é Open)

=<20 . _ .
=F (lidcashsiot # open A Xlidcashsiot = Open)
Next, we use the action guide word “unexpected execution of closeLidy™

cfy = [(X(—enabl V —closeLid;,.pre) /A closelid,.post)

—<20 o . .
=F 7 (X(=(mups = closing) V =(lidcashsiot 7# closed))

A (Ix: X(lideashstot = %) A ldeashstor =% — 1))
Either of these formulae leads to the mode closing. Using the mode guide word

“activation of m” yields the search expression:

—<20
cfa=F mpy=m
—<20 .
=F mups = closing
cf3 discloses several actions as being hazardous: closelid;, revert and closelids. Taking
the pattern “change of m” from Table A.1, we can now look for

cfz = FSZO(X(mUDS = opening) /A myp, = closing)

Furthermore, in order to capture causal factors in the environment, we apply the
pattern “e stopped too late” for both the ¢gq.Hna-event e = positionngnas =
inCashSlot and the orientation event e’ = lidcqshsiot 7 Open:

cfy = F-2%(me AX(eT (¢! AX(—e")))
= Fszo(ﬂpositionh,mds = inCashSlot
A X(positionpangs = inCashSlot
U (lidcashstor # open AX(—lideashstor # open))))

cf4 combines environment and system behaviour. The event guide word “start of
positionyganas = inCashSlot” yields a formula for a temporally less recent search:

cfs = Fszo(positionhands = inCashSlot A X—positionnangs = inCashSlot)

Step 4.4 For example, the check of c¢f3: /A\cf5 confirms the possibility of a specification
defect because of violable environment responsibility (maloperation), and a random
system failure because of realisation defects in As. The hazardous run shown in
Figure 6.3 contains a failure of WCg where the lid is closed too early.

83

6. Case Study

Step 1 Steps 3 and 4 Step 4.6 Step 5.3
M Mishap € ® Operational Situation Hazard e S W A G IC
LIDs PsqzHnd Ouse . T T B
LIDg bsqzHnd Ouse XunexpClos 1 1 m h medium

Table 6.4.: Hazard assessment similar to DIN 19250, IEC 61508 and ISO 26262
S...severity, W...probability, A...exposure, G...detectability and controllabil-
ity, IC...integrity class, I/m/h...low/medium /high; cells in grey indicate related
content

Step 4.5 We combine some of the formulae cf; to cfs, derived from the search for
causal factors, to specify unexpected and hazardous runs. For example, we can define
unezpected closure (H26) as follows:

XunexpClos = CfS’ AN Cf5 (66)

To state another hazard according to Definition 4.8, we have to check the formula

EF(XunexpClos - I:>>0.01 [XFd)squndD

in M for an upper bound of 1% for ATM risks.

Step 4.6 Table 6.4 exemplifies the estimation of the characteristics by which an in-
tegrity class can be determined in Step 5.3.

Artefact H — Hazards The result of hazard assessment is depicted in Table 6.4. Note
that this pilot case does neither claim nor aim to provide exhaustive analysis results.

Discussion For any action a referred to in the formulae of Steps 4.2 and 4.3, Defini-
tion 2.15 guides the transform of the function a.post : £ler(am) into an action effect
formula. Many of the formulae shown above can be simplified. Formula rewriting,
however, is an issue out of scope of the present work. Furthermore, in an automated
setting, the results for Step 4.6 can be computed from M.

6.1.5. Step 5: Specify Safety Goals

Steps 5.1 The ATM is usable if we accept states which fulfil either cf3: or cf5. Hence,
we derive the mitigation goal (Definition 4.9) safe interaction (G9):

84

6.1. Pilot Case: Automated Teller Machine

Ytreat.unexpClos = PZPT‘ [G_'(bsqund N GF_‘XunexpClos]
= P>0.99[G~(lidcashsiotr 7# Open
A positionngnas = inCashSlot)

A GF=(F=*°(X(muips = opening) Amypg = closing)
A ngo(positionmnds = inCashSlot

A X—positionnanas = inCashSlot))]

We might be even more tolerant by stating an alleviation goal (Definition 4.9):

1 —
ytreat.unexpClos = PS]*O.?? [F(

>5_‘(

(d)sqund Vv XunexpClos) u d)sqund vV XunexpClos))]

Step 5.2 To the safety goal Yireat.unexpClos, We assign an A/G pair
(As1,GT1)treat.unexpClos including the assumption (“proper use”, As19)

Asy = P o5[F(positionngnas = inCashSlot U >2°positionh,mds # inCashSlot)]

and the guarantee (Grl0)

=<20 < . .
Gry = P>0.99[GF~(F~ " (X(myps = opening) A myps = closing))]

In this responsibility relationship, As; suggests mitigation of maloperation and Gry
suggests mitigation of defects in the mode opening to be developed in Step 6.1.
From Y’zreat.unexpClos’ we can derive the guarantee

Gr2 = P<0.01[F(dsqzrina U ™"~ Psqzring)l

Gr, suggests a passive safety measure at the side of the system to be developed in
Step 6.1. As an advantage, we obtain an assumption As, = T which reduces the
responsibility of the environment when using LIDs.

One can see that both assumptions are controllable by the environment and both
guarantees are controllable by the system.

Steps 5.3 and 5.4 'The integrity classes of the functions and tactics including the safety
measures are kept in Table 6.4 column IC. As we have only one safety goal, we can
omit Step 5.4.

Artefact T — Safety Goals, A/G pairs Both existing and derived safety goals, and A/G
pairs are visualised in Figure 6.5 and kept in Table A.11.

85

6. Case Study

Discussion Although usual in requirements engineering (Section 2.1), I disregarded re-
lationships among the assertions based on their content and breakdown, as repeatedly
suggested in the Sections 4.3 to 4.5 and Section 4.6.2. Nevertheless, the meanings of
the relationships depicted in Figure 6.5 can be derived from Chapter 4, the Sections 5.2
and 5.3, and Figure 7.1.

6.1.6. Step 6: Plan and Design Safety Measures

After having performed hazard analysis, we can derive the safety measures by regarding
the A/G pairs stated in Step 5, for example, (As1, GT1)treat.unexpClos-

Step 6.1 By superimposing ASgs € Mg,y onto LIDs & LIDs¢, we operationally specify
an “attenuation mechanism” from Table A.4 including obstacle detection: the function
ASs realises the safety guarantee Grl0 which contributes to the safety goal G9.

Artefact M - Safety Measures M, The findings of Steps 3 and 4 are used to introduce
safety measures which alter both agents, as defined by the Equations (6.4) and (6.5),
as follows:

A = |Dg @ DEPg & (WCE (&) ASES) (6.7)
Ag = (SRVS ® DEPs & WCs)
® IDs ® (LIDs & LIDs¢ & ASs;) (6.8)

These MTSs are shown in Figure 6.6. More details are given in Table A.12.

Step 6.2 The assumptions Asl9 and As27 are both weak, because they are easily vio-
lable. Assumption Asl9 can be even weaker than assumption As27: we can expect the
bank customer more often following the behaviour of ASgs obeying assumption As27
instead of following the behaviour of WCg;.

Step 6.1 (again) We introduce the tactic ASgs € Mg,ye superimposed onto WCg. ASgs
applies the pattern “fail-safe action” in its “fail-operational” variant to the environment.
ASEg; helps determine the strength of assumption 19 and derive assumption 27.

In Step 5.2, we started to address misperceptions of responsibility by making as-
sumptions and guarantees explicit. The safety goal G9, however, can be obstructed
by violating the assumption As19. This obstruction corresponds to the cases 2 and
3 in Table 4.3 and would be an argument for taking V{reat.unexpaos’ the weakened
assumption As; and the strengthened guarantee Gr2, as explained above.

Step 6.3 The safety measures in M can now be checked against yéreat.unexpaos.
The tool support required for this, however, is out of scope of this work.

86

6.1. Pilot Case: Automated Teller Machine
wait|
grabMoney|
insert| . : : : ; :
select| :‘.serv1ces..: % drawal } i drawal2 ;
chsAmount | | S ;
WCE: WC5:
takeMoney
-> i satisfied H B waiting pro-
i —>:..‘we1come:_: H (removal) cessing
. I
LIDs=
finishy ™. AseLich
closeLid,
MTSs/Variables t ty =t +1 t3 >t +5 ta >t +7
WC .+ o grabMoney o wait T wait o wait T o wait o
E — — — —
Mwcg normal
+
WCs I drawlin o
Mwcg waiting processing
finish K «t K closeLid closeLid
LIDg —0 —0 ——0 —0 o o
MLIDg open closing closing
contentgisplay welcScreen
positionhanads inCashSlot inCashSlot
lidcasnstot open open somePos somePos
contentcashsiot cash(X)

Figure 6.3.: Actions of M generating a run which violates safety goal G9 by mishap M7

87

6. Case Study

wait|

insert| takeCard| . : i waiting 3

selectDep leave ATM .,‘..serv1ces::. i (disposal)
DEPe= insCash DEPs=| T)
~. R _ejectCard brepare
—>inormal } & ‘
' p pro- . b
-> welcome:s cessing o :procCas
LIDs¢=

Figure 6.4.: Three concurrently executed complex actions (solid arrows) of M

Legend: obstructs contribTo @
... goal

... mishap, hazard may cause
obstructs contribTo

obstructs
contribTo
measlre for contribTo contribTo measure fo
peasure for
measure fo

Figure 6.5.: Assertional graph showing relationships between property assertions in I' built
up during the Steps 1.5, 3, 4, 5.1 and 6

... guarantee

00>

... assumption

tolerates

88

6.1. Pilot Case: Automated Teller Machine

LIDs @ LIDss & ASss =

RIS EYS S
safeRevert

PR
wait ‘yée‘

closeLid; 4

Figure 6.6.: Pair of MT'Ss comprising safety measures in As|save and the superimposed func-
tion LIDs @ LIDss @ ASss

89

6. Case Study

Use Case Use truck (modelled below as Missionsg, Trucks)

Goal G27: The truck fulfils one of its purposes.

Scope As; level: primary task in Ag|yse; primary actor: Ag
Preconditions Sufficient amount of energy (i.e. fuel, charge of battery).

Minimal Guarantees

The truck protects the trucker, the goods and the environment.

Success Guarantees

The truck helps accomplish the trucker’s mission.

Trigger

1. The trucker activates the vehicle by applying the key.

Description
(interaction sequence)

2. He or she performs other use cases, for example, “park at steep hill” or
“use brakes”, to accomplish his or her missions.

3. The vehicle reacts correctly to his or her commands.

4. The trucker deactivates the vehicle.

Table 6.5.: CRV use case “use truck”

Use Case Park at steep hill (modelled below as Parkg, DriveMoves)
Goal Gb5: The truck is parked at a steep hill.

Scope As; level: primary task in Ag|ue; primary actor: Ag
Preconditions The truck is driving near a free and proper parking lot.

Minimal Guarantees

None.

Success Guarantees

The truck is parked in a parking lot at a steep hill, compatible with the
above goal or the superior mission objective.

Trigger

1. The trucker stops in front of a parking lot at a steep hill.

Description
(interaction sequence)

2. He or she uses the gas pedal, steering wheel, clutch, gears, brakes (see
use case “use brakes”) and rear mirrors to place the truck into the lot.

Table 6.6.: CRV use case “park at steep hill”

6.2. Approval Case: Commercial Road Vehicle

For the approval case, the unit of analysis (As) is a simplified commercial road ve-
hicle (also CRV or truck) and its environment, including the driver and a section of
road (Ag). Hazard analysis will take place for prominent use cases, functions instead
of technical parts of a truck, and the risks stemming from these functions in spe-
cific operational situations (i.e. driving situations). The approval case is documented
according to the procedure in Chapter 5.

6.2.1. Step 1: Model System and Environment

Artefact R - Use Cases and Property Assertions For the set R, knowledge about the
automotive and transportation domains has been gathered from two research collabo-
rations, one with ITK Engineering AG? (Dobi et al. 2013) and another one with BMW

2

www.itk-engineering.de

90

www.itk-engineering.de

6.2. Approval Case: Commercial Road Vehicle

Use Case Use brakes (modelled below as Missionsg, AccBrakes)

Goal G10: The trucker is able to use the brake, for example, at traffic lights
and stop signs.

Scope Asg; level: primary task in Ag|use; primary actor: Ag

Preconditions An object gets near or onto the truck route, or

a waypoint or the end of the route is reached.

Minzmal Guarantees The truck is slowing down.

Success Guarantees The truck is correctly slowing down or coming to a stable halt.
Trigger 1. The trucker actuates the brake pedal.

Description 2. The truck decreases its speed accordingly.

(interaction sequence) 3. Optional: When the truck comes to a halt, the trucker decides to
activate the stop brake.

Table 6.7.: CRV use case “use brakes”, always included by use case “park at steep hill”

AG? (Gleirscher and Fuhrmann 2012, Gleirscher et al. 2014). Further data are docu-
mented in (Gleirscher 2013b). After requirements analysis, R¢ informally describes use
cases (i.e. driving missions and situations) of a truck. R, contains informal property
assertions (i.e. goals and safety-related assertions) for these use cases (cf. Table A.13).

Step 1.1 I derived three use cases including driver tactics from Ry, see “use truck” in
Table 6.5, “park at steep hill” in Table 6.6 and “use brakes” in Table 6.7.

Step 1.2 Suppose that the world is a linear area of length 100 where Ag is located
in and can move forward and backward. For simplified reasoning as envisaged for
validation, we derive two variables for abstract physical motion, speed and position.
Analogically, for the complete airbag control loop, the system boundary includes the
variables impact, deformed, crashed and released. Note that these variables can be
enriched and structured by an underlying entity model, for example, including area,
vehicle and airbag.

Artefact V - Variables According to Figure 4.1, Table 6.8 describes the set of variables
for safety analysis including the channels modelling the safety-related interface of the
CRV. For sake of brevity, instead of declaring each enumerative type, [provide only
three examples:

type(load) = {none, medium, crit, max, overload}
type(speed) = {0, low = 1, medium = 2, high = 3} x {fwd, bwd}
type(position) = {x | x € —49..50}

Swww.bmw.de

91

www.bmw.de

6. Case Study

Z mon(Ag) U
n ctr(Ag) §

z
mon(As)U
ctr(As)

mon(Ag) \ ctr(Ag) ctr(Ag) \mon(Ag) mon(Ag) N ctr(Ag)

+ deformed : B, atdriver,seat : B, e
i) ; positionyey
absorbedBydrvr,airb :B atobj,pillion * B

positionprakepedal,
positionciutchpedal,
positiongaspedal,
positionsteerwheel,

mon(As)\ statusieystot, impact (no variables positiongeartever,

ctr(As) gas, P identiﬁed) SWi-tChstopbrake : B,
energy load,

speedotherObi,
positionotherob;,
crashed : B,

speed, position;eartid,

cr:]ro(:(\;) } b3 released : B, b bt
S statuswarnLamp : B
moz&:é(\;)sﬂ) active : B (no variables identified) Tepaired : B position

Table 6.8.: Variables in V \ Vr, for safety analysis; I...unnecessary in this model

Step 1.3 Applying Definition 4.1 for the aspect M, the following equations pro-
vide an excerpt and simplification of the functionality of a road vehicle as elaborated
in (Gleirscher and Fuhrmann 2012):

Missionsg = Parkg & ...
AE|yse = Missionsg ® otherObjMoveg (6.9)
ActDeacts = ActDeactVehs @ ActDeactEngg
AccBrakes = StopBrakeg ® o (Brakes ® Accelerates)
DriveMoveg = Steers ® AccBrakes ® a(Declutchs ® AdjTransmg)
Asluse = Trucks = ActDeacts ® o(DriveMoves) ® Airbagg (6.10)
Mluse = Agluse ® Asluse (6.11)

The use case “use truck” (Table 6.5) indirectly describes parts of Ag|,se as an interaction
sequence with the aspect Ag|yse- “Park at steep hill” (Table 6.6) exemplifies interaction
of Parkg and Aglyse- “Use brakes” (Table 6.7) describes Ag|yse using AccBrakes.

Step 1.4 The composite levels of the hierarchy help identify abstract actions observ-
able at the interface of a truck by co-executing its tactics and functions. For example,
a truck can be moved or driven, loaded or unloaded. o(DriveMoves),* shown in Fig-
ure 6.7a, contains an abstract action “move” given in three dynamics. The abstract and
complez actions start™ and stop™ (Definition 2.12) include system actions triggered

4 Abstracted via o : M — M from DriveMoves.

92

6.2. Approval Case: Commercial Road Vehicle

halt accelerate

move
—>i halted } { drive —>(failing | ik
retard H St e
park R RIS

(a) (b)

Figure 6.7.: MTSs for (a) the function o(DriveMoves) and (b) its defects «(DriveMovesy)

start™

brake.

deactivate

Figure 6.8.: MTSs for (a) the function StopBrakeg and (b) its defects StopBrakeg,

by an abstract event called userOperation as well as other system actions. Derived
from Table 6.7, the Figures 6.8a and 6.9a show the functions StopBrakeg and Airbags.

Artefact M — Functions and Tactics Ml,sc Table A.14 shows a cutout of the CRV actions.

Step 1.5 In R, we identified the safety-related assertions “get salvaged after acci-
dent” (G22), “avoid accident” (G40) and “protect driver/passenger” (YsafeAirbag)-

Artefact I" — Safety-related Assertions Table A.13 shows several goals which reflect oper-
ational situations of a CRV. These goals guide the preconditions as well as the minimal
and success guarantees of the CRV use cases.

Discussion For Step 1.1, we can consider additional use cases and driving situations
such as the use of vehicle extensions or trailers. Concerning Step 1.2, I neglected
variables such as wheel rotation or engine heat. In Step 1.3, the tactics in Missionsg
can be constructed from the use cases. The modelling of these tactics, however, is
omitted in the example. For Step 1.4, the truck model can be extended by other vehicle
functions such as a tank, a crane, door control, adaptive cruise control (Lochmann and
Gleirscher 2009), pre-crash safety, a window opener, a steering wheel lock or a wiper.

93

6. Case Study

cancelExpand

deact suppressRelease

eact-

ivated expand ﬂ O
—> standby releasing -

releasing R N G
T Aintainf
s
Ki oo failing expand
€2

(2) (b)

Figure 6.9.: MTSs for (a) the function Airbagg and (b) its defects Airbagg;

activate

6.2.2. Step 2: Derive Defect Model

Step 2.4 «(DriveMovest) in Figure 6.7b applies the pattern ‘random/permanent” from
Table A.2 (fail; instantiates to) to model a defective mode being superimposed
via o(DriveMoves) & o(DriveMovess). This pattern introduces an abstract action t*
of the mode drive in «(DriveMoves) leading to the mode failing in o(DriveMovess).

Using the probabilistic variant of the pattern “random/transient (alternative)”, Fig-
ure 6.8b shows potential failures as a defective fragment StopBrakes, (fail instantiates
to suppressBrake, unstableBrake and brake,).

Figure 6.9b shows the defect model Airbagg, applying the pattern “random/per-
manent” twice (see Example 4.1) and the pattern ‘random/transient (alternative)”
to obtain the defective actions suppressRelease and cancelExpand. The kind of defect
encoded by these defective actions captures sensor and actuator faults.

Artefact M — Defect Model Ms,; The identified defects are modelled in the Fig-
ures 6.7b, 6.8b and 6.9b, actions are specified in Table A.14. Based on Definition 2.13,
we add the aspect Mg,; to the system as follows:

AccBrakes = (StopBrakeg @ StopBrakeg;) ® a(Brakes ® Accelerates)
Aslyse,fail = ActDeacts ® (a(DriveMoves) @ o(DriveMovesy))
® (Airbagg & Airbagg;) (6.12)
Muse fail = AE|use, fail ® Asluse,fail (6.13)

Discussion As in the pilot case, I left out the modelling of side effects (Step 2.1) and the
consult of reliability analyses (Sections 2.2.3 and 3.2; Step 2.2): I chose simplicity of the
case study instead of a precise defect model. Nevertheless, assume that these analyses
confirm Asls,j as derived in Step 2.4, for example, by providing characteristics of the

94

6.2. Approval Case: Commercial Road Vehicle

physical action suppressBrake. Li (2014), for example, outlines power train control
failures in road vehicles and supports hardware-in-the-loop testing as a measure to
avoid potential causes of such failures. We consider Xy without defective states. Using
defective initial states from Step 2.3, however, can reduce reasoning effort in Step 4.1
because of fewer and shorter runs satisfying any hazard.

6.2.3. Step 3: Identify Potential Mishaps

Step 3.1 From Step 1.4, we know that the truck action move affects speed and
position. This action has physical impact and can potentially be involved in mishaps.

Step 3.2 Let low =1, short = 2 and [speed| € N. Regarding «(DriveMoves) with the
action move, the guide word “collide” (in its second variant) from Table A.3 captures
a mishap as a combination of too small distances and too high relative velocities by
a state constraint

Geottide = Ispeed — speedotneronjl > low A [position — positionginerowjl < short

For Airbagg, the guide words “pump”, “hit” and “distract” yield “bump of passenger
into vehicle interior” (¢pyymp), “driver or co-driver directly or indirectly hit by released
airbag” (Gnharmexp) and “distraction of driver by released airbag.” For now, consider

d)dist'ract = released >=2 A\ M (DriveMoves) = drive A atdr'wer,seat

Step 3.3 The conduct of use case “park at steep hill” (Table 6.6) yields an operational
situation “the truck is standing in a steep parking lot and the stop brake is acti-
vated” that is modelled via the state constraint osicepprot. For sake of simplicity, we
omitted further variables such as the constitution of the road surface (e.g. tempera-
ture, ice, water) or the environment (e.g. wind, gravity, nearby objects, road down-
grade and route section), and the physical state of the vehicle (e.g. age, maintenance).
OpackedVeh captures the situation “a bottle or a child safety seat is positioned in
front of the co-driver’s panel or at the pillion.” Based on Definition 4.2, we define

OsteepPLot = MsiopBrakes = active Aload = max ...,
Odrive = My(DriveMoves) = drive A atdriver,seat AV)
OpackedVeh = atob)’,pillion Aload = max /...)

Ounmanned = ﬁatdriver,seat

Artefact ® — Mishaps The informal description is shown in Table A.13, the results
of the Steps 3.2 and 3.3 in Table 6.9. The set of variables has been extended by
atdriver,seat, SPeedotherobj and positiongiherowv, as recorded in Table 6.8.

95

6. Case Study

Discussion The identification of operational situations (Step 3.3) is further discussed
by Dobi et al. (2013). Additional situations are motivated by the goals G1-27 in Ta-
ble A.13. Defining operational situations can be seen as an alternative to exhaustive
environment modelling. Nevertheless, I can recommend combining the modelling of
both environment behaviour and operational situations.

6.2.4. Step 4: Assess Causal Factors

Step 4.1 Tool supported reachability analysis for the mishaps ¢cottide and P aistract
and the operational situations OsieepprLot @and Opackedven Provides a set of runs.

Steps 4.2 to 4.5 These runs make it possible to search backwards from mishaps to
hazardous, defective actions, states, events and modes, starting from abstract actions,
continuing with composite actions and down to the level of actions:

Search for causal factors of dcortide: Starting from dcoriige, We might look for
the pattern “unexpected execution of move” from Table A.1. A search for the variation
“unattended execution of move” can look for causal factors in runs, that is, effects of
move happening without foreseen action of the trucker:

=<10s &)
XunattMove = F- (X(—userOperation V —move.pre)
/\ (move.post V My (DriveMoves) = drive) (6.14)

We regard move without Mg, and derive hazards, that is, possibilities of how and
when move is hazardously performable according t0 XunattMove. Figure 6.7 suggests
the derivation of specified, hazardous and safe refinements of the abstract actions
start™, stop™ and 1" using the MTSs comprising «(DriveMoves). Formula (6.14) is
refined by move.pre = —49 < position — speed < 55 and, depending on Ag, we can
define

userOperation = positiongaspedal = pressed V switchgiopbrake V ...

