TECHNISCHE UNIVERSITÄT MÜNCHEN

TUM School of Management

Lehrstuhl für Dienstleistungs- und Technologiemarketing

Dynamics in Online Communities – A Macro Level Investigation of Community Success

Christine Elisabeth Igl

Vollständiger Abdruck der von der Fakultät für Wirtschaftswissenschaften der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. Dr. Isabell Welpe

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Florian von Wangenheim, ETH Zürich/Schweiz

2. Univ.-Prof. Dr. René Algesheimer, Universität Zürich/Schweiz

Die Dissertation wurde am 28.05.2014 bei der Technischen Universität München eingereicht und durch die Fakultät für Wirtschaftswissenschaften am 15.09.2014 angenommen.

Summary

Various types of online communities, where people meet each other in a virtual space and share their knowledge and experiences, have spread over the internet. The "social revolution" has changed people's way of communication and interaction. It opens up new perspectives for both individuals and organizations. Individuals can easily get access to various sources of information and get into dialogue with others. Operators of online communities earn money through the individuals' presence and activity on these platforms. However, due to the growing number of communities, the competition among these social platforms is steadily increasing. While some communities are successful and sustaining, others disappear from the market.

Prior research has already identified factors that contribute to the success of online communities. However, a comprehensive study of the dynamics between these factors and their effects at different stages of a community life cycle is still missing. Using a unique longitudinal dataset from a number of regional online communities, this thesis examines the interdependence between online community success factors at different life cycle stages and identifies ways to understand and anticipate the evolution of online communities.

Project 1 focuses on the interdependence of community success factors – such as aspects of network structure, community participation, as well as community growth – and examines them over time and community life cycle phases. It addresses the questions whether and which success factors interdepend at all, how they interdepend, and when they interdepend. Drawing from social capital theory and the theory of structuration, a theoretical framework is built and tested by a panel vector autoregressive (PVAR) approach. Results show that, regardless of the communities' life cycle phase, network structure influences participation and vice versa. Especially, positive reciprocal effects between network structure in the form of average degree and different participation variables, such as active interpersonal participation and overall participation, are detected. Results further reveal that all these effects mainly last for several months. Hence, average degree and participation contribute to the guarantee of a lively and successful community. However, network structure in the form of average degree, degree centralization, share of network-ers, and network clustering coefficient does not directly influence community growth. Concerning the remaining relationships, a distinction between established and new com-

munities is necessary because the results show that interdependencies between success factors differ over time and community life cycle phase: In addition to the general effects discussed above, in the case of established regions, positive reciprocal effects between the share of networkers and all of the three participation variables, i.e. active interpersonal participation, active platform participation, and overall participation, are detected. Moreover, degree centralization exerts a negative impact on all participation variables. However, this effect is counterbalanced by a positive effect of platform participation and overall participation on degree centralization. In contrast, only the network clustering coefficient exerts no significant effects on participation. Taken together, in established regions, community members should be interconnected and the network should not become too central. Regarding the interdependence between participation and community growth, results show that, in established regions, all participation variables exert a positive impact on community growth. These effects often last for several months. Reversed effects are rather unusual. Hence, community growth can be directly stimulated by participation, which is directly stimulated by average degree and the share of networkers. Finally, community growth has a significant negative influence on average degree and the share of networkers. Thus, positive effects between average degree or the share of networkers, participation, and community growth are counterbalanced. This means that communities do not grow endlessly. In the case of new regions, results reveal – in addition to the already discussed positive reciprocal effects between average degree and participation – a positive influence of degree centralization on all participation variables, which lasts for several months. Moreover, there are even positive reciprocal effects between degree centralization and active platform participation. Other variables representing network structure such as the share of networkers and the network clustering coefficient play a minor role. As a consequence, new regional communities require a central network as opposed to established regions. Further, the network should be dense in the form of average degree. Finally, in new regions, community growth is not affected by participation and there are also no effects between community growth and network structure. Thus, community growth in new regions is neither stimulated by participation nor by network structure. Hence, other factors contributing to community growth in new regions need to be identified. Based on these results, recommendations for community management can be derived regarding the correct focus, application and timing of measures for managing a successful community.

Project 2 sheds light on the diffusion process of online communities. It investigates which factors contribute to the growth of online communities, how these factors influence community growth, and which modelling approaches perform best in explaining and predicting community growth. Using theories from social sciences on diffusion processes and group formation, a theoretical basis is formed and tested by methods from diffusion research and econometrics such as Bass, autoregressive moving average (ARMA), autoregressive distributed lag (ADL), and vector autoregressive (VAR) models. At the same time, these models are evaluated regarding their capability in modelling and predicting community growth in order to identify the most suitable approach. Thereby, all analyses are based on data reflecting the diffusion process of six regional communities since their foundation. The results show that people having already joined a community play a central role in the diffusion process of online communities because of their positive influence on community growth. This finding is confirmed for all regional communities by all models. Moreover, also people making contributions to the community, so-called posters, as well as contributions per se, i.e. participation in general, play a role in the diffusion process: In particular, overall positive effects of the number and the growth rate of posters as well as of the number and the growth rate of contributions, i.e. participation, are detected, although they diminish over time in some instances. However, in most cases effects of participation variables are not significant in contrast to the poster variables, which are significant in all but one instance. Hence, posters play a superior role in explaining community growth than participation in general. Moreover, in some cases significant reciprocal effects between the poster variables and community growth are detected, whereby negative effects of community growth on the number and growth rate of posters serve as counterbalancing effects to the positive effects going out from the poster variables. Furthermore, results reveal that personal selling in the form of a team growth rate does not contribute to the diffusion of online communities because of its mostly insignificant and in two cases negative effects on community growth. Taking these findings together, people having already joined a community as well as posters play a major role in understanding the communities' diffusion process. This is also verified by the results gained from the comparison of Bass, ARMA, ADL, and VAR models regarding their modelling and forecasting performance: ADL models, which examine the influence of people having already joined a community in the form of past new sign-ups and the number or growth rate of posters on community growth, perform by far best. However, for forecasting issues, the model including the growth rate of posters should be preferred. Additionally, also the ARMA model, which considers only the influence of people having already joined a community out of the variables of interest, produces good forecasts. Finally, the lowest performance is provided by VAR models, especially those including the participation variables. Based on these results, community managers are able to select the most appropriate forecasting tools for a timely anticipation of their communities' future development and to choose ways, which ensure community growth.

In summary, this thesis provides an understanding of the dynamics in online communities with respect to the communities' evolution process and the relationship between success factors of online communities. From a theoretical perspective, it contributes to current research by investigating the effects between various success factors and how these effects differ regarding a community's life cycle. Additionally, it sheds light on the community's evolution process. From a managerial perspective, this thesis supports managers in taking the optimal measures at the right time for achieving the community's goals and in providing them tools which timely inform about the future development of their communities.

Table of Contents

Sı	umma	ry		I
Та	able of	f Co	ntents	V
Li	ist of I	Figu	res	VIII
Li	ist of 7	Fabl	es	XXIII
Li	ist of A	Abb	reviations	XXV
1.	Inti	rodu	iction	1
2.	Cor	ncep	tual Basis	5
	2.1.	Det	finition and Types of Online Communities	5
	2.2.	Suc	ccess Factors of Online Communities – Current Knowledge	6
3.	Inte	erde	pendence of Online Community Success Factors – Evidence	from Panel
V.	AR	•••••		
	3.1.	Inti	oduction	
	3.2.	The	eoretical Background	
	3.2.	1.	Social Networks	
	3.2.	2.	Social Capital Theory	
	3.2.	3.	The Duality of Structure in Giddens' Theory of Structuration	16
	3.3.	Dat	ta	19
	3.3.	1.	Measurement of Community Growth	
	3.3.	2.	Measurement of Network Structure	21
	3.3.	3.	Measurement of Community Participation	24
	3.4.	Me	thodology	
	3.4.	1.	Vector Autoregression	
	3.4.	2.	Panel Vector Autoregression	
	3.4.	3.	Models	
	3.5.	Res	sults	
	3.5.	1.	Established Regions	

3.5.2.	New Regions
3.5.3.	All Regions
3.6. Dis	scussion
3.6.1.	Summary of Results
3.6.2.	Theoretical Implications104
3.6.3.	Managerial Implications107
3.6.4.	Directions for Further Research
4. Forecas	sting and Understanding Community Growth111
4.1. Intr	roduction
4.2. The	eoretical Background113
4.2.1.	Diffusion Theory 113
4.2.2.	Social Learning Theory and Communication Channels114
4.2.3.	Theory of Collective Behavior and Critical Mass116
4.2.4.	Theory of Social Comparison and the Value of Communities 117
4.3. Dat	ta119
4.4. Me	thodology
4.4.1.	Bass Diffusion Model
4.4.2.	Autoregressive Moving Average Model
4.4.3.	Autoregressive Distributed Lag Model 129
4.4.4.	Vector Autoregressive Model
4.5. Res	sults
4.5.1.	Region 1
4.5.2.	Region 2
4.5.3.	Region 3
4.5.4.	Region 4
4.5.5.	Region 5
4.5.6.	Region 6
4.6. Res	sults of Further Analyses

4.6.	1.	Region 2	200
4.6.	2.	Region 4	206
4.6.	3.	Region 5	
4.7.	Disc	cussion	220
4.7.	1.	Summary of Results	220
4.7.2	2.	Theoretical Implications	227
4.7.	3.	Managerial Implications	230
4.7.	4.	Directions for Further Research	231
5. Gen	ıeral	Discussion and Conclusion	233
5.1.	Sun	nmary of Key Findings	233
5.2.	Gen	neral Implications for Theory and Management	236
5.3.	Con	nclusion and Outlook	241
Referen	ces		243
Append	ix	(see (CD) 254

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

List of Figures

gure 1	Structure of the Thesis
gure 2	Impulse Response Functions, PVAR(1) ln_average_degree ln_partintact,
errors are	e 5% on each side generated by Monte-Carlo (1000 reps); Established
Regions	
gure 3	Impulse Response Functions, PVAR(1) ln_degree_centralization
ln_partint	act, errors are 5% on each side generated by Monte-Carlo (1000 reps);
Establishe	ed Regions
	Impulse Response Functions, PVAR(1) ln_networker_share ln_partintact, e 5% on each side generated by Monte-Carlo (1000 reps); Established
Regions	
	Impulse Response Functions, PVAR(1) ln_network_cc ln_partintact, errors n each side generated by Monte-Carlo (1000 reps); Established Regions 37
gure 6	Impulse Response Functions, PVAR(1) ln_average_degree ln_partplatact,
errors are	e 5% on each side generated by Monte-Carlo (1000 reps); Established
Regions	

ln_degree_centralization Figure 7 Functions, PVAR(1)Impulse Response In_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps);

- Figure 8 Impulse Response Functions, PVAR(1) ln_networker_share ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions
- Figure 9 Impulse Response Functions, PVAR(1) ln_network_cc ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions 40
- Figure 10 Impulse Response Functions, PVAR(1) ln_average_degree ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions
- Figure 11 Impulse Response Functions, PVAR(1)ln_degee_centralization In_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps);

U	Impulse	Response	Functions,	PVAR(1)	ln_networker_share
ln_partin	tactplat, erro	ors are 5% on	each side gene	erated by Mon	te-Carlo (1000 reps);
Establish	ed Regions				
Figure 13	Impulse R	esponse Func	tions, PVAR(1) ln_network	_cc ln_partintactplat,
errors an	e 5% on e	ach side gen	erated by Mor	nte-Carlo (100	0 reps); Established
Regions					
Figure 14	Impulse Re	esponse Functi	ons, PVAR(1)	ln_new_signu	ps ln_average_degree
ln_partin	tact, errors	are 5% on ea	ach side gener	ated by Mont	e-Carlo (1000 reps);
Establish	ed Regions				
Figure 15	Impulse	Response	Functions,	PVAR(1)	ln_new_signups
ln_degre	e_centralizat	ion ln_partint	act, errors are	e 5% on eacl	h side generated by
Monte-C	arlo (1000 re	eps); Establish	ed Regions		
Figure 16	Impulse	Response	Functions,	PVAR(1)	ln_new_signups
ln_netwo	orker_share l	n_partintact, o	errors are 5%	on each side	generated by Monte-
Carlo (10)00 reps); Es	tablished Regi	ons		
Figure 17	Impulse R	esponse Func	tions, PVAR	1) ln new sig	gnups ln_network_cc
		-	,	/ = = t	
ln_partin	tact, errors	are 5% on ea		-	e-Carlo (1000 reps);
-			ach side gener	ated by Mont	e-Carlo (1000 reps);
-	ed Regions		ach side gener	ated by Mont	· • •
Establish Figure 18	ed Regions Impulse Re	esponse Functi	ach side gener	ated by Mont	
Establish Figure 18 In_partpl	ed Regions Impulse Re atact, errors	esponse Functi are 5% on e	ach side gener lons, PVAR(1) each side gener	ated by Mont In_new_signup ated by Mont	
Establish Figure 18 In_partpl	ed Regions Impulse Re atact, errors	esponse Functi are 5% on e	ach side gener lons, PVAR(1) each side gener	ated by Mont In_new_signuj	ps ln_average_degree te-Carlo (1000 reps);
Establish Figure 18 In_partpl Establish Figure 19	ed Regions Impulse Re atact, errors ed Regions Impulse	esponse Functi are 5% on e Response	ach side gener ons, PVAR(1) each side gener Functions,	ated by Mont In_new_signuj rated by Mont PVAR(1)	45 ps ln_average_degree te-Carlo (1000 reps); 46 ln_new_signups
Establish Figure 18 In_partpl Establish Figure 19 In_degree	ed Regions Impulse Re atact, errors ed Regions Impulse e_centralizat	esponse Functi are 5% on e Response ion ln_partpla	ach side gener ons, PVAR(1) each side gener Functions, ntact, errors ar	ated by Mont In_new_signuj rated by Mont PVAR(1) e 5% on eac	45 ps ln_average_degree te-Carlo (1000 reps); 46
Establish Figure 18 In_partpl Establish Figure 19 In_degree	ed Regions Impulse Re atact, errors ed Regions Impulse e_centralizat	esponse Functi are 5% on e Response ion ln_partpla	ach side gener lons, PVAR(1) each side gener Functions, ntact, errors ar ed Regions	ated by Mont In_new_signup rated by Mont PVAR(1) e 5% on eac	45 ps ln_average_degree te-Carlo (1000 reps); 46 ln_new_signups h side generated by
Establish Figure 18 In_partpl Establish Figure 19 In_degree Monte-C Figure 20	ed Regions Impulse Re atact, errors ed Regions Impulse e_centralizat arlo (1000 re Impulse	esponse Functi are 5% on e Response ion ln_partpla eps); Establish Response	ach side gener ons, PVAR(1) each side gener Functions, atact, errors ar ed Regions Functions,	ated by Mont In_new_signup rated by Mont PVAR(1) e 5% on eac PVAR(1)	45 ps ln_average_degree te-Carlo (1000 reps); 46 ln_new_signups h side generated by 47
Establish Figure 18 In_partpl Establish Figure 19 In_degree Monte-C Figure 20 In_netwo	ed Regions Impulse Re atact, errors ed Regions Impulse e_centralizat arlo (1000 re Impulse orker_share 1	esponse Functi are 5% on e Response ion ln_partpla eps); Establish Response n_partplatact,	ach side gener ons, PVAR(1) each side gener Functions, atact, errors ar ed Regions Functions, errors are 5%	ated by Mont In_new_signup rated by Mont PVAR(1) e 5% on eac PVAR(1) on each side	45 ps ln_average_degree te-Carlo (1000 reps); 46 ln_new_signups h side generated by 47 ln_new_signups
Establish Figure 18 In_partpl Establish Figure 19 In_degree Monte-C Figure 20 In_netwo	ed Regions Impulse Re atact, errors ed Regions Impulse e_centralizat arlo (1000 re Impulse orker_share 1 000 reps); Es	esponse Functi are 5% on e Response ion ln_partpla eps); Establish Response n_partplatact, tablished Regi	ach side gener lons, PVAR(1) each side gener Functions, atact, errors ar ed Regions Functions, errors are 5% ons	ated by Mont In_new_signuj rated by Mont PVAR(1) e 5% on eac PVAR(1) on each side	45 ps ln_average_degree te-Carlo (1000 reps); 46 ln_new_signups h side generated by 47 ln_new_signups generated by Monte-
Establish Figure 18 In_partpl Establish Figure 19 In_degree Monte-C Figure 20 In_netwo Carlo (10 Figure 21	ed Regions Impulse Re atact, errors ed Regions Impulse e_centralizat arlo (1000 re Impulse orker_share 1 000 reps); Es Impulse R	esponse Functi are 5% on e Response ion In_partpla eps); Establish Response n_partplatact, tablished Regi esponse Func	ach side gener lons, PVAR(1) each side gener Functions, atact, errors ar ed Regions Functions, errors are 5% ons etions, PVAR(ated by Mont In_new_signuj rated by Mont PVAR(1) e 5% on eac PVAR(1) on each side 1) In_new_sig	45 ps ln_average_degree te-Carlo (1000 reps); 46 ln_new_signups h side generated by 47 ln_new_signups generated by Monte- 48

Impulse Response Functions, PVAR(1) ln_new_signups ln_average_degree Figure 22 In_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); Figure 23 Impulse Response Functions, PVAR(1)In new signups ln_degree_centralization ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions 50 Figure 24 Impulse Response Functions, PVAR(1)In new signups ln_networker_share ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions 51 Figure 25 Impulse Response Functions, PVAR(1) ln_new_signups ln_network_cc In partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); Figure 26 Impulse Response Functions, PVAR(1) ln_average_degree ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions 53 Figure 27 Impulse Response Functions, PVAR(1)ln_degree_centralization In_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions Impulse Response Functions, PVAR(1) ln_networker_share ln_partintact, Figure 28 errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions 54 Figure 29 Impulse Response Functions, PVAR(1) ln_network_cc ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions...... 55 Impulse Response Functions, PVAR(1) ln_average_degree ln_partplatact, Figure 30 errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions 56 Figure 31 Impulse Response Functions, PVAR(1)In degree centralization In_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions Impulse Response Functions, PVAR(1) In networker share In partplatact, Figure 32 errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions 57 Figure 33 Impulse Response Functions, PVAR(1) ln_network_cc ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions...... 58

- Figure 34 Impulse Response Functions, PVAR(1) ln_average_degree ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions 59

- Figure 37 Impulse Response Functions, PVAR(1) ln_network_cc ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions 61

Figure 45 Impulse Response Functions, PVAR(1) ln_new_signups ln_network_cc In_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions Figure 46 Impulse Response Functions, PVAR(1) ln_new_signups ln_average_degree In_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); Figure 47 Impulse Response Functions, PVAR(1)In new signups In_degree_centralization In_partintactplat, errors are 5% on each side generated by Figure 48 Impulse Response Functions, PVAR(1)ln_new_signups In_networker_share In_partintactplat, errors are 5% on each side generated by Monte-Figure 49 Impulse Response Functions, PVAR(1) ln_new_signups ln_network_cc In_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); Figure 50 Impulse Response Functions, PVAR(1) ln_average_degree ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions 71 Figure 51 Impulse Response Functions, PVAR(1)ln_degree_centralization In_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions Figure 52 Impulse Response Functions, PVAR(1) ln_networker_share ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions 72 Figure 53 Impulse Response Functions, PVAR(1) ln_network_cc ln_partintact, errors Impulse Response Functions, PVAR(1) ln_average_degree ln_partplatact, Figure 54 errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions...... 74 Functions, Figure 55 Impulse Response PVAR(1)In degree centralization In_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions Figure 56 Impulse Response Functions, PVAR(1) ln_networker_share ln_partplatact,

errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions...... 75

- Figure 58 Impulse Response Functions, PVAR(1) ln_average_degree ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions....... 77

- Figure 61 Impulse Response Functions, PVAR(1) ln_network_cc ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions...... 79

Figure 68	Impulse	Response	Functions,	PVAR(1)	ln_new_signups
ln_netwo	rker_share ln	_partplatact, e	errors are 5% of	n each side ger	nerated by Monte-
Carlo (10	000 reps); All	Regions			
	-	-			
Figure 69	-	-		•	ps ln_network_cc
			-	•	o (1000 reps); All
Regions	•••••	•••••			
Figure 70	Impulse Res	ponse Functio	ons, PVAR(1) ln	_new_signups]	In_average_degree
In_partin	tactplat, error	rs are 5% on e	each side genera	ited by Monte-	Carlo (1000 reps);
-	-		-	-	
-					
					ln_new_signups
-		-	-		side generated by
Monte-C	arlo (1000 rep	os); All Region	18		
Figure 72	Impulse	Response	Functions,	PVAR(1)	ln_new_signups
ln_netwo	rker_share ln	_partintactplat	, errors are 5%	on each side ge	nerated by Monte-
Carlo (10	000 reps); All	Regions			
Figure 73	Impulse Re	sponse Funct	ions $PVAR(1)$	In new signu	ps ln_network_cc
U	-	-			-
-	-		-	-	Carlo (1000 reps);
All Regio	ons	•••••	••••••		
Figure 74	Overall Ef	fects PVAR	(1)-(4), Netwo	ork Structure	– Interpersonal
Participat	tion, Establish	ned Regions			
Figure 75	Overall Effe	ects PVAR(1)	-(4). Network S	tructure – Platf	form Participation,
U					
	C				
Figure 76	Overall Effe	ects PVAR(1)	-(4), Network S	Structure – Ove	erall Participation,
Establish	ed Regions				
Figure 77	Overall Effe	ects PVAR(1)	-(4), Community	y Growth – Ne	etwork Structure –
Interperso	onal Participa	tion, Establish	ed Regions		
Figure 78	Overall Effe	ets PVAR(1)	-(4) Community	v Growth – Ne	twork Structure –
U					
	_		-		
Figure 79	Overall Effe	ects PVAR(1)	-(4), Community	y Growth – Ne	twork Structure -
Overall P	Participation, I	Established Re	gions		

Figure 80	Overall	Effects	PVAR(1)-(4), Network	Structure	– Interpersonal
Participat	ion, New	Regions.				
Figure 81	Overall	Effects P	VAR(1)-(4), N	Network Struc	ture – Platf	form Participation,
New Reg	ions					
Figure 82	Overall	Effects P	VAR(1)-(4), 1	Network Strue	cture – Ove	erall Participation,
New Reg	ions					
Figure 83	Overall	Effects P	VAR(1)-(4), C	Community G	rowth – Ne	etwork Structure –
Interperso	onal Parti	cipation, N	New Regions			
Figure 84	Overall	Effects P	VAR(1)-(4), C	Community G	rowth – Ne	etwork Structure –
Platform	Participat	tion, New	Regions			100
Figure 85	Overall	Effects P	VAR(1)-(4), C	Community G	rowth – Ne	etwork Structure –
Overall P	articipatio	on, New R	legions			101
Figure 86	Overall	Effects	PVAR(1)-(4), Network	Structure	– Interpersonal
Participat	ion, All F	Regions				102
Figure 87	Overall	Effects P	VAR(1)-(4), N	letwork Struc	ture – Platf	form Participation,
All Regio	ons	•••••				102
Figure 88	Overall	Effects P	VAR(1)-(4), 1	Network Strue	cture – Ove	erall Participation,
All Regio	ons					103
Figure 89	Overall	Effects P	VAR(1)-(4), C	Community G	rowth – Ne	etwork Structure –
Interperso	onal Parti	cipation, A	All Regions			103
Figure 90	Overall	Effects P	VAR(1)-(4), C	Community G	rowth – Ne	etwork Structure –
Platform	Participat	tion, All R	egions			104
Figure 91	Overall	Effects P	VAR(1)-(4), C	Community G	rowth – Ne	etwork Structure –
Overall P	articipatio	on, All Re	gions			
Figure 92	Initial Pu	urchases (]	Bass Model)			
Figure 93	Social L	earning ar	nd Communica	tion Channels	5	
Figure 94	Actual (-) and	Fitted () V	alues of ln_ne	w_signups	and Residual ()
Values from	om the Es	stimated B	ass Model; Re	gion 1		
Figure 95	Actual ((——) an	d Forecasted	() Value	s of ln_nev	w_signups (Bass);
Region 1	•••••					

Figure 96	Correlogram of ln_new_signups; Region 1 134
Figure 97	Actual () and Fitted () Values of ln_new_signups and Residual ()
Values free	om the Estimated ARMA Model; Region 1 136
Figure 98	Actual () and Forecasted () Values of ln_new_signups (ARMA);
Region 1	
Figure 99	Actual () and Fitted () Values of ln_new_signups and Residual ()
Values from	om the Estimated ADL (d_ln_posters) Model; Region 1 138
Figure 100	Actual () and Forecasted () Values of ln_new_signups (ADL
d_ln_pos	ters); Region 1
Figure 101	Actual () and Fitted () Values of ln_new_signups and Residual ()
Values fro	om the Estimated ADL (d_ln_participation) Model; Region 1 140
Figure 102	Actual () and Forecasted () Values of ln_new_signups (ADL
d_ln_part	icipation); Region 1
Figure 103	Actual () and Fitted () Values of ln_new_signups and Residual ()
Values fr	om the Estimated VAR (d_ln_posters) Model; Region 1 142
Figure 104	Impulse Response Functions, d_ln_posters ln_new_signups, Response to
-	Impulse Response Functions, d_ln_posters ln_new_signups, Response to One S. D. Innovations ± 2 S. E.; Region 1
Cholesky	
Cholesky Figure 105	One S. D. Innovations ± 2 S. E.; Region 1
Cholesky Figure 105 d_ln_post	One S. D. Innovations ± 2 S. E.; Region 1
Cholesky Figure 105 d_ln_post	One S. D. Innovations ± 2 S. E.; Region 1
Cholesky Figure 105 d_ln_post Figure 106 Values fre	One S. D. Innovations ± 2 S. E.; Region 1
Cholesky Figure 105 d_ln_post Figure 106 Values fro Figure 107	One S. D. Innovations ± 2 S. E.; Region 1
Cholesky Figure 105 d_ln_post Figure 106 Values fro Figure 107 Region 2	One S. D. Innovations ± 2 S. E.; Region 1
Cholesky Figure 105 d_ln_post Figure 106 Values fro Figure 107 Region 2	One S. D. Innovations ± 2 S. E.; Region 1
Cholesky Figure 105 d_ln_post Figure 106 Values fr Figure 107 Region 2 Figure 108 Figure 109	One S. D. Innovations ± 2 S. E.; Region 1
Cholesky Figure 105 d_ln_post Figure 106 Values fr Figure 107 Region 2 Figure 108 Figure 109 Values fr	One S. D. Innovations ± 2 S. E.; Region 1
Cholesky Figure 105 d_ln_post Figure 106 Values fr Figure 107 Region 2 Figure 108 Figure 109 Values fr Figure 110	One S. D. Innovations ± 2 S. E.; Region 1
Cholesky Figure 105 d_ln_post Figure 106 Values fr Figure 107 Region 2 Figure 108 Figure 109 Values fr Figure 110 Region 2	One S. D. Innovations ± 2 S. E.; Region 1

Figure 112 Actual () and Forecasted () Values of ln_new_signups (ADL
d_ln_posters); Region 2150
Figure 113 Actual () and Fitted () Values of ln_new_signups and Residual ()
Values from the Estimated ADL (d_ln_participation) Model; Region 2 152
Figure 114 Actual () and Forecasted () Values of ln_new_signups (ADL
d_ln_participation); Region 2152
Figure 115 Actual () and Fitted () Values of ln_new_signups and Residual ()
Values from the Estimated VAR (d_ln_posters) Model; Region 2 153
Figure 116 Impulse Response Functions, d_ln_posters ln_new_signups, Response to
Cholesky One S. D. Innovations ± 2 S. E.; Region 2 154
Figure 117 Actual () and Forecasted () Values of ln_new_signups (VAR
d_ln_posters); Region 2154
Figure 118 Actual () and Fitted () Values of ln_new_signups and Residual ()
Values from the Estimated Bass Model; Region 3156
Figure 119 Actual () and Forecasted () Values of ln_new_signups (Bass);
Region 3
Figure 120 Correlogram of ln_new_signups; Region 3 157
Figure 121 Actual () and Fitted () Values of ln_new_signups and Residual ()
Values from the Estimated ARMA Model; Region 3 158
Figure 122 Actual () and Forecasted () Values of ln_new_signups (ARMA);
Region 3
Figure 123 Actual () and Fitted () Values of ln_new_signups and Residual ()
Values from the Estimated ADL (d_ln_posters) Model; Region 3 160
Figure 124 Actual () and Forecasted () Values of ln_new_signups (ADL
d_ln_posters); Region 3161
Figure 125 Actual () and Fitted () Values of ln_new_signups and Residual ()
Values from the Estimated ADL (d_ln_participation) Model; Region 3 163
Figure 126 Actual () and Forecasted () Values of ln_new_signups (ADL
d_ln_participation); Region 3163

-	Actual () and Fitted () Values of ln_new_signups and Residual () om the Estimated VAR (d_ln_posters) Model; Region 3
-	Impulse Response Functions, d_ln_posters ln_new_signups, Response to One S. D. Innovations ± 2 S. E.; Region 3
-	Actual () and Forecasted () Values of ln_new_signups (VAR ters); Region 3
•	Actual () and Fitted () Values of ln_new_signups and Residual () om the Estimated Bass Model; Region 4
-	Actual () and Forecasted () Values of ln_new_signups (Bass);
Figure 132	Correlogram of ln_new_signups; Region 4 168
-	Actual () and Fitted () Values of ln_new_signups and Residual () om the Estimated ARMA Model; Region 4
-	Actual () and Forecasted () Values of ln_new_signups (ARMA);
-	Actual () and Fitted () Values of ln_new_signups and Residual () om the Estimated ADL (d_ln_posters) Model; Region 4
e	Actual () and Forecasted () Values of ln_new_signups (ADL ters); Region 4
-	Actual () and Fitted () Values of ln_new_signups and Residual () om the Estimated ADL (d_ln_participation) Model; Region 4
•	Actual () and Forecasted () Values of ln_new_signups (ADL icipation); Region 4
U	Actual () and Fitted () Values of ln_new_signups and Residual () om the Estimated Bass Model; Region 5
-	Actual () and Forecasted () Values of ln_new_signups (Bass);
Figure 141	Correlogram of ln_new_signups; Region 5 177
•	Actual () and Fitted () Values of ln_new_signups and Residual () om the Estimated ARMA Model; Region 5

Figure 143 Actual (——) and Forecasted (– –) Values of ln_new_signups (ARMA); Region 5
Figure 144 Actual () and Fitted () Values of ln_new_signups and Residual () Values from the Estimated ADL (d_ln_posters) Model; Region 5
Figure 145 Actual (——) and Forecasted (– –) Values of ln_new_signups (ADL d_ln_posters); Region 5
Figure 146 Actual () and Fitted () Values of ln_new_signups and Residual () Values from the Estimated ADL (d_ln_participation) Model; Region 5
Figure 147 Actual (——) and Forecasted (– –) Values of ln_new_signups (ADL d_ln_participation); Region 5
Figure 148 Actual () and Fitted () Values of ln_new_signups and Residual () Values from the Estimated VAR (d_ln_posters) Model; Region 5
Figure 149 Impulse Response Functions, d_ln_posters ln_new_signups, Response to Cholesky One S. D. Innovations ± 2 S. E.; Region 5
Figure 150 Actual (——) and Forecasted (– –) Values of ln_new_signups (VAR d_ln_posters); Region 5
Figure 151 Actual (——) and Fitted (––) Values of ln_new_signups and Residual () Values from the Estimated Bass Model; Region 6
Figure 152 Actual (——) and Forecasted (– –) Values of ln_new_signups (Bass); Region 6
Figure 153 Correlogram of ln_new_signups; Region 6 188
Figure 154 Actual (——) and Fitted (– –) Values of ln_new_signups and Residual () Values from the Estimated ARMA Model; Region 6
Figure 155 Actual (——) and Forecasted (– –) Values of ln_new_signups (ARMA); Region 6
Figure 156 Actual () and Fitted () Values of ln_new_signups and Residual () Values from the Estimated ADL (d_ln_posters) Model; Region 6
Figure 157 Actual (——) and Forecasted (– –) Values of ln_new_signups (ADL d_ln_posters); Region 6

Figure 158 Actual () and Fitted () Values of ln_new_signups and Residual () Values from the Estimated ADL (d_ln_participation) Model; Region 6 195
Figure 159 Actual (——) and Forecasted (– –) Values of ln_new_signups (ADL d_ln_participation); Region 6
Figure 160 Actual () and Fitted () Values of ln_new_signups and Residual () Values from the Estimated VAR (d_ln_posters) Model; Region 6
Figure 161 Impulse Response Functions, d_ln_posters ln_new_signups, Response to Cholesky One S. D. Innovations ± 2 S. E.; Region 6
Figure 162 Actual (——) and Forecasted (– –) Values of ln_new_signups (VAR d_ln_posters); Region 6
Figure 163 Actual () and Fitted () Values of ln_new_signups and Residual () Values from the Estimated VAR (d_ln_participation) Model; Region 6
Figure 164 Impulse Response Functions, d_ln_participation ln_new_signups, Response to Cholesky One S. D. Innovations ± 2 S. E.; Region 6
Figure 165 Actual (——) and Forecasted (– –) Values of ln_new_signups (VAR d_ln_participation); Region 6
d_ln_participation); Region 6
 d_ln_participation); Region 6

Figure 173 Actual (——) and Fitted (– –) Values of ln_new_signups and Residual () Values from the Estimated ADL (ln_posters) Model; Region 4
values from the Estimated ADE (in_posters) Woder, Region 4
Figure 174 Actual () and Forecasted () Values of ln_new_signups (ADL
ln_posters); Region 4
Figure 175 Actual () and Fitted () Values of ln_new_signups and Residual ()
Values from the Estimated ADL (ln_participation) Model; Region 4 209
Figure 176 Actual () and Forecasted () Values of ln_new_signups (ADL
In_participation); Region 4
Figure 177 Actual () and Fitted () Values of ln_new_signups and Residual ()
Values from the Estimated VAR (ln_posters) Model; Region 4
Figure 178 Impulse Response Functions, ln_posters ln_new_signups, Response to
Cholesky One S. D. Innovations ± 2 S. E.; Region 4
Figure 179 Actual () and Forecasted () Values of ln_new_signups (VAR
ln_posters); Region 4
Figure 180 Actual () and Fitted () Values of ln_new_signups and Residual ()
Values from the Estimated VAR (ln_participation) Model; Region 4 212
Figure 181 Impulse Response Functions, ln_participation ln_new_signups, Response to
Cholesky One S. D. Innovations ± 2 S. E.; Region 4
Figure 182 Actual () and Forecasted () Values of ln_new_signups (VAR
In_participation); Region 4214
Figure 183 Actual () and Fitted () Values of ln_new_signups and Residual ()
Values from the Estimated ADL (ln_posters) Model; Region 5 215
Figure 184 Actual () and Forecasted () Values of ln_new_signups (ADL
ln_posters); Region 5
Figure 185 Actual () and Fitted () Values of ln_new_signups and Residual ()
Values from the Estimated ADL (ln_participation) Model; Region 5 217
Figure 186 Actual () and Forecasted () Values of ln_new_signups (ADL
In_participation); Region 5
Figure 187 Actual () and Fitted () Values of ln_new_signups and Residual ()
Values from the Estimated VAR (ln_posters) Model; Region 5

Figure 188	Impulse	Response	Functions,	ln_poste	ers ln_r	iew_signup	ps, Respo	nse to
Cholesky (One S. D.	Innovation	111111111111111111111111111111111111	Region 5	5			219
Figure 189	Actual (-	——) and	Forecasted	()	Values	of ln_new	v_signups	(VAR
ln_posters)); Region	5						220

List of Tables

Table 1	Review of Relevant Literature on Online Community Success Factors	9
Table 2	Descriptive Statistics; Established Regions	20
Table 3	Descriptive Statistics; New Regions	20
Table 4	Descriptive Statistics; All Regions	20
Table 5	Descriptive Statistics; Region 1	119
Table 6	Descriptive Statistics; Region 2	120
Table 7	Descriptive Statistics; Region 3	120
Table 8	Descriptive Statistics; Region 4	120
Table 9	Descriptive Statistics; Region 5	120
Table 10	Descriptive Statistics; Region 6	120
Table 11	ADF Tests	121
Table 12	Bass Estimation Output; Region 1	132
Table 13	ARMA Estimation Output; Region 1	135
Table 14	ADL (d_ln_ posters) Estimation Output; Region 1	137
Table 15	ADL (d_ln_posters, d_ln_team) Estimation Output; Region 1	139
Table 16	ADL (d_ln_participation) Estimation Output; Region 1	140
Table 17	Bass Estimation Output; Region 2	144
Table 18	ARMA Estimation Output; Region 2	147
Table 19	ADL (d_ln_posters) Estimation Output; Region 2	149
Table 20	ADL (d_ln_posters, d_ln_team) Estimation Output; Region 2	150
Table 21	ADL (d_ln_participation) Estimation Output; Region 2	151
Table 22	Bass Estimation Output; Region 3	155
Table 23	ARMA Estimation Output; Region 3	158
Table 24	ADL (d_ln_posters) Estimation Output; Region 3	159
Table 25	ADL (d_ln_posters, d_ln_team) Estimation Output; Region 3	161

Table 26	ADL (d_ln_participation) Estimation Output; Region 3	162
Table 27	Bass Estimation Output; Region 4	166
Table 28	ARMA Estimation Output; Region 4	169
Table 29	ADL (d_ln_posters) Estimation Output; Region 4	171
Table 30	ADL (d_ln_posters, d_ln_team) Estimation Output; Region 4	172
Table 31	ADL (d_ln_participation) Estimation Output; Region 4	173
Table 32	Bass Estimation Output; Region 5	175
Table 33	ARMA Estimation Output; Region 5	178
Table 34	ADL (d_ln_posters) Estimation Output; Region 5	180
Table 35	ADL (d_ln_posters, d_ln_team) Estimation Output; Region 5	182
Table 36	ADL (d_ln_participation) Estimation Output; Region 5	183
Table 37	Bass Estimation Output; Region 6	187
Table 38	ARMA Estimation Output; Region 6	189
Table 39	ADL (d_ln_posters) Estimation Output; Region 6	191
Table 40	ADL (d_ln_posters, d_ln_team) Estimation Output; Region 6	193
Table 41	ADL (d_ln_participation) Estimation Output; Region 6	194
Table 42	ADL (ln_posters) Estimation Output; Region 2	200
Table 43	ADL (ln_participation) Estimation Output; Region 2	202
Table 44	ADL (ln_posters) Estimation Output; Region 4	206
Table 45	ADL (ln_participation) Estimation Output; Region 4	209
Table 46	ADL (ln_posters) Estimation Output; Region 5	215
Table 47	ADL (ln_participation) Estimation Output; Region 5	217
Table 48	Overall Effects on Community Growth	222
Table 49	Model Selection and Forecasting Performance	225

List of Abbreviations

AC	Autocorrelation
ACF	Autocorrelation function
AIC	Akaike Information Criterion
ADF	Augmented Dickey-Fuller
ADL	Autoregressive distributed lag
AR	Autoregressive
ARMA	Autoregressive moving average
dof adj.	Degree of freedom adjusted
e.g.	Exempli gratia (for example)
et al.	Et alii (and others)
etc.	Et cetera (and so on)
GMM	Generalized method of moments
GMM H	Generalized method of moments Hypothesis
-	
Н	Hypothesis
H i.e.	Hypothesis Id est (that is)
H i.e. IRF	Hypothesis Id est (that is) Impulse response function
H i.e. IRF MA	Hypothesis Id est (that is) Impulse response function Moving average
H i.e. IRF MA MAE	Hypothesis Id est (that is) Impulse response function Moving average Mean absolute error
H i.e. IRF MA MAE n.s.	Hypothesis Id est (that is) Impulse response function Moving average Mean absolute error Not significant
H i.e. IRF MA MAE n.s. p.	Hypothesis Id est (that is) Impulse response function Moving average Mean absolute error Not significant Page

PVAR	Panel vector autoregressive / autoregression
RMSE	Root mean squared error
RP	Research proposition
SC	Schwarz Information Criterion
S. D.	Standard deviation
S. E. / Std. Error	Standard error
VAR	Vector autoregressive
WOM	Word of mouth

1. Introduction

"Only engaged and enlisted customers can help us to drive our business goals. Online communities give us the greatest opportunity to engage and enlist."

(Lithium 2012b, p. 3)

The technological development, that has taken place during the past years, opens up new ways of communication and interaction between the members of our society. Together with the increasing digitalization, people's behavior and lifestyle change. Daily life often takes place in front of the computer or smartphone screen. Individuals transfer more and more activities from the offline to the online world. They meet and interact in virtual communities, make new friends, exchange ideas and knowledge, etc. (Preece 2000). Latest figures show that in 2012 the number of worldwide social network users added up to 1.41 billion users and is estimated to exceed the 2.00 billion mark in 2016 (eMarketer 2013). Moreover, nearly half of the internet users spend more than one hour per day on social media sites, while 18% spend even more than three hours per day on such sites (GlobalWebIndex 2014).

To this day, various types of online communities have spread over the internet. There are communities for hobby gardeners, computer enthusiasts, sick people or leisure activities – just to name a few of them (Armstrong and Hagel 1996). Moreover, social platforms like Facebook, Twitter, Pinterest, Tumblr, Google+ constantly emerge and have become increasingly popular during the last years (GlobalWebIndex 2013a, 2013b). Hence, new business areas such as the provision of online communities gain more and more importance. Most of these community firms earn their money through advertising revenues, which are generated as a result of the community users' presence and actions on the community sites (Trusov, Bodapati, and Bucklin 2010).

As a consequence of the "social revolution" (Lithium 2011c, p. 7), also companies across all industries have to find new ways to get in contact with their customers. Thereby, the communication between a company and its customers changes more and more from a one way to a two way communication, from which both parties can profit (Lithium 2011c). Through social platforms such as online brand communities, customers enter into a dialogue with their brand instead of only passively consuming traditional advertising. They talk about their experience with the brand, help each other by solving problems, and expect support through the community. Companies can profit from this development in various ways: They can save costs, enhance sales, and benefit from satisfied and loyal customers (Algesheimer and Dholakia 2006; Algesheimer, Dholakia, and Herrmann 2005; Armstrong and Hagel 1996; Lithium 2011b; Stephen and Galak 2012).

Regardless of whether a community is designed to manage customer relationships or to earn money with the provision of a community, all communities share a common need: They must be successful and healthy in order to persist and fulfill their goals. Success factors for online communities are discussed from many perspectives. From business practice, Lithium, a leading provider for online brand community platforms (Forrester 2010), emphasizes the need for the calculation of community performance metrics such as membership growth or the number of posts in order to measure community health and success (Lithium 2011b, 2011c, 2012a). Furthermore, Lithium (2011a) views social network analysis, which helps to detect the characteristics of a network, as an important tool for competing successfully in the market.

From an academic point of view, research provides a vast body of literature on the success of online communities (e.g. Cothrel 2000; Cothrel and Williams 1999; Iriberri and Leroy 2009; Leimeister, Sidiras, and Krcmar 2006; Lin 2008; Preece 2001; Toral et al. 2009; Williams and Cothrel 2000; see also Chapter 2.2). Despite various factors influencing the success of an online community, community operators can control most of these. Especially the analysis of community size or growth, participation behavior, and social network analysis take an essential part (e.g. Cothrel and Williams 1999; Iriberri and Leroy 2009; Seraj 2012; Toral et al. 2009; Trusov, Bodapati, and Bucklin 2010; Williams and Cothrel 2000). However, existing studies on community success are rather static in nature and focus predominantly on the identification of success factors (e.g. Leimeister, Sidiras, and Krcmar 2006; Lin 2008; Preece 2001). Although researchers emphasize the dynamics in the evolution of communities and in the communities' needs (Andrews 2002; Hagel and Armstrong 1997; Iriberri and Leroy 2009; Toder-Alon, Berger, and Weinberg 2010), a comprehensive investigation of the dynamics between success factors and their effects at different stages of a community life cycle is still missing.

The present thesis closes this gap by providing detailed analyses of the interrelationship between success factors of online communities in general and across community life cycle phases. Furthermore, this thesis focuses on the dynamic investigation and prediction of the evolution of online communities. Drawing from a unique dataset of a number of online communities this thesis offers a comprehensive macro level view on community dynamics. Hence, the present thesis contributes to existing research and practice in various ways:

First, building on social capital theory (e.g. Bourdieu 1986; Coleman 1988) and the theory of structuration (Giddens 1984), this thesis is the first to examine the interdependence between online community success factors over time and across community life cycle phases. Thereby the thesis follows the claim of Iriberri and Leroy (2009, p. 25), who note that "future research should focus on the dynamic nature of online communities and test [...] whether the order [...] in which factors should be implemented leads to more or less success, and if and how these factors interact to promote success." Although community success factors are widely discussed and are in the mind of researchers and practitioners (e.g. Cothrel 2000; Leimeister, Sidiras, and Krcmar 2006; Lin 2008; Lithium 2011b; Preece 2001; Williams and Cothrel 2000), a comprehensive dynamic investigation is still missing. Therefore, this thesis uncovers whether and which success factors interdepend at all, how they interdepend, and when they interdepend. Thus, recommendations for community management can be derived regarding the correct focus on and timing of measures for managing a successful community.

Second, this thesis is unique in the way it sheds light on the diffusion process of online communities. Although research is aware of the dynamic process of community evolution (e.g. Andrews 2002; Hagel and Armstrong 1997; Iriberri and Leroy 2009; Toder-Alon, Berger, and Weinberg 2010), a broader understanding of methods and factors contributing to the explication and prediction of community growth is still missing. This is also pointed out by Toder-Alon, Berger, and Weinberg (2010, p. 33), who recognize that "a challenge for practitioners in building successful virtual communities has been understanding the dynamics of an online community." The present thesis closes this gap by applying different techniques from diffusion research and econometric time series analysis on modeling and predicting community diffusion processes. Using theories from so-cial sciences on diffusion processes and group formation, factors contributing to community growth are identified. Further, this thesis supports community managers by selecting

the most appropriate forecasting tools for a timely anticipation of their community's future development and by showing them ways to ensure community growth.

The thesis proceeds as illustrated in Figure 1. After this introduction, Chapter 2 outlines the conceptual basis underlying the thesis. Thereby, I present a definition of online communities, describe community types, expose factors for ensuring online community success, and provide an overview of current research on this field. Chapters 3 and 4 include the two empirical projects of this thesis. Each project starts with an introduction, which is followed by the presentation of the theoretical background. Then, data and methodology are described. After the presentation of results, I close both chapters with a discussion of findings gained through the respective project. Finally, Chapter 5 combines the key findings of both projects, demonstrates theoretical and managerial implications in a general discussion, and concludes the thesis with an outlook on further research.

Figure 1 Structure of the Thesis

[
1 Introduction Motivation and Research Gaps			
2 Conceptual Basis Online Communities and Success Factors – Definition and Current Knowledge			
3 Project 1	4 Project 2		
Interdependence of Online Community Success Factors – Evidence from Panel VAR	Forecasting and Understanding Community Growth		
5 General Discussion and Conclusion Summary of Key Findings General Implications for Theory and Management Conclusion and Outlook			

2. Conceptual Basis

In the following chapter, I give a brief introduction into the terminology of online communities and related terms. Then, current knowledge about factors leading to community success is discussed.

2.1. Definition and Types of Online Communities

Literature comes with various definitions of the term "online community". According to Preece (2000, p. 10) "an online community consists of:

- *People*, who interact socially as they strive to satisfy their own needs or perform special roles, such as leading or moderating.
- A shared *purpose*, such as an interest, need, information exchange, or service that provides a reason for the community.
- *Policies*, in the form of tacit assumptions, rituals, protocols, rules, and laws that guide people's interactions.
- *Computer systems*, to support and mediate social interaction and facilitate a sense of togetherness."

This definition combines the two main perspectives of online communities: the social view expressed through people, purpose, and policies as well as a more technological view expressed through *computer systems*. In a similar way, Lithium (2011b, p. 3), a leading provider for online brand community platforms, considers that "an online community is at once both a technology platform and a group of people working together for a common goal". This definition also clearly reflects both the technological and the social component. Besides the term online community, research often also reverts to the term "virtual community", which is linked to social and technological aspects as well. According to Rheingold (1993, p. 5) "virtual communities are social aggregations that emerge from the Net when enough people carry on those public discussions long enough, with sufficient human feeling, to form webs of personal relationships in cyberspace". Moreover, in the context of online and virtual communities, sometimes also the term social network site is used. However, this notion is more focused on the relationships between people as becomes clear from Trusov, Bucklin, and Pauwels (2009, p. 92): "Typical social networking sites allow a user to build and maintain a network of friends for social or professional interaction." Similarly, Boyd and Ellison (2007, p. 211) "define social network sites as web-based service that allow individuals to (1) construct a public or semipublic profile within a bounded system, (2) articulate a list of other users with whom they share a connection, and (3) view and traverse their list of connections and those made by others within the system". Hence, these definitions show that social networking sites represent a subarea of online or virtual communities, but online or virtual communities are more than just social networking sites.

Conforming to the definition of online communities presented above, the idea of communities in general owes its origins in sociological research and has been associated with technology since the period between the 1960s and 1980s, when new technologies enabled the formation of the first communities in an online environment (Armstrong and Hagel 1996; Preece 2001; Wellman et al. 1996). From this time, various community types such as simple mailing lists, Usenet newsgroups, or chat groups have emerged (Preece 2001; Wellman et al. 1996). Armstrong and Hagel (1996) for example distinguish between communities of transaction, interest, fantasy, and relationship, which can all coincide and cover a broad area. Thereby, communities of transaction are designed for the trade of goods or services and the provision of information regarding these subjects. Communities of interest are created for the exchange of information about certain topics such as cooking and gardening, for instance. Communities of fantasy, such as Second Life[®], enable the formation of a fictional environment. Finally, communities of relationship create the conditions for the establishment of strong personal relationships in connecting people sharing similar experiences.

2.2. Success Factors of Online Communities – Current Knowledge

As the previous discussion already suggests, the field of online communities is broad. This is also reflected in the various perspectives on community success. In general, a community is successful if its objectives are met (Cothrel 2000). Nevertheless, both empirical and conceptual studies try to identify concrete requirements or factors, which describe or lead to the success of an online community. Table 1 provides an overview of relevant literature on this field.

Similar to the definition of online or virtual communities (e.g. Lithium 2011b; Preece 2000; Rheingold 1993), social and technological aspects, such as the amount of usergenerated content, attraction of new members, relationships among community members, trustworthiness or ease of use and system stability, take a central role in literature on community success (e.g. Chen 2013; Iriberri and Leroy 2009; Leimeister, Sidiras, and Krcmar 2006; Lin 2008; Preece 2001). In addition to that, Bughin and Hagel (2000) as well as Cothrel (2000) bring a more managerial perspective on community success into play by emphasizing the importance of the community's financial performance.

Preece (2001), one of the most often cited authors in the context of community success, builds a conceptual framework of community success by focusing on aspects of both sociability and usability. Thereby, similar to her definition of online communities (Preece 2000) sociability refers to the community's *purpose*, *people*, and *policy*. For example, the amount of activity or the engagement of community members indicates whether the purpose of a community is met. Further, the role of people in determining community success can be reflected in the number of community members. Finally, for example the amount of violations against the community's policies indicates the respect or non-respect of rules and policies, which constitute another basic requirement for community success. In contrast, usability refers to *dialogue and social support*, *information design*, *navigation*, and *access*. Hence, in order to be successful, the community platform should be easy to use and avoid errors of technical nature.

Furthermore, Lithium (2012a) focuses more on the aspect of sociability in characterizing community health. According to the experiences of Lithium (2012a) in management practice, healthy and successful communities require a growing number of members, enough and useful content, traffic, short response times, many users involved in topic interaction, a lively community characterized by a high number of posts, and finally trust and respectful interaction among members. Similarly, also Cothrel (2000) emphasizes the importance of community health – besides ROI and topic measures – for the measurement of community success. Furthermore, Williams and Cothrel (2000) identify 1) member development in the form of achieving a critical mass of members, 2) asset management by facilitating the creation of content and providing a good technological infrastructure, as well as 3) relations among members as important factors for a successful and sustaining community. These aspects are also treated in a study of Toral et al. (2009), who detect a positive influence of network cohesion, core users, and community composition regarding member types on community success, which is represented by community size and activity.

In summary, all these studies treat community success from a rather static point of view. Since communities are dynamic and evolving (Iriberri and Leroy 2009), also community success should be regarded from a dynamic perspective. In accordance with this view, Toder-Alon, Berger, and Weinberg (2010) claim for a dynamic investigation of community success factors such as membership size or activity in order to identify possible interdependencies between these variables. Similarly, Iriberri and Leroy (2009) propose a community life cycle model, according to which community success factors are identified. While they think that it is important to attract members and to ensure the creation of content or trust at the growth stage, for example, they belief that it is important to focus on the organization of events and the establishment of a reward system at the maturity stage in order to compete successfully. Additionally, Iriberri and Leroy (2009) claim for a comprehensive investigation of community success factors by taking into account the dynamic relationships between these factors and their effects at different life cycle stages.

The following two empirical projects try to fill this gap by focusing on the most often cited success factors such as members or community growth and content provision in the form of activity or participation (see Table 1). Furthermore, since online communities are by definition a social phenomenon (e.g. Preece 2000; Rheingold 1993) and network effects play an important role in the context of online communities (e.g. Katona, Zubcsek, and Sarvary 2011; Trusov, Bodapati, and Bucklin 2010; Wasko and Faraj 2005), also the relationships between community members are often mentioned in determining community success (e.g. Hinds and Lee 2008; Iriberri and Leroy 2009; Kraut and Resnick 2011; Leimeister, Sidiras, and Krcmar 2006; Seraj 2012; Toral et al. 2009; Williams and Cothrel 2000). Therefore, this thesis additionally includes various forms of social network structure into the dynamic investigation of community success factors.

Table 1 Review of Relevant Literature on Online Community Success Factors

Study	Type of Study	Success Factors
Bughin and Hagel (2000)	empirical	Cost-effectiveness; member acquisition and retention
Casaló, Flavián, and Guinalíu (2013)	empirical	Perceived reciprocity and similarity; new members' integration; satisfaction; participation
Chan et al. (2004)	empirical	Identification; expertise; tangible recognition; self-esteem; self-efficacy; sense of obligation; sense of community; participation
Chen (2013)	empirical	Social presence; ease of use; extroversion; enjoyment; site access; site use; internet risk perception, privacy abuse concern, and perceived risk as inhibitors of success
Cothrel (2000)	conceptual	In general success depends on the business goals to be defined; measurement of community ROI, health, and insight
Cothrel and Williams (1999)	empirical	Amount and quality of participation
Ginsburg and Weisband (2004)	empirical	Trust; reputation; identity; economic infrastructure; member acquisition and retention
Hinds and Lee (2008)	conceptual/empirical	Social network structure
Iriberri and Leroy (2009)	conceptual	Success factors depend on the community's life cycle stage; At the inception stage: purpose, focus, codes of conduct, trademark, funding/revenue sources; At the creation stage: user-centered design and evolution, interface usability, security and privacy, anonymity, identity persistence, reliability, performance; At the growth stage: attracting members, growth management, integration of new members, up-to-date content, content quality, interaction support, trust building, neutrality/non-partisan offers, reaching critical mass, transparency, personalization of portal, personalization of offers, offline events and meetings; At the maturity stage: regular online events, sales and offers, user tools, permeated management and control, recognition of contributions, subgroup management, recognition of loyalty, member satisfaction management
Koh and Kim (2004)	empirical	Knowledge sharing activity; member-initiated community promotion (e.g. WOM); loyalty
Kraut and Resnick (2011)	conceptual	Content; attracting and socializing new members; encouraging members' commitment and contribution; rules and policies
Leimeister, Sidiras, and Krcmar (2006)	empirical	Technical performance; security; content; privacy; moderate intervention in community life; limited number of real-life events; integration of members into decision regarding community layout and functionalities; facilitate the formation of a network among members and provide status symbols
Lin (2008)	empirical	Information quality; system quality; trust; member satisfaction; sense of belonging; member loyalty
Lin and Lee (2006)	empirical	Information quality; system quality; service quality; user satisfaction; behavioral intention; member loyalty
Lithium (2012a)	conceptual	Community growth; content; traffic; responsiveness; topic interaction; liveliness; trust; civil behavior
Ma and Agarwal (2007)	empirical	Virtual co-presence; persitent labeling; self-presentation; deep profiling; perceived identity verification; satisfaction; knowledge contribution
Preece (2001)	conceptual	Purpose; people; policy; dialogue and social support; information design; navigation; access
Rothaermel and Sugiyama (2001)	conceptual	Membership size and level of site management as both promoters and inhibitors of success
Seraj (2012)	empirical	Co-creation of knowledge; content quality; platform interactivity through social ties; self-governed community culture
Toder-Alon, Berger, and Weinberg (2010)	conceptual	Dynamics in membership size, activity/interaction, content quality, and motivation
Toral et al. (2009)	empirical	Network cohesion; core of the community; community composition regarding member types; community size; activity
Trusov, Bodapti, and Bucklin (2010)	empirical	Community size; activity
Williams and Cothrel (2000)	conceptual	Member development; asset management; community relations

3. Interdependence of Online Community Success Factors – Evidence from Panel VAR

3.1. Introduction

Although Facebook still occupies a strong position in the social media market (Global-WebIndex 2013a), the trend shows that new platforms emerge continuously, whereas other platforms disappear. Some communities are successful, some communities fail (Ma and Agarwal 2007; Seraj 2012). While at the end of the year 2012 Twitter is counting among the fastest growing platforms (GlobalWebIndex 2013b), in 2013 Pinterest and also Tumblr have reached the top (GlobalWebIndex 2013a). In contrast, previously successful (comScore 2007), the German social community studiVZ has faced a steady decline for the last years (GlobalWebIndex 2013b). All these facts reflect the dynamic environment, in which online community operators act. Once entered the market, social platforms face a permanent competition. Since the market for social media is still growing and new online communities constantly emerge (Nielsen 2012), community providers need to strengthen their position in order to compete successfully. As online communities live on their members, one of the most important goals of communities is to be followed by a certain amount of members in order to remain attractive and to keep the community alive (Iriberri and Leroy 2009; Preece 2000). Community growth and an active community constitute the key for a healthy and successful community (e.g. Bughin and Hagel 2000; Iriberri and Leroy 2009; Lithium 2012a; Preece 2001; Seraj 2012; Trusov, Bodapati, and Bucklin 2010; Williams and Cothrel 2000). Further, many authors stress also the importance of relationships within the discussion of community success (e.g. Hinds and Lee 2008; Iriberri and Leroy 2009; Kraut and Resnick 2011; Leimeister, Sidiras, and Krcmar 2006; Seraj 2012; Toral et al. 2009; Williams and Cothrel 2000). Hence, community growth, activity or participation, and network structure are of particular interest in the context of community success.

A few studies empirically address the relationship between these variables. Toral et al. (2009) measure community success in the form of community size, number of active developers, and number of threads. Through structural equation modelling they identify network cohesion as antecedent of community success. Further, Butler (2001) detects a positive influence of communication activity on community growth in a study on mailing lists. Although these studies investigate effects between success factors, a comprehensive

analysis of the interplay of success factors over time is still missing (Iriberri and Leroy 2009; Toder-Alon, Berger, and Weinberg 2010). It is unclear whether each success factor can be maximized independently from the other factors or whether the factors should be considered simultaneously. Further, insights about the interdependence of success factors along different life cycle phases are still missing. It is unknown whether each life cycle phase requires different efforts for ensuring community success. Especially for community management, it is important to understand how community growth and different types of participation can be enhanced and which consequences result from an enhancement of these variables. Additionally, community managers need to know how network structure must look like in order to facilitate community success. They must also be aware of whether all communities can be managed similarly or whether established and new communities require different efforts. In view of the above, this research project is the first to investigate the interdependence of network structure, community participation, and community growth over time and community life cycle phases. In this way, valuable propositions for a successful community management are derived. Drawing from social capital theory and Giddens' (1984) theory of structuration the present project elaborates a framework of the interplay of online community success factors.

This project contributes to marketing literature in different ways. First, I analyze the interdependence of online community success factors regarding community growth, participation, and network structure on a macro level. Thereby I examine data of 13 regional online communities over a time span of up to 45 months by the help of Panel Vector Autoregression (PVAR). This method considers all variables of interest as endogenous and allows a simultaneous analysis of the different communities. Through the integration and investigation of various variables for participation and network structure, precise recommendations for action can be provided to community management in order to ensure the communities' success. Finally, I distinguish between established and new regional communities in order to identify different effects depending on the communities' life cycle phase.

The project is organized as follows: First, the theoretical background is provided. After the description of data and methodology, the results of the project are presented. Then, results are summarized and theoretical as well as managerial implications are drawn. I close with directions for further research.

3.2. Theoretical Background

3.2.1. Social Networks

Algesheimer and Wangenheim (2006) emphasize the importance of social network effects when studying the behavior of customers. Against this background, many studies show that social networks influence the individuals' behavior (e.g. Katona, Zubcsek, and Sarvary 2011; Nitzan and Libai 2011; Wasko and Faraj 2005). Social networks draw an image of social relations between individuals. According to Barnes (1954, p. 43) a network constitutes "a set of points some of which are joined by lines". In this context, points represent people or groups and lines show which people are interrelated, for example, through friendship, work or other social relations. In a similar way, Wasserman and Faust (1994, p. 20) describe social networks as "a finite set or sets of actors and the relation or relations defined on them". In online communities, relationships between people are often manifested in so called "friends lists", through which users announce with whom they are connected or with whom they are "friends". Thereby, online communities offer some important insights into the social networks of people.

3.2.2. Social Capital Theory

Definition and Characteristics of Social Capital

Social network analysis is closely related to social capital theory because social capital theory explains the value arising from social networks. This is apparent in various definitions of social capital. Bourdieu (1986, p. 248) defines social capital as "the aggregate of the actual or potential resources which are linked to possession of a durable network of more or less institutionalized relationships of mutual acquaintance and recognition". Coleman (1988, p. S98) uses the following definition: "Social capital is defined by its function. It is not a single entity but a variety of different entities, with two elements in common: they all consist of some aspect of social structures, and they facilitate certain actions of actors – whether persons or corporate actors – within the structure." Finally, Nahapiet and Ghoshal (1998, p. 243) describe "social capital as the sum of the actual and potential resources embedded within, available through, and derived from the network of relationships possessed by an individual or social unit". All these definitions focus on social relationships as a prerequisite for the development of social capital and they under-

line the value of social structures. This value appears, for example, in the fact that network members have access to diverse sources of information through the connections to other individuals.

Moreover, Coleman (1988) states that social capital is not present in the individuals themselves, but in the relationships between individuals. Thus, according to Burt (1992) social capital is not in possession of a single individual, it is in joint possession of all parties of a relationship. If one retires, then social capital is lost. Therefore, it is also difficult to transfer social capital from one entity to another (Nahapiet and Ghoshal 1998). Additionally, it is not possible to enhance social capital endlessly by continuously adding individuals to the network because at the same time the costs of maintaining relationships increase with network size (Nahapiet and Ghoshal 1998). Thus, some limits may occur.

Further, authors agree that relationships serve as a basis for social action (Bourdieu 1986; Coleman 1988; Nahapiet and Ghoshal 1998). Burt (2000) even states that people having better relationships perform better: Imagine for example two competing teams where all team members have the same skills. Although equipped with the same abilities, the team which has better and more trustful relationships within and beyond the team will be more successful because they can trust each other and have access to various sources of information.

Three Dimensions of Social Capital

In addition to the above mentioned characteristics, Nahapiet and Ghoshal (1998) propose a detailed view of social capital. They distinguish between a structural, a relational, and a cognitive dimension of social capital, which are all tremendously coherent.

The structural dimension describes the pattern of the linkages between individuals or social units. In this context it is very important how the network appears. This means for example: where are connections between network members, where are no connections, or which picture do the ties show concerning network measures such as density, connectedness, and hierarchy (Krackhardt 1994; Wasserman and Faust 1994).

In contrast, the relational dimension focuses on the type of relationship between individuals or social units. Especially trust and trustworthiness, norms, expectations, and identification play a decisive role for the type of relationship (Burt 1992; Coleman 1988; Granovetter 1985; Merton 1968; Putnam 1993). The difference between the structural and the relational dimension of social capital becomes clear from the following example: Two individuals having the same position in a network, i.e. similar structural dimension of social capital, and faced with the same decision whether to leave their environment (e.g. work, town, etc.) or not, may decide differently because of the different kinds of relationships towards their network members. One would decide to stay because of the strong and trustworthy relations to other network members. The other one having no deep relations towards other network members would decide to leave because nothing detains him or her from leaving.

Finally, the cognitive dimension is manifested in resources offering shared representations, interpretations, and systems of meaning among entities (Cicourel 1973). Especially shared language and codes as well as shared narratives play a decisive role because a common language, for example, facilitates the communication between different parties and opens the way for gaining access to social units and their resources (e.g. knowledge) (Nahapiet and Ghoshal 1998).

Individual and Collective Facets of Social Capital

Coming back to the various definitions of social capital introduced at the beginning of Chapter 3.2.2 one states a high congruence of all these definitions at a first glance. Although they seem to be quite similar, they reveal two different views of social capital. Social capital can be obtained at an individual or at a collective level (see the following authors for various views: Adler and Kwon 2002; Bourdieu 1986; Burt 1992, 1997; Coleman 1988; Mathwick, Wiertz, and Ruyter 2008).

At an individual level, a focal user and the value he or she gains through his or her position in the network, i.e. his or her relationship towards other network members, take center stage. By referring to the focal actor's or group's relationships to other network members, this point of view helps to explain why the focal actor or group outperforms other competitors. Thus, this facet of social capital refers to an egocentric view, which, according to Adler and Kwon (2002), becomes clear, for example, in Bourdieu's (1986) definition of social capital. At an individual level, social capital can be measured by centrality measures indicating the actor's position within the network or by prestige measures (Nooy, Mrvar, and Batagelj 2011; Wasserman and Faust 1994).

In contrast, the other facet of social capital represents a more sociocentric one (Sandefur and Laumann 1998). On a collective level social capital is regarded as a public good, which is in possession of the whole community and from which all community members can benefit (Coleman 1988). It is produced, preserved and used by the community (Mathwick, Wiertz, and Ruyter 2008). This kind of interpretation of social capital becomes especially clear in Putnam's (1995, p. 67) definition of social capital as "features of social organization such as networks, norms, and social trust that facilitate coordination and cooperation for mutual benefit". Social capital as public good is operationalized by measures, which refer to the network as a whole, such as centralization, density, transitivity or connectedness of a network (Nooy, Mrvar, and Batagelj 2011; Wasserman and Faust 1994).

Nevertheless, both the individual and the collective facet of social capital need not be regarded separately from each other. Sometimes a combination of both aspects is appropriate such as in the definition of Nahapiet and Ghoshal (1998) mentioned at the beginning of this chapter.

Network Structure and Social Capital

In this project, I focus on the structural and collective dimensions of social capital, i.e. on the structure of the network as a whole. According to the definitions of social capital, it is obvious that social relationships and structures constitute the source of social capital (e.g. Coleman 1988; Nahapiet and Ghoshal 1998). Coleman (1988) argues that social capital emerges from network closure. Networks characterized by closure are comparable with dense networks, where each network member is connected (Burt 2000; Coleman 1988). Network closure creates more transparency in the network because every network member has the possibility to get access to all kinds of information in the network. If, for example, actor A is connected to actors B and C, and B and C are not connected with each other (network without closure), actor A can mistreat actors B and C without actors B and C noticing that they were harmed by actor A. If actor A is connected to actors B and C, and B and C are also connected with each other (network with closure), actors B and C can join forces in order to sanction A. Hence, network closure facilitates the presence of norms, reputation and trust within the network (Coleman 1988), from which solidarity as a benefit of social capital can arise (Adler and Kwon 2002). Krackhardt and Hanson (1993) note that trust results in enhanced openness of network members and enhanced information flow and thus increases network performance.

Burt (1992), however, points out one drawback of network closure, which lies in the inefficiency of dense networks. In dense networks, the access to new resources such as new ideas, knowledge and information is limited compared to more scattered networks. Burt (2000) emphasizes the importance of structural holes and bases his argumentation on Granovetter's (1973) work on the strength of weak ties. Structural holes are "disconnections between nonredundant contacts in a network" (Burt 1997, p. 339). They provide the opportunity to bring individuals from both sides of the hole together and facilitate the exchange of information. Hence, social capital also arises through the bridging of structural holes, whereby different sources of information inherent in the clusters around the hole are combined (Burt 2000).

Although, in summary, social capital theory provides general insights into the role of network structure in conjunction with social action, it does not explicitly consider the dynamical aspects that occur with the simultaneous consideration of these variables. At this point, Giddens' (1984) theory of structuration, which is discussed in the following Chapter 3.2.3., comes into play.

3.2.3. The Duality of Structure in Giddens' Theory of Structuration

A Dynamic Process

In his work on the theory of structuration, Giddens (1984) emphasizes the importance of the temporal and spatial ordering of social practices in social sciences. In this way, a dynamic aspect comes into play. He points out the recursivity of social activities in a sense that social activities "are not brought into being by social actors but continually recreated by them via the very means whereby they express themselves as actors" (Giddens 1984, p. 2). The prerequisites of these activities are continually regenerated through the activities. Thus, we face a process, not a state. This process, which Giddens (1984, p. 16) calls the "duality of structure", is the central idea of Giddens' theory with "structure as the medium and outcome of the conduct it recursively organizes" (Giddens 1984, p. 374). The process-orientation of his theory is also expressed by the term structuration itself, which emphasizes the procedure of structure building.

Structure as Rules and Resources

In order to better understand the term "structure" in this context, its meaning has to be studied more closely. Giddens (1984, p. 377) defines structure as "rules and resources, recursively implicated in the reproduction of social systems. Structure exists only as memory traces, the organic basis of human knowledgeability, and as instantiated in action." According to Giddens (1984), structure exists in the memory or brains of humans

and when it is put into action. Structure has a "virtual" (Giddens 1984, p. 17) property. Further, social systems such as societies or communities are constituted by social activities, which are reproduced by the recurrent implementation of structures (Sewell 1992).

Since structure is regarded as virtual, also rules and resources should by definition be virtual. Giddens (1984, p. 21) defines rules as "techniques or generalizable procedures applied in the enactment/reproduction of social practices". Concerning the rules, which Sewell (1992, p. 8) calls "schemas" in his theory of structure, Sewell agrees with Giddens' (1984) idea of virtuality because of their generalizability. Generalizability means that rules can be adopted in or transferred to various situations.

However, concerning resources, he disagrees: According to Giddens (1979, p. 92) "resources are the media whereby transformative capacity is employed as power in the routine course of social interaction". Sewell (1992, p. 9) reformulates this definition as "resources are anything that can serve as a source of power in social interactions". Further, Giddens (1979) distinguishes between authoritative and allocative resources in the sense that authoritative refers to persons and allocative refers to objects. Authoritative resources should be interpreted as human resources such as knowledge, skills, and also physical power, whereas allocative resources should be nonhuman resources including material objects such as arms, factories or land (Sewell 1992). Both authoritative and especially allocative resources can hardly be classified as virtual (Sewell 1992). Thus, at a first glance, resources, which are not virtual in contrast to Giddens' view of structure, should not be part of structure, but should be treated as effects of structures (Sewell 1992). However, in order to preserve Giddens' central idea of the theory of structuration, structure should be defined as virtual rules and non-virtual resources (Sewell 1992). Rules, which are regenerated over time by resources, become apparent in the resources (Sewell 1992).

The idea of the duality of structure can also be found in Bourdieu's (1977) theory of practice. Bourdieu (1977, p. 91) states that "the mental structures which construct the world of objects are constructed in the practice of a world of objects constructed according to the same structures.[...] The mind is a metaphor of the world of objects which is itself but an endless circle of mutually reflecting metaphors." By interpreting mental structures as schemas and the world of objects as resources, Sewell (1992) refers to the reflexive relationship between schemas or rules and resources as a durable process. In this way, the similarity between Bourdieu's (1977) and Giddens' (1984) work becomes apparent. Hence, Giddens' (1984) and Bourdieu's (1977) thoughts play a decisive role in the theoretical conceptualization of network or community dynamics, although their work is also criticized (concerning Giddens see e.g. Bryant and Jary 1991; Held and Thompson 1989; concerning Bourdieu see e.g. Brubaker 1985; DiMaggio 1979; Wacquant 1989).

In summary, the structure of a network, e.g. in the form of density, hierarchy, and connectivity, plays a decisive role in the context of social capital und thus in its function as a basis for social action (Coleman 1988; Nahapiet and Ghoshal 1998). At the same time, interaction is important for the evolution and perpetuation of social capital (Bourdieu 1986). Otherwise social relationships can gradually regress. As a result, one faces a series of mutually dependent processes, where on the one hand social capital results from exchange and on the other hand social capital forms the base for exchange (Nahapiet and Ghoshal 1998). These kinds of reciprocal processes constitute the heart of Giddens (1984) idea of a duality of structure, where structure is both media and outcome of social action. Similarly, individuals who trust each other tend to cooperate in future activities through which again more trust can be formed. Therefore, according to Putnam (1993) social capital augments any time it is used. However, social capital cannot be enhanced endlessly by expanding the network because the costs of maintaining relationships increase with network size (Nahapiet and Ghoshal 1998).

Based on the insights gained from social capital theory and Giddens' (1984) theory of structuration, I derive the following research propositions¹:

Research Proposition 1 (RP1): There is an interrelationship between social structure and social action, i.e. network structure influences participation and vice versa.

Research Proposition 2 (RP2): Network structure forms the base for social action, i.e. network structure exhibits a positive influence on participation.

Research Proposition 3 (RP3): Social capital augments any time it is used, i.e. participation exhibits a positive influence on network structure.

Research Proposition 4 (RP4): Social capital is constrained through a growing number of network members, i.e. community growth has a negative impact on network structure.

¹ Since research is basic and mostly of conceptual nature, I formulate research propositions instead of concrete hypotheses.

I use data from a European online social community with focus on leisure activities. The observed community is set up in several regional districts and the platform is organized on a regional level. Community members of all regions can use the same free platform functionalities like getting connected to other members registered in the same region or in any other region, sending messages, writing guest book entries, joining groups of interests, rating user profiles and pictures. The dataset comprises monthly data over a time period of 45 months starting in November 2008 and ending in July 2012. From originally 33 regional communities I have chosen the ones that are best suited for the analyses of this project: By selecting the regions it must be ensured that community members are sufficiently linked in the region in which they are registered to guarantee that the selected regions can be considered as relatively closed unit. In order to meet this requirement, only regions which are characterized by a share of internal contacts of 30% or more are chosen. Further, I only include regions that are set up and maintained by the community operator itself. This means that I do not use regions that have been installed and maintained by another operator until the actual operator annexed them. Thus, an appropriate comparability of the selected regional communities is ensured. Finally, 13 regions are selected and included into the analyses. Five of them count among the first regions that have been set up by the community operator since 2003 and are called established regions. The other eight regions were installed in the year 2009 and therefore count among the newer regions. Furthermore, the average number of registered members per regional community ranges from 1,598 for the smallest community to 35,183 for the biggest one.

Table 2, Table 3, and Table 4 present an overview of some important descriptive statistics of the selected samples, which are divided into a sample including only established regions (see Table 2), into a sample including only new regions (see Table 3), and into a sample including all regions (see Table 4). The variables presented in the tables are described in the following sections 3.3.1, 3.3.2, and 3.3.3.

Table 2 Descriptive Statistics; Established Regions

			Standard	25th	50th	75th		
	Ν	Mean	Deviation	Percentile	Percentile	Percentile	Minimum	Maximum
New Sign-Ups	225	233.70	222.59	76.00	155.00	317.00	16.00	1256.00
Average Degree	225	16.58	22.86	1.80	6.09	15.62	0.55	77.85
Degree Centralization	225	0.04	0.03	0.02	0.03	0.06	0.01	0.13
Share of Networkers	225	0.34	0.17	0.22	0.32	0.42	0.13	0.67
Network Clustering Coefficient	225	0.17	0.03	0.15	0.18	0.19	0.11	0.25
Active Interpers. Participation	225	5.33	11.56	0.11	0.72	3.05	0.00	53.38
Active Platform Participation	225	0.35	0.56	0.03	0.11	0.44	0.00	3.13
Act. Interp. and Platf. Participation	225	5.68	12.10	0.14	0.88	3.44	0.00	56.52

Table 3Descriptive Statistics; New Regions

			Standard	25th	50th	75th		
	Ν	Mean	Deviation	Percentile	Percentile	Percentile	Minimum	Maximum
New Sign-Ups	288	206.40	166.55	85.00	163.50	269.75	2.00	944.00
Average Degree	288	0.69	0.45	0.32	0.59	1.02	0.00	1.67
Degree Centralization	287	0.04	0.03	0.01	0.03	0.05	0.00	0.20
Share of Networkers	288	0.15	0.06	0.11	0.14	0.18	0.00	0.50
Network Clustering Coefficient	275	0.17	0.10	0.10	0.14	0.22	0.00	0.60
Active Interpers. Participation	288	1.49	6.11	0.07	0.15	0.65	0.00	74.53
Active Platform Participation	288	0.42	0.80	0.08	0.14	0.35	0.00	5.01
Act. Interp. and Platf. Participation	288	1.92	6.54	0.17	0.28	1.09	0.00	78.80

Table 4 Descriptive Statistics; All Regions

			Standard	25th	50th	75th		
	Ν	Mean	Deviation	Percentile	Percentile	Percentile	Minimum	Maximum
New Sign-Ups	514	217.96	193.45	80.00	161.00	293.25	2.00	1256.00
Average Degree	514	7.64	17.05	0.55	0.94	4.98	0.00	77.85
Degree Centralization	513	0.04	0.03	0.01	0.03	0.05	0.00	0.20
Share of Networkers	514	0.23	0.15	0.13	0.18	0.29	0.00	0.67
Network Clustering Coefficient	501	0.17	0.08	0.12	0.16	0.19	0.00	0.60
Active Interpers. Participation	514	3.17	9.10	0.07	0.25	1.37	0.00	74.53
Active Platform Participation	514	0.39	0.71	0.06	0.13	0.37	0.00	5.01
Act. Interp. and Platf. Participation	514	3.56	9.56	0.17	0.41	1.81	0.00	78.80

3.3.1. Measurement of Community Growth

According to Trusov, Bucklin, and Pauwels (2009) community growth is measured by the number of new sign-ups.² Customer acquisition plays an important role for community success (Bughin and Hagel 2000; Iriberri and Leroy 2009; Lithium 2012a) because new members have to be acquired in order to keep up the community. Since time series (e.g. Diebold 2007; Wooldridge 2006) and variables in PVAR models (e.g. Alecke, Mitze, and Untiedt 2010; Drakos and Konstantinou 2011) are usually logarithmized, I take

² In the present setting, the number of new sign-ups is an appropriate measure for community growth because the number of users who officially deregister from the platform is very small (less than 1%). Thus, similar to Trusov, Bucklin, and Pauwels (2009), community or member growth can be deducted from the number of new sign-ups.

the natural logarithm of the number of new sign-ups in region i at month t in order to reduce variance.

$$ln_new_signups_{it} = \ln(new_signups_{it})$$
(1)

3.3.2. Measurement of Network Structure

For the measurement of network structure four different variables, namely average degree, degree centralization, share of networkers, and network clustering coefficient are used (e.g. Nooy, Mrvar, and Batagelj 2011; Wasserman and Faust 1994). Although further variables such as betweenness centralization and the Watts-Strogatz clustering coefficient are also considered, I do not discuss the effects related to these variables because effects are similar to those of degree centralization and the network clustering coefficient respectively.

Network variables are calculated by using the software package Pajek, which was developed for social network analysis (Nooy, Mrvar, and Batagelj 2011). Social network analysis gives researchers support in learning more about the composition and characteristics of groups or networks by providing tools and methods that help to examine the relationship between individuals (Nooy, Mrvar, and Batagelj 2011; Preece 2000; Wasserman and Faust 1994).

Average Degree

In a simple undirected network, where network lines connecting individuals do not show in a certain direction and the relationship between individuals is symmetric, degree refers to the number of contacts of a person (Nooy, Mrvar, and Batagelj 2011). This view is equivalent to the definition of degree centrality by Freeman (1978/79). Thus, degree (centrality) is described as (Wasserman and Faust 1994):

$$C_D(n_k) = d(n_k) = \sum_m x_{km}$$
⁽²⁾

The degree *d* of the focal actor n_k is defined as the sum of all lines between the focal actor n_k and all actors n_m , that are connected to the focal actor. Thereby, $x_{km}=1$ if n_k and n_m are connected, otherwise $x_{km}=0$.

For this project, I determine the number of average degree per month t and per region i. Average degree is used as a measure of structural cohesion (Nooy, Mrvar, and Batagelj 2011). If individuals have more ties the network gets denser. Thus, average degree is an indicator for network density. To calculate average degree, I sum up the degrees of each individual registered in region i at month t and then divide this value by the number of individuals r_{it} registered in region i at month t. Then, I take the logarithm:

$$ln_average_degree_{ii} = \ln\left(\frac{\left(\sum_{k} d(n_{k})\right)_{ii}}{r_{ii}}\right)$$
(3)

Degree Centralization

While centrality measures refer to the position of individuals in the network, centralization measures describe the entire network (Freeman 1978/79). Thus, centralization measures enable the comparison of different networks. In the present research project, the focus lies on degree centralization instead of other centralization measures such as betweenness centralization because degree is linked to the potential for "communication activity" (Freeman 1978/79, p. 221). Individuals with high degree can serve as providers of information because they have diverse contacts and access to different information sources. Since communication activity is related to the present project's concept of community participation, a relationship between degree-related variables and community participation is supposed. Degree centralization indicates the variation in the degrees of individuals compared to the maximum possible variation and is expressed by (Freeman 1978/79):

$$C_{D} = \frac{\sum_{k=1}^{r} [C_{D}(n^{*}) - C_{D}(n_{k})]}{\max \sum_{k=1}^{r} [C_{D}(n^{*}) - C_{D}(n_{k})]},$$
(4)

where *r* is the number of individuals in the network, $C_D(n_k)$ is the degree (centrality) of actor n_k and $C_D(n^*)$ is the highest value for degree among all *r* actors. The sum of all the *r* differences between highest value and the other values is divided by the maximum possible sum of differences in degree (centrality) for a network of *r* actors. Thus, degree centralization can only take on values between 0 and 1. The degree centralization of a star network for example accounts for 1, because the actor in the center holds maximum de-

gree and the other actors around hold minimum degree.³ A star network shows maximal variation in the degrees of the individuals. Hence, it is obvious that centralization is strongly related with hierarchy in networks. I calculate degree centralization for each region *i* at month *t* and define it by $C_{D,it}$. Then, the logarithm of one plus the value of degree centralization is computed because this is a common way to reduce variance and normalize distributions when values to be logarithmized are close to zero (Acito and Jain 1980; Ansari, Mela, and Neslin 2008; Winer 1971; Wooldridge 2006):

$$ln_degree_centralization_{it} = \ln(1 + C_{Dit})$$
(5)

Share of Networkers

According to Nahapiet and Ghoshal (1998) connectedness or connectivity is an important feature of network structure. Relationships between individuals are indispensable for the existence of social capital (e.g. Bourdieu 1986; Coleman 1988; Nahapiet and Ghoshal 1998). In disconnected networks with two or more disconnected components, information cannot flow between some pairs of individuals (Wasserman and Faust 1994). In the online community to be investigated, there are also community members who are not connected to other community members. They just come to the platform in order to have a look at the latest party pictures or consume other content. In the present project, this group of community members is called "Non-Networkers". The other group of community members, who have at least one contact, is called "Networkers". Since networkers are by definition more interested in social networking and hence in the social aspects of communities they are supposed to take actively part in the community (Hennig-Thurau et al. 2004). Therefore, the share of networkers might play an important role in the interplay of success factors. Although previous research does not concentrate on this variable, I include this variable as a further aspect of network structure into the analyses. I compute the logarithmized share of networkers for each region i at month t by summarizing all networkers per region i and per month t, dividing this sum by the number of members registered in region *i* at month *t*, and then taking the logarithm of one plus the quotient of networkers and registered members.

³ Assume a star network of six actors: The actor in the center has five contacts. Each of the other actors has one contact. Degree centralization is calculated by (5 x (5-1) + 1 x (5-5)) / (5 x (5-1) + 1 x (5-5)) = 1.

$$ln_networker_share_{it} = \ln\left(1 + \frac{\left(\sum_{k} n_{k}\right)_{it}}{r_{it}}\right);$$
(6)

with $n_k = 1$ if $d(n_k) \ge 1$, otherwise $n_k = 0$

Network Clustering Coefficient

The clustering coefficient of a network, also called transitivity, relates to the extent to which two contacts of a focal actor are directly connected. It measures "the proportion of all two-paths in the network that are closed" (Nooy, Mrvar, and Batagelj 2011, p. 342). Hence, the network clustering coefficient is an indicator for network density or closure. Networks that consist of individuals being highly interconnected and thus are character-ized by high transitivity, are a source of solidarity or community spirit (Bott 1964) and loyalty (Cappelli 2000). Therefore, the network clustering coefficient should be considered in the analysis of the interrelationship between success factors. The network clustering coefficient or transitivity is expressed as follows (Kolaczyk 2009):

$$Cl_{T}(G) = \frac{3\tau_{\Delta}(G)}{\tau_{3}(G)},\tag{7}$$

where $\tau_{\Delta}(G)$ equals the number of triangles in the graph *G* and $\tau_3(G)$ equals the number of connected triples. While triangles are formed by three members of whom each member is connected to the other two members, in connected triples only one member is directly linked with each of the other two members. I calculate the network clustering coefficient Cl_T for each region *i* at month *t*, then take the logarithm of one plus the value of the clustering coefficient:

$$ln_network_cc_{it} = \ln(1 + Cl_{T,it})$$
(8)

3.3.3. Measurement of Community Participation

In the present project, I differentiate between different forms of participation namely active interpersonal participation, active platform participation, and active interpersonal and platform participation.

Active Interpersonal Participation

In the variable of active interpersonal participation all activities which take place between individuals are combined. For this kind of participation a partner or contact is needed. The activities of an actor n_k include number of sent messages, number of gifts made, number of user profile ratings made, and number of guest book entries written:

 $partintact(n_k) = messagesout(n_k) + giftsout(n_k) + userratingsout(n_k) + guestbookout(n_k)$ (9)

The participation behavior of all individuals registered in region i at month t is aggregated by determining the average participation behavior in region i at month t, then, the logarithm is taken. Thus, active interpersonal participation in region i at month t equals to:

$$ln_partintact_{it} = \ln\left(1 + \frac{\left(\sum_{k} partintact(n_k)\right)_{it}}{r_{it}}\right)$$
(10)

Active Platform Participation

Active platform participation comprises all activities that community members can carry out on their own, i.e. without a partner or contact. These are activities such as the number of photo ratings made, number of group ratings made, number of place ratings made, number of magazine comments made, number of place video comments made, number of group thread articles made, number of events joined, and number of nameplates for highlighting oneself on a photo:

 $partplatact(n_{k}) = photoratings(n_{k}) + group ratings(n_{k}) + placeratings(n_{k}) + magazine comments(n_{k}) + placevide ocomments(n_{k}) + (11) + group thread articles(n_{k}) + eventjoins(n_{k}) + name plates active(n_{k})$

Again, the participation behavior of all individuals registered in region i at month t is aggregated and the logarithm is taken. This results in:

$$ln_partplatact_{it} = \ln\left(1 + \frac{\left(\sum_{k} partplatact(n_{k})\right)_{it}}{r_{it}}\right)$$
(12)

Active Interpersonal and Platform Participation

Finally, variables of active interpersonal participation and active platform participation are combined to the variable of active interpersonal and platform participation, i.e. overall participation, by summing up the two variables:

$$partintactplat(n_k) = partintact(n_k) + partplatact(n_k)$$
(13)

Aggregation and taking the logarithm leads to the overall participation behavior in region *i* at month *t*:

$$ln_partintactplat_{it} = \ln\left(1 + \frac{\left(\sum_{k} partintactplat(n_k)\right)_{it}}{r_{it}}\right)$$
(14)

3.4. Methodology

The research objective of this project requires a methodology that is able to analyze the dynamic interplay between the discussed success factors without imposing too many restrictions on the model. At the same time, this technique should allow the simultaneous analysis of different regions to avoid the setup of different case studies. All these requirements are met by panel vector autoregression.

3.4.1. Vector Autoregression

In order to capture the interdependencies between different variables, the vector autoregressive (VAR) approach proposed by Sims (1980) is a suitable technique. VAR models offer a relatively flexible way to analyze effects between endogenous variables over time. A VAR(p) model is generally specified as

$$z_{t} = \alpha + A_{1}z_{t-1} + A_{2}z_{t-2} + \dots + A_{p}z_{t-p} + e_{t}, \qquad (15)$$

where z_t is a (*K* x 1) vector containing *K* variables, A_i is a (*K* x *K*) matrix of coefficients, α is a (*K* x 1) vector containing the intercept terms, and e_t is a (*K* x 1) vector of error terms (Lütkepohl 2007).

For example, a VAR(p) model of lag order p=4 with two endogenous variables y and x would be specified as VAR(4):⁴

$$y_{t} = a_{11,1} y_{t-1} + a_{11,2} y_{t-2} + a_{11,3} y_{t-3} + a_{11,4} y_{t-4} + a_{12,1} x_{t-1} + a_{12,2} x_{t-2} + a_{12,3} x_{t-3} + a_{12,4} x_{t-4} + e_{1t}$$

$$x_{t} = a_{21,1} y_{t-1} + a_{21,2} y_{t-2} + a_{21,3} y_{t-3} + a_{21,4} y_{t-4} + a_{22,1} x_{t-1} + a_{22,2} x_{t-2} + a_{22,3} x_{t-3} + a_{22,4} x_{t-4} + e_{2t}$$
(16)

With $z_t = (y_t, x_t)'$ and $e_t = (e_{1t}, e_{2t})'$:

$$z_{t} = A_{1}L z_{t} + A_{2}L^{2} z_{t} + A_{3}L^{3} z_{t} + A_{4}L^{4} z_{t} + e_{t};$$

$$\left(I - A_{1}L - A_{2}L^{2} - A_{3}L^{3} - A_{4}L^{4}\right)z_{t} = e_{t};$$

$$A(L) z_{t} = e_{t}$$
(17)

Each variable is explained by an equation that contains lagged variables of the focal variable and lagged variables of the other variable. All coefficients can be estimated on the base of multivariate least squares estimation (Lütkepohl 2007). However, because of the mutual dependencies between the variables, it is not possible to interpret the coefficients of a VAR. Tools helping to deal with this problem are impulse response functions (IRFs). They describe how the system reacts over time to exogenous impulses. In order to be able to illustrate IRFs, the stationary VAR process has to be transformed into a moving average (MA) representation. For a VAR(1) the following equation is obtained:

$$A(L) z_{t} = e_{t} \to z_{t} - A_{1} z_{t-1} = e_{t} \to z_{t} = A_{1} z_{t-1} + e_{t}$$
(18)

Repeated substitution leads to:

$$z_t = e_t + A_1 e_{t-1} + A_1^2 e_{t-2} + A_1^3 e_{t-3} + \dots$$
(19)

$$z_{t} = [A(L)]^{-1}e_{t} = (I + A_{1}L + A_{1}^{2}L + A_{1}^{3}L + ...)e_{t} = \left[\sum_{i=0}^{\infty} A_{1}^{i}L^{i}\right]e_{t};$$
(20)

$$z_t = \left[\sum_{i=0}^{\infty} F^i L^i\right] e_t$$
(21)

Accordingly, each stationary VAR(p) process can be transformed into a MA(∞) process.

⁴ For purposes of presentation, the intercept terms are neglected in the following.

The effect of an impulse e_t spreads through the whole system and influences z_t , z_{t+1} , z_{t+2} , etc. The relationship between z_{t+i} and e_t is described by IRFs.

$$z_{t} \underbrace{e_{t}}_{t+1} F^{1} e_{t-1} + F^{2} e_{t-2} + F^{3} e_{t-3} + F^{4} e_{t-4} + \dots$$

$$z_{t+1} = e_{t+1} + \underbrace{F^{1} e_{t}}_{t+1} + F^{2} e_{t-1} + F^{3} e_{t-2} + F^{4} e_{t-3} + \dots$$

$$z_{t+2} = e_{t+2} + F^{1} e_{t+1} + \underbrace{F^{2} e_{t}}_{t+1} + F^{3} e_{t-1} + F^{4} e_{t-2} + \dots$$

$$z_{t+3} = e_{t+3} + F^{1} e_{t+2} + F^{2} e_{t+1} + \underbrace{F^{3} e_{t}}_{t+1} + F^{4} e_{t-1} + \dots$$

$$z_{t+4} = e_{t+4} + F^{1} e_{t+3} + F^{2} e_{t+2} + F^{3} e_{t+1} + \underbrace{F^{4} e_{t}}_{t+1} + \dots$$
(22)

However, in practice, error terms are likely to be correlated. That means an impulse in one variable is usually combined with an impulse in the other variable. To solve this problem and to ensure a clear allocation of shocks, error terms need to be orthogonalized. MA representation of the VAR and Cholesky decomposition of matrix $\Sigma_e = PP'$, where *P* is a lower triangular matrix, lead to:

$$z_{t} = \sum_{i=0}^{\infty} F^{i} e_{t-i} = \sum_{i=0}^{\infty} F^{i} P P^{-1} e_{t-i}$$
(23)

$$z_{t} = \sum_{i=0}^{\infty} W^{i} u_{t-i}; \quad \text{with } W^{i} = F^{i} P; u_{t-i} = P^{-1} e_{t-i}$$
(24)

After this transformation error terms u_i are uncorrelated and have unit variance:

$$\Sigma_{u} = E(u_{t}u_{t}') = E(P^{-1}e_{t}e_{t}'P^{-1}) = P^{-1}E(e_{t}e_{t}')P^{-1} = P^{-1}\Sigma_{e}P^{-1} = P^{-1}PP'P^{-1} = I$$
(25)

Hence, IRFs should be calculated based on the transformed system. Yet, the orthogonalization of error terms implies a recursive causal structure. Elements in z_t are dependent from preceding elements: the first element in z_t is independent, the second element is dependent from the first element, the third element is dependent from the first and the second element, etc. This can easily be demonstrated by multiplying the original VAR model with P^{-1} in order to get a VAR process with orthogonalized structure:

$$z_{t} = A_{1} z_{t-1} + A_{2} z_{t-2} + \dots + A_{p} z_{t-p} + e_{t};$$

$$P^{-1}z_{t} = P^{-1}A_{1} z_{t-1} + P^{-1}A_{2} z_{t-2} + \dots + P^{-1}A_{p} z_{t-p} + u_{t};$$
(26)

Because of the lower triangular matrix P^{-1} , contemporary dependencies between the elements of z_t arise (for more details see Lütkepohl 2007). However, one can deal with this problem by considering theoretical or practical explanations for the chosen order of vari-

ables (Love and Zicchino 2006; Lütkepohl 2007). Another method is to check the results of IRFs after changing the order of variables (Sims 1981). All in all, VAR models constitute a relatively flexible method to capture linear interdependencies between variables without imposing too many restrictions. However, the number of variables, which can be included into traditional VAR models and simultaneously analyzed, is constrained because of the high number of parameters to be estimated based on a usually limited time series length (Kirchgässner and Wolters 2007; Lütkepohl 2007).

3.4.2. Panel Vector Autoregression

Since the traditional VAR model is not constructed for the estimation of pooled data, the classic VAR approach needs to be extended to a model that is able to examine the interplay of success factors in different regional communities at the same time. Love and Zicchino (2006) propose a model that applies the VAR approach on panel data. They call this approach panel VAR (PVAR). Thus, one profits from the advantage of VAR models in describing the interrelationship between success factors and at the same time permitting unobserved heterogeneity. Furthermore, the PVAR approach can overcome a problem of traditional VAR models, which lies in the usual high number of parameters to be estimated: By combining different time series, the number of observations is increased. Therefore, the problem of missing degrees of freedom can be contained and parameter estimates become more efficient (Horváth et al. 2005). Hence, a first-order PVAR model, PVAR(1), is specified as follows:

$$z_{it} = A_1 z_{it-1} + f_i + e_{it} \,, \tag{27}$$

where, in this project, z_{it} is a vector of community success variables, A_I is a matrix of coefficients, f_i describes unobserved regional community effects, e_{it} is a vector containing error terms. Since, in practice, differences between regional communities are not unlikely, fixed effects f_i are added to the model in order to take into account individual heterogeneity. Including the lagged dependent variable as a regressor z_{it-I} and fixed effects f_i , one faces a dynamic panel data approach. However, as a result of the inclusion of the lagged dependent variable as regressor, the within estimator, which is frequently employed for panel models with fixed effects, is inconsistent because of the correlation between regressor and error term (Cameron and Trivedi 2005; Nickell 1981). The elimination of fixed effects by within transformation would lead to:

$$(z_{it} - \bar{z}_i) = A_1(z_{it-1} - \bar{z}_{i,-1}) + (e_{it} - \bar{e}_i)$$
(28)

Through equation (27), z_{it} is correlated with e_{it} , z_{it-1} is correlated with e_{it-1} and therefore with \overline{e}_i . Hence, regressor $(z_{it-1} - \overline{z}_{i,-1})$ and error $(e_{it} - \overline{e}_i)$ are correlated. To avoid this problem, forward orthogonal deviations transformation (Arellano and Bover 1995) is used in order to eliminate the fixed effects. This procedure removes from each of the first *T-1* observations the mean of the future observations left in the sample. Then, the (untransformed) lagged regressors can serve as instruments and coefficients can be estimated by system generalized method of moments (GMM). Results of the estimation are interpreted by means of IRFs, which are based on the transformed system with Cholesky decomposition (see Chapter 3.4.1) such that error terms become orthogonal. Then, the response of one variable to a one standard deviation shock in another variable can be analyzed. Further, confidence intervals for IRFs are created by using Monte Carlo simulations.

3.4.3. Models

I estimate PVAR models for x=1) established regions, x=2) new regions, and x=3) all regions in order to understand the interrelationship between success factors at different community life cycle phases. The models are designed as follows:

Network Structure – Participation

First of all, only the relationship between network structure and participation is analyzed. For this purpose, the four variables for network structure and the three variables for community participation discussed above, as well as fixed effects f_i and error terms e_{it} are included into the PVAR specification, which is set up for the established, new and all regions' sample. Hence, twelve different versions of PVAR(1)⁵ models are obtained:

$$\begin{pmatrix} ln_average_degree\\ ln_partintact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_average_degree\\ ln_partintact \end{pmatrix}_{it-1} + f_i + e_{it}$$
(model x.1.1.1)

⁵ PVAR of lag order 1 is preferred because in empirical works usually PVAR(1) is used (e.g. Alecke, Mitze, and Untiedt 2010; Drakos and Konstantinou 2011; Koutsomanoli-Filippaki and Mamatzakis 2009; Love and Zicchino 2006). Further, a PVAR of lag order 1 helps to save degrees of freedom. Nevertheless, to compare results and their robustness, I additionally estimate PVAR specifications up to lag order 4, which is the maximum lag order for the present amount of data. Determining a certain lag order by SC is not recommended in this project, because I am not interested in finding the best forecasting model, but in uncovering the effects between the variables of interest.

$$\begin{pmatrix} ln_degree_centralization \\ ln_partintact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_degree_centralization \\ ln_partintact \end{pmatrix}_{it-1} + f_i + e_{it} \quad (x.1.1.2)$$

$$\begin{pmatrix} ln_networker_share\\ ln_partintact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_networker_share\\ ln_partintact \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.1.1.3)

$$\begin{pmatrix} ln_network_cc\\ ln_partintact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_network_cc\\ ln_partintact \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.1.1.4)

$$\begin{pmatrix} ln_average_degree\\ ln_partplatact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_average_degree\\ ln_partplatact \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.1.2.1)

$$\begin{pmatrix} ln_degree_centralization\\ ln_partplatact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_degree_centralization\\ ln_partplatact \end{pmatrix}_{it-1} + f_i + e_{it} \quad (x.1.2.2)$$

$$\begin{pmatrix} ln_networker_share\\ ln_partplatact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_networker_share\\ ln_partplatact \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.1.2.3)

$$\begin{pmatrix} ln_network_cc\\ ln_partplatact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_network_cc\\ ln_partplatact \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.1.2.4)

$$\begin{pmatrix} ln_average_degree \\ ln_partintactplat \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_average_degree \\ ln_partintactplat \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.1.3.1)

$$\begin{pmatrix} ln_degree_centralization \\ ln_partintactplat \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_degree_centralization \\ ln_partintactplat \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.1.3.2)

$$\begin{pmatrix} ln_networker_share\\ ln_partintactplat \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_networker_share\\ ln_partintactplat \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.1.3.3)

$$\begin{pmatrix} ln_network_cc\\ ln_partintactplat \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_network_cc\\ ln_partintactplat \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.1.3.4)

Similarly to other studies (e.g. Drakos and Konstantinou 2011; Koutsomanoli-Filippaki and Mamatzakis 2009; Love and Zicchino 2006), all variables are included in levels since the presented PVAR approach allows for a loosening of the time stationarity assumption (Holtz-Eakin, Newey, and Rosen 1988). Nevertheless, I additionally conduct several panel unit root tests in order to find out whether the series are indeed stationary (see Appendix 1, Appendix 2, Appendix 3). For the sample including all regions and for the sample including only new regions, Im-Pesaran-Shin (Im, Pesaran, and Shin 2003) and Fishertype tests (Choi 2001) are conducted. Both test types do not require strongly balanced data. The null hypothesis of all the individual series containing unit roots can be rejected at a significance level of 5% by at least one test type. For the sample including only established regions, I additionally conduct a Levin-Lin-Chu test (Levin, Lin, and Chu 2002) testing the null hypothesis that all the individual series contain unit roots. This kind of test only works for strongly balanced data, as is the case for the sample of established regions. Mostly, the null hypothesis is rejected at a significance level of 5% by at least one of the test types. Only for the variables of *ln_average_degree*, *ln_networker_share*, and *ln_partintactplat* the null hypothesis is not rejected at a significance level of 5%. However, because of the relaxation of the time stationarity assumption and for better comparison I do not transform the variables.

I consider the network variables to appear at the first position of the system. This ordering is chosen because Coleman (1988) states that social capital, which lies in the connection to other members, serves as a basis for action, i.e. participation. Therefore, there is an initial theoretical indication that network structure is probably more exogenous than participation. Further, in a case study, Toral et al. (2009) found that network variables affect participation or activity as an integral part of community success. Taking these arguments together I assume that network variables are little more exogenous than participation variables and therefore appear at the first position of the system.

Community Growth – Network Structure – Participation

In the next step, community growth is added to the analysis. This proceeding helps to find out which position community growth adopts in the interrelationship between success factors and whether the inclusion of community growth changes the relationship between network structure and participation. In this project, community growth, which is represented by the number of new sign-ups, is mentioned earlier in the system than network structure and participation because new sign-ups are a prerequisite for the development of a community. Only after individuals have registered for the community platform, a network can be built and participation can evolve. The community growth variable is included in levels because of the results of panel unit root tests (see Appendix 1, Appendix 2, Appendix 3) and the possibility to loosen the time stationarity assumption discussed above. Thus, by adding community growth to the network-participation-models, the following models for a first-order PVAR with fixed effects f_i , and error terms e_{it} are obtained:

$$\begin{pmatrix} ln_new_signups \\ ln_average_degree \\ ln_partintact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_new_signups \\ ln_average_degree \\ ln_partintact \end{pmatrix}_{it-1} + f_i + e_{it}$$
(model x.2.1.1)

$$\begin{pmatrix} ln_new_signups \\ ln_degree_centralization \\ ln_partintact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_new_signups \\ ln_degree_centralization \\ ln_partintact \end{pmatrix}_{it-1} + f_i + e_{it} \quad (x.2.1.2)$$

$$\begin{pmatrix} ln_new_signups \\ ln_networker_share \\ ln_partintact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_new_signups \\ ln_networker_share \\ ln_partintact \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.2.1.3)

$$\begin{pmatrix} ln_new_signups \\ ln_network_cc \\ ln_partintact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_new_signups \\ ln_network_cc \\ ln_partintact \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.2.1.4)

$$\begin{pmatrix} ln_new_signups \\ ln_average_degree \\ ln_partplatact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_new_signups \\ ln_average_degree \\ ln_partplatact \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.2.2.1)

$$\begin{pmatrix} ln_new_signups \\ ln_degree_centralization \\ ln_partplatact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_new_signups \\ ln_degree_centralization \\ ln_partplatact \end{pmatrix}_{it-1} + f_i + e_{it} \quad (x.2.2.2)$$

$$\begin{pmatrix} ln_new_signups \\ ln_networker_share \\ ln_partplatact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_new_signups \\ ln_networker_share \\ ln_partplatact \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.2.2.3)

$$\begin{pmatrix} ln_new_signups \\ ln_network_cc \\ ln_partplatact \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_new_signups \\ ln_network_cc \\ ln_partplatact \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.2.2.4)

$$\begin{pmatrix} ln_new_signups \\ ln_average_degree \\ ln_partintactplat \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_new_signups \\ ln_average_degree \\ ln_partintactplat \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.2.3.1)

$$\begin{bmatrix} ln_new_signups \\ ln_degree_centralization \\ ln_partintactplat \end{bmatrix}_{it} = A_1 \begin{pmatrix} ln_new_signups \\ ln_degree_centralization \\ ln_partintactplat \end{pmatrix}_{it-1} + f_i + e_{it} \quad (x.2.3.2)$$

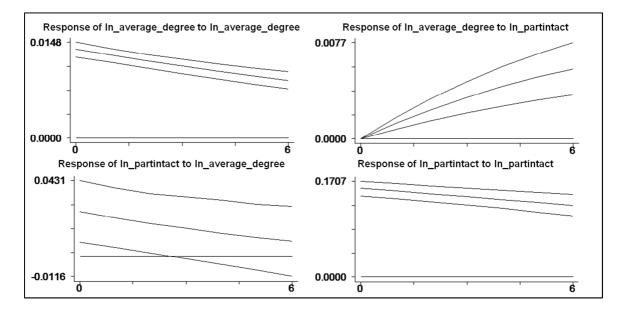
$$\begin{pmatrix} ln_new_signups \\ ln_networker_share \\ ln_partintactplat \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_new_signups \\ ln_networker_share \\ ln_partintactplat \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.2.3.3)

$$\begin{pmatrix} ln_new_signups \\ ln_network_cc \\ ln_partintactplat \end{pmatrix}_{it} = A_1 \begin{pmatrix} ln_new_signups \\ ln_network_cc \\ ln_partintactplat \end{pmatrix}_{it-1} + f_i + e_{it}$$
(x.2.3.4)

3.5. Results

In the following, results of the estimated PVAR models are presented. I use the pvarroutine provided by Inessa Love⁶ for the estimation of PVAR models with Stata.

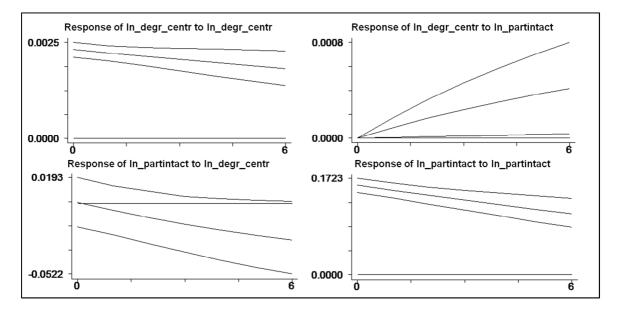
3.5.1. Established Regions

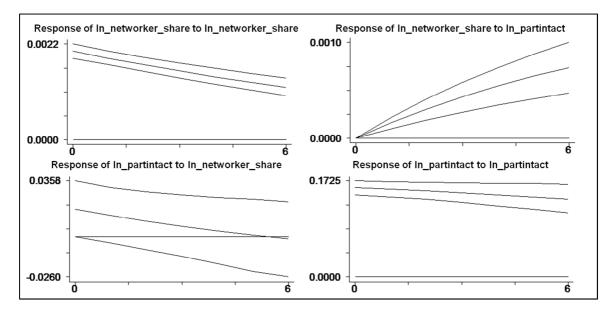

Network Structure – Participation

Starting with the sample including the established regions, I estimate the models presented above. First of all, the relationship between network structure and participation is investigated. The results of model 1.1.1.1, which captures the interrelationship between average degree and active interpersonal participation in established regions, are illustrated in Figure 2. A shock to average degree leads to a positive response of interpersonal participation, which lasts nearly up to three months. Conversely, a shock to interpersonal participation increases average degree. In order to check the robustness of the results, I estimate PVAR models of higher lag order, i.e. PVAR(2), PVAR(3), PVAR(4). The results confirm the findings from PVAR(1) and are displayed in Appendix 4. PVAR(3) and PVAR(4) even reveal a positive response of active interpersonal participation to a shock in average degree, that lasts for nearly six months and four months respectively.⁷

⁶ See Love and Zicchino (2006)

⁷ Own-variable IRFs are not discussed because they are not of interest in this project.


Figure 2 Impulse Response Functions, PVAR(1) ln_average_degree ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions


In model 1.1.1.2, I investigate the relationship between degree centralization and active interpersonal participation in established regions. IRFs of PVAR(1) show that a shock in degree centralization is followed by a negative response of active interpersonal participation, which is, however, not significant (see Figure 3). In order to verify the results, I additionally estimate PVAR(2), PVAR(3), and PVAR(4) (see Appendix 5). All models confirm a negative relationship, which is significant in PVAR(2) and PVAR(4). Further, a shock in active interpersonal participation leads to a positive response of degree centralization. This finding is not in accordance with models of higher lag order because these models do not show any significant effects.

IRFs of model 1.1.1.3 imply that a shock in the share of networkers has no significant consequences on active interpersonal participation (see Figure 4). Conversely, a shock in active interpersonal participation increases the share of networkers. These results are also confirmed by models of higher lag order (see Appendix 6).

Figure 3 Impulse Response Functions, PVAR(1) ln_degree_centralization ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

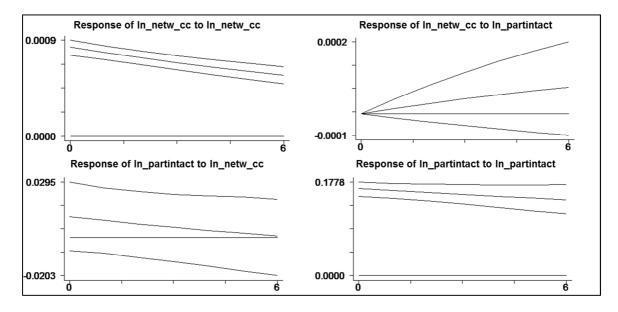


Figure 4 Impulse Response Functions, PVAR(1) ln_networker_share ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

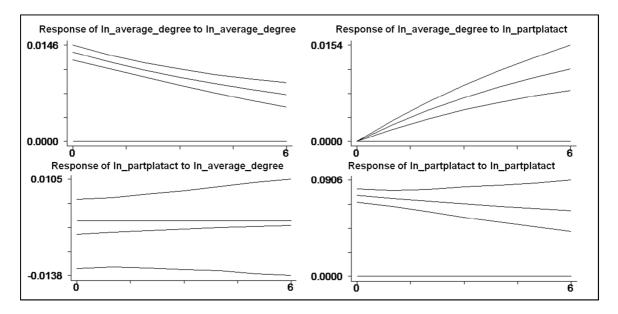
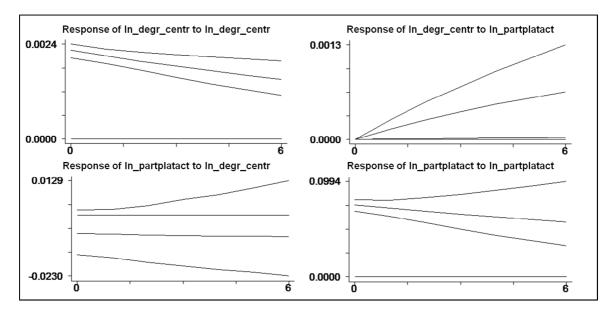
Model 1.1.1.4 investigates the interrelationship between the network clustering coefficient and active interpersonal participation. There are no significant relationships between these variables (see Figure 5). This is also supported by PVAR(2), PVAR(3), and PVAR(4) (see Appendix 7).

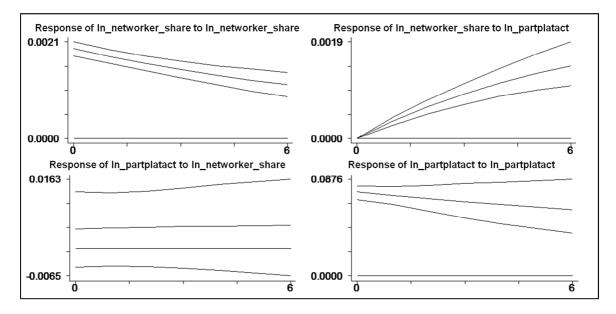
Figure 5 Impulse Response Functions, PVAR(1) ln_network_cc ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

IRFs of model 1.1.2.1, which captures the interrelationship between average degree and active platform participation by the help of PVAR(1), do not show any significant response of active platform participation to a shock in average degree. However, an impulse in active platform participation is followed by an increase in average degree that lasts over months (see Figure 6). These findings are also supported by models of higher lag order (see Appendix 8).

I estimate model 1.1.2.2 in order to investigate the interrelationship between degree centralization and active platform participation. IRFs of PVAR(1) indicate that a shock in degree centralization causes a negative, but non-significant response of active platform participation (see Figure 7). Yet, IRFs of PVAR(2), PVAR(3), and PVAR(4) revise this result. They illustrate a significant negative response of active platform participation to an impulse in degree centralization, which comes with a delay of about one period (see Appendix 9). Looking at the other direction, I detect that a shock in active platform participation significantly increases degree centralization. This positive effect is also apparent from PVAR models of higher lag order and is significant after estimation of PVAR(3).

Figure 6 Impulse Response Functions, PVAR(1) ln_average_degree ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions


Figure 7 Impulse Response Functions, PVAR(1) ln_degree_centralization ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

Model 1.1.2.3 describes the interrelationship between the share of networkers and active platform participation. After the estimation of PVAR(1) I find a positive, but non-significant response of active platform participation to a shock in the share of networkers (see Figure 8). However, this result is enhanced by the results of PVAR(2), PVAR(3),

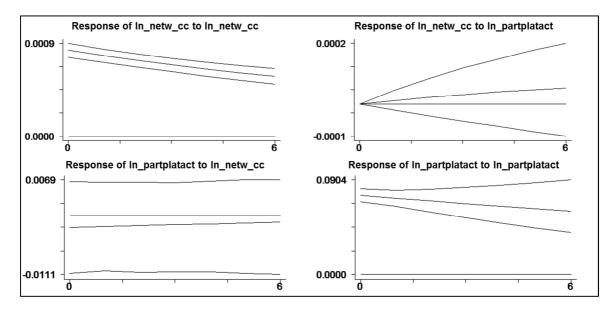
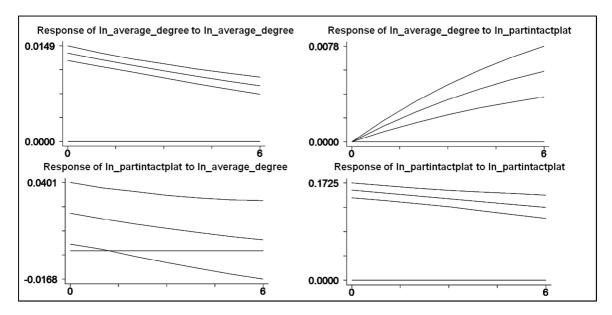
and PVAR(4). IRFs of these models show that a shock in the share of networkers leads to a positive and significant response of active platform participation (see Appendix 10). Reversely, a shock in active platform participation increases the share of networkers, which is confirmed by PVAR(2), PVAR(3), and PVAR(4).

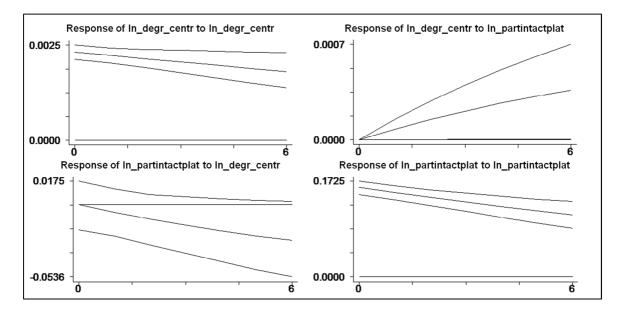
Figure 8 Impulse Response Functions, PVAR(1) ln_networker_share ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

IRFs of model 1.1.2.4, which describe the reaction of active platform participation to a shock in the network clustering coefficient and vice versa through the estimation of PVAR(1), do not show any significant responses (see Figure 9). Also PVAR models of higher lag order do not uncover any significant effects (see Appendix 11).

By model 1.1.3.1, I estimate a PVAR(1) specification that examines the interrelationship between average degree and overall participation, i.e. the sum of active interpersonal and active platform participation. The results of IRFs, which are displayed in Figure 10, show that an impulse in average degree is followed by a positive response of overall participation, which lasts for about one and a half months. PVAR models of higher lag order confirm this finding (see Appendix 12). With PVAR(3) and PVAR(4), I even find effects that last for about four and a half and for about three months. Looking at the other direction, results show that a shock in active interpersonal and platform participation increases average degree, which is confirmed by PVAR(2), PVAR(3), and PVAR(4).

Figure 9 Impulse Response Functions, PVAR(1) ln_network_cc ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions


Figure 10 Impulse Response Functions, PVAR(1) ln_average_degree ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

IRFs of model 1.1.3.2, which describes the interrelationship between degree centralization and overall participation by PVAR(1), reveal that a shock in degree centralization leads to a negative response of overall participation, which is not significant in PVAR(1) (see Figure 11). Yet, IRFs of PVAR(2) and PVAR(4) demonstrate a significant negative

effect (see Appendix 13). Conversely, with estimation of PVAR(1) I do not detect any significant effect of overall participation on degree centralization, which is also supported by PVAR(2), PVAR(3), and PVAR(4).

Figure 11 Impulse Response Functions, PVAR(1) ln_degee_centralization ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

By the help of model 1.1.3.3, it becomes apparent that, in established regions, a shock in the share of networkers does not have any significant consequences on overall participation (see Figure 12). This is also supported by all PVAR models of higher lag order (see Appendix 14). Reversely, a shock in active interpersonal and platform participation increases the share of networkers, which is also true for PVAR(2), PVAR(3), and PVAR(4).

Model 1.1.3.4 investigates the interrelationship between the network clustering coefficient and overall participation. There are no significant effects in both directions (see Figure 13). These findings are also supported by models of higher lag order (see Appendix 15).

Figure 12 Impulse Response Functions, PVAR(1) ln_networker_share ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

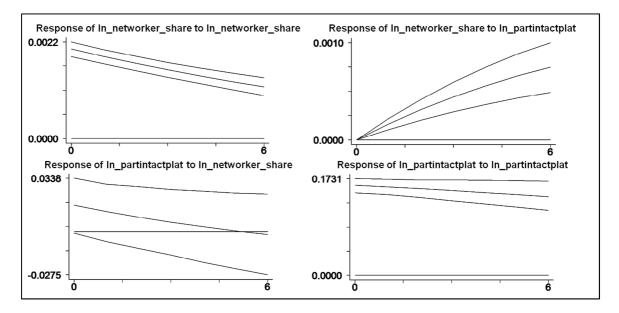
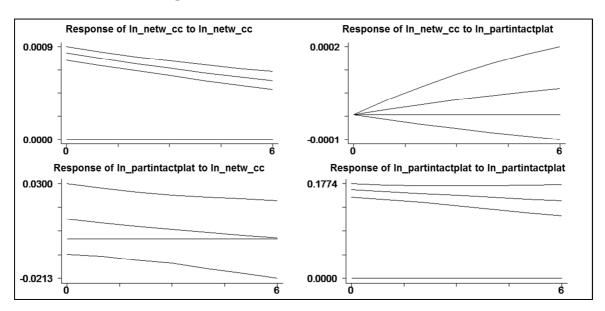
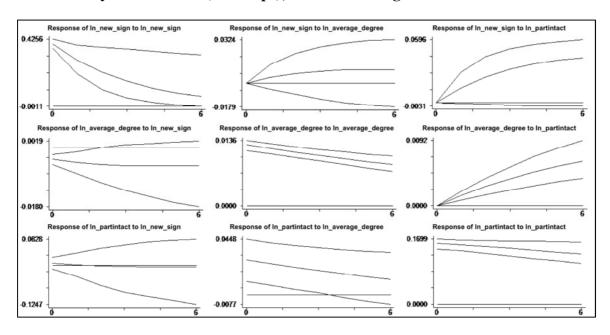



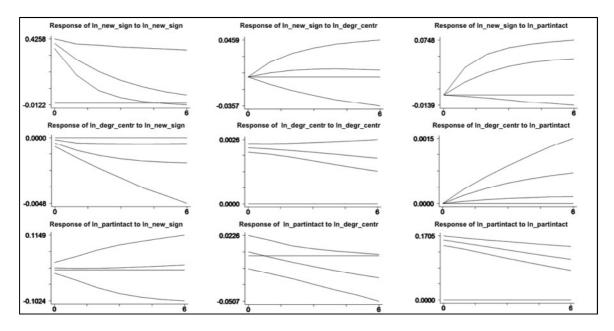
Figure 13 Impulse Response Functions, PVAR(1) ln_network_cc ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions



Community Growth – Network Structure – Participation

In the following section, I add the number of new sign-ups, which serves as an index for community growth, to the models. Model 1.2.1.1 investigates the interrelationship between new sign-ups, average degree, and active interpersonal participation. The IRFs,

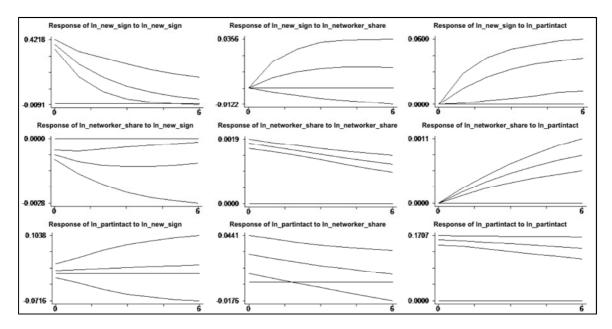
which are displayed in Figure 14, show that a shock in average degree leads to a positive response of active interpersonal participation, which lasts about three months. A shock in participation increases average degree. These findings are supported by robustness tests (see Appendix 16) and are in line with model 1.1.1.1, where new sign-ups are excluded. Further, a shock in new sign-ups is followed by a negative response of average degree, which is also supported by PVAR models of higher lag order. Finally, an impulse in active interpersonal participation increases the number of new sign-ups, which is not significant in PVAR(1), but in PVAR(3) and PVAR(4) after about two months.

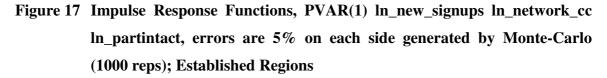

Figure 14 Impulse Response Functions, PVAR(1) ln_new_signups ln_average_degree ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

The results of model 1.2.1.2, which captures the interrelationship between new sign-ups, degree centralization, and active interpersonal participation, are illustrated in Figure 15. When degree centralization gets an impulse, one observes a negative response of participation, which is not significant in PVAR(1). However, in PVAR(2) and PVAR(4), this relationship gets significant after about one month (see Appendix 17). Effects of participation and new sign-ups on degree centralization are significant in the PVAR(1) model, but are not supported by robustness tests. Thus, I am able to show that the inclusion of new sign-ups does not change the interrelationship between degree centralization and active interpersonal participation. Finally, a shock in participation leads to a positive re-

sponse of new sign-ups, which is insignificant in PVAR(1), but significant in PVAR(3) and PVAR(4).

Figure 15 Impulse Response Functions, PVAR(1) ln_new_signups ln_degree_centralization ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

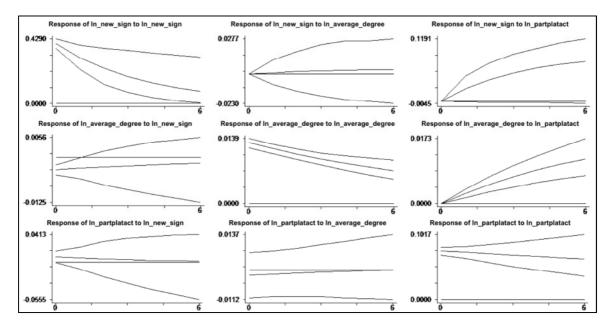



IRFs of model 1.2.1.3, which helps to describe the relationship between new sign-ups, share of networkers, and active interpersonal participation by PVAR(1), reveal that an impulse in the share of networkers is followed by a positive reaction of participation (see Figure 16), which is different from the model excluding new sign-ups (model 1.1.1.3 and robustness tests). Reversely, a shock in participation increases the share of networkers. These findings are supported by robustness tests (see Appendix 18). Additionally, an impulse in participation is followed by a positive response of new sign-ups, which is also confirmed by robustness tests. Finally, IRFs of PVAR(1), PVAR(2), PVAR(3), and PVAR(4) models show that a shock in new sign-ups leads to a negative reaction of the share of networkers.


Model 1.2.1.4 investigates the interrelationship between new sign-ups, network clustering coefficient, and active interpersonal participation. IRFs of all estimated PVAR models do not show any significant effect between network clustering coefficient and participation (see Figure 17 and Appendix 19), which is in line with the results of model 1.1.1.4. In addition, results of PVAR(1) reveal that a shock in participation is followed by a positive

reaction of the number of new sign-ups, which is, however, not supported by robustness tests.

Figure 16 Impulse Response Functions, PVAR(1) ln_new_signups ln_networker_share ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions



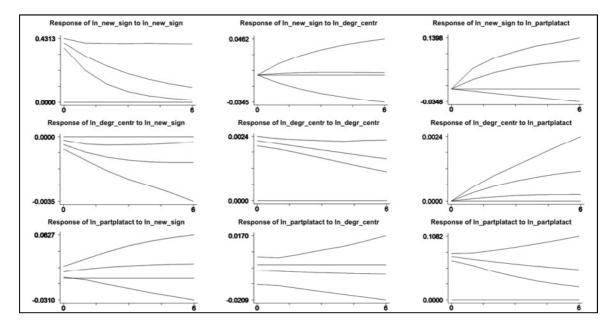

The results of model 1.2.2.1, which describes the interrelationship between the number of new sign-ups, average degree, and active platform participation by PVAR(1) are displayed in Figure 18. IRFs of PVAR(1) imply that a shock in average degree has no significant effects on active platform participation, whereas a shock in active platform participation increases average degree. These findings are in line with the model excluding new sign-ups and are supported by PVAR models of higher lag order (see Appendix 20). Further, a shock in new sign-ups leads to a negative response of average degree and lasts about one and a half months until it turns insignificant. This effect is also confirmed by PVAR(2), PVAR(3), and PVAR(4). Finally, IRFs of PVAR(1) reveal a positive, but insignificant response of new sign-ups to a shock in participation. However, this effect turns significant with estimation of PVAR(3) and PVAR(4).

Figure 18 Impulse Response Functions, PVAR(1) ln_new_signups ln_average_degree ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

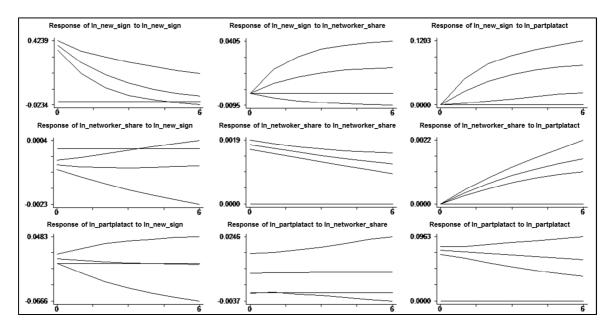

I estimate model 1.2.2.2 in order to investigate the interrelationship between the number of new sign-ups, degree centralization, and active platform participation. The results of the IRFs of PVAR(1) show that a shock in participation leads to a positive response of degree centralization (see Figure 19). Further, a shock in the number of new sign-ups is followed by a negative response of degree centralization and by a positive response of active platform participation, which is slightly significant. These findings are supported by robustness tests (see Appendix 21). Moreover, an impulse in degree centralization leads to a negative, but insignificant response of participation in the PVAR(1) model. However, with estimation of PVAR(2) and PVAR(4) this effects turns significant after about one month. Thus, the inclusion of new sign-ups does not change the interrelationship between degree centralization and active platform participation. Finally, the positive, but insignificant reaction of new sign-ups to a shock in participation in PVAR(1) turns significant with PVAR(3) and PVAR(4).

Figure 19 Impulse Response Functions, PVAR(1) ln_new_signups ln_degree_centralization ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

Results of model 1.2.2.3, which investigates the effects between the number of new signups, share of networkers, and active platform participation, are illustrated in Figure 20. IRFs of PVAR(1) show that a shock in participation increases the share of networkers as well as the number of new sign-ups. Additionally, an impulse in new sign-ups leads to a negative response of the share of networkers, which remains significant for up to three months. These results are confirmed by robustness tests (see Appendix 22). Further, a shock in the share of networkers is followed by a positive response of active platform participation. Although this effect is insignificant in PVAR(1), it gets significant with estimation of PVAR(2), PVAR(3), and PVAR(4) and lasts for up to three months. Thus, the inclusion of new sign-ups does not change the effects between the share of networkers and participation from model 1.1.2.3 and its robustness tests.

Figure 20 Impulse Response Functions, PVAR(1) ln_new_signups ln_networker_share ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

IRFs of model 1.2.2.4, which investigates the relationship between the number of new sign-ups, network clustering coefficient, and active platform participation by PVAR(1), do not show any significant effects between the network clustering coefficient and participation (see Figure 21). These findings are equivalent to the results of model 1.1.2.4, that excludes new sign-ups, and are supported by PVAR models of higher lag order (see Appendix 23). Nevertheless, model 1.2.2.4 also reveals one significant relationship: A shock in participation is followed by an increase in the number of new sign-ups, which is supported by robustness tests.

In the next step, I investigate the interrelationship between the number of new sign-ups, average degree, and active interpersonal and platform participation. IRFs of model 1.2.3.1 reveal that an impulse in average degree leads to a positive response of overall participation (see Figure 22). Conversely, a shock in overall participation increases average degree. These findings are in line with model 1.1.3.1 and are supported by robustness tests (see Appendix 24). Additionally, with estimation of PVAR(1), I discover a negative reaction of average degree to a shock in new sign-ups, which is significant up to three months and is confirmed by PVAR(2), PVAR(3), and PVAR(4). Further, results of PVAR(1) indicate a positive response of the number of new sign-ups to an impulse in

overall participation, which is not significant in the PVAR(1) model, but gets significant with estimation of PVAR models of higher lag order.

Figure 21 Impulse Response Functions, PVAR(1) ln_new_signups ln_network_cc ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

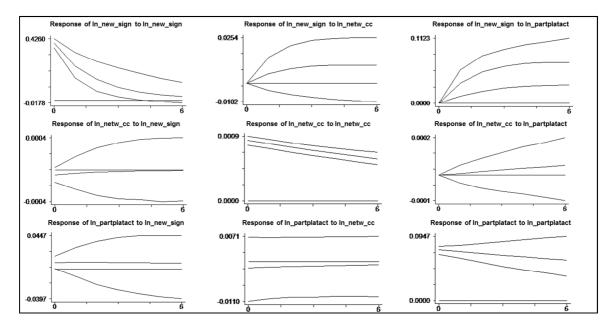
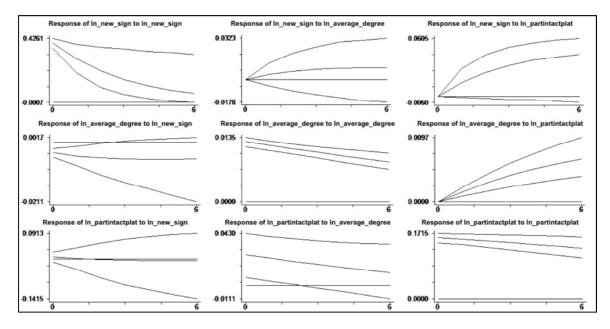
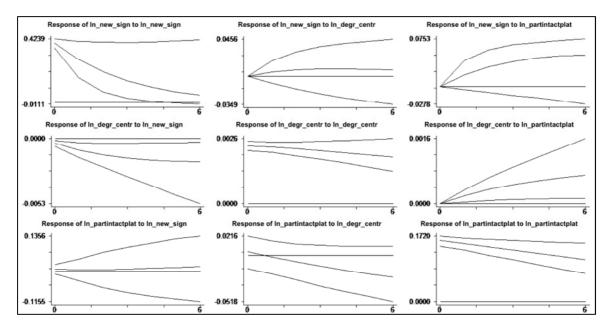




Figure 22 Impulse Response Functions, PVAR(1) ln_new_signups ln_average_degree ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

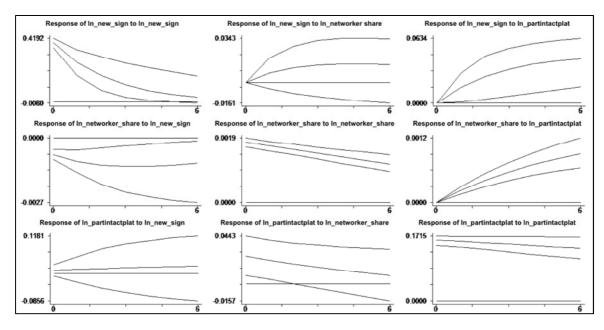
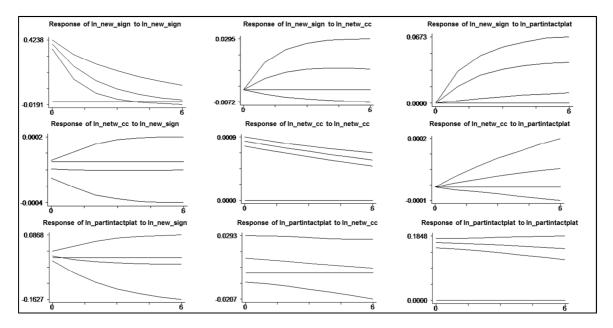

Model 1.2.3.2 investigates the interrelationship between the number of new sign-ups, degree centralization, and active interpersonal and platform participation. The results of the IRFs of PVAR(1), which are displayed in Figure 23, show that an impulse in participation is followed by a significant positive response of degree centralization. This is supported by PVAR models of higher lag order, whereby the effect gets significant after estimation of PVAR(3) (see Appendix 25). However, this finding is different from the model that excludes new sign-ups, where there is no significant effect of overall participation on degree centralization. Further, with estimation of PVAR(1) I detect a significant negative response of degree centralization to a shock in new sign-ups, which is however not significant in the robustness tests. Additionally, an impulse in degree centralization leads to a predominantly negative response of overall participation, which is not significant with estimation of PVAR(1), but gets significant with estimation of PVAR models of higher lag order. This negative effect of degree centralization on overall participation can also be found in the setting that excludes the number of new sign-ups. Further, IRFs of PVAR(1) demonstrate a positive, but insignificant reaction of the number of new sign-ups to a shock in overall participation. However, this effect turns significant with estimation of PVAR models of higher lag order.

Figure 23 Impulse Response Functions, PVAR(1) ln_new_signups ln_degree_centralization ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions

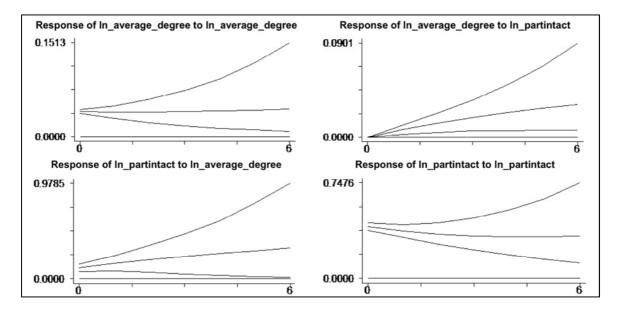
IRFs of model 1.2.3.3, which captures the interrelationship between new sign-ups, share of networkers, and active interpersonal and platform participation by PVAR(1), are displayed in Figure 24. They illustrate a positive reaction of overall participation to a shock in the share of networkers and, reversely, a positive reaction of the share of networkers to a shock in participation. These findings are confirmed by robustness tests (see Appendix 26). Thus, results from this model are slightly different from the model that excludes community growth, where the reaction of overall participation to an impulse in the share of networkers is not significant. Furthermore, a shock in the number of new sign-ups is followed by a negative response of the share of networkers. In PVAR(1), this effect is significant for more than six months. In PVAR(2), PVAR(3), and PVAR(4) this effect lasts for one and a half months. Lastly, an impulse in overall participation increases the number of new sign-ups, which is supported by all PVAR models of higher lag order.



Finally, results of model 1.2.3.4, which investigates effects between the number of new sign-ups, network clustering coefficient, and active interpersonal and platform participation by PVAR(1), are presented in Figure 25. There is no significant effect between the network clustering coefficient and overall participation. This is confirmed by models of higher lag order (see Appendix 27) and is in line with model 1.1.3.4, that excludes new sign-ups. The only significant relationship, which is revealed by model 1.2.3.4, appears in

the positive reaction of the number of new sign-ups to a shock in overall participation. However, this finding is not supported by robustness tests.

Figure 25 Impulse Response Functions, PVAR(1) ln_new_signups ln_network_cc ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); Established Regions



3.5.2. New Regions

Network Structure – Participation

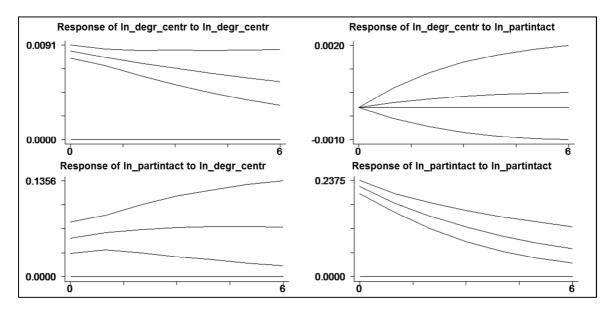
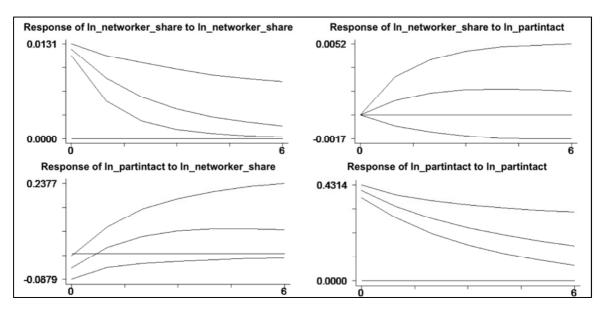
In the next step, I use the sample including the new regions and estimate again the models presented above. First of all, I start again with the analysis of the interrelationship between network structure and participation only. Figure 26 displays the results of the IRFs of model 2.1.1.1, which investigates the relationship between average degree and active interpersonal participation in new regions by the help of PVAR(1). The results show that an impulse in average degree is followed by a significant positive response of participation. Reversely, a shock in participation leads to a positive reaction of average degree. Results of PVAR(1) are supported by robustness tests (see Appendix 28). Thus, the findings of the new regions' model do not differ from model 1.1.1.1 of the established regions.

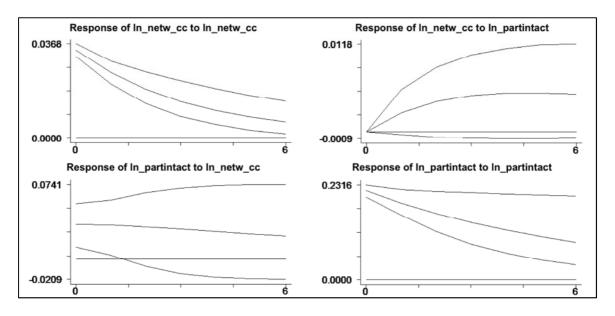
Figure 26 Impulse Response Functions, PVAR(1) ln_average_degree ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

In model 2.1.1.2, the interrelationship between degree centralization and active interpersonal participation is analyzed. IRFs of PVAR(1) demonstrate a positive response of participation to a shock in degree centralization, that lasts for more than six months (see Figure 27). Effects of participation on degree centralization are not significant. In order to check the robustness of these results, I additionally estimate PVAR(2), PVAR(3), and PVAR(4), which confirm the results of PVAR(1) (see Appendix 29). It is remarkable that, in the sample of new regions, the effect of degree centralization on participation is positive and thus is completely different from the sample of established regions.

IRFs of model 2.1.1.3, which describes the interrelationship between the share of networkers and active interpersonal participation, are illustrated in Figure 28. They do not show any significant effects between these two variables. These findings are also supported by models of higher lag order (see Appendix 30). All in all, effects are slightly different from the model of established regions, where a positive response of the share of networkers is detected.