The analysis of «(DriveMoves), containing the action move, at a lower level of com-
position shows, for example: the mode active and the action brake of StopBrakeg
are responsible to maintain speed = 0 or to contribute to the action park. Thus, the
hierarchy suggests the refined use of the guide word “unexpected suppression of brake”:

—<10s o)
cfsupprBrake = F (X(MstopBrakes = active /\ brake.pre)

/A —(brake.post A\ MsiopBrakes = active))

=<10s & .
=F (X(TnStopBrakeS = active A T)

A =(((XT) A speed = 0) /A MstopBrakes = active)) (6.15)

Hence, we are looking for runs such that the actions suppressBrake and unstableBrake
of StopBrakeg; (Figure 6.8b) contribute to XunattMove and potentially to mishap
eottide, for example, in the operational situation OsteeppPrLot /\ Cunmanned-

96

6.2. Approval Case: Commercial Road Vehicle

To perform a further search step, we can use guide words such as “maloperation
of AccBrakes” (e.g. acceleration in spite of objects in the way), “maloperation of
StopBrakeg” (e.g. forgetting to activate the stop brake), or “maloperation of brake”
(e.g. because of tired driver). Finally, this backward and descending search for a
combination of causal factors leads to the refined hazard

=<10 .
X matiMove = —F~ userOperation A (cfsupprBrake V...) (6.16)

Note that the absence of userOperation is now included using “e not given”. As we are
unable to assume causality in the sense of cfsupprBrake — XunattMove = Pcollides
we proceed to the check of Definition 4.8 in M:

EF(X{nattmove — P>0.01[XFdeottiael)

By Figure 4.4, we declare cfsupprBrake € Hop because suppressBrake, identified in
Step 2.4, contributes to X!, qttMove-
Search for causal factors of Gaistract: As shown in Example 4.2 by

—=<100ms —=<20ms .
XunexpExp = —F crashed A\ F (Mairbagg = failing)

a release during normal drive (0grive) is considered a causal factor for distraction.
Regarding ®gistract With Airbagg @ Airbags,, the application of the guide word “un-
expected execution of expand” from Table A.1 yields the causal factor

XunexpExp = petooms (X(—enabl V —expand.pre)

A (expand.post V Maiag, = Teleasing))

= F=1o0ms (X(—(mairbags = releasing A crashed) V gas = empty)

A ((Ix,y : X(released = x A gas = y)
N released =x+ 1A gas =y — 1)V Mairbag, = Teleasing))

Note that for the search pattern X, ,,expexp t© Work, we do not require Airbagg;. Now,
we can proceed to the check of Definition 4.8 in M:

EF (Xunexpexp — P>0.05XFdaistract])

Applying the event guide word “e happened”, we can directly specify a hazard for
Geoltide based on a previously identified mishap

—=<5s
Xdistract = F d)distract

and check
EF(Xaistract = P>0.05XFdcortidel)

Artefact # — Hazards The identified hazards enhance Table 6.9 which then shows the
combination of mishaps, operational situations and hazards.

97

6. Case Study

Step 1 Steps 3 and 4 Step 4.6 Step 5.3
M Mishap € @ Oper. Situation Hagzardce’HX S W A G IC

o(DriveMoves) beottide OsteepPLot XunattMove h m h m high
o(DriveMoves) Peollide OsteepPLot XinattMove B m h m high
a(DriveMoves) deottide ‘Liﬁ’:ﬁi’;f X'matimove B m h m high
o(DriveMoves) deollide Odrive Xdistract h 1 h m high
Airbagg baistract Odrive Xinexpexp B 1 h 1 high
Airbagg doump Odrive XsupprExp h 1 h 1 high

Airbagg GharmExp G::;;\;Z\i:h XharmExp m | h 1 medium

Table 6.9.: Hazard assessment similar to DIN 19250, IEC 61508 and ISO 26262,
S...severity, W...probability, A...exposure, G...detectability and controllabil-
ity, IC...integrity class, 1/m/h...low/medium/high; cells in grey indicate related
content

Step 4.6 We can now assess runs according to Figure 4.4. The estimation of hazard
characteristics, as described on page 56, to state X!, ittmove € H can be made by
automated probabilistic reasoning: for Airbagg, we might calculate the probabilities
of “crash after airbag release while drive” (P—:[X{inexpexp)) @nd “smproper release
after crash while driwe” (P—_;[XsupprExp V XharmExp)l)-

Artefact # - Classified Hazards The results of mishap identification (Step 3) and hazard
assessment (Step 4) are depicted in Table 6.9. Moreover, this table exemplifies the
estimation of the hazard characteristics.

Discussion Beginning with a mishap, causal factor search tracks effects of hazardous
actions of the environment and the system. Other causal factors for ¢¢o11iqe such as
the event tmproper wheel momentum (vehicle torsion), and the abstract states high
speed-distance ratio and sliding have been disregarded. Nevertheless, such causal
factors would be subject of analysis in practical settings.

By repeating the Steps 4.2 to 4.5, a search for causal factors of $rump can involve
the guide words “unexpected suppression of expand,” “missed, early or late released #
no,” or “wrong timing of released # no” (Xsupprexp)- This repetition, however, seems
to refuse new insight into the method and is, hence, omitted. For any action a referred
to in the formulae of Steps 4.2 to 4.5, the semantics on page 19 and Definition 2.15
guide the transform of the function a.post: £|¢r(a1) into an action effect formula.

As this case study focuses on modelling and the method, I left out the automation
of Step 4.6. To perform this step, I can recommend, for example, probabilistic model
checkers as mentioned in Section 2.2.1.

98

6.2. Approval Case: Commercial Road Vehicle

6.2.5. Step 5: Specify Safety Goals

Steps 5.1 and 5.2 Specifying and decomposing a safety goal for Geortige: As with
Step 4.2, we could first express a safety goal based on abstract modes and actions of
o(DriveMoves) and the hazard Xynattmove. Having the refined hazard X; ., sttmove:
we can immediately descent into the modes and actions, and derive an avotdance goal
“avoid unattended driveaway” according to Equation (4.3):

_ I
Ytreat.collide = PZO.‘?‘? [G_‘XunattMove]

= on.99[Gﬁ(ﬁF§1OsuserOperation
—<10s o)
A (F_ S(X(mStopBrakes = active A\ T)
A _'(((XT) Aspeed =0) A MstopBrakeg — active))

VAR)) (6.17)

Yireat.collide divides behaviour fulfilling X, 4ttmove iRtO acceptable (e.g. no driver
input given, regular maintenance) and unacceptable (e.g. irregular maintenance) runs.
Following Table 6.9 and to specify a responsibility relationship, we assign Yireat.collide
to a(DriveMoveg) and the overall Ag. For StopBrakeg, we derive the safety requirement
(As, GT)treat.collide With

As =P_4[AsBodyl =T

Gr = P>y [GrBody] = Yireat.collide
The ultimate weakening of As leaves all responsibility to treat ¢co1114e over for
o(DriveMoves). Alternatively, we can specify a mitigation goal such that the trucker
is required to not leave alone the truck for longer than a certain period if load = max.
This assumption would make many occurrences of X! . . itmove MOre probably con-
trollable to reduce the risk of ¢peortide-

Specifying and decomposing a safety goal for Gaistract: As opposed the previous

safety goal, the uncontrollability of hazard X{Lnex‘pExp by Ag requires the choice of an
avotdance goal (Equation (4.3)) instead of a mitigation goal:

— /
Ytreat.distract = PZO.?‘?‘? [G_'Xunexp Exp]

= on.qqg[Gﬁ(Fgmoms (X(—(mairbags = releasing A crashed)

V gas = empty)
A ((3x,y: X(released = x A\ gas = y)
N released =x+1Agas=y—1)

V' Mairbagg = Teleasing)))]

We can derive a safety requirement (As, GT)ireat.distract With an ultimately weakened
assumption and a guarantee as follows:

As =P_,[AsBody] =T
Gr = sz [GrBody] = Ytreat.distract

99

6. Case Study

Specifying and decomposing a safety goal for ¢yump: Here, we again formulate
an avoidance goal based on hazard Xsupprexp:

Ytreat.bump = P20.999 [G_'Xsup‘prExp}

We can impose a responsibility relationship: Airbagg detects the mode failing and
turns inactive, indicated to the operator by a variable status,,arnramp- Ae takes
care of repairing the airbag mechanism and returns it to standby. The derivation
of a safety requirement (As,G7)reat.bump (With e.g. As = statuswarnramp —
Frepaired) works analogical to (As, GT)treat.distract and is omitted.

Step 5.3 Having clarified responsibility, in Table 6.9 column IC, we can assign the
integrity class “high”. This class might, for example, be associated with ASIL D in
ISO Std. 26262 (2011).

Step 5.4 The joint achievement of safety goals requires the check for consistency of
I'¥ L. This expression expands to

Ytreat.collide /\ Yireat.distract /\ Ytreat.bump 1L

Artefact I" - Safety Goals, A/G Pairs The informal description of I' is imported from R,
and shown in Table A.13, the formal description has been discussed in the Steps 1.5,
3.2, 4.5, 5.1 and 5.2.

Discussion The safety goal “protect any persons, goods and the environment” is mo-
tivated by Table 6.5 and requires “no collision” (—®co11ide). Returning to Section 1.2,
Ytreat.distract @0d Yireat.bump suggest a safety goal for each practicable Airbagg by
stating “the front airbag must be released iff an actual front crash occurs and be
deactivated if a system defect occurs.” This goal can be asserted as

YsafeAirbag = P20.9999[G(CTGSh€d — F<350m$ absorbedBydrvr,airbn

As this case study focuses on modelling and method, I omitted automation of Step 5.4.
I recommend automation to perform this step, for example, by theorem provers and
satisfiability solvers as mentioned in Section 2.2.1.

6.2.6. Step 6: Plan and Design Safety Measures

In this step, measures against the identified mishaps and hazards are specified.

Step 6.1 Preventive measure fulfilling Vireat.collide: The integrity class “high”
for StopBrakeg requires the treatment of the hazard X!, .itpove: Guided by the
A/G pair (As,GT)treat.collide, the pattern “fail-safe actions” in the variant “fail-
operational/indeterminisation” from Table A.4 was applied to the functional actions
suppressBrake and unstableBrake. The fail-safe actions detDefBrk and safeBrake of the

100

6.2. Approval Case: Commercial Road Vehicle

brake

‘V deactivate

s L brake. |
i active } —>! inactive } i active } unstableBrake|
" 4 K A.activatey™, suppressBrake

repair detDefBrk repair detDefBrk

finally
active

finally

safeBrake .
active

safeBrake

(a) (0)

Figure 6.10.: The safety measure StopBrakeg, (a) and the MTS StopBrakeg @ StopBrakeg, @
StopBrakeg, (b) according to As

function StopBrakeg, (Figure 6.10a) represent a fail-operational mechanism suited to
mask unacceptable executions of suppressBrake or unstableBrake. Indeterminacy is fi-
nally reduced by action priorities. The two fail-safe actions result in a safer version of
StopBrakeg (Figure 6.10b).

We need to realise IC “high” for StopBrakeg,. Defect analysis (Step 2 based on
Section 3.2) would explain technical causes why the action suppressBrake can happen.
StopBrakeg, has to undergo V&V towards reliable handling of these causes to avoid
XunexpMove-

Passive measure fulfilling Vireat.cottide: Regarding T2 (cf. page 36), Trucks keeps
a passenger protected from injury out of collisions. From an earlier iteration, Airbagg
is given as a safety-related subsystem for reducing driver or passenger injury during a
collision and, thus, treating dco11ide by harm alleviation. Moreover, the treatment of
®distract reduced another causal factor of ¢cor1ige as shown in Table 6.9.

Regarding T1 and dgistract, Airbagg was assigned the integrity class “high” which
has to be verified for the airbag device developed later. (As, GT)ireat.distract and
(As, GT)¢reat.bump Shift responsibility to Airbagg and suggest two measures (a,b) spec-
ified as follows:

Preventive measure fulfilling Yireat.distract (2): Airbagg is considered safe if its
sensors estimate correct (i.e. sufficiently representing the geometry of the area and the
direction of each vehicle collision event) and reliable (i.e. only and exactly detecting
actual collision events in the detectable range) states of the world. To improve airbag
safety, Figure 6.11 shows one application of the pattern “repair action” (see repair;)
and two applications of the pattern “fail-safe actions/fail-silent” (see fst, fsm¢, sz,
shutdown and €). To treat Xll,LnexpExpi Airbagg, contributes to the reliability property
“unexpected release below a certain upper bound of probability.” Airbagg, reduces any
unexpected release before and whenever a defective mode of Airbagg; becomes active.
Example 2.1 shows a less complete treatment of this hazard.

101

6. Case Study

* deactivate
S ’
suppressRelease|
e
... expand|
el
repair, *" cancelExpand
shutdown|

€

Figure 6.11.: The safety measures Airbagg, (solid) as a fragment of the MTS Airbagg @
Airbagg, @ Airbags, according to As

Airbagg, improves the safety measure shown in Example 4.5 by applying the deac-
tivation variant: The actions repair; and repair; lead to the mode deactivated which
indicates a defective airbag with the need to visit a car repair shop soon. These two
actions are triggered by a repaired event issued by Ag.

Preventive measure fulfilling Yireat.oump (b): Airbags is considered correct if
it keeps passenger shock below a certain threshold whenever a collision occurs. By
Airbags,, we apply the pattern “maintenance/repair actions.” Here, m,, instantiates
to standby, m., to releasing, and ma/re to maintain, see Figure 6.11. To overcome
occurrences of ¢pump, We assume the actions maintain, repair; and repair; to be timely
triggered through a repaired event issued by Ag. Note that, adapted from Exam-
ple 2.1, the action maintains has already been included in Figure 6.9b. This action can
be seen as a result of redoing Step 2 for Airbagg @ Airbagg; @ Airbagg,.

Artefact M — Safety Measures Mg,ve The safety fragment StopBrakeg, is shown in Fig-
ure 6.10, Airbagg, in Figure 6.11. Finally, Airbagg, specifies reliable crash, equipment
and environment diagnosis. Actions are specified in Table A.14. Based on Defini-

102

6.2. Approval Case: Commercial Road Vehicle

Variables n n+j ... m —
impact F T T F F F F
deformed 0 2 10 10 10 10 10
crashed F F F T T T T
released F F F F T T T

Table 6.10.: A run of M which models the safety goal Ysafreairbag

tion 4.1, we add the aspect Mg, to both agents as follows:

AccBrakes = (StopBrakeg & StopBrakeg @ StopBrakes)

® o(Brakes ® Accelerates) (6.18)
As = ActDeacts ® (o(DriveMoves) & o(DriveMoves))

® (Airbagg ® Airbagg; @ Airbagg,) (6.19)
M=Ag ® As (6.20)

Step 6.2 For sake of simplicity, we omit the identification and resolution of misper-
ceptions of responsibility which may arise from Step 5.2.

Step 6.3 Table 6.10 shows a run for safety goal YsafeAirbag in Table A.13. Taking
an operational situation o, to define o = {0 | 0«(0)} according to Definition 2.6, this
step requires a bounded check of M ET.

Discussion Airbagg is active in the harm state. Hence, Airbagg counts as a passive
safety measure (Section 4.6.1) independent of whether it is included in Mg in Step 1 or
not. Moreover, only the changes applied to Airbagg in the current iteration are subject
to validation. Finally, As constrains the behaviour of Airbagg to operational situations
where the airbag must be released and where it is prohibited doing so. Until now,
there are no safety measures which technically compensate the actions suppressRelease
and cancelExpand as causal factors for ¢yymp. A treatment at technological level,
not subject of investigation, can reduce the probability of performance of these two
actions. The instruction of drivers to avoid child safety seats or bottles in the release
area of the airbag would be a safety measure for Grarmexp. Further analysis can result
in additional assumptions for safe airbag performance.

DriveMoveg as a function and AccBrakes as a sub-function thereof, correctly per-
formed by As, can be modified by an electronic stability programme, pre-crash safety
or anti-blocking system to treat further mishaps. The sub-function Steers technically
enables the integration of a safety measure to directly intercept interactions between
driver, vehicle and environment (HeiRing and Ersoy 2007).

103

Discussion

This section argues for answers to RQl and RQ2 (cf. Section 1.1) by reflecting on the
case studies. From these observations, strengths and limitations are identified. After
providing hints, the discussion closes with an outlook on further work.

Contents
7.1 Evaluation of the Case Study 104
7.2 Improvements on Related Work 105
7.3 Some Limitations of the Approach 108
7.4 Challenges and Hints 109
7.5 Conclusions 112
7.6 PFurther Work e 114

7.1. Evaluation of the Case Study

The case study aims to provide insight into the capabilities of the proposed method.
This insight shows to a sufficient extent that the research goal “support safety-oriented
requirements validation” (RG) can be achieved, and its subordinate questions “How can
a technical system be modelled for hazard analysis?” (RQ1) and “How can hazards be
identified and a safe specification be derived?” (RQ2) can be answered.

Note on Case Representation Use cases are documented using a simplified version of
the template according to Cockburn (2000). The visualisation of hierarchical decom-
position is motivated by use case diagrams (e.g. Friedenthal et al. 2008) and models
for human-machine interface designs (e.g. Paterno et al. 1997).

Conclusions from the ATM Case The main objective of the pilot case in Section 6.1
was to show the modelling capabilities of the approach, answering RQ1. For RQ1.1, the

104

7.2. Improvements on Related Work

pilot case indicates a transition from a system model used for requirements analysis
and design to a model for safety analysis. Such a transition promises reuse of existing
models and design knowledge. For the ATM, the environment model was enriched
to capture complex behaviour of the world. The behavioural model allows actions
partially being ordered by modes. Mode channels capture dependencies between con-
current functions. Modes and dependencies can reduce complexity in the search for
causal factors. For RQ1.2, the pilot case shows the reasonably abstract capture of
control and display elements (i.e. the human-machine interface), and other points of
physical interaction (i.e. passive and moving mechanical parts, side effects).

Conclusions from the CRV Case The mawn objective of the approval case in Section 6.2
was to show the safety analysis capabilities of the approach, answering RQ1 and RQ2.

For RQ1.2, we can see that the safety-related system boundary can hide sensors and
actuators. Nevertheless, the defect model is used to capture sensing and actuation
faults, and other system defects.

For RQ2.1, the approval case demonstrated various ways of how to attach a defect
model to the specification. For RQ2.2, Section 6.2 shows in several steps how guide
words can be used to derive mishaps, hazards and, finally, safety goals and A/G pairs
as constraints for safe realisations. For RQ2.3, the approval case argues how to use
the system boundary to rewrite safety goals as responsibility relationships among
behaviour of the environment and the system. A safety measure in the system
should reduce hazardous reactions and improve controllability of unexpected stimuli.
A safety measure in the environment should improve controllability of hazardous
reactions and reduce unexpected stimuli. For RQ2.4, the results of hazard analysis
provide a stop criterion for stating the completeness of safety measures.

7.2. Improvements on Related Work

Below, I outline several strengths of the proposed method in comparison with the
related work as discussed in Section 3.4:

Safety-oriented Requirements Validation The present work aims at requirements vali-
dation including the identification of hazardous defects and their treatment through
safety measures. The approach supports a-prior:, predictive and constructive mod-
elling to elicit hazards from guessing potential mishaps but also a-posterior: and
empirical modelling of occurred hazards and mishaps (see, e.g. Hopkins 2000). Val-
idation according to Definition 3.1 can use system models without requiring a design
or realisation. This is an improvement on many of the works listed on page 38f.

Behavioural Abstraction The present approach focuses behavioural modelling and sup-
ports composition (cf. Definition 2.13). It uses abstraction, mode transition systems
and behavioural properties to capture causal factors, hazards and mishaps. The cho-
sen abstractions aim at the separation of functional concerns, scalability and reuse as

105

7. Discussion

opposed to reflecting system structure. Behavioural abstraction enables investigating
defective modes of As and Ag, and isolating causal factors. As described on page 42f,
safety analysis based on structural models regards failure modes for each component
to analyse hazardous linear causal chains. The present method makes structural ap-
proaches helpful whenever the defect model has to be made less conservative or more
precise. Anyway, structural and behavioural models should be considered in combina-
tion. In summary, the semantics of M enables automation in model validation and
testing of realisations.

Defect Taxonomy and Representation The taxonomy proposed in Section 4.2.1 adopts
kinds of defects known from the literature® to support the evaluation of effectiveness
of safety measures. MTSs are expressive enough to describe safety-related defects as
characterised in Section 4.2.2. First, the model helps predict the range of failures and
their impacts as opposed to localising faults. Second, aside from these kinds of defects,
and the actual and ideal system views (Section 2.4), the approach distinguishes the
views “actually specified and modelled” and “safely specified and modelled” to define
specification defects. Hence, Section 4.2 can be seen as a complement to work on
fault diagnosis and localisation as discussed in the Sections 2.2.3 and 3.4.1.

In the approach of Mannering et al. (2007), as mentioned on page 44, failures are
perceived as hazards whereas in the present approach, hazards and failures can be
unrelated. The proposal of Mannering et al. lacks modelling concepts in this respect.
Hall and Silva (2008) characterise defects in a way as described in Section 4.2.2: de-
fects and hazards are deviations of an actual specification from a safe specification
(cf. page 48). The authors, however, disregard behavioural properties, transition sys-
tems and a defect taxonomy whereas the present work provides guidance for hazard
treatment.

Environment Modelling and Non-linear Causative Reasoning The approach puts emphasis
on the creation of an environment model to consider environment defects (e.g. easily
violable assumptions, maloperation, misperceptions of responsibility). It leverages the
human operator viewpoint of systems with repetitive or tedious operational proce-
dures (e.g. consumer products, private cars, commercial road vehicles), or with com-
prehensive automated diagnosis equipment (e.g. in power and process plants, planes,
trains, vessels). Such systems demand the study of hazardous maloperation in spec-
ified or defective situations beyond the improvement of their reliability. The chosen
system boundary, as outlined in Figure 4.1, supports such studies.

The approaches described on page 43 address the notion of behavioural safety,
though only few of them regard formal behavioural modelling. I may put further notes
on more recent research in this context: Property defects such as misperceptions of re-
sponsibility (cf. page 53, Section 4.5 and Table 4.3) have also been reported as fallacies
of property specification by Dasgupta (2006). D’Ippolito et al. (2011) neither discuss
maloperation to be encoded in the assumptions of a specified controller nor do they

1See, e.g. Borcsék 2011, Hummer et al. 2012, Leveson 2012, Mehrpouyan 2011, Pock 2012, St&lhane
et al. 2012.

106

7.2. Improvements on Related Work

provide guidance. Whereas work devoted to the viewpoint of Leveson (2012) discusses
safety in an organisational and societal context, the present work aims on a technical
basis for discussions about the degree of freedom from hazards. The framework of
Section 4.1, part of this basis, applies a rigorous pattern-based validation procedure
and probabilistic reasoning to identify and control hazardous causalities.

Pattern-based Safety Engineering Guidance As mentioned above, I put emphasis on pro-
viding a pattern-based analysis and treatment method (cf. Appendix A.1): Step 4
(Section 5.2.2) adopts the idea of van Lamsweerde (2009) who uses goal graphs to
elicit hazards. As an alternative to goal graphs for validation, the present method
helps validate properties and MTSs at once by using the treatments discussed in Sec-
tion 4.6. Moreover, the patterns faul-safe and failed expectations, as proposed by
Wagner et al. (2010), can be used in the present method (cf. Section 4.6.1), and for
behavioural modelling and non-linear reasoning.

On the one hand, I have several remarks on more recent research concerned with
guidance (cf. Section 3.4.3): Kelly (1998) neglects behavioural modelling as opposed
to, for example, Leveson (2012), Abrial (2006) and the present work. As indicated
in Section 3.4.3, the framework of Thramboulidis and Scholz (2010) provides guid-
ance similar to the present framework. It stays, however, unclear to which extend
behavioural models are used, not least because of a missing formalisation. The con-
cepts of Lund et al. (2011) are related to the present approach as follows: for example,
assets can be indirectly referenced by the variables used to describe mishaps, vulnera-
bilities can be modelled in Aglfi (€.g. defects), threats can be modelled in Aglgi (e.g.
maloperation), incidents form runs fulfilling a mishap, risks correspond to abstract
events or hazards, and treatments match safety measures. The procedure discussed
by the authors investigates collaboration and approval, and takes into account ISO
Std. 31000 (2009), more than the procedure explained in Chapter 5 does. Lund et al.,
however, barely apply patterns of transition systems and behavioural properties.

On the other hand, this thesis goes further than many works in formal safety or
reliability analysis using modular behavioural models (cf. page 41f): For example,
McDermid and Pumfrey (1994) and Fenelon et al. (1994) refused to provide a precise
semantics of the applied guide words. The approach of Heitmeyer et al. (1998) excludes
an environment model, the notions of mishaps and aspects (Definition 2.14), and the
use of temporal logic. Heitmeyer et al. do not distinguish modes from other abstract
states which can enlarge specifications but avoid the effort of creating an additional
abstraction. Moik (1999) and Bitsch et al. (1999) disregard patterns and procedure.
As opposed to the approach of Herrmann and Krumm (1999, 2000), the present work
has a probabilistic temporal notion of hazard as well as several MTS patterns to
follow. Neogi (2002) applies backward reasoning without using MTS models and past
formulae. David et al. (2010) neglect the use of behavioural properties and patterns
for safety measures. Compared to the present method, Haxthausen et al. (2011, 2014)
are missing patterns, a procedure and an environment model to verify safety in a more
holistic fashion (cf. Section 3.1).

The comparison in Table A.10 (Appendix A.4) provides evidence that the proposed

107

7. Discussion

method largely coheres with known and practiced safety procedures: For example,
ISO 26262 part 1 also distinguishes hazardous, defective and operational states (cf.
Figure 4.5). The present approach supports validation (Definition 3.1) where many
design decisions are still missing. It addresses ISO 26262 part 3 on hazard analysis
and conception of safety measures, and coheres with IEC 61508 in that I' corresponds
to safety requirements and M, to safety functions. Furthermore, the method pro-
vides structured, reusable modelling aligned with requirements engineering, design
and system testing.

Probabilistic Causative Reasoning [may comment on some of the related approaches:
PCTL formulae according to Johnson (1993) can be evaluated for plain computation
trees instead of MARKOV chains. In contrast, the present approach uses probability
parameters being part of the action specifications of an MTS which generates MARKOV
chains. As described in Section 3.4.3, Lund et al. (2011) present a more elaborate
investigation of risk analysis based on the frequency view of probability. In contrast,
the present work provides a more constructive view of behavioural specification by
using MTS models.

Nissanke and Dammag (2002) present an approach similar to the modelling of the
three aspects Myse, Mtaj and Mg,ye, and the abstract transitions shown in Figure 4.5:
Their “timed safety clauses” correspond to superimposition of Mg,y using indetermin-
isation and action priorities. Definition 4.1 suggests models where risk classes are
derivable from mishaps, hazards and effect probabilities using probabilistic reasoning.
MTS models use static action priorities instead of a dynamic determination of these
priorities. This can be a restriction of the present method. Nissanke and Dammag,
nevertheless, leave out a discussion of modelling guidance, an environment model,
maloperation and formal semantics. Their notion of risk is only qualitative and can
make model validity difficult to assess.

7.3. Some Limitations of the Approach

Next, I indicate premises and choices which can constrain method applicability:

1. Early use: As late defect removal is costly, the method should be applied in
early life cycle stages (e.g. prototype validation, model-in-the-loop analysis). In
contrast to Pyle (1991), the present method only considers two viewpoints (cf.
page 48). Fewer viewpoints might save effort but increase the risk of oversights
during analysis as indicated by Wilson and McDermid (1995).

2. Abstraction independent of technology: M reduces the control loop to the
boundary between Ag and Ag (Section 4.1); internals of actions and causal
factors may be omitted in M to cope with a lack of design knowledge. Such
knowledge can be obtained later, for example, by FMEA or FTA of an archi-
tecture design. As a drawback, coincidental faults may occasionally compensate

108

7.4

7.4. Challenges and Hints

themselves such that negative effects would not show up at the system boundary.
M, however, is suited to guess and capture? potential defects (Section 4.2).

. Abstraction to qualitative model: Action effects are based on a uni-granular

(i-e. globally synchronous), discrete equidistant time abstraction. Composition,
state and action abstraction are constrained to the set of used variables.

. Further development and V€&V : By Definition 4.3, W is defective if it deviates
from M and M’'. Aslong as S’ is unknown, any lack of safety knowledge and
observability (e.g. due to wrong abstraction) entails two threats:

f~ A defect stays hidden (false negative): W deviates from M’ and conforms
to an unknowingly defective M.

f* An observed deviation does not express a defect (false positive): W con-
forms to M’ but deviates from an unknowingly defective M.

Hidden and inexpressive deviations? of VW from S’ and S can obstruct conclusions
on hazards (Gleirscher 2011). M may hide hazards in general (f,,) or for a
specific system realisation (f,,,), and lead to wrongly assessed hazards (f*).

. Challenges and Hints

Here, I derive challenges and hints motivated by the limitations in Section 7.3.

Chal
1
2
3
4

lenge 1 Achieve model validity in S in spite of four® ways of abstraction of W:
. Typification of states, modes and events (V, T)

. Indeterminacy, probabilistic and time abstraction, priorities (M)

. Mode and action abstraction in the mode transition system (M)

. State and action abstraction in the abstract transition system (M)

Hints To avoid threat f,,, education and experience of safety engineers should be
improved; additional guide words and MTS patterns should be provided; techniques
for requirements elicitation, probability estimation and model checking with refine-
ment should be used. To avoid threat f,,, regard variable-specific instrumentation
for measuring the enabling conditions of actions, the actuation of their effects and

the

embodiment of actions (e.g. control input events stimulated by humans, physical

events stimulated by mechanical test beds).
Model validity incorporates the goal of M to be a correct abstraction* of W, or
that M and W are bistmilar (Pappas 2003) or in a conformance relation (Rusu

2 Appendix A.8 further discusses the extent to which certain defects can be observed.
3Excluding interface abstraction of transition systems according to Broy and Stglen (2001).
4See, e.g. Bloomfield et al. 1991, Clarke et al. 2000, Henzinger 2000, Parnas et al. 1990, Pyle 1991,

S

mith 1995.

109

7. Discussion

et al. 2005). Sargent (1999) discusses the notions of conceptual model validity and
data validity which should be checked for any MTS: such validation would include the
estimation of effect probabilities which can be carried out using several techniques.®
This topic is, however, out of scope of the present work. In control theory, Smith and
Doyle (1992) and Ljung (1998) connect the validation problem with identification
ezperiments relating uncertain models with measured data. According to Sargent’s
conclusion, threats to model validity can remain independent of the expressiveness
of the chosen modelling language (e.g. mode transitions systems) and temporal logic
(e.g. PCTL*, Section 2.3.2). Model validity is further investigated in Section 7.6,
Appendix A.8 and by Trochim and Donnelly (2008).

Challenge 2 Achieve compactness, effectiveness and reusability of M:

1. Leverage the expressiveness of the discussed model to keep M lean (e.g. permis-
sive behaviour of humans according to Jackson 2001).

2. Use simplifications (e.g. merge or split actions and types).

3. Avoid or handle effect interference in composite actions (e.g. shared output de-
vices such as actuators and displays).

4. Concisely represent MTSs with many dependencies (e.g. de-/activation or dis-
turbance imposed by energy control or “filter” functions).

5. Concisely model actions with strongly heterogeneous time granularity (e.g. con-
currency of human and system actions).

6. Leverage reuse (e.g. use of a validated MTS in a different environment as a
fragment of another MTS) and variability (e.g. composition or superimposition
with optional and alternative choice of MTSs; Apel and Lengauer 2008).

Hints As MTSs can hide internals, we may require input from structural models
to explain certain behaviour. Indeterminacy for underspecification enhances defect
modelling, although deterministic models idealise predictability of a technical system
to make fault localisation easier. Indeterminacy can support safety engineers in dealing
with a lack of knowledge of the interfaces, the structure, and the initialisation of the
system and the environment. For concise and reusable description of functions and
defects, non-deterministic choice of actions in M (see page 20) can take place among
several

e enabled coercive actions (ezplicit)
e enabled permissive actions and k (ezplicit)

e effects for k (¢mplicit)

5See, e.g. Borcsdk 2011, Gaede 1977, Kumamoto 2007.

110

7.4. Challenges and Hints

e actions enabled because of an incomplete perception of the system boundary
(Broy et al. 2009) or isolating® an MTS by removing its mode channels (quasz).

System realisations are inherently complete and deterministic but possibly hazardous.
Hence, each incomplete or non-deterministic As needs to be made causal, to form
a realisable system specification (Broy and Stglen 2001), and safe, to form a valid
system specification A§. Although we might be able to construct Ag to be coercive
and deterministic, Ag may stay permissive and non-deterministic, even violate I’ or
deviate from M’ or M. Section 4.5 addresses this issue by applying A/G style.
Heterogeneous operating speeds should be taken care of because the execution of
an action always takes one time step: Several intermediate effects during the interval
of one time step can be encoded by sequences of values instead of single values (Broy
2010). An effect which requires more than a single time step can be encoded by a
partial effect if its variable type is precise, or by an additional waiting mode with an €
action and a time-triggered control action leading to the mode performing the effect.

Challenge 3 Achievement and preservation of behavioural safety across composi-
tion (@, ®) and evolution (~) in S.

Hints The composition and evolution operators support scalability and evolvability.
These abilities require ways to derive a conclusion on behavioural safety from piece-
wise evaluations of MTSs and behavioural properties. Hence, we have to consider
mechanisms for the composition operators which preserve behavioural safety, that
is, which are modular with respect to this property. Such mechanisms can reduce
necessary and unwanted functional dependencies and property interrelation.

Property achievement in Aslsave: For fault tolerance as an extension of software
correctness, Gértner (1999) explains program transformations (i.e. fault detection or
correction based on a defect model) and corresponding changes of property assertions.

Property preservation of &,® in M with 1 M can be annotated with A/G
pairs. In as many as possible situations, including functional dependencies and effect
interference, the operator ® has to support the entailment

{As1IM{GT}INA{AS IML{GT2} E {Ast A AsIM; @ My{Gr; A\ Gy}

(see, e.g. Broy 1998). Such an entailment is also required for the operator @, except
for a reduced guarantee {Gr; V Gry}.

Property preservation of ~»: The cases T € T' and V ¢ V' are common and
can obstruct comparability of [M] and [M']. Regarding the premises 2 and 3
(cf. page 108), correct abstraction, however, is supposed to be maintained by Defi-
nition 4.14. Gleirscher et al. (2014) discuss an application of evolution in practice.

6An MTS is isolated by excluding variables in Vy,, from its action specifications, resulting indeter-
minacy can be resolved again by parallel composition (Definition 2.9).

111

7. Discussion

state-based concepts

state-based concepts

run-based caqusal safety
concepts
P factor goal
\may cause or
/v be part of treats’ treats
. implies
properties Caused by or / o
(of sets of / includes at least one N 4 may cause or lead to _ . |
defect hazard > mishap A/G pair
states or runs) oy A "
i iaS caused by at least one +
semantics models models m°d9|5 models
(individual e can contain I
sets of defective <—CO = fallure_—> mc:dent » harm state* models
states or state* / /f\
runs) isnota isa . isnota
Isa
isa part human injury environmental or
of or loss system damage
fault hazardous hazardous safe
failure state* is nota state*

Figure 7.1.: Overview of concepts for behavioural safety, *...can be an abstract state

7.5. Conclusions

Safety-oriented requirements validation represents the transition from an “actually
specified and modelled” S to a “safely specified and modelled” S’ (S ~» S§'). Beyond
this transition, a system life cycle has to include an assured realisation (S’ = W').
Final V&YV of a realisation for safety is, however, omitted here. Anyway, the present
method helps collect evidence and build up argumentation for safety of a technical
system and its software-intensive control subsystem in early life cycle stages:

A safe specification S' implies that each software-intensive control sub-
system, implementing the specified safety measures, contributes to haz-
ard freedom and, hence, safety.

The method guides safety analysis starting from use cases, operational situations and
mishaps, and ending in the knowledge of causal factors, hazards and safety goals.
The approach uses system modelling to achieve (i) the encoding of domain, require-
ments and defect knowledge (answer to RQ1), (ii) the assessment of hazards based on
this knowledge, and (iii) justified safety measures to be accomplished by subsequent
engineering (answer to RQ2).

Figure 7.1 depicts concepts for safety-oriented requirements validation. The frame-
work defined in Section 4.1 helps compare ideal, actual, specified and realised be-
haviour to conceptualise causal factors. The abstraction applied in S enables safety
engineers to represent and communicate safety-related domain knowledge in a way
largely independent of technology. The world model M helps focus on which hazards
could reasonably and potentially occur prior to how assessed hazards can actually
occur. This way, the method leverages reuse of this knowledge in requirements en-
gineering, functional safety, reliability engineering and system testing. The approach
is a-priort usable in requirements validation whereas a-posteriori approaches can be
biased by strong dependence on technological specificities.

112

7.5. Conclusions

The method combines hazard knowledge with a defect model which represents im-
pacts of technology-specific faults on causal factors. Reliability analysis of a system
design model, for example, component-level FMEA, can justify or refute this defect
model as soon as required. S’ can then help improve safety integrity. The enwvi-
ronment model enhances defect modelling, hazard identification and the planning of
safety measures. Moreover, the identification of hazardous behaviour permitted by
a specification results in the knowledge of specification defects. Here, three cases are
of particular interest:

1. Long-term interactivity: Indicated by Leveson (2012), it is not only required to
trace defects through a known design (e.g. by FMEA, FTA) but also to observe
behaviour to understand hazardous operational situations and to identify subtle
defects in S. Behavioural reasoning elucidates whether hazards are caused by
past states and long-term deviations from safe behaviour of any or both, the
system and its environment.

2. Human action: The defect model in S accommodates the automation para-
doz (cf. Section 1.1) by enabling the identification of hazards resulting from in-
tentional or unconscious misbehaviour of the environment (e.g. security attack,
driver inattention) including tntervention if failure or maloperation occurs.

3. Complez functionality: S enables the assessment of hazards which arise from
concurrent functions and their assumed or inexactly known hazardous depen-
dencies. The physical side effects possibly underlying such dependencies can,
for example, be modelled via mode channels and effect interferences.

Knowledge of unexpected and defective behaviour in these cases motivates the speci-
fication of passive and preventive safety measures. Hence, the approach helps treat
hazardous specification defects prior to treating hazardous operational defects.

M should capture as many relevant situations in the application domain as possi-
ble. Hence, model completeness and validity are decisive (cf. challenges 1 and 2 in
Section 7.4). The MTS patterns for predictive defect modelling, and the guide words
for mishap modelling and causal factor search (cf. Section 4.3) constitute prerequisites
for a complete and valid M. In the procedure shown in Chapter 5, these means help
identify variables to assert constraints and properties of, for example, side effects and
faults (Step 2), harm states (Step 3), and hazardous states (Step 4). The abstract
transition system M« helps proceed from @ (Step 3) and H (Step 4) to I' (Step 5).
Furthermore, the well-formedness conditions on non-deterministic” (i.e. distribution
unspecified, e.g. unknown) and probabilistic choice (i.e. distribution specified, e.g.
equipartition), and prioritisation constrain MTS modelling decisions.

A /G-based safety goals help specify practicable safety measures by imposing re-
sponsibilities: A/G pairs can reduce difficulties in resolving specification defects and
in treating hazards through safety measures for extreme, unexpected or defective be-
haviour. The value of a guarantee and the strength of the associated assumption, how-
ever, justify the interest to fulfil this assumption. In summary, safety goals constrain

"Section 7.4 discusses several kinds of indeterminacy.

113

7. Discussion

the set of safe models and contribute to finding a safe realisation ([W] C [M] N [[F]],
cf. Figure 4.7).

Underpinned by the evaluation of the case study, the proposed solution supports
safety-oriented requirements validation (RG, cf. Section 1.1). By comparison with
related work (Section 3.4.2), Section 7.2 provides further evidence that this solution
is an improvement on the state of the art, particularly, on Leveson’s viewpoint (cf.
Section 3.1) which has been mostly pursued by this thesis. Hence, I might suggest
that this thesis contributes to the field of safety engineering.

7.6. Further Work

This section enumerates several topics that can be pursued in the future.

Development of Verification Techniques The construction and evolution of MTSs re-
quires the proof of standard algebraic properties of the operators @, ® and « as
shown, for instance, by Hoare (1985). State and action abstraction motivates bisim-
ulation proofs, for example, according to Milner (1973) and Pappas (2003). Usually,
treatments raise the obligation of refinement proofs as discussed by Broy and Stglen
(2001). The Steps 4.3, 4.5, 5.2, 5.4 and 6.3 can be supported by compact inference
rules for PCTL* formulae similar to the rules proposed by Pnueli and Kesten (2002).

Support of Evolutionary Development by the Procedure (Chapter 5) Which changes to M;
are required after having transferred Mg, to Mys to conduct a further iteration?
Which parts of S are affected when changing the system boundary (e.g. because of a
changed control concept)? As mentioned, preservation of behavioural safety in S
is required during composition and evolution. S is subject to evolution, for example,
because of consumer or technology market changes (Gleirscher et al. 2014).

Automation of the Procedure (Chapter 5) To which extent can My,; be generated from
Myse (Step 2)? For example, guessing defects (Step 2.4) by deriving defective modes
from specified modes, by modifying actions, by adding T or € actions. How can
mode, action and event guide words be combined with property patterns to refine
hazards (Step 4)? Adapted from Dwyer et al. (1999), for example, “<unattended>
<start> of ‘move’ ” yields “move erroneously precedes userAction” and E(—(move V
userAction) U (move /\ —userAction)). See Dobi et al. (2013) and Letier (2001).

Practical Evaluation How well does the method fit practical needs? Does the effort of
deriving S’ exceed the benefits? How can the application of MTS patterns for defects
and safety measures be improved? How can the application of guide words for mishaps,
causal factors and hazards be improved? How can state and action abstraction be more
effectively combined with pattern application?

114

7.6. Further Work

Requirementsand
Safety Engineers

T

3

System Test
Engineers

Figure 7.2.: Specification-based testing in V&V according to Figure 2.1

Integration with Other Approaches Dynamic FTA (Dugan et al. 1992) can be effi-
ciently abstract and conservative by reducing a component’s modes to a defective
and an operational mode. How well can Ag|si, the analysis stage (Section 5.2) and
Aslsave be mapped to FTA concepts (e.g. dependencies, and/or, k-of-m, priorities,
failures, permanent or transient faults, minimal cut sequences, coverage components,
cold/warm/hot spares)?

Specification-based testing of safety-critical control systems® is supported by S'.
This technique can help test engineers assess hazardous defects and strengthen the
argument for W = W' (see Figure 7.2): Which test cases can and should be derived
from S'? To which extent is S’ suitable for stimulation and response monitoring, and
for the definition of test stop criteria? Test cases which cover Mg,; and Mg, are of
particular interest. Dasgupta (2006) discusses the build-up of ' and A /G pairs to cover
M. Failed tests can reveal specification defects to be used in model validation (cf.
challenge 1 in Section 7.4), or operational defects to be included in Mg, (cf. Step 2.2b
in Section 5.1.2). Appendix A.8 and Gleirscher (2011) describe hazard-based testing
and a test bed instrumentation.

According to game theory, Ag and As can be seen as players: How can knowledge
about mishaps and defects be converted into friendly (M,ye) and adversarial strategies
(Mg,;) within the freedom of choice in M? The harder the game for the adversarial
parts, the safer the game for the environment to achieve T1 and T2 (cf. page 36). How
can A/G pairs be turned into knowledge about past and beliefs about future, and,
hence, into a stochastic game with incomplete knowledge? Game theory has been ap-
plied to reachability analysis, reasoning on compatibility and A/G-based refinement
of transition systems (de Alfaro and Stglinga 2004), synthesis of fault-tolerant con-
trollers (Cheng et al. 2012, D’Ippolito et al. 2011) and model checking (Peled et al.
1999).

Legal theory and safety assurance may benefit from each other, for example, using
lawyers’ methods to constructing safe specifications and jurisprudence’s methods to
verify system realisations (Logrippo 2014).

8See, e.g. Beizer 1995, Das et al. 2012, Gleirscher 2013a, Liggesmeyer 2009, Peleska 1996, Pyle 1991,
Rusu et al. 2005.

115

Bibliography

Abdulkhaleq, A. and S. Wagner (2013). Integrating state machine analysis with system-
theoretic process analysis. In Multikonf. Soft. Eng.: ZeMoSS — Zertifizierung und mod-
ellgetriebene Entwicklung sicherer Software, Aachen, Germany. 45

Abrial, J.-R. (1998). On B. In D. Bert (Ed.), B, Volume 1393 of LNCS, pp. 1-8. Springer.
16

Abrial, J.-R. (2006). Train systems. In M. J. Butler, C. B. Jones, A. Romanovsky, and
E. Troubitsyna (Eds.), RODIN Book, Volume 4157 of LNCS, pp. 1-36. Springer. 39, 42,
107

ADAC (2012). Zahlen, Fakten, Wissen. Aktuelles aus dem Verkehr. Online: www.adac.de/
_mmm/pdf/statistik zahlen fakten wissen 0512 46600.pdf, accessed: 2013-03-23. 2

Agha, G. and C. Hewitt (1985). Concurrent programming using actors: Exploiting large-scale
parallelism. In Found. of Soft. Tech. and Theor. Comp. Sci., Volume 206 of LNCS, pp.
19-41. Springer. 14, 15

ANSI and IEEE (1983). ANSI/IEEE Std. 729: Standard Glossary of Software Engineering
Terminology. 16

Apel, S. and C. Lengauer (2008). Superimposition: A language-independent approach to soft-
ware composition. In Software Composition, Volume 4954 of LNCS, pp. 20-35. Springer.
20, 110

Atlee, J. M. and J. A. McDermid (1995, Mar). Integrating requirements analysis and safety
analysis. In 2nd IEEE Int. Symp. Req. Eng., York, England, pp. 158-9. IEEE CS. 3, 32

Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider (Eds.)
(2003). The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge U P. 15

116

www.adac.de/_mmm/pdf/statistik_zahlen_fakten_wissen_0512_46600.pdf
www.adac.de/_mmm/pdf/statistik_zahlen_fakten_wissen_0512_46600.pdf

Bibliography

Baier, C. and J.-P. Katoen (2008, May). Principles of Model Checking. MIT Press. 13, 15,
16, 17, 27, 28, 29, 66

Bainbridge, L. (1983, Nov). Ironies of automation. Automatica 19(6), 775-9. 4

Barroca, L. M. and J. A. McDermid (1992). Formal methods: Use and relevance for the
development of safety-critical systems. Comp. J. 35(6), 579-99. 32

Basili, V., G. Caldiera, and D. H. Rombach (1994). The goal question metric approach. In
J. Marciniak (Ed.), Encyclopedia of Software Engineering. Wiley. 9

BAUA (2012). Bundesanstalt fiir Arbeitsschutz und Arbeitsmedizin — T6dliche Arbeitsunfalle
2001-2010. Online: www.baua.de/Toedliche- Arbeitsunfaelle, accessed: 2013-02-28. 2

Beizer, B. (1995). Black-Boz Testing. Wiley. 3, 14, 15, 115

Biehl, M., C. DelJiu, and M. T'drngren (2010, Apr). Integrating safety analysis into the model-
based development tool chain of automotive embedded systems. In SIGPLAN/SIGBED
Conf. Languages, Compilers, and Tools for Embedded Systems, Stockholm, Sweden, pp.
125-32. ACM. 38, 39, 40, 146, 147

Bitsch, F. (2001, Sep). Safety patterns — the key to formal specification of safety requirements.
In U. Voges (Ed.), Comp. Safety, Reliability and Security, Volume 2187 of LNCS, pp.
176-89. Berlin, Germany: Springer. 41

Bitsch, F., E. Canver, and A. Moik (1999, Dec). Strukturierte Erstellung von Sicherheitsspez-
ifikationen in UML mit Hilfe der FMEA-Methode. In E. Schnieder (Ed.), Workshop For-
male Techniken fir die Eisenbahnabsicherung, Number 436 in Fortschrittsberichte 12:
Verkehrs- /Fahrzeugtechnik, Braunschweig, Germany, pp. 225-45. VDI. 41, 107, 146, 147

Bloomfield, R., P. Froome, and B. Monahan (1991). Formal methods in the production and
assessment of safety critical software. Reliability Eng. & Sys. Safety 32(1-2), 51-66. 32,
109

Boehm, B. W. (1991). Software risk management: Principles and practices. IEEE Soft-
ware 8(1), 32-41. 33, 36, 45

Boéresok, J. (2011, May). Funktionale Sicherheit: Grundzige sicherheitstechnischer Sys-
teme (3rd ed.). VDE Verlag. 31, 34, 35, 36, 37, 65, 66, 106, 110, 158

Borger, E. and R. Stark (2003). Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer. 29

Botaschanjan, J. and B. Hummel (2009). Specifying the worst case — orthogonal modelling
of hardware errors. In 18th Int. Symp. Software Testing and Analysis, New York, NY,
USA, pp. 273-84. ACM. 17, 39

Bowles, J. and C. Wan (2001). Software failure modes and effects analysis for a small em-
bedded control system. In Ann. Reliability and Maintainability Symp., Philadelphia, PA,
USA, pp. 1-6. IEEE. 38, 39, 41, 42, 146, 147

Braun, P., J. Phillips, B. Schatz, and S. Wagner (2009, Sep). Model-based safety cases for
software-intensive systems. Electr. Notes Theor. Comput. Sci. 238(4), 71-7. Position
paper, 1st Int. Worksh. Cert. of Safety-crit. Soft. controlled Sys. 4

117

www.baua.de/Toedliche-Arbeitsunfaelle

Bibliography

Breitling, M. (2000). Modeling faults of distributed, reactive systems. In M. Joseph (Ed.),
Formal Technigues in Real-Twme and Fault-Tolerant Systems, Volume 1926 of LNCS,
pp. 58-69. Springer. 17, 39

Broy, M. (1998). A functional rephrasing of the assumption/commitment specification style.
Formal Methods in System Design 138(1), 87-119. 15, 66, 111

Broy, M. (2005). Engineering Theories of Software Intensive Systems, Chapter "Service-
oriented Systems Engineering: Specification and Design of Services and Layered Architec-
tures — The JANUS Approach", pp. 47-81. Springer. 14, 15, 29, 73