Figure 27 Impulse Response Functions, PVAR(1) ln_degree_centralization ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions


Figure 28 Impulse Response Functions, PVAR(1) ln_networker_share ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

I estimate model 2.1.1.4 in order to study the relationship between the network clustering coefficient and active interpersonal participation. The results of the IRFs of PVAR(1), which are illustrated in Figure 29, indicate that a shock in participation does not have any statistically significant impact on the network clustering coefficient, which is also con-

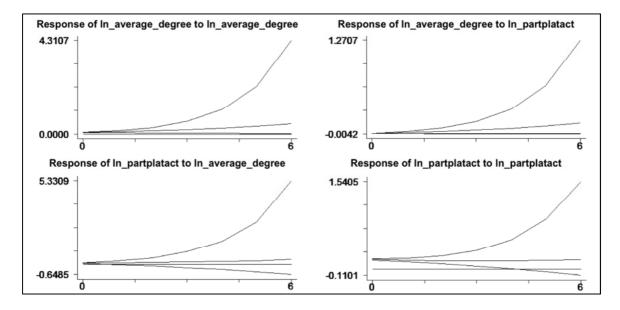

firmed by PVAR(2), PVAR(3), and PVAR(4) (see Appendix 31). Further, IRFs of PVAR(1) reveal a positive reaction of participation to a shock in the network clustering coefficient, which is only partly confirmed. PVAR models of higher lag order show an effect that turns from negative into positive over time. This effect is totally insignificant in PVAR(2). However, in PVAR(3) the negative part of the effect is significant and in PVAR(4) the positive part is significant. Thus, we may conclude that there is a tendency towards a positive effect, but negative effects are not completely excluded. Hence, in contrast to the sample of established regions, here, some effects going out from the network clustering coefficient are detected.

Figure 29 Impulse Response Functions, PVAR(1) ln_network_cc ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

In the following, active platform participation replaces active interpersonal participation. IRFs of model 2.1.2.1, which focuses on the interrelationship between average degree and active platform participation by the help of PVAR(1), are displayed in Figure 30. IRFs of PVAR(1) do not show any significant effects. This is supported by PVAR(2), PVAR(3), and PVAR(4) (see Appendix 32). Thus, results differ from the established regions' sample, where a positive reaction of average degree to a shock in active platform participation is observed.

Figure 30 Impulse Response Functions, PVAR(1) ln_average_degree ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

IRFs of model 2.1.2.2, which investigates the interrelationship between degree centralization and active platform participation in a PVAR(1) model, show that a shock in participation increases degree centralization (see Figure 31). This is also supported by models of higher lag order (see Appendix 33). Reversely, an impulse in degree centralization is followed by a positive response of participation, which lasts for about three months in PVAR(1) and for up to two months in PVAR(2) until it gets insignificant. Thus, the effect from degree centralization on active platform participation is different from the sample of established regions, where a shock in degree centralization is followed by a negative reaction of active platform participation.

I estimate model 2.1.2.3 in order to analyze the interrelationship between the share of networkers and active platform participation. IRFs of PVAR(1) do not detect any significant relationship between these two variables (see Figure 32). PVAR(2), PVAR(3), and PVAR(4) confirm these results (see Appendix 34). Hence, results of this model are totally different from model 1.1.2.3 and its corresponding robustness tests because, there, positive effects in both directions are detected.

Figure 31 Impulse Response Functions, PVAR(1) ln_degree_centralization ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

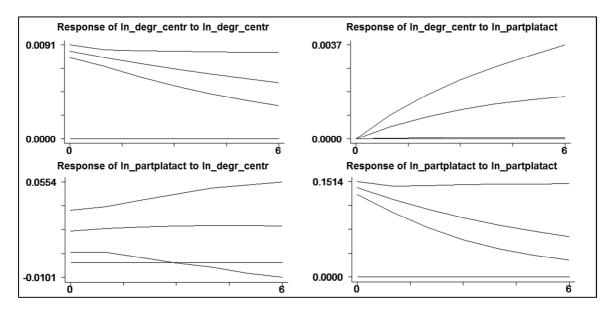
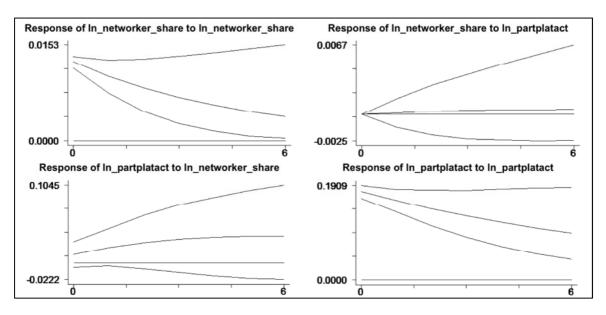



Figure 32 Impulse Response Functions, PVAR(1) ln_networker_share ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

IRFs of model 2.1.2.4, which examines the relationship between the network clustering coefficient and active platform participation by PVAR(1), are displayed in Figure 33. The graphs reveal that there are no significant effects between the network clustering coefficient and participation. These results are supported by all PVAR models of higher lag

order (see Appendix 35) and are in line with results from the corresponding model of the established regions' sample.

Figure 33 Impulse Response Functions, PVAR(1) ln_network_cc ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

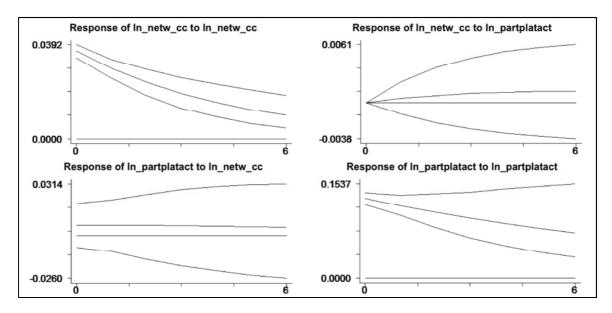


Figure 34 displays the IRFs of model 2.1.3.1, which investigates the effects between average degree and active interpersonal and platform participation by PVAR(1). The graphs indicate a positive response of overall participation to a shock in average degree, that lasts for about four months in the PVAR(1) model. Reversely, a shock in overall participation increases average degree. Positive effects between both variables are also uncovered by robustness tests (see Appendix 36). Therefore, effects are similar to model 1.1.3.1, which is based on the sample of the established regions.

IRFs of model 2.1.3.2, which analyzes the interrelationship between degree centralization and active interpersonal and platform participation by PVAR(1), reveal that a shock in degree centralization is followed by a positive reaction of overall participation, that lasts for more than six months (see Figure 35). Looking at the other direction, no significant effects are detected. Both positive and insignificant effects are also confirmed by PVAR(2), PVAR(3), and PVAR(4) (see Appendix 37). Thus, findings from the new regions' sample are different from the established regions' sample, where the corresponding IRFs demonstrate a negative instead of a positive response of overall participation to an impulse in degree centralization.

Figure 34 Impulse Response Functions, PVAR(1) ln_average_degree ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

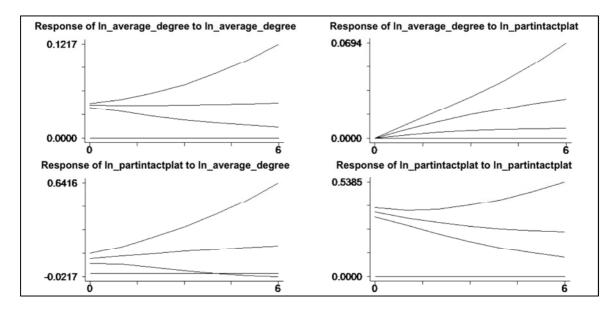
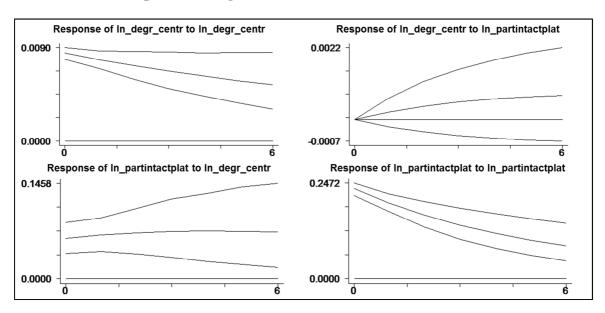



Figure 35 Impulse Response Functions, PVAR(1) ln_degree_centralization ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

IRFs of model 2.1.3.3, which captures the interrelationship between the share of networkers and active interpersonal and platform participation by PVAR(1), are illustrated in Figure 36. They show that an impulse in the share of networkers leads to a positive, but slightly insignificant response of overall participation. However, with estimation of PVAR(2) and PVAR(4) the positive effect turns significant (see Appendix 38). Conversely, the response of the share of networkers to a shock in overall participation is not significant, which is supported by robustness tests. Hence, the positive effect of overall participation on the share of networkers in the established regions' model shows in the case of new regions towards the other direction, i.e. now the positive effects go from the share of networkers to overall participation.

I estimate model 2.1.3.4 in order to investigate the interrelationship between the network clustering coefficient and active interpersonal and platform participation. IRFs of PVAR(1) reveal no significant effects between these two variables (see Figure 37). This is also supported by robustness tests (see Appendix 39) and is in line with model 1.1.3.4, which uses the established regions' sample.

Figure 36 Impulse Response Functions, PVAR(1) ln_networker_share ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

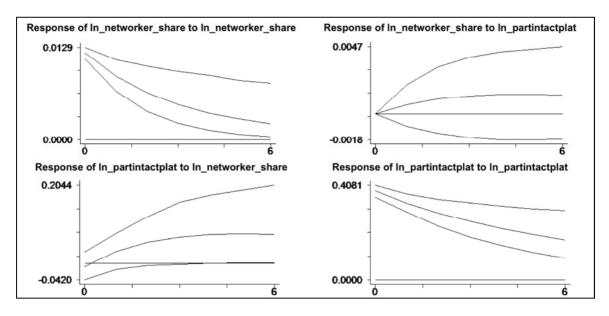
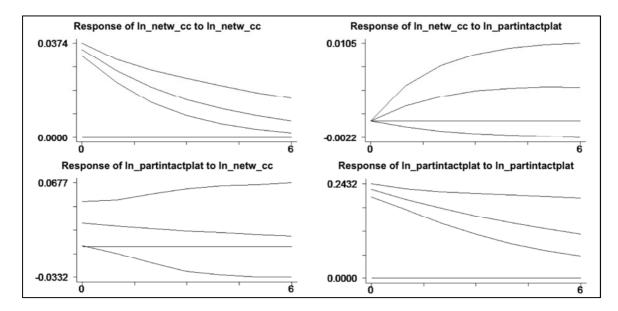



Figure 37 Impulse Response Functions, PVAR(1) ln_network_cc ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

Community Growth – Network Structure – Participation

In the following section, I add the number of new sign-ups in order to investigate the role of community growth and check how effects differ. Figure 38 illustrates the IRFs of model 2.2.1.1, which examines the interrelationship between the number of new sign-ups, average degree, and active interpersonal participation by the help of a PVAR(1) model. Results show that a shock in average degree leads to a slightly significant positive response of participation. This positive effect is supported by PVAR(4), where the effect is also significant (see Appendix 40). However, PVAR(2) and PVAR(3) show a negative effect, which is significant only in PVAR(3). In summary, effects on participation might be positive or negative. However, there is more evidence for a positive relationship. All other effects are insignificant. Hence, after the inclusion of new sign-ups, only effects showing in one direction can be identified, i.e. from average degree to participation, and not in both directions as uncovered in model 2.1.1.1.

IRFs of model 2.2.1.2, which analyzes the relationship between the number of new signups, degree centralization, and active interpersonal participation by PVAR(1), reveal that an impulse in degree centralization is followed by a positive response of participation that lasts for several months (see Figure 39). All other effects are insignificant. These results are supported by PVAR models of higher lag order (see Appendix 41). Furthermore, results do not differ from model 2.1.1.2, that excludes the number of new sign-ups.

Figure 38 Impulse Response Functions, PVAR(1) ln_new_signups ln_average_degree ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

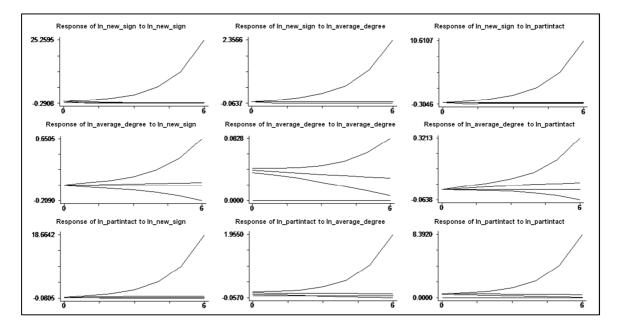
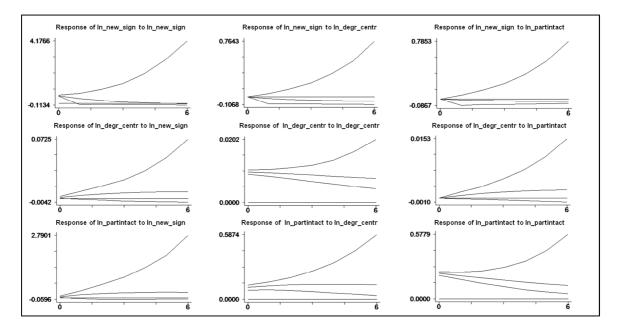



Figure 39 Impulse Response Functions, PVAR(1) ln_new_signups ln_degree_centralization ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

I estimate model 2.2.1.3 in order to capture the interrelationship between the number of new sign-ups, the share of networkers, and active interpersonal participation. IRFs of PVAR(1) do not show any significant effects between the three variables (see Figure 40),

which is also supported by IRFs of PVAR(2), PVAR(3), and PVAR(4) (see Appendix 42). In addition, these results are equivalent to the results of model 2.1.1.3. Thus, an inclusion of new sign-ups does not change the relationship between the share of networkers and active interpersonal participation in new regions.

Figure 40 Impulse Response Functions, PVAR(1) ln_new_signups ln_networker_share ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

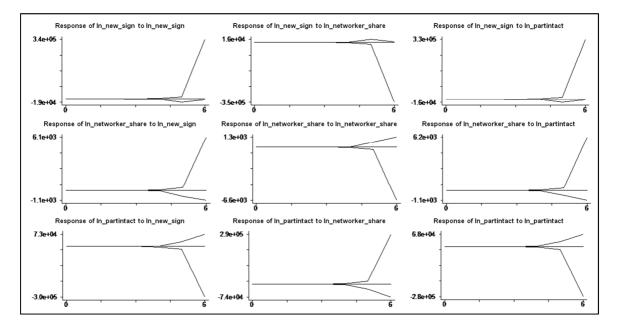
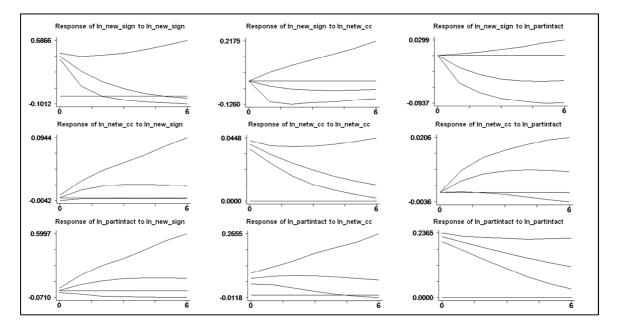



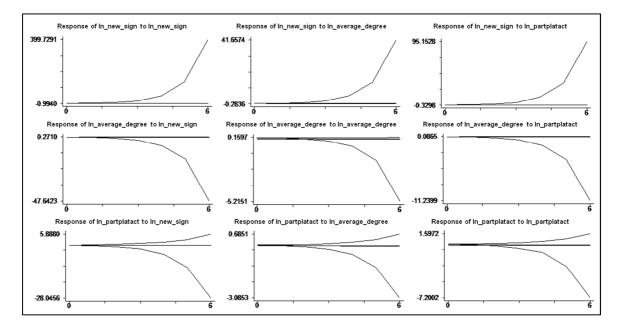
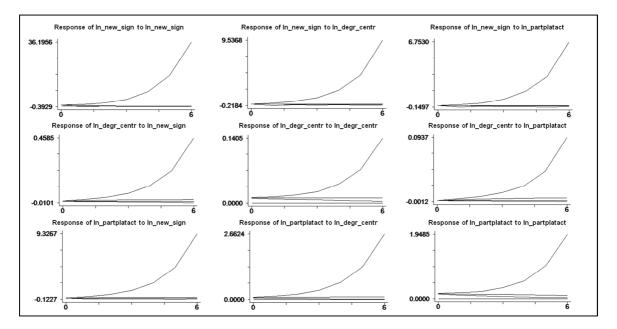
Figure 41 illustrates the results of model 2.2.1.4, which investigates the interrelationship between the number of new sign-ups, the network clustering coefficient, and active interpersonal participation. IRFs of PVAR(1) show that an impulse in the network clustering coefficient leads to a significant positive response of participation, that lasts for about four and a half months. However, this positive effect cannot be supported by robustness tests because it is insignificant in models of higher lag order or even becomes significant negative in PVAR(3) (see Appendix 43). Thus, results of model 2.2.1.4 and its robustness tests are nearly similar to model 2.1.1.4 and its robustness tests. However, model 2.1.1.4 and robustness tests show a tendency towards a positive effect, whereas model 2.2.1.4 and the corresponding models of higher lag order do not show a tendency towards a certain effect, i.e. both positive and negative effects are possible. All other effects between the selected variables of model 2.2.1.4 are insignificant, which is also confirmed by PVAR(2), PVAR(3), and PVAR(4).

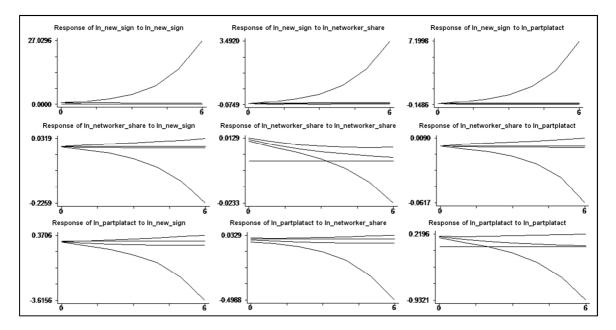
Figure 41 Impulse Response Functions, PVAR(1) ln_new_signups ln_network_cc ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

Model 2.2.2.1 analyzes the interrelationship between the number of new sign-ups, average degree, and active platform participation by the help of PVAR(1). Results of IRFs do not detect any significant effects between these variables (see Figure 42). This is also supported by PVAR(2), PVAR(3), and PVAR(4) (see Appendix 44). Thus, the inclusion of new sign-ups does not change the results of model 2.1.2.1.

Figure 43 displays the results of model 2.2.2.2, which captures the effects between the number of new sign-ups, degree centralization, and active platform participation by PVAR(1). IRFs of PVAR(1) reveal a significant positive response of participation to a shock in degree centralization, which is also significant in PVAR(4) (see Appendix 45). Further, there is a positive response of degree centralization to a shock in participation, which is not significant in PVAR(1), but in models of higher lag order. Other effects are not significant. This is also confirmed by robustness tests. Thus, results are similar to model 2.1.2.2 and the corresponding PVAR models of higher lag order, where positive reciprocal effects between degree centralization and active platform participation are detected.

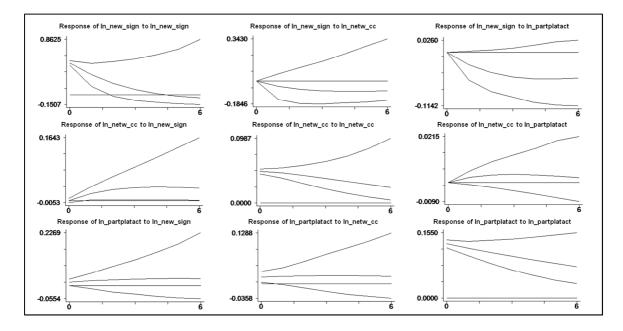
Figure 42 Impulse Response Functions, PVAR(1) ln_new_signups ln_average_degree ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

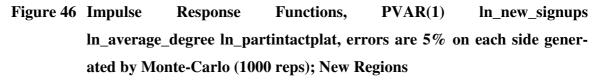




Figure 43 Impulse Response Functions, PVAR(1) ln_new_signups ln_degree_centralization ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

Results of IRFs of model 2.2.2.3, which examines the relationship between the number of new sign-ups, the share of networkers, and active platform participation by PVAR(1), do not show any significant effects (see Figure 44). This is also confirmed by models of

higher lag order (see Appendix 46) and corresponds to model 2.1.2.3, that excludes new sign-ups.


Figure 44 Impulse Response Functions, PVAR(1) ln_new_signups ln_networker_share ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions



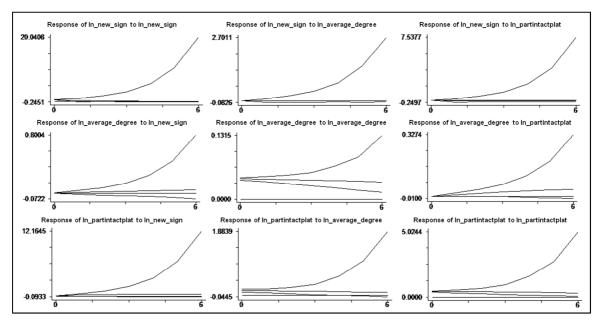
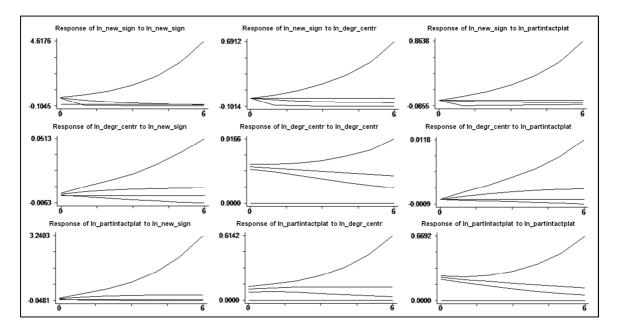

I estimate model 2.2.2.4 in order to analyze the interrelationship between the number of new sign-ups, the network clustering coefficient, and active platform participation. The results of PVAR(1) show a slightly significant positive response of participation to an impulse in the network clustering coefficient (see Figure 45). However, this is not supported by robustness tests (see Appendix 47). The effect even becomes slightly significant negative in PVAR(4). Hence, both positive and negative effects are possible. Other effects between the variables of model 2.2.2.4 are not significant, which is confirmed by robustness tests. Thus, findings are different from model 2.1.2.4 and the corresponding models of higher lag order that ignore the number of new sign-ups because, there, effects between the network clustering coefficient and platform participation are not significant.

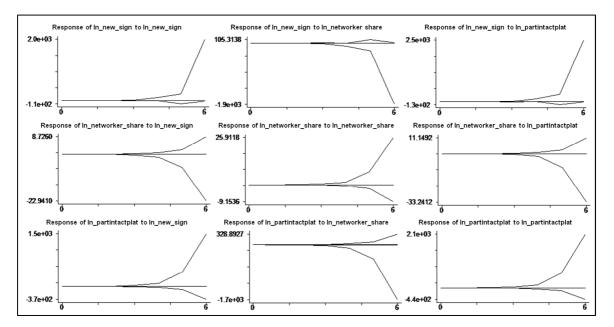
Figure 46 displays the results of model 2.2.3.1, which analyzes the interrelationship between the number of new sign-ups, average degree, and active interpersonal and platform participation. IRFs of PVAR(1) detect a positive response of overall participation to a shock in average degree that lasts for up to four months. Other effects are insignificant. These findings are also confirmed by models of higher lag order (see Appendix 48), but are slightly different from model 2.1.3.1, which reveals positive reciprocal effects between average degree and overall participation. Thus, the inclusion of new sign-ups is associated with an insignificant response of average degree to a shock in overall participation.

Figure 45 Impulse Response Functions, PVAR(1) ln_new_signups ln_network_cc ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

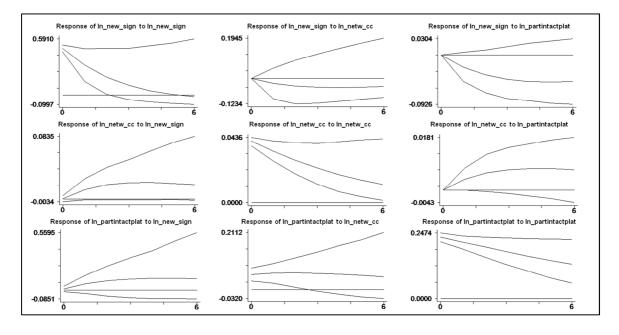


Model 2.2.3.2 examines the effects between the number of new sign-ups, degree centralization, and active interpersonal and platform participation by the help of a PVAR(1). Results of IRFs reveal a positive response of overall participation to an impulse in degree centralization, which lasts for more than six months until it gets insignificant (see Figure 47). A positive effect is also uncovered by PVAR(2), PVAR(3), and PVAR(4) (see Appendix 49). Therefore, an inclusion of new sign-ups in the model leads to the same results as already stated by model 2.1.3.2. Other effects between the variables of model 2.2.3.2 are not significant, which is also confirmed by robustness tests.

Figure 47 Impulse Response Functions, PVAR(1) ln_new_signups ln_degree_centralization ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions



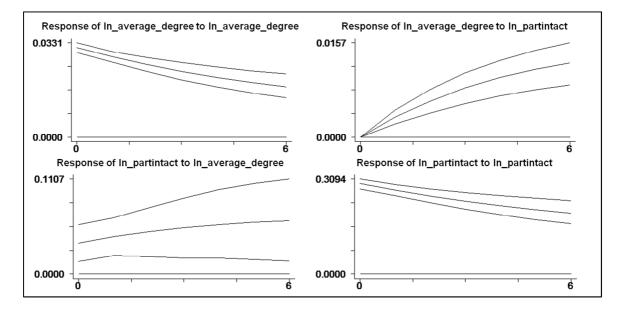
I estimate model 2.2.3.3 in order to uncover effects between the number of new sign-ups, the share of networkers, and active interpersonal and platform participation. IRFs of PVAR(1) do not detect any significant effects (see Figure 48), which is also supported by robustness tests (see Appendix 50). Hence, results are different from model 2.1.3.3 and the corresponding models of higher lag order, by the help of which a significant positive response of overall participation to a shock in the share of networkers is identified.


Finally, IRFs of model 2.2.3.4, which investigates the relationship between the number of new sign-ups, the network clustering coefficient, and active interpersonal and platform participation by PVAR(1), show a positive response of overall participation to a shock in the network clustering coefficient (see Figure 49). However, in models of higher lag or-

der, this positive effect is no longer significant and even becomes significant negative in PVAR(3) (see Appendix 51). Hence both positive and negative effects are possible. Thus, the inclusion of new sign-ups changes the relationship between the clustering coefficient and overall participation because of potential positive and negative reactions of overall participation to an impulse in the network clustering coefficient. Finally, the positive reaction of overall participation to a shock in new sign-ups, which is not significant in a PVAR(1), becomes significant with estimation of PVAR(3) and PVAR(4) for a very short period of time.

Figure 48 Impulse Response Functions, PVAR(1) ln_new_signups ln_networker_share ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions

Figure 49 Impulse Response Functions, PVAR(1) ln_new_signups ln_network_cc ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); New Regions


3.5.3. All Regions

Network Structure – Participation

In the next step, I combine the sample of established regions and new regions in order to create a broader base for model estimation. Therefore, general statements about the interrelationship between the discussed variables independently from their life cycle phase are possible.

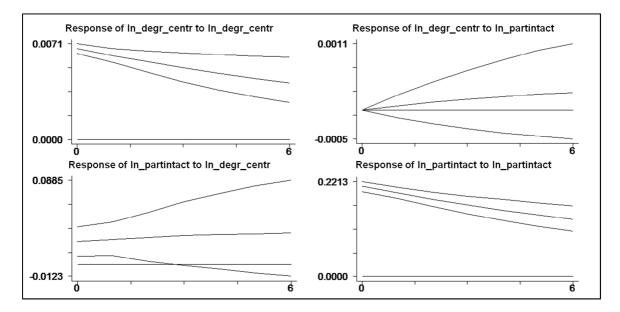
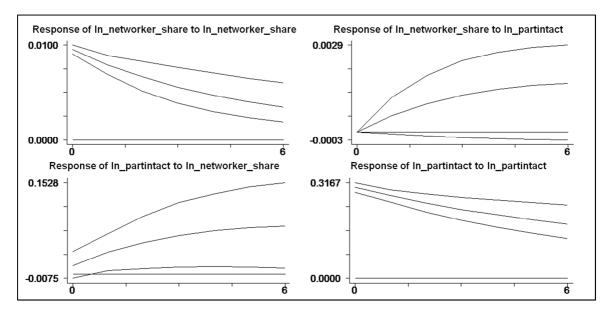
Again, I start with those models investigating the interrelationship between network structure and participation. Figure 50 illustrates the results of model 3.1.1.1, by which effects between average degree and active interpersonal participation are analyzed. IRFs of PVAR(1) show that a shock in average degree leads to a long lasting positive response of participation. Conversely, a shock in participation increases average degree. These results are also supported by PVAR(2), PVAR(3), and PVAR(4) (see Appendix 52). Furthermore, results correspond to the findings based on the established regions' (model 1.1.1.1 and robustness tests) and on the new regions' (model 2.1.1.1 and robustness tests) sample.

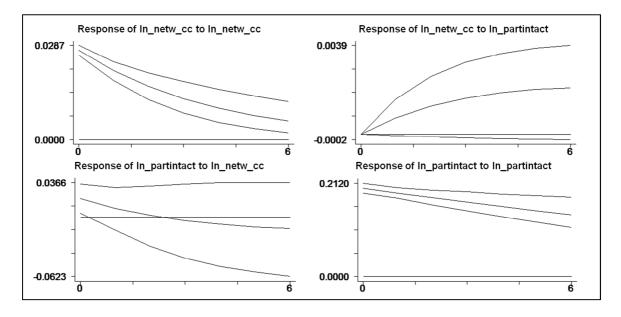
Figure 50 Impulse Response Functions, PVAR(1) ln_average_degree ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

Model 3.1.1.2 examines the interrelationship between degree centralization and active interpersonal participation by the help of PVAR(1) based on the all regions' sample. Results show that an impulse in degree centralization is followed by a positive reaction of participation (see Figure 51). Reversed effects are not significant. This is also supported by PVAR models of higher lag order (see Appendix 53). Moreover, results conform to the findings based on the new regions' sample, but are different from the findings based on the established regions' sample, where a negative effect of degree centralization on participation is detected.

IRFs of model 3.1.1.3, which investigates the interrelationship between the share of networkers and active interpersonal participation, reveal a positive reaction of participation to an impulse in the share of networkers (see Figure 52). Reversed effects are not significant. Robustness tests support the findings of PVAR(1) (see Appendix 54). Hence, the present findings are different from those of the established regions' sample, where a onesided positive effect of participation on the share of networkers is detected. Moreover, findings are also different from those of the new regions' sample, where significant effects are not detected at all.

Figure 51 Impulse Response Functions, PVAR(1) ln_degree_centralization ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions


Figure 52 Impulse Response Functions, PVAR(1) ln_networker_share ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

Effects between the network clustering coefficient and active interpersonal participation are analyzed by the help of model 3.1.1.4. Results of PVAR(1) show a significant positive response of participation to a shock in the network clustering coefficient (see Figure 53). However, this effect is no longer significant with estimation of PVAR models of

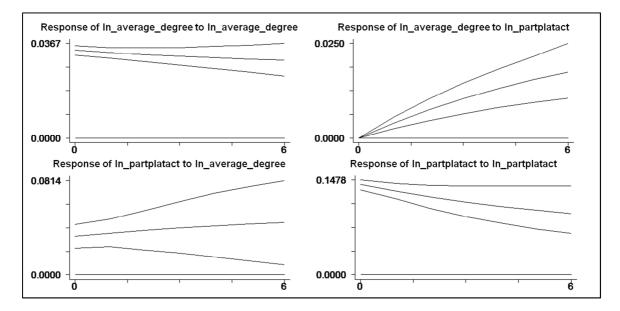

higher lag order. The effect even becomes significant negative with estimation of PVAR(2) and PVAR(3) (see Appendix 55). Thus, there is a tendency towards a negative effect, although positive effects are not completely excluded. Moreover, IRFs of PVAR(1) do not detect any significant reaction of the network clustering effect to an impulse in participation, which is supported by robustness tests. All in all, regarding the response of participation to a shock in the network clustering coefficient, the results differ from the established regions' sample, where no significant effects are detected, and also from the new regions' sample, where a positive response of participation to a shock in the clustering coefficient is identified.

Figure 53 Impulse Response Functions, PVAR(1) ln_network_cc ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

Model 3.1.2.1 examines the relationship between average degree and active platform participation by the help of PVAR(1). Results of IRFs show significant positive reciprocal effects between the two variables (see Figure 54), which is also supported by PVAR(2), PVAR(3), and PVAR(4) (see Appendix 56). However, results differ from the established regions sample because, there, only a positive response of average degree to a shock in participation is detected. Further, there are also differences towards the new regions' sample, where no significant effects are observed.

Figure 54 Impulse Response Functions, PVAR(1) ln_average_degree ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

I estimate model 3.1.2.2 in order to uncover effects between degree centralization and active platform participation. Results of PVAR(1) show significant positive reciprocal effects between the two variables (see Figure 55), which is also confirmed by PVAR models of higher lag order (see Appendix 57). Thus, results are in line with those of the new regions' sample. However, they are different from the established regions' sample: Although a positive response of degree centralization to a shock in participation is identified, IRFs of the established regions' sample show a negative reaction of participation to a shock in degree centralization.

IRFs of model 3.1.2.3, which captures the interrelationship between the share of networkers and active platform participation by PVAR(1), are displayed in Figure 56. Whereas positive reciprocal effects in the established regions' sample and no significant effects in the new regions' sample are detected, IRFs of model 3.1.2.3 show a mixture of both, i.e. a shock in the share of networkers leads to a positive response of active platform participation, reversed effects are not significant. Robustness tests confirm these results (see Appendix 58).

Figure 55 Impulse Response Functions, PVAR(1) ln_degree_centralization ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

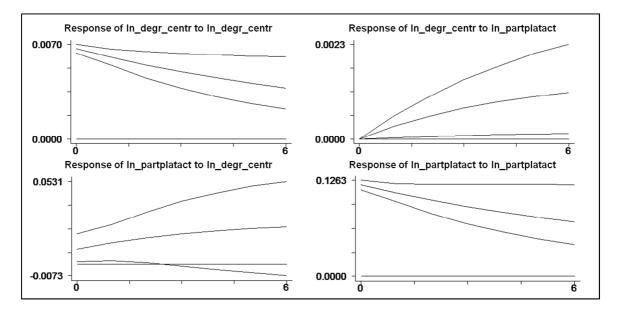
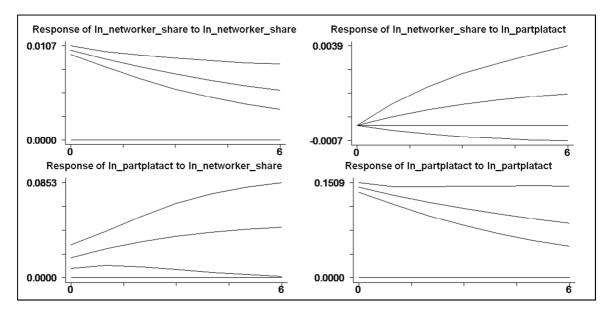
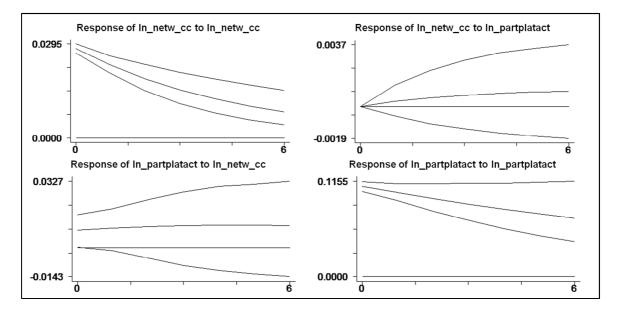




Figure 56 Impulse Response Functions, PVAR(1) ln_networker_share ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

Results of model 3.1.2.4, which investigates the relationship between the network clustering coefficient and active platform participation, do not demonstrate any significant effects between the variables (see Figure 57), which is also supported by PVAR(2), PVAR(3), and PVAR(4) (see Appendix 59). Thus, results of the sample that combines all regions are equivalent to the findings gained from the established and the new regions' sample.

Figure 57 Impulse Response Functions, PVAR(1) ln_network_cc ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

Model 3.1.3.1 analyzes the interrelationship between average degree and active interpersonal and platform participation. The results show that a shock in average degree is followed by a long-lasting and significant positive response of overall participation (see Figure 58). Reversely, a shock in overall participation increases average degree. These findings are confirmed by PVAR(2), PVAR(3), and PVAR(4) (see Appendix 60). Moreover, results are in line with the findings gained from the established regions' and new regions' sample.

Effects between degree centralization and active interpersonal and platform participation are analyzed by the help of model 3.1.3.2. IRFs of PVAR(1) reveal a positive response of overall participation to a shock in degree centralization (see Figure 59). However, reversed effects are not significant. These findings are also supported by PVAR models of higher lag order (see Appendix 61). Although results are equivalent to the new regions' sample, they differ from the established regions' sample, where a negative response of overall participation to a shock in degree centralization is uncovered.

Figure 58 Impulse Response Functions, PVAR(1) ln_average_degree ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

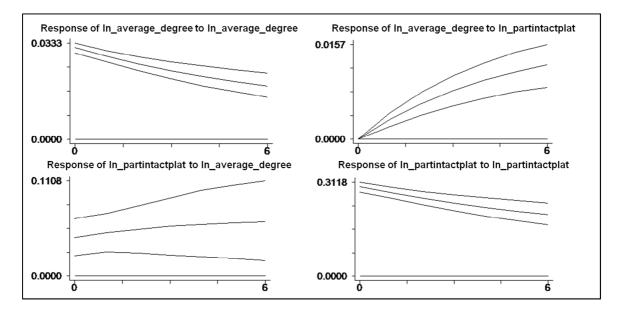
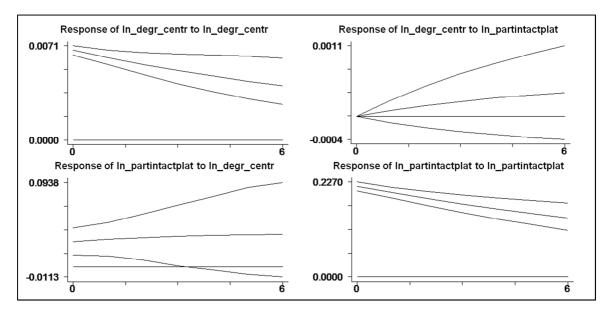



Figure 59 Impulse Response Functions, PVAR(1) ln_degree_centralization ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

Results of model 3.1.3.3, which examines the relationship between the share of networkers and active interpersonal and platform participation by the help of a PVAR(1) model, are displayed in Figure 60. IRFs show that an impulse in the share of networkers is followed by a positive response of overall participation. Reversed effects are not significant.

Robustness tests confirm these results (see Appendix 62). Thus, effects are similar to the new regions' sample. In the established regions' sample, however, the unidirectional and positive effect is reversed, i.e. a shock in overall participation is followed by a positive response of the share of networkers.

The interrelationship between the network clustering coefficient and active interpersonal and platform participation is investigated by the help of model 3.1.3.4. The results of PVAR(1) demonstrate a slightly and shortly positive response of overall participation to an impulse in the network clustering coefficient (see Figure 61). However, this effect is not maintained by robustness tests, since it even gets significant negative with estimation of PVAR(2) and PVAR(3) (see Appendix 63). Hence, there is a tendency towards a negative effect. Reversely, a shock in overall participation is not followed by a significant response of the network clustering coefficient. This is also supported by PVAR(2), PVAR(3), and PVAR(4). Taken together, results are different from the new regions' and the established regions' sample, where no significant effects are detected between the variables.

Figure 60 Impulse Response Functions, PVAR(1) ln_networker_share ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

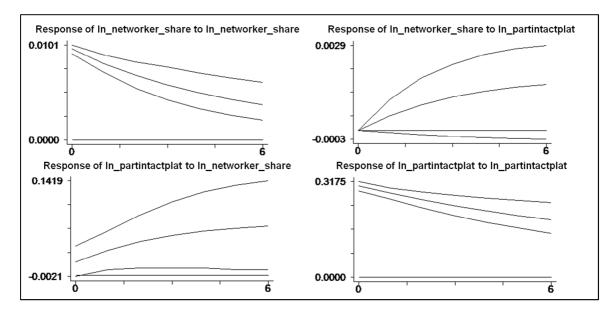
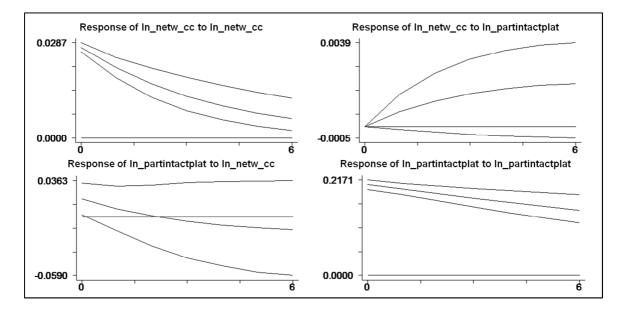
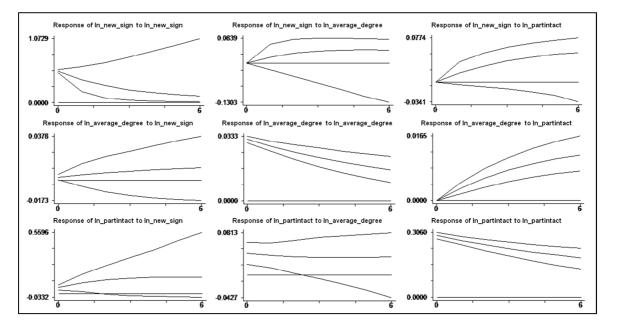



Figure 61 Impulse Response Functions, PVAR(1) ln_network_cc ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

Community Growth – Network Structure – Participation

In this section, I include again the number of new sign-ups in order to learn more about the interrelationship between community growth, network structure, and participation. First, I estimate model 3.2.1.1, which investigates the effects between the number of new sign-ups, average degree, and active interpersonal participation by the help of PVAR(1) based on the all regions' sample. IRFs show that a shock in average degree leads to a positive response of participation and, vice versa, a shock in participation increases average degree (see Figure 62). These findings are also supported by PVAR(2), PVAR(3), and PVAR(4) (see Appendix 64). Thus, by comparing models 3.1.1.1 and 3.2.1.1 it is apparent that, in the all regions' sample, the inclusion of new sign-ups does not change the effects between average degree and active interpersonal participation. Further, model 3.2.1.1 reveals a positive reaction of participation to an impulse in the number of new sign-ups, which is also confirmed by robustness tests. Summing up, model results gained from the three different samples (i.e. results around model 1.2.1.1, model 2.2.1.1, model 3.2.1.1, and corresponding robustness tests) are not identical. But, they have one significant effect in common: the positive reaction of participation to a shock in average degree.


Model 3.2.1.2 examines the relationship between the number of new sign-ups, degree centralization, and active interpersonal participation by the help of PVAR(1). The results demonstrate that an impulse in degree centralization leads to a positive response of partic-

ipation that remains significant up to four months (see Figure 63). Reversed effects are not significant. These results are also confirmed by robustness tests (see Appendix 65) and correspond to model 3.1.1.2, that excludes community growth. Further, PVAR(1) is not able to show a significant reaction of degree centralization to a shock in the number of new sign-ups. However, PVAR(3) identifies a negative effect, which stays significant for a short period of time. PVAR(4) identifies a positive effect, which becomes significant after about five months. Thus, concerning the reaction of degree centralization to an impulse in the number of new sign-ups, both positive and negative effects are not excluded. Comparing the results of the all regions' sample with the results gained from the other two samples, one can state that the effects between degree centralization and active interpersonal participation correspond to the new regions' sample, but not to the established regions' sample.

IRFs of model 3.2.1.3, which analyzes effects between the number of new sign-ups, the share of networkers, and active interpersonal participation by the help of PVAR(1), reveal that an impulse in participation increases the share of networkers (see Figure 64). This effect is also significant with estimation of PVAR(2) (see Appendix 66). Reversely, an impulse in the share of networkers is followed by a positive response of active interpersonal participation, which is not significant in the PVAR(1) model, but turns significant with estimation of PVAR(2), PVAR(3), and PVAR(4). Thus, results of model 3.2.1.3 and the corresponding robustness tests differ only slightly from the findings of model 3.1.1.3 and its robustness tests, where only the effect from the share of networkers on active interpersonal participation is significant. Further, model 3.2.1.3 reveals a significant positive reaction of participation to a shock in new sign-ups. However, this effect is not confirmed by models of higher lag order. Taken together, the findings from the all regions' sample equal the established regions' sample concerning the relationship between the share of networkers and active interpersonal participation. Results concerning all other relationships match with the results gained from the new regions' sample, where no significant effects are detected.

Effects between the number of new sign-ups, the network clustering coefficient, and active interpersonal participation are displayed in Figure 65. IRFs of model 3.2.1.4 show that a shock in the network clustering coefficient is followed by a significant positive response of participation in the PVAR(1) model. However, PVAR models of higher lag order do not confirm this effect (see Appendix 67). In PVAR(2) and PVAR(3) this effect even becomes significant negative. Thus, there is a tendency towards a negative effect. Further, there is no significant response of the network clustering coefficient to an impulse in active interpersonal participation, which is also confirmed by PVAR(2), PVAR(3), and PVAR(4). Hence, results are in line with the results gained from the model that excludes community growth. Furthermore, model 3.2.1.4 reveals a positive response of the network clustering coefficient to a shock in the number of new sign-ups, which is not confirmed by models of higher lag order. However, there is evidence for a positive response of new sign-ups to a shock in active interpersonal participation, which is insignificant in a PVAR(1), but turns significant with estimation of PVAR(3) and PVAR(4). Hence, the results gained from the all regions' sample differ from the established regions' sample, where no effects are significant. Moreover, results gained from the all regions' sample are comparable to the results gained from the new regions' sample concerning the negative reaction of participation to a shock in the network clustering coefficient, which is also possible in the new regions' sample.

Figure 62 Impulse Response Functions, PVAR(1) ln_new_signups ln_average_degree ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

Figure 63 Impulse Response Functions, PVAR(1) ln_new_signups ln_degree_centralization ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

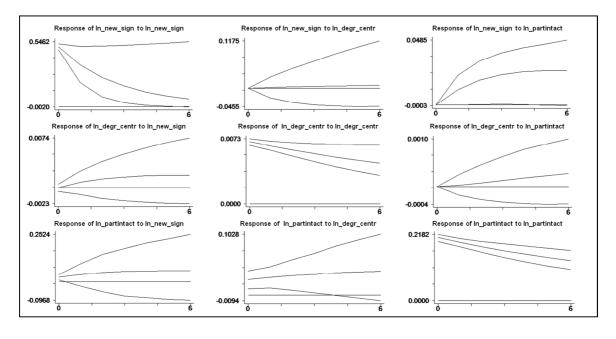


Figure 64 Impulse Response Functions, PVAR(1) ln_new_signups ln_networker_share ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

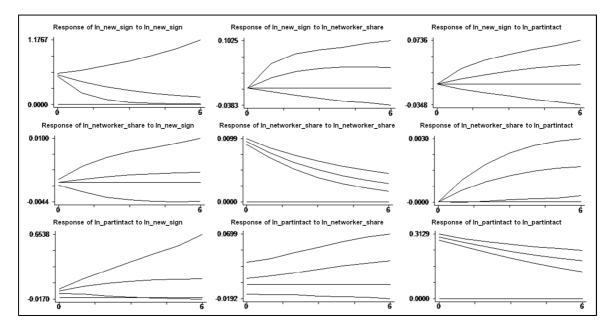
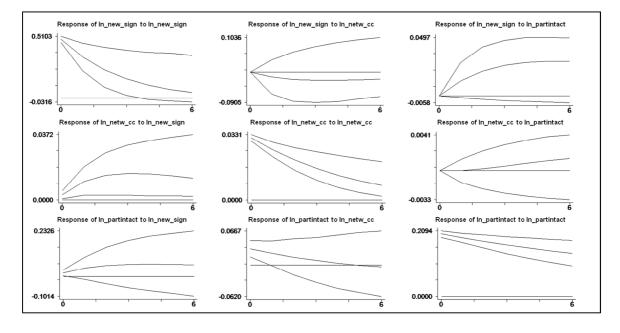
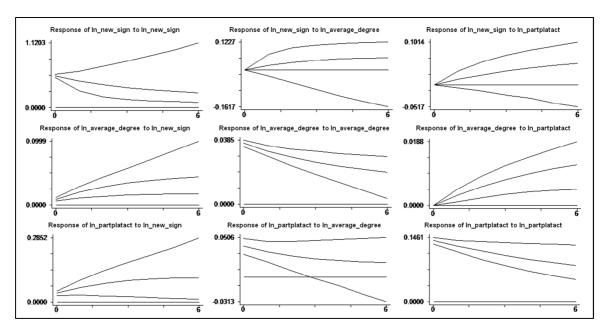



Figure 65 Impulse Response Functions, PVAR(1) ln_new_signups ln_network_cc ln_partintact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

Model 3.2.2.1 focuses on the interrelationship between the number of new sign-ups, average degree, and active platform participation by the help of PVAR(1). Results of the model reveal positive reciprocal effects between average degree and participation (see Figure 66). These effects are also detected by models of higher lag order (see Appendix 68) and are similar to the model 3.1.2.1, that focuses only on the relationship between average degree and participation. Moreover, a shock in the number of new sign-ups is followed by a positive response of active interpersonal participation, that stays significant for more than six months in the PVAR(1) model. In PVAR models of higher lag order the significant positive effect lasts only for a very short period of time. Further, a shock in new sign-ups leads to a long-lasting increase in average degree, which is also supported by robustness tests. Summing up, the detected effects gained from the all regions' sample are comparable to the established regions' sample concerning the positive effect of active platform participation on average degree, but are totally different from the new regions' sample, where no effects are significant.


I estimate model 3.2.2.2 in order to investigate the effects between the number of new sign-ups, degree centralization, and active platform participation. IRFs of PVAR(1) illustrate a positive response of participation to a shock in degree centralization, that stays significant for about three months (see Figure 67). Reversely, a shock in participation

increases degree centralization. The positive reciprocal effects are confirmed by robustness tests (see Appendix 69). Thus, findings are similar to model 3.1.2.2, that excludes the number of new sign-ups. Moreover, model 3.2.2.2 reveals that an impulse in the number of new sign-ups leads to a positive response of active platform participation that remains significant for about five months in a PVAR(1). This positive effect is supported by all PVAR models of higher lag order, but the time period for significant effects is much shorter. Further, the response of degree centralization to a shock in the number of new sign-ups is not significant in the PVAR(1) model, but becomes significant negative with the estimation of PVAR(3) and PVAR(4). In summary, effects of active platform participation on degree centralization correspond to the established regions' sample. Similarities to the results of the new regions' sample become apparent regarding the positive reciprocal effects between degree centralization and active platform participation.

IRFs of model 3.2.2.3, which examines the interrelationship between the number of new sign-ups, the share of networkers, and active platform participation by the help of PVAR(1), show a positive reaction of participation to an impulse in the share of networkers (see Figure 68). Reversed effects are not significant. These results are also confirmed by PVAR models of higher lag order (see Appendix 70) and comply with the results of the corresponding model 3.1.2.3, that does not consider community growth. Further, a shock in the number of new sign-ups is followed by a positive response of both active platform participation and the share of networkers, which is also confirmed by robustness tests. Hence, results gained from the all regions' sample differ from the new regions' sample, where all effects are insignificant. Regarding the significant effects of the all and the established regions' sample, only the positive response of active platform participation to an impulse in the share of networkers is detected in both samples.

Effects between the number of new sign-ups, the network clustering coefficient, and active platform participation are analyzed by the help of model 3.2.2.4. IRFs of PVAR(1) reveal no significant response of the network clustering coefficient to an impulse in platform participation (see Figure 69). This is confirmed by PVAR(2), PVAR(3), and PVAR(4) (see Appendix 71). Besides, IRFs of PVAR(1) show that an impulse in the network clustering coefficient is followed by a significant positive response of participation. However, this effect becomes significant negative in the PVAR(2) model for a short period of time and it becomes insignificant in the PVAR(3) and PVAR(4) models. Thus, both positive and negative effects are not excluded. Hence, the inclusion of community growth changes to a certain extent the relationship between the clustering coefficient and active platform participation in the all regions' sample because model 3.1.2.4, that excludes community growth, does not reveal any significant effects. Furthermore, the results of PVAR(1) demonstrate that an impulse in the number of new sign-ups leads to a positive response of the network clustering coefficient, that lasts for more than six months, and to a positive response of participation, that lasts for about three months. Also robustness tests detect positive reactions of both variables to a shock in the number of new sign-ups. Summing up, results gained from the all regions' sample differ from the results gained from the new regions' sample concerning the possible positive and negative responses of platform participation to a shock in the network clustering coefficient.

Figure 66 Impulse Response Functions, PVAR(1) ln_new_signups ln_average_degree ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

Figure 67 Impulse Response Functions, PVAR(1) ln_new_signups ln_degree_centralization ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

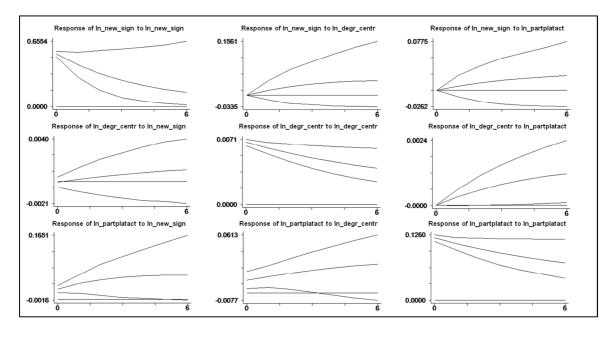


Figure 68 Impulse Response Functions, PVAR(1) ln_new_signups ln_networker_share ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

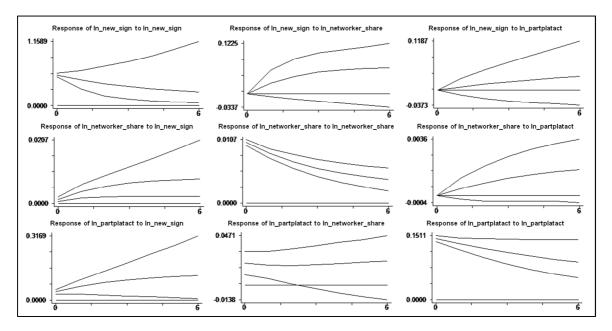
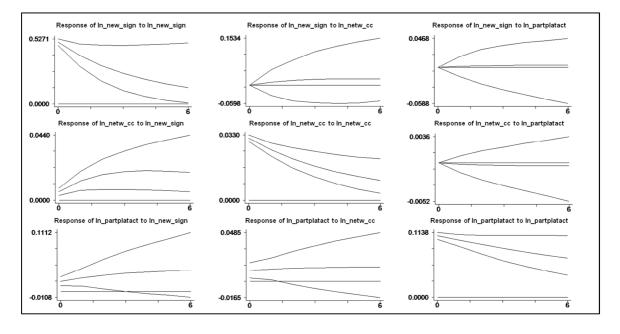
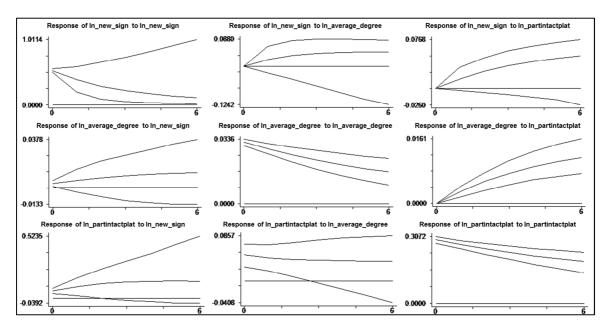



Figure 69 Impulse Response Functions, PVAR(1) ln_new_signups ln_network_cc ln_partplatact, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

Model 3.2.3.1 analyzes the interrelationship between the number of new sign-ups, average degree, and active interpersonal and platform participation. IRFs of PVAR(1) demonstrate that an impulse in average degree leads to a positive response of overall participation, that remains significant up to three months (see Figure 70). Reversely, an impulse in participation increases average degree. Positive reciprocal effects between these two variables are also detected by PVAR(2), PVAR(3), and PVAR(4) (see Appendix 72). Hence, an inclusion of community growth does not change the positive reciprocal effects between average degree and overall participation in the all regions' sample. Results of model 3.2.3.1 also indicate a positive reaction of overall participation to a shock in the number of new sign-ups, which is also confirmed by models of higher lag order. Taken together, results gained from the all regions' sample equal the results gained from the established regions' sample in the positive reciprocal effects between average degree and active interpersonal and platform participation. Further, they equal the results gained from the new regions' sample only in the positive effect from average degree on overall participation.

IRFs of model 3.2.3.2, which investigates the relationship between the number of new sign-ups, degree centralization, and active interpersonal and platform participation, show that in the PVAR(1) model a shock in degree centralization is followed by a positive re-


sponse of overall participation, that lasts for about four months (see Figure 71). Robustness tests confirm a positive, but shorter effect (see Appendix 73). Reversed effects are not significant, which is confirmed by PVAR(2), PVAR(3), and PVAR(4). Hence, results are similar to model 3.1.3.2, that excludes community growth. Moreover, IRFs of PVAR(1) reveal a significant positive reaction of overall participation to an impulse in the number of new sign-ups, which is also supported by models of higher lag order. Summing up, results gained from the all regions' sample are completely different from the established regions' sample regarding their significant effects. Yet, results gained from the all regions' sample are comparable to the results gained from the new regions' sample regarding the positive effect from degree centralization on overall participation.

I estimate model 3.2.3.3 in order to analyze the interrelationship between the number of new sign-ups, the share of networkers, and active interpersonal and platform participation. Results of PVAR(1) demonstrate a positive response of the share of networkers to a shock in overall participation, which becomes significant with some delay (see Figure 72). This finding is also supported by PVAR(2) (see Appendix 74). Reversely, a shock in the share of networkers is followed by a positive response of participation, which is insignificant in the PVAR(1) model, but gets significant with estimation of PVAR(2), PVAR(3), and PVAR(4). Thus, there are positive reciprocal effects between the two variables. These findings are slightly different from model 3.1.3.3 that excludes community growth, because, there, only a unilateral positive effect from the share of networkers on overall participation is detected. Further, results of PVAR(1) reveal a positive reaction of overall participation to an impulse in the number of new sign-ups, which is also supported by PVAR models of higher lag order. Hence, findings gained from the all regions' sample are totally different from the new regions' sample, where no significant effects are detected. But they conform to the findings gained from the established regions' sample regarding the positive reciprocal effect between the share of networkers and active interpersonal and platform participation.

Finally, effects between the number of new sign-ups, the network clustering coefficient, and active interpersonal and platform participation are investigated in model 3.2.3.4. IRFs of PVAR(1) reveal a significant positive response of overall participation to a shock in the network clustering coefficient (see Figure 73). However, this significant positive effect is not supported by robustness tests. Instead, PVAR(2) and PVAR(3) demonstrate a significant negative response of overall participation, while PVAR(4) does not show any

significant effects (see Appendix 75). Thus, there is a tendency towards a negative reaction of overall participation. Reversed effects are not significant, which is confirmed by PVAR(2), PVAR(3), and PVAR(4). Hence, these results are in line with the findings gained from model 3.1.3.4 and its robustness tests, that all exclude community growth. Moreover, results of PVAR(1) indicate a positive response of both the network clustering coefficient and overall participation to an impulse in the number of new sign-ups, whereby only the significant positive reaction of overall participation is supported by robustness tests. Hence, the findings from the all regions' sample are different from the established regions' sample, where no effects are significant. Yet, they correspond to the results gained from the new regions' sample concerning the positive reaction of overall participation to an impulse in the number of negative reaction of overall participation to a shock in the network clustering coefficient, which, however, can also be positive in the new regions' sample.

Figure 70 Impulse Response Functions, PVAR(1) ln_new_signups ln_average_degree ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

Figure 71 Impulse Response Functions, PVAR(1) ln_new_signups ln_degree_centralization ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

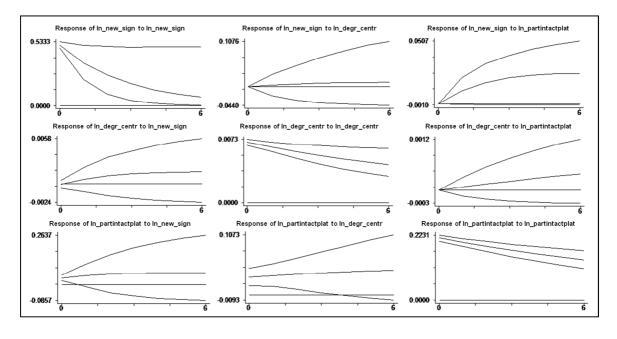
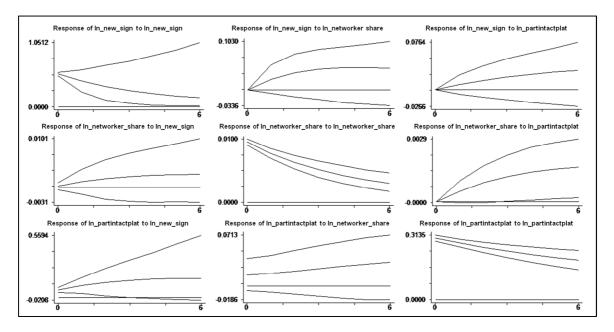
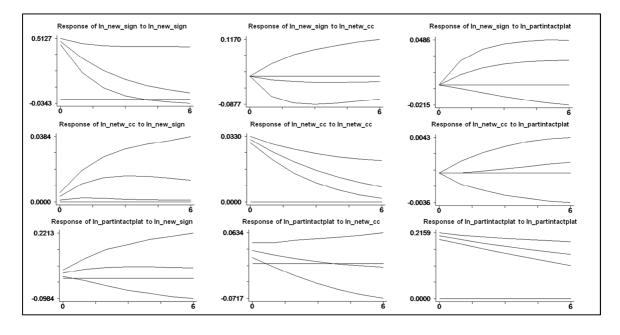




Figure 72 Impulse Response Functions, PVAR(1) ln_new_signups ln_networker_share ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

Figure 73 Impulse Response Functions, PVAR(1) ln_new_signups ln_network_cc ln_partintactplat, errors are 5% on each side generated by Monte-Carlo (1000 reps); All Regions

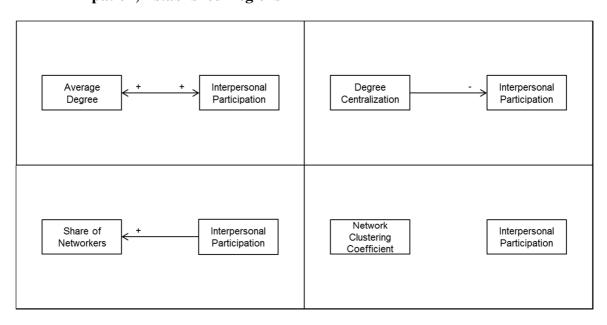
3.6. Discussion

3.6.1. Summary of Results

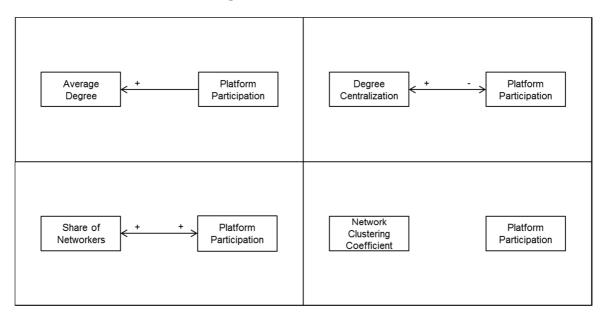
This research project is the first to investigate the interdependence of community success factors such as network structure, community participation, and community growth over time and community life cycle phases.

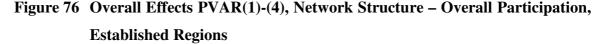
Since the results of the analyses show that effects resulting from the interplay of success factors differ between established regions, new regions, and all regions, a separate examination is indispensable. It is delicate to make general statements about the interdependence of community success factors. Conclusions must rather be drawn depending on the communities' life cycle phase. Results reveal that only some general statements are valuable for all communities independently from their life cycle phase:

First, network structure influences participation and vice versa. Hence, they should not be regarded independently. A closer investigation of how and when these variables interact is essential. Second, positive reciprocal effects between average degree and active interpersonal participation as well as positive reciprocal effects between average degree and


active interpersonal and platform participation, i.e. overall participation, are detected. All these effects last for several months. Thus, structural cohesion or network density in the form of average degree (Nooy, Mrvar, and Batagelj 2011) obtains a central role in the interaction with participation. Average degree on the one side and interpersonal or overall participation on the other side influence themselves positively. As a consequence, they are important factors for ensuring a lively and successful community. Third, the network clustering coefficient as an indicator for network density or transitivity exerts for the most part no significant influence on active platform participation and vice versa. This finding makes intuitive sense as all activities combined in the variable of platform participation (see Chapter 3.3.3) can be carried out regardless of the state of the network's transitivity. In other words, as network members can practice all activities of platform participation on their own, i.e. without another person, a dense or transitive network should not be required. Fourth, network structure in the form of average degree, degree centralization, share of networkers, and network clustering coefficient does not directly influence community growth. This is at a first glance a surprising finding since social aspects take a central role in the field of online communities (e.g. Iriberri and Leroy 2009; Ridings and Gefen 2004; Toral et al. 2009; Wellman et al. 1996). Nevertheless, the importance of network structure in the context of community success becomes evident from another point of view: from the interdependence between network structure and participation variables as well as from the in some cases indirect effects on community growth, which are discussed right afterwards in the summary of the detailed analysis across community life cycle phases.

Established Regions


In order to get an overview of the interplay of online community success factors throughout a community's life cycle, I summarize the results gained from the different samples in the following figures⁸ as well as in Appendix 76. Figure 74, Figure 75, and Figure 76 combine the results gained from the PVAR models concerning the interplay between network structure and participation in established regions.


⁸ Effects are displayed in the figures when at least two PVAR models show significant effects.

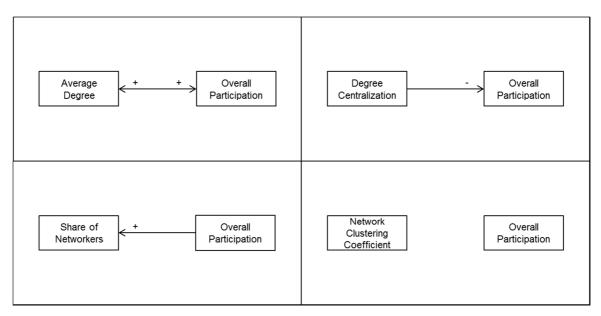
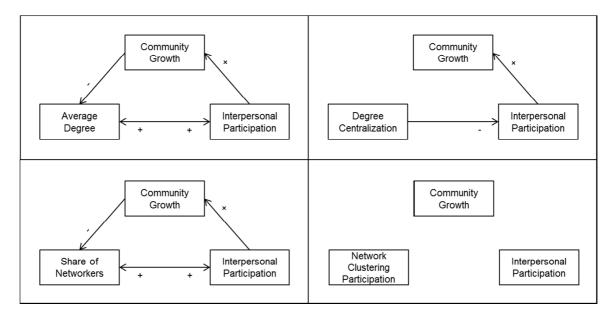
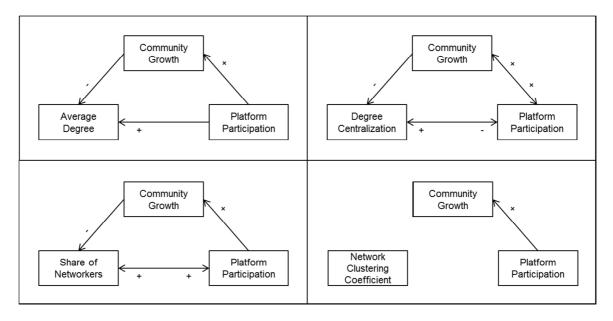

Figure 74 Overall Effects PVAR(1)-(4), Network Structure – Interpersonal Participation, Established Regions

Figure 75 Overall Effects PVAR(1)-(4), Network Structure – Platform Participation, Established Regions



As already mentioned, there are positive reciprocal effects between average degree and interpersonal participation as well as between average degree and overall participation. Further, in established regions, effects between the network clustering coefficient and all three kinds of participation are not significant. Hence, a change in the clustering coefficient has no consequences on participation and vice versa. Thus, in established regions, the network density in the form of the network clustering coefficient does not play a role in the interplay of success factors. Regarding platform participation, also network density in the form of average degree has no impact. These findings suggest that network density does not help to explain platform participation in established regions. This makes sense because network members can carry out all activities of platform participation on their own, i.e. without another person. Hence, a dense network should not be required. However, platform participation is positively influenced by the share of networkers and vice versa, whereby especially the response of the share of networkers lasts for a long time. Thus, the share of networkers plays an important role in the interaction with platform participation. Hence, in order to ensure platform participation, it is sufficient that users are connected, yet a densely connected network is not necessary. This means that platform participation does not require a fully developed and dense network, but a network in which a certain connection among members exists such that the share of non-networkers or "loners" is reduced. Further, unidirectional positive effects of interpersonal and overall participation on the share of networkers are detected. Finally, the sole negative effects,


which come with some delay, are detected in the influence of degree centralization on all kinds of participation, namely interpersonal, platform, and overall participation. This means that, in established regions, the network should not become too central, it must be well-balanced. Otherwise participation goes down. In established regions, single leaders are not accepted. The negative effect of degree centralization is only counterbalanced by the positive effect of platform participation. Thus, once centralization increases, platform participation decreases. However, reversely, once platform participation decreases, also degree centralization goes down and thus increases platform participation.

Effects arising after the inclusion of community growth are summarized in Figure 77, Figure 78, and Figure 79. In general, effects between network structure and participation remain the same. Only a few more significant effects appear: A positive effect from overall participation on degree centralization gets significant and thus counterbalancing effects also occur in the interplay of degree centralization and overall participation. Further, results reveal additional positive effects of the share of networkers on interpersonal participation and overall participation. Thus, positive reciprocal effects occur not only between the share of networkers and platform participation, but also between the share of networkers and interpersonal as well as between the share of networkers and overall participation. This means that the share of networkers plays an important role in conjunction with all kinds of participation. Regarding the effects around community growth, the summary of results implies that, in established regions, all participation variables positively influence community growth. These effects predominantly last for several months. Reversed effects are rather unusual. Thus, in established regions, community growth can be enhanced by increasing participation, which is in line with Preece's (2000) point of view and Butler's (2001) findings from a study on mailing lists. As a consequence, on the one hand network structure directly influences participation and on the other hand indirectly influences community growth through the positive relationship between participation and community growth. Hence, in established regions, community growth, participation, and network structure excluding the clustering coefficient should not be considered separately. Additionally, community growth has a negative impact on average degree and the share of networkers. However, because of this negative effect, communities are not growing endlessly as positive effects between average degree or the share of networkers, participation, and community growth would suggest. It makes sense that average degree and the share of networkers are negatively influenced by community growth since it takes time until new users are integrated into the network, i.e. until they make friends. Based on these findings it is important to consider community growth when the interdependence of community success factors in established regions is analyzed.

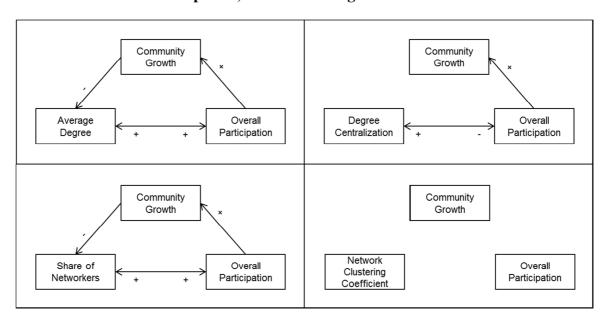
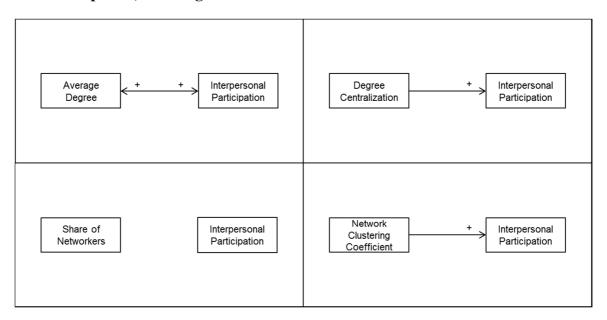

Figure 77 Overall Effects PVAR(1)-(4), Community Growth – Network Structure – Interpersonal Participation, Established Regions

Figure 78 Overall Effects PVAR(1)-(4), Community Growth – Network Structure – Platform Participation, Established Regions


Figure 79 Overall Effects PVAR(1)-(4), Community Growth – Network Structure – Overall Participation, Established Regions

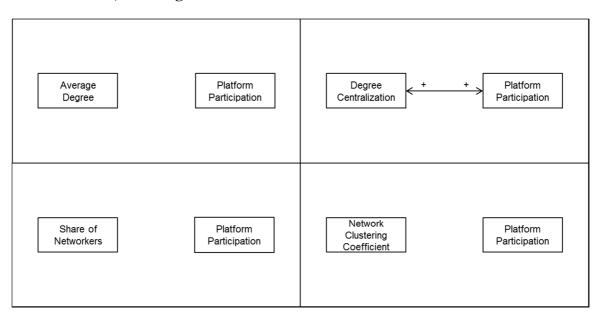
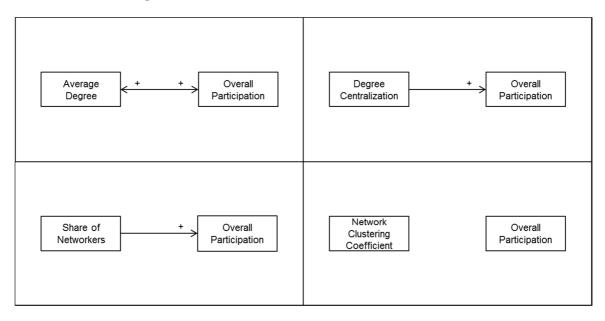
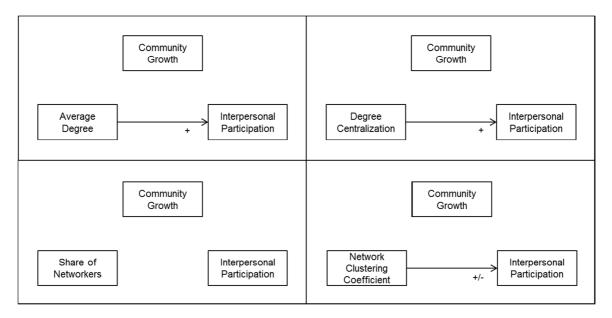

New Regions

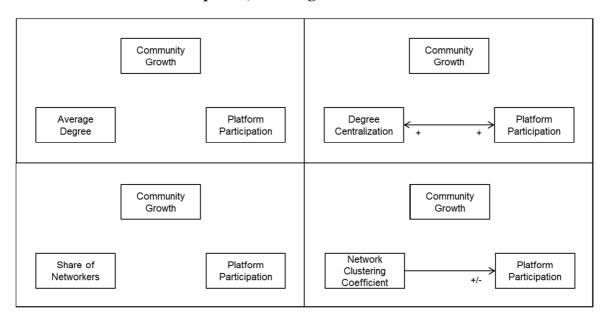
Figure 80, Figure 81, and Figure 82 present a summary of the results concerning the interdependence of network structure and participation in new regions. As already mentioned in the beginning of Chapter 3.6.1, there are positive reciprocal effects between average degree and interpersonal participation as well as between average degree and overall participation. Moreover, effects between the network clustering coefficient and platform participation are not significant assuming that network density in the form of the clustering coefficient does not play a role in conjunction with platform participation. Further, in new regions, also average degree and the share of networkers do not play a role in explaining platform participation and are reversely not explained by platform participation. Hence, similar to the established regions, network density in the form of average degree and the network clustering coefficient is not relevant in influencing platform participation. However, contrary to the established regions setting, in new regions, also the share of networkers can be neglected. This shows again the limited importance of network variables in the interplay with platform participation. Only degree centralization exerts a positive effect on platform participation, which lasts up to three months. Conversely, platform participation also positively influences degree centralization. However, the positive reciprocal relationship does not remain endlessly as already shown in the precedent section: When new regions convert into established regions, the positive effect of degree centralization becomes negative and thus counterbalancing effects arise. Besides the positive effect of degree centralization on platform participation in new regions, degree centralization has also a positive and long-lasting impact on interpersonal and overall participation. Hence, in new regions a network should become more central in order to stimulate participation as opposed to established regions. In new regions, central and leading users are necessary to ensure participation because they can enflame and enthuse new users for community participation. Thus, in the beginning of a community life cycle, users must be taken by the hand until some routine develops. Finally, the share of networkers positively influences overall participation. Taken together, also in new regions network structure is important for assuring interpersonal and overall participation. Platform participation can only be enhanced by degree centralization.

Figure 80 Overall Effects PVAR(1)-(4), Network Structure – Interpersonal Participation, New Regions

Figure 81 Overall Effects PVAR(1)-(4), Network Structure – Platform Participation, New Regions

Figure 82 Overall Effects PVAR(1)-(4), Network Structure – Overall Participation, New Regions


Figure 83, Figure 84, and Figure 85 display the summarized results after the inclusion of community growth. Effects between network structure and participation mainly stay the same. Further, there are no effects between network structure and community growth. Additionally, in new regions community growth is also fully independent from participation, which is contrary to the established regions' sample. As a consequence, community growth in new regions does neither take place via participation nor via the network, but

other factors which are to be identified in further analyses (see Chapter 4). Thus, the interplay of network structure and participation can be regarded independently from community growth.

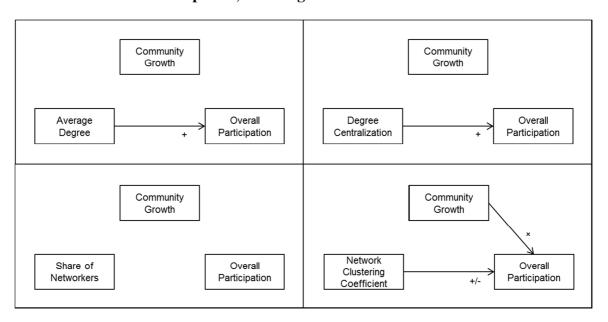
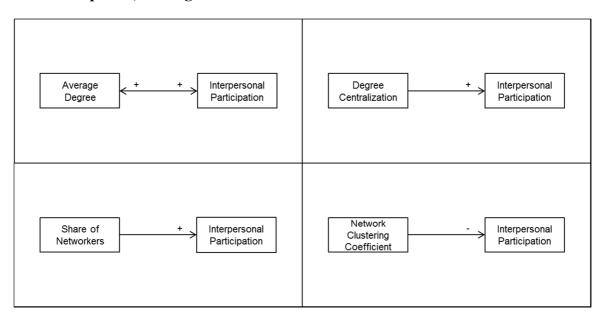
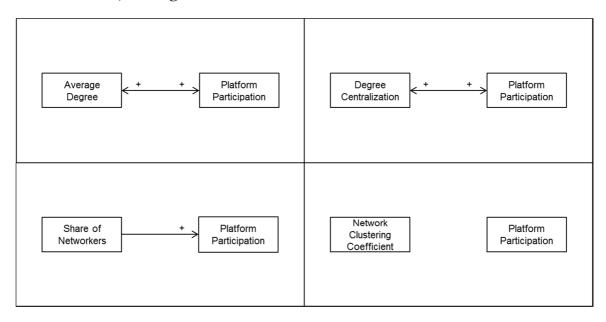
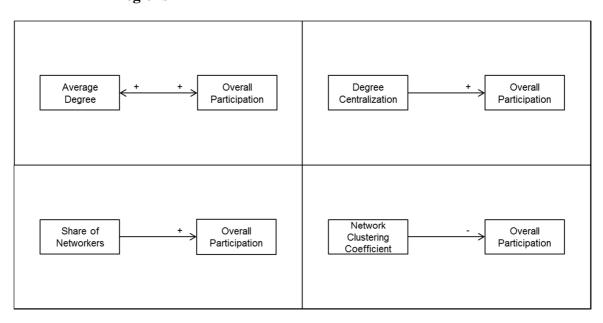

Figure 83 Overall Effects PVAR(1)-(4), Community Growth – Network Structure – Interpersonal Participation, New Regions

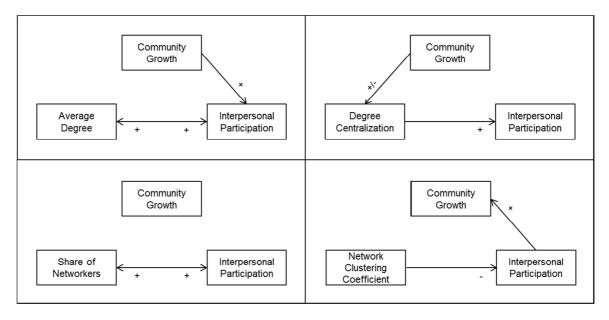
Figure 84 Overall Effects PVAR(1)-(4), Community Growth – Network Structure – Platform Participation, New Regions

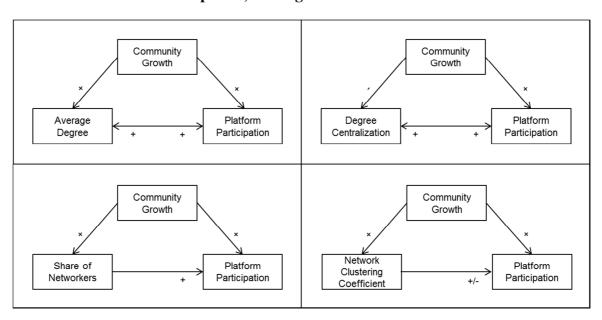

Figure 85 Overall Effects PVAR(1)-(4), Community Growth – Network Structure – Overall Participation, New Regions


All Regions

Effects arising between network structure and participation after aggregation of both established and new regions are presented in Figure 86, Figure 87, and Figure 88. Effects between community growth, network structure and participation are presented in Figure 89, Figure 90, and Figure 91. Besides the main findings holding for each community life cycle phase and already discussed at the beginning of Chapter 3.6.1, some effects prevail when both samples are jointly analyzed. First, the positive effect of degree centralization on participation discovered in new regions becomes apparent also in the all regions' sample, where this effect often lasts for a few months. Moreover, the positive impact of the share of networkers on participation, which is prominent in the established regions' sample, also spreads over the all regions' sample and often lasts for several months. Furthermore, after combining the established and the new regions' sample, there is a tendency towards a negative effect of the network clustering coefficient on participation, if effects are significant. This means that network density can have an either positive influence on participation in the case of average degree or an insignificant or even negative influence in the case of the network clustering coefficient. Thus, users should have many contacts but they should not be completely interconnected. Finally, effects of participation on community growth as uncovered in the established regions' sample are rather not prominent in the all regions' sample. Instead, reversed effects of community growth on participation are detected.


Figure 86 Overall Effects PVAR(1)-(4), Network Structure – Interpersonal Participation, All Regions


Figure 87 Overall Effects PVAR(1)-(4), Network Structure – Platform Participation, All Regions


Figure 88 Overall Effects PVAR(1)-(4), Network Structure – Overall Participation, All Regions

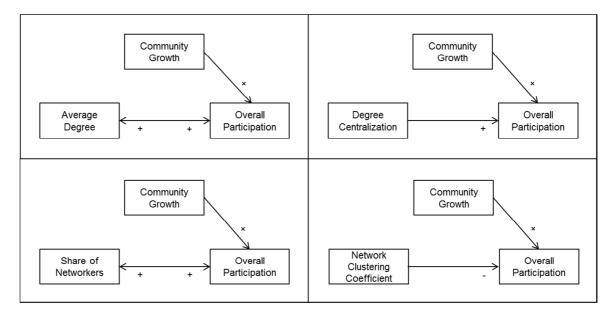

Figure 89 Overall Effects PVAR(1)-(4), Community Growth – Network Structure – Interpersonal Participation, All Regions

Figure 90 Overall Effects PVAR(1)-(4), Community Growth – Network Structure – Platform Participation, All Regions

Figure 91 Overall Effects PVAR(1)-(4), Community Growth – Network Structure – Overall Participation, All Regions

3.6.2. Theoretical Implications

Coming back to the research propositions formulated at the end of Chapter 3.2, results support to a great extent RP1, which suggests an interrelationship between social structure and social action. Regardless of the community life cycle stage, reciprocal effects between network structure and participation are detected. The interrelationship between average degree, which is an indicator for network density, and interpersonal or overall participation is the most notable example since this relationship is stable throughout all examined samples. In established regions, also the share of networkers and degree centralization in conjunction with nearly all kinds of participation show reciprocal effects. This underlines the importance of considering the share of networkers as an aspect of network structure, although previous research does not concentrate on this variable. In new regions, mutual effects between degree centralization and platform participation confirm RP1. Thus, Giddens' (1984) and Bourdieu's (1977) idea of dynamic and reciprocal effects between social structure and action can be found in the context of online communities. Both network structure and participation are endogenous. (Panel) VAR models allow the representation of this dynamic process since they are able to illustrate reciprocal effects by using the information that the relevant variables provide over time. Results gained from this research project help to extend existing theory. Hence, Giddens' (1984) and Bourdieu's (1977) theory can be substantiated in two ways: First, a multifaceted perspective of both social structure and social action is necessary. Social structure and social action interrelate in different forms. Against the background of the theory of structuration this project shows that social structure can appear as degree centralization, share of networkers, and network density in the form of average degree, but not in the form of the network clustering coefficient. Further, social action can arise in the form of interpersonal participation, platform participation, as well as in the form of overall participation and therefore has to be regarded from different point of views. Second, the different forms of social structure and social action come into play in different community life cycle phases. Not all of the representations of social structure and social action evoke reciprocal effects at the same time. This research contributes to current knowledge by providing a more detailed dynamic view and demonstrates the importance of considering different community life cycle phases. Hence, it goes far beyond the work of Toral et al. (2009) who only focus on a general unidirectional relationship between network cohesion represented by average degree and a community success metric that combines the number of threads, community size, and the number of core developers in a single variable.

Results of the present project partly support RP2, which assumes that network structure forms the base for social action, i.e. network structure exhibits a positive influence on participation. This proposition is primarily based on the theory of social capital (e.g. Bourdieu 1986; Coleman 1988; Nahapiet and Ghoshal 1998; Putnam 1993). Since social capital capital can be obtained at a collective level, implications of social capital theory can also

be employed on a macro level and thus in the present research project. According to RP2, network structure in the form of average degree and share of networkers positively influence participation. However, degree centralization exhibits both a positive and a negative impact on participation depending on the community's life cycle phase. Further, network structure in the form of the network clustering coefficient shows a tendency towards a negative effect provided that effects are significant at all. Thus, RP2 cannot be completely supported. The form of social capital has to be specified to a greater extent. While network density in the form of average degree leads to positive effects on participation, network density or network closure in the form of the network clustering coefficient can lead to negative effects. Thus, the ambiguity regarding the effects of a dense network also becomes apparent in the results of this project. On the one hand, network density can lead to trust and openness and thus facilitate information flow (Coleman 1988; Krackhardt and Hanson 1993). On the other hand, dense networks can lead to inefficiency because the access to new ideas or information is limited (Burt 1992). A similar ambiguity refers to the concept of centralization. While new communities require a more centralized network in order to stimulate participation, established communities require a more decentralized network. Also Sewell (1992) notices that centrality usually does not last endlessly. Hence, it becomes clear that general statements of social capital theory such as social capital serving as basis for social action need to be specified and regarded from different perspectives.

Results of this project also partly find evidence for RP3, which assumes that social capital augments any time it is used (Bourdieu 1986; Nahapiet and Ghoshal 1998; Putnam 1993), i.e. participation exhibits a positive influence on network structure. While in established regions average degree, degree centralization, and the share of networkers are positively affected by at least one participation variable, in new regions only average degree and degree centralization are affected. Hence, there are differences regarding the community's life cycle phase. Additionally, not all facets of network structure can be explained by participation. For example, network closure in the form of the network clustering coefficient is not influence at all by participation. Thus, although social capital theory helps to explain the influence of participation on network structure in online communities in some instances, theory has to be refined regarding the form of network structure and the community life cycle phase.

Results of this project verify the proposition that social capital is constrained through a growing number of network members (Nahapiet and Ghoshal 1998). RP4, which can be interpreted in a way that suggests that community growth has a negative impact on network structure, is supported in the established regions' sample. In established regions, where an evolving network would lead via enhanced participation to community growth, this chain is interrupted by negative effects of community growth on network structure. Furthermore, RP4 is also valid in another way: In most other cases, e.g. in new regions, the influence of community growth on network structure is not significant. And even in the very few cases in which this effect is positive, i.e. in the all regions' sample, there is no positive influence of network structure and participation on community growth, which would encourage an endless circle of community growth and growing social capital. Thus, the building of social capital is also limited through insignificant relationships between the variables.

Finally, neither social capital theory nor the theory of structuration make concrete assumptions on the relationship between participation and community growth. Nevertheless, both theories provide a solid basis for explaining the interdependence of success factors – especially in new regions, where the interplay of network structure and participation can be regarded independently from community growth. However, in established regions (and also in the all regions' sample), social capital theory and the theory of structuration are not sufficient to form a theoretical basis for the relationship between participation and community growth. Although also previous research provides already support for the positive link between participation and member gain (Butler 2001), a further theoretical framework, which is able to explain the dynamic relationship between social action and group formation or attraction on a macro level, is required.

3.6.3. Managerial Implications

This project provides a deep understanding of successful community management in demonstrating the interdependence between online community success factors. It shows how online communities need to be directed in order to compete and sustain over time and community life cycle phases.

From a managerial perspective, results imply that community operators should determine the life cycle phase, in which their communities are inherent, and accordingly manage them. Taking the community's life cycle into account is also proposed by Iriberri and Leroy (2009).

Moreover, operators basically need to ensure connectivity among community members in all life cycle phases. It is essential that members have at least one contact in order to guarantee a high share of networkers and hence a lively and healthy community characterized by high participation (Lithium 2012a). This is especially important in established communities because these communities can also foster community growth through the positive reciprocal effects between the share of networkers and participation, which positively influences community growth. Hence, the development of contacts needs to be stimulated by showing new users the community's additional benefits, which arise when they are connected to other users. Moreover, community members should be recommended to other members after logging in. Further, it can help to gain users which are friends of community members in the offline world since they are likely to be friends in the online world as well (Ellison, Steinfield, and Lampe 2007; Subrahmanyam et al. 2008).

In addition to that, a healthy community requires an increasing network density in the form of average degree, in which trust is inherent, independently from the community life cycle phase. Through the positive reciprocal effects between average degree and participation, the liveliness of a community can be enforced. Network density can be enhanced by recommending friends of friends to the users. Further, also offline events are a good opportunity to create more relations among community members (Cothrel and Williams 1999).

Yet, community operators have to be careful in dealing with degree centralization. Whereas in new regions more centralized networks lead to higher participation rates, in established regions an increase in centralization would decrease participation. Thus, results of this project imply that community managers have to ensure that contacts between users are augmented, whereby established regions should tend towards an equally distributed number of contacts among members and new regions should ensure that each member does not have the same number of contacts. Community operators can to a certain extent interfere in this process by controlling the amount and type of "friend" suggestions.

Moreover, community managers need to realize that not each form of network structure helps to affect every kind of participation in each life cycle phase. If platform participation in an established community is lacking, mangers rather need to work on the share of networkers instead of on average degree. Further, if platform participation in a new community is lacking, they need to realize that only higher degree centralization can stimulate platform participation. Thus, a broad understanding of the different relationships between the variables of network structure and participation in general and along the community life cycle is indispensable in order to efficiently use the community's resources.

Besides, community operators should be aware that although network structure helps to ensure a healthy and successful community by encouraging participation, it has no direct impact on community growth. Only in established regions, network structure can contribute to community growth by enhancing participation, which has a direct impact on community growth. Yet, at the same time community growth is limited through the negative impact of community growth on network structure, which interrupts the positive relationship between network structure, participation, and community growth. Hence, community managers should know that success factors cannot be enhanced endlessly.

Nevertheless, in established communities, it makes sense to directly foster participation because of its positive influence on community growth. Community mangers should undertake all activities that augment participation, e.g. introduce new features, reward members for using existing features, provide content, organize contests or campaigns (e.g. Ginsburg and Weisband 2004; Iriberri and Leroy 2009; Leimeister, Sidiras, and Krcmar 2006; Lithium 2012a). However, in order to broadly ensure community growth, i.e. also in new communities, community operators have to find other ways.

3.6.4. Directions for Further Research

This research project has also some limitations that provide opportunities for further research. First, the present project is based on 13 online communities. Further research should include a higher number of communities in order to take advantage of the performance of PVAR models to a greater extent. Second, analyses are based on monthly data. In order to be able to capture also short-term effects it is recommended to additionally estimate models using weekly or daily data. Third, this project uses data of an online community which focuses on leisure activities. Hence, other types of online communities should be analyzed in order to ensure the transferability of results to other settings. Fourth, further analyses regarding community growth are required. Since a growing community is an indicator for a healthy community (Lithium 2012a), factors providing community growth need to be analyzed in detail. For example, findings of this project imply that, in new regions, community growth is neither affected by network structure nor by participation. In order to provide knowledge about community growth in new regions, it is important to identify drivers of community growth in those regions. Finally, since community success factors (e.g. Bughin and Hagel 2000; Iriberri and Leroy 2009; Lithium 2012a; Williams and Cothrel 2000), community managers should notice early enough when growth is slowing down. Hence, providing accurate forecast models of community growth is a further step towards a forward-thinking and future-oriented community management (see Chapter 4).

4. Forecasting and Understanding Community Growth

4.1. Introduction

Members constitute the most important asset of online communities because through their presence and generated content they are indispensable for making the community attractive and keeping it alive (Iriberri and Leroy 2009; Preece 2000). The attractiveness of a community is reflected in a growing number of community members, which forms the basis for a healthy and successful community (e.g. Bughin and Hagel 2000; Iriberri and Leroy 2009; Lithium 2012a; Williams and Cothrel 2000). Hence, community growth plays a central role in the evaluation of community performance.

After having set up a community, managers need to anticipate the development of their community regarding the number of new members at an early stage in order to be able to make adequate strategic decisions. This is particularly important in light of the fact that many communities fail because of the highly competitive market for communities (comScore 2007, GlobalWebIndex 2013a, 2013b, Ma and Agarwal 2007). Thus, community managers face a similar problem such as marketing managers of consumer or industrial goods companies, who are often confronted with new product failures (Rogers 2003). In order to master the challenge of avoiding product launch failures, a few decades ago, researchers have begun to study diffusion processes and to make accurate forecasts of future sales (e.g. Bass 1969; Ching-Chin et al. 2010; Dodds 1973; Mahajan and Peterson 1979). To the present day, the diffusion model elaborated by Frank Bass (1969) counts among the most popular and often used tools for modelling diffusion processes and for predicting future diffusion (Bass 2004; Dover, Goldenberg, and Shapira 2012; Firth, Lawrence, and Clouse 2006; Kumar and Krishnan 2002; Trusov, Bucklin, and Pauwels 2009). But also econometric time series models constitute common tools for forecasting issues (Diebold 2007; Granger and Newbold 1975; Kapoor, Madhok, and Wu 1981; Kirchgässner and Wolters 2007; Stephen and Galak 2012; Trusov, Bucklin, and Pauwels 2009). Since forecasting is early seen to play a major role in marketing (Makridakis and Wheelwright 1977), it is also an indispensable task for community operators to study the diffusion of their community in the present and in the future.

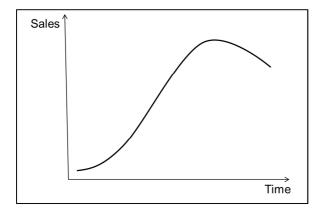
However, in order to be able to set up good forecasting models, it is essential to understand the diffusion process, i.e. to identify factors influencing community growth. Although individuals having already adopted a community service seem to play a role for further diffusion (Firth, Lawrence, and Clouse 2006), a verification and broad understanding of these effects next to other possible influential factors are still missing. Further, while Trusov, Bucklin, and Pauwels (2009) find evidence for a positive influence of word of mouth (WOM) and traditional marketing on new sign-ups, they do not investigate the impact of personal selling on community growth, although it plays a role in the buying decision process (Katz and Lazarsfeld 1955). Further, they also do not consider the informational value, which is provided through online communities and constitutes one of the main reasons for individuals to join a community (e.g. Furlong 1989; Ridings and Gefen 2004). Although research concerning the role of informational value has taken place on an individual level, analyses on a macro level are still missing, especially regarding its influence on the growth of online communities.

Hence, this research project is the first to uncover the most appropriate model for forecasting community growth and at the same time to shed light on the factors influencing the diffusion process of online communities. Based on econometric modelling and various theories from social sciences on diffusion processes and group formation, different model types are built and their modelling performance as well as their forecasting accuracy are examined.

This project contributes to marketing literature in various ways. Macro effects going out from the number of individuals having already adopted a community service, effects of personal selling, and the influence of informational value on new sign-ups are analyzed. Further, I combine research from the field of marketing and econometrics by assessing the Bass diffusion model, Autoregressive Moving Average (AR/MA), Autoregressive Distributed Lag (ADL), and Vector Autoregressive (VAR) models regarding their modelling and forecasting performance of the community diffusion process. For this purpose, I apply the selected models on each of six regional communities. Thus, a verification of results becomes possible to some extent. Furthermore, as data are available since the foundation of all six communities, a comprehensive study of the whole diffusion process is possible. Further, community operators are provided with appropriate forecasting tools, which can easily be applied and do not require time-consuming regular surveys.

This research project proceeds as follows: First, theories helping to understand the diffusion process of online communities are introduced and hypotheses are derived. After the description of data and methodology, the results gained from the different models are presented for each region. Then, these results are summarized and implications for theory

4.2. Theoretical Background


4.2.1. Diffusion Theory

In the early Sixties, Rogers (1962) provided a first comprehensive description of studies and theories about diffusion processes in general and about the diffusion of innovations in particular. According to him, innovation, communication, social system, and time are the four fundamentals in the context of the diffusion of innovations. Thus, he draws upon Katz's (1961) understanding of diffusion processes. Based on this, Rogers (2003, p. 5) defines diffusion as "the process in which an innovation is communicated through certain channels over time among the members of a social system." He interprets the essentials of diffusion as follows: An innovation is usually something new (e.g. new practice, idea, technology). Communication takes place via persons who have already adopted the innovation in the sense of word-of-mouth or via mass media. Further, time plays a role in the innovation-diffusion process, i.e. from the first time an individual learns about the innovation until the time after the decision of adoption or non-adoption.⁹ Additionally, time is related to the speed with which an individual adopts an innovation compared to other individuals and to the relative speed of adoption of an innovation in general. Finally, a social system constitutes a group of interconnected individuals, who act together to achieve a collective goal.

Diffusion processes are studied from many perspectives, e.g. from a sociological, medical or educational point of view (see Rogers 2003 for an overview). In the field of marketing, a diffusion model developed by Frank Bass (1969) achieved broad recognition. He elaborates a framework for modelling and predicting first purchases of consumer durables. According to the model, initial purchases follow a certain pattern displayed in Figure 92. Thereby two groups of buyers are relevant: innovators and imitators. Innovators are those individuals who especially buy at early stages and are not influenced by the number of previous adopters. Their importance decreases after some time. In contrast, imitators are affected by the number of previous purchasers.

⁹ Thus, the innovation process is similar to the typical buying decision process.

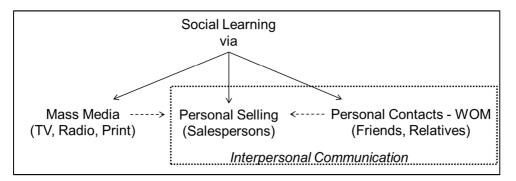
Accordingly, potential buyers are influenced by an innovation or also called external effect and by an imitation or also called internal effect (Mahajan, Muller, and Bass 1990). Thereby, the external effect is typically associated with the influence resulting from mass media. The internal effect, which stems from the influence of previous buyers, is usually related to effects of word-of-mouth.¹⁰ To this day, the Bass model counts among the most popular and influential diffusion models (Bass 2004). Besides its use in the field of consumer durables (e.g. Bass 1969; Gatignon, Eliashberg, and Robertson 1989; Kumar and Krishnan 2002), it has nowadays also been applied to the online world. Firth, Lawrence, and Clouse (2006) for example use the Bass model to examine the development of a university's online communities. Further, Trusov, Bucklin, and Pauwels (2009) compare the performance of the Bass model and other approaches in modelling word-of-mouth and traditional marketing effects based on data from a social networking site. Recently, Dover, Goldenberg, and Shapira (2012) analyze the link between degree-distribution of a network and adoption. In this context, they compare their model with the Bass model.

Taken together, previous research suggests that the Bass model's internal effect resulting from WOM and the Bass model's external effect resulting from promotion and advertising should influence the growth of online communities.

4.2.2. Social Learning Theory and Communication Channels

Closely related to diffusion theory is the theory of social learning. Social learning theory suggests that individuals adopt a behavior as a consequence of observing other individu-

¹⁰ Another way of interpretation is to assume that there are not two separate groups of buyers, but each potential buyer is influenced by both an internal and external effect (Hruschka 1996; Schmalen, Binninger, and Pechtl 1993).


als' behavior or as a consequence of direct experience (Bandura 1977). Bikhchandani, Hirshleifer, and Welch (1998) describe different situations in which observational learning can be applied, e.g. in the case of crimes, politics, or new product launches. Rogers (2003) broadens the original perspective of social learning in the sense that individuals can learn from others via mass media (e.g. via TV) or via verbal and nonverbal interpersonal communication (e.g. via friends). In the context of social learning a nonverbal communication is often sufficient, which means that individuals can learn from others just by noticing their behavior (Rogers 2003). This is the case when individuals observe that people from their family or town adopt an innovation or when celebrities and other persons communicate via TV that they have already adopted the innovation. Similarly, Chen, Wang, and Xie (2011) find in their experiment on observational learning that people rely on consumer purchase statistics when they buy a certain product.

While mass media (e.g. TV, radio, and print), which address an anonymous audience, are important to make people aware of an innovation, interpersonal communication is important to persuade individuals of an innovation (Rogers 2003). One way of interpersonal communication is manifested in word of mouth (WOM) communication. Anderson (1998, p. 6) defines word of mouth as "informal communications between private parties concerning evaluations of goods and services". Engel, Kegerreis, and Blackwell (1969) show that the vast majority of innovators spread WOM, which is especially important for the diffusion of innovations. Several studies confirm the effectiveness of WOM communication: There is evidence that WOM communication has a positive impact on customer acquisition (Wangenheim and Bayón 2007). Further, Herr, Kardes, and Kim (1991) find that individuals are more easily persuaded by WOM communication than by print communication. Also in the context of online communities, effects of WOM on new member acquisition are stronger than effects resulting from traditional marketing (Trusov, Bucklin, and Pauwels 2009). Hence, individuals learn more from personal contacts than from impersonal sources.

Besides private interpersonal communication in the context of WOM, individuals can also learn from salespersons in the context of personal selling, which constitutes another way of interpersonal communication. Thereby, companies' salespersons come into direct contact with the customers in order to sell products and to build relationships (Kotler et al. 2008; Weitz and Bradford 1999). Via salespersons strong relationships between the customers and the company can be built (Reynolds and Beatty 1999). Palmatier et al. (2006) state that relationship marketing is more successful when customers interact with an individual person instead of interacting anonymously with a company as a whole. However, Katz and Lazarsfeld (1955) show that in buying decisions people are more influenced by their personal contacts than by salespersons. Hence, personal selling lies somewhere between anonymous mass media communication and personal WOM communication (see Figure 93) because it unites both an aspect of a company's (mass media) communication and an aspect of personal WOM communication.

Applying social learning theory and research on communication channels to the context of online communities, personal selling and WOM communication may play an important role in the acquisition of potential users. People may join communities because other people from their environment already adopted. Further, especially small and regional communities can arouse the interest of potential users through personal selling. For example, regional communities can attract people at local events. Hence, personal selling and people who are already community members should influence community growth.

4.2.3. Theory of Collective Behavior and Critical Mass

The theory of collective behavior describes another concept that is consistent with diffusion theory discussed in Chapter 4.2.1 and social learning theory discussed in Chapter 4.2.2. Initially, Park and Burgess (1921, p. 865) define collective behavior as "the behavior of individuals under the influence of an impulse that is common and collective, an impulse, in other words, that is the result of social interaction." This relatively general definition clearly underlines that individuals are influenced by the behavior of other individuals. This is also the key assumption of the theories discussed in the precedent sections. Further, Turner and Killian (1957) bring a more revolutionary aspect into play. They argue that in the field of collective behavior a group of individuals interacting with each other induces "emergent or spontaneous" (Turner and Killian 1957, p. 12) norms which revolutionize traditional norms. Besides, Granovetter (1978) attributes collective behavior to situations, in which individuals face two mutually exclusive alternatives and their decision which alternative to take depends on the number of individuals that have already taken a certain alternative. Thus, he limits the number of situations because only binary choices are considered. Further, by taking into account the number of individuals that have already chosen an alternative, he refers to the concept of critical mass. Critical mass represents "the idea that some threshold of participants or action has to be crossed before a social movement "explodes" into being" (Oliver, Marwell, and Teixeira 1985, p. 523). All in all, Granovetter's (1978) view of collective behavior is very close to the imitation effect in the context of the diffusion of innovations because individuals have the binary decision to adopt or to not adopt, in which imitators are influenced by the number of previous adopters.¹¹ This process – also called contagion – reflects the dynamic nature of groups (Forsyth 2010). Further, Markus (1987) emphasizes the importance of a critical mass for the spread of interactive communication media because a value only arises if enough people use these media. Hence, in the case of interactive communication media, adoption does not only occur as a result of a sole kind of imitation phenomenon (e.g. in the case of the diffusion of flat-screen TVs, iPods, etc.), but also as a result of a value that individuals obtain through the fact that many other people have already adopted (e.g. in the case of the diffusion of technologies such as telephone, internet/email, social networks/online communities).

Therefore, the diffusion or growth of online communities should be dependent on the number of previous adopters and the value provided through all adopters. A possible type of such a value is discussed in the following section.

4.2.4. Theory of Social Comparison and the Value of Communities

Individuals often join groups when they search for information or for social support because they consider getting assistance by other individuals (Forsyth 2010; Watson 1966). This kind of behavior can be explained by Festinger's (1954) theory of social comparison. Individuals need other people for getting information about their own concerns and their surroundings, e.g. what to do in certain situations of everyday life, where to go out,

¹¹ Other applications of Granovetter's (1978) view of collective behavior constitute votes, strikes/protests, the leaving of social conventions (e.g. birthday parties), etc.

what to dress, etc. Thereby, people compare their opinions and abilities with those of others. Hence, they satisfy their need for information by associating and comparing themselves with others. Usually individuals have a tendency to join groups whose members are similar concerning their opinions and abilities (Festinger 1950, 1954). Further, Kulik and Mahler (1989) find that the need for getting information is even stronger than the exchange of experience with others, who are in the same situation: For instance, patients waiting for a surgery favor to a great extent roommates who already had the surgery and thus can provide more information instead of roommates who are also waiting for the surgery.

Additionally, research reveals that the informational value also plays a major role in the field of online communities (Dholakia et al. 2009; Dholakia, Bagozzi, and Klein Pearo 2004; Mathwick, Wiertz, and Ruyter 2008; Wasko and Faraj 2000; Wiertz and Ruyter 2007). The informational value provided by communities is one of the main reasons for joining a community (Ridings and Gefen 2004; Rohrmeier 2012). Many authors confirm that the access to information as well as social support attracts individuals to communities (e.g. Furlong 1989; Ridings and Gefen 2004; Ridings, Gefen, and Arinze 2006; Wellman et al. 1996). Since content in the form of information and social support is transmitted via postings or messages (Herring 1996), there should be a positive influence of the amount of postings on member acquisition, i.e. on community growth. Similarly, Forsyth (2010) states that interaction between group members makes the group or community attractive for other individuals. Further, also Preece (2000) explains that the attractiveness of an online community is ensured by members and their communication. Hagel and Armstrong (1997) even claim a reciprocal relationship between the amount of content and community growth because more content attracts more members, who in turn create more content.

Hence, the number of contributions or the number of people making contributions should positively influence community growth.

Following the discussions in Chapters 4.2.1, 4.2.2, 4.2.3, and 4.2.4, I propose that the number of people having already joined a community (Hypothesis H1), the amount of personal selling (Hypothesis H2), and the number of posters (Hypothesis H3a) or the number of contributions (Hypothesis H3b) positively affect community growth.

These propositions, built on the previous theoretical considerations, are also motivated through practical experience: Lithium (2008), a leading provider for online community platforms, manifests that promotion (H2) is especially important in the early stages in order to attract enough people to the page, at which some of these people may sign-up for the platform. Later, after having gained a critical mass (H1) the content provided by the users (H3a and H3b) will make the community self-sustaining.

4.3. Data

In order to study community growth, I use data of a European online social community with focus on leisure activities. Since the community is set up in several regions and each regional community is featured with the same platform functionalities, a fair comparison between regional communities is possible. In order to examine the communities' diffusion process from the very beginning, I only include those regional communities of which data are available since their launch. Hence, depending on the region, the dataset comprises monthly data from July or August 2009 until July 2012. Additionally, similar to Project 1 (see Chapter 3.3), I concentrate on regions with a share of internal contacts of 30% or more in order to guarantee relatively closed units. Further, only those regions are considered, which are maintained by the community operator itself since their launch. Hence, the final dataset comprises six regional community.

Community growth or new member acquisition is described by the number of new signups (Trusov, Bucklin, and Pauwels 2009). Besides past values of the number of new signups, further variables, which should contribute to the explanation of new sign-ups according to theory, are participation (i.e. the number of contributions per month), the number of posters (i.e. the number of users who have contributed at least once per month), and the number of team members (e.g. photographers) per month. Descriptive statistics of all variables are displayed for each region in Table 5, Table 6, Table 7, Table 8, Table 9, Table 10.

			Standard	25th	50th	75th		
	Т	Mean	Deviation	Percentile	Percentile	Percentile	Minimum	Maximum
New Sign-Ups	37	494.81	203.94	340.50	470.00	634.00	8	944
Participation	37	2433.16	1444.84	1285.50	2159.00	3406.50	1	7200
Posters	37	397.51	255.30	273.50	388.00	460.00	1	1681
Team	37	13.84	4.20	11.00	14.00	18.00	5	21

Table 5Descriptive Statistics; Region 1

			Standard	25th	50th	75th		
	т	Mean	Deviation	Percentile	Percentile	Percentile	Minimum	Maximum
New Sign-Ups	36	272.64	117.03	209.00	243.00	368.75	9	561
Participation	36	751.94	569.42	467.50	645.50	1014.25	1	3048
Posters	36	193.97	155.19	103.50	143.50	187.00	1	635
Team	36	3.72	1.60	3.00	4.00	5.00	0	5

Table 6Descriptive Statistics; Region 2

Table 7Descriptive Statistics; Region 3

			Standard	25th	50th	75th		
	т	Mean	Deviation	Percentile	Percentile	Percentile	Minimum	Maximum
New Sign-Ups	36	112.94	91.48	63.25	81.50	146.50	2	509
Participation	36	1319.36	1214.77	375.25	800.50	2219.25	0	4236
Posters	36	91.81	139.94	23.25	33.00	57.25	0	476
Team	36	1.19	1.33	0.00	1.00	3.00	0	3

Table 8Descriptive Statistics; Region 4

			Standard	25th	50th	75th		
	т	Mean	Deviation	Percentile	Percentile	Percentile	Minimum	Maximum
New Sign-Ups	36	137.50	71.06	86.00	126.00	184.25	6	305
Participation	36	310.50	391.04	83.50	190.50	363.75	0	2104
Posters	36	114.11	143.72	41.00	67.50	110.50	0	627
Team	36	1.78	1.10	1.00	1.50	3.00	0	3

Table 9Descriptive Statistics; Region 5

			Standard	25th	50th	75th		
	т	Mean	Deviation	Percentile	Percentile	Percentile	Minimum	Maximum
New Sign-Ups	36	182.92	84.67	136.25	163.50	225.50	57	523
Participation	36	699.50	601.86	383.25	518.00	793.00	35	3084
Posters	36	153.08	89.78	124.25	144.50	157.75	10	531
Team	36	1.64	0.90	1.00	1.00	2.75	0	3

Table 10Descriptive Statistics; Region 6

			Standard	25th	50th	75th		
	т	Mean	Deviation	Percentile	Percentile	Percentile	Minimum	Maximum
New Sign-Ups	36	193.75	110.99	104.50	217.00	257.75	14	473
Participation	36	298.17	231.79	136.00	210.00	331.75	15	1117
Posters	36	108.83	123.63	41.25	67.00	93.50	9	466
Team	36	2.75	0.91	2.00	3.00	3.00	1	5

For the following analyses, time series are logarithmized (Diebold 2007; Wooldridge 2006). Further, each of the series is tested for unit roots because the estimation proce-

dures used in this project require stationary time series. A stochastic process containing a unit root is not stationary¹². Inclusion of non-stationary time series would yield significant relationships, even if in fact the relationships do not exist (Wooldridge 2006). However, non-stationary processes can be transformed into stationary processes by building differences (Wooldridge 2006): For example, processes which are integrated of order one can be transformed into stationary processes by building the first differences. I use the augmented Dickey-Fuller (ADF) test in order to test for stationarity (Dickey and Fuller 1979; Said and Dickey 1984). The test statistic, where changes in the variable of interest (Δz_t) are regressed on the by one period lagged values of the variable of interest (z_{t-1}), on optional exogenous variables such as a constant term or trend (v_t), and on p lagged difference terms of the variable of interest (Δz_{t-1} ,..., Δz_{t-p}), is determined as follows (IHS Global Inc. 2013):

$$\Delta z_{t} = \alpha z_{t-1} + v_{t}' \gamma + \beta_{1} \Delta z_{t-1} + \beta_{2} \Delta z_{t-2} + \dots + \beta_{p} \Delta z_{t-p} + e_{t}$$
(29)

For testing the null hypothesis of $\alpha=0$ (i.e. process contains a unit root) against the alternative hypothesis $\alpha<0$ (i.e. process is stationary) the standard Student's t-distribution is not appropriate¹³. Hence, critical values proposed by MacKinnon (1996) are used. Results of the ADF tests are displayed in Table 11.

				Α	ugmented [Dickey-Fulle	r Test					
	Regi	ion 1	Regi	Region 2 Region 3		Region 4		Region 5		Region 6		
Variable	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value
In_new_signups	-3.9323	0.0050	-9.4891	0.0000	-4.9233	0.0004	-5.8027	0.0000	-5.0890	0.0002	-3.0417	0.0416
In_posters	-16.5709	0.0000	-6.7841	0.0000	-2.1141	0.2407	-3.4607	0.0160	-6.0710	0.0000	-1.6592	0.4417
d_In_posters	-8.8369	0.0000	-10.2952	0.0000	-4.7356	0.0006	-7.5510	0.0000	-8.0914	0.0000	-7.2239	0.0000
In_participation	-2.7440	0.0779	-7.7638	0.0000	-5.9430	0.0000	-3.4815	0.0152	-3.7428	0.0080	-0.8087	0.7999
d_In_participation	-6.3059	0.0000	-9.3423	0.0000	-7.7940	0.0000	-7.2283	0.0000	-5.3594	0.0001	-4.1129	0.0039
In_team	-0.8672	0.7829	-2.5863	0.1062	-0.0822	0.9431	-0.4750	0.8835	-0.1444	0.9358	-2.8940	0.0572
d_ln_team	-3.1982	0.0312	-4.0186	0.0041	-2.4971	0.1262*	-5.7431	0.0000	-5.7431	0.0000	-9.5831	0.0000

Table 11ADF Tests

*) significant at 5 % level after building second differences

For unit root testing and model estimation I exclude the last three observations because these observations serve to measure forecast accuracy (see Chapters 4.4, 4.5, and 4.6).

¹² A process is stationary if first and second moments (i.e. mean and variance) do not depend on time (e.g. Lütkepohl 2007).

¹³ Since under the null hypothesis the process is not stationary, the t-statistic does not follow an approximate standard normal distribution (e.g. Wooldridge 2006).

Further, I include a constant term as an exogenous variable.¹⁴ The lag length p is automatically selected by the Schwarz Information Criterion (SC).¹⁵

The test results reveal that the variable describing the logarithmized number of new signups (*ln_new_signups*) is stationary in all regions at a significance level of 5%. Hence, a transformation is not necessary and new sign-ups can be used in levels. The logarithmized number of posters (*ln_posters*) is stationary at a significance level of 5% in regions 1, 2, 4, and 5. In the remaining regions it is integrated of order 1. Hence, I have to calculate first differences. The logarithmized number of contributions (*ln_participation*) is stationary at a significance level of 5% in regions 2, 3, 4, and 5. In the remaining regions it is integrated of order 1. Thus, again, I have to calculate first differences. In order to preserve comparability, I include the first differences of posters and participation variables (*d_ln_posters* and *d_ln_participation*) into the analyses of each of the six regions. As <u>d_ln_posters</u> and <u>d_ln_participation</u> are always stationary, the inclusion of these variables does not pose any problem. However, since information, which is provided by the variables, gets lost after building the first differences, I additionally conduct further analyses that include posters and participation variables in levels when both types of variables are integrated of order zero (this is the case in regions 2, 4, and 5). Further, the logarithmized number of team members (*ln_team*) is always integrated of order 1 except for region 3, where it is integrated of order 2. Hence, only first differences of the team variable (d_ln_team) are included.¹⁶

Finally, I test for seasonality by regressing the logarithmized number of new sign-ups on a constant term and dummy variables for each month of a year (except for January, which serves as reference category) (Diebold 2007). Then, an F-test, which tests the null hypothesis that all parameters (except the one for the intercept) are jointly zero against the alternative hypothesis that at least one parameter is different from zero, is conducted. The tests, which are performed for each region, reveal that seasonality plays no role (see Appendix 78, Appendix 79, Appendix 80, Appendix 81, Appendix 82, and Appendix 83).

¹⁴ I also control for both a constant and a trend (see Appendix 77). However, results barely differ.

¹⁵ For computational details of the SC see Chapter 4.4.

¹⁶ For the team variable of region 3, one should even compute second differences. However, I do not consider the second differences of the variable because of the already poor explanatory power of d_ln_team (see Chapter 4.5) and the difficult interpretation of a d2_ln_team variable.

4.4. Methodology

In order to model and predict community growth, four different approaches, which are all discussed in this chapter, are used, namely Bass Diffusion, Autoregressive Moving Average (ARMA), Autoregressive Distributed Lag (ADL), and Vector Autoregressive (VAR) models.

Individual models are evaluated using the Schwarz Criterion (SC) (Cameron and Trivedi 2005; IHS Global Inc. 2013; Schwarz 1978):

$$SC = -2 \cdot l/T + (k \cdot \ln T)/T$$
, (30)

with the value of the log likelihood function $l = -\frac{T}{2}(1 + \ln(2\pi) + \ln(\hat{\varepsilon}'\hat{\varepsilon}/T)))$, $\hat{\varepsilon}$ representing the residuals, *T* indicating the number of observations, and *k* indicating the number of coefficients. Lower values of SC indicate a "better" model. The SC penalizes the addition of further parameters and thus favors more parsimonious models (Cameron and Trivedi 2005; Schwarz 1978) compared to the Akaike Information Criterion (AIC), which is specified as follows (Akaike 1973; Cameron and Trivedi 2005; IHS Global Inc. 2013):

$$AIC = -2 \cdot l / T + 2 \cdot k / T ,$$

where l indicates the value of the log likelihood function, T indicates the number of observations, and k indicates the number of coefficients. Again, lower values refer to a "better" model. Although the use of SC is recommended by Diebold (2007), I include the AIC as an additional model selection criterion because in practice often both criteria are reported and because a further evaluation of the estimated models independent from the SC is valuable.

The forecasting performance of the different approaches is evaluated using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), which are common measures for out-of-sample comparisons (Wooldridge 2006). In this context, the first part of the observations serves to estimate model parameters, whereas the last part of the observations serves to measure the forecast accuracy of the estimated model by comparing the one-step-ahead forecasts with the observed values of the dependent variable. RMSE and MAE are specified as follows (Diebold 2007; IHS Global Inc. 2013; Wooldridge 2006):

$$RMSE = \sqrt{\sum_{t=T+1}^{T+h} (\hat{y}_t - y_t)^2 / h},$$
(31)

$$MAE = \sum_{t=T+1}^{T+h} |\hat{y}_t - y_t| / h,$$
(32)

where T+1, T+2, ..., T+h is the forecast sample, \hat{y}_t represents the forecasted value, and y_t represents the actual value of the dependent variable in period *t*. The model yielding the lowest value for RMSE or MAE is to be preferred.

In the following, different models for the estimation and prediction of community growth are presented.

4.4.1. Bass Diffusion Model

The Bass model is an approach, which was originally developed by Frank Bass (1969) in order to model and predict the diffusion of new consumer durables. The model assumes that adopters of a new durable product are influenced by mass media (external effect) and WOM (internal effect). The probability of an initial purchase at time t for previous non-buyers is expressed as:

$$\frac{f_t}{1 - F_t} = P(t) = p + q \frac{Y_t}{m},$$
(33)

where p is the coefficient of innovation (external effect), q is the coefficient of imitation (internal effect), Y_t is the number of previous adopters or also called the cumulated number of adopters until t, m is the number of all adopters over the whole product life cycle, i.e. the market capacity, f_t is the probability density function, F_t is the distribution function.

For the number of additional adopters y_t at time t follows:

$$y_{t} = \frac{dY}{dt} = P(t) \cdot (m - Y_{t}) = \left(p + q\frac{Y_{t}}{m}\right) \cdot (m - Y_{t}) = pm + (q - p)Y_{t} - \frac{q}{m}Y_{t}^{2}$$
(34)

Solution of the differential equation (34) leads to:

$$Y_{t} = m \frac{1 - e^{-(p+q)t}}{\left(1 + \frac{q}{p} e^{-(p+q)t}\right)}$$
(35)

$$\Rightarrow y_{t} = m \frac{(p+q)^{2} p^{-1} e^{-(p+q)t}}{\left(1 + \frac{q}{p} e^{-(p+q)t}\right)^{2}}$$
(36)

Hence, for the maximum number of adopters y^* at t^* follows:

$$t^* = \frac{1}{p+q} \ln \frac{q}{p} \tag{37}$$

$$y^* = \frac{m(p+q)^2}{4q}$$
(38)

If parameters of the Bass model are estimated from discrete time series data, the following equivalent for the basic model $y_t = pm + (q - p)Y_t - \frac{q}{m}Y_t^2$ is used:

$$y_t = a + bY_{t-1} + cY_{t-1}^2, (39)$$

where a=pm, b=(q-p), c=-q/m leads to:

$$b = q - p = -cm - \frac{a}{m}; \quad \rightarrow \quad \frac{a}{m} + cm + b = 0; \quad \rightarrow \quad cm^2 + bm + a = 0; \tag{40}$$

$$m = \frac{-b \pm \sqrt{b^2 - 4ca}}{2c} \tag{41}$$

Hence, all parameters are identified.

In the present research project the following modified Bass model, which is based on equation (39) and replaces purchases by new sign-ups, is used:

$$ln_new_signups_t = = ln(a+b \cdot new_signups_cum_{t-1} + c \cdot new_signups_cum_{t-1}^2) + e_t,$$
(42)

where $ln_new_signups_t$ describes the logarithmized number of new sign-ups at time *t*, and $new_signups_cum_{t-1}$ describes the cumulative number of new sign-ups at *t*-1. The transformation by logarithms is necessary in order to be able to compare this model with other

models used in this project. The model is estimated by non-linear least squares (e.g. Cameron and Trivedi 2005). Since the Bass model focuses on consumer durables and excludes repeated purchases (Bass 1969), the idea of the Bass model perfectly fits to the community setting, where people within a certain community usually register once.

In order to find a good model specification, diverse residual diagnostics are employed. Residuals need to be normally distributed, autocorrelation and heteroskedasticity in the residuals have to be avoided (Diebold 2007; Wooldridge 2006).

In the present project, I make use of the Jarque-Bera normality test. The null hypothesis assumes normal distribution. The test statistic is specified as follows (Diebold 2007; IHS Global Inc. 2013):

$$Jarque - Bera = \frac{T}{6} \left(S^2 + \frac{(K-3)^2}{4} \right),$$
(43)

where *S* represents the skewness, *K* represents the kurtosis, and *T* the number of observations.

In order to test for autocorrelation in the residuals, I use a test, which is based on the work of Breusch (1978) and Godfrey (1978a). The null hypothesis assumes no serial correlation up to a specified lag order (in the present project up to lag order 4). Thereby, residuals resulting from the original model are regressed on the independent variables of the model and on lagged residuals (IHS Global Inc. 2013):

$$e_{t} = X_{t}\omega + \left(\sum_{l=1}^{4} \alpha_{l}e_{t-l}\right) + u_{t}$$
(44)

Then, an F-test for testing the joint significance of the lagged residuals is employed (Kirchgässner and Wolters 2007; Wooldridge 2006). If there is autocorrelation, standard errors are skewed and the forecasting quality of the model decreases (Wooldridge 2006). The problem of autocorrelation can usually be solved by adding more lags or time dummy variables (Lütkepohl 2007; Wooldridge 2006).

Finally, the White test is used for detecting heteroskedasticity in the residuals (White 1980). The null hypothesis assumes no heteroskedasticity. The alternative hypothesis assumes heteroskedasticity of unspecified, general form. The White test regresses in an auxiliary regression the squared residuals from the original model on the independent

variables, their squares, and cross-products (IHS Global Inc. 2013; Wooldridge 2006).¹⁷ When the original model contains two independent variables, the auxiliary regression is specified as follows:

$$e_t^2 = \alpha_0 + \alpha_1 x_{1,t} + \alpha_2 x_{2,t} + \alpha_3 x_{1,t}^2 + \alpha_4 x_{2,t}^2 + \alpha_5 x_{1,t} x_{2,t} + u_t$$
(45)

An F-test is used to test the joint significance of the regressors (except intercept) of the auxiliary regression (Wooldridge 2006). If there is heteroskedasticity in the residuals, standard errors are skewed. One way to deal with this problem is to use heteroskedasticity consistent standard errors (White 1980; Wooldridge 2006).

After having made adaptions to the Bass model according to the results of the misspecification tests, the final model is obtained.

4.4.2. Autoregressive Moving Average Model

An autoregressive moving average model (ARMA) results from the combination of an autoregressive (AR) and a moving average (MA) model (Kirchgässner and Wolters 2007). By the help of an AR model the current value of a time series is explained by past values of the variable and a stochastic shock (Diebold 2007). For an AR process of lag order p results:

$$y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + \dots + a_p y_{t-p} + e_t$$
(46)

$$(1 - a_1 L - a_2 L^2 - \dots - a_p L^p) y_t = a_0 + e_t$$
(47)

$$A(L)y_t = a_0 + e_t \tag{48}$$

Through an MA model the current value of a time series is explained by current and past shocks. For an MA process of lag order q results:

$$y_{t} = b_{0} + e_{t} - b_{1}e_{t-1} - b_{2}e_{t-2} - \dots - b_{q}e_{t-q}$$

$$\tag{49}$$

$$y_t - b_0 = (1 - b_1 L - b_2 L^2 - \dots - b_q L^q) e_t$$
(50)

$$y_t - b_0 = B(L)e_t \tag{51}$$

¹⁷ In the case of Bass and ARMA models equation gradients are included.

Hence, an ARMA(p,q) model is specified as follows:

$$y_{t} = a_{0} + a_{1}y_{t-1} + \dots + a_{p}y_{t-p} + e_{t} - b_{1}e_{t-1} - \dots - b_{q}e_{t-q}$$
(52)

$$A(L)y_t = a_0 + B(L)e_t \tag{53}$$

The ARMA model is a quite flexible approach for describing a time series. Furthermore, the forecasting performance of ARMA models is rather good and often better than the performance of complex econometric models (Granger and Newbold 1975; Kirchgässner and Wolters 2007). For this reason, I select the ARMA model as one way of modelling and predicting community growth. In the present project, the ARMA model is specified as follows:

$$ln_new_signups_t = a_0 + a_1ln_new_signups_{t-1} + \dots + a_pln_new_signups_{t-p} + e_t - b_1e_{t-1} - \dots - b_qe_{t-q}$$
(54)

$$A(L)ln_new_signups_t = a_0 + B(L)e_t$$
(55)

The optimal lag orders p and q are specified by SC (Diebold 2007; Kirchgässner and Wolters 2007). Additionally, autocorrelation functions (ACF) and partial autocorrelation functions (PACF) indicate a specific lag order because AR(p), MA(q), ARMA(p,q) processes are characterized by typical patterns of ACF and PACF (Diebold 2007; Kirchgässner and Wolters 2007).

Finally, also in the case of ARMA models, misspecification tests are conducted. Besides the Jarque-Bera normality test, the autocorrelation test based on Breusch (1978) and God-frey (1978a), and the White heteroskedasticity test (see Chapter 4.4.1), a heteroskedasticity test based on Breusch and Pagan (1979) and Godfrey (1978b) is applied¹⁸. The null hypothesis of the test based on Breusch and Pagan (1979) and Godfrey (1978b) assumes no heteroskedasticity. In an auxiliary regression the squared residuals from the original model are regressed on the independent variables¹⁹ (IHS Global Inc. 2013; Wooldridge 2006). When the original model contains two independent variables, the auxiliary regression is specified as follows:

$$e_t^2 = \alpha_0 + \alpha_1 x_{1,t} + \alpha_2 x_{2,t} + u_t$$
(56)

¹⁸ In one case the White-test cannot be performed because the number of observations is too small for the number of parameters to be estimated.

¹⁹ In the case of ARMA models equation gradients have to be added.

An F-test helps to test the joint significance of the regressors (except intercept) of the auxiliary regression (Wooldridge 2006).

4.4.3. Autoregressive Distributed Lag Model

With autoregressive distributed lag (ADL) models, the current value of an endogenous variable y_t is explained by lagged endogenous variables y_{t-i} (i=1,..., p) as well as by contemporaneous and lagged exogenous variables x_{t-j} (j=0,..., q). The general ADL model of lag order p and q is specified as follows (Diebold 2007; Wooldridge 2006):

$$y_{t} = a_{0} + \sum_{i=1}^{p} a_{i} y_{t-i} + \sum_{j=0}^{q} b_{j} x_{t-j} + e_{t}$$
(57)

ADL models provide a flexible way of modelling time series, which is consistent with the general-to-specific approach proposed by Hendry (1985; 1995). ADL models include a range of special cases. From an ADL(1,1) model $y_t = a_0 + a_1y_{t-1} + b_0x_t + b_1x_{t-1} + e_t$ with $a_1=b_1=0$ follows for example the static model $y_t = a_0 + b_0x_t + e_t$, with $b_1=0$ follows the partial adjustment model $y_t = a_0 + a_1y_{t-1} + b_0x_t + e_t$. The optimal lag orders are specified by SC. Additionally, misspecification tests play an important role because they ensure an appropriate design of the model.

In the present project, general ADL models are specified as follows, whereby different independent variables are included:

$$ln_new_signups_{t} = a_{0} + \sum_{i=1}^{p} a_{i} \cdot ln_new_signups_{t-i} + \sum_{j=0}^{q} b_{j} \cdot d_ln_posters_{t-j} + e_{t}$$
(58)

$$ln_{new} signups_{t} = a_{0} + \sum_{i=1}^{p} a_{i} \cdot ln_{new} signups_{t-i} + \sum_{j=0}^{q} b_{1,j} \cdot d_{n-j} posters_{t-j} + \sum_{j=0}^{q} b_{2,j} \cdot d_{n-j} team_{t-j} + e_{t}$$
(59)

$$ln_new_signups_{t} = a_{0} + \sum_{i=1}^{p} a_{i} \cdot ln_new_signups_{t-i} + \sum_{j=0}^{q} b_{j} \cdot d_ln_participation_{t-j} + e_{t}$$

$$(60)$$

$$ln_new_signups_{t} = a_{0} + \sum_{i=1}^{p} a_{i} \cdot ln_new_signups_{t-i} +$$

$$+ \sum_{j=0}^{q} b_{1,j} \cdot d_ln_participation_{t-j} + \sum_{j=0}^{q} b_{2,j} \cdot d_ln_team_{t-j} + e_{t}$$
(61)

$$ln_new_signups_t = a_0 + \sum_{i=1}^p a_i \cdot ln_new_signups_{t-i} + \sum_{j=0}^q b_j \cdot ln_posters_{t-j} + e_t$$
(62)

$$ln_new_signups_{t} = a_{0} + \sum_{i=1}^{p} a_{i} \cdot ln_new_signups_{t-i} + \sum_{j=0}^{q} b_{j} \cdot ln_participation_{t-j} + e_{t}$$
(63)

Jarque-Bera normality test, an autocorrelation test based on Breusch (1978) and Godfrey (1978a), and heteroskedasticity tests based on White (1980) or Breusch and Pagan (1979) and Godfrey (1978b)²⁰ (all tests see Chapter 4.4.1 and Chapter 4.4.2) are used for misspecification testing.

4.4.4. Vector Autoregressive Model

The vector autoregressive (VAR) approach is a flexible way to model interdependencies between variables over time (see Chapter 3.4.1). In the present project, general VAR models of lag order p are specified as follows:

$$\begin{bmatrix} d_{-ln_{-} posters_{t}} \\ ln_{-new_{-} signups_{t}} \end{bmatrix} =$$

$$= \begin{bmatrix} C_{d_{-ln_{-} posters,t}} \\ C_{ln_{-new_{-} signups,t}} \end{bmatrix} + \sum_{i=1}^{p} \begin{bmatrix} a_{11,i} & a_{12,i} \\ a_{21,i} & a_{22,i} \end{bmatrix} \begin{bmatrix} d_{-ln_{-} posters_{t-i}} \\ ln_{-new_{-} signups_{t-i}} \end{bmatrix} + \begin{bmatrix} e_{d_{-ln_{-} posters,t}} \\ e_{ln_{-new_{-} signups,t}} \end{bmatrix}$$

$$\begin{bmatrix} d_{-ln_{-} participation_{t}} \\ ln_{-new_{-} signups_{t}} \end{bmatrix} = \begin{bmatrix} C_{d_{-ln_{-} participation,t}} \\ C_{ln_{-new_{-} signups,t}} \end{bmatrix} +$$

$$+ \sum_{i=1}^{p} \begin{bmatrix} a_{11,i} & a_{12,i} \\ a_{21,i} & a_{22,i} \end{bmatrix} \begin{bmatrix} d_{-ln_{-} participation_{t-i}} \\ ln_{-new_{-} signups_{t-i}} \end{bmatrix} + \begin{bmatrix} e_{d_{-ln_{-} participation,t}} \\ e_{ln_{-new_{-} signups,t} \end{bmatrix}$$

$$(65)$$

²⁰ In two cases the heteroskedasticity test based on Breusch and Pagan (1979) and Godfrey (1978b) (for computational details see Chapter 4.4.2) is used instead of the White test. The White test cannot be performed because the number of observations is too small for the number of parameters to be estimated.

$$\begin{bmatrix} ln _ posters_t \\ ln _ new _ signups_t \end{bmatrix} = \begin{bmatrix} C_{ln_posters,t} \\ C_{ln_new_signups,t} \end{bmatrix} + \sum_{i=1}^{p} \begin{bmatrix} a_{11,i} & a_{12,i} \\ a_{21,i} & a_{22,i} \end{bmatrix} \begin{bmatrix} ln_posters_{t-i} \\ ln_new_signups_{t-i} \end{bmatrix} + \begin{bmatrix} e_{ln_posters,t} \\ e_{ln_new_signups,t} \end{bmatrix}$$
(66)

$$\begin{bmatrix} ln _ participation_{t} \\ ln _ new _ signups_{t} \end{bmatrix} =$$

$$= \begin{bmatrix} C_{ln_ participation,t} \\ C_{ln_ new_ signups,t} \end{bmatrix} + \sum_{i=1}^{p} \begin{bmatrix} a_{11,i} & a_{12,i} \\ a_{21,i} & a_{22,i} \end{bmatrix} \begin{bmatrix} ln_ participation_{t-i} \\ ln_ new_ signups_{t-i} \end{bmatrix} + \begin{bmatrix} e_{ln_ participation,t} \\ e_{ln_ new_ signups,t} \end{bmatrix}$$

$$(67)$$

Since the focus of this research project lies on the explanation of new sign-ups, both posters and participation variables occupy the first elements of the vector and thus are supposed to be more exogenous than new sign-ups and to have an instantaneous influence on them (Lütkepohl 2007). Further, this ordering of variables is also supported by theory (see Chapter 4.2.4). The lag order p of the VAR model is determined by SC. Additionally, misspecification tests for VAR models are conducted. They comprise the Jarque-Bera normality test with Cholesky decomposition of the residual covariance matrix for the orthogonalization of error terms (Lütkepohl 2007). Further, the White test including cross terms is used for testing heteroskedasticity. Finally, the autocorrelation LM test is employed for testing autocorrelation up to lag order 4 (Lütkepohl 2007). As these tests are extensions of the misspecification tests discussed in Chapter 4.4.1, I forego a deep discussion (for further details see IHS Global Inc. 2013; Lütkepohl 2007). Finally, impulse response functions (IRFs), which visualize how the system responds over time to exogenous impulses, are investigated (for further details see Chapter 3.4.1). Since IRFs reveal more about the interdependence between variables than Granger causality (Lütkepohl 2007), I do not perform Granger causality tests (Granger 1969), which only test whether the inclusion of lagged poster/participation variables can enhance the explanatory power of an autoregressive approach for new sign-ups and vice versa by using F-tests (IHS Global Inc. 2013). In contrast to IRFs, Granger causality tests do not show how the effects look like.

4.5. Results

In the following, I estimate Bass, ARMA, ADL, and VAR models for six regional communities using the software package EViews.

4.5.1. Region 1

Bass

The estimation of a (modified) Bass model for region 1 yields the results displayed in Table 12. A dummy variable for July 2009²¹ is included since the null hypotheses assuming both normality and no heteroskedasticity are rejected in the model excluding the dummy variable. After the inclusion of a dummy variable for July 2009 misspecification tests provide satisfactory results (see Appendix 84): The results of the Jarque-Bera test reveal that the null hypothesis assuming normality cannot be rejected at a significance level of 5%. Further, the null hypothesis of the Breusch-Godfrey test assuming no auto-correlation cannot be rejected, too. Finally, also the null hypothesis of the White test assuming no heteroskedasticity cannot be rejected.

Dependent Variable: In_	Dependent Variable: In_new_signups									
In_new_signups=In(a+b*new_signups_cum_t-1+c*(new_signups_cum_t-1)²+d*DUM2009M07)										
	Coefficient	Std. Error	t-Statistic	p-value						
а	537.7810	89.74966	5.992012	0.0000						
b	0.015862	0.022474	0.705776	0.4858						
С	-0.000002	0.000001	-1.503230	0.1432						
d	-529.7810	89.78457	-5.900579	0.0000						
R-squared	0.856178	Mean depender	nt var	6.061784						
Adjusted R-squared	0.841795	S.D. dependent	var	0.786862						
S.E. of regression	0.312974	Akaike info crite	erion	0.624738						
Sum squared resid	2.938581	Schwarz criterio	on	0.804309						
Log likelihood	-6.620539	Hannan-Quinn d	criter.	0.685977						
Durbin-Watson stat	2.426784									

Table 12 Bass Estimation Output; Region 1

Sample: 2009M07 - 2012M04

Included observations: 34

The estimated model describes the data quite well because R^2 obtains a value of 0.86, indicating that 86% of the sample variation of the dependent variable can be explained by the independent variables (Wooldridge 2006). The adjusted R^2 reaches a value of 84%. Hence, these values lie in the range of the R^2 values, which Bass (1969) obtained in his work. The SC reaches a value of 0.80, the AIC equals 0.62. However, it is worth mentioning that the coefficients of the cumulative number of new sign-ups and of the squared

²¹ The decision which dummy variable to include is based on the pattern of the residuals. One should choose the dummy variable for a certain month in the sense that normality is approximately established and heteroskedasticity is reduced.

cumulative number of new sign-ups do not significantly differ from zero. Figure 94 shows the adaption of the estimated model to the observed data.