Broy, M. (2010). A logical basis for component-oriented software and systems engineering.
The Computer Journal 53(10), 1758-82. 14, 15, 29, 73, 111

Broy, M. (2012, May). Functional safety based on a system reference model. In Austral. Sys.
Safety Conf., Brisbane, QLD, Australia. Keynote paper. 4, 5, 40

Broy, M., C. Leuxner, W. Sitou, B. Spanfelner, and S. Winter (2009). Formalizing the notion
of adaptive system behavior. In Symp. App. Comp., pp. 1029-33. ACM. 65, 111

Broy, M., B. Penzenstadler, M. Gleirscher, and J. Eckhardt (2012, Apr). Requirements
Engineering. Online: www4.in.tum.de/lehre/vorlesungen/re/ss12, accessed: 2013-02-28.
Lecture material, summer term, course no. IN2198, Institut fiir Informatik, Technische
Universitat Miinchen. 9, 76

Broy, M. and K. Stglen (2001). Specification and Development of Interactive Systems:
Focus on Streams, Interfaces, and Refinement. Springer. 14, 15, 16, 26, 29, 30, 41, 66,
67, 109, 111, 114, 141

Buys, J. and J. Clark (1995). Events and Causal Factors (ECF) Analysis. Technical Report
SCIE-DOE-01-TRAC-14-95, Technical Research and Analysis Center, Idaho Falls, USA.
SCIENTECH. 35, 146, 147

Cacciabue, P. C. (2004, Sep). Guide to Applying Human Factors Methods: Human Error
and Accident Management in Safety-Critical Systems. Springer. 1, 35, 146, 147

Catino, C. and L. Ungar (1995). A model-based approach to automated hazard identification
of chemical plants. AIChE Journal 41(3), 97-109. 38, 39, 41, 146, 147

Chen, D.-J., R. Johansson, H. Lénn, Y. Papadopoulos, A. Sandberg, F. T'6rner, and M. T6rn-
gren (2008). Modelling support for design of safety-critical automotive embedded systems.
In M. D. Harrison and M.-A. Sujan (Eds.), SAFECOMP, Volume 5219 of LNCS, pp.
72-85. Springer. 38, 39, 40, 146, 147

Chen, P. P.-S. (1976). The Entity-Relationship Model — Toward a unified View of Data. ACM
Trans. Database Syst. 1(1), 9-36. 15

Cheng, C.-H., M. Geisinger, H. Ruess, C. Buckl, and A. Knoll (2012). Game solving for
industrial automation and control. In IEEE Int. Conf. Robotics and Automation, pp.
4367-72. 115

Chillarege, R., I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, and M. Wong (1992).
Orthogonal defect classification — a concept for in-process measurements. IEEE Trans.
Soft. Eng. 18(11), 943-56. 39

118

www4.in.tum.de/lehre/vorlesungen/re/ss12

Bibliography

Clarke, E. M., O. Grumberg, S. Jha, Y. Lu, and H. Veith (2000). Counterexample guided
abstraction refinement. In E. A. Emerson and A. P. Sistla (Eds.), CAV, Volume 1855 of
LNCS, pp. 154-69. Springer. 29, 109

Cockburn, A. (2000, Oct). Writing Effective Use Cases. Crystal Series for Software Devel-
opment. Amsterdam: Addison-Wesley Longman. 13, 104

Courtois, P.-J. and D. Parnas (1993, May). Documentation for safety critical software. In
15th ICSE, pp. 315-23. 14, 29, 32

Damm, W. and T. Peikenkamp (2004, Jul). Modellbasierte Sicherheitsanalyse in STATE-
MATE / Model-based Safety Analysis. Online: www.informatik.hu-berlin.de/studium/
ringvorlesung/ss04, accessed: 2013-02-15. Lecture material, lecture series on “Model-based
Development” at Humboldt Universitdt Berlin. 39, 40, 65, 146, 158

Das, S., A. Banerjee, and P. Dasgupta (2012). Early analysis of critical faults: An approach
to test generation from formal specifications. IJEEE Trans. on CAD of Integrated Circuits
and Systems 31(3), 447-51. 17, 115

Dasgupta, P. (2006, Jul). A Roadmap for Formal Property Verification (1st ed.). Springer.
43,106, 115

Dasgupta, P. (2012, May). Formal specification — from theory to practice. Presentation slides,
talk series at Technische Universitdt Miinchen. 43

David, P., V. Idasiak, and F. Kratz (2010, Apr). Reliability study of complex physical systems
using SysML. Reliability Eng. and Sys. Safety 95(4), 431-50. 41, 107, 146, 147

Davis, A. M. (1988). A comparison of techniques for the specification of external system
behavior. Commun. ACM 81(9), 1098-115. 15

de Alfaro, L. and M. Stglinga (2004). Interfaces: A game-theoretic framework for reasoning
about component-based systems. Electr. Notes Theor. Comput. Sci. 97, 3-23. 115

Dehlinger, J. and J. B. Dugan (2008, Aug). Dynamic event/fault tree analysis of multi-agent
systems using Galileo. In H. Zhu (Ed.), 8th Int. Conf. Quality Software, Oxford, UK, pp.
429-34. IEEE CS. 146, 147

DeMarco, T. (1979). Structured Analysits and System Specification. Yourdon Press. Upper
Saddle River, Englewood Cliffs, NJ, USA: Prentice-Hall. 15

Diaconescu, R. S. (2011). Automatic Pre-Processing of Accident Data for Evaluation of
Preventive Safety Systems. Bachelor thesis, Technische Universitdt Miinchen. 4

D’Ippolito, N., V. A. Braberman, N. Piterman, and S. Uchitel (2011, May). Synthesis of live
behaviour models for fallible domains. See Taylor et al. (2011), pp. 211-20. 39, 43, 66,
106, 115, 146, 147

Dobi, S., M. Gleirscher, M. Spichkova, and P. Struss (2013, Jun). Model-based Hazard Anal-
ysis and Risk Assessment. Technical Report TUM-I11333, Technische Universitdt Miinchen.
5, 9, 39, 41, 65, 73, 90, 96, 114, 146, 147

Dugan, J., S. Bavuso, and M. Boyd (1992). Dynamic fault tree models for fault-tolerant
computer systems. IEEE Trans. Reliability 41(3), 363-77. 3, 16, 34, 40, 42, 115, 146, 147

119

www.informatik.hu-berlin.de/studium/ringvorlesung/ss04
www.informatik.hu-berlin.de/studium/ringvorlesung/ss04

Bibliography

Dulac, N. (2007). A Framework for Dynamic Safety and Risk Management Modeling
i Complez Engineering Systems. Ph. D. thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA. 43

Dwyer, M. B., G. S. Avrunin, and J. C. Corbett (1999). Patterns in property specifications
for finite-state verification. In ICSE, pp. 411-20. 16, 41, 73, 114

Ehrlenspiel, K. and H. Meerkamm (2013, Mar). Integrierte Produktentwicklung: Denk-
abldufe, Methodeneinsatz, Zusammenarbeit (5th ed.). Hanser. 1, 12

Ericson, C. A. (2005). Hazard Analysis Technigues for System Safety. Hoboken, NJ, USA:
Wiley. 2, 3, 31, 33, 34, 35, 66

Esser, M. and P. Struss (2007). Fault model-based test generation for embedded software. In
20th Int. Joint Conf. Artif. Intell., pp. 342-7. 17, 39, 41, 146, 147

Evers, C. (2012, Sep). Unterschétzte Risikofaktoren — Ubermiidung und Ablenkung als Ur-
sache fiir schwere Lkw-Unfille. Online: DVR Bundesanstalt fiir StraBenwesen (BASt),
www.dvr.de/download/ps081124-25 ec pr.pdf, accessed: 2013-02-28. 2

Fantechi, A., S. Gnesi, F. Mazzanti, R. Pugliese, and E. Tronci (1999). A symbolic model
checker for ACTL. In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann (Eds.), Applied
Formal Methods (FM-Trends ’98), Volume 1641 of LNCS, pp. 228-42. Springer. 29

Feather, M. (2004, Nov). Towards a unified approach to the representation of, and reasoning
with, probabilistic risk information about software and its system interface. In 15th IEEE
Int. Symp. on Softw. Reliability Eng., Saint-Malo, France, pp. 391-402. 39, 42, 146, 147

Feather, M. and L. Markosian (2011, Aug). Building a safety case for a safety-critical NASA
space vehicle software system. In 4th IEEE Int. Conf. Space Mission Challenges for
Inform. Tech., Palo Alto, CA, USA. 44

Feather, M. S. (1987). Language support for the specification and development of composite
systems. ACM Trans. Program. Lang. Syst. 9(2), 198-234. 16, 65

Fenelon, P., J. A. McDermid, M. Nicolson, and D. J. Pumfrey (1994, Mar). Towards integrated
safety analysis and design. SIGAPP Appl. Comput. Rev. 2(1), 21-32. 32, 36, 42, 107

Floyd, R. (1967). Assigning meanings to programs. In J. Schwartz (Ed.), Math. Aspects of
Comp. Sci., pp. 19-32. Amer. Math. Soc. 15

Focus (2012, Feb). 49 Tote bei schwerem Zugungliick in Buenos Aires. Online: www.focus.
de/panorama/welt/zug-rammt-bahnsteig-schweres-zugunglueck-in-buenos-aires _aid
716720.html, accessed: 2013-02-15. 2

Forejt, V., M. Kwiatkowska, G. Norman, and D. Parker (2011, Jun). Automated verifica-
tion techniques for probabilistic systems. In M. Bernardo and V. Issarny (Eds.), Formal
Methods for Eternal Networked Soft. Sys., Volume 6659 of LNCS, pp. 563-113. 66

Forrester, J. W. (1961). Industrial Dynamics (1st ed.). Cambridge U P. 13, 14, 15

Friedenthal, S., A. Moore, and R. Steiner (2008, Jul). A Practical Guide to SysML: The
Systems Modeling Language. Morgan Kaufmann. 9, 15, 41, 104

120

www.dvr.de/download/ps081124-25_ec_pr.pdf
www.focus.de/panorama/welt/zug-rammt-bahnsteig-schweres-zugunglueck-in-buenos-aires_aid_716720.html
www.focus.de/panorama/welt/zug-rammt-bahnsteig-schweres-zugunglueck-in-buenos-aires_aid_716720.html
www.focus.de/panorama/welt/zug-rammt-bahnsteig-schweres-zugunglueck-in-buenos-aires_aid_716720.html

Bibliography

Gaede, K. (1977). Zuverldssigkeit — Mathematische Modelle. Miinchen: Hanser. 36, 110

Gartner, F. C. (1999). Transformational approaches to the specification and verification of
fault-tolerant systems: Formal background and classification. J. UCS 5(10), 668-92. 16,
17, 39, 66, 67, 111, 146, 147

Gaudel, M.-C. and J. Woodcock (Eds.) (1996, Mar). 3rd IFIP WG 14.3 Int. Symp. Formal
Methods Europe: Industrial Benefit and Advances in Formal Methods, Volume 1051 of
LNCS, Oxford, UK. Springer. 128

Gehlen, P. (2010, Jul). Funktionale Sicherheit von Maschinen und Anlagen: Umsetzung
der Buropdischen Maschinenrichtlinie in der Prazis (2nd ed.). Publicis. 1, 33

Gleirscher, M. (2011, May). Hazard-based selection of test cases. See Taylor et al. (2011). 5,
9, 39, 65, 109, 115, 159, 162

Gleirscher, M. (2012, May). Ein Kaffeevollautomat — Fallstudie fiir modellbasierte Spezi-
fikation zur Vorlesung “Requirements Engineering” im Sommersemester 2011. Technical
Report I-125, Technische Universitdt Miinchen. 9

Gleirscher, M. (2013a, Mar). Another taxonomy of testing approaches. Submitted to IS-
STA’13 but rejected in the second review stage. 115

Gleirscher, M. (2013b, Jan). Hazard analysis for technical systems. In 5th Software Quality
Days, Number 133 in LNBIP, Vienna, pp. 104-24. Springer. vii, 5, 9, 65, 91

Gleirscher, M. and S. Fuhrmann (2012, Sep). SAFER - Rahmenwerk zur Anforderungsen-
twicklung fiir Fahrwerkregel- und Fahrerassistenzsysteme. Internal project report, Tech-
nische Universitat Miinchen & BMW AG. Nondisclosure aggreement applies. 9, 91, 92

Gleirscher, M., D. Golubitskiy, M. Irlbeck, and S. Wagner (2014, Sep). Introduction of
static quality analysis in small and medium-sized software enterprises: Experiences from
technology transfer. Software Quality Journal 22(3), 499-542. 12

Gleirscher, M., D. Ratiu, and B. Schatz (2007, Mar). Incremental integration of heterogeneous
systems views. In Ist Int. Conf. Sys. Eng. and Modeling, pp. 50-9. IEEE. 12

Gleirscher, M., A. Vogelsang, and S. Fuhrmann (2014, Aug). A model-based approach to
innovation management of automotive control systems. In 8th Int. Workshop Soft. Prod.
Mgt., Karlskrona, Sweden. IEEE digital library. 9, 91, 111, 114

Goddard, P. (2000). Software FMEA Techniques. In RAMS: Ann. Reliability and Main-
tainability Symp., pp. 118-23. IEEE. 3, 35

Godskesen, J. C. (1999, Sep). Fault models for embedded systems. See Pierre and Kropf
(1999), pp. 354-9. Extended abstract. 17

Hall, J. G., D. Mannering, and L. Rapanotti (2007). Arguing safety with problem oriented
software engineering. In 10th IEEE Int. Symp. on High Assurance Sys. Eng., Dallas,
Texas. 44

Hall, J. G. and A. Silva (2008). A conceptual model for the analysis of mishaps in human-
operated safety-critical systems. Journal of Safety Science 46, 22-37. 1, 39, 43, 45, 106,
146, 147

121

Bibliography

Harashima, F., M. Tomizuka, and T. Fukuda (1996). Mechatronics — what is it, why and
how? IEEE/ASME Trans. Mechatronics 1(1), 1-4. 11

Harel, D. and R. Marelly (2003, Aug). Come, Let’s Play: Scenario-Based Programming
Using LSCs and the Play-Engine (1st ed.). Springer. 15

Harel, D. and M. Politi (1998, Oct). Modeling Reactive Systems With Statecharts: The
Statemate Approach. Software Development. US: McGraw-Hill. 15, 29, 39, 42

Hatley, D. and I. Pirbhai (1987). Strategies for Real-Time Systems Specification. Dorset
House. 16

Hauge, A. A. and K. Stglen (2014, May). An analytic evaluation of the SaCS pattern language
- including explanations of major design choices. In 6th Int. Conf. Pervasiwve Patterns
and Applications, Venice, Italy. Preprint. 44

Haxthausen, A. E., J. Peleska, and S. Kinder (2011). A formal approach for the construction
and verification of railway control systems. Formal Aspects of Comp. 23(2), 191-219. 3,
43, 107, 146, 147

Haxthausen, A. E., J. Peleska, and R. Pinger (2014). Applied bounded model checking for
interlocking system designs. In S. Counsell and M. Nufiez (Eds.), Software Engineering
and Formal Methods, LNCS, pp. 205-20. Springer. 43, 107, 146, 147

Heifling, B. and M. Ersoy (2007, May). Fahrwerkhandbuch: Grundlagen, Fahrdy-
namik, Komponenten, Systeme, Mechatronik, Perspektiven. ATZ/MTZ-Fachbuch.
Vieweg+Teubner. 4, 103

Heitmeyer, C. L., J. Kirby, B. Labaw, R. Bharadwaj, et al. (1998). SCR*: A toolset for
specifying and analyzing software requirements. In A. Hu and e. M.Y. Vardi (Eds.), 10th
Int. Conf. on CAV, Volume 1427 of LNCS, pp. 526-31. Springer. 16

Heitmeyer, C. L., J. Kirby, B. G. Labaw, M. Archer, and R. Bharadwaj (1998). Using
abstraction and model checking to detect safety violations in requirements specifications.
IEEE Trans. Soft. Eng. 24(11), 927-48. 3, 39, 42, 107, 146, 147

Henzinger, T'. (2000). The theory of hybrid automata. In Verification of Digital and Hybrid
Systems, Volume 170 of NATO ASI Series F: Computer and Systems Sciences, pp.
265-92. Springer. 16, 26, 65, 109

Herrmann, P. and H. Krumm (1999, Oct). Formal hazard analysis of hybrid systems in cTLA.
In 18th IEEE Symp. on Reliable Distributed Systems, Lausanne, pp. 68-77. IEEE CS.
39, 42, 107

Herrmann, P. and H. Krumm (2000, Sep). A framework for the hazard analysis of chemical
plants. In 11th IEEE Int. Symp. on Computer-Aided Control System Design, Anchorage,
Alaska, USA, pp. 35—-41. IEEE CSS: Omnipress. 42, 107, 146, 147

Hoare, C. A. R. (1985, Apr). Communicating Sequential Processes (1st ed.). Int. Series in
Comp. Sci. Prentice-Hall. 15, 29, 30, 114

Hoffmann, D. W. (2013, Dec). Software-Qualitdt (2nd ed.). Berlin: Springer. 3, 12, 14

122

Bibliography

Hollnagel, E. (2004). Barriers and Accident Prevention. Ashgate. 43, 146, 147

Hopcroft, J. E., R. Motwani, and J. D. Ullman (2006, Jun). Introduction to Automata
Theory, Languages and Computation (3rd ed.). Prentice-Hall. 15

Hopkins, A. (2000). Lessons from Longford: The Esso Gas Plant Ezplosion. Sydney,
Australia: Arcadia: CCH. 35, 105

Hummer, W., C. Inzinger, P. Leitner, B. Satzger, and S. Dustdar (2012). Deriving a unified
fault taxonomy for event-based systems. In 6th ACM Int. Conf. Distributed Event-Based
Systems, DEBS’12, New York, NY, USA, pp. 167-78. ACM. 39, 106

IAEA (2008). The International Nuclear and Radiological Event Scale (INES) - User’s
Manual (revised ed.). International Atomic Energy Agency. 2

IEC (2011). Std. 61508: Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems. 1, 33, 37, 65, 158

IEEE (1990). Std. 610.12: Standard Glossary of Software Engineering Terminology. 16
IEEE (1998). Std. 830: Recommended Practice for Software Requirements Specifications. 13

Illes, T. and B. Paech (2007). An analysis of use case based testing approaches based on a
defect taxonomy. In Software Engineering Techniques: Design for Quality, Volume 227
of IFIP Conf. Proc., pp. 211-22. Springer. 39

informyou (Ed.) (2012, Sep). 4th Ann. EUROFORUM Symp. on ISO 26262, Leinfelden-
Echterdingen, Stuttgart, Germany. 124, 131

ISO (2001). Std. 9126: Software Engineering — Product Quality. 13

ISO (2006). Std. 13849: Safety of machinery — Safety-related parts of control systems. 33
ISO (2009). Std. 31000: Risk Management — Principles and Guidelines. 33, 107

ISO (2011). Std. 26262: Road Vehicles — Functional Safety. 1, 34, 38, 65, 100, 158
Jackson, M. A. (1983). System Development. Prentice-Hall. 1, 12, 15

Jackson, M. A. (2001). Problem Frames: Analysing & Structuring Software Development
Problems. Addison-Wesley. 14, 16, 45, 110

Johnsen, S. O., C. Bjgrkli, T. Steiro, H. Fartum, H. Haukenes, J. Ramberg, and J. Skriver
(2011, Mar). CRIOP: A scenario method for Crisis Intervention and Operability analysis.
Technical Report A4312, SINTEF, Trondheim, Norway. 35, 38, 146, 147

Johnson, C. (1993). A probabilistic logic for the development of safety-critical, interactive
systems. Int. Journal of Man-Machine Studies 39(2), 333-51. 28, 42, 44, 66, 108, 146,
147

Jureta, I., J. Mylopoulos, and S. Faulkner (2008). Revisiting the CORE ontology and problem
in requirements engineering. In 16th IEEE Int. Conf. Req. Eng., Washington, DC, USA,
pp. 71-80. IEEE CS. 16

123

Bibliography

Jiirgensohn, T. (2007). Modelling Driver Behaviour in Automotive Environments — Critical
Issues in Driwer Interactions with Intelligent Transport Systems, Chapter 16. “Control
Theory Models of the Driver”, pp. 277-92. Springer. 65

Kahn, G. (1974). The Semantics of a simple Language for Parallel Programming. In IFIP
Congress Proc., pp. 471-5. North-Holland. 15

Kaiser, B., P. Liggesmeyer, and O. Mackel (2003). A new component concept for fault trees.
In 8th Austral. Workshop on Safety-Crit. Sys. and Soft., Volume 33, pp. 37-46. 42

Kath, O. and C. Temple (2012, Sep). From Item Definition to Safety Concept — Process
Aspects, Methods and Functional Aspects. See informyou (2012). 38, 45, 141, 148

Kaynar, D., N. Lynch, R. Segala, and F. Vaandrager (2010, Dec). The Theory of Timed
I/0 Automata (2nd ed.). Synthesis Lectures on Distributed Computing Theory. Morgan
& Claypool. 15

Kelly, T. P. (1998, Sep). Arguing Safety — A Systematic Approach to Safety Case Man-
agement. Ph. D. thesis, Dept. of Comp. Sci., University of York, UK. 15, 36, 38, 44, 45,
107

Kifer, M., G. Lausen, and J. Wu (1995). Logical foundations of object-oriented and frame-
based languages. Journal of the ACM 42(4), 741-843. 15

Kumamoto, H. (2007). Satisfying safety goals by probabilistic risk assessment. Reliability
Engineering. Springer. 35, 36, 110

Lamport, L. (2002, Jun). Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley. 14, 16, 29, 33, 40, 42, 66

Layman, L., V. R. Basili, M. V. Zelkowitz, and K. L. Fisher (2011, May). A case study of
measuring process risk for early insights into software safety. See Taylor et al. (2011), pp.
623-32. 3, 33

Lee, E. A. and S. A. Seshia (2011). Introduction to Embedded Systems, A Cyber-Physical
Systems Approach. Berkeley U P. 11, 16

Letier, E. (2001). Reasoning about Agents in Goal-oriented Regquirements Engineering.
Thése de Doctorat en Sciences Appliquées, Université Catholique de Louvain. 114

Leucker, M. and C. Schallhart (2009). A brief account of runtime verification. Journal of
Logic and Algebraic Programming 78(5), 293-303. 14

Leveson, N. (2011). The use of safety cases in certification and regulation. Journal of System
Safety 47(6), e-Edition. 44

Leveson, N., J. Reese, and M. Heimdahl (1998). SpecTRM: A CAD system for digital automa-
tion. In 17th Digital Avionics Systems Conf., Volume 1, pp. B52-1. AIAA/IEEE/SAE.
16, 40, 43

Leveson, N. G. (1986). Software safety: why, what, and how. Computing Surveys 18(2),
125-63. 31

124

Bibliography

Leveson, N. G. (1995, May). Safeware: System Safety and Computers. Amsterdam:
Addison-Wesley. 31, 32, 33, 65, 66

Leveson, N. G. (2012, Jan). Engineering a Safer World: Systems Thinking Applied to
Safety. Engineering Systems. MIT Press. 1, 3, 4, 31, 32, 35, 36, 39, 43, 65, 106, 107, 113,
114, 141, 146, 147, 148

Leveson, N. G. and P. R. Harvey (1983a, Sep). Analyzing software safety. IEEE Trans. Soft.
Eng. 9(5), 569-79. 32, 35

Leveson, N. G. and P. R. Harvey (1983b). Software fault tree analysis. J. Syst. and Soft. 3(2),
173-81. 32

Leveson, N. G., L. D. Pinnel, S. D. Sandys, S. Koga, and J. D. Reese (1997). Analyzing
Software Specifications for Mode Confusion Potential. In Workshop on Human Error and
System Development, pp. 132—-46. 65, 158

Leveson, N. G. and J. L. Stolzy (1987, Mar). Safety analysis using PETRI nets. JEEE Trans.
Soft. Eng. 13(3), 386-97. 32, 38, 39, 40, 146, 147

Li, P. (2014, Apr). Spezifikation des automatischen Testprozesses und Werkzeugentwicklung
fiir sicherheitskritische Antriebsfunktionen in Elektro- und Hybridfahrzeugen. Master’s
thesis, Technische Universitdt Miinchen. 95

Liggesmeyer, P. (2009, Jun). Software-Qualitdt: Testen, Analysieren und Verifizieren von
Software (2nd ed.). Spektrum. 12, 14, 16, 17, 34, 36, 115, 162

Lindholm, C., J. P. Notander, and M. Hést (2012). A case study on software risk analysis
in medical device development. In S. Biffl, D. Winkler, and J. Bergsmann (Eds.), SWQ@D,
Volume 94 of LNBIP, pp. 143-58. Springer. 38, 45