Figure 94 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated Bass Model; Region 1

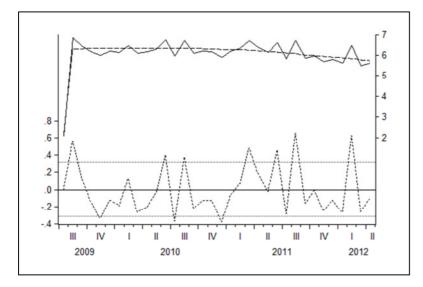
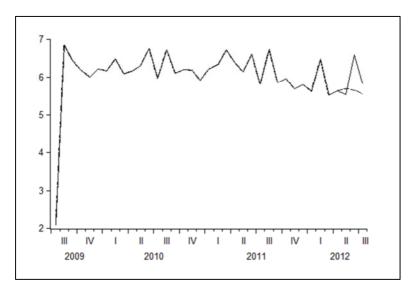



Figure 95 Actual (----) and Forecasted (--) Values of ln_new_signups (Bass); Region 1

Based on the estimated Bass model, forecasts of new sign-ups, which refer to the time period of the holdout sample, are generated by the static one-step-ahead forecasting procedure. This forecasting procedure is a standard method for model comparisons (Trusov, Bucklin, and Pauwels 2009; Wooldridge 2006). Figure 95 displays actual and forecasted

values of the logarithmized number of new sign-ups. From the forecast based on the sample ranging from May 2012 to July 2012 follows RMSE=0.569461 and MAE=0.456720.²²

ARMA

Next, community growth is analyzed by the help of an ARMA model. To get a first idea of the right ARMA specification a correlogram of the logarithmized number of new signups is generated. The correlogram, which is displayed in Figure 96, implies an AR-MA(0,0) model since there are no relevant peaks in the autocorrelation function (ACF) and partial autocorrelation function (PACF). Thus, it is sufficient to concentrate on AR-MA specifications of low order.²³ I estimate several ARMA specifications ranging from ARMA(0,0) to ARMA(2,2) and make a final decision of the model to choose by the help of SC (Diebold 2007). The lowest SC value among ARMA(0,0), AR(1), AR(2), MA(1), MA(2), ARMA(1,1), ARMA(1,2), ARMA(2,1), and ARMA(2,2) is attributed to the ARMA(1,2) process (see Appendix 85).

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	I 🗖 I	1	-0.122	-0.122	0.551	0.458
	I I	2	0.008	-0.007	0.553	0.758
	1 j 1	3	0.009	0.009	0.557	0.906
. <u>)</u>	1 1 1	4	0.065	0.069	0.731	0.947
1 1	- i i -	5	0.005	0.021	0.732	0.981
, ja 1	1 j 1	6	0.037	0.041	0.793	0.992
, d ,	ı di i	7	-0.085	-0.079	1.122	0.993
- I I		8	0.012	-0.013	1.129	0.997
1 1	1 1	9	0.007	0.004	1.132	0.999
		10	-0.011	-0.012	1.138	1.000
· 🖬 · 🔡	· 🗖 ·	11	-0.126	-0.122	1.982	0.999
, p, j	. p .	12	0.068	0.041	2.242	0.999
יםי	· 🗖 ·	13	-0.135	-0.122	3.302	0.997
- I I I	1 1 1	14	0.009	-0.022	3.308	0.998
· (·		15	-0.026	-0.015	3.352	0.999
· (· ·	1 1	16	-0.021	-0.023	3.382	1.000

Figure 96 Correlogram of ln_new_signups; Region 1

Sample: 2009M07 - 2012M04 Included observations: 34

²² Measures such as SC, AIC, RMSE, and MAE are not interpreted at this point because these measures must be evaluated by comparing their values among different models (see Chapter 4.7.1).

²³ A further reason for not concentrating on ARMA processes of high order is that the sample size is not large enough for the estimation of ARMA models of high lag order.

The SC of ARMA(1,2) accounts for 0.87. Further, the null hypotheses of the Jarque-Bera assuming normality, the Breusch-Godfrey assuming no autocorrelation, and the White test assuming no heteroskedasticity cannot be rejected (see Appendix 84). Thus, there is no need to make any adaptions to the model. The estimation output of the ARMA(1,2) model is presented in Table 13. The graph of the ARMA(1,2) process together with the actual and residual values is displayed in Figure 97. Both R² values, whereby R²=0.27 and adjusted R²=0.19, refer to a poor goodness of fit. The AIC equals 0.68. Although the autoregressive component is not significant at a significance level of 5%, it should not be excluded because of stability and performance issues. Hence, in this case current values of the logarithmized number of new sign-ups are predominantly influenced by current and past shocks. Finally, the one-step-ahead forecast procedure yields RMSE=0.682572 and MAE=0.491148 based on the forecast sample ranging from May 2012 to July 2012. The actual and forecasted values of the logarithmized number of new sign-ups are presented in Figure 98.

Dependent Variable: In_new_signups									
	Coefficient	Std. Error	t-Statistic	p-value					
Constant	6.118055	0.122659	49.87862	0.0000					
AR(1)	0.024626	0.204984	0.120134	0.9052					
MA(1)	0.219313	0.069712	3.145966	0.0038					
MA(2)	0.903261	0.059101	15.28338	0.0000					
R-squared	0.265457	Mean dependen	t var	6.182461					
Adjusted R-squared	0.189470	S.D. dependent	var	0.357613					
S.E. of regression	0.321957	Akaike info crite	erion	0.684415					
Sum squared resid	3.006032	Schwarz criteric	on	0.865810					
Log likelihood	-7.292844	Hannan-Quinn c	riter.	0.745449					
F-statistic	3.493447	Durbin-Watson	stat	1.987654					
Prob(F-statistic)	0.028056								
Inverted AR Roots	.02								
Inverted MA Roots	11+.94i	1194i							

Table 13	ARMA	Estimation	Output:	Region 1

Sample (adjusted): 2009M08 - 2012M04 Included observations: 33 (after adj.) Figure 97 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ARMA Model; Region 1

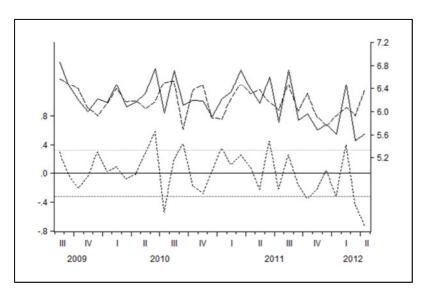
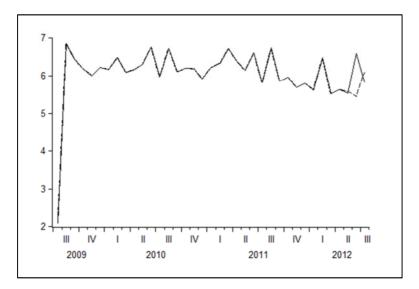



Figure 98 Actual (----) and Forecasted (---) Values of ln_new_signups (ARMA); Region 1

ADL (d_ln_posters)

In this section, an ADL model including the first differences of the logarithmized number of posters, i.e. the growth rate of the number of posters, as an exogenous variable is used in order to examine community growth of region 1. First of all, ADL models of different lag lengths²⁴ are compared with each other. The best model is selected using SC. The value of SC is minimal for an ADL specification that includes the by one period lagged vari-

²⁴ The maximum lag length is set at lag order 2 because the number of observations does not allow considering more than two lags.

able for community growth, i.e. *ln_new_signups_t-1*, and the current poster variable, i.e. *d_ln_posters* (see Appendix 86). Since there is evidence for autocorrelation in the residuals, the model is estimated again including a dummy variable for March 2012. After that, null hypotheses of normality, autocorrelation, and heteroskedasticity tests are not rejected (see Appendix 84). Thus, a further adaption is not necessary. The estimation results of the ADL model including the dummy variable are presented in Table 14.

Dependent Variable: In_new_signups									
	Coefficient	Std. Error	t-Statistic	p-value					
Constant	3.418681	0.910826	3.753386	0.0008					
In_new_signups_t-1	0.442088	0.146232	3.023198	0.0052					
d_In_posters	0.546960	0.131362	4.163766	0.0003					
DUM2012M03	-0.782968	0.276055	-2.836274	0.0082					
R-squared	0.486573	Mean dependen	t var	6.182461					
Adjusted R-squared	0.433460	S.D. dependent	var	0.357613					
S.E. of regression	0.269171	Akaike info crite	erion	0.326274					
Sum squared resid	2.101140	Schwarz criteric	n	0.507668					
Log likelihood	-1.383514	Hannan-Quinn c	riter.	0.387307					
F-statistic	9.161082	Durbin-Watson	stat	2.619887					
Prob(F-statistic)	0.000201								

 Table 14
 ADL (d_ln_ posters) Estimation Output; Region 1

Sample (adjusted): 2009M08 - 2012M04

Included observations: 33 (after adj.)

Both R² values ranging from 0.43 to 0.49 reveal a moderate goodness of fit. The SC reaches a value of 0.51, the AIC reaches a value of 0.33. Additionally, the estimation output shows that the current number of new sign-ups, i.e. $ln_new_signups$, is positively influenced by the by one period lagged number of new sign-ups, i.e. $ln_new_signups_t-t-1$, and by the current growth rate of the number of posters, i.e. $d_ln_posters$. In the short term, for example, a one percentage point increase in $d_ln_posters$ at time *t* leads (on average and ceteris paribus) to an immediate 0.55% increase in $ln_new_signups$. Figure 99 displays the estimated model together with the actual values. The static one-step-ahead forecast procedure generates values of RMSE=0.559356 and MAE=0.489940 for the forecast sample ranging from May 2012 to July 2012. The development of actual and forecasted values is illustrated in Figure 100. In order to control for possible effects going out from the community's employees (e.g. photographers and editorial staff) on the community growth variable, I include a team variable, which takes the growth rate of the number of employees into account, i.e. d_ln_ream (see Appendix 87 for model selection).

The community's employees might contribute to community growth because they are able to directly acquire new members. However, as can be seen from Table 15, estimation results show that the team variable has no significant impact on community growth. By contrast, the positive effect of the poster variable on community growth remains highly significant. Finally, it is not necessary to adapt the model including both posters and team variables because null hypotheses of all misspecification tests are not rejected (see Appendix 84).

Figure 99 Actual (----) and Fitted (- -) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (d_ln_posters) Model; Region 1

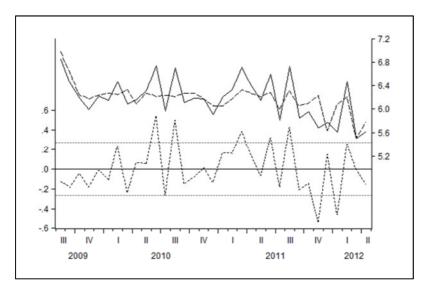
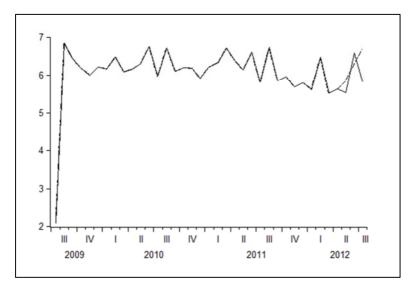



Figure 100 Actual (-----) and Forecasted (---) Values of ln_new_signups (ADL d_ln_posters); Region 1

Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	3.035408	1.359310	2.233050	0.0340		
In_new_signups_t-1	0.381492	0.181048	2.107139	0.0445		
In_new_signups_t-2	0.114451	0.073777	1.551320	0.1325		
d_In_posters	0.767856	0.203541	3.772490	0.0008		
d_ln_team	0.934881	0.895118	1.044421	0.3056		
P. squared	0.004000	Moon dopondon	t vor	0.404500		
R-squared	0.384089	Mean dependen		6.161596		
Adjusted R-squared	0.292843	S.D. dependent	var	0.342320		
S.E. of regression	0.287866	Akaike info criterion 0.4899		0.489958		
Sum squared resid	2.237405	Schwarz criterion 0.7189		0.718979		
Log likelihood	-2.839328	Hannan-Quinn c	riter.	0.565872		
F-statistic	4.209380	Durbin-Watson	stat	2.145029		
Prob(F-statistic)	0.008909					

 Table 15
 ADL (d_ln_posters, d_ln_team) Estimation Output; Region 1

Sample (adjusted): 2009M09 - 2012M04

Included observations: 32 (after adj.)

ADL (d_ln_participation)

In the previous section, I examined the influence of the growth rate of the number of posters on community growth by using an ADL model. In the following section, I use participation – or more precisely the first differences of the logarithmized number of contributions made in the community, i.e. the growth rate of the number of contributions instead of the poster variables to model community growth. The aim of this distinction is to unveil whether posters or contributions add more to the explanation and prediction of community growth. For the selection of the "best" ADL specification I use again the SC. Among all model specifications up to lag order 2, the ADL model including only a contemporaneous participation variable, i.e. <u>*d_ln_participation*</u>, obtains the smallest value of the SC (see Appendix 88). Since the null hypotheses of the Jarque-Bera assuming normality, the Breusch-Godfrey assuming no autocorrelation, and the White test assuming no heteroskedasticity are not rejected, changes to the model are not necessary (see Appendix 84). The estimation output displayed in Table 16 shows a value of 0.17 for R² and a value of 0.14 for the adjusted R². These values suggest a poor goodness of fit. Further, the SC amounts to 0.78. The AIC equals 0.68. Moreover, the estimation output reveals that the coefficient of the current growth rate of the number of contributions, i.e. d_{ln} participation, is significantly different from zero at a significance level of 5%, but not at a level of 1%. The value of the coefficient indicates that a one percentage point increase in $d_{ln_participation}$ leads to a 0.14% increase in $ln_{new_signups}$.

Dependent Variable: In_new_signups							
	Coefficient	Std. Error	t-Statistic	p-value			
Constant	6.153463	0.058735	104.7666	0.0000			
d_In_participation	0.135127	0.053513	2.525143	0.0169			
R-squared	0.170598	Mean dependen	t var	6.182461			
Adjusted R-squared	0.143844	S.D. dependent	var	0.357613			
S.E. of regression	0.330895	Akaike info crite	rion	0.684659			
Sum squared resid	3.394231	Schwarz criterio	n	0.775356			
Log likelihood	-9.296870	Hannan-Quinn c	riter.	0.715176			
F-statistic	6.376349	Durbin-Watson	stat	1.751863			
Prob(F-statistic)	0.016895						

 Table 16
 ADL (d_ln_participation) Estimation Output; Region 1

Sample (adjusted): 2009M08 - 2012M04 Included observations: 33 (after adj.)

Figure 101 displays estimated and actual values of *ln_new_signups*. Finally, the static one-step-ahead forecast procedure, which is based on the forecast sample ranging from May 2012 to July 2012, generates values of RMSE=0.512529 and MAE=0.501042. The deviations of the forecasted values from the observed values are depicted in Figure 102.

Figure 101 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (d_ln_participation) Model; Region 1

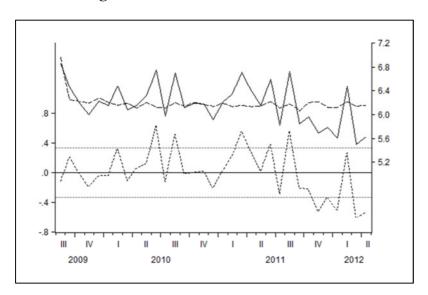
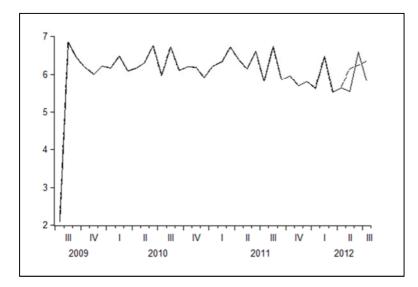
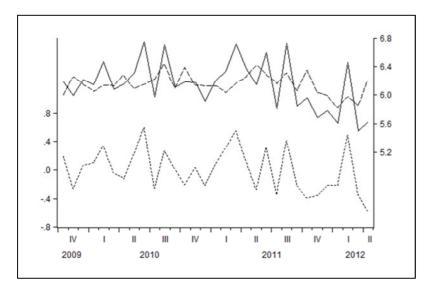



Figure 102 Actual (----) and Forecasted (---) Values of ln_new_signups (ADL d_ln_participation); Region 1



Since the results of the ADL model including posters and team variables show that the team variable does not contribute to the explanation of community growth sufficiently and also the ADL model including participation and team variables does not reveal significant effects stemming out from the team variable (see Appendix 89), I dispense with considering the team variable in the following analyses of region 1.

VAR (d_ln_posters)

In the last two sections of Chapter 4.5.1, I use VAR models in order to explain and predict community growth. In this section, I start with the integration of the growth rate of the number of posters into the VAR model. The lag order of the VAR process is selected according to the smallest SC value of VAR processes up to lag order 4. The SC is minimal for a VAR(1) process (see Appendix 90). However, because there is evidence for autocorrelated and not normally distributed residuals, the VAR process has to be adapted. Since the VAR(1) process requires several dummy variables until misspecification test results become satisfactory, I use a VAR(2) process which is an appropriate procedure in this case (Lütkepohl 2007; Wooldridge 2006). After the estimation of a VAR(2) model the null hypotheses of the VAR normality test assuming normality, of the VAR White heteroskedasticity test assuming no heteroskedasticity, and the VAR autocorrelation LM test assuming no serial correctly specified. Since the ordering of the variables in a VAR system plays an important role, i.e. the variable that comes first in the system has a potential immediate effect on the following variables (Lütkepohl 2007), I set the poster variable at the first position and the community growth variable at the second position. This proceeding is justified by theory (see Chapter 4.2.4), by the focus of this research project, which lies on the explanation of community growth, and because the ADL models already show that there are contemporaneous effects of the poster variable on the community growth variable. The estimation output reveals that the SC adds up to a value of 1.09 and the AIC reaches a value of 0.63 (see Appendix 92). Figure 103 shows actual values of the logarithmized number of new sign-ups as well as values which are generated through the VAR model. Since it is difficult to interpret the coefficients of a VAR because of the mutual dependencies between the variables, IRFs are generated (Sims 1980). They are displayed in Figure 104.

Figure 103 Actual (----) and Fitted (--) Values of ln_new_signups and Residual (----) Values from the Estimated VAR (d_ln_posters) Model; Region 1

The IRF at the bottom left of Figure 104 shows the effect of a one standard deviation shock in the poster variable on current and future values of new sign-ups, i.e. there is a positive response of community growth to a shock in the poster variable, which is significant up to one month. The IRF at the top right shows that the effects of a shock in new sign-ups on the growth rate of posters are not significant. Further, there is a positive response of new sign-ups to a shock in new sign-ups. Finally, the response of the poster variable to a shock in the poster variable is significant positive up to one month, then turns significant negative after one month for a short period of time. Also for the VAR model, I use the one-step-ahead forecast procedure which generates values of

RMSE=0.448382 and MAE=0.337662 based on the forecast sample of May 2012 to July 2012. Actual and forecasted values are depicted in Figure 105.

Figure 104 Impulse Response Functions, d_ln_posters ln_new_signups, Response to Cholesky One S. D. Innovations ± 2 S. E.; Region 1

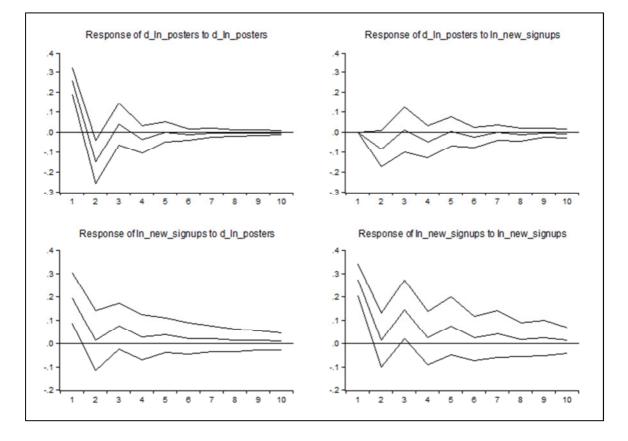
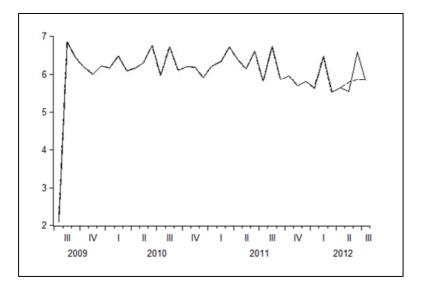



Figure 105 Actual (-----) and Forecasted (---) Values of ln_new_signups (VAR d_ln_posters); Region 1

VAR (d_ln_participation)

In the following section, I estimate a VAR model including the participation variable, i.e. the first differences of the logarithmized number of contributions made in the community, instead of the poster variable in order to analyze community growth. The lag length of the VAR model is determined by the SC. The SC value is minimal for a VAR(0) specification, i.e. a VAR model that only includes a constant term (see Appendix 93). A VAR(0) indicates that there are no dynamics in the model. Hence, the traditional VAR approach is not suitable in this case. The analysis of community growth in region 1 by a VAR model including the participation variable does not give any added value.²⁵

4.5.2. Region 2

Bass

I start modeling community growth of region 2 by estimating a (modified) Bass model. Since under the standard estimation procedure residuals are not normally distributed and heteroskedasticity in the residuals arises, the model has to be estimated again including a dummy variable for August 2008. The estimation results are presented in Table 17.

Dependent Variable: In_new_signups							
In_new_signups=In(a+b*new_signups_cum_t-1+c*(new_signups_cum_t-1) ² +d*DUM2009M08)							
Coefficient	Std. Error	t-Statistic	p-value				
214.2646	41.81715	5.123846	0.0000				
0.023952	0.024933	0.960641	0.3447				
-0.000002	0.000003	-0.613120	0.5446				
-205.2691	41.96028	-4.891986	0.0000				
0.728403	Mean depender	it var	5.496898				
0.700307	S.D. dependent	var	0.703551				
0.385154	Akaike info crite	erion	1.042865				
4.301962	Schwarz criterio	on	1.224260				
-13.20727	Hannan-Quinn c	criter.	1.103899				
1.902177							
	signups_cum_t- Coefficient 214.2646 0.023952 -0.000002 -205.2691 0.728403 0.700307 0.385154 4.301962 -13.20727	signups_cum_t-1+c*(new_signups Coefficient Std. Error 214.2646 41.81715 0.023952 0.024933 -0.000002 0.000003 -205.2691 41.96028 0.728403 Mean depender 0.700307 S.D. dependent 0.385154 Akaike info crite 4.301962 Schwarz criterio -13.20727 Hannan-Quinn c	signups_cum_t-1+c*(new_signups_cum_t-1)²+d* Coefficient Std. Error t-Statistic 214.2646 41.81715 5.123846 0.023952 0.024933 0.960641 -0.000002 0.000003 -0.613120 -205.2691 41.96028 -4.891986 0.728403 Mean dependent var 0.700307 S.D. dependent var 0.385154 Akaike info criterion 4.301962 Schwarz criterion -13.20727 Hannan-Quinn criter.				

Table 17Bass Estimation Output; Region 2

Sample: 2009M08 - 2012M04 Included observations: 33

²⁵ I additionally estimate VAR(1) and VAR(2) models in order to double check. However, there are no significant effects of participation on community growth.

From Jarque-Bera, White, and Breusch-Godfrey test we may conclude that the null hypotheses of normality, no heteroskedasticity, and no autocorrelation cannot be rejected (see Appendix 94). Thus, a further modification is not necessary. The estimation output reveals that R² values range from 0.70 to 0.73, which is quite a respectable result. The SC reaches a value of 1.22, the AIC equals 1.04. However, the coefficients of the cumulative number of new sign-ups and of the squared cumulative number of new sign-ups do not significantly differ from zero. Figure 106 displays the estimated curve together with the actual data.

Figure 106 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated Bass Model; Region 2

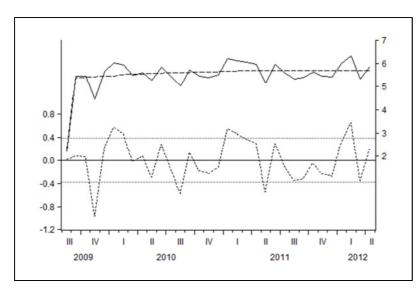
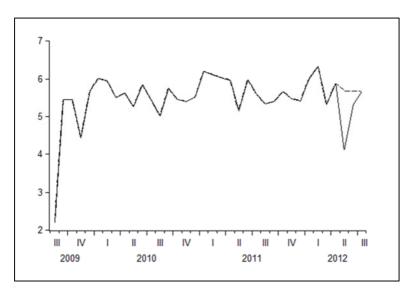



Figure 107 Actual (-----) and Forecasted (---) Values of ln_new_signups (Bass); Region 2

In the next step, the forecast values referring to the time period of the holdout sample are computed by the static one-step-ahead forecasting procedure. Figure 107 displays actual and forecasted values of the logarithmized number of new sign-ups. The figure shows that the forecasted values exceed the actual values. Only the last value is similar. From the forecast, which is based on the sample ranging from May 2012 to July 2012, follows RMSE=0.911829 and MAE=0.631596.

ARMA

Next, I examine community growth in region 2 with a specification of an ARMA model. For this purpose, the correlogram of the logarithmized number of new sign-ups is analyzed first. Based on the correlogram displayed in Figure 108 an ARMA(0,0) process should be selected because there are no significant peaks in the ACF and PACF. This means that neither an AR nor an MA component should be included.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. h .	. h .	1	0.066	0.066	0.157	0.692
1 1 1		2	0.018	0.013	0.168	0.919
, <u>ha</u> i I		3	0.234	0.233	2.270	0.518
		4	-0.027	-0.060	2.299	0.681
		5	-0.131	-0.138	3.011	0.698
		6	-0.103	-0.150	3.464	0.749
	1 1 1	7	-0.017	0.023	3.476	0.838
	1 1 1	8	-0.033	0.040	3.528	0.897
1 b 1	1 🗖 1	9	0.093	0.163	3.947	0.915
		10	-0.042	-0.091	4.034	0.946
1 þ 1) .	11	0.045	0.010	4.140	0.966
ı 🗖 ı	· 🖻 ·	12	0.224	0.159	6.889	0.865
- i ji i		13	0.035	0.066	6.957	0.904
1 1	1 1	14	0.002	-0.005	6.958	0.936
1 1		15	-0.002	-0.109	6.958	0.959
ı () ı	ı (ji i	16	-0.025	-0.053	7.000	0.973

Figure 108 Correlogram of ln_new_signups; Region 2

Sample: 2009M08 - 2012M04 Included observations: 33

However, in order to make a more precise decision concerning the order of the appropriate ARMA model, I compare SC values of all ARMA specifications up to lag order 2. The specification with the lowest value of SC=1.10 is assigned to an AR(1) process (see Appendix 95). Based on the AR(1) model, misspecification tests are performed: The null hypotheses of the Jarque-Bera, the Breusch-Godfrey, and the White test cannot be rejected (see Appendix 94). Thus, there is no need to adapt the model. Although the AR(1) model is the "best" among all other specifications, its performance is, however, quite poor. As displayed in the estimation output both R^2 values do not exceed a value of 0.02, which is extremely poor (see Table 18). The AIC equals 1.01. Further, the coefficient of the AR(1) component is not significantly different from zero. Hence, in this model, past values of the logarithmized number of new sign-ups have no significant influence on the current value of the logarithmized number of new sign-ups. However, the AR(1) component needs to be included because of stability and performance issues.

	Coefficient	Std. Error	t-Statistic	p-value
Constant	5.608469	0.074955	74.82490	0.0000
AR(1)	0.068832	0.098130	0.701429	0.4884
R-squared	0.016135	Mean dependen	t var	5.600013
Adjusted R-squared	-0.016660	S.D. dependent var		0.385688
S.E. of regression	0.388888	Akaike info criterion		1.009409
Sum squared resid	4.537009	Schwarz criterion		1.101018
Log likelihood	-14.15055	Hannan-Quinn criter.		1.039775
F-statistic	0.492003	Durbin-Watson	stat	1.906448
Prob(F-statistic)	0.488441			
Inverted AR Roots	.07			

Table 18ARMA Estimation Output; Region 2

Sample (adjusted): 2009M09 - 2012M04 Included observations: 32 (after adj.)

Figure 109 Actual (----) and Fitted (--) Values of ln_new_signups and Residual (----) Values from the Estimated ARMA Model; Region 2

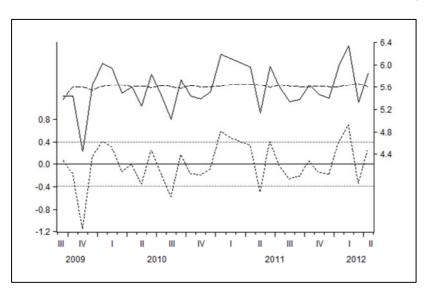


Figure 110 Actual (-----) and Forecasted (---) Values of ln_new_signups (ARMA); Region 2

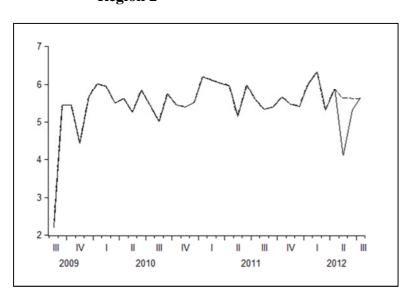
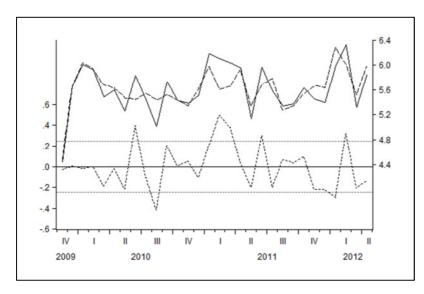


Figure 109 shows the deviations of the actual values from the estimated values. From the one-step-ahead forecast procedure values for RMSE=0.891237 and MAE=0.611291 are generated. Figure 110 reveals that the forecasted values are higher than the observed values.

ADL (d_ln_posters)


In the following, I analyze community growth with an ADL model including the growth rate of the number of posters as an exogenous variable. Among different ADL specifications the value of SC is minimal for the model of which community growth and poster variables have the maximum lag length of two (see Appendix 96). Estimation results of the selected model are presented in Table 19. Since the null hypotheses of the Jarque-Bera, the Breusch-Godfrey, and the White test are not rejected, adaptions of the model are not necessary (see Appendix 94). The estimation output reveals a value of 0.68 for R² and a value of 0.62 for the adjusted R². Thus, the model's goodness of fit is quite satisfying. The SC accounts for 0.48. The AIC reaches a value of 0.20. Further, it is apparent that $d_{ln_posters_tas}$ has a significant positive impact and $d_{ln_posters_t-2}$ has a significant negative impact on $ln_{new_signups_t-1}$, and $ln_{new_signups_t-2}$ are not significant at a significance level of 5%. Yet, they are not excluded because of stability and performance reasons. Nevertheless, the long-run propensity, i.e. the reaction of new sign-ups to a permanent one percentage point increase in the poster variable, is still positive.

Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	2.399646	1.001372	2.396359	0.0247		
In_new_signups_t-1	0.279617	0.187309	1.492807	0.1485		
In_new_signups_t-2	0.286184	0.163321	1.752286	0.0925		
d_In_posters	0.665350	0.138255	4.812497	0.0001		
d_ln_posters_t-1	0.333678	0.189367	1.762076	0.0908		
d_ln_posters_t-2	-0.215893	0.063673	-3.390659	0.0024		
R-squared	0.683165	Mean dependen	it var	5.611391		
Adjusted R-squared	0.617158	S.D. dependent	var	0.396070		
S.E. of regression	0.245065	Akaike info crite	erion	0.202273		
Sum squared resid	1.441369	Schwarz criteric	n	0.482513		
Log likelihood	2.965904	Hannan-Quinn c	riter.	0.291924		
F-statistic	10.34986	Durbin-Watson	stat	2.054497		
Prob(F-statistic)	0.000022					
Cample (adjusted), 2000	111 00101000					

 Table 19
 ADL (d_ln_posters) Estimation Output; Region 2

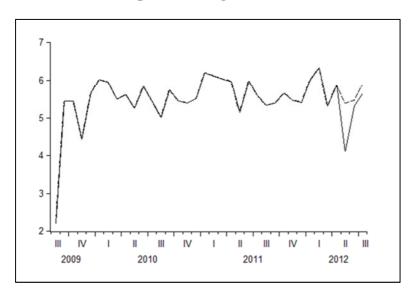

Sample (adjusted): 2009M11 - 2012M04 Included observations: 30 (after adj.)

Figure 111 Actual (----) and Fitted (--) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (d_ln_posters) Model; Region 2

Results displayed in the estimation output are also reflected in Figure 111. The one-stepahead forecast procedure yields values of RMSE=0.746861 and MAE=0.543002. Figure 112 shows that the forecasted values exceed the observed values.

Figure 112 Actual (-----) and Forecasted (---) Values of ln_new_signups (ADL d_ln_posters); Region 2

Moreover, even if the team variable is added to the model, this does not change the significant positive effect of the poster variable on community growth (see Table 20; see also Appendix 97 for model selection). However, the team variable itself has no significant impact on community growth. Finally, due to the results of misspecification tests, the model including both posters and team variables does not need to be adapted (see Appendix 94).

Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	1.687689	0.827280	2.040047	0.0509		
In_new_signups_t-1	0.683850	0.145736	4.692402	0.0001		
d_In_posters	0.670745	0.141319	4.746309	0.0001		
d_ln_team	0.511194	0.358547	1.425738	0.1650		
R-squared	0.478858	Mean dependen	t var	5.600013		
Adjusted R-squared	0.423021	S.D. dependent	var	0.385688		
S.E. of regression	0.292965	Akaike info crite	rion	0.498943		
Sum squared resid	2.403203	Schwarz criterio	n	0.682160		
Log likelihood	-3.983096	Hannan-Quinn c	riter.	0.559675		
F-statistic	8.576054	Durbin-Watson	stat	2.448234		
Prob(F-statistic)	0.000338					

Table 20	ADL (d_ln_	_posters, d_ln	_team) Estimation	Output; Region 2
----------	------------	----------------	-------------------	-------------------------

Sample (adjusted): 2009M09 - 2012M04

Included observations: 32 (after adj.)

ADL (d_ln_participation)

Next, I apply an ADL model that investigates the role of the growth rate of participation in explaining and predicting community growth. Among different ADL specifications, the SC selects an ADL model including only the contemporaneous participation variable (see Appendix 98). Null hypotheses of normality, autocorrelation, and heteroskedasticity tests are not rejected (see Appendix 94). Hence, there is no need to make any changes to the model. The estimation output in Table 21 presents the SC value adding up to 1.12 and the AIC reaching a value of 1.03. Further, it displays both R² values ranging from -0.03 to 0.00, which refer to a very poor goodness of fit. Figure 113 contrasts estimated and actual values. The coefficient of d_{ln} participation is highly insignificant suggesting that the growth rate of the number of contributions has no impact on the number of new sign-ups. The forecasted values, which are generated through the one-step-ahead forecast procedure, based on the forecast sample ranging from May 2012 to July 2012, are displayed in Figure 114 together with the actual values. The deviations of forecasted values from actual values are represented in the forecast errors of RMSE=0.872336 and MAE=0.600538.

Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	5.598361	0.070953	78.90260	0.0000		
d_In_participation	0.007610	0.070245	0.108338	0.9144		
R-squared	0.000391	Mean dependen	t var	5.600013		
Adjusted R-squared	-0.032929	S.D. dependent	var	0.385688		
S.E. of regression	0.391987	Akaike info crite	rion	1.025285		
Sum squared resid	4.609613	Schwarz criterion 1.11		1.116894		
Log likelihood	-14.40456	Hannan-Quinn c	riter.	1.055651		
F-statistic	0.011737	Durbin-Watson	stat	1.754532		
Prob(F-statistic)	0.914449					

Table 21	ADL (d_ln	_participation)	Estimation	Output; Region 2
----------	-----------	-----------------	-------------------	-------------------------

Sample (adjusted): 2009M09 - 2012M04 Included observations: 32 (after adj.) Figure 113 Actual (-----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (d_ln_participation) Model; Region 2

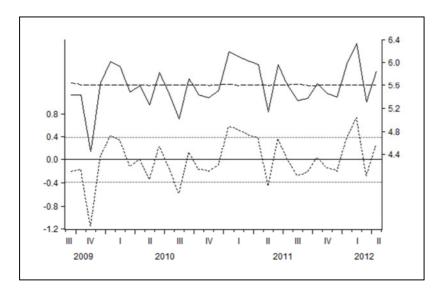
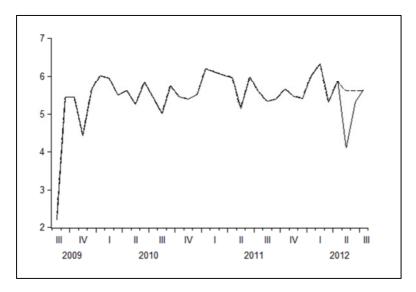
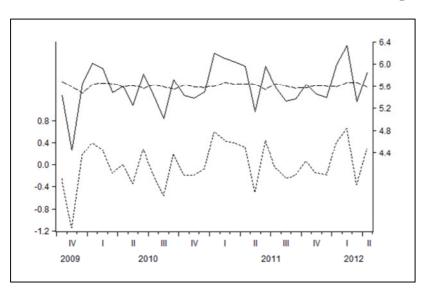



Figure 114 Actual (-----) and Forecasted (- -) Values of ln_new_signups (ADL d_ln_participation); Region 2


Because of the insignificant influence of the team variable on community growth in the ADL posters and in the ADL participation (see Appendix 99) model, I dispense with considering the team variable in the following analyses of region 2.

VAR (d_ln_posters)

In the following, I estimate a VAR model including the growth rate of the number of posters in order to examine and predict community growth of region 2. The lag order of

the VAR model is determined by the SC, which is minimal for a VAR(1) model (Appendix 100). Then, misspecification tests are conducted. The null hypotheses of the VAR normality test assuming normality, of the VAR White heteroskedasticity test assuming no heteroskedasticity, and the VAR autocorrelation LM test assuming no serial correlation (up to lag order 4) are not rejected (see Appendix 101). Thus, the VAR model is correctly specified and no changes to the model are necessary. The estimation output displays a value of 1.54 for the SC and a value of 1.26 for the AIC (see Appendix 102). Figure 115 shows the actual values of the logarithmized number of new sign-ups together with the part of the VAR model that describes the logarithmized number of new sign-ups.

Figure 115 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated VAR (d_ln_posters) Model; Region 2

Further, effects between the variables are represented by IRFs displayed in Figure 116. They show that an impulse in the growth rate of the number of posters leads to an increase in the number of new sign-ups which is significant up to one month. An impulse in the number of new sign-ups, however, leads to a decrease in the growth rate of the number of posters that stays significant up to two months. The own-variable IRF for new sign-ups shows that an impulse in new sign-ups leads to a positive response of the variable, which lasts for up to one month. The own-variable IRF for the poster variable shows a similar pattern. Finally, forecasted values, which are generated by the one-step-ahead forecast procedure, are displayed in Figure 117 together with the observed values. Values of RMSE=0.886907 and MAE=0.568453 represent the deviations of the forecasted from the observed values.

Figure 116 Impulse Response Functions, d_ln_posters ln_new_signups, Response to Cholesky One S. D. Innovations ± 2 S. E.; Region 2

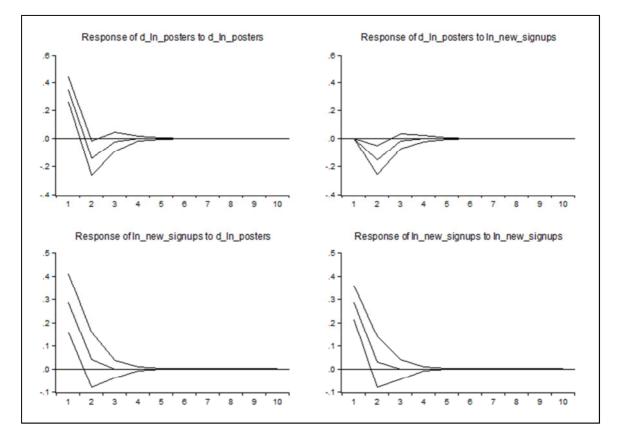
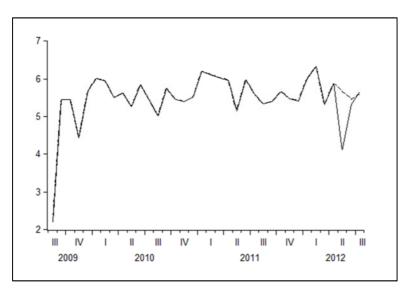



Figure 117 Actual (-----) and Forecasted (---) Values of ln_new_signups (VAR d_ln_posters); Region 2

VAR (d_ln_participation)

Next, I replace the poster variable by the participation variable, i.e. by the growth rate of participation. The SC value is minimal for a VAR(0), i.e. a VAR model that only includes a constant term (see Appendix 103). Hence, a VAR approach is not appropriate to analyze community growth of region 2.²⁶

4.5.3. Region 3

Bass

The estimation of a (modified) Bass model for community growth in region 3 yields the results shown in Table 22. The null hypotheses of the Jarque-Bera test assuming normality, of the Breusch-Godfrey test assuming no autocorrelation, and of the White test assuming no heteroskedasticity cannot be rejected at a significance level of 5% (Appendix 104). Thus, it is not necessary to adapt the model.

Dependent Variable: In_new_signups						
In_new_signups=In(a+b*new	w_signups_cum_t-	1+c*(new_signups	_cum_t-1) ²)			
	Coefficient	Std. Error	t-Statistic	p-value		
а	12.71259	59 4.491408 2.83042		0.0082		
b	0.134789	0.134789 0.026984 4.9951		0.0000		
сс	-0.000028	0.000009 -3.057		0.0047		
R-squared	0.597030	Mean dependen	it var	4.405991		
Adjusted R-squared	0.570165	S.D. dependent var 0.997474		0.997474		
S.E. of regression	0.653962	Akaike info criterion 2.074973		2.074973		
Sum squared resid	12.82999	Schwarz criterion 2.211019		2.211019		
Log likelihood	-31.23706	Hannan-Quinn c	criter.	2.120749		
Durbin-Watson stat	1.201404					

Table 22Bass Estimation Output; Region 3

Sample: 2009M08 - 2012M04

Included observations: 33

The goodness of fit concerning the R^2 values is quite acceptable because the values for R^2 and adjusted R^2 are 0.60 and 0.57 respectively. The value of SC amounts for 2.21, the AIC equals 2.07. Further, the estimation results yield that all parameters are significantly different from zero even at significance level of 1%. Figure 118 shows the estimated

²⁶ I additionally estimate VAR(1) and VAR(2) models in order to double check. However, there are no significant effects of participation on community growth in a VAR(1). Further, a VAR(2) is misspecified because of autocorrelation.

model together with the actual data and demonstrates the typical curvilinear relationship between the variables of a Bass model. The one-step-ahead forecasting procedure yields RMSE=0.303772 and MAE=0.249843 for the sample ranging from May 2012 to July 2012. The forecasted values only slightly exceed the actual values (see Figure 119).

Figure 118 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated Bass Model; Region 3

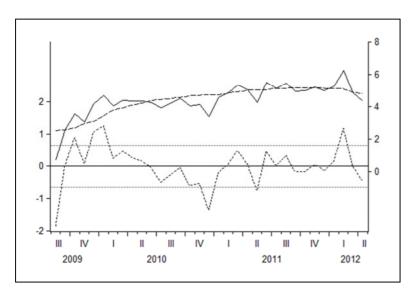
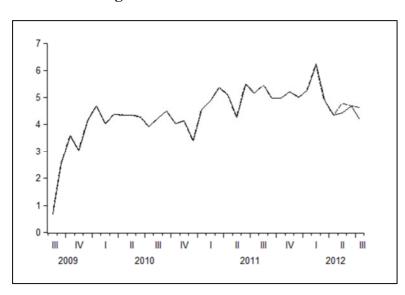



Figure 119 Actual (-----) and Forecasted (---) Values of ln_new_signups (Bass); Region 3

ARMA

In the following, I analyze community growth in region 3 by the help of an ARMA process. The correlogram of the logarithmized number of new sign-ups, which is displayed in Figure 120, indicates a AR(1) specification. ACF and PACF show the typical pattern of a AR(1) process because the autocorrelation function decays geometrically and the partial autocorrelation function peaks at displacement 1 and then abruptly gets insignificant.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.539	0.539	10.486	0.001
	1 1 1	2	0.356	0.093	15.221	0.000
	1 1	3	0.334	0.155	19.506	0.000
		4	0.177	-0.103	20.759	0.000
· 6 · 1		5	0.171	0.088	21.958	0.001
· 6 · 1		6	0.165	0.024	23.117	0.001
- 6 - 1	1 1	7	0.108	-0.001	23.638	0.001
- <u>6</u> -		8	0.088	-0.012	23.997	0.002
1 1 1	1 1	9	0.046	-0.035	24.099	0.004
1 b 1	1 1 1	10	0.084	0.088	24.450	0.006
, b, l	1) 1	11	0.093	0.017	24.902	0.009
	1 🖸 1	12	0.029	-0.058	24.947	0.015
1 1		13	0.000	-0.050	24.947	0.023
		14	-0.013	-0.009	24.958	0.035
1 1	1 j 1	15	0.006	0.053	24.960	0.050
1 I	1 1 1	16	-0.005	-0.032	24.962	0.070

Figure 120 Correlogram of ln_new_signups; Region 3

Sample: 2009M08 - 2012M04 Included observations: 33

In order to verify the results derived from the correlogram, I compare all ARMA specifications up to order 2 by the help of SC (see Appendix 105). Again, AR(1) is selected as specification with the lowest value for SC=1.71. Thus, it seems that an AR(1) process helps to describe community growth in region 3. Further, there is no need to make any changes to the model because the null hypotheses of the Jarque-Bera, the Breusch-Godfrey, and the White test are not rejected (see Appendix 104). The estimation output of Table 23 shows acceptable R² values with R²=0.52 and adjusted R²=0.51. The AIC reaches a value of 1.62. Moreover, the coefficient of the AR(1) component is highly significant. Hence, the by one period lagged values of the logarithmized number of new signups have a significant impact on the current logarithmized new sign-ups.

Coefficient	Std. Error	t-Statistic	p-value	
4.655319	0.208730	22.30311	0.0000	
0.538844	0.093669 5.752663		0.0000	
0.524512	Mean dependen	t var	4.522017	
0.508663	S.D. dependent var 0.7539			
0.528498	Akaike info criterion 1.622907			
8.379311	Schwarz criterio	n	1.714515	
-23.96651	Hannan-Quinn criter. 1.653273		1.653273	
33.09313	Durbin-Watson	stat	2.211388	
0.000003				
.54				
	4.655319 0.538844 0.524512 0.508663 0.528498 8.379311 -23.96651 33.09313 0.000003	4.655319 0.208730 0.538844 0.093669 0.524512 Mean dependent 0.508663 S.D. dependent 0.528498 Akaike info crite 8.379311 Schwarz criterio -23.96651 Hannan-Quinn c 33.09313 Durbin-Watson s 0.000003	4.655319 0.208730 22.30311 0.538844 0.093669 5.752663 0.524512 Mean dependent var 0.508663 S.D. dependent var 0.528498 Akaike info criterion 8.379311 Schwarz criterion -23.96651 Hannan-Quinn criter. 33.09313 Durbin-Watson stat 0.000003	

Tuble 20 Think Estimation Output, Region 0	Table 23	ARMA	Estimation	Output;	Region 3
--	----------	------	------------	----------------	-----------------

Sample (adjusted): 2009M09 - 2012M04 Included observations: 32 (after adj.)

These findings are also reflected in Figure 121, which shows the adaption of the fitted values to the actual values. Finally, deviations of forecasted values from observed values are displayed in Figure 122. The one-step-ahead forecast procedure yields values of RMSE=0.259265 and MAE=0.198933 based on the sample ranging from May 2012 to July 2012.

Figure 121 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ARMA Model; Region 3

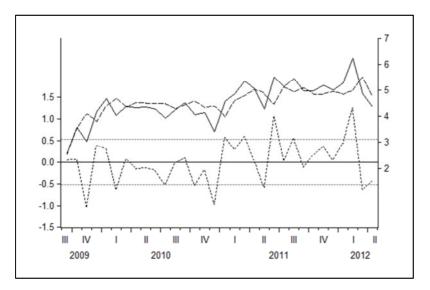
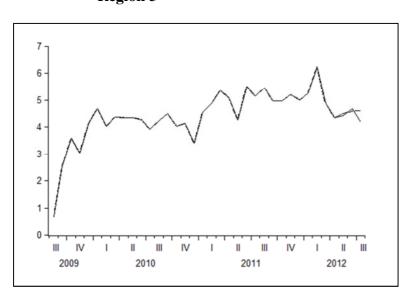
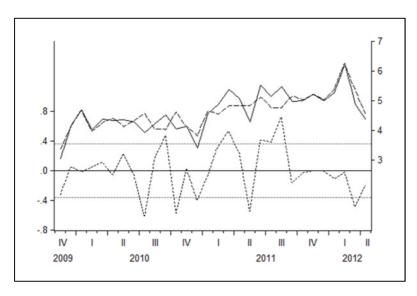



Figure 122 Actual (----) and Forecasted (---) Values of ln_new_signups (ARMA); Region 3

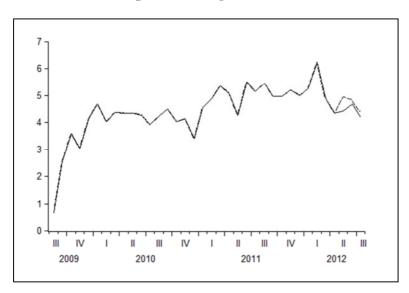
ADL (d_ln_posters)


Next, an ADL specification including the growth rate of the number of posters as an exogenous variable is used in order to model community growth of region 3. The comparison of SC values of different ADL specifications yields that the model including lagged dependent and lagged independent variables up to lag order 2 shows the smallest SC value (see Appendix 106). There is no need to make any adaptions to the model since the

Dependent Variable: In_new_signups							
	Coefficient	Std. Error	t-Statistic	p-value			
Constant	1.022966	1.022966 0.506370 2.020192		0.0547			
In_new_signups_t-1	0.376676	0.167765	2.245262	0.0342			
In_new_signups_t-2	0.400754	0.145657	2.751343	0.0111			
d_ln_posters	0.810855 0.157005 5.1645		5.164525	0.0000			
d_ln_posters_t-1	0.114158 0.207215 0.550		0.550915	0.5868			
d_ln_posters_t-2	-0.450108	50108 0.158489 -2.8399		0.0090			
P. aguarad	0.740044	Maan danandan	tvor	4 040500			
R-squared	0.746811	Mean dependen		4.618536			
Adjusted R-squared	0.694064	S.D. dependent	var	0.659995			
S.E. of regression	0.365053	Akaike info criterion 0.999308		0.999308			
Sum squared resid	3.198328	Schwarz criterion 1.279547		1.279547			
Log likelihood	-8.989616	Hannan-Quinn criter. 1.088959		1.088959			
F-statistic	14.15820	Durbin-Watson	stat	1.919528			
Prob(F-statistic)	0.000002						

 Table 24
 ADL (d_ln_posters) Estimation Output; Region 3

Sample (adjusted): 2009M11 - 2012M04 Included observations: 30 (after adj.) null hypotheses of the Jarque-Bera, the Breusch-Godfrey, and the White test are not rejected (see Appendix 104). Thus, the model is correctly specified. The estimation output, which is presented in Table 24, shows quite respectable values for both R² values, whereby the value of R² accounts for 0.75 and the value of the adjusted R² accounts for 0.69. Further, the output shows a value of 1.28 for the SC and a value of about 1.00 for the AIC. All coefficients except those for the constant term and $d_{ln_posters_t-1}$ are significantly different from zero at a significance level of 5%. Lagged values of new sign-ups, i.e. $ln_new_signups_t-1$ and $ln_new_signups_t-2$, as well as $d_{ln_posters}$ have a significant positive influence on the dependent variable. Despite the negative effect of $d_{ln_posters_t-2}$, the long-run propensity is still positive. Figure 123 displays the estimated model together with the actual values.


Figure 123 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (d_ln_posters) Model; Region 3

The results of the static one-step-ahead forecast procedure based on the forecast sample ranging from May 2012 to July 2012 are displayed in Figure 124. The forecasted values exceed the observed ones. Further, the deviations of forecasted values from actual values are reflected in the values of RMSE=0.329818 and MAE=0.288227. For the sake of completeness, I estimate again an ADL model that includes both posters and team variables. It is not necessary to adapt the model because of the results of misspecification tests (see Appendix 104). Estimation results of the selected ADL specification are displayed in Table 25 (see Appendix 107 for model selection). However, results show that the influ-

ence of the team variables is not significant at a significance level of 5%. Yet, the overall positive impact going out from the poster variable is verified again.

Figure 124 Actual (----) and Forecasted (---) Values of ln_new_signups (ADL d_ln_posters); Region 3

Dependent Variable: In_ne	ew_signups			
	Coefficient	Std. Error	t-Statistic	p-value
Constant	1.291024	0.534732	2.414337	0.0250
In_new_signups_t-1	0.294944	0.191581	1.539524	0.1386
In_new_signups_t-2	0.407638	0.152065	2.680677	0.0140
d_ln_posters	0.883085	0.153964	5.735677	0.0000
d_ln_team	0.659239	0.550709	1.197074	0.2446
d_ln_posters_t-1	0.177578	0.222654	0.797551	0.4341
d_ln_team_t-1	0.978390	0.495797 1.973369		0.0618
d_ln_posters_t-2	-0.435369	0.152726 -2.850656		0.0096
d_ln_team_t-2	-0.238599	0.546815	-0.436343	0.6670
R-squared	0.797212	Mean dependen	t var	4.618536
Adjusted R-squared	0.719959	S.D. dependent	var	0.659995
S.E. of regression	0.349262			0.977336
Sum squared resid	2.561662	Schwarz criterion 1.397695		1.397695
Log likelihood	-5.660036	Hannan-Quinn criter. 1.111812		1.111812
F-statistic	10.31953	Durbin-Watson	stat	2.081934
Prob(F-statistic)	0.000009			

Sample (adjusted): 2009M11 - 2012M04 Included observations: 30 (after adj.)

ADL (d_ln_participation)

In the following, the contribution of the growth rate of participation to the explication and prediction of community growth in region 3 is examined by the help of an ADL model. The SC value is minimal for the ADL specification that includes *ln_new_signups_t-1* and *d_ln_participation* as exogenous variables (see Appendix 108). Results of normality, autocorrelation, and heteroskedasticity tests request no changes to the model (see Appendix 104). The estimation results presented in Table 26 display a value of 1.81 for the SC, a value of 1.67 for the AIC, a value of 0.53 for R², and a value of 0.50 for the adjusted R². Thus, the goodness of fit is acceptable. Further, *ln_new_signups_t-1* exerts a significant positive effect on *ln_new_signups*. The participation variable, however, has no significant influence on community growth. Estimation results of the ADL model are additionally visualized in Figure 125. Finally, the one-step-ahead forecast procedure leads to values of RMSE=0.260706 and MAE=0.195050. Figure 126 contrasts forecasted and observed values.

Dependent Variable: In_	_new_signups			
	Coefficient	Std. Error	t-Statistic	p-value
Constant	2.358710	0.548722 4.298555 0		0.0002
In_new_signups_t-1	0.494241	0.119134	4.148595	0.0003
d_In_participation	-0.079914	0.129621 -0.616518		
R-squared	0.530664	Mean dependent var 4.5220		4.522017
Adjusted R-squared	0.498296	S.D. dependent var 0.753969		
S.E. of regression	0.534045	Akaike info criterion 1.672385		
Sum squared resid	8.270907	Schwarz criterion 1.809798		1.809798
Log likelihood	-23.75817	Hannan-Quinn criter. 1.717934		
F-statistic	16.39470	Durbin-Watson stat 2.062445		
Prob(F-statistic)	0.000017			

 Table 26
 ADL (d_ln_participation) Estimation Output; Region 3

Sample (adjusted): 2009M09 - 2012M04 Included observations: 32 (after adj.) Figure 125 Actual (-----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (d_ln_participation) Model; Region 3

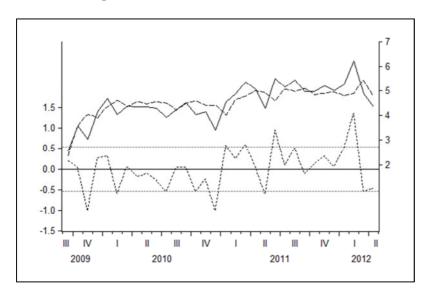
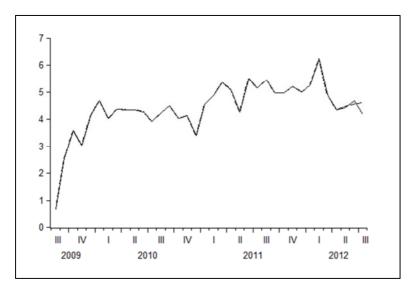
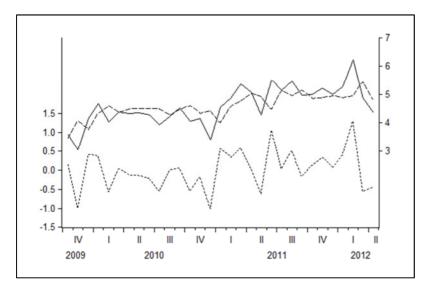



Figure 126 Actual (-----) and Forecasted (---) Values of ln_new_signups (ADL d_ln_participation); Region 3


Because of the insignificant influence of the team variable on community growth in the ADL posters and in the ADL participation (see Appendix 109) model, I dispense with considering the team variable in the following analyses of region 3.

VAR (d_ln_posters)

The next step is to find an appropriate VAR specification for modeling and predicting community growth of region 3. First of all, I examine the role of the growth rate of the

number of posters in analyzing community growth by a VAR model. The SC selects a VAR(1) model as the specification obtaining the lowest SC value (see Appendix 110). Further, null hypotheses of normality, autocorrelation, and heteroskedasticity tests are not rejected (see Appendix 111). Thus, there is no need to make any adaptions to the model. The SC of the estimated VAR(1) process adds up to 2.75, the AIC equals 2.47 (see Appendix 112). Figure 127 shows actual values of the logarithmized number of new sign-ups as well as values which are generated through the VAR model.

Figure 127 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated VAR (d_ln_posters) Model; Region 3

The IRFs are shown in Figure 128. The IRF at the bottom left implies that a shock in the growth rate of the number of posters generates a positive response of the number of new sign-ups, which is significant up to one month. The IRF at the top right shows that a shock in new sign-ups does not lead to a significant response of the poster variable. Further, both own-variable IRFs show a positive response to a shock in the respective variable, whereby the response of new sign-ups stays significant up to three months and the response of the poster variable stays significant up to one month. Finally, the results of the one-step-ahead forecast procedure are illustrated together with the observed values in Figure 129 and are also reflected in the values of RMSE=0.310970 and MAE=0.252235.

Figure 128 Impulse Response Functions, d_ln_posters ln_new_signups, Response to Cholesky One S. D. Innovations ± 2 S. E.; Region 3

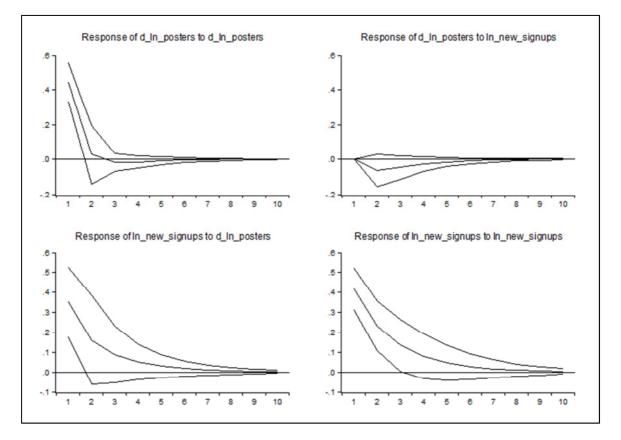
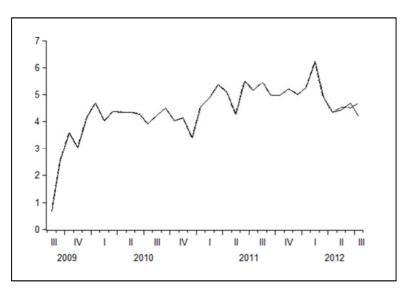



Figure 129 Actual (-----) and Forecasted (---) Values of ln_new_signups (VAR d_ln_posters); Region 3

VAR (d_ln_participation)

Finally, I examine the role of the participation variable, i.e. the growth rate of the number of contributions, by a VAR approach. The SC selects a VAR(0) process because the value of SC is minimal for a VAR(0) model among all other VAR specifications up to lag order 4 (see Appendix 113). A VAR(0) implies that there are no dynamics in the model. Hence, the VAR approach including the participation variable is not suitable in this context.27

4.5.4. Region 4

Bass

At first, community growth of region 4 is analyzed by the help of the (modified) Bass diffusion model. Since under the standard estimation procedure heteroskedasticity in the residuals arises (see Appendix 114), the model has to be estimated again using the heteroskedasticity consistent covariance matrix estimator (White 1980). Table 27 contains the estimation results. Jarque-Bera and Breusch-Godfrey test indicate that the null hypotheses of normally distributed and not autocorrelated residuals cannot be rejected at a significance level of 5% (see Appendix 114). Thus, a modification of the model is not necessary.

In_new_signups=In(a+b*new_	signups_cum_t-	1+c*(new_signups	_cum_t-1)²)	
	Coefficient	Std. Error	t-Statistic	p-value
а	35.74112	25.49797	1.401725	0.1713
b	0.086741	0.033729	2.571734	0.0153
C	-0.000015	0.000008 -2.007132		0.0538
R-squared	0.284014	Mean dependen	t var	4.710523
Adjusted R-squared	0.236281	S.D. dependent var 0.774622		0.774622
S.E. of regression	0.676950	Akaike info criterion 2.144070		
Sum squared resid	13.74785	Schwarz criterion 2.280116		2.280116
Log likelihood	-32.37716	Hannan-Quinn c	riter.	2.189846
Durbin-Watson stat	1.463174			

Table 27Bass Estimation	Output; Region 4	
-------------------------	------------------	--

White heterosk edasticity-consistent std. errors & covariance

²⁷ I additionally estimate VAR(1) and VAR(2) models in order to double check. However, there are no significant effects of participation on community growth.

Values of R^2 range from 0.24 to 0.28 and denote a poor model fit. The SC amounts for 2.28, the AIC reaches a value of 2.14. Moreover, the Bass estimation output shows that only the parameter of the cumulative number of new sign-ups differs significantly from zero at a significance level of 5%. The p-value of the parameter of the squared cumulative number of new sign-ups only slightly exceeds 5%. Thus, the parameter is significant different from zero at a significance level of 6%.

Figure 130 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated Bass Model; Region 4

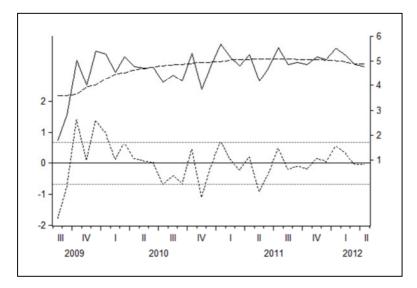


Figure 131 Actual (-----) and Forecasted (---) Values of ln_new_signups (Bass); Region 4

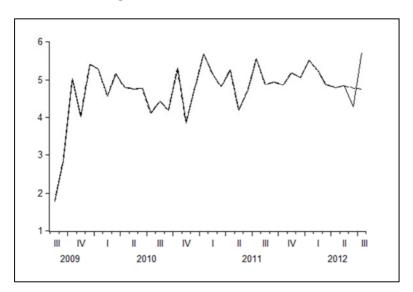


Figure 130 illustrates the estimated values, which follow the typical curvilinear course of new sign-ups in a Bass model, together with the actual values. The poor model fit seemingly results from the deviations between actual and estimated values, which are observable especially in the beginning and in the middle of the observation sample. From the one-step-ahead forecast procedure, values for RMSE=0.645011 and MAE=0.506322 are obtained. The deviations of the forecasted values from the actual values are displayed in Figure 131.

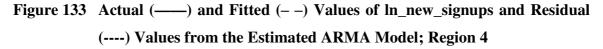
ARMA

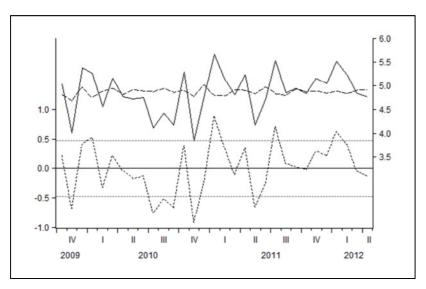
Next, I make use of an ARMA process in order to model community growth. From the ACF and PACF displayed in Figure 132 one may conclude that an ARMA(0,0) should be appropriate because neither ACF nor PACF show significant peaks. Additionally, ARMA specifications up to order 2 are compared using SC. The value of SC is minimal for an AR(2) process with SC=1.57 (see Appendix 115). After estimation of an AR(2) model the null hypotheses of Jarque-Bera and Breusch-Godfrey test cannot be rejected (see Appendix 114). However, the null hypothesis of the White test is rejected, which implies heteroskedasticity in the residuals (see Appendix 114). For this reason, the model is estimated again using the White heteroskedasticity consistent covariance matrix estimator.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı 🗖 i	ı 🗖 ı	1	0.277	0.277	2.760	0.097
1 1 1		2	0.057	-0.021	2.880	0.237
		3	0.144	0.145	3.680	0.298
		4	-0.164	-0.268	4.756	0.313
1 🛛 1	1] 1	5	-0.069	0.068	4.952	0.422
1 1 1	I I	6	0.034	0.008	5.000	0.544
. d .	1 1 1	7	-0.087	-0.038	5.336	0.619
	1 🖸 1	8	-0.058	-0.068	5.493	0.704
- i ji i	1 D 1	9	0.046	0.072	5.593	0.780
· 🖬 · 🛛	i 🗖 i 1	10	0.121	0.149	6.331	0.787
- p -		11	0.089	0.001	6.747	0.819
· 🗐 · 🛛 🛛	I I I I I	12	0.174	0.129	8.419	0.752
· [] ·	· · · · · · · · · · · · · · · · · · ·	13	0.085	-0.035	8.834	0.785
יםי	· · [· · ·	14	-0.074	-0.052	9.166	0.820
· 🗐 · 🔤	· •	15	0.133	0.170	10.293	0.801
יםי		16	-0.115	-0.226	11.186	0.798

Figure 132 Correlogram of ln_new_signups; Region 4

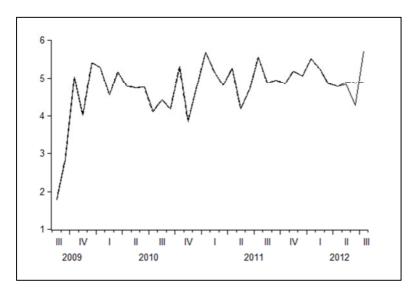
Sample: 2009M08 - 2012M04 Included observations: 33


_new_signups				
Coefficient	Std. Error	t-Statistic	p-value	
4.872676	0.077891	62.55758	0.0000	
-0.103224	0.147199	-0.701252	0.4889	
0.087057	.087057 0.126263 0.6894		0.4962	
0.025050	Mean dependen	it var	4.865235	
-0.044589	S.D. dependent var 0.4624			
0.472648	Akaike info criterion 1.4308		1.430832	
6.255079	Schwarz criterion 1.56960		1.569605	
-19.17790	Hannan-Quinn criter. 1.47606		1.476069	
0.359717	Durbin-Watson stat 1.898836		1.898836	
0.701052				
.25	35			
	4.872676 -0.103224 0.087057 0.025050 -0.044589 0.472648 6.255079 -19.17790 0.359717 0.701052	Coefficient Std. Error 4.872676 0.077891 -0.103224 0.147199 0.087057 0.126263 0.025050 Mean dependent -0.044589 S.D. dependent 0.472648 Akaike info criter 6.255079 Schwarz criteriot -19.17790 Hannan-Quinn of 0.701052 0.701052	Coefficient Std. Error t-Statistic 4.872676 0.077891 62.55758 -0.103224 0.147199 -0.701252 0.087057 0.126263 0.689494 0.025050 Mean dependent var -0.044589 S.D. dependent var 0.472648 Akaike info criterion 6.255079 Schwarz criterion -19.17790 Hannan-Quinn criter. 0.359717 Durbin-Watson stat 0.701052 S.T.	


Table 28 ARMA Estimation Output; Region 4	Table 28	ARMA	Estimation	Output;	Region 4
---	----------	------	------------	----------------	-----------------

Sample (adjusted): 2009M10 - 2012M04 Included observations: 31 (after adj.)

White heterosk edasticity-consistent std. errors & covariance


Estimation results are presented in Table 28. The goodness of fit is extremely poor because R^2 values do not exceed a value of 0.03. The AIC equals 1.43. Further, the coefficients of the AR components do not significantly differ from zero at a significance level of 5%. Hence, in this model, past values of the logarithmized number of new sign-ups have no significant influence on the current value of the logarithmized number of new

sign-ups. However, the AR components need to be included because of stability and performance issues. Figure 133 displays the deviations of the estimated values from the actual values. Lastly, the one-step-ahead forecast procedure generates values of RMSE=0.599637 and MAE=0.499543 based on the forecast sample ranging from May 2012 to July 2012. The deviations of the forecasted values from the observed values are presented in Figure 134.

Figure 134 Actual (-----) and Forecasted (---) Values of ln_new_signups (ARMA); Region 4

ADL (d_ln_posters)

In the following, community growth of region 4 is analyzed by the help of an ADL model that includes the growth rate of the number of posters. I use the SC in order to compare different ADL specifications up to lag order 2. The SC selects a model containing $ln_new_signups_t-1$ and $d_ln_posters$ as exogenous variables (see Appendix 116). Since this specification yields heteroskedasticity in the residuals, but null hypotheses of normality and autocorrelation tests are not rejected (see Appendix 114), the model is estimated again using a heteroskedasticity consistent covariance matrix estimator. As can be seen from the estimation output in Table 29, both R² values of R²=0.58 and adjusted R²=0.55 indicate an acceptable goodness of fit. Moreover, the SC accounts for 1.18, the AIC equals 1.05. The output further reveals that all variables exert a significant positive influence on $ln_new_signups$. In the short term, for example, a one percentage point increase in the growth rate of the number of posters at *t* leads to an immediate 0.61% increase in the number of new sign-ups.

Dependent Variable: In_new_signups							
	Coefficient	Std. Error	t-Statistic	p-value			
Constant	2.110938	0.479505	4.402330	0.0001			
In_new_signups_t-1	0.548282	0.100828	5.437776	0.0000			
d_ln_posters	0.614068	0.154132	3.984046	0.0004			
R-squared	0.575191	Mean dependent var		4.801734			
Adjusted R-squared	0.545894	S.D. dependent var		0.579652			
S.E. of regression	0.390612	Akaike info criterion		1.046857			
Sum squared resid	4.424759	Schwarz criterion 1.1842		1.184270			
Log likelihood	-13.74971	Hannan-Quinn criter. 1.		1.092405			
F-statistic	19.63297	Durbin-Watson stat 2		2.471874			
Prob(F-statistic)	0.000004	Wald F-statistic 15.0538					
Prob(Wald F-statistic)	0.000033						

 Table 29
 ADL (d_ln_posters) Estimation Output; Region 4

Sample (adjusted): 2009M09 - 2012M04

Included observations: 32 (after adj.)

White heterosk edasticity-consistent std. errors & covariance

Figure 135 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (d_ln_posters) Model; Region 4

Figure 135 displays the estimated model together with the actual values. The one-stepahead forecast procedure generates values of RMSE=0.364028 and MAE=0.299059. Figure 136 contrasts the graphs of actual and forecasted values. Finally, the model is estimated again adding a team variable. Since also in this case heteroskedasticity in the residuals plays a role (see Appendix 114), the ADL model is estimated using a heteroskedasticity consistent covariance matrix estimator. The estimation results of the ADL model including both posters and team variables are displayed in Table 30 (see Appendix 117 for model selection). Again, the team variable does not contribute to the explication community growth. Yet, all other variables exert a highly significant positive influence on *ln_new_signups*.

Figure 136 Actual (-----) and Forecasted (---) Values of ln_new_signups (ADL d_ln_posters); Region 4

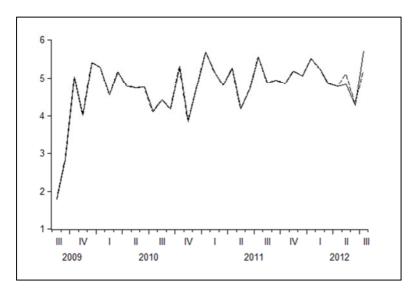


 Table 30
 ADL (d_ln_posters, d_ln_team) Estimation Output; Region 4

Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	2.119295	0.493554	4.293944	0.0002		
In_new_signups_t-1	0.545728	0.104560	5.219305	0.0000		
d_In_posters	0.614001	0.156536	3.922422	0.0005		
d_ln_team	0.107203	0.161620	0.663306	0.5126		
R-squared	0.575849	Mean dependent var		4.801734		
Adjusted R-squared	0.530404	S.D. dependent var		0.579652		
S.E. of regression	0.397218	Akaike info crite	erion -	1.107807		
Sum squared resid	4.417904	Schwarz criterion 1.2		1.291024		
Log likelihood	-13.72490	Hannan-Quinn criter. 1		1.168538		
F-statistic	12.67141	Durbin-Watson stat		2.492385		
Prob(F-statistic)	0.000021	Wald F-statistic 13		13.96776		
Prob(Wald F-statistic)	0.000009					

Sample (adjusted): 2009M09 - 2012M04

Included observations: 32 (after adj.)

White heterosk edasticity-consistent std. errors & covariance

ADL (d_ln_participation)

Next, the growth rate of participation is included into the ADL model. Different ADL specifications up to lag order 2 are compared by the help of the SC. The SC is minimal for the model that includes lagged dependent variables up to lag order 2 and the contemporaneous participation variable (see Appendix 118). Since the null hypotheses of the Jarque-Bera, the Breusch-Godfrey, and the White test are not rejected, there is no need to adjust the model (see Appendix 114). The results of the model estimation are displayed in Table 31. Both R² values ranging from 0.26 to 0.33 imply a relatively poor goodness of fit. The SC amounts to 1.30, the AIC equals 1.12. Further, the estimation output reveals that the coefficients of *ln_new_signups_t-1* and *ln_new_signups_t-2* are not significant at a significance level of 5%. However, *d_ln_participation* exerts a significant positive influence on *ln_new_signups*.

Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	2.917749	0.859192	3.395921	0.0021		
In_new_signups_t-1	0.235342	0.164236	1.432955	0.1633		
In_new_signups_t-2	0.154473	0.100019	1.544440	0.1341		
d_In_participation	0.414070	0.117469	3.524948	0.0015		
R-squared	0.332315	Mean dependent var		4.865235		
Adjusted R-squared	0.258128	S.D. dependent var		0.462450		
S.E. of regression	0.398317	Akaike info criterion		1.116778		
Sum squared resid	4.283729	Schwarz criterion 1.3		1.301809		
Log likelihood	-13.31006	Hannan-Quinn criter.		1.177094		
F-statistic	4.479418	Durbin-Watson stat		2.330319		
Prob(F-statistic)	0.011205					

Table 31	ADL (d_ln	_participation)	Estimation	Output; Region 4
----------	-----------	-----------------	------------	------------------

Sample (adjusted): 2009M10 - 2012M04 Included observations: 31 (after adj.)

Figure 137 presents estimated values together with the actual values. Finally, the static one-step-ahead forecast procedure yields values of RMSE=0.222048 and MAE=0.180803 based on the forecast sample ranging from May 2012 to July 2012. Figure 138 displays forecasted and actual values.

Figure 137 Actual (-----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (d_ln_participation) Model; Region 4

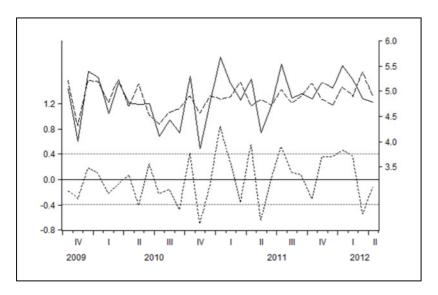
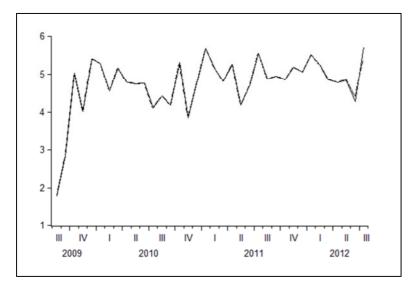



Figure 138 Actual (-----) and Forecasted (---) Values of ln_new_signups (ADL d_ln_participation); Region 4

Because of the insignificant influence of the team variable on community growth in the ADL posters and in the ADL participation (see Appendix 119) model, I dispense with considering the team variable in the following analyses of region 4.

VAR (d_ln_posters)

In the remaining sections of Chapter 4.5.4, I try to find a VAR specification that describes community growth of region 4 best. First, I concentrate on the influence of the poster variable, i.e. the growth rate of the number of posters. The SC value is minimal for a VAR(0) process, i.e. a VAR model without any dynamics, which only includes a constant term (see Appendix 120). Thus, a VAR model containing the poster variable is not a good choice for the explanation of community growth in region 4.²⁸

VAR (d_ln_participation)

Finally, I consider the role of the participation variable, i.e. the growth rate of the number of contributions, in explaining community growth of region 4 by a VAR approach. The SC selects again a VAR(0) model as the model that obtains the smallest SC value among VAR specifications up to lag order 4 (see Appendix 121). Thus, a VAR model including the participation variable is also unsuitable for modeling community growth in region 4.²⁹

4.5.5. Region 5

Bass

I start the analysis of community growth in region 5 by estimating a (modified) Bass diffusion model. The estimation results are displayed in Table 32. Since the null hypotheses of the Jarque-Bera, Breusch-Godfrey, and White test cannot be rejected at a significance level of 5% (Appendix 122), it is not necessary to make any adaptions to the model.

Dependent Variable: In	n_new_signups			
In_new_signups=In(a+b*n	ew_signups_cum_t-	1+c*(new_signups	_cum_t-1)²)	
	Coefficient	Std. Error	t-Statistic	p-value
а	121.5248	24.04103	5.054891	0.0000
b	0.051516	0.021976	2.344205	0.0259
с	-0.00008	0.000004	-2.308875	0.0280
R-squared	0.131725	Mean dependent var		5.130377
Adjusted R-squared	0.073840	S.D. dependent	var	0.410142
S.E. of regression	0.394710	Akaike info criterion		1.065176
Sum squared resid	4.673872	Schwarz criterion		1.201222
Log likelihood	-14.57540	Hannan-Quinn criter.		1.110951
Durbin-Watson stat	1.532486			

Table 32Bass Estimation Output; Region 5

Sample: 2009M08 - 2012M04 Included observations: 33

²⁸ I additionally estimate VAR(1) and VAR(2) models in order to double check. VAR(1) is misspecified because of autocorrelation. Further, IRFs of VAR(2) show a positive response of new sign-ups to a shock in the poster variable.

²⁹ I additionally estimate VAR(1) and VAR(2) models in order to double check. VAR(1) is misspecified because of autocorrelation. Further, IRFs of VAR(2) show a positive response of new sign-ups to a shock in the participation variable.

Both R² values with R²=0.13 and adjusted R²=0.07 refer to a quite poor model fit. The SC reaches a value of 1.20, the AIC reaches a value of 1.07. Further, the estimation output shows that all parameters are significantly different from zero at a significance level of 5%. Although the estimated model fits into the observed values, some deviations are visible, which imply the poor R² values (see Figure 139). Finally, from the one-step-ahead forecast procedure, which is based on the sample ranging from May 2012 to July 2012, follow RMSE=0.588346 and MAE=0.535764. Figure 140 contrasts actual values with forecasted values.

Figure 139 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated Bass Model; Region 5

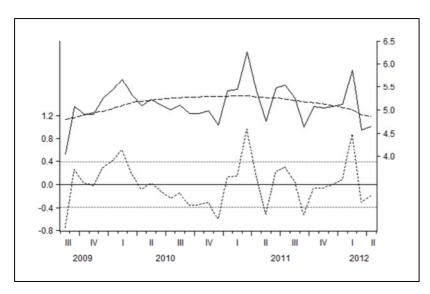
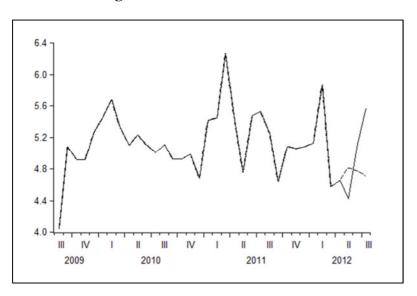



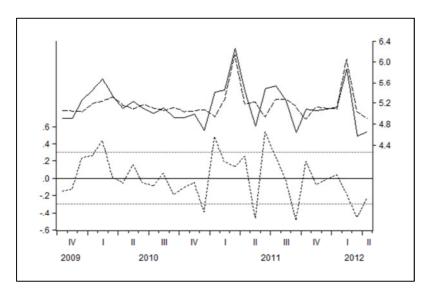
Figure 140 Actual (-----) and Forecasted (---) Values of ln_new_signups (Bass); Region 5

ARMA

In this section, community growth of region 5 is analyzed by the help of an ARMA process. The correlogram displayed in Figure 141 implies an ARMA(0,0) process because neither the ACF nor the PACF show any significant peaks. In order to check this suggestion, I compare SC values of all ARMA specifications up to order 2. Thereby, the AR-MA(2,2) model obtains the lowest SC value among all models (see Appendix 123). However, because of autocorrelation and heteroskedasticity in the residuals, dummy variables for March 2011 and February 2012 need to be included. After the integration of two more variables the model is estimated again. The null hypotheses of the Jarque-Bera, the Breusch-Godfrey, and the Breusch-Pagan-Godfrey test are not rejected because the probability values of the statistics exceed the significance level of 5% (see Appendix 122). The estimation output of the ARMA(2,2) process including both dummy variables is presented in Table 33. The goodness of fit is moderate whereby R² equals 0.50 and the adjusted R² does not exceed a value of 0.38. The SC reaches a value of 0.91, the AIC a value of 0.59.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
, <u>h</u> , l	1 1 1	1	0.177	0.177	1.129	0.288
, Г ,		2	-0.060	-0.094	1.263	0.532
	.] .	3	-0.029	-0.001	1.295	0.730
		4	-0.017	-0.017	1.307	0.860
, d ,	, d ,	5	-0.134	-0.136	2.053	0.842
ı 🗖 ı 🔤	1 🗖 1	6	-0.218	-0.181	4.095	0.664
		7	-0.084	-0.039	4.411	0.731
	1 🗖 1	8	-0.121	-0.151	5.087	0.748
1 🗖 1	1 🗖 1	9	-0.201	-0.204	7.027	0.634
.) .	1 b 1	10	0.030	0.043	7.074	0.718
· 🗖 · 🛛 🗍	1 <u>b</u> 1	11	0.223	0.131	9.679	0.559
- I I I		12	0.006	-0.132	9.681	0.644
, b, l	· 🗖 ·	13	0.138	0.159	10.777	0.629
, p, j	, d ,	14	0.043	-0.098	10.890	0.695
-) -	1 1 1	15	0.035	-0.025	10.971	0.755
· þ · _		16	0.082	0.136	11.429	0.782

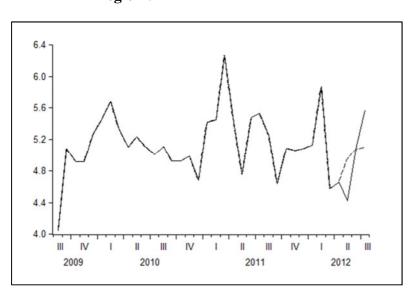
Figure 141 Correlogram of ln_new_signups; Region 5


Sample: 2009M08 - 2012M04 Included observations: 33

Dependent Variable: In				
	Coefficient	Std. Error	t-Statistic	p-value
Constant	5.102097	0.082984	61.48283	0.0000
DUM2011M03	0.897087	0.312426	2.871359	0.0084
DUM2012M02	0.933429	0.276407	3.377014	0.0025
AR(1)	-0.053967	1.856067	-0.029076	0.9770
AR(2)	0.015054	0.294356	0.051143	0.9596
MA(1)	0.477591	1.841864	0.259298	0.7976
MA(2)	0.121094	0.756841	0.159999	0.8742
R-squared	0.500000	Mean dependen	t var	5.167032
Adjusted R-squared	0.375000	S.D. dependent	var	0.372228
S.E. of regression	0.294272	Akaike info crite	rion	0.587056
Sum squared resid	2.078307	Schwarz criterio	n	0.910860
Log likelihood	-2.099372	Hannan-Quinn c	riter.	0.692608
F-statistic	3.999998	Durbin-Watson stat		1.974166
Prob(F-statistic)	0.006470			
Inverted AR Roots	.10	15		
Inverted MA Roots	24+.25i	2425i		

Table 33ARMA Estimation Output; Region 5

Sample (adjusted): 2009M10 - 2012M04 Included observations: 31 (after adj.)


Figure 142 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ARMA Model; Region 5

Besides, the estimation results show that all ARMA components are not significant at a significance level of 5%. Only the coefficients of the constant term and the dummy variables are significantly different from zero because their probability values do not exceed

5%. Hence, in this model, past values of the logarithmized number of new sign-ups (and also past shocks) have no significant influence on the current value of the logarithmized number of new sign-ups. However, the ARMA components should be included because of stability and performance issues. The above results are also visualized by Figure 142, which displays the estimated model together with the actual data. The static one-step-ahead forecast procedure yields values of RMSE=0.410786 and MAE=0.346638. The divergence of forecasted values from observed values is presented in Figure 143.

Figure 143 Actual (----) and Forecasted (---) Values of ln_new_signups (ARMA); Region 5

ADL (d_ln_posters)

Next, I use an ADL model including the growth rate of the number of posters in order to examine community growth of region 5. Among different ADL specifications the model containing $ln_new_signups_t-1$, $ln_new_signups_t-2$, and $d_ln_posters$ as exogenous variables is the one which obtains the lowest SC value (see Appendix 124). Since the null hypotheses of the Jarque-Bera, of the Breusch-Godfrey, and of the White test cannot be rejected, no changes to the model have to be made (see Appendix 122). The estimation output reveals that the values of SC and AIC equal 0.62 and 0.43 respectively (see Table 34). Further, both R² values ranging from 0.42 to 0.48 imply a moderate goodness of fit. Moreover, the estimation results show that both $ln_new_signups_t-1$ and $d_ln_posters$ have a significant positive impact on $ln_new_signups$ at a significance level of 5% because the probability values are smaller than 5%, whereas $ln_new_signups_t-2$ has no

Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	2.045054	1.069231	1.912639	0.0665		
In_new_signups_t-1	0.642959	0.168989	3.804745	0.0007		
In_new_signups_t-2	-0.052382	0.130736	-0.400671	0.6918		
d_ln_posters	1.140439	0.242595	4.701006	0.0001		
R-squared	0.481103	Mean dependent var		5.167032		
Adjusted R-squared	0.423448	S.D. dependent var		0.372228		
S.E. of regression	0.282637	Akaike info criterion 0.43		0.430604		
Sum squared resid	2.156853	Schwarz criterion 0.6156		0.615635		
Log likelihood	-2.674368	Hannan-Quinn criter. (0.490920		
F-statistic	8.344492	Durbin-Watson stat		1.788853		
Prob(F-statistic)	0.000436					

 Table 34
 ADL (d_ln_posters) Estimation Output; Region 5

Sample (adjusted): 2009M10 - 2012M04

Included observations: 31 (after adj.)

Figure 144 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (d_ln_posters) Model; Region 5

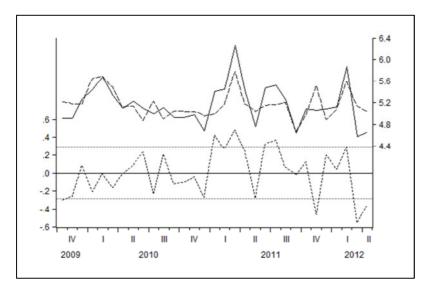
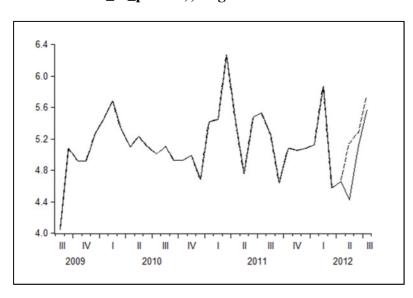



Figure 145 Actual (-----) and Forecasted (---) Values of ln_new_signups (ADL d_ln_posters); Region 5

significant impact. In the short term, a one percentage point increase in the poster variable at time t leads to a considerable immediate increase of 1.14% in the number of new sign-ups. Thus, again there is evidence for the role of the poster variable in explaining community growth. Figure 144 displays the estimated model together with the actual values. Based on the forecast sample ranging from May 2012 to July 2012, the static onestep-ahead forecast procedure generates values, which exceed the actual values as displayed in Figure 145. This leads to values of RMSE=0.435657 and MAE=0.347253. Finally, an ADL model including both posters and team variables is estimated. The results of the selected ADL specification are presented in Table 35 (see Appendix 125 for model selection). Due to the results of misspecification tests there is no need to make any adaptions to the model (see Appendix 122). The results of the ADL model prove again the contribution of the poster variable and of lagged values of new sign-ups to the explication of current new sign-ups. Further, also the contemporaneous team variable, i.e. d_ln_team, differs significantly from zero at a significance level of 5%. The coefficient indicates that, in the short term, a one percentage point increase in <u>d_ln_team</u> leads to an immediate decrease of 0.79% in *ln_new_signups*. Yet, a one percentage point increase in d_ln_posters leads to a considerable immediate increase of 1.20% in ln_new_signups.

Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	1.071250	0.885418	1.209881	0.2376		
In_new_signups_t-1	0.782946	0.170326	4.596746	0.0001		
d_In_posters	1.202745	0.222576	5.403742	0.0000		
d_ln_team	-0.785024	0.352931	-2.224298	0.0354		
d_ln_posters_t-1	-0.171709	0.155799	-1.102121	0.2809		
d_ln_team_t-1	0.499045	0.342509	1.457028	0.1576		
R-squared	0.596866	Mean dependent var		5.167032		
Adjusted R-squared	0.516240	S.D. dependent var		0.372228		
S.E. of regression	0.258895	Akaike info criterion		0.307200		
Sum squared resid	1.675670	Schwarz criterion		0.584746		
Log likelihood	1.238405	Hannan-Quinn criter.		0.397673		
F-statistic	7.402838	Durbin-Watson	stat	1.825673		
Prob(F-statistic)	0.000223					

 Table 35
 ADL (d_ln_posters, d_ln_team) Estimation Output; Region 5

Sample (adjusted): 2009M10 - 2012M04 Included observations: 31 (after adj.)

ADL (d_ln_participation)

In the following, an ADL model including the growth rate of participation is specified in order to model community growth of region 5. Among different ADL specifications up to lag order 2, the SC value of the model including the contemporaneous participation variable is minimal (see Appendix 126). Null hypotheses of normality, autocorrelation, and heteroskedasticity tests are not rejected. Thus, there is no need to make changes to the model (see Appendix 122). Results of the estimated ADL model are displayed in Table 36. The SC value adds up to 1.01, the AIC equals 0.92. Both R² values ranging from - 0.03 to 0.00 imply a very poor goodness of fit. Further, Table 36 shows that the coefficient of d_{ln} -participation is highly insignificant. Thus, the included participation variable does not help to explain community growth. Figure 146 contrasts the estimated model and actual values. The estimated values differ considerably from the actual values. Finally, the one-step-ahead forecast procedure yields forecast errors of RMSE=0.495176 and MAE=0.407219. The deviations of the forecasted values from the observed values are presented in Figure 147.

Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	5.165317	0.066539	77.62895	0.0000		
d_In_participation	-0.011952	0.119117	-0.100334	0.9207		
R-squared	0.000335	Mean dependent	var	5.164356		
Adjusted R-squared	-0.032987	S.D. dependent	var	0.366488		
S.E. of regression	0.372483	Akaike info crite	rion	0.923213		
Sum squared resid	4.162319	Schwarz criterio	n	1.014822		
Log likelihood	-12.77142	Hannan-Quinn ci	riter.	0.953579		
F-statistic	0.010067	Durbin-Watson s	stat	1.527128		
Prob(F-statistic)	0.920747					

 Table 36
 ADL (d_ln_participation) Estimation Output; Region 5

Sample (adjusted): 2009M09 - 2012M04 Included observations: 32 (after adj.)

Figure 146 Actual (-----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (d_ln_participation) Model; Region 5

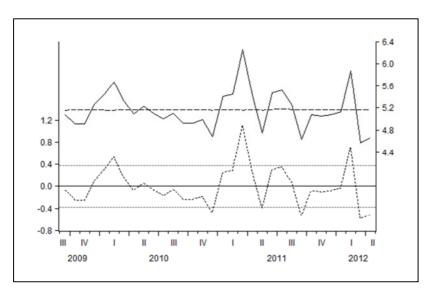
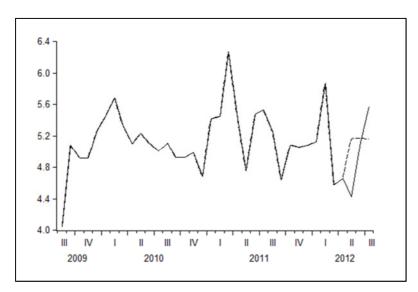
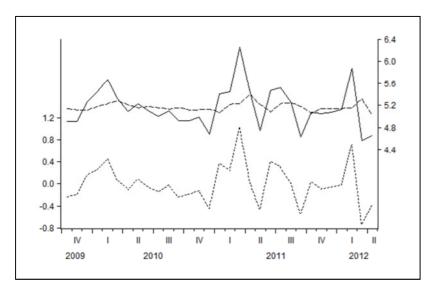
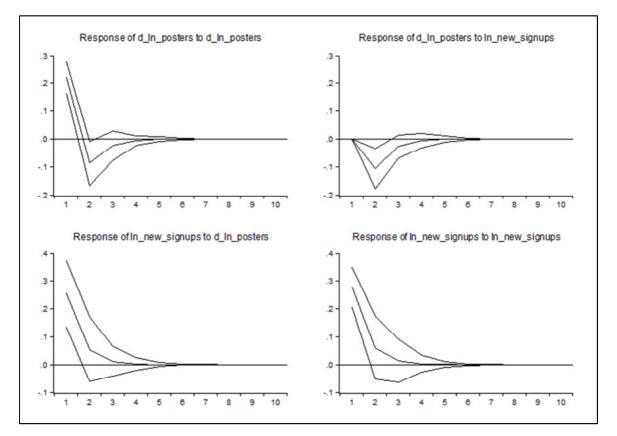



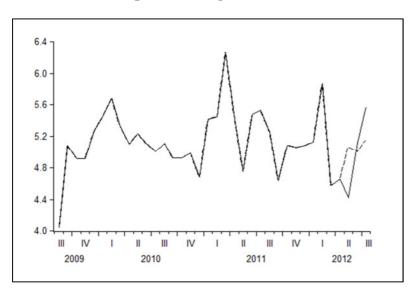
Figure 147 Actual (-----) and Forecasted (---) Values of ln_new_signups (ADL d_ln_participation); Region 5

Due to results of most ADL models including a team variable and the consequential low importance of the team variable in explaining community growth (see also Appendix 127), I do not consider a team variable in the following analyses of region 5.

VAR (d_ln_posters)

Next, I investigate community growth of region 5 by the help of a VAR process including the poster variable. The SC is minimal for a VAR(1) process (see Appendix 128). The null hypotheses of the VAR normality test assuming normality, of the VAR White heteroskedasticity test assuming no heteroskedasticity, and the VAR autocorrelation LM test assuming no serial correlation (up to lag order 4) are not rejected (see Appendix 129). Hence, the VAR model is correctly specified. The VAR(1) process yields values of SC=0.55 and AIC=0.28 (see Appendix 130). Figure 148 shows actual values of the logarithmized number of new sign-ups as well as values which are generated through the VAR model. IRFs are illustrated in Figure 149. The IRF at the bottom left shows that an impulse in the poster variable is followed by a positive response of community growth, which is significant up to one month. The IRF at the top right implies that there is a negative response of the poster variable to a shock in new sign-ups, which stays significant for about two months. Further, both own-variable IRFs show that a shock in the variable is followed by a positive response of the variable is followed by a positive response of the variable is followed by a positive response of the variable is Figure 148 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated VAR (d_ln_posters) Model; Region 5


Figure 149 Impulse Response Functions, d_ln_posters ln_new_signups, Response to Cholesky One S. D. Innovations ± 2 S. E.; Region 5

Finally, based on the forecast sample ranging from May 2012 to July 2012, the one-stepahead forecast procedure generates values, which are depicted in Figure 150 together

with the observed values. The deviations of the forecasted values from the observed values are reflected in the forecast errors of RMSE=0.443818 and MAE=0.387960.

Figure 150 Actual (-----) and Forecasted (---) Values of ln_new_signups (VAR d ln posters); Region 5

VAR (d_ln_participation)

In the final section of Chapter 4.5.5, I investigate the role of the participation variable, i.e. the growth rate of the number of contributions, in explaining community growth by a VAR approach. The SC is minimal for a VAR(0) process (see Appendix 131). This indicates that a dynamic VAR approach is not consistent with the data. The analysis of community growth in region 5 by a VAR model including the growth rate of the number of contributions does not give any added value.³⁰

4.5.6. Region 6

Bass

Finally, community growth of region 6 is analyzed. For this purpose, I start again with the (modified) Bass diffusion model. Null hypotheses of Jarque-Bera, Breusch-Godfrey, and White test cannot be rejected (Appendix 132). Thus, a modification of the model is not necessary. The estimation results of the Bass model are shown in Table 37. Both values of R² amounting to 0.72 and 0.70 are quite respectable. The value of SC accounts for

³⁰ I additionally estimate VAR(1) and VAR(2) models in order to double check. However, there are no significant effects of participation on community growth.

1.73, the AIC equals 1.60. Further, all model parameters are significantly different from zero. Figure 151 shows the adaption of the estimated Bass model to the observed data and reflects the typical curvilinear relationship between the variables of a Bass model. Further, the one-step-ahead forecast procedure leads to values of RMSE=0.651676 and MAE=0.634025 based on the forecast sample ranging from May 2012 to July 2012. The deviations of the forecasted values from the observed values are illustrated in Figure 152. It is observable that the forecasted values take on lower values than the actual ones.

Dependent Variable: In_new_signups						
In_new_signups=In(a+b*ne	ew_signups_cum_t-	1+c*(new_signups	_cum_t-1) ²)			
	Coefficient	Std. Error	t-Statistic	p-value		
а	23.30942	6.635989	3.512576	0.0014		
b	0.145121	0.025782	5.628840	0.0000		
С	-0.000020	0.000005	-3.660407	0.0010		
R-squared	0.717675	Mean dependen	it var	4.937071		
Adjusted R-squared	0.698853	S.D. dependent var		0.937795		
S.E. of regression	0.514633	Akaike info criterion		1.595781		
Sum squared resid	7.945399	Schwarz criterion		1.731827		
Log likelihood	-23.33038	Hannan-Quinn criter.		1.641556		
Durbin-Watson stat	2.085568					

Table 37Bass Estimation Output; Region 6

Sample: 2009M08 - 2012M04 Included observations: 33

Figure 151 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated Bass Model; Region 6

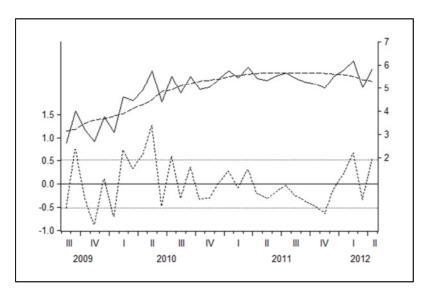
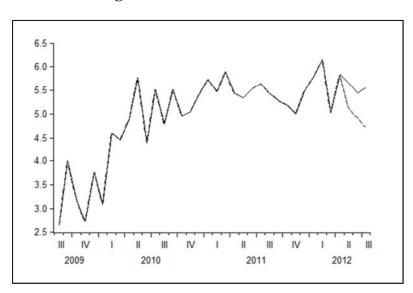



Figure 152 Actual (----) and Forecasted (---) Values of ln_new_signups (Bass); Region 6

ARMA

In the following, an ARMA process is used in order to investigate community growth of region 6. From ACF and PACF displayed in Figure 153 one may conclude that an AR(2) process is suitable because ACF is geometrically decaying and PACF shows peaks at displacement one and two and afterwards gets insignificant.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.618	0.618	13.773	0.000
	·	2	0.683	0.488	31.167	0.000
	1 1	3	0.519	0.003	41.535	0.000
		4	0.322	-0.373	45.668	0.000
	1] 1	5	0.320	0.049	49.905	0.000
I 🛛 I	1 🛛 1	6	0.106	-0.062	50.385	0.000
1 🗖 1	ı 🗖 ı	7	0.139	0.099	51.247	0.000
1] 1	1] 1	8	0.062	0.054	51.422	0.000
1 1	1 d 1	9	-0.001	-0.093	51.422	0.000
1 1 1	· 🖬 ·	10	0.088	0.108	51.808	0.000
		11	-0.021	-0.026	51.830	0.000
	1 🗖 1	12	-0.018	-0.212	51.849	0.000
1 D 1	· 🗖 ·	13	-0.082	-0.145	52.235	0.000
	1 p 1	14	-0.135	0.043	53.347	0.000
	1 1 1	15	-0.149	0.020	54.776	0.000
· 🗖 · 🛛	1) 1	16	-0.205	0.011	57.626	0.000

Figure 153 Correlogram of ln_new_signups; Region 6

Sample: 2009M08 - 2012M04 Included observations: 33 However, to get a more detailed idea of the best ARMA specification, I compare SC values of all ARMA specifications up to order 2. The SC selects an ARMA(1,1) process because the SC of this specification, reaching a value of 1.08, is minimal among all models (see Appendix 133). Since the results of autocorrelation and heteroskedasticity tests show evidence for autocorrelation and heteroskedasticity in the residuals, a dummy variable for September 2009 is added to the model. The ARMA(1,1) model is estimated again together with the dummy variable. Null hypotheses of the Jarque-Bera, the Breusch-Godfrey, and the White test are rejected because the probability values of the corresponding statistics exceed the significance level of 5% (see Appendix 132). The estimation results of the ARMA(1,1) process including the dummy variable are presented in Table 38. Although the SC value increases to 1.32 due to the inclusion of the dummy variable, both R² values ranging from 0.78 to 0.80 imply a good fit of the estimated model. The AIC equals 1.14. Further, the coefficients of all ARMA components are significantly different from zero even at a significance level of 1%. Thus, current values of the logarithmized number of new sign-ups are influenced by their past values, more precisely by the by one period lagged values, as well as by current and by one period lagged shocks.

Dependent Variable: In_new_signups									
	Coefficient	Std. Error	t-Statistic	p-value					
Constant	5.553274	0.072253	76.85918	0.0000					
DUM2009M09	1.898583	0.653126	2.906919	0.0071					
AR(1)	0.818617	0.033129	24.71011	0.0000					
MA(1)	-0.960559	0.098889	-9.713540	0.0000					
R-squared	0.798649	Mean depender	t var	5.008884					
Adjusted R-squared	0.777076	S.D. dependent	var	0.855661					
S.E. of regression	0.403999	Akaike info criterion		1.141661					
Sum squared resid	4.570028	Schwarz criterio	n	1.324878					
Log likelihood	-14.26657	Hannan-Quinn criter.		1.202392					
F-statistic	37.02020	Durbin-Watson	stat	2.436044					
Prob(F-statistic)	0.000000								
Inverted AR Roots	.82								
Inverted MA Roots	.96								
Sample (adjusted): 2009	M09 - 2012M04								

Table 38ARMA Estimation Output;	Region 6
---------------------------------	-----------------

Sample (adjusted): 2009M09 - 2012M04 Included observations: 32 (after adj.) Figure 154 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ARMA Model; Region 6

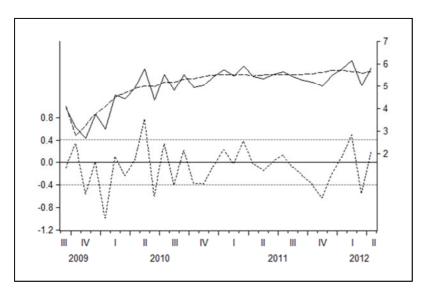
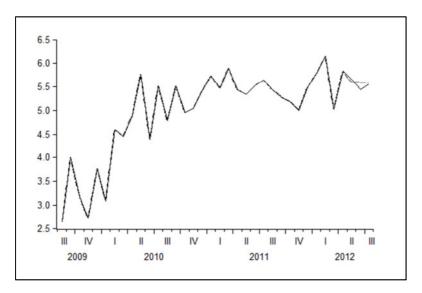



Figure 155 Actual (----) and Forecasted (---) Values of ln_new_signups (ARMA); Region 6

The results of the estimation output are also reflected in the graphical illustration of the estimated values of new sign-ups together with the actual values (see Figure 154). Finally, the one-step-ahead forecast procedure generates values of RMSE=0.095207 and MAE=0.079101 for the forecast sample ranging from May 2012 to July 2012. These values reflect the relatively small deviations of the forecasted values from the observed values, which are displayed in Figure 155.

ADL (d_ln_posters)

Next, I analyze community growth of region 6 by the help of an ADL model including the growth rate of the number of posters. The SC selects an ADL specification that contains $ln_new_signups_t-1$, $d_ln_posters$, and $d_ln_posters_t-1$ as exogenous variables (see Appendix 134). The null hypotheses of normality and autocorrelation tests are not rejected (see Appendix 132). However, results of the White test show evidence for heteroskedasticity in the residuals (see Appendix 132). Thus, the ADL model is estimated again using a heteroskedasticity consistent covariance matrix estimator. The ADL estimation output, which is presented in Table 39, displays both R² values, whereby R² amounts to a value of 0.83 and adjusted R² amounts to a value of 0.81. Thus, the estimated model describes the data quite well. Further, the estimation output displays values of SC=1.18 and AIC=0.99. Moreover, coefficients of lagged new sign-ups and both poster variables are significantly different from zero. More precisely, both $ln_new_signups_t-1$ and $d_ln_posters_t-1$ has a negative influence on $ln_new_signups$, the long-run propensity is still positive.

Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	0.728575	0.727797	1.001068	0.3257		
In_new_signups_t-1	0.861084	0.137417	6.266191	0.0000		
d_ln_posters	0.888504	0.118878	7.474049	0.0000		
d_ln_posters_t-1	-0.534876	0.133154	-4.016975	0.0004		
R-squared	0.825326	Mean dependent var		5.041192		
Adjusted R-squared	0.805918	S.D. dependent var		0.849732		
S.E. of regression	0.374347	Akaike info criterion		0.992649		
Sum squared resid	3.783670	Schwarz criterio	on	1.177679		
Log likelihood	-11.38606	Hannan-Quinn criter.		1.052964		
F-statistic	42.52463	Durbin-Watson stat		2.605351		
Prob(F-statistic)	0.000000	Wald F-statistic		26.23724		
Prob(Wald F-statistic)	0.000000					

Table 39	ADL (d_ln	_posters)	Estimation	Output;	Region 6
----------	-----------	-----------	------------	----------------	----------

Sample (adjusted): 2009M10 - 2012M04

Included observations: 31 (after adj.)

White heterosk edasticity-consistent std. errors & covariance

Figure 156 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (d_ln_posters) Model; Region 6

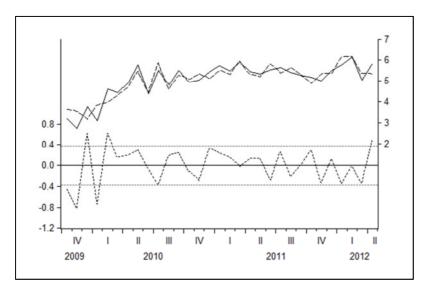


Figure 157 Actual (-----) and Forecasted (---) Values of ln_new_signups (ADL d_ln_posters); Region 6

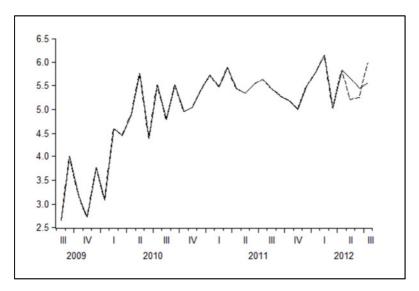


Figure 156 displays the estimated values together with the actual values. The one-stepahead forecast procedure yields values of RMSE=0.381549 and MAE=0.361416. The deviations of the forecasted values from the actual values are shown in Figure 157. Finally, again team variables are added to the model. The estimation results of the selected ADL specification are displayed in Table 40 (see Appendix 135 for model selection). Results of misspecification tests request no changes to the model (see Appendix 132). The estimation results prove again the positive influence of lagged new sign-ups and the positive influence of $d_ln_posters$ on $ln_new_signups$. The coefficient of $ln_new_signups_t-2$ is significant at a significance level of 5%. Further, the positive effect of $d_ln_posters$ is highly significant at a significance level of 5% and at a significance level of 1%. However, the coefficient of $d_ln_team_t-2$ indicates a negative influence on $ln_new_signups$, which is significant at a significance level of 5%, but not at a level of 1%.

Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	1.172644	0.395897	2.961994	0.0074		
In_new_signups_t-1	0.343846	0.183181	1.877085	0.0745		
In_new_signups_t-2	0.440884	0.168407	2.617967	0.0161		
d_ln_posters	0.843708	0.143713	5.870781	0.0000		
d_ln_team	0.493748	0.676425	0.729938	0.4735		
d_ln_posters_t-1	-0.016940	0.205677	-0.082363	0.9351		
d_ln_team_t-1	-0.034189	0.688334	-0.049669	0.9609		
d_ln_posters_t-2	-0.240988	0.159637	-1.509602	0.1460		
d_ln_team_t-2	-1.165802	0.429340	-2.715338	0.0130		
R-squared	0.883999	Mean dependen	t var	5.103297		
Adjusted R-squared	0.839809	S.D. dependent	var	0.789464		
S.E. of regression	0.315975	Akaike info crite	rion	0.777015		
Sum squared resid	2.096639	Schwarz criterion		1.197374		
Log likelihood	-2.655229	Hannan-Quinn criter.		0.911492		
F-statistic	20.00417	Durbin-Watson	stat	1.971438		
Prob(F-statistic)	0.000000					

Table 40ADL (d)	_ln_	posters, d	l_ln_	_team)	Estimation	Output; Region	6
-----------------	------	------------	-------	--------	------------	-----------------------	---

Sample (adjusted): 2009M11 - 2012M04 Included observations: 30 (after adj.)

ADL (d_ln_participation)

In this section, I apply an ADL model that considers the growth rate of participation instead of the growth rate of posters in order to analyze community growth. Among all ADL specifications up to lag order 2, the model including both the dependent variable and the participation variable up to lag order 2 obtains the lowest SC value of 1.56 (see Appendix 136). Since the null hypotheses of the Jarque-Bera, Breusch-Godfrey, and the White test cannot be rejected at a significance level of 5%, no changes to the model are made (see Appendix 132). The values of R^2 =0.77 and adjusted R^2 =0.72, which are displayed in Table 41, indicate a quite respectable goodness of fit. The AIC reaches a value of 1.28. However, the estimation output shows that besides the constant term only the coefficients of $ln_new_signups_t-2$ and $d_ln_participation$ are significant at a significance level of 5%. Both variables exert a positive influence on $ln_new_signups$. Further, the coefficient of $d_ln_participation$ indicates that, in the short term, a one percentage point increase in $d_ln_participation$ leads to an immediate 0.41% increase in $ln_new_signups$. However, at a significance level of 1% none of the variables except the constant term has a significant impact on community growth. Figure 158 displays estimated and actual values. Finally, the static one-step-ahead forecast procedure based on the forecast sample ranging from May 2012 to July 2012 generates values which are displayed in Figure 159 together with the observed values. The deviations of the forecasted values from the actual values are reflected in the forecast errors of RMSE=0.261179 and MAE=0.225563.

Due to results of most ADL models including a team variable and the consequential low importance of the team variable in explaining community growth (see also Appendix 137), I do not consider a team variable in the following analyses of region 6.

Dependent Variable: In_new_signups					
	Coefficient	Std. Error	t-Statistic	p-value	
Constant	1.423998	0.507160	2.807785	0.0098	
In_new_signups_t-1	0.333442	0.184078	1.811422	0.0826	
In_new_signups_t-2	0.407081	0.171824	2.369181	0.0262	
d_ln_participation	0.408564	0.163695	2.495886	0.0198	
d_In_participation_t-1	-0.129753	0.171882	-0.754897	0.4577	
d_ln_participation_t-2	-0.258132	0.145541	-1.773596	0.0888	
R-squared	0.766703	Mean dependen	it var	5.103297	
Adjusted R-squared	0.718099	S.D. dependent var		0.789464	
S.E. of regression	0.419161	Akaike info criterion		1.275732	
Sum squared resid	4.216700	Schwarz criterion		1.555972	
Log likelihood	-13.13599	Hannan-Quinn criter.		1.365383	
F-statistic	15.77461	Durbin-Watson	stat	2.198716	
Prob(F-statistic)	0.000001				

 Table 41
 ADL (d_ln_participation) Estimation Output; Region 6

Sample (adjusted): 2009M11 - 2012M04 Included observations: 30 (after adj.) Figure 158 Actual (-----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (d_ln_participation) Model; Region 6

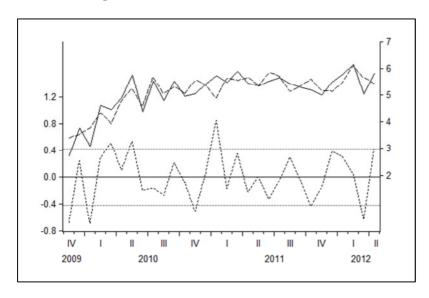
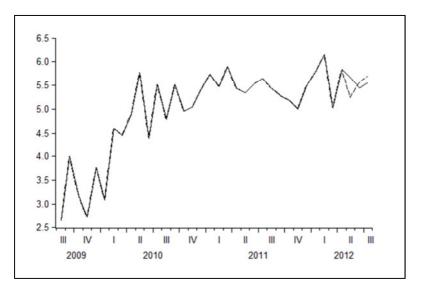
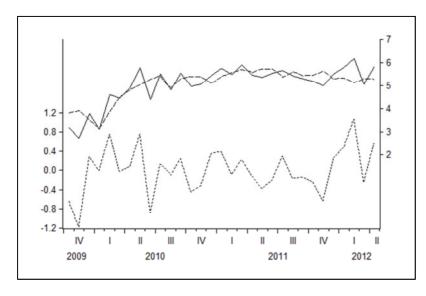




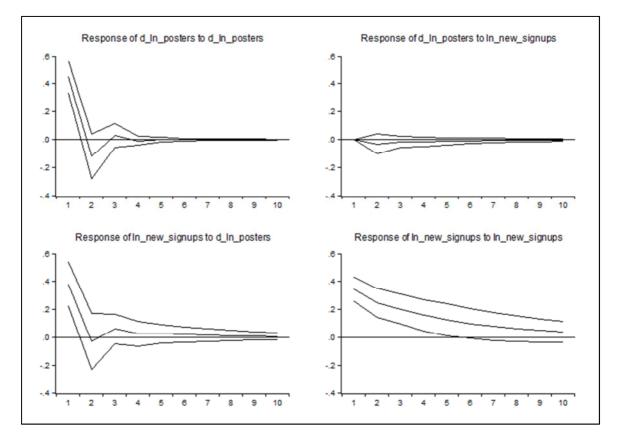
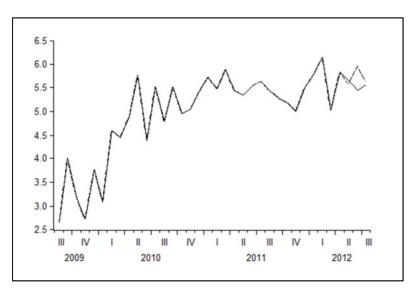
Figure 159 Actual (-----) and Forecasted (---) Values of ln_new_signups (ADL d_ln_participation); Region 6

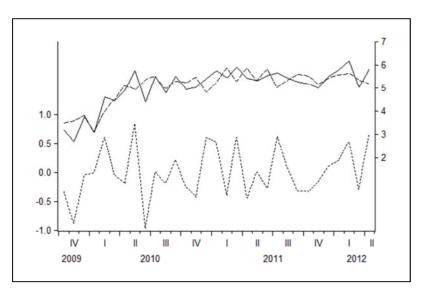
VAR (d_ln_posters)

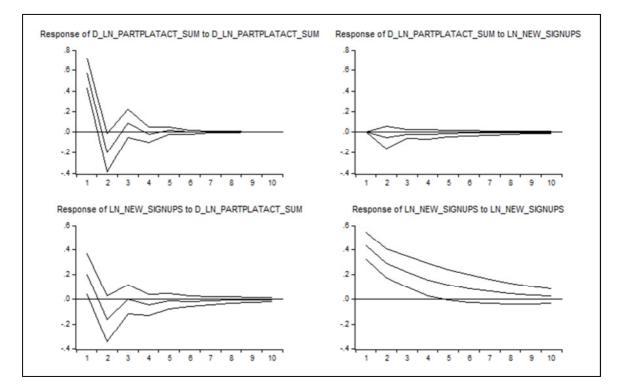
Next, I apply a VAR approach including the growth rate of the number of posters in order to model and predict community growth of region 6. The value of SC is minimal for a VAR(1) process (see Appendix 138). However, since there is evidence for heteroskedasticity in the residuals, I include a dummy variable for January 2010 as an exogenous variable into the model. Then, the VAR(1) specification containing the dummy variable is Figure 160 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated VAR (d_ln_posters) Model; Region 6

estimated again. Null hypotheses of normality, autocorrelation, and heteroskedasticity tests are not rejected at a significance level of 5% (see Appendix 139). Thus, no more changes to the model are necessary. The SC of the estimated model adds up to 2.54, the AIC reaches a value of 2.17 (see Appendix 140). Figure 160 shows the actual values of the logarithmized number of new sign-ups together with the part of the VAR model that describes the logarithmized number of new sign-ups. Further, IRFs are generated in order to identify effects between the variables (see Figure 161). An impulse in the growth rate of the number of posters leads to a positive response of new sign-ups that is significant up to one month. In contrast, an impulse in new sign-ups does not lead to any significant response of the poster variable. Regarding the own-variable IRFs, there is a positive response, which is significant up to one month in the case of the poster variable and up to five months in the case of new sign-ups. Finally, the one-step-ahead forecast procedure is applied based on the forecast sample ranging from May 2012 to July 2012. The forecast procedure yields forecast errors of RMSE=0.304962 and MAE=0.222500. The deviations of the forecasted values from the observed values are depicted in Figure 162.

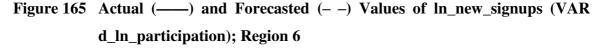
Figure 161 Impulse Response Functions, d_ln_posters ln_new_signups, Response to Cholesky One S. D. Innovations ± 2 S. E.; Region 6


Figure 162 Actual (-----) and Forecasted (---) Values of ln_new_signups (VAR d_ln_posters); Region 6


VAR (d_ln_participation)

In this final section of Chapter 4.5, I specify a VAR model including the participation variable, i.e. the growth rate of the number of contributions, in order to model and predict community growth of region 6. The SC selects a VAR(1) model because the VAR(1)model obtains the smallest value of SC among VAR specifications up to lag order 4 (see Appendix 141). Since there is evidence for autocorrelation in the residuals, I adjust the model by adding a dummy variable for January 2010. The VAR(1) process including the dummy variable is estimated again. The null hypotheses of the VAR normality test, of the VAR White heteroskedasticity test, and of the VAR autocorrelation LM test are not rejected (see Appendix 142). Therefore, further changes to the model are not necessary. The estimated model generates values of 3.50 for the SC and 3.13 for the AIC (see Appendix 143). Figure 163 shows actual values of the logarithmized number of new signups as well as values which are generated through the VAR model. IRFs are presented in Figure 164. The IRF at the bottom left shows that a shock in the growth rate of the number of contributions leads to a positive response of community growth, which is significant for only a very short period time, i.e. for less than one month. The IRF at the top right shows no significant response of the participation variable to a shock in new signups. The own-variable IRFs show a positive response to a shock in the respective variable, whereby the effect is significant up to four months in the case of new sign-ups and up to one month in the case of the participation variable.


Figure 163 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated VAR (d_ln_participation) Model; Region 6

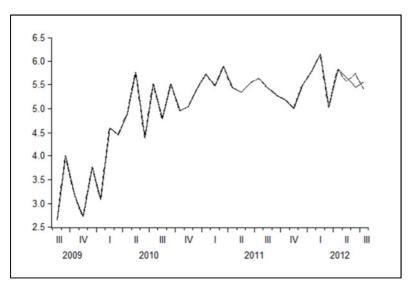


Figure 164 Impulse Response Functions, d_ln_participation ln_new_signups, Response to Cholesky One S. D. Innovations ± 2 S. E.; Region 6

Finally, the one-step-ahead forecast procedure yields forecast errors of RMSE=0.210604 and MAE=0.186739 based on the forecast sample ranging from May 2012 to July 2012. Forecasted and observed values are contrasted in Figure 165.

4.6. **Results of Further Analyses**

In Chapter 4.6, I estimate again VAR and ADL models including posters or participation variables in order to explain community growth. However, this time, posters and participation variables are considered in levels, not in first differences because information, which is provided by the variables, gets lost after building the first differences. Variables can be included in levels when they are integrated of order zero. As both posters and participation variables contain no unit roots only in region 2, 4, and 5, only those regions can be analyzed by using posters and participation variables in levels.

4.6.1. Region 2

ADL (ln_posters)

First of all, an ADL approach containing the logarithmized number of posters as an exogenous variable is applied to examine community growth in region 2. In order to determine the best ADL specification, ADL models up to lag order 2 are compared by the help of SC. The SC is minimal for an ADL model including *ln_posters*, *ln_posters_t-1*, and *ln_posters_t-2* (see Appendix 145). Since the null hypotheses of the Jarque-Bera test assuming normality, the Breusch-Godfrey test assuming no autocorrelation, and the White test assuming no heteroskedasticity are not rejected, adaptions to the model are not necessary (see Appendix 144). The estimation results are presented in Table 42.

Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	3.812355	0.419858	9.080116	0.0000		
In_posters	0.700495	0.128818	5.437867	0.0000		
In_posters_t-1	-0.236283	0.148508	-1.591048	0.1232		
In_posters_t-2	-0.115382	0.067591	-1.707059	0.0993		
R-squared	0.577146	Mean dependent var		5.605519		
Adjusted R-squared	0.530162	S.D. dependent var		0.390783		
S.E. of regression	0.267861	Akaike info criterion		0.323220		
Sum squared resid	1.937243	Schwarz criterion		0.508251		
Log likelihood	-1.009912	Hannan-Quinn criter.		0.383536		
F-statistic	12.28393	Durbin-Watson	stat	1.435604		
Prob(F-statistic)	0.000030					
Comple (adjusted): 0000M	10 00101/01					

Table 42	ADL (In	posters)	Estimation	Output	: Region 2
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	,

Sample (adjusted): 2009M10 - 2012M04 Included observations: 31 (after adj.) Both R² values, whereby R²=0.58 and adjusted R²=0.53, show an acceptable goodness of fit. The SC adds up to 0.51. The AIC equals 0.32. Further, the estimation output reveals that a 1% increase in the number of posters at time *t*, i.e. *ln_posters*, leads to a 0.70% increase in *ln_new_signups*. The coefficients of the lagged poster variables are not significantly different from zero at a significance level of 5%. Figure 166 displays actual and estimated values.

Figure 166 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (ln_posters) Model; Region 2

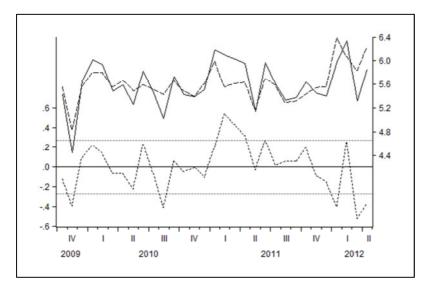
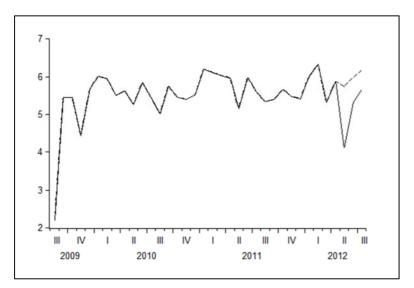



Figure 167 Actual (-----) and Forecasted (- -) Values of ln_new_signups (ADL ln_posters); Region 2

Finally, the one-step-ahead forecast procedure yields forecast errors of RMSE=1.054225 and MAE=0.940555 based on the forecast sample ranging from May 2012 to July 2012. From Figure 167 it becomes apparent that the forecasted values exceed the observed values.

ADL (In_participation)

Next, I use an ADL model including participation in levels, i.e. the logarithmized number of contributions, instead of the poster variable in levels in order to analyze community growth of region 2. The SC selects an ADL model including $ln_new_signups_t-1$ and $ln_participation$ as exogenous variables because this specification obtains the lowest SC value among ADL specifications up to lag order 2 (see Appendix 146). Null hypotheses of normality, autocorrelation, and heteroskedasticity tests are not rejected (see Appendix 144). Thus, there is no need to make any changes to the model. The estimation output of Table 43 presents values of adjusted R² and R² ranging from 0.12 to 0.17. These values indicate a poor goodness of fit. The SC amounts to a value of 1.03, the AIC to a value of 0.90. Further, the output reveals that a 1% increase in $ln_participation$ leads to a 0.22% increase in $ln_new_signups$. However, the coefficient is only significant at a significance level of 5% and not on a level of 1%. Further, the influence of $ln_new_signups_t-1$ is not significant at a significance level of 5%.

	Coefficient	Std. Error	t-Statistic	p-value
Constant	4.492076	0.593503	7.568745	0.0000
In_new_signups_t-1	-0.052611	0.105029	-0.500919	0.6202
In_participation	0.219549	0.093336	2.352250	0.0257
R-squared	0.173776	Mean dependent var		5.600013
Adjusted R-squared	0.116795	S.D. dependent var		0.385688
S.E. of regression	0.362466	Akaike info criterion		0.897287
Sum squared resid	3.810065	Schwarz criterion		1.034700
Log likelihood	-11.35660	Hannan-Quinn c	riter.	0.942836
F-statistic	3.049713	Durbin-Watson	stat	1.929735
Prob(F-statistic)	0.062794			

Table 43	ADL (ln_participation	on) Estimation Output; Region 2
----------	-----------------------	---------------------------------

Sample (adjusted): 2009M09 - 2012M04 Included observations: 32 (after adj.) Figure 168 Actual (-----) and Fitted (- -) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (ln_participation) Model; Region 2

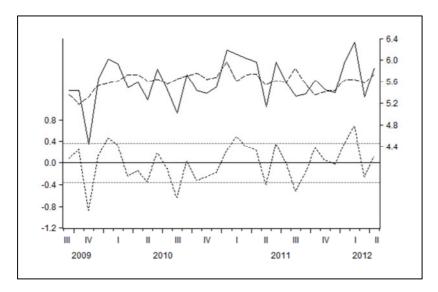


Figure 169 Actual (-----) and Forecasted (---) Values of ln_new_signups (ADL ln_participation); Region 2

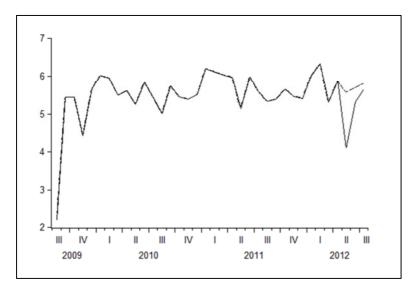
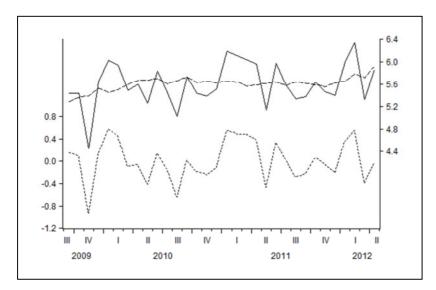



Figure 168 displays the estimated values together with the actual values. Finally, the onestep-ahead forecast procedure generates values that exceed the observed values as apparent from Figure 169. Deviations of forecasted values from observed values are reflected in the forecast errors of RMSE=0.876823 and MAE=0.666234.

VAR (ln_posters)

In the following two sections, I use a VAR approach in order to explain and predict community growth of region 2. I start again with the inclusion of the poster variable, i.e. the logarithmized number of posters. The lag length of the VAR model is determined by the SC. Among VAR models up to lag order 4, the value of SC is minimal for a VAR process of lag order 1 (see Appendix 147). The null hypotheses of the VAR normality test assuming normality, of the VAR White heteroskedasticity test assuming no heteroskedasticity, and the VAR autocorrelation LM test assuming no serial correlation (up to lag order 4) are not rejected (see Appendix 148). Thus, no changes to the model are necessary. The estimated model yields a value of SC=1.58. The AIC reaches a value of 1.31 (see Appendix 149). Figure 170 shows actual values of the logarithmized number of new sign-ups as well as values which are generated through the VAR model.

Figure 170 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated VAR (ln_posters) Model; Region 2

IRFs are presented in Figure 171. The IRF at the bottom left shows the effect of a one standard deviation shock in the poster variable on current and future values of new sign-ups, i.e. there is a positive response of community growth to a shock in the number of posters, which is significant up to one month. The IRF at the top right shows a negative response of the number of posters to a shock in new sign-ups, which stays significant for up to four months. The own-variable IRFs express a positive response, which is significant up to one month in the case of new sign-ups and up to five months in the case of the poster variable. Finally, I perform a one-step-ahead forecast procedure based on the fore-

cast sample ranging from May 2012 to July 2012. From Figure 172 it becomes apparent that the forecasted values exceed the observed values, which is reflected in the forecast errors of RMSE=1.155746 and MAE=0.983532.

Figure 171 Impulse Response Functions, ln_posters ln_new_signups, Response to Cholesky One S. D. Innovations ± 2 S. E.; Region 2

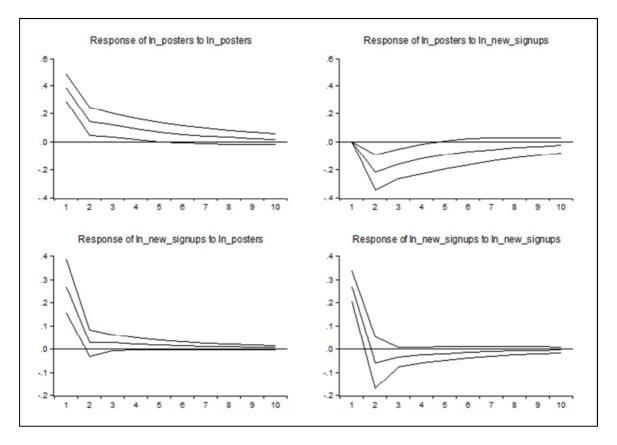
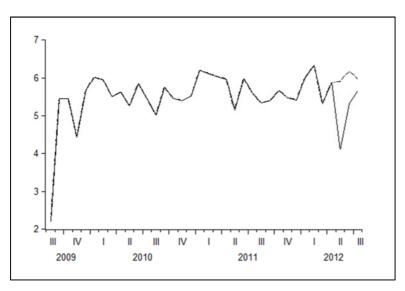



Figure 172 Actual (-----) and Forecasted (---) Values of ln_new_signups (VAR ln_posters); Region 2

VAR (In_participation)

Next, I chose the participation variable in levels, i.e. the logarithmized number of contributions, instead of the logarithmized number of posters in order to formulate a VAR process. The SC selects a VAR(0) process because this specification obtains the smallest SC value among VAR models up to lag order 4 (see Appendix 150). Since a VAR(0) model only includes a constant term, it indicates that there are no dynamics in the model. As a consequence, the traditional VAR approach including participation in levels is not suitable for modeling community growth in region 2.³¹

4.6.2. Region 4

ADL (ln_posters)

In the following, community growth of region 4 is analyzed. For this purpose, I start with an ADL model including the poster variable in levels. Among different ADL specifications, the SC selects a model that contains *ln_posters* and *ln_posters_t-1* as exogenous variables (see Appendix 152). Since there is evidence for heteroskedasticity in the residuals, but null hypotheses of normality and autocorrelation tests are not rejected (see Appendix 151), the model is estimated again using a heteroskedasticity consistent

Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	3.182187	0.352696	9.022458	0.0000		
In_posters	0.669656	0.160044	4.184208	0.0002		
In_posters_t-1	-0.284081	0.097844	-2.903398	0.0070		
R-squared	0.620038	Mean dependent var		4.801734		
Adjusted R-squared	0.593834	S.D. dependent var		0.579652		
S.E. of regression	0.369419	Akaike info criterion		0.935288		
Sum squared resid	3.957636	Schwarz criterion		1.072701		
Log likelihood	-11.96461	Hannan-Quinn criter.		0.980836		
F-statistic	23.66172	Durbin-Watson stat		1.535065		
Prob(F-statistic)	0.000001	Wald F-statistic		9.860056		
Prob(Wald F-statistic)	0.000541					

Table 44	ADL (ln	_posters)	Estimation	Output;	Region 4
----------	---------	-----------	------------	----------------	----------

Sample (adjusted): 2009M09 - 2012M04

Included observations: 32 (after adj.)

White heterosk edasticity-consistent std. errors & covariance

³¹ I additionally estimate VAR(1) and VAR(2) models in order to double check. IRFs of VAR(1) do not show any significant response of new sign-ups to a shock in participation. IRFs of VAR(2) show only a very slight significant positive response of new sign-ups to a shock in participation.

covariance matrix estimator. The estimation output, which is presented in Table 44, shows acceptable values for both R² values. R² adds up to a value of 0.62, the adjusted R² adds up to a value of 0.59. Moreover, the estimated model generates an SC value of 1.07. The AIC reaches a value of 0.94. The output reveals a significant positive influence of $ln_posters$ on $ln_new_signups$ and a significant negative impact of $ln_posters_t-1$ on $ln_new_signups$. Nevertheless, the long-run propensity, i.e. the reaction of new sign-ups to a permanent 1% increase in the poster variable, is still positive. In detail, in the long run, a permanent 1% increase in the number of posters leads to a 0.39(=0.67-0.28)% increase in the number of new sign-ups.

Figure 173 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (ln_posters) Model; Region 4

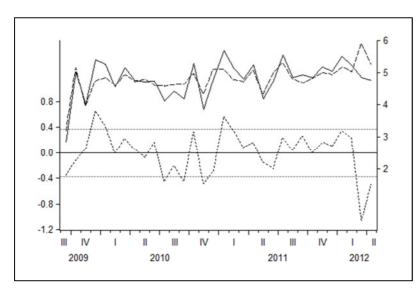
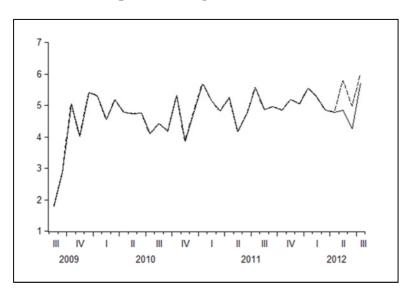



Figure 173 displays the estimated model together with the actual values. Finally, the static one-step-ahead forecast procedure yields values, which are illustrated together with the observed values in Figure 174. The graphs show that the forecasted values exceed the observed values. Results of the forecast procedure, which is based on the sample ranging from May 2012 to July 2012, are also reflected in the forecast errors of RMSE=0.702416 and MAE=0.640264.

Figure 174 Actual (-----) and Forecasted (---) Values of ln_new_signups (ADL ln_posters); Region 4

ADL (In_participation)

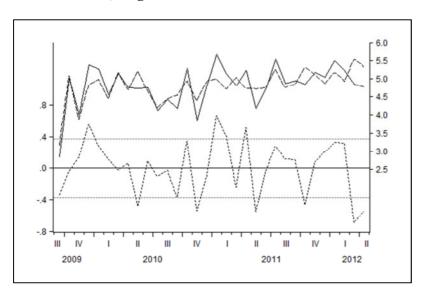
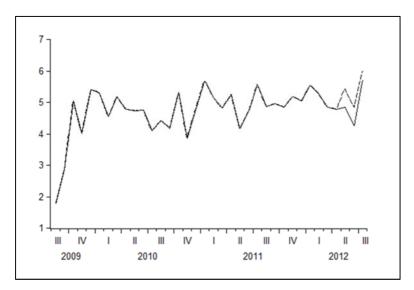
Next, I add the number of contributions instead of the number of posters to model and predict community growth of region 4. At first, I use the SC in order to compare different ADL specifications up to lag order 2. The SC selects a model including the contemporaneous and the by one period lagged participation variable as the specification obtaining the lowest SC value among all ADL models up to lag order 2 (see Appendix 153). The null hypotheses of the Jarque-Bera, the Breusch-Godfrey, and the White test are not rejected (see Appendix 151). Hence, the model is correctly specified. Results of the estimated model are displayed in Table 45. Both R^2 values of R^2 = 0.62 and adjusted R^2 =0.60 indicate an acceptable goodness of fit. Further, the estimation output shows that the SC amounts to a value of 1.06. The AIC equals 0.93. Moreover, estimation results imply that the current number of contributions exerts a highly significant positive effect on community growth. More precisely, a 1% increase in *ln_participation* leads to an immediate 0.58% increase in *ln_new_signups*. Yet, in the long run, the positive influence is diminished because of the significant negative coefficient of *ln_participation_t-1*. Figure 175 displays estimated and actual values together with the residuals. Finally, the static onestep-ahead forecast procedure yields forecast errors of RMSE=0.495923 and MAE=0.477706. Figure 176 shows that the forecasted values are higher than the observed values.

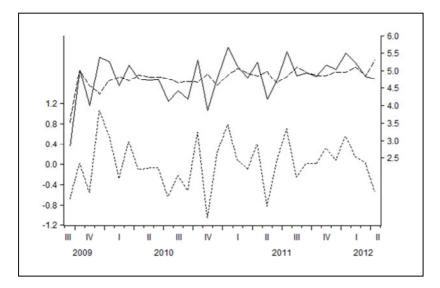
Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	3.170873	0.267197	11.86717	0.0000		
In_participation	0.584348	0.096400	6.061710	0.0000		
In_participation_t-1	-0.269820	0.081356	-3.316536	0.0025		
R-squared	0.623482	Mean dependent var		4.801734		
Adjusted R-squared	0.597516	S.D. dependent var		0.579652		
S.E. of regression	0.367741	Akaike info criterion		0.926182		
Sum squared resid	3.921761	Schwarz criterion		1.063595		
Log likelihood	-11.81891	Hannan-Quinn criter.		0.971730		
F-statistic	24.01081	Durbin-Watson	stat	1.916366		
Prob(F-statistic)	0.000001					

 Table 45
 ADL (In_participation) Estimation Output; Region 4

Sample (adjusted): 2009M09 - 2012M04 Included observations: 32 (after adj.)

Figure 175 Actual (----) and Fitted (- -) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (ln_participation) Model; Region 4


Figure 176 Actual (-----) and Forecasted (---) Values of ln_new_signups (ADL ln_participation); Region 4

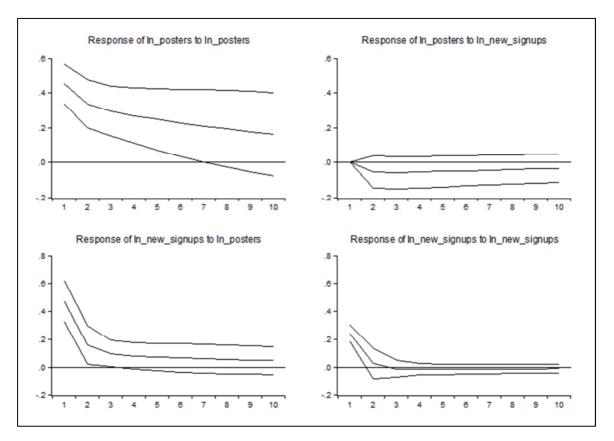
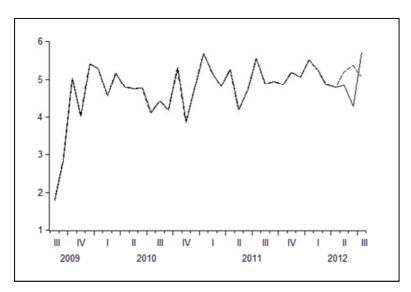
VAR (ln_posters)

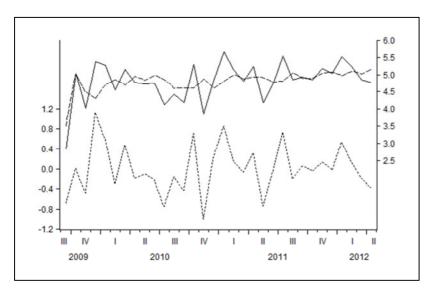
In the following, I estimate a VAR model including posters in levels in order to explain and predict community growth of region 4. The SC is minimal for a VAR(1) process (see Appendix 154). As there is evidence for autocorrelation, heteroskedasticity, and no normality in the residuals of the VAR(1) model, I include a dummy variable for October 2009 and a dummy variable for March 2012 in order to correct misspecification.

Figure 177 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated VAR (ln_posters) Model; Region 4

After the estimation of the VAR(1) process including both dummy variables, the null hypotheses of the VAR normality test, of the VAR White heteroskedasticity test, and the VAR autocorrelation LM test are not rejected at a significance level of 5% (see Appendix 155). Thus, the model is correctly specified. The estimated model generates a value of SC=1.97. The AIC equals 1.51 (see Appendix 156). Figure 177 shows the actual values of the logarithmized number of new sign-ups together with the part of the VAR model that describes the logarithmized number of new sign-ups. IRFs, which are displayed in Figure 178, indicate that an impulse in the number of posters generates a positive response of new sign-ups that is significant up to three months. In contrast, an impulse in new sign-ups generates no significant response of the number of posters. Regarding the own-variable IRFs, there is a positive response of new sign-ups to a shock in new signups, which stays significant up to one month. Further, there is a positive response of the poster variable to a shock in the poster variable that lasts up to seven months. Finally, the one-step-ahead forecast procedure generates forecast errors of RMSE=0.766993 and MAE=0.707702. The deviations of the forecasted values from the observed values are illustrated in Figure 179.

Figure 178 Impulse Response Functions, ln_posters ln_new_signups, Response to Cholesky One S. D. Innovations ± 2 S. E.; Region 4


Figure 179 Actual (-----) and Forecasted (---) Values of ln_new_signups (VAR ln_posters); Region 4

VAR (In_participation)

In the final section of Chapter 4.6.2, I use a VAR approach containing the participation variable in levels in order to analyze and predict community growth of region 4. The SC recommends a VAR(1) approach because this specification obtains the smallest SC value among VAR models up to lag order 4 (see Appendix 157). However, as this specification causes both autocorrelation and heteroskedasticity in the residuals, I include a dummy variable for October 2009. After the integration of the dummy variable into the VAR

Figure 180 Actual (-----) and Fitted (- -) Values of ln_new_signups and Residual (----) Values from the Estimated VAR (ln_participation) Model; Region 4

process, the null hypotheses of autocorrelation, heteroskedasticity, and normality tests are not rejected at a significance level of 5% (see Appendix 158). Hence, no further adaption is necessary. The SC of the estimated model adds up to 3.27, the AIC reaches a value of 2.90 (see Appendix 159). Figure 180 shows the actual values of the logarithmized number of new sign-ups together with the part of the VAR model that describes the logarithmized number of new sign-ups. IRFs, which are illustrated in Figure 181, imply that an impulse in the number of contributions leads to positive response of new sign-ups that stays significant up to three months. By contrast, an impulse in new sign-ups induces no significant response of the participation variable. The own-variable IRFs show a positive response, which is significant up to one month in the case of new sign-ups and up to six months in the case of the participation variable. Values, which are generated by the onestep-ahead forecast procedure based on the forecast sample of May 2012 to July 2012, are presented together with the observed values in Figure 182. The deviations between these values are reflected in the forecast errors of RMSE=0.721041 and MAE=0.674794.

Figure 181 Impulse Response Functions, ln_participation ln_new_signups, Response to Cholesky One S. D. Innovations ± 2 S. E.; Region 4

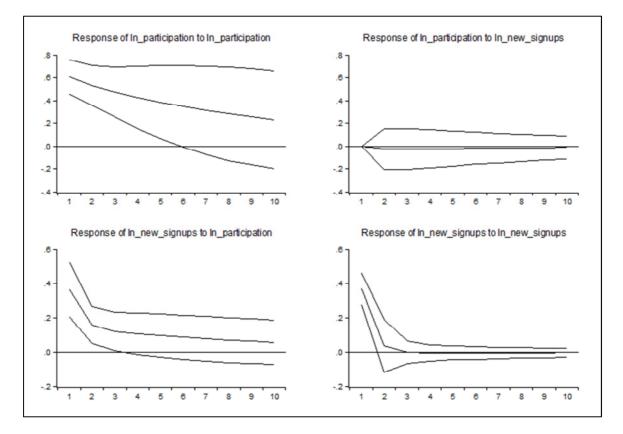
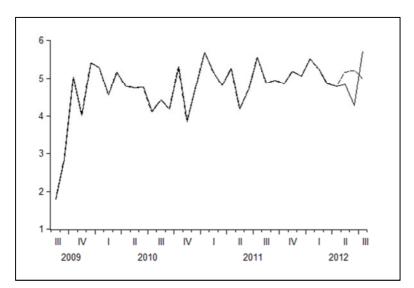



Figure 182 Actual (-----) and Forecasted (---) Values of ln_new_signups (VAR ln_participation); Region 4

4.6.3. Region 5

ADL (ln_posters)

In the following section, community growth of region 5 is examined by an ADL model that contains the poster variable in levels. Among different ADL specifications up to lag order 2, the SC value is minimal for a specification that includes *ln_new_signups_t-1*, *ln_posters*, and *ln_posters_t-1* as exogenous variables (see Appendix 161). Since null hypotheses of normality, autocorrelation, and heteroskedasticity tests are not rejected, there is no need to make any changes to the model (see Appendix 160). The estimation output (see Table 46) shows that both R² values ranging from 0.44 to 0.49 imply a moderate goodness of fit. Besides, the estimated model yields an SC value of 0.55. The AIC reaches a value of 0.37. Further, the estimation output proves that all coefficients – with the exception of the constant term's coefficient – are significant different from zero even at a significance level of 1%. Both *ln_new_signups_t-1* and *ln_posters* exert a positive influence on *ln_new_signups*. In contrast, *ln_posters_t-1* exerts a negative impact on *ln_new_signups*. In the short term, a 1% increase in *ln_posters* leads to an immediate 1.19% increase in *ln_new_signups*. Despite the negative effect of the lagged poster variable, the long-run propensity is still positive. Figure 183 shows the pattern of the estimated and actual values. Moreover, the one-step-ahead forecast procedure generates values that exceed the observed values, which is apparent from Figure 184. These results are also reflected in the forecast errors of RMSE=0.682844 and MAE=0.661482.

Dependent Variable: In	n_new_signups			
	Coefficient	Std. Error	t-Statistic	p-value
Constant	0.691891	0.945775	0.731559	0.4705
In_new_signups_t-1	0.569302	0.167519	3.398424	0.0021
In_posters	1.188510	0.238576	4.981688	0.0000
In_posters_t-1	-0.887258	0.196920	-4.505682	0.0001
R-squared	0.493705	Mean depender	it var	5.164356
Adjusted R-squared	0.439459	S.D. dependent	var	0.366488
S.E. of regression	0.274387	Akaike info crite	erion	0.367914
Sum squared resid	2.108070	Schwarz criterio	n	0.551131
Log likelihood	-1.886622	Hannan-Quinn d	riter.	0.428645
F-statistic	9.101229	Durbin-Watson	stat	1.771441
Prob(F-statistic)	0.000229			

 Table 46
 ADL (In_posters) Estimation Output; Region 5

Sample (adjusted): 2009M09 - 2012M04

Included observations: 32 (after adj.)

Figure 183 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated ADL (ln_posters) Model; Region 5

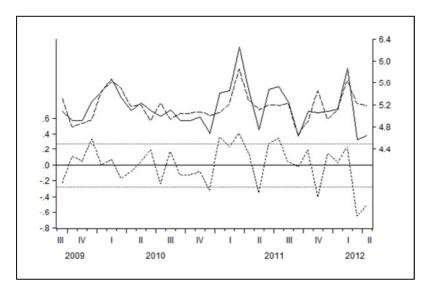
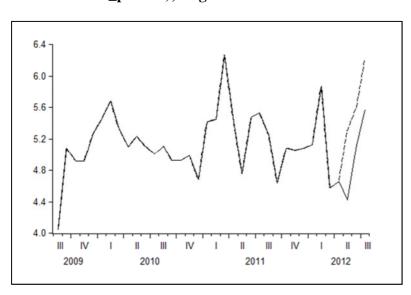
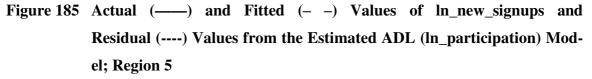



Figure 184 Actual (-----) and Forecasted (---) Values of ln_new_signups (ADL ln_posters); Region 5

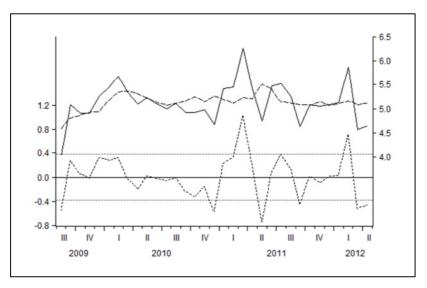
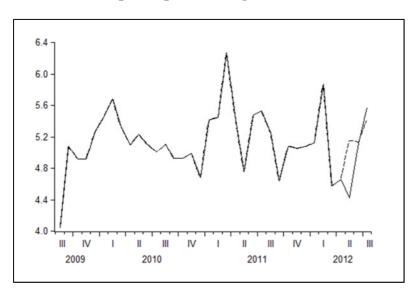


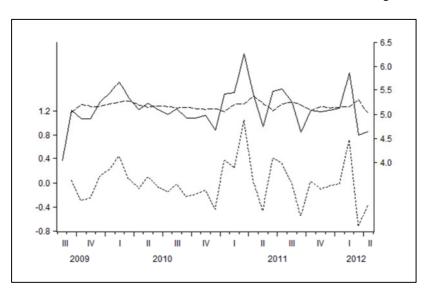
ADL (In_participation)

Next, I make use of an ADL model containing the participation variable in levels in order to explain and predict community growth of region 5. The SC selects an ADL model that only includes the contemporaneous participation variable, i.e. *ln_participation*, besides the constant term (see Appendix 162). The null hypotheses of the Jarque-Bera, the Breusch-Godfrey, and the White test are not rejected (see Appendix 160). Hence, the model is correctly specified. The estimation output is presented in Table 47. Both R² values, whereby R² adds up to 0.18 and adjusted R² adds up to 0.15, indicate a poor goodness of fit. The SC obtains a value of 1.04, the AIC reaches a value of 0.95. Moreover, estimation results show that the coefficient of *ln_participation* is significantly different from zero at a significance level of 5%, but not at a level of 1% because 0.01 < 0.0148 <0.05. The estimated coefficient implies that a 1% increase in the number of contributions leads to a 0.20% increase in the number of new sign-ups. Figure 185 illustrates the estimated model and actual values. Finally, the one-step-ahead forecast procedure yields forecast errors of RMSE=0.435531 and MAE=0.307779 based on the forecast sample ranging from May 2012 to July 2012. The deviations of the forecasted values from the observed values are depicted in Figure 186.

Dependent Variable: In	_new_signups			
	Coefficient	Std. Error	t-Statistic	p-value
Constant	3.874444	0.491025	7.890521	0.0000
In_participation	0.202450	0.078437	2.581067	0.0148
R-squared	0.176887	Mean dependen	t var	5.130377
Adjusted R-squared	0.150335	S.D. dependent	var	0.410142
S.E. of regression	0.378058	Akaike info crite	rion	0.951154
Sum squared resid	4.430767	Schwarz criterio	n	1.041852
Log likelihood	-13.69405	Hannan-Quinn c	riter.	0.981671
F-statistic	6.661908	Durbin-Watson	stat	1.684810
Prob(F-statistic)	0.014805			

Sample (adjusted): 2009M08 - 2012M04 Included observations: 33 (after adj.)


Figure 186 Actual (-----) and Forecasted (---) Values of ln_new_signups (ADL ln_participation); Region 5

VAR (ln_posters)

In this section, I estimate a VAR process including the poster variable in levels in order to analyze and predict community growth of region 5. The lag length of the VAR model is determined by the SC. The SC selects a VAR(1) process as the specification with the lowest SC value among VAR models up to lag order 4 (see Appendix 163). Since null hypotheses of the VAR normality test, of the VAR White heteroskedasticity test, and of the VAR autocorrelation LM test are not rejected at a significance level of 5%, no changes to the model are necessary (see Appendix 164). Thus, the VAR(1) model is correctly

Figure 187 Actual (----) and Fitted (---) Values of ln_new_signups and Residual (----) Values from the Estimated VAR (ln_posters) Model; Region 5

specified and generates values of SC=0.42 and AIC=0.14 (see Appendix 165). Figure 187 shows actual values of the logarithmized number of new sign-ups as well as values which are generated through the VAR model. IRFs are displayed in Figure 188. The IRF at the bottom left shows a positive response of the community growth variable to a shock in the number of posters, which stays significant for about one month. In contrast, the IRF at the top right indicates that an impulse in new sign-ups leads to a negative response of the poster variable that is significant up to five months. The own-variable IRFs show both a positive response, whereby the response of new sign-ups stays significant for about one month and the response of the poster variable stays significant up to three months. The one-step-ahead forecast procedure yields forecast errors of RMSE=0.450178 and MAE=0.408871 based on the forecast sample ranging from May 2012 to July 2012. Forecasted and observed values are depicted in Figure 189.

Figure 188 Impulse Response Functions, In_posters In_new_signups, Response to Cholesky One S. D. Innovations ± 2 S. E.; Region 5

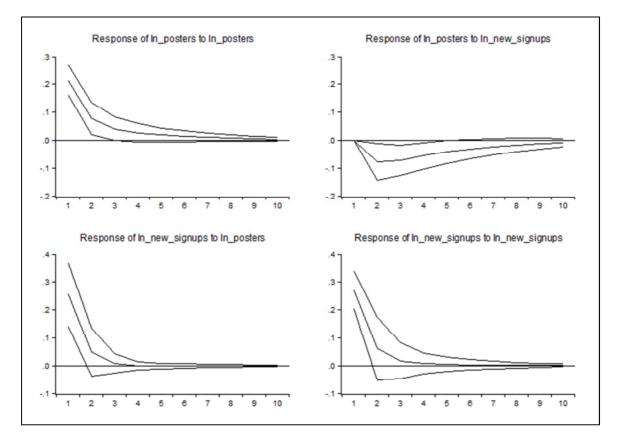
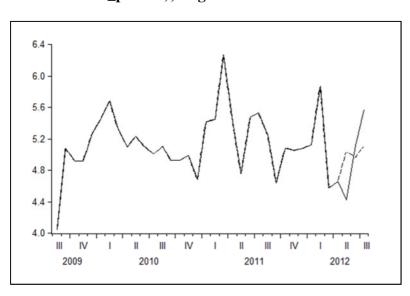



Figure 189 Actual (-----) and Forecasted (---) Values of ln_new_signups (VAR ln_posters); Region 5

VAR (In_participation)

Finally, I consider the participation variable in levels instead of the poster variable in order to formulate a VAR process. Among VAR models up to lag order 4, the SC is minimal for a VAR(0) process (see Appendix 166). Since a VAR(0) model only includes a constant term, it indicates that there are no dynamics in the model. Thus, a VAR model including the participation variable in levels is not suitable for modeling community growth in region 5.³²

4.7. Discussion

4.7.1. Summary of Results

This is the first research project to compare different econometric models on the basis of their performance in modelling and forecasting community growth. Thereby, the most appropriate models to explain and predict community growth are identified. Furthermore, based on the included independent variables, the project also contributes to the understanding of community growth.

³² I additionally estimate VAR(1) and VAR(2) models in order to double check. VAR(1) is misspecified because of no normality and autocorrelation in the residuals. Further, VAR(2) is misspecified because of not normally distributed residuals.

Factors Influencing Community Growth

The overall effects of past new sign-ups, posters, participation, and team variables on community growth are displayed in Table 48. Summing up, the findings of this project support to a great extent hypothesis H1, which assumes that the number of people having already joined a community positively affects community growth. Accordingly, the respective parameter estimates of the Bass model are significant positive in four regional communities. Thus, the model demonstrates a positive influence of the cumulative number of already registered individuals on community growth. Often, also a negative influence of the squared cumulative number is identified, which means that community growth is still positive, but diminishing. Further, in the case of ARMA models, a positive influence of past new sign-ups on current new sign-ups, i.e. on community growth, is detected twice (regions 3 and 6). Effects are insignificant in the four remaining regional communities. Additionally, the ADL models identify significant positive effects of past new sign-ups on community growth in all regional communities. Finally, also the VAR model specifications imply that, in all regions, an impulse in new sign-ups leads to a positive response of community growth. Hence, as the influence of past new sign-ups on current new sign-ups is mostly significant and positive, hypothesis H1 is confirmed.

Also hypotheses H3a and H3b, which indicate that the number of posters (H3a) and the number of contributions (H3b) positively affect community growth, are supported because of the significant positive parameter estimates of those variables in almost all models. Additionally, the transfer of these hypotheses to the growth rates of the respective variables yields similar results. However, results imply that posters play a more important role in explaining community growth than contributions do. In particular, ADL models reveal overall significant positive effects of the growth rate of the number of posters on community growth in all regions. In contrast, the influence of the growth rate of the number of contributions is only significant in three out of six cases. This is an initial indication that poster variables are superior to participation variables in explaining community growth. Regarding the influence of the level variables, i.e. the number of posters and the number of contributions, on community growth, results are balanced: Positive effects of both the number of posters and the number of contributions on community growth are detected in three out of three cases. Although in the long run in some cases (see Chapter 4.5 and Chapter 4.6) the positive effects are diminished by the negative sign of lagged posters/participation variables, overall effects are still positive as indicated in Table 48. Regarding the VAR model specifications, the findings imply that in five out of six

 Table 48
 Overall Effects on Community Growth

	Bass	ARMA			A	ADL					VAR		
	Past New Sign-Ups	Past New Sign-Ups	Past Past Past Past New Sign-Ups New Sign-Ups	Posters	Growth Rate Posters	Participation	Growth Rate Participation	Growth Rate Team	Past New Sign-Ups	Posters	Growth Rate Posters	Participation	Growth Rate Participation
Region 1	n.s.	n.s.	+		+		+	n.s.	+		+		VAR(0)
Region 2	n.s.	n.s.	+	+	+	+	n.s.	n.s.	+	+	+	VAR(0)	VAR(0)
Region 3	+	+	+	$\left \right\rangle$	+	$\left \right\rangle$	n.s.	n.s.	+	$\left \right\rangle$	+	$\left \right\rangle$	VAR(0)
Region 4	+	n.s.	+	+	+	+	+	n.s.	+	+	VAR(0)	+	VAR(0)
Region 5	+	n.s.	+	+	+	+	n.s.		+	+	+	VAR(0)	VAR(0)
Region 6	+	+	+		+	\setminus	+		+	\setminus	+	\setminus	+

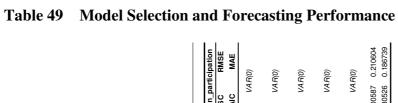
regions an impulse in the growth rate of the number of posters is followed by a significant positive response of the number of new sign-ups, which diminishes over time. Only in region 4 the VAR model fails to explain the relationship between the posters' growth rate and community growth. Additionally, in three out of three regions there is a significant positive impact of the number of posters on community growth, which diminishes over time. In region 2 and region 5 the models even reveal a reciprocal relationship between the growth rate or the number of posters and community growth, whereby the effect of community growth on both poster variables is significant negative. In contrast to the VAR models including the different poster variables, the VAR model fails to explain the relationship between the growth rate of contributions and community growth as well as between the number of contributions and community growth in most cases. Only in region 4 and region 6 a significant positive response of community growth, which diminishes over time, can be identified. Hence, this is a further indication that the participation variables play a minor role in the explication of community growth. Further, significant effects of community growth on the growth rate and on the number of contributions are not detected. Thus, there are no reciprocal relationships between these variables.

By hypothesis H2, I propose a positive impact of the amount of personal selling on community growth. However, this hypothesis is not confirmed for various reasons: Firstly, the variable representing the number of the regional communities' employees or team members cannot be included into the models because of its non-stationarity. Secondly, the team growth rate does not exert any significant impact on community growth in four regional communities. This suggests that the team growth rate plays a minor role in explaining community growth. Thirdly, in the remaining two regions, a significant negative impact is detected.

In summary, the results of this project reflect the practical findings pointed out by Lithium (2008). Lithium (2008) claims that after having gained a critical mass (H1) the content (H3a and H3b) provided by the users will make the community self-sustaining. Although H2 cannot be supported, this does not necessarily conflict with the practical experience of Lithium (2008) because promotion might still attract people to the page, but for various reasons people do not register.

Modelling and Forecasting Performance

In order to assess the performance of the applied econometric models, values of SC and AIC are summarized in Table 49 and models are ranked according their performance.³³ Thereby, a value of 1 is attributed to the best model, i.e. the model with the lowest value of SC/AIC, a value of 2 is attributed to the second best model, etc. Then, for each model, these values are summed up over all regions. The best model is the model with the lowest total sum of attributed ranks. For the assessment of the models' forecasting quality, which is based on RMSE and MAE (see Table 49), the same approach of ranking the models and summing up over regions is used.


When Bass, ARMA, ADL and VAR models including the growth rate of the number of posters, as well as ADL and VAR models including the growth rate of the number of contributions are compared regarding SC and AIC, the ADL model including the growth rate of the number of posters is by far the best model over all regions, i.e. over regions 1 to 6 (see Table 49 and Appendix 167). The second best model over all regions is the ARMA model. The models with the lowest performance are both VAR models, whereby the VAR model including the growth rate of the number of contributions performs worst. Comparing these models with regard to their forecasting performance, the ARMA model produces the best forecasts. The worst forecasting performance is provided by the VAR model containing the growth rate of the number of contributions.

The comparison based on SC and AIC of Bass, ARMA, ADL and VAR models including the number of posters, as well as ADL and VAR models including the number of contributions yields that over the comparable regions, i.e. region 2, 4, 5, the ADL model including the number of posters performs best, followed by the ADL model comprising the number of contributions (see Table 49 and Appendix 168). The worst model is represented by the VAR model including the number of contributions. Regarding the models' forecasting performance the ADL model including the number of contributions constitutes the best model, but is closely followed by the ARMA model. The poorest forecasting performance is provided by both VAR models, whereby the VAR model containing the participation variable performs worst.

The evaluation regarding SC and AIC of all the ten estimated models, i.e. Bass, ARMA, ADL and VAR models including the growth rate or number of posters respectively, as

³³ I do not compare values of (adjusted) R² because results can be misleading (Wooldridge 2006): The focus of this project is not to completely explain community growth, but to find out more about the (ceteris paribus) relationships between the discussed variables and community growth.

	ä	Bass	ARMA	A'				ADL	Ĕ						'>	VAR		
					In_posters	sters	d_In_posters	osters	In_partic	h_participation	d_In_participation	icipation	In_posters		d_In_posters	In_participation		d_In_participation
	ပ္ပ	RMSE	Sc	RMSE	Sc	RMSE	င္တ	RMSE	ပ္တ	RMSE	sc	RMSE	SC RMSE	 	SC RMSE	SC RN	RMSE	SC RMSE
	AIC	MAE	AIC	MAE	AIC	MAE	AIC	MAE	AIC	MAE	AIC	MAE	AIC MAE	μι	AIC MAE	AIC M	MAE	AIC MAE
Region 1	0.804309	0.804309 0.569461	0.865810 0.682572	0.682572	$\left \right $		0.507668	0.559356	/		0.775356	0.512529			.092977 0.448382			VA R/U
0.62	0.624738	0.456720	0.684415 0.491148	0.491148		/	0.326274 0.489940	0.489940		/	0.684659	0.501042	/		0.630401 0.337662	/	/	
C acien	1.224260	.224260 0.911829	1.101018 0.891237	0.891237	0.508251 1.054225	1.054225	0.482513	0.746861	1.034700	1.034700 0.876823	1.116894	0.872336	1.583560 1.155746	-	.540703 0.886907			
7 IIOIĥau	1.042865	1.042865 0.631596	1.009409 0.611291	0.611291	0.323220 0.940555	0.940555	0.202273	0.543002	0.897287	0.666234	1.025285	0.600538	1.308734 0.983532	-	.263157 0.568453	(n)UFA		
Doctor 2	2.211019	0.303772	1.714515 0.259265	3.259265			1.279547	0.329818			1.809798	0.260706		~i	2.750804 0.31097			
c linihau	2.074973	0.249843	1.622907 0	0.198933		/	0.999308	0.288227		/	1.672385	0.19505		is /	2.473258 0.252235		/	(0)UVA
Doctor 4	2.280116	2.280116 0.645011	1.569605 0.599637	0.599637	1.072701 0.702416	0.702416	1.184270	1.184270 0.364028	1.063595	1.063595 0.495923	1.301809	0.222048	1.971732 0.766993	1 93		3.266785 0.72	0.721041	
+ IIolfau	2.144070	0.506322	1.430832 0	0.499543	0.935288 0.640264	0.640264	1.046857	0.299059	0.926182	0.477706	1.116778	0.180803	1.513690 0.707702	702	(0)	2.900351 0.67	0.674794	(0)UVA
Doctor F	1.201222	.201222 0.588346	0.910860 0.410786	0.410786	0.551131 0.682844	0.682844	0.615635 0.435657	0.435657	1.041852	0.435531	1.014822	0.495176	0.419585 0.450178		0.552748 0.443818			
c linihau	1.065176	1.065176 0.535764	0.587056 0	0.346638	0.367914 0.661482	0.661482	0.430604	0.347253	0.951154	0.307779	0.923213	0.407219	0.144759 0.408871		0.275202 0.387960	(n)UFA		(0)UVA
Doctor 6	1.731827	1.731827 0.651676	1.324878 0.095207	0.095207	/		1.177679	0.381549	/		1.555972	0.261179		~i	2.541438 0.304962		/	3.500587 0.210604
	1.595781	.595781 0.634025	1.141661 0.079101	0.079101		/	0.992649 0.361416	0.361416		/	1.275732	275732 0.225563		~	2.171377 0.222500		/	3 130526 0 186739

well as ADL and VAR models including the growth rate or number of contributions respectively reveals that over the comparable regions, i.e. region 2, 4, 5, the ADL models including the number of posters or the growth rate of the number of posters respectively perform by far best (see Table 49 and Appendix 169). The lowest performance is obtained by the VAR models including the number of contributions or the growth rate of the number of contributions respectively. Comparing the models concerning their forecasting quality, the ADL model containing the growth rate of the number of posters outperforms all other models. The poorest forecasting performance is provided by the VAR models including the number of contributions or the growth rate of the number of contributions respectively.

Taken together, these findings suggest that ADL models perform best while VAR models perform worst based on model selection criteria such as SC and AIC. Specifically, ADL models that include the poster variables always constitute the best models. Hence, poster variables are superior in modelling community growth than participation variables. This is further supported by a direct comparison of the ADL (or VAR) models including the growth rate or the number of posters respectively versus the ADL (or VAR) models including the growth rate or the number of contributions respectively. Thereby, the models including the poster variables almost always outperform the models containing the participation variables regarding SC and AIC. Thus, in order to ensure community growth, a higher participation is not enough. It is rather important to have more people who contribute at all in order to guarantee community growth. Besides, ARMA and Bass models occupy medium rankings, whereby ARMA models perform better than Bass models regarding SC and AIC.

Concerning the forecasting performance based on RMSE and MAE, the findings imply that the ADL model including the growth rate of the number of posters, the ARMA model, and the ADL model including the number of contributions perform best. Hence, these findings support Granger's and Newbold's (1975) as well as Kirchgässner's and Wolters' (2007) notion that usually relatively "simple" univariate models like ARMA models beat complex models regarding their forecasting performance. Besides, the Bass model holds again a medium ranking. Furthermore, in a direct comparison of the three above mentioned best forecasting models, the ADL model including the growth rate of the number of posters provides by far the best forecasts.

Combining the results of model selection based on SC and AIC and of forecasting performance based on RMSE and MAE, the ADL model containing the growth rate of the number of posters seems to be the most suitable model for modelling and predicting community growth.

4.7.2. Theoretical Implications

From a theoretical perspective, this project contributes to the understanding of community growth in various ways:

Firstly, the theories discussed in Chapter 4.2 provide a solid basis for the understanding of community growth. Hypotheses H1, H3a, and H3b, which assume that the number of people having already joined a community, the number of posters, and the number of contributions positively affect community growth, are confirmed. Hence, the discussed aspects of diffusion theory, of the theory of social learning, of the theories of collective behavior and critical mass, as well as those of the theory of social comparison can be transferred to the setting of online communities. Moreover, these findings suggest that it is not enough to rely on only one theory. The variety of theories contributes to the understanding of community growth in explaining how people having already joined a community, how posters or how participation foster community growth. Especially, the detected impact of people having already registered for a community growth can be deducted from almost all discussed theories.

Additionally, the findings of this project also surpass the implications of the discussed theories, especially those of the theory of social comparison and the value of online communities. Results reveal that not only an increase in the number of posters and contributions enhances community growth, but also an increase in the growth rates of these variables. This adds a more dynamic aspect to the investigated relationships. Especially the growth rate of the number of posters is identified to play a central role, which suggests that a steady increase in the growth rate can enhance community growth. However, sometimes endless growth is restricted by the counterbalancing negative effect of community growth on the number of posters as well as on the growth rate of the number of posters. Hence, Hagel's and Armstrong's (1997) idea of an endless circle created by the positive reciprocal relationship between the amount of content and community growth

cannot be confirmed by the present research because there is either only a unidirectional positive effect on community growth or the discussed counterbalancing effect occurs.

Moreover, this research is the first to demonstrate that posters play a more important role in explaining community growth than just contributions. Hence, community growth can be ensured by the number of members, who contribute to the community, and by the growth rate of this number. It is not enough to provide a mere high number of contributions. The contributions have to come from different sources, i.e. from many different members. This is also comparable to Burt's (1992) and Granovetter's (1973) view of the attractiveness of having access to diverse sources of information, which they underline in their work on structural holes and weak ties respectively. Furthermore, Butler's (2001) finding of communication volume positively affecting community growth can be expanded. Although the present project reveals – similar to Butler (2001) – positive effects of the number of contributions on community growth, the number of people who contribute plays a more important role than the pure volume of contributions.

Taking all these aspects together, the discussed theories provide a helpful basis for the understanding of community growth, but not sufficiently. Especially theories about social comparison and the value of online communities need to be specified based on the findings of this research project.

Furthermore, theoretical considerations about the influence of personal selling on community growth need to be revised. Deducted from the theory of social learning and from research on communication channels, hypothesis H2 assumes a positive impact of the amount of personal selling on community growth. However, the present research does not find support for this hypothesis. In most cases, there is no significant relationship between the team variable and community growth at all. One reason might be that personal selling does not directly influence community growth. Hence, personal selling might have the same effects as the by Rogers (2003) postulated effects of mass media, which only make people aware of an innovation rather than persuading them to adopt. In the context of online communities this would mean that personal selling brings potential members to the community page (Lithium 2008), but for the definite registration other factors such as the informational value of the community play a role. Only in two regional communities a significant impact of personal selling on community growth is revealed. This impact is, however, negative. This suggests that either theory implies a wrong assumption concerning the direct influence of personal selling on community growth or the amount of personal selling requires another measuring – such as the number of photos taken by team members or the general amount of editorial content provided by team members – in order to detect a significant positive relationship. However, these variables are not available for this project's observation period. Concentrating on the available variable, i.e. the growth rate of the number of team members³⁴, the negative impact on community growth can result from the disturbance of a sense of community. McMillan and Chavis (1986, p. 9) define sense of community as "a feeling that members have of belonging, a feeling that members matter to one another and to the group, and a shared faith that members' needs will be met through their commitment to be together". This kind of feeling can be disrupted if someone tries to interfere in the natural evolution of the community. Hence, an external intervention in the community process through personal acquisition of new members by the community provider can damage the sense of community and thus reduce community growth.

Moreover, the present project contributes to marketing literature in the sense that appropriate models for the accurate forecast of community growth are identified. Although the traditional Bass model still enjoys a great popularity (Bass 2004), it is not the best model for predicting the growth of online communities. For this purpose, econometric models such as ADL and ARMA models perform best. Further, the findings of this project imply that relatively complex VAR models are inferior to ADL and ARMA models and even to the Bass model. Hence, this empirical project also contributes to econometric literature in confirming the findings of Granger and Newbold (1975) and the statement of Kirchgässner and Wolters (2007) in the sense that the forecasting performance of simple models is often better than the performance of complex models.

Finally, the used dataset is unique in community research. Since models are applied to each of six regional communities, it is possible to compare the results. Hence, to some extent, a first verification of the findings is possible. Furthermore, the dataset comprises information about the communities since their foundation. Therefore, the whole diffusion can be analyzed.

³⁴ A variable representing the number of team members cannot be included into the analyses due to estimation issues (see Chapter 4.3).

4.7.3. Managerial Implications

Also from a managerial perspective, the present project provides valuable insights. First and foremost, results of this project support community managers in selecting an appropriate model for forecasting community growth. This is particularly important in light of a timely anticipation of an imminent decline of community growth. In this way, community operators have the opportunity to gain time to take countermeasures. Apart from that, it is generally indispensable that community managers are kept informed about the development of their community. Thus, by anticipating a likely future incline, decline, or stagnation of community growth, they are able to take the appropriate strategic decisions according to the expectations proposed by the forecasting models. The results of this project show that ADL and ARMA models have the best forecasting performance of all investigated models. Especially the ADL model including the growth rate of the number of posters outperforms all other models regarding their forecasting quality. Although univariate ARMA models are suitable for predicting future new sign-ups, an additional inclusion of the growth rate of the number of posters makes the forecasts more precise. Hence, it is recommended to choose an ADL model including the posters' growth rate. Nevertheless, it is beneficial to additionally estimate ARMA models or even ADL models including the participation variable in order to verify results. However, in the case of opposed results one should rely on the ADL model including the posters' growth rate. If community management's resources are limited in order to calculate variables such as the growth rate of the number of posters, ARMA models which require only time series data on the number of new sign-ups should be considered. Further, ARMA models should be preferred to the Bass model, which can also be estimated by only knowing the number of new sign-ups. Moreover, community operators should dispense with the estimation of complex VAR models since their forecasting performance is inferior to other models.

Besides, the findings of this project confirm the importance of individuals having already joined the community for ensuring further community growth. Hence, people who have already joined the community are a valuable asset. Community management should integrate members into measures that attract new members in order to reach a critical mass as soon as possible. Thereby, community operators should motivate existing members to recommend the community to others (Rohrmeier 2012; Williams and Cothrel 2000). This can be achieved by continuous improvements of the service and by satisfying the needs of members so that actual members recommend the community to others. Further, referral programs, which provide incentives for members to recommend the community, con-

stitute another valuable way of attracting new members (Schmitt, Skiera, and van den Bulte 2011).

In addition to that, the findings of this project imply that also the number of posters as well as the growth rate of the number of posters positively affect community growth. Moreover, a positive influence of the number of contributions and in some cases a positive influence of the growth rate of the number of contributions on community growth is detected. However, models including the poster variables always exert a positive impact on community growth and even perform better. This means that community operators should concentrate on getting community members contributing and posting. Ensuring a high number of contributions produced by a small number of members is not enough. It is rather important to achieve a higher number of members, who contribute at all. This can be attained by rewarding the engagement of posters and by recognizing their contributions, by enhancing the usability and security of the page, or by providing members the possibility to create an online identity besides their real-life identity (e.g. Iriberri and Leroy 2009; Koh et al. 2007; Preece, Nonnecke, and Andrews 2004).

Finally, results of this project imply that personal selling in the form of the team growth rate does not directly contribute to a rise in community growth. However, this does not imply that personal selling is worthless. Personal selling might work similar as mass media, which make people aware of an innovation (Rogers 2003). However, this statement has to be analyzed by further research. In any case, according to the findings of this project, personal selling has to be applied with caution because of possible negative effects on community growth.

4.7.4. Directions for Further Research

Although this project provides valuable insights into the understanding and forecasting of online community growth, there is still room for further research. First, this project should encourage researchers to keep on investigating factors influencing community growth. Especially other variables for the representation of personal selling should be identified and their influence on community growth should be analyzed. Further, a model is needed, which describes the different stages that a potential new member passes through until registration based on Rogers' (2003) innovation-decision process. By analyzing factors that are important for each stage, the role played by personal selling might

become clearer. Further, the inclusion of information about the monthly number of offline and online recommendations sent out by community members could also shed additional light on the understanding of community growth. Moreover, the discussed models should be applied to more communities and also to other sorts of communities in order to verify the results provided by the present research project to a greater extent and to gen-

eralize the findings. Furthermore, the analyses should also be conducted based on weekly or daily data. In this way, possible short-term effects, which are probably not apparent on a monthly basis, could be detected and results could be compared. Finally, further research should include more observations in order to be able to enlarge the estimation and forecasting period. Thus, results concerning the model and forecasting performance would become more precise.

5. General Discussion and Conclusion

The overarching objective of this thesis is to provide an understanding of the dynamics in the evolution of online communities by focusing on their success factors. Although community success is widely discussed in theory and practice (e.g. Cothrel 2000; Leimeister, Sidiras, and Krcmar 2006; Lin 2008; Lithium 2011b; Preece 2001; Williams and Cothrel 2000), a comprehensive dynamic investigation has been neglected by prior research. From a theoretical perspective, it is important to learn more about the dynamic aspects of communities in order to specify and extend existing socio-scientific theories for community research. From a managerial perspective, the understanding of community dynamics helps managers to decide about the timing and selection of measures leading to an optimal community evolution process and successful community management. Using time series data from a number of online communities, the thesis provides a comprehensive macro level investigation of the community evolution process and the interdependence of success factors. As such, it offers valuable insights for theory and management.

5.1. Summary of Key Findings

In the following, the main results of the two empirical projects, which both investigate dynamics in the community evolution process by concentrating on community success factors, are summarized.

Project 1 investigates the interdependence of community success factors – such as network structure, community participation, and community growth – over time and community life cycle phases. In detail, this project addresses the questions whether and which success factors interdepend at all, how they interdepend, and when they interdepend. Drawing from social capital theory (e.g. Bourdieu 1986; Coleman 1988) and the theory of structuration (Giddens 1984), a theoretical framework is set up and tested by a panel vector autoregressive approach, which treats all variables as endogenous and allows a simultaneous analysis of effects appearing in different regional communities. The results of *Project 1* reveal that, regardless of the communities' life cycle phase, some general statements are valid: Network structure influences participation and vice versa. Especially, positive reciprocal effects between network structure in the form of average degree and different participation variables, such as active interpersonal participation and overall participation, are detected. Results further reveal that all these effects mainly last for several months. Hence, average degree and participation contribute to the guarantee of a lively and successful community. However, network structure in the form of average degree, degree centralization, share of networkers, and network clustering coefficient does not directly influence community growth. Concerning the remaining relationships, a distinction between established and new regional communities is necessary because the results of *Project 1* show that interdependencies between success factors differ over time and community life cycle phase: In the case of established regions, positive reciprocal effects between the share of networkers and all of the three participation variables, i.e. active interpersonal participation, active platform participation, and overall participation, are detected in addition to the general effects discussed above. Moreover, degree centralization exerts a negative impact on all participation variables. However, this effect is counterbalanced by a positive effect of platform participation and overall participation on degree centralization. In contrast, only the network clustering coefficient exerts no significant effects on participation. Taken together, in established regions, community members should be interconnected and the network should not become too central. Regarding the interdependence between participation and community growth, results of *Project 1* show that, in established regions, all participation variables exert a positive impact on community growth. These effects often last for several months. Reversed effects are rather unusual. Hence, community growth can be directly stimulated by participation, which is directly stimulated by average degree and the share of networkers. Finally, community growth has a significant negative influence on average degree and the share of networkers. Thus, positive effects between average degree or the share of networkers, participation, and community growth are counterbalanced. This means that communities do not grow endlessly. In the case of new regions, results reveal – in addition to the already discussed positive reciprocal effects between average degree and participation – a positive influence of degree centralization on all participation variables, which lasts for several months. Moreover, there are even positive reciprocal effects between degree centralization and active platform participation. Other variables representing network structure such as the share of networkers and the network clustering coefficient play a minor role. As a consequence, new regional communities require a central network as opposed to established regions. Further, the network should be dense in the form of average degree. Finally, in new regions, community growth is not affected by participation and there are also no effects between community growth and network structure. Thus, community growth in new regions is neither stimulated by participation nor by network structure.

Hence, other factors contributing to community growth in new regions need to be identified.

Project 2 sheds light on the diffusion process of online communities. In particular, this project investigates which factors contribute to the growth of online communities, how these factors influence community growth, and which modelling approaches perform best in explaining and predicting community growth. Using theories from social sciences on diffusion processes and group formation, a theoretical basis is formed and tested by methods from diffusion research and econometrics such as Bass, ARMA, ADL, and VAR models. At the same time, these models are evaluated regarding their capability in modelling and predicting community growth in order to identify the most suitable approach. Thereby, all analyses are based on data reflecting the diffusion process of six regional communities since their foundation. The results of *Project 2* show that people having already joined a community play a central role in the diffusion process of online communities because of their positive influence on community growth. This finding is confirmed for all regional communities by all models. Moreover, also people making contributions to the community, so-called posters, as well as contributions per se, i.e. participation in general, play a role in the diffusion process: In particular, overall positive effects of the number and the growth rate of posters as well as of the number and the growth rate of contributions, i.e. participation, are detected, although they diminish over time in some instances. However, in most cases effects of participation variables are not significant in contrast to the poster variables, which are significant in all but one instance. Hence, posters play a superior role in explaining community growth than participation in general. Moreover, in some cases significant reciprocal effects between the poster variables and community growth are detected, whereby negative effects of community growth on the number and growth rate of posters serve as counterbalancing effects to the positive effects going out from the poster variables. Furthermore, results of *Project 2* reveal that personal selling in the form of a team growth rate does not contribute to the diffusion of online communities because of its mostly insignificant and in two cases negative effects on community growth. Taking these findings together, people having already joined a community as well as posters play a major role in understanding the communities' diffusion process. This is also verified by the results gained from the comparison of Bass, ARMA, ADL, and VAR models regarding their modelling and forecasting performance: ADL models, which examine the influence of people having already joined a community in the form of past new sign-ups and the number or growth rate of posters on community

growth, perform by far best. However, for forecasting issues, the model including the growth rate of posters should be preferred. Additionally, also the ARMA model, which considers only the influence of people having already joined a community out of the variables of interest, produces good forecasts. Finally, the lowest performance is provided by VAR models, especially those including the participation variables.

5.2. General Implications for Theory and Management

This thesis contributes to existing literature and research as well as to management practice in various ways.

From a theoretical perspective, a number of general implications are derived:

Following the claim of prior research to shed light on community dynamics and the interplay of success factors (Iriberri and Leroy 2009; Toder-Alon, Berger, and Weinberg 2010), this thesis contributes to a better understanding of the communities' evolution process and the relationship between success factors of online communities. According to the theories of Giddens (1984) and Bourdieu (1977), who both attribute a dynamical aspect to the interrelation of structure and social activities, reciprocal effects between network structure and community participation are revealed. Especially the positive interrelationship between network density in the form of average degree and different participation variables is prominent and long lasting. Interdependencies between other variables of network structure and participation differ regarding the community's life cycle phase. While in established regional communities, several reciprocal effects between network structure in the form of the share of networkers or degree centralization and diverse participation variables are uncovered, in new regional communities, the only reciprocal effects are detected between degree centralization and platform participation. Such differences also occur in the way in which effects appear: Although theory suggests a positive impact of network structure on participation and vice versa (e.g. Bourdieu 1986; Coleman 1988; Nahapiet and Ghoshal 1998; Putnam 1993), this general statement has to be treated with caution. Even though there are positive effects, especially between average degree and some participation variables, the nature of effects depends on the one hand on the respective variables to be considered and on the other hand again on the community's life cycle phase. While, for example, in new regional communities, degree centralization influences participation positively, there is a negative effect of degree centralization on participation in established regional communities. In contrast, in some cases there are even no significant effects at all, as for the relationship between the network clustering coefficient and participation in established regional communities, for instance. By showing the nature of effects between different aspects of network structure and different aspects of participation, this thesis provides a more detailed understanding of the interdependencies than existing theory and research does. Hence, the thesis advances theoretical knowledge by taking into account different aspects of network structure and community participation and by revealing the various significant and also nonsignificant effects between these variables. Moreover, it adds a further dynamical aspect by demonstrating that interdependencies vary across community life cycle phases. Therefore, this research adds to current knowledge by demonstrating the importance of considering different community life cycle phases.

Besides, this thesis contributes to a better understanding of the relationship between community growth and network structure. According to Nahapiet's and Ghoshal's (1998) view, social capital is constrained through a growing number of network members. Results provide empirical evidence for this notion because of negative effects of community growth on network structure variables in established regional communities. However, theory makes no assumption concerning the influence of network structure on community growth. Similarly, this thesis is not able to show significant effects of network structure on community growth.

Additionally, this thesis advances theoretical knowledge on the relationship between community participation and growth. It provides empirical evidence for Preece's (2000) and Forsyth's (2010) view that interaction and participation make a community attractive for new members because, in established regional communities, positive effects of participation on community growth are detected. This is in line with previous research of Butler (2001), who has already demonstrated a positive influence of communication activity on member gain in the context of mailing lists. Further, in one case even positive reciprocal effects between platform participation and community growth are detected. This would support Hagel's and Armstrong's (1997) notion of a positive reciprocal relationship between the amount of content and community growth because more content attracts more members, who in turn create more content. In contrast, in new regions, participation plays a minor role in influencing community growth. Instead, the number of posters or the growth rate of the number of posters, which brings even a more dynamic aspect into

play, have a positive impact on community growth. Thus, in new communities, it is important that contributions come from different sources, which is in line with Burt's (1992) and Granovetter's (1973) view of the attractiveness of having access to diverse sources of information. Additionally, the role of posters in ensuring community growth is also consistent with Preece's (2000) and Forsyth's (2010) view. Hence, also on a macro level there is empirical evidence for the theory of social comparison and for the role of informational value in attracting new members. Yet, this thesis shows that a more detailed view is necessary. In this way, especially in the beginning of a community's evolution process, a high number of people contributing to the community are important in order to ensure the community's evolution and growth. Later, community growth can be enforced by a higher participation in general regardless of whether the amount of participation comes from only a few or from several community members. Furthermore, in contrast to the case of established regional communities, in new regional communities, there is no empirical evidence for a positive reciprocal relationship between the amount of content and community growth as claimed by Hagel and Armstrong (1997). This is in line with the experience of Andrews (2002) and Lithium (2008), who argue that self-sustaining effects between content and growth occur not at the beginning of a community's life, but at later stages.

Moreover, this thesis adds to marketing theory by demonstrating the positive influence of people, who have already joined the community, on the diffusion process of online communities. This suggests that diffusion theory, the theory of social learning, theories of collective behavior and critical mass are also valid in the context of online communities. However, the theory of social learning fails to explain community growth in one aspect: There is no empirical evidence for a positive influence of personal selling on community growth. In two regional communities, even a negative effect is detected, which may indicate that the sense of community (McMillan and Chavis 1986) is disturbed when community employees interfere in member acquisition.

Finally, this thesis extends marketing literature and contributes to econometric literature in identifying ADL and ARMA models as the most appropriate approach for forecasting community growth.

Besides, this thesis also offers important insights for management practice:

The results of this thesis suggest that a closer understanding of community dynamics is indispensable for an optimal community evolution process and successful community management. Knowing more about the community evolution process and the interplay of community success factors over time and life cycle phases, managers are able to take the optimal measures at the right time for achieving the community's goals. Accordingly, results imply that community operators should consider the community's life cycle phase when managing their community because effects among community success factors mostly differ between established and new communities. Taking into account a life cycle perspective is also proposed by Iriberri and Leroy (2009). In this sense, only some general propositions are applicable to all communities regardless of their development status.

It is essential for community operators to ensure a basic connectivity among community members because of its positive influence on community participation, which is an elementary requirement for successful community management (e.g. Cothrel and Williams 1999; Leimeister, Sidiras, and Krcmar 2006; Lithium 2012a). Although connectivity is essential for all communities, it is especially important for established communities because of the positive reciprocal effects between the share of networkers and all kinds of participation, which have a positive impact on community growth. Moreover, healthy communities require an increasing network density in the form of average degree in order to stimulate participation. This relation is especially powerful because of the positive reciprocal effects between average degree and interpersonal or overall participation, which even exert an additional positive effect on community growth in the case of established regions. Furthermore, community managers must pay attention to the network's centralization. Whereas in new communities degree centralization has a positive impact on all participation variables, one observes a negative influence in established regions. Hence, in established communities, community managers need to prevent an increasing centralization, i.e. they need to maintain an equally distributed number of contacts among community members, in order to avoid a decrease in participation. In contrast, in new communities, they need to force the formation of a central network in order to enhance the amount of user generated content. Taking these aspects together, it is important for community management to regularly analyze the community's social network. Although the investigated aspects of network structure influence the amount of user generated content in various ways, network variables have no direct effect on community growth.

Yet, as already indicated, in established regions the amount of user generated content in the form of interpersonal, platform, and overall participation has a positive influence on community growth. However, because of nonsignificant or negative effects of community growth on network structure, which in turn directly influences participation and indirectly community growth, a permanent supervision of success metrics is indispensable for ensuring community success. Community management needs to consider all factors and activities that enhance participation in order to maintain an attractive and lively community. In contrast, in order to stimulate community growth in new regions, an increase in participation in general is not sufficient, while an increase in the number of posters is. Hence, community managers need to motivate as many community members as possible to generate content.

Additionally, results of this thesis confirm the importance of people having already joined a community for the further evolution of the community. Hence, managers should bring a critical mass to the community in order to ensure the community's attractiveness (Lithium 2008; Preece 2000).

Moreover, despite the frequent use of personal selling for acquiring new customers, this instrument cannot be used to directly foster the growth of online communities. Further, although this thesis shows that personal selling has mostly no significant influence on community growth, in a few cases there is a significant negative effect on community growth suggesting that growth decreases if the amount of personal selling increases. Hence community managers should be cautious by sending out employees for user acquisition until their influence is closer investigated in further research.

Finally, results of this thesis support community management by providing tools that timely inform community operators about the future development of their community. Among these tools, ADL models including the growth rate of the number of posters as an exogenous variable as well as ARMA models are identified to be the most appropriate ones to predict community growth. Hence, by the help of these models, community managers can observe how the community's future evolution will proceed and can accordingly adapt their strategies.

5.3. Conclusion and Outlook

In summary, this thesis provides an extensive investigation of dynamics in the online communities' evolution process. Thereby, it offers a detailed analysis of the interrelationship between success factors of online communities in general and also across community life cycle phases. Results suggest that a life cycle perspective is indispensable for analyzing the interplay of community success factors because of the different effects between the variables at different times. Moreover, this thesis identifies factors and methods, which contribute to an accurate forecast of community growth. However, there is also room for further research.

First, this thesis treats community success from a rather social point of view. Accordingly, the used success metrics are comparable to Preece's (2000; 2001) sociability measures. However, community success can also be regarded from a more technical point of view by concentrating on usability metrics such as the number of errors in using the service or breakdowns of the application and privacy or security issues (Leimeister, Sidiras, and Krcmar 2006; Preece 2000, 2001). Further research should focus on the interplay of sociability and usability measures. Research can address the following questions: 1) Do the number of errors or breakdowns and the number of messages in the newspapers concerning privacy violation or security breaches affect community growth or participation? If yes, which effects occur and how do these effects develop over time? 2) Does community growth or participation influence usability measures? If yes, which effects occur and how do these effects develop over time?

Second, this thesis investigates the relationship between community success factors such as network structure, participation, and community growth. Yet, as many communities are created for business and therefore need to generate revenues, one goal of communities is to maximize their profits (Bughin and Hagel 2000; Cothrel 2000). Since most community firms are financed by advertising revenues (Trusov, Bodapati, and Bucklin 2010), it would be fruitful to include the amount of revenues earned through advertising into the investigation of community success. In this way, the impact of community success factors on revenues can be analyzed.

Third, more and more companies spend money on the setup of their own community platform (Forrester 2010). As a result, companies can revert to a huge amount of data, which they own themselves and which they can use for the evaluation of their business goals. Regardless of whether the community is created for social support, social marketing, social commerce, or ideation, it offers many ways to influence business value (Lithium 2012b). Hence, further research should 1) apply the research framework of this thesis to data of company owned social communities or brand communities in order to verify and generalize the results of this thesis, 2) investigate the impact of community success factors on business value. Thereby, the influence on customer satisfaction, loyalty, brand

awareness, or sales is of special interest from a marketing perspective.

Finally, further research should pave the way for a new type of customer lifetime or customer equity measurement, which can be applied in the community context. Since some users contribute more to the community's success than other users, it is important to identify them and determine their influence or value (Lithium 2011a). As online communities are by definition a social phenomenon, customer equity measurement must include network effects as claimed by Algesheimer and Wangenheim (2006). Thus, social network analysis should be applied in order to determine the value that is derived from the users' position in the network. Additionally, a customer equity measurement for online communities should also consider the users' participation behavior. Thereby, one can distinguish between the various forms of participation used in this thesis such as interpersonal or platform participation. Different forms of participation should be weighted differently. Hence, based on data from social network analysis and participation behavior, customer lifetime value for community users or customer equity for the whole community can be determined.

References

- Acito, Franklin and Arun K. Jain (1980), "Evaluation of Conjoint Analysis Results: A Comparison of Methods," *Journal of Marketing Research*, 17 (1), 106–112.
- Adler, Paul S. and Seok-Woo Kwon (2002), "Social Capital: Prospects for a New Concept," *Academy of Management Review*, 27 (1), 17–40.
- Akaike, Hirotugu (1973), "Information Theory and an Extension of the Maximum Likelihood Principle," in 2nd International Symposium on Information Theory, B. N. Petrov and F. Csaki, eds. Budapest: Akademiai Kiado, 267–281.
- Alecke, Björn, Timo Mitze, and Gerhard Untiedt (2010), "Internal Migration, Regional Labour Market Dynamics and Implications for German East-West Disparities: Results from a Panel VAR," *Jahrbuch für Regionalwissenschaft*, 30 (2), 159–189.
- Algesheimer, René and Utpal M. Dholakia (2006), "Do Customer Communities Pay Off?," *Harvard Business Review*, 84 (11), 26–30.
- Algesheimer, René, Utpal M. Dholakia, and Andreas Herrmann (2005), "The Social Influence of Brand Community: Evidence from European Car Clubs," *Journal of Marketing*, 69 (3), 19–34.
- Algesheimer, René and Florian v. Wangenheim (2006), "A Network Based Approach to Customer Equity Management," *Journal of Relationship Marketing*, 5 (1), 39–57.
- Anderson, Eugene W. (1998), "Customer Satisfaction and Word of Mouth," *Journal of Service Research*, 1 (1), 5–17.
- Andrews, Dorine C. (2002), "Audience-Specific Online Community Design," *Communications of the ACM*, 45 (4), 64–68.
- Ansari, Asim, Carl F. Mela, and Scott A. Neslin (2008), "Customer Channel Migration," *Journal of Marketing Research*, 45 (1), 60–76.
- Arellano, Manuel and Olympia Bover (1995), "Another Look at the Instrumental Variable Estimation of Error-Components Models," *Journal of Econometrics*, 68 (1), 29–51.
- Armstrong, Arthur G. and John Hagel, III (1996), "The Real Value of ON-LINE Communities," *Harvard Business Review*, 74 (3), 134–141.
- Bandura, Albert (1977), Social Learning Theory. Englewood Cliffs: Prentice Hall.
- Barnes, John A. (1954), "Class and Committees in a Norwegian Island Parish," *Human Relations*, 7 (1), 39–58.
- Bass, Frank M. (1969), "A New Product Growth for Model Consumer Durables," *Management Science*, 15 (5), 215–227.
- (2004), "Comments on "A New Product Growth for Model Consumer Durables" Management Science, 50 (12 Supplement), 1833–1840.
- Bikhchandani, Sushil, David Hirshleifer, and Ivo Welch (1998), "Learning from the Behaviors of Others: Conformity, Fads, and Informational Cascades," *Journal of Economic Perspectives*, 12 (3), 151–170.
- Bott, Elizabeth (1964), Family and Social Network. Roles, Norms, and External Relationships in Ordinary Urban Families. London: Tavistock Publications.

- Bourdieu, Pierre (1977), *Outline of a Theory of Practice*. Cambridge, U.K.: Cambridge University Press.
- ——— (1986), "The Forms of Capital," in *Handbook of Theory and Research for the Sociology of Education*, John G. Richardson, ed. New York: Greenwood Press, 241–258.
- Boyd, Danah M. and Nicole B. Ellison (2007), "Social Network Sites: Definition, History, and Scholarship," *Journal of Computer-Mediated Communication*, 13 (1), 210–230.
- Breusch, Trevor S. (1978), "Testing for Autocorrelation in Dynamic Linear Models," *Australian Economic Papers*, 17 (31), 334–355.
- Breusch, Trevor S. and Adrian R. Pagan (1979), "A Simple Test for Heteroscedasticity and Random Coefficient Variation," *Econometrica*, 47 (5), 1287–1294.
- Brubaker, Rogers (1985), "Rethinking Classical Theory: The Sociological Vision of Pierre Bourdieu," *Theory and Society*, 14 (6), 745–775.
- Bryant, Christopher G. A. and David Jary, eds. (1991), *Giddens' Theory of Structuration*. *A Critical Appreciation*. London: Routledge.
- Bughin, Jacques and John Hagel, III (2000), "The Operational Performance of Virtual Communities Towards a Successful Business Model?," *Electronic Markets*, 10 (4), 237–243.
- Burt, Ronald S. (1992), *Structural Holes. The Social Structure of Competition*. Cambridge: Harvard University Press.
- (1997), "The Contingent Value of Social Capital," *Administrative Science Quarterly*, 42 (2), 339–365.
- (2000), "The Network Structure of Social Capital," *Research in Organizational Behavior*, 22, 345–423.
- Butler, Brian S. (2001), "Membership Size, Communication Activity, and Sustainability: A Resource-Based Model of Online Social Structures," *Information Systems Research*, 12 (4), 346–362.
- Cameron, Adrian C. and Pravin K. Trivedi (2005), *Microeconometrics. Methods and Applications*. Cambridge, New York: Cambridge University Press.
- Cappelli, Peter (2000), "A Market-Driven Approach to Retaining Talent," *Harvard Business Review*, 78 (1), 103–111.
- Casaló, Luis V., Carlos Flavián, and Miguel Guinalíu (2013), "New Members' Integration: Key Factor of Success in Online Travel Communities," *Journal of Business Research*, 66 (6), 706–710.
- Chan, Calvin M. L., Mamata Bhandar, Lih-Bin Oh, and Hock-Chuan Chan (2004), "Recognition and Participation in a Virtual Community," *Proceedings of the 37th Hawaii International Conference on System Sciences*, 1–10.
- Chen, Rui (2013), "Member Use of Social Networking Sites An Empirical Examination," *Decision Support Systems*, 54 (3), 1219–1227.
- Chen, Yubo, Qi Wang, and Jinhong Xie (2011), "Online Social Interactions: A Natural Experiment on Word of Mouth Versus Observational Learning," *Journal of Marketing Research*, 48 (2), 238–254.

- Ching-Chin, Chern, Ao I. Ka Ieng, Wu Ling-Ling, and Kung Ling-Chieh (2010), "Designing a Decision-Support System for New Product Sales Forecasting," *Expert Systems with Applications*, 37 (2), 1654–1665.
- Choi, In (2001), "Unit Root Tests for Panel Data," *Journal of International Money and Finance*, 20 (2), 249–272.
- Cicourel, Aaron V. (1973), *Cognitive Sociology. Language and Meaning in Social Interaction.* Harmondsworth, Middlesex: Penguin Education.
- Coleman, James S. (1988), "Social Capital in the Creation of Human Capital," *American Journal of Sociology*, 94 (Supplement: Organizations and Institutions: Sociological and Economic Approaches to the Analysis of Social Structure), S95–S120.
- comScore (2007), "German Social Networking Community Reaches 14.8 Million," (accessed November 19, 2013), [available at http://www.comscore.com/ger/Insights/Press_Releases/2007/09/Social_Networking_Sites_in_Germany].
- Cothrel, Joseph and Ruth L. Williams (1999), "On-Line Communities: Helping Them Form and Grow," *Journal of Knowledge Management*, 3 (1), 54–60.
- Cothrel, Joseph P. (2000), "Measuring the Success of an Online Community," *Strategy & Leadership*, 28 (2), 17–21.
- Dholakia, Utpal M., Richard P. Bagozzi, and Lisa Klein Pearo (2004), "A Social Influence Model of Consumer Participation in Network- and Small-Group-Based Virtual Communities," *International Journal of Research in Marketing*, 21 (3), 241–263.
- Dholakia, Utpal M., Vera Blazevic, Caroline Wiertz, and René Algesheimer (2009), "Communal Service Delivery: How Customers Benefit From Participation in Firm-Hosted Virtual P3 Communities," *Journal of Service Research*, 12 (2), 208–226.
- Dickey, David A. and Wayne A. Fuller (1979), "Distribution of the Estimators for Autoregressive Time Series With a Unit Root," *Journal of the American Statistical Association*, 74 (366), 427–431.
- Diebold, Francis X. (2007), *Elements of Forecasting*. Mason, Ohio: Thomson/South-Western.
- DiMaggio, Paul (1979), "Review Essay: On Pierre Bourdieu," American Journal of Sociology, 84 (6), 1460–1474.
- Dodds, Wellesley (1973), "An Application of the Bass Model in Long-Term New Product Forecasting," *Journal of Marketing Research*, 10 (3), 308–311.
- Dover, Yaniv, Jacob Goldenberg, and Daniel Shapira (2012), "Network Traces on Penetration: Uncovering Degree Distribution from Adoption Data," *Marketing Science*, 31 (4), 689–712.
- Drakos, Konstantinos and Panagiotis T. Konstantinou (2011), "Terrorism Shocks and Public Spending: Panel VAR Evidence from Europe," Economics of Security Working Paper No. 48, Economics of Security, Berlin
- Ellison, Nicole B., Charles Steinfield, and Cliff Lampe (2007), "The Benefits of Facebook "Friends:" Social Capital and College Students' Use of Online Social Network Sites," *Journal of Computer-Mediated Communication*, 12 (4), 1143–1168.

- eMarketer (2013), "India Leads Worldwide Social Networking Growth," (accessed February 14, 2014), [available at http://www.emarketer.com/Article/India-Leads-Worldwide-Social-Networking-Growth/1010396].
- Engel, James F., Robert J. Kegerreis, and Roger D. Blackwell (1969), "Word-of-Mouth Communication by the Innovator," *Journal of Marketing*, 33 (3), 15–19.
- Festinger, Leon (1950), "Informal Social Communication," *Psychological Review*, 57 (5), 271–282.

- Firth, David R., Cameron Lawrence, and Shawn F. Clouse (2006), "Predicting Internet-Based Online Community Size and Time to Peak Membership Using the Bass Model of New Product Growth," *Interdisciplinary Journal of Information, Knowledge, and Management*, 1, 1–12.
- Forrester (2010), "The Forrester WaveTM: Community Platforms, Q4 2010," (accessed February 25, 2014), [available at http://www.lithium.com/pdfs/whitepapers/Forrester-WAVE-Community-Platforms-t5OS6ShZ.pdf].
- Forsyth, Donelson R. (2010), Group Dynamics. Belmont: Wadsworth Cengage Learning.

Freeman, Linton C. (1978/79), "Centrality in Social Networks Conceptual Clarification," *Social Networks*, 1 (3), 215–239.

- Furlong, Mary S. (1989), "An Electronic Community for Older Adults: The SeniorNet Network," *Journal of Communication*, 39 (3), 145–153.
- Gatignon, Hubert, Jehoshua Eliashberg, and Thomas S. Robertson (1989), "Modeling Multinational Diffusion Patterns: An Efficient Methodology," *Marketing Science*, 8 (3), 231–247.
- Giddens, Anthony (1979), Central Problems in Social Theory. Action, Structure and Contradiction in Social Analysis. London: Macmillan.

—— (1984), *The Constitution of Society. Outline of the Theory of Structuration.* Berkeley: University of California Press.

Ginsburg, Mark and Suzanne Weisband (2004), "A Framework for Virtual Community Business Success: The Case of the Internet Chess Club," *Proceedings of the 37th Hawaii International Conference on System Sciences*, 1–10.

GlobalWebIndex (2013a), "Stream[™] Social: Q2 2013," (accessed November 18, 2013), [available at http://blog.globalwebindex.net/Stream-Social-Q2-2013].

(2013b), "Twitter Now The Fastest Growing Social Platform In The World," (accessed November 18, 2013), [available at http://blog.globalwebindex.net/twitter-now-the-fastest-growing-social-platform-in-the-world/].

——— (2014), "Daily Time Spent on Social Networks: 1 Hour+ for 44%," (accessed February 14, 2014), [available at http://blog.globalwebindex.net/daily-time-spent-on-social-networks].

- Godfrey, Leslie G. (1978a), "Testing Against General Autoregressive and Moving Average Error Models when the Regressors Include Lagged Dependent Variables," *Econometrica*, 46 (6), 1293–1301.
- (1978b), "Testing for Multiplicative Heteroskedasticity," *Journal of Econometrics*, 8 (2), 227–236.

^{(1954), &}quot;A Theory of Social Comparison Processes," *Human Relations*, 7 (2), 117–140.

- Granger, Clive W. J. (1969), "Investigating Causal Relations by Econometric Models and Cross-spectral Methods," *Econometrica*, 37 (3), 424–438.
- Granger, Clive W. J. and Paul Newbold (1975), "Economic Forecasting: The Atheist's Viewpoint," in *Modelling the Economy*, G. A. Renton, ed. London: Heinemann Educational Books Limited, 131–147.
- Granovetter, Mark (1973), "The Strength of Weak Ties," *American Journal of Sociology*, 78 (6), 1360–1380.
- (1978), "Threshold Models of Collective Behavior," *American Journal of Sociology*, 83 (6), 1420–1443.
- —— (1985), "Economic Action and Social Structure: The Problem of Embeddedness," *American Journal of Sociology*, 91 (3), 481–510.
- Hagel, John, III and Arthur G. Armstrong (1997), Net Gain: Expanding Markets Through Virtual Communities. Boston: Harvard Business School Press.
- Held, David and John B. Thompson, eds. (1989), Social Theory of Modern Societies. Anthony Giddens and His Critics. Cambridge: Cambridge University Press.
- Hendry, David F. (1985), "Monetary Economic Myth and Econometric Reality," *Oxford Review of Economic Policy*, 1 (1), 72–84.
 - (1995), *Dynamic Econometrics*. *Advanced Texts in Econometrics*. Oxford: Oxford University Press.
- Hennig-Thurau, Thorsten, Kevin P. Gwinner, Gianfranco Walsh, and Dwayne D. Gremler (2004), "Electronic Word-of-Mouth via Consumer-Opinion Platforms: What Motivates Consumers to Articulate Themselves on the Internet?," *Journal of Interactive Marketing*, 18 (1), 38–52.
- Herr, Paul M., Frank R. Kardes, and John Kim (1991), "Effects of Word-of-Mouth and Product-Attribute Information on Persuasion: An Accessibility-Diagnosticity Perspective," *Journal of Consumer Research*, 17 (4), 454–462.
- Herring, Susan C. (1996), "Two Variants of an Electronic Message Schema," in *Computer-Mediated Communication: Linguistic, Social and Cross-Cultural Perspectives*, Susan C. Herring, ed. Amsterdam: John Benjamins Publishing Company, 81–106.
- Hinds, David and Ronald M. Lee (2008), "Social Network Structure as a Critical Success Condition for Virtual Communities," *Proceedings of the 41st Hawaii International Conference on System Sciences*, 1–10.
- Holtz-Eakin, Douglas, Whitney Newey, and Harvey S. Rosen (1988), "Estimating Vector Autoregressions with Panel Data," *Econometrica*, 56 (6), 1371–1395.
- Horváth, Csilla, Peter S. Leeflang, Jaap E. Wieringa, and Dick R. Wittink (2005), "Competitive Reaction- and Feedback Effects Based on VARX Models of Pooled Store Data," *International Journal of Research in Marketing*, 22 (4), 415–426.
- Hruschka, Harald (1996), Marketing-Entscheidungen. München: Vahlen.
- IHS Global Inc. (2013), EViews 8 User's Guide II. Irvine: IHS Global Inc.
- Im, Kyung S., M. H. Pesaran, and Yongcheol Shin (2003), "Testing for Unit Roots in Heterogeneous Panels," *Journal of Econometrics*, 115 (1), 53–74.
- Iriberri, Alicia and Gondy Leroy (2009), "A Life-Cycle Perspective on Online Community Success," *ACM Computing Surveys*, 41 (2), 11:1–11:29.

- Kapoor, Shiv G., P. Madhok, and Shien-Ming Wu (1981), "Modeling and Forecasting Sales Data by Time Series Analysis," *Journal of Marketing Research*, 18 (1), 94–100.
- Katona, Zsolt, Peter P. Zubcsek, and Miklos Sarvary (2011), "Network Effects and Personal Influences: The Diffusion of an Online Social Network," *Journal of Marketing Research*, 48 (3), 425–443.
- Katz, Elihu (1961), "The Social Itinerary of Technical Change: Two Studies on the Diffusion of Innovation," *Human Organization*, 20 (2), 70–82.
- Katz, Elihu and Paul F. Lazarsfeld (1955), *Personal Influence: The Part Played by People in the Flow of Mass Communications*. New York: Free Press.
- Kirchgässner, Gebhard and Jürgen Wolters (2007), *Introduction to Modern Time Series Analysis*. Berlin: Springer.
- Koh, Joon and Young-Gul Kim (2004), "Knowledge Sharing in Virtual Communities: An E-Business Perspective," *Expert Systems with Applications*, 26 (2), 155–166.
- Koh, Joon, Young-Gul Kim, Brian Butler, and Gee-Woo Bock (2007), "Encouraging Participation in Virtual Communities," *Communications of the ACM*, 50 (2), 69–73.
- Kolaczyk, Eric D. (2009), Statistical Analysis of Network Data. Methods and Models. Springer Series in Statistics. New York: Springer.
- Kotler, Philip, Gary Armstrong, Veronica Wong, and John Saunders (2008), *Principles of Marketing*. Harlow: Pearson Education Limited.
- Koutsomanoli-Filippaki, Anastasia and Emmanuel Mamatzakis (2009), "Performance and Merton-Type Default Risk of Listed Banks in the EU: A Panel VAR Approach," *Journal of Banking & Finance*, 33 (11), 2050–2061.
- Krackhardt, David (1994), "Graph Theoretical Dimensions of Informal Organizations," in *Computational Organization Theory*, Kathleen M. Carley and Michael J. Prietula, eds. Hillsdale, NJ: Lawrence Erlbaum Associates, 89–111.
- Krackhardt, David and Jeffrey R. Hanson (1993), "Informal Networks: The Company," *Harvard Business Review*, 71 (4), 104–111.
- Kraut, Robert E. and Paul Resnick (2011), *Building Successful Online Communities*. Cambridge, Mass: MIT Press.
- Kulik, James A. and Heike I. M. Mahler (1989), "Stress and Affiliation in a Hospital Setting: Preoperative Roommate Preferences," *Personality and Social Psychology Bulletin*, 15 (2), 183–193.
- Kumar, V. and Trichy V. Krishnan (2002), "Multinational Diffusion Models: An Alternative Framework," *Marketing Science*, 21 (3), 318–330.
- Leimeister, Jan M., Pascal Sidiras, and Helmut Krcmar (2006), "Exploring Success Factors of Virtual Communities: The Perspectives of Members and Operators," *Journal of Organizational Computing and Electronic Commerce*, 16 (3-4), 277–298.
- Levin, Andrew, Chien-Fu Lin, and Chia-Shang J. Chu (2002), "Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties," *Journal of Econometrics*, 108 (1), 1–24.
- Lin, Hsiu-Fen (2008), "Determinants of Successful Virtual Communities: Contributions from System Characteristics and Social factors," *Information & Management*, 45 (8), 522–527.

Lin, Hsiu-Fen and Gwo-Guang Lee (2006), "Determinants of Success for Online Communities: An Empirical Study," *Behaviour & Information Technology*, 25 (6), 479– 488.

Lithium (2008), "Ten Warning Signs That Your Customer Community Will Fail," (accessed December 18, 2013), [available at http://lithosphere.lithium.com/t5/lithium-s-view-blog/Ten-Warning-Signs-That-Your-Customer-Community-Will-Fail/ba-p/261].

(2011a), "Building Customer Networks for Successful Word of Mouth Marketing," (accessed February 14, 2014), [available at https://www.lithium.com/pdfs/whitepapers/lithium-wom-whitepaper-2011a.pdf].

(2011b), "Online Community Best Practices: Getting Real Business Value from Social Customer Engagement," (accessed February 13, 2014), [available at http://www.lithium.com/pdfs/whitepapers/Online-Communities_CMm8O6Go.pdf].

(2011c), "Social Support with Online Communities: Reorganizing Around the Social Customer for Business Advantage," (accessed February 13, 2014), [available at http://www.lithium.com/pdfs/whitepapers/Lithium-Social-Support-with-Online-Communities_t3OV3LAe.pdf].

(2012a), "Community Health Index for Online Communities," (accessed May 30, 2013), [available at http://www.lithium.com/resources/whitepapers/community-health-index].

(2012b), "Online Community: The Heart of Social Strategy," (accessed February 13, 2014), [available at http://www.lithium.com/pdfs/whitepapers/Lithium-Online-Community-Heart-of-Social.pdf].

Love, Inessa and Lea Zicchino (2006), "Financial Development and Dynamic Investment Behavior: Evidence from Panel VAR," *The Quarterly Review of Economics and Finance*, 46 (2), 190–210.

Lütkepohl, Helmut (2007), *New Introduction to Multiple Time Series Analysis*. Berlin: Springer.

Ma, Meng and Ritu Agarwal (2007), "Through a Glass Darkly: Information Technology Design, Identity Verification, and Knowledge Contribution in Online Communities," *Information Systems Research*, 18 (1), 42–67.

MacKinnon, James G. (1996), "Numerical Distribution Functions for Unit Root and Cointegration Tests," *Journal of Applied Econometrics*, 11 (6), 601–618.

Mahajan, Vijay, Eitan Muller, and Frank M. Bass (1990), "New Product Diffusion Models in Marketing: A Review and Directions for Research," *Journal of Marketing*, 54 (1), 1–26.

Mahajan, Vijay and Robert A. Peterson (1979), "First-Purchase Diffusion Models of New-Product Acceptance," *Technological Forecasting and Social Change*, 15 (2), 127–146.

Makridakis, Spyros and Steven C. Wheelwright (1977), "Forecasting: Issues & Challenges for Marketing Management," *Journal of Marketing*, 41 (4), 24–38.

Markus, M. L. (1987), "Toward a "Critical Mass" Theory of Interactive Media: Universal Access, Interdependence and Diffusion," *Communication Research*, 14 (5), 491–511.

Mathwick, Charla, Caroline Wiertz, and Ko de Ruyter (2008), "Social Capital Production in a Virtual P3 Community," *Journal of Consumer Research*, 34 (6), 832–849.

- McMillan, David W. and David M. Chavis (1986), "Sense of Community: A Definition and Theory," *Journal of Community Psychology*, 14 (1), 6–23.
- Merton, Robert K. (1968), Social Theory and Social Structure. New York: Free Press.
- Nahapiet, Janine and Sumantra Ghoshal (1998), "Social Capital, Intellectual Capital, and the Organizational Advantage," *The Academy of Management Review*, 23 (2), 242–266.
- Nickell, Stephen (1981), "Biases in Dynamic Models with Fixed Effects," *Econometrica*, 49 (6), 1417–1426.
- Nielsen (2012), "State of the Media: The Social Media Report 2012," (accessed May 30, 2013), [available at http://www.nielsen.com/us/en/reports/2012/state-of-the-media-the-social-media-report-2012.html].
- Nitzan, Irit and Barak Libai (2011), "Social Effects on Customer Retention," *Journal of Marketing*, 75 (6), 24–38.
- Nooy, Wouter de, Andrej Mrvar, and Vladimir Batagelj (2011), *Exploratory Social Network Analysis with Pajek. Structural Analysis in the Social Sciences*, Vol. 34. England, New York: Cambridge University Press.
- Oliver, Pamela, Gerald Marwell, and Ruy Teixeira (1985), "A Theory of the Critical Mass. I. Interdependence, Group Heterogeneity, and the Production of Collective Action," *American Journal of Sociology*, 91 (3), 522–556.
- Palmatier, Robert W., Rajiv P. Dant, Dhruv Grewal, and Kenneth R. Evans (2006), "Factors Influencing the Effectiveness of Relationship Marketing: A Meta-Analysis," *Journal of Marketing*, 70 (4), 136–153.
- Park, Robert E. and Ernest W. Burgess (1921), *Introduction to the Science of Sociology*. Chicago: The University of Chicago Press.
- Preece, Jenny (2000), Online Communities. Designing Usability, Supporting Sociability. Chichester: Wiley.

(2001), "Sociability and Usability in Online Communities: Determining and Measuring Success," *Behaviour & Information Technology*, 20 (5), 347–356.

- Preece, Jenny, Blair Nonnecke, and Dorine Andrews (2004), "The Top Five Reasons for Lurking: Improving Community Experiences for Everyone," *Computers in Human Behavior*, 20 (2), 201–223.
- Putnam, Robert D. (1993), "The Prosperous Community: Social Capital and Public Life," *The American Prospect*, 4 (13), 35–42.
- —— (1995), "Bowling Alone: America's Declining Social Capital," Journal of Democracy, 6 (1), 65–78.
- Reynolds, Kristy E. and Sharon E. Beatty (1999), "Customer Benefits and Company Consequences of Customer-Salesperson Relationships in Retailing," *Journal of Retailing*, 75 (1), 11–32.
- Rheingold, Howard (1993), The Virtual Community. Reading, Mass: Addison-Wesley.
- Ridings, Catherine and David Gefen (2004), "Virtual Community Attraction: Why People Hang Out Online," *Journal of Computer-Mediated Communication*, 10 (1).

- Ridings, Catherine, David Gefen, and Bay Arinze (2006), "Psychological Barriers: Lurker and Poster Motivation and Behavior in Online Communities," *Communications of the Association for Information Systems*, 18, 329–354.
- Rogers, Everett M. (1962), Diffusion of Innovations. New York: Free Press.
- (2003), Diffusion of Innovations. New York: Free Press.
- Rohrmeier, Patrick (2012), *Social Networks and Online Communities: Managing User Acquisition, Activation and Retention.* München: Doctoral Dissertation, TUM School of Management.
- Rothaermel, Frank T. and Stephen Sugiyama (2001), "Virtual Internet Communities and Commercial Success: Individual and Community-Level Theory Grounded in the Atypical Case of TimeZone.com," *Journal of Management*, 27 (3), 297–312.
- Said, Said E. and David A. Dickey (1984), "Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order," *Biometrika*, 71 (3), 599–607.
- Sandefur, Rebecca L. and Edward O. Laumann (1998), "A Paradigm for Social Capital," *Rationality and Society*, 10 (4), 481–501.
- Schmalen, Helmut, Franz-Michael Binninger, and Hans Pechtl (1993), "Diffusionsmodelle als Entscheidungshilfe zur Planung absatzpolitischer Maßnahmen bei Neuprodukteinführungen," *Die Betriebswirtschaft*, 53 (4), 513–527.
- Schmitt, Philipp, Bernd Skiera, and Christophe van den Bulte (2011), "Referral Programs and Customer Value," *Journal of Marketing*, 75 (1), 46–59.
- Schwarz, Gideon (1978), "Estimating the Dimension of a Model," *The Annals of Statistics*, 6 (2), 461–464.
- Seraj, Mina (2012), "We Create, We Connect, We Respect, Therefore We Are: Intellectual, Social, and Cultural Value in Online Communities," *Journal of Interactive Marketing*, 26 (4), 209–222.
- Sewell, William H., Jr. (1992), "A Theory of Structure: Duality, Agency, and Transformation," American Journal of Sociology, 98 (1), 1–29.
- Sims, Christopher A. (1980), "Macroeconomics and Reality," *Econometrica*, 48 (1), 1–48.
- (1981), "An Autoregressive Index Model for the U.S., 1948-1975," in *Large-Scale Macro-Econometric Models. Theory and Practice. Contributions to Economic Analysis*, Vol. 141, Jan Kmenta and James B. Ramsey, eds. Amsterdam: North-Holland, 283–327.
- Stephen, Andrew T. and Jeff Galak (2012), "The Effects of Traditional and Social Earned Media on Sales: A Study of a Microlending Marketplace," *Journal of Marketing Research*, 49 (5), 624–639.
- Subrahmanyam, Kaveri, Stephanie M. Reich, Natalia Waechter, and Guadalupe Espinoza (2008), "Online and Offline Social Networks: Use of Social Networking Sites by Emerging Adults," *Journal of Applied Developmental Psychology*, 29 (6), 420–433.
- Toder-Alon, Anat, Paul D. Berger, and Bruce D. Weinberg (2010), "A Diffusion Model for Measuring Electronic Community Growth and Value," *Journal of Targeting, Measurement and Analysis for Marketing*, 18 (1), 33–47.

- Toral, Sergio L., M. R. Martínez-Torres, Federico Barrero, and Francisco Cortés (2009), "An Empirical Study of the Driving Forces Behind Online Communities," *Internet Research*, 19 (4), 378–392.
- Trusov, Michael, Anand V. Bodapati, and Randolph E. Bucklin (2010), "Determining Influential Users in Internet Social Networks," *Journal of Marketing Research*, 47 (4), 643–658.
- Trusov, Michael, Randolph E. Bucklin, and Koen Pauwels (2009), "Effects of Word-of-Mouth Versus Traditional Marketing: Findings from an Internet Social Networking Site," *Journal of Marketing*, 73 (5), 90–102.
- Turner, Ralph H. and Lewis M. Killian (1957), *Collective Behavior*. Englewood Cliffs: Prentice Hall.
- Wacquant, Loïc J. D. (1989), "Towards a Reflexive Sociology: A Workshop with Pierre Bourdieu," *Sociological Theory*, 7 (1), 26–63.
- Wangenheim, Florian v. and Tomás Bayón (2007), "The Chain from Customer Satisfaction via Word-of-Mouth Referrals to New Customer Acquisition," *Journal of the Academy of Marketing Science*, 35 (2), 233–249.
- Wasko, Molly and Samer Faraj (2000), ""It Is What One Does" Why People Participate and Help Others in Electronic Communities of Practice," *Journal of Strategic Information Systems*, 9 (2-3), 155–173.
- Wasko, Molly M. and Samer Faraj (2005), "Why Should I Share? Examining Social Capital and Knowledge Contribution in Electronic Networks of Practice," *MIS Quarterly*, 29 (1), 35–57.
- Wasserman, Stanley and Katherine Faust (1994), *Social Network Analysis. Methods and Applications. Structural Analysis in the Social Sciences*, Vol. 8. Cambridge, New York: Cambridge University Press.
- Watson, Goodwin (1966), *Social Psychology: Issues and Insights*. Philadelphia: J. B. Lippincott Company.
- Weitz, Barton A. and Kevin D. Bradford (1999), "Personal Selling and Sales Management: A Relationship Marketing Perspective," *Journal of the Academy of Marketing Science*, 27 (2), 241–254.
- Wellman, Barry, Janet Salaff, Dimitrina Dimitrova, Laura Garton, Milena Gulia, and Caroline Haythornthwaite (1996), "Computer Networks as Social Networks: Collaborative Work, Telework, and Virtual Community," *Annual Review of Sociology*, 22 (1), 213–238.
- White, Halbert (1980), "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," *Econometrica*, 48 (4), 817–838.
- Wiertz, Caroline and Ko de Ruyter (2007), "Beyond the Call of Duty: Why Customers Contribute to Firm-hosted Commercial Online Communities," *Organization Studies*, 28 (3), 347–376.
- Williams, Ruth L. and Joseph Cothrel (2000), "Four Smart Ways to Run Online Communities," *Sloan Management Review*, 41 (4), 81–91.
- Winer, Ben J. (1971), *Statistical Principles in Experimental Design*. New York: McGraw-Hill.

Wooldridge, Jeffrey M. (2006), *Introductory Econometrics. A Modern Approach*. Mason, Ohio: Thomson South-Western.

Appendix

Appendix 1	Panel Unit Root Tests; Established Regions
Appendix 2	Panel Unit Root Tests; New Regions
Appendix 3	Panel Unit Root Tests; All Regions
Appendix 4 Established	Estimation Results PVAR(1)-(4) ln_average_degree ln_partintact; Regions
Appendix 5 Established	Estimation Results PVAR(1)-(4) ln_degree_centralization ln_partintact; Regions
	Estimation Results PVAR(1)-(4) ln_networker_share ln_partintact; Regions
	Estimation Results PVAR(1)-(4) ln_network_cc ln_partintact; Regions
	Estimation Results PVAR(1)-(4) ln_average_degree ln_partplatact; Regions
	Estimation Results PVAR(1)-(4) ln_degree_centralization ln_partplatact; Regions
	Estimation Results PVAR(1)-(4) ln_networker_share ln_partplatact; Regions
	Estimation Results PVAR(1)-(4) ln_network_cc ln_partplatact; Regions
	Estimation Results PVAR(1)-(4) ln_average_degree ln_partintactplat; Regions
Appendix 13 ln_partintac	EstimationResultsPVAR(1)-(4)ln_degree_centralizationtplat;Established Regions
Appendix 14 Established	Estimation Results PVAR(1)-(4) ln_networker_share ln_partintactplat; Regions
Appendix 15 Established	Estimation Results PVAR(1)-(4) ln_network_cc ln_partintactplat; Regions

Appendix 16 Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree
In_partintact; Established Regions
Appendix 17EstimationResultsPVAR(1)-(4)ln_new_signups
In_degree_centralization In_partintact; Established Regions
Appendix 18 Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share
In_partintact; Established Regions
Appendix 19 Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc
In_partintact; Established Regions
Appendix 20 Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree
In_partplatact; Established Regions
Appendix 21EstimationResultsPVAR(1)-(4)ln_new_signups
In_degree_centralization In_partplatact; Established Regions
Appendix 22 Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share
In_partplatact; Established Regions
Appendix 23 Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc
In_partplatact; Established Regions
Appendix 24 Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree
In_partintactplat; Established Regions
Appendix 25EstimationResultsPVAR(1)-(4)ln_new_signups
In_degree_centralization In_partintactplat; Established Regions
Appendix 26 Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share
In_partintactplat; Established Regions
Appendix 27 Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc
In_partintactplat; Established Regions
Appendix 28 Estimation Results PVAR(1)-(4) ln_average_degree ln_partintact; New
Regions
Appendix 29 Estimation Results PVAR(1)-(4) ln_degree_centralization ln_partintact;
New Regions
Appendix 30 Estimation Results PVAR(1)-(4) ln_networker_share ln_partintact; New
Regions

Appendix 31 Regions	Estimation Results PVAR(1)-(4) ln_network_cc ln_partintact; New
Appendix 32 Regions	Estimation Results PVAR(1)-(4) ln_average_degree ln_partplatact; New
Appendix 33 New Region	Estimation Results PVAR(1)-(4) ln_degree_centralization ln_partplatact; as
Appendix 34 Regions	Estimation Results PVAR(1)-(4) ln_networker_share ln_partplatact; New
Appendix 35 Regions	Estimation Results PVAR(1)-(4) ln_network_cc ln_partplatact; New
Appendix 36 New Region	Estimation Results PVAR(1)-(4) ln_average_degree ln_partintactplat; as
	Estimation Results PVAR(1)-(4) ln_degree_centralization tplat; New Regions
Appendix 38 New Region	Estimation Results PVAR(1)-(4) ln_networker_share ln_partintactplat;
Appendix 39 Regions	Estimation Results PVAR(1)-(4) ln_network_cc ln_partintactplat; New
Appendix 40 ln_partintact	Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree t; New Regions
Appendix 41 ln_degree_c	EstimationResultsPVAR(1)-(4)ln_new_signupsentralization ln_partintact; New Regions
Appendix 42 ln_partintact	Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share ; New Regions
Appendix 43 ln_partintact	Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc t; New Regions
Appendix 44 ln_partplata	Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree ct; New Regions
Appendix 45 ln_degree_c	EstimationResultsPVAR(1)-(4)ln_new_signupsentralization ln_partplatact; New Regions

Appendix 46	Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share
ln_partplatac	t; New Regions 433
Appendix 47	Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc
ln_partplatac	t; New Regions 437
Appendix 48	Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree
ln_partintact	plat; New Regions 441
Appendix 49	Estimation Results PVAR(1)-(4) ln_new_signups
ln_degree_ce	entralization ln_partintactplat; New Regions
Appendix 50	Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share
ln_partintact	plat; New Regions
	Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc plat; New Regions
_	
Appendix 52 Regions	Estimation Results PVAR(1)-(4) ln_average_degree ln_partintact; All
Appendix 53	Estimation Results PVAR(1)-(4) ln_degree_centralization ln_partintact;
All Regions	
Appendix 54 Regions	Estimation Results PVAR(1)-(4) ln_networker_share ln_partintact; All
Appendix 55	Estimation Results PVAR(1)-(4) ln_network_cc ln_partintact; All
Regions	
Appendix 56 Regions	Estimation Results PVAR(1)-(4) ln_average_degree ln_partplatact; All
Appendix 57	Estimation Results PVAR(1)-(4) ln_degree_centralization ln_partplatact;
All Regions	
Appendix 58	Estimation Results PVAR(1)-(4) ln_networker_share ln_partplatact; All
Regions	
Appendix 59 Regions	Estimation Results PVAR(1)-(4) ln_network_cc ln_partplatact; All
Appendix 60	Estimation Results PVAR(1)-(4) ln_average_degree ln_partintactplat; All
Regions	

Appendix 61	Estimation	Results	PVAR(1)-(4)	ln_degree_centralization
ln_partintac	tplat; All Reg	gions		
Appendix 62	Estimation	Results PVAR	(1)-(4) ln_networl	ker_share ln_partintactplat;
All Regions				
Appendix 63	Estimation	Results PVAR	(1)-(4) ln_networ	k_cc ln_partintactplat; All
Regions				
Appendix 64	Estimation	Results PVA	R(1)-(4) ln_new_s	signups ln_average_degree
ln_partintac	t; All Region	S		
Appendix 65	Estimation	Results	PVAR(1)-	(4) ln_new_signups
ln_degree_c	entralization	ln_partintact; A	ll Regions	
Appendix 66	Estimation	Results PVAR	(1)-(4) ln_new_si	gnups ln_networker_share
ln_partintac	t; All Region	S		
				w_signups ln_network_cc
ln_partintac	t; All Region	S		
				signups ln_average_degree
ln partplata	at. All Dagia			501
<u>-</u> F ·F	ci, All Regio			
Appendix 69	Estimation	Results	PVAR(1)-	(4) ln_new_signups
Appendix 69	Estimation	Results	PVAR(1)-	
Appendix 69 ln_degree_c Appendix 70	Estimation entralization Estimation	Results In_partplatact; A Results PVAR	PVAR(1) All Regions (1)-(4) ln_new_si	(4) ln_new_signups
Appendix 69 ln_degree_c Appendix 70	Estimation entralization Estimation	Results In_partplatact; A Results PVAR	PVAR(1) All Regions (1)-(4) ln_new_si	(4) ln_new_signups
Appendix 69 ln_degree_c Appendix 70 ln_partplata Appendix 71	Estimation eentralization Estimation ct; All Regio Estimation	Results ln_partplatact; A Results PVAR ns Results PVA	PVAR(1)- All Regions (1)-(4) ln_new_si AR(1)-(4) ln_new	(4) ln_new_signups 525 ignups ln_networker_share 529 w_signups ln_network_cc
Appendix 69 ln_degree_c Appendix 70 ln_partplata Appendix 71	Estimation eentralization Estimation ct; All Regio Estimation	Results ln_partplatact; A Results PVAR ns Results PVA	PVAR(1)- All Regions (1)-(4) ln_new_si AR(1)-(4) ln_new	(4) ln_new_signups
Appendix 69 ln_degree_c Appendix 70 ln_partplata Appendix 71 ln_partplata Appendix 72	Estimation entralization Estimation ct; All Regio Estimation ct; All Regio Estimation	Results In_partplatact; A Results PVAR ns Results PVA ns	PVAR(1) All Regions (1)-(4) ln_new_si AR(1)-(4) ln_new R(1)-(4) ln_new_s	(4) ln_new_signups 525 ignups ln_networker_share 529 w_signups ln_network_cc 533 ignups ln_average_degree
Appendix 69 ln_degree_c Appendix 70 ln_partplata Appendix 71 ln_partplata Appendix 72	Estimation entralization Estimation ct; All Regio Estimation ct; All Regio Estimation	Results In_partplatact; A Results PVAR ns Results PVA ns	PVAR(1) All Regions (1)-(4) ln_new_si AR(1)-(4) ln_new R(1)-(4) ln_new_s	(4) ln_new_signups 525 ignups ln_networker_share 529 w_signups ln_network_cc 533
Appendix 69 ln_degree_c Appendix 70 ln_partplata Appendix 71 ln_partplata Appendix 72 ln_partintac Appendix 73	Estimation eentralization Estimation ct; All Regio Estimation ct; All Regio Estimation tplat; All Reg Estimation	Results In_partplatact; A Results PVAR ns Results PVA ns Results PVAR gions	PVAR(1) All Regions (1)-(4) ln_new_si AR(1)-(4) ln_new_s R(1)-(4) ln_new_s PVAR(1)	(4)ln_new_signups
Appendix 69 ln_degree_c Appendix 70 ln_partplata Appendix 71 ln_partplata Appendix 72 ln_partintac Appendix 73	Estimation eentralization Estimation ct; All Regio Estimation ct; All Regio Estimation tplat; All Reg Estimation	Results In_partplatact; A Results PVAR ns Results PVA ns Results PVAR gions	PVAR(1) All Regions (1)-(4) ln_new_si AR(1)-(4) ln_new_s R(1)-(4) ln_new_s PVAR(1)	(4) ln_new_signups
Appendix 69 ln_degree_c Appendix 70 ln_partplata Appendix 71 ln_partplata Appendix 72 ln_partintac Appendix 73 ln_degree_c Appendix 74	Estimation eentralization Estimation ct; All Regio Estimation ct; All Regio Estimation tplat; All Reg Estimation eentralization Estimation	Results In_partplatact; A Results PVAR ns Results PVA ns Results PVAR gions Results In_partintactpla Results PVAR	PVAR(1) All Regions (1)-(4) ln_new_si AR(1)-(4) ln_new_s R(1)-(4) ln_new_s PVAR(1) t; All Regions	(4)ln_new_signups
Appendix 69 ln_degree_c Appendix 70 ln_partplata Appendix 71 ln_partplata Appendix 72 ln_partintac Appendix 73 ln_degree_c Appendix 74 ln_partintac	Estimation eentralization Estimation ct; All Regio Estimation ct; All Regio Estimation tplat; All Reg Estimation eentralization Estimation tplat; All Reg	Results In_partplatact; A Results PVAR ns Results PVA ns Results PVAR gions Results In_partintactpla Results PVAR gions	PVAR(1) All Regions (1)-(4) ln_new_si AR(1)-(4) ln_new_s R(1)-(4) ln_new_s PVAR(1) t; All Regions	(4)ln_new_signups
Appendix 69 ln_degree_c Appendix 70 ln_partplata Appendix 71 ln_partplata Appendix 72 ln_partintac Appendix 73 ln_degree_c Appendix 74 ln_partintac Appendix 75	Estimation eentralization Estimation ct; All Regio Estimation ct; All Regio Estimation tplat; All Reg Estimation eentralization tplat; All Reg Estimation	Results In_partplatact; A Results PVAR ns Results PVA ns Results PVAR gions Results In_partintactpla Results PVAR gions Results PVAR	PVAR(1) All Regions (1)-(4) ln_new_si AR(1)-(4) ln_new_s R(1)-(4) ln_new_s PVAR(1) t; All Regions (1)-(4) ln_new_si AR(1)-(4) ln_new_s	(4)ln_new_signups

Appendix 76	Summary Results of Project 1
Appendix 77	ADF Tests (constant and linear trend included) 554
Appendix 78	Seasonality Test; Region 1
Appendix 79	Seasonality Test; Region 2 555
Appendix 80	Seasonality Test; Region 3
Appendix 81	Seasonality Test; Region 4
Appendix 82	Seasonality Test; Region 5
Appendix 83	Seasonality Test; Region 6
Appendix 84	Normality, Autocorrelation, and Heteroskedasticity Tests; Region 1 559
Appendix 85	ARMA Model Selection, SC; Region 1
Appendix 86	ADL (d_ln_posters) Model Selection, SC; Region 1 560
Appendix 87	ADL (d_ln_posters, d_ln_team) Model Selection, SC; Region 1 560
Appendix 88	ADL (d_ln_participation) Model Selection, SC; Region 1 560
Appendix 89	ADL (d_ln_participation, d_ln_team) Estimation Output; Region 1 560
Appendix 90	VAR (d_ln_posters) Lag Order Selection, SC; Region 1 561
Appendix 91	VAR (d_ln_posters) Normality, Autocorrelation, and Heteroskedasticity
Tests; Regio	n 1
Appendix 92	VAR (d_ln_posters) Estimation Output; Region 1 562
Appendix 93	VAR (d_ln_participation) Lag Order Selection, SC; Region 1 563
Appendix 94	Normality, Autocorrelation, and Heteroskedasticity Tests; Region 2563
Appendix 95	ARMA Model Selection, SC; Region 2
Appendix 96	ADL (d_ln_posters) Model Selection, SC; Region 2 563
Appendix 97	ADL (d_ln_posters, d_ln_team) Model Selection, SC; Region 2 563
Appendix 98	ADL (d_ln_participation) Model Selection, SC; Region 2 564
Appendix 99	ADL (d_ln_participation, d_ln_team) Estimation Output; Region 2 564
Appendix 100	VAR (d_ln_posters) Lag Order Selection, SC; Region 2 564

VAR (d_ln_posters) Normality, Autocorrelation, and Heteroskedasticity	Appendix 101
ion 2	Tests; Regio
2 VAR (d_ln_posters) Estimation Output; Region 2 565	Appendix 102
VAR (d_ln_participation) Lag Order Selection, SC; Region 2 560	Appendix 103
Normality, Autocorrelation, and Heteroskedasticity Tests; Region 3560	Appendix 104
5 ARMA Model Selection, SC; Region 356	Appendix 105
6 ADL (d_ln_posters) Model Selection, SC; Region 3 560	Appendix 106
ADL (d_ln_posters, d_ln_team) Model Selection, SC; Region 3 560	Appendix 107
ADL (d_ln_participation) Model Selection, SC; Region 3 56	Appendix 108
ADL (d_ln_participation, d_ln_team) Estimation Output; Region 3 56	Appendix 109
VAR (d_ln_posters) Lag Order Selection, SC; Region 3 567	Appendix 110
VAR (d_ln_posters) Normality, Autocorrelation, and Heteroskedasticity	Appendix 111
ion 3	Tests; Regio
2 VAR (d_ln_posters) Estimation Output; Region 3 568	Appendix 112
VAR (d_ln_participation) Lag Order Selection, SC; Region 3 569	Appendix 113
Normality, Autocorrelation, and Heteroskedasticity Tests; Region 4 569	Appendix 114
5 ARMA Model Selection, SC; Region 4569	Appendix 115
6 ADL (d_ln_posters) Model Selection, SC; Region 4 569	Appendix 116
ADL (d_ln_posters, d_ln_team) Model Selection, SC; Region 4 569	Appendix 117
ADL (d_ln_participation) Model Selection, SC; Region 4 570	Appendix 118
ADL (d_ln_participation, d_ln_team) Estimation Output; Region 4 570	Appendix 119
VAR (d_ln_posters) Lag Order Selection, SC; Region 4 570	Appendix 120
VAR (d_ln_participation) Lag Order Selection, SC; Region 4 57	Appendix 121
2 Normality, Autocorrelation, and Heteroskedasticity Tests; Region 557	Appendix 122
ARMA Model Selection, SC; Region 5	Appendix 123
ADL (d_ln_posters) Model Selection, SC; Region 5	Appendix 124
5 ADL (d_ln_posters, d_ln_team) Model Selection, SC; Region 5 57	Appendix 125

Appendix 126	ADL (d_ln_participation) Model Selection, SC; Region 5 572
Appendix 127	ADL (d_ln_participation, d_ln_team) Estimation Output; Region 5 572
Appendix 128	VAR (d_ln_posters) Lag Order Selection, SC; Region 5 572
	VAR (d_ln_posters) Normality, Autocorrelation, and Heteroskedasticity n 5
-	
	VAR (d_ln_posters) Estimation Output; Region 5 573
Appendix 131	VAR (d_ln_participation) Lag Order Selection, SC; Region 5 574
Appendix 132	Normality, Autocorrelation, and Heteroskedasticity Tests; Region 6 574
Appendix 133	ARMA Model Selection, SC; Region 6
Appendix 134	ADL (d_ln_posters) Model Selection, SC; Region 6 574
Appendix 135	ADL (d_ln_posters, d_ln_team) Model Selection, SC; Region 6 574
Appendix 136	ADL (d_ln_participation) Model Selection, SC; Region 6 575
Appendix 137	ADL (d_ln_participation, d_ln_team) Estimation Output; Region 6 575
Appendix 138	VAR (d_ln_posters) Lag Order Selection, SC; Region 6 575
Appendix 139	VAR (d_ln_posters) Normality, Autocorrelation, and Heteroskedasticity
Tests; Regio	n 6
Appendix 140	VAR (d_ln_posters) Estimation Output; Region 6 577
Appendix 141	VAR (d_ln_participation) Lag Order Selection, SC; Region 6 577
11	VAR (d_ln_participation) Normality, Autocorrelation, and sticity Tests; Region 6
Appendix 143	VAR (d_ln_participation) Estimation Output; Region 6 579
Appendix 144	Normality, Autocorrelation, and Heteroskedasticity Tests; Region 2 579
Appendix 145	ADL (ln_posters) Model Selection, SC; Region 2 580
Appendix 146	ADL (ln_participation) Model Selection, SC; Region 2 580
Appendix 147	VAR (ln_posters) Lag Order Selection, SC; Region 2 580
	VAR (ln_posters) Normality, Autocorrelation, and Heteroskedasticity
Tests; Regio	n 2
Appendix 149	VAR (ln_posters) Estimation Output; Region 2

Appendix 150	VAR (ln_participation) Lag Order Selection, SC; Region 2 581
Appendix 151	Normality, Autocorrelation, and Heteroskedasticity Tests; Region 4582
Appendix 152	ADL (ln_posters) Model Selection, SC; Region 4 582
Appendix 153	ADL (ln_participation) Model Selection, SC; Region 4 582
Appendix 154	VAR (ln_posters) Lag Order Selection, SC; Region 4 582
Appendix 155	VAR (ln_posters) Normality, Autocorrelation, and Heteroskedasticity
Tests; Region	4
Appendix 156	VAR (ln_posters) Estimation Output; Region 4 584
Appendix 157	VAR (ln_participation) Lag Order Selection, SC; Region 4 585
Appendix 158	VAR (ln_participation) Normality, Autocorrelation, and
Heteroskedas	ticity Tests; Region 4 585
Appendix 159	VAR (ln_participation) Estimation Output; Region 4 586
Appendix 160	Normality, Autocorrelation, and Heteroskedasticity Tests; Region 5586
Appendix 161	ADL (ln_posters) Model Selection, SC; Region 5 587
Appendix 162	ADL (ln_participation) Model Selection, SC; Region 5 587
Appendix 163	VAR (ln_posters) Lag Order Selection, SC; Region 5 587
Appendix 164	VAR (ln_posters) Normality, Autocorrelation, and Heteroskedasticity
Tests; Region	5
Appendix 165	VAR (ln_posters) Estimation Output; Region 5 588
Appendix 166	VAR (ln_participation) Lag Order Selection, SC; Region 5 588
Appendix 167	Model Selection and Forecasting Performance (Bass, ARMA, ADL and
VAR incl. d_	In_posters/d_In_participation) 589
Appendix 168	Model Selection and Forecasting Performance (Bass, ARMA, ADL and
VAR incl. ln_	_posters/ln_participation)
Appendix 169	Model Selection and Forecasting Performance (All Models) 590

				Fisher-type	-type ¹⁾				Im-Pesaran-	lm-Pesaran-Shin (AlC4) ²⁾	Im-Pesaran-Shin (BIC4) ³⁾	hin (BIC4) ³⁾	Levin	Levin-Lin-Chu (AIC4) ⁴⁾	'4) ⁴⁾	Levin	Levin-Lin-Chu (BIC4) ⁵⁾	24) ⁵⁾
	Inverse chi-squared	-squared	Inverse normal	normal	Inverse logit	e logit	Modified inv	Modified inv. chi-squared	W-t-bar	bar	W-t-bar		Unadjusted t	Adjusted t*	ed t*	Unadjusted t	Adjusted	ted t*
Variable	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	Statistic	p-value	Statistic	Statistic	p-value
n_new_signups	18.4979	0.0471	-1.5624	0.0591	-1.5449	0.0666	1.9002	0.0287	-1.6043	0.0543	-2.6879	0.0036	-3.7602	-1.3997	0.0808	-4.6296	-2.6773	0.0037
In_average_degree	15.8204	0.1049	-0.2348	0.4072	-0.3384	0.3688	1.3015	0.0965	-0.1162	0.4537	0.4871	0.6869	-3.4303	-0.4966	0.3097	-2.9525	0.0288	0.5115
In_degree_centralization	10.9630	0.3604	1.3874	0.9173	1.5876	0.9384	0.2153	0.4148	-1.5430	0.0614	-1.1889	0.1172	-4.6474	-3.0153	0.0013	-4.3860	-2.7331	0.0031
In_networker_share	5.7790	0.8335	1.6052	0.9458	1.7082	0.9509	-0.9439	0.8274	1.7023	0.9556	1.8585	0.9685	-1.8668	0.9853	0.8378	-1.7393	1.1162	0.8678
In_network_cc	13.6023	0.1919	-0.6718	0.2508	-0.7115	0.2412	0.8055	0.2103	-1.0731	0.1416	-1.0731	0.1416	-4.1486	-3.7183	0.0001	-4.1486	-3.7183	0.0001
In_partintact	5.4069	0.8624	0.5943	0.7238	0.5497	0.7066	-1.0271	0.8478	-0.5060	0.3064	-0.7361	0.2308	-2.7478	-1.7434	0.0406	-2.8086	-1.8266	0.0339
In_partplatact	47.0636	0.0000	-1.9899	0.0233	-4.7136	0.0000	8.2877	0.0000	-0.4712	0.3187	-0.5419	0.2940	-3.5804	-1.9990	0.0228	-3.6189	-2.1013	0.0178
In_part intact plat	5.4355	0.8603	0.5813	0.7195	0.5382	0.7027	-1.0207	0.8463	0.0921	0.5367	-0.1537	0.4389	-2.4196	-1.2712	0.1018	-2.3344	-1.2481	0.1060
 I algo included I algo length specified by minimization of AIC (maximum 4 lags) I ag length specified by minimization of BIC (maximum 4 lags) I ag length specified by minimization of BIC (maximum 4 lags) I ag length specified by minimization of BIC (maximum 4 lags) 	minimization of minimization of minimization of	AIC (maximur BIC (maximur AIC (maximur DIC (maximur	n 4 lags) n 4 lags) n 4 lags) o 4 locc)															

Appendix 1	Panel Unit Root	Tests; Established	Regions
------------	------------------------	--------------------	---------

Appendix 2 Panel Unit Root Tests; New Regions

				Fishe	r-type ¹⁾				Im-Pesaran-	Shin (AIC4) ²⁾	Im-Pesaran-	Shin (BIC4) ³
	Inverse ch	ni-squared	Inverse	normal	Invers	e logit	Modified inv	. chi-squared	W-t	-bar	W-t	bar
Variable	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value
In_new_signups	39.6853	0.0009	-3.1867	0.0007	-3.4100	0.0007	4.1870	0.0000	-9.9027	0.0000	-9.9027	0.0000
In_average_degree	53.0918	0.0000	-4.0278	0.0000	-4.7508	0.0000	6.5570	0.0000	-2.8709	0.0020	-2.5861	0.0049
In_degree_centralization	94.0815	0.0000	-3.8996	0.0000	-8.1755	0.0000	13.8030	0.0000	-10.0022	0.0000	-11.0618	0.0000
In_networker_share	90.1579	0.0000	-6.7089	0.0000	-8.7735	0.0000	13.1094	0.0000	-5.1042	0.0000	-5.5080	0.0000
In_network_cc	21.4423	0.1621	0.2452	0.5969	0.1350	0.5534	0.9621	0.1680	-15.4566	0.0000	-12.2748	0.0000
In_partintact	37.1133	0.0020	-2.5458	0.0055	-2.9100	0.0028	3.7323	0.0001	-2.6871	0.0036	-3.5011	0.0002
In_partplatact	42.3913	0.0003	-2.1032	0.0177	-3.0700	0.0018	4.6654	0.0000	-3.1102	0.0009	-4.0960	0.0000
In partintactplat	21.3698	0.1647	-1.3268	0.0923	-1.3090	0.0987	0.9493	0.1712	-2.3969	0.0083	-3.2612	0.0006

1) 4 lags included 2) lag length specified by minimization of AIC (maximum 4 lags) 3) lag length specified by minimization of BIC (maximum 4 lags)

Appendix 3 Panel Unit Root Tests; All Regions

				Fishe	r-type ¹⁾				Im-Pesaran-	Shin (AIC4)2)	Im-Pesaran-	Shin (BIC4)3
-	Inverse ch	ii-squared	Inverse	normal	Invers	e logit	Modified inv	chi-squared	W-t	-bar	W-t	-bar
Variable	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value
n_new_signups	58.3790	0.0003	-3.5119	0.0002	-3.6499	0.0003	4.4902	0.0000	-9.1522	0.0000	-9.8840	0.0000
n_average_degree	67.6214	0.0000	-3.1373	0.0009	-3.7656	0.0002	5.7719	0.0000	-2.2014	0.0139	-1.6067	0.0541
In_degree_centralization	102.3893	0.0000	-1.9862	0.0235	-5.1821	0.0000	10.5933	0.0000	-8.6437	0.0000	-9.3160	0.0000
n_networker_share	95.9295	0.0000	-4.2667	0.0000	-5.8039	0.0000	9.6975	0.0000	-3.2948	0.0005	-3.2819	0.0005
n_network_cc	54.6976	0.0008	-0.8584	0.1953	-1.8451	0.0347	3.9796	0.0000	-12.1508	0.0000	-10.2669	0.0000
n_partintact	41.8452	0.0255	-1.5526	0.0603	-1.8647	0.0332	2.1973	0.0140	-2.4660	0.0068	-3.2544	0.0006
n_partplatact	89.4942	0.0000	-2.8890	0.0019	-5.2944	0.0000	8.8051	0.0000	-2.8576	0.0021	-3.6879	0.0001
n partintactplat	26.4039	0.4411	-0.6379	0.2618	-0.6519	0.2583	0.0560	0.4777	-2.3885	0.0085	-2.7223	0.0032

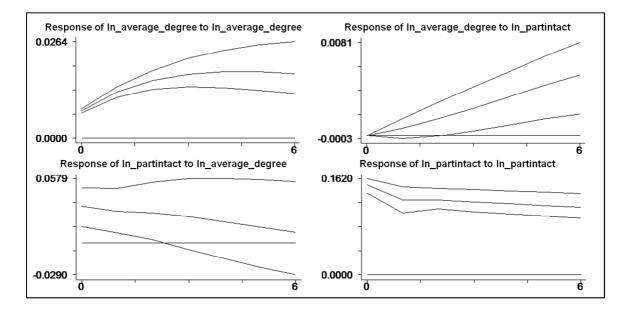
1) 4 lags included 2) lag length specified by minimization of AIC (maximum 4 lags) 3) lag length specified by minimization of BIC (maximum 4 lags)

Appendix 4 Estimation Results PVAR(1)-(4) ln_average_degree ln_partintact; Established Regions

. pvar ln_average_degree ln_partintact, lag(1) gmm monte 1000 GMM started : 10:16:53 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ____ Results of the Estimation by system GMM____ number of observations used : 215 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t GMM L.h_ln_average_degree .91851714 .01047436 87.691926 L.h_ln_partintact .00794965 .00175799 4.5220128 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_average_degree -.19678358 .14414995 -1.3651311 L.h_ln_partintact .96893256 .01358235 71.337635 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintact .0001884 ln_average_degree ln_partintact .00035004 .02575688 Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.1591 0.0196	1.0000

GMM finished : 10:16:55

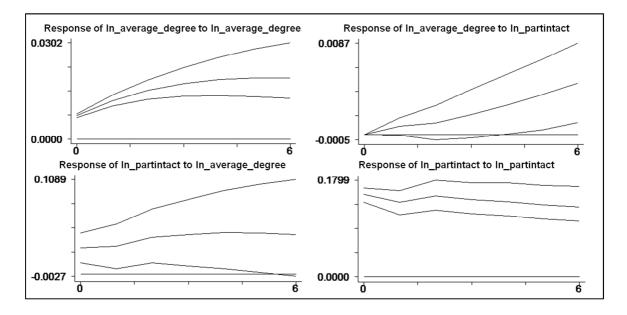

Starting Monte-Carlo loop : 10:16:56 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 10:17:01

. pvar ln_average_degree ln_partintact, lag(2) gmm monte 1000 GMM started : 11:26:49 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 210 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM L.h_ln_average_degree 1.6535205 L.h_ln_partintact .00413019 .07885755 20.968449 .00334491 1.2347672 L2.h_ln_average_degree -.68506526 .07147924 -9.5841154 .00330434 -.22131321 L2.h_ln_partintact -.0007313 EQ2: dep.var : h_ln_partintact b GMM se GMM t GMM L.h_ln_average_degree .17064984 1.105784 .15432476 L.h_ln_partintact .828677 .07456035 11.114178 -.45900705 L2.h_ln_average_degree -.46066052 1.0036023 .07347526 L2.h_ln_partintact .14553178 1.980691 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintact .00005691 ln_average_degree .00024575 .0239301 ln_partintact Residuals correlation matrix u1 u2

u1	1.0000	
u2	0.2107 0.0021	1.0000

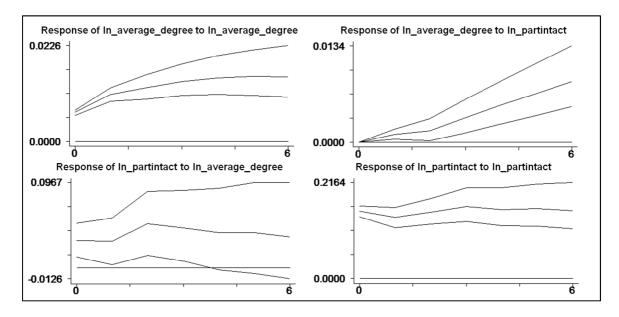
GMM finished : 11:26:51

Starting Monte-Carlo loop : 11:26:51 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 11:26:57


GMM started : 11:31:49 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 205 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM .11754788 13.691697 L.h_ln_average_degree 1.60943 .00321889 L.h_ln_partintact .00502943 1.5624727 L2.h_ln_average_degree -.55405622 .17330663 -3.1969706 L2.h_ln_partintact -.00564532 .00388127 -1.4545013 L3.h_ln_average_degree -.08704107 .07537761 -1.1547338 L3.h_ln_partintact .00390774 .00323998 1.2061027 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_average_degree .63545906 1.6386799 .38778717 .90801544 L.h_ln_partintact .07391416 12.284729 h_ln_average_degree .13198747 L2.h_ln_partintact .15786808 L2.h_ln_average_degree 2.4420467 .05404789 .09211215 1.7138681 L3.h_ln_average_degree -.84105928 1.0809125 -.77810117 L3.h_ln_partintact -.10753011 .06657648 -1.6151367 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintact ln_average_degree .00005434 ln_partintact .00022224 .02429595 Residuals correlation matrix

. pvar ln_average_degree ln_partintact, lag(3) gmm monte 1000

	u1	u2
u1	1.0000	
u2	0.1939 0.0053	1.0000


GMM finished : 11:31:50

Starting Monte-Carlo loop : 11:31:51 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 11:31:57

. pvar ln_average_degree ln_partintact, lag(4) gmm monte 1000 GMM started : 11:36:00 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM__ number of observations used : 200 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM 13.732792 .11537412 L.h_ln_average_degree 1.5844089 .00720875 .0029407 2.4513725 L.h_ln_partintact L2.h_ln_average_degree -.71348028 .16503047 -4.3233245 L2.h_ln_partintact -.00720376 .00341013 -2.1124608 .21903995 L3.h_ln_average_degree .11779601 1.8594853 .01007474 L3.h_ln_partintact .0037213 2.7073165 L4.h_ln_average_degree -.12853961 .05465096 -2.3520102 L4.h_ln_partintact -.00512758 .00346279 -1.4807672 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_average_degree .30734024 1.7039022 .18037434 .07556413 L.h_ln_partintact .9067344 11.999535 L2.h_ln_average_degree 2.0463906 2.4919654 .82119541 .09731154 L2.h_ln_partintact .16012149 1.6454522 L3.h_ln_average_degree -4.6544214 2.2201542 -2.0964406 .09101741 .14411168 L3.h_ln_partintact .01311667 L4.h_ln_average_degree 2.2191932 1.1565558 1.9187948 L4.h_ln_partintact -.11120773 .06543245 -1.6995807 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintact ln_average_degree .00004682 .00021281 .02406551 ln_partintact Residuals correlation matrix u1 u2 u1 1.0000 u2 0.2014 1.0000 0.0042 GMM finished : 11:36:02

Starting Monte-Carlo loop : 11:36:03 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 11:36:09

Appendix 5 Estimation Results

In_partintact; Established Regions

. pvar ln_degr_centr ln_partintact, lag(1) gmm monte 1000 GMM started : 12:13:48 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 215 EQ1: dep.var : h_ln_degr_centr b GMM se GMM t GMM L.h_ln_degr_centr .96332602 .02388169 40.337439 L.h_ln_partintact .000522 .00029713 1.7567868 _____ EQ2: dep.var : h_ln_partintact b_GMM se_GMM t GMM L.h_ln_degr_centr -2.541637 1.3370381 -1.9009658 L.h_ln_partintact .94309634 .01837206 51.333176

L.h_ln_partintact .94309634 .01837206 51.333176

just identified - Hansen statistic is not calculated

symmetric uu[2,2]

	ln_degr_centr	ln_partintact
ln_degr_centr	5.254e-06	
ln_partintact	2.038e-06	.02547139

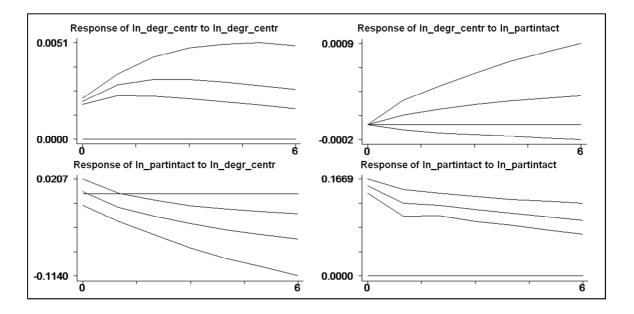
Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.0055 0.9356	1.0000

GMM finished : 12:13:50

Starting Monte-Carlo loop : 12:13:51 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:13:57

PVAR(1)-(4) In_degree_centralization

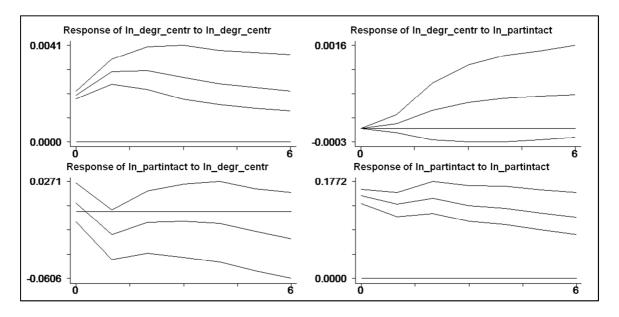

. pvar ln_degr_centr ln_partintact, lag(2) gmm monte 1000 GMM started : 12:30:40 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM___ number of observations used : 210 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM 1.4288112 .15533694 9.1981419 L.h_ln_degr_centr L.h_ln_partintact .00068284 .00063574 1.0740866 L2.h_ln_degr_centr -.46603857 .15437447 -3.0188838 L2.h_ln_partintact -.00043639 .00050522 -.8637542 EQ2: dep.var : h_ln_partintact b GMM se GMM t GMM L.h_ln_degr_centr -10.326738 4.0544879 -2.5469895 L.h_ln_partintact .80797512 .0785344 10.288168 L2.h_ln_degr_centr 6.4930233 L2.h_ln_partintact .13645091 3.7478077 1.7324857 .06964749 1.9591649 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintact ln_degr_centr 4.046e-06 5.266e-06 .0240438 ln_partintact

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.0169 0.8078	1.0000

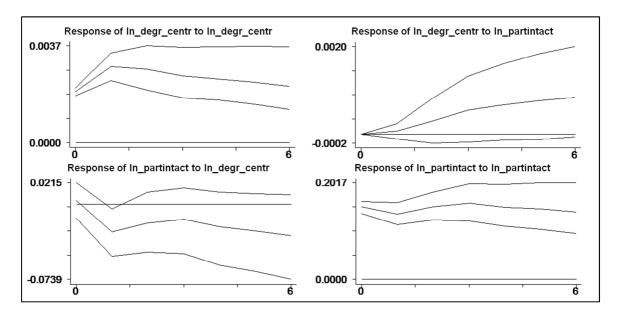
GMM finished : 12:30:42

Starting Monte-Carlo loop : 12:30:43 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:30:49



. pvar ln_degr_centr ln_partintact, lag(3) gmm monte 1000 GMM started : 12:35:12 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 205 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM 1.4956987 .15513723 9.641133 L.h_ln_degr_centr L.h_ln_partintact .00058205 .00069828 .83354897 L2.h_ln_degr_centr -.71461751 .22916507 -3.1183527 L2.h_ln_partintact .00082891 L3.h_ln_degr_centr .18347107 .00119452 .69392329 .10716222 1.7120872 L3.h_ln_degr_centr .10716222 L3.h_ln_partintact -.0009845 .00123372 -.79799779 EQ2: dep.var : h ln partintact b_GMM se_GMM t_GMM L.h_ln_degr_centr -14.118665 4.4727951 -3.1565642 12.071759 L.h_ln_partintact .89945416 .07450895 L2.h_ln_degr_centr 24.978653 8.8644822 2.8178355 L2.h_ln_partintact .16614474 L3.h_ln_degr_centr -13.67034 .08649161 1.9209348 6.1040887 -2.2395383 L3.h ln partintact -.1203054 .06769671 -1.7771232 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintact ln_degr_centr 3.880e-06 ln_partintact .00001491 02282586 Residuals correlation matrix u1 u2

u1 u2 u1 1.0000 u2 0.0503 1.0000 0.4739


GMM finished : 12:35:14

Starting Monte-Carlo loop : 12:35:15 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55. i=912. i=969. i=1000. finished Monte-Carlo loop : 12:35:21

. pvar ln_degr_centr ln_partintact, lag(4) gmm monte 1000 ' GMM started : 12:38:19 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 200 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM 1.4930182 .14820792 10.073808 L.h_ln_degr_centr .00074339 L.h_ln_partintact .000498 .6699039 L2.h_ln_degr_centr -.79035029 .22612033 -3.4952642 .00089947 .00129931 L2.h_ln_partintact .6922642 L3.h_ln_degr_centr .36255895 .15417906 2 3515447 L3.h_ln_partintact -.00032525 .00146126 -.22258366 .07073053 -1.5031306 L4.h_ln_degr_centr -.10631722 L4.h_ln_partintact -.00060955 .00087918 -.69332185 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_degr_centr -15.854016 4.6481402 -3.41083 L.h_ln_partintact .90298693 .08022147 11.256175 L2.h_ln_degr_centr 26.562981 10.523568 2.5241421 .09768452 .19290091 1.9747336 L2.h ln partintact L3.h_ln_degr_centr -13.374259 11.211477 -1.1929079 L3.h_ln_partintact -.00492142 .08815288 -.05582821 .27010829 4.9946491 L4.h_ln_degr_centr .05407953 L4.h_ln_partintact -.13265362 .05854812 -2.2657194 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintact ln degr centr 3.794e-06 7.597e-06 .02277969 ln partintact Residuals correlation matrix u1 u2 u1 1.0000 0.0259 u2 1.0000 0.7156 GMM finished : 12:38:21

Starting Monte-Carlo loop : 12:38:21 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:38:28

Appendix 6 Estimation Results PVAR(1)-(4) ln_networker_share ln_partintact;

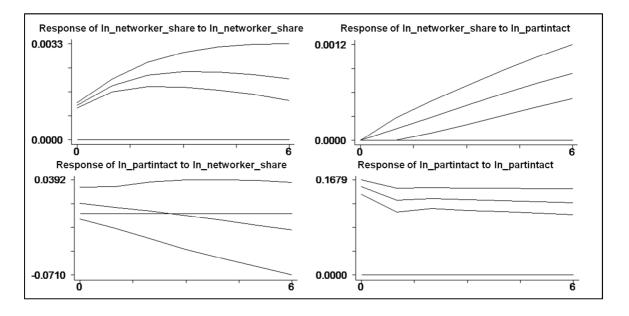
Established Regions

. pvar ln_networker_share ln_partintact, lag(1) gmm monte 1000 GMM started : 14:06:52 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 215 EQ1: dep.var : h_ln_networker_share b GMM se GMM t GMM L.h_ln_networker_share .91138481 .01175056 77.560956 L.h_ln_partintact .00100867 .00021033 4.7955931 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_networker_share -1.829009 1.2992131 -1.4077821 L.h_ln_partintact .98149181 .01730114 56.729892 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_partintact ln_networker_share 4.071e-06 .00003574 ln_networker_share ln_partintact .02605348 Residuals correlation matrix 1 u1 u2

u1	1.0000	
u2	0.1098 0.1085	1.0000

GMM finished : 14:06:54

Starting Monte-Carlo loop : 14:06:54 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:07:00

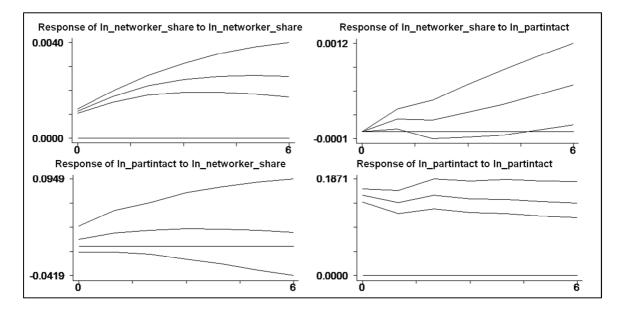

. pvar ln_networker_share ln_partintact, lag(2) gmm monte 1000 GMM started : 14:28:04 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 210 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_networker_share 1.5649166 .08296734 18.861839 .00056582 L.h_ln_partintact .00095684 1.6910619 L2.h_ln_networker_share -.6007318 .07455011 -8.058094 L2.h_ln_partintact -.00040262 .00059616 -.67534876 EQ2: dep.var : h_ln_partintact b GMM se GMM t GMM L.h_ln_networker_share -2.3194742 8.6712832 -.26748915 L.h_ln_partintact .84703358 .07147818 11.850241 L2.h_ln_networker_share -.45008287 7.463141 -.06030743 L2.h_ln_partintact .14858399 .07417035 2.00328 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintact ln_networker_share 1.403e-06 .00001427 .02447761 ln_partintact Residuals correlation matrix 111 112 1.0000 u1

GMM finished : 14:28:06

u2

0.0766 1.0000 0.2694

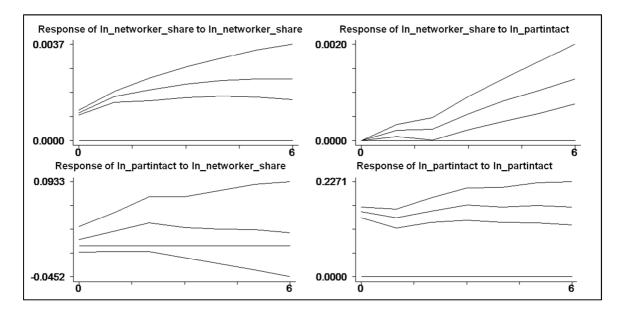
Starting Monte-Carlo loop : 14:28:06 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:28:12


GMM started : 14:31:09 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 205 EQ1: dep.var : h_ln_networker_share se_GMM b_GMM t_GMM L.h_ln_networker_share 1.5318729 L.h_ln_partintact .00108215 .10481042 14.615654 .00053389 2.0269263 L2.h_ln_networker_share -.43050117 .13614402 -3.1621012 L2.h_ln_partintact -.001635 .00072379 -2.2589505 L3.h_ln_networker_share -.13406024 .05498241 -2.4382386 L3.h_ln_partintact .00102513 .0005745 1.7843814 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_networker_share 8.7160822 12.751926 .68351106 L.h_ln_partintact .90691724 .07423401 12.217004 L2.h_ln_networker_share -10.059847 18.187669 -.55311363 .09440483 L2.h_ln_partintact .16547911 1.752867 .30009293 7.7630182 .03865673 L3.h ln networker share L3.h_ln_partintact -.09920748 .06797609 -1.4594467 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintact ln_networker_share 1.304e-06 ln_partintact .00001087 .02425521 Residuals correlation matrix

. pvar ln_networker_share ln_partintact, lag(3) gmm monte 1000

	u1	u2
u1	1.0000	
u2	0.0612 0.3832	1.0000

GMM finished : 14:31:11


Starting Monte-Carlo loop : 14:31:11 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:31:17

. pvar ln_networker_share ln_partintact, lag(4) gmm monte 1000 GMM started : 14:33:14 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM__ number of observations used : 200 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM 16.159273 L.h_ln_networker_share 1.5502362 .09593477 .00051063 L.h_ln_partintact .00140226 2.7461506 L2.h_ln_networker_share -.62953513 .12333468 -5.1042831 L2.h_ln_partintact -.00185634 .00069947 -2.6539066 .15376727 L3.h_ln_networker_share .17290742 1 1244748 L3.h_ln_partintact .00230725 .00067957 3.3951334 L4.h_ln_networker_share -.12466615 .08088666 -1.5412449 L4.h ln partintact -.00125696 .00060446 -2.0794583 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_networker_share 11.713984 12.813625 .91418195 L.h_ln_partintact .90361421 .07623561 11.852914 L2.h_ln_networker_share -6.5804469 19.147375 -.34367358 .17750936 .09968132 L2.h_ln_partintact 1.7807685 L3.h_ln_networker_share -17.924258 17.718985 -1.0115849 .01623092 .09082044 .17871437 L3.h_ln_partintact 12.171811 8.0827898 L4.h_ln_networker_share 1.5058924 L4.h_ln_partintact -.1234096 .06931377 -1.7804486 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintact ln networker share 1.160e-06 .00001002 .02421646 ln partintact Residuals correlation matrix u1 u2 u1 1.0000 0.0603 u2 1.0000 0.3963

GMM finished : 14:33:15

Starting Monte-Carlo loop : 14:33:15 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:33:22

Appendix 7 Estimation Results PVAR(1)-(4) ln_network_cc ln_partintact; Estab-

lished Regions

. pvar ln_netw_cc ln_partintact, lag(1) gmm monte 1000		
GMM started : 10:38:52		
accumulating matrices equation 1,2, calculating b2sls		
calculating big ZuuZ matrix		
finished accumulating ZuuZ		
Results of the Estimation by system GMM		
number of observations used : 215		
EQ1: dep.var : h_ln_netw_cc		
b_GMM se_GMM t_GMM		
L.h_ln_netw_cc .76038352 .29752781 2.5556721		
L.h_ln_partintact .00107395 .0015688 .68456525		
EQ2: dep.var : h_ln_partintact		
b_GMM se_GMM t_GMM		
L.h_ln_netw_cc -1.7983928 1.5790464 -1.1389106		
L.h_ln_partintact .97546487 .01605255 60.766956		
just identified - Hansen statistic is not calculated		
symmetric uu[2,2]		
ln_netw_cc ln_partintact		
ln_netw_cc .00025741		
ln_partintact00003301 .0272553		
Residuals correlation matrix		
u1 u2		

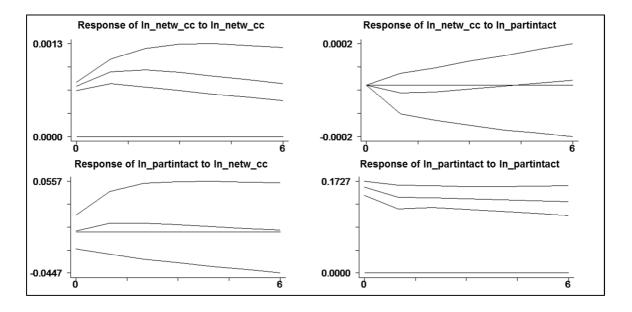
u1 u2 u1 1.0000 u2 -0.0118 1.0000 0.8636

GMM finished : 10:38:53

Starting Monte-Carlo loop : 10:38:54 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 10:39:00

. pvar ln_netw_cc ln_partintact, lag(2) gmm monte 1000 GMM started : 10:53:13 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 210 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM L.h_ln_netw_cc .41870742 .31026228 1.3495273 .00107535 L.h_ln_partintact .00104586 1.0281947 L2.h_ln_netw_cc .40170985 .29156572 1.3777678 L2.h_ln_partintact -.00043988 .00090355 -.48683626 EQ2: dep.var : h_ln_partintact b GMM se GMM t GMM L.h_ln_netw_cc -1.3141523 .94909669 -1.3846348 .07174265 L.h_ln_partintact .88423734 12.325128 L2.h_ln_netw_cc -.76177967 .92133082 -.82682534 L2.h_ln_partintact .09893152 .07012778 1.4107322 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintact .00022224 ln_netw_cc .00001828 .0264184 ln_partintact Residuals correlation matrix

 u1
 u2

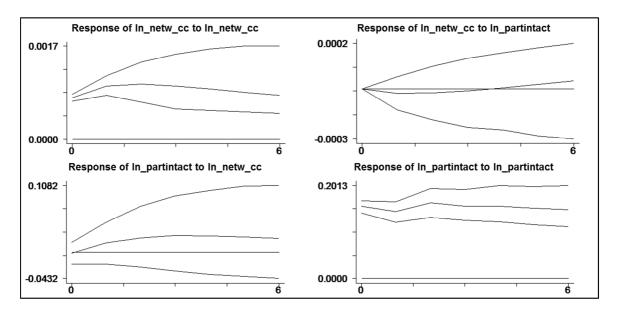

 u1
 1.0000

 u2
 0.0080
 1.0000

 0.9080
 1.0000

GMM finished : 10:53:14

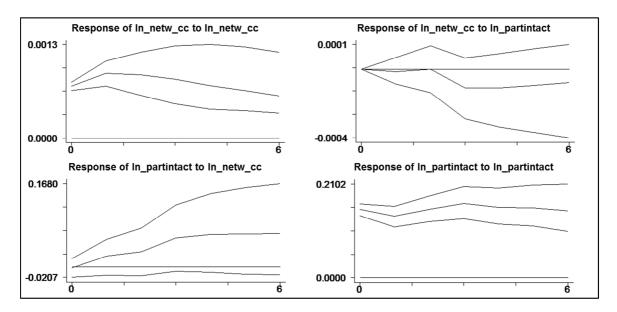
Starting Monte-Carlo loop : 10:53:15 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 10:53:21



. pvar ln_netw_cc ln_partintact, lag(3) gmm monte 1000 GMM started : 10:57:01 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 205 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM .28131243 .22592592 1.2451534 L.h_ln_netw_cc L.h_ln_partintact .00093352 .00153288 .60899475 L2.h_ln_netw_cc .26807977 .21451346 1.2497107 L2.h_ln_partintact -.00390131 .00324361 -1.2027703 L3.h ln netw cc .25917671 .21051008 1 2311843 .0034265 1.0245308 L3.h_ln_partintact .00351055 EQ2: dep.var : h ln partintact b_GMM se_GMM t_GMM L.h_ln_netw_cc -.97515346 .62779913 -1.553289 .06840384 L.h_ln_partintact .94237931 13.776701 .62111304 -.72350187 L2.h_ln_netw_cc -.44937645 L2.h_ln_partintact .1716717 .09161173 1.8739052 L3.h ln netw cc -.19670183 .60031071 -.3276667 L3.h_ln_partintact -.13668494 .07075422 -1.9318273 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintact .00020709 ln_netw_cc ln_partintact .00007037 02526618 Residuals correlation matrix u1 u2 ul 1.0000

u2	0.0309 0.6601	1.0000

GMM finished : 10:57:03


Starting Monte-Carlo loop : 10:57:03 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 10:57:10

. pvar ln_netw_cc ln_partintact, lag(4) gmm monte 1000 GMM started : 11:02:47 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 200 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM .20473903 .16945783 1.2082005 L.h_ln_netw_cc .00117632 L.h_ln_partintact .0009522 1.2353787 L2.h_ln_netw_cc .19727685 .16020902 1.2313717 L2.h_ln_partintact -.00432688 .00485877 -.89052922 L3.h_ln_netw_cc .18994515 .15959219 1.1901908 L3.h_ln_partintact .00040392 .00212291 .19026788 .18930825 .16243477 L4.h ln netw cc 1.1654417 L4.h_ln_partintact .00331931 .0027165 1.2219067 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_netw_cc -.63067667 .51450148 -1.2258015 L.h_ln_partintact .93225371 .07162763 13.01528 .47921637 -.49732497 L2.h ln netw cc .19662458 .10016535 1.9629999 L2.h ln partintact -.04422883 .44714464 -.09891392 L3.h_ln_netw_cc L3.h_ln_partintact -.01651972 .09184182 -.17987142 -.20694502 -.097008 .46876217 L4.h_ln_netw_cc L4.h_ln_partintact -.13289781 .06555449 -2.0272877 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintact ln netw cc .00020044 .00011473 .02514851 ln_partintact Residuals correlation matrix u1 u2 u1 1.0000 u2 0.0511 1.0000 0.4722

GMM finished : 11:02:49

Starting Monte-Carlo loop : 11:02:49 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 11:02:56

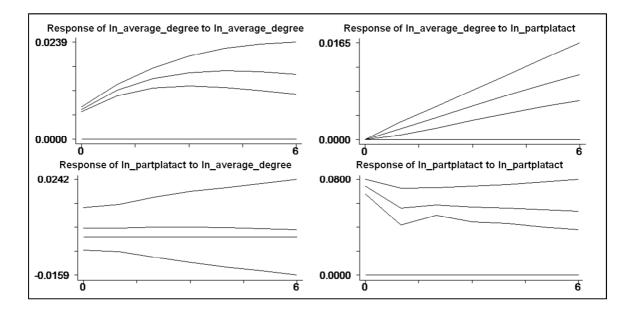
Appendix 8 Estimation Results PVAR(1)-(4) ln_average_degree ln_partplatact; Established Regions

. pvar ln_average_degree ln_partplatact, lag(1) gmm monte 1000 GMM started : 11:13:03 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ____ Results of the Estimation by system GMM____ number of observations used : 215 EQ1: dep.var : h_ln_average_degree b GMM se_GMM t GMM L.h_ln_average_degree .90639358 .00947788 95.632531 L.h_ln_partplatact .03512872 .00573323 6.1272091 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_average_degree .02792488 .09355447 .29848793 L.h_ln_partplatact .96371856 .03682579 26.169667 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partplatact .00018317 -.00004523 ln_average_degree ln_partplatact .00581417

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	-0.0434 0.5266	1.0000

GMM finished : 11:13:05

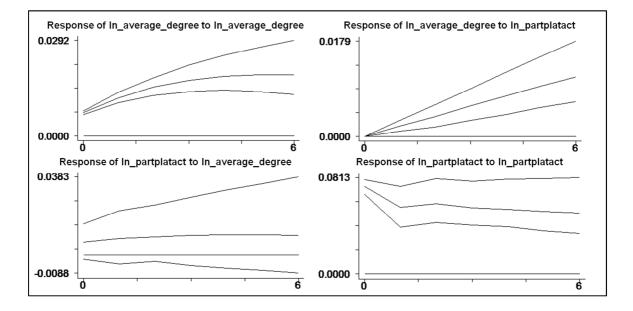

Starting Monte-Carlo loop : 11:13:05 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 11:13:11