Ljung, L. (1998). System identification. In A. Prochézka, J. Uhlif, P. Rayner, and N. Kings-
bury (Eds.), Stgnal Analysis and Prediction, Applied and Numerical Harmonic Analysis,
pp. 163-73. Birkhduser Boston. 14, 110

Lochmann, K. and M. Gleirscher (2009, Nov). Adaptive Cruise Control (ACC) — Case Study
in UML. Online: www4.in.tum.de/lehre/vorlesungen/re, accessed: 2013-02-15. Lecture
material, requirements engineering, winter term 2009/2010, Institut fiir Informatik, Tech-
nische Universitat Miinchen. 9, 93

Logrippo, L. (2014, May). From sumerian codes to computer code: A formal logic perspective
on legal theory and information technology in a historical context. Online: www.site.
uottawa.ca/~luigi/papers/LegalLogicBlog.htm, accessed: 2014-05-07. 115

Luhmann, N. (2006). Soziale Systeme. Grundriss einer allgemeinen Theorie (12th ed.).
Frankfurt am Main: Suhrkamp. 13

Luksch, A. (2012). Gefdhrdungsbeurteilung richtig machen — Schnelleinstieg in eine zen-
trale Aufgabe des Arbeitsschutzes. ecomed Sicherheit. Hiithig Jehle Rehm. 1, 31, 35, 37,
66, 67

Lund, M. S., B. Solhaug, and K. Stglen (2011, Sep). Model-Driven Risk Analysis: The
CORAS Approach (1st ed.). Springer. 33, 44, 107, 108, 146, 147

125

www4.in.tum.de/lehre/vorlesungen/re
www.site.uottawa.ca/~luigi/papers/LegalLogicBlog.htm
www.site.uottawa.ca/~luigi/papers/LegalLogicBlog.htm

Bibliography

Lunze, J. (2010, Jul). Regelungstechnik 1: Systemtheoretische Grundlagen, Analyse und
Entwurf einschleifiger Regelungen (8th ed.). Lehrbuch. Springer. 1, 12, 13, 15, 65

Lutz, R. (1993). Analyzing software requirements errors in safety-critical, embedded systems.
In IEEE Int. Symp. Req. Eng., pp. 126-33. IEEE. 2, 3

Lutz, R. (2000). Software engineering for safety: A roadmap. In Conf. Future of Soft. Eng.,
pp. 213-26. ACM. 2

Magee, J. and J. Kramer (2006, Jul). Concurrency: State Models and Java Programs (2nd
ed.). Wiley. 29

Manna, Z. and A. Pnueli (1995, Aug). Temporal Verification of Reactive Systems: Safety
(1st ed.). Springer. 14, 28, 33

Mannering, D., J. G. Hall, and L. Rapanotti (2007). Safety process improvement: Early
analysis and justification. In 2nd IET Conf. on System Safety. 45, 106

Mariani, L. (2003). A fault taxonomy for component-based software. Electr. Notes Theor.
Comput. Sci. 82(6), 55-65. 39

Martinus, M. (2004, Dec). Funktionale Sicherheit von mechatronischen Systemen bei mo-
bilen Arbeitsmaschinen. Dissertation, Technische Universitat Miinchen. VDI Fortschritts-
berichte Reihe 12 Verkehrstechnik/Fahrzeugtechnik Nr. 586. 37, 38, 66

Mayer, W. and M. Stumptner (2007). Model-based debugging — state of the art and future
challenges. FElectr. Notes Theor. Comput. Sci. 174(4), 61-82. 17

McDermid, J. A. (1986, Jun). Safety and software. Electronics and Power 32(6), 440. 32

McDermid, J. A. (1991). Issues in developing software for safety critical systems. Reliability
Eng. & Sys. Safety 32(1-2), 1-24. 3, 32, 33

McDermid, J. A. (2001). Software Safety: Where's the Evidence? In 6th Austral. Worksh.
Indust. Ezperience with Safety Crit. Sys. and Soft., Volume 3, Brisbane, Australia, pp.
1-6. 3, 4, 32, 37

McDermid, J. A. (2002). Software hazard and safety analysis. In Formal Technigues in
Real-Tvme and Fault-Tol. Sys., Volume 2469 of LNCS, pp. 23-34. Springer. 1, 3, 4, 32,
35, 39, 65

McDermid, J. A. and D. Pumfrey (1994). A development of hazard analysis to aid soft-
ware design. In 9th Ann. Conf. Comp. Assurance: Safety, Reliability, Fault Tolerance,
Concurrency and Real Time, Security, pp. 17-25. IEEE. 32, 34, 38, 39, 42, 107, 146, 147

McDermid, J. A. and D. J. Pumfrey (2001). Software safety: Why is there no consensus?
In Int. Sys. Safety Conf., Huntsville. System Safety Society. Online: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.4.2608, accessed: 2014-05-28. 32

Mealy, G. H. (1955, Sep). A method to synthesizing sequential circuits. Bell Systems Tech-
nical Journal 84(5), 1045-79. 15, 39, 40

Mehrpouyan, H. (2011). Model-based hazard analysis of undesirable environmental and com-
ponents interaction. Master’s thesis, Linkdpings Universitet. 38, 39, 41, 106, 146, 147

126

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.2608
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.2608

Bibliography

Mhenni, F., J. Choley, A. Riviere, N. Nguyen, and H. Kadima (2012, Nov). SysML and safety
analysis for mechatronic systems. In 13th Int. Workshop on Mechatronics, 9th France-
Japan € Tth Europe-Asia Congress on and Research and Education in Mechatronics,
Paris, pp. 417-24. IEEE. 41, 146, 147

Milner, R. (1973). Processes: A mathematical model of computing agents. In Coll. Math.
Logzc., Bristol, England. North-Holland. 15, 114

Moik, A. (1999, May). Strukturierte Erstellung von formalen Sicherheitsmodellen fiir Au-
tomatisierungssysteme mit Sicherheitsverantwortung. In Workshop Sicherheit und Zu-
verldssigkeit software-basierter Systeme, Bad Honnef, Germany. GI. 41, 107

Moore, E. (1956). Automata Studies, Chapter “Gedanken-Experiments on Sequential Ma-
chines”, pp. 129-53. Princeton U P. 15, 39

Nader, R. (1965). Unsafe at Any Speed: The Designed-in Dangers of the American Auto-
mobile. Grossman. 1, 10, 35

Neogi, N. A. (2002, Feb). Hazard Elimination using Backwards Reachability Techniques in
Discrete and Hybrid Models. Ph. D. thesis, Massachusetts Institute of Technology, Dept.
of Aeronautics and Astronautics. 39, 40, 107, 146, 147

Neumann, P. G. (1995). Computer-related Risks. NY, USA: Addison-Wesley. 1, 32, 65

NHTSA (2008, Jul). National Highway Traffic Safety Administration (NHTSA) — National
Motor Vehicle Crash Causation Survey. Report to Congress DOT HS 811 059, U.S. De-
partment of Transportation (DoT). 2

Nissanke, N. and H. Dammag (2002). Design for safety in Safecharts with risk ordering of
states. Safety Science 40(9), 753-63. 39, 42, 108, 146, 147

Ostroff, J. (1997, May). A visual toolset for the design of real-time discrete-event systems.
IEEE Trans. Control Systems Technology 5(3), 320-37. 15, 16

Papadopoulos, Y., J. A. McDermid, R. Sasse, and G. Heiner (2001, Mar). Analysis and
synthesis of the behaviour of complex programmable electronic systems in conditions of
failure. Reliability Engineering and System Safety 71(3), 229-47. 38, 40

Pappas, G. J. (2003). Bisimilar linear systems. Automatica 39(12), 2035-47. 109, 114

Parnas, D. and J. Madey (1995, Oct). Functional Documentation for Computer Systems.
Science of Computer Programmang 25, 41-61. 14, 15, 16, 29

Parnas, D. L., A. J. van Schouwen, and S. P. Kwan (1990, Jun). Evaluation of safety-critical
software. Commun. ACM 33(6), 636-48. 3, 31, 32, 33, 65, 109

Pasareanu, C. S., R. Pelanek, and W. Visser (2007). Predicate abstraction with under-
approximation refinement. Logical Methods in Comp. Sci. 3(1), 1-22. 29

Paterno, F., C. Mancini, and S. Meniconi (1997). ConcurTaskTrees: A diagrammatic notation
for specifying task models. In IFIP TC13 Int. Conf. on Human-Computer Interaction,
pp. 362-9. 104

127

Bibliography

Paynter, H. M. (1960). Analysis and Design of Engineering Systems. MIT Press. 13, 14,
15

Peikenkamp, T., A. Cavallo, L. Valacca, E. Béde, M. Pretzer, and E. M. Hahn (2006). Towards
a unified model-based safety assessment. In J. Gérski (Ed.), SAFECOMP, Volume 4166
of LNCS, pp. 275-88. Springer. 17, 39, 42, 146, 147

Peled, D., M. Y. Vardi, and M. Yannakakis (1999). Black box checking. In J. Wu, S. T.
Chanson, and Q. Gao (Eds.), FORTE, Volume 156 of IFIP Conf. Proc., pp. 225-40.
Kluwer. 66, 115

Peleska, J. (1996, Mar). Test automation for safety-critical systems: Industrial application
and future developments. See Gaudel and Woodcock (1996), pp. 39-59. 66, 115

Perchonok, K. (1972, Jul). Accident cause analysis. Technical Report ZM-5010-V-3, Cornell
Aeronautical Lab., Transportation Research Dep., Buffalo, NY, USA. 35, 147

Perrow, C. (1984). Normal Accidents: Living with High-Risk Technologies. NY, USA: Basic
Books. 1, 32

Petersen, J. (1981). PETRI-Net Theory and the Modeling of Systems. Englewood Cliffs, NJ:
Prentice-Hall. 15

Petrenko, A. (2000). Fault model-driven test derivation from finite state models: Annotated
bibliography. In 4th Summer School on Modeling and Verification of Parallel Processes,
Volume 2067 of LNCS, pp. 196—-205. Springer. 17

Pierre, L. and T. Kropf (Eds.) (1999, Sep). 10th IFIP WG 10.5 Advanced Research Working
Conf. on Correct Hardware Design and Verification Methods, Volume 1703 of LNCS,
Bad Herrenalb, Germany. Springer. 121, 132

Pister, M. (2008). Integration formaler Fehlereinflussanalyse in die Funktionsentwicklung
ber der Automobilindustrie. Dissertation, Technische Universitdt Miinchen, Germany. 17,
39, 41, 146, 147

Platzer, A. (2010). Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Heidelberg: Springer. 16

Pnueli, A. and Y. Kesten (2002). A deductive proof system for CTL*. In L. Brim,
M. Kretinsky, A. Kucera, and P. Jancar (Eds.), Concurrency Theory, Volume 2421 of
LNCS, pp. 24-40. Berlin Heidelberg: Springer. 17, 28, 114

Pock, M. (2012). A Hierarchical Modelling and Evaluation Technigue for Safety Critical
Systems. Dissertation, Technische Universitdt Miinchen. 38, 41, 65, 106, 146, 147, 158

Probst, S. (1996, May). Chemical Process Safety and Operability Analysis using Symbolic
Model Checking. Ph. D. thesis, Carnegie Mellon University, Pittsburgh, PA, USA. 39, 42,
146, 147

Pugliese, R. and E. Tronci (1996, Mar). Automatic verification of a hydroelectric power plant.
See Gaudel and Woodcock (1996), pp. 425—44. 29

Pyle, . C. (1991). Developing Safety Systems: A Guide using ADA. Prentice-Hall. 3, 32,
33, 44, 65, 66, 67, 108, 109, 115

128

Bibliography

Rasmussen, J. (1997). Risk management in a dynamic society: A modelling problem. Safety
Science 27(2-3), 183-213. 1, 4, 32, 43, 66, 146, 147

Rasmussen, J. (1999, Jul). The concept of human error: Is it useful for the design of safe
systems? Safety Science Monitor 3(special ed.), 1-3. 4

Rauzy, A. (2002, Oct). Mode automata and their compilation into fault trees. Reliability
Eng. and Sys. Safety 78(1), 1-12. 30, 39, 40, 42, 146, 147

Reese, J. and N. Leveson (1997). Software deviation analysis. In ICSE, pp. 250-60. ACM.
17, 41

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57-95. 13, 16

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press. 13, 15, 29, 162

Roth, M. and P. Liggesmeyer (2013). Qualitative Analyse der funktionalen Sicherheit
software-intensiver Systeme mittels Zustands/Ereignis-Fehlerbdumen. In W. A. Halang
(Ed.), Funktionale Sicherheit, Informatik aktuell, pp. 117-26. Berlin Heidelberg: Springer.
39, 40, 146, 147

RTCA (2001, Oct). SC-190: DO-248B, Final Annual Report for Clarification of DO-178B
“Software Considerations in Airborne Systems and Equipment Certification”. 34

Rushby, J. (1994). Critical system properties: Survey and taxonomy. Reliability Engineering
€ System Safety 43(2), 189-219. 14

Rushby, J. (2010, Feb). Formalism in safety cases. In 18th Safety-Critical Systems Symp.:
Making Systems Safer, Bristol, UK. Springer. 44

Rusu, V., H. Marchand, and T. Jéron (2005). Automatic verification and conformance testing
for validating safety properties of reactive systems. In J. Fitzgerald, I. J. Hayes, and
A. Tarlecki (Eds.), FM, Volume 3582 of LNCS, pp. 189-204. Springer. 66, 109, 115

Sampath, M., R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis (1996).
Failure diagnosis using discrete-event models. IEEE Trans. Control Sys. Tech. 4(2),
105-24. 15, 16, 29

Sargent, R. G. (1999). Validation and verification of simulation models. In Winter Simulation
Conf., pp. 39-48. IEEE. 14, 110

Sayre, K., J. Kenner, and P. Jones (2001). Safety models: An analytical tool for risk analysis
of medical device systems. In 14th IEEE Symp. on Computer-Based Medical Systems,
Maryland, USA. 39, 43, 146, 147

Schétz, B. (2008, Jun). Modular functional descriptions. ENTCS 215(0), 23-38. 4th Int.
Workshop Formal Aspects of Component Software. 73

Schitz, B., A. Fleischmann, E. Geisberger, and M. Pister (2005). Model-based Requirements
Engineering with AutoRAID. In A. B. Cremers, R. Manthey, P. Martini, and V. Steinhage
(Eds.), Informatik: Workshop “Modellbasierte Qualitdtssicherung”, LNI, pp. 511-6. GI:
Springer, Bonner Kollen. 3

129

Bibliography

Schneider, P., E. Huck, and P. Schwarz (2001, Aug). A modeling approach for mechatronic
systems — modeling and simulation of an elevator system. In 11th Int. Symp. Theo.
Electrical Eng., Linz, Austria. 14, 16

Schulz, O. and J. Peleska (2010). Reliability analysis of safety-related communication archi-
tectures. In E. Schoitsch (Ed.), Comp. Safety, Reliability, and Security, Volume 6351 of
LNCS, pp. 1-14. Berlin, Germany: Springer. 32, 73

Secchi, C., M. Bonfe, and C. Fantuzzi (2007, Jan). On the use of UML for modeling mecha-
tronic systems. IEEE Trans. Automation Sci. and Eng. 4(1), 105-13. 15, 65

Shappell, S. and D. Wiegmann (2000). The human factors analysis and classification sys-
tem — HFACS. Technical Report DOT/FAA/AM-00/7, Office of Aviation Medicine, Civil
Aeromedical Institute, Oklahoma City, OK, USA. 1

Shaw, M. (2002). What makes good research in software engineering? Int. J. Software Tools
for Technology Transfer 4(1), 1-7. 8,9

Sinell, H.-J. and H. Meyer (1996). HACCP in der Prazis: Lebensmittelsicherheit (1st ed.).
Behr’s. 31, 35

Smith, B. C. (1995). Computers, Ethics and Social Value, Chapter “Limits of Correctness
in Computers”, pp. 456—-69. NJ, USA: Prentice-Hall. 3, 109

Smith, R. and J. Doyle (1992, Jul). Model validation: a connection between robust control
and identification. IEEE Trans. Automatic Control 87(7), 942-52. 110

Snooke, N. and C. Price (2011). Model-driven Automated Software FMEA. In Ann. Relia-
bility and Maintainability Symp., pp. 1-6. IEEE. 41, 42, 65, 146, 147

Spiegel (2012). Storfalle in deutschen AKW. Online: www.spiegel.de/wirtschaft/soziales/
stoerfaelle-in-deutschen-akw-4000-mal-alarm-a-750889.html, accessed: 2013-02-15. 2

Spivey, J. M. (2008, Jan). Understanding Z: A Specification Language and its Formal
Semantics (1st ed.). Cambridge U P. 16

Stachowiak, H. (1973). Allgemeine Modelltheorie. Wien: Springer. 14

Stalhane, T., O. Daramola, and V. Katta (2012, Jul). Patterns in safety analysis. In 4th Int.
Conf. Pervasive Patterns and Applications, Nice, France, pp. 7-10. IARIA/Thinkmind.
38, 41, 66, 106, 146, 147

Stringfellow, M. V. (2010). Accident Analysis and Hazard Analysis for Human and Orga-
nizational Factors. Ph. D. thesis, Massachusetts Institute of Technology, USA. 43

Struss, P. (2003). Handbuch der Kinstlichen Intelligenz (4th ed.)., Chapter “Modellbasierte
Systeme und Qualitative Modellierung”, pp. 431-90. Miinchen: Oldenbourg. 12, 13, 15

Struss, P. and A. Fraracci (2011). FMEA of a Braking System — A Kingdom for a Qualitative
Valve Model. In 25th Int. Workshop on Qualitative Reasoning, Barcelona, Spain. 16, 17,
39, 41, 146, 147

130

www.spiegel.de/wirtschaft/soziales/stoerfaelle-in-deutschen-akw-4000-mal-alarm-a-750889.html
www.spiegel.de/wirtschaft/soziales/stoerfaelle-in-deutschen-akw-4000-mal-alarm-a-750889.html

Bibliography

Stursberg, O., H. Graf, S. Engell, and H. Schmidt-Traub (1998, Aug). A concept for safety
analyses of chemical plants based on discrete models with an adapted degree of abstraction.
In 4th Int. Workshop on Discrete Event Systems, Cagliari. 35, 39, 41, 146, 147

Svedung, I. and J. Rasmussen (2002). Graphic representation of accident scenarios: Mapping
system structure and the causation of accidents. Safety Science 40(5), 397-417. 35, 38,
146, 147

Taylor, R. N., H. Gall, and N. Medvidovic (Eds.) (2011, May). 38rd Int. Conf. on Software
Engineering, Honolulu, HI, USA. ACM. 119, 121, 124

Thielscher, M. (2011). A unifying action calculus. Artifictal Intelligence 175(1), 120-41. 15

Thramboulidis, K. and S. Scholz (2010, Sep). Integrating the 3+1 SysML view model with
safety engineering. In IEEE Conf. Emerging Technologies and Factory Automation,
Bilbao, pp. 1-8. IEEE Press. 44, 107

Trochim, W. M. and J. P. Donnelly (2008). Research Methods Knowledge Base (3rd ed.).,
Chapter “Observation and Measurement”, pp. 56-97. Atomic Dog/Cengage Learning. 8,
14, 110

Umeda, Y., H. Takeda, T. Tomiyama, and H. Yoshikawa (1990). Function, behaviour, and
structure. Applications of Artificial Intelligence in Engineering 1, 177-93. 14

Utting, M., A. Pretschner, and B. Legeard (2012). A taxonomy of model-based testing
approaches. Software Testing, Verification and Reliability 22(5), 297-312. 3

van Glabbeek, R. J. (2001). Handbook of Process Algebra, Chapter 1. “The Linear Time -
Branching Time Spectrum I: The Semantics of Concrete, Sequential Processes”, pp. 3-99.
Elsevier. 15

van Lamsweerde, A. (2009). Requirements Engineering: From System Goals to UML Mod-
els to Software Specifications. Wiley. 1, 3, 12, 13, 14, 15, 16, 29, 33, 36, 44, 45, 66, 67,
107

VDI (2004, Jun). VDI 2206: Entwicklungsmethodik fiir mechatronische Systeme (design
methodology for mechatronic systems). 37

Venkatasubramanian, V., J. Zhao, and S. Viswanathan (2000). Intelligent systems for HAZOP
analysis of complex process plants. Computers & Chemical Engineering 24(9), 2291-302.
38, 41, 146, 147

Voge, H. and V. Bunimov (2012, Sep). Verwendung von Zustandsautomaten fiir die Erstellung
von Gefdhrdungs- und Risikoanalysen. See informyou (2012). Slides. 39, 40, 146, 147

von Bertalanffy, L. (1957). Allgemeine Systemtheorie. Deutsche Universitdtszeitung 12,
8-12. 13

Wagner, S., B. Schétz, S. Puchner, and P. Kock (2010). A case study on safety cases in
the automotive domain: Modules, patterns, and models. In 21st Int. Symp. on Software
Reliability Engineering, pp. 269-78. IEEE. 4, 45, 107

Wallmiiller, E. (2011, Aug). Software Quality Engineering: FEin Leitfaden fir bessere
Software-Qualitdt (3rd ed.). Hanser. 12, 14, 16

131

Bibliography
Wang, P. K. C. (1964). Control of distributed parameter systems. Advances in Control
Systems 1, 75-172. 13, 15

Waters, A. and J. Ponton (1989). Qualitative simulation and fault propagation in process
plants. Chemical Engineering Research & Design 67(4), 407-22. 14, 38, 39, 41, 146, 147

Watson, G. and M. Leadbetter (1964). Hazard analysis. I. Biometrika 51(1-2), 175. 33

WHO (2012). World Health Organization (WHO) — International Classification for Patient
Safety (ICPS). Online: www.who.int/patientsafety/implementation/taxonomy, accessed:
2013-02-15. 35, 38, 147

Wiener, N. (1965). Cybernetics: or, Control and Communication in the Animal and the
Machine (2nd ed.). Cambridge, Mass: MIT Press. 13, 14

Wilson, S. P. and J. A. McDermid (1995). Integrated analysis of complex safety critical
systems. Comp. J. 88(10), 765-76. 32, 42, 44, 108

Wittgenstein, L. J. J. (1922). Tractatus logico-philosophicus: Logisch-philosophische Ab-
handlung (1st ed.). Kegan Paul, Trench, Trubner. 14, 170

Wonham, W. M. (1976). Towards an abstract internal model principle. IEEE Trans. on
Systems, Man, and Cybernetics 6(11), 735-40. 15

Yenigiin, H., V. Levin, D. Peled, and P. A. Beerel (1999, Sep). Hazard-freedom checking in
speed-independent systems. See Pierre and Kropf (1999), pp. 317-20. 39, 42, 146, 147

Yin, R. K. (2009, Oct). Case Study Research: Design and Methods (4th ed.). Applied
Social Research Methods. Los Angeles, CA: Sage. 9

Zave, P. and M. Jackson (1997). Four dark corners of requirements engineering. ACM Trans.
Soft. Eng. Meth. 6(1), 1-30. 3, 16, 43

Zhang, H., W. Li, and W. Chen (2010, Oct). Model-based hazard analysis method on au-
tomotive programmable electronic system. In 3rd Int. Conf. on Biomedical Engineering
and Informatics, Volume 7, Yantai, China, pp. 2658-61. 38, 42, 146, 147

132

www.who.int/patientsafety/implementation/taxonomy

Library, Evidence and Excursions

This chapter contains further data and excursions to underpin the proposed method.

A.1. Transition System Patterns and Guide Words

The Tables A.1 to A.4 provide a library of transition system patterns and guide words
that can be used in the method discussed in the Chapters 4 and 5.

Table A.1.: Patterns for causal factor search based on modes, actions and events; the up-
per bound k constrains a past formula to at most k consecutive states preced-
ing the state o, (see Figure 4.3); e, e’, ese are abstract events (Definition 2.11),
*...includes the variations listed in Footnote 2 on page 51.

Guide Word Pattern for Past Formula

to form ayx € H Notes on Modelling

Event Guide Word (with respect to M, e’ ve,Xk,...; helpful for the analysis of stimuli or reactions)

e not giwen/returned —FSke
; - =<k
e incorrectly given/returned F="(e Ave € Tincorval) Ve is a variable
stimulus /reaction e F<*e or “e incorrectly given” with ve € modelling the event
(or e happened) mon(As) e and Tincorval is a
start of e Fsk(e AX—e) set of incorrect
— - values.
stop of F<*(—e AXe)
=<k
too much* e F="(e Ave > upperbound)
; =<k
too little* e FS (e Ave < lowerbound)

Continued on the following page

133

A. Library, Evidence and Excursions

Guide Word

Pattern for Past Formula
toformayx € H

Notes on Modelling

wrong timang of e

[

(en(e'Vte Tw‘rongTi.me))

e before e’
e after e’
...too short (< d)
...too long (> d)

wrong order of e:

e applied

=
=

Fs*

e A (~F=Fer v (-F=FeT <ker))
e A (-F=Fer v (FEFeT <ker))

(me AX(eU~d—e))

o

stopped too soon (before e')

F< (e Ae! AX((—e A—e') U (e A—e’))

e started ... ?Sk(e’/\i((ﬁe’/\e)ﬁﬁe))

e stopped too late (after e’) fsk(ﬁe AX(eU (e AX(—e"))))
e started . .. FS (e AX(—eU (¢! AX(—e")))
e happening/applied too long fgk(eUZd—\e)

e happening even permanently

GeV (eU>ke’)

e’ is another event

used for orientation.
We have ~ € {<, >}
where < indicates
‘400 short” and >
“too long”.
TwrongTi.me is a set
of wrong time
stamps. t models the
global timer and d
specifies the
minimum or
maximum duration
of an event with

d < k.