. pvar ln_average_degree ln_partplatact, lag(2) gmm monte 1000 GMM started : 11:56:40 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 210 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM L.h_ln_average_degree 1.6359351 L.h_ln_partplatact .02630296 22.077521 .07409958 .00865731 3.0382359 L2.h_ln_average_degree -.66942334 .06772524 -9.8844001 L2.h_ln_partplatact -.01208782 .00894577 -1.3512341 EQ2: dep.var : h_ln_partplatact b GMM se GMM t GMM .13587755 .51900909 .26180187 L.h_ln_average_degree L.h_ln_partplatact .75827503 .12755661 5.9446157 L2.h_ln_average_degree -.15599704 L2.h_ln_partplatact .21421111 .46930771 -.3323982 .13038026 1.642972 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partplatact ln_average_degree .00005327 .0000263 .00551397 ln_partplatact Residuals correlation matrix u1 u2

u1	1.0000	
u2	0.0492 0.4782	1.0000

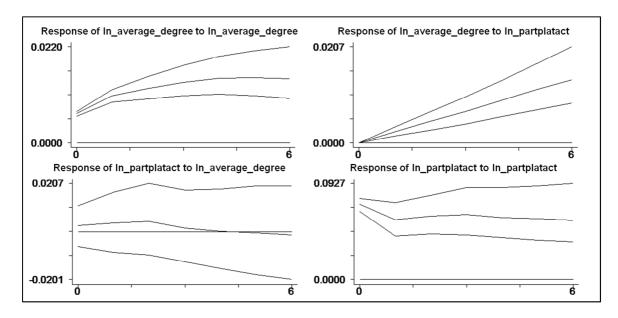
GMM finished : 11:56:41

Starting Monte-Carlo loop : 11:56:41 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 11:56:47


. pvar ln_average_degree ln_partplatact, lag(3) gmm monte 1000 GMM started : 11:59:20 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 205 EQ1: dep.var : h_ln_average_degree se_GMM b_GMM t_GMM .10673293 15.035078 L.h_ln_average_degree 1.6047379 L.h_ln_partplatact .02720868 .00857535 3.1728949 L2.h_ln_average_degree -.5526349 .15627537 -3.5362892 L2.h_ln_partplatact -.0134314 .01032852 -1.3004195 L3.h_ln_average_degree -.08177989 .06811195 -1.2006688 L3.h_ln_partplatact -.00079094 .0080681 -.09803299 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_average_degree .45042511 .95151628 .47337615 L.h_ln_partplatact .76444386 .13284426 5.7544364 L2.h_ln_average_degree -.51799929 1.4594829 -.35491975 L2.h_ln_partplatact .20529213 .14398928 1.4257459 .64360427 L3.h_ln_average_degree .07613531 .11829523 L3.h_ln_partplatact -.01958879 .09920047 -.19746667 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partplatact ln_average_degree .00005129 ln_partplatact .00004464 .00545004

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.0852 0.2243	1.0000


GMM finished : 11:59:22

Starting Monte-Carlo loop : 11:59:22 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 11:59:29

. pvar ln_average_degree ln_partplatact, lag(4) gmm monte 1000 GMM started : 12:01:40 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 200 EQ1: dep.var : h_ln_average_degree se_GMM b_GMM t_GMM 1.5946678 .10310274 15.466784 L.h_ln_average_degree .03379739 .00762327 L.h_ln_partplatact 4.433451 L2.h_ln_average_degree -.71553319 .1518352 -4.7125647 L2.h_ln_partplatact -.01692328 .01035127 -1.6348989 .24054286 L3.h_ln_average_degree .11745907 2.0478866 .00927725 L3.h_ln_partplatact .00121962 .13146393 L4.h ln average degree -.15285973 .05541256 -2.7585754 L4.h_ln_partplatact -.00142597 .00698481 -.20415377 EQ2: dep.var : h_ln_partplatact b GMM se_GMM t GMM L.h_ln_average_degree .2468784 .92883906 .26579244 L.h_ln_partplatact .79409659 .13562893 5.8549202 L2.h ln average degree -.26005967 1.4958696 -.17385184 .19885113 .14425873 L2.h_ln_partplatact 1.378434 L3.h_ln_average_degree -.46743703 1.2630257 -.37009305 .12362781 L3.h_ln_partplatact .03336071 .26984792 .45441564 .65589844 L4.h_ln_average_degree .69281403 L4.h_ln_partplatact -.0461768 .09203413 -.50173558 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln average degree ln partplatact ln average degree .00004479 .00001869 .00525327 ln_partplatact Residuals correlation matrix u1 u2 u1 1.0000 u2 0.0387 1.0000 0.5861 GMM finished : 12:01:41

Starting Monte-Carlo loop : 12:01:42 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55. i=912. i=969. i=1000. finished Monte-Carlo loop : 12:01:49

Appendix 9 Estimation Results P

In_partplatact; Established Regions

. pvar ln_degr_centr ln_partplatact, lag(1) gmm monte 1000 GMM started : 12:32:40 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM number of observations used : 215			
EQ1: dep.var : h_ln_degr_centr			
b_GMM se_GMM t_GMM L.h_ln_degr_centr .94316035 .0247322 38.134916 L.h_ln_partplatact .0019035 .00109564 1.7373479			
EQ2: dep.var : h_ln_partplatact			
b_GMM se_GMM t_GMM L.h_ln_degr_centr2653077 1.065210624906596 L.h_ln_partplatact .95724856 .0501473 19.088734			
just identified - Hansen statistic is not calculated			
symmetric uu[2,2] ln_degr_centr ln_partplatact ln_degr_centr 5.156e-06 ln_partplatact00001571 .00563982			
In_partpratact000013/1 .00303762			

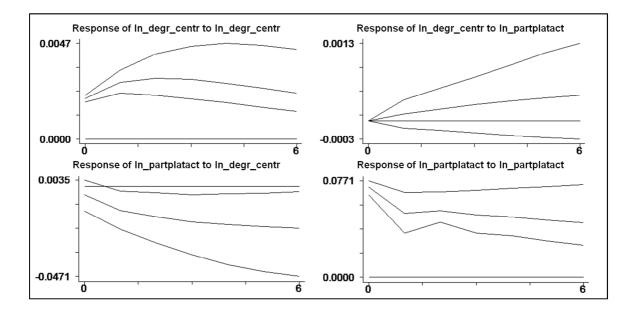
Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	-0.0917 0.1805	1.0000

GMM finished : 12:32:41

Starting Monte-Carlo loop : 12:32:42 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:32:48

PVAR(1)-(4) ln_degree_centralization

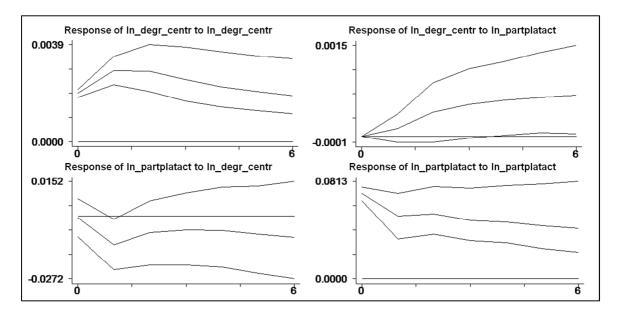

. pvar ln_degr_centr ln_partplatact, lag(2) gmm monte 1000 GMM started : 12:43:58 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM___ number of observations used : 210 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .16091593 8.7210893 .00204869 .79515631 L.h_ln_degr_centr 1.4033622 L.h_ln_partplatact .00162903 .00204869 L2.h_ln_degr_centr -.45288884 .15604294 -2.9023347 L2.h_ln_partplatact -.00075941 .00184807 -.41091949 EQ2: dep.var : h_ln_partplatact b GMM se GMM t GMM L.h_ln_degr_centr -4.7185345 2.5895708 -1.8221299 L.h_ln_partplatact .71283669 .13882115 5.1349287 L2.h_ln_degr_centr 3.6117739 L2.h_ln_partplatact .24240869 2.3678905 1.5253129 .11630856 2.0841862 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partplatact 4.003e-06 ln_degr_centr -8.360e-06 .00516227 ln_partplatact

Residuals correlation matrix

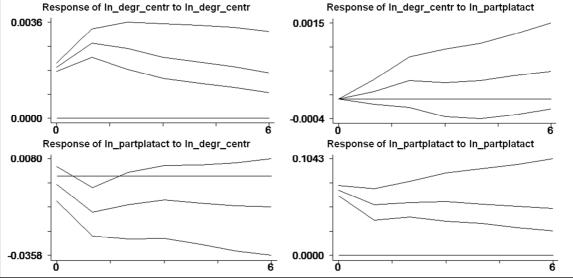
	u1	u2
u1	1.0000	
u2	-0.0581 0.4018	1.0000

GMM finished : 12:44:00

Starting Monte-Carlo loop : 12:44:00 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:44:06



. pvar ln_degr_centr ln_partplatact, lag(3) gmm monte 1000 GMM started : 12:46:43 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM___ number of observations used : 205 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM 1.4702364 .16160045 9.097972 L.h_ln_degr_centr .00190166 L.h_ln_partplatact .00210197 .90470199 L2.h_ln_degr_centr -.69274073 .23260765 -2.9781511 .00271227 L2.h_ln_partplatact .00157401 .58032945 .10731759 L3.h_ln_degr_centr .17553052 1 6356174 L3.h_ln_partplatact -.00202217 .00252466 -.80096969 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_degr_centr -6.0324825 2.7701589 -2.1776666 .7344464 .14823593 4.9545776 9.9934728 3.751747 2.6636852 .23049428 .12668546 1.8194217 L.h_ln_partplatact L2.h_ln_degr_centr 9.9934728 L2.h_ln_partplatact .23049428 L3.h_ln_degr_centr -4.8381727 2.1482612 -2.2521343 L3.h_ln_partplatact -.02318836 .09015261 -.25721231 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partplatact ln_degr_centr 3.822e-06 ln_partplatact -1.608e-06 00504568 Residuals correlation matrix u1 u2


u1 1.0000 u2 -0.0115 1.0000 0.8705

GMM finished : 12:46:45

Starting Monte-Carlo loop : 12:46:46 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:46:52

. pvar ln_degr_centr ln_partplatact, lag(4) gmm monte 1000 GMM started : 12:55:52 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _ Results of the Estimation by system GMM_ number of observations used : 200 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM 1.4707502 .16150626 9.1064598 L.h_ln_degr_centr .00203191 .00213394 L.h_ln_partplatact .9521844 L2.h_ln_degr_centr -.77072394 .23689798 -3.2534002 L2.h_ln_partplatact .00048872 .00258943 .18873582 L3.h_ln_degr_centr .32645304 .16129893 2.0239008 L3.h_ln_partplatact -.00333749 .00328433 -1.0161865 L4.h ln degr centr -.08725051 .07604036 -1.1474237 L4.h_ln_partplatact .00220197 .00244117 .90201501 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t GMM L.h_ln_degr_centr -6.9643632 2.7632505 -2.5203517 L.h_ln_partplatact .7765267 .14971713 5.1866257 2.6353562 10.524136 3.9934396 L2.h_ln_degr_centr .22238271 .12816178 1.7351718 L2.h ln partplatact L3.h_ln_degr_centr -4.3344866 3.8627679 -1.1221194 .03689735 .12190719 L3.h_ln_partplatact .30266752 -.03817905 L4.h_ln_degr_centr -.08555775 2.2409609 L4.h_ln_partplatact -.07677662 .09257349 -.82935863 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partplatact ln degr centr 3.726e-06 -7.245e-06 .00491801 ln_partplatact Residuals correlation matrix u1 u2 u1 1.0000 u2 -0.0534 1.0000 0.4524 GMM finished : 12:55:53 Starting Monte-Carlo loop : 12:55:53 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:56:00 Response of In_degr_centr to In_degr_centr 0.0036 0.0015

Appendix 10 Estimation Results PVAR(1)-(4) ln_networker_share ln_partplatact;

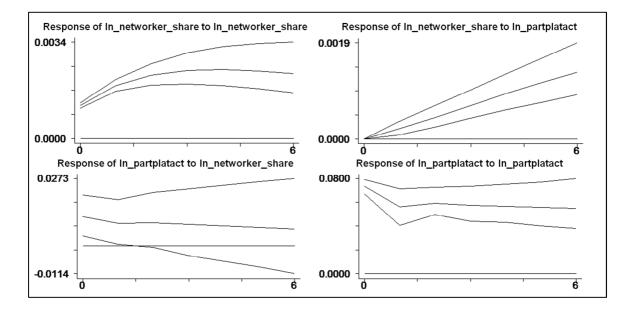
Established Regions

. pvar ln_networker_share ln_partplatact, lag(1) gmm monte 1000 GMM started : 13:07:21 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 215 EQ1: dep.var : h_ln_networker_share se GMM b GMM t GMM L.h_ln_networker_share .90351329 .01180113 76.561571 L.h_ln_partplatact .00454113 .00053742 8.4498819 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_networker_share .2095209 .69133584 .30306674 L.h_ln_partplatact .95888636 .04333048 22.129604 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_partplatact ln_networker_share 3.923e-06 8.953e-06 ln_networker_share ln_partplatact .00577035 Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.0600 0.3816	1.0000

GMM finished : 13:07:23

_

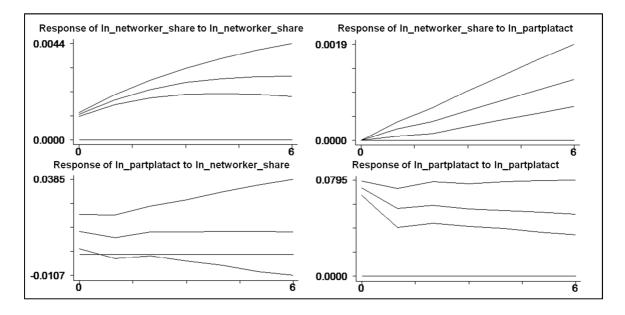

Starting Monte-Carlo loop : 13:07:23 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 13:07:29

. pvar ln_networker_share ln_partplatact, lag(2) gmm monte 1000 GMM started : 13:11:31 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 210 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_networker_share 1.5652169 L.h_ln_partplatact .00294731 .08086823 19.355152 .0011505 2.5617781 L2.h_ln_networker_share -.5989888 .0731843 -8.1846623 L2.h_ln_partplatact -.00093417 .00128426 -.7274015 EQ2: dep.var : h_ln_partplatact b GMM se GMM t GMM L.h_ln_networker_share .02912355 2.9166366 .00998532 L.h_ln_partplatact .76180369 .12268054 6.2096539 L2.h_ln_networker_share - 29232928 2.4444832 - .11958736 L2.h_ln_partplatact .22177815 .12584178 1.7623571 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partplatact ln_networker_share 1.402e-06 .0000139 .00552873 ln_partplatact Residuals correlation matrix u1 112

u1	1.0000	
u2	0.1583 0.0217	1.0000

GMM finished : 13:11:32

Starting Monte-Carlo loop : 13:11:33 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 13:11:39

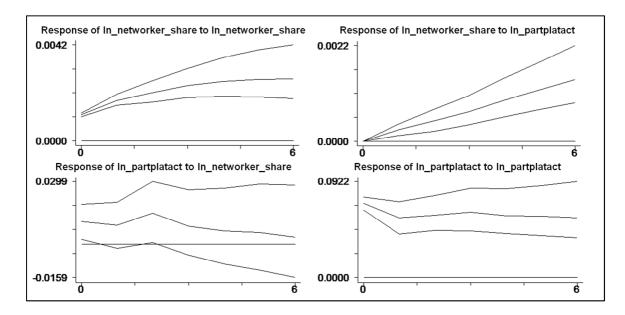


. pvar ln_networker_share ln_partplatact, lag(3) gmm monte 1000 GMM started : 13:15:00 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 205 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_networker_share 1.5310651 .10332168 14.81843 .00115023 2.6452927 L.h_ln_partplatact .0030427 L2.h_ln_networker_share -.42576076 .136337 -3.1228556 L2.h_ln_partplatact -.00193851 .00134576 -1.4404579 L3.h_ln_networker_share -.13187722 .05496064 -2.3994848 L3.h_ln_partplatact .00047546 .00100752 .47191476 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_networker_share -.39784605 4.3764186 -.09090676 L.h_ln_partplatact .7690713 .1277511 6.0200756 L2.h_ln_networker_share 2.4931946 6.0261617 .41372847 L2.h_ln_partplatact .21415694 .13350147 1.6041542 L3.h ln networker share -2.1539558 2.7087272 -.79519112 L3.h_ln_partplatact -.02115576 .09695426 -.21820349 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partplatact ln_networker_share 1.341e-06 ln_partplatact .00001379 .00542124 Residuals correlation matrix

ul 1.0000 u2 0.1622 1.0000 0.0202

GMM finished : 13:15:01

Starting Monte-Carlo loop : 13:15:02 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 13:15:08



. pvar ln_networker_share ln_partplatact, lag(4) gmm monte 1000 GMM started : 13:16:54 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM___ number of observations used : 200 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_networker_share 1.5146801 .10383647 14.587169 .0011538 L.h_ln_partplatact .00379074 3.28544 L2.h_ln_networker_share -.5167903 .14797598 -3.4923931 L2.h_ln_partplatact -.00208477 .00136971 -1.5220504 .09449779 .16729104 .56487059 L3.h_ln_networker_share .00013048 L3.h_ln_partplatact .00124369 .10491238 L4.h ln networker share -.1186568 .08607918 -1.3784611 L4.h_ln_partplatact -1.188e-06 .00101741 -.00116766 EQ2: dep.var : h_ln_partplatact b GMM se_GMM t_GMM L.h_ln_networker_share .28439306 4.4619063 .06373802 L.h_ln_partplatact .80398117 .13226891 6.0783835 .68027644 L2.h_ln_networker_share 4.2782436 6.288978 L2.h_ln_partplatact .18827634 .13952229 1.3494355 L3.h_ln_networker_share -11.776286 5.6916051 -2.0690624 .03523092 .12116841 .29075993 L3.h_ln_partplatact 6.9749693 3.0641133 2.2763419 L4.h_ln_networker_share L4.h_ln_partplatact -.04568378 .09241878 -.49431267 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partplatact ln networker share 1.272e-06 .00001215 .00519279 ln partplatact Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.1501 0.0339	1.0000

GMM finished : 13:16:56

Starting Monte-Carlo loop : 13:16:56 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 13:17:03

$Appendix \ 11 \ Estimation \ Results \ PVAR(1)-(4) \ ln_network_cc \ ln_partplatact; \ Estable \ Stable \ St$

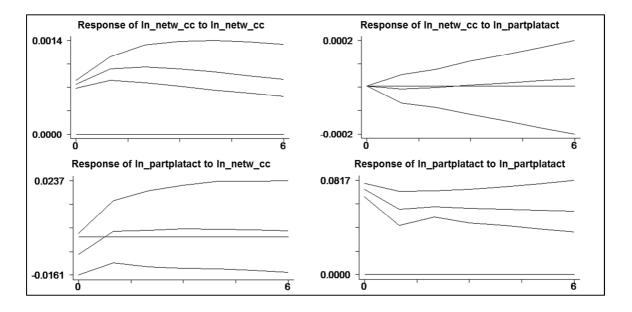
lished Regions

. pvar ln_netw_cc ln_partplatact, lag(1) gmm monte 1000 GMM started : 09:09:47 accumulating matrices equation 1,2,calculating b2sls						
calculating big ZuuZ matrix						
finished accumulating ZuuZ						
Results of the Estimation by system GMM						
number of observations used : 215						
EQ1: dep.var : h_ln_netw_c	c					
b_GMM	se_GMM	t_GMM				
L.h_ln_netw_cc .78752022	.27086474	2.9074298				
L.h_ln_partplatact .00290258	.00471366	.61577999				
EQ2: dep.var : h_ln_partplatact						
b CMM	se_GMM	+ CMM				
L.h ln netw cc .10173413						
L.h ln partplatact .9639369						
		24.04010				
just identified - Hansen statistic is not calculated						
symmetric uu[2,2]						
ln_netw_cc ln_partplatact						
ln_netw_cc .00026353						
ln_partplatact .00003248	.005	73556				

Residuals correlation matrix

	u1	u2
ul	1.0000	
u2	0.0266 0.6978	1.0000

GMM finished : 09:09:49

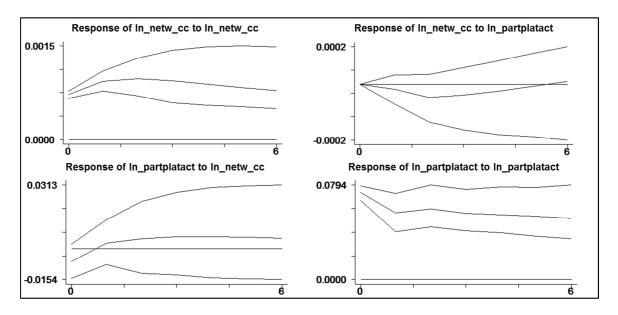

Starting Monte-Carlo loop : 09:09:49 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 09:09:55

. pvar ln_netw_cc ln_partplatact, lag(2) gmm monte 1000 GMM started : 09:17:12 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM_ number of observations used : 210 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM .42678567 .31009172 1.3763208 L.h_ln_netw_cc L.h_ln_partplatact -.00048785 .00290581 -.16788598 .40815807 L2.h_ln_netw_cc .29225105 1.3966009 L2.h_ln_partplatact .00213244 .00151791 1.4048528 EQ2: dep.var : h_ln_partplatact b GMM se GMM t GMM L.h_ln_netw_cc -.13127127 .30785084 -.42641193 .12244744 6.2670819 L.h_ln_partplatact .76738813 L2.h_ln_netw_cc -.14721327 .28930539 -.50885076 L2.h_ln_partplatact .21270454 .1163943 1.8274481 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partplatact .00022405 ln_netw_cc 4.713e-07 .00560341 ln_partplatact Residuals correlation matrix

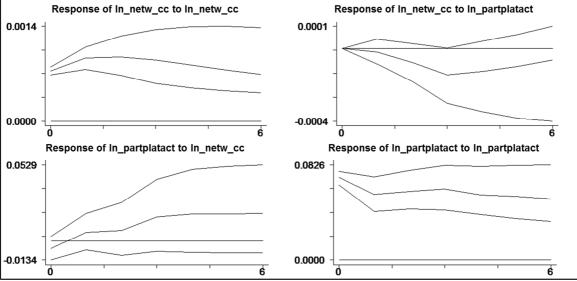
	u1	u2
u1	1.0000	
u2	0.0007 0.9924	1.0000

GMM finished : 09:17:14

Starting Monte-Carlo loop : 09:17:14 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 09:17:20


GMM started : 09:19:27 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 205 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM L.h_ln_netw_cc .29105444 .2315747 1.256849 L.h_ln_partplatact -.00075369 .00289142 -.26066438 .22016311 1.2485163 .00159335 -.36823791 L2.h_ln_netw_cc .27487723 L2.h_ln_partplatact -.00058673 L3.h_ln_netw_cc .26911896 .21640168 1.2436085 L3.h_ln_partplatact .00264771 .0012767 2.0738718 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_netw_cc -.07601192 .21792695 -.34879539 .12613478 6.1071267 .20222421 -.46454493 L.h_ln_partplatact .77032107 L2.h_ln_netw_cc -.09394223 L2.h_ln_partplatact .21887306 .13284853 1.6475384 L3.h_ln_netw_cc -.05075156 .18970853 -.26752384 L3.h_ln_partplatact -.02277235 .0912729 -.24949741 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partplatact ln_netw_cc .0002096 ln_partplatact 7.368e-06 .0054579 Residuals correlation matrix u1 u2

. pvar ln_netw_cc ln_partplatact, lag(3) gmm monte 1000


u1	1.0000	
u2	0.0070 0.9202	1.0000

GMM finished : 09:19:28

Starting Monte-Carlo loop : 09:19:29 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 09:19:35

. pvar ln_netw_cc ln_partplatact, lag(4) gmm monte 1000 GMM started : 09:22:13 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 200 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM .22019166 1.2186856 L.h_ln_netw_cc .18067962 -.2619152 L.h_ln_partplatact -.00074895 .00285952 .20642247 L2.h_ln_netw_cc .16942978 1.2183364 .0017205 -.03066021 L2.h_ln_partplatact -.00005275 L3.h_ln_netw_cc .20065999 168475 1.1910372 .78809725 L3.h_ln_partplatact .00335356 .00425526 .20044271 .17072641 1.174058 L4.h ln netw cc L4.h_ln_partplatact -.00155112 .00475685 -.32608046 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM .19601246 L.h_ln_netw_cc .04164317 .21245166 L.h_ln_partplatact .80560232 .12916142 6.2371744 L2.h_ln_netw_cc .01562674 .16524475 .09456725 L2.h_ln_partplatact .20849455 .13719611 1.5196826 .04599721 .14385072 .31975656 L3.h_ln_netw_cc L3.h_ln_partplatact .02600169 .1247614 .20841131 -.03896514 .13241446 -.29426652 L4.h_ln_netw_cc L4.h_ln_partplatact -.06858612 .08900987 -.77054511 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partplatact ln netw cc .00020377 .00002368 .00534133 ln_partplatact Residuals correlation matrix u1 u2 u1 1.0000 0.0228 u2 1.0000 0.7487 GMM finished : 09:22:15 Starting Monte-Carlo loop : 09:22:16 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 09:22:22 Response of In_netw_cc to In_netw_cc

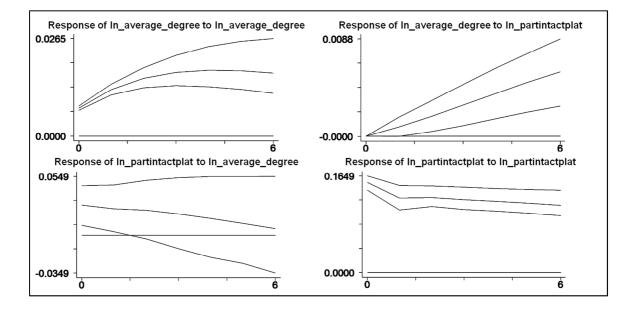
Appendix 12 Estimation Results PVAR(1)-(4) ln_average_degree ln_partintactplat;

Established Regions

. pvar ln_average_degree ln_partintactplat, lag(1) gmm monte 1000 GMM started : 10:31:32 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 215 EQ1: dep.var : h_ln_average_degree b GMM se_GMM t GMM L.h_ln_average_degree .91599191 .01060828 86.346876 L.h_ln_partintactplat .00809072 .0017813 4.5420292 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_average_degree -.19049658 .16185511 -1.1709574 L.h_ln_partintactplat .96946926 .0136734 70.901857 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintactplat .00019004 ln_average_degree ln_partintactplat .00030594 .0260314 Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.1377 0.0438	1.0000

GMM finished : 10:31:34

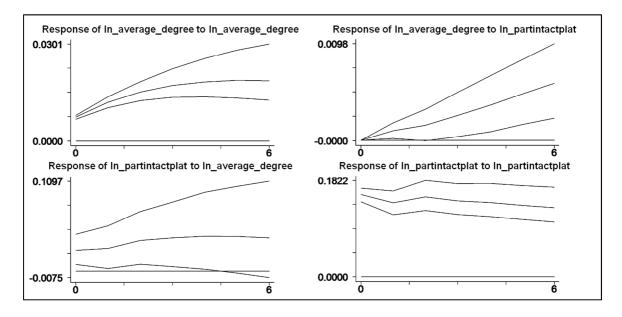

Starting Monte-Carlo loop : 10:31:35 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 10:31:40

. pvar ln_average_degree ln_partintactplat, lag(2) gmm monte 1000 GMM started : 10:33:22 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 210 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM 1.6454855 .07899584 L.h_ln_average_degree 20.830029 L.h_ln_partintactplat .00528709 .00324234 1.6306438 L2.h_ln_average_degree -.67862791 .07131988 -9.5152695 L2.h_ln_partintactplat -.00172456 .00325133 -.53041804 EQ2: dep.var : h_ln_partintactplat b GMM se GMM t GMM .17778938 1.0749283 .16539651 L.h_ln_average_degree L.h_ln_partintactplat .82683828 .07370713 11.217887 L2.h_ln_average_degree -.46483662 L2.h_ln_partintactplat .14782601 .96827588 -.4800663 .07313711 2.0212176 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintactplat ln_average_degree .00005656 .00021214 .02437761 ln_partintactplat Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.1809 0.0086	1.0000

GMM finished : 10:33:23

Starting Monte-Carlo loop : 10:33:24 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 10:33:30

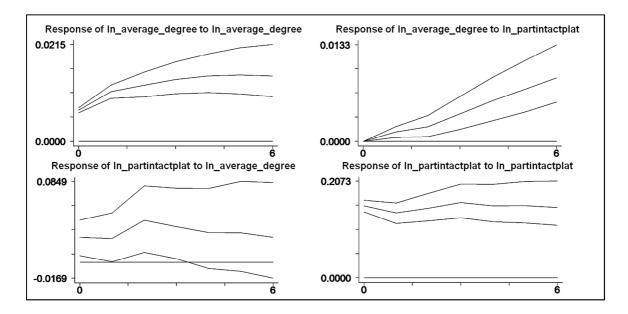


. pvar ln_average_degree ln_partintactplat, lag(3) gmm monte 1000 GMM started : 10:22:51 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM___ number of observations used : 205 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM .11810859 13.5309 L.h_ln_average_degree 1.5981156 L.h_ln_partintactplat .00619421 .00307818 2.0122961 .17247287 -3.1387084 L2.h_ln_average_degree -.54134205 L2.h_ln_partintactplat -.0057629 .0038448 -1.4988806 L3.h_ln_average_degree -.08955017 .07458873 -1.2005859 L3.h_ln_partintactplat .00303747 .00316006 .96120724 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_average_degree .63467808 1.6677858 .38055131 .89950732 L.h_ln_partintactplat .07399743 12.155926 .14202189 L2.h_ln_average_degree 2.4622758 .05767912 L2.h_ln_partintactplat .15843108 .09087384 1.7434179 L3.h_ln_average_degree -.84761042 1.0794168 -.7852485 L3.h_ln_partintactplat -.09975419 .06593497 -1.5129179 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintactplat .00005403 ln_average_degree ln_partintactplat .00018851 .02488241 Residuals correlation matrix

u1 1.0000 u2 0.1630 1.0000 0.0195

GMM finished : 10:22:52

Starting Monte-Carlo loop : 10:22:53 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 10:23:00


. pvar ln_average_degree ln_partintactplat, lag(4) gmm monte 1000 GMM started : 10:35:07 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM___ number of observations used : 200 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM L.h_ln_average_degree 1.5677525 .11622906 13.488473 .0082618 .00286273 L.h_ln_partintactplat 2.8859846 L2.h_ln_average_degree -.70412292 .16445469 -4.2815619 L2.h_ln_partintactplat -.00747343 .00342432 -2.1824551 L3.h_ln_average_degree .237338 .11815477 2.0087044 .00382819 2.2420498 L3.h_ln_partintactplat .008583 L4.h_ln_average_degree -.1420381 .0551278 -2.5765242 L4.h_ln_partintactplat -.00420274 .00356445 -1.1790705 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_average_degree .20305368 1.7167209 .11827996 .07421523 L.h_ln_partintactplat .90086036 12.138484 L2.h_ln_average_degree 2.2495987 2.5013768 .89934419 .095411 L2.h_ln_partintactplat .15404612 1.6145531 L3.h_ln_average_degree -4.9084986 2.3485669 -2.0899974 .01393178 .08622033 .16158341 L3.h_ln_partintactplat L4.h_ln_average_degree 2.3534527 1.2459988 1.8888081 L4.h_ln_partintactplat -.09852622 .06396619 -1.5402858 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintactplat ln average degree .00004664 .00017707 .02448192 ln partintactplat Residuals correlation matrix u1 u2 u1 1.0000 0.1665 1.0000

GMM finished : 10:35:10

u2

0.0184

Starting Monte-Carlo loop : 10:35:10 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 10:35:17

Appendix 13 Estimation Results PVAR(1)-(4)

In_partintactplat; Established Regions

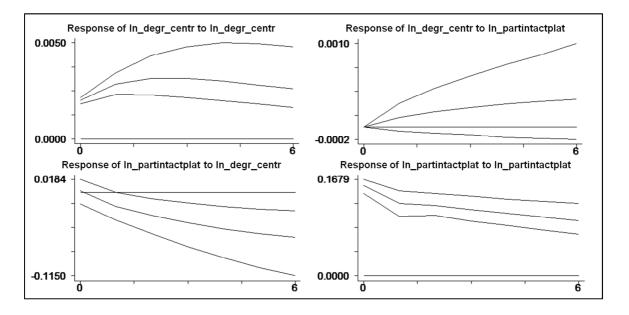
. pvar ln_degr_centr ln_partintactplat, lag(1) gmm monte 1000 GMM started : 10:43:37 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 215 EQ1: dep.var : h_ln_degr_centr b GMM se GMM t GMM L.h_ln_degr_centr .96259168 .02414177 39.872457 L.h_ln_partintactplat .00051698 .00029442 1.7559158 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t GMM L.h_ln_degr_centr -2.461484 1.5255249 -1.6135326 L.h_ln_partintactplat .94451011 .01940062 48.684527 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintactplat 5.255e-06 -1.661e-07 ln_degr_centr ln_partintactplat .02573861

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	-0.0005 0.9940	1.0000

GMM finished : 10:43:39

Starting Monte-Carlo loop : 10:43:40 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 10:43:46

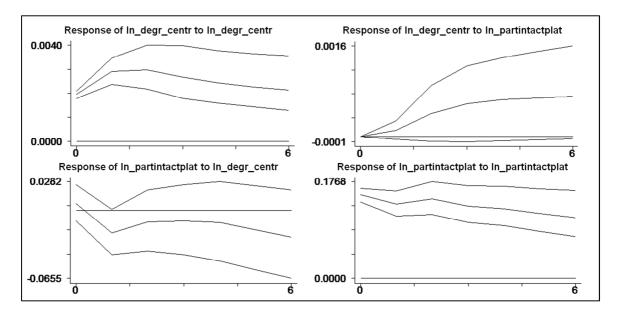

In_degree_centralization

. pvar ln_degr_centr ln_partintactplat, lag(2) gmm monte 1000 GMM started : 11:20:55 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM___ number of observations used : 210 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM 1.4282584 .15514361 9.2060408 L.h_ln_degr_centr L.h_ln_partintactplat .00072254 .0006225 1.1607123 L2.h_ln_degr_centr -.46613198 .15410371 -3.0247941 L2.h_ln_partintactplat -.00047682 .00049314 -.96688827 EQ2: dep.var : h_ln_partintactplat b GMM se GMM t GMM L.h_ln_degr_centr -10.318992 4.062397 -2.5401239 L.h_ln_partintactplat .80526817 .07844556 10.265313 L2.h_ln_degr_centr 6.5345122 3.6709403 1.780065 L2.h_ln_partintactplat .14013128 .06858874 2.0430655 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintactplat ln_degr_centr 4.042e-06 4.047e-06 .02443723 ln_partintactplat Residuals correlation matrix u1 u2

u1	1.0000	
u2	0.0129 0.8529	1.0000

GMM finished : 11:20:57

Starting Monte-Carlo loop : 11:20:57 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 11:21:03

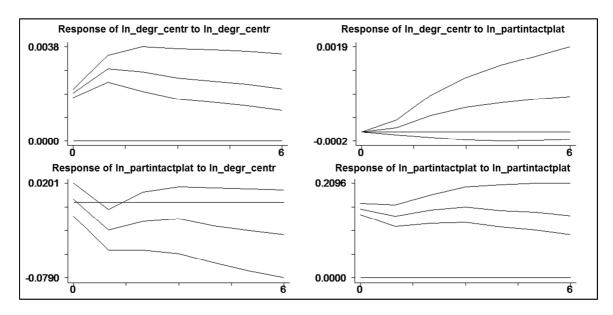

GMM started : 11:22:54 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 205 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM L.h_ln_degr_centr 1.4951662 .15510422 9.639752 L.h_ln_partintactplat .00070894 .00066054 1.0732718 L2.h_ln_degr_centr -.71072435 .22971222 -3.0939771 .00096572 L2.h_ln_partintactplat .00117018 .82526749 .10713488 L3.h_ln_degr_centr .18109639 1 6903589 L3.h_ln_partintactplat -.00123399 .00119234 -1.0349259 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_degr_centr -14.26105 4.5156706 -3.1581245 .88861774 L.h_ln_partintactplat .07599866 11.692545 L2.h_ln_degr_centr 25.141922 h_ln_partintactplat .16853856 8.5672598 2.9346515 L2.h_ln_partintactplat .08470507 1.9897103 L3.h_ln_degr_centr -13.700574 5.8996726 -2.3222601 L3.h_ln_partintactplat -.1117335 .06548956 -1.7061269 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintactplat 3.863e-06 ln_degr_centr ln_partintactplat .00001351 .02338912 Residuals correlation matrix u1 u2

. pvar ln_degr_centr ln_partintactplat, lag(3) gmm monte 1000

u1	1.0000	
u2	0.0451 0.5206	1.0000

GMM finished : 11:22:55

Starting Monte-Carlo loop : 11:22:56 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 11:23:02



. pvar ln_degr_centr ln_partintactplat, lag(4) gmm monte 1000 GMM started : 11:25:36 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 200 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM 1.493182 .14978015 9.9691586 L.h_ln_degr_centr L.h_ln_partintactplat .00059794 .00070128 .8526367 L2.h_ln_degr_centr -.78879995 .22897063 -3.4449831 L2.h_ln_partintactplat .00094574 .00125205 .75535173 .1559497 L3.h_ln_degr_centr .35970741 2 3065606 L3.h_ln_partintactplat -.00091054 .001495 -.60905605 L4.h_ln_degr_centr -.10716459 .07152036 -1.4983789 L4.h_ln_partintactplat -.000192 .00095898 -.20021686 EQ2: dep.var : h_ln_partintactplat b GMM se_GMM t GMM L.h_ln_degr_centr -16.485814 4.5937086 -3.588781 L.h_ln_partintactplat .89726892 .08032408 11.170609 27.511172 9.9812898 2.7562743 L2.h_ln_degr_centr .18579996 .09479192 L2.h ln partintactplat 1.9600822 L3.h_ln_degr_centr -14.417775 10.859424 -1.3276739 L3.h_ln_partintactplat .00588154 .0844138 .06967505 .18123815 .90833553 5.0118341 L4.h_ln_degr_centr L4.h_ln_partintactplat -.13001034 .05833193 -2.2288021 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintactplat ln degr centr 3.784e-06 ln_partintactplat 6.733e-06 .02329788 Residuals correlation matrix u1 u2

ul	1.0000	
u2	0.0228 0.7489	1.0000

GMM finished : 11:25:38

Starting Monte-Carlo loop : 11:25:38 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 11:25:45

Appendix 14 Estimation Results PVAR(1)-(4)

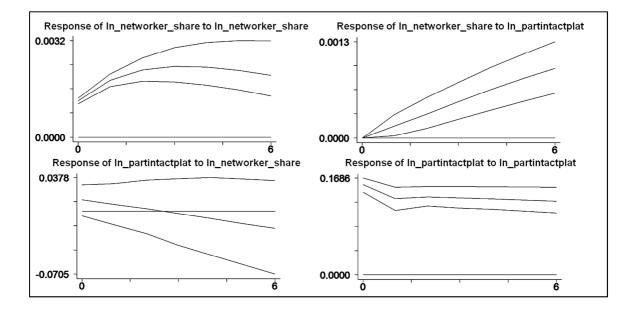
In_partintactplat; Established Regions

. pvar ln_networker_share ln_partintactplat, lag(1) gmm monte 1000 GMM started : 11:30:22 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 215 EQ1: dep.var : h_ln_networker_share b GMM se GMM t GMM L.h_ln_partintactplat .00104683 .00021583 4.8502801 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_networker_share -1.8134943 1.4368945 -1.2620928 L.h_ln_partintactplat .9820892 .01822827 53.877265 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintactplat 4.074e-06 .00003399 ln_networker_share ln_partintactplat .02630504 Residuals correlation matrix

	u1	u2
ul	1.0000	
u2	0.1039 0.1289	1.0000

GMM finished : 11:30:24

Starting Monte-Carlo loop : 11:30:24 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 11:30:30


ln_networker_share

. pvar ln_networker_share ln_partintactplat, lag(2) gmm monte 1000 GMM started : 11:39:43 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 210 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_networker_share 1.5589685 L.h_ln_partintactplat .00098335 18.792994 .08295477 .00055454 1.7732557 L2.h_ln_networker_share -.59713154 .07412258 -8.0560001 L2.h_ln_partintactplat -.00039981 .00058764 -.68037477 EQ2: dep.var : h_ln_partintactplat b GMM se GMM t GMM L.h_ln_networker_share -2.8583671 8.3792246 -.34112549 L.h_ln_partintactplat .84376319 L2.h_ln_networker_share -.01817657 L2.h_ln_partintactplat .15352689 .07063327 11.94569 7.0869809 -.00256478 .0743121 2.0659743 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintactplat ln_networker_share 1.394e-06 ln_partintactplat .00001529 .02488266 Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.0818 0.2380	1.0000

GMM finished : 11:39:44

Starting Monte-Carlo loop : 11:39:45 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 11:39:51

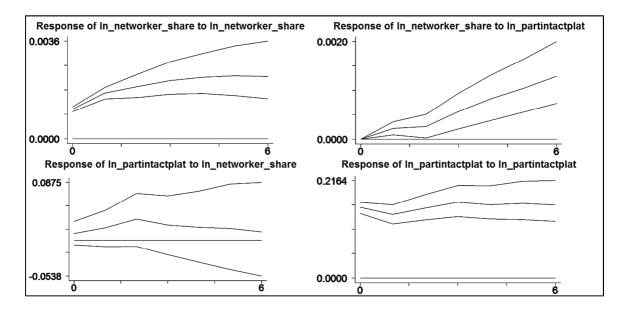
. pvar ln_networker_share ln_partintactplat, lag(3) gmm monte 1000 GMM started : 11:46:25 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM___ number of observations used : 205 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM 14.282822 L.h_ln_networker_share 1.5215674 .10653129 .001098 .00052521 2.0905798 L.h_ln_partintactplat L2.h_ln_networker_share -.41980784 .13707277 -3.0626639 L2.h_ln_partintactplat -.00156005 .00070442 -2.2146652 L3.h_ln_networker_share -.13652348 L3.h_ln_partintactplat .00096456 .05475344 -2.4934229 .00056025 1.7216542 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_networker_share 6.2070943 12.839869 .48342349 L.h_ln_partintactplat .8982266 .07340123 12.237214 L2.h_ln_networker_share -6.0838397 18.070979 -.33666354 L2.h_ln_partintactplat .16686103 .09244941 1.8048902 L3.h_ln_networker_share -1.2856109 7.6676697 -.16766644 L3.h_ln_partintactplat -.09027632 .06720709 -1.3432559 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintactplat ln_networker_share 1.298e-06 ln_partintactplat .00001186 .02484156

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.0662 0.3457	1.0000

GMM finished : 11:46:26

Starting Monte-Carlo loop : 11:46:27 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 11:46:33


. pvar ln_networker_share ln_partintactplat, lag(4) gmm monte 1000 GMM started : 11:56:38 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _ Results of the Estimation by system GMM_ number of observations used : 200 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM 15.42886 L.h_ln_networker_share 1.5320426 .0992972 .0014012 .00050278 2.7869149 L.h_ln_partintactplat .12586634 -4.8364666 L2.h_ln_networker_share -.60874837 .0006675 -2.6242402 L2.h_ln_partintactplat -.00175169 .17226565 L3.h_ln_networker_share .1539765 1.1187788 L3.h_ln_partintactplat .00210462 .00067827 3.1029213 L4.h ln networker share -.12981335 .0813298 -1.5961351 .00059374 -1.8859249 L4.h_ln_partintactplat -.00111975 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_networker_share 8.9594964 12.935183 .69264548 L.h_ln_partintactplat .89921572 .07391835 12.164986 L2.h_ln_networker_share -1.4566619 18.998603 -.07667205 .16790729 .09658814 L2.h ln partintactplat 1.7383841 -22.05582 17.806383 L3.h_ln_networker_share -1.2386468 .01942349 .08605524 L3.h_ln_partintactplat .22570952 L4.h_ln_networker_share 13.670288 8.2316713 1.6606941 L4.h_ln_partintactplat -.10952393 .06790706 -1.6128503 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintactplat ln networker share 1.158e-06 .02466629 ln partintactplat .00001102

Residuals correlation matrix

	u1	u2
ul	1.0000	
u2	0.0657 0.3550	1.0000

GMM finished : 11:56:39

Starting Monte-Carlo loop : 11:56:40 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 11:56:47

Appendix 15 Estimation Results PVAR(1)-(4) ln_network_cc ln_partintactplat;

Established Regions

. pvar ln_netw_cc ln_partintactplat, lag(1) gmm monte 1000 GMM started : 12:03:58 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 215 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM L.h_ln_netw_cc .75373717 .3052497 2.4692478 L.h_ln_partintactplat .00114573 .00166328 .68883786 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_netw_cc -1.7795553 1.6012237 -1.1113721 L.h_ln_partintactplat .97590298 .01627729 59.954885 just identified - Hansen statistic is not calculated symmetric uu[2,2]
 In_netw_cc
 In_partintactplat

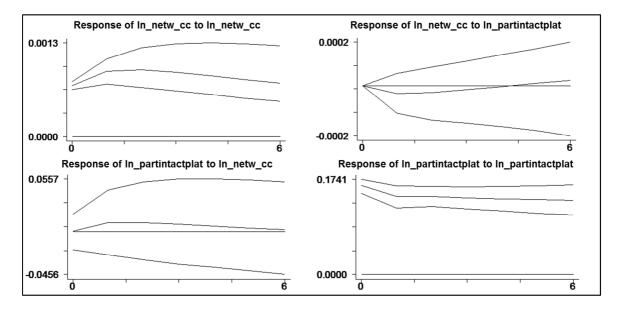
 ln_netw_cc
 .00025597

 tintactplat
 -.00001676
 .02746726
 ln_partintactplat

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	-0.0056 0.9348	1.0000

GMM finished : 12:03:59

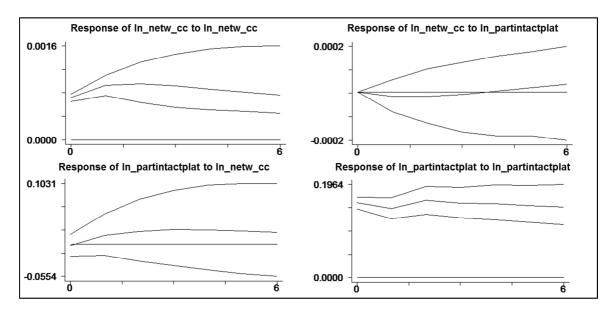

Starting Monte-Carlo loop : 12:04:00 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:04:05

. pvar ln_netw_cc ln_partintactplat, lag(2) gmm monte 1000 GMM started : 12:29:21 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM__ number of observations used : 210 EQ1: dep.var : h_ln_netw_cc se_GMM b_GMM t_GMM L.h_ln_netw_cc .41630759 .31006928 1.3426277 L.h_ln_partintactplat .00095112 .00117357 .81045387 L2.h_ln_netw_cc .39936445 .29127237 1.3711031 L2.h_ln_partintactplat -.00027363 .00074835 -.36564829 EQ2: dep.var : h_ln_partintactplat b GMM se GMM t GMM L.h_ln_netw_cc -1.3545502 .97478538 -1.3895882 L.h_ln_partintactplat .88079723 .07011678 12.56186 .94382093 L2.h_ln_netw_cc -.79394402 -.84120197 L2.h_ln_partintactplat .10295749 .0688452 1.4954927 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintactplat .00022168 ln_netw_cc .0000252 .0268432 ln_partintactplat Residuals correlation matrix .

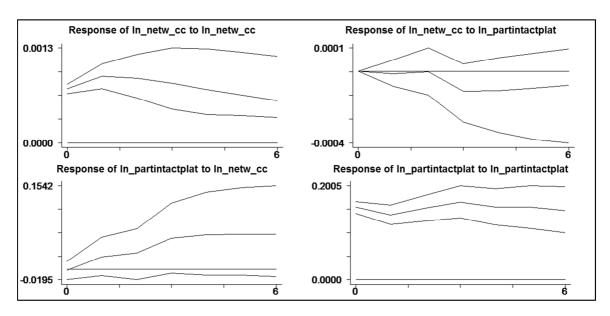
u2	u1	
	1.0000	u1
1.0000	0.0108 0.8761	u2

GMM finished : 12:29:22

Starting Monte-Carlo loop : 12:29:23 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:29:29


GMM started : 12:31:39 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 205 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM .27981075 .22552692 1.2406978 L.h_ln_netw_cc .00175493 L.h_ln_partintactplat .0007789 .44383511 L2.h_ln_netw_cc .26680515 .21402541 1.246605 .00314705 -1.1933483 L2.h_ln_partintactplat -.00375552 .21002573 1.2276142 L3.h ln netw cc .25783055 L3.h_ln_partintactplat .00355433 .00355338 1.0002666 _____ EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_netw_cc -1.0113985 .65470976 -1.5448043 L.h_ln_partintactplat .9325343 .06732612 13.851003 .64193145 -.75372735 L2.h_ln_netw_cc -.48384129 L2.h_ln_partintactplat .17206937 .0899526 1.9128893 L3.h ln netw cc -.17080601 .61239497 -.27891479 L3.h_ln_partintactplat -.12718844 .06827759 -1.8628139 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintactplat ln_netw_cc .00020676 ln_partintactplat .00007677 02587715 Residuals correlation matrix 1 ...1

. pvar ln_netw_cc ln_partintactplat, lag(3) gmm monte 1000


	uı	u∠
u1	1.0000	
u2	0.0333 0.6350	1.0000

GMM finished : 12:31:41

Starting Monte-Carlo loop : 12:31:42 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:31:48

. pvar ln_netw_cc ln_partintactplat, lag(4) gmm monte 1000 GMM started : 12:33:38 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 200 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM .204991 .17016764 1.2046415 L.h_ln_netw_cc .77913092 L.h_ln_partintactplat .00086625 .00111181 L2.h_ln_netw_cc .19691799 .16057289 1.2263464 L2.h_ln_partintactplat -.00393791 .00446299 -.88234787 L3.h_ln_netw_cc .18948639 .15980473 1.1857371 .00103803 .00262876 L3.h_ln_partintactplat .39487407 .18944244 .16278555 L4.h ln netw cc 1.1637547 L4.h_ln_partintactplat .00262583 .00209729 1.2520074 EQ2: dep.var : h_ln_partintactplat b GMM se_GMM t GMM L.h_ln_netw_cc -.66434631 .53623271 -1.2389142 L.h_ln_partintactplat .92786258 .07003911 13.247777 L2.h_ln_netw_cc -.25770289 .49536343 -.52022995 .09778369 L2.h ln partintactplat .18847288 1.9274469 L3.h_ln_netw_cc -.01498481 .45490707 -.03294037 L3.h_ln_partintactplat -.01027289 .08806485 -.11665143 -.2356673 -.11086948 .47044915 L4.h_ln_netw_cc .06490669 -1.9445666 L4.h_ln_partintactplat -.12621538 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintactplat ln netw cc .00020051 ln_partintactplat .00011976 .02574082 Residuals correlation matrix u1 u2 u1 1.0000 u2 0.0528 1.0000 0.4581 GMM finished : 12:33:39 Starting Monte-Carlo loop : 12:33:40 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:33:47

Appendix 16 Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree

In_partintact; Established Regions

. pvar ln_new_sign ln_average_degree ln_partintact, lag(1) gmm monte 1000 GMM started : 10:38:10 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 215 EQ1: dep.var : h_ln_new_sign EQ2: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM L.h_ln_new_sign -.00323491 L.h_ln_average_degree .92137001 L.h_ln_partintact .00925085 .00437757 -.73897294 .01171057 78.678504 .00246825 3.7479383 EQ3: dep.var : h_ln_partintact L.h_ln_new_sign -0.01423252 .055064363 -28103274 L.h_ln_average_degree -1.842319 .14717036 -1.2518275 L.h_ln_partintact .97465742 .02376158 41.018201 just identified - Hansen statistic is not calculated symmetric uu[3,3]
 In_new_sign
 In_average_degree

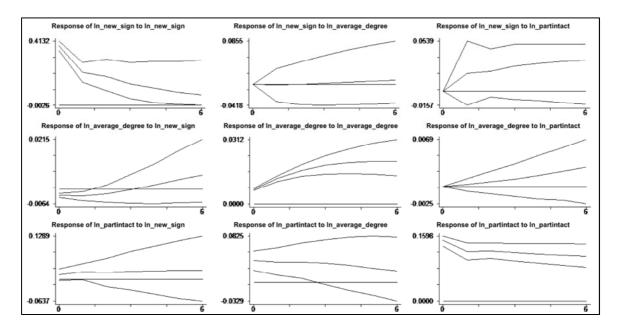
 ln_new_sign
 .15695324

 ln_average_degree
 -.00145876
 .00017439

 ln_partintact
 .00255216
 .00033431
 ln_partintact .02588947 Residuals correlation matrix ul u2 u3

		-	
ul	1.0000		
u2	-0.2798	1.0000	
u3	0.0402	0.1575 0.0208	1.0000

GMM finished : 10:38:12

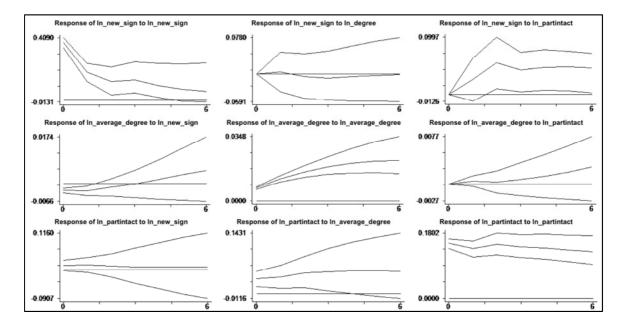

Starting Monte-Carlo loop : 10:38:14 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:38:21

pvar ln_new_sign ln_average_degree ln_partintact, lag(2) gmm monte 1000 GMM started : 10:51:14 GMM started : 10:51:14 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 210 EQ1: dep.var : h_ln_new_sign b_CMM L.h_ln_new_sign .53573993 L.h_ln_average_degree -.79178234 L.h_ln_partintact .1264339 L2.h_ln_new_sign .18261454 L2.h_ln_average_degree .90030783 L2.h_ln_partintact -.02743414 se_GMM t_GMM .11617671 4.6114229 3.171662 -.24964272 .14461365 .8742881 1.9022652 .09599846 .30295665 2.9717381 .12326388 EQ2: dep.var : h_ln_average_degree se_GMM .00214488 .08897271 .00372423 t_GMM 2.0599091 19.551725 .55371137 b GMM b_GKM L.h_ln_new_sign .00441826 L.h_ln_average_degree 1.73957 L.h_ln_partintact .00206215 L2.h_ln_new_sign .00056374 L2.h_ln_average_degree -.76869369 L2.h_ln_partintact -.00133931 .00148669 .37918941 .0829446 -9.2675553 .00351762 -.38074245 EQ3: dep.var : h_ln_partintact b GMM se GMM t GMM L.h_ln_new_sign .03296369 L.h_ln_average_degree .55550155 L.h_ln_partintact .82034796 L2.h_ln_new_sign -.01887588 se_GMM .03874338 1.5937658 .07726669 .85082128 .34917398 10.617097 .03178638 -.5938355 1.4862166 -.55775174 .07479864 1.9447387 L2.h_ln_average_degree -.82893987 L2.h_ln_partintact .14546381 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree .14772373 -.00105994 .00005877 .00530033 .00024455 ln_partintact ln_new_sign ln_average_degree ln_partintact .02388634 Residuals correlation matrix ul u2 u3 1.0000 u1 -0.3600 u2 1.0000 0.0893 0.2064 u3 1.0000

GMM finished : 10:51:16

0.1976 0.0026

Starting Monte-Carlo loop : 10:51:17 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:51:24



pvar ln_new_sign ln_average_degree ln_partintact, lag(3) gmm monte 1000 GMM started : 10:54:01 accumulating matrices equation 1,2,3, calculating b2sls accumulating matrices equation rrsspectrumetring of calculating big 20u2 matrix finished accumulating 20u2 Results of the Estimation by system GMM______ number of observations used : 205 EQ1: dep.var : h_ln_new_sign b_GNM L.h_ln_new_sign .47836114 L.h_ln_average_degree -.11376703 se_GMM .10871081 3.7925629 t_GMM 4.4003088 -.0299974 1.1265623 L.h_ln_average_degree L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partintact L3.h_ln_new_sign .17054752 .15138756 .11158454 .54475426 -.45702168 -2.5676369 5 618195 .13001041 .17137259 .75864181 2.0165779 3.0464159 L3.h_ln_average_degree h_ln_average_degree 2.7661271 L3.h_ln_partintact -.18201784 3.0464159 .90799393 .14748209 -1.2341691 EQ2: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM b_GMM .00405542 1.6792022 .00324729 .00273937 -.58958095 L.h_ln_new_sign L.h_ln_average_degree L.h_ln_partintact L2.h_ln_new_sign 2.1983722 .00184474 .13114926 .00351661 .00154873 .19749589 12.803749 .92341444 1.7687806 -2.9852822 L2.h_ln_average_degree L2.h_ln_partintact -.00674611 L3.h_ln_new_sign -.00186935 L3.h_ln_average_degree -.11742261 L3.h_ln_partintact .00400848 -1.6616361 -1.4593781 -1.3339259 1.2096245 .00405992 .00128092 .08802784 EQ3: dep.var : h_ln_partintact b_GMM .0161594 1.072169 .90154184 se_GMM .03235035 1.8847542 .0746243 t_GMM .49951244 L.h_ln_new_sign .5688641 12.081076 L.h_ln_average_degree L.h_ln_partintact L2.h_ln_new_sign -.01546173 L2.h_ln_average_degree -.78225732 L2.h_ln_partintact .16444656 L3.h_ln_new_sign -.01057639 .03488164 -.44326277 2.6081124 -.29993237 .09475499 1.7354924 .03185088 -.33205969 L3.h_ln_average_degree -.35815986 L3.h_ln_partintact -.10338159 1.2806538 -.27966955 .06902887 -1.4976572 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintact .14411904 -.00098593 .00486873 ln new sign ln_average_degree
 ln_partintact .00005528 .000208 .02433266 Residuals correlation matrix 1 u1 u2 u3

ul	1.0000		
u2	-0.3494 0.0000	1.0000	
и3	0.0823 0.2409	0.1794 0.0101	1.0000

GMM finished : 10:54:03

Starting Monte-Carlo loop : 10:54:04 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=68, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:54:12

. pvar ln_new_sign ln_average_degree ln_partintact, lag(4) gmm monte 1000 GMM started : 10:58:21 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM______ number of observations used : 200 EQ1: dep.var : h_ln_new_sign
 b_GMM
 se_GMM
 t_GMM

 L.h_ln_new_sign
 .44774125
 .10844662
 4.1286788

 L.h_ln_average_degree
 .477712675
 4.0397176
 -.11810894

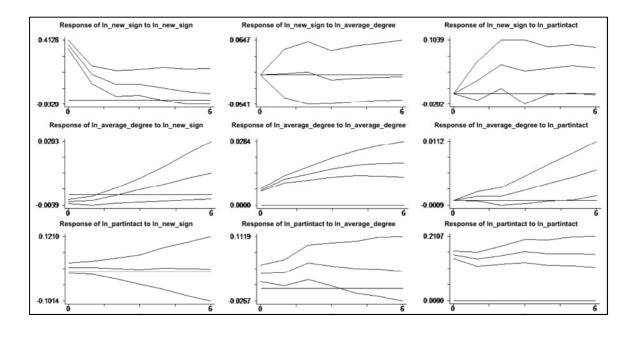
 L.h_ln_partintact
 .16743709
 .1539525
 1.0875893

 L2.h_ln_new_sign
 .05974681
 .10901954
 .54803762

 L2.h_ln_average_degree
 -11045675
 6.1795907
 -01787415

 L2.h_ln_average_degree
 .11045675
 6.1795907
 -01787415

 L3.h_ln_mex_sign
 .11345365
 .08926626
 1.97674926
 L3.h_ln_average_degree L3.h_ln_partintact L4.h_ln_new_sign -1.7780137 6.4904048 -.27394497 .18739313 .07282431 3.60375 .16748775 -.17721727 -.9456978 .03005306 .412679 2.452516 L4.h_ln_average_degree L4.h_ln_partintact .68054554 .00565597 E02: dep.var : h_ln_average_degree se_GMM t_GMM 2.7055222 b_GMM L.h_ln_new_sign .00513424 L.h_ln_average_degree 1.6777267 L.h_ln_partintact .00482288 L2.h_ln_new_sign .00193717 L2.h_ln_average_degree -.78456776 L2.h_ln_partintact -.00843173 L3.h_ln partintact .00843173 .00189769 .12776415 .00343944 13.131436 1.4022284 .00343944 .00151752 .19735871 .00370794 .00146239 .14531237 1.2765382 -3.975339 -2.2739659 L3.h_ln_new_sign .00009776 .06685066 L3.h_ln_average_degree .22926642 1.5777488 L3.h_ln_partintact .00919346 .00399342 2.3021523 L4.h_ln_new_sign L4.h_ln_average_degree L4.h_ln_partintact .00014869 -.15636277 -.00477305 .00355342 .00116591 .06468972 .00359913 -2.4171194 -1.3261695 EQ3: dep.var : h_ln_partintact b_GMM L.h_ln_new_sign .00824668 se_GMM .03108382 1.9796529 t_GMM .26530462 .3151417 11.782119 .00310164 L.h_ln_average_degree .62387118 In_average_degree .0233/118 L.h_ln_partintact .90031741 L2.h_ln_new_sign .00010294 ln_average_degree 1.752813 .2.h_ln_partintact .16120515 L3.h_ln_new_sign -.03754376 L.h_ln_partintact .07641388 L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partintact
 .00319023
 .00310184


 2.8858501
 .60738186

 .09571931
 1.6841444

 .03288844
 -1.1415485

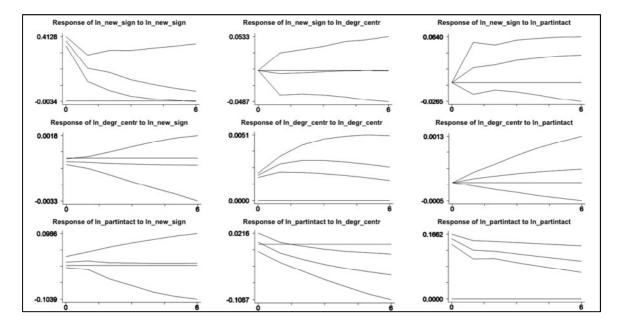
 2.4301157
 -2.157372
 L3.h_ln_average_degree -5.2426635 L3.h_ln_partintact .022309587 L4.h_ln_new_sign .01434914 L4.h_ln_average_degree 2.7768431 L4.h_ln_partintact -.10925439 .09332026 .25391994 .02807556 .51109013 1.2500076 2.2214609 .06689845 -1.6331378 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree
 .14549395
 -.00095757 .00005236 ln_partintact ln_new_sign ln_average_degree ln_partintact .00496369 .00018902 .0239501 Residuals correlation matrix ul u2 u3 1.0000 ul u2 -0.3471 1.0000 0.0000 и3 0.0841 0.1688 1.0000 0.2362 0.0169

GMM finished : 10:58:23

In_degree_centralization In_partintact; Established Regions

. pvar ln_new_sign ln_degr_centr ln_partintact, lag(1) gmm monte 1000 GMM started : 11:16:13 GMM started : 11:16:13 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM_ number of observations used : 215 EQ1: dep.var : h_ln_new_sign b_GMM se_GMM t_GMM L.h_ln_new_sign .73036366 .16363933 4.4632527 L.h_ln_degr_centr 2.0313015 3.4661111 .56604628 L.h_ln_partintact .11207585 .0792549 1.414119 EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM L.h_ln_new_sign -.00136771 L.h_ln_degr_centr .97613453 L.h_ln_partintact .0012065 se_GMM .00073931 .02773845 .00055771 -1.8499811 35.190671 2.1633058 EO3: dep.var : h ln partintact b_GMM se_GMM t_GMM L.h_ln_new_sign -.00551999 .05648251 -.10481097 L.h_ln_degr_centr -2.4862234 1.3567131 -1.8225344 L.h_ln_partintact .94605913 .03205853 29.510375 just identified - Hansen statistic is not calculated symmetric uu[3,3] . 1n_new_sign ln_degr_centr ln_partintact .15685537 -.00016184 5.441e-06 ln_new_sign ln_degr_centr
ln_partintact 5.441e-06 7.392e-06 .00272562 .02551423 Residuals correlation matrix ul u2 u3 u1 1.0000 -0.1748 1.0000 u2 0.0102 0.0431 0.0199 1.0000 0.5300 0.7721 u3

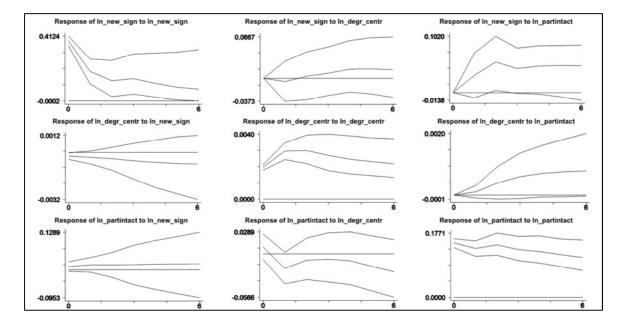
GMM finished : 11:16:32


Starting Monte-Carlo loop : 11:16:33 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:16:40

. pvar ln_new_sign ln_degr_centr ln_partintact, lag(2) gmm monte 1000 GMM started : ll:31:20 GMM started : 11:31:20 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 210 : h_ln_new_sign EQ1: dep.var b GMM se GMM t GMM b_dMM L.h_ln_new_sign .53833094 L.h_ln_degr_centr -2.7815932 L.h_ln_partintact .13365359 L2.h_ln_new_sign .17983601 L2.h_ln_degr_centr 4.6826934 se_GMM t_GMM .12918449 4.1671485 9.6951234 -.28690642 .14474458 .92337546 .10663892 1.6864013 10.247846 .45694415 -.16364297 L2.h_ln_partintact -.01842562 .11259648 EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM .00051491 t_GMM .2676932 .00013784 L.h_ln_new_sign L.h_ln_degr_centr 1.4296156 L.h_ln_degr_centr 0.00071729 L2.h_ln_new_sign -00027451 L2.h_ln_degr_centr -46653524 L2.h_ln_partintact -00039434 .16222637 8.8124733 .00075806 .00039943 .16666271 .00051306 -.76861447 EQ3: dep.var : h_ln_partintact se_GMM .03831158 4.0359676 t_GMM .22736624 -2.5574063 9.9052435 .08187251 .03590157 -.59024437 3.747483 1.7627183 .06958732 2.0114356 just identified - Hansen statistic is not calculated symmetric uu[3,3] J In_new_sign ln_degr_centr ln_partintact .14843101 -.00010198 4.038e-06 .00388517 4.805e-06 .02402281 ln_new_sign ln_degr_centr ln_partintact Residuals correlation matrix ul u2 u3 ul

	1.0000		
u2	-0.1317 0.0566	1.0000	
u3	0.0650 0.3488	0.0154 0.8241	1.0000

GMM finished : 11:31:23


Starting Monte-Carlo loop : 11:31:24 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:31:31

. pvar ln_new_sign ln_degr_centr ln_partintact, lag(3) gmm monte 1000 GMM started : ll:43:45 accumulating matrices equation 1,2,3, calculating b2sls EQ1: dep.var : h_ln_new_sign b GMM se GMM t GMM L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact .48463825 -3.7050538 .20774388 .09068443 .12557158 10.279135 .16352964 3.859458 -.36044411 1.2703745 .83218362 L2.h_ln_new_sign .10897166 L2.h_ln_degr_centr L2.h_ln_partintact L3.h_ln_new_sign L3.h_ln_degr_centr L3.h_ln_partintact 10.180928 16.555737 .61494864 .17581139 .08609364 .15895764 -3.50507 -.18143179 .48969319 08746288 1 8174297 10.262395 -.34154502 -1.2599493 EQ2: dep.var : h_ln_degr_centr b_GMM .00007788 1.5020596 .00069967 t_GMM .16978005 9.8363058 se_GMM .00045873 .15270566 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact .00083573 .83719682 L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partintact L3.h_ln_new_sign L3.h_ln_degr_centr -.00034121 .00033114 -1.0304001 -.73402965 .00090055 -.00025914 .22611327 -3.2462917 .00117772 .76465 -.80258106 .20183253 .1100937 1.8332796 -.72551554 -.00089762 L3.h_ln_partintact .00123722 : h_ln_partintact EQ3: dep.var b_GMM .00952877 se_GMM t_GMM .28559686 L.h_ln_new_sign .03336439 L.h ln degr centr -13.962315 -3.1412901 4.444771 L.h_ln_degr_centr -13.962315 L.h_ln_partintact .9863099 L2.h_ln_new_sign -.00025297 L2.h_ln_degr_centr 24.868476 L2.h_ln_partintact .16614185 L3.h_ln_new_sign -.0030849 L3.h_ln_degr_centr -13.762737 L3.h_ln_partintact -.11983458 07703289 03077639 9.0558256 .08731738 -3.1412301 11.635419 -.00821952 2.7461302 1.9027351 .03606646 -.10836906 6.5779045 -2.0922677 .06855635 -1.7479721 just identified - Hansen statistic is not calculated symmetric uu[3,3] In_new_sign ln_degr_centr ln_partintact
.14687575
-.00009773 3.880e-06 ln_new_sign ln_degr_centr ln_partintact 3.880e-06 .00001488 .00403337 .0228133 Residuals correlation matrix ul u2 u3 ul u2 -0.1294 1.0000 0.0643 0.0696 0.0500 0.3215 0.4762 u3 1.0000

GMM finished : 11:43:48

Starting Monte-Carlo loop : 11:43:49 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:43:57

. pvar ln_new_sign ln_degr_centr ln_partintact, lag(4) gmm monte 1000 GMM started : 11:54:00 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 200 ______EQ1: dep.var : h_ln_new_sign

	b_GMM	se_GMM	t_GMM
L.h_ln_new_sign	.45828901	.12542365	3.6539282
L.h_ln_degr_centr	-3.2799211	10.874252	30162268
L.h_ln_partintact	.21230043	.18118148	1.1717557
L2.h_ln_new_sign	.07161186	.11060583	.64745109
L2.h_ln_degr_centr	13.542578	19.363598	.69938335
L2.h_ln_partintact	.12740969	.20025747	.63622939
L3.h_ln_new_sign	.12925188	.08988584	1.4379559
L3.h_ln_degr_centr	-11.564633	20.991389	55092271
L3.h_ln_partintact	22926356	.18345506	-1.2496988
L4.h_ln_new_sign	.0284887	.07785363	.36592645
L4.h_ln_degr_centr	5.0536696	12.968415	.38969063

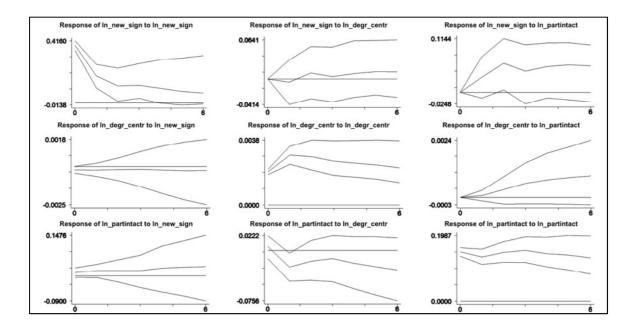
L4.h_ln_partintact .02152732 .14715147 .14629361 EQ2: dep.var : h_ln_degr_centr b_GMM

	b_GMM	se_GMM	t_GMM	
L.h_ln_new_sign	.0002617	.00048464	.53998261	
L.h_ln_degr_centr	1.5000827	.14802157	10.134217	
L.h_ln_partintact	.0005033	.00089922	.55970434	
L2.h_ln_new_sign	00026757	.00031317	85439328	
L2.h_ln_degr_centr	8020208	.22865265	-3.5075946	
L2.h_ln_partintact	.00091302	.00128152	.71244681	
L3.h_ln_new_sign	.00003235	.00034719	.09316373	
L3.h_ln_degr_centr	.36567747	.16110474	2.269812	
L3.h_ln_partintact	00033761	.00146862	22988126	
L4.h_ln_new_sign	00019914	.00026384	7547485	
L4.h_ln_degr_centr	10290545	.08493527	-1.211575	
L4.h_ln_partintact	00052145	.0008602	60620125	
-				

EQ3: dep.var : h_ln_partintact

	b_GMM	se_GMM	t_GMM
L.h_ln_new_sign	.01020627	.03205269	.3184215
L.h_ln_degr_centr	-15.652091	4.4751275	-3.4975744
L.h_ln_partintact	.89337085	.08139493	10.975756
L2.h_ln_new_sign	00010014	.02995436	00334303
L2.h_ln_degr_centr	26.19214	10.086378	2.5967835
L2.h_ln_partintact	.19310976	.09702962	1.9902147
L3.h_ln_new_sign	00662555	.03327307	19912648
L3.h_ln_degr_centr	-13.013522	10.694368	-1.2168575
L3.h_ln_partintact	00718059	.08744564	08211491
L4.h_ln_new_sign	.02246522	.02964653	.75776879
L4.h_ln_degr_centr	24273715	4.8908078	0496313
L4.h_ln_partintact	13535208	.06059067	-2.2338766
just identified - H	ansen statis	tic is not c	alculated

symmetric uu[3,3]


	ln_new_sign	ln_degr_centr	ln_partintact
ln_new_sign	.14885962		
ln_degr_centr	00008829	3.773e-06	
ln_partintact	.00482942	8.172e-06	.02263719

Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	-0.1178 0.0966	1.0000	
u3	0.0831 0.2418	0.0279	1.0000

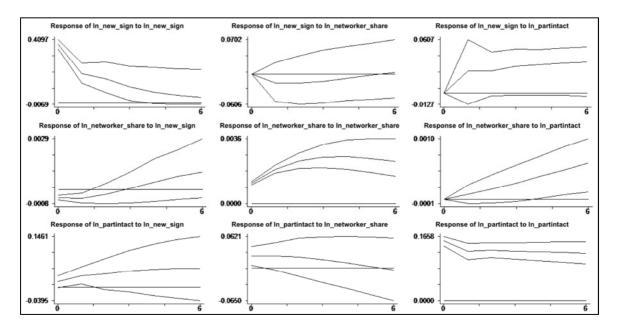
GMM finished : 11:54:02

Starting Monte-Carlo loop : 11:54:03 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=648, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:54:12

Appendix 18 Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share ln_partintact; Established Regions

L.h_ln_partintact .09356022 .05193164 1.8016034 					
b_GMM se_GMM t_GMM L.h_ln_new_sign 00092621 .00066041 -1.4024731 L.h_ln_networker_share .92259342 .01370049 67.340167 L.h_ln_partintact .00129672 .00023069 5.6210345 EQ3: dep.var : h_ln_partintact L.h_ln_new_sign .00461621 .046493 .09928824 L.h_ln_networker_share -1.884722 1.3332706 -1.4137206					
b_GMM se_GMM t_GMM L.h_ln_new_sign 00092621 .00066041 -1.4024731 L.h_ln_networker_share .92259342 .01370049 67.340167 L.h_ln_partintact .00129672 .00023069 5.6210345 EQ3: dep.var : h_ln_partintact L.h_ln_new_sign .00461621 .046493 .09928824 L.h_ln_networker_share -1.884722 1.3332706 -1.4137206					
L.h_ln_new_sign00092621 .00066041 -1.4024731 L.h_ln_networker_share .92259342 .01370049 67.340167 L.h_ln_partintact .00129672 .00023069 5.6210345 					
L.h_ln_new_sign00092621 .00066041 -1.4024731 L.h_ln_networker_share .92259342 .01370049 67.340167 L.h_ln_partintact .00129672 .00023069 5.6210345 					
L.h_ln_networker_share .92259342 .01370049 67.340167 h_ln_partintact .00129672 .00023069 5.6210345 					
L.h_ln_partintact .00129672 .00023069 5.6210345 					
EQ3: dep.var : h_ln_partintact b_GMM se_CMM t_GMM L.h_ln_new_sign .00461621 .046493 .09928824 L.h_ln_networker_share -1.8848722 1.3332706 -1.4137206					
EQ3: dep.var : h_ln_partintact b_CMM se_GMM t_GMM L.h_ln_new_sign .00461621 .046493 .09928824 L.h_ln_networker_share -1.8848722 1.3332706 -1.4137206					
b_GMM se_GMM t_GMM L.h_ln_new_sign .00461621 .046493 .09928824 L.h_ln_networker_share -1.8848722 1.3332706 -1.4137206					
L.h_ln_new_sign .00461621 .046493 .0992824 L.h_ln_networker_share -1.8848722 1.3332706 -1.4137206					
L.h_ln_networker_share -1.8848722 1.3332706 -1.4137206					
L.b. In partiplact					
just identified - Hansen statistic is not calculated					
symmetric uu[3,3]					
In_new_sign ln_networker_share ln_partintact ln_new_sign .1527831					
ln_networker_share00027488 3.548e-06					
ln_partintact .00363747 .00003917 .02603235					
Residuals correlation matrix					
ul u2 u3					
ul 1.0000					
u2 -0.3745 1.0000 0.0000					
u3 0.0577 0.1290 1.0000					

GMM finished : 12:03:35


0.3995 0.0589

Starting Monte-Carlo loop : 12:03:36 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:03:42

pvar ln_new_sign ln_networker_share ln_partintact, lag(2) gmm monte 1000 GMM started : 12:11:56 GMM started : 12:11:56 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 210 EQ1: dep.var : h_ln_new_sign b_GMM L.h_ln_new_sign .47460908 L.h_ln_networker_share -18.691456 L.b ln_narrietatat .4000000 se_GMM .12095238 21.57335 .14192983 t_GMM 3.9239334 -.86641417 L.h_ln_partintact .16393483 L2.h_ln_new_sign .15828979 L2.h_ln_networker_share 20.113372 L2.h_ln_partintact -.04053881 1.1550414 1.6501291 .0959257 20.219269 99476258 -.32226688 .12579268 EQ2: dep.var : h_ln_networker_share b_GMM .00070858 1.6548363 se_GMM .00035642 .09224259 t_GMM 1.9880479 17.940045 L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partintact .00057807 L2.h_ln_new_sign .00023977 L2.h_ln_networker_share -.69411901 L2.h_ln_partintact -.00041011 .00057807 .00061519 .9396614 .94633343 .00025337 .08489801 -8.1759164 .00062642 -.65468949 EQ3: dep.var : h_ln_partintact b_GMM L.h_ln_new_sign .05555767 L.h_ln_networker_share 3.2318348 se_GMM .0429498 11.925659 .07577244 t GMM 1.293549 .27099843 10.892113 L.h_ln_partintact .82532195 L2.h_ln_partintact .82332195 L2.h_ln_new_sign -.00664514 L2.h_ln_networker_share -6.1002774 L2.h_ln_partintact .14973152 -.20575344 -.55570367 1.9732761 .03229661 10.977573 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share .14438922 -.00018169 1.548e-06 ln_partintact ln_new_sign ln_networker_share ln_partintact .00594275 .00002011 .02466182 Residuals correlation matrix

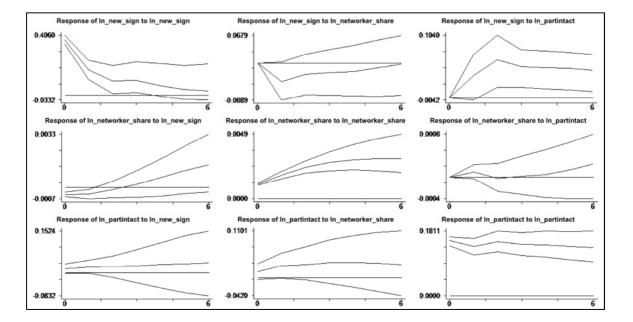
GMM finished : 12:11:58

Starting Monte-Carlo loop : 12:11:59 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:12:06

. pvar ln_new_sign ln_networker_share ln_partintact, lag(3) gmm monte 1000 GMM started : 12:13:53 accumulating matrices equation 1,2,3, calculating b2sls EQ1: dep.var : h_ln_new_sign b GMM se GMM b_GMM
L.h_ln_new_sign .30018917
L.h_ln_networker_share -42.169132
L.h_ln_partintact .23904594
L2.h_ln_new_sign .0785309
L2.h_ln_networker_share 51.421182
L2.h_ln_partintact .12675137
L2.h_ln_partintact .12675137 se_GMM .11516313 25.100089 .15044828 .11779101 32.985365 3.3881432 -1.6800391 1.5888912 .66669685 1.558909 L2.h_ln_partintact .12675137 L3.h_ln_new_sign .15369073 L3.h_ln_networker_share -7.9217671 L3.h_ln_partintact -.23070497 .16592553 .76390513 .07895994 1.9464392 18.930986 -.41845508 .14761258 -1.5629086 EQ2: dep.var : h_ln_networker_share b GMM se GMM t GMM se_GMM .00030513 .11907353 .0005667 .00032293 L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partintact .00072387 1.5868745 .00064984 .00070697 C_GMM 2.3723097 13.326845 1.1467098 2.1892547 L2.h_ln_new_sign L2.h_ln_networker_share -.38871963 .17693543 -2.1969576 L2.h_ln_partintact -.00190875 L3.h_ln_new_sign -.00006048 L3.h_ln_networker_share -.23424107 L3.h_ln_partintact .00115215 .00074562 -2.5599321 .00023222 -.26043523 .08588298 -2.727444 1.9788042 EQ3: dep.var : h_ln_partintact b_GMM L.h_ln_new_sign .03766483 L.h_ln_networker_share 13.81114 L.h_ln_partintact .89539043 L2.h_ln_new_sign -.01674882 L2.h_ln_networker_share -17.367817 L2.h_ln_partintact .16396768 L3.h_ln_new_sign -.00774161 L3.h_ln_new_sign -.00774161 L3.h_ln_partintact -.09329226 se_GMM .03602005 14.545991 .07508343 t_GMM 1.045663 .94948087 11.925273 .03746847 -.44701113 20.644715 -.84127182 09741572 1.6831749 .09/415/2 1.6831/49 .03147561 -.24595581 10.384902 .24999521 .06962424 -1.3399393 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share .14083432 -.00017094 1.469e-06 ln_partintact ln_new_sign ln_networker_share ln_partintact .0060007 8.355e-06 .02409966 Residuals correlation matrix ul u2 u3 ul 1.0000 -0.3759 u2 1.0000 0.0000

GMM finished : 12:13:55

u3


0.1031

0.1414

0.0444 1.0000

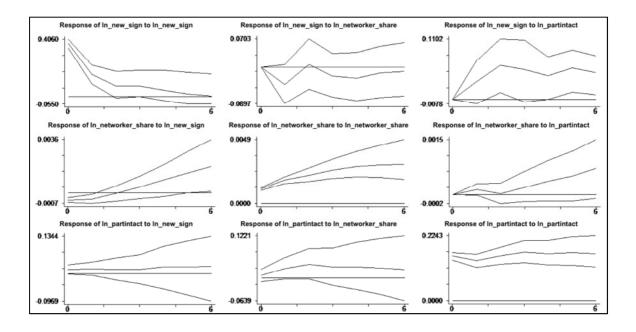
0.5271

Starting Monte-Carlo loop : 12:13:56 , total 1000 repetitions requested i-38, i-76, i-114, i-152, i-190, i-228, i-266, i-304, i-342, i-380, i-418, i-456, i-494, i-532, i-57 > 0, i-608, i-646, i-684, i-722, i-760, i-798, i-836, i-874, i-912, i-950, i-988, i-1000, finished M > onte-Carlo loop : 12:14:04

pvar ln_new_sign ln_networker_share ln_partintact, lag(4) gmm monte 1000 GMM started : 12:15:42 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation fraction fraction fractions of the second EQ1: dep.var : h_ln_new_sign b_GMM L.h_ln_new_sign .36008795 L.h_ln_networker_share -39.683266 L.h_ln_partintact .21465528 L2.h_ln_new_sign .07997168 '2.h_ln_networker eb-se_GMM .11708354 25.722677 .15459665 .11770454 33.977569 GMM t_GMM 3.0754789 -1.5427347 1.3884859 .67942733 L2.h_ln_new_sign L2.h_ln_networker_share L2.h_ln_partintact L3.h_ln_new_sign L3.h_ln_neworker_share L3.h_ln_partintact L4.h_ln_new_sign L4.h_ln_networker_share L4.h_ln_networker_share 2.2504809 .17014766 .17556008 .96917056 .74738596 -2.102566 -1.2696719 07072944 09463576 .07072944 -73.199925 -.23372965 .09463576 34.814567 .18408665 .01150346 .06861269 .16765795 38.194777 24.22911 1.5764003 L4.h_ln_partintact .01383499 .18587286 .07443253 EQ2: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM .0008345 2.683998 L.h ln new sign .00031092 L.h_ln_networker_share 1.5798723 L.h_ln_partintact .00087403 L2.h_ln_new_sign .00061106 L2.h_ln_networker_share -.55676663 .12038784 .00059113 .00032405 13.123189 1.4785688 1.8857252 .16989854 -3.2770537 L2..__In_networker_share -.550 hosos L2.h_ln_partintat -.00213315 L3.h_ln_new_sign .00036359 L3.h_ln_networker_share .14073916 L3.h_ln_partintat .00203065 L4.h_ln_new_sign .00004783 .00076008 -2.8064932 .00026425 1.3759282 .00026423 .17651783 .00073767 .00021778 .79730848 2.7528007 .21963874 L4.h_ln_networker_share -.20115275 .09244327 -2.1759588 L4.h_ln_partintact -.00095636 .00065828 -1.4528027 EQ3: dep.var : h_ln_partintact se_GMM t_GMM .90805324 .03141583 .0345969 L.h_ln_new_sign .0345969 14.102003 .07663408 .03618552 21.391051 .0995456 L.h_ln_networker_share 17.887057 L.h_ln_partintact .89499942 L2.h_ln_new_sign -.01779892 L2.h_ln_networker_share -14.621861 1.2684054 1.2684034 11.678869 -.49187975 -.6835504 1.7836049 .03368937 -1.2279538 18.540843 -1.1036163
 18.540843
 -1.1036163

 .09451898
 .31901628

 .02644195
 .52825168


 8.6422155
 1.9315499

 .07088314
 -1.7583854
 L3.h_in_partintact .03015309 L4.h_ln_new_sign .013968 L1n_networker_share 16.692871 L4.h_ln_partintact -.12463987 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share .14070212 -.00017199 1.481e-06 ln_partintact ln_new_sign ln_networker_share ln_partintact .00565887 2.403e-06 .02401312 Residuals correlation matrix ul u2 u3

ul 1.0000 u2 -0.3770 1.0000 0.0000 113 0.0974 0.0128 1.0000 0.1699 0.8575

GMM finished : 12:15:44

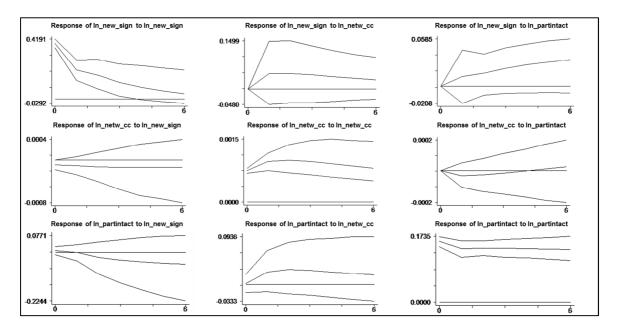
Starting Monte-Carlo loop : 12:15:46 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:15:55

Appendix 19 Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc ln_partintact; Established Regions

. pvar ln_new_sign ln_netw_cc ln_partintact, lag(1) gmm monte 1000 GMM started : 12:18:04 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM number of observations used : 215 EQ1: dep.var : h_ln_new_sign					
b_GMM se_GMM t_GMM					
L.h_ln_new_sign .70881398 .124659 5.6860233					
L.h_ln_netw_cc 2.7565424 4.6073055 .59829815					
L.h_ln_partintact .08765385 .05525453 1.5863649					
EQ2: dep.var : h_ln_netw_cc					
b_GMM se_GMM t_GMM					
D_GMM SE_GMM t_GMM L.h_ln_new_sign .01004064 .00562942 1.7835998					
L.h_ln_netw_cc .57118527 .29676842 1.9246834					
L.h_ln_partintact00204796 .00189703 -1.0795604					
L.N_IN_PAILINLACE =.00204736 .00189703 =1.0793804					
EQ3: dep.var : h ln_partintact					
Egs: dep.var : n_in_partintact					
b_GMM se_GMM t_GMM					
L.h_ln_new_sign04019023 .0615811565263847					
L.h_ln_netw_cc -1.0410785 1.536388867761397					
L.h_ln_partintact .98796112 .02673325 36.956266					
B.n_in_parcincact .36790112 .02073523 30.350200					
just identified - Hansen statistic is not calculated					
Just identified - Hansen statistic is not careatated					
symmetric uu[3,3]					
ln_new_sign ln_netw_cc ln_partintact					
ln_new_sign .15940691					
ln_netw_cc .00063287 .00024702					
In_partintact .000669200003648 .02744953					
in_partimeter inconstruction internet					
Residuals correlation matrix					
u1 u2 u3					
ul 1.0000					
ui 1.0000					
u2 0.1002 1.0000					
0.1429					
u3 0.0104 -0.0137 1.0000					
0.8797 0.8412					

GMM finished : 12:18:06

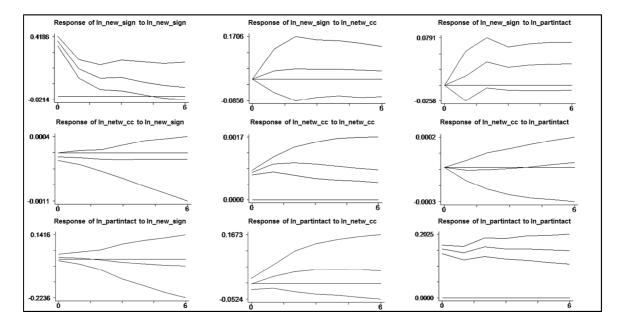
Starting Monte-Carlo loop : 12:18:07 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:18:14


. pvar ln_new_sign ln_netw_cc ln_partintact, lag(2) gmm monte 1000 GMM started : 12:35:17 accumulating matrices equation 1,2,3,calculating b2s1s accuming ing include equation i, , , , , exclude ing bas calculating big 20u2 matrix finished accumulating 20u2 Results of the Estimation by system GMM______ number of observations used : 210 r : h_ln_new_sign EQ1: dep.var se_GMM .10319209 3.3615618 .1148893 .08642019 t_GMM 5.3832798 .09870135 .78348136 2.1515815 b_GMM .55551191 .33179068 .09001363 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partintact L2.h_ln_new_sign .18594009 L2.h_ln_netw_cc .83462478 L2.h_ln_partintact -.01117343 3.0802741 .27095795 .10927483 EQ2: dep.var : h_ln_netw_cc b_GMM .00474944 .3291407 .00006854 .00316569 se GMM t GMM L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partintact se_GMM .00263349 .25110156 .0018711 .00208623 t_GMM 1.8034802 1.3107872 .03662964 1.517425 L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partintact .33466439 .23979361 1.3956352 .00216206 -.84386728 EQ3: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_new_sign -.02001334 -.41512063 .04821089 L.h_ln_new_sign -.02001334 L.h_ln_netw_cc -.53928741 L.h_ln_partintact .89151541 L2.h_ln_new_sign -.04883964 L2.h_ln_netw_cc -.13889739 L2.h_ln_partintact .1125061 1.0474646 .07253103 .04222741 .90965242 -.51485025 12.291504 -1.1565861 -.15269282 .07246584 1.553706 just identified - Hansen statistic is not calculated symmetric uu[3,3] . ln_new_sign ln_netw_cc ln_partintact ln_new_sign ln_netw_cc .15021821 .00021608 ln_partintact .00255612 .00001622 .02686384 Residuals correlation matrix

ul

	ul	u2	u3
ul	1.0000		
u2	0.0606 0.3825	1.0000	
u3	0.0405 0.5596	0.0069 0.9207	1.0000

GMM finished : 12:35:20


Starting Monte-Carlo loop : 12:35:20 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:35:28

. pvar ln_new_sign ln_netw_cc ln_partintact, lag(3) gmm monte 1000 GMM started : 12:45:43 GMM started : 12:45:43 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______Results of the Estimation by system GMM______ number of observations used : 205 EQ1: dep.var : h_ln_new_sign b_GMM .50049373 -2.0235746 .13261133 .09829227 se_GMM .09499592 2.0666348 .12953248 GMN L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partintact L2.h_ln_new_sign t_GMM 5.2685813 -.97916414 1.0237689 1.059225 .0927964 1.7814225 L2.h ln netw cc -1.5808631 -.88741618 L2.h_In_partintact L3.h_In_new_sign L3.h_In_netw_cc .10799573 .1527323 5.2381455 -.17306772 .17631949 .08535521 1.6067157 .61250025 1.789373 3.2601571 L3.h_ln_partintact .13914353 -1.2438072 EQ2: dep.var : h_ln_netw_co b_GMM .00306703 .22420675 .00030444 se_GMM .00174125 t_GMM 1.7613993 L.h_ln_new_sign L.h_1h_new_sign L.h_1h_netw_cc L.h_1h_partintact L2.h_1h_netw_sign L2.h_1h_netw_cc L2.h_1h_netw_cc .18260036 1.2278549 .00138341 .22706038 -.00426223 .00100091 .17685239 .00382784 1.3821509 1.2838977 -1.1134821 L3.h_ln_new_sign .00206713 .00171541 1.205036 L3.h_ln_netw_cc .23140166 .17770332 1.3021797 L3.h_ln_partintact .00253579 .00315453 .8038588 EQ3: dep.var : h_ln_partintact b GMM se GMM t GMM L.h_ln_new_sign -.01046244 L.h_ln_netw_cc -.51995004 L.h_ln_partintact .94594464 L2.h_ln_new_sign -.02572202 L2.h_ln_netw_cc -.09365841 se_GMM .04313724 .93233688 .0699557 .03090313 -.24253841 -.55768473 13.522052 -.83234339 .75022614 -.12484024 L2.h_ln_partintact .17538406 L3.h_ln_new_sign -.01585453 L3.h_ln_netw_cc .02757773 L3.h_ln_partintact -.12826179 .09467984 1.8523908 .04663657 -.33995909 .63301293 .04356583 just 100. symmetric uu[3,3] In_new_sign -~ sign .14169898 00001253 just identified - Hansen statistic is not calculated ln_netw_cc ln_partintact .00020283 ln_partintact .00287005 .00007299 .02547241 Residuals correlation matrix ul u2 u3 ul 1.0000 u2 0.0022 1.0000 0.9746 u3 0.0478 0.0321 0.4960 0.6474 1.0000

GMM finished : 12:45:45

Starting Monte-Carlo loop : 12:45:45 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:45:54

. pvar ln_new_sign ln_netw_cc ln_partintact, lag(4) gmm monte 1000 GMM started : 12:55:34 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 200 ______EQ1: dep.var : h_ln_new_sign
 b_CMM

 L.h_ln_new_sign
 .49504277

 L.h_ln_netw_cc
 .19542464

 L.h_ln_netw_cc
 .1960296

 L2.h_ln_new_sign
 .08065384

 L2.h_ln_netw_cc
 .14910345

 L2.h_ln_netw_cc
 .1492815

 L3.h_ln_netw_sign
 .13171559

 L3.h_ln_netinatc
 .26551138

 L4.h_ln_netw_cc
 .328047

 L4.h_ln_netw_cc
 .9849905

 L4.h_ln_netinatc
 .07208066

 se_GMM
 t_GMM

 .09657395
 5.1260488

 1.9382864
 -1.0082341

 .13222349
 .89631074

 .09574417
 .84249348

 1.6461685
 -90576058

 .19712131
 .73522312

 .08864184
 1.4489302

 .17926139
 -1.4811409

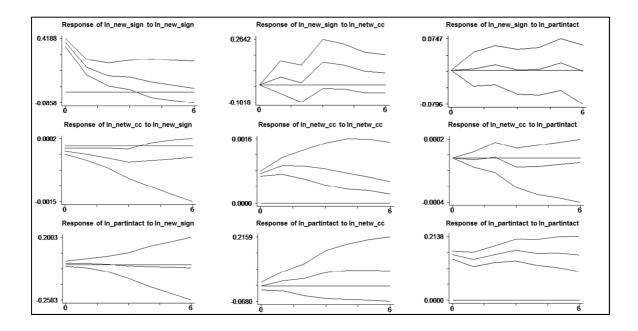
 .07278194
 4.531408

 .1211953
 -812769

 .14098983
 .51069353
 EQ2: dep.var : h_ln_netw_cc

	b_GMM	se_GMM	t_GMM	
L.h_ln_new_sign	.00180129	.0016366	1.1006315	
L.h_ln_netw_cc	.18293725	.15073874	1.2136048	
L.h_ln_partintact	.00086407	.00150746	.57319551	
L2.h_ln_new_sign	.00220224	.00153334	1.4362443	
L2.h_ln_netw_cc	.18284775	.14389334	1.2707173	
L2.h_ln_partintact	00534568	.00575152	92943708	
L3.h_ln_new_sign	.00391536	.00350263	1.1178337	
L3.h_ln_netw_cc	.18396748	.14536591	1.2655476	
L3.h_ln_partintact	.00035182	.00251924	.13965353	
L4.h_ln_new_sign	00430966	.00457485	94203156	
L4.h_ln_netw_cc	.18493936	.15016968	1.231536	
L4.h_ln_partintact	.00359812	.00321903	1.1177638	
EQ3: dep.var :	h_ln_partint	act		

	b_GMM	se_GMM	t_GMM	
L.h_ln_new_sign	.00116943	.04488806	.02605207	
L.h_ln_netw_cc	55651431	.89326652	62301038	
L.h_ln_partintact	.93292112	.07194806	12.966591	
L2.h_ln_new_sign	02113264	.02932268	72069271	
L2.h_ln_netw_cc	17030991	.66476655	25619506	
L2.h_ln_partintact	.20145186	.10219957	1.9711616	
L3.h_ln_new_sign	01144476	.03803543	30089725	
L3.h_ln_netw_cc	02798303	.52912094	05288589	
L3.h_ln_partintact	01799205	.09046451	19888515	
L4.h_ln_new_sign	.0196683	.03779109	.52044798	
L4.h_ln_netw_cc	13551501	.61004633	22213888	
L4.h_ln_partintact	13321806	.06650464	-2.0031395	
just identified - H	ansen statis	tic is not c	alculated	


symmetric uu[3,3	1		
	ln_new_sign	ln_netw_cc	ln_partintact
ln_new_sign	.14304154		
ln_netw_cc	.00003044	.00019538	
ln_partintact	.00374614	.00012708	.0251009

Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	0.0056 0.9368	1.0000	
u3	0.0626 0.3789	0.0574 0.4194	1.0000

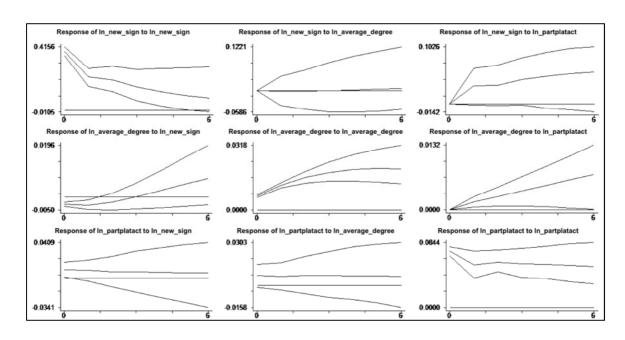
GMM finished : 12:55:36

Starting Monte-Carlo loop : 12:55:38 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=-624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:55:48

Appendix 20 Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree ln_partplatact; Established Regions

GMM started : accumulating r calculating b: finished accur	13:06:21 matrices e ig ZuuZ ma mulating Z ts of the ervations	quation 1, trix uuZ Estimation used : 215	2,3,calcul by system	ating b2sls		gmm monte 1000	-
		b_GMM	se_GMM	t_GMM			
				6.064104			
L.h_ln_average	e_degree	.14084742	.39308473	.35831312			
L.h_ln_part	tplatact	.31123956	.20254815	1.5366201			
							-
							-
EQ2: dep.var	: h_ln	_average_d	egree				
				MM t_C			
				16115916			
L.h_ln_average							
L.h_ln_part				98 4.20463			
							-
							-
EQ3: dep.var	: h_ln	_partplata	ct				
		_	-	MM t_C			
				76184676			
L.h_ln_average							
L.h_ln_part		.96996977					
							-
just identifie	ed - Hanse	n statisti	c is not c	alculated			
symmetric uu[3,3]						
				erage_degree	9	ln_partplatact	
ln_new_s		.15912					
ln_average_de		00137		.00018038			
ln_partplat	tact	.00332	234	00005499	9	.00585486	
Residuals corr	relation m	atrix					
	ul	u2	u3				
	1 0000						
ul	1.0000						
u2		1.0000					
	0.0001						
u3		-0.0532	1.0000				
	0.1104	0.4376					

GMM finished : 13:06:22

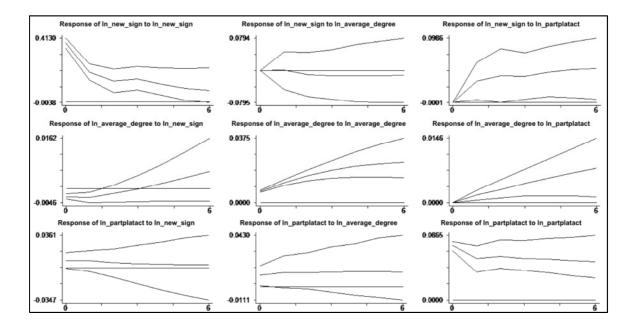

Starting Monte-Carlo loop : 13:06:23 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:06:30

pvar ln_new_sign ln_average_degree ln_partplatact, lag(2) gmm monte 1000 GMM started : 13:13:19 GMM started : 13:13:19 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 210 EQ1: dep.var : h_ln_new_sign b GMM se GMM t GMM L.h_ln_new_sign .54788188 L.h_ln_average_degree -.57965785 L.h_ln_partplatact .44066241 L2.h_ln_new_sign .19664284 se_GMM t_GMM .10467885 5.2339309 3.5329344 -.16407263 .26779399 1.6455276 .08861144 2.2191587 L2.h_ln_average_degree L2.h_ln_partplatact .67659873 -.1035805 3.2078966 .21091663 EQ2: dep.var : h_ln_average_degree b GMM se GMM t GMM .00420031 1.7413642 .02139299 .00185473 .08757253 .00906115 2.2646514 19.884823 2.3609572 L.h_ln_new_sign L.h_ln_average_degree L.h_ln_partplatact L2.h_ln_new_sign .00088167 .00126446 .69727117 L2.h_ln_average_degree -.76957693 L2.h_ln_partplatact -.0187538 .08111564 -9.4874056 .00962351 -1.9487494 EQ3: dep.var : h_ln_partplatact b GMM se GMM t GMM L.h_ln_new_sign .00513199 L.h_ln_average_degree .14339426 L.h_ln_partplatact .75790414 L2.h_ln_new_sign -.00741474 .01916757 .68657233 .13442007 t_GMM .26774349 .2103118 5.6383258 .01196553 -.61967509 .67036059 -.24115921 .12884807 1.6936431 L2.h_ln_average_degree -.16166363 L2.h_ln_partplatact .21822264 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree
.14894424
-.00108364 .00005615
.00371743 .00002014 ln_partplatact ln_new_sign ln_average_degree ln_partplatact .00552559 Residuals correlation matrix ul u2 u3

u1 u2 u3 u1 1.0000 u2 -0.3750 1.0000 0.0000 u3 0.1298 0.0362 1.0000 0.0605 0.6018

GMM finished : 13:13:21

Starting Monte-Carlo loop : 13:13:22 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:13:29

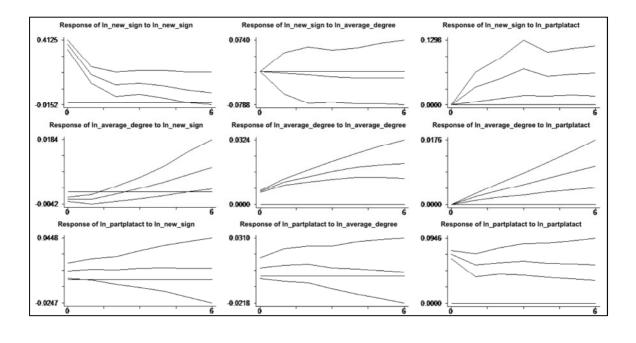


pvar ln_new_sign ln_average_degree ln_partplatact, lag(3) gmm monte 1000 GMM started : 13:16:11 accumulating matrices equation 1,2,3,calculating b2sls EQ1: dep.var : h_ln_new_sign se_GMM t_GMM .0959324 5.1407311 4.3742923 -.12260304 .24470639 1.8615692 b GMM D_0099 L.h_ln_new_sign .49316269 L.h_ln_average_degree -.53630155 L.h_ln_partplatact .45553787 Li.h_in_partplatact .4553/8/ L2.h_in_new_sign .07679266 L2.h_in_average_degree -1.5200656 L3.h_in_partplatact .01006933 L3.h_in_new_sign .16910893 L3.h_in_average_degree 1.9824754 L3.h_in_partplatact -.07693127 .10618658 .72318611 6.0817919 .39546604 .07712562 3.0787129 -.24993713 .02546193 2.1926427 .64392995 -.19704826 .39041843 EQ2: dep.var : h_ln_average_degree se_GMM .00153087 b_GMM L.h_ln_new_sign .00359807 t_GMM 2.3503389 L.h_ln_average_degree L.h_ln_partplatact L2.h_ln_new_sign 1.6905278 .12123959 13.943694 .02399857 .00292094 -.59519001 .00872171 .00143916 .17785834 2.7515906 2.0296159 -3.3464274 L2.h_ln_average_degree L2.h_ln_partplatact -.01928314 L3.h_ln_new_sign -.00161209 L3.h_ln_average_degree -.11731455 L3.h_ln_partplatact -.00367873 .01099214 -1.7542656 .00118935 -1.3554383 .07943387 -1.4768833 .00901793 -.40793489 EQ3: dep.var : h_ln_partplatact b GMM GMM L.h_ln_new_sign .00933379 L.h_ln_average_degree .68886702 .01716898 1.022704 .54364267 .67357417 i.h_ln_average_degree ...68886702 I.h_ln_average_degree ...75801464 L2.h_ln_new_sign ...01186488 L2.h_ln_average_degree ...10738641 L2.h_ln_average_degree ...073893 L3.h_ln_new_sign ...00346523 L3.h_ln_average_degree ...39138952 L3.h_ln_average_degree ...39138952 .13656645 5.5505188 .01475682 -.80402719 1.6693526 -.6432818 .13919356 -.6432818 .13919356 1.4917352 .01062025 -.32628537 .83513151 .46865615 .10809696 -.02921229 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree .14653503 -.00102802 .0000528 .00326213 .0000415 ln_partplatact ln_new_sign ln_average_degree
 ln_partplatact .00544991 Residuals correlation matrix ul u2 u3

ul	1.0000		
u2	-0.3697 0.0000	1.0000	
и3	0.1155 0.0990	0.0774 0.2701	1.0000

GMM finished : 13:16:12

Starting Monte-Carlo loop : 13:16:13 , total 1000 repetitions requested i-38, i-76, i-114, i-152, i-190, i-228, i-266, i-304, i-342, i-380, i-418, i-456, i-494, i-532, i-57 > 0, i-608, i-646, i-684, i-722, i-760, i-798, i-836, i-874, i-912, i-950, i-988, i-1000, finished M > onte-Carlo loop : 13:16:21



332

recumurating ma	trices e	quation 1,2,	3,calculatir	ng b2sls	
alculating big					
		uuz Estimation b	y system GMM	4	
umber of obser	vations	used : 200			
Ql: dep.var					
.Q1: dep.var	: n_in	_new_sign			
		b_GMM			
L.h_ln_n			.09181275		
L.h_ln_average	_degree	-1.0819209 .50901853	4.3633311 .25308597	24795756 2.0112475	
L.h_ln_part L2.h_ln_n		.06622661	.10618793	.62367362	
2.h_ln_average		.17519061	6.3419246	.0276242	
L2.h_ln_part		.12239865	.38593112	.31715154	
L3.h_ln_n					
3.h_ln_average	_degree	43535385	6.3317837	0687569	
L3.h_ln_part	platact	.17834423	.49106222	.3631805	
L4.h_ln_n		.04469971	.07052061 3.3293997	.6338531 .39875057	
4.h_ln_average L4.h_ln_part				94688091	
Q2: dep.var	: h_ln	_average_deg:	ree		
		b GMM	se GMM	t_GMM	
L.b. ln. n	ew sian	.00432985			
L.h_ln_average		1.6994742	.11726988	14.491993	
L.h_ln_part	platact	.02961564	.00791832	3.7401411	
L2.h_ln_n	ew_sign	.00177322	.00147633	1.2011033	
2.h_ln_average		79045479	.18253948		
L2.h_ln_part				-2.0651933 .23043825	
13.n_in_n 3.h_ln_average		.00030777	.00133559		
L3.h_ln_part		00194647	.00973727	19989942	
L4.h_ln_n		.00029867	.00104404	.28606632	
4.h_ln_average		17775492	.06239156	-2.8490217	
L4.h_ln_part		00470766	.00729908	64496647	
Q3: dep.var					
go. dep.var		_pureprucace			
		b_GMM	se_GMM	t_GMM	
L.h_ln_n	ew_sign	.01314989		.75465515	
L.h_ln_average		.58218035	1.0319077	.56417871	
L.h_ln_part		.78258767	.13976879	5.599159	
L2.h_ln_n 2.h_ln_average		00751092	.01361051	55184661 46371474	
L2.h_ln_part					
		00280376			
3.h_ln_average	_degree	2389163	1.4462258	16519986	
L3.h_ln_part	platact	.04177667	.12964826	.32223086	
L4.h_ln_n		.00024557	.00813781	.03017672	
4.h_ln_average					
L4.h_ln_part			.09029447	50618292	
ust identified			is not calcu	lated	
ymmetric uu[3,	3]				
		ln_new_sig	n ln_averaç	je_degree	ln_partplatact
		.1469891	9	.00004911	
ln_new_si		.0037126		.00004911	.00524222
.n_average_degr	ct			00001000	.00521221
	ct	.003/126			
.n_average_degr	ct				
n_average_degr ln_partplata	ct	atrix	u3		
.n_average_degr ln_partplata Residuals corre	ct lation m ul	atrix u2	u3		
.n_average_degr ln_partplata Residuals corre	ct lation m	atrix u2	u3		
.n_average_degr ln_partplata Residuals corre	ct lation m ul	atrix u2	u3		
.n_average_degr ln_partplata desiduals corre ul	ct lation m ul 1.0000	atrix u2	u3		
.n_average_degr ln_partplata desiduals corre ul	ct lation m ul 1.0000	u2 1.0000	u3		
.n_average_degr ln_partplata desiduals corre ul	ct lation m ul 1.0000 -0.3771 0.0000	u2 1.0000			
.n_average_degr ln_partplata desiduals corre ul	ct lation m 1.0000 -0.3771 0.0000 0.1338	u2 1.0000	u3 1.0000		

GMM finished : 13:17:49

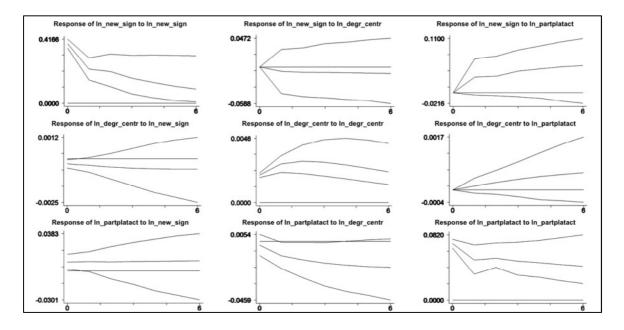
Starting Monte-Carlo loop : 13:17:51 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:18:00

ln_new_signups

In_degree_centralization In_partplatact; Established Regions

pvar ln_new_sign ln_degr_centr ln_partplatact, lag(1) gmm monte 1000 . pvar in_new_sign in_degr_centr in_partplatact, lag(1) GMM started : 13:20:50 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 215 r : h_ln_new_sign EQ1: dep.var b_GMM se_GMM t_GMM L.h_ln_new_sign .7726092 .14145807 5.4617542 L.h_ln_degr_centr 1.3762677 3.2922624 .418031 L.h_ln_partplatat .3458386 .25060553 1.3800118 EQ2: dep.var : h_ln_degr_centr b_GMM L.h_ln_new_sign -.00117065 L.h_ln_degr_centr .95268414 L.h_ln_partplatact .00413274 se_GMM t_GMM .00058557 -1.9991492 .02625023 36.292407 36.292407 2.4379865 L.h_ln_partplatact .00169514 EQ3: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM .02163654 1.1272511 .07759227 L.h_ln_new_sign .01084568 L.h_ln_degr_centr -.35354258 L.h_ln_partplatact .93659538 .50126696 -.31363251 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_degr_centr ln_partplatact .16054516 -.0001758 5.061e-06 .00388343 -.0000119 .00557743 ln_new_sign ln_degr_centr
ln_partplatact Residuals correlation matrix ul u2 u3 1.0000 u1 -0.1944 0.0042 u2 1.0000 0.1298 -0.0709 0.0573 0.3010 u3 1.0000

GMM finished : 13:20:52

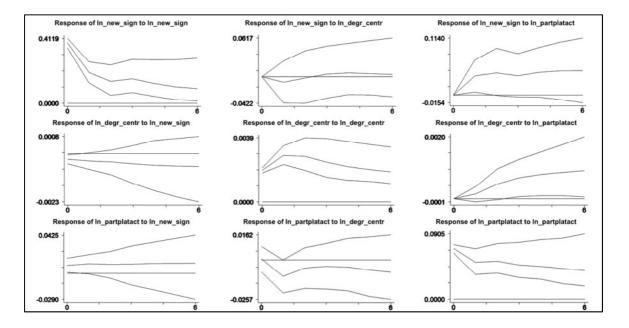

Starting Monte-Carlo loop : 13:20:53 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:21:00

. pvar ln_new_sign ln_degr_centr ln_partplatact, lag(2) gmm monte 1000 GMM started : 13:33:21 accumulating matrices equation 1,2,3,calculating b2s1s EQ1: dep.var : h_ln_new_sign b_GMM L.h_ln_new_sign .5581821 L.h_ln_degr_centr -28400742 L.h_ln_partplatact .44401563 L2.h_ln_new_sign .20143025 se_GMM .1187825 10.703833 .30285313 .09601753 t_GMM 4.6991947 -.26533244 1.4661088 2.0978486 L2.h_ln_degr_centr 4.0072369 10.473823 .38259545 L2.h_ln_partplatact -.09179113 .27626085 EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM se_GMM .00044656 .17141968 .00213434 .00035646 .17027757 L.h_ln_new_sign .0006183 L.h_ln_degr_centr 1.3993106 L.h_ln_partplatact .00180131 L2.h_ln_new_sign -.0029488 12.h_ln_degr_centr -.44725853 L2.h_ln_partplatact -.00047315 t_GMM .1384628 8.1630685 .84396594 -.82724176 -2.6266438 .00206804 -.22878904 EQ3: dep.var : h_ln_partplatact b_GMM t_GMM se_GMM .01622645 .28022677 L.h_ln_new_sign .00454709 L.h_ln_new_sign .00454709 L.h_ln_degr_centr -4.6249866 L.h_ln_partplatact .71055182 L2.h_ln_new_sign -0039565 L2.h_ln_degr_centr 3.5180931 L2.h_ln_partplatact .24361214 .01622645 .28022677 2.5417581 -1.8196014 .14771954 4.810141 .01397244 -.28316444 2.494764 1.4101908 .14771954 -.18196014 .01397244 -.28316444 2.494764 1.4101908 .11600661 2.0999849 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_degr_centr ln_partplatact
.15008427
-.00011542 3.975e-06 ln_new_sign ln_degr_centr ln_partplatact .00350607 -8.214e-06 .00515849 Residuals correlation matrix ul u2 u3 ul 1.0000

u2	-0.1495 0.0303	1.0000	
u3		-0.0574 0.4082	1.0000

GMM finished : 13:33:23

Starting Monte-Carlo loop : 13:33:24 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:33:31


. pvar ln_new_sign ln_degr_centr ln_partplatact, lag(3) gmm monte 1000 GMM started : 14:01:18 accumulating matrices equation 1,2,3,calculating b2sls EQ1: dep.var : h_ln_new_sign se_GMM t_GMM .11516771 4.2816847 10.666371 -.44419795 b GMM b_GMM L.h_ln_new_sign .49311181 L.h_ln_degr_centr -4.7379801 L.h_ln_partplatact .54057018 L.h_ln_partplatat 54073901 L.h_ln_partplatat 5407018 L2.h_ln_degr_cent 11.274206 L2.h_ln_partplatat -.023118 L3.h_ln_new_sign .16875944 L3.h_ln_degr_cent -5.0315889 .28564924 1.8924265 .10382876 .96401956 16.384066 .68812016 .36191463 .08119576 10.270497 -.06387695 2.0784268 -.48990706 L3.h_ln_partplatact -.19795085 .33773276 -.58611682 EQ2: dep.var : h_ln_degr_centr b_GMM .00006992 se_GMM .00038153 t_GMM .18327472 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_degr_centr 1.4715389 .00212456 -.00032311 -.70891122 .16120167 .00208453 .00030619 .23004486 9.1285587 1.0192021 -1.0552598 -3.0816216 L2.h_ln_partplatact .00189136 .00270747 .6985713 L3.h ln new sign -.00020833 .00029516 -.70584241 L3.h_ln_degr_centr L3.h_ln_partplatact .19343531 .10962922 1.7644503 EQ3: dep.var : h_ln_partplatact b GMM SO GMM + GMM .00679137 -5.866655 .72759363 se_GMM .01495627 2.7020766 .15543944 t_GMM .45408185 -2.1711654 4.6808818 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partplatact .0127562 -.08597229 3.8153512 2.5886096 3.8153512 2.3000000 .12401966 1.8376002 .01189877 -.03180241 2.3101373 -2.1283739 .09397998 -.25314082 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_degr_centr ln_partplatact .14740309 -.00010541 ln_new_sign ln_degr_centr
ln_partplatact 3 7760-06 .00344819 -1.109e-06 .00503172 Residuals correlation matrix ul u2 u3 1.0000 ul u2 -0.1413 1.0000 0.0433

GMM finished : 14:01:20

u3

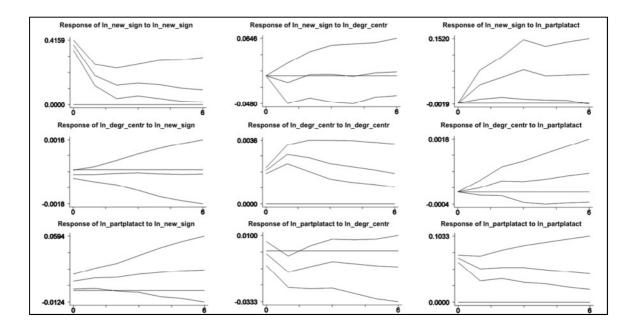
0.1266 -0.0081 0.0705 0.9088 1.0000

Starting Monte-Carlo loop : 14:01:20 , total 1000 repetitions requested i-38, i-76, i-114, i-152, i-190, i-228, i-266, i-304, i-342, i-380, i-418, i-456, i-494, i-532, i-57 > 0, i-608, i-646, i-684, i-722, i-760, i-798, i-836, i-874, i-912, i-950, i-988, i-1000, finished M > onte-Carlo loop : 14:01:29

GMM started : 14:09:10 accumulating matrices equation 1,2,3,calculating b2sls accumulating metices equation 1,1,3,5,2,200 accurating calculating big 2012 matrix finished accumulating 2012 — Results of the Estimation by system GMM_ number of observations used : 200 EQ1: dep.var : h_ln_new_sign L.h_ln_new_sign .46644388 L.h_ln_degr_centr -5.5876948 L.h_ln_partplatact .6287118 ^{1,2}.h_ln_new_sign .08104334 14.8728 se GMM t GMM se_GMM .11351709 11.550408 .30374809 .10561881 19.504441 4.1090189 -.48376601 2.0698461 .76731916 .86507478 L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_degr_centr L3.h_ln_partplatact L4.h_ln_new_sign L4.h_ln_degr_centr 16.8728 .12077782 .36463918 .33122558 .33122558 1.6254151 -.55795654 .19494836 .63983631 .27653848 .14016969 -11.592076 .08833727 .04705168 .08623624 20.775948 .45313163 .07353705 3.4441502 12.454506 -1.2324325 L4.h_ln_partplatact -.45269405 .36731753 EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM .00039978 t_GMM .00024719 .61832667 L.h_ln_new_sign L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partplatact L3.h_ln_new_sign .61832667 9.0021609 .95362192 -.8873119 -3.2581234 .22231568 1.4760665 .16396802 1.4760665 .0020439 -.00025787 -.78168031 .00056876 .00005127 .0021433 .00029062 .23991734 .00255833 .00032481 .15783583 L3.h_ln_degr_centr L3.h_ln_partplatact L4.h_ln_new_sign L4.h_ln_degr_centr .32894739 -.00322047 -.00026098 -.08212322 .16512764 1.9920796 .00334288 .00023912 .08465879 -.96338191 -1.091414 -.97004955 1.0158695 L4.h_ln_partplatact .00246163 .00242318 EQ3: dep.var : h_ln_partplatact b_GMM .01156191 se_GMM .01533019 t_GMM .75419221 L.h_ln_new_sign L.h_ln_degr_centr - 6.5736956 L.h_ln_partplateat .75801852 L2.h_ln_news_ging .0015949 L2.h_ln_degr_centr 10.071951 L3.h_ln_mews_ging .00520557 L3.h_ln_degr_centr -3.779513 L3.h_ln_degr_centr -3.779513 2.6963523 .15778617 .01256044 4.0468376 .12463599 .01154873 -2.4379958 4.8040873 1.12697813 2.4888448 1.7221937 .45074862 3.8840723 -.97318297 L3.h_ln_partplatact .02987093 L4.h_ln_new_sign .00196231 L4.h_ln_degr_centr -.70705087 L4.h_ln_partplatact -.08313731 .12133342 .24618881 2 4969887 - 28316143 .08915084 -.9325465 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_degr_centr ln_partplatact .14892998 -.00009551 3.680e-06 .0039564 -6.122e-06 .00487368 ln_new_sign ln_degr_centr ln_partplatact Residuals correlation matrix ul u2 u3 ul 1.0000 u2 -0.1291 1.0000 0.0685

pvar ln_new_sign ln_degr_centr ln_partplatact, lag(4) gmm monte 1000

GMM finished : 14:09:13


u3

0.1468 -0.0457

0.0380 0.5201

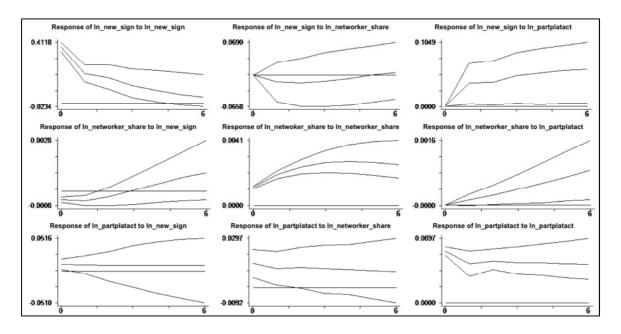
1.0000

Starting Monte-Carlo loop : 14:09:15 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 14:09:24

Appendix 22 Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share ln_partplatact; Established Regions

. pvar ln_new GMM started : accumulating p: finished accur Result number of obse EQ1: dep.var	10:45:38 matrices eq ig ZuuZ mat mulating Zu ts of the E ervations u	uation 1,2 rix uZ stimation 1 sed : 215	,3,calculat by system G	ing b2sls	gmm monte 1000
			se_GMM		
			.11588796		
L.h_ln_network	-				
			.18575567		
EQ2: dep.var	: h_ln_	networker_	share		
		b GMM	se GM	M t_GMM	
L.h_ln_	_new_sign			185294823	
L.h_ln_network	cer_share	.90953993	.0111939	3 81.252982	
L.h_ln_pai	tplatact	.00513973	.0008185	7 6.2789192	
EQ3: dep.var	: h_ln_	partplatac	t		
			se_GM		
				825085621	
L.h_ln_network					
	tplatact	.96757451		3 18.167503	
just identifie					
symmetric uu[3 31				
oynanceric du(.	,.,	ln new	sian ln ne	tworker share	ln_partplatact
ln_new	sian	.1541			p
ln_networker_s	share	0002	6482	3.559e-06	
ln_partpla	atact	.003	4967	8.755e-06	.00584121
Residuals corr	relation ma	trix			
	ul	u2	u3		
ul	1.0000				
u2	-0.3591	1.0000			
	0.0000				
u3		0.0612	1.0000		
	0.0875	0.3718			

GMM finished : 10:45:39


Starting Monte-Carlo loop : 10:45:40 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:45:47

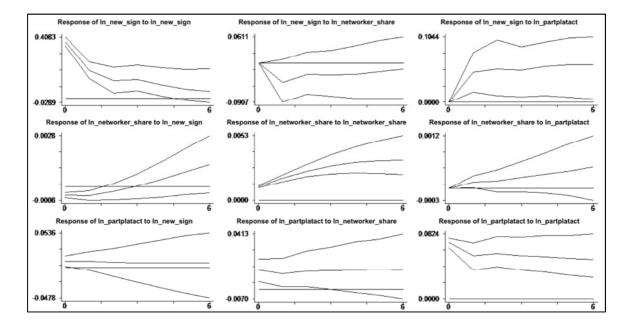
pvar ln_new_sign ln_networker_share ln_partplatact, lag(2) gmm monte 1000 GMM started : 10:56:12 GMM started : 10:56:12 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM______ number of observations used : 210 EQ1: dep.var : h_ln_new_sign b_GMM L.h_ln_new_sign .49173397 L.h_ln_networker_share -19.385475 L.h_ln_partplatact .53375015 L2.h ln pew sign 17300000 se_GMM t_GMM .1075779 4.5709573 22.261817 -.87079481 .2869238 1.8602505 .08834344 2.0045971 L2.h_ln_new_sign .17709299 L2.h ln networker share 20.10215 20.348383 20.348383 .98789912 .28939658 -.27493414 L2.h_ln_partplatact -.079565 EQ2: dep.var : h_ln_networker_share b_GMM L.h_ln_new_sign .00067389 L.h_ln_networker_share 1.6673558 L.h_ln_partplatact .00185812 L2.h_ln_networker_share -.70181431 se_GMM t_GMM se_GMM .00030794 .09516289 .00117571 .00022328 2.1883544 17.521072 1.5804265 1.1058703 -8.0877129 .08677537 L2.h_ln_partplatact -.00146225 .00132761 -1.1014112 EQ3: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM .25493712 se_GMM t_cKN .02597325 .25493712 4.3113157 .09450426 .13661507 5.549459 .01380238 -.45265522 4.4595995 -.14266913 .12245625 1.8252925 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share
.14531163 ln_partplatact ln_new_sign -.00017741 1.533e-06 ln_networker_share ln_partplatact .00386919 .00001223 .0055277 Residuals correlation matrix ul u2 u3 ul 1.0000

-0.3763	1.0000	
0.0000		
0.1367	0.1330	1.0000
0.0479	0.0544	
	0.0000	0.0000

GMM finished : 10:56:15

Starting Monte-Carlo loop : 10:56:16 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:56:24

pvar ln_new_sign ln_networker_share ln_partplatact, lag(3) gmm monte 1000 GMM started : 10:58:48 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation fraction fraction fractions of the second EQ1: dep.var : : h_ln_new_sign b GMM se GMM t GMM L.h_ln_new_sign .41326599 L.h_ln_networker_share -48.659250 L.h_ln_partplatact .66825013 L2.h_ln_new_sign .10588651 .09738614 27.664363 .26651449 .11014834 4.2435809 -1.7589146 2.5073689 .96130831 L.h_ln_partplatact .66825013 L2.h_ln_new_join .10588651 L2.h_ln_networker_share 64.448546 L2.h_ln_partplatact .05432784 L3.h_ln_new_sign .17303272 L3.h_ln_networker_share -16.334276 L3.h_ln_partplatact -.26016877 36.256806 1.7775572 .14536044 .37374572 2.252577 -.8940482 -.73228503 .07681545 .07681545 18.270017 .35528347 EQ2: dep.var : h_ln_networker_share b_GMM .00057667 1.5963106 se_GMM .00026043 .12128879 t_GMM 2.214291 L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partplatact 13.161238 1.8444866 .00112957 .00208347 L.h_in_partpiatact .0020844/ L2.h_in_new_sign .00067726 L2.h_in_artworker_share -.39594931 L2.h_in_partpiatact -.00298005 L3.h_in_networker_share -.22481344 L2.h in_partpiate -.00031262 .00029796 2.272973 .17951405 -2.2056731 .0015156 -1.9662469 -.4348363 -2.6570231 .08461102 L3.h_ln_partplatact .00031342 .00113065 .27720105 EQ3: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM .02349011 4.5767444 .14086034 .01530647 6.2535534 L.h_ln_new_sign .00713567 .30377324 L.h_ln_networker_share L.h_ln_partplatact L2.h_ln_networker_share .73344108 .76238496 -.005724 .52450027 .16025389 5.4123466 -.37395944 .08387236 L2.h_ln_partplatact .21559062 L3.h_ln_new_sign -.00201556 L3.h_ln_networker_share -1.2877918 L3.h_ln_partplatact -.01616566 .12922872 1.6682872 .01126993 -.17884381 3.9114848 -.32923349 .0994408 -.16256562 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share
.14314004
-.00017204 1.434e-06
.00354365 .00001185 ln_partplatact ln_new_sign ln_networker_share ln_partplatact .0054225 Residuals correlation matrix ul u2 u3 1.0000 ul u2 -0.3799 1.0000 0.0000


GMM finished : 10:58:49

u3

0.1273 0.1344 1.0000

0.0689 0.0547

Starting Monte-Carlo loop : 10:58:50 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:58:58

pvar ln_new_sign ln_networker_share ln_partplatact, lag(4) gmm monte 1000 GMM started : 11:05:25 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation 17,7,7,acculating calculating big 2012 matrix finished accumulating 2012 — Results of the Estimation by system GMM_ number of observations used : 200 EQ1: dep.var : h_ln_new_sign
 b_GMM

 L.h_ln_new_sign
 .37953869

 L.h_ln_networker_share
 -48.186545

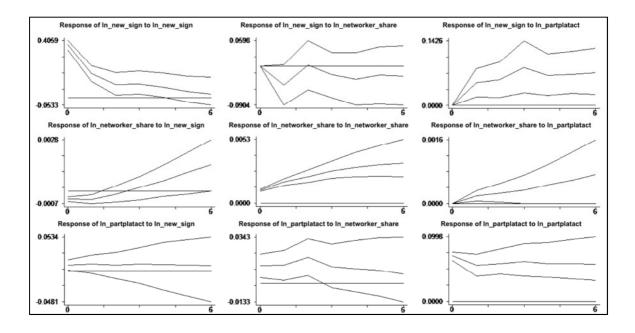
 L.h_ln_partplatact
 .72145632

 L2.h ln pew sign
 .00000052
 se GMM t GMM se_GMM .09404231 27.369902 .26741084 t_GMM 4.0358289 -1.760567 2.6979322 L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_partplatact L3.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_partplatact L4.h_ln_partplatact L4.h_ln_new_sign .09889953 .10872326 .90964462 84.625968 36.94959 2.2903087 84.625968 .0972828 .09793459 -67.589341 .08978027 .03182815 .37470004 .25962847 .09129821 34.163955 1.072689 .4990686 .17989565 .47642814 L4.h_ln_networker_share 31.124732 L4.h_ln_partplatact -.34468895 20.726086 1.5017178 39471021 - 87327093 EQ2: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM
 b__GMM

 L.h_ln_new_sign
 .0006038

 L.h_ln_networker_share
 1.5603569

 L.h_ln_partplatact
 0.00279619


 L2.h_ln_new_sign
 .00061302

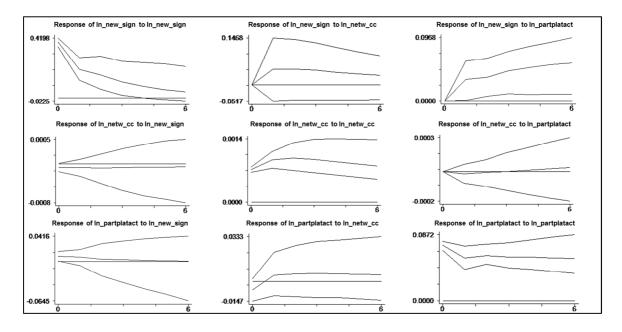
 L2.h_ln_new_sign
 .045479277
 2.3690849 12.18428 2.4209294 1.9540153 .00025487 .12806312 .00115501 .00031372 -2.3322485 .19500185 L2.h_in_metworker_share -.404/92/1/ L2.h_in_partplatack -.00313548 L3.h_in_new_sign .00029315 L3.h_in_networker_share .04666233 L3.h_in_partplatack -.00063649 L4.h_in_new_sign -2.835e-06 L4.h_in_networker_share -.17588832 .00153017 .00023797 .1926662 .00131404 -2.0491113 1.2318558 .24219264 -.48438033 .00020244 -.01400303 .09453371 -1.8599536 h_ln_networker_share -.17582832 L4.h_ln_partplatact 3.966e-06 .00099343 .00399191 EQ3: dep.var : h_ln_partplatact b GMM se GMM t GMM b_GMM L.h_ln_new_sign .01248361 L.h_ln_networker_share 2.7142738 L.h_ln_partplatact .79161218 L2.h_ln_new_sign -.00244375 L2.h_ln_etworker_share 1.7686694 .02248649 4.6386071 .14419259 .01504352 .55516044 .58514846 5.4899645 -.1624455 6.8539445 .25805131 L2.h_ln_neworker_share L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_networker_share L3.h_ln_partplatact .18263059 .13296812 1.3734916 -.93499974 L3.n_in_new_sign -.0126/01/ n_networker_share -13.629841 .h_in_partplatact .05134542 L4.h_in_new_sign -.00246596 .01355099 -.93499974 5.8228965 -2.3407322 .12640928 .40618396 .00831702 -.29649594 L4.h_ln_networker_share 8.9882875 4.2124962 2.13372 L4.h_ln_partplatact -.03847797 .09035825 -.42583799 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share .14113127 -.00017023 1.416e-06 ln_partplatact ln_new_sign 1.416e-06 ln_networker_share
 ln_partplatact .00001048 .0034401 .00518141 Residuals correlation matrix ul u2 u3

ul	1.0000		
u2	-0.3809	1.0000	
u3	0.1273	0.1223 0.0844	1.0000

GMM finished : 11:05:27

Starting Monte-Carlo loop : 11:05:28 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:05:37

Appendix 23 Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc ln_partplatact; Established Regions

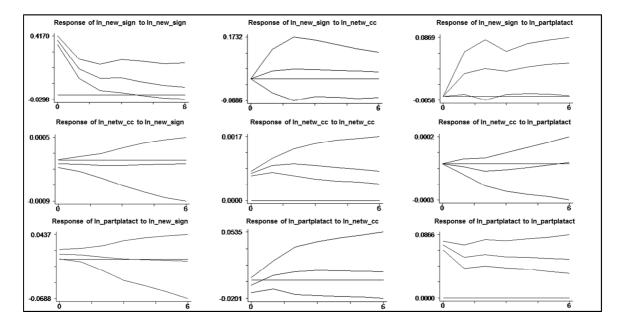

GMM started : accumulating m calculating bi finished accum	atrices equatio g ZuuZ matrix wlating ZuuZ	on 1,2,3,calo	ulatin	g b2sls	e 1000
	s of the Estima		em GMM		
	rvations used				
EQ1: dep.var	: h_ln_new_:	sign			
	b_GM	M se_GMM	t	_GMM	
L.h_ln_new_	sign .70438943	.12653831	5.566	6101	
L.h_ln_net	w_cc 3.17616	4 4.4634654	.7115	9148	
	tact .355549				
, ,					
EQ2: dep.var	: h_ln_netw	_cc			
		MM se_GM		t_GMM	
	sign .01128				
L.h_ln_net	w_cc .571142	.2894506	1 1.	9731933	
L.h_ln_partpla	tact011673	.0076142	-1	.533127	
EO3: dep.var	: h_ln_part	platact			
	b_GM	4 se_GMM	t	GMM	
I h ln now	sign .00331110				
	w_cc .038226				
	tact .95965870				
just identifie	d - Hansen stat	tistic is not	calcu	lated	
symmetric uu[3	,3]				
	ln_new_sig	gn ln_n∈	etw_cc	ln_partplatac	t
ln_new_sign	.160344	05			
ln_netw_cc	.000698	42 .000	25177		
ln_partplatact				.0057208	7
Residuals corr	elation matrix				
1	1	u2 u3			
	uı	uz u.			
	1.0000		-		
ul	1.0000				
u2	0.1093 1.0	0000			
	0.1100				
u3	0.1146 0.0	0049 1.0000)		
	0.0939 0.9	9428			
1					
GMM finished :	11.08.06				
onni i intoneu .	11.00.00				

Starting Monte-Carlo loop : 11:08:07 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:08:14

. pvar ln_new_sign ln_netw_cc ln_partplatact, lag(2) gmm monte 1000 GMM started : ll:25:36 GMM started : 11:25:36 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 210 EQ1: dep.var : h_ln_new_sign b_GMM .55022203 .60804243 .39884642 se_GMM .10685935 3.4045315 .24914935 t_GMM 5.1490304 .17859798 1.6008327 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partplatact .18693909 .08968595 3.087812 2.0843742 1.0368036 -.08953832 . 33577291 .25352263 -.35317683 EQ2: dep.var : h_ln_netw_cc se_GMM .00286501 .24799947 .00547315 .00215566 b_GMM .00537504 .32589405 -.00653863 t_GMM 1.8760997 1.3140917 -1.1946739 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partplatact L2.h_ln_new_sign .00358324 1.6622484 L2.h_ln_netw_cc L2.h_ln_partplatact .33261829 .23685241 1.4043273 -.00321973 .00397215 -.81057662 EQ3: dep.var : h_ln_partplatact b_GMM L.h_ln_new_sign .0006388 L.h_ln_netw_cc -.0377662 L.h_ln_partplatact .77046898 L2.h_ln_new_sign -.00903088 se_GMM t_GMM .01607661 .03973458 .36891381 -.10237135 .12426648 6.200135 .01910446 -.47271078 L2.h_ln_netw_cc -.06555957 L2.h_ln_partplatact .22043459 .31085628 -.21089993 .22043459 .12079353 1.8248875 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_netw_cc ln_partplatact ln_new_sign .15081962 .00038476 .00333226 ln_new_sign ln_netw_cc ln_partplatact .00021782 -9.517e-06 .00562211 Residuals correlation matrix ul u2 u3 1.0000 ul 0.0668 u2 1.0000 0.1146 -0.0085 u3 1.0000 0.0976 0.9028

GMM finished : 11:25:37

Starting Monte-Carlo loop : 11:25:38 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:25:45


. pvar ln_new_sign ln_netw_cc ln_partplatact, lag(3) gmm monte 1000 GMM started : l1:42:47 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation 17,7,7,acculating calculating big 2012 matrix finished accumulating 2012 — Results of the Estimation by system GMM_ number of observations used : 205 r : h_ln_new_sign EQ1: dep.var b_GMM .48104301 -1.810745 .47234404 se_GMM .10057647 2.0735116 .25219356 t_GMM 4.7828582 -.87327462 1.8729425 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partplatact L2.h_ln_new_sign .09139672 .09427202 .96950005 L2.h_ln_netw_cc -1.4777399 1.7434568 -.84759195 L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_netw_cc -.033287 .14336908 5.1552988 -.13136251 .35715034 .08905699 1.506753 .32767366 -.09320164 1.6098577 3.4214625 L3.h_ln_partplatact -.40089432 EQ2: dep.var : h_ln_netw_co b_GMM .0037476 .22167881 -.00463613 se_GMM .00202429 t_GMM 1.8513162 L.h_ln_new_sign L.h_ih_new_sign L.h_ih_netw_cc L.h_ih_partplatact L2.h_ih_new_sign L2.h_ih_netw_cc L3.h_ih_new_sign L3.h_ih_netw_cc L2.h_ih_netw_cc .18121747 1.2232751 -.94606506 .0017453 .22502131 -.00368074 .00245447 .00117578 .17574018 .00379005 .00190701 1.484376 1.2804204 -.97115879 1.2870774 .23504823 .17708454 1.3273222 L3.h_ln_partplatact -.00042189 .00308038 -.13696115 EQ3: dep.var : h_ln_partplatact b GMM se GMM t GMM L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_netw_cc .0013743 .03477557 .77272819 -.01000018 .01445652 .33718985 .12774439 .01543287 .09506465 .1031335 6.0490185 -.64797951 .00116284 .26310146 .00441974 L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_netw_cc L3.h_ln_partplatact .22611687 .13432058 1.683412 -.00421135 .01675564 -.25133907 .00631002 03150403 -.16765473 .09559264 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .14165153 2.504e-06 ln_netw_cc ln_partplatact ln_new_sign ln_netw_cc .00020489 -1.538e-06 .00334615 .00548947 ln_partplatact Residuals correlation matrix ul u2 u3 ul 1.0000 u2 0.0004 0.9958 1.0000

GMM finished : 11:42:50

u3

0.1201 -0.0014 0.0864 0.9841 1.0000

Starting Monte-Carlo loop : 11:42:50 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:42:59

EQ1: dep.var : h_ln_new_sign

b_GMM L.h_ln_new_sign .48295399 L.h_ln_netw_cc -1.6484099 L.h_ln_partplatact .45424902

.07957769

-1.315255

.05583706

.13139687 5.2902644 .11414449

.03777371

-.7727487

- 35741414

b_GMM .00258599 .18260722 -.00327729 .00269806 .18072376

-.00364547

.00364347 .00426983 .18818458 .00085803 -.00376121

.18799138

b_GMM

.00636404 .00636404 .06414933 .80289478 -.00773968 .04870953 .21099283

.00108177 .06262539 .02742522 -.0013008

just identified - Hansen statistic is not calculated

ln_new_sign

.14340963

.00359686

ul u2

0.0126 1.0000 0.8592

0.1301 0.0141 1.0000 0.0664 0.8429

1.0000

-.00017297

: h_ln_netw_cc b_GMM

L.n_in_partplatact L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partplatact L3.h_ln_netw_cc

L3.h_ln_partplatact L4.h_ln_new_sign L4.h_ln_netw_cc

L4.h_ln_partplatact

L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_netw_cc

L2.h_ln_partplatact L3.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_partplatact L4.h_ln_new_sign L4.h_ln_netw_cc

L4.h_ln_partplatact

L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_netw_cc

L2.h_ln_partplatact

L3.h_ln_new_sign L3.h_ln_netw_cc L3.h_ln_partplatact L4.h_ln_new_sign

symmetric uu[3,3]

ln_new_sign

ln_netw_cc ln_partplatact

L4.h_ln_netw_cc -.06677634 L4.h_ln_partplatact -.06757745

Residuals correlation matrix

u1

u2

113

GMM finished : 11:54:38

EQ3: dep.var : h_ln_partplatact

EQ2: dep.var

se_GMM .10362554 2.0214342 .26224404

.09560292

1.6541786

.3620775

.08966233 .44969483

.07505172

1.2129177

34632771

se_GMM

se_GMM .00203898 .15030153 .00480437 .00178149 .14320609

.00375997

.00375997 .0037167 .14584804 .00404909 .00417944 .15107533

.00371175

se_GMM .01535744

.3377173 .13042605 .01472057 .24868366

.1384996

.01398656 .1753756 .12594541 .01283675

.16928828

.08715728

.00019837

u3

.00001444

t_GMM 4.6605689 -.81546551 1.7321615

.83237725

-.79511061

1 4654634

3.7445283

.25382656

.50330241

-.63709904

-1 0320114

t_GMM

t_GMM 1.2682747 1.2149392 -.68214863 1.5144915 1.2619838

-.96954531

-.96934331 1.1488235 1.2902785 .21190676 -.89993149

1.2443553

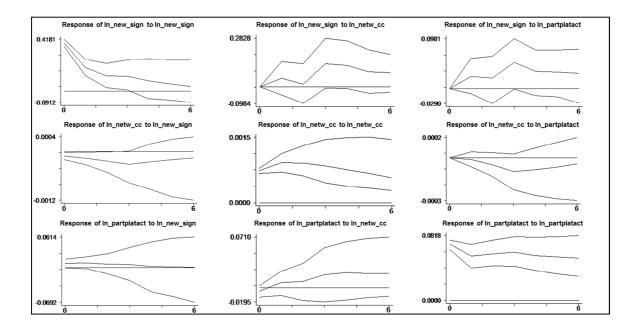
-.04660096

t_GMN

t_GMM .41439446 .18994978 6.1559387 -.52577352 .19586944

1.5234183

.07734342 .35709294 .21775486 -.10133444


-.39445342 -.77535057

ln_netw_cc ln_partplatact

Starting Monte-Carlo loop : 11:54:39 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:54:49

.00533747

.154213

Appendix 24 Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree ln_partintactplat; Established Regions

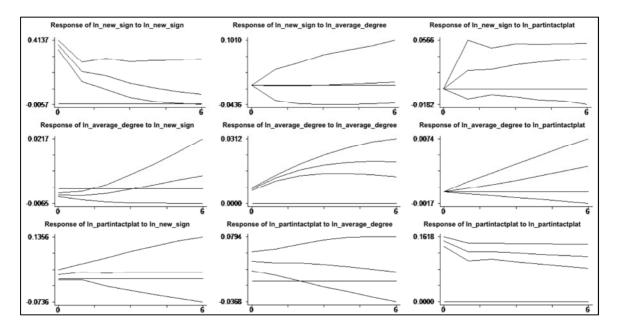
pvar ln_new_sign ln_average_degree ln_partintactplat, lag(1) gmm monte 1000 GMM started : 12:03:25 equation 1,2,3,calculating b2sls accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix Results of the Estimation by system GMM_ number of observations used : 215 EQ1: dep.var : h_ln_new_sign b_GMM se_GMM t_GMM L.h_ln_new_sign .73282782 .14200502 5.1605768 L.h_ln_average_degree .1331378 .411184 .32379129 L.h_ln_partintactplat .09129588 .05859304 1.5581353 EQ2: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM .00451189 .01166075 .00256573 L.h_ln_new_sign -0.032337 L.h_ln_average_degree .91891125 L.h_ln_partintactplat .00965327 -.84740014 78.803794 3.7623856 EQ3: dep.var : h_ln_partintactplat
 b_GMM
 se_GMM
 t_GMM

 L.h_ln_new_sign
 -0.1556777
 0.5338883
 -.2915923

 L.h_ln_average_degree
 -.17860981
 1.7066847
 -1.0464082

 L.h_ln_partintactplat
 .97583153
 .02489336
 39.200468

</tabular just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat
 .15558041
 -.00148536 .00017395 ln new sign ln_average_degree
ln_partintactplat .00029118 .02617795 Residuals correlation matrix ul u2 u3 ul 1.0000 u2 -0.2855 1.0000 0.0000 0.0474 0.1367 u3 1.0000

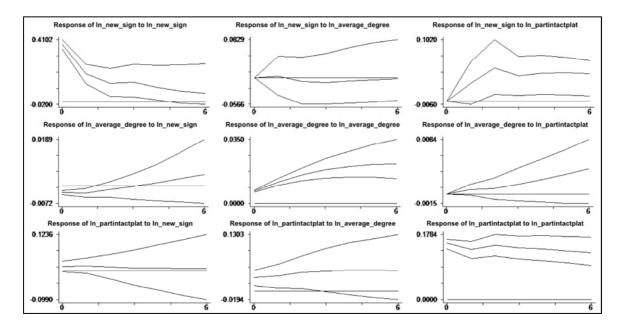

GMM finished : 12:03:30

Starting Monte-Carlo loop : 12:03:32 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte=Carlo loop : 12:03:38

pvar ln_new_sign ln_average_degree ln_partintactplat, lag(2) gmm monte 1000 GMM started : 12:12:29 accumulating matrices equation 1,2,3,calculating b2sls accumitering metrices equation fr, f, factoristing calculating big ZuuZ matrix finished accumulating ZuuZ — Results of the Estimation by system GMM_ number of observations used : 210 r : h_ln_new_sign EQ1: dep.var L.h_ln_new_sign .53090171 L.h_ln_average_degree -.87269011 L.h_ln_partintactplat .14101562 L2.h_ln_new_sign .17974975 L2.h ln_average degree .53114307 se_GMM .1194581 3.3234664 .14272442 + GMM t_GMM 4.4442504 -.2625843 .98802729 .09799668 1.8342432 L2.h_ln_average_degree .97414307 L2.h_ln_partintactplat -.03787616 3.0864632 .31561791 .12520208 EQ2: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM L.h_ln_new_sign L.h_ln_average_degree L.h_ln_partintactplat L2.h_ln_new_sign .00433248 1.7319753 .00340381 .00057904 .00220238 .0912467 .00362098 .00153239 1.967184 18.981239 .94002467 .37787052 L2.h_ln_average_degree L2.h_ln_partintactplat .08476625 -8.9872928 -.7618191 -.72767886 -.00252656 .00347208 EQ3: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h ln new sign .03233892 .04170531 .77541503 .04170531 .77541503 1.6338756 .31107508 .07674966 10.685832 .0335876 -.68655039 1.5291833 -.50780741 .07418481 2.0015711 .03233892 .50825799 .82013394 -.02305958 -.77653059 L.h_ln_average_degree L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_average_degree 1.6338756 .07674966 .0335876 1.5291833 L2.h_ln_partintactplat .14848617 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat
 .14753588
 -.00107188 .00005851 ln_new_sign ln_average_degree
ln_partintactplat .00572958 .00020979 .02431509 Residuals correlation matrix ul u2 u3

GMM finished : 12:12:31

Starting Monte-Carlo loop : 12:12:31 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:12:39

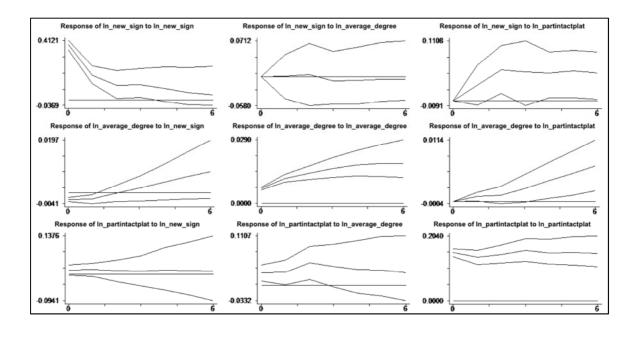


pvar ln_new_sign ln_average_degree ln_partintactplat, lag(3) gmm monte 1000 GMM started : 12:15:56 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation r,r,r,relutating bas calculating big 2uu2 matrix finished accumulating 2uu2 — Results of the Estimation by system GMM______ number of observations used : 205 EQ1: dep.var : h_ln_new_sign b_GMM L.h_ln_new_sign .47267334 L.h_ln_average_degree -.26542979 L.h_ln_partintactplat .18804318 se_GMM .11104231 3.9555217 .14509212 t GMN t_GMM 4.2566958 -.06710361 1.2960261 L2.h_ln_new_sign .05962418 .52888782 L2.h_ln_new_sign 0.05962418 L2.h_la.verage_degre -2.2735097 L2.h_ln_partintactplat 1.0079906 L3.h_ln_new_sign 1.5808142 L3.h_ln_average_degre 2.614323 L3.h_ln_partintactplat -.16686358 5.6858182 -.3998562 .17293861 .58286035 .08030015 3.0429631 .14850551 .9686318 .85913727 -1.1236188 E02: dep.var : h_ln_average_degree se_GMM .00188299 L.h_ln_new_sign .00394110 L.h_ln_average_degree 1.6706226 L.h_ln_partintactplat .00457339 L2.h_ln_new_sign .00274428 L2.h_ln_average_degree -.58034205 L2.h_ln_partintactplat -.00701417 L3.h_ln_new_sign -.00181109 L3.h_ln_average_degree -.11823344 L3.h_ln_partintactplat .00309121 2.0940877 12.62686 1.3700665 1.7568679 .13230705 .00156203 .00156203 .19604447 .00396339 .00132414 .19604447 -2.9602571 .00396339 -1.7697397 .00132414 -1.3677432 .0866893 -1.3638758 .94062237 .00328634 EQ3: dep.var : h_ln_partintactplat b GMM se GMM t GMM L.h_ln_new_sign .01840213 .03591621 .51236267 .03391621 .5123023 1.9282391 .58208859 .07587284 11.75675 .03670627 -.5503347 2.6364837 -.34494558 L.h_ln_average_degree L.h_ln_partintactplat L2.h_ln_new_sign .01840213 1.122406 .89201798 -.02020073 L2.h_ln_average_degree -.90944339 L2.h_ln_partintactplat .16510297 L3.h_ln_new_sign -.00981748 L3.h_ln_average_degree -.28206084 L3.h_ln_partintactplat -.09367413 .09307472 1.7738756 .03262239 -.30094308 1 305207 216104 .06893238 -1.3589279 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat .1442086 -.00100474 .00005507 .0054347 .00017554 .02489189 ln_new_sign ln_average_degree
ln_partintactplat Residuals correlation matrix 113 I 11 ...2

	uı	uz	U.3
ul	1.0000		
u2	-0.3567 0.0000	1.0000	
u3	0.0908 0.1955		1.0000

GMM finished : 12:15:58

Starting Monte-Carlo loop : 12:15:58 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:16:07



348

pvar ln_new_sign ln_average_degree ln_partintactplat, lag(4) gmm monte 1000 GMM started : 12:18:20 accumulating matrices equation 1,2,3,calculating b2sls r : h_ln_new_sign EQ1: dep.var se_GMM .11038432 4.2092517 .1485602 .10998762 b_GMM L.h_ln_new_sign .43987757 L.h_ln_average_degree -.58598974 L.h_ln_partintactplat .18897282 1.2720286 L.n_in_parintactpiat L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_average_degree L3.h_ln_partintactplat L4.h_ln_new_sign L4.h_ln_new_sign .05827342 .52981803 .10489142 6.1792272 .19300658 .01697484 .13013679 .67426092 .11145903 -2.0362942 -.11821991 .09318217 1.1961412 .09318217 6.3979895 .1950063 .07394971 -.31827095 -.60623635 .03050682 2.6244989 .41253472 L4.h_ln_average_degree L4.h_ln_partintactplat 3.5743908 .17208891 .73425069 -.05622422 EQ2: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM L.h_ln_new_sign L.h_ln_average_degree L.h_ln_partintactplat L2.h_ln_new_sign .0050749 1.6669163 .00609568 .00186942 .00193989 .12877102 .00334524 .00154085 2.6160817 12.944809 1.8221947 1.2132382 L2.h_ln_average_degree -.78048379 .19620294 -3.9779414 L2.h_ln_partintactplat L3.h_ln_new_sign -.00886627 .00367379 -2.413385 .00024009 .00149101 .16102196 .24641419 .00765376 .00014013 -.16771573 .1454703 .00409365 .0011999 .06457475 1.6939141 1.8696665 .11678728 -2.5972338 L3.h_ln_average_degree L3.h_ln_partintactplat L4.h_ln_new_sign L4.h_ln_average_degree L4.h_ln_partintactplat -.00394731 .00366347 -1.0774795 EQ3: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM se_GMM .03471412 2.0242346 .07666561 .03404827 2.9400464 .09470868 .01316062 .3791142 L.h_ln_new_sign .3791142 .29828021 11.640458 -.07221018 .61241733 1.6382951 L.h_ln_new_sign L.h_ln_average_degree L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partintactplat L3.h_ln_new_sign .60378911 .89242281 -.00245863 1.8005354 .15516077 -.03510638 .03348424 -1.0484448 L3.h_ln_mew_sign -.03510638 L3.h_ln_average_degree -5.400698 L3.h_ln_partintactplat .02453987 L4.h_ln_mew_sign .00981634 L4.h_ln_average_degree 2.8867113 L4.h_ln_partintactplat -.09486321 .03348424 -1.0484448 2.62114 -2.0604386 .0899985 .27266978 02907039 .33767485 1.4175252 2.0364444 .06605287 -1.4361708 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat
 .14552651
 -.00098758 .00005237 ln_new_sign ln_average_degree
ln_partintactplat .00558897 .0001574 .02435955 Residuals correlation matrix ul u2 I u3 ul 1.0000 u2 -0.3579 1.0000 0.0000 113 0.0939 0.1394 1.0000 0.1859 0.0490

GMM finished : 12:18:21

Starting Monte-Carlo loop : 12:18:23 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:18:32

In_degree_centralization In_partintactplat; Established Regions

. pvar ln_new_sign ln_degr_centr ln_partintactplat, lag(1) gmm monte 1000 GMM started : 12:30:08 accumulating matrices equation 1,2,3,calculating b2sls calculating b12uuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM______ number of observations used : 215 EQ1: dep.var : h_ln_new_sign b_GMM se_GMM t_GMM L.h_ln_new_sign .72165019 .16926809 4.2633564 L.h_ln_degr_centr 1.9340415 3.436061 .56286533 L.h_ln_partintactplat .11530043 .08141425 1.4162191 EQ2: dep.var : h_ln_degr_centr se_GMM t_GMM .00077855 -1.8863788 .02771962 35.164071 .00057368 2.168947 b_GMM L.h_ln_new_sign -.00146865 L.h_ln_degr_centr .97473455 L.h_npartintactplat .00124428 EQ3: dep.var : h_ln_partintactplat b_GMM L.h_ln_new_sign -.00511963 se_GMM t_GMM .05922302 -.08644654 L.h_ln_degr_centr -2.4191546 1.6119182 -1.5007924 L.h_ln_partintactplat .94704543 .03541399 26.742131 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .15633086 -.00016319 .00326253 ln_degr_centr ln_partintactplat ln_new_sign ln_degr_centr ln_partintactplat 5.482e-06 5.352e-06 .02577432 Residuals correlation matrix ul u2 u3 1.0000 ul u2 -0.1758 1.0000 0.0098

GMM finished : 12:30:11

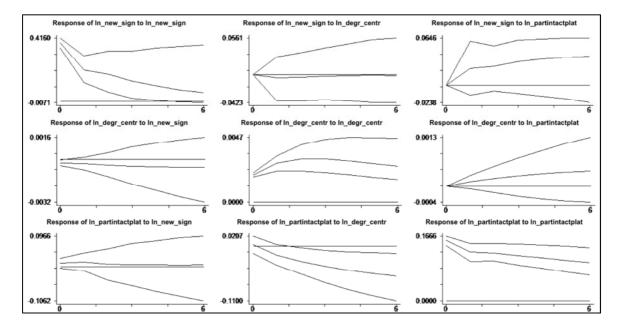
u3

0.0514 0.0143 0.4534 0.8354 1.0000

Starting Monte-Carlo loop : 12:30:12 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:30:19

. pvar ln_new_sign ln_degr_centr ln_partintactplat, lag(2) gmm monte 1000 GMM started : 12:35:59 GMM started : 12:35:59 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______Results of the Estimation by system GMM______ number of observations used : 210 EQ1: dep.var : h_ln_new_sign se_GMM .13304738 9.8718508 .14476472 .1098094 10.337226 b_GMM t_GMM b_GMM L.h_ln_new_sign .53332122 L.h_ln_degr_centr -2.6877263 L.h_ln_partintactplat .14926807 L2.h_ln_new_sign .1762583 L2.h_ln_degr_centr 4.5961344 L2.h_ln_partintactplat -.03024121 4.0085061 4.0085061 -.27226165 1.031108 1.6051295 .4446197 -.26521165 .1140267 EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .00011381 .00053627 .21222457 L.h_ln_new_sign L.A_IA_new_sign L.h_ln_degr_centr L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partintactplat 1.4280636 .1624447 8.7910755 .0007496 .0004183 .16661744 .00050765 .00075885 -.69254866 -2.7878976 -.83272244 -.46451236 -.00042273 EQ3: dep.var : h_ln_partintactplat GMM se_GMM .04028539 3.9933071 .08296464 t_GMM .2283188 -2.592699 9.7464631 b_GMM L.h_ln_new_sign .00919791 L.h_ln_degr_centr -10.353443 L.h_ln_partintactplat .80861181 L2.h_ln_new_sign -.02492877 .03750525 -.66467425 L2.h_ln_degr_centr 6.6961721 L2.h_ln_partintactplat .14486873 3.7091698 1.8053021 2.1321726 .06794418 just identified - Hansen statistic is not calculated

symmeti	ric uu	[3,3]
---------	--------	-------

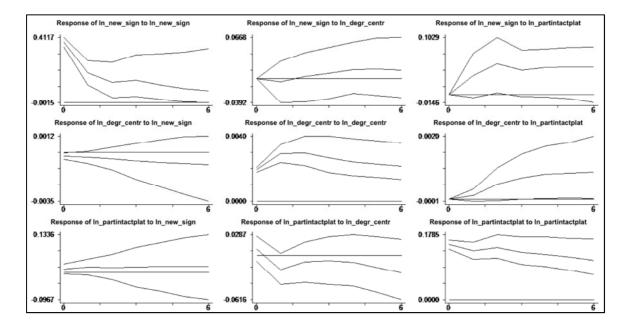

	ln_new_sign	ln_degr_centr	ln_partintactplat
ln_new_sign	.14829558		
ln_degr_centr	00010298	4.035e-06	
ln_partintactplat	.00436457	3.546e-06	.02440747

Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	-0.1331 0.0540	1.0000	
u3	0.0725 0.2958	0.0113 0.8707	1.0000

GMM finished : 12:36:01

Starting Monte-Carlo loop : 12:36:02 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=68, i=646, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:36:09


pvar ln_new_sign ln_degr_centr ln_partintactplat, lag(3) gmm monte 1000 GMM started : 12:38:24 accumulating matrices equation 1,2,3, calculating b2sls accumitering metrices equation fraction fractions of the second s EQ1: dep.var : h_ln_new_sign se_GMM .12948706 10.380694 .15950445 b GMM b_GMM L.h_ln_new_sign .48020067 L.h_ln_degr_centr -3.5708234 L.h_ln_partintactplat .22456758 3.708484 -.34398696 1.4079079 .08858112 .1108215 .7993135 L2.h_ln_new_sign L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_degr_centr 16.685236 10.300113 L2.h_ln_partintactplat .06169196 L3.h_ln_new_sign .15783612 L3.h_ln_degr_centr -3.7583188 L3.h_ln_partintactplat -.17148203 .17604774 .35042742 .35042742 1.7636602 -.3619499 -1.1834476 0894935 10.383533 .1449004 EQ2: dep.var : h_ln_degr_centr b_GMM .00004416 1.5006724 se_GMM .00047972 .15288538 t_GMM .09206141 9.8156697 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintactplat .00079538 1.0351259 .00082332 L.h_in_partintactplat L2.h_in_degr_centr L2.h_in_degr_centr L2.h_in_partintactplat L3.h_in_new_sign L3.h_in_degr_centr 1.0351259 -1.0418126 -3.2218955 .91353558 -.77109046 1.8180175 .00034318 .22669286 .00115212 .00034253 -.00035753 -.73038071 .0010525 -.00026412 .20031434 .11018284 L3.h_ln_partintactplat .00120515 -.94222338 EQ3: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM b_GMM L.h_ln_new_sign .01171817 L.h_ln_degr_centr -14.026956 L.h_ln_partintactplat .88521988 L2.h_ln_new_sign -.00411417 L2.h_ln_degr_centr 24.885029 .03622822 .32345421 .32345421 -3.1408921 10.979175 -.12778274 2.8315376 1.9753808 4.4659146 4.4659146 .08062718 .0321966 8.7789862 L2.h_ln_partintactplat .08541331 ln_partintactplat .16872382 L3.h_ln_new_sign -.00278587 .03702042 -.07525236 L3.h_ln_degr_centr -13.689608 L3.h_ln_partintactplat -.11089354 6.4010952 -2.1386353 .06676536 -1.6609443 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .1469215 -.00009804 .00456623 ln_degr_centr ln_partintactplat ln_new_sign ln_degr_centr ln_partintactplat 3.870e-06 .00001322 .02337532 Residuals correlation matrix ul u2 u3 1.0000 ul u2 -0.1300 1.0000 0.0632

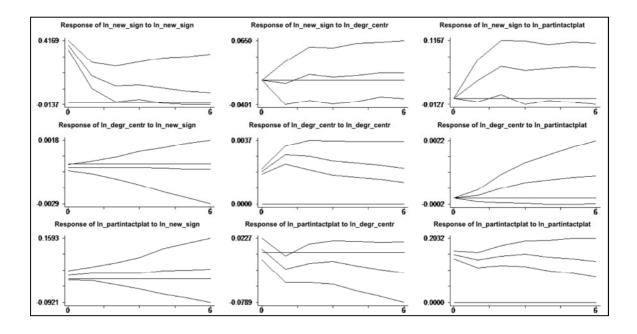
GMM finished : 12:38:25

u3

0.0778 0.0440 1.0000 0.2673 0.5313

Starting Monte-Carlo loop : 12:38:26 , total 1000 repetitions requested i-38, i-76, i-114, i-152, i-190, i-228, i-266, i-304, i-342, i-380, i-418, i-456, i-494, i-532, i-57 > 0, i-608, i-644, i-624, i-722, i-760, i-798, i-836, i-874, i-912, i-950, i-988, i-1000, finished M > onte-Carlo loop : 12:38:35

352


pvar ln_new_sign ln_degr_centr ln_partintactplat, lag(4) gmm monte 1000 GMM started : 12:40:51 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation i,,,,,architching calculating big ZuuZ matrix finished accumulating ZuuZ ______Results of the Estimation by system GMM_ number of observations used : 200 EQ1: dep.var : h_ln_new_sign se_GMM t_GMM .12977886 3.4956386 11.213611 -.30143313 .1771358 1.3253151 .11264508 .63025367 b GMM b_GMM L.h_ln_new_sign .45365999 L.h_ln_degr_centr -3.3801538 L.h_ln_partintactplat .23476076 L2.h_ln_new_sign .07099498 L2.h_ln_degr_centr L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_degr_centr 14.304152 .11126557 .12953595 -11.99946 19.799334 .19945687 .09107634 21.153588 .72245624 .5578427 1.4222789 -.16943552 L3.h_ln_partintactplat .18869724 -.8979226 L4.h_ln_new_sign L4.h_ln_degr_centr .03001797 .07966202 .37681657 5.1885943 12.970185 .40004012 L4.h_ln_partintactplat -.0395971 .15258401 -.25951017 EQ2: dep.var : h_ln_degr_centr b GMM se GMM t GMM L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintactplat .00050435 .45586062 10.013876 .71985038 .00022991 .00086153 .00062017 L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partintactplat L3.h_ln_new_sign -.0002939 .00032698 -.89884638 -.80031507 .2314829 -3.45734 .0009645 .00001908 .36173392 -.00090524 .00122971 .0003542 .16253437 -3.43734 .78432628 .05387742 2.2255842 L3.h_ln_new_sign L3.h_ln_degr_centr L3.h_ln_partintactplat L4.h_ln_new_sign L4.h_ln_degr_centr L4.h_ln_partintactplat .00150483 -.60155655 -.00021513 .00027169 -.79183158 -.10184215 .0856222 -1.1894363 -.00010008 .0009437 -.10605326 EQ3: dep.var : h_ln_partintactplat se_GMM t_GMM .03509128 .40541777 4.4165824 -3.6622531 .08443181 10.509956 .03129225 -.09214843 se_GMM .03509128 4.4165824 .08443181 b GMM b_cXM L.h_ln_new_sign .01422663 L.h_ln_degr_centr -16.174643 L.h_ln_partintactplat .88737462 L.2.h_ln_new_sign -.0028353 L2.h_ln_degr_centr 26.961652 9.6230966 2.8017646 L2.h_ln_degr_centr L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_degr_centr L3.h_ln_partintactplat L4.h_ln_new_sign 26.961652 .18611184 -.00346993 -13.909909 .00316536 .01890633 .09470457 .03405612 10.427056 .08422086 1.9651834 -.1018887 -1.3340208 .03758406 .61504665 .03073966 L4.h_ln_degr_centr .34709047 L4.h_ln_partintactplat -.13219106 5.0450438 .06879831 .05981338 -2.2100584 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_degr_centr ln_partintactplat ln_new_sign ln_degr_centr ln_partintactplat .1494776 3.764e-06 .00529758 .02319939 6.969e-06 Residuals correlation matrix u2 ul u3 1.0000 ul u2 -0.1205 1.0000 0.0892

GMM finished : 12:40:53

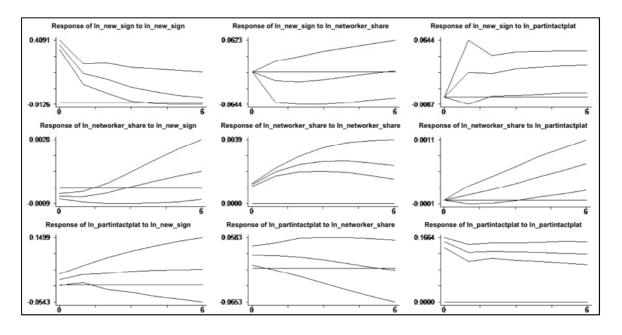
u3

Starting Monte-Carlo loop : 12:40:54 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:41:03

0.0899 0.0236 1.0000 0.2054 0.7404

Appendix 26 Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share ln_partintactplat; Established Regions

pvar ln_new_sign ln_networker_share ln_partintactplat, lag(1) gmm monte 1000 . pvar in_new_sign in_networker_share in_partintactplat GMM started : 13:09:28 accumulating matrices equation 1,2,3, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 215 EQ1: dep.var : h_ln_new_sign b_GMM se_GMM t_GMM L.h_ln_new_sign .66769916 .12874722 5.1861249 L.h_ln_networker_share 2.7138077 .41545464 .65321395 L.h_ln_partintactplat .09679979 .05448259 1.7767105 EO2: dep.var : h_ln_networker_share b_GMM L.h_ln_new_sign -.00096323 L.h_ln_networker_share .9190884 L.h_ln_partire se_GMM t_GMM .00066886 -1.4401024 .01375701 66.808721 .00023934 5.6677167 .9190884 L.h_ln_partintactplat EQ3: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_new_sign .00303843 L.h_ln_networker_share -1.8476075 L.h_ln_partintactplat .98111238 .05159281 .05889241 1.5803142 -1.1691393 41.327884 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share ln_partintactplat .15266389 -.00027662 3.524e-06 .0041017 .0000372 .02629028 ln_new_sign ln_networker_share ln_partintactplat .02629028 Residuals correlation matrix ul u2 u3 1.0000 u1 -0.3782 u2 1.0000 0.0649 u3 0.1224 1.0000 0.0733 0.3440

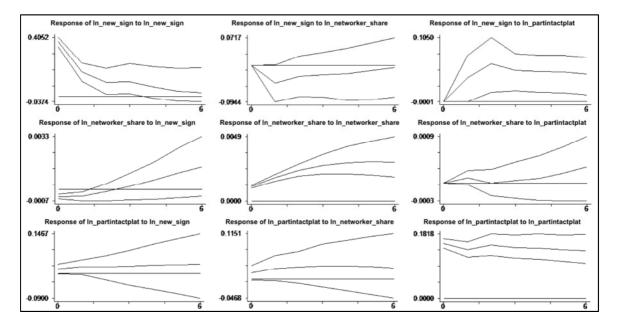

GMM finished : 13:09:30

Starting Monte-Carlo loop : 13:09:31 , total 1000 repetitions requested i-38, i-76, i-114, i-152, i-190, i-228, i-266, i-304, i-342, i-380, i-418, i-456, i-494, i-532, i-57 > 0, i-608, i-644, i-624, i-722, i-760, i-798, i-836, i-874, i-912, i-950, i-988, i-1000, finished M > onte-Carlo loop : 13:09:37

. pvar ln_new_sign ln_networker_share ln_partintactplat, lag(2) gmm monte 1000 GMM started : 13:36:54 GMM started : 13:36:54 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 210 EQ1: dep.var : h_ln_new_sign se_GMM .12264475 22.540329 b GMM b_GMM L.h_ln_new_sign .46883031 L.h_ln_networker_share -19.887231 3.8226693 -.88229549 L.h_ln_partintactplat .17941497 L2.h_ln_new_sign .15531861 L2.h_ln_networker_share 21.14656 L2.h_ln_partintactplat -.05027424 .14216707 1.2620009 .09686772 1.6034094 20.886235 1 012464 .12779585 -.39339495 EQ2: dep.var : h_ln_networker_share b_GMM L.h_ln_new_sign .00070381 L.h_ln_networker_share 1.6512266 se_GMM .00036171 .09406502 t_GMM 1.9457745 17.554099 1.0190508 L.h_ln_partintactplat .0006128 L2.h_ln_new_sign .00023964 L2.h_ln_networker_share -.69154113 L2.h_ln_partintactplat -.00042835 .00060134 .0002565 .93429918 .08621409 -8.0212082 .00061831 -.69277325 EQ3: dep.var : h_ln_partintactplat b_GMM .05365232 2.3521694 se_GMM .04771129 12.09354 t GMM t_GMM 1.1245205 .194498 10.783193 L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partintactplat .82420731 L2.h_ln_new_sign -.01116398 L2.h_ln_networker_share -5.2337923 L2.h_ln_partintactplat .15436838 .07643444 .0345072 11.22792 .07531863 -.32352615 -.46614087 2.0495379 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share ln_partintactplat
 .14433374
 -.00018356 1.546e-06 ln_new_sign ln_networker_share ln_partintactplat .00632788 .00002079 .02502069 Residuals correlation matrix

GMM finished : 13:36:56

Starting Monte-Carlo loop : 13:36:56 , total 1000 repetitions requested i-38, i-76, i-114, i-152, i-190, i-228, i-266, i-304, i-342, i-380, i-418, i-456, i-494, i-532, i-57 > 0, i-608, i-646, i-684, i-722, i-760, i-798, i-836, i-874, i-912, i-950, i-988, i-1000, finished M > onte-Carlo loop : 13:37:04

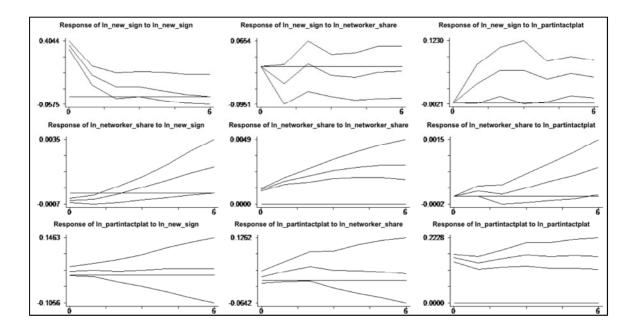


pvar ln_new_sign ln_networker_share ln_partintactplat, lag(3) gmm monte 1000 GMM started : 13:39:56 accumulating matrices equation 1,2,3, calculating b2sls EQ1: dep.var : h_ln_new_sign b_GMM L.h_ln_new_sign .38477427 L.h_ln_networker_share -43.912392 L.h_ln_partintactplat .25550715 se_GMM .11559375 26.343881 .14585507 GMM t_GMM 3.3286771 -1.6668915 1.7517878 .65454079 .11802523 L2.h_ln_new_sign .07725233 L2.h_ln_ew_sign .0/72543 L2.h_ln_evtorker_share 53.572449 L2.h_ln_partintactplat .10583969 L3.h_ln_ew_sign .15340679 L3.h_ln_evtorker_share -8.563177 L3.h_ln_partintactplat -.22091272 33.623743 .16781423 .07962633 18.802367 1.5932922 63069559 .63069559 1.9265838 -.4554308 -1.4926937 .14799602 EQ2: dep.var : h_ln_networker_share b_GMM .00072257 se_GMM .00030845 t_GMM 2.3425702 L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_networker_share 1.5844882 .12115882 13.077779 1.2420387 .00068993 .00033548 .00032668 .17759403 .00073443 2.1767234 0007111 -.38601456 -2.54818 L2.h_ln_partintactplat -.00187145 -.24154926 L3.h_1n_new_sign -.00005693 L3.h_1n_networker_share -.23453532 .00023568 .08577194 -2.7344063 L3.h_ln_partintactplat .00107792 .000572 1.8844693 EQ3: dep.var : h_ln_partintactplat b_GMM L.h_ln_new_sign .03763072 I.h_ln_networker_share 11.412332 L.h_ln_partintactplat .8861889 L.2.h_ln_new_sign -.01857011 L2.h_ln_networker_share -13.645089 se GMM + GMM se_GMM .04202022 14.59377 .07708436 .89553842 .78200025 11.496351 -.46221492 .04017635 20.435225 -.6677239 L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_networker_share L3.h_ln_partintactplat .16536123 -.0062341 1.1651016 -.08390016 .09472762 .03251066 10.626605 .06917274 1.7456496 -.19175559 .10964005 -1.2129078 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share ln_partintactplat
.14099604
-.00017376 1.474e-06 ln_new_sign ln_networker_share ln_partintactplat .00646813 .00001014 .02469379 Residuals correlation matrix ul u2 u3

1.0000		
-0.3812 0.0000	1.0000	
		1.0000
	-0.3812 0.0000 0.1097	-0.3812 1.0000

GMM finished : 13:39:58

Starting Monte-Carlo loop : 13:39:59 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:40:07


pvar ln_new_sign ln_networker_share ln_partintactplat, lag(4) gmm monte 1000 GMM started : 13:41:54 accumulating matrices equation 1,2,3,calculating b2sls EQ1: dep.var : h_ln_new_sign b GMM GMM GMM L.h_ln_new_sign .34984202 L.h_ln_networker_share -40.137944 L.h_ln_partintactplat .24114587 se_GMM .11735581 26.800925 .1504895 2.9810371 -1.4976328 1.6024099 L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_networker_share L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_networker_share .11819407 .07408959 74.897906 .62684694 34.529003 .17672453 .09535515 34.764971 2.1691303 .15045929 .06930688 -71.248726 .72682886 L3.h_ln_partintactplat -.16923286 .19289426 -.87733489 L4.h ln new sign .01222659 .0689963 .17720652 L4.h_ln_networker_share L4.h_ln_partintactplat 38.377469 23.860988 1.6083772 -.25417079 EQ2: dep.var : h_ln_networker_share b GMM se GMM t GMM L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partintactplat .00083767 1.5726636 .00090028 .00031713 .12360266 .00058207 2.6413789 12.723542 1.5466755 L2.h ln new sign .0006201 .00033156 1.8702205 L2.h_ln_networker_share L2.h_ln_partintactplat L3.h_ln_networker_share -.54278304 .17254019 -3.1458354 -.00205702 .00037183 .13525058 .00074206 .00026774 .17843623 -2.7720332 -2.7720332 1.388739 .75797711 2.4562921 L3.h_ln_partintactplat .00181341 .00073827 L4.h_ln_new_sign .00004859 L4.h_ln_networker_share -.2026886 L4.h_ln_partintactplat -.00084603 .00022215 .21871412 -2 1694142 09343011 .00065247 -1.2966602 EQ3: dep.var : h_ln_partintactplat se_GMM .04021721 14.23477 .07727997 b GMM GMM L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partintactplat L.h_ln_new_sign .03541643 .n_networker_share 15.628009 ln_partintactplat .8879307 L2.h_ln_new_sign -.01713003 .88062884 1.0978757 11.48979 .03892656 -.4400601 L2.h_ln_networker_share -0.7927476 L2.h_ln_partintactplat .16706606 L3.h_ln_new_sign -.0397358 L3.h_ln_networker_share -24.939695 21.351032 .09652615 .03492729 18.45953 -.45865453 -.45865453 1.7307855 -1.1376719 -1.3510472 L3.h_ln_partintactplat .0350977 .09175229 .02760899 .38252663 L4.h ln new sign L4.h_ln_networker_share 18.355785 L4.h_ln_partintactplat -.10986755 9.2768477 1.9786662 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share ln_partintactplat .1411053 -.00017959 .00605727 ln_new_sign ln_networker_share 1.501e-06 .02442942 ln_partintactplat 5.064e-06 Residuals correlation matrix u1 u2 u3 ul 1.0000

ul 1.0000 u2 -0.3904 1.0000 0.0000 u3 0.1032 0.0265 1.0000 0.1457 0.7097

GMM finished : 13:41:56

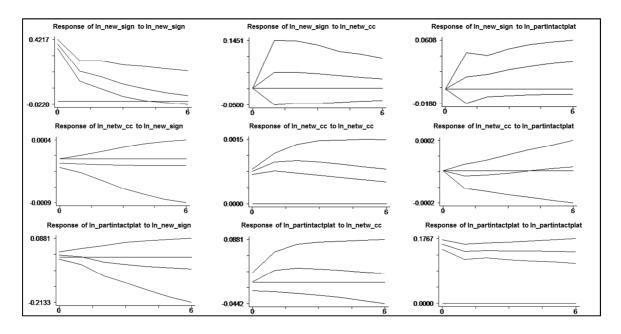
Starting Monte-Carlo loop : 13:41:58 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=68, i=644, i=642, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:42:08

Appendix

Appendix 27 Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc ln_partintactplat; Established Regions

. pvar ln_new_ GMM started : accumulating p: finished accur Result number of obse EQ1: dep.var	13:50:08 matrices ig ZuuZ m mulating as of the ervations	equation 1, atrix ZuuZ Estimation used : 215	2,3,calcula by system	ting b2sls	gmm monte 1000	
-*						
		b_GMM	se_GMM	t_GMM		
L.h_ln_	new_sign	.70410878	.1267356	5.55573		
L.h_ln	_netw_cc	2.5816032	4.6202782	.55875493		
L.h_ln_partint	actplat	.09105554	.05810366	1.5671221		
EQ2: dep.var	: h_1	n_netw_cc				
		b_GMM	se_GM	IM t_GM	М	
		.01008065				
L.h_ln_	_netw_cc	.57432863	.3001692	5 1.913349	4	
L.h_ln_partint	actplat	00207456	.0020162	6 -1.028919	1	
EQ3: dep.var	: h_1	n_partintac	tplat			
	_netw_cc actplat	03968938 -1.0731904 .98858187	1.532726	46477916 17001840 8 36.18676	7 9 8	
symmetric uu[]	3,31					
ln_new_s		ln_new_s .1588	-	ln_netw_cc	ln_partintactplat	
ln_netv		.00061		.00024768		
ln_partintact	-	.00124		00002683	.02767511	
Residuals correlation matrix						
	u u	1 u2	u3			
u1	1.000	0				
u2	0.097 0.155	2 1.0000 7				
и3		1 -0.0100 9 0.8847	1.0000			

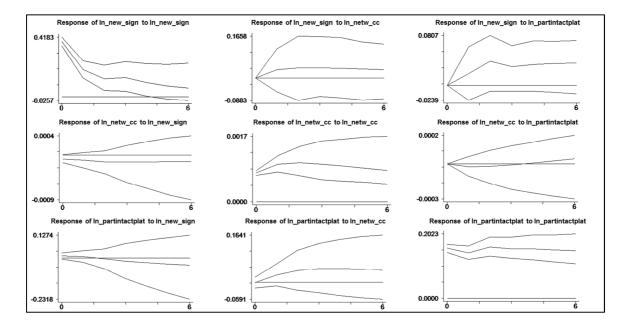
GMM finished : 13:50:12


Starting Monte-Carlo loop : 13:50:13 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=668, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:50:19

. pvar ln_new_sign ln_netw_cc ln_partintactplat, lag(2) gmm monte 1000 GMM started : 13:59:11 GMM started : 13:59:11 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____Results of the Estimation by system GMM______ number of observations used : 210 EQ1: dep.var : h_ln_new_sign b GMM GMM t GMN L.h_ln_new_sign .55441012 L.h_ln_netw_cc .24986518 L.h_ln_partintactplat .10477613 L2.h_ln_new_sign .18576864 se_GMM .10413416 3.3463072 .11655992 t_GMM 5.3239985 .07466893 .89890363 .08701619 2.1348744 L2.h ln netw cc .77299691 3.069888 .25179972 L2.h_ln_partintactplat -.02427511 .11084596 -.21899859 EQ2: dep.var : h_ln_netw_cc b GMM se GMM t GMM D_GMM L.h_ln_new_sign .00476477 L.h_ln_netw_cc .33090723 L.h_ln_partintactplat -.00012555 .00267829 .25297542 .00199009 .00213049 1.7790311 1.3080608 -.06308799 L2.h_ln_new_sign .00317433 1.4899526 L2.h_ln_netw_cc .33625629 L2.h_ln_partintactplat -.00166108 .24152017 1.3922493 .00206128 -.80585033 EQ3: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM se_CMM t_CMM 04810565 -.38851192 1.0375305 -.58224872 .07127371 12.462832 .04228556 -1.2205223 .90912554 -.21225097 .07037447 1.6690873 L.h_ln_new_sign -.01868962 L.h_ln_netw_cc -.60410078 L.h_ln_netw_cc .88827235 L2.h_ln_new_sign -.05161047 L2.h_ln_netw_cc -.19296277 L2.h_ln_partintactplat .11746114 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_netw_cc ln_partintactplat ln_new_sign ln_new_sign ln_netw_cc .15001933 .00021644 ln_partintactplat .00302743 .00002101 .02725511 Residuals correlation matrix

ul u2 u3 u1 1.0000 u2 0.0595 1.0000 0.3910 0.0476 u3 0.0476 0.0088 0.4926 0.8986 1.0000

GMM finished : 13:59:14


Starting Monte-Carlo loop : 13:59:15 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:59:22

pvar ln_new_sign ln_netw_cc ln_partintactplat, lag(3) gmm monte 1000 GMM started : 14:20:25 accumulating matrices equation 1,2,3, calculating b2sls accumitering metrices equation fraction fractions of the second s EQ1: dep.var : h_ln_new_sign se_GMM .09599368 2.0697012 .13145161 b GMM b_GMM L.h_ln_new_sign .49890834 L.h_ln_netw_cc -2.0737107 L.h_ln_partintactplat .14994073 t_GMM 5.1973042 -1.0019373 1.1406534 1.0491804 L.h_in_partintactpiat L2.h_in_new_sign L2.h_in_netw_cc L2.h_in_partintactpiat L3.h_in_netw_cc .0978071 .09322238 -1.6129028 1.7868897 -.90263143 -1.0129020 .08235046 .15389175 5.1965237 -.1639315 .17593222 .46808062 08538443 1.615689 3.2162897 -1.1519481 L3.h_ln_partintactplat .14230806 EQ2: dep.var : h_ln_netw_cc b_GMM .00308221 .22514462 se_GMM .00178247 .18367291 t_GMM 1.7291768 1.2257911 L.h_ln_new_sign L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partintactplat 12.h_ln_netw_cc L2.h_ln_netw_cc L2.h_ln_partintactplat L3.h_ln_netw_cc L3.h_ln_netw_cc .0001513 .00218004 .06940182 .00102012 .1778823 .00379496 .00172522 .00139331 1.3658229 .22809766 -.00421836 .00205238 1.3658229 1.2822954 -1.1115686 1.1896333 .23217186 .17869901 1.2992342 L3.h_ln_partintactplat .00262579 .00326289 .80474484 EQ3: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM b_GKM L.h_ln_new_sign -.00949405 L.h_ln_netw_cc -.55235543 L.h_ln_partintactplat ..9360312 L2.h_ln_new_sign -.03018437 L2.h_ln_netw_cc -.12508165 L2.h_ln_partintactplat ..1770385 L2.h_ln_partintactplat ...777037 se_GMM t_GMM .04345737 -.21743274 .91560041 -.60327128 .06932867 13.500954 .03148825 -.95859174 .74117585 -.16876109 .0931655 1.900257 .06932867 .03148825 .74117585 .09316556 1.900257 L3.h_ln_new_sign -.01536493 L3.h_ln_netw_cc .04534718 L3.h_ln_partintactplat -.11859132 .04645124 -.33077535 .62328527 .0727551 .0690995 -1.7162398 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .14170137 7.592e-06 .00338272 ln_netw_cc ln_partintactplat ln_new_sign ln_netw_cc ln_partintactplat .000203 .0260849 Residuals correlation matrix ul u2 u3 1.0000 ul u2 0.0013 1.0000 0.9851 0.0557 0.0339 1.0000 0.4276 0.6294 u3

GMM finished : 14:20:27

Starting Monte-Carlo loop : 14:20:28 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 14:20:36

EQ1: dep.var

EO2: dep.var

L.h_ln_partintactplat

L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partintactplat L3.h_ln_netw_cc

L3.h_ln_partintactplat

L4.h_ln_partintactplat

L4.h_ln_new_sign L4.h_ln_netw_cc

EQ3: dep.var : h_ln_partintactplat

b_GMM L.h_ln_new_sign .00334758 L.h_ln_netw_cc -.54980285 L.h_ln_partintactplat .92832314 L2.h_ln_new_sign -.02548402 L2.h_ln_netw_cc -.15392516

L2.h_ln_partintactplat .19394551 L3.h_ln_new_sign -.00899816

L3.h_l1_new_sign -.0089916 L3.h_l1_netw_c .02180208 L3.h_ln_partintactplat -.01099341 L4.h_l1_new_sign .01455817 L4.h_l1_netw_c -.1454659 L4.h_ln_partintactplat -.1261572

symmetric uu[3,3]

ln_new_sign

ln_netw_cc ln_partintactplat

> ul 112

u3

GMM finished : 14:35:18

Residuals correlation matrix

just identified - Hansen statistic is not calculated

ul

0.0074 1.0000 0.9171

0.0686 0.0579 1.0000 0.3347 0.4153

1.0000

ln_new_sign .14360106 .00003985

.00416372

u2

360

. pvar ln_new_sign ln_netw_cc ln_partintactplat, lag(4) gmm monte 1000 GMM started : 14:35:16 accumulating matrices equation 1,2,3,calculating b2sls

b_GMM

.12440825

.00057007

.00224432

.00224432 .18298226 -.00513287 .00393151 .18401851

.00094015

-.00431622

.18537197

b_GMM

se_GMM

.08896892 1.4497926

.18489305 .07336796 1.2222955 .14591408

se_GMM .00171371 .15124492

.0016589

.00158893 .14433504 .00552527 .00353191 .14576308 .00293762

.00456725

.15057345

.00275047

se_GMM

.04499267 .04499267 .87939948 .07114369 .02982638 .65858627 .10048457

.03820576

 .03820576
 -.2355183

 .51593446
 .04225745

 .08842362
 -.1243266

 .03793475
 .38376858

 .59056527
 -.24631637

 .06541952
 -1.9284337

.00019558

.00012982

Starting Monte-Carlo loop : 14:35:19 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 14:35:28

se_GMM t_GMM .09810954 5.0560882 1.9450459 -1.0080648 .13407684 .99321232 .09649101 .86157317 1.6494743 -.91636087 .19631788 .63370823

.63370823 1.5134494

3.6793953

-1.1180548 .5018142 -.77985295 .10960614

t_GMM 1.0667255 1.2122233

.34364371 1.4124735 1.2677605 -.92897991

1.1131391

.32003633

-.94503675

1.2311066

1.1132557

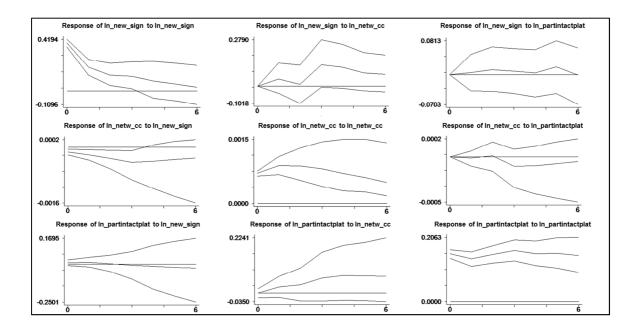
+ GMM

t_GMM .07440282 -.62520261 13.048566 -.85441222 -.23372058

1.9301024

-.2355183

ln_netw_cc ln_partintactplat


.0257186

: h_ln_new_sign

: h_ln_netw_cc b_GMM L.h_ln_new_sign .00182806 L.h_ln_netw_cc .18334263

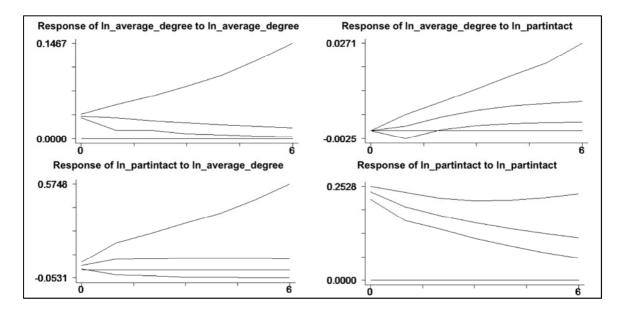
b_GMM
L.h_ln_new_sign .49605048
L.h_ln_netw_cc -1.9607324
L.h_ln_partintactplat .13316677
L2.h_ln_netw_cc -1.5115137
L2.h_ln_netw_cc -1.5115137
L2.h_ln_partintactplat .12440825

L2.1_1_partintactplat .12440625 L3.h_1n_new_sign .13464996 L3.h_1n_netw_cc 5.3343598 L3.h_1n_partintactplat -20672057 L4.h_1n_new_sign .03681708 L4.h_1n_netw_cc -.95521078 L4.h_1n_partintactplat .01599308

Appendix 28 Estimation Results PVAR(1)-(4) ln_average_degree ln_partintact; New Regions

. pvar ln_average_degree ln_partintact, lag(1) gmm monte 1000 GMM started : 15:00:26 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _ Results of the Estimation by system GMM_ number of observations used : 272 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t GMM L.h_ln_average_degree .92542288 .12997255 7.1201409 L.h_ln_partintact .0181369 .00633922 2.8610592 _____ EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_average_degree 1.2861758 .93846964 1.3705033 L.h_ln_partintact .91015128 .0662416 13.739875 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintact .0016681 ln_average_degree ln_partintact .00454766 .17579259 Residuals correlation matrix 111 112 u1 1.0000 u2 0.2647 1.0000 0.0000

GMM finished : 15:00:27

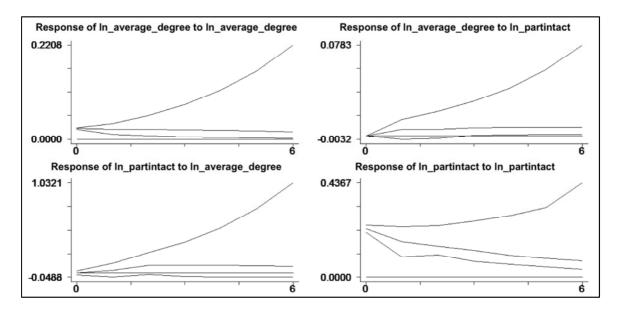

Starting Monte-Carlo loop : 15:00:28 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:00:34

. pvar ln_average_degree ln_partintact, lag(2) gmm monte 1000 GMM started : 15:26:02 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM__ number of observations used : 264 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM .92356526 .32325489 2.8570806 L.h_ln_average_degree .00584354 .00955415 L.h_ln_partintact .61162377 L2.h_ln_average_degree -.07399879 .17382027 -.42572014 L2.h_ln_partintact .00713864 .0101417 .70389022 EQ2: dep.var : h_ln_partintact b GMM se GMM t GMM L.h_ln_average_degree 1.3646947 1.7814611 .76605362 L.h_ln_partintact .83093162 .08731545 9.5164332 -.76758421 L2.h_ln_average_degree -.7898035 1.028947 .03186068 L2.h_ln_partintact .06419268 .4963289 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintact ln_average_degree .00121186 .05748803 ln_partintact .00106311 Residuals correlation matrix u1 u2

u1	1.0000	
u2	0.1376 0.0254	1.0000

GMM finished : 15:26:03

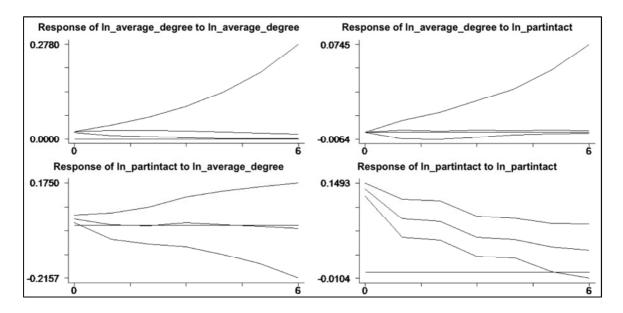
Starting Monte-Carlo loop : 15:26:04 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:26:10



. pvar ln_average_degree ln_partintact, lag(3) gmm monte 1000 GMM started : 15:24:41 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 256 EQ1: dep.var : h_ln_average_degree se_GMM b_GMM t_GMM .94260777 .29045091 3.2453256 L.h_ln_average_degree L.h_ln_partintact .02478031 .02202156 1.125275 .1125275 .11972748 .23214612 .01770356 -.98200547 L2.h_ln_average_degree .02779427 L2.h_ln_partintact -.01738499 .12046073 -.67781676 L3.h_ln_average_degree -.0816503 L3.h_ln_partintact .00335029 .01117603 .29977481 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM 1.8141341 L.h_ln_average_degree 1.2620231 .69566142 .17821144 L.h_ln_partintact .73237892 4.1096067 L2.h_ln_average_degree 1.4386406 L2.h_ln_partintact .07146268 1.3611265 .13384732 .53391196 L3.h ln average degree -1.8582492 .82401686 -2.2551107 L3.h_ln_partintact -.03094046 .06316851 -.48980833 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintact 00064139 ln_average_degree ln_partintact -.00004848 .05097255 Residuals correlation matrix 1 ...1

	ul	u2
u1	1.0000	
u2	0.0045 0.9435	1.0000

GMM finished : 15:24:44


Starting Monte-Carlo loop : 15:24:44 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:24:51

. pvar ln_average_degree ln_partintact, lag(4) gmm monte 1000 GMM started : 15:30:17 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 248 EQ1: dep.var : h_ln_average_degree se_GMM b_GMM t_GMM 1.1413935 .3947153 2.891688 L.h_ln_average_degree .36737576 L.h_ln_partintact .012432 .03384001 L2.h_ln_average_degree -.14383443 .14568756 -.9872801 .02181131 -.79885297 L2.h_ln_partintact -.01742403 L3.h_ln_average_degree -.07563573 1139359 -.66384456 L3.h_ln_partintact .01108281 .01490436 .7435954 .05184449 -.59217265 L4.h_ln_average_degree -.03070089 L4.h ln partintact -.00336101 .01242122 -.27058575 EQ2: dep.var : h_ln_partintact t_GMM b GMM se_GMM L.h_ln_average_degree -.70790743 1.395934 -.50712098 L.h_ln_partintact .64179863 .12832068 5.0015213 .41420205 .44570781 L2.h_ln_average_degree .92931298 1.7415327 .20649682 L2.h ln partintact .11857189 1.0354026 1.2436269 .83256688 L3.h_ln_average_degree L3.h_ln_partintact -.10431625 .08643581 -1.2068637 L4.h_ln_average_degree -1.1589688 .8559025 -1.3540897 L4.h_ln_partintact .05784379 .04516565 1.2807032 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln average degree ln partintact ln average degree .00048608 .00060462 .02021934 ln partintact Residuals correlation matrix 111 u2 u1 1.0000 0.1905 u2 1.0000 0.0026

GMM finished : 15:30:19

Starting Monte-Carlo loop : 15:30:19 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:30:26

Appendix 29 Estimation Results P

PVAR(1)-(4)

In_degree_centralization

In_partintact; New Regions

. pvar ln_degr_centr ln_partintact, lag(1) gmm monte 1000 GMM started : 15:53:02 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 271 EQ1: dep.var : h_ln_degr_centr b_GMM se GMM t GMM L.h_ln_degr_centr .89167172 .05851602 15.23808 L.h_ln_partintact .00121972 .00135328 .90130041 _____ EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_degr_centr 1.9811135 1.3236519 1.4967027 L.h_ln_partintact .8184515 .05451865 15.012321 just identified - Hansen statistic is not calculated

symmetric uu[2,2]

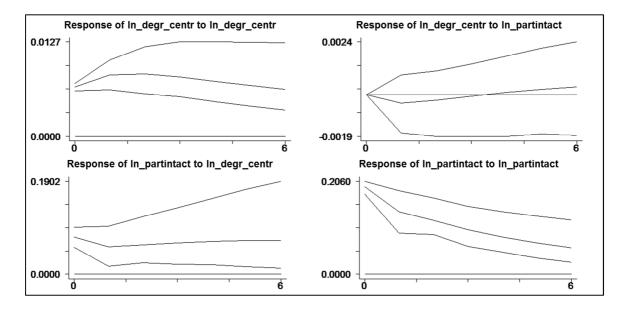
	ln_degr_centr	ln_partintact
ln_degr_centr	.00010975	
ln_partintact	.00049223	.05238434

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.2038 0.0007	1.0000

GMM finished : 15:53:03

Starting Monte-Carlo loop : 15:53:03 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:53:09

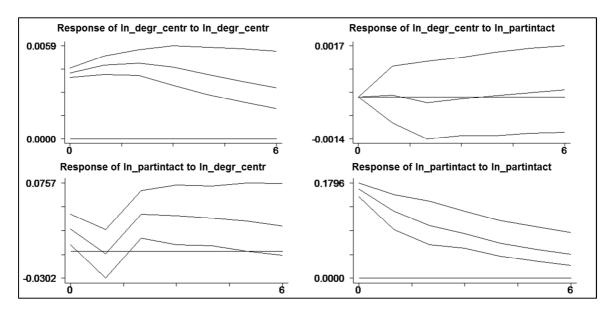

. pvar ln_degr_centr ln_partintact, lag(2) gmm monte 1000 GMM started : 16:02:07 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 263 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .97078912 .23660442 4.1030051 L.h_ln_degr_centr .00060819 L.h_ln_partintact .00370904 .16397577 L2.h_ln_degr_centr -.05328086 .20718682 -.25716338 L2.h_ln_partintact .0006043 .00371054 .16286105 EQ2: dep.var : h_ln_partintact b_GMM se GMM t GMM L.h_ln_degr_centr .57580814 2.6190106 .21985712 .7141414 .13621429 1.234187 2.2095775 L.h_ln_partintact 5.242779 L2.h_ln_degr_centr .55856241 L2.h_ln_partintact .10538786 .09443033 1.1160382 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintact ln_degr_centr .00009327 .04342854 ln_partintact .00049601

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.2458 0.0001	1.0000

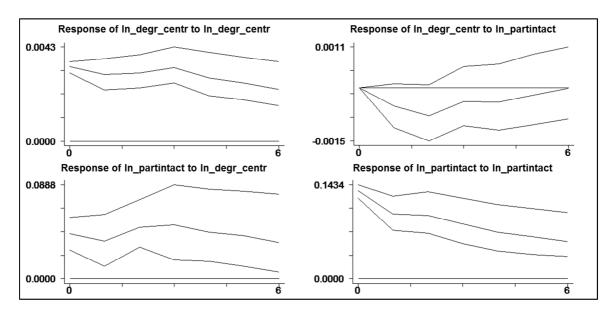
GMM finished : 16:02:09

Starting Monte-Carlo loop : 16:02:09 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:02:15



. pvar ln_degr_centr ln_partintact, lag(3) gmm monte 1000 GMM started : 16:06:53 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 255 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .83200536 .21795546 3.8173182 L.h_ln_degr_centr .94068882 L.h_ln_partintact .00358509 .00381113 L2.h_ln_degr_centr .18499657 L2.h_ln_partintact -.00441789 .2110597 .87651297 .00390011 -1.1327609 L3.h_ln_degr_centr -.12501814 .0713266 -1.7527562 L3.h_ln_partintact .00222138 .0022841 .97253899 EQ2: dep.var : h_ln_partintact t_GMM b_GMM se_GMM .68691135 L.h_ln_degr_centr 2.759935 .24888678 L.h_ln_partintact .6797771 .12545395 5.4185388 L2.h_ln_degr_centr 5.4975203 3.8189336 1.4395433 L2.h_ln_partintact .11004197 .12994465 .84683719 L3.h_ln_degr_centr -5.0344238 2.6599006 -1.8927112 .0841525 L3.h ln partintact .00114981 .01366346 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintact ln_degr_centr .00006094 ln_partintact .00010927 03271732 Residuals correlation matrix u1 u2

u1	1.0000	
u2	0.0771 0.2199	1.0000


GMM finished : 16:06:55

Starting Monte-Carlo loop : 16:06:56 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:07:02

. pvar ln_degr_centr ln_partintact, lag(4) gmm monte 1000 GMM started : 16:08:17 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _ Results of the Estimation by system GMM_ number of observations used : 247 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .65908222 .23661196 2.7854984 L.h_ln_degr_centr L.h_ln_partintact -.00193626 .00244416 -.79219892 L2.h_ln_degr_centr .32489223 .23864509 1.3614034 L2.h_ln_partintact -.00009492 .00300059 -.03163536 .09089392 L3.h_ln_degr_centr .03272702 .36005725 L3.h_ln_partintact .00457369 .00289903 1.5776635 L4.h_ln_degr_centr -.16377697 .05970077 -2.7432975 L4.h_ln_partintact -.0013381 .00193552 -.69134019 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_degr_centr 2.1350257 1.7707079 1.205747 L.h_ln_partintact .74220557 .10348005 7.172451 L2.h_ln_degr_centr 1.2843577 1.6719369 .7681855 1.7365384 .10544217 .18310436 L2.h ln partintact L3.h_ln_degr_centr -.56823035 1.8258681 -.31121106 L3.h_ln_partintact -.01919726 .10270502 -.18691643 L4.h_ln_degr_centr -2.7748603 2.2368343 -1.2405301 L4.h_ln_partintact -.03370831 .06345871 -.53118503 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintact ln degr centr .00004996 .00020254 .02011852 ln partintact Residuals correlation matrix u1 u2 u1 1.0000 0.2015 u2 1.0000 0.0015 GMM finished : 16:08:18 Starting Monte-Carlo loop : 16:08:19 , total 1000 repetitions requested

i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:08:25

Appendix 30 Estimation Results PVAR(1)-(4) ln_networker_share ln_partintact;

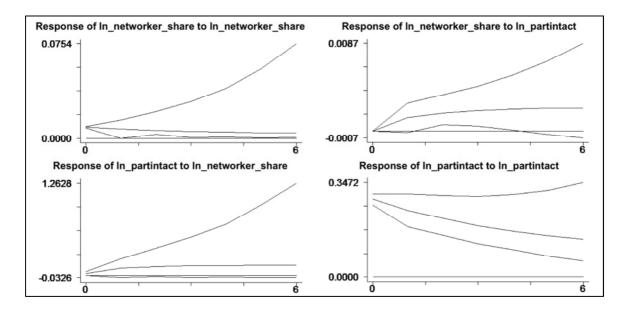
New Regions

. pvar ln_networker_share ln_partintact, lag(1) gmm monte 1000 GMM started : 17:06:41 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 272 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_networker_share .68637699 .13829585 4.963106 L.h_ln_partintact .00260759 .00279798 .93195542 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_networker_share 4.9875433 2.8239545 1.7661557 L.h_ln_partintact .82370805 .06845059 12.033616 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_partintact ln_networker_share ln_networker_share .0001515 ln_partintact -.00060949 .16653221 Residuals correlation matrix u1 u2

u1	1.0000	
u2	-0.1090 0.0727	1.0000

GMM finished : 17:06:42

Starting Monte-Carlo loop : 17:06:43 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:06:48

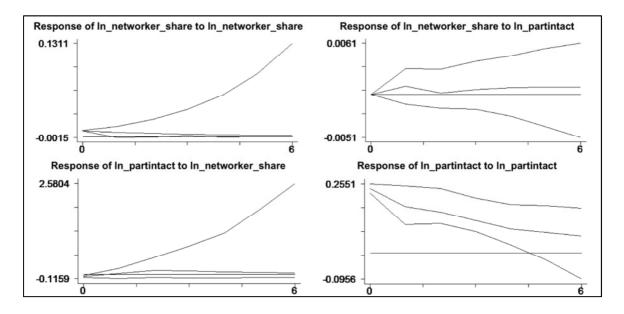

. pvar ln_networker_share ln_partintact, lag(2) gmm monte 1000 GMM started : 17:08:51 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 264 $% \left({\left({{{{\rm{s}}}} \right)} \right)$ EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM .81039454 .47071092 1.7216396 L.h_ln_networker_share .00474626 L.h_ln_partintact .00308991 1.53605 L2.h_ln_networker_share .00173579 .22198027 .00781958 L2.h_ln_partintact -.00168146 .00539568 -.31163022 EQ2: dep.var : h_ln_partintact b GMM se GMM t GMM L.h_ln_networker_share 8.6590806 8.7529295 .98927801 L.h_ln_partintact .85489503 .12570667 6.8007133 L2.h_ln_networker_share -3.3457129 4.3044975 -.77725981 L2.h_ln_partintact -.02209102 .10549063 -.20941216 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintact ln_networker_share .00008108 .00023633 .08275449 ln_partintact Residuals correlation matrix 111 112 1.0000 u1

GMM finished : 17:08:52

u2

0.0998 1.0000 0.1056

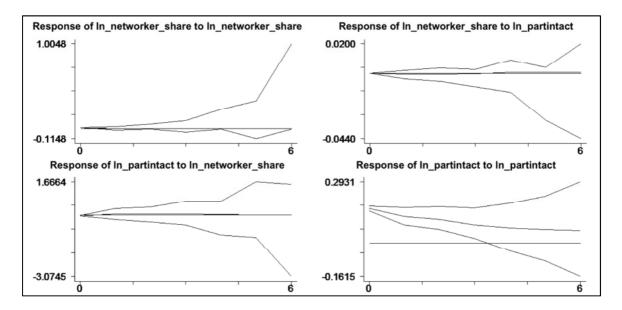
Starting Monte-Carlo loop : 17:08:53 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:08:59



. pvar ln_networker_share ln_partintact, lag(3) gmm monte 1000 GMM started : 17:10:20 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 256 EQ1: dep.var : h_ln_networker_share se_GMM b_GMM t_GMM L.h_ln_networker_share .78253938 .5759166 1.3587721 L.h_ln_partintact .00414132 .00534304 .77508588 L2.h_ln_networker_share -.10648648 .15187875 -.70112825 L2.h_ln_partintact -.00561874 L3.h_ln_networker_share .06734549 .00600384 -.93585866 .19166665 .35136779 L3.h_ln_partintact .00379879 .00436582 .87012088 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_networker_share 8.5280784 11.155116 .7644993 L.h_ln_partintact .72359474 .17817682 L2.h_ln_networker_share 5.1097322 3.4476239 L2.h_ln_partintact .07742228 .15771761 4.0611048 1.4821026 .49089178 L3.h ln networker share -7.9950149 4.4771122 -1.7857526 L3.h_ln_partintact -.04139268 .08338156 -.49642484 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintact ln_networker_share .00007168 ln_partintact -.00042004 .05934415 Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	-0.1920 0.0020	1.0000

GMM finished : 17:10:22


Starting Monte-Carlo loop : 17:10:22 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:10:28

. pvar ln_networker_share ln_partintact, lag(4) gmm monte 1000 GMM started : 17:12:13 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 248 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM .25951996 1.0190075 .25467913 L.h_ln_networker_share .01062912 -.51295836 L.h_ln_partintact -.00545229 .17524387 L2.h_ln_networker_share .07075779 .40376756 L2.h_ln_partintact .00127612 .01265076 .10087268 .20810557 .43882734 L3.h_ln_networker_share .09132241 L3.h_ln_partintact .00188773 .01018806 .18528822 L4.h ln networker share -.00366932 .27377481 -.01340269 L4.h ln partintact .00530701 .00818667 .64825017 EQ2: dep.var : h_ln_partintact b GMM se_GMM t_GMM L.h_ln_networker_share 6.5685763 12.854868 .51097969 L.h_ln_partintact .76724491 .1568815 4.8906017 4.3874017 L2.h ln networker share -1.8868038 -.4300504 .13048501 .14939237 L2.h ln partintact .87343822 L3.h_ln_networker_share -.10789045 2.6368342 -.04091666 .13016724 L3.h_ln_partintact -.08960682 -.68839758 L4.h_ln_networker_share -1.7835537 3.3446575 -.5332545 L4.h_ln_partintact .02207013 .09729803 .2268302 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintact .00017327 ln networker share -.00062176 .0291335 ln_partintact Residuals correlation matrix u1 u2 u1 1.0000 -0.2670 u2 1.0000 0.0000

GMM finished : 17:12:14

Starting Monte-Carlo loop : 17:12:14 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:12:21

Appendix 31 Estimation Results PVAR(1)-(4) ln_network_cc ln_partintact; New

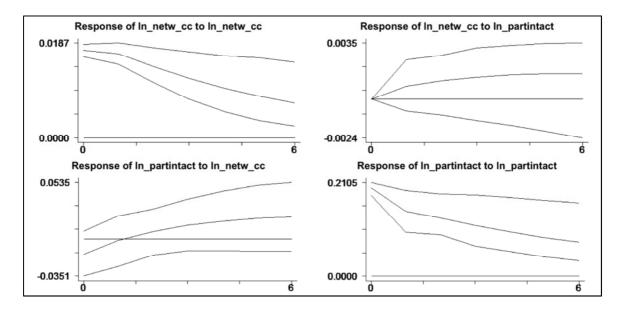
Regions

. pvar ln_netw_cc ln_partintact, lag(1) gmm monte 1000 GMM started : 17:13:44 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM number of observations used : 259			
EQ1: dep.var : h_ln_netw_cc			
b_GMM se_GMM t_GMM			
L.h_ln_netw_cc .73113803 .07871482 9.2884417			
L.h_ln_partintact .01162813 .0086981 1.3368586			
EQ2: dep.var : h_ln_partintact			
b_GMM se_GMM t_GMM			
L.h_ln_netw_cc .11920648 .39540337 .30148069			
L.h_ln_partintact .86261424 .07651951 11.273127			
just identified - Hansen statistic is not calculated			
symmetric uu[2,2]			
ln_netw_cc ln_partintact ln_netw_cc .0011782			
ln_partintact .00116576 .04859215			

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.1510 0.0150	1.0000

GMM finished : 17:13:45

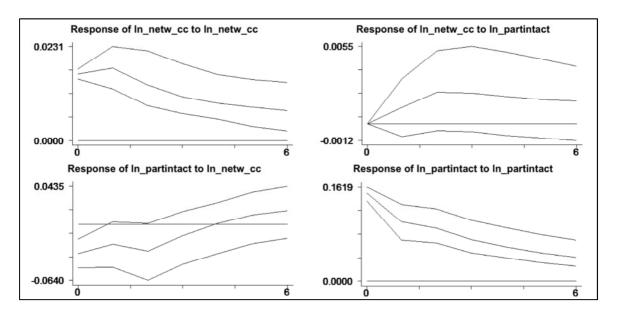

Starting Monte-Carlo loop : 17:13:46 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:13:51

. pvar ln_netw_cc ln_partintact, lag(2) gmm monte 1000 GMM started : 17:17:46 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM_ number of observations used : 251 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM L.h_ln_netw_cc .96236205 .06072411 15.848105 L.h_ln_partintact .00405157 .00482205 .84021814 L2.h_ln_netw_cc -.10922364 .05186109 -2.1060808 L2.h_ln_partintact -.00116844 .00475599 -.24567672 EQ2: dep.var : h_ln_partintact b GMM se_GMM t GMM L.h_ln_netw_cc .5418984 .58113688 .9324798 L.h_ln_partintact .73910734 .14682758 5.0338454 .75075786 L2.h_ln_netw_cc .02052581 .02734013 L2.h_ln_partintact .11216593 .09627941 1.1650044 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintact .00029576 ln_netw_cc -.00024554 .03938995 ln_partintact Residuals correlation matrix u1 u2

u1	1.0000	
u2	-0.0724 0.2531	1.0000

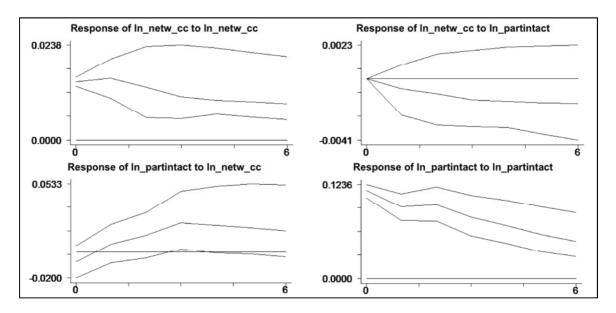
GMM finished : 17:17:48

Starting Monte-Carlo loop : 17:17:48 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:17:54


GMM started : 17:18:53 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM___ number of observations used : 243 $\,$ EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM L.h_ln_netw_cc 1.1008773 .19314853 5.699641 L.h_ln_partintact .00756724 .00851949 .88822685 L2.h_ln_netw_cc -.34830778 .21214707 -1.6418222 .00133808 .00676134 .19790219 L2.h_ln_partintact L3.h ln netw cc .12300638 .08342148 1 4745169 L3.h_ln_partintact -.0048607 .00453896 -1.0708838 EQ2: dep.var : h ln partintact b_GMM se_GMM t_GMM L.h_ln_netw_cc -.01019711 .73013676 -.01396602 L.h_ln_partintact .67658994 .11995486 5.6403713 L2.h_ln_netw_cc -.61884968 .98522645 -.62812939 .11613967 L2.h_ln_partintact .14525023 L3.h_ln_netw_cc 1.2720122 1.2506513 .80720627 1.5758206 L3.h_ln_partintact -.02864119 .0691697 -.41407136 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintact ln_netw_cc .00026657 ln_partintact -.0005414 02407614 Residuals correlation matrix u1 u2 ", T 1 0000

. pvar ln_netw_cc ln_partintact, lag(3) gmm monte 1000

ul	1.0000	
u2	-0.2136 0.0008	1.0000
	1	


GMM finished : 17:18:54

Starting Monte-Carlo loop : 17:18:55 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:19:01

. pvar ln_netw_cc ln_partintact, lag(4) gmm monte 1000 GMM started : 17:21:08 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 235 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM 1.0492573 .20047521 5.2338508 L.h_ln_netw_cc .00951215 L.h_ln_partintact -.00586305 -.61637511 L2.h_ln_netw_cc -.1991391 .17657647 -1.1277782 .29248555 L2.h_ln_partintact .00205626 .0070303 L3.h_ln_netw_cc 00744729 20562214 03621831 L3.h_ln_partintact -.00095928 .00524655 -.18284049 .05522594 L4.h ln netw cc .08184837 1.4820639 L4.h_ln_partintact .00114149 .00401253 .28448088 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM .42442957 L.h_ln_netw_cc .85481649 2.0140361 L.h_ln_partintact .8122616 .08239475 9.858172 .61925337 L2.h_ln_netw_cc -.25471898 -.4113324 L2.h ln partintact .0838071 2.1614729 .18114678 .18272718 .43063227 .42432301 L3.h_ln_netw_cc .08978059 L3.h_ln_partintact -.12364109 -1.3771473 -2.205171 -.55289531 .25072672 L4.h_ln_netw_cc L4.h_ln_partintact -.00545221 .05549572 -.0982456 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintact .00021318 ln netw cc -.000109 .01346239 ln partintact Residuals correlation matrix u1 u2 u1 1.0000 -0.0642 u2 1.0000 0.3271 GMM finished : 17:21:10

Starting Monte-Carlo loop : 17:21:10 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:21:17

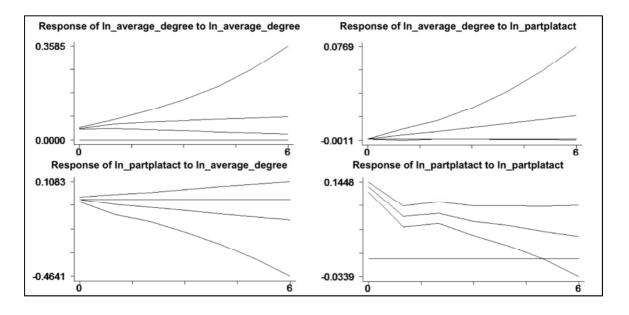
Appendix 32 Estimation Results PVAR(1)-(4) ln_average_degree ln_partplatact;

New Regions

. pvar ln_average_degree ln_partplatact, lag(1) gmm monte 1000 GMM started : 17:23:12 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM number of observations used : 272			
EQ1: dep.var : h_ln_average_degree			
b_GMM se_GMM t_GMM L.h_ln_average_degree 1.2859831 .29507395 4.3581722 L.h_ln_partplatact .0736064 .05097356 1.4440114			
EQ2: dep.var : h_ln_partplatact			
b_GMM se_GMM t_GMM L.h_ln_average_degree .25095797 .80230356 .31279678 L.h_ln_partplatact .92343273 .10798559 8.5514439			
just identified - Hansen statistic is not calculated			
symmetric uu[2,2] ln_average_degree ln_partplatact ln_average_degree .00635893 ln_partplatact .00584214 .03349808			
Residuals correlation matrix			

	u1	u2
ul	1.0000	
u2	0.3883 0.0000	1.0000

GMM finished : 17:23:13

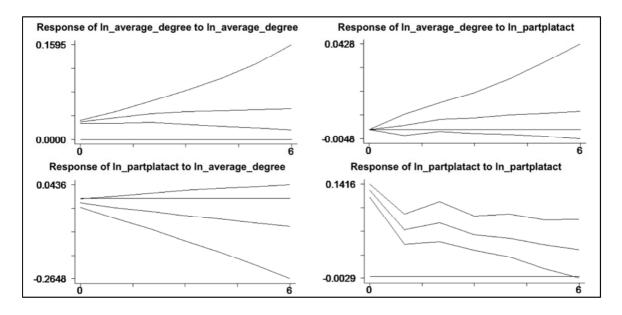

Starting Monte-Carlo loop : 17:23:14 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:23:20

. pvar ln_average_degree ln_partplatact, lag(2) gmm monte 1000 GMM started : 17:27:46 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM___ number of observations used : 264 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM 1.3706047 .23054202 5.9451406 L.h_ln_average_degree L.h_ln_partplatact .02455395 .02064105 1.1895688 L2.h_ln_average_degree -.30711844 .16572221 -1.8532123 L2.h_ln_partplatact -.00163365 .02167183 -.07538146 EQ2: dep.var : h_ln_partplatact b GMM se GMM t GMM L.h_ln_average_degree -.67596267 .87765772 -.7701894 .08059099 L.h_ln_partplatact .58705002 7.2843133 .h_ln_average_degree .25378396 L2.h_ln_partplatact .30261754 L2.h_ln_average_degree .43933875 .57764985 .06806368 4.4460944 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partplatact .00192277 ln_average_degree -.00002809 .01843039 ln_partplatact Residuals correlation matrix u1 u2

u1	1.0000	
u2	0.0045 1.00 0.9422	000

GMM finished : 17:27:48

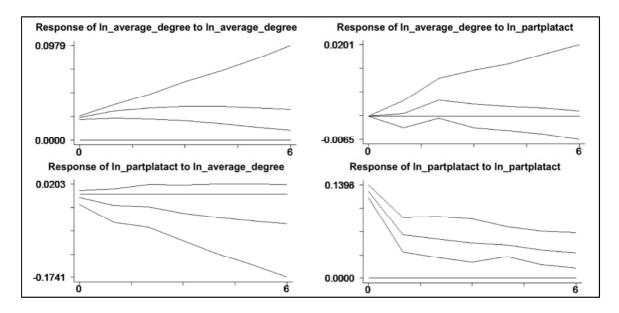
Starting Monte-Carlo loop : 17:27:48 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:27:54



. pvar ln_average_degree ln_partplatact, lag(3) gmm monte 1000 GMM started : 17:28:51 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 256 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM L.h_ln_average_degree 1.2245025 L.h_ln_partplatact .01482512 .18943394 6.464008 .65998312 .02246287 L2.h_ln_average_degree -.03170397 .16910665 -.18747914 .02709786 L2.h_ln_partplatact .01141321 .42118502 .07071855 -2.2859458 L3.h_ln_average_degree -.16165878 L3.h_ln_partplatact -.01777939 .01292102 -1.376005 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_average_degree -.74421928 .76319003 -.97514282 5.451745 L.h_ln_partplatact .54429151 .09983804 .._average_degree .21724288 L2.h_ln_partplatact .33978147 .h_ln_average_degree L2.h_ln_average_degree .5547597 .39159816 .11886733 2.8584933 .40250064 .07447177 L3.h ln average degree L3.h_ln_partplatact -.01388489 .13383362 -.10374742 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partplatact .00091066 ln_average_degree ln_partplatact -.00047318 .01770386 Residuals correlation matrix 1 ---1

	ul	u2
u1	1.0000	
u2	-0.1116 0.0748	1.0000

GMM finished : 17:28:53


Starting Monte-Carlo loop : 17:28:53 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:28:59

. pvar ln_average_degree ln_partplatact, lag(4) gmm monte 1000 GMM started : 17:30:10 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 248 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM 1.2876487 .17151897 7.5073255 L.h_ln_average_degree .00510849 .01798676 .2840141 L.h_ln_partplatact L2.h_ln_average_degree -.22582379 .12366231 -1.8261327 .91848061 L2.h_ln_partplatact .0251294 .02735975 L3.h_ln_average_degree - 02037019 .09157761 - 22243635 L3.h_ln_partplatact -.03238719 .014444 -2.2422586 .04908226 L4.h_ln_average_degree -.08029304 -1.635887 L4.h ln partplatact -.00139162 .01062374 -.13099176 EQ2: dep.var : h_ln_partplatact t_GMM b GMM se_GMM L.h_ln_average_degree -.84107552 .91354642 -.92067081 L.h_ln_partplatact .50441848 .11742202 4.2957743 .49918381 L2.h_ln_average_degree .83334589 .59901154 L2.h_ln_partplatact .20133145 .10066137 2.0000865 .47967378 L3.h_ln_average_degree -.37331262 -.77826354 L3.h_ln_partplatact .10620695 .14909455 .7123463 .15114392 .19460827 L4.h_ln_average_degree .77665723 L4.h_ln_partplatact .03899813 .10563136 .36919079 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln average degree ln partplatact ln average degree .0005457 -.00017167 .01704737 ln partplatact Residuals correlation matrix 111 u2 u1 1.0000 -0.0520 u2 1.0000 0.4146

GMM finished : 17:30:11

Starting Monte-Carlo loop : 17:30:11 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:30:18

Appendix 33 Estimation Results P

PVAR(1)-(4)

ln_degree_centralization

In_partplatact; New Regions

. pvar ln_degr_centr ln_partplatact, lag(1) gmm monte 1000 GMM started : 17:32:05 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 271 EQ1: dep.var : h_ln_degr_centr b GMM se GMM t GMM L.h_ln_degr_centr .88741048 .05653605 15.696366 L.h_ln_partplatact .004294 .00221192 1.9412991 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_degr_centr .53161629 .6677499 .79613084 L.h_ln_partplatact .87096618 .08104737 10.746384 just identified - Hansen statistic is not calculated symmetric uu[2,2]

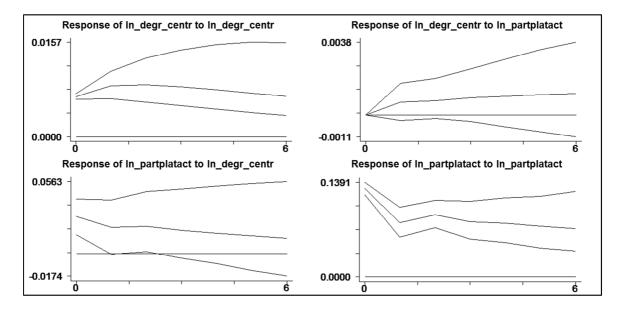
	ln_degr_centr	ln_partplatact
ln_degr_centr	.00010907	
ln_partplatact	.00017721	.02045631

Residuals correlation matrix

	ul	u2
u1	1.0000	
u2	0.1177 0.0530	1.0000

GMM finished : 17:32:06

Starting Monte-Carlo loop : 17:32:07 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:32:12


. pvar ln_degr_centr ln_partplatact, lag(2) gmm monte 1000 GMM started : 17:36:37 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 263 EQ1: dep.var : h_ln_degr_centr se_GMM b_GMM t_GMM .96917044 .23134169 4.1893463 L.h_ln_degr_centr .00800594 L.h_ln_partplatact .00496011 1.6140625 L2.h_ln_degr_centr -.04259945 .19798121 -.21516916 L2.h_ln_partplatact -.00540255 .00552212 -.9783464 EQ2: dep.var : h_ln_partplatact b GMM se GMM t GMM L.h_ln_degr_centr .39484352 1.1939573 .33070154 L.h_ln_partplatact .61069858 .09893312 6.1728425 L2.h_ln_degr_centr -.6007448 1.1295883 -.53182632 L2.h_ln_partplatact .32505302 .09500497 3.4214318 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partplatact .00009285 ln_degr_centr .00018913 .01783751 ln_partplatact

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.1472 0.0169	1.0000

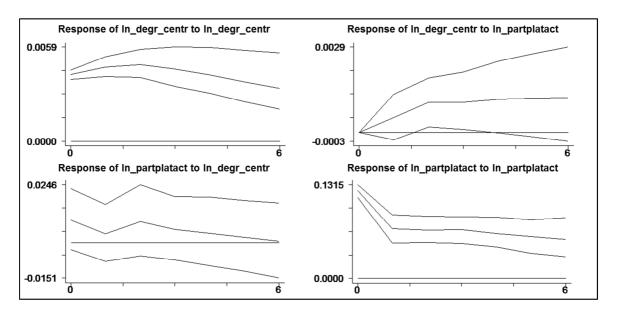
GMM finished : 17:36:38

Starting Monte-Carlo loop : 17:36:39 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:36:45

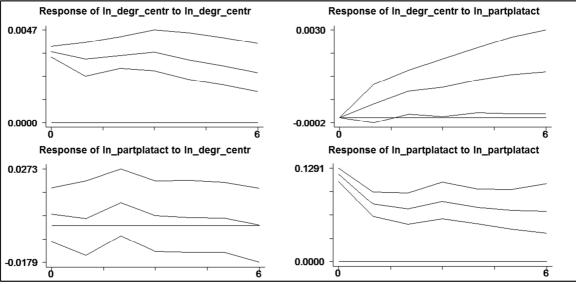
. pvar ln_degr_centr ln_partplatact, lag(3) gmm monte 1000 GMM started : 17:39:23 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 255 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM
 Se_GMM
 C_GMM

 .21296734
 3.9076198

 .00487444
 1.6005983


 .20153153
 .86239356

 .00599268
 .27673372
 .8321954 L.h_ln_degr_centr L.h_ln_partplatact .00780203 L2.h_ln_degr_centr .17379949 L2.h_ln_partplatact .00165838 L3.h ln_docr -L3.h_ln_degr_centr -.10050263 .0610987 -1.6449226 L3.h_ln_partplatact -.00677398 .00333669 -2.0301522 EQ2: dep.var : h_ln_partplatact t_GMM b_GMM se_GMM .31225169 L.h_ln_degr_centr .93754491 .33305251 L.h_ln_partplatact .55991767 L2.h_ln_degr_centr .17398383 L2.h_ln_degr_centr .23767091 L3.h_ln_degr_centr -.92142417 .09252146 6.0517599 1.1757852 .14797246 .10140223 2.3438432 1.0730804 -.85867209 L3.h_ln_partplatact .11222697 .12757205 .87971439 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partplatact ln_degr_centr .00006069 ln_partplatact .00003523 01526944 Residuals correlation matrix u1 u2 1 0000


ul	1.0000	
u2	0.0369 0.5580	1.0000

GMM finished : 17:39:24

Starting Monte-Carlo loop : 17:39:25 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:39:31

. pvar ln_degr_centr ln_partplatact, lag(4) gmm monte 1000 GMM started : 17:40:34 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _ Results of the Estimation by system GMM_ number of observations used : 247 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .6353403 .22763446 2.791055 L.h_ln_degr_centr L.h_ln_partplatact .00556076 .003578 1.5541543 L2.h_ln_degr_centr .32820682 .23111711 1.4200888 .69772928 .00315056 L2.h_ln_partplatact .00451545 .09155193 L3.h_ln_degr_centr 05204828 .56851106 L3.h_ln_partplatact -.00222141 .00318055 -.69843567 L4.h ln degr centr -.15188527 .06069907 -2.5022668 .00271254 -.96227974 L4.h ln partplatact -.00261022 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t GMM L.h_ln_degr_centr .77296036 1.0605903 .72880204 L.h_ln_partplatact .65386938 .08293655 7.8839714 .07833732 1.1091692 .07062703 L2.h_ln_degr_centr .17912142 .09498135 1.8858588 L2.h ln partplatact L3.h_ln_degr_centr -1.2239853 1.1770547 -1.0398712 .16888355 L3.h_ln_partplatact .13510066 1.2500572 -.14673522 -.13742408 .93654462 L4.h_ln_degr_centr L4.h_ln_partplatact -.0600655 .07151747 -.83987165 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partplatact .00005051 ln degr centr ln_partplatact .00002675 .01477066 Residuals correlation matrix 111 u2 u1 1.0000 u2 0.0311 1.0000 0.6262 GMM finished : 17:40:35 Starting Monte-Carlo loop : 17:40:36 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:40:43

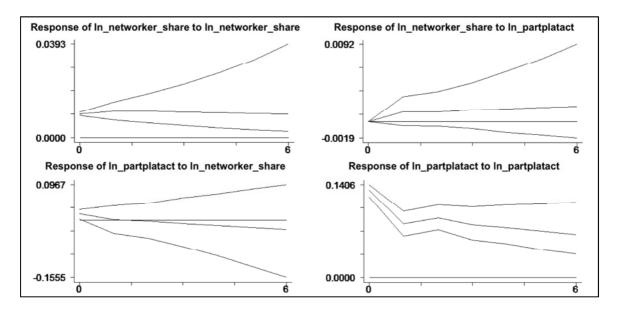
Appendix 34 Estimation Results PVAR(1)-(4) ln_networker_share ln_partplatact;

New Regions

. pvar ln_networker_share ln_partplatact, lag(1) gmm monte 1000 GMM started : 14:49:39 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM number of observations used : 272			
EQ1: dep.var : h_ln_networker_share			
b_GMM se_GMM t_GMM L.h_ln_networker_share .8168415 .12252552 6.6667049 L.h_ln_partplatact .00097256 .00472152 .20598468			
EQ2: dep.var : h_ln_partplatact			
b_GMM se_GMM t_GMM L.h_ln_networker_share .85759163 .99599688 .86103848 L.h_ln_partplatact .89666779 .06973883 12.857511			
just identified - Hansen statistic is not calculated			
symmetric uu[2,2] ln_networker_share ln_partplatact ln_networker_share .00015677 ln_partplatact .00013838 .03199901			
Residuals correlation matrix			
u1 u2			

u1 1.0000 u2 0.0583 1.0000 0.3379

GMM finished : 14:49:41

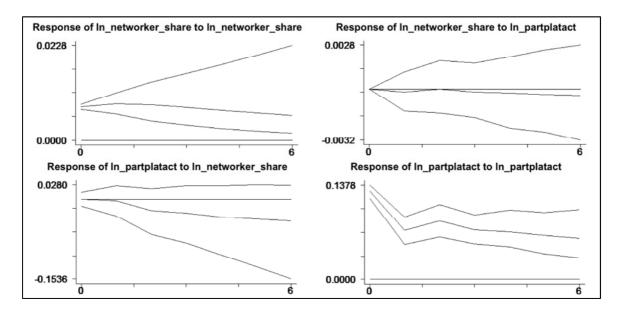

Starting Monte-Carlo loop : 14:49:41 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:49:47

. pvar ln_networker_share ln_partplatact, lag(2) gmm monte 1000 GMM started : 15:32:49 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM__ number of observations used : 264 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_networker_share 1.1067217 .22327234 4.9568243 .00768704 L.h_ln_partplatact .00878964 1.1434367 L2.h_ln_networker_share -.12580578 .13454962 -.93501404 L2.h_ln_partplatact -.00641103 .00876403 -.73151626 EQ2: dep.var : h_ln_partplatact b GMM se GMM t GMM L.h_ln_networker_share -.93654181 2.2255731 -.42080927 L.h_ln_partplatact .61605949 .07947241 7.7518662 .17711535 L2.h_ln_networker_share 1.2317261 .14379442 L2.h_ln_partplatact .30897565 .07588717 4.0715136 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partplatact ln_networker_share .0000989 .00016307 .01773779 ln_partplatact Residuals correlation matrix L 111 112

	uı	uz
u1	1.0000	
u2	0.1260 0.0408	1.0000

GMM finished : 15:32:51

Starting Monte-Carlo loop : 15:32:51 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:32:57

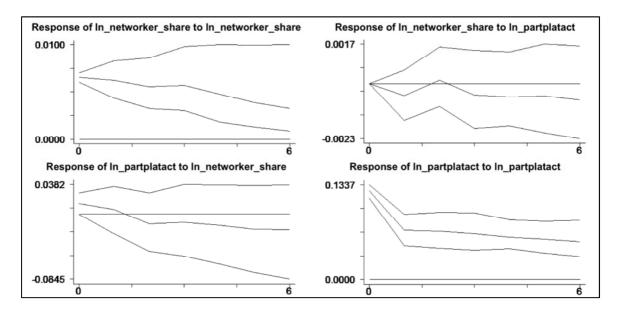

. pvar ln_networker_share ln_partplatact, lag(3) gmm monte 1000 GMM started : 15:34:47 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM___ number of observations used : 256 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_networker_share 1.0934625 .18160549 6.0210871 -.2259103 L.h_ln_partplatact -.0012829 .0056788 L2.h_ln_networker_share -.14126326 .11960723 -1.1810595 .01001514 .2206197 L2.h_ln_partplatact .00220954 L3.h_ln_networker_share -.02498588 .07428756 -.33633999 L3.h_ln_partplatact -.00200539 .00557099 -.3599704 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_networker_share -.37267529 2.2255962 -.16744964 L.h_ln_partplatact .55655522 L2.h_ln_networker_share -2.178812 .09070346 6.1359864 1.494337 -1.458046 L2.h_ln_partplatact .35517757 .11138364 3.1887769 1.1490611 L3.h ln networker share .96061816 1.1961684 L3.h_ln_partplatact -.00928084 .12275403 -.0756052 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partplatact .00006426 ln_networker_share ln_partplatact 1.891e-06 .01662151

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.0033 0.9583	1.0000

GMM finished : 15:34:49

Starting Monte-Carlo loop : 15:34:49 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:34:55



. pvar ln_networker_share ln_partplatact, lag(4) gmm monte 1000 GMM started : 15:36:51 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 248 EQ1: dep.var : h_ln_networker_share se_GMM b_GMM t_GMM .17535091 5.4723582 L.h_ln_networker_share .959583 .00528166 -.74207045 L.h_ln_partplatact -.00391937 L2.h_ln_networker_share -.08015694 .17734285 -.45198856 .00708229 .96782405 L2.h_ln_partplatact .00731775 L3.h_ln_networker_share 1385274 .12662719 1 0939783 L3.h_ln_partplatact -.00702679 .00491727 -1.4290037 L4.h ln networker share -.1676704 .07363588 -2.2770204 .00189089 .00381407 .49576835 L4.h ln partplatact EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_networker_share -.19384363 2.6707817 -.07257936 L.h_ln_partplatact .55715554 .10110243 5.5108029 L2.h_ln_networker_share -2.7921741 2.1045901 -1.3267068 .23392997 .10279002 L2.h_ln_partplatact 2.2758044 1.2796974 L3.h_ln_networker_share 1.8830451 1.4714769 .07475593 .13627777 .54855562 L3.h_ln_partplatact -.28380142 .94356973 -.30077419 L4.h_ln_networker_share L4.h_ln_partplatact .02914477 .09129266 .31924543 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln networker share ln partplatact .00004299 ln networker share .01579373 .00008739 ln partplatact Residuals correlation matrix u1 u2 u1 1.0000

u1 1.0000 u2 0.1052 1.0000 0.0983

GMM finished : 15:36:53

Starting Monte-Carlo loop : 15:36:53 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:37:00

Appendix 35 Estimation Results PVAR(1)-(4) ln_network_cc ln_partplatact; New

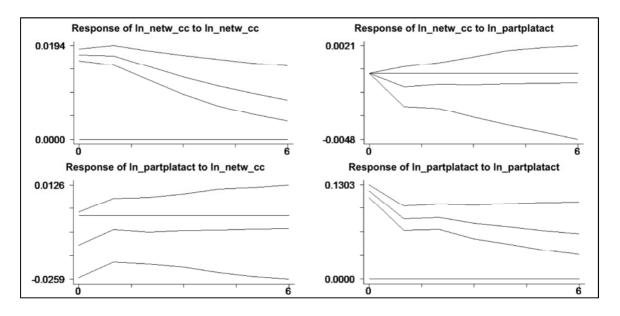
Regions

. pvar ln_netw_cc ln_partplatact, lag(1) gmm monte 1000		
GMM started : 15:39:20		
accumulating matrices equation 1,2,calculating b2sls		
calculating big ZuuZ matrix		
finished accumulating ZuuZ		
Results of the Estimation by system GMM		
number of observations used : 259		
EQ1: dep.var : h_ln_netw_cc		
b_GMM se_GMM t_GMM		
L.h_ln_netw_cc .80222616 .05694562 14.087584		
L.h_ln_partplatact .00332148 .00824356 .40291845		
EQ2: dep.var : h_ln_partplatact		
b_GMM se_GMM t_GMM		
L.h_ln_netw_cc .01722156 .15289125 .11263927		
L.h_ln_partplatact .90980778 .06748483 13.481664		
just identified - Hansen statistic is not calculated		
symmetric uu[2,2]		
ln netw cc ln partplatact		
ln netw cc .00133113		
ln_partplatact .00022593 .01685586		
in_partpratact .00022090 .01000000		

Residuals correlation matrix

	u1	u2
ul	1.0000	
u2	0.0480 0.4421	1.0000

GMM finished : 15:39:21

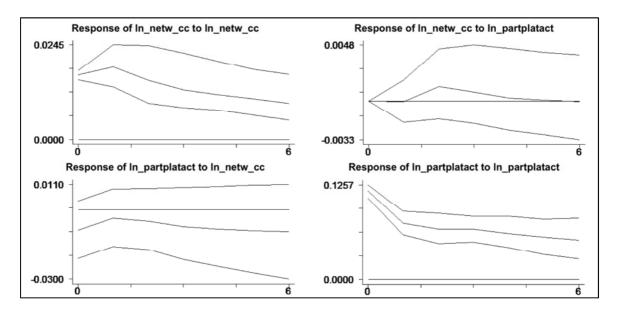

Starting Monte-Carlo loop : 15:39:22 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:39:27

. pvar ln_netw_cc ln_partplatact, lag(2) gmm monte 1000 GMM started : 15:43:27 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM_ number of observations used : 251EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM L.h_ln_netw_cc .98496415 .05370241 18.341152 L.h_ln_partplatact -.00781157 .0071639 -1.0904072 L2.h_ln_netw_cc -.110427 .05286079 -2.0890154 L2.h_ln_partplatact .00646987 .0067565 .95757752 EQ2: dep.var : h_ln_partplatact b GMM se GMM t GMM L.h_ln_netw_cc .13496049 .30449929 .44322105 .08315782 L.h_ln_partplatact .67899274 8.1651103 L2.h_ln_netw_cc -.1274869 .29290806 -.43524545 .08236942 2.8400002 L2.h_ln_partplatact .23392916 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partplatact .00030401 ln_netw_cc -.00020722 .01502346 ln_partplatact Residuals correlation matrix u1 u2

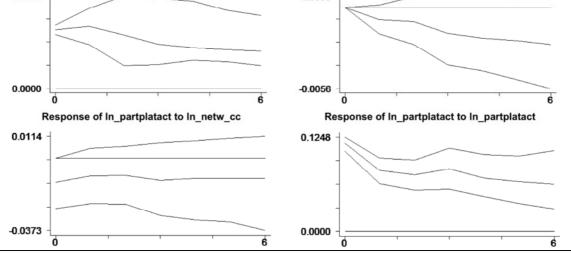
u1	1.0000	
u2	-0.0959 0.1297	1.0000

GMM finished : 15:43:29

Starting Monte-Carlo loop : 15:43:30 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:43:36


GMM started : 15:44:52 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 243 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM L.h_ln_netw_cc 1.1241228 L.h_ln_partplatact -.0002811 .20320536 5.5319543 .00959971 -.02928199 L2.h_ln_netw_cc -.34362041 .22136852 -1.552255 L2.h_ln_partplatact .01096809 L3.h_ln_netw_cc .12512093 .008955 1.2248 08923455 1 4021578 L3.h_ln_partplatact -.01207552 .00719315 -1.6787517 EQ2: dep.var : h_ln_partplatact D_Gra. L.h_ln_netw_cc .12393619 .38024166 .32594059 L.h_ln_partplatact .63714147 .07608146 8.3744645 C.b. n petw cc -.21204075 .34568757 -.61338842 .0016981 1.5255595 L2.h_ln_partplatact .16196837 .10616981 1.5255595 L3.h ln netw cc -.04258811 .1419014 -.30012468 L3.h_ln_partplatact .10163981 .1315584 .77258322 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partplatact .00027952 ln_netw_cc ln_partplatact -.00014834 01383509 Residuals correlation matrix 1 ...1

. pvar ln_netw_cc ln_partplatact, lag(3) gmm monte 1000


	ul	u2
u1	1.0000	
u2	-0.0744 0.2480	1.0000

GMM finished : 15:44:53

Starting Monte-Carlo loop : 15:44:53 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:45:00

. pvar ln_netw_cc ln_partplatact, lag(4) gmm monte 1000 GMM started : 15:46:18 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 235 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM L.h_ln_netw_cc 1.0521101 .19164752 5.4898185 L.h_ln_partplatact -.00701087 .00497036 -1.4105354 L2.h_ln_netw_cc -.20761058 .17565493 -1.1819229 L2.h_ln_partplatact .00418958 .0090691 .46196149 L3.h_ln_netw_cc .01004133 .2104405 .04771576 L3.h_ln_partplatact -.00650762 .0063104 -1.0312536 .07495443 .05049571 L4.h ln netw cc 1.4843721 L4.h_ln_partplatact .00320916 .00541544 .59259521 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t GMM L.h_ln_netw_cc -.04120167 .42915398 -.09600673 L.h_ln_partplatact .69089703 .08190441 8.4354072 .01922116 .54447218 .03530238 L2.h ln netw cc .16382996 .1053683 1.5548317 L2.h ln partplatact L3.h_ln_netw_cc -.11021905 .35641716 -.30924171 .152901 .98378411 L3.h_ln_partplatact .15042157 .05822895 .15157379 .38416241 L4.h_ln_netw_cc L4.h_ln_partplatact -.09682909 .07715765 -1.2549514 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partplatact ln netw cc .00021134 -.00018101 .01376681 ln_partplatact Residuals correlation matrix u1 u2 u1 1.0000 -0.1055 u2 1.0000 0.1066 GMM finished : 15:46:19 Starting Monte-Carlo loop : 15:46:20 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:46:27 Response of In_netw_cc to In_netw_cc Response of In_netw_cc to In_partplatact 0.0230 8000.0

Appendix 36 Estimation Results PVAR(1)-(4) ln_average_degree ln_partintactplat;

New Regions

. pvar ln_average_degree ln_partintactplat, lag(1) gmm monte 1000 GMM started : 15:49:28 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 272 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t GMM L.h_ln_average_degree .95144812 .09288101 10.243731 L.h_ln_partintactplat .01777846 .00622317 2.8568164 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_average_degree .6752309 .67339047 1.0027331 L.h_ln_partintactplat .90708734 .05595598 16.21073 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintactplat .00180453 ln_average_degree ln_partintactplat .00444719 .14632314

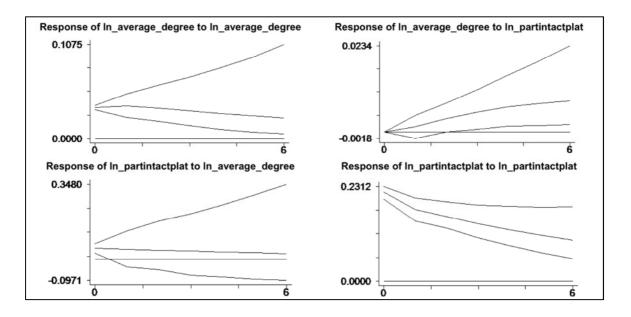
Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.2694 0.0000	1.0000

GMM finished : 15:49:30

Starting Monte-Carlo loop : 15:49:30 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:49:36

. pvar ln_average_degree ln_partintactplat, lag(2) gmm monte 1000 GMM started : 15:56:11 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM__ number of observations used : 264 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM 1.0476412 .2136439 4.9036792 L.h_ln_average_degree .74223917 L.h_ln_partintactplat .00670967 .00903977 L2.h_ln_average_degree -.13967561 .13308264 -1.0495405 L2.h_ln_partintactplat .00420568 .00900871 .46684633 EQ2: dep.var : h_ln_partintactplat b GMM se GMM t GMM .14143615 1.3877038 .10192099 L.h_ln_average_degree L.h_ln_partintactplat .80608548 .07229539 11.149888 L2.h_ln_average_degree -.12647237 L2.h_ln_partintactplat .07563338 -.16541272 .76458674 .05358451 1.4114784 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintactplat ln_average_degree .00125125

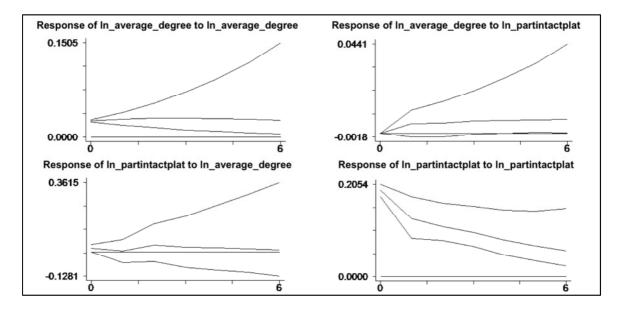

ln_partintactplat	.00183142	.04968231

Residuals correlation matrix

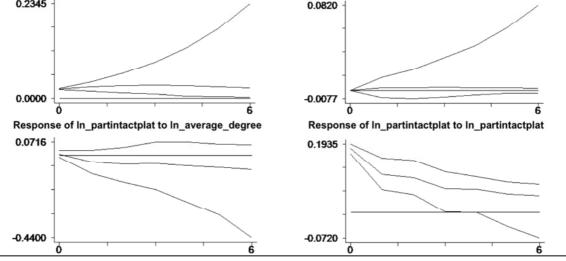
	u1	u2
u1	1.0000	
u2	0.2329 0.0001	1.0000

GMM finished : 15:56:12

Starting Monte-Carlo loop : 15:56:13 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:56:19


. pvar ln_average_degree ln_partintactplat, lag(3) gmm monte 1000 GMM started : 16:03:10 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM__ number of observations used : 256 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM 4.8701493 .21886471 L.h_ln_average_degree 1.0659038 .02476886 L.h_ln_partintactplat .02107144 1.1754709 .02158774 -.0165015 L2.h_ln_average_degree .14140422 .15266685 .01690042 -.97639582 L2.h_ln_partintactplat L3.h_ln_average_degree -.12913989 .09350755 -1.3810637 .0088788 -.06292109 L3.h_ln_partintactplat -.00055866 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_average_degree -.35231577 1.3089458 -.26915993 .1436681 L.h_ln_partintactplat .67299888 4.6844002 L2.h_ln_average_degree 1.5654937 L2.h_ln_partintactplat .13381814 .72071902 2.1721276 .10882057 1.2297137 L3.h_ln_average_degree -1.2870299 L3.h_ln_partintactplat .00489624 .63045236 -2.0414388 .04750037 .10307801 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintactplat .00069218 ln_average_degree ln_partintactplat .00049638 .03724827

Residuals correlation matrix


	u1	u2
u1	1.0000	
u2	0.0978 0.1185	1.0000

GMM finished : 16:03:11

Starting Monte-Carlo loop : 16:03:12 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:03:18

. pvar ln_average_degree ln_partintactplat, lag(4) gmm monte 1000 GMM started : 16:07:47 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _ Results of the Estimation by system GMM_ number of observations used : 248 EQ1: dep.var : h_ln_average_degree se_GMM b_GMM t_GMM 4.1240902 1.2454989 L.h_ln_average_degree .30200574 .01469199 .03142608 .46750941 L.h_ln_partintactplat L2.h_ln_average_degree -.17556998 .12359044 -1.420579 L2.h_ln_partintactplat -.01369038 .02033145 -.67335957 .11051198 L3.h_ln_average_degree -.0782884 -.70841555 L3.h_ln_partintactplat .00466181 .01308576 .35625027 L4.h_ln_average_degree -.04676104 .04693158 -.99636629 L4.h_ln_partintactplat -.00440565 .01023279 -.43054215 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t GMM L.h_ln_average_degree -1.698972 1.5607115 -1.0885882 .59564059 L.h_ln_partintactplat .15041363 3.9600175 .88197298 L2.h_ln_average_degree 1.1361428 .77628706 .21777491 L2.h_ln_partintactplat .1254607 1.7358018 .90137036 1.2311083 L3.h_ln_average_degree .73216173 L3.h_ln_partintactplat -.07448526 .09568894 -.77841036 L4.h_ln_average_degree -.98830096 .80028252 -1.2349401 .06247652 L4.h_ln_partintactplat .07793172 1.2473762 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintactplat ln average degree .00052935 .00016071 .0324274 ln_partintactplat Residuals correlation matrix u1 u2 u1 1.0000 u2 0.0404 1.0000 0.5265 GMM finished : 16:07:48 Starting Monte-Carlo loop : 16:07:49 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:07:56 Response of In_average_degree to In_average_degree Response of In_average_degree to In_partintactplat 0.2345 0.0820

Appendix 37 Estimation Results PV

PVAR(1)-(4)

In_degree_centralization

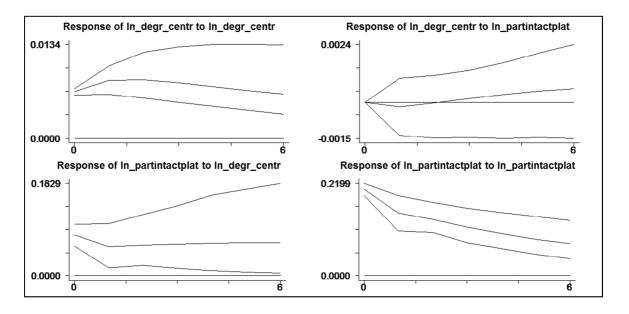
ln_partintactplat; New Regions

. pvar ln_degr_centr ln_partintactplat, lag(1) gmm monte 1000 GMM started : 16:13:21 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 271 EQ1: dep.var : h_ln_degr_centr b GMM se GMM t GMM L.h_ln_degr_centr .88284517 .05996827 14.721872 L.h_ln_partintactplat .00156004 .00125552 1.2425466 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_degr_centr 1.7786831 1.3098043 1.3579763 L.h_ln_partintactplat .84044881 .04755928 17.671605 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintactplat .00010898 ln_degr_centr ln_partintactplat .00053136 .05766883

Residuals correlation matrix

	ul	u2
u1	1.0000	
u2	0.2111 0.0005	1.0000

GMM finished : 16:13:23

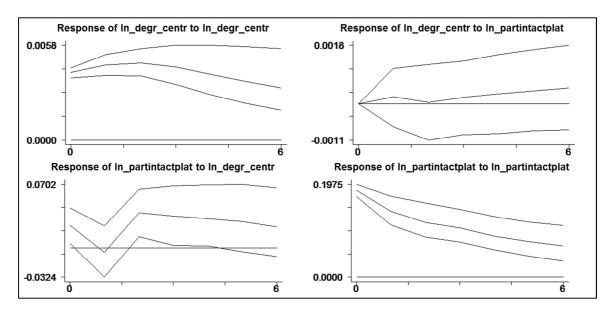

Starting Monte-Carlo loop : 16:13:23 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:13:29

. pvar ln_degr_centr ln_partintactplat, lag(2) gmm monte 1000 GMM started : 16:16:57 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM_ number of observations used : 263 EQ1: dep.var : h_ln_degr_centr se_GMM b_GMM t_GMM .96273162 .23635685 4.0732123 L.h_ln_degr_centr .00188989 L.h_ln_partintactplat .00328811 .57476597 L2.h_ln_degr_centr -.04994305 .20593768 -.24251537 L2.h_ln_partintactplat -.00045869 .00334975 -.13693188 EQ2: dep.var : h_ln_partintactplat b GMM se GMM t GMM L.h_ln_degr_centr .4896889 2.6518976 .18465603 L.h_ln_partintactplat .71777659 .11407481 6.2921568 L2.h_ln_degr_centr .87468881 2.2778458 .38399826 L2.h_ln_partintactplat .13228955 .08420966 1.5709545 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintactplat .00009296 ln_degr_centr .00051086 .04917151 ln_partintactplat Residuals correlation matrix u1 u2

u1	1.0000	
u2	0.2387 0.0001	1.0000

GMM finished : 16:16:58

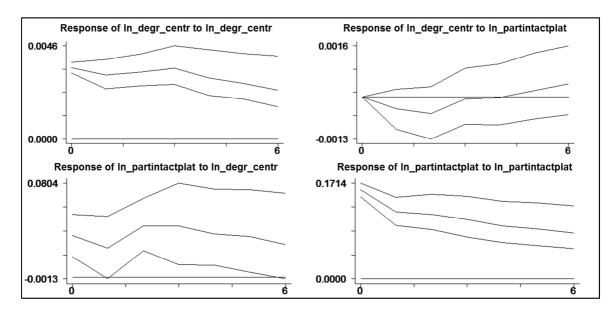
Starting Monte-Carlo loop : 16:16:58 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:17:04


GMM started : 16:19:06 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 255 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .82767824 .21679754 3.8177474 L.h_ln_degr_centr L.h_ln_partintactplat .004228 .00343674 1.2302364 L2.h_ln_degr_centr .18398793 .20904609 .88013094 L2.h_ln_partintactplat -.00378818 .00354403 -1.0688904 .07057771 -1.7355808 L3.h_ln_degr_centr -.12249331 L3.h_ln_partintactplat .00112142 .00208695 .53734875 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_degr_centr .45428818 2.8184689 .16118261 L.h_ln_partintactplat .68815844 .10326433 6.6640476 L2.h_ln_degr_centr 5.1612535 3.8424172 1.3432309 L2.h_ln_partintactplat .14461148 .11097088 1.3031481 -5.052213 2.6578401 -1.9008717 L3.h_ln_degr_centr L3.h_ln_partintactplat -.00019896 .07903368 -.00251741 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintactplat .00006085 ln_degr_centr ln_partintactplat .0000975 .03876598 Residuals correlation matrix 1 111

. pvar ln_degr_centr ln_partintactplat, lag(3) gmm monte 1000

	uı	u∠
u1	1.0000	
u2	0.0633 0.3141	1.0000

GMM finished : 16:19:07


Starting Monte-Carlo loop : 16:19:08 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:19:14

. pvar ln_degr_centr ln_partintactplat, lag(4) gmm monte 1000 GMM started : 16:20:18 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 247 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .64673651 .23296913 2.7760609 L.h_ln_degr_centr L.h_ln_partintactplat -.00051603 .00232307 -.22213493 L2.h_ln_degr_centr .32354599 .23525671 1.3752891 .00036646 L2.h_ln_partintactplat .00263377 .13914081 L3.h_ln_degr_centr .03482307 .09056691 .3845011 L3.h_ln_partintactplat .00316221 .00252604 1.251846 L4.h_ln_degr_centr -.16053095 .06113521 -2.6258348 L4.h_ln_partintactplat -.00127908 .00187659 -.68159562 EQ2: dep.var : h_ln_partintactplat t_GMM b GMM se_GMM L.h_ln_degr_centr 2.0952895 1.7796351 1.1773703 L.h_ln_partintactplat .74389867 .08425429 8.8292079 1.8857208 L2.h_ln_degr_centr 1.3222608 .70119648 .17751459 .08683952 2.0441683 L2.h ln partintactplat 1.713411 -.62062979 L3.h_ln_degr_centr -1.0633939 .01167878 L3.h_ln_partintactplat .08871759 .1316399 L4.h_ln_degr_centr -2.7463156 1.8424246 -1.4905986 L4.h_ln_partintactplat -.03282456 .05512342 -.5954739 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintactplat ln degr centr .00005021 ln_partintactplat .00017139 .02724234 Residuals correlation matrix 111 u2 u1 1.0000 u2 0.1465 1.0000 0.0213

GMM finished : 16:20:19

Starting Monte-Carlo loop : 16:20:20 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:20:26

Appendix 38 EstimationResultsPVAR(1)-(4)

ln_partintactplat; New Regions

. pvar ln_networker_share ln_partintactplat, lag(1) gmm monte 1000 GMM started : 16:23:10 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 272 EQ1: dep.var : h_ln_networker_share b GMM se GMM t GMM L.h_ln_partintactplat .00168229 .00228409 .73652457 EQ2: dep.var : h_ln_partintactplat t_GMM b_GMM se_GMM L.h_ln_networker_share 3.1766556 1.7724059 1.7922845 L.h_ln_partintactplat .86251262 .05017466 17.190204 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintactplat ln_networker_share .0001472 .0001472 ln_partintactplat -.00009373 .14712539

Residuals correlation matrix

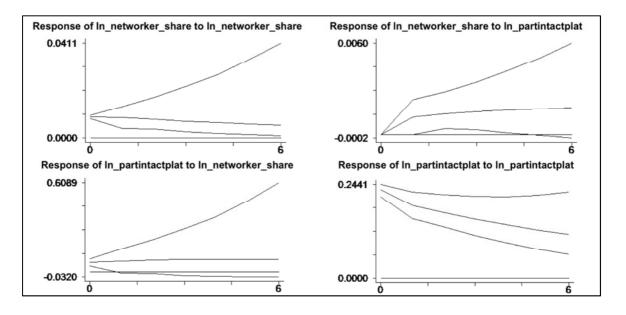
	u1	u2
u1	1.0000	
u2	-0.0155 0.7991	1.0000

GMM finished : 16:23:11

_

Starting Monte-Carlo loop : 16:23:12 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:23:18

ln_networker_share

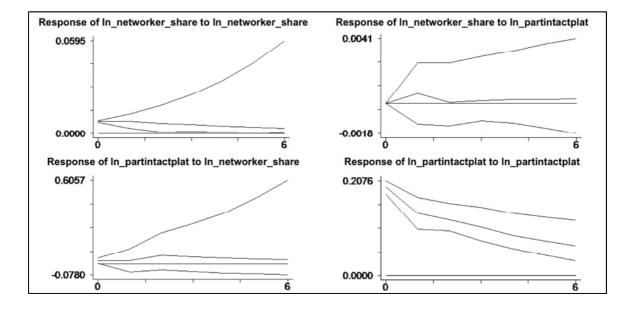

. pvar ln_networker_share ln_partintactplat, lag(2) gmm monte 1000 GMM started : 16:28:20 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 264 $% \left({{\left({{{\left({{{}}}}} \right)}}}} \right.$ EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM .93971331 3.1023925 L.h_ln_networker_share .30289955 L.h_ln_partintactplat .00494909 .00303057 1.6330562 L2.h_ln_networker_share -.05364951 .15980745 -.33571348 L2.h_ln_partintactplat -.00285781 .00428159 -.6674648 EQ2: dep.var : h_ln_partintactplat b GMM se GMM t GMM L.h_ln_networker_share 2.3736764 5.6090745 .42318503 L.h_ln_partintactplat .82445524 .08674317 9.5045551 L2.h_ln_networker_share -.60289256 3.0683227 -.1964893 L2.h_ln_partintactplat .05519765 .06815191 .80992083 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintactplat ln_networker_share .00008169 ln_partintactplat .00060118 .05679835

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.2792 0.0000	1.0000

GMM finished : 16:28:21

Starting Monte-Carlo loop : 16:28:21 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:28:27

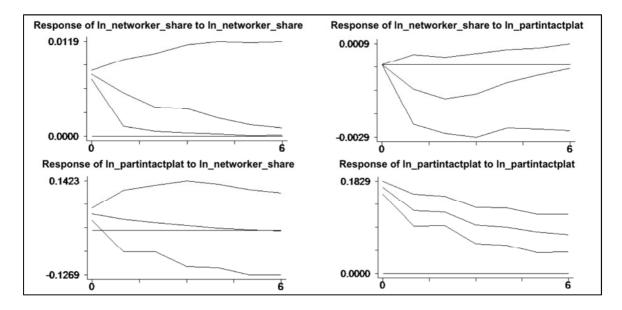

. pvar ln_networker_share ln_partintactplat, lag(3) gmm monte 1000 GMM started : 16:32:10 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM__ number of observations used : 256 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM .98548953 .32727084 3.0112354 L.h_ln_networker_share .58289955 .00320314 .00549518 L.h_ln_partintactplat L2.h_ln_networker_share -.12501575 .12403355 -1.0079188 L2.h_ln_partintactplat -.00495516 .00582212 -.8510921 .00286078 L3.h_ln_networker_share .12137632 .02356948 L3.h_ln_partintactplat .00239546 .0032463 .73790468 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM .64191679 6.5842386 .09749294 L.h_ln_networker_share L.h_ln_partintactplat .7043183 .10177902 6.9200732 L2.h_ln_networker_share 5.0120895 2.9077084 1.7237249 L2.h_ln_partintactplat .13251702 .09561773 1.3859044 L3.h_ln_networker_share -4.873964 2.5819546 -1.8877032 L3.h_ln_partintactplat -.00376654 .05214872 -.07222694 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintactplat ln_networker_share .00006044 ln_partintactplat .00019332 .03815442

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.1280 0.0407	1.0000

GMM finished : 16:32:11

Starting Monte-Carlo loop : 16:32:12 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:32:18



. pvar ln_networker_share ln_partintactplat, lag(4) gmm monte 1000 GMM started : 16:36:37 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _ Results of the Estimation by system GMM_ number of observations used : 248 EQ1: dep.var : h_ln_networker_share se_GMM b_GMM t_GMM 2.2832184 .32277953 L.h_ln_networker_share .73697615 L.h_ln_partintactplat -.00572791 .00517562 -1.1067087 -.12223755 L2.h_ln_networker_share -.0265356 .21708222 L2.h_ln_partintactplat .0003759 .00626204 .0600291 .11582998 L3.h_ln_networker_share .11763866 1.015615 L3.h_ln_partintactplat .00256815 .00534063 .48087059 .08431494 -1.4691408 L4.h_ln_networker_share -.12387052 .00399877 L4.h_ln_partintactplat .00245109 .61296265 EQ2: dep.var : h_ln_partintactplat b GMM se_GMM t_GMM L.h_ln_networker_share -.2648836 6.5461802 -.04046384 L.h_ln_partintactplat .73221138 .10732392 6.8224435 L2.h_ln_networker_share -1.0683203 3.163782 -.33767191 L2.h ln partintactplat .1720508 .13288137 1.2947699 .42495591 1.8406026 .23087869 L3.h ln networker share L3.h_ln_partintactplat -.09142384 .10457959 -.87420343 L4.h_ln_networker_share -.56420216 2.0256657 -.27852679 L4.h_ln_partintactplat .06529254 .06591348 .99057951 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintactplat .00006009 ln networker share .031268 ln partintactplat .0003605 Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.2598 0.0000	1.0000

GMM finished : 16:36:38

Starting Monte-Carlo loop : 16:36:38 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:36:45

Appendix 39 Estimation Results PVAR(1)-(4) ln_network_cc ln_partintactplat;

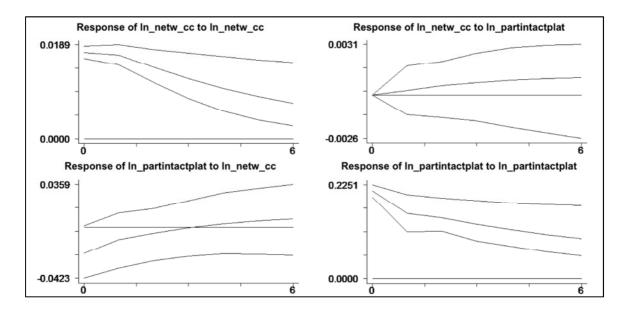
New Regions

. pvar ln_netw_cc ln_partintactplat, lag(1) gmm monte 1000		
GMM started : 16:42:14		
accumulating matrices equation 1,2,calculating b2sls		
calculating big ZuuZ matrix		
finished accumulating ZuuZ		
Results of the Estimation by system GMM		
number of observations used : 259		
EQ1: dep.var : h_ln_netw_cc		
b_GMM se_GMM t_GMM		
L.h_ln_netw_cc .74917136 .07335629 10.212776		
L.h_ln_partintactplat .00874819 .00737328 1.1864714		
EQ2: dep.var : h_ln_partintactplat		
b_GMM se_GMM t_GMM		
L.h_ln_netw_cc01465781 .3501630104185997		
L.h_ln_partintactplat .8909906 .05853887 15.220495		
just identified - Hansen statistic is not calculated		
symmetric uu[2,2]		
ln_netw_cc ln_partintactplat		
ln_netw_cc .00121667		
ln_partintactplat .00085892 .0527309		
Residuals correlation matrix		

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.1054 0.0906	1.0000

GMM finished : 16:42:15

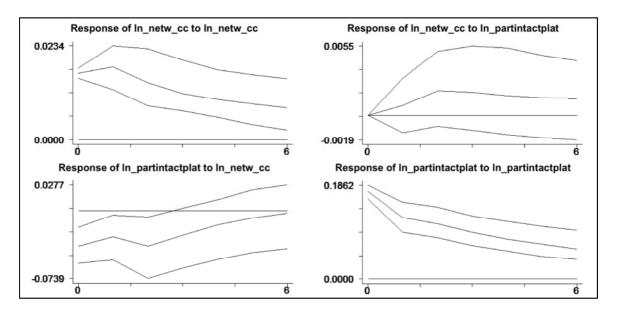

Starting Monte-Carlo loop : 16:42:16 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:42:21

. pvar ln_netw_cc ln_partintactplat, lag(2) gmm monte 1000 GMM started : 16:44:31 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM___ number of observations used : 251 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM .9704168 .05878504 16.507887 L.h_ln_netw_cc L.h_ln_partintactplat .00137066 .00448815 .30539412 L2.h_ln_netw_cc -.11051878 .05215319 -2.1191182 L2.h_ln_partintactplat .00036389 .0043932 .08282953 EQ2: dep.var : h_ln_partintactplat b GMM se GMM t GMM L.h_ln_netw_cc .34271994 .58760196 .58325187 L.h_ln_partintactplat .74011614 .12360734 5.9876392 .70571991 L2.h_ln_netw_cc -.01190314 -.01686666 L2.h_ln_partintactplat .14321581 .08752721 1.6362433 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintactplat .00029897 ln_netw_cc -.00037252 .04485067 ln_partintactplat Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	-0.1016 0.1084	1.0000

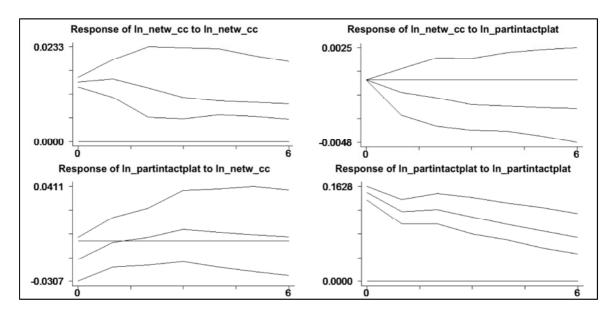
GMM finished : 16:44:32

Starting Monte-Carlo loop : 16:44:32 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:44:38


GMM started : 16:46:24 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 243 $\,$ EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM L.h_ln_netw_cc 1.1104604 _partintactplat .00455575 .19532302 5.6852511 .0076324 L.h_ln_partintactplat .59689568 L2.h_ln_netw_cc -.3460797 .21581842 -1.6035689 .0062269 L2.h_ln_partintactplat .00283205 .45480919 L3.h ln netw cc .12389221 0861929 1 4373831 L3.h_ln_partintactplat -.00512578 .00414935 -1.2353201 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_netw_cc -.08106867 .65618428 -.12354558 L.h_ln_partintactplat .70670571 .10441244 6.7684054 L2.h_ln_netw_cc -.71545122 .96208464 -.74364685 .13477746 L2.h_ln_partintactplat .09844406 1.3690766 1.0927926 .78721421 L3.h ln netw cc 1.388177 L3.h_ln_partintactplat -.00277597 .06996457 -.03967676 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintactplat ln_netw_cc .00027269 ln_partintactplat -.00063355 .03171714 Residuals correlation matrix 1 111

. pvar ln_netw_cc ln_partintactplat, lag(3) gmm monte 1000

	uı	uΖ
u1	1.0000	
u2	-0.2149 0.0007	1.0000


GMM finished : 16:46:25

Starting Monte-Carlo loop : 16:46:26 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:46:32

. pvar ln_netw_cc ln_partintactplat, lag(4) gmm monte 1000 GMM started : 16:48:26 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 235 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM 1.0468734 .19654319 5.3264295 L.h_ln_netw_cc L.h_ln_partintactplat -.0063044 .00691071 -.91226464 L2.h_ln_netw_cc -.19749001 .17605947 -1.1217233 L2.h_ln_partintactplat .00258116 .00577564 .44690401 L3.h ln netw cc .00622023 .20761532 02996037 L3.h_ln_partintactplat -.0013674 .00462084 -.29591993 .08175806 .05256557 1.555354 L4.h ln netw cc L4.h_ln_partintactplat .00165094 .00356516 .46307624 EQ2: dep.var : h_ln_partintactplat b GMM se_GMM t GMM .50194482 L.h_ln_netw_cc .66639023 1.3276165 L.h_ln_partintactplat .79125245 .07358649 10.752687 -.26901871 .671254 L2.h ln netw cc -.40077036 .07417885 L2.h ln partintactplat .19189443 2.5869158 .07416021 .4325059 .17146635 L3.h_ln_netw_cc -.06144416 .08572816 L3.h_ln_partintactplat -.7167325 -.43405375 .23844056 -1.8203856 L4.h_ln_netw_cc L4.h_ln_partintactplat -.03377985 .05425062 -.62266289 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintactplat ln netw cc .00021259 ln_partintactplat -.00020248 .02324114 Residuals correlation matrix u1 u2 u1 1.0000 u2 -0.0906 1.0000 0.1662 GMM finished : 16:48:28

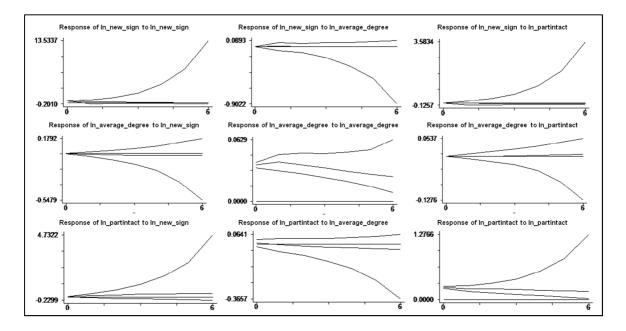
Starting Monte-Carlo loop : 16:48:29 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 16:48:36

Appendix 40 Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree

In_partintact; New Regions

. pvar ln_new_sign ln_	average_degree	e ln_partin	tact, lag(l)	gmm monte 1000
GMM started : 12:01:44			10.1	
accumulating matrices		s, calculati	ng bzsis	
calculating big ZuuZ m				
finished accumulating				
Results of the		∕ system GM	M	
number of observations	used : 272			
EQ1: dep.var : h_1	n_new_sign			
	F (10)	000	t GMM	
L.h_ln_new_sign				
L.h_ln_average_degree			.42069839	
L.h_ln_partintact		.32952526		
EQ2: dep.var : h_1	n_average_degi	ree		
		se_GMM		
L.h_ln_new_sign				
L.h_ln_average_degree		.0282947 3		
L.h_ln_partintact				
EQ3: dep.var : h_1	n_partintact			
	1 0104		t_GMM	
L.h_ln_new_sign	b_GMM	se_GMM	t_GMM	
L.h_ln_average_degree				
L.h_ln_partintact				
just identified - Hans	en statistic i	is not calc	ulated	
symmetric uu[3,3]				
		-	ige_aegree	ln_partintact
ln_new_sign	.26095163			
ln_average_degree			.00164113	
ln_partintact	.03545753	3	.0040148	.23656234
Residuals correlation	matrix			

	ul	u2	u3
ul	1.0000		
u2	0.1236 0.0416	1.0000	
и3		0.2027	1.0000

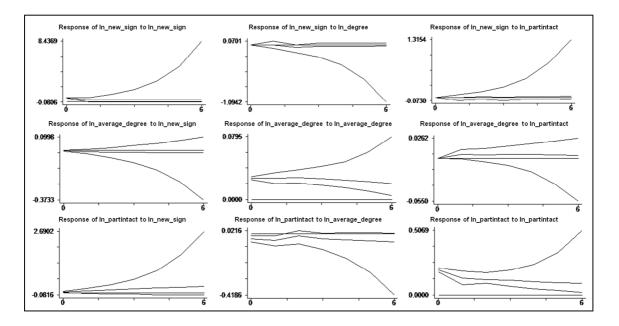

GMM finished : 12:01:46

Starting Monte-Carlo loop : 12:01:48 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=648, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:01:54

pvar ln_new_sign ln_average_degree ln_partintact, lag(2) gmm monte 1000 GMM started : 12:30:50 GMM started : 12:30:50 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM______ number of observations used : 264 EQ1: dep.var : h_ln_new_sign b_GMM L.h_ln_new_sign .50491673 L.h_ln_average_degree .01997551 L.h_ln_partintact -.01333008 L2.h_ln_new_sign .20504749 L2.h_ln_average_degree -.06466505 L2.h_ln_partintact -.04732154 se_GMM .52686264 1.0431218 t_GMM .95834604 .01876627 .30156768 -.04420262 .19096177 1.073762 .82205855 .13819529 -.34242514 EQ2: dep.var : h_ln_average_degree b_GMM L.h_ln_new_sign -.0140955 1_ln_average_degree 1.076764 L.h_ln_partintact .0006664 L2.h_ln_new_sign -.0047479 se_GMM .029057 .13334112 + GMM se_GMM t_GMM .029057 -.48509815 .13334112 8.0752586 .02010546 .03314533 .01222838 -.38826891 L.h_ln_average_degree L2.h_ln_average_degree L2.h_ln_partintact -.15492946 .12474613 -1.2419581 .36436055 EQ3: dep.var : h_ln_partintact b_GMM L.h_ln_new_sign .17367601 L.h_ln_average_degree -.33741788 L.h_ln_partintact .88787632 L2.h_ln_new_sign .04002215 L2.h_ln_average_degree .12536589 L2.h_ln_partintact .07324822 se_GMM .20783842 .62243973 t_GMM .83562998 -.54208924 .13914786 6.380812 .0790865 .50605542 .4955505 .25298307 87140591 08405752 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree
 .2442565
 -.00133054 .00137593 ln_partintact ln_new_sign ln_average_degree .05734181 ln_partintact .01394837 .00017267 Residuals correlation matrix ul u2 u3 1.0000 ul -0.0724 0.2411 u2 1.0000 0.1176 u3 0.1176 0.0212 0.0562 0.7323 1.0000

GMM finished : 12:30:51

Starting Monte-Carlo loop : 12:30:53 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=68, i=644, i=642, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:31:00



pvar ln_new_sign ln_average_degree ln_partintact, lag(3) gmm monte 1000 GMM started : 12:32:58 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation i, , , , , esculating bases calculating big 20u2 matrix finished accumulating 20u2 Results of the Estimation by system GMM_____ number of observations used : 256 r : h_ln_new_sign EQ1: dep.var b GMM GMM b_GMM L.h_ln_new_sign .51311128 L.h_ln_average_degree -.02160455 L.h_ln_partintact -.04760157 se_GMM t_GMM .38148776 1.3450269 1.451193 -.01488744 .20236289 -.23522875 .23984859 L2.h_ln_new_sign .32277252 L2.h_ln_average_degree -1.6774127 1.3457345 1.173095 -1.4299036 L2.h_1n_average_degree L2.h_1n_partintact L3.h_1n_new_sign L3.h_1n_average_degree L3.h_1n_partintact .12188236 .08146036 1.7440454 .00649479 .20380394 .09661563 .60667271 .59803734 .84313851 .1081389 .06005971 EO2: dep.var : h_ln_average_degree b_GMM L.h_ln_new_sign -.01330037 se_GMM .01968577 t_GMM -.67563381 L.n_in_new_sign -.0133003/ L.h_in_average_degree 1.0220099 L.h_in_partintact .02681963 L2.h_in_new_sign -.0061518 L2.h_in_average_degree .01822394 L2.h_in_partintact -.02203561 .13340297 7.6610736 .01929988 .01341424 .14097288 .01555337 -.45860225 -1.43880223 .12927267 -1.4167735 .00515804 -.11618509 -.00018886 L3.h_ln_new_sign .00514946 1.0016659 .05514726 -2.1068154 .00750097 -.02517852 L3.h_ln_average_degree L3.h_ln_partintact EQ3: dep.var : h_ln_partintact b GMM se GMM t GMM L.h_ln_new_sign .12227001 L.h_ln_average_degree -.84209563 L.h_ln_partintact .67298316 L2.h_ln_new_sign .07553338 .12654809 .59914022 .15972262 .07561001 .96619403 -1.4055068 4.2134492 .99898649 1.6815874 L2.h_ln_average_degree .90972571 1.8484554 L2.h_ln_partintact .18528973 .15057466 1.2305505 L2.h_ln_partintact .18528973 L3.h_ln_new_sign .02986716 L3.h_ln_average_degree -1.1277142 L3.h_ln_partintact .02969184 .77839804 .59609215 -1.8918454 .04916173 .60396243 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree .23131268 -.00290963 .00076655 .01846521 -.00121422 ln_partintact ln_new_sign ln_average_degree ln_partintact .04102628 Residuals correlation matrix u1 u2 u3 ul 1.0000

u2	-0.2185	1.0000	
	0.0004		
u3	0.1895	-0.2149	1.0000
	0.0023	0.0005	

GMM finished : 12:33:00

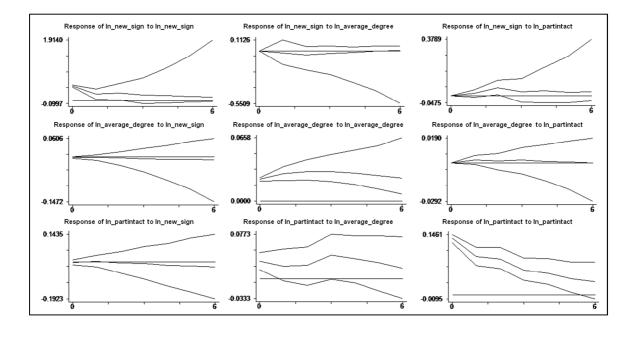
Starting Monte-Carlo loop : 12:33:01 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=-624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:33:09

pvar ln_new_sign ln_average_degree ln_partintact, lag(4) gmm monte 1000 GMM started : 12:35:57 accumulating matrices equation 1,2,3, calculating b2sls EQ1: dep.var : h_ln_new_sign b GMM se GMM + GMM
 b_GKM