Mode Guide Word (with respect to M and m’; helpful for the analysis of control actions)

activation of m

deactivation of m

=<k
F="mpm =m
=<k
F="mmpm #m

change of m

[

(X(mam =m) Ampag =m')

with m #m’

M is an MTS, m' is
assumed to model a
hazardous mode.

Action Guide Word (with respect to

M and (m,a,m’) € A; for the analysis of functional actions)

unezpected* performance of a:

unezpected* execution of a

unezpected* suppression of a

[

(X(—enablVV —a.pre)

A (apostVmpay =m')

[

(X(enabl A a.pre)

A =(a.post Ampa =m’))

unwanted/defective a
(e.g. a = K for hazardous
Kk-completion)

=

(3C: X(apre AV=C)AV#CT

A —a.post Ampa =m/')
The vector V of variables is assumed

to be controllable by M, particularly,
by (the defective) a.post. See the side

effect guide word below.

maloperated a

This guide word is a variant of un-
expected performance of a such that
enabl encodes correct operation.

The transform of the
function

post : Elr(am) into a
PCTL* past formula
can carry one X for
each assignment
operator (Defini-
tion 2.15). enablis a
state constraint
using, for example,
mam =m, pre, trig
and delay. Cis a
constant vector with
C € type(V).

Hybrid Guide Word (i.e. combinations of event, mode and action guide words)

stde effect ese of a
(e.g. heat, spilled acid or poi-
son, ezplosion)

[

[

(a.post A\ ese) or

€se

maloperated complex action A
or

maloperated function M

(e.g. result of security attack)

This guide word is an extension of mal-

operated a such that Malopg; ® Mg

with Yo = {0 | 0«(0)} encodes complex

maloperation.

ese 1s an abstract
event typically
produced by Myg,;.
0« is an operational
situation.

134

A.1. Transition System Patterns and Guide Words

Table A.2.: Patterns for operational defects to form Mg.; T ... occurrences of criteria and
facets 1, 2a,d, 3 and 6 of the defect taxonomy; specified (m) and defective (mq)
mode, (or)dinary action in M., fail for any defective action in Mia;, _ ... irrel-
evant content, *... wildcard, [a]... action a is part of a pattern variant

Defect Classt MTS Pattern Action Specifications and Variants

Generic part (for a functional action or):
or = (pre,0, T, 2, Tor, postor)
Mgen = Myge ® My = faili = (pre,0,trigraity, 1, Traity , POstraity)

or Permanent variant:
fail, = (prefailz ,0, T, 1, _ypostrail,)
fail™! = (L v

i Transient variant:

fail; = (prefait,, 0, T, prio, Mrail, , POStrail,)

fail™! =

(T,0,trigegir—1,PTi0, Teqir—1,POSteqir—1)

where prefqil, might be as generic as T.

Non-deterministic variant:

Tlor = Tfail; = 1, trigeqi—1 = ~trigrait,

Probabilistic variant:

Tor = 1 — Tfaily s Tfail, = 1 — Tiqi1—1

trigeqy 1 =T

This and the following patterns have counterparts

where M, is drawn for control actions [or] to other modes m’ which
in dotted lines are analogically applicable and, thus, discussed

in low detail. The same holds for probabilistic

variants with n alternatives fail;.1 to faily .

Systematic
defects

fail

Generic part:
or = (pre,0, T, 2, Tor, postor)

Random de- See systematic defects. faily = (pre,0, T,2,7rqil; , POStraity)

fects For permanent or transient and non-deterministic
or probabilistic variants, see systematic defects.

Semi- faily = fail™! =1,

systematic See systematic defects. prefqil, may only refer to variables in Ve.

defects For the other actions, see systematic defects.

Systematic or or = (pre,0,T,2, ,postor)
defects (al' fail = (T—’Tefail» 0, T,T, _ pOSthil)

ternative) with pre A pregqit ¥ L. Variants are disregarded.
Random, or = (pre,0, T, prio, or, postor)
transient fail = (pre, 0, T, prio, Trqil, Postsail)
defects (al- For non-deterministic, probabilistic variants, see
ternative) systematic defects. The action € is optional.

For each dependent function M;:

or = (pre Amug, . # ma,0, T,prio, _,postor)
Common fail = (pre Am o mgq, 0, T, pri . trai
cause defects e Myeg = TS 1 PTio, _,postrail)
(1:n) with mode channels used in each pre and the de-

fective function M, applies the pattern M,,,
from above.

Continued on the following page

135

A. Library, Evidence and Excursions

Defect Classt

MTS Pattern

Action Specifications and Variants

Common
mode defects

(1)

See common cause defects.

For each function M;, postrqil encodes similar
effects (e.g. loss of power).

Single point

defects (1:1)

Multiple
pownt defects

(n:1)

Msmp =
(69 Myeq,) ® M,
where M, =

O-r

See common cause defects with n = 1.

For the failing function M,

or = (pre A —presmp,0, T,prio, ,postor)

fail = (pre A presmp,0, T,prio, ,postrait)

with mode channels used in an extended precondi-
tion

presmp = A Ma, o = Ta and each defective
function Mdefi appliles the pattern Mg, from
above.

Cascading
defects (m:m)

Mcasc N
(® i Mccmi) ® (@1 Msmpi)

This pattern combines the patterns for common
cause, common mode, single point and multiple
pownt defects.

Wear out or
fatigue

(e.g. ma-
terial age-
ing, single-
purpose
mechanisms
as wn awrbags,
tiring opera-
tors)

or

—>{ m T fail
wear out
or fail’

wear out

or C@D fail”

Two-stage variant:

or = (pre,0, T,2, Tor, postor)

fail = (pre,0, T, 2, T¢qit, Posteqit) fail’ and fail”
are similar except for m which usually increases.
m’ and m” indicate worn stages of the mode m.
Wear-out-by-time variant:

wearout = (T,w, T, 1,1,)

w is a time interval to approximate wear out
progress.

Wear-out-by-condition variant:

wearout = (prewo, 0, trigwo, 1,1,)

usually with trigwo = T.

n-stage variants, and the combination of by-time
and by-condition are possible.

Currently
unacceptable
(delayed)
execution or
suppression

- m 3 fail
9

[e]

(Non-deterministic) variant for execution:

or = (pre,0,T,2, ,postor)

fail = (pre V preret, 0, T,2, ,postor)

without €, available as a probabilistic variant and
for control actions or.

Systematically delayed variant:

e = (preNtpm < d,0,T,1.5,1,NOP)

fail = (pre Atag > 4,0, T, 1.5, 1, postor)

Note that using taq is a work-around for the next
pattern.

Variant for suppression:

or = (pre,0,T,2, ,postor)

fail = (pre Aprenar,0, T,1, ,NOP)

with a relaxed constraint prere; and a narrowed
constraint prenqr.

136

Continued on the following page

Al

Transition System Patterns and Guide Words

Defect Classt MTS Pattern

Action Specifications and Variants

RN faily
Delayed exe-
cution T
(alternative) €

or = (pre,0, T, 2, Tor, postor)

faily = (pre,0, T, prio, mtsqit, , NOP)

with prio = 1,71« = 1 and mq as the initial mode
to form a systematic variant, or

prio = 2 and 7y set individually to form non-
deterministic and probabilistic variants as de-
scribed above for systematic defects.
e=(T,0,T,2, ,NOP)

faily = (T, d, trigs, 1, _,NOP)

or' =(T,0,T,2, ,postor)

T=(T,0,trigr,1, ,NOP)

with an exact (trigr = T) or minimum (trige = L)
delay d for an arbitrary (trig: = L) or limited
(trige # L) duration.

Table A.4.: Patterns to treat transition system defects and form Miave and Myse; specified
(m), defective (mq) and safe (ms) mode, (re)pair action in My, ... irrelevant

content

MTS Pattern (solid fragments in Msave)

Action Specifications and Variants

Completion via superimposition

ore

For a functional action or:

or = (pre,0, T,prio, ,post)

Single-stage, individual variant:

orc = (—pre,0, T,prio, ,postc)

such that —pre covers unexpected stimuls.
Variant with e-completion:

postc = NOP

Control actions can be completed analogically.

Aim: Reduce k-completion through weakly underspecified or fully specified modes (cf. page 20).

Patterns for treatment of hazardous defects

(e.g. permanent systematic or random defect, spurious trip, failure on demand):

Indetermimisation via superivmposition
or

4

recover

ori2

For (the partial coverage of) a control action a:

or = (pre,0, T,2, ,post)

a = (preq,0,triga,1, ,postq)

The action a can be operational, defective (i.e. fail)
or hazardous.

ory1 = (Preil ,0, trigi1, prio, _»Ppostis)

with pre Apreq ¥ L and prio < 1 (prio < 1 can be
used to resolve indeterminacy).

recover = (prerec,0,trigrec, 1, _,Ppostrec)

recover can represent repair or maintenance.
Defective or hazardous functional actions (see
faily in pattern fail-safe actions below) can be
indeterminised analogically using orij or an action
ori2:

ori2 = (preila 0, T,T, _»pOStiZ)

Continued on the following page

137

A. Library, Evidence and Excursions

MTS Pattern (solid fragments in Msave)

Action Specifications and Variants

Aim: Turn hazardous defects into detected/perceived defects with sufficient diagnostic cover-
age (i.e. preq — preq1 and trigqa — trigi are valid) by either the system or the environment (see

criterion 4 in Section 4.2.1).

Repasr action
(usually passive)

From My,; fragment:

fail, = (Ta 0, T,1, 7)p05tfail)

Msave fragment:

Te = (prere, 0, trigre, prio, ,postre)

with prio < 1 (prio = 1 retains indeterminacy).
The action re is a variant of the recover action
starting from a defective mode and interacting
with a tactic Mipair derived from the associated
use case.

Variant with deactivation:

m is revisited via the mode myrs which deactivates
the function.

Repair MTS
(usually passive)
M :Mdef®MS where M ¢ =

repair

Tefinish

Msave fragment of Mdef:
re1 = (prere;,0,prere;, 0.9, ,postre;)
ef = (my,s =my,0,T,0.9, ,NOP)

repair

with a state constraint prere; such that

Vo € £330’ € Z: 0 |ar(m) = postrr(0) Aprere, (o)
Msave €lement Mrsepair:

T€start = (mM = mg,0, trigrs, prio, _»pOStrs)
ideally with trigrs = T for immediate repair.

rez = (prere,,0, T, 1, ,postre,)

. . E
interacts with Mrepair
Tefinish = (prerf, delay, trigys, 0.9, ,postyf)

mo signifies an inactive mode, m, a repair mode.
For a deactwation variant, see repair action.

Aim: Repair patterns can be applied as treatments for wear out defects (Table A.2) with m’ and

"

m’ instead of my (see below).

Mawntenance/repair actions
(preventive or passive)

maintain faal’

Single-stage variant for a function action or:

or’ = (pre A obswo,0, T,1, ,posty,s) such that
obswo can encode material tests and overrule or.
ma/re = (premr, 0, trigmr, 0.9, ,postmr)
Preventiwve self-maintenance variant:

maintain = (pre A obsma,0, T, 1, ,postma) such
that obsma can encode maintenance intervals and
overrule or.

n-stage variants and control actions or work ana-
logically. For a deactivation variant, see repair ac-
tion.

138

Continued on the following page

Al

Transition System Patterns and Guide Words

MTS Pattern (solid fragments in Msave)

Action Specifications and Variants

Fail-safe actions (usually preventive)
My =M M =

fsa

Generic part of M, for a functional action or:
faily = (prefait;, 0, T, 1, _,postraity)

For the actions or, faily, faily and fail =1, see Ta-
ble A.2.

For the optional re, see the above repair patterns.
fs1 = ori1 (see indeterminisation)

fs2 = (T,0, T,prio, 7tss, , postss,)

includes completion or indeterminisation.

Tifs, < 1 encodes uncertainty of passive treatment.
Fazil-operational variant:

fs3 = or’ = (preg,,0, T, 1, _yPOstorr)

The action fs; can be left out.

Fail-silent variant:

fs3 = shutdown = (presq,0, T,1, ,postsq)

fsq = e = (—presq,0, T, 1,) NOP)

shows the completion pattern applied to fail-safe
mode mys. This pattern works analogically if or is
a control action.

Fail-operational MTS (usually preventive)

Mfo = Ml ® Malt where Malt =
€ foz
for
—
deact

Consider M, from above in the fail-silent variant
of My,.

alt’
€= (li # mys,0, T,1,1,NOP)
fo1 = (li = my¢s, 0, T, 1,1, postso,) performs the
“handover”.
foa = or’ = (pregrr, 0, T, 1,1, posty,)
deact = (li =m,0,trigdeact, 1, 1, Postdeact)
where trigdeact = 1 might be convenient. m’
indicates a degraded operational mode.

Aim: Improve safety by providing MT'S patterns for the design patterns FO and FS (cf. page 38).

Continued on the following page

139

A. Library, Evidence and Excursions

MTS Pattern (solid fragments in Msave)

Action Specifications and Variants

Patterns for treatment of hazardous behaviour
(e.g. maloperation due to fatigue or unconsciousness):

Access control mechanism (preventive),
for example, a safety cover:

S S ; S
M3 = M, ® Mo, with Me, =

or

pr(‘a.ﬁ.are

prepares

MlSJC1 with a functional action or:

or = (pre,0,T,2, ,post)

We use indeterminisation (see above) and priori-
ties to obtain

ors = (pre A\ mpys = ms,0, T, 1, ,posts)

€= (mMz,ov =m,,0, T,1, ,NOP)

MCOV:

close = (prec, 0, trige, 1,1, NOP)

open = (preo, 0, trigo, 1,1, NOP)

Mo is the mode with granted access (i.e. safety
cover opened).

MEQ:

prepare = (_,0,T,1,1,pre)

prepares = (_,0,T,1,1,preop)

openCover = (_,0, ,1,1,preo Atrigo)
closeCover = (_,0, ,1,1,prec Atrige)

operate = (preop,0, T,1,1,pre)

The pattern for a control action or works analo-
gously and is, therefore, omitted.

0
,0

Aim: Assure behavioural safety based on the world model M = Ag ® As = M% ® MEC;'

Attenuation mechanism (passive)
(e.g. a car airbag to alleviate collision or
obstacle detection to alleviate clamping)

This pattern is described in further detail in Exam-
ple 4.5 and Section 6.1.

Operator vigilance control (preventive)
(e.g. dead man’s switch in trains)

This pattern can consist of an additional function
theg:kAvail combined With‘an applicgtion of the
fail-silent variant of the fail-safe actions pattern
(see above).

A.2. Procedure and Data on Interviews of Safety Practitioners

Procedure for the Interviews Table A.5 depicts four hypotheses derived from my own
research experience and a consolidated catalogue of initiating questions applied
throughout the interviews to collect evidence or rebuttals. The interviewees have been
found using a multi-stage contact approach across various organisations and techni-
cal domains mainly within the automotive and commercial road vehicle industries.
The safety practitioners were chosen according to their knowledge and expertise in
machine and functional safety, hazard analysis and risk assessment (HARA), FMEA

140

A.3. Data on the Systematic Map of Related Work

and system reliability assessment. Precedence was given to the practitioners with the
longest experience. Table A.6 provides information about the nine interviewees. For
their preparation, the selected safety practitioners were provided with information
about the background and the kind of the interview, and a preliminary list of topics
and questions. Each of the nine interviews has been conducted in German language
between June and August 2012. For each interview, the questions from Table A.5 are
adapted and issued occasionally depending on previous answers. Answers and obser-
vations, which indicate a confirmation or refutation of a hypothesis, are extracted and
translated into English. Finally, the interpreted results are used to strengthen the
motivation for the present work.

Results and Interpretation Table A.7 summarises confirming and refuting answers to the
questions underlying the hypotheses 1 to 4. The results are interpreted in Section 1.1.

A.3. Data on the Systematic Map of Related Work

The Tables A.8 and A.9, and Figure 3.1 represent a systematic map of related ap-
proaches according to their abstraction for building a system model (Section 3.4.1),
their reasoning about causal factors and effects (Section 3.2), and their underlying
formalism (Section 2.2.1).

A.4. Data on the Comparison with Other Procedures

Table A.10 shows a stepwise comparison of the method described in Chapter 5 with
the approaches of Leveson (2012) and Kath and Temple (2012).

A.5. Data on the Automated Teller Machine Case

The Tables A.11 and A.12 contain data for understanding the behavioural properties
of the automated teller machine.

Note on Representation For the actions described in the Tables A.12 and A.14, Broy
and Stglen (2001) show a more concise tabular representation.

A.6. Data on the Commercial Road Vehicle Case

The Tables A.13 and A.14 contain data for understanding the behavioural properties
of the commercial road vehicle.

141

A. Library, Evidence and Excursions

State Guide Physical Phenomena and Types Pattern
Word to form variables in V to form a state constraint ¢ € @
{low, high} density of a hazardous . L
contaminate substance in an area entered by per- densityarea,substance = igh /A
enteredPerson‘Area
sons
{0, short, medium, long} distance,
{low, high} relative speed and crashedopjs =
{narrow, wide} relative speed angle distanceppjs =0 A
of manned objects moving in an area; relativespeedopjs = high A\
Remark: more precise but more ex- relativespeedangleopjs = narrow
pensive in state observation
collide, Remark: more directly based on ob- _
crash ject properties (position, speed), less crashedopjs =
(three J prop p » P ? [positionppj1 —positionovjz| < short A
variants) precise capture of the spectrum of Ispeedobi1 — speedopiz] > low
situations Ovj Obj
{low, strong} tmpact and deformation
of a manned object; _
. crashedopj =
Remark: suggests state observation .
.. impactopj = strong /A deformedopj N
done by the system, more precise in entered i
timing, less precise capture of the Person,Obj
spectrum of situations
. a person distracted by an event in a someEventInareq /\ someSituation A
distract . . ins
situation within an area enteredperson,Area
shoot a person shot by an object flying fast flyingFastThroughovject,Area /\
through an area enteredperson,Area
hit a person hit by an object moving fast movingFastAtovject,Place /\
at a certain place adjacentToperson,Place
bump (oppo- a mowving person bumping into a fited movingFastAtperson,Place /\

site of hit)

object at a certain place

adjacentToobject,Place

fall

fall of a person at a certain place

feuAtPerson,Place

{wide,narrow, closed} position of

I ; ; iti : i
z (Z;?Z’e certain system parts occupied by a E:zgui)(;{\g‘“hmefans # wide A\
q person’s body parts (e.g. hands) P YMachineParts,BodyParts
{opened, closed} position of a ma- . -~
shear chine’s parts occupied by a person’s POSUONMachineParts = closed /\
Radl s occupiedBymachineParts,BodyParts
{low, high} temperature of a contact .
t t =high A
burn surface touched by a person’s body emperaturecontactSurface 19
parts J[Ou(:h-ed—BUContac’tSurface,BodyPar’ts
. none, low, high} voltage of a contact .
lect Il { i > t =high A
erectrcatty surface touched by a person’s body voltagecontactsurface 19
shock tOu*Ch'edByCu:m.tcu:tSu:rface,BodyPar’cs

parts

142

Table A.3.: Patterns for state constraints to model ®

A.6. Data on the Commercial Road Vehicle Case

No. Hypothesis

Core Initiating Questions

The societal demand for sys-
tem safety increases steadily.

a. How did safety needs and practices change in
your application/system domain over the last few
years?

Systems and safety engineer-
ing processes lack integration:
roles of safety and reliabil-

2 ity engineers are misaligned;
the responsibility for safety
assurance is mainly split by
technology domains.

a. How would you describe your role, tasks and
competences in your organisation, for example,
your relationship to requirements, system test and
design engineers or suppliers?

b. Which are the boundaries defining your task of
safety assurance?

c. How do your results contribute to a conclusion
on the safety of a system?

d. Did you ever recognise, for example, hazards,
systematic faults or specification defects unaccept-
ably late?

Commonalities and differences
of application domains are

a. Which kinds of hazards and defects are essential
and decisive for your application/system domain?

3 . . LT Lo
known but standards are nei- b. Which deficiencies do you perceive in the stan-
ther harmonised nor mature. dards you follow?
Safety analysis practice lacks a. Which deficiencies do you perceive in your
. : . methods and tools?
guidance: interdisciplinary .
. b. How would you improve your procedure, for
system models can aid and re- . .
4 example, to consider maloperation or to support

duce incompleteness in safety
engineering but are hardly
used.

reuse, volatile or changing requirements and design
decisions as well as functional and technological
variety?

Table A.5.: Catalogue of questions underlying the hypotheses and guiding the interviews

143

A. Library, Evidence and Excursions

IV Date Applications / Technology Domains Expertise / Educational Background
1 Car driver assistance, agricul- Functional safety consulting, audits and
3 5.6.12 tural machines / automotive coaching / informatics, software engineer-
microelectronics ing
2 14.6.12 Car driving dynamics / automo- Functional safety, hazard and risk analy-
S 77 tive microelectronics sis / informatics
3 Cc?mmerqal road vehlc.1e5: Electronics reliability assessment / auto-
] 14.6.12 driver assistance, chassis con- motive engineerin
trol, airbags / control electronics & J
. - Functional safety process consulting,
4 15.6.12 Automotive con.trol, avionics / HARA conduct, tool development and
S control electronics
qualification / informatics, software eng.

5 Commercial road vehicles and Safety engineering consulting and assess-

20.6.12 . .
J others / control electronics ments / electrical and control eng.
6 Road vehicles, plants and ma- Functional safety assessments and con-

25.6.12 R
E chinery / control electronics sulting / informatics
7 Road and railway traffic control Safety methods research for computer-

2.7.12
S / control microelectronics aided chip design / electrical engineering
8 9.7.12 Automotive, flight and turbine Functional safety assessments / electrical
E control / control electronics engineering
9 8.8.12 Automotive control, avionics / Functional safety assessments and con-
E electronics and software sulting, standardisation / unknown*

Table A.6.: Overview of interviews (IV) and safety practitioners; J...junior safety engineer
(< 2 years of dedicated safety practice), S...senior safety engineer (< 6 yrs.),
E...safety expert (> 6 yrs.), *...disregarded during interview

144

A.6. Data on the Commercial Road Vehicle Case

(C)onfirming and (R)efuting Answers (from the interview transcripts)

C: (IV5) Increasing demand for safety measures in end-user products. (IV1) Functional
safety is finding its way into the automotive industry because of product liability and war-
ranty issues. (IV2,4,6) Producers’ pressure (QM) and responsibility to avoid increasing or
even lost liability claims raises the demand for safety engineers. (IV7) High automation re-
quires strong safety, reliability, fault tolerance and robustness and, thus, higher cost. (IV3)
We face such cost conflicts with suppliers.

C: (IV9) A vehicle design is decomposed into safe subsystems, the system as a whole is
then neglected in analysis. (IV3) Reliability assessments are highly specific to technical
parts. (IV4) Process change (e.g. standard or method adoption) is hard to achieve. The
lack of methods makes independency proofs and SIL decomposition difficult for novel
functions. (IV6) More strongly separate HARA from functional safety to improve inter-
disciplinary assurance. Underspecified roles/tasks of safety engineering teams for system-
subsystem settings hinder cross-technology assurance.

R: (IV2,4,9) Suppliers, technology-specific teams and a central team for functional safety
are coordinated to perform, for example, HARA, RCA and management of safety require-
ments. (IV3) FMEA delegation and reviews for supplied parts work fine.

C: (IV1) Applied standards do not entail safety, e.g. ISO 26262 can be infeasible due to
limited observability of operational situations; no guidance for sensor abstractions. (IV2)
ISO 26262 neglects driver maloperation. (IV4,7) Due to fast technology evolution, stan-
dards and methods lack clear-cut guidance and harmonisation, e.g. AutoSAR or DO-182
with ISO 26262 recommendations for SW, SW/HW interfaces and decomposition. (IV4)
Safety practices in avionics and truck industry are intensive and mature. Automotive sup-
ply chains still need to improve, e.g. by adopting ISO 26262. (IV8) Automotive industry
focuses single point fatlures whereas aeronautics also handles multiple point failures or
latent faults. (IV5) Methods from aeronautics hardly fit road vehicle needs because con-
trollability assumptions about pilots are stronger than those about usual drivers. (IV6)
Machinery guidelines for HARA are more precise than ISO 26262 part 3, e.g. “access and
working areas” are better understood than “driving situations.” Hence, mere adoption of
risk graphs across several domains is complicated.