 L.h_ln_new_sign
 ...4425447

 L.h_ln_average_degree
 -1.1098278

 L.h_ln_partintact
 ...1205642


 L2.h_ln_new_sign
 ...2607333

 L2.h_ln_average_degree
 -...62220186
 se_GMM t__GMM .19766645 2.2388459 3.4389355 -.32272423 .11737787 1.0271459 .17699393 1.6727881 2.6345894 -.23616654 2.6345894 -.23616654 .24679296 1.1389751 1.3234988 1.44949407 1.3389776 1.6612508 .12105194 -2.0903781 0.8382866 .14616657 .83503872 -.46750935 .09909939 -.31753715 EQ2: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM L.h_ln_new_sign .0016028 L.h_ln_average_degree 1.2315441 L.h_ln_partintact .016016 L2.h_ln_new_sign -.00528501 .15202957 .01054272 6.5641419 1.0545479 -.47099212 .18761692 .01518338 L2.h_ln_average_degree -.18663714 L2.h_ln_partintact -.02057741 .18478083 .18478083 -1.010046 .01675454 -1.2281692 L2.h_ln_partintact L3.h_ln_new_sign L3.h_ln_average_degree L3.h_ln_partintact L4.h_ln_new_sign L4.h_ln_average_degree .01675454 .00684351 .08610277 .01254975 .00471061 .05155155 .00818775 -.30981223 -.99035577 -.0021202 L3.h_ln_ewe_sign -.0021202 h_ln_average_degree -.08527238 L3.h_ln_partintact .00980248 L4.h_ln_ewe_sign .00087448 h_ln_average_degree -.0372183 L4.h_ln_partintact -.00507055 .78108972 .18564135 -.72196283 -.6192844 -----EQ3: dep.var : h_ln_partintact t_GMM .25977013 .11857845 7.6308661 b_GMM se_GMM .03633287 L.h_ln_new_sign .00943819 L.n_ln_new_sign .0043819 L.h_ln_average_degree .0820306 L.h_ln_partintact .67460319 L2.h_ln_average_degree .03637972 L2.h_ln_average_degree .03637972 L3.h_ln_new_sign -0061845 L3.h_ln_average_degree .3475931 L3.h_ln_average_degree .1472706 .0353267 .2297/013 .69178339 .11857845 .0884048 7.6308661 .0333474 -.50443326 .8043507 .04522868 .10030717 1.7572809 .02459581 -.25144517 1.1467405 8.1514458 .0015925 -1 431781 .02459581 - .2514451/ 1.1467405 .81514458 .08015935 -1.4311751 .02423385 -.67109931 .80682674 -1.4589741 .04204459 1.1159485 L3.h_l_partintact -.11472206 L4.h_ln_new_sign -.01626332 L4.h_ln_average_degree -1.1771393 L4.h_ln_partintact .04691959 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree .21156442 -.00103156 .00051721 -.00088395 .00069925 ln_partintact ln_new_sign ln_average_degree ln_partintact .01967966 Residuals correlation matrix u1 u2 u3

ul	1.0000		
u2	-0.0988	1.0000	
	0.1206		
u3	-0.0137	0.2191	1.0000
	0.8295		

GMM finished : 12:35:59

Starting Monte-Carlo loop : 12:36:01 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:36:10

Appendix 41 Estimation Results

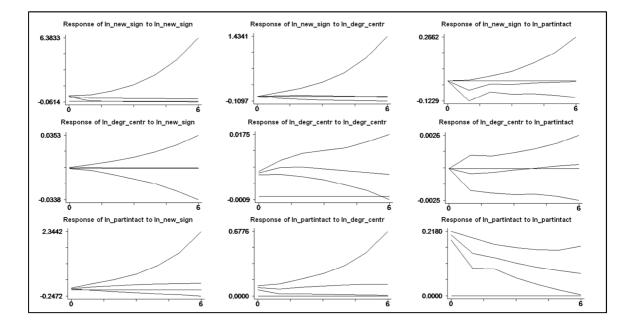
PVAR(1)-(4)

ln_new_signups

ln_degree_centralization ln_partintact; New Regions

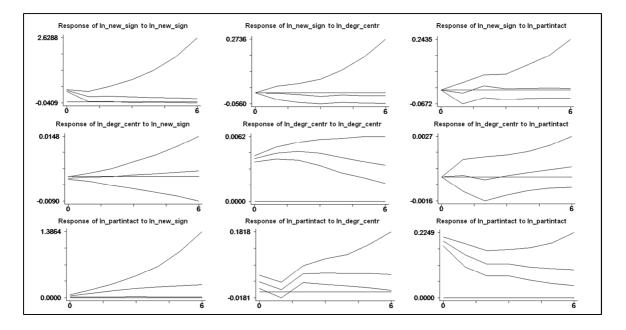
. pvar ln_new_sign ln_degr_centr ln_partintact, lag(1) gmm monte 1000 GMM started : 12:59:10 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM_ number of observations used : 271 EQ1: dep.var : h_ln_new_sign b_GMM se_GMM t_GMM L.h_ln_new_sign .60481648 .45927667 1.3168935 L.h_ln_degr_centr -1.60889 2.8454126 -556543257 L.h_ln_partintact -.07846513 .19397871 -.40450383 EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM L.h_ln_new_sign .00796303 .00893136 .89158039 L.h_ln_degr_centr .91823025 .07489305 12.260554 L.h_ln_partintact .00475335 .00377518 1.2591052 EQ3: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_mew_sign .20858302 .21212653 .98329528 L.h_ln_degr_centr 2.6767859 1.5842332 1.6896414 L.h_ln_partintact .91101123 .07830267 11.634484 just identified - Hansen statistic is not calculated symmetric uu[3,3] In_new_sign ln_degr_centr ln_partintact
.25424161
.00053507 .00015519
.0219098 .00141076 .06933151 ln_new_sign ln_degr_centr ln_partintact Residuals correlation matrix ul 112 113 1.0000 u1 0.0842 1.0000 u2 0.1668 u3 0.1643 0.4275 0.0067 0.0000 1.0000

GMM finished : 12:59:11


Starting Monte-Carlo loop : 12:59:13 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 12:59:19

. pvar ln_new_sign ln_degr_centr ln_partintact, lag(2) gmm monte 1000 GMM started : 13:08:57 GMM started : 13:08:57 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______Results of the Estimation by system GMM______ number of observations used : 263 EQ1: dep.var : h_ln_new_sign b_GMM se_GMM t_GMM b_GMM .65084913 8.5137866 -.29201101 .2934394 -9.2017038 se_GMM .39954294 5.8814764 .19585552 .16245035 3.6559782 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partintact 1.6289842 1.4475594 -1.4909512 1.8063328 -2.5168924 .30964451 .2874168 1.0773361 EQ2: dep.var : h_ln_degr_centr t_GMM .49097026 3.6171786 .13477421 b_GMM se_GMM 6_GMM .00350955 .9781052 .00051658 -.00175617 -.05263871 .00110798 L.h_ln_new_sign .0071482 L.n_in_new_sign L.h_in_degr_centr L.h_in_partintact L2.h_in_new_sign L2.h_in_degr_centr L2.h_in_partintact .00383289 .00331607 .2168882 .00579434 -.52959292 -.24269976 .191217 EQ3: dep.var : h_ln_partintact b GMM se GMM t GMM L.h_ln_new_sign .16633774 .16941927 L.h_ln_degr_centr 2.0607309 3.7964121 L.h_ln_partintact .69939612 .14480701 L2.h_ln_new_sign .04107604 .07229569 .9818112 .54281011 4.8298499 .56816716 L2.h_ln_degr_centr .67638962 2.9286406 .23095686 L2.h_ln_partintact .19158491 .16490407 1.1617961 just identified - Hansen statistic is not calculated symmetric uu[3,3] . 1n_new_sign ln_degr_centr ln_partintact .27258631 .00011845 .00009357 .02748638 .0006701 .05360016 ln_new_sign ln_degr_centr ln_partintact Residuals correlation matrix ul u2 u3 ul 1.0000

GMM finished : 13:08:59


Starting Monte-Carlo loop : 13:09:00 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=68, i=646, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:09:07

pvar ln_new_sign ln_degr_centr ln_partintact, lag(3) gmm monte 1000 GMM started : 13:17:43 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation 1,1,1,2,accurating calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM___ number of observations used : 255 EQ1: dep.var : h_ln_new_sign se_GMM .27117886 3.5012337 .1751549 .17090567 b_GMM .50201991 5.4991603 -.13602213 GMN L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_degr_centr 1.8512502 1.570635 -.77658189 .25310707 1.4809752 4.418259 -2.7322522 L2.h_In_degr_centr L2.h_In_partintact L3.h_In_new_sign L3.h_In_degr_centr -12.071738 .26853531 .08387335 5.603424 -.10985393 4.418239 .13468598 .08722019 3.0642016 .16330922 1.9937883 .96162773 L3.h_ln_partintact -.67267434 EO2: dep.var : h_ln_degr_cents b_GMM .00176922 .83255846 se_GMM .00520472 t_GMM .33992622 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact L2.h_ln_partintact L2.h_ln_degr_centr L2.h_ln_partintact .23262285 3.5790055 .00346794 .00361454 .00330791 .21008522 .00396329 .08118352 .82928862 .97573933 - 00026855 -.00386714 L3.h_ln_new_sign -.0006749 .00140317 -.48097846 L3.h_ln_degr_centr -.10969565 .07651114 -1.4337211 L3.h_ln_partintact .00195301 .00306769 .63663949 EQ3: dep.var : h_ln_partintact Ъ GMM se GMM t GMM L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact L2.h_ln_new_sign D_GMM .15122238 1.6232387 .68333685 .12071516 se_GMM .11438921 2.6670441 .12539913 t_GMM 1.3219987 .60862835 5.4492952 .07503714 1.6087389 5.4534849 L2.h_ln_degr_centr 4.579662 1.1908051 L2.h_ln_partintact .12972076 L3.h_ln_new_sign .03400944 L3.h_ln_degr_centr -4.4481298 L3.h_ln_partintact .07928705 .16040659 .80869973 .04643164 .73246247 2.8164062 -1.5793638 just identified - Hansen statistic is not calculated symmetric uu[3,3] J ln_new_sign ln_degr_centr ln_partintact .2206037 -.00049086 .00006021 ln_new_sign ln_degr_centr ln_partintact .02150705 .00011046 .0473374 Residuals correlation matrix ul u2 u3 ul 1.0000 u2 -0.1347 1.0000 0.0316 u3 0.2106 0.0654 0.0007 0.2984 1.0000

GMM finished : 13:17:45

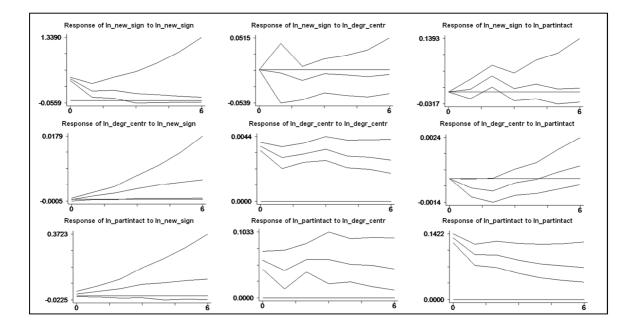
Starting Monte-Carlo loop : 13:17:46 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:17:54

. pvar ln_new_sign ln_degr_centr ln_partintact, lag(4) gmm monte 1000 GMM started : 13:31:50 accumulating matrices equation 1,2,3,calculating b2s1s calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 247 _______EQ1 dep.var : h_ln_new_sign

	b_GMM	se_GMM	t_GMM	
L.h_ln_new_sign	.46549979	.1954186	2.3820649	
L.h_ln_degr_centr	5.351114	2.6932344	1.9868727	
L.h_ln_partintact	.08037182	.12262109	.65544858	
L2.h_ln_new_sign	.23729627	.14339866	1.6548012	
L2.h_ln_degr_centr	-14.088355	3.5607805	-3.9565357	
L2.h_ln_partintact	.19733309	.12996669	1.5183359	
L3.h_ln_new_sign	.02035443	.10730097	.18969478	
L3.h_ln_degr_centr	6.4278985	3.7302257	1.7231929	
L3.h_ln_partintact	29209906	.12771717	-2.2870775	
L4.h_ln_new_sign	00302438	.0655279	04615403	
L4.h_ln_degr_centr	1.4260578	1.992258	.71579976	
L4.h_ln_partintact	.04535061	.15733665	.28823935	
EQ2: dep.var :	h_ln_degr_ce	ntr		
	b_GMM	se_GMM	t_GMM	
L.h_ln_new_sign	.00322836	.00400953	.80517104	
L.h_ln_degr_centr	.65197344	.23814017	2.7377717	
L.h_ln_partintact	00234047	.00210729	-1.1106574	
L2.h_ln_new_sign	.00119831	.00264872	.45241302	
L2.h_ln_degr_centr	.3280597	.25445139	1.2892824	
L2.h_ln_partintact	.00066436	.00291144	.22819044	
L3.h_ln_new_sign	.00040323	.00153205	.26319517	
L3.h_ln_degr_centr	.06783045	.09392678	.72216306	
L3.h_ln_partintact	.0042156	.0026409	1.5962756	
L4.h_ln_new_sign	.00010702	.00076643	.13963852	
L4.h_ln_degr_centr	17049395	.06235429	-2.7342778	
L4.h_ln_partintact	00004051	.00245114	01652798	

	b_GMM	se_GMM	t_GMM	
L.h_ln_new_sign	.04184382	.04588061	.91201548	
.h_ln_degr_centr	1.8922619	1.9914055	.95021425	
.h_ln_partintact	.7327766	.10090364	7.262142	
L2.h_ln_new_sign	.02325863	.0344429	.6752808	
.h_ln_degr_centr	1.2907302	1.982074	.65120182	
.h_ln_partintact	.19409638	.11335598	1.712273	
L3.h_ln_new_sign	.03136496	.02690312	1.1658483	
.h_ln_degr_centr	.07687476	2.0074759	.03829424	
.h_ln_partintact	02060223	.10794456	19085933	
L4.h_ln_new_sign	01813115	.02146356	84474101	
.h_ln_degr_centr	-2.8213449	2.3043025	-1.2243813	
.h_ln_partintact	01511551	.07584287	19930031	

symmetric uu[3,3]


	ln_new_sign	ln_degr_centr	ln_partintact
ln_new_sign	.20300334		
ln_degr_centr	00022205	.00005168	
ln_partintact	.00592237	.00026859	.02157651

Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	-0.0685 0.2837	1.0000	
u3	0.0896 0.1603	0.2542 0.0001	1.0000

GMM finished : 13:31:51

Starting Monte-Carlo loop : 13:31:54 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=605, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:32:03

Appendix 42 Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share ln_partintact; New Regions

. pvar ln_new_ GMM started : accumulating bi finished accum Result number of obse EQ1: dep.var	14:15:05 matrices ed ig ZuuZ mat mulating Zu ts of the E ervations u	quation 1,2 rrix nuZ Estimation 1sed : 272	,3,calculat by system G	MM	mmm monte 1000
T h 1-				M t_GMM 51338871	
L.h_ln_networ)					
				121006186	
EQ2: dep.var	: h_ln_	_networker_	share		
				M t_GMM	
		0784794		318372972	
L.h_ln_network				4 .20901132	
		03493148		417364062	
EQ3: dep.var	: n_in_	_partintact			
		b CMM	se_GMM	t_GMM	
L b lp	new sign		22.125738		
L.h_ln_network					
	-		10.430956		
just identifie	ed – Hanser	n statistic	is not cal	culated	
symmetric uu[3	3,3]				
		ln_new_	sign ln_ne	tworker_share	ln_partintact
ln_new_		2.143	6514		
ln_networker_s			4716	.003458	
ln_partir	ntact	-4.352	5078	18088307	9.9741406
Residuals corr	celation ma	atrix			
	u l	u2	u3		
	u1	uz	us		
u1	1.0000				
uı	1.0000				
u2	0.9163	1.0000			
42	0.0000				
u3	-0.9400	-0.9734	1.0000		
	0.0000	0.0000			

GMM finished : 14:15:07

Starting Monte-Carlo loop : 14:15:08 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 14:15:15

pvar ln_new_sign ln_networker_share ln_partintact, lag(2) gmm monte 1000 GMM started : 14:23:24 accumulating matrices equation 1,2,3, calculating b2sls EQ1: dep.var : h_ln_new_sign b GMM
 b_GMM
 se_GMM
 t_GMM

 L.h_ln_new_sign
 -5.5116024
 97.186449
 -.05621764

 L.h_ln_networker_share
 -86.231807
 1386.4859
 -.05223778

 L.h_ln_networker_share
 -3.1844191
 51.196489
 -.05223778

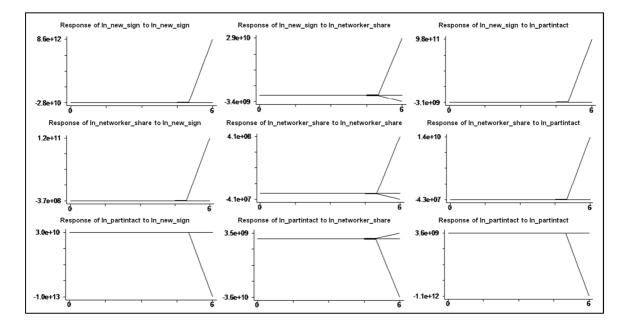
 L.h_ln_networker_intact
 -3.1844191
 51.196489
 -.0523978

 L2.h_ln_newsign
 -1.5665712
 28.638978
 -.050400232

 L2.h_ln_networker_share
 37.304809
 618.96911
 .06026926

 L2.h_ln_partintact
 -.30935014
 4.8376788
 -.06394598
 se GMM t GMM EQ2: dep.var : h_ln_networker_share L.h_ln_new_sign -.07761708 L.h_ln_networker_share -.18196157 L.h_ln_partintact -.03699215 L2.h_ln_new_sign -.02508878 L2.h_ln_networker_share .45002492 L2.h_ln_partintact -.00619923 se_GMM t_GMM 1.3579597 -.05715713 t_GMM 19.377954 -.00939013 .71522803 -.05172078 .71522803 -.05172078 .39965575 -.06277598 8.6558849 .05199063 .06694136 -.09260693 .39965575 8.6558849 EQ3: dep.var : h_ln_partintact t_GMM .05983332 .05853874 .07320998
 33.71683
 .0520998

 33.71683
 .05891251


 728.37046
 -.05787212

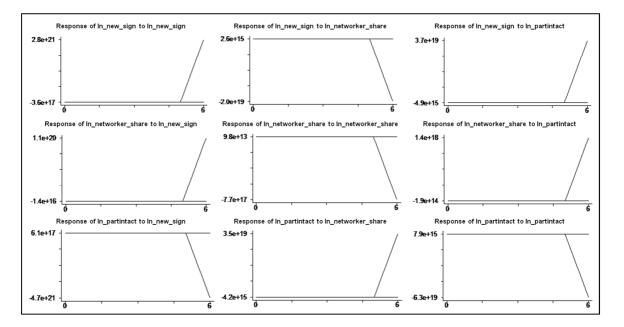
 5.722773
 .06480212
 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share 16.415993 .2201524 .00308035 ln_partintact ln_new_sign ln_networker_share -19.215449 22.819861 ln_partintact -.2609482 Residuals correlation matrix u1 u2 u3 ul 1.0000

u2	0.9788	1.0000	
u3	-0.9927 0.0000	-0.9840 0.0000	1.0000

GMM finished : 14:23:26

Starting Monte-Carlo loop : 14:23:26 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 14:23:34

pvar ln_new_sign ln_networker_share ln_partintact, lag(3) gmm monte 1000 GMM started : 14:25:53 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation 17,7,7,accurating basis calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM______ number of observations used : 256 EQ1: dep.var : h_ln_new_sign b GMM t GMM se GMM L.h_ln_new_sign 16.3373 L.h_ln_networker_share 131.49003 L.h_ln_partintact 5.3300725 L2.h_ln_new_sign 9.1623634 1635.273 14154.152 553.0658 913.8689 .00999056 .00928986 .00963732 .01002591 132.42334 L2.h_ln_networker_share 13340.977 .00992606 L2.n_in_networker_snare 132.42334 L2.h_in_partintact 4.2782753 L3.h_in_new_sign 1.9091158 L3.h_in_networker_share -89.687663 L3.h_in_partintact 1.3241045 433.09723 .00987833 188.52986 01012633 9434.1167 137.94969 -.00950674 EQ2: dep.var : h_ln_networker_share t_GMM .00986381 .01173305 b_GMM L.h_ln_new_sign .61809378 _networker_share 6.363546 se_GMM 62.662774 542.36095 L.h_ln_networker_share ln_networker_share 6.363546 L.h_ln_partintact .21354839 21.193301 .01007622 L.h_in_partintact .21394839 L2.h_in_rwe_jim .34374963 L2.h_in_etworker_share 4.9087423 L2.h_in_partintact .15682001 L3.h_in_new_sign .07152054 L3.h_in_networker_share -3.5770159 L3.h_in_partintact .05504177 35.018329 .00981628 511.20519 .00960229 16.59597 .00944928 .00989958 361.48842 -.00987613 5.2861235 .0104125 EQ3: dep.var : h_ln_partintact b_GMM L.h_ln_new_sign -27.376718 L.h_ln_networker_share -238.51796 se_GMM t_GMM 2780.8217 -.00984483 24068.728 -.00990987 L.h_ln_networker_share -238.51796 24068.728 -.00990987 L.h_ln_partintact -8.5605134 940.53502 -.00910175 L2.h_ln_new_sign -15.286667 1554.0556 -.00983791 L2.h_ln_networker_share -217.50147 22686.968 -.00958073 L3.h_ln_new_sign -3.1531626 320.60131 -.00983515 L3.h_ln_networker_share 153.2173 16042.783 .00955053 L3.h_ln_partintact -2.3157137 234.56245 -.00987248 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share 142.97192 5.4795494 .21039483 ln_partintact ln_new_sign ln_networker_share ln_partintact -243.38709 -9.3418181 414.95121 Residuals correlation matrix I ul u2 u3 ul u2 0.9991 1.0000


GMM finished : 14:25:55

u3

0.0000

-0.9992 -0.9998 1.0000 0.0000 0.0000

Starting Monte-Carlo loop : 14:25:56 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 14:26:04

. pvar ln_new_sign ln_networker_share ln_partintact, lag(4) gmm monte 1000 GMM started : 14:28:26 GeVM started : 14:28:26 accumulating matrices equation 1,2,3,calculating b2sls calculating big Zuu2 matrix finished accumulating Zuu2 ______ Results of the Estimation by system GMM______ number of observations used : 248 : h_ln_new_sign EQ1: dep.var b GMM se GMM
 se_GMM
 t_GMM

 6.112433
 -.09537892

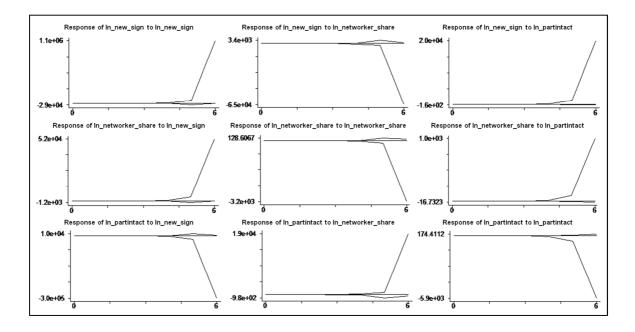
 12.729522
 -.4510616

 .54249485
 .07218246

 4.8011505
 -.09822278

 110.28306
 -.1875375

 2.5361078
 -.04862298
 b_GXM L.h_ln_new_sign -.58299725 L.h_ln_networker_share -5.7417985 L.h_ln_partintact .03915861 L2.h_ln_new_sign -.47158237 L2.h_ln_networker_share -20.68221 L2.h_ln_partintact -.2031311 L2.h_ln_partintact .0201210 L2.h_in_partintact -.12331311 L3.h_in_new_sign -.36918154 L3.h_in_etworker_share 2.481389 L3.h_in_partintact -.48959049 L4.h_in_new_sign -.06051778 L4.h_in_networker_share 8.2143031 L4.h_in_partintact -.17745039 2.5091921 -.14713163 .05891164 2.5091921 42.120521 1.4724806 .35883649 -.33256159 52.97532 .15505906 .82772104 EQ2: dep.var : h_ln_networker_share b_GMM L.h_ln_new_sign -.06087482 se_GMM t_GMM -.15330202 .3970908 L.h_ln_new_sign -.06087482 L.h_ln_networker_share 1.1433113 L.h_ln_partintact -.00983887 L2.h_ln_new_sign -.05229543 L2.h_ln_networker_share -1.2350353 L2.h_ln_partintact -.02699642 L3.h_ln_new_sign -.02699642 L3.h_ln_new_sign -.02690647 L3 .86166725 1.3268595 .03704975 -.26555841 .31168084 -.1677852 7.1941852 -.17167132 -.16471246 .1635744 -.16449195 L3.n_in_new_sign L3.h_ln_networker_share L3.h_ln_partintact L4.h_ln_new_sign L4.h_ln_networker_share L4.h_ln_partintact 2.7405322 -.29478321 -.10756422 -.01044777 .09578483 -.10907543 -.00219273 .02312573 3.4327127 -.0948178 .34251253 .0997789 .05555849 -.13190542 EQ3: dep.var : h_ln_partintact b GMM se_GMM 2.798857 6.4825732 .27637081 L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partintact Б_GMM .4389831 1.5797195 .79240516 t_GMM .15684371 .24368711 2.867181 L.h_ih_ews_sign L2.h_ln_networker_share L2.h_ln_partintact L3.h_ln_news_sign L3.h_in_networker_share L3.h_in_partintact .3311897 6.5473413 2.1980013 50.142333 .15067766 .13057512 6.5473413 .32122016 .19121946 2.6182764 -.00511069 .0018741 -4.3515355 50.142333 1.1597415 1.1535208 19.491421 .69907397 .1605799 .27697565 .16577027 .13432969 -.00731065 L4.h_ln_new_sign .01167085 24.433176 L4.h_ln_networker_share L4.h_ln_partintact -.17809946 .10358662 .3641623 .2844518 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share
.81593797 ln_partintact ln new sign ln_networker_share
 ln_partintact .0463486 .00348231 -.31829025 -.02329393 .18432537 Residuals correlation matrix


ul u2 ul 1.0000 u2 0.8684 1.0000

u2 0.8684 1.0000 0.0000 u3 -0.8194 -0.9188 1.0000 0.0000 0.0000

GMM finished : 14:28:28

Starting Monte-Carlo loop : 14:28:30 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 14:28:39

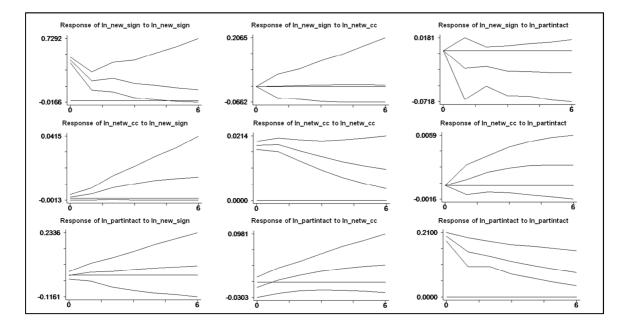
u3

Appendix 43 Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc ln_partintact; New Regions

GMM started : accumulating m calculating bi finished accum Result	14:30:30 matrices equation g ZuuZ matrix mulating ZuuZ	c ln_partintact, lag(1) gmm monte 1000 on 1,2,3,calculating b2sls ation by system GMM : 259	
EQ1: dep.var	: h_ln_new_s	sign	
L.h_ln_netw L.h_ln_partint	ign .62190671 _cc50218085 act10606555	M se_GMM t_GMM 1 .22267744 2.792859 5 1.132429644345437 3 .07862925 -1.3489323	
EQ2: dep.var	: h_ln_netw_	_cc	
L.h_ln_netw L.h_ln_partint	ign .02451265 _cc .78902309 act .01976957	se_GMM t_GMM .01731561 1.415639 .10246233 7.7006166 .01124169 1.7585949	
	: h_ln_parti	intact	
Lgo. dep.var			
L.h_ln_netw L.h_ln_partint	_cc .42742502 act .90596468	se_CNM t_CNM .11871362 1.0994666 .56311218 .75904063 .05827351 15.546768 	
symmetric uu[3	,3]		
ln_new_sign ln_netw_cc ln_partintact	.24022366	.00159615	
_	elation matrix		
Incordució corr			
	ul	u2 u3	
ul	1.0000		
u2	0.0037 1.0 0.9529	0000	
и3	0.0030 0.3 0.9611 0.0	3030 1.0000 0000	

GMM finished : 14:30:31

Starting Monte-Carlo loop : 14:30:32 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 14:30:39

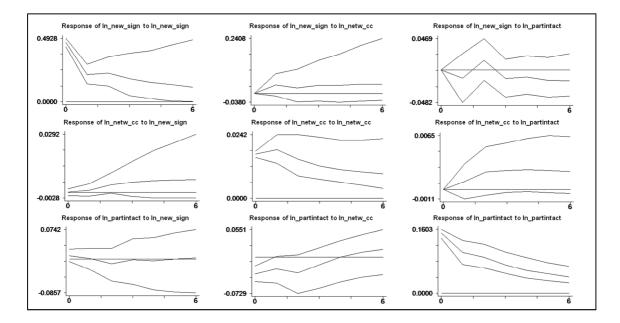

. pvar ln_new_sign ln_netw_cc ln_partintact, lag(2) gmm monte 1000 GMM started : 15:04:09 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 251 EQ1: dep.var : h_ln_new_sign b GMM se GMM t GMM b_GMM .4852026 .0427045 -.12779427 .3223728 .24230097 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partintact L2.h_ln_new_sign .13432105 1.6386843 .13778106 .10439252 t_GMM 3.6122602 .02606024 -.92751691 3.0880832 L2.h_ln_netw_cc .64959782 .37300151 L2.h_ln_partintact .04382801 .1322377 .33143356 EQ2: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM b_GMM .00494763 1.0105793 .00357213 .00626989 -.12109118 .00236569 .00462809 1.0690445 L.h ln new sign L.h_ln_netw_cc L.h_ln_partintact L2.h_ln_netw_sign L2.h_ln_netw_cc 1.0030443 16.031005 .67070223 1.7129376 -2.1510472 .06303905 .00532596 .00366032 .05629406 .00608776 L2.h_ln_partintact .38859817 EQ3: dep.var : h_ln_partintact b_GMM .0369697 .67052753 se_GMM .06005477 .67139514 t_GMM .61559981 L.h_ln_new_sign L.h_ln_netw_cc .99870775 5.0713903 L.h_ln_partintact .7404553 L2.h_ln_new_sign -.00416136 L2.h_ln_netw_cc -.0098895 L2.h_ln_partintact .11965111 .14600637 .041192 -.10102351 -.01360437 .10835318 just identified - Hansen statistic is not calculated symmetric uu[3,3]] ln_new_sign .22617012 .00026338 ln_netw_cc ln_partintact ln_new_sign
 ln_netw_cc
ln_partintact .00032976 -.00027556 -.00018439 .03929837 Residuals correlation matrix ul u2 u3

ul 1.0000

u2	0.0306	1.0000	
u3	-0.0029	-0.0513	1.0000

GMM finished : 15:04:11

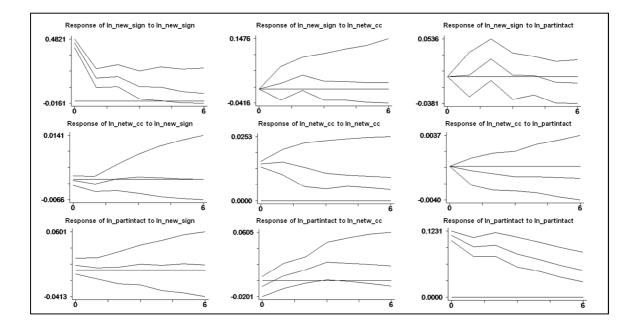
Starting Monte-Carlo loop : 15:04:11 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 15:04:19



. pvar ln_new_sign ln_netw_cc ln_partintact, lag(3) gmm monte 1000 GMM started : 15:13:36 accumulating matrices equation 1,2,3, calculating b2sls EQ1: dep.var : h_ln_new_sign se_GMM .10208701 1.7172882 .15091587 b GMN b_GMM .45752189 2.0595722 4.4816858 L.h_ln_new_sign 1.1993166 L.h_ln_netw_cc L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partintact -.08140767 -.5394242 .08353574 1.1887898 .13617108 .08416738 .26575448 3.1813268 -1.5817852 -1 3305844 1.2941311 L3.h_ln_new_sign L3.h_ln_netw_cc .03372479 .40068721 .50548205 .65520857 .77148266 L3.h_ln_partintact -.19634842 .10838719 -1.8115464 EQ2: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM .00324395 .19560848 .00846552 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partintact .00166676 1.1173952 .00655999 .51380639 5.7124067 .00541988 .00257305 2.1063998 L2.h_ln_new_sign L2.h_ln_netw_cc -.34112063 -1.7069297 L2.h_ln_partintact L3.h_ln_new_sign L3.h_ln_netw_cc L3.h_ln_partintact .00243012 .0068409 .35523361 .00288592 .08375497 .00538285 -.0007909 - 27405573 1.4169868 -.62012301 -.00333803 EQ3: dep.var : h_ln_partintact b_GMM L.h_ln_new_sign -.01175087 se_GMM t_GMM -.3535989 .0332322 -.05322059 L.h_ln_netw_cc .78041711 -.06819505 L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partintact .1182091 .02073901 .95840658 .11357128 5.7514828 -.02319929 -.56798624 .13798463 -1.1186307 -.59263599 1.2149606 L3.h_ln_new_sign .03192905 .02287059 1.3960743 L3.h_ln_netw_cc L3.h_ln_partintact 1.2653123 .78440237 1.6130909 -.02505252 .06687288 -.37462896 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .21241327 .00005205 .00407858 ln_netw_cc ln_partintact ln_new_sign ln_netw_cc .00028073 ln_partintact -.00056393 .02382013 Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	0.0069 0.9149	1.0000	
u3		-0.2180 0.0006	1.0000

GMM finished : 15:13:37


Starting Monte-Carlo loop : 15:13:38 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=-624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 15:13:46

pvar ln_new_sign ln_netw_cc ln_partintact, lag(4) gmm monte 1000 GMM started : 15:32:33 GMM started : 15:32:33 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 235 EQ1: dep.var : h_ln_new_sign b_GMM .40109053 1.1474598 se_GMM .0935147 2.0008647 t_GMM 4.2890637 .57348196 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partintact L3.h_ln_netw_cg L3.h_ln_netw_cc .16497391 .01913063 .11596157 .11596157 3.432148 .57020022 1.1900798 -.27905919 -1.5756966 .26131942 .07613874 1.2164942 .19909882 -.02068068 -2.3694625 2.1334509 .16729871 .07410857 1.5037556 .16140241 L3.h_ln_partintact -.23605117 -1.4625009 L4.h_ln_new_sign L4.h_ln_netw_cc L4.h_ln_partintact .03394124 .0770545 .44048351 1.033650 -.02584382 .13465061 -.19193244 : h_ln_netw_cc EQ2: dep.var se_GMM .0023639 .20260221 .00840582 t_GMM -1.0180502 5.1844159 b_GMM -.00240657 1.0503741 L.h_ln_new_sign L.h_ln_netw_cc -.00489107 L.h_ln_partintact L2.h_ln_new_sign -.5818673 .00481537 .00310907 1.548817 L2.h_ln_netw_cc L2.h_ln_partintact L3.h_ln_new_sign -.191112 .00129086 -.0002879 .17145302 .00626274 .00284734 -1.114661 .20611817 -.10111103 L3.h_ln_netw_cc .00040651 .19692199 .00206432 L3.h_ln_partintact L4.h_ln_new_sign L4.h_ln_netw_cc L4.h_ln_partintact -.00019375 .00491773 -.03939801 -.00178648 .0024447 -.73075595 05456309 08114485 1 4871748 .00460717 .00050501 .10961337 E03: dep.var : h ln partintact se_GMM .01746658 .44702264 .08439573 b GMN b_GMM L.h_ln_new_sign -.00482931 L.h_ln_netw_cc .84130512 .h_ln_partintact .81457387 -.27648835 L.h_ln_netw_cc L.h_ln_partintact L2.h_ln_netw_cc L2.h_ln_netw_cc L2.h_ln_netw_cc L2.h_ln_partintact L3.h_ln_netw_cc L3.h_ln_netw_cc 1.8820191 9.6518373 .00541507 .01618823 .33450663 -.21038128 .17754699 .01258626 .63952331 .08607078 .01307587 32896578 2.0628022 .96255678 .16975321 .46399827 .36584881 L3.h_ln_partintact L4.h_ln_new_sign L4.h_ln_netw_cc L4.h_ln_partintact -.12035194 -.00766608 -.55518686 -.00563698 .0896371 -1.3426576 .01375191 -.55745541 .25387645 -2.1868388 just identified - Hansen statistic is not calculated symmetric uu[3,3]] ln_new_sign .20346317 -.0001911 ln_netw_cc ln_partintact ln_new_sign ln_netw_cc .00020905 ln_partintact .00342253 -.00011177 .0133876 Residuals correlation matrix ul u2 u3 111 1.0000 u2 -0.0291 1.0000 0.6573 0.0654 -0.0667 0.3178 0.3089 u3 1.0000

GMM finished : 15:32:35

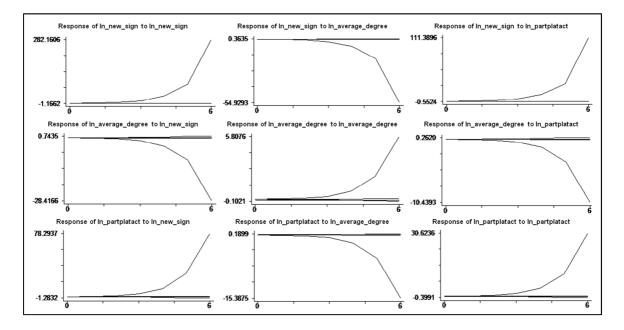
Starting Monte-Carlo loop : 15:32:37 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=-624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 15:32:46

Appendix 44 Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree ln_partplatact; New Regions

. pvar ln_new_ GMM started : accumulating m calculating bi finished accum Result number of obse EQ1: dep.var	09:28:24 matrices eq ig ZuuZ mat mulating Zu is of the E ervations u	uation 1,2,3 rix uZ stimation by sed : 272	,calculati	ing b2s1s) gmm monte 1000
rgi: dep.var	: n	new_sign			
L.h_ln_average	e_degree . platact .	.0199079 1. 21868399 .5 17617162 1.	2988547 . 7653299 .	.78523629 .37930871 .14596837	
EQ2: dep.var					
rgz: dep.var	: 11_11_	average_degr	ee		
L.h_ln_average L.h_ln_part	platact -	.14344741 .86299373 .11448622	.1893675 .08527609 .17298674	t_GMM 75750809 10.119997 66182076	
EQ3: dep.var	: h_ln_	partplatact			
L.h_ln_average	e_degree -	.13580524	.31631627	-1.4800442	
just identifie	ed – Hansen	statistic i	s not calc	culated	
symmetric uu[3	3,3]				
ln_new_s ln_average_deg		ln_new_sign .43627088 04394641		.01226068	ln_partplatact
ln_partplat	act	02408354		.00589681	.02831193
Residuals correlation matrix					
	ul	u2	u3		
ul	1.0000				
u2	-0.5971 0.0000	1.0000			

u3 -0.2124 0.3110 1.0000 0.0004 0.0000

GMM finished : 09:28:26


Starting Monte-Carlo loop : 09:28:27 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 09:28:34

. pvar ln_new_sign ln_average_degree ln_partplatact, lag(2) gmm monte 1000 GMM started : 09:42:40 uww started : Uy:42:40 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM______ number of observations used : 264 EQ1: dep.var : h_ln_new_sign b GMM se GMM t GMM b_GMM L.h_ln_new_sign .51914388 L.h_ln_average_degree -.23131845 L.h_ln_partplatact .17522634 L2.h_ln_new_sign .22668959 L2.h_ln_average degree .1401854 se_GMM t_GMM 1.1043701 .47008145 1.515831 -.15260174 1.433647 .12222419 .38221406 .59309589 .h_ln_average_degree .1403534 L2.h_ln_partplatact -.29328689 L2.h_ln_average_degree .98582487 .14237154 -1.571371 .18664395 EQ2: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM b_GMM
L.h_ln_new_sign -.0869082
L.h_ln_average_degree 1.0158492
L.h_ln_partplatact -.10299716
L2.h_ln_new_sign -.02968373
L2.h_ln_average_degree -.12942673
L2.h_ln_average_degree ..0533309 .14151907 -.61411002 .26296244 3.8630964 .14151907 -.61411002 .26296244 3.8630964 .18425252 -.55899999 .04834151 -.61404222 .20503365 -.63124628 .04321325 .12336258 EQ3: dep.var : h_ln_partplatact b_GMM L.h_ln_new_sign .19858349 L.h_ln_average_degree .11878074 L.h_ln_partplatact .87155738 L2.h_ln_new_sign .06330891 L2.h_ln_average_degree -.1408405 L2.h_ln_partplatact .2887473 se_GMM .39767658 .51656766 t_GMM .49935927 .22994227 1.6627961 .5241517 .13713867 .46164153 .36521927 -.38563272 .12424852 2.3239496 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree
 .24585497
 -.00932281
 .00532311 ln_partplatact ln_new_sign ln_average_degree .00532311 .0445785 ln_partplatact .0255125 Residuals correlation matrix ul u2 u3

ul ul u2 u3 ul 1.0000 u2 -0.2581 1.0000 0.0000 u3 0.2437 -0.6248 1.0000 0.0001 0.0000

GMM finished : 09:42:42

Starting Monte-Carlo loop : 09:42:43 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 09:42:51

. pvar ln_new_sign ln_average_degree ln_partplatact, lag(3) gmm monte 1000 GMM started : 09:50:23 accumulating matrices equation 1,2,3, calculating b2sls accumitating matrices equation rrsstations for calculating big 20u2 matrix finished accumulating 20u2 Results of the Estimation by system GMM______ number of observations used : 256 EQ1: dep.var : h_ln_new_sign
 b_GKM

 L.h_ln_new_sign
 .18998123

 L.h_ln_arverage_degree
 .08109

 L.h_ln_partplatact
 -18250905

 L2.h_ln_new_sign
 .12499556

 L2.h_ln_average_degree
 -1.8953885

 L2.h_ln_new_sign
 .01812219

 L3.h_ln_new_sign
 .01812219

 L3.h_ln_average_degree
 1.7465037
 b_GMM se_GMM se_GMM 1.2295162 1.0251605 .77623755 .73990365 1.3444619 t_GMM .15451706 .05668283 -.23512011 .16879976 -1.4097748 1.1275419 -.29284751 .19156228 .09460208 1.0393765 1.6803378 L3.h_ln_partplatact .1508058 .20258612 .7444034 EQ2: dep.var : h_ln_average_degree b GMM se GMM t GMM L.h_ln_new_sign -.08595268 L.h_ln_average_degree 1.0144429 L.h_ln_partplatact -.04155335 L2.h_ln_new_sign -.04876022 .175525 .29472473 .11892616 .10489089 -.48968911 3.4420012 -.34940467 -.46486605 L2.h_ln_average_degree -.08268575 .32260481 -.25630664 L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_average_degree L3.h_ln_partplatact -.05811883 .1602796 -.36260902 -.00522253 -.17846633 -.06262277 -.02098484 .17543995 -.35694705 EQ3: dep.var : h_ln_partplatact b GMM se GMM + GMM
 b_GNM

 L.h_ln_new_sign
 .30224623

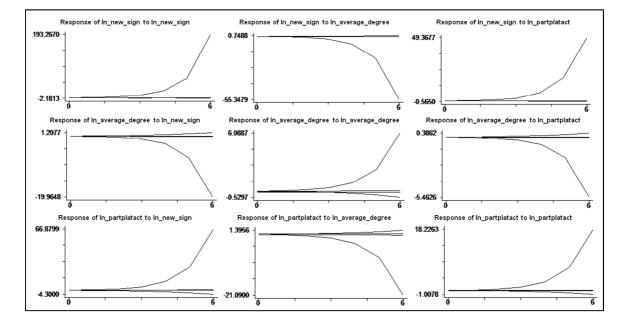
 L.h_ln_average_degree
 .03907776

 L.h_ln_partplatact
 .7592822

 L2.h_ln_new_sign
 .19497719

 L2.h_ln_average_degree
 .39268234
 se_GMM .66355869 .72662073 .43046087 .39900152 .96585137 .45549283 .05378013 1.763882 .48866276 .40656601 L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_average_degree L3.h_ln_partplatact .97283078 .17107582 -.49418455 -.02695368 .61160742 .10829703 .59499053 .018527 -.32632801 -.00642573 .66033632 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree
.22813752
.00857827 .00597918
-.02941021 -.01883312 ln_partplatact ln_new_sign ln_average_degree .08414154 ln_partplatact Residuals correlation matrix ul u2 u3 ul 1.0000 0.2287 1.0000 u2 0.0002

GMM finished : 09:50:25


u3

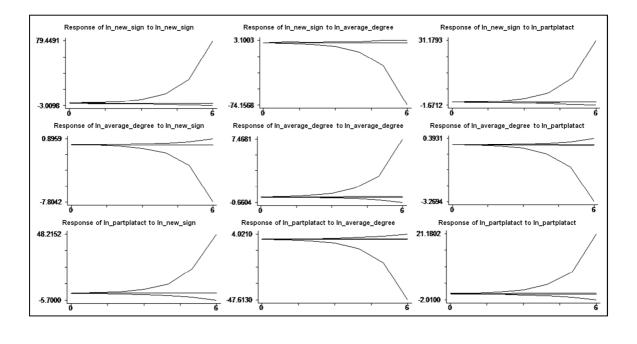
-0.2092 -0.8386 1.0000

0.0000

0.0008

Starting Monte-Carlo loop : 09:50:26 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 09:50:34

427


428

. pvar ln_new_sign ln_average_degree ln_partplatact, lag(4) gmm monte 1000 GMM started : 10:04:40 GMM started : 10:04:40 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______Results of the Estimation by system GMM______ number of observations used : 248 : h_ln_new_sign EQ1: dep.var b GMM se GMM + GMM b_GMM L.h_ln_new_sign -.0069344 L.h_ln_average_degree 3.4423634 L.h_ln_partplatact -.13548143 L2.h_ln_ew_sign -.04273067 L2.h_ln_average_degree -5.1418463 se_GMM t_GMM 1.2795058 -.00541884 10.502656 .32776124 .5779833 -.2344037 .94027269 -.04544498 11.601081 -.44322131 L2.h_in_average_degree
L2.h_in_partplatact
L3.h_in_new_sign
L3.h_in_average_degree
L3.h_in_partplatact
L4.h_in_new_sign
L4.h_in_average_degree
L4.h_in_average_degree -.26254302 .87498597 -.30005397 -.18397669 -.32198316 L3.n_in_new_sign -.18397669 h.h_n_average_degree .66436261 L3.h_ln_partplatact -.39446673 L4.h_ln_new_sign -.07638864 h_h_ln_average_degree 1.1122111 L4.h_ln_partplatact -.03976855 .57138606 3.4869419 1.5008094 .23898053 4.2671344 .45195182 .19052873 -.262836 .26064591 EQ2: dep.var : h_ln_average_degree se_GMM t_GMM .08099954 -.34898733 2.1357445 .68426176 .03856532 -.41786327 .05836532 .05977328 .74638622 .06164077 -.46797965 -.65452498 .1061929 .0368143 -.40864161 .26168659 -.35150541 L3.h_ln_partplatact L4.h_ln_new_sign L4.h_ln_average_degree L4.h_ln_partplatact -.06562769 .09384597 -.69931282 -.005043 .01658106 -.30414185 .02780444 .28674081 .09696715 EQ3: dep.var : h_ln_partplatact b GMM L.h_ln_new_sign .33826851 L.h_ln_average_degree -2.5674564 L.h_ln_artplatact .70367923 L2.h_ln_new_sign .26205268 se_GMM .73669837 6.1958149 .35423482 t_GMM .45916826 -.41438558 1.9864767 .48173681 .45462075 .74780273 .3381073 .21188558 .54397479 6.8182356 L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_average_degree L3.h_ln_partplatact 3.0997114 6.8182356 .52465289 .33117695 2.1770545 .89021426 .14584648 .39233686 .11197335 .46128646 .45846664 .51500708 L4.h_ln_new_sign .06316719 .43310742 -.41808283 -.1814628 -1.0470609 L4.h ln average degree 2.5044341 L4.h_ln_partplatact -.05105044 .28132729 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree .36364594 .01418773 .00188034 -.13527356 -.01318754 ln_partplatact ln_new_sign ln_average_degree ln_partplatact .14265006 Residuals correlation matrix ul u2 u3 ul 1.0000


ul 1.0000 u2 0.5397 1.0000 0.0000 u3 -0.5914 -0.8040 1.0000 0.0000 0.0000

GMM finished : 10:04:43

Starting Monte-Carlo loop : 10:04:44 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:04:54

ln_degree_centralization ln_partplatact; New Regions

. pvar ln_new_sign ln_degr_centr ln_partplatact, lag(1) gmm monte 1000 GMM started : 10:33:00 accumulating matrices equation 1,2,3,calculating b2s1s calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM_ number of observations used : 271 EQ1: dep.var : h_ln_new_sign
 b_CMM
 se_CMM
 t_CAM

 L.h_ln_new_sign
 501396
 8391323
 59752056

 L.h_ln_degr_centr
 -2.9748088
 7.4717248
 -39814219

 L.h_ln_partplatc
 -.2234023
 .54800275
 -.40766681
 b_GMM se_GMM t_GMM EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM L.h_ln_new_sign .01457191 .02045236 .71248091 L.h_ln_degr_cent 1.0050114 .18930029 5.3090856 L.h_ln_partplatat .01356664 .01336252 1.0152755 : h_ln_partplatact EQ3: dep.var b_GMM se_GMM t_GMM L.h_ln_new_sign 12679352 .2065699 .61380442 L.h_ln_degr_centr 1.5548888 1.8311745 .84912102 L.h_ln_partplatact .95164949 .15214317 6.2549601 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_degr_centr ln_partplatact .23923885 .00027049 .00025013 .00991651 .00144231 .03179205 ln_new_sign ln_degr_centr
ln_partplatact Residuals correlation matrix ul u2 I u3 1.0000 ul u2 0.0354 1.0000 0.5619 u3 0.1141 0.5085 1.0000 0.0607 0.0000

GMM finished : 10:33:01

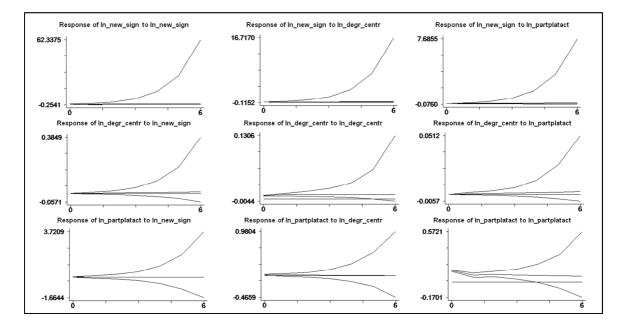
Starting Monte-Carlo loop : 10:33:03 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:33:09

. pvar ln_new_sign ln_degr_centr ln_partplatact, lag(2) gmm monte 1000 GMM started : 10:44:58 GMM started : 10:44:58 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 263 EQ1: dep.var : h_ln_new_sign b GMM se GMM t GMM
 b_GKM

 L.h_ln_new_sign
 .8185562

 L.h_ln_degr_centr
 9.9972705

 L.h_ln_partplatact
 .16130224


 L2.h_ln_new_sign
 .3491241

 L2.h_ln_degr_centr
 -8.2477007
 se_GMM .78063745 11.149587 .47878303 .28440472 1.0490909 .89664942 .3369005 1.2275608 4.4796332 -1.8411554 L2.h_ln_partplatact -.00053031 .31602823 -.00167805 EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .00582585 .01336734 .43582715 L.h ln new sign L.h_ln_new_Sign L.h_ln_degr_centr L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partplatact .01336734 .35460739 .00793468 .00518952 .2175291 .00637361 1.0095802 2.8470366 .00863216 -.00078504 -.04436079 -.0034556 -.15127473 -.20393038 -.54217367 EQ3: dep.var : h_ln_partplatact b_GMM L.h_ln_new_sign -.00550932 .h_ln_degr_centr .25399438 h_ln_partplatact .60291331 se_GMM .11634004 1.9552131 t_GMM -.04735536 .12990624 L.h_ln_degr_centr L.h_In_partplatact .60291331 L2.h_In_new_sign -.00859884 L2.h_In_degr_centr -.57939597 L2.h_In_partplatact .32402468 .12194891 4.9439829 .04767396 -.18036772 1.1249894 -.51502351 3.3483464 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_degr_centr ln_partplatact .35137383 .00102748 .00010372 .00637409 .00020252 .01762347 ln_new_sign
ln_degr_centr
ln_partplatact Residuals correlation matrix ul u2 u3 1.0000 ul

u2	0.1687 0.0061	1.0000	
u3	0.0815 0.1874	0.1503 0.0147	1.0000

GMM finished : 10:44:59

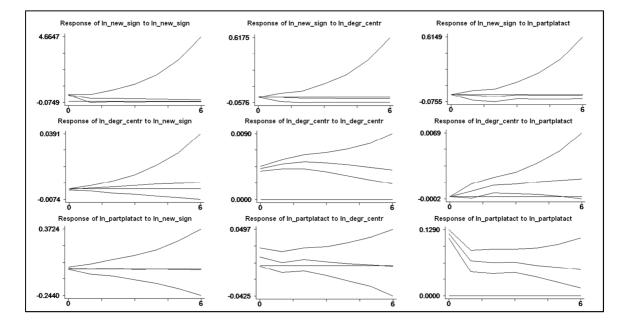
Starting Monte-Carlo loop : 10:45:00 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:45:07

. pvar ln_new_sign ln_degr_centr ln_partplatact, lag(3) gmm monte 1000 GMM started : 10:55:55 accumulating matrices equation 1,2,3, calculating b2sls EQ1: dep.var : h_ln_new_sign b GMM se GMM t GMM L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partplatact b_GMM .47211684 5.1393817 -.10966195 .24417445 -11.024042 -.10484519 se_GMM .38822374 4.3189239 .29630934 .22939627 4.5968267 1.2160947 1.1899681 -.37009279 1.0644221 -2.3981853 .26190189 -.40032238 L3.h_ln_degr_centr L3.h_ln_partplatact .07863301 4.5609434 .24057125 .09741494 .80719662 3.8258485 1.1921391 EQ2: dep.var : h_ln_degr_centr b GMM + GMM se GMM se_GMM .00755778 .25681598 .00547477 .0045399 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partplatact D_GMM .00338919 .84833361 .00825804 .00065059 .44843671 3.3032742 1.5083807 L2.h_ln_new_sign L2.h_ln_degr_centr .14330453 .16242411 .21044875 .77179889 L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_degr_centr L3.h_ln_partplatact .00210934 .0063527 .33203841 -.00031991 .0015983 -.20015853 -.07536674 .08474475 -.88933811 -1.4690582 EQ3: dep.var : h_ln_partplatact b_GMM L.h_ln_new_sign -.01259386 L.h_ln_degr_centr -.01098291 L.h_ln_partplatact .55500476 se_GMM .0690923 1.1319521 + GMM -.1822759 -.00970263 5.2750882 L.h_ln_partplatact .10521241 L2.h ln new sign .01684209 .04129042 .40789334 L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_degr_centr L3.h_ln_partplatact .01684209 .36871523 .22556978 -.02365395 -.98374281 .1158582 1.1960022 .30828976 10794029 2.0897645 .10/94029 .01833326 1.2198088 .12196921 2.0897645 -1.290221 -.80647297 .94989716 just identified - Hansen statistic is not calculated metric uu[3,3] ln_new_sign .21716689 -.00034625 ln_degr_centr ln_partplatact ln_new_sign .00006189 ln_degr_centr
ln_partplatact .00471484 .00002957 .01501524 Residuals correlation matrix ul u2 1.0000 ul u2 -0.0944 0.1326 1.0000

GMM finished : 10:55:57

u3

0.0826


0.1888

0.0310

0.6222

1.0000

Starting Monte-Carlo loop : 10:55:57 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:56:05

. pvar ln_new_sign ln_degr_centr ln_partplatact, lag(4) gmm monte 1000 GMM started : l1:05:26 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GM4______ number of observations used : 247 EQ1: dep.var : h_ln_new_sign
 se_GMM
 t_GMM

 .28433627
 1.7446114

 2.9795618
 2.1522486

 .2011044
 -.29343769

 .20114384
 1.3318812

 4.3286245
 -3.1150783

 .30656486
 .0778099

 .1382683
 .27154339

 .1088899
 1.3006622

 .24337815
 .43896278

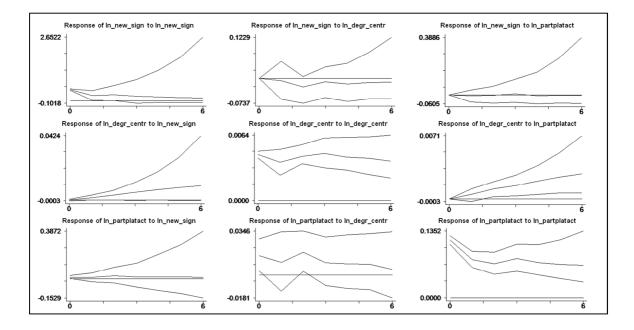
 .07254489
 -.00702852

 .2647981
 .8159362

 .19847685
 -.41604866

EQ2: dep.var : h_	ln_degr_cent	r		
	b_GMM	se_GMM	t_GMM	
L.h_ln_new_sign	.00465448	.00566151	.82212633	
L.h_ln_degr_centr	.63756759	.24511103	2.601138	
L.h_ln_partplatact	.00524834	.00399825	1.3126581	
L2.h_ln_new_sign	.00201765	.0038538	.52354832	
L2.h_ln_degr_centr	.33800664	.26409604	1.2798626	
L2.h_ln_partplatact	.00572977	.00642162	.89226309	
L3.h_ln_new_sign	.00091395	.00214052	.42697626	
L3.h_ln_degr_centr	.09616755	.10653389	.90269443	
L3.h_ln_partplatact	00086422	.00410289	21063574	
L4.h_ln_new_sign	.00044176	.00098537	.44832092	
L4.h_ln_degr_centr	14381196	.07153275	-2.0104354	
L4.h_ln_partplatact	00257936	.0031455	82001391	
EQ3: dep.var : h_	ln_partplata	act		

	b_GMM	se_GMM	t_GMM	
L.h_ln_new_sign	.00153286	.05111038	.02999118	
L.h_ln_degr_centr	.62587277	.94704622	.66086824	
L.h_ln_partplatact	.65982093	.0808213	8.163948	
L2.h_ln_new_sign	.02759048	.03674517	.75086011	
L2.h_ln_degr_centr	.26240657	1.0186295	.25760747	
L2.h_ln_partplatact	.15856948	.10302709	1.5391048	
L3.h_ln_new_sign	03887436	.02409831	-1.613157	
L3.h_ln_degr_centr	-1.5667241	1.2271858	-1.2766805	
L3.h_ln_partplatact	.17449387	.12897595	1.3529179	
L4.h_ln_new_sign	00347195	.0142897	24296847	
L4.h_ln_degr_centr	.06646462	.91705773	.07247594	
L4.h_ln_partplatact	06000921	.0713587	84095152	
just identified - Ha	nsen statist	ic is not ca	lculated	


symmetric uu[3,3]			
	ln_new_sign	ln_degr_centr	ln_partplatact
ln_new_sign	.21396471		
ln_degr_centr	00002989	.00005895	
ln_partplatact	.0064554	.00006461	.01415787

Residuals correlation matrix

u3	u2	ul	
		1.0000	ul
	1.0000	-0.0084 0.8957	u2
1.0000	0.0711 0.2657	0.1173 0.0657	u3

GMM finished : 11:05:28

Starting Monte-Carlo loop : 11:05:29 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:05:38

Appendix 46 Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share In_partplatact; New Regions

. pvar ln_new_ GMM started : : accumulating ma calculating bi finished accumm Result: number of obset EQl: dep.var	ll:14:41 atrices e g ZuuZ ma ulating Z s of the rvations	quation 1,2 trix uuZ Estimation 1 used : 272	,3,calculat:	ing b2sls	gmm monte 1000
		b_GMM			
		.99215636			
L.h_ln_network					
		.13480724			
EQ2: dep.var					
		b_GMM			
				241614792	
L.h_ln_network	-			7 12.859917	
		0034878		36725898	
EQ3: dep.var	: h_ln	_partplatac			
		b GMM	se GM	1 t_GMM	
L.h. ln.i	new sign	_	_	389574835	
L.h_ln_networke				5 -1.0227304	
L.h_ln_part				3.9721002	
just identified					
symmetric uu[3,	. 31				
ln_new_:		ln_new_: .4258		worker_share	ln_partplatact
ln_networker_sl		0014	4419	.00015287	
ln_partplat		0262		.00003119	.02912534
Residuals corre					
	ul	u2	u3		
ul	1.0000				
u2	-0 1775	1.0000			
42	0.0033				
u3	-0.2316	0.0130	1.0000		

0.0001 0.0130

GMM finished : 11:14:42

Starting Monte-Carlo loop : 11:14:43 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:14:49

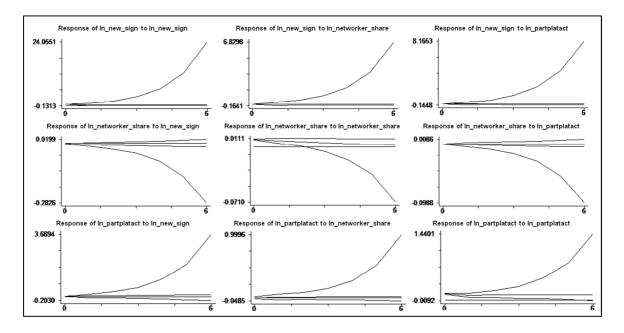
pvar ln_new_sign ln_networker_share ln_partplatact, lag(2) gmm monte 1000 . pvat h__new_sign in_networker_share in_partplatact, i GMM started : llipio8 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 264 EQ1: dep.var : h_ln_new_sign b_GMM se_GMM t_GMM L.h_ln_new_sign .63988957 .58630723 1.0913895 L.h_ln_networker_share 1.6156942 11.642493 .13877563 L.h_ln_partplatact .32464426 .81927934 .33625589 L2.h_ln_new_sign .27397233 .16812183 1.6296059 L2.h_ln_networker_share -1.8278567 L2.h_ln_partplatact -.29286935 5.5079012 -.33186084 -1.2499065 .23431301 EQ2: dep.var : h_ln_networker_share b GMM se GMM t GMM b_GMM L.h_ln_new_sign -.00633355 L.h_ln_networker_share .80848427 L.h_ln_partplatact -.00591978 L2.h_ln_new_sign -.00415009 L2.h_ln_networker_share .00764977 .00975889 .20170069 .01325173 -.65415684 4.0083367 -.43917133 -1.328793 .0031232 h_ln_networker_share .00764977 L2.h_ln_partplatact -.00285478 .12369247 .06184511 .00591999 EQ3: dep.var : h_ln_partplatact
 b_GMM
 se_GMM
 t_GMM

 L.h_ln_new_sign
 .06177909
 .131944
 .46822208

 L.h_ln_networker_share
 1.0466212
 2.8551837
 .36644042

 L.h_ln_partplatact
 .70460265
 .19296757
 3.6514045

 L2.h_ln_new_sign
 .01169817
 .04074286
 .28712192

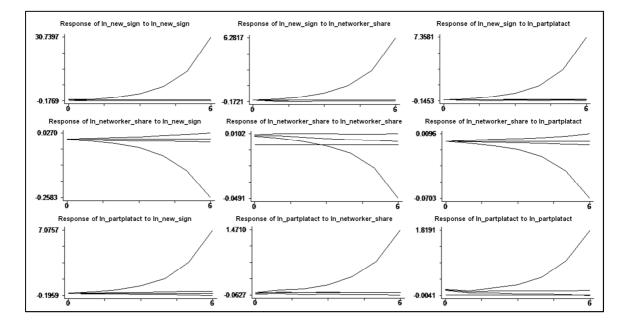

 L2.h_ln_networker_share
 -.67428099
 1.7820057
 -.37838319

 L2.h_ln_partplatact
 .29401933
 .07844503
 3.7480937
 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share
 .27983612
 -.001771 .00010634 ln_partplatact ln_new_sign ln_networker_share ln_partplatact .00010634 .01804203 .02117684 Residuals correlation matrix 1 ul u2 u3 1.0000 ul

u2	-0.3238	1.0000	
u3		-0.0791 0.2003	1.0000

GMM finished : 11:19:10

Starting Monte-Carlo loop : 11:19:10 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:19:18

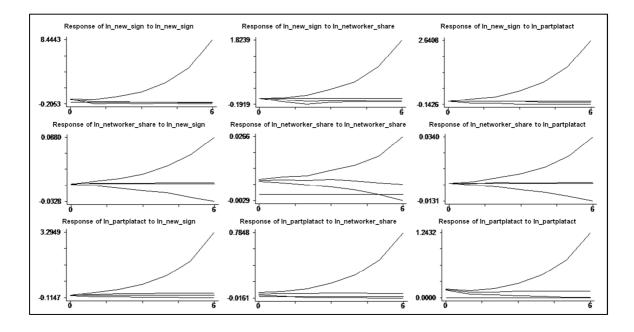


pvar ln_new_sign ln_networker_share ln_partplatact, lag(3) gmm monte 1000 GMM started : 11:22:12 accumulating matrices equation 1,2,3, calculating b2sls EQ1: dep.var : h_ln_new_sign b GMM se GMM + GMM L.h_ln_new_sign .52602399 L.h_ln_networker_share -4.5589807 L.h_ln_partplatact .06627458 .58979538 10.954845 .40167522 .8918754 -.41616114 .32128595 1.0032521 5.5417487 .54176395 .54721483 -.18596055 .07490778 .95798422 4.9542521 .28249132 1.0102798 EO2: dep.var : h ln networker share GMM SA GMM + GMM L.h_ln_new_sign -.00354157 L.h_ln_networker_share .06174476 L.h_ln_partplatact -.0047095 se_GMM .00749597 .14773343 .00742379 t_GMM -.47246395 6.510001 -.63437987 L2.h_ln_new_sign -.00364662 L2.h_ln_networker_share -.16138633 .00406514 -.8970468 -1.1614228 .1389557 L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_networker_share L2.h_ln_partplatact -.00121455 L3.h_ln_newsign .00014334 h_ln_networker_share .02415066 L3.h_ln_partplatact -.00159174 .0129347 -.09389843 .00146763 .09767023 .00717386 -.22188063 EQ3: dep.var : h_ln_partplatact b_GMM L.h_ln_new_sign .11503822 n_networker_share 2.8440491 se_GMM .15823973 3.1801453 t_GMM .72698693 L.h_ln_networker_share .89431421 L.h_ln_networker_share L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_networker_share L2.h_ln_partplatact L3.h_ln_new_sign .62841284 .11975576 5.2474542 -1.6820162 1.6065361 -1.0469831 .43411275 -.0160573 .18648407 2.3278812 .01998631 -.80341478 L3.h_ln_networker_share -.01422766 L3.h_ln_partplatact -.00501167 1.1929052 -.0119269 .14894907 -.03364687 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share .23470854 -.00110367 .00007586 ln_partplatact ln_new_sign ln_networker_share -.00031484 ln_partplatact .02126065 .02492429 Residuals correlation matrix ul u2 u3 ul 1.0000

ul 1.0000 u2 -0.2614 1.0000 0.0000 u3 0.2779 -0.2281 1.0000 0.0000 0.0002

GMM finished : 11:22:14

Starting Monte-Carlo loop : ll:22:15 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=68, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : ll:22:23



. pvar ln_new_sign ln_networker_share ln_partplatact, lag(4) gmm monte 1000 GMM started : 11:25:05 accumulating matrices equation 1,2,3, calculating b2sls accumulating matrixes equation from the second seco : h_ln_new_sign EQ1: dep.var b GMM se GMM b_GMM
L.h_ln_new_sign .25511379
L.h_ln_networker_share -6.8914912
L.h_ln_partplatact .00485953
L2.h_ln_new_sign .18562754
L2.h_ln_networker_share -5.3568726
L2.h_ln_partplatact -.06919815 se_GMM t__GMM .47826299 .53341738 5.147964 -1.3386829 .38187165 .01272556 .36598741 .50719651 10.32226 -.51896316 .26243015 -.26367072 L2.h_ln_partplatact -.09919515 L3.h_ln_new_sign -.0.17247 L3.h_ln_networker_share 6.9298963 L3.h_ln_partplatact -.01848032 L4.h_ln_new_sign -.00530641 L4.h_ln_networker_share 1.2499941 L4.h_ln_partplatact -.19227298 .26243015 .17589276 3.315883 .45584157 .04342031 4.9232295 -.09805407 2.0899091 -.0405411 -.1222103 .25389718 .16713809 -1.1503839 EQ2: dep.var : h_ln_networker_share b_GMM t_GMM .70973967 10.208591 se_GMM .00596162 .0042312 1.0312749 L.h_ln_new_sign L.h_ln_networker_share .1010203 L.h_in_networker_share L.h_in_partplatact L2.h_in_new_sign L2.h_in_networker_share L2.h_in_partplatact .00469665 -.0026443 -.56301757 .00405237 -.30938947 -.06019199 .19092494 -.3152652 .88095349 .00251426 L3.h_ln_new_sign -.00016561 .06586852 L3.n_ln_new_sign L3.h_ln_networker_share L3.h_ln_partplatact L4.h_ln_new_sign L4.h_ln_networker_share L4.h_ln_partplatact .13944554 .12249262 1.1383995 .00539368 .00107434 .08729365 .00311887 -.00466803 -.86546316 .00098195 .91400516 -.20160379 -2.309489 .00040481 .12979445 EQ3: dep.var : h_ln_partplatact CMM L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partplatact Б_GMM .11174103 2.2869563 .65992944 se_GMM .14118376 2.0739908 .13562564 t_GMM .79145811 1.1026839 4.8658163 L:h_li_partpatatt 0.9352968 L2.h_ln_new_sign 0.9352968 L2.h_ln_partplatatt 2.4994859 L3.h_ln_new_sign 0.00692662 L3.h_ln_partplatatt 2.4065719 L3.h_ln_partplatatt 1.5636689 L4.h_ln_partplatatt 1.5636689 .11038259 .84732274 3.6380626 -.29094583 -1.0584791 .24994859 .00692662 2.4065719 .15636689 .00366878 3.6380626 .11935111 .05459261 1.6316333 .21178652 .01933771 -.29094583 2.0942294 .12687836 1.4749466 .73832315 .18972153 L4.h_ln_new_sign L4.h_ln_networker_share -1.8351354 1.6206245 -1.1323631 L4.h_ln_partplatact .01557276 .07732761 .20138684 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_partplatact ln_new_sign ln_networker_share
.18988168 ln new sign -.00031181 .0023092 ln_networker_share
 ln_partplatact .00004224 .00022057 .0255642 Residuals correlation matrix 1 ul u2 u3

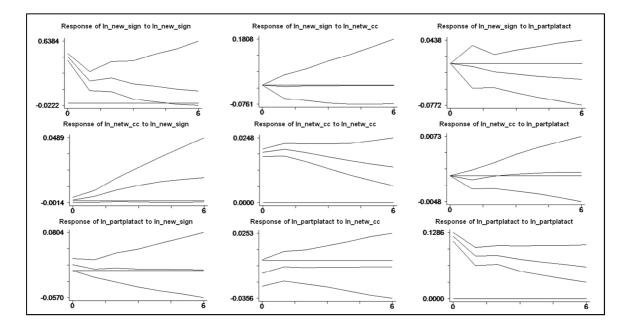
	uı	u2	4.5
ul	1.0000		
u2	-0.1095	1.0000	
u3	0.0343 0.5904		1.0000

GMM finished : 11:27:16

Starting Monte-Carlo loop : 11:27:17 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:27:26

Appendix 47 Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc ln_partplatact; New Regions

GMM started : accumulating m calculating bi finished accum Result number of obse	atrices equation og ZuuZ matrix nulating ZuuZ s of the Estimat ervations used : 	1,2,3,calcu ion by syste 259 gn	lating b2sl	ls 	
I h ln now	b_GMM sign .63250878		t_GN		
	w_cc77092151				
	tact20644728		-1.40890		
EQ2: dep.var	: h_ln_netw_c				
	b_GMM	se_GMM	t_GMM		
	sign .03675835				
	w_cc .94084612				
L.h_ln_partpla		.01637959			
EQ3: dep.var	: h_ln_partpl	atact			
	b_GMM	-	-		
L.h_ln_new_sign .01568341 .0377358 .41561104					
	w_cc .07636551 tact .91647345				
just identifie	ed - Hansen stati	stic is not	calculated		
symmetric uu[3	,3]				
		ln_net	w_cc ln_pa	artplatact	
ln_new_sign			45.03		
ln_netw_co ln_partplatact				.0171846	
in_partpratact		.0008	2700	.01/1040	
Residuals corr	elation matrix				
	ul	u2 u3			
ul	1.0000				
u2	-0.0023 1.00 0.9701	00			
u3	0.1070 0.13	08 1.0000			
	0.0858 0.03	54			

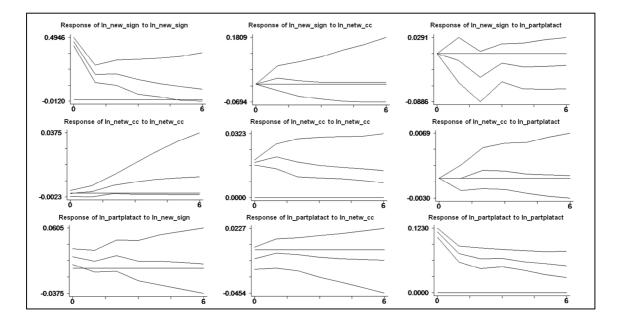

GMM finished : 11:29:59

Starting Monte-Carlo loop : 11:30:00 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:30:07

. pvar ln_new_sign ln_netw_cc ln_partplatact, lag(2) gmm monte 1000 GMM started : l1:41:52 GMM started : 11:41:52 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 251 EQ1: dep.var : h_ln_new_sign se_GMM t_GMM .12253222 3.9497448 1.48 -.25005946 .20155279 -.20445742 b_GMM L.h_ln_new_sign .48397102 L.h_ln_netw_cc -.37008799 L.h_ln_partplatact -.04120896 L2.h_ln_netw_cc L2.h_ln_artplatact .31928726 .31988746 -.07738564 .09366382 3.4088642 .52561078 .21499245 -.35994587 EQ2: dep.var : h_ln_netw_cc se_GMM .00524978 .06496909 .0087695 .00372006 b_GMM .00647137 1.058341 -.00604308 t_GMM 1.2326928 16.289916 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partplatact L2.h_ln_new_sign -.68910206 .00697523 1.8750306 L2.h_ln_netw_cc L2.h_ln_partplatact -.1237596 .01068279 .06011728 -2.0586359 1.1771361 EQ3: dep.var : h_ln_partplatact b_GMM -.0115442 .11140736 .68288898 se_GMM .02101398 .37195449 .08507015 t_GMM -.54935786 .29951879 8.0273633 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partplatact .02168061 L2.h ln new sign .00620009 .28597383 L2.h_ln_netw_cc -.12239996 L2.h_ln_partplatact .22763296 .30058723 -.4072028 .08163279 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .22651205 .00023267 .00593557 ln_netw_cc ln_partplatact ln_new_sign .00036539 ln_netw_cc .01498808 ln_partplatact -.00022325 Residuals correlation matrix ul u2 u3 1.0000 ul 0.0257 u2 1.0000 u3 0.1018 -0.0949 1.0000 0.1075 0.1337

GMM finished : 11:41:54

Starting Monte-Carlo loop : 11:41:54 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:42:02


. pvar ln_new_sign ln_netw_cc ln_partplatact, lag(3) gmm monte 1000 GMM started : l1:49:42 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation 17,7,7,acculating calculating big 2012 matrix finished accumulating 2012 — Results of the Estimation by system GMM_ number of observations used : 243 r : h_ln_new_sign EQ1: dep.var se_GMM .09374834 1.6586271 .22312079 t_GMM 4.727446 .72518199 -.52749371 b GMM L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partplatact b_GMM .4431902 1.2028065 -.11769481 .25854637 L2.h_ln_new_sign L2.h_ln_netw_cc .08158695 3.1689672 -1.4214296 1.2556005 -1.1320716 L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_netw_cc -.25509698 .02741427 .2619273 .26300186 .2406959 .07986954 .73539445 -1.059831 .35617253 1.407423 L3.h_ln_partplatact .18686768 EQ2: dep.var : h_ln_netw_co se_GMM .00347087 .21101966 .01061073 b_GMM t_GMM .77268469 .00268189 1.158157 .0002206 L.h_ln_new_sign L.h_lh_new_sign L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_netw_cc L3.h_ln_netw_sign L3.h_ln_netw_cc 5.4883845 .02079011 .00617637 -.33317068 .01057979 .00013349 .00291939 .21111838 .00919505 .00294753 2.115633 -1.5781226 1.1505964 .04528799 .11968611 .09191694 1.3021116 L3.h_ln_partplatact -.00800399 .00697345 -1.147779 EQ3: dep.var : h_ln_partplatact b GMM se GMM t GMM L.h_ln_new_sign -.00133799 L.h_ln_netw_cc .14050001 L.h_ln_partplatact .64533665 L2.h_ln_new_sign .02078073 L2.h_ln_netw_cc -.24372029 .01834493 .4195891 .0768569 .01793852 -.072935 .33485144 8.3731672 1.1584416 .34824791 -.6998471 L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_netw_cc L3.h_ln_partplatact .14808588 .10928167 1.3550844 .01383381 -1.446252 -.03864849 .15013631 -.25742268 .10943799 .13128272 .83360542 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .21398016 -.00013559 ln_netw_cc ln_partplatact ln_new_sign ln_netw_cc .00031429 -.00017059 .01369555 ln_partplatact .00806489 Residuals correlation matrix ul u2 u3 u1 1.0000 u2 -0.0163 0.8009 1.0000

GMM finished : 11:49:45

u3

0.1488 -0.0817 0.0203 0.2044 1.0000

Starting Monte-Carlo loop : 11:49:46 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:49:54

EQ1: dep.var

L2.h_ln_netw_cc L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_partplatact L4.h_ln_new_sign L4.h_ln_netw_cc L4.h_ln_partplatact

L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partplatact L3.h_ln_netw_cc L3.h_ln_netw_cc

L3.h_ln_partplatact L4.h_ln_new_sign L4.h_ln_netw_cc

L4.h_ln_partplatact

L2.h_ln_partplatact L3.h_ln_new_sign

L3.h_ln_new_Sign L3.h_ln_netw_cc L3.h_ln_partplatact L4.h_ln_new_sign L4.h_ln_netw_cc L4.h_ln_partplatact

symmetric uu[3,3]

ln_new_sign

ln_netw_cc ln_partplatact

Residuals correlation matrix

ul 112

u3

GMM finished : 11:57:41

L.h_ln_new_sign -.00647863 L.h_ln_netw_cc -.00435028 L.h_ln_partplatact .70392557 L2.h_ln_new_sign .02079626 L2.h_ln_netw_cc -.0373434

EQ3: dep.var

EQ2: dep.var

. pvar ln_new_sign ln_netw_cc ln_partplatact, lag(4) gmm monte 1000 GMM started : 11:57:38 accumulating matrices equation 1,2,3,calculating b2s1s

calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM number of observations used : 235

: h_ln_new_sign

 L.h_ln_new_sign
 .4069901

 L.h_ln_netw_cc
 .86370839

 L.h_ln_partplatact
 .99669748

 L2.h_ln_new_sign
 .26684306

 L2.h_ln_netw_cc
 .91979018

 L2.h_ln_partplatact
 .20778849

 L3.h lo partplatact
 .022235

b_GMM

-.0272355

-2.0538096

.35286532 .04346833 .60592466 -.26378576

-.00592967

.0051151

-.20125696 .00226493 .00019078 .00636825

-.00686206

-.00208148

.07352635

.00513497

: h_ln_partplatact

.14378144

-.11082021

.1596822 .00528101 .05536046 -.10151993

just identified - Hansen statistic is not calculated

ln_new_sign .20544541 -.00013572

.00590326

u2

0.1116 -0.1218 1.0000 0.0878 0.0624

ul

-0.0204 1.0000 0.7554

1.0000

b_GMM

: h_ln_netw_cc

b_GMM L.h_ln_new_sign -.00198089 L.h_ln_netw_cc 1.0557714

se_GMM .08407355 1.905504 .08008983 2.1500088 .23290391 07505401

.07505401

1.5420753

.23805415 .07015353 .51545826 .21349719

se_GMM .00201194 .19636664

.00523757

.00281355

.00281355 .17061801 .00932477 .00289896 .20231765 .00593034

.00240547

.0489913

.0052999

se_GMM .01713267 .48435011

.48435011 .08411367 .01709132 .56786545

.10969647

.01428746

.36763468

.15245837

.01513721 .15080607 .07953034

.00020922

-.00020576

u3

t_GMN

t_GMM 4.8301757 .45327032 .49642929 3.3317972 .42780763

-1.1927171

-.36287864

-1.3318479

1.482290 1.4822901 .61961719 1.1755068 -1.2355468

t_GMM -.98456385 5.3765314

-1.1321423

1.8180235

-1.1795763 .24289374 .06580856 .03147651

-1.157111

-.86531198

1.5008044

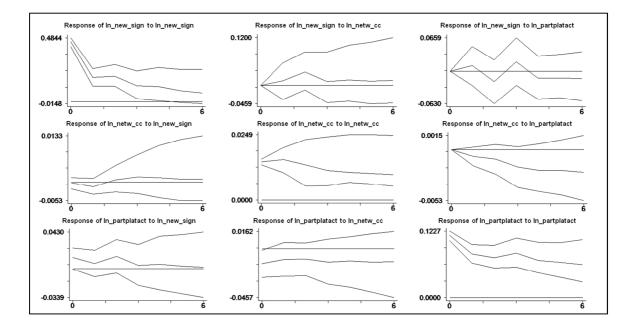
.96888197

t_GMN

-.37814454 -.00898169 8.3687414 1.2167731 -.06576266

1.3107208

-.30144111


1.0473823

.3488761 .36709702 -1.2764931

ln_netw_cc ln_partplatact

Starting Monte-Carlo loop : 11:57:42 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:57:51

.01355591

Appendix 48 Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree ln_partintactplat; New Regions

. pvar ln_new_sign ln_average_degree ln_partintactplat, lag(1) gmm monte :	1000				
GMM started : 16:28:36					
accumulating matrices equation 1,2,3, calculating b2sls					
calculating big ZuuZ matrix					
finished accumulating ZuuZ Results of the Estimation by system GMM					
number of observations used : 272					
EQ1: dep.var : h_ln_new_sign					
b_GMM se_GMM t_GMM					
L.h_ln_new_sign .62895359 .62206574 1.0110725 L.h_ln_average_degree .13295688 .36023464 .36908411					
L.h_ln_partintactplat08617205 .3059392528166393					
EQ2: dep.var : h_ln_average_degree					
b_GMM se_GMM t_GMM					
D_GMM SE_GMM t_GMM L.h_ln_new_sign .01469129 .02928601 .50164884					
L.h_ln_average_degree .9094156 .02986857 30.44724					
L.h_ln_partintactplat .02245464 .01350271 1.6629728					
EQ3: dep.var : h_ln_partintactplat					
b GMM se GMM t GMM					
L.h_ln_new_sign .28668709 .28337777 1.0116781					
L.h_ln_average_degree1449952 .2332131562172823					
L.h_ln_partintactplat .99833858 .14010989 7.125397					
just identified - Hansen statistic is not calculated					
just identified - Hansen statistic is not calculated					
just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat ln_new_sign .26607474					
just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat ln_average_degree .00377759 .0018319					
just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat ln_new_sign .26607474					
just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat ln_average_degree .00377759 .0018319					
just identified - Hansen statistic is not calculated symmetric uu[3,3] In_new_sign In_average_degree In_partintactplat In_average_degree .00377759 .0018319 In_partintactplat .04045243 .00624025 .2058830					
just identified - Hansen statistic is not calculated symmetric uu[3,3] In_new_sign In_average_degree In_partintactplat In_average_degree .00377759 .0018319 In_partintactplat .04045243 .00624025 .2058830					
just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat ln_average_degree .00377759 .0018319 ln_partintactplat .04045243 .00624025 .20588303 Residuals correlation matrix ul u2 u3					
just identified - Hansen statistic is not calculated symmetric uu[3,3] In_new_sign In_average_degree In_partintactplat In_new_sign .26607474 In_average_degree .00377759 .0018319 In_partintactplat .04045243 .00624025 .2058830 Residuals correlation matrix					
just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat ln_average_degree .00377759 .0018319 ln_partintactplat .04045243 .00624025 .20588303 Residuals correlation matrix ul u2 u3					
just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat ln_average_degree .00377759 .0018319 ln_partintactplat .04045243 .00624025 .20588303 Residuals correlation matrix ul u2 u3					
just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign 1n_average_degree ln_partintactplat ln_average_degree .00377759 .0018319 ln_partintactplat .04045243 .00624025 .2058830 Residuals correlation matrix ul u2 u3 ul 1.0000					
just identified - Hansen statistic is not calculated symmetric uu[3,3] In_new_sign In_average_degree In_partintactplat In_average_degree 0.00377759 .0018319 In_partintactplat .04045243 .00624025 .2058830 Residuals correlation matrix ul ul u2 u3 ul 1.0000 u2 0.1703 1.0000 0.0049					
just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat ln_average_degree .0037755 .0018319 ln_partintactplat .04045243 .00624025 .20588303 Residuals correlation matrix ul u2 u3 ul 1.0000 .00049 u3 0.1716 0.3188 1.0000					
just identified - Hansen statistic is not calculated symmetric uu[3,3] In_new_sign In_average_degree In_partintactplat In_average_degree 0.00377759 .0018319 In_partintactplat .04045243 .00624025 .2058830 Residuals correlation matrix ul ul u2 u3 ul 1.0000 u2 0.1703 1.0000 0.0049					

GMM finished : 16:28:37

Starting Monte-Carlo loop : 16:28:38 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 0, i=608, i=648, i=624, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 16:28:45

. pvar ln_new_sign ln_average_degree ln_partintactplat, lag(2) gmm monte 1000						
GMM started : 17:32:14						
accumulating matrices e	quation 1,2,3	,calculatin	g b2sls			
calculating big ZuuZ ma	trix					
finished accumulating Z	uuZ					
Results of the	Estimation by	system GMM		_		
number of observations	used : 264					
EQ1: dep.var : h_ln	new sign					
2	,					
	b_GMM	se_GMM	t_(GMM		
L.h_ln_new_sign	.53646183	.50427482	1.0638	283		
L.h_ln_average_degree	03368887	.97809087	03444	349		
L.h_ln_partintactplat	.01541847	.30585372	.05041	125		
L2.h_ln_new_sign	.2189543	.18203278	1.202	829		
L2.h_ln_average_degree	0210682	.7774794	02709	808		
L2.h_ln_partintactplat	05542531	.12270079	4517	111		
E02: dep.var : h ln	average degr	ee				

t_GMM -.16277545 8.8309636 .28402478 -.12428415 b_GMM se_GMM se_GMM .02428311 .12220618 .01795248 .01119689 .11606731 L.h_ln_new_sign L.h_ln_average_degree L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partintactplat -.00395269 1.0791983 .00509895 -.0013916 -.15622284 -1.3459676 .00357649 .00809773 .4416651 EQ3: dep.var : h_ln_partintactplat b_GMM

se_GMM .18613504 .54602659 .12184166 .06866273 .43410381 .06295106 t_GMM .40187699
 b_GMM

 L.h_ln_new_sign
 .07480339

 L.h_ln_average_degree
 -.39865754

 L.h_ln_partintactplat
 .83260885

 L2.h_ln_new_sign
 .01775792

 L2.h_ln_average_degree
 .16360116

 L2.h_ln_averate_degree
 .08762913
 .40187699 -.73010645 6.8335071 .25862523 .37687105 1.3920198 just identified - Hansen statistic is not calculated

symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat .01284213 .00150697 .05111619

Residuals correlation matrix

siduals correlation matrix					
		ul	u2	u3	
	ul	1.0000			
	u2	-0.0275	1.0000		

uı	1.0000		
u2	-0.0275 0.6565	1.0000	
u3	0.1133 0.0660	0.1861 0.0024	1.0000

GMM finished : 17:32:16

Starting Monte-Carlo loop : 17:32:16 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 17:32:24

. pvar ln_new_sign ln_average_degree ln_partintactplat, lag(3) gmm monte 1000 GMM started : 17:33:54 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation 1,,,,,accurating calculating big ZuuZ matrix finished accumulating ZuuZ — Results of the Estimation by system GMM_ number of observations used : 256 EQ1: dep.var : h_ln_new_sign
 b_GMM

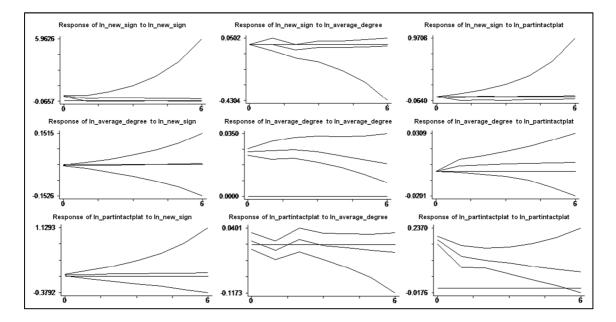
 L.h_ln_new_sign
 .50531278

 L.h_ln_average_degree
 .06674296

 L.h_ln_new_sign
 .314396

 L2.h_ln_new_sign
 .114396

 L2.h_ln_average_degree
 1.7168071


 L3.h_ln_new_sign
 .07766473

 L3.h_ln_average_degree
 1.7140076
 t_GMM 1.3577737 .05533539 se_GMM .37216275 1.2061533 .18246879 -.24141527 .22901008 1.3728479 1.0771374 -1 5938608 .20053328 .4620384 .57395261 2.987331 L3.h_ln_partintactplat .01855153 .08445394 .21966445 EQ2: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM L.h_ln_new_sign -0.0361562 L.h_ln_average_degree 1.0146286 L.h_ln_partintactplat .02373746 L2.h_ln_new_sign .00052719 -.20781129 .01739855 .10633994 .01706573 .01230191 9.5413689 1.3909435 .04285446 L2.h_ln_average_degree .02820623 .11725689 .24055069 L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_average_degree L3.h_ln_partintactplat -.01319681 .01310332 -1.0071346 .00673768 -.11774946 -.00062638 .0044829 1.5029734 .04904674 -2.4007601 .0058435 -.10719198 EQ3: dep.var : h_ln_partintactplat b_GMM .03333738 -.77550269 se_GMM .12833143 .47774182 t_GMM .25977565 -1.6232673 L.h_ln_new_sign L.h_ln_average_degree L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partintactplat .66250647 .13114453 5.0517279 .03557552 1.6061978 .16051976 .00074202 .07262365 .72115337 .11434952 .03546041 .4898614 .4898614 2.2272625 1.4037642 L3.h_ln_new_sign .02092534 L3.h_ln_average_degree .47337139 -2.3827039 -1.1279039 L3.h_ln_partintactplat .01816056 .03785763 .47970662 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat ln_new_sign ln_average_degree ln_partintactplat .22950491 .00062403 .01320074 .00012295 .03700934 Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	-0.1380 0.0273	1.0000	
u3		0.0256 0.6840	1.0000

GMM finished : 17:33:56

Starting Monte-Carlo loop : 17:33:56 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 17:34:05

EQ1: dep.var

GeVM started : 17:35:34 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 248

b_GMM

.04510331

2.3185437 -.14115473 .01845762 -.53246709 -.0443774

: h_ln_average_degree

.00995547

-.13972335 -.00945301 -.00030589 -.05414744

.00633934

.00226286

b GMM

.13083956

-.04677166

.5189823 -.1192777 -.02827674 -.91034981

.05188022

-.00213337

u2

just identified - Hansen statistic is not calculated

b_GMM L.h_ln_new_sign .00574059 n_average_degree 1.1697063

se_GMM se_GMM .22403278 3.2033032 .11538439 .18783811 2.6153909

.22160647

.13894134

1.3822554

.14134499 .081815 .091357095 .09046964

se_GMM .01062017 .16336974

.01331151

.01132226

.01132220 .17089345 .01382877 .00654806

.08307444

.01034852

.00448146

.05020386

.00694755

se GMM

se_GMM .06546546 .91077925 .08381791 .05629037 .93208549

.08855745

.03695114 1.0220439 .08442315 .02627286 .71215099 .05885878

u3

t_GMM 2.1537271 -.39298484 .64816694 1.7256857 -.1667105 1.0511455

.32462124

-.99865395 .22560191 -.58284152 -.49052256

t_GMM .54053621 7.1598711

.74788426

-.81760505 -.68357592 -.04671398

-.65179422

.61258394

.50493926

-1.1926795

-.55221967

t_GMM -.59587646 .57249932 8.2848013 -.67450928 -.27503683

1.4774539

-1.2657706

-1.203778867 -1.4128554 -1.0762719

-1.278310

ln_new_sign ln_average_degree ln_partintactplat
.22322569
-.00078784 .00048115

.00075537

Starting Monte-Carlo loop : 17:35:38 , total 1000 repetitions requested i-38, i-76, i-114, i-152, i-190, i-228, i-266, i-304, i-342, i-380, i-418, i-456, i-494, i-532, i-57 > 0, i-608, i-646, i-684, i-722, i-760, i-798, i-836, i-874, i-912, i-950, i-988, i-1000, finished M > onte-Carlo loop : 17:35:47

.03039804

.8814354

. pvar ln_new_sign ln_average_degree ln_partintactplat, lag(4) gmm monte 1000 GMM started : 17:35:34

 b_GMM

 L.h_ln_new_sign
 .48250548

 L.h_ln_average_degree
 -1.2588496

 L.h_ln_partintactplat
 .07478335

 L2.h_ln_new_sign
 .32414953

 L2.h_ln_average_degree
 -.43601312

 L2.h_ln_average_degree
 .32294065

 L2.h_ln_bartintactplat
 .23294065

L3.h_ln_new_sign

L3.h_ln_new_sign L3.h_ln_average_degree L3.h_ln_partintactplat L4.h_ln_new_sign L4.h_ln_average_degree L4.h_ln_partintactplat

L.h_ln_new_sign L.h_ln_average_degree L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partintactplat L3.h_ln_average_degree L3.h_ln_average_degree

L3.h_ln_partintactplat

L2.n_in_average_degree L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_average_degree L3.h_ln_partintactplat L4.h_ln_new_sign

L4.h_ln_average_degree

L4.h_ln_partintactplat

ln_new_sign ln_average_degree
ln_partintactplat

ul

u2

u3

GMM finished : 17:35:36

Residuals correlation matrix

ul

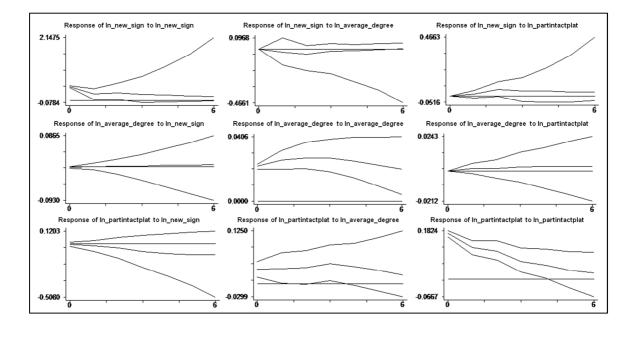
-0.0760 1.0000 0.2330

-0.0259 0.1974 1.0000 0.6851 0.0018

1.0000

symmetric uu[3,3]

L4.h_ln_new_sign


L4.h_ln_average_degree -.05987711 L4.h_ln_partintactplat -.00383657

b_GMM L.h_ln_new_sign -.03900932 L.h_ln_average_degree .5214205 L.h_ln_partintactplat .69441474 L2.h_ln_new_sign -.03796838 L2.h_ln_average_degree -.25635784

EQ3: dep.var : h_ln_partintactplat

EQ2: dep.var

: h_ln_new_sign

ln_new_signups

In_degree_centralization In_partintactplat; New Regions

pvar ln_new_sign ln_degr_centr ln_partintactplat, lag(1) gmm monte 1000 . pvar in_new_sign in_degr_centr in_partintactplat, lag GMM started : 13:29:40 accumulating matrices equation 1,2,3, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 271 r : h_ln_new_sign EQ1: dep.var b_GMM L.h_ln_new_sign .62363648 L.h_ln_degr_centr -1.3932905 L.h_ln_partintactplat -.07327217 se_GMM .4384312 2.6847529 .18299099 t GMM t_GMM 1.4224272 -.51896417 -.4004141 EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM L.h_ln_new_sign .00677716 .00839731 .80706301 L.h_ln_degr_centr .90463399 .07327351 .12.345989 L.h_ln_partintactplat .00443723 .00346428 1.2808509 EQ3: dep.var : h_ln_partintactplat b_G444 se_G444 t_G444 L.h_ln_new_sign .17706686 .19437392 .91095994 L.h_ln_degr_centr 2.3479596 .14968356 .15668155 L.h_ln_partintactplat .91562129 .0750797 12.195325 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .25800847 .00049974 ln_degr_centr ln_partintactplat ln_new_sign ln_degr_centr ln_partintactplat .00014474 .02756343 .07286578 .00128932 Residuals correlation matrix ul u2 u3 1.0000 u1 0.0805 u2 1.0000 0.2003 0.3951 1.0000 u3

GMM finished : 13:29:41

0.0009

Starting Monte-Carlo loop : 13:29:43 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:29:50

. pvar ln_new_sign ln_degr_centr ln_partintactplat, lag(2) gmm monte 1000 GMM started : 13:34:04 $\,$ GMM started : 13:34:04 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 263 EQ1: dep.var : h_ln_new_sign se_GMM t_GMM .37408234 1.7272947 5.4813263 1.5042699 .17552782 -1.3751085 .14702329 1.908209 b GMM b_GRM L.h_ln_new_sign .64615047 L.h_ln_degr_centr 8.2453941 L.h_ln_partintactplat -.24136981 L2.h_ln_new_sign .20055116 L2.h_ln_degr_centr -9.1225887 L2.h_ln_partintactplat .25982533 L2.h_ln_degr_centr L2.h_ln_partintactplat -2.5233054 3.6153328 .24912848 1.0429371 EQ2: dep.var : h_ln_degr_centr b GMM se GMM t GMM se_GMM t_GMM .00684061 .46220439 .26588742 3.6418514 .00334704 .42508862 .00308603 -.61107567 .21416707 -.23048837 .00512133 .03833194 L.h_ln_new_sign .00316176 L.h_ln_degr_centr .96832247 L.h_ln_partintactplat .00142279 L2.h_ln_new_sign -.0018858 L2.h_ln_degr_centr -.04936302 L2.h_ln_partintactplat ..00019631 EQ3: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_new_sign .1103476 .14830927 .74403712 L.h_ln_degr_centr 1.4819586 3.4679632 .42732822 L.h_ln_partintactplat .7088558 .12017671 5.8986935 L2.h_ln_new_sign .02925106 .06135555 .47674682 L2.h_ln_degr_centr .47697592 2.7770493 .17175637 L2.h_ln_partintactplat .18795729 .13644442 1.3775374 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .26999496 .00005881 .02473917 ln_degr_centr ln_partintactplat ln_new_sign ln_degr_centr ln_partintactplat .00009253 .00062201 .05476356 Residuals correlation matrix

ul u2 u3 u1 1.0000

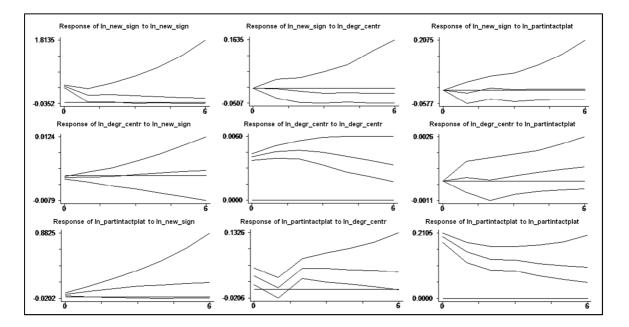
u2	0.0112 0.8566	1.0000	
u3	0.2031 0.0009	0.2760	1.000

GMM finished : 13:34:06

Starting Monte-Carlo loop : 13:34:06 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:34:14

pvar ln_new_sign ln_degr_centr ln_partintactplat, lag(3) gmm monte 1000 GMM started : 13:39:35 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation 1,,,,,accurating calculating big 2012 matrix finished accumulating Z012 — Results of the Estimation by system GNM_ number of observations used : 255 EQ1: dep.var : h_ln_new_sign b_GMM L.h_ln_new_sign .48907915 .h_ln_degr_centr 5.3313336 n_partintactplat -.12168739 se GMM se_GMM .25529746 3.3345155 .15291146 t_GMM 1.9157227 1.5988331 -.79580292 L.h_ln_degr_centr L.h_ln_partintactplat L.n_in_partintactplat -.12168/39 L2.h_in_new_sign .24397732 L2.h_in_degr_centr -11.76302 L2.h_in_partintactplat .18903117 L3.h_in_new_sign .08670418 L3.h_in_degr_centr 5.2947916 L3.h_in_partintactplat -.05252593 .15928648 1.5316888 4.4662425 -2.633762 .13747232 1.3750489 .08140934 3.0976085 .15090122 1.0650396 -.34808152 EQ2: dep.var : h_ln_degr_centr b_GMM .00171853 se_GMM .005015 t_GMM .34267765 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_degr_centr .82773443 .00398186 -.00021661 .17381909 .23064366 .00329145 .00314295 .20896409 3.5888021 1.2097574 .06892087 .83181322 -.00330902 L2.h_ln_partintactplat .00365397 -.90559773 L3.h_ln_new_sign L3.h_ln_degr_centr L3.h_ln_partintactplat -.0007654 -.10746841 .00131702 -.58116161 .07506375 -1.4316951 .00097533 .0027623 .35308728 : h_ln_partintactplat EO3: dep.var b GMM GMM + GMM 6_GMM .10076443 .96520763 .69095117 se_GMM .10124475 2.5957936 .104957 L.h_ln_new_sign .99525588 .37183528 L.h_ln_degr_centr L.h_ln_partintactplat 6.5831834 L.h_in_partintactpiat L2.h_in_new_sign L2.h_in_degr_centr L2.h_in_partintactpiat L3.h_in_new_sign L3.h_in_degr_centr .10496408 .0638096 1.6449574 5.2859306 4.262266 1.2401691 .15237647 .00892984 -4.684123
 4.202200
 1.2401031

 .12969534
 1.1748801


 .04135643
 .21592378

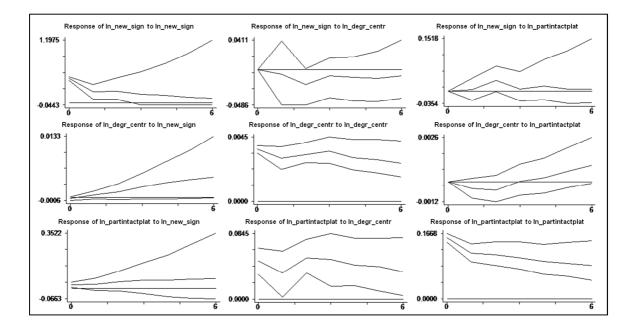
 2.6921882
 -1.7398943
 L3.h_ln_partintactplat .05576752 .09027518 .61775035 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_degr_centr ln_partintactplat ln_new_sign .21943736 ln_new_sign ln_degr_centr ln_partintactplat .00006014 .02073465 .00010079 .0465711 Residuals correlation matrix u1 u2 u3

ul	1.0000		
u2	-0.1388	1.0000	
и3	0.2051 0.0010	0.0602	1.0000

GMM finished : 13:39:37

Starting Monte-Carlo loop : 13:39:37 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0:=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte=Carlo loop : 13:39:45

448


. pvar ln_new_sign ln_degr_centr ln_partintactplat, lag(4) gmm monte 1000 GMM started : 13:43:13 accumulating matrices equation 1,2,3, calculating b2sls accuming ing metices equation i,,,,,accurating calculating big 2012 matrix finished accumulating 2012 — Results of the Estimation by system GNM_ number of observations used : 247 EQ1: dep.var : h_ln_new_sign se_GMM .18903818 2.8523934 .1175509 .14059159 b GMM b_GMM L.h_ln_new_sign .47658285 L.h_ln_degr_centr 5.6819992 L.h_ln_partintactplat .04738163 2.5210932 1.9920111 .40307335 1.7785324 .2500467 L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_degr_centr L2.h_ln_new_sign -13.807627 3.7652528 -3.6671182 .13301157 .13924364 .95524343 10537009 .31647188 6.1130357 3.6660037 1.667493 L3.h_ln_partintactplat -.18425105 .13586229 -1.3561603 L4.h_ln_new_sign L4.h_ln_degr_centr L4.h_ln_partintactplat .06399466 -.05316461 1.6103048 2.0385369 .78993167 .02256947 .15617702 EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_degr_centr .00284412 .64577818 -.00100515 .00084996 .00393309 .23408219 .00211246 .0026091 .72312628 2.7587668 -.47581888 .32576796 .32181482 .24692136 1.3033089 L2.h_in_degr_centr L2.h_in_partintactplat L3.h_in_degr_centr L3.h_in_degr_centr L4.h_in_new_sign L4.h_in_degr_centr .00097935 .00264952 .36963468 .00009987 .00145251 .06875776 .06313944 .00310886 .00004565 .00143231 .09218446 .00234127 .00073877 68492503 .09218446 .68492503 .00234127 1.3278499 .00073877 .06178958 .06280168 -2.6525036 -.16658168 L4.h_ln_partintactplat -.00045393 .00213077 -.21303676 EQ3: dep.var : h_ln_partintactplat b_GMM se_GMM .04735312 t_GMM .42721609 .02023001 L.h_ln_new_sign L.h_in_new_sign L.h_in_degr_centr L.h_in_partintactplat L2.h_in_new_sign L2.h_in_degr_centr L2.h_in_partintactplat .04735312 1.8779174 .08271636 .03743809 1.9987035 .09006423 1.9191301 .73900367 .02705791 1.3215317 1.0219459 8.9341895 .72273738 .66119445 .17946892 1.992677 L3.h_ln_new_sign L3.h_ln_degr_centr L3.h_ln_partintactplat L4.h_ln_new_sign .02806127 -.0034646 1.8513068 -.49307754 -.91283778 .01647907 .09059798 .18189219 .02032626 -1.0972987 L4.h_ln_degr_centr L4.h_ln_partintactplat -2.5827862 1.9018873 -1.3580122 .06138493 -.52850916 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .20804783 -.00027068 ln_degr_centr ln_partintactplat ln_new_sign .00005108 ln_degr_centr .01001034 ln_partintactplat .00021183 .02748637 Residuals correlation matrix ul u2 u3 ul 1.0000 u2 -0.0830 1.0000 0.1936

GMM finished : 13:43:15

113

0.1324 0.1788 1.0000 0.0376 0.0048

Starting Monte-Carlo loop : 13:43:17 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=-624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:43:26

Appendix 50 Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share ln_partintactplat; New Regions

. pvar ln_new_ GMM started : accumulating bi finished accum Result number of obse EQ1: dep.var	13:47:27 matrices eq ug ZuuZ mat mulating Zu s of the E ervations u	uation 1,2 rix uZ stimation sed : 272	,3,calculati	ng b2s1s M	g(l) gmm monte 1000
L.h_ln_ L.h_ln_networ L.h_ln_partir	er_share	-4.4705825 46409477	2.6779128 13.14931 1.2572603	06287534 33998607 3691318	
EQ2: dep.var	: h_ln_				
L.h_ln_network L.h_ln_partir	er_share	.66286753 0099568	.07459107 .37579518 .03451764	33150699 1.7639064 28845527	
EQ3: dep.var					
L.h_ln_ L.h_ln_networ; L.h_ln_partir 	er_share	8.0102971 1.6404071	4.4251125 21.629661 2.068054	.37033853 .79321293	
symmetric uu[3	,3]				
ln_new_ ln_networker_s ln_partintact	hare	.4347	6488 9767	.00045747 02410419	ln_partintactplat 1.9706535
Residuals corr	elation ma	trix			
	ul	u2	u3		
ul	1.0000				
u2	0.5176	1.0000			
u3		-0.7995 0.0000	1.0000		

GMM finished : 13:47:29

Starting Monte-Carlo loop : 13:47:31 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:47:38

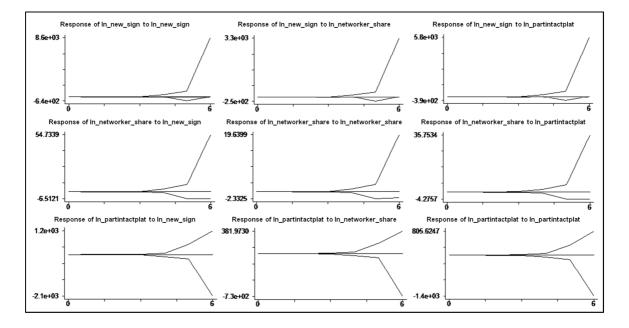
. pvar ln_new_sign ln_networker_share ln_partintactplat, lag(2) gmm monte 1000 GMM started : 13:50:38 GMM started : 13:50:38 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 264 EQ1: dep.var : h_ln_new_sign b GMM se GMM
 b_GMM
 se_GMM
 t_GMM

 L.h_ln_new_sign
 -.33793419
 3.0699602
 -.1100771

 L.h_ln_networker_share
 -13.281847
 46.163742
 -.28771166

 L.h_ln_partintactplat
 -.47354792
 1.7128659
 -.2746526

 L2.h_ln_newsign
 -.02479337
 .90744611
 -02732214

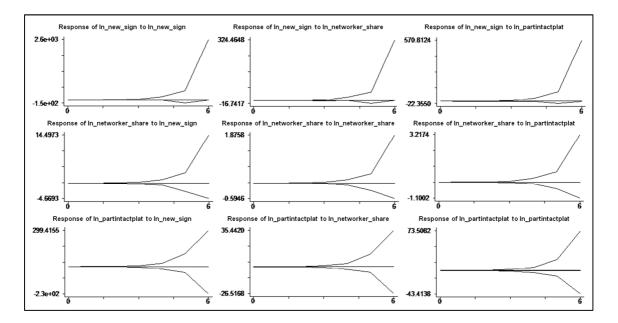

 L2.h_ln_networker_share
 4.7311252
 20.628671
 .22934707

 L2.h_ln_partintactplat
 -05444409
 .5685502
 -.34709815
 t GMM EQ2: dep.var : h_ln_networker_share b_GMM se_GMM .04525608 t_GMM .01076836 L.h_ln_new_sign .00048733 L.h_ln_new_sign .00048/33 L.h_ln_networker_shas .933394169 L.h_ln_partintactplat .00378743 L2.h_ln_new_sign -.00210997 L2.h_ln_networker_shas -.04660602 L2.h_ln_partintactplat -.00265473 .71637808 1.3036994 .14516734 .01352332 -.15602482 .33080565 -.14195833 .00278927 -.95176789 EO3: dep.var : h_ln_partintactplat se_GMM 2.5520429 38.50826 1.434897 t_GMM .30951342 .25447376 .86213157 L.h_ln_new_sign .78989153 L.h_ln_networker_share 9.7993419 L.h_ln_partintactplat 1.23707 L2.h_ln_new_sign .2212755 L2.h_ln_networker_share -3.9382087 L2.h_ln_partintactplat .09531944 .76355078 .28979801 17.527179 -.22469153 .38929015 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share ln_partintactplat
.39657253
-.00027123 .00008085 ln_new_sign ln_networker_share ln_partintactplat .00008085 -.24781975 .38079605 Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	-0.0479 0.4385	1.0000	
и3	-0.6345 0.0000	0.0664 0.2822	1.0000

GMM finished : 13:50:40

Starting Monte-Carlo loop : 13:50:41 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 13:50:48

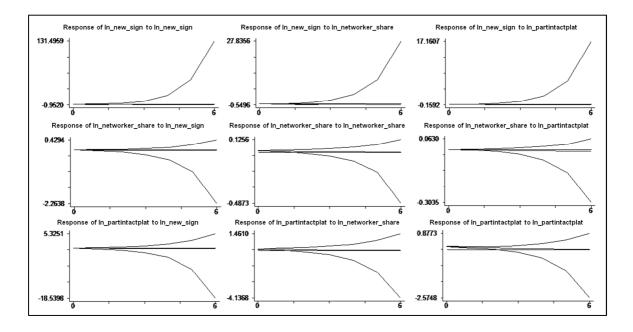


pvar ln_new_sign ln_networker_share ln_partintactplat, lag(3) gmm monte 1000 GMM started : 14:02:15 accumulating matrices equation 1,2,3, calculating b2sls EQ1: dep.var : h_ln_new_sign b GMM GMM GMM L.h_ln_new_sign .00670493 L.h_ln_networker_share -10.541885 L.h_ln_partintactplat -.16941345 se_GMM 2.1384042 22.570649 .68582892 .00313548 -.46706165 -.24701998 L.h_in_partintactplat L2.h_ln_new_sign L2.h_ln_networker_share L2.h_in_partintactplat L3.h_ln_new_sign L3.h_ln_networker_share 1.1721811 16.46949 .66956776 .03756768 .03204938 L2.n_1n_networker_snare -.453344 L2.h_1n_partintactplat -.09876433 L3.h_1n_new_sign .02693422 L3.h_1n_networker_share 4.6120711 L3.h_1n_partintactplat -.02455211 -.14750461 .24988782 .10778525 .35006059 .1786807 EQ2: dep.var : h_ln_networker_share b_GMM se_GMM .04174326 t_GMM -.09647065 -.004027 L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_networker_share .9791259 .00163267 -.00379776 -.16772422 .48159512 .01573679 .02326566 .32090316 2.0330893 L2.h_ln_partintactplat -.00642824 .01232234 -.52167386 L3.h_ln_new_sign L3.h_ln_networker_share -.0003155 .00470576 -.06704591 .01949723 .26560375 .07340721 L3.h_ln_partintactplat .00355651 .00196989 .55388425 EQ3: dep.var : h_ln_partintactplat se GMM 6_GMM .34299184 1.7556565 .80852809 L_GMM .26838735 .12775819 1.8532066 L.h_ln_new_sign 1.2779732 13.742028 L.h_ln_networker_share L.h_ln_partintactplat .43628601 L2.h_ln_new_sign .2188289 .7034319 .31108754 L2.h_ln_new_sign .2188289 L2.h_ln_networker_share 7.8163361 L2.h_ln_partintactplat .24629796 L3.h_ln_new_sign .02874775 L3.h_ln_networker_share -6.1666374 10.100857 .77382899 .39381863 .14632864 8.0258952 .62540963 .19646015 -.76834263 .10322248 L3.h_ln_partintactplat .02559264 .24793669 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share ln_partintactplat ln_new_sign .24514358 .00007842 -.0009482 In networker share -.04986062 ln_partintactplat .10853198 Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	0.1118 0.0741	1.0000	
u3	-0.3029 0.0000	-0.3234 0.0000	1.0000

GMM finished : 14:02:17

Starting Monte-Carlo loop : 14:02:18 , total 1000 repetitions requested i-38, i-76, i-114, i-152, i-190, i-228, i-266, i-304, i-342, i-380, i-418, i-456, i-494, i-532, i-57 > 0, i-608, i-646, i-684, i-722, i-760, i-798, i-836, i-874, i-912, i-950, i-988, i-1000, finished M > onte-Carlo loop : 14:02:26



pvar ln_new_sign ln_networker_share ln_partintactplat, lag(4) gmm monte 1000 GMM started : 14:14:29 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation 17,7,7,acculating calculating big 2012 matrix finished accumulating 2012 — Results of the Estimation by system GMM_ number of observations used : 248 EQ1: dep.var : h_ln_new_sign se_GMM 1.0950197 3.9151039 .18000482 .83757358 b GMM t GMM b_GMM L.h_ln_new_sign .39363936 L.h_ln_networker_share -6.4448379 L.h_ln_partintactplat .08587439 L2.h_ln_new_sign .29212114 t_GMM .35948198 -1.6461473 .47706714 .34877072 ______ USB/439 L2.h_ln_new_sign .29212114 L2.h_ln_networker_share -3.4705059 L2.h_ln_partintactplat .19952762 19.01123 -.18255031 .19952762 .38418517 .51935275 L3.h_ln_new_sign .0377424 L3.h_ln_networker_share 8.7965204 L3.h_ln_partintactplat -.1664295 L4.h_ln_new_sign -.00807845 .43841009 7.1262547 .36545418 08609346 1.234382 -.4554045 .07722099 -.10461463 L4.h_ln_partintactplat -.07352744 9.425388 -.02496583 10427086 EQ2: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_new_sign -.0.1339515 L.h_ln_networker_share 1.0217942 L.h_ln_partintactplat -.00697244 L2.h_ln_new_sign -.01484941 L2.h_ln_networker_share -.36753088 .03421874 .20344697 .00798394 .02636273 -.39145645 5.0224104 -.87330788 -.56327288 .66933829 -.54909585 L2.h_ln_partintactplat -.00514255 .01244819 -.41311588 .01378821 -.52893861 .01378821 .29542316 .01270317 .00282493 .12832794 .12085206 .30624119 L4.h_ln_partintactplat -.00018393 .00668899 -.02749766 EQ3: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM b_GNM L.h_ln_new_sign -.10321983 L.h_ln_networker_share 1.9424418 L.h_ln_partintactplat .72527551 L2.h_ln_new_sign -.0714275 L2.h_ln_networker_share -3.5828209 L2.h_ln_networker_share .0259174 L3.h_ln_new_sign -.04654484 L3.h_ln_new_sign -.04654484 se_GMM t_GMM .35552591 -.29032998 3.0971434 .62717205 .12257241 5.9171186 .27491145 -.28060944 6.1313618 -.56434341 .14382578 .88017417 .14200455 L3.h_ln_networker_share L3.h_ln_partintactplat L4.h_ln_new_sign .00714876 -.12933753 -.02760783 .14200433 3.24758 .15343272 .03092728 3.5113259 -.84295923 -.89266944 L4.h_ln_networker_share -.12422423 L4.h_ln_partintactplat .0495482 -.03537815 .0495482 .08403328 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share ln_partintactplat ln_new_sign .19995631 -.0018138 In_networker_share
 ln_partintactplat .00026805 -.00477359 .0015873 .03777214 Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	-0.2492	1.0000	
u3	-0.0555 0.3844	0.4968	1.0000

GMM finished : 14:14:31

Starting Monte-Carlo loop : 14:14:32 , total 1000 repetitions requested i-38, i-76, i-114, i-152, i-190, i-228, i-266, i-304, i-342, i-380, i-418, i-456, i-494, i-532, i-57 > 0, i-608, i-646, i-684, i-722, i-760, i-798, i-836, i-874, i-912, i-950, i-988, i-1000, finished M > onte-Carlo loop : 14:14:42

Appendix 51 Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc ln_partintactplat; New Regions

. pvar ln_new_sign ln_netw_cc ln_partintactplat, lag(1) gmm monte 1000							
GMM started : 14:19:01							
accumulating matrices equation 1,2,3,calculating b2sls							
	calculating big ZuuZ matrix						
finished accumulating ZuuZ							
Result	s of the l	Estimation	by system	GMM			
number of obse							
EQ1: dep.var	: h_ln	_new_sign					
		b_GMM	se_GM	IM t_GM	M		
L.h_ln_n	ew_sign	.63992619	.2091723	6 3.059324	8		
L.h_ln_	netw_cc ·	.46022414	1.085344	84240349	6		
L.h_ln_partint	actplat ·	.09810274	.0732370	1 -1.339524	1		
EQ2: dep.var	: h_ln_	_netw_cc					
		b_GMM	se_GMM	t_GMM			
L.h_ln_n	ew_siqn	.02485463	.01684344	1.4756262			
L.h_ln_	netw_cc	.81371972	.0948319	8.5806545			
L.h_ln_partint	actplat	.01598344	.00973336	1.6421308			
EQ3: dep.var	: h ln	partintac	tplat				
		-					
		b GMM	se_GMM	+ GMM			
L.b. ln. n	ew sign	_	.1081467	_			
			.47417627				
L.h_ln_partint							
just identifie							
Jube reencirie	a nanoe.	. ocucioci	c 15 not cu	110414004			
symmetric uu[3	31						
oynanceric du[o	, ., .	ln_new_s	ian	In notw or	ln_partintactplat		
ln_new_s		.24174		TH_Hecw_cc	in_pareincacepiac		
				0016706			
ln_netw		.00025		.0016706	.05698139		
ln_partintactp	lat	.00638	862	.00230446	.05698139		
Residuals corr							
Residuais corr	elation ma	atrix					
	ul	u2	u3				
	1 0000						
ul	1.0000						
u2		1.0000					
	0.8406						
		0 2257					

u3 0.0544 0.2357 1.0000 0.3831 0.0001

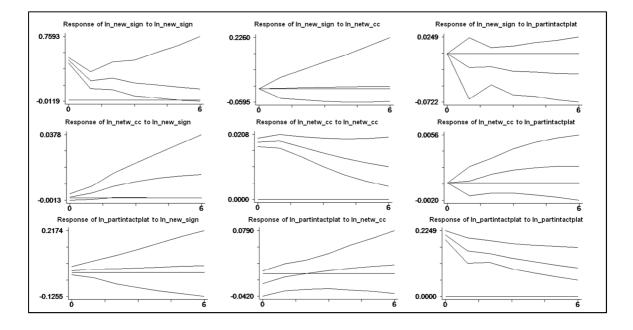
GMM finished : 14:19:02

Starting Monte-Carlo loop : 14:19:03 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=668, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 14:19:09

. pvar ln_new_sign ln_netw_cc ln_partintactplat, lag(2) gmm monte 1000 GMM started : 14:38:30 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 251 EQ1: dep.var : h_ln_new_sign se_GMM .12690188 1.4985061 .12758942 .09704789 b GMM t GMM b_CKM L.h_ln_new_sign .48982421 L.h_ln_netw_cc -.03740295 L.h_ln_partintactplat -.09736467 .12.h_ln_new_sign .32171668 L2.h_ln_netw_cc .26521496 L2.h_ln_partintactplat .02751899 3.8598657 -.02496016 -.76310931 3.3150301 .63012505 .42089258 .12563835 .21903334 EQ2: dep.var : h_ln_netw_cc se_GMM .00451469 .06087489 .00497712 .00342717 .0565544 b_GMM .00491662 t_GMM 1.089028 16.755309 .23698391 L.h_ln_new_sign L.h_ln_new_sign L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partintactplat .00491662 1.0199777 .0011795 .00628432 -.12213403 .00336634 1.833675 -2.1595849 .6029929 .00558272 EQ3: dep.var : h_ln_partintactplat - C104 CMM C104

	b_GMM	se_GMM	t_GMM	
L.h_ln_new_sign	.0182582	.05797386	.31493843	
L.h_ln_netw_cc	.41501979	.62807884	.66077659	
L.h_ln_partintactplat	.73943656	.12419469	5.9538502	
L2.h_ln_new_sign	00068612	.0401524	01708782	
L2.h_ln_netw_cc	0292093	.69118557	04225971	
L2.h_ln_partintactplat	.14818366	.09841152	1.5057552	
just identified - Hanse	n statistic	is not calcu	lated	

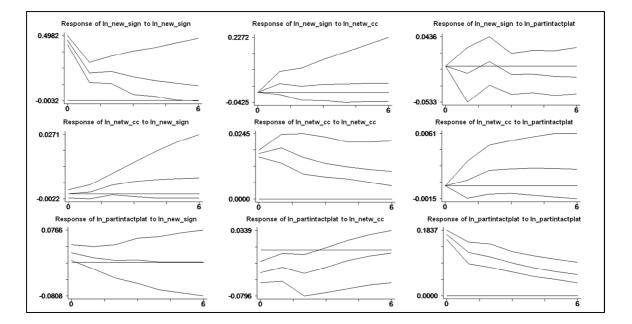
symmetric uu[3,3]


	ln_new_sign	ln_netw_cc	ln_partintactplat
ln_new_sign	.22686557		
ln_netw_cc	.00024364	.00033421	
ln_partintactplat	.0047089	00034405	.04483083

Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	0.0280 0.6584	1.0000	
u3		-0.0887 0.1611	1.0000

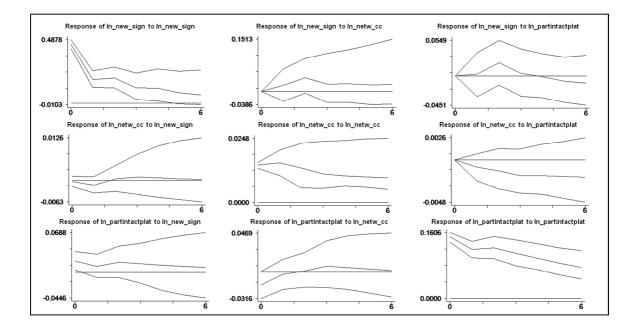
GMM finished : 14:38:32


Starting Monte-Carlo loop : 14:38:33 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 14:38:40

pvar ln_new_sign ln_netw_cc ln_partintactplat, lag(3) gmm monte 1000 GMM started : 14:46:40 accumulating matrices equation 1,2,3, calculating b2sls EQ1: dep.var : h_ln_new_sign se_GMM .09782802 1.6519313 .14038093 .08046312 b GMM L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partintactplat .45834952 1.9687959 -.0643894 4.6852579 1.1918147 -.45867627 3.2707521 .26317492 L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_netw_cc -1.6032465 1.2056832 -1.329741 -1.0032403 .10462305 .04036512 .43023633 -.11938143 .1442289 .72539588 .08183229 49326638 .63399415 -1.0626224 L3.h_ln_partintactplat .11234605 EQ2: dep.var : h_ln_netw_cc b_GMM .00168438 1.1282905 se_GMM .00320834 .19664339 .00773876 t_GMM .52499906 5.7377494 .51945848 L.h_ln_new_sign L.h_ih_new_sign L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partintactplat L3.h_ln_netw_sign L3.h_ln_netw_cc L3 b ln partintactplat .00401996 .00401996 .00558205 -.3380565 .00319459 -.00061958 .11907836 -.00334564 .51945848 2.1682867 -1.6607465 .50663542 -.21956476 1.3771809 .00257441 .20355695 .00630549 .00282184 .0864653 L3.h_ln_partintactplat .00466037 -.71789232 EQ3: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM b_GRM L.h_ln_new_sign -.0111598 L.h_ln_netw_cc -.11499606 L.h_ln_partintactplat .7079291 L2.h_ln_new_sign -.00927516 L2.h_ln_netw_cc -.65524334 L2.h_ln_netw_cc -.65524334 .03312796 -.33687509 -.16484249 6.7164425 -.38485029 -.73892941 .10540239 .0241033 .94088005 .09893837 L2.h_ln_partintactplat L3.h_ln_new_sign .13320818 1.3463754 .01432298 .0264594 .54131913 L3.h_ln_netw_cc L3.h_ln_partintactplat 1.0948993 -.00384398 .77412743 1.4143658 .07119267 -.05399402 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .21461779 .00001201 .01061554 ln_netw_cc ln_partintactplat ln_new_sign ln_netw_cc .00028901 -.00066502 ln_partintactplat .03169359 Residuals correlation matrix ul u2 u3 1.0000 ul u2 0.0017 1.0000 0.9794 0.1286 -0.2195 0.0452 0.0006 u3 1.0000

GMM finished : 14:46:42

Starting Monte-Carlo loop : 14:46:43 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 14:46:51



. pvar ln_new_sign ln_netw_cc ln_partintactplat, lag(4) gmm monte 1000 GMM started : 14:54:51 GMM started : 14:54:51 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______Results of the Estimation by system GMM______ number of observations used : 235 EQ1: dep.var : h_ln_new_sign se_GMM .08885754 1.9405 .13522254 b GMM t_GMM 4.5254456 .61616766 .14974517 b_GMM L.h_ln_new_sign .40211996 L.h_ln_netw_cc 1.1956733 L.h_ln_partintactplat .02024892 L2.h_ln_new_sign .26213709 3.4452442 .07608665 L2.h_ln_netw_cc L2.h_ln_partintactplat L3.h_ln_netw_sign L3.h_ln_netw_cc 1.0671625 .11557495 -.01298414 -2.2630191 2.1425001 .16593794 .07376229 1.509767 .49809218 .69649504 -.17602684 -1.4989194 .16704256 L3.h_ln_partintactplat -.12525599 -.74984478 L4.h_ln_new_sign L4.h_ln_netw_cc .03304548 .07266338 .45477486 .54810268 1.0850223 -.05235632 L4.h_ln_partintactplat .12753484 -.4105256 EQ2: dep.var : h_ln_netw_cc b GMM se GMM + GMM L.h_ln_new_sign -.00204161 L.h_ln_netw_cc 1.0505984 L.h_ln_partintactplat -.00518101 .00206985 -.98635837 5.2878728 .00615758 -.84140325 L2.h_ln_new_sign L2.h_ln_netw_cc .00487216 .00302754 1.6092804 -1.1195459 -.19214556 .17162813 L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_netw_cc .00137531 -.00017421 .00184578 -.00079446 .00520806 .00280117 .20040533 .26407231 -.06219193 .00921022 L3.h_ln_partintactplat L4.h_ln_new_sign L4.h_ln_netw_cc L4.h_ln_partintactplat -.18127462 .00438261 -.00181972 .00238935 -.76159966 .07992148 .05196611 1.537954 .00154775 .00380756 .40649404 EQ3: dep.var : h_ln_partintactplat b_GMM L.h_ln_new_sign -.01066449 L.h_ln_netw_cc .662065 L.h_ln_partintactplat .79746716 L2.h_ln_new_sign .01876775 se_GMM t_GMM .02121428 -.50270327 .54783536 1.2085109 .0745815 10.69256 .02141424 .8764143 L2.h_ln_new_sign L2.h_ln_netw_cc -.23797861 .71530417 -.33269568 L2.h_ln_netw_cc L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_netw_cc L3.h_ln_partintactplat L4.h_ln_new_sign .18634758 .07676116 2.4276285 -.0044717 .03437426 -.05951216 -.00851361 .01825965 .48539086 .08748693 -.24276285 -.2448951 .07081769 -.68024062 -.46192927 .01843056 L4.h_ln_netw_cc -.43365349 L4.h_ln_partintactplat -.03661675 .25376339 -1.7088891 .05617724 -.65180757 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .20538047 -.00016001 .00882081 ln_netw_cc ln_partintactplat ln_new_sign ln_netw_cc ln_partintactplat .00020967 -.00022887 .02316553 Residuals correlation matrix ul u2 u3 1.0000 ul

ul 1.0000 u2 -0.0242 1.0000 0.7126 u3 0.1276 -0.1035 1.0000 0.0507 0.1136

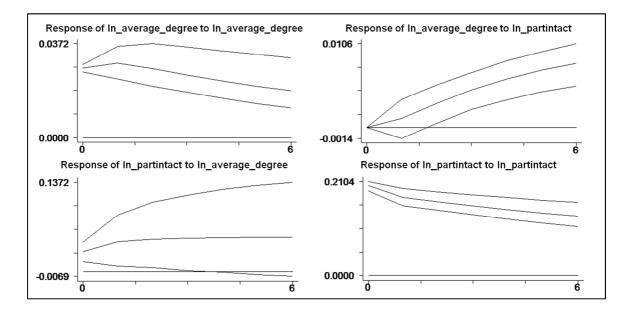
GMM finished : 14:54:53

Starting Monte-Carlo loop : 14:54:55 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=-624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 14:55:04

Appendix 52 Estimation Results PVAR(1)-(4) ln_average_degree ln_partintact; All Regions

. pvar ln_average_degree ln_partintact, lag(1) gmm monte 1000 GMM started : 17:42:59 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM number of observations used : 488					
EQ1: dep.var			egree		
L.h_ln_average L.h_ln_par	tintact .	88395161 01129062 	.00227586	36.5181 4.9610293	
EQ2: dep.var					
L.h_ln_par	b_GMM se_GMM t_GMM L.h_ln_average_degree .323756 .25364144 1.2764318 L.h_ln_partintact .92755987 .02174857 42.649225				
just identifie	ed – Hansen	statisti	c is not ca	lculated	
symmetric uu[2,2] ln_average_degree ln_partintact ln_average_degree .00098961					
ln_partint	lact	.00113	101	.08777402	
Residuals correlation matrix					
	u1	u2			
u1	1.0000				
u2	0.1203 0.0078	1.0000			

GMM finished : 17:43:00

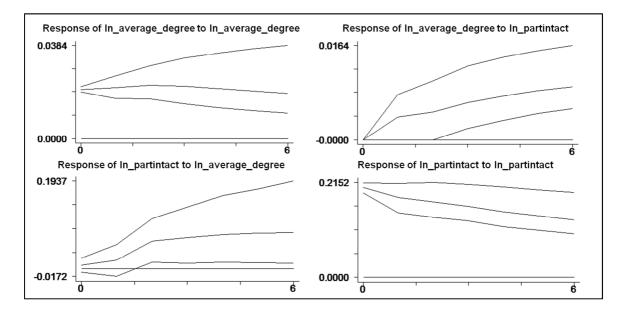

Starting Monte-Carlo loop : 17:43:01 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:43:07

. pvar ln_average_degree ln_partintact, lag(2) gmm monte 1000 GMM started : 17:56:04 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 475 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM 1.0689474 .14031555 7.6181676 L.h_ln_average_degree L.h_ln_partintact .00544056 .00714347 .76161247 L2.h_ln_average_degree -.16795437 .12006868 -1.3988192 L2.h_ln_partintact .00434697 .00794696 .54699795 EQ2: dep.var : h_ln_partintact b GMM se GMM t GMM L.h_ln_average_degree .69140176 .83667126 .82637207 .87302786 L.h_ln_partintact .04971361 17.561143 h_ln_average_degree -.4562668 L2.h_ln_partintact .05727174 L2.h_ln_average_degree .61646075 -.74013926 .04421408 1.2953282 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintact ln_average_degree .00075349 .00085706 .04125817 ln_partintact Residuals correlation matrix 111 112

u1	1.0000	
u2	0.1537 0.0008	1.0000

GMM finished : 17:56:06

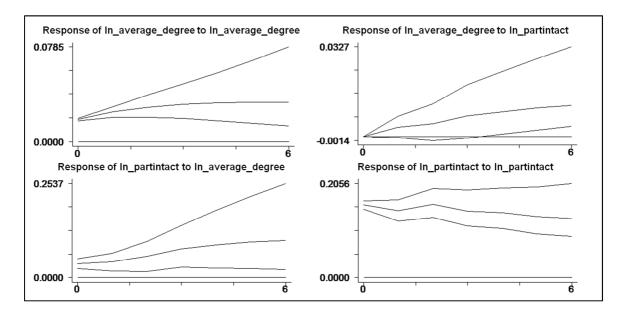
Starting Monte-Carlo loop : 17:56:06 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:56:12


GMM started : 17:57:52 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 462 $% \left({{\left({{{\left({{{}}}}} \right)}}}} \right.$ EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM 1.032153 .13311845 7.753643 L.h_ln_average_degree .01910519 L.h_ln_partintact .01152782 1.6573112 .1329104 L2.h_ln_average_degree .00323089 .02430879 L2.h_ln_partintact -.01321346 .0116168 -1.1374448 L3.h_ln_average_degree -.11081386 06199807 -1.787376 L3.h_ln_partintact .00281533 .00708426 .39740624 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_average_degree .5840507 .94557323 .6176684 L.h_ln_partintact .89268638 .09639241 9.2609611 1.5532048 .0328457 L2.h_ln_average_degree 1.0049668 1.5455284 L2.h_ln_partintact .09162619 .35847503 L3.h_ln_average_degree -1.5908237 .57690187 -2.7575291 L3.h_ln_partintact -.03143594 .05409209 -.58115586 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintact .0004083 ln_average_degree ln_partintact .00016224 .04128458 Residuals correlation matrix

. pvar ln_average_degree ln_partintact, lag(3) gmm monte 1000

	u1	u2
u1	1.0000	
u2	0.0394 0.3985	1.0000

GMM finished : 17:57:54


Starting Monte-Carlo loop : 17:57:54 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 17:58:00

. pvar ln_average_degree ln_partintact, lag(4) gmm monte 1000 GMM started : 17:59:57 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 449 EQ1: dep.var : h_ln_average_degree se_GMM b_GMM t_GMM 10.916931 1.2926486 .11840769 L.h_ln_average_degree .02187238 L.h_ln_partintact .01550786 1.4104062 L2.h_ln_average_degree -.19745519 .09594344 -2.0580374 L2.h_ln_partintact -.01855084 .01459594 -1.2709591 L3.h_ln_average_degree -.08565124 .09413867 -.9098412 .00790271 L3.h_ln_partintact .01043395 .75740297 .04570446 -1.0353856 L4.h_ln_average_degree -.04732174 L4.h_ln_partintact -.00555142 .00906246 -.61257244 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_average_degree .43537743 .64066246 .67957382 .92158551 .07874262 L.h_ln_partintact 11.70377 .08706566 L2.h_ln_average_degree .74129111 .11745138 L2.h_ln_partintact .1499082 .07886403 1.9008437 .56149586 1.1833065 .47451432 L3.h_ln_average_degree L3.h_ln_partintact -.16976636 .08242945 -2.0595352 -.83447434 .79903864 -1.0443479 L4.h_ln_average_degree L4.h_ln_partintact .02337589 .05989237 .39029837 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln average degree ln partintact ln average degree .00033334 .00068802 .02661156 ln partintact Residuals correlation matrix u1 u2 u1 1.0000 0.2314 u2 1.0000 0.0000

GMM finished : 17:59:58

Starting Monte-Carlo loop : 17:59:59 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 18:00:05

Appendix 53 Estimation Results PVAR(1)-(4)

) **In_degree_centralization**

In_partintact; All Regions

. pvar ln_degr_centr ln_partintact, lag(1) gmm monte 1000 GMM started : 18:02:03 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 487 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t GMM L.h_ln_degr_centr .89869397 .04429507 20.288804 L.h_ln_partintact .00031948 .00051273 .62308453 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_degr_centr .64231667 1.057102 .60762034 L.h_ln_partintact .92650734 .02224271 41.654425

just identified - Hansen statistic is not calculated

symmetric uu[2,2]

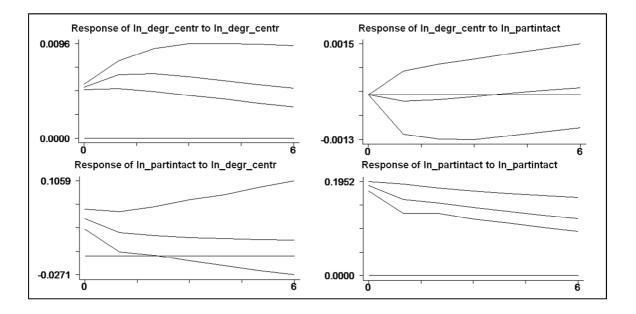
	ln_degr_centr	ln_partintact
ln_degr_centr	.00006711	
ln_partintact	.00015865	.04483016

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.0918 0.0430	1.0000

GMM finished : 18:02:05

Starting Monte-Carlo loop : 18:02:06 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 18:02:11