R: (IV9) Applying the ISO 26262 part 3 (HARA) works fine.

C: (IV3) Reliability models are highly technology specific. (IV9) In the automotive in-
dustry, system models are less used than individual empirical methods and expert judge-
ments. (IV4,5,6) Systematic HARA modelling and reuse is neither practiced nor standard-
ised; cf. H2-C-IV6. Demand for models as reusable documentation exists. (IV8) Usual de-
fect taxonomy is only partially captured by the regarded models. Interdisciplinary mod-
elling and collaboration is neglected. (IV2) Unification of driving situation registers and
damage severity classes needed across collaborating business units within a supply chain.
(IV4) Underuse of common driving situation registers.

R: (IV3,4,6) Customised spreadsheets and tools mostly serve the needs. (IV8) Physical
simulations are expensive but effective. (IV7) Interface design models are used for doc-
umentation and integration. (IV2) Used HARA and FMEA methods are satisfying. In-
terdisciplinary abstractions are unqualified for severity estimations. (IV9) Models of the
complete vehicle are neither required nor possible; cf. H3-R-IV9. (IV4) Assumptions on
driver maloperation are documented in the guidelines.

Table A.7.: Confirmations and refutations, H...hypothesis, IV...interview

145

A. Library, Evidence and Excursions

Abstraction

Main Direction of Causative Reasoning (Sections 3.2 and 3.4.2)

(Sections . .
linear causal chain . .
3.2 and non-linear chain
3.4.1) deductive inductive (interactive 1)
implict . FMEA, ETA, LOPA, HACCP, HA- poqina0el (2004),
¢ static FTA, RCA ZOP, ECF (Buys and Clark 1995), [CRIOP
(no . (Cacciabue 2004) CRIOP (Johnsen et al. 2011), Stal- '
prescribed, hane et al. (2012), HERMES, ICPS - alOP
informal) ane et al. () ’ HERMES,
bidirectional: Rasmussen (1997), Sayre et al. (2001), ICPS]}
[HAZOP]:
te:pa-ldo(‘;(r)li 01)316111 bottom-up: Bowles and Wan
) ’ (2001), Catino and Ungar (1995),
Chen et al. Meh 2011), Pock (2012 i
structural (2008), Svedung erpouyan (): oc (): none found; kind
Snooke and Price (2011), Waters of model maybe
(only and Rasmussen d Pont 1989 . .
glass-box) (2002) and Ponton () inappropriate
bidirectional: Feather (2004), McDermid and Pum-
frey (1994), Yenigiin et al. (1999), Zhang et al. (2010)
behavioural backward: Neogi

(only black-
box)

forward: none found; kind of model

(2002), Voge and maybe inappropriate

Bunimov (2012)

D’'Ippolito et al.
(2011), this work

mixed
(modular,
grey-box)

dynamic FTA

(Dehlinger and Bitsch et al. (1999), David et al.

Bug‘m 230?’ (2010), Dobi et al. (2013), Esser
191;g2a)n];ar31‘11'n and Struss (2007), Mhenni et al.

(2012), Pister (2008), Struss and
Fraracci (2011), Stursberg et al.
(1998), Venkatasubramanian et al.
(2000)

and Peikenkamp
(2004), Rauzy
(2002), Roth
and Liggesmeyer
(2013)

bidirectional: Gartner (1999), Haxthausen et al.
(2011, 2014), Heitmeyer et al. (1998), Herrmann

and Krumm (2000), Leveson and Stolzy (1987), Nis-
sanke and Dammag (2002), Peikenkamp et al. (2006),
Probst (1996), CORAS (Lund et al. 2011)

Hall and Silva
(2008), STAMP
(Leveson 2012),
Risklog (Johnson
1993), this work

Table A.8.: Overview and classification of literature on approaches to hazard analysis; model

subject disregarded; | ...

146

environment is part of the model, { ... possible

A.6. Data on the Commercial Road Vehicle Case

Formalismt Focused Area of Causative Reasoningf (Sections 3.2 and 3.4.2)
(Section

2.2.1) causal factor & hazard causal factor or hazard* < mishap
unclassi-

flod** Perchonok (1972), ICPS (WHO 2012)

implicit (not

AcciMaps (Svedung and Ras-
mussen 2002), CRIOP (Johnsen

Prescribed, ETA, FMEA, static FTA, HACCP, et al. 2011), ECF (Buys and Clark

informal, LOPA, RCA (Cacciabue 2004) 1995), FMECA, HAZOP, HER-

usually qual- ! MES, FRAM (Hollnagel 2004),

itative) Rasmussen (1997), Sayre et al.
(2001)

non-timed qualitative: Biehl et al. (2010),

constraint or
flow analysis

Catino and Ungar (1995), Stalhane
et al. (2012), Struss and Fraracci
(2011), Zhang et al. (2010);

qualitative: Hall and Silva (2008),

S:.:ieailc:a 151 quantitative: Bowles and Wan Waters and Ponton (1989);
relations,or (2001), Chen et al. (2008), Feather multiple: Mehrpouyan (2011)
BooLean (2004), McDermid and Pumfrey
logic (1994), Snooke and Price (2011);
& multiple: Pock (2012)

qualitative: D'Ippolito et al. (2011),

Esser and Struss (2007), Probst

(1996);
timed or quantitative: Yenigiin et al. (1999);
temporal multiple: dynamic FTA (Dehlinger

. and Dugan 2008, Dugan et al. 1992), e .

ton check. Biisch et al. (1900), David et al. GRS OO0 S5 OO
. (2010), Gartner (1999), Haxthausen . ' !
ing based . this work;
on transi- et al. (2011, 2014), Heitmeyer et al. multiple: Leveson and Stolzy
tion systems (1998), Herrmann and Krumm (1987) éTAMP (Leveson 2012)
Markoy (2000), Johnson (1993), Mhenni CORAS (Lund et al. 2011)
hai et al. (2012), Neogi (2002), Nissanke ’
chains or and Dammag (2002), Peikenkamp
PETRI nets

et al. (2006), Pister (2008), Rauzy
(2002), Roth and Liggesmeyer
(2013), Stursberg et al. (1998), Voge
and Bunimov (2012)

Table A.9.: Overview and classification of literature regarding the formalism and reasoning
distance used; { ... for causal factor, hazard, mishap; } ... qualitative, quantita-
tive and multiple abstractions distinguished, direction of reasoning ignored (see
Table A.8); *...only few approaches focus short causal chains between hazards
and mishaps; **...information unavailable or insufficient

147

A. Library, Evidence and Excursions

This Work
(see Chapter 5)

STAMP (SpecTRM)
(Leveson 2012)

ISO 26262 applied
(Kath and Temple 2012)

1. Specify func-
tionality and prop-
erty assertions

1. Identify mission goals, re-
quirements and constraints

1. Item definition: functions

2. Derive defect
model

N/A (due to a lack of concepts,
only considered informally)

3. Identify
potential mishaps

2. Define system accidents or
unacceptable losses

1. Item definition: malfunctions

N/A (due to triple comparison)

4. Assess causal
factors and specify
hazards

3. Define mission hazards

2. HARA: definition and
classification of safety goals

8. Identify hazardous control ac-
tions and their causal factors,
derive requirements to treat
these actions

N/A (due to the neglect of
driver maloperation)

N/A (due to triple comparison)

5. Specify safety
goals and A/G
pairs, assign
probability bounds

4. Define mission-level safety-
related constraints

2. HARA: definition and
classification of safety goals

6.2. Resolve re-
sponsibility mis-

5. Identify environmental
constraints and assumptions,
customer-derived system design
and programmatic constraints

3. Functional safety concept:
requirements identification,
functional architecture design,
ASIL assignment

perceptions

6.1 Plan and 6. Perform a functional decom-
design safety position

measures

7. Design high-level system con-
trol structure

1. Item definition: functional
architecture

N/A (due to the
behavioural view)

9. Define system component
specifications until hazards are
eliminated, mitigated or con-
trolled

4. Definition of technical safety
concept, hardware/software de-
sign and integration, estimation
of component failure rates

6.3 Check validity
of safety measures

10. Perform validation tests

5. Safety validation: architec-
ture verification, reliability as-
sessments

N/A (due to focus
on the concept
phase)

11. Generate designs and soft-
ware code

N/A (due to exclusion from
their case study)

Table A.10.: A comparison of three safety engineering methods; N/A ...

148

unavailable

A.6. Data on the Commercial Road Vehicle Case

‘A1pegoadxaun se9sold pI| 8y} I0

Z'9 94O[s yses a1} Ul [I}s are Aot} JT YSnous jse] spuey IaY IO ST 3oeq [nd wed Iswogsnd jyueq ayJ, Lyniqero1juo) Lasy
1'5 'S G UeBYY SS9 JIOJ 0[S YSED 9U} Ul SPURY I3Y IO Siy sda9sy Jowo4snd yueq aYy,J, asn zedoid 675V
“quegstsuod jdey aq 03
1'g oaey uoljisod s pred O snbrun e Jururejrad (3°15P4PIsnipls pue P+Pouo0111s0d "o'1) seqeltea oy, uotyisod pred 9d
1S ‘sauoz Surdure(s sije)s 1o sa8ps dreys Jo 991 aq 09 seY 9elIns NIV YT, 9T4D
1'q *queIInd renpisal jsureSe pajosjord aqg o4 sey Surses sjoym YT, l42>)
‘uado feys [reys pi1 ayy ‘301s yseo pauado sy} ur pajoslsp aie
(SSgy) 1°g se[oeysqo JI "N 0J ueyy ssof seoxoj L1dde Ljuo [reys pif Juisold e ‘4oIs ysed ayj ut Suiysal s puey e I 0145
ce ‘WISTURYDSUI 0[S YSed o1} I0] 9[dejsqo Ue se junod jo[s ysed oy} ul Jurfe)s spuel soroeysqo Testshyd 7z
44 ‘A11e3 007 $950[§1 10 suado pue saso[> A[UIOPURI PI] }0[S Ysed aYy,T, ainso[d pejoadxaun 9zH
e ‘aoeIns NV 9Y3 Suryonog £q Jeswiy s4any ISWOISTO Yued oy, SaYo4RIds 10 SIND GIN
‘eoeyIns
Z'¢ INLV 9Yj} S9U5NO0j IsUI0)snd yued oY} o[Iym Juised oyj YInoly) SUnl jusiind [enpisal snopieze}] yoouys o110y g §IN
Z'¢ NIV oY} yjim Surjoersjul usym jo[s ysed oy} ul pazesnbs 498 s1s8uly 10 spuey s, IoMI0ISND YT, spuey pazeanbg Ly

1°G ‘g1 ‘beread

‘A1zodordur pasn J1 uaAs ‘Ismrogsnd yueq o1} jo
sern(ur Jo s¥suI s9dNpPal NIV oY, "N.LV U3 Jo uorjoe ue £q painlur oq Isael [[eUS ISUIOISTLD OY,T,

uorjoRILjuUI 8feS G5

(s)daas

uonduisaQ

uondisaq Moys ‘p|

G'9 2In81] 99s ‘suoljIasse paje[aI-Ljoyes of paonpal 4y, woiy uorjdrrossp Teurtoyur ¢ | suorjrssse fyredoid IT'Y o[qel,

149

abvd buimojjof ay3 uo panuuUc)

(()pups)urd =: 12urdyo01y09913s 1 e 1 0 1 urdiejus

>*" 3 3Q1 (L31uepl, o130RL,

U2210gULDM =: ir1dsiPyusqu00 T [1 0 pl1ipaul = Sanhu Lusp
suo1ydQadtas =: ir1dsiPyusjuood T e 1 0 1 7 ferdsip
. pupo ¢ . uﬁw?uuzh(ﬁw 10153
=: uo1isod ‘uypaynd =: SMID1S T € — 1015D4Po5N DS 0 1 dsgS8yo
‘suorpdQatas =: firidsipyusjuoo

u3219g919m =: AP1ds1Pyus3u00 T 3 1 0 1 L feidsip

S D SAYS (SOOTATSG,, TOIFOUNT

2101sdwaigyunowp =— IUN0I2P35Uup DQq G < Somy\/ Azdwa S
‘Ugouoguipm =: fP1dsiPiusquoo T € _ioeisusvojusquoo O 1 [merp
2101sdwWalynowp =— PUN022P55up D q Aydwa o801
‘ugatdgoiom =: fAvidsipauzjuood T € = 1015USDPI111331U0D 0 1 ¥
(°torsdwaiyunown)yspo =: }°15USP231u33100 — j01spapo
“sonboyipyiztm =: Ar1ds1Pius3100 T € 1 o0 p.lpjou = SM1D1S 9sINgsIp
v =: ?+teisdwaijynown ‘301530 N2V V(v)iunowo
=: Puvoy013150d 401GID =: 1O1SPIDIsN DS T € _ Efmn:w‘oﬁuwﬁm 0 pa3po1UaYIND = Salw piD32sfe
—: Avidsip MDIpYITM
suo1nzdQipyitm =: JuU23U09 1 € = 19uPdy 01399198 0 1 dsg8uy»o
0
m AL D SO (USBD MRIPTIIAN,, UOTOUNY
b
%]
m dON 1 € T 0 L L
[SpubpHul =: Smcu.C‘O@H@wOQ — 301sSYyspd
EX ‘INLYwoudffipmp =: sSPuPUyo1l1sod T € T o uado = P11 AomopyereEy
ho] dON ! € 1 0 L (2) qrem
M 101sYysp)Hur =: SPUPUyo0131s0d T e 1 o0 uado = 1°15UsP3p1] Leuoqeid
o (()pupi)runown =: 12urdy 01109198 T [1 0 suo13dOipyitm = Ar1dsiPiusiuoo junowrysyd
m MDLpYIIM =: 1212 d110119313s T e 1 0 suo1rdQatas = Airidsipiusjuoo j00[08
o 301S3D =: ¥°15P1PIsn1D]s ‘30153p =: P+P2uo0131so0d 1 € 1 0 spuppHur = P+P2uor131sod jI98Ul
- S S i
o~
ﬂm AL D IDM (SED MBIPYJLM, O130R],
WJ., 3sod 1 otxd 811y Kerop axd 1eqeq
N
.M {0} \ N D U swos suInjal puns
) uorouny oY} {9'g pue g'9 ‘1°9 samSrg ayj o3 Surprosse priom NIV U3 jo QLN Suistaduros yoes 10} suorjesyoads uordy g1y SqBL
<

150

A.6. Data on the Commercial Road Vehicle Case

abvd buimojjof ay3 uo panuuo)

dON T € 1l 0 PIs010 = ¥°15UsPIpy Zysiuyg
| =—1°1susPopy T € 1 0 Paso1d # TO1SUTPOP1] TpITsso[d
furssaoosd = Sdaaw LpIresol
dON T € 1l 0 A 2WO0019M = SA¥SW A 7 < Somg PITes0]
dON T € 1l 0 uado = 1°15UsPIpy Tystuy
L=+7°15UsPopy 1 ¢ 1 o0 uado #£ 1015UsPopy Zprjusdo
(1psodsip)buiprom, = Sdaaw
dON T ¢ L o0 " . Y s tprjuedo
A ,(1paowar)buriom, = SOMw
> 3 $QI7 PV @so[2/usd(),, uorgounyg
U22.49Go1oMm =: Ar1dsiPyu31u00 301510 s
_. ?UUKSMLOA qo15Ip = uo:?uumjwwaw T € 1 0 Apdwa = 1°15USP2311537100 pip3osle
(A)Uuspo =+ 1s°dapPjuzjuoo
¢ N2 AV (A)Jusod
—4 1UM099D 535 p1D senooad
‘Aizdwa W_ +ao::moua¢waﬁow ! £ 1 0 _—sorsuseoyusquooyy pasoro = Sarmu 1 o
— Ardwa 1015USDO11193U00
J1sodaoouad =: ir1dsipyuajuood 1 ¢ ¢ < Sdaay g w/ CuMM _ ﬁ:w:mwovﬁ sredead
3sanbayasodsip =: fin1dsipyyuqju00 1 € _ ﬁm:dnﬁowwwhwm 0 L2WOISN)SYPIaLJriuaplr = Salu dsgS8yo
>*" S $d3Q »sods(,, uoljouny
spuppyur =: PtP2uo1j1sod T [~ 1 0 101S3p = P+P2uoisod piepaxes)
T € 10 1 (3) yrem
Wlvuwouijfinmp =: SPuPUyo111sod T e 1 0 1 INLVyeaes]
101syspHur =: SPurUyuo11sod Paso1d # 1°15UsSPIp1
‘(Opupa)ysod =: 3I°15USP23u33U0D 1 € T 0 \v/ 1sanboayasodsip = fir1dsipjusjuod aseosw
asodap =: 12uvdy 01309128 T [1 0 suo1rdQadtas = Ar1dsipyusjuoo dogos[es
>N S 343Q (@sode(,, 21998,
JdON T [2wod1oaMm = SAusw 0 1L Jo891
dON 1 € aud= ¢ P4voqd = 12uPdy 01192195 sjepIfeA
ipadayurd =: firidsiPyusquod 1 € aud= ¢ P4voqd #£ 12urdy 01993138 L1301
1samnbayurd =: ir1dsiPyusjuod T e T 0 1oMpIpyIIM = SoMw ajeIjIul
*MAL S SAl (AJTULPL, UolouUnyg
3sod 1 orxd 8113 fepop axd 1oqeq

151

A. Library, Evidence and Excursions

NOZ < *°1suUsPoainssaadp1y

dON 666" 60 1 0 A 101§USDOUL = SPUPUuo1j1sod JI9A9Y9Fes
- 101SYyspDHul

dON 666" 6°0 1l 0 — spuvuyoysod. v g < Somy Yprssord

PI] 93eS 103 9z99nbg proay - AN S SSgy

dON T 60 T 0 1 1
. 015U # SPUPUuo1sod

dON T 60 1l 0 A Buisols £ 3015uspopy (2) €rem

. . . 105Ul = SPuPUuosod v/ (¢ SpueH

WLvwosijfiomp =: sPuPUuosod 60 60 1L 0 < °3svy A BuU1s010 = I015USPIPYY) -oA0WSI
. . 105Ul = SPuPluosod v/ (¢

dON 10 60 L 0 < Sdsvy A Buiso1o = 3015UsPIpqy) (3) Zyrem

justruoliAuy £q Pe[[0I3uod 8zssnbg proay * - M S S3AQy

dON T 1 T 0 1 (2) ey

dON) T 1 0 1 fpresop

dON g’ T 1l 0 1 (3) Zqrem

dON 1 T T 0 1 (2) 310m01

. ()

dON g 1 1 o0 1 £pryuedo

dON g 1 1L 0 1 (3) Lgrem

pr1 sa1goege - M S 4sqi

3sod 1 orxd 8113 fepop axd 1eqeq

152

A.6. Data on the Commercial Road Vehicle Case

abod buimojjof sy} uo panuuoy)

"bazsad ‘1 /u0g moqe jo peads e je oyyer; ssus(y OIJel} 9SUSP e SALI(] 61D
‘bazead urel ogels e Jo asnedsq oyelg gIH
‘bazead Lemy3iy e 31Xy LID
‘bazaad ‘Bui8isw ‘sue] uorjeis|adse ‘Aemarli(] LemySiy e 1ejuyg 9ID
‘bazsad uoojerd e ur aALI(] GID
‘bazaad 'suang a8ref ‘orgers SUIUIOOUO NOYJIM IO YILM SALIP [BNS[) sfemiojouwr 10 s£emySTy je aATI(] rro
"bazaad jnogepunol ySnoiys sALIJ gID
‘bazead splemyoeq SALI(] 21D
‘bazead ‘feMBIATID POPUSUL UB S$)ONPUOD 19¥dNI} YT, poads o} dn Suurg IIo
‘suBis dogs
1'T “baraad pue syySi oygery ye ‘eydurexs 107 ‘exelq sy} asn 0f a[qe SI ISONIY oUT, seyeIq 9sM) 01D
‘(s9s112£> ‘suerigsopad

¢'¢ “bazsad '89) suel oyy uo sjuedioigred oyrery pejosjordun yyim oiger; ssus(oyyels snousdolsay asuap je AALI(] 65
‘bazaad Burssoi1d ySnoayy aALIq 8D

¢'¢ “baread onzgdolg ougers £310 ySnoiyg aAtIg LD
‘bazaad qe> Jutatzp ut desg 95

e'¢ ‘11 “boazaad Iy desgs e je payred st ¥onij ayJ, 11y doaags e je y1ed GH
‘bazsid uotjess sed as) /43
‘bazaad ysem 1ed ysnoiayjy sALIg £
‘bazsad qed SurAlIp HLL 25
"bazsad "SYSB) 9OURULJUTRUW }ONPUOD O S[qe ST ISUIOGSND ST, Iewogsnod £q soueusjuTe]y D
(s)da1s uondusaq uondudsaq Moys Pl

sdags 19y3Ing Jo synsa1 pue 43/ wrory pejrodurr se uorjdiIosep [euriojur ¢ | suorjrssse £31edord 'g1°V o[qE],

153

dx31ddnsy

(=52 pundxa jo uoissezddns psjosdxaun)
S'% "Sequire jo eses[al pajoedxaun £Aq ISALIP JO UOIJORIGSI(T pupdxa jo uorjnosxs pejoadxeun nxw&&ﬁqx
S "uo13081p Jo a8ueyd 1o sue[Jo Buraes] pspusjjeu) sue[jo Buraes] pspusjjeun Z9H
g% ‘JUSUWISAOUI JO }IRYS 10 ARMBOALIP PapUSjjRU[) femesnr1p pepusgjeup °OWHPHTY
Sy aye1q jusuemrad papusjijeur) 09H
z'e *aT218A 214 Jo uorjersdofeur pspusjurlf) (pepusjutun) juspiooe ue afeSuy 99
z'e "po9301d [nJuIrey SSO[SY}ISASU 4T Seqire Sy} JO 9SEI[aI }991I0D sseslor [njuuey dXIULDUG
AL *I0LI94ul 9o1ysA ojul 1e8usssed jo dung Jotr8gut ojutl duing dwnaqg,
Te I9ALIP JO uolgoRIgSIT PPN
(45 sgoalqo 19730 Yjim uolsijjoy 2PH10P
1°G ‘q'1 “bazead 198uassed /1aa11p }09301g Boquvaos

m 1°G ‘g'1 “'bazead JuspIOO® ploAy 0ro

m 11 “bazsad sesodand s31 Jo suo S[Y[NJ ¥Ona} YT, ¥onig esN) L35

_nm ‘bazaad suelo Surpeo] urejurejy 985

.m ‘bazaad sqy8rem Laesy 10} sueio Fuipeol asM) o743)

m ‘boraad sueI1d 3urpeoy as) reo

..H_Mn ‘bazaad JuspIooe 19jJe padeares jo5) F149)

EW ‘bazaxd mor-1l e yred 1o aALI] |¥43)

WJ., ‘bazsad sue[s8uey) 035

8

3 (s)da1s uonduasaqg uonduasag Hoys PI

<

154

A.6. Data on the Commercial Road Vehicle Case

abvd buimojjof ay3 uo panuuoy)

dON 1 € peyser» o payse1s \/ £81sus ajeAIjOR
£yrenorgoung - - > S SSequy
dON 1 T paunndar Yyl paundou Iredsx
(ppoq ‘paads)iqys =—poaads T T 1 0 0 # poads [oeIgares
dON T T 1l 0 2avsadersyslims \/ o # paads A1gI°aIep
2P11102°1P243 (1 ‘sy/) I0f sansesws LjoFes sarjusssid - Ay S SSayeigdolg
(ppoq ‘paads)uigns =—paads g0 g'T 1l o0 1110 L ppol eyeigssaiddns
(ppoq ‘paads)aqun=-paads g0 g'1 1 0 1140 < ppoO] [oeIgaIqe)sun
(poo1‘paads)iq=-paads 06 &1 1L o0 1110 < pooy 1 oexeIq
Saxeagdolg jo sgoeyep Teuorjersdo - ¥y S Soyesgdorg
0 =: paads T € 1l 0 1 aye1q
dON 1 € 1l 0 2artadeisyolims. SjeAl}desp
dON T € aAviadoisysyims @ 0 = paads 9jeAljo®
dON T € 1 o0 0 # poads 2
£yrreuorgouny - > O Saxesgdolg
dON T 4 1l o0 1 41
JuswISeI] 9A109J9P * * * > D (¢ San0|NRAQ) D
dON 1 € 1 0 0 = paads dogs
dON 1 ¢ 1 o0 0 # paads L 4Tes
L=-paads 1 ¢ 1L o0 0 = paads ey
| =—poaads 1 e 1 0 0 = poads yred
— ¢ _ 0 < paads
| =—p2ads ‘paads =+ uo1isod T € 1 0 Vv S¢ > pasds — wonsod > gp— piejel
paads =: paads ‘paads =+ uo1jisod 1 e 1 0 GG > paads —uorisod > gp— aAoWw
— ¢ _ ¢ > poaads
| =+ poads ‘paads =+ uo1jrsod 1 e 1 0 v 66 > paads — uoisod > gp— 9jeIa[200®
Aqreuorjouny - - - M S (SsA0NPALQ) O
9sod 1 ord 8113 fLepop axd 1oqeq

2'9 uoI}0eg 03 Surprosoe priom AMD aY3 jo sgI,N Surstaduros ayj jo suorjesyroads UoIjoe 9YY JO o) 1Y S[qE],

155

A. Library, Evidence and Excursions

"sspowr 8say} ul aarjoe Sureq doo [o13uoo eyj ul sotureup eois£yd syj [epow 1qys PUR QNS ‘UqQUN ‘1q SUCIJOUNJ OY,T, |

T = &Ecqipdgmjﬁdwm »pr

=! 2A110D ‘ou =: paspajlaL‘)Iny =: sob ! ! paupdas g paupdas caredes
T =: paurpdaud ‘|

—: dwpluivmgnypys T =: 24179D T T 1l o0 dA130® umopinys

dON T T 1 0 SAT}OR)

ou =: paspalalLny =: spb T 1 paunndar paundau Liredax

1My =:spb g6 g'1T pasodas YT pasrodaus\/ 11Ny # sob urejurew

Sequre JeAlIp * e O “STequiy

T =: pauindai‘aa11d9yop =:svb 10" g'1 pasndos Ul pasiodas\/ 1Ny # sob Jurejurew

T =:paupdor‘| = —spb ‘| = +pasvalal 10 §'I T 0 1 +puedxs

dON T 971 T 0 1 1

Ardwoa =: spb 1 S1 1 0 firdwa # spb puedxygisoues

dON T 971 paysobud Q paysouad\/ Abioua ssestayssaiddns

S3equy jo s3oejep Teuoljersdo - Iy S +STequiy

dON T € 1 0 1 €3

dON 1 € 1l o0 (JRERIE] Oageargoe

dON T e 1 0 Abioua 93eAI}oeaP

3sod 1 orxd 8113 fepop axd 1Pqeq

156

A.7. Application and Evaluation of the Defect Taxonomy

subset of [[W]] [[AI']]... safe runs

safe subset of [[S]] conforming to [[S]] (virtually observable)

(to be
characterised by
safety measures)

safe subset of [[W]]

O ... observed
(incl. realised)
runs

SP..
specified
runs

H... hazardous runs
(virtually observable,
part of observed (0),

conformable (O N SP) or

SD ... specification defects specified (SP) runs;

(implicitly defective runs, part of

. OD ... operational defects H \ (SPU OD) = &)
specified runs, S = SPA[[AI']) (part of defective runs,

, 0D =0\ ([[Al']] N SP! SDUOD UH ... all defective

[vov]] ([irn) (incl. hazardous) runs

Figure A.1.: Classes of runs investigated by the proposed method; p, p’...two sample runs

A.7. Application and Evaluation of the Defect Taxonomy

Table A.15 applies the taxonomy of Section 4.2.1 to align safety-related terminology
and the defects investigated in the present work (Section 4.2.2) with the literature.

A.8. Defects and Model Validity

As discussed in the Sections 1.1 and 7.3, specification defects (Definition 4.4) and
wrong abstraction can make results of V&V inconclusive. Hence, we need to improve
requirements validity (Chapters 4 and 5) and model validity through finding appro-
priate abstractions (cf. challenge 1 on page 109). Model validation can be seen as
the act of checking that M correctly abstracts from W and the world in which W is
going to be realised. This section outlines the influence of model validity on defects.

Following Figure 4.7, Figure A.1 depicts relationships among classes of runs. As
an alternative to behavioural properties (Definition 2.15), the Tables A.16 to A.20
describe defects as deviating pairs of stimuli and reactions. Nevertheless, property
assertions can more concisely and expressively describe complex defects.

Visibility, Significance and Representation of Deviations Let M’ be correct by definition,
possibly implicit and approximated by I'. Three cases, one valid and two threats, can
be distinguished:

op Operational: W is defective, it deviates from M’ and M.

Operational defects (Table A.16a) can be modelled by defective indeterminacy
(Tables A.16b and A.20c) or fault indicators v¢ € V' (Table A.17) to give any
W the chance to observably deviate. Fault indicators preserve determinism.

f~ False negatiwve: W is defective and conforms to an unknowingly defective M.

157

A. Library, Evidence and Excursions

1 ‘Tensnun - - -

‘(L66T) ‘Te 9o uosanam " "

dda
I} 9qe], 0} Sulpiodooe 9INjeIsjl] WOIJ SULIS) JO UOIFedYISSe[) :'GT'Y o[qe],

(¥00z) dureyusyieq pue wure """
*

- ‘Lreryiqre - -

¢ ‘erqeorddeur - -

(x) ‘yrordxeur -

158

1

T

T 11

T:u

wy

B

Criterion

Facet

requirements mastake
modelling mistake

fault, erroneous state
failure

maloperation

mode confusion

single pownt farlure
residual fault

multiple point failure
common cause failures
common mode failures

cascading failures

safe fault (failure)

detected fault

perceived fault

latent/dormant fault
(hazardous undet. fault)

hazardous det. fault

spurious trip
failure on demand

systemic failure

physical failure

Taxonomy

g

8| &

& o

8|8
=}
o+
3
=]
<
[=n
=

o | §

= 2l

B o=

B

[}

>-d [

(1]

=

g,_. [

[}

=]

=

seanyrej juspusdep

£y1iqeosgep 7 Lyefes

utdtio ‘ ‘urxozrad ‘

(19970 Jo pury] pue £108sa3e]) 199Jo(] ‘se0USISSY) SWII|

(1102) 9@s210g (1102) 29292 ‘P3S OSI ‘(11T0Z) 80ST9 ‘PiS DHEI

(z102)
sood

A.8. Defects and Model Validity

[N ImM']

s=s' S#£S'

Figure A.2.: A false positive run p;, a false negative run p, and an operational defect p3 in
case of S # S’

Given Vspecified) Vrealised and Vigeal = V' (cf. pages 28 and 48), M and W may be-
haviourally conform (Table A.19a) because for the specification based on Vepecified
and any realisation based on V,eajised, two actually differing runs appear? the same
(Tables A.18b and A.19b). This lack of observability reduces the detectability
of defects and obstructs the definition of safety properties.

f* False positive: W conforms to M’ but deviates from an unknowingly defective

M.

For a deterministic® W with Viealised = Videal = V' based on a defective, determin-
istic M with Vspecified C Vrealised (Table A.20a), W may appear non-deterministic
because of variables disregarded in M. This lack of observability can be com-
pensated by ¢ndeterminacy in M (Table A.20b).

As depicted in Figure A.2, f~ and f* denote two threats to validity of the hypothesis
“W is defective.” By assuming that M’ specifies correct reactions for vi = b, we can
indeterminise M to establish conformance with M’. Then, M captures the choices
to consider vi = b in W according to M. If v (Table A.20a) is interpreted as a fault
indicator (cf. Table A.17) M must, however, be retained as in Table A.20b.

How improper Abstraction affects Defect Detection in V&V Table A.21 outlines the use
of model checking to generate runs for system tests (Gleirscher 2011). The cases 2, 5
and 6 exhibit the threat f—, that is, we may fail to detect operational defects. In the
cases 5 and 6, we may even be unable to generate runs. Testing requires the check for
model validity and whether the execution and monitoring of a test case was done in a
correct way.

The threat f™ may appear rarely during testing if the runs generated from M fulfil
¢ and ¢’s positive or negative intent—I"’ under-approximates M'—is known (cf.
Table A.21). Unexpected stimuli treated by safety measures according to Section 4.6
can be ignored to reduce f*.

?Because of wrongly typed, missing or superfluous variables.
3We might assume that Vige, completely captures the world state space including fault indicators.
In this respect, we have quasi-determinism or “determinism modulo abstraction.”

159

A. Library, Evidence and Excursions

stimulus | reaction stimulus | reaction

V1 V2 v3 V4 V1 V2 V3 V4

M a a b a M a a b a
b a [d b a c d

a a b a a a b a

M b a c d M b a c d
b a f d

a ‘ a ‘ b ‘ a a a b a

w w b a c d
b | a|f]d b | a|f]d

—
v
=
—
[}
-

Table A.16.: Samples for (a) case op, W exhibits a failure (deterministic as opposed to Ta-
ble A.20c), (b) analysing case op, M is non-deterministic, Vipecified = V' =
{v1,v2,v3,v4}; samples (one per row) hide their actions

stimulus | fault | reaction

2 V2 v vy | va

M a a - b a
b a - c d

M a a - b a
b a - c d
b a v f ?

W a a ? b a
b a n c d
b a v f ?

Table A.17.: Sample for case op: a defective mode of W activated or deactivated by an addi-

tional fault indicator v¢ € V’; - ... disregarded, ? ... W needs an oracle
stimulus | reaction stimulus | reaction stimulus | reaction
2 vy | v3 | va V1 v | v3 | v V1 v2 | vz | va
, a a b a , a a b a , a a b a
M M M
b a c d b a c d b a c d
a a b a - a b a - a b a
M
b a c d - a c d
W a a b a W - ‘ a ‘ b ‘ a w ? a b a
b a c d ? a c d

(a (%) (c

Table A.18.: Samples for (a) model validity, (b) threat f~ with deterministic M and W
and (c) handling threat f~ by indeterminacy in M to achieve model validity;
Vspecified = {VZyVSy\M}; V/ = {V1 ,VZ,V3,V4}

Ny
~

160

A.8. Defects and Model Validity

stimulus reaction stimulus | reaction
2 V2 V3 Vg 2 V2 vy | va
M a a b a M a a b a
b z d d b a c d
a a b a - a b a
b z y* | d - a f a
W a a b a w a a b a
b z y* | d b a f d
(a) (b)

Table A.19.: Samples for threat f: (a) violable domain maintenance assumption and violated

range maintenance guarantee.

z is out of M’s domain, d would be a valid

reaction but M implies y|* (y or anything) and W may react with y or anything;
(b) M is defective and non-deterministic, W is defective and deterministic

stimulus | reaction stimulus | reaction stimulus | reaction
V1 vy | v3 | wva V1 v2 | v3 | va 21 v2 | v3 | va
M a b a M a a b a M a a b a
b c b a c d b a c d
M - M - a b a M - a b a
- a c d - a c d
a b a a a b a a a b a
w b d w b a c d w b a c d
b a f d

(a) (b) (c)

Table A.20.: Samples for (a) threat f* (as opposed to Table A.18b), (b) handling threat f*
by indeterminacy in M and (c¢) W conforming to indeterminacy in M (row
5-6) but adding failure as indeterminacy not in M (row 6-7, as opposed to
Table A.16b); Vspecified = {V2,V3,va}, V' = {v1,v2,v3,va}

Case szte;t m::t('jalﬂge) Misse 2;::1:32; w Result Threat
1 neg > 0 d yes d realised spec. defect
2 neg >0 d no - spec. defect f~
3 pos > 0 - yes - no defect
4 pos > 0 - no d operational defect
5 neg none - unknown - no defect f~
6 pos none d unknown - spec. defect f~

Table A.21.: Model checking and testing based on M|us; -...no defect found, d...defect
found

161

A. Library, Evidence and Excursions

A

' S
1 |system model
as primary [-----

oracle |-}

realised system
as test object

&
0| ©

H E o Yo realised environment
. i a . ' .
i[environment |-] as optional

[
[modelas Vi delegate oracle
1| input oracle ‘.i.....

Figure A.3.: The system in W as a test object, oracles (primary, input and optional delegate,
e.g. As, Ag and the environment part of W) and channels 1-8 to observe

A Test Bed for Model Validation Which functions and components are required to
be implemented? A test bed should include test drivers and stubs: Ag simulating
the environment based on a model of the physical world, a monitoring and control
component as an interface between Ag and the system and an interface for the test
engineer to control the test bed. Based on the system boundary, oracle-based test-
ing (e.g. Liggesmeyer 2009) can use M as primary and input oracles and the realised
environment as a delegate oracle. Figure A.3 depicts channels observable by the test
case generator (1-2 for input/output generation, 3—4 for optional capture of delegated
interactions with the environment), the test drivers and stubs (5 for stimuli, 6 for
response monitoring, 7-8 for usage and diagnosis of delegate oracles at testing-time)
and diagnosis at runtime (7-8). Runs (Definition 2.2) and complex actions (Defini-
tion 2.10) allow the representation of test cases to be observed at 1-2 and 7-8.

How can the test bed be tmplemented? M can be axiomatised using an action
language (see Section 2.2.1) or tools for temporal reasoning, for example, PRISM?*,
SPIN® or vSMV®. Gleirscher (2011) sketches how M can be transformed into GoLog,
a PROLOG-based language for action theories described by Reiter (2001).

4www.prismmodelchecker.org

5spinroot.com
Snusmv.fbk.eu

162

www.prismmodelchecker.org
spinroot.com
nusmv.fbk.eu

Indices

B.1. Glossary of Symbols and Notation

Mathematical Symbols and Notation

No, R}
P(S),28
v:T
(a,b)
[a, b, c]
t.e

[.]

Slp

W) W*: W‘r

natural numbers incl. 0, positive real numbers incl. 0
power set of a set S

variable v is constrained to type T

tuple consisting of the elements a and b

list consisting of the elements a,b and c

selects the element e from a tuple t = (...,e,...)

the behavioural spectrum of a set of variables, a transition system
or a formula

If S is a set of states, runs or tuples and P a set of parameters:
S’ := S|p assigns to S’ the projections of each s € S such that
s’ € S’ is reduced to valuations of p € P. If S is a formula, free
variables in S but not in P are hidden by 3-quantification. If S is
an MTS and P an aspect label, S|p denotes the restriction of S to
MTSs in Mp.

single transformation step, multiple steps, step applying rule r

163

Logical Symbols and Notation

logical truth constants for the valuations “true” and “false”
logical equivalence

“entails” (logical consequence)

“writable as” (syntactic inference)

“Is defined as” for global definitions

“is congruent with” or “can be substituted by” (term equivalence)
“consists of” defining language grammar

“equality” as a predicate to be fulfilled (semantic equivalence)

variable binding or value assignment

(Vx,y 3z) ¢ quantifications can be written in parentheses
Vx: ¢, Ix.d reduces outmost parentheses of Vx(¢b) or (Ix)(db)

conjunction of a set @ of formulae by /\¢e<1>)
disjunction of a set @ of formulae by \/¢€(D)

B.2. List of Figures

164

1.1
1.2

2.1
2.2

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

A setting for safety-oriented requirements validation 6
An iterative procedure for safety-oriented requirements validation. . . . 7
Analytic quality assurance of engineering artefacts 12
Exemplary visualisation of hierarchical decomposition 25
Approaches to hazard analysis of technical systems 36
Kinds of safety measures L. 37
World model 47
Actual and safe description and representation of a specification 48
A hazard x in the behavioural spectrumof M. 54
A behaviour taxonomy for hazard analysis 54
An abstract transition system for hazard analysis 58
A pattern for goal-based hazard treatment 64
Consistency of artefacts aimed by validation 65
Overview of the procedure 69

5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2

Al
A2
A3

Overview of stages, steps and sub-steps of the procedure 74

ATM tactics and functions oL 80
ATM LIDg defective fragment 81
Hazardous complex actions and a run of the ATM world 87
Hazardous complex actions of the ATM world 88
ATM assertional graph L o 88
ATM safety fragments oL oo 89
CRV «(DriveMoveg) fragments 93
CRV StopBrakeg fragments L. 93
CRV Airbagg fragments Lo 94
CRV StopBrakeg safety measure L. 101
CRV Airbagg safety measure 102
Overview of concepts for behavioural safety 112
Specification-based testing oo 115
Classes of runs investigated by the proposed method 157
False positives and false negatives 159
Overview of test bed oo 162

B.3. List of Tables

1.1

2.1

4.1
4.2
4.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Data on incidents and accidents of technical systems 2
Basic classes of actionso oo L 21
Criteria for a defect taxonomy 49
Tabular representation of defective modes 52
Property defects forahazard, 63
ATM use case “withdraw cash” 7
ATM use case “depose cash” 78
Variables for safety analysis of the ATM 79
ATM hazard assessment results 84
CRV use case “use truck” L oo o 90
CRV wuse case “park at steep hill”, ... 90
CRV use case “use brakes” L 91
Variables for safety analysis of the CRV 92

165

6.9 CRYV hazard assessment results 98

6.10 A run of M which models the safety goal Ysafeairbag « - « - -+ -« - . 103
A.1 Patterns for causal factor search 133
A.2 Patterns for operational defects 135
A.4 Patterns to treat transition system defects 137
A.3 Patterns for state constraints oo 142
A5 Catalogue of interview questions 143
A.6 Overview of interviews and safety practitioners 144
A.7 Confirmations and refutations from the interviews 145
A.8 Systematic map of hazard analysis approaches: part 1 146
A.9 Systematic map of hazard analysis approaches: part 2 147
A.10 A comparison of three safety engineering methods 148
A.11 ATM informal property assertions (cutout) 149
A.12 ATM functions and tactics L. 150
A.13 CRV informal property assertions (cutout) 153
A.14 CRV functions and tactics oL 155
A.15 Application of defect taxonomy to terms from literature 158
Al6 Samplesforcase op 160
A .17 Deterministic sample for caseop L. 160
A.18 Samples for threat f— 160
A.19 Samples for threat f— 161
A.20 Samples for threat f* L 161
A.21 Model checking and testing Lo 161

B.4. List of Examples

Example 1.1: Car Airbag L 2
Example 1.2: Car Airbag e 7
Example 2.1: MTS of a Car Airbag, 20
Example 2.2: MTS of a Car Airhag 23
Example 3.1: Fail-Safe Patterns 0L 38
Example 4.1: Operational Defects of a Car Airbag 52
Example 4.2: Mishap and Hazard Identification for a Car Airbag 55
Example 4.3: Safety Goals for a Car AirbagandaCar 57
Example 4.4: Negotiation of Responsibilities for a Car Airbag 60
Example 4.5: Safety Measures for a Car Airbag 64
Example 4.6: Maloperation of Electric Light 66

166

A
A /G pair, see assumption/guarantee pair
abstraction, 3, 14, 105, 109, 112
action —, 24
state —, 24
action, 18
— effect, 18, 23, 113
— trace, 24
complex —, 24
composite —, 23
agent, 46
ALARP, 37, 53, 55, 57
application domain, 12
ASIL, 36
aspect, 25
assumption, 13, 59
assumption/guarantee pair, 13, 59
ATM, 76
automation paradox, 4, 60, 113

B
behaviour, 14, 17
behavioural
— model, 14, 17
qualitative —, 15, 43
— spectrum, 18

C
causal
— chain, 14, 32
— factor, 2, 4, 33, 34, 50, 53, 60, 71
channel, 14, 18, 47
computation tree, 17
control
- loop, 6, 108

Index

— software, 6, 34, 40, 46
— subsystem, 1, 37
CRV, 90

D
defect, 2, 3, 12, 16, 49, 109
- model, 6, 16, 51
operational —, 6, 7, 49, 57
specification —, 3, 49, 57, 157
deviation, 48, 157
driving situation, see operational situation

E

environment, 12, 13, 46
— model, 6, 46

ETA, 35

event, 18

F
failure, 16, 52
— mode, see defective mode
fault, 16, 52
— indicator, 17, 51, 66, 70
— model, see defect model
— tolerance, 16, 38
FMEA, 35
FMECA, 35
fragment, 23
FTA, 34
function, 14, 25, 34, 47
functionality, see function

G
goal, 12, 56
guarantee, 13, 59

167

Index

guide word, 35, 54 run, 17
H S
HARA, 34, 140 safety, 1, 37
hazard, 6, 33, 48, 53 - engineering, 31
— analysis, 3, 34, 39, 48 — goal, 48, 57
HAZOP, 35 A /G-based —, 59, 62
hierarchical decomposition, 14, 16, 25, 104 — integrity, 37, 56

— measure, 2, 4, 37, 66
| — requirement, 8, 36, 59

IC, 36, 73, 84, 98 behavioural -, 6, 57-59
incident, 33, 40 functional -, 3, 37, 56, 66, 112
indeterminacy, 14, 21, 26, 70, 110, 157 satisfaction, 28
INES, 2 SIL, 36
interface, 14 specification, 12, 13, 16, 28
iteration, 70-72 assumed —, 4, 45
state, 14, 17
M — constraint, 18
minimal cut sequence, 34, 115 abstract —, 58
mishap, 6, 33, 53 defective —, 38, 52, 58
mode, 3, 19, 47 harm -, 48, 53, 58
- channel, 18, 26, 113 hazardous -, 38, 53, 58
- dependency, 26, 51, 111, 115 operational —, 48, 58
defective —, 47, 52 safe —, 38, 58
hazardous —, 58 superimposition, 23
safe —, 47 ’ system, 1, 11, 12, 37
model checking, 13, 28 - boundary, 13, 14, 46, 62, 162
modularity, 14 - life cycle, 12
MTS, see mode transition system — model, 6, 13
— property, 13
0 — view, 16, 28, 44, 48

operational situation, 45, 48, 56, 90 systems engineering, 12

P T
parallel composition, 23 tactic, 47

pattern, 36, 38, 61 temporal logic, 16, 27, 110

fail-operational —, 38, 61 totality, 21

fail-safe —, 38, 61 trans.fo.rmation, 14
fail-silent —, 38, 61 transition system, 15
PCTL*, 27 abstract —, 24

mode —, 6, 18, 24

rojection, 18, 163
pro) ! concurrent —, 23, 30

property, 1, 13

behavioural -, 7, 14, 24, 27, 33, 66, 105 treatment, 60
domain —, 26, 48, 69, 77
interface —, 27, 29 u

underspecification, 16, 21, 26, 59, 73, 110

structural —, 14
use case, 13, 35, 69, 70, 91

R

RCA, 35 v

realisation, 3, 28 V&,V’ :!" 12,13

refinement, 26, 67, 96 validation, 38, 69

reliability, 3, 36, 40, 45, 70, 113

requirement, 13

requirements engineering, 13

responsibility, 2, 16, 59
misperception of —, 53, 62

w
world, see realisation
— model, 6, 46

168

Wovon man nicht sprechen
kann, dariiber muss man
schweigen.

(Ludwig Wittgenstein 1922)

	Preamble
	Abstract and Acknowledgement
	1 Motivation and Overview
	1.1 Safety of Technical Systems
	1.2 Thesis Summary
	1.3 Research Design and Outline

	I Theory and Approach
	2 Technical Systems
	2.1 Systems Engineering
	2.2 System Theory, Modelling and Specification
	2.3 Formal Preliminaries
	2.4 System Specification: A Generic Framework
	2.5 Notes and Further Reading

	3 Safety
	3.1 Safety Viewpoints and Standards
	3.2 Hazard Analysis Techniques
	3.3 Safety Measures
	3.4 More Recent Related Work

	4 Behavioural Safety: Concepts
	4.1 System Specification: A Safety-related Framework
	4.2 Safety-related Defects
	4.3 Mishaps, Hazards and Causal Factors
	4.4 Behavioural Safety
	4.5 Responsibility and Restriction
	4.6 Safety Measures
	4.7 A Stop Criterion for Safety-oriented Validation
	4.8 Notes and Further Reading

	5 Behavioural Safety: Procedure
	5.1 Modelling Stage: Understand System
	5.2 Analysis Stage: Identify Hazards
	5.3 Assurance Stage: Improve System Functionality
	5.4 Notes and Further Reading

	II Application and Evaluation
	6 Case Study
	6.1 Pilot Case: Automated Teller Machine
	6.2 Approval Case: Commercial Road Vehicle

	7 Discussion
	7.1 Evaluation of the Case Study
	7.2 Improvements on Related Work
	7.3 Some Limitations of the Approach
	7.4 Challenges and Hints
	7.5 Conclusions
	7.6 Further Work

	Postamble
	Bibliography
	A Library, Evidence and Excursions
	A.1 Transition System Patterns and Guide Words
	A.2 Procedure and Data on Interviews of Safety Practitioners
	A.3 Data on the Systematic Map of Related Work
	A.4 Data on the Comparison with Other Procedures
	A.5 Data on the Automated Teller Machine Case
	A.6 Data on the Commercial Road Vehicle Case
	A.7 Application and Evaluation of the Defect Taxonomy
	A.8 Defects and Model Validity

	B Indices
	B.1 Glossary of Symbols and Notation
	B.2 List of Figures
	B.3 List of Tables
	B.4 List of Examples
	Index