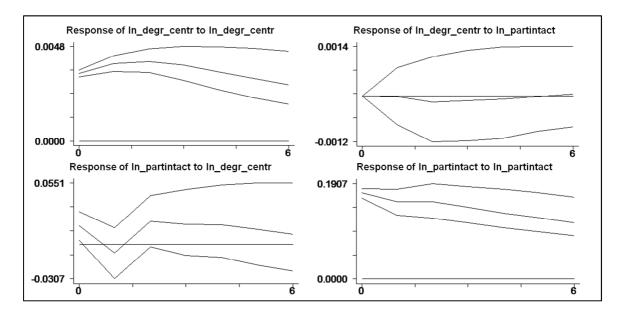

. pvar ln_degr_centr ln_partintact, lag(2) gmm monte 1000 GMM started : 18:06:22 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM___ number of observations used : $4\,7\,4$ EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .99357789 .21316886 4.6609899 L.h_ln_degr_centr L.h_ln_partintact -.0000117 .00263156 -.00444608 L2.h_ln_degr_centr -.06398771 .19004249 -.3367021 L2.h_ln_partintact .00053076 .00256789 .206692 EQ2: dep.var : h_ln_partintact b GMM se GMM t GMM L.h_ln_degr_centr -1.4872364 2.2429935 -.66305873 L.h_ln_partintact .8476128 .09218217 9.1949758 L2.h_ln_degr_centr 1.3715467 1.8849706 .72762237 L2.h_ln_partintact .08851294 .0790062 1.1203291 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintact .00005441 ln_degr_centr .00023014 .03749957 ln_partintact

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.1612 0.0004	1.0000

GMM finished : 18:06:23

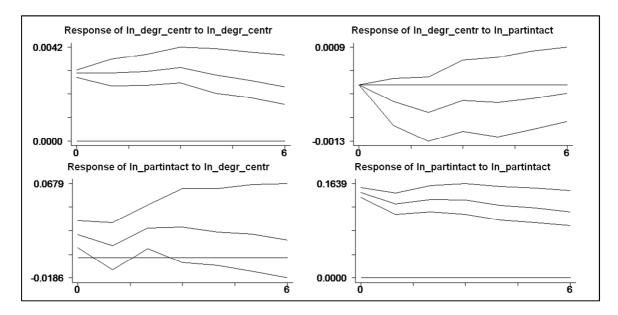
Starting Monte-Carlo loop : 18:06:24 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 18:06:30



. pvar ln_degr_centr ln_partintact, lag(3) gmm monte 1000 GMM started : 18:09:09 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 461 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .86925618 .20759341 4.1873013 L.h_ln_degr_centr .69002724 L.h_ln_partintact .00188331 .00272932 L2.h_ln_degr_centr .15358069 L2.h_ln_partintact -.00275604 .20520067 .74844147 .00278105 -.99100594 L3.h_ln_degr_centr -.11192584 .06008234 -1.862874 L3.h_ln_partintact .00136825 .00164174 .83341029 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_degr_centr -1.0896962 2.666752 -.40862302 L.h_ln_partintact .85105024 .09864973 8.6269899 L2.h_ln_degr_centr 5.4127872 3.888076 1.3921506 L2.h_ln_partintact .14279216 L3.h_ln_degr_centr -4.9390873 .10047329 1.4211952 2.8513481 -1.7321938 L3.h ln partintact -.06886512 .06739255 -1.0218506 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintact ln_degr_centr .00003679 ln_partintact .00002926 03191761 Residuals correlation matrix u1 u2

u1	1.0000	
u2	0.0269 0.5648	1.0000

GMM finished : 18:09:10


Starting Monte-Carlo loop : 18:09:11 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 18:09:17

. pvar ln_degr_centr ln_partintact, lag(4) gmm monte 1000 GMM started : 18:10:45 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 448 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .23048993 L.h_ln_degr_centr .70660005 3.0656439 .00186057 L.h_ln_partintact -.00180938 -.97248542 L2.h_ln_degr_centr .29049804 .23160073 1.2543053 .04231639 L2.h_ln_partintact .00008955 .00211619 .02790785 L3.h_ln_degr_centr .08214424 33974204 L3.h_ln_partintact .00347384 .00209087 1.6614312 L4.h_ln_degr_centr -.14843679 .05481286 -2.708065 L4.h_ln_partintact -.00140138 .00153355 -.91381259 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_degr_centr .66857796 1.6688838 .40061384 L.h_ln_partintact .85339836 .07413787 11.510965 1.7711004 L2.h_ln_degr_centr 1.7428521 .98405047 .08148653 2.2774093 .18557817 L2.h ln partintact L3.h_ln_degr_centr -1.1548562 2.0439796 -.56500378 L3.h_ln_partintact -.02313559 .07983279 -.28980052 -.98905395 -2.26783 2.2929285 L4.h_ln_degr_centr L4.h_ln_partintact -.06994353 .05394582 -1.2965514 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintact ln degr centr .00003128 .00007493 .02282323 ln partintact Residuals correlation matrix u1 u2 u1 1.0000 0.0885 u2 1.0000 0.0613

GMM finished : 18:10:47

Starting Monte-Carlo loop : 18:10:47 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 18:10:54

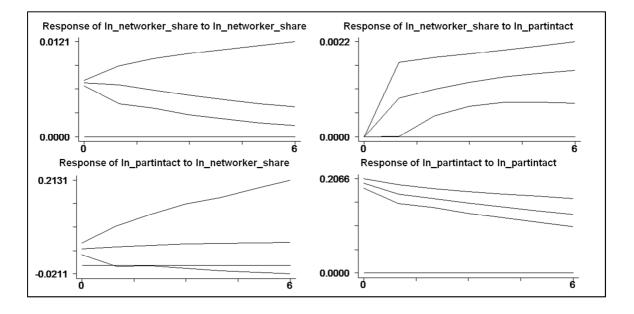
Appendix 54 Estimation Results PVAR(1)-(4) ln_networker_share ln_partintact;

All Regions

. pvar ln_networker_share ln_partintact, lag(1) gmm monte 1000 GMM started : 18:19:46 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM number of observations used : 488			
EQ1: dep.var : h_ln_networker_share			
b_GMM se_GMM t_GMM L.h_ln_networker_share .82708875 .05906424 14.003206			
L.h_ln_partintact .00179009 .00121495 1.4733875			
EQ2: dep.var : h_ln_partintact			
b_GMM se_GMM t_GMM L.h_ln_networker_share 2.5022193 1.5365 1.628519 L.h_ln_partintact .90720722 .03070633 29.544635			
just identified - Hansen statistic is not calculated			
symmetric uu[2,2]			
ln_networker_share ln_partintact ln_networker_share .00009104			
ln_partintact .00013304 .0913204			
Residuals correlation matrix			
u1 u2			
1 0000			

u1	1.0000	
u2	0.0448 0.3230	1.0000

GMM finished : 18:19:48

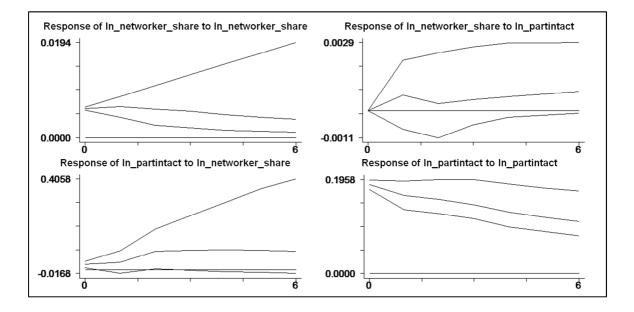

Starting Monte-Carlo loop : 18:19:48 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 18:19:54

. pvar ln_networker_share ln_partintact, lag(2) gmm monte 1000 GMM started : 18:23:48 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 475EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_networker_share .9339872 .20069421 4.6537825 L.h_ln_partintact .00454091 .00271243 1.674109 L2.h_ln_networker_share -.054256 .13207028 -.41081155 L2.h_ln_partintact -.00261577 .00357275 -.73214328 EQ2: dep.var : h_ln_partintact b GMM se GMM t GMM L.h_ln_networker_share 1.4159885 4.2123106 .33615483 L.h_ln_partintact .87778778 .05499176 15.96217 L2.h_ln_networker_share -.24193037 2.5743153 L2.h_ln_partintact .05044828 .05393834 -.09397853 .93529532 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintact ln_networker_share .000047 .00029057 .04048573 ln_partintact Residuals correlation matrix 111 112 1.0000 u1 u2 0.2105 1.0000

GMM finished : 18:23:49

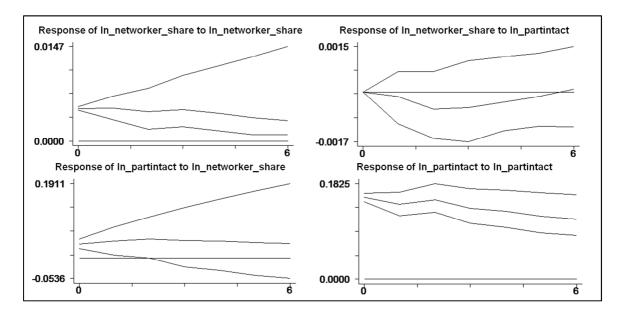
0.0000

Starting Monte-Carlo loop : 18:23:50 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 18:23:56



. pvar ln_networker_share ln_partintact, lag(3) gmm monte 1000 GMM started : 18:25:25 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 462 EQ1: dep.var : h_ln_networker_share se_GMM b_GMM t_GMM L.h_ln_networker_share 1.0473096 .20196803 5.1855214 L.h_ln_partintact .00356173 .0047151 .75538824 L2.h_ln_networker_share -.13017626 .11210736 -1.161175 .00515007 -1.0121684 L2.h_ln_partintact -.00521274 L3.h_ln_networker_share -.01890959 .08524791 -.22181878 L3.h_ln_partintact .00281282 .00285589 .98492073 EQ2: dep.var : h_ln_partintact se_GMM b_GMM t_GMM L.h_ln_networker_share 1.9989437 4.6333782 .43142253 .8754383 L.h_ln_partintact .09080152 9.6412301 L2.h_ln_networker_share 6.4910182 3.6205543 1.7928244 L2.h_ln_partintact .05652329 .09465878 .59712672 L3.h ln networker share -6.3815298 2.8225121 -2.2609397 .0572478 L3.h_ln_partintact -.03050333 -.5328297 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintact .0000347 ln_networker_share ln_partintact .00014074 .03493685 Residuals correlation matrix

ul 1.0000 u2 0.1278 1.0000 0.0060


GMM finished : 18:25:28

Starting Monte-Carlo loop : 18:25:28 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 18:25:35

. pvar ln_networker_share ln_partintact, lag(4) gmm monte 1000 GMM started : 18:31:05 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 449 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_networker_share 1.0203332 .20905123 4.8807804 .00351097 -.27312107 L.h_ln_partintact -.00095892 L2.h_ln_networker_share -.10218456 .1710429 -.59742063 L2.h_ln_partintact -.00179896 .00386088 -.46594514 L3.h_ln_networker_share .13918647 .13567386 1.0258901 L3.h_ln_partintact .00293591 .0038584 .76091374 L4.h_ln_networker_share -.1806843 .06322369 -2.8578574 .00086121 .00348092 .24740889 L4.h ln partintact EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_networker_share 2.0532119 4.0891807 .50210839 .08260556 L.h_ln_partintact .91437981 11.069228 L2.h_ln_networker_share -1.3051038 2.852694 -.45749872 L2.h_ln_partintact .13600788 .10040005 1.3546594 L3.h_ln_networker_share -.55164507 2.2002853 -.25071524 L3.h_ln_partintact -.13803526 .10064508 -1.3715053 -.05061527 L4.h_ln_networker_share -.08060845 1.5925718 L4.h_ln_partintact .03077465 .0695907 .44222358 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintact .00002509 ln networker share .00017832 .025659 ln partintact Residuals correlation matrix u1 u2 u1 1.0000 0.2212 u2 1.0000 0.0000 GMM finished : 18:31:06

Starting Monte-Carlo loop : 18:31:07 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 18:31:14

Appendix 55 Estimation Results PVAR(1)-(4) ln_network_cc ln_partintact; All Re-

gions

. pvar ln_netw_cc ln_partintact, lag(1) gmm monte 1000 GMM started : 18:39:23 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ			
Result number of obse	s of the Estima ervations used :		
	: h_ln_netw_		
L.h_ln_partint		se_GMM t_GMM .06565131 11.539772 .00249309 1.508515	
EQ2: dep.var	: h_ln_parti	ntact	
L.h_ln_partint	_cc33769644 act .94521353	I se_GMM t_GMM .3510126396206349 .0220841 42.800632	
		istic is not calculated	
symmetric uu[2		ln_partintact	
	.00058057		
Residuals correlation matrix			
	u1	u2	
u1	1.0000		

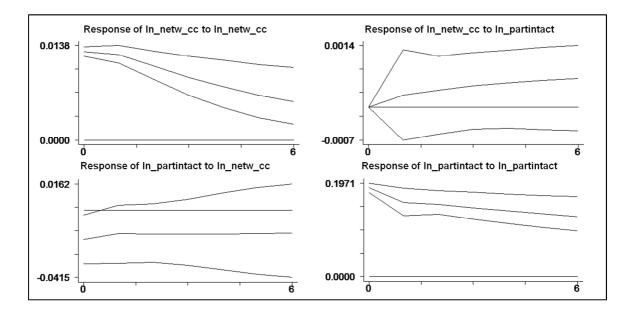
Starting Monte-Carlo loop : 18:39:25 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 18:39:31

0.0984

0.0320

u2

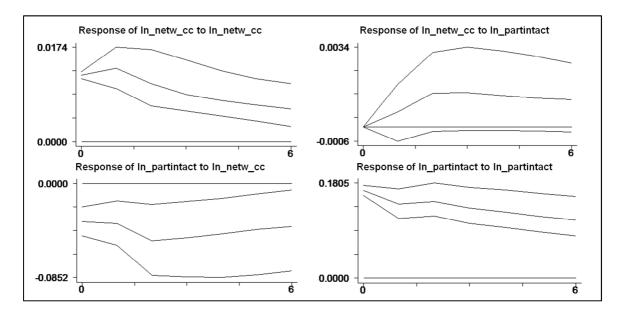
GMM finished : 18:39:25


1.0000

. pvar ln_netw_cc ln_partintact, lag(2) gmm monte 1000 GMM started : 18:42:31 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 462 $% \left({{\left({{{\left({{{}}}}} \right)}}}} \right.$ EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM L.h_ln_netw_cc .89372763 .0943462 9.4728526 L.h_ln_partintact .00215062 .00323724 .66433734 L2.h_ln_netw_cc -.04200119 .0692764 -.60628421 L2.h_ln_partintact -.0009812 .0032486 -.30203636 EQ2: dep.var : h_ln_partintact b GMM se GMM t GMM .48935631 -.00546786 L.h_ln_partintact .83672458 L2.h_ln_netw_cc -.06294173 .09352266 8.9467574 .54609712 -.11525739 L2.h_ln_partintact .11302083 .08098325 1.3956075 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintact .00030085 ln_netw_cc -.00014848 .03551978 ln_partintact Residuals correlation matrix1

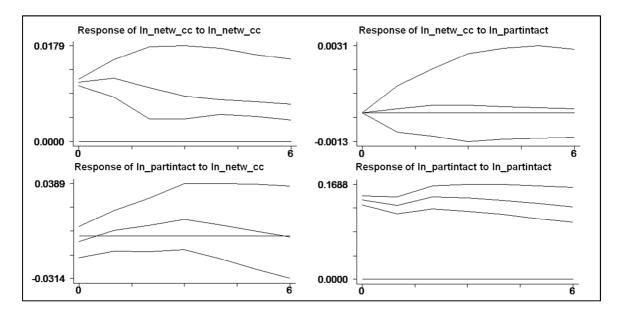
	ul	u2
ul	1.0000	
u2	-0.0449 0.3356	1.0000

GMM finished : 18:42:33


Starting Monte-Carlo loop : 18:42:33 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 18:42:39

. pvar ln_netw_cc ln_partintact, lag(3) gmm monte 1000 GMM started : 18:45:06 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 449 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM .78038175 .22504944 3.4676014 L.h_ln_netw_cc L.h_ln_partintact .00105299 .00439548 .23956264 L2.h_ln_netw_cc -.00828348 .20753065 -.0399145 .60768439 L2.h_ln_partintact .00285913 L3.h ln netw cc .07933057 .00470496 .07751063 1 02348 L3.h_ln_partintact -.00268732 .00312191 -.86079374 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM L.h_ln_netw_cc -.71292939 .54247025 -1.3142276 .09591077 L.h_ln_partintact .8464198 8.8250756 L2.h_ln_netw_cc -.43199564 .71384856 -.60516427 1.7335923 L2.h_ln_partintact .16159441 .09321362 L3.h_ln_netw_cc .94745578 .87980342 1.0768949 L3.h ln partintact -.06991291 .06068047 -1.1521485 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintact ln_netw_cc .0002833 ln_partintact -.00035505 02881945 Residuals correlation matrix u1 u2 u1 1.0000 u2 -0.1236 1.0000 0.0087

GMM finished : 18:45:07


Starting Monte-Carlo loop : 18:45:07 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 18:45:14

. pvar ln_netw_cc ln_partintact, lag(4) gmm monte 1000 GMM started : 18:47:48 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 436 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM .74879884 .23966186 3.1243972 L.h_ln_netw_cc .00607095 L.h_ln_partintact -.00341486 -.56249131 .46208501 L2.h_ln_netw_cc .07331515 .15866161 .00330456 L2.h_ln_partintact .0064947 .50880853 L3.h_ln_netw_cc -.01666934 .12741889 -.13082319 .00172998 .08556257 L3.h_ln_partintact .00383933 .45059517 .07108242 1.2037092 L4.h ln netw cc L4.h_ln_partintact -.00170054 .00366269 -.46428742 EQ2: dep.var : h_ln_partintact b_GMM se_GMM t_GMM .43372574 L.h_ln_netw_cc .29704703 .68487296 L.h_ln_partintact .92563272 .05833828 15.866644 .0150196 .36793315 .04082156 L2.h ln netw cc L2.h ln partintact .17444895 .06688928 2.6080254 .00068887 .22834246 .00301681 L3.h_ln_netw_cc -.10081411 .07672765 L3.h_ln_partintact -1.3139215 -.63372103 .25716618 L4.h_ln_netw_cc -2.4642471 L4.h_ln_partintact -.03988108 .05289786 -.75392612 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintact ln netw cc .00025454 .00007045 .02001672 ln_partintact Residuals correlation matrix u1 u2 u1 1.0000 u2 0.0315 1.0000 0.5116

GMM finished : 18:47:49

Starting Monte-Carlo loop : 18:47:50 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 18:47:57

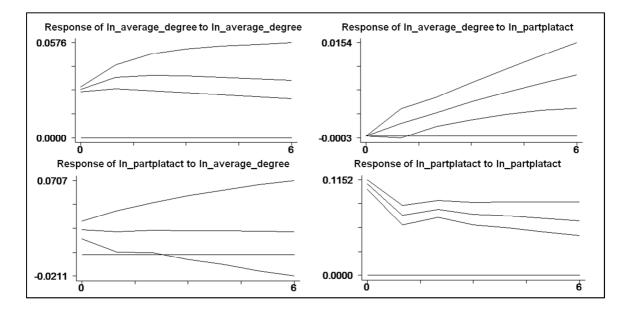
Appendix 56 Estimation Results PVAR(1)-(4) ln_average_degree ln_partplatact;

All Regions

. pvar ln_average_degree ln_partplatact, lag(1) gmm monte 1000 GMM started : 12:03:25 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM number of observations used : 488				
EQ1: dep.var : h_ln_average_degree				
b_GMM se_GMM t_GMM L.h_ln_average_degree .94604397 .02160445 43.789304 L.h_ln_partplatact .02822858 .00658604 4.2861249				
EQ2: dep.var : h_ln_partplatact				
b_GMM se_GMM t_GMM L.h_ln_average_degree .15212377 .1601807 .94970101 L.h_ln_partplatact .92690035 .04274966 21.682051				
just identified - Hansen statistic is not calculated				
symmetric uu[2,2] ln_average_degree ln_partplatact ln_average_degree .00115222 ln_partplatact .00113509 .02085542				
Residuals correlation matrix				

	u1	u2
ul	1.0000	
u2	0.2281 0.0000	1.0000

GMM finished : 12:03:27

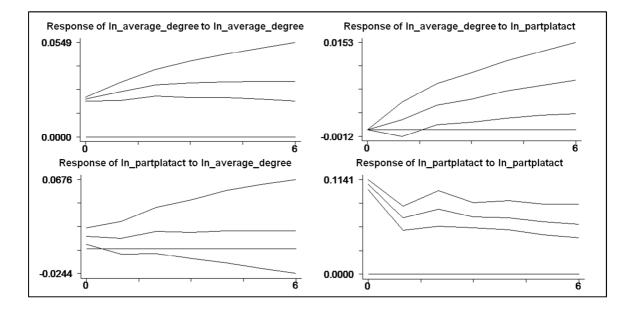

Starting Monte-Carlo loop : 12:03:27 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:03:33

. pvar ln_average_degree ln_partplatact, lag(2) gmm monte 1000 GMM started : 12:07:24 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM___ number of observations used : 475 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM 1.2367068 .14637028 8.4491655 L.h_ln_average_degree .0189876 .01276516 L.h_ln_partplatact 1.4874547 .13583169 -1.9689388 L2.h_ln_average_degree -.26744429 L2.h_ln_partplatact -.00110358 .01639371 -.06731721 EQ2: dep.var : h_ln_partplatact b GMM se GMM t GMM .50608864 L.h_ln_average_degree .20163445 .39841726 .65530321 L.h_ln_partplatact .06128582 10.692575 L2.h_ln_average_degree -.17580547 .27723663 -.63413509 L2.h_ln_partplatact .28849061 .06365213 4.5323013 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partplatact .00085466 ln_average_degree .00068727 .01261612 ln_partplatact Residuals correlation matrix 111 112 1.0000 u1

u2 0.2102 1.0000 0.0000

GMM finished : 12:07:26

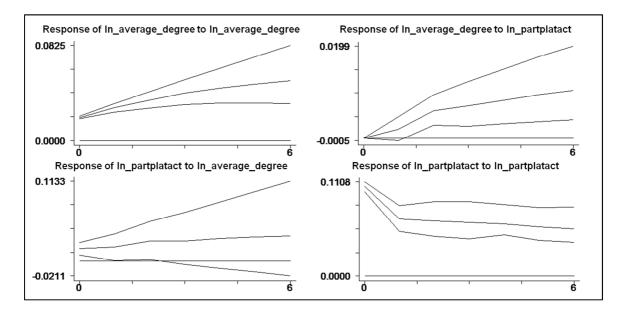
Starting Monte-Carlo loop : 12:07:27 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:07:33


. pvar ln_average_degree ln_partplatact, lag(3) gmm monte 1000 GMM started : 12:09:00 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 462 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM 1.1824534 .13985899 8.4546114 L.h_ln_average_degree .01654081 .01660958 .99585985 L.h_ln_partplatact -.283046 L2.h_ln_average_degree -.04585855 .162018 .00931223 L2.h_ln_partplatact .02243532 .4150703 .06034431 -2.4742601 L3.h_ln_average_degree -.14930752 L3.h_ln_partplatact -.01443709 .01180369 -1.2230995 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_average_degree .11666 .40521236 .28789842 L.h_ln_partplatact .62742046 .07858522 7.9839502 .h_ln_average_degree .14751408 L2.h_ln_partplatact .32924501 .47675419 L2.h_ln_average_degree .30941328 .10710201 3.0741254 L3.h_ln_average_degree -.22541155 .28046614 -.80370326 L3.h_ln_partplatact -.03337699 .12187827 -.27385511 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partplatact .0004773 ln_average_degree ln_partplatact .00026557 .01190852

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.1120 0.0160	1.0000

GMM finished : 12:09:01


Starting Monte-Carlo loop : 12:09:02 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:09:08

. pvar ln_average_degree ln_partplatact, lag(4) gmm monte 1000 GMM started : 12:10:59 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 449 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM 1.4022126 14.883104 L.h_ln_average_degree .09421506 .01800925 .01508917 L.h_ln_partplatact 1.1935219 L2.h_ln_average_degree -.27566768 .10714103 -2.5729423 .01932868 .77489055 L2.h_ln_partplatact .02494376 .09194525 L3.h_ln_average_degree -.03055186 - 33228316 L3.h_ln_partplatact -.03111655 .0132124 -2.3551011 L4.h_ln_average_degree -.09527844 .04544507 -2.0965627 L4.h ln partplatact -.00179248 .01089393 -.1645389 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_average_degree .45167346 .54317777 .83153893 .6388274 L.h_ln_partplatact .08199801 7.790767 L2.h_ln_average_degree -.0497821 .69827783 -.07129268.08309435 .19803036 2.3831987 L2.h_ln_partplatact -.93850672 L3.h_ln_average_degree -.43669695 .46531041 .05278081 .12561569 .42017692 L3.h_ln_partplatact .09883065 .23632856 L4.h_ln_average_degree .41819175 L4.h_ln_partplatact .02520323 .08096776 .3112749 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln average degree ln partplatact .00039945 ln average degree .0003514 .0113825 ln partplatact Residuals correlation matrix u1 u2 u1 1.0000 0.1660 u2 1.0000 0.0004

GMM finished : 12:11:00

Starting Monte-Carlo loop : 12:11:01 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:11:07

Appendix 57 Estimation Results PVA

ts **PVAR(1)-(4)**

ln_degree_centralization

In_partplatact; All Regions

. pvar ln_degr_centr ln_partplatact, lag(1) gmm monte 1000 GMM started : 12:21:23 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 487 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t GMM L.h_ln_degr_centr .873851 .05183686 16.858372 L.h_ln_partplatact .00277492 .0014161 1.9595462 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_degr_centr .73954085 .76599445 .96546501 L.h_ln_partplatact .91210848 .05123683 17.801814 just identified - Hansen statistic is not calculated symmetric uu[2,2]

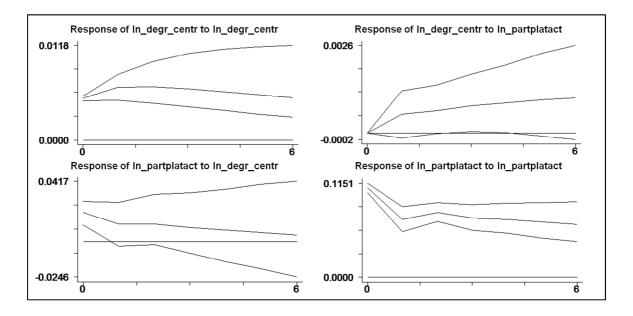
	ln_degr_centr	ln_partplatact
ln_degr_centr	.00006574	
ln_partplatact	.00005741	.01460113

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.0580 0.2015	1.0000

GMM finished : 12:21:25

Starting Monte-Carlo loop : 12:21:25 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:21:31

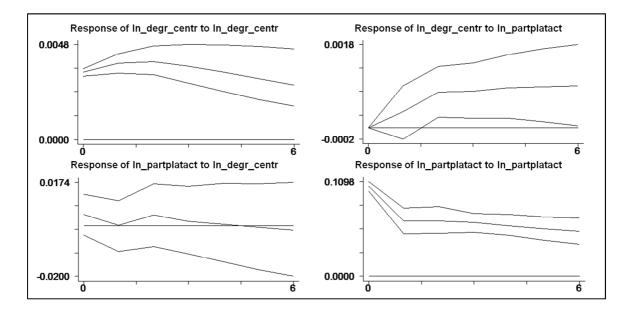

. pvar ln_degr_centr ln_partplatact, lag(2) gmm monte 1000 GMM started : 12:24:04 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM___ number of observations used : 474 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM 4.5085213 1.543494 .98587492 .21866924 L.h_ln_degr_centr .0041131 L.h_ln_partplatact .00634855 L2.h_ln_degr_centr -.05858827 .18516774 -.31640647 L2.h_ln_partplatact -.00417305 .00450462 -.92639264 EQ2: dep.var : h_ln_partplatact b GMM se GMM t GMM L.h_ln_degr_centr -.00962397 1.1857831 -.00811613 L.h_ln_partplatact .64813254 .08144914 7.9575122 L2.h_ln_degr_centr -.2953479 1.0126373 -.29166207 L2.h_ln_partplatact .30220292 .07897081 3.8267674 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partplatact .00005386 ln_degr_centr .00009064 .01242272 ln_partplatact

Residuals correlation matrix

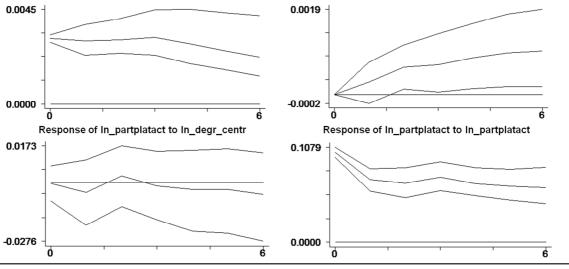
	u1	u2
u1	1.0000	
u2	0.1109 0.0158	1.0000

GMM finished : 12:24:06

Starting Monte-Carlo loop : 12:24:06 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:24:12



. pvar ln_degr_centr ln_partplatact, lag(3) gmm monte 1000 GMM started : 12:25:49 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM___ number of observations used : 461 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .85854894 .20700879 4.1474033 L.h_ln_degr_centr .00589311 .00396009 L.h_ln_partplatact 1.4881264 .77070986 L2.h_ln_degr_centr .15306225 .19859905 L2.h_ln_partplatact .00184915 .00490833 .37673609 L3.h_ln_degr_centr -.10079347 .05412989 -1.8620668 L3.h_ln_partplatact -.00563151 .00266685 -2.1116679 EQ2: dep.var : h ln partplatact b_GMM se_GMM t_GMM .98337282 L.h_ln_degr_centr .05031952 .05117034 .60848431 L.h_ln_partplatact .0773129 7.8704113 L2.h_ln_degr_centr .31117328 1.1694467 .26608589 L2.h_ln_partplatact .2386923 .08984514 2.6567078 L3.h_ln_degr_centr -.80519559 1.0098678 -.79732775 L3.h_ln_partplatact .07828936 .10519612 .74422285 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partplatact .00003625 ln_degr_centr ln_partplatact 6.451e-06 01093932 Residuals correlation matrix u1 u2


u1	1.0000	
u2	0.0103 0.8253	1.0000

GMM finished : 12:25:51

Starting Monte-Carlo loop : 12:25:51 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:25:58

. pvar ln_degr_centr ln_partplatact, lag(4) gmm monte 1000 GMM started : 12:27:30 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _ Results of the Estimation by system GMM_ number of observations used : 448 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .67602745 .22575206 2.9945571 L.h_ln_degr_centr 1.2209316 L.h_ln_partplatact .0037275 .003053 L2.h_ln_degr_centr .29754538 .22507206 1.3220005 L2.h_ln_partplatact .00277891 .00381714 .72800923 .08395962 L3.h_ln_degr_centr 0420456 5007836 L3.h_ln_partplatact -.00215998 .0027585 -.78302539 L4.h ln degr centr -.14387172 .05715339 -2.517291 L4.h ln partplatact -.00174486 .00228499 -.76361891 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t GMM L.h_ln_degr_centr .28878791 1.195286 .24160571 L.h_ln_partplatact .6867864 .07310635 9.3943474 .38414218 1.1418426 .33642306 L2.h_ln_degr_centr .18569052 .08026377 2.3135036 L2.h ln partplatact L3.h_ln_degr_centr -1.0795935 1.1537833 -.93569862 .14281509 1.223412 L3.h_ln_partplatact .11673508 -.19014772 -.16467993 .86606311 L4.h_ln_degr_centr L4.h_ln_partplatact -.06861668 .05891871 -1.1645992 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partplatact ln degr centr .00003112 ln_partplatact -6.068e-06 .01052674 Residuals correlation matrix u1 u2 u1 1.0000 u2 -0.0107 1.0000 0.8221 GMM finished : 12:27:32 Starting Monte-Carlo loop : 12:27:32 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:27:39 Response of In_degr_centr to In_degr_centr Response of In_degr_centr to In_partplatact 0.0045 0.0019

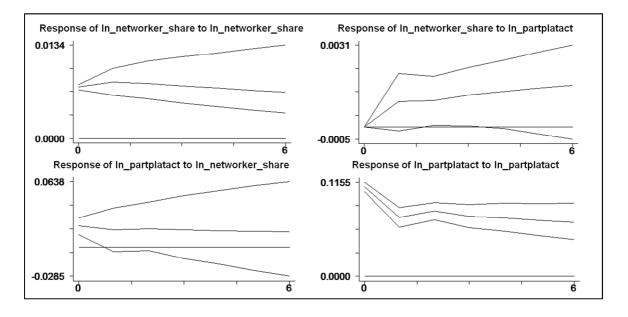
Appendix 58 Estimation Results PVAR(1)-(4) ln_networker_share ln_partplatact;

All Regions

. pvar ln_networker_share ln_partplatact, lag(1) gmm monte 1000 GMM started : 12:33:44 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM number of observations used : 488			
EQ1: dep.var : h_ln_networker_share			
b_GMM se_GMM t_GMM L.h_ln_networker_share .89296442 .04274417 20.890907 L.h_ln_partplatact .00292788 .00273538 1.0703735			
EQ2: dep.var : h_ln_partplatact			
b_GMM se_GMM t_GMM L.h_ln_networker_share .92844443 .77597585 1.1964862 L.h_ln_partplatact .91201518 .05100978 17.879221			
just identified - Hansen statistic is not calculated			
symmetric uu[2,2] ln_networker_share ln_partplatact			
ln_networker_share .00010512 ln_partplatact .00018673 .0210238			
Residuals correlation matrix			
ul u2			

u1	1.0000	
u2	0.1227 0.0066	1.0000

GMM finished : 12:33:46

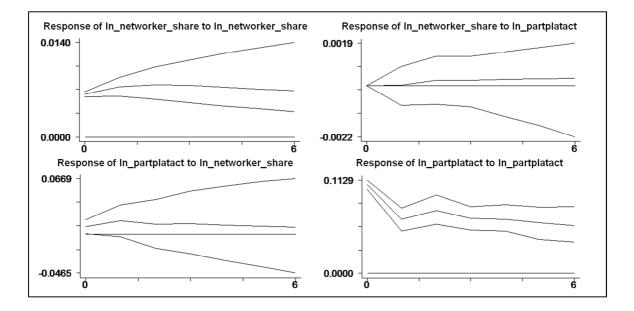

Starting Monte-Carlo loop : 12:33:46 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:33:52

. pvar ln_networker_share ln_partplatact, lag(2) gmm monte 1000 GMM started : 12:37:02 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 475 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_networker_share 1.0702407 .14894342 7.185552 .00602266 L.h_ln_partplatact .00857273 1.4234115 -.95978574 L2.h_ln_networker_share -.11293912 .11767118 L2.h_ln_partplatact -.005972 .00733156 -.81456174 EQ2: dep.var : h_ln_partplatact b GMM se GMM t GMM L.h_ln_networker_share .4408349 1.7227011 .2558975 L.h_ln_partplatact .65964926 .06228695 10.590489 L2.h_ln_networker_share -.41961512 1.1916667 -.35212456 L2.h_ln_partplatact .28816668 .06741704 4.2743895 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partplatact ln_networker_share .00005422 .00015223 .01252079 ln_partplatact Residuals correlation matrix u1 u2

u1	1.0000	
u2	0.1857 0.0000	1.0000

GMM finished : 12:37:03

Starting Monte-Carlo loop : 12:37:04 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:37:10

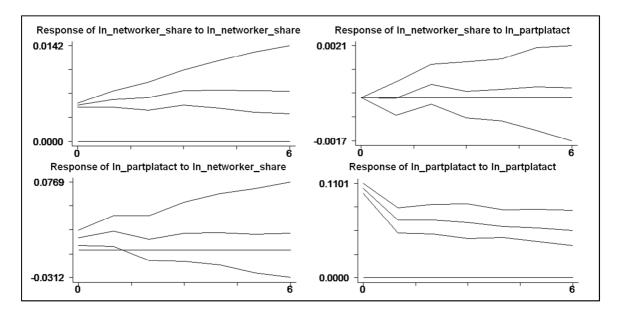


. pvar ln_networker_share ln_partplatact, lag(3) gmm monte 1000 GMM started : 12:39:51 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 462 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_networker_share 1.1675625 .12678977 9.2086493 .00478658 .01553604 L.h_ln_partplatact .00007436 L2.h_ln_networker_share -.14751397 .1114259 -1.3238751 .22601028 L2.h_ln_partplatact .00203025 .00898299 .06076466 -.84586242 L3.h_ln_networker_share -.05139854 L3.h_ln_partplatact -.00170138 .00470457 -.36164479 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_networker_share 1.7222183 1.6866219 1.0211052 L.h_ln_partplatact .60756174 .07622642 7.9704877 L2.h_ln_networker_share -2.1760223 1.5233538 -1.4284418 L2.h_ln_partplatact .33895018 .09880757 3.430407 .39951749 .8682111 .46016169 L3.h ln networker share L3.h_ln_partplatact -.01730711 .10949664 -.15806066 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partplatact .00003971 ln_networker_share ln_partplatact .00005723 .01159338 Residuals correlation matrix

ul 1.0000 u2 0.0850 1.0000 0.0681

GMM finished : 12:39:53

Starting Monte-Carlo loop : 12:39:54 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:40:00



. pvar ln_networker_share ln_partplatact, lag(4) gmm monte 1000 GMM started : 12:42:33 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM__ number of observations used : 449 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_networker_share 1.1541237 .12572464 9.1797737 .00401519 -.00976811 L.h_ln_partplatact -.00003922 L2.h_ln_networker_share -.13353418 .16861954 -.79192585 .00724929 .74637332 L2.h_ln_partplatact .00541068 .15692497 L3.h_ln_networker_share .16073673 1.0242903 L3.h_ln_partplatact -.00695222 .00421142 -1.6508038 L4.h_ln_networker_share -.21786901 .07855094 -2.7736017 L4.h ln partplatact .00194188 .00320396 .6060883 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_networker_share 2.3177151 1.8215614 1.2723782 L.h_ln_partplatact .64296103 .08050761 7.9863386 L2.h_ln_networker_share -3.5434985 1.9025207 -1.8625283 L2.h ln partplatact .22986064 .08356163 2.7507918 L3.h_ln_networker_share 2.2753273 1.0754905 2.1156182 L3.h_ln_partplatact .04465983 .11459895 .38970543 -1.2907919 -.90779414 .70328467 L4.h_ln_networker_share L4.h_ln_partplatact .01250024 .0730548 .17110777 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln networker share ln partplatact .00002843 ln networker share .00007341 .01103592 ln_partplatact Residuals correlation matrix

	u1	u2
ul	1.0000	
u2	0.1314 0.0053	1.0000

GMM finished : 12:42:34

Starting Monte-Carlo loop : 12:42:34 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 12:42:41

Appendix 59 Estimation Results PVAR(1)-(4) ln_network_cc ln_partplatact; All

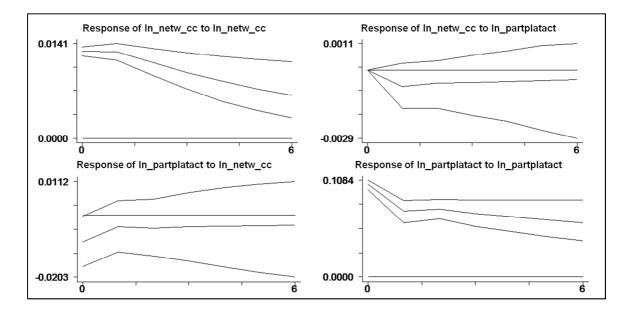
Regions

. pvar ln_netw_cc ln_partplatact, lag(1) gmm monte 1000			
GMM started : 13:02:37 accumulating matrices equation 1,2,calculating b2sls			
calculating big ZuuZ matrix			
finished accumulating ZuuZ			
Results of the Estimat	ion by syst	em GMM	
number of observations used :			
EQ1: dep.var : h_ln_netw_o	c		
b_GMM	se_GMM	t_GMM	
L.h_ln_netw_cc .79959317	.05959101	13.418017	
L.h_ln_partplatact .00331794	.00533213	.62225349	
EQ2: dep.var : h_ln_partpl	atact		
b_GMM	se_GMM	t_GMM	
L.h_ln_netw_cc .06052555	.1668602	.36273208	
L.h_ln_partplatact .93071505	.04496494	20.698682	
just identified - Hansen stati			
Just identified - nansen stati	.5010 15 1100	. carcuraceu	
symmetric uu[2,2]			
ln_netw_cc	c ln_partpl	atact	
ln_netw_cc .00089251			
ln_partplatact .00025062	.012	04809	
Residuals correlation matrix			

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.0761 0.0975	1.0000

GMM finished : 13:02:39

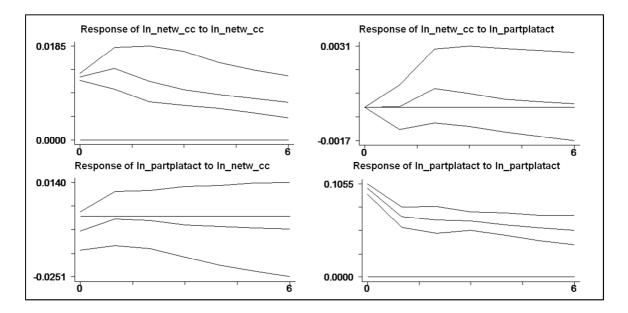

Starting Monte-Carlo loop : 13:02:39 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 13:02:45

. pvar ln_netw_cc ln_partplatact, lag(2) gmm monte 1000 GMM started : 13:04:32 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM_ number of observations used : 462 $% \left({{\left({{{\left({{{}}}}} \right)}}}} \right.$ EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM .91184267 .09093119 10.027832 L.h_ln_netw_cc L.h_ln_partplatact -.00589806 .00608073 -.96995929 L2.h_ln_netw_cc -.04196582 .06938769 -.60480206 L2.h_ln_partplatact .00545534 .00560026 .97412244 EQ2: dep.var : h_ln_partplatact b GMM se GMM t GMM L.h_ln_netw_cc .16661205 .26151114 .63711262 .06943765 L.h_ln_partplatact .70939685 10.216314 L2.h_ln_netw_cc -.14003663 .24298699 -.57631331 L2.h_ln_partplatact .22916014 .06780046 3.3799204 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partplatact .00030646 ln_netw_cc -.00009063 .01079055 ln_partplatact Residuals correlation matrix u1 u2

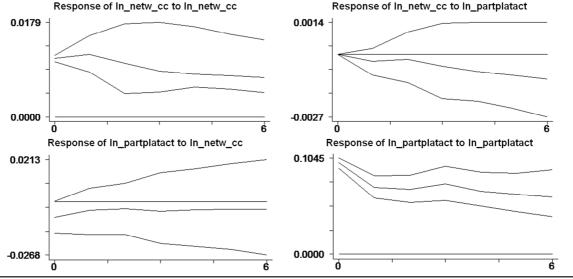
u1	1.0000	
u2	-0.0492 0.2914	1.0000

GMM finished : 13:04:33

Starting Monte-Carlo loop : 13:04:34 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 13:04:40


GMM started : 13:11:40 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM___ number of observations used : 449 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM .80077274 .22670243 3.5322636 L.h_ln_netw_cc .00753926 -.52221925 L.h_ln_partplatact -.00393714 L2.h_ln_netw_cc -.00735643 .21363253 -.03443496 L2.h_ln_partplatact .00958035 .00752161 1.2737105 L3.h ln netw cc 08128624 08006729 1 015224 L3.h_ln_partplatact -.00670016 .00537189 -1.2472621 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM .43290719 L.h_ln_netw_cc .1237157 .28577881 .06745627 L.h_ln_partplatact .67799282 10.05085 L2.h_ln_netw_cc -.15347131 .19575951 -.78397879 .08830561 2.0116419 L2.h_ln_partplatact .17763928 -.46922794 L3.h ln netw cc -.06431335 .13706207 L3.h_ln_partplatact .07199151 .10140081 .70996972 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partplatact .00028968 ln_netw_cc ln_partplatact -.00005308 01011566 Residuals correlation matrix u2 u1

. pvar ln_netw_cc ln_partplatact, lag(3) gmm monte 1000


u1 1.0000 u2 -0.0303 1.0000 0.5213

GMM finished : 13:11:41

Starting Monte-Carlo loop : 13:11:41 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 13:11:48

. pvar ln_netw_cc ln_partplatact, lag(4) gmm monte 1000 GMM started : 13:13:26 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 436 EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM .76646184 .23701294 3.2338396 L.h_ln_netw_cc L.h_ln_partplatact -.0053727 .00474101 -1.1332382 .46974956 L2.h_ln_netw_cc .07626656 .16235578 .60627988 L2.h_ln_partplatact .00465898 .00768454 L3.h_ln_netw_cc - 0163554 .12971881 -.12608347 L3.h_ln_partplatact .00017825 .00573126 .03110114 .08303084 .06987267 L4.h ln netw cc 1.1883165 L4.h_ln_partplatact -.00303738 .00548546 -.55371445 EQ2: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM .30811151 L.h_ln_netw_cc .07693896 .2497114 L.h_ln_partplatact .72992357 .06974414 10.465734 L2.h ln netw cc -.02825097 .20929388 -.13498232 .17578374 .08823806 1.9921533 L2.h ln partplatact L3.h_ln_netw_cc -.08362088 .15790013 -.52958083 .12343845 .99789721 L3.h_ln_partplatact .12317888 .03927568 .1258208 .31215569 L4.h_ln_netw_cc L4.h_ln_partplatact -.093322 .06328296 -1.4746783 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partplatact .00025798 ln netw cc ln_partplatact -.00006979 .00996897 Residuals correlation matrix u1 u2 u1 1.0000 u2 -0.0430 1.0000 0.3700 GMM finished : 13:13:27 Starting Monte-Carlo loop : 13:13:28 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 13:13:35 Response of In_netw_cc to In_netw_cc 0.0179 0.0014

Appendix 60 Estimation Results PVAR(1)-(4) ln_average_degree ln_partintactplat;

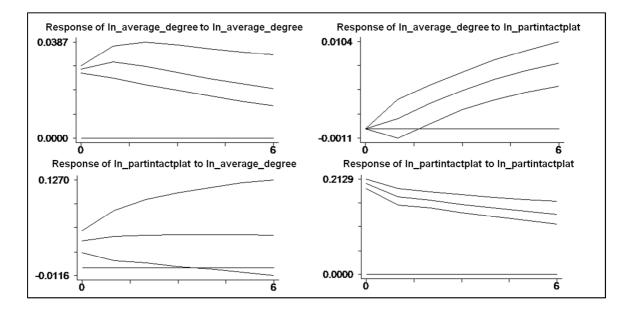
All Regions

. pvar ln_average_degree ln_partintactplat, lag(1) gmm monte 1000 GMM started : 13:22:29 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 488 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM L.h_ln_average_degree .88929072 .02293543 38.77366 L.h_ln_partintactplat .01084766 .0021707 4.9973035 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_average_degree .26605246 .23527186 1.1308299 L.h_ln_partintactplat .93272181 .01997231 46.700744 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintactplat .00100048 ln_average_degree ln_partintactplat .0014234 .08984335

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.1491 0.0010	1.0000

GMM finished : 13:22:31

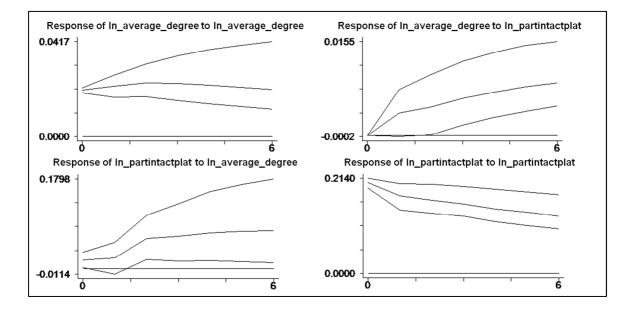

Starting Monte-Carlo loop : 13:22:31 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 13:22:37

. pvar ln_average_degree ln_partintactplat, lag(2) gmm monte 1000 GMM started : 14:12:07 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 475 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM 1.0958445 .13917477 7.8738732 L.h_ln_average_degree L.h_ln_partintactplat .00602672 .00657816 .9161714 .12186687 L2.h_ln_average_degree -.18432659 -1.5125242 L2.h_ln_partintactplat .00291566 .0073424 .39709869 EQ2: dep.var : h_ln_partintactplat b GMM se GMM t GMM .44063273 .76986392 .57235145 L.h_ln_average_degree L.h_ln_partintactplat .8532344 .04585459 18.607392 L2.h_ln_average_degree -.29290977 .56973639 -.51411455 L2.h_ln_partintactplat .0838145 .04156283 2.0165732 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintactplat ln_average_degree .000762 ln_partintactplat .00106293 .04269564 Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.1864 0.0000	1.0000

GMM finished : 14:12:08

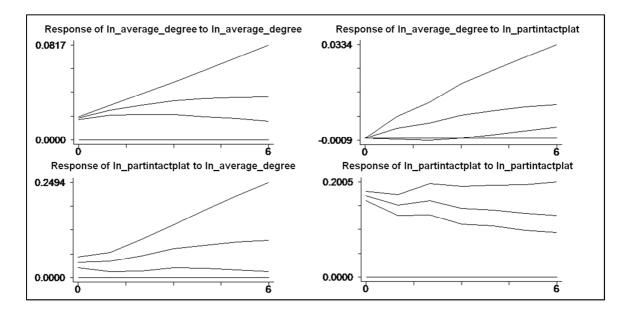
Starting Monte-Carlo loop : 14:12:08 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:12:14


. pvar ln_average_degree ln_partintactplat, lag(3) gmm monte 1000 GMM started : 14:17:51 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM____ number of observations used : 462 EQ1: dep.var : h_ln_average_degree b_GMM se_GMM t_GMM 1.0637382 .13497449 7.8810314 L.h_ln_average_degree .01797572 L.h_ln_partintactplat .01142633 1.5731832 L2.h_ln_average_degree -.00094312 .13969409 -.00675132 L2.h_ln_partintactplat -.01144974 .01137949 -1.0061728 L3.h_ln_average_degree -.12365687 .06144308 -2.0125436 L3.h_ln_partintactplat .00093204 .00653756 .14256713 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM .33649786 .84933546 .39618958 L.h_ln_average_degree L.h_ln_partintactplat .85344133 .08535782 9.9983966 .91121517 L2.h_ln_average_degree 1.6189196 1.7766601 L2.h_ln_partintactplat .0744483 .07737685 .96215208 L3.h_ln_average_degree -1.5273898 .5122795 -2.9815556 .04996777 -.49556101 L3.h_ln_partintactplat -.02476208 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintactplat .00041616 ln_average_degree ln_partintactplat .00035176 .04170635

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.0842 0.0707	1.0000

GMM finished : 14:17:52


Starting Monte-Carlo loop : 14:17:53 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:17:59

. pvar ln_average_degree ln_partintactplat, lag(4) gmm monte 1000 GMM started : 14:22:27 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _ Results of the Estimation by system GMM_ number of observations used : 449 EQ1: dep.var : h_ln_average_degree se_GMM b_GMM t_GMM 1.3149601 .11278928 11.658556 L.h_ln_average_degree .02017364 .01507857 1.3379015 L.h_ln_partintactplat L2.h_ln_average_degree -.20618117 .09962915 -2.0694865 L2.h_ln_partintactplat -.0135218 .01401466 -.96483249 L3.h_ln_average_degree -.08126177 .09542447 -.85158205 .00349399 .00917603 L3.h_ln_partintactplat .38077353 L4.h_ln_average_degree -.05458084 .04628902 -1.1791313 L4.h_ln_partintactplat -.00538722 .00835431 -.64484345 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_average_degree .40131211 .66454643 .60388874 .88712683 .06861744 L.h_ln_partintactplat 12.928591 .21015272 L2.h_ln_average_degree .83453786 .25181927 .14800105 .06689293 L2.h_ln_partintactplat 2.2125065 .34921692 1.0087698 .34618099 L3.h_ln_average_degree L3.h_ln_partintactplat -.13988446 .08111691 -1.7244797 L4.h_ln_average_degree -.75201272 .65101049 -1.1551469 L4.h_ln_partintactplat .03040853 .06021737 .50497941 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_average_degree ln_partintactplat ln average degree .00035032 .00074113 .03082665 ln partintactplat Residuals correlation matrix u1 u2 u1 1.0000 u2 0.2263 1.0000 0.0000

GMM finished : 14:22:29

Starting Monte-Carlo loop : 14:22:29 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:22:36

Appendix 61 Estimation Results P

PVAR(1)-(4)

In_degree_centralization

In_partintactplat; All Regions

. pvar ln_degr_centr ln_partintactplat, lag(1) gmm monte 1000 GMM started : 14:27:41 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ____ Results of the Estimation by system GMM____ number of observations used : 487 EQ1: dep.var : h_ln_degr_centr b GMM se GMM t GMM L.h_ln_degr_centr .8221942 .04554647 19.588774 L.h_ln_partintactplat .00043391 .00049616 .87454941 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_degr_centr .66830792 1.0783618 .61974371 L.h_ln_partintactplat .93032054 .02077232 44.786553 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintactplat .00006678 ln_degr_centr

.00017656

Residuals correlation matrix

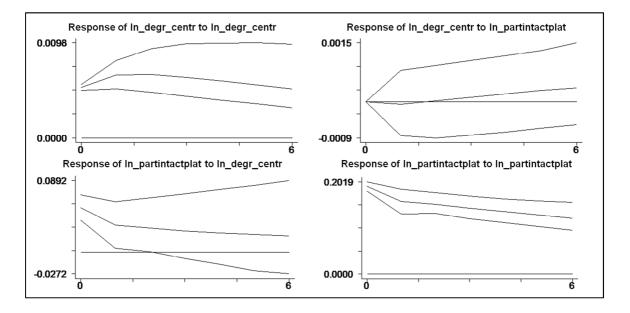
ln_partintactplat

	u1	u2
u1	1.0000	
u2	0.0993 0.0284	1.0000

GMM finished : 14:27:42

Starting Monte-Carlo loop : 14:27:43 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:27:49

.04760017

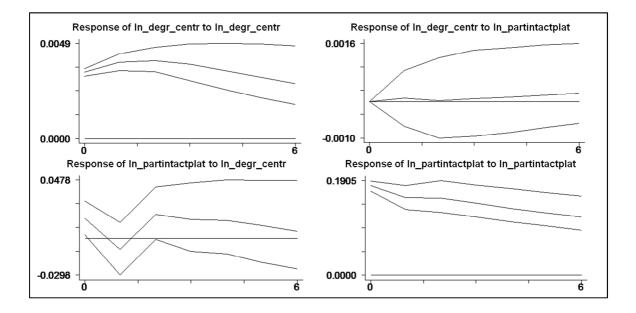

. pvar ln_degr_centr ln_partintactplat, lag(2) gmm monte 1000 GMM started : 14:31:20 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 474 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .98880679 .21344882 4.6325241 L.h_ln_degr_centr .00089111 .00232682 L.h_ln_partintactplat .38297451 L2.h_ln_degr_centr -.06183046 .18929151 -.32664149 L2.h_ln_partintactplat -.00029218 .00228053 -.12812029 EQ2: dep.var : h_ln_partintactplat b GMM se GMM t GMM L.h_ln_degr_centr -1.3867926 2.3337148 -.59424252 L.h_ln_partintactplat .82202334 .08057502 10.201962 L2.h_ln_degr_centr 1.1199499 1.9906658 .56260066 .11761135 L2.h_ln_partintactplat .06973497 1.6865477 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintactplat .00005431 ln_degr_centr .00024109 .04018211 ln_partintactplat Residuals correlation matrix 2

	u1	u2
u1	1.0000	
u2	0.1634	1.0000

0.0004

GMM finished : 14:31:21

Starting Monte-Carlo loop : 14:31:21 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:31:27

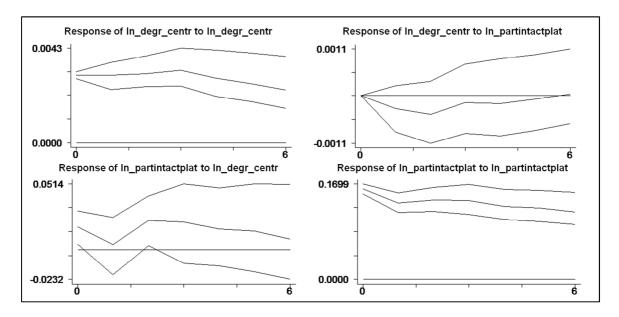

GMM started : 14:33:34 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 461 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .86541039 .20744783 4.1717013 L.h_ln_degr_centr .00248237 L.h_ln_partintactplat .00259932 .95500607 L2.h_ln_degr_centr .15521847 .20448008 .75908848 .002582 -.93645647 L2.h_ln_partintactplat -.00241793 L3.h_ln_degr_centr -.11079638 .05963212 -1.8579984 L3.h_ln_partintactplat .00052142 .00151083 .3451222 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_degr_centr -1.0204717 2.7190374 -.37530622 L.h_ln_partintactplat .8163246 .08452205 9.6581255 L2.h_ln_degr_centr 5.0679022 3.8411865 1.3193585 L2.h_ln_partintactplat .1705624 .08626849 1.9771112 L3.h_ln_degr_centr -4.8167513 2.7336229 -1.7620394 L3.h_ln_partintactplat -.05875324 .06413413 -.91609941 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintactplat .00003674 ln_degr_centr ln_partintactplat .00002332 .03476998 Residuals correlation matrix

. pvar ln_degr_centr ln_partintactplat, lag(3) gmm monte 1000

	u1	u2
u1	1.0000	
u2	0.0206 0.6593	1.0000

GMM finished : 14:33:35

Starting Monte-Carlo loop : 14:33:36 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:33:42



. pvar ln_degr_centr ln_partintactplat, lag(4) gmm monte 1000 GMM started : 14:35:43 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 448 EQ1: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM .2287762 3.0477259 L.h_ln_degr_centr .69724717 L.h_ln_partintactplat -.00097656 .00182348 -.53554861 L2.h_ln_degr_centr .29160629 .2297104 1.2694518 L2.h_ln_partintactplat .00040929 .0019196 .21321552 .03170144 L3.h_ln_degr_centr .08272769 38320223 L3.h_ln_partintactplat .00236306 .0019027 1.2419503 L4.h_ln_degr_centr -.1472266 .05584333 -2.6364224 L4.h_ln_partintactplat -.00128957 .00146757 -.87871232 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_degr_centr .72150539 1.750735 .41211571 L.h_ln_partintactplat .8277497 .06362337 13.010153 L2.h_ln_degr_centr 1.8123341 2.035884 .89019516 2.6132903 .0695476 L2.h ln partintactplat .18174808 -1.474709 1.9207039 -.76779613 L3.h_ln_degr_centr L3.h_ln_partintactplat .00396051 .07064206 .05606446 -2.2646583 1.8968661 -1.1938946 L4.h_ln_degr_centr L4.h_ln_partintactplat -.06636729 .04777489 -1.3891667 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_degr_centr ln_partintactplat ln degr centr .00003139 .00005808 .02681609 ln partintactplat Residuals correlation matrix u1 u2 u1 1.0000 0.0633 u2 1.0000

GMM finished : 14:35:45

0.1813

Starting Monte-Carlo loop : 14:35:45 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:35:52

Appendix 62 EstimationResultsPVAR(1)-(4)In_networker_share

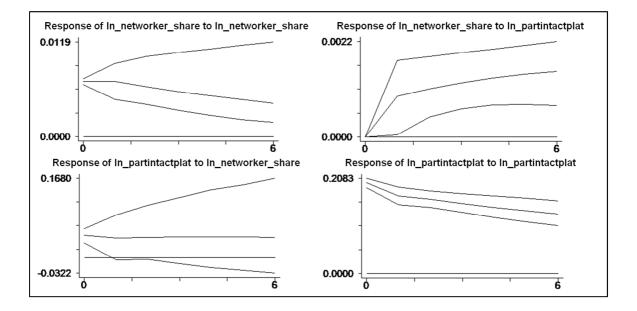
In_partintactplat; All Regions

. pvar ln_networker_share ln_partintactplat, lag(1) gmm monte 1000 GMM started : 14:39:07 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 488 EQ1: dep.var : h_ln_networker_share b_GMM se GMM t. GMM L.h_ln_partintactplat .00159457 .00111622 1.4285519 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_networker_share 1.9800994 1.3431222 1.4742512 L.h_ln_partintactplat .91766941 .02643065 34.71989 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintactplat .00009293 ln_networker_share ln_partintactplat .09199681

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.0627 0.1665	1.0000

GMM finished : 14:39:09


Starting Monte-Carlo loop : 14:39:09 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:39:15

. pvar ln_networker_share ln_partintactplat, lag(2) gmm monte 1000 GMM started : 14:48:45 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 475 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM .96527313 .18385087 L.h_ln_networker_share 5.250305 L.h_ln_partintactplat .00466391 .00263375 1.7708272 L2.h_ln_networker_share -.06702253 .12715798 -.52708075 L2.h_ln_partintactplat -.00301599 .00334891 -.90058771 EQ2: dep.var : h_ln_partintactplat b GMM se GMM t GMM L.h_ln_networker_share .20437336 3.867395 .05284523 L.h_ln_partintactplat .85606289 .04925298 L2.h_ln_networker_share .28480385 2.4750757 .04925298 17.380937 .11506874 L2.h_ln_partintactplat .08190154 .04887741 1.6756523 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintactplat ln_networker_share .00004796 ln_partintactplat .00032771 .04157524 Residuals correlation matrix u1 u2

u1	1.0000	
u2	0.2324 0.0000	1.0000

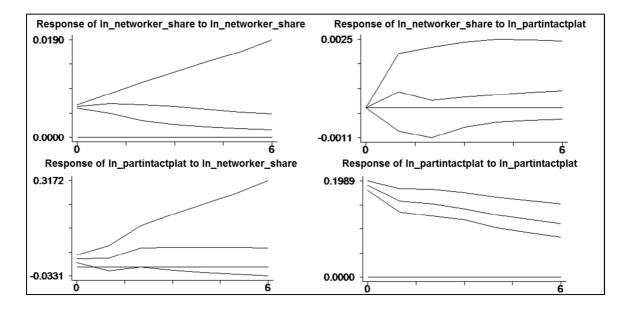
GMM finished : 14:48:47

Starting Monte-Carlo loop : 14:48:47 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:48:53

. pvar ln_networker_share ln_partintactplat, lag(3) gmm monte 1000 GMM started : 14:54:32 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM___ number of observations used : 462 EQ1: dep.var : h_ln_networker_share se_GMM b_GMM t_GMM .18174794 5.9935302 L.h_ln_networker_share 1.0893118 .0045935 L.h_ln_partintactplat .00307722 .66990699 L2.h_ln_networker_share -.13343184 .11047019 -1.2078537 .0049793 -.88784162 L2.h_ln_partintactplat -.00442083 L3.h_ln_networker_share -.03301951 L3.h_ln_partintactplat .00214544 .0797753 -.41390644 .00260213 .82449398 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_networker_share 1.0326975 4.2717647 .24174963 L.h_ln_partintactplat .83287063 .07606685 10.949194 1.634446 1.278231 L2.h_ln_networker_share 5.6358491 3.4481708 L2.h_ln_partintactplat .10147228 .07938494 L3.h_ln_networker_share -5.3761588 2.5290344 -2.1257753 L3.h_ln_partintactplat -.02132803 .0530866 -.40175913 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintactplat ln_networker_share .0000359

.00017677

Residuals correlation matrix

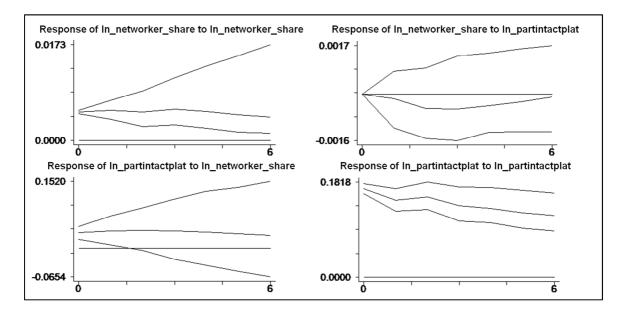

ln_partintactplat

	u1	u2
u1	1.0000	
u2	0.1544 0.0009	1.0000

GMM finished : 14:54:33

Starting Monte-Carlo loop : 14:54:34 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 14:54:41

.03657723


. pvar ln_networker_share ln_partintactplat, lag(4) gmm monte 1000 GMM started : 15:02:31 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _ Results of the Estimation by system GMM_ number of observations used : 449 EQ1: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_networker_share 1.0647989 .18872703 5.6420054 .00341946 L.h_ln_partintactplat -.00099039 -.28963457 L2.h_ln_networker_share -.10664316 .17100782 -.6236157 L2.h_ln_partintactplat -.00106832 .00350274 -.30499521 .14118072 .98727842 L3.h_ln_networker_share .14299991 L3.h_ln_partintactplat .00187375 .0032679 .5733807 L4.h ln networker share -.19381423 .06572573 -2.9488336 L4.h_ln_partintactplat .00083406 .00302306 .27589793 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_networker_share 1.850057 3.4513024 .53604604 L.h_ln_partintactplat .86595326 .07179077 12.062182 L2.h_ln_networker_share -1.8821727 2.5284165 -.74440767 L2.h ln partintactplat .15706688 .08652743 1.8152264 .43538331 L3.h ln networker share 1.867205 .23317381 L3.h_ln_partintactplat -.11252474 .09334129 -1.2055194 L4.h_ln_networker_share -.59609012 1.4301288 -.4168087 L4.h_ln_partintactplat .03407004 .06732601 .5060457 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_networker_share ln_partintactplat ln networker share .00002584 .02976265 .00017486 ln partintactplat

Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	0.1986 0.0000	1.0000

GMM finished : 15:02:33

Starting Monte-Carlo loop : 15:02:33 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:02:40

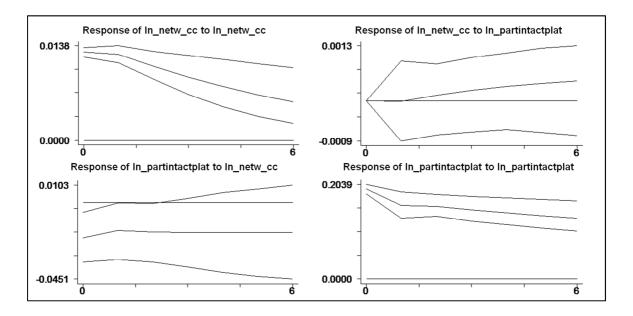
Appendix 63 Estimation Results PVAR(1)-(4) ln_network_cc ln_partintactplat; All

Regions

. pvar ln_netw_cc ln_partintactplat, lag(1) gmm monte 1000 GMM started : 15:11:16 accumulating matrices equation 1,2,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM number of observations used : 475
EQ1: dep.var : h_ln_netw_cc
b_GMM se_GMM t_GMM L.h_ln_netw_cc .76052441 .06592408 11.536367 L.h_ln_partintactplat .00348952 .00242136 1.4411417
b_GMM se_GMM t_GMM L.h_ln_netw_cc33270154 .3418368497327582 L.h_ln_partintactplat .94850428 .0203189 46.680893
symmetric uu[2,2] ln_netw_cc ln_partintactplat
ln_netw_cc .00084386 ln_partintactplat .00054338 .04313025
Residuals correlation matrix
u1 u2

uz	uı	
	1.0000	u1
1.0000	0.0897 0.0507	u2

GMM finished : 15:11:18

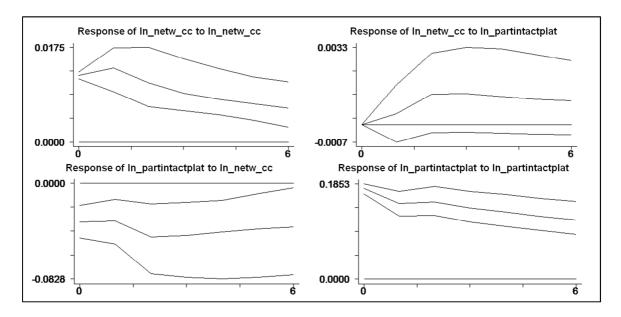

Starting Monte-Carlo loop : 15:11:19 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:11:25

. pvar ln_netw_cc ln_partintactplat, lag(2) gmm monte 1000 GMM started : 15:16:50 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 462 $% \left({{\left({{{\left({{{}}}}} \right)}}}} \right.$ EQ1: dep.var : h_ln_netw_cc b_GMM se_GMM t_GMM .89638028 .09423738 9.5119398 L.h_ln_netw_cc L.h_ln_partintactplat .0004789 .00311461 .15376017 L2.h_ln_netw_cc -.04322559 .06917921 -.62483498 L2.h_ln_partintactplat .00047415 .00310694 .15261019 EQ2: dep.var : h_ln_partintactplat b GMM se GMM t GMM L.h_ln_netw_cc .00023723 .49809739 .00047627 .82116565 L.h_ln_partintactplat .08236436 9.9699151 L2.h_ln_netw_cc -.09898159 .54005172 -.18328169 L2.h_ln_partintactplat .13042262 .07160155 1.8215056 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintactplat .00030151 ln_netw_cc -.00017921 .03810207 ln_partintactplat Residuals correlation matrix

	u1	u2
u1	1.0000	
u2	-0.0521 0.2636	1.0000

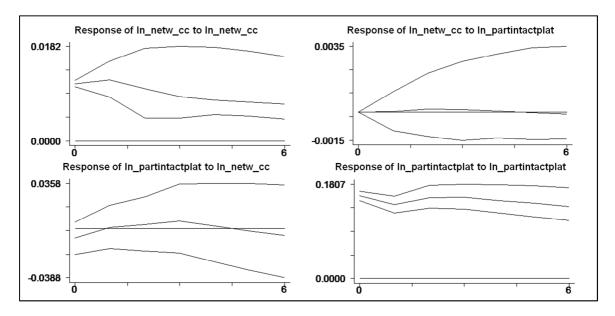
GMM finished : 15:16:51

Starting Monte-Carlo loop : 15:16:52 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:16:58


GMM started : 15:18:53 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ___ Results of the Estimation by system GMM____ number of observations used : 449 EQ1: dep.var : h_ln_netw_cc se_GMM b_GMM t_GMM .78292558 .22482961 3.4823063 L.h_ln_netw_cc L.h_ln_partintactplat -.00034701 .00428107 -.08105701 L2.h_ln_netw_cc -.00759388 .20846699 -.03642726 .00371967 L2.h_ln_partintactplat .00455129 .81727844 L3.h ln netw cc .07928058 0780639 1.0155857 L3.h_ln_partintactplat -.00243538 .00304311 -.8002921 EQ2: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_netw_cc -.57326894 .50547117 -1.1341279 .08224565 10.142209 L.h_ln_partintactplat .83415261 .66323527 -.70103485 L2.h_ln_netw_cc -.46495104 L2.h_ln_partintactplat .15684412 .0792659 1.9787085 .80983779 .79555906 1.017948 L3.h ln netw cc L3.h_ln_partintactplat -.05216696 .05846577 -.89226506 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintactplat ln_netw_cc .00028433 ln_partintactplat -.00033381 .03212163 Residuals correlation matrix 111 1 112

. pvar ln_netw_cc ln_partintactplat, lag(3) gmm monte 1000

	uı	uz
u1	1.0000	
u2	-0.1096 0.0201	1.0000


GMM finished : 15:18:54

Starting Monte-Carlo loop : 15:18:55 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:19:01

. pvar ln_netw_cc ln_partintactplat, lag(4) gmm monte 1000 GMM started : 15:21:06 accumulating matrices equation 1,2, calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ __ Results of the Estimation by system GMM_ number of observations used : 436 EQ1: dep.var : h_ln_netw_cc se_GMM b_GMM t_GMM .75139076 .23838653 3.151985 L.h_ln_netw_cc L.h_ln_partintactplat -.00413509 .00509124 -.81219656 L2.h_ln_netw_cc .07463712 .15926477 .46863543 .61167887 L2.h_ln_partintactplat .00344655 .00563457 L3.h_ln_netw_cc -.01711709 .12800712 -.13371982 .00210278 L3.h_ln_partintactplat .00380648 .5524196 .08597575 .06997869 1.2285991 L4.h ln netw cc L4.h_ln_partintactplat -.00176833 .00366487 -.48250817 EQ2: dep.var : h_ln_partintactplat t_GMM b GMM se_GMM L.h_ln_netw_cc .27791095 .46067302 .60327159 L.h_ln_partintactplat .88746278 .05465592 16.237269 .35870118 L2.h ln netw cc -.04723068 -.13167138 .06188155 L2.h ln partintactplat .18325828 2.9614366 L3.h_ln_netw_cc -.03315966 .20932498 -.15841232 L3.h_ln_partintactplat -.05094993 .07155229 -.71206567 -.50875837 .24366646 -2.0879294 L4.h_ln_netw_cc L4.h_ln_partintactplat -.06232388 .04795757 -1.2995629 just identified - Hansen statistic is not calculated symmetric uu[2,2] ln_netw_cc ln_partintactplat ln netw cc .00025503 ln_partintactplat .00003671 .02541402 Residuals correlation matrix u1 u2 u1 1.0000 u2 0.0149 1.0000 0.7561 GMM finished : 15:21:07

Starting Monte-Carlo loop : 15:21:08 , total 1000 repetitions requested i=57, i=114, i=171, i=228, i=285, i=342, i=399, i=456, i=513, i=570, i=627, i=684, i=741, i=798, i=8 > 55, i=912, i=969, i=1000, finished Monte-Carlo loop : 15:21:14

Appendix 64 Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree

In_partintact; All Regions

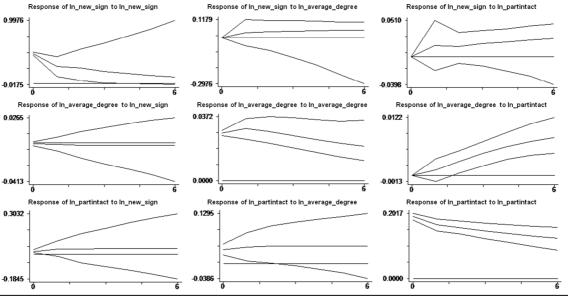
	ul	u2	u3
ul	1.0000		
u2	0.0809 0.0741	1.0000	
u3	0.1785 0.0001	0.1544 0.0006	1.0000

GMM finished : 08:37:44

Starting Monte-Carlo loop : 08:37:46 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=648, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 08:37:52

ul

u2

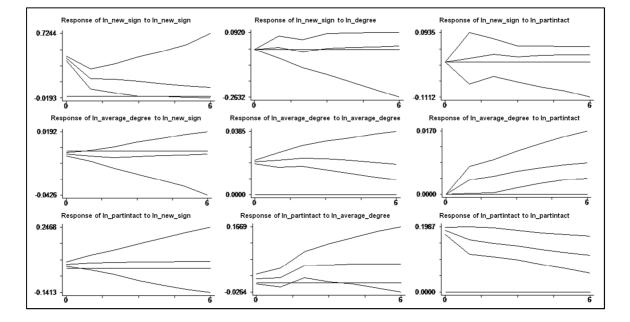

1.0000

-0.0412

1.0000

pvar ln_new_sign ln_average_degree ln_partintact, lag(2) gmm monte 1000 GMM started : 08:58:21 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation 17,7,7,acculating calculating big 2012 matrix finished accumulating 2012 — Results of the Estimation by system GMM_ number of observations used : 475 EQ1: dep.var : h_ln_new_sign b GMM se_GMM .19791661 1.7791387 .11028456 t GMN L.h_ln_new_sign L.h_ln_average_degree L.h_ln_partintact Ь_GMM .57989186 1.1194422 t_GMM 2.9299807 .62920456 .72558185 1.8647905 .08002048 .18924918 L2.h_ln_new_sign .10148549 L2.h ln average degree -.5930823 .91312344 -.64950945 .10066326 -.48932726 L2.h_ln_partintact -.04925728 EQ2: dep.var : h_ln_average_degree b GMM se GMM t GMM L.h_ln_new_sign -.00164075 L.h_ln_average_degree 1.0922141 L.h_ln_partintact .00582572 L2.h_ln_new_sign -.00160617 .00882294 .13143553 .00754324 .00500079 -.18596371 8.3098851 .77230996 -.32118403 L2.h_ln_average_degree -.17655793 .11497235 -1.5356556 L2.h_ln_partintact .0041481 .00826223 EQ3: dep.var : h_ln_partintact b_GMM se_GMM t_GMM se_GMM t_GMM .07758654 .56755049 .73315299 .57019986 .05517381 15.658905 .03615963 -.41119431 .51998001 -.58649598 .04517639 1.4247201 L.h_ln_new_sign L.h_ln_average_degree L.h_ln_partintact L2.h_ln_new_sign .04403428 .41804373 .86396138 -.01486863 L2.h_ln_average_degree h_ln_average_degree -.30496619 L2.h_ln_partintact .06436371 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintact ln_new_sign .21979339 ln_average_degree ln_partintact .00075584 .01097028 .00097705 .03869603 Residuals correlation matrix ul u2 u3

0.3703 u3 0.1190 0.1807 1.0000 0.0994 0.0001 GMM finished : 08:58:23 Starting Monte-Carlo loop : 08:58:23 , total 1000 repetitions requested i-35, i-76, i-114, i-152, i-190, i-228, i-266, i-304, i-342, i-380, i-418, i-456, i-494, i-532, i-57 > 0, i-608, i-646, i-684, i-722, i-760, i-798, i-836, i-874, i-912, i-950, i-988, i-1000, finished M > onte-Carlo loop : 08:58:31 Response of ln_new_sign to ln_new_sign 0.1179 0.1179 0.1179

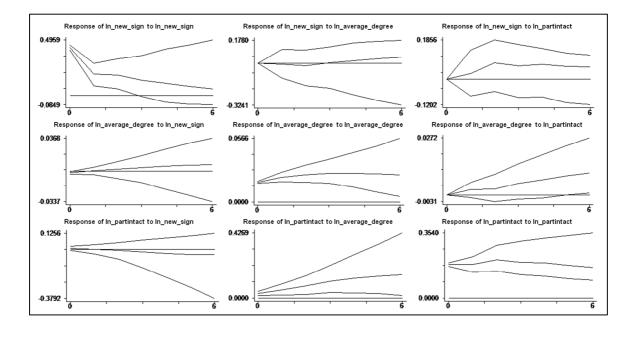


. pvar ln_new_sign ln_average_degree ln_partintact, lag(3) gmm monte 1000 GMM started : 09:00:36 accumulating matrices equation 1,2,3, calculating b2sls accumulating matrixes equation from the state of the second secon EQ1: dep.var : h_ln_new_sign b_GMM se_GMM se_GMM .1670025 1.6860423 .26882478 .10128249 .78204578 b_GMM L.h_ln_new_sign .46219006 n_average_degree .53865052 .h_ln_partintact .06067007 L2.h_ln_new_sign .22199644 n_average_degree -1.6144665 2.7675637 .31947627 .22568629 2.1918542 L.h_ln_new_sign L.h_ln_average_degree L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partintact -2.0644398 .03848866 .21920602 .17558215 .0832514 1.403991 -.04772583 L3.h_ln_new_sign .06572485 1.2666656 L3.h_ln_average_degree L3.h_ln_partintact .57160285 2.4562352 .09737008 -.4901488 EQ2: dep.var : h_ln_average_degree b GMM se GMM t GMM .00699588 -.73743691 L.h ln new sign -.00515902 1.0406038 .02110813 -.00099689 .12582716 .01210401 .00444623 L.h_ln_average_degree L.h_ln_partintact 8.2701048 L2.h_ln_new_sign -.22421049 L2.h_ln_average_degree .00952405 .1275191 .07468721 L2.h_ln_partintact L3.h_ln_new_sign L3.h_ln_average_degree L3.h_ln_partintact -.0138372 -1.1804741 .0044365 .0030874 1.4369679 -.12176859 .05278237 -2.306993 .28082648 EQ3: dep.var : h_ln_partintact b GMM se GMM t GMM b_CMM
L.h_ln_new_sign .03186909
L.h_ln_average_degree .26026392
L.h_ln_new_sign .01446488
L2.h_ln_average_degree 1.5767937
L2.h_ln_average_degree .06266577
L3.h_ln_new_sign .00154912
L3.h_ln_average_degree -1.5074252
L3.h_ln_average_degree -0.2128189 .06561963 .75227802 .13565066 .03110684 .48566395 .34596773 6.2618567 .46500629 .8832767 1.785164 .56837276 .1102547 .02903324 .05335671 .50579865 -.45585039 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree
.19060758
-.00132152 .00040648
.01174817 .00016907 ln_partintact ln_new_sign ln_average_degree ln_partintact .0357442 Residuals correlation matrix ul u2 u3

ul	1.0000		
u2	-0.1502 0.0012	1.0000	
и3	0.1423 0.0022	0.0442 0.3435	1.0000

GMM finished : 09:00:38

Starting Monte-Carlo loop : 09:00:38 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 09:00:47



pvar ln_new_sign ln_average_degree ln_partintact, lag(4) gmm monte 1000 GMM started : 09:04:01 accumulating matrices equation 1,2,3, calculating b2sls accumitering metrices equation fraction fractions of the second s h_ln_new_sign EQ1: dep.var b GMM se GMM + GMM b_GMM L.h_ln_new_sign .44074756 L.h_ln_average_degree -.63693395 L.h_ln_partintact .1426818 L2.h_ln_new_sign .21528695 se_GMM t_GMM .1382435 3.1881973 3.1959407 -.19929467 .34570286 .41272959 .09473254 2.2725765 L2.n_in_new_sign L2.h_in_average_degree L2.h_in_partintact L3.h_in_new_sign L3.h_in_average_degree L3.h_in_partintact L4.h_in_new_sign -.83837998 2.0051961 -.41810374 .22419268 .17502177 1.2809417 17502177 1.2809417 .07541704 .67411212 1.330385 1.409508 1.6529688 -1.4230626 .06300244 .31671584 1.0430023 -.20012214 .08571783 -.39523897 L3.h_ln_new_sign .05083954 h_ln_average_degree l.8751883 L3.h_ln_partintact -.2552278 L4.h_ln_new_sign .01995387 h_ln_average_degree -.20872785 L4.h_ln_partintact -.03387902 L4.h_ln_average_degree EQ2: dep.var : h_ln_average_degree b_GMM se_GMM .00539534 t_GMM b_GMM L.h_ln_new_sign .00559836 L.h_ln_average_degree 1.2279269 L.h_ln_partintact .01383048 L2.h_ln_new_sign .00048389 L2.h_ln_average_degree .16842284 L2.h_ln_partintact .01555094 1.0376298 .13198933 9.303229 .01220332 .00472903 .12617718 .0116254 1.1333373 .10232347 -1.3348122 -1.3462713 L2.h_in_partintact -.01565094 L3.h_in_new_sign .00111264 h_ln_average_degree -.0609601 L3.h_in_partintact .01067486 L4.h_in_new_sign -.00018282 h_ln_average_degree -.06493303 L4.h_in_partintact -.00413087 .0032337 .3440773 L3.h_ln_average_degree L3.h_ln_partintact L4.h_ln_new_sign L4.h_ln_average_degree -.06476835 -1.350979 .07443283 .01034121 .0029069 .04806369 .00701976 -.58846368 EQ3: dep.var : h_ln_partintact .04436545 -.27859674 L.h_ln_new_sign -.01236007 L.h_in_new_Sign L.h_in_average_degree L.h_in_partintact L2.h_in_new_sign L2.h_in_average_degree L2.h_in_partintact -.01236007 1.3977199 1.0050186 -.02468384 -.47104308 .11737062 -.0118657 1.0534248 1.3268341 7.3855793 .1360785 .02991338 .88010211 .09725426 .02779856 -.82517724 -.53521413 1.206843 -.42684569 L3.h_ln_new_sign L3.h_ln_average_degree .0279856 -.42684569 1.2206152 .27986446 .11095733 -1.8364081 .0228094 -.96215146 .84508608 -.78091154 .06913507 .16535669 .3416068 1.2206152 -.20376294 L3.h_ln_partintact -.20376294 L4.h_ln_new_sign -.0219461 L4.h_ln_average_degree -.65993747 L4.h_ln_partintact .01143195 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree
.18369437
-.00066532
.00030618
.00402022 ln_partintact ln_new_sign ln_average_degree ln_partintact .00407931 .03415302 .00048701 Residuals correlation matrix

GMM finished : 09:04:03

Starting Monte-Carlo loop : 09:04:04 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 09:04:13

ln_new_signups

ln_degree_centralization ln_partintact; All Regions

. pvar ln_new_sign ln_degr_centr ln_partintact, lag(1) gmm monte 1000 GMM started : 09:06:43 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM_ number of observations used : 487 EQ1: dep.var : h_ln_new_sign b_GMM se_GMM t_GMM L.h_in_ew_sign .68723187 .18426429 3.7295989 L.h_in_degr_centr .26972475 2.72724202 .11869493 L.h_in_partintact .05582745 .03339889 1.6715359 EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM L.h_ln_new_sign .00278095 .0029034 .95782526 L.h_ln_degr_centr .91148346 .04663126 19.546619 L.h_ln_partintact .00003606 .00068816 .05239941 : h_ln_partintact EQ3: dep.var b_GMM se_GMM t_GMM L.h_ln_new_sign .03524606 .07482042 .47107539 L.h_ln_degr_centr .80441193 1.0545953 .76276833 L.h_ln_partintet .92291527 .02661268 34.679526 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_degr_centr ln_partintact .25225661 -.00013016 .00007318 ln_new_sign ln_degr_centr ln_partintact .01308228 .00018689 .0445707 Residuals correlation matrix ul 112 1.0000 u1 -0.0315 1.0000 u2 0.4882 u3 0.1235 0.1038 0.0063 0.0220 1.0000

GMM finished : 09:06:44

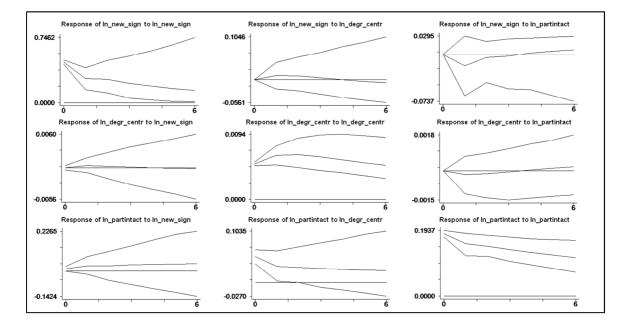
Starting Monte-Carlo loop : 09:06:46 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=649, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 09:06:52

. pvar ln_new_sign ln_degr_centr ln_partintact, lag(2) gmm monte 1000 GMM started : 09:21:47 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 474 EQ1: dep.var : h_ln_new_sign b GMM se GMM t GMM L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact L2.h_ln_new_sign .61561498 6.0263769 -.11902241 se_GMM .16701361 3.759494 .15494899 3.6860167 1.6029755 -.7681393 3.0659045 .2145613 -6.8683759 .06998303 L2.h_ln_degr_centr L2.h_ln_partintact 3.4892514 -1.9684383 .13667563 .13462012 1.0152689 EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM b_GMM .00174527 .99969892 -.00038786 -.00136523 -.07058091 se_GMM .00279821 .21715916 .00305494 .00123762 .18894901 t_GMM .62370837 4.603531 -.12696315 -1.1031102 -.37354476 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partintact .00079691 .00270263 .29486584 EQ3: dep.var : h_ln_partintact se_GMM .06837764 2.3438081 .11006011 .02487189 1.9459721 .08759121 t_GMM .59437738 -.55265179 7.5713177 -.47394728 .65293198 1.1165411 b_GMM b_GMM .04064212 -1.2953098 .83330007 -.01178797 1.2705874 .09779919 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partintact

just identified - Hansen statistic is not calculated

symmetric uu[3,3]

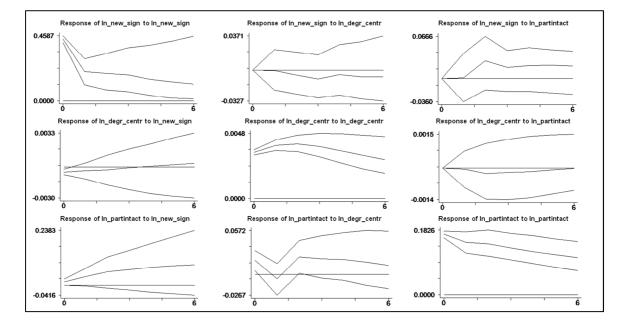
	ln_new_sign	ln_degr_centr	ln_partintact
ln_new_sign	.21109986		
ln_degr_centr	00012955	.00005385	
ln_partintact	.00618692	.00022634	.03700755


Re

esiduals	correlation matrix				
		ul	u2	u3	
	ul	1.0000			

u2	-0.0387	1.0000	
	0.4003		
u3	0.0701	0.1604	1.0000
	0.1275	0.0005	

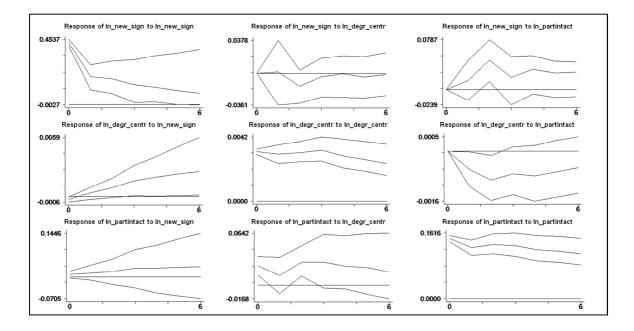
GMM finished : 09:21:48


Starting Monte-Carlo loop : 09:21:49 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=-624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 09:21:57

. pvar ln_new_sign ln_degr_centr ln_partintact, lag(3) gmm monte 1000 GMM started : 09:29:23 GMM started : 09:29:23 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 461 EQ1: dep.var : h_ln_new_sign b GMM se GMM t GMM L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_degr_centr se_GMM .13521786 2.7518752 .14502425 .08561496 4.5740057 t_GMM 3.6166768 1.9802696 -.28122978 2.257284 -2.4524222 .48903928 -.04078514 .19325729 -11.217393 .10655803 L2.h_ln_partintact .20482645 1.9222056 L3.h_ln_new_sign L3.h_ln_degr_centr L3.h_ln_partintact .111439 5.0393528 -.12534701 .04523453 .04525455 2.9061464 .08916 1.734032 -1.405866 EQ2: dep.var : h_ln_degr_centr b GMM GMM + GMM se_GMM .00235319 .21080568 .0032429 .0013724 t_GMM .52445205 4.1239061 .4845815 -.14534744 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact .00123413 .86934284 .00157145 -.00019947 L2.h_ln_new_sign L2.h_ln_degr_centr .14808811 .20782537 .71256031 L2.h_ln_partintact L3.h_ln_new_sign L3.h_ln_degr_centr L3.h_ln_partintact -.00250226 .0027215 -.00056185 -.10473245 .00133227 .00064841 .06345052 .00166984 -.86649706 -1.6506161 .79783871 EQ3: dep.var : h_ln_partintact b_GMM .04628999 -1.035143 .81665984 se_GMM .05527942 2.4681879 t_GMM .83738194 -.41939395 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact .11013803 7.4148764 L2.h_ln_new_sign .04496047 .03463864 L2.h_ln_degr_centr L2.h_ln_partintact L3.h_ln_new_sign 5.4331134 3.8415155 1.4143151 L2.h_ln_partintact .14578434 L3.h_ln_new_sign -.01016196 L3.h_ln_degr_centr -4.6955923 L3.h_ln_partintact -.05218779 .11004909 .02926752 2.6467005 .06821337 1 324721 -.347209 -1.7741306 just identified - Hansen statistic is not calculated symmetric uu[3,3]] ln_new_sign ln_degr_centr ln_partintact .18721131 -.00033214 .00003652 ln_new_sign ln_degr_centr
ln_partintact .00760825 .00002797 .03181032 Residuals correlation matrix ul u2 u3 ul 1.0000 u2 -0.1271 0.0063 1.0000 0.0986 u3 0.0259 1.0000 0.0344 0.5787

GMM finished : 09:29:25

Starting Monte-Carlo loop : 09:29:26 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=648, i=648, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 09:29:34


GMM started : 09:40:00 accumulating matrices equation 1,2,3,calculating b2sls r : h_ln_new_sign EQ1: dep.var b_GMM .46753076 6.3637754 .10317022 .17905579 t_GMM 3.7776008 2.1860382 .77553588 2.1204037 se_GMM .12376394 2.9110998 .13303087 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_degr_centr L3.h_ln_new_sign L3.h_ln_degr_centr L3.h_ln_degr_centr .0844442 .17905579 -13.737476 .17768095 .05404149 6.6504529 -.28735508 3.7071574 -3.705663 1.5910689 .06735894 3.3644453 .80229127 -2.5494639 L3.h_ln_partintact L4.h_ln_new_sign .11271196 .03919271 .0285444 .7283089 L4.h_ln_degr_centr .57041636 1.9357222 .29467883 L4.h_ln_partintact .0713429 .09646702 73955746 EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_degr_centr se_GMM .00225946 .22697141 .0020535 .0012265 .96063831 3.0828471 -1.5051025 .48329778 .00217052 .69971815 -.00309072 .00059277 .28898146 1.2239266 .23611012 .28898146 .00036413 .00017305 .05287913 .0033741 -.00027485 L2.h_ln_partintact L3.h_ln_new_sign L3.h_ln_degr_centr L3.h_ln_partintact .00200741 .00073841 .08367568 .00185966 .18139403 .2343627 .63195341 1.8143661 L4.h_ln_new_sign .00042188 -.65149352 L4.h_ln_degr_centr -.15540403 .05782395 L4.h_ln_partintact .00133055 -.64605315 EQ3: dep.var : h_ln_partintact t_GMM .45597077 b_GMM se_GMM se_GMM .03258706 1.7330776 .07725089 .0234489 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintact L2.h_ln_new_sign .01485874 .56578537 .84145175 .00599588 .3264628 10.892454 .25569999 L2.h_ln_new_sign .0059588 L2.h_ln_deg_centr 1.6371526 L2.h_ln_partintact .1833276 L3.h_ln_new_sign .01352934 L3.h_ln_deg_centr -792121076 L3.h_ln_new_sign -01774269 L4.h_ln_new_sign -01774269 L4.h_ln_deg_centr -2.3925494 L4.h_ln_partintact -.0552601 .0234489 1.8157764 .08186218 .02320177 2.1795554 .07955744 .01730466 .90162674 2.3006076 2.3006076 .5831169 -.36301474 -.28946808 -1.025313 -1.016707 -1.1880369 2.3532338 just identified - Hansen statistic is not calculated symmetric uu[3,3] , ln_new_sign ln_degr_centr ln_partintact ln_new_sign .18099142 ln_degr_centr
ln_partintact .00003224 .00008175 .00414281 .0227698 Residuals correlation matrix ul 112

pvar ln_new_sign ln_degr_centr ln_partintact, lag(4) gmm monte 1000

	ul	u2	u3
ul	1.0000		
u2	-0.0902 0.0565	1.0000	
u3	0.0645 0.1728	0.0953 0.0437	1.0000

GMM finished : 09:40:02

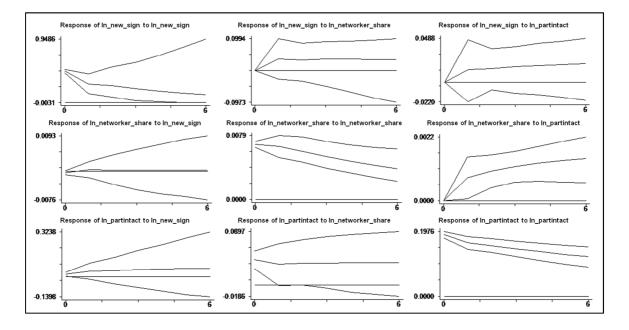
Starting Monte-Carlo loop : 09:40:03 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 09:40:12

Appendix 66 Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share ln_partintact; All Regions

. pvar ln_new_ GMM started : accumulating m calculating bi- finished accum Result number of obse	09:58:02 atrices ed g ZuuZ matulating Zu s of the B rvations u	quation 1,2 trix JUZ Estimation JSEd : 488	2,3,calculat		mm monte 1000
EQ1: dep.var	: h_ln	_new_sign			
L.h_ln_network	er_share rtintact	2.3176568 .02936888	.22928041 2.015017 .03596109	1.1501921	
EQ2: dep.var	: h ln	networker	share		
L.h_ln_ L.h_ln_network	new_sign er_share rtintact	b_GMM .0011554 .8039212 .00184744	se_GMM .00336266 .0428155 .00108601	.3435974 18.776406	
			se_GMM		
			.08484454		
L.h_ln_network L.h_ln_pa			.8134963		
just identifie symmetric uu[3	d – Hansei				
				tworker_share	ln_partintact
ln_new_			14386 12409	.00008979	
ln_networker_s ln_partin			12409 10495	.00008574	.09292914
Residuals corr	elation ma	atrix			
1	ul	u2	u3		
ul	1.0000				
u2	0.0037 0.9345	1.0000			

uz	0.9345	1.0000	
u3	0.2078	0.0286 0.5280	1.0000

GMM finished : 09:58:06


Starting Monte-Carlo loop : 09:58:07 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=649, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 09:58:14

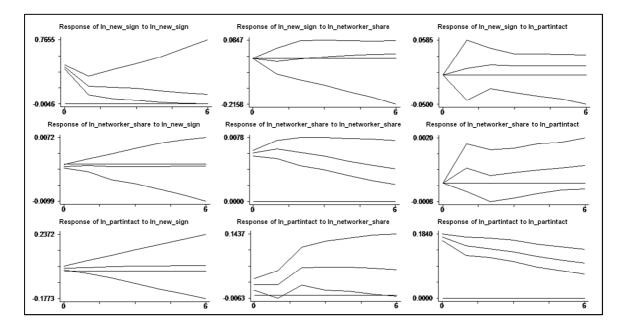
. pvar ln_new_sign ln_networker_share ln_partintact, lag(2) gmm monte 1000 GMM started : 10:02:57 accumulating matrices equation 1,2,3, calculating b2sls accumulating matrixes equation r,r,r,r,raturating base calculating big 20u2 matrix finished accumulating 20u2 Results of the Estimation by system GMM______ number of observations used : 475 EQ1: dep.var : h_ln_new_sign b GMM t GMM se GMM b_CMM L.h_ln_new_sign .58544736 L.h_ln_networker_share 4.933843 L.h_ln_partintart .07349427 L2.h_ln_new_sign .194658 L2.h_ln_networker_share -3.1789697 se_CMM t_CMM .18762285 3.1203415 5.734051 .86044631 .11160925 .65849625 .08443719 2.3053586 3.3009333 -.96305177 L2.h_ln_partintact -.04908886 .11055661 -.44401566 EQ2: dep.var : h_ln_networker_share b_GMM se_GMM .00264149 t_GMM L.h_ln_new_sign .00147509 .55842989 L.a.in_new_sign .0014/509 L.h_ln_networker_share .942067 L.h_ln_partintact .00419415 L2.h_ln_new_sign -.0015564 L2.h_ln_new_re_.05499464 L2.h_ln_partintact -.00238061 .12723765 7.4039954 1 7494666 .00239739 .00139519 .109232 .00295636 -1.1135703 -.50346641 -.80525012 EQ3: dep.var : h_ln_partintact b_GMM L.h_ln_new_sign .05428057 L.h_ln_networker_share -.29757867 L.h_ln_partintact .86575344 se_GMM .07288084 2.8899102 t_GMM .74478523 -.1029716 15.51547 .05579937 L2.h_ln_networker_share .06421049 .02988841 -.45989546 2.2427529 23161736 2.242/529 .23161736 .04958468 1.2949664 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share
.21903723
-.00017672 .00004632
.0093068 .00028058 ln_partintact ln_new_sign ln_networker_share .03759559 ln_partintact Residuals correlation matrix ul u2 u3 ...1

uı	1.0000		
u2	-0.0557 0.2255	1.0000	
u3	0.1026 0.0254	0.2126	1.0000

GMM finished : 10:02:58

Starting Monte-Carlo loop : 10:02:59 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:03:06

pvar ln_new_sign ln_networker_share ln_partintact, lag(3) gmm monte 1000 GMM started : 10:06:14 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation fraction EQ1: dep.var : h_ln_new_sign b GMM se GMM t GMM L.h_ln_new_sign .4729826 L.h_ln_etworker_share -2.8420935 L.h_ln_etworker_share -2.8420935 L.h_ln_new_sign .22343487 L2.h_ln_networker_share 3.5727704 L2.h_ln_networker_share .02508999 J.3.h_ln_new_sign .003397867 L3.h_ln_etworker_share .39669751 L3.h_ln_artintatt -.03388308 .15627184 5.9714084 .17864183 3.0266655 -.47595029 .34300026 .10275367 2.174471 5.6852652 .62842633 .1718203 .14602459 .05453161 .14602439 1.723398 .10562991 -.72064053 3.7555416 .07477109 EQ2: dep.var : h_ln_networker_share b_GMM .00043132 1.0674146 .00374787 se_GMM .00222964 .10914603 t_GMM .1934499 9.7796927 L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partintact 1.0336612 .00362582 L.h_in_partintact L2.h_ln_new_sign L2.h_ln_networker_share L2.h_ln_partintact L3.h_ln_new_sign L3.h_ln_networker_share -.00094829 .00155876 -.60836051 -.13638153 .11023163 -1.2372269 .00449483 -.00534371 -1.1888571 .00023744 .3263514 .06152845 -.02343644 -.38090409 L3.h_ln_partintact .0027206 .00256567 1.0603866 EQ3: dep.var : h_ln_partintact b_GMM .02094566 se_GMM .05724614 t_GMM L.h_ln_new_sign .36588781 L.h_ln_networker_share .54620447 2.9127611 .18752121 _ln_networker_share .5462047 L.h_ln_partintact .85405245 L2.h_ln_new_sign .01814059 _ln_networker_share .6575555 L2.h_ln_partintact .07376166 L3.h_ln_new_sign -.00615823 2.9127611 .0861036 .03319273 3.3414434 .09047773 .02597524 L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_networker_share 9.9188933 .546523 1.9654876 .81524665 -.23708065 L3.h_ln_networker_share -5.8754022 L3.h_ln_partintact -.02394186 2.2979858 -2.5567617 .04922618 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share
 .19306323
 -.00028398 .00003493 ln_partintact ln_new_sign ln_networker_share ln_partintact .00003493 .00840909 .03171906 Residuals correlation matrix ul u2 u3 1.0000 ul u2 -0.1094 1.0000 0.0187


GMM finished : 10:06:15

u3

0.1075 0.0208 0.1302 0.0051

1.0000

Starting Monte-Carlo loop : 10:06:16 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:06:24

. pvar ln_new_sign ln_networker_share ln_partintact, lag(4) gmm monte 1000 GMM started : 10:09:07 accumulating matrices equation 1,2,3, calculating b2sls : h_ln_new_sign EQ1: dep.var
 b_GMM

 L.h_ln_new_sign

 L.h_ln_networker_share

 4.2224666

 L.h_ln_partintact

 .09899779

 L2.h_ln_new_sign

 L2.h_ln_networker_share

 2.8456159

 L2.h_ln_new_sign

 .06870345

 L3.h_ln_networker_share

 8.6448889

 L3.h_ln_networker_share

 L4.h_ln_networker_share

 L4.h_ln_networker_share

 L4.h_ln_networker_share

 L4.h_ln_networker_share

 L4.h_ln_networker_share

 L4.h_ln_networker_share
 b GMM se GMM + GMM
 Se_uman
 C_uman

 .13353537
 3.3909897

 8.576289
 -.49234191

 .21073597
 .46977166

 .09979959
 2.4144539
 6.8685455 -.41429673 .14881792 1.5969291 .14881792 .07402444 3.5769694 .13979949 .04133571 1.662792 92811852 .92811852 2.4168194 -1.5227258 .27775302 -.64875789 .09586189 -.5527488 EQ2: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM t_GMM .34707004 10.114049 .11628646 -1.3836451 -.79932417 -.61035215 - 8230769 .00064053 L.h_ln_new_sign .00184553 L.h_ln_new_sign .00064053 L.h_ln_networker_share 1.1450542 L.h_ln_partintact .00032688 L2.h_ln_new_sign -.00213871 L2.h_ln_networker_share -.15235141 L2.h_ln_partintact -.00213199 L3.h_ln_new_sign -.00076607 .00184553 .11321422 .00281097 .00154571 .19060028 .00349305 .00093074 -.8230769 L3.h_ln_networkr_share L3.h_ln_networkr_share L3.h_ln_partintact L4.h_ln_new_sign L4.h_ln_networker_share L4.h_ln_partintact .14112125 .16518014 .85434757 .0025151 .00400361 .62820849 .0025151 .00047367 -.19981346 .00018519 .00400381 .0008502 .07211005 .00292322 .55713148 -2.7709516 .06335305 EQ3: dep.var : h_ln_partintact
 b_GMM
 se_GMM
 t_GMM

 L.h_ln_networker_share
 5.3464861
 3.0636335
 1.7451455

 L.h_ln_partintact
 .95147284
 .0820398
 8.793333

 L2.h_ln_networker_share
 -2.8372209
 3.1558706
 -.89902556

 L2.h_ln_networker_share
 -2.8372209
 3.1558706
 -.89902556

 L3.h_ln_networker_share
 -1.222042
 .10212146
 1.1974001

 L3.h_ln_networker_share
 -.15216712
 2.8161464
 -.05467967

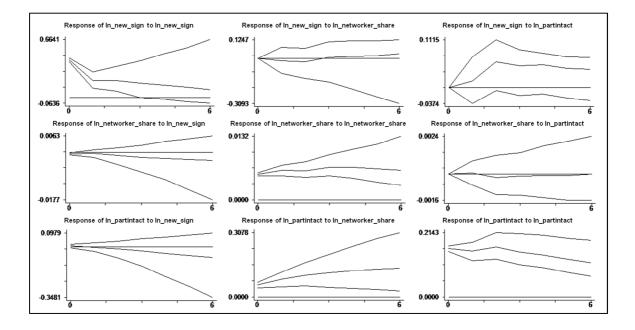
 L3.h_ln_networker_share
 -.15216712
 2.8161464
 -.05467967

 L3.h_ln_networker_share
 -.15216712
 2.8161464
 -.05469967

 L4.h_ln_networker_share
 -.15216712
 2.8161464
 -.054691301

 L4.h_ln_networker_share
 -.15216877
 .10907786
 -.80381776

 L4.hunkeryker_share
 -.55991431
 1.3952723
 -4012398
 L4.h_ln_networker_share -.55991413 1.3952723 L4.h_ln_partintact .01548439 .06807623 -.4012938 .2274566 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share ln_ rtintact


	ln_new_sign	<pre>in_networker_share</pre>	In_partintact
ln_new_sign	.18430407		
ln_networker_share	00023743	.0000284	
ln_partintact	.00299808	.00029996	.02932091

Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	-0.1036 0.0281	1.0000	
u3	0.0410 0.3865	0.3284 0.0000	1.0000

GMM finished : 10:09:09

Starting Monte-Carlo loop : 10:09:10 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:09:19

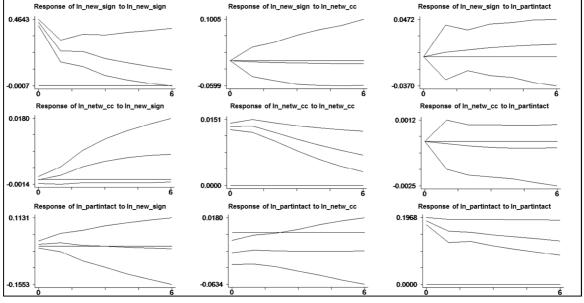
Appendix 67 Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc ln_partintact; All Regions

. pvar ln_new_ GMM started :	10:33:47				monte 1000	
accumulating m			2,3,calcul	lating b2sls		
calculating bi finished accum						
Result	,			- 0004		
number of obse				II GPIPI	_	
EQ1: dep.var	: h_ln_ne	w_sign				
	b	GMM	se_GMM	t_GMM		
L.h_ln_new_s	ign .70289	565 .	14857524	4.7309071		
L.h_ln_netw	_cc54322			54708034		
L.h_ln_partint				1.3223427		
EQ2: dep.var	: h_ln_ne	tw_cc				
	b_	GMM	se_GMM	t_GMM		
L.h_ln_new_s	ign .01868	597 .	01053528	1.7736572		
L.h_ln_netw	_cc .79824	902	.0766262	10.417443		
L.h_ln_partint	act00029	543 .	00449567	06571324		
EQ3: dep.var	: h_ln_pa	rtintad	et			
	b_	GMM	se_GMM	t_GMM		
L.h_ln_new_s				.77609101		
	_cc21629			58116299		
L.h_ln_partint				28.033007		
just identifie						
symmetric uu[3						
		-	ln_netw_co	c ln_partint	act	
ln_new_sign						
ln_netw_cc			.00115229		0.5.5	
ln_partintact	.009079	64	.00116243	.0413	955	
Residuals corr	elation matr	ix				
	ul	u2	u3			
ul	1.0000					
u2	0.1024	1 0000				
u2	0.1024	1.0000				
	0.0257					
и3	0.0917	0.1680	1.0000			
45	0.0459		1.0000			

GMM finished : 10:33:49

Starting Monte-Carlo loop : 10:33:50 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:33:57

. pvar ln_new_sign ln_netw_cc ln_partintact, lag(2) gmm monte 1000 GMM started : 10:42:49 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 462 EQ1: dep.var : h_ln_new_sign b_GMM .54874229 -.19662764 .02829979 .24907142 t_GMM 5.4413539 -.14814829 .24954201 3.6290062 se_GMM .10084665 1.3272353 .11340692 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partintact L2.h_ln_new_sign .06863351 L2.h_ln_netw_cc L2.h_ln_partintact .00854028 .70281253 .01215158 .03945342 .00364804 .09246456 EQ2: dep.var : h_ln_netw_cc b GMM se GMM t GMM L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partintact 6_GMM .00449602 .92969147 -.00047 .00431265 se_GMM .00351792 .10091402 .00484487 L_GMM 1.2780328 9.2127088 -.09700928 1.7492598 .00246542 -.05174581 -.00054552 .07410236 -.69830175 .00428227 -.12739057 EQ3: dep.var : h_ln_partintact se_GMM .04802106 .48120228 .1052738 .02261501 b_GMM t_GMM b_GMM L.h_ln_new_sign 0.1882582 L.h_ln_netw_cc -.10525554 L.h_ln_partintact .33869593 L2.h_ln_new_sign -.03142448 L2.h_ln_netw_cc -.0116612 L2.h_ln_partintact .11424916 C_GMM .39203265 -.2187345 7.966806 -1.389541 .51007992 -.02286151 .08270021 1.3814857 just identified - Hansen statistic is not calculated symmetric uu[3,3]


	ln_new_sign	ln_netw_cc	ln_partintact
ln_new_sign	.19640642		
ln_netw_cc	.0001576	.000331	
ln_partintact	.00306632	00027289	.0356159

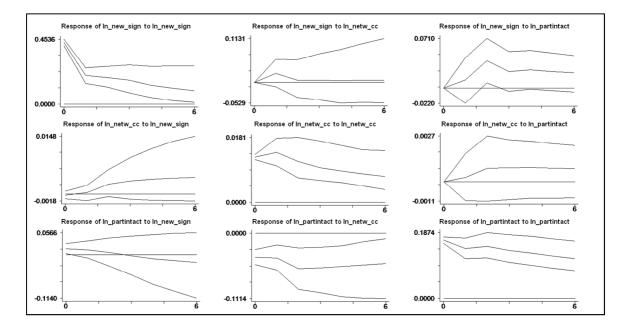
Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	0.0194 0.6768	1.0000	
u3		-0.0792 0.0889	1.0000

GMM finished : 10:42:51

Starting Monte-Carlo loop : 10:42:51 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:42:59

pvar ln_new_sign ln_netw_cc ln_partintact, lag(3) gmm monte 1000 GMM started : 10:52:10 accumulating matrices equation 1,2,3, calculating b2sls EQ1: dep.var : h_ln_new_sign b_GMM .46373303 1.0657473 .05743118 se_GMM .07806299 1.4609957 .11936009 GMM L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partintact L2.h_ln_new_sign t_GMM 5.940498 .72946639 .481159 3.431999 .20749157 .06045794 L2.h ln netw cc -1.4014669 1.2147563 -1.1537021 L2.h_ln_partintact L3.h_ln_new_sign L3.h_ln_netw_cc .16028678 .08219341 .74506667 -.17801169 .12242901 .05146734 .77183661 .08964753 -1.1537021 1.3092222 1.5970012 .96531658 -1.9856843 L3.h_ln_partintact EQ2: dep.var : h_ln_netw_co se_GMM .00271262 .22791315 .00578076 b_GMM t_GMM .86759601 .00235346 .78372554 -.00209789 L.h_ln_new_sign L.n_ln_new_sign L.h_ln_netw_cc L.h_ln_partintact L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partintact L3.h_ln_new_sign 3.4387025 .36290936 .00263783 .0046034 .01229622 .00319225 .00043855 .00235387 .2029878 .00573911 .00198846 1.9556733 .06057615 .55622657 .22054962 L3.h_ln_netw_cc .07500098 .08096318 .92635904 L3.h_ln_partintact -.0018099 .00369421 -.48992943 EQ3: dep.var : h_ln_partintact b GMM se GMM t GMM b_6MM L.h_ln_new_sign -.00226304 L.h_ln_netw_cc -.71991716 L.h_ln_partintact .85512681 L2.h_ln_new_sign -.01427501 L2.h_ln_netw_cc -.50446323 .03118707 .5516976 .10619501 .02143103 -.07256352 -1.3049126 8.0524196 -.66609068 .67878107 -.74318989 L2.h_ln_partintact .16118486 L3.h_ln_new_sign -.00564678 L3.h_ln_netw_cc .96558506 L3.h_ln_partintact -.07234157 .09393 1.7160105 .02565043 -.220143 .87860059 1 0990034 -1.1843092 just 100. symmetric uu[3,3] ln_new_sign 1.8596482 ~∞ cc .00015145 0062674 just identified - Hansen statistic is not calculated ln_netw_cc ln_partintact .00030334 -.00050023 .02950073 Residuals correlation matrix ul u2 u3 ul 1.0000 u2 0.0202 1.0000


GMM finished : 10:52:11

u3

0.0846 -0.1670 0.0733 0.0004

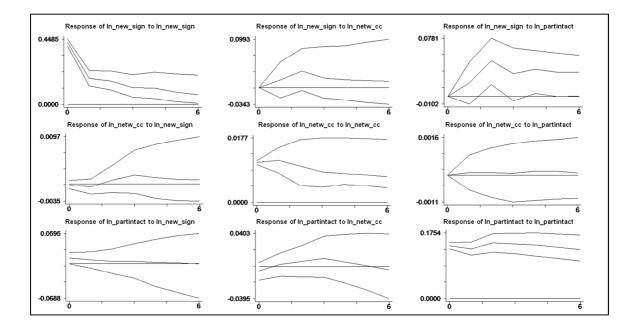
1.0000

Starting Monte-Carlo loop : 10:52:12 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:52:20

: n_in_necw_cc				
b_GMM	se_GMM	t_GMM		
n00026786	.00221939	12069227		
c .74394908	.23705277	3.1383269		
t00506275	.00541259	9353663		
n .0044006	.00235317	1.8700771		
c .08079655	.15820563	.51070591		
t .00263942	.00628537	.41993068		
n .00300691	.00251433	1.1959089		
c02137146	.11946475	17889343		
t .00280322	.00422492	.66349717		
n00433544	.00223004	-1.9441055		
c .09184545	.06631797	1.3849255		
t00127873	.00360481	35473007		
: h_ln_partinta	act			
	b_GMM n0026786 c .7434908 c .00506275 n .0044006 c .08079655 t .00263942 n .0030691 c .02137146 c .02137146 t .0083322 n00433544 c .09184545 t00127873	b_GMW se_GMM n 0026786 .00221939 c .74394908 .23705277 n .0054006 .00231317 c .0064006 .00225317 c .00330691 .00254332 n .00330691 .00254333 c .023146 .11946475 t .00280322 .00422429 n .00281324 .00422492 n .00281324 .0042344 .09184545 .06631797	b_GMM se_GMM t_GMM n0022786 .00221939 12069227 c 74394908 .23705277 .1383269 n00026776 .00541259 9353663 n .0044006 .00235317 1.8700771 c .08079655 .15820563 .51070591 t .0026242 .00628337 .4193068 n .00300691 .0021433 1.195089 c02137146 .11946475 17889343 t .00230322 .00422492 .66349717 n .0033544 .00223004 -1.9441055 t .0913454 .06631797 1.3489255 t00127873 .00360481 35473007	b_GMM se_GMM t_GMM n 00025786 .00221939 12069227 c .74394908 .23705277 .1383269 t 00506275 .00541259 9353663 n .0044006 .00235317 1.8700771 c .08079655 .15820563 .51070591 t .0023024 .00628337 .4193068 n .00230691 .00221433 1.1959089 c .0233746 .11946475 17889343 t .0028322 .00422492 .66349717 n -00333544 .00223004 -1.9441055 c .09127873 .00360481 35473007

	b_GMM	se_GMM	t_GMM	
L.h_ln_new_sign	00564969	.01895833	2980057	
L.h_ln_netw_cc	.29397593	.42964672	.68422709	
L.h_ln_partintact	.93240667	.06552029	14.230808	
L2.h_ln_new_sign	00596309	.01456667	40936518	
L2.h_ln_netw_cc	.02818454	.36024265	.07823765	
L2.h_ln_partintact	.17192317	.06788785	2.5324586	
L3.h_ln_new_sign	.00512875	.01547022	.33152401	
L3.h_ln_netw_cc	04368442	.27062668	16141948	
L3.h_ln_partintact	10099449	.07763583	-1.3008747	
L4.h_ln_new_sign	00445741	.0122639	36345787	
L4.h_ln_netw_cc	6218317	.2652221	-2.3445697	
L4.h_ln_partintact	04094511	.05363606	76338772	
dure desceleted in			- 1 1 - +	

just identified - Hansen statistic is not calculated


symmetric uu[3,3]					
	ln_new_sign	ln_netw_cc	ln_partintact		
ln_new_sign	.18277639				
ln_netw_cc	.00024927	.00025129			
ln_partintact	.0048491	.00003322	.02019357		

Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	0.0368	1.0000	
u3	0.0798 0.0961	0.0149 0.7562	1.0000

GMM finished : 10:58:51

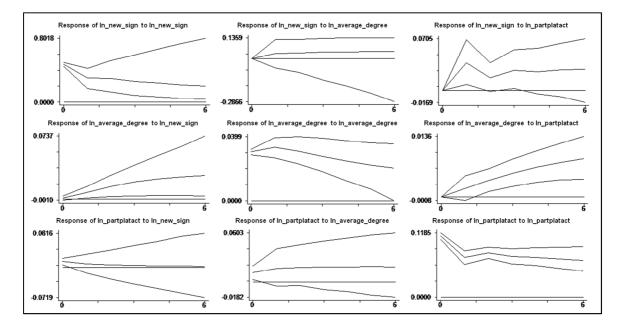
Starting Monte-Carlo loop : 10:58:52 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:59:01

Appendix 68 Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree ln_partplatact; All Regions

. pvar ln_new_sign ln_average_degree ln_partplatact, lag(1) gmm monte 1000 GMM started : 17:02:48 accumulating matrices equation 1,2,3,calculating b2sls calculating bjg ZuuZ matrix Inished accumulating ZuuZ 	-
b_GMM se_GMM t_GMM L.h_ln_new_sign .82403337 .19610782 4.2019405	
L.h_ln_average_degree .43780671 .75152436 .58255824	
L.h_ln_partplatact .09361424 .09095629 1.0292223	
	-
EQ2: dep.var : h_ln_average_degree	
b_GMM se_GMM t_GMM	
L.h_ln_new_sign .02175065 .00998581 2.178157	
L.h_ln_average_degree .84766625 .04281257 19.799472	
L.h_1n_partplatact .02091692 .00829712 2.5209869	
	-
	-
EQ3: dep.var : h_ln_partplatact	
b_GMM se_GMM t_GMM	
L.h_ln_new_sign .05619751 .0389294 1.4435749	
L.h_ln_average_degree10205633 .1394426273188764	
L.h_ln_partplatact .9080091 .04738439 19.16262	
just identified - Hansen statistic is not calculated	-
symmetric uu[3,3] ln_new_sign ln_average_degree ln_partplatact	
In_new_sign .30321932	
in_new_sign .50521552 in_average_degree .00474992 .00141559	
In_average_degree .00474992 .00141559 In_partplatact .0213551 .00177589 .02240856	
in_partpracace .0215551 .0017/565 .02240850	
Residuals correlation matrix	
ul u2 u3	
ul 1.0000	

ul	1.0000		
u2	0.2264	1.0000	
u3	0.2570 0.0000	0.3129	1.0000

GMM finished : 17:02:50

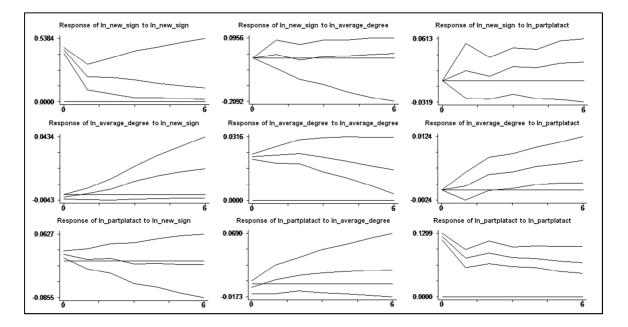

Starting Monte-Carlo loop : 17:02:51 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 17:02:57

accumulating matrices e				
calculating big ZuuZ ma		, carcuratin	g bzsis	
Einished accumulating Z				
Results of the		system GMM		
number of observations				
2Q1: dep.var : h_ln	_new_sign			
	b_GMM	se_GMM	t_GMM	
L.h_ln_new_sign		.16618775		
L.h_ln_average_degree		1.8180077	.51859683	
L.h_ln_partplatact	.33345815	.1682484	1.9819395	
L2.h_ln_new_sign	.22070888	.09054746	2.4374939	
L2.h_ln_average_degree	55228465	.95299702	57952401	
L2.h_ln_partplatact			-1.5978691	
SQ2: dep.var : h_ln	_average_degre	ee.		
	b_GMM	se_GMM	t_GMM	
L.h_ln_new_sign			1.7207598	
L.h_ln_average_degree		.12629984		
L.h_ln_partplatact		.01470446		
L2.h_ln_new_sign		.00484936		
L2.h_ln_average_degree			-1.8663039	
L2.h_ln_partplatact			11717357	
pureproduce				
2Q3: dep.var : h_ln	_partplatact			
	b_GMM	se_GMM	t_GMM	
L.h_ln_new_sign	00171397	.02897398	05915563	
L.h_ln_average_degree	.30247395	.4273473	.70779422	
L.h_ln_partplatact	.65080182	.06362876	10.228108	
L2.h_ln_new_sign	01234263	.01742741	70823063	
L2.h_ln_average_degree	20813847	.29183446	7132073	
L2.h_ln_partplatact		.06547115		
just identified - Hanse	n statistic i	s not calcu	lated	
symmetric uu[3,3]	1	1		ln_partplatact
ln_new_sign	.22407201	in_averag	e_redtee	ru [_] barchraract
in_new_sign Ln_average_degree	.00066839		00092626	
				.0130443
ln_partplatact	.00672861		00037746	.0130443
Residuals correlation m	atrix			
ul	u2	u3		
		u3		

	ul	u2	u.3
ul	1.0000		
u2	0.0456 0.3211	1.0000	
u3	0.1248 0.0065		1.0000

GMM finished : 17:06:40

Starting Monte-Carlo loop : 17:06:41 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 17:06:48


522

pvar ln_new_sign ln_average_degree ln_partplatact, lag(3) gmm monte 1000 GMM started : 17:09:33 accumulating matrices equation 1,2,3, calculating b2sls accumulating metices equation 1,,,,,steriating calculating big 2012 matrix finished accumulating 2012 — Results of the Estimation by system GMM_ number of observations used : 462 EQ1: dep.var : h_ln_new_sign se_GMM .14954411 1.9970723 b_GMM L.h_ln_new_sign .48459053 n_average_degree .75906477 3.2404521 .38008877 L.h_ln_average_degree L.h_n_partplatact L.b_ln_partplatact L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_average_degree .57683057 .12336913 .21387411 .23652168 .0910207 2.5985481 -1.6305816 .90035494 -1.8110431 -.08928771 .07868172 1.2389969 .20472305 .06580858 .57067908 -.43613903 1.1956148 2.1710922 L3.h_ln_partplatact .08046716 .14171999 .56778976 EQ2: dep.var : h_ln_average_degree se_GMM .00547935 b_GMM t_GMM .99166675 .00543369 L.h_ln_new_sign L.h_ln_average_degree L.h_ln_partplatact L2.h_ln_new_sign 1.0371064 .00788536 .00482623 .11013048 .01698007 .00426269 .10922822 9.4170695 1.1322023 -.0514362 L2.h_ln_average_degree -.00561828 L2.h_ln_partplatact .01739914 .01941451 .89619244 L3.h ln new sign .00775973 .0029332 2.6454881 L3.h_ln_average_degree L3.h_ln_partplatact -.13247658 -.01418392 .05194103 -2.5505191 .01077543 -1.31632 EQ3: dep.var : h_ln_partplatact b GMM Se GMM + GMM se_GMM t_GMM .03096422 -.33096432 .55245792 .71721517 .08604073 7.4766874 L.h_ln_new_sign -.01024805 L.h_ln_average_degree L.h_ln_partplatact .3962312 L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partplatact L3.h_ln_new_sign .00085125 .01753278 .04855217 .05476693 .54282892 .1008917 .30740744 -.02572181 -.23577674 .10916887 2.8158892 -1.712283 L3.h_ln_average_degree .2616871 L3.h_ln_partplatact -.0270603 -.24648867 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree
.19339557
-.00089055 .00046802
.00520002 ln_partplatact ln_new_sign ln_average_degree ln_partplatact .01346186 .00672883 Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	-0.0937 0.0442	1.0000	
и3		-0.0514 0.2703	1.0000

GMM finished : 17:09:35

Starting Monte-Carlo loop : 17:09:35 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 17:09:43

ln average degree

ln_partplatact

u1

u2

u3

GMM finished : 17:12:11

Residuals correlation matrix

1.0000

0.9501

-0.0030 1.0000

0.0933 -0.0640 0.0482 0.1759

524

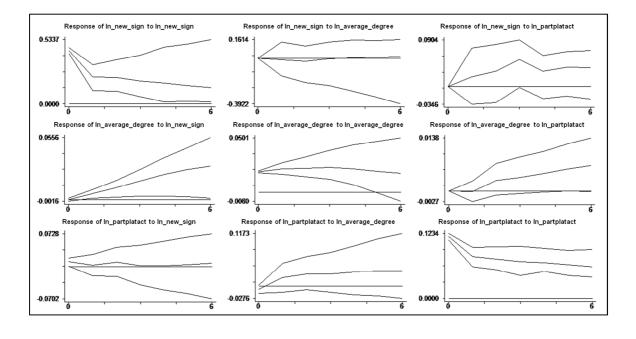
GMM started : 17:12:10 accumulating matrices equation 1,2,3, calculating b2sls accumulating matices equation i, , , , , , escalating based calculating big 20u2 matrix finished accumulating 20u2 Results of the Estimation by system GMM______ number of observations used : 449 EQ1: dep.var : h_ln_new_sign se_GMM t_GMM .15044852 3.3296526 4.6821233 -.10424289 b GMM b_GMM L.h_ln_new_sign .50094132 L.h_ln_average_degree -.48807808 L.n_in_average_degree L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partplatact L3.h_ln_new_sign .15704461 .24533558 -.66897556 .27975193 .56137095 2.3966472 .10236616 3 2137788 - 20815856 .06955052 .22135968 .31419689 L3.h_ln_average_degree 1.7272862 1.3697981 1.2609787 L3.h_ln_partplatact L4.h_ln_new_sign L4.h_ln_average_degree L4.h_ln_partplatact .14737755 .03599956 -.44470765 -.25243157 .30788546 .47867656 45898988 .97617082 -.45556335 EQ2: dep.var : h_ln_average_degree se_GMM .00497004 L.h_ln_new_sign .01208837 2.4322491 L.h_ln_average_degree 1.1397143 L.h_ln_partplatact -.0005995 12.h_ln_partplatact 0.0287524 L3.h_ln_partplatact 0.0287524 L3.h_ln_newsign .00380554 L3.h_ln_average_degree .01229272 L3.h_ln_average_degree .02229724 L3.h_ln_average_degree .02229724 L3.h_ln_average_degree .02229724 L3.h_ln_average_degree .02229724 .0228724 .028754 .17034096 6.6907826 .01383212 -.04771165 .00434035 .83731724 .00434035 .14760258 .02123495 .00314902 .07721328 -.80639464 1.0772448 1.2084834 .15920477 L3.h_ln_partplatact -.0160907 L4.h_ln_new_sign .00127522 L4.h_ln_average_degree -.12599645 L4.h_ln_partplatact -.00222902 .01772986 -.90754802 .00327582 . 38928244 .38928244 -2.8233328 -.26024603 .04462685 EQ3: dep.var : h_ln_partplatact se_GMM t_GMM .03037098 -.28340775 1.0258979 1.1971687 b_GMM L.h_ln_new_sign -.00860737 L.h_ln_average_degree 1.2281728 L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partplatact .08917799 .02005499 .87782425 .09280688 .67221708 7.5379256 .18527156 -.63281913 1.9734926 -.0371562 -.55550398 .18315369 -.03256077 -.52094851 L3.h_ln_new_sign L3.h_ln_average_degree .01587037 -2.0516709 .48583362 -1.0722776 -1.0722776 .14171561 -.77303558 .52593582 L3.h_ln_partplatact L4.h_ln_new_sign L4.h_ln_average_degree L4.h_ln_partplatact .12652942 .01622076 .31044565 .08855444 .41268967 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partplatact ln_new_sign .19521009

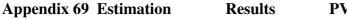
.00036403

-.00014606

Starting Monte-Carlo loop : 17:12:13 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 17:12:22

.01396125


.00485403


u3

1.0000

u2 ul

pvar ln_new_sign ln_average_degree ln_partplatact, lag(4) gmm monte 1000

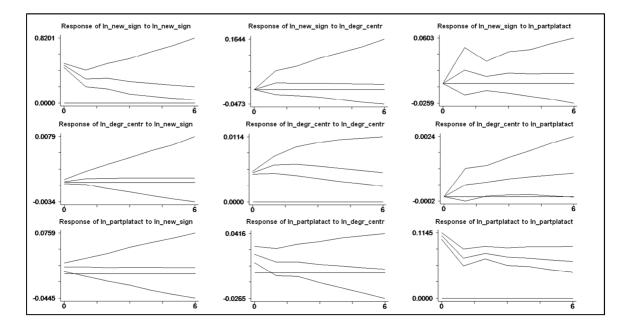
PVAR(1)-(4)

ln_new_signups

ln_degree_centralization ln_partplatact; All Regions

. pvar ln_new_sign ln_degr_centr ln_partplatact, lag(1) gmm monte 1000 GMM started : 17:15:11 accumulating matrices equation 1,2,3,calculating b2s1s calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM_ number of observations used : 487 EQ1: dep.var : h_ln_new_sign b_GMM se_GMM t_GMM L.h_ln_new_sign .78714576 .14735898 5.3416882 L.h_ln_degr_centr 2.2967169 2.5516786 .9000808 L.h_ln_partplatact .0521462 .08895058 .58624261 EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM L.h_ln_new_sign .0010928 .00213264 .51250226 L.h_ln_degr_cent .87429658 .05135631 .7.024133 L.h_ln_partplatact .00270086 .00147879 1.8263977 EQ3: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM L.h_ln_new_sign .03279232 .02681571 1.22228773 L.h_ln_degr_entr .75188641 .76196086 .99677825 L.h_ln_partplatat .90988656 .05067912 17.953874 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_degr_centr ln_partplatact .27951768 -.00018734 .00006734 .01409085 .00009337 .01532437 ln_new_sign ln_degr_centr
ln_partplatact Residuals correlation matrix 111 112 113 1.0000 u1 -0.0444 1.0000 u2 0.3279 u3 0.2149 0.0915 0.0000 0.0436 1.0000

GMM finished : 17:15:12


Starting Monte-Carlo loop : 17:15:13 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 17:15:20

. pvar ln_new_sign ln_degr_centr ln_partplatact, lag(2) gmm monte 1000 GMM started : 17:26:34 GMM started : 17:26:34 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 474 EQ1: dep.var : h_ln_new_sign b GMM se GMM t GMM b_GMM .65369865 6.6274307 .14288941 .23552171 -6.4465306 se_GMM .13245589 4.0517487 .1760554 .06065925 3.7089616 t_GMM 4.9352178 1.6356964 .81161617 3.8827006 -1.7380958 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partplatact -.12589009 .18991242 -.66288501 EQ2: dep.var : h_ln_degr_centr b_GMM .00153972 se_GMM .00222917 t_GMM .69071151 L.h_ln_new_sign .69071151 4.635527 1.3600695 -1.2265325 -.35292709 -.76507875 L.h_in_new_Sign L.h_in_degr_centr L.h_in_partplatact L2.h_in_new_sign L2.h_in_degr_centr L2.h_in_partplatact .00153972 .98927818 .00531426 -.00126643 -.06458905 -.00331101 .21341224 00390735 .00390735 .00103253 .1830096 .00432767 EQ3: dep.var : h_ln_partplatact b_GMM .01030529 .00892789 .64172452 se_GMM .02200148 1.1880394 t_GMM .46839095 .00751481 7.7907346 L.h_ln_new_sign L.h_In_new_Sign L.h_In_degr_centr L.h_In_partplatact L2.h_In_new_sign L2.h_In_degr_centr L2.h_In_partplatact .08237022 -.00740614 .01233549 -.60039285 -.33161363 .30743838 1.0257135 -.32330044 .07951951 3.8662007 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .2215497 ln_degr_centr ln_partplatact ln_new_sign ln_degr_centr ln_partplatact -.00010487 .00005331 .00008788 .01241314 .0058233 Residuals correlation matrix ul u2 u3 ul 1.0000

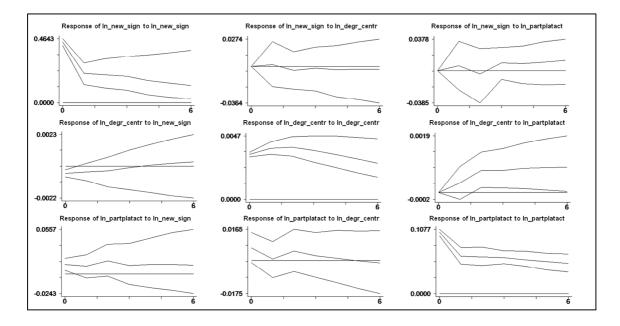
u2	-0.0309 0.5025	1.0000	
и3	0.1111 0.0155	0.1081 0.0186	1.0000

GMM finished : 17:26:36

Starting Monte-Carlo loop : 17:26:36 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 17:26:44

pvar ln_new_sign ln_degr_centr ln_partplatact, lag(3) gmm monte 1000 GMM started : 17:40:19 GMM started : 17:40:19 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM______ number of observations used : 461 EQ1: dep.var : h_ln_new_sign b_GMM .49578905 5.7660141 se_GMM .10294034 2.9312657 t_GMM 4.8162756 1.9670731 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partplatact L2.h_ln_peg_centr L2.h_ln_degr_centr L2.h_ln_new_sign L3.h_ln_degr_centr .08074371 .01466209 .18158799 .20746408 .07012996 2.9582802 -10.714381 4.7578803 -2.2519232 -.09241429 .11010744 4.6186909 4.7578803 .21670291 .04189046 2.908436 -2.2519232 -.42645618 2.6284614 1.5880325 L3.h_ln_partplatact .15600897 .18131929 .8604102 EQ2: dep.var : h_ln_degr_centr b_GMM .00112129 t_GMM .63582353 se_GMM .00176353 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_degr_centr .85723922 .00534443 -.00028637 .14710979 .19996758 .00395031 .00102806 .19803169 4.286891 1.3529139 -.27855856 .74285986 L2.h_ln_partplatact .00185791 .00491129 .37829414 L3.h_ln_new_sign -.00040849 .00058291 -.70078912 -.09472354 L3.h_ln_degr_centr L3.h_ln_partplatact .05648926 -1.6768415 -.00518676 EO3: dep.var : h_ln_partplatact t_GMM .16351733 -.11200986 b GMN se GMM .00325548 -.10797039 .6039343 se_GMM .01990911 .96393648 .07750045 L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partplatact 7.7926556 L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partplatact L3.h_ln_new_sign .01638837 .01240544 1.3210632 .49741077 1.1911036 .41760494 .22993289 -.01656294 -.86746725 .08952139 .0912472 .00995726 1.0153825 2.5198899 L3.h_ln_degr_centr -.85432559 L3.h_ln_partplatact .1052514 .85054827 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_degr_centr ln_partplatact .18988867 ln_new_sign in_new_sign ln_degr_centr ln_partplatact 00003599 .00531484 4.273e-06 .01081617 Residuals correlation matrix ul u2 u3 1.0000 ul u2 -0.1279 1.0000 0.0059

GMM finished : 17:40:20


u3

0.1173

0.0069

1.0000

Starting Monte-Carlo loop : 17:40:21 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 17:40:29

EQ1: dep.var

L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partplatact

L3.h_ln_new_sign L3.h_ln_degr_centr L3.h_ln_partplatact L4.h_ln_new_sign

_____ L4.h_ln_degr_centr

L.h_ln_new_sign L.h_ln_degr_centr

L.h_ln_egr_centr L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_degr_centr

L3.h_ln_partplatact

L4.h_ln_degr_centr L4.h_ln_partplatact

L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_degr_centr

L2.h_ln_degr_centr L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_degr_centr L3.h_ln_partplatact L4.h_ln_new_sign L4.h_ln_degr_centr

L4.h_ln_partplatact

symmetric uu[3,3]

ln_new_sign ln_degr_centr
ln_partplatact

Residuals correlation matrix

ul

u2 u3

GMM finished : 17:48:46

EQ3: dep.var

L4.h_ln_new_sign

L4.h_ln_partplatact

EQ2: dep.var

. pvar ln_new_sign ln_degr_centr ln_partplatact, lag(4) gmm monte 1000 GMM started : 17:48:44

GMM started : 17:48:44 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 448

se_GMM

se_GMM .09745655 3.74796 .17096907 .07698321 4.2641427

.22096509

.05973237

3.390663

.2118672

2.2426656

.17708931

se_GMM .00170989 .21491833

.00311409

.22505562 .00387272 .00062138 .08649364

.00270897

.00046437

.06121232

.00234484

se GMM

se_GMM .01926932 1.1287954 .06951029 .01280561

1.1367898

1.136/898 .0818944 .01148688 1.1318642 .11359583 .00750917 .82556132

.06031584

ln_new_sign ln_degr_centr ln_partplatact
.18982148

.00003128

-3.002e-06

u3

1.0000

t_GMM

5.1638929 2.0260221 .5014469 2.7094004 -3.1280504

.1476201

1.1650211

1.7013588

.53112908

-.78597056

t_GMM .87581912 3.0906029

.83970321

.16336003 .10330003 1.3098074 .82439077 -.15194599

.65827219

-.64395824

-.32620792

-2.406658

t_GMM .5878324 .1064339 9.8215547 1.8055635

.48945512

2.1681725

-1.9835408

-1.0812575 1.3271927 -.25499372

-.03226314

Starting Monte-Carlo loop : 17:48:48 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 17:48:58

.01042921

-.75390699

4309358 .82956281

: h_ln_new_sign b_GMM

b_GMM .50325518 7.5934499 .08573191 .20857834 -13.338453

.03261889

.06958947

5.7687345

.09130116

1.1911449

-.13918699

: h_ln_degr_centr b_GMM .00149756

.66422719

.00261491

.00261491 .00015694 .2947795 .00319263 -.00009442 .05693636

-.00174446

-.00015148

-.14731711

: h_ln_partplatact

b GMM

D_GMM .01132713 .12014209 .68269915 .02312134 .5564076

.17756119

-.02278469

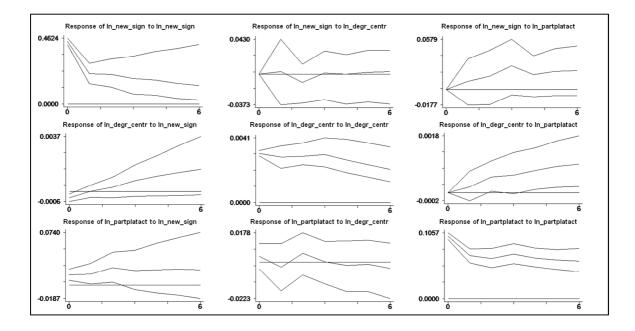
-1.2238367 .15076356 -.00191479

-.0266352

just identified - Hansen statistic is not calculated

-.00025641

ul


-0.1053 1.0000 0.0259

0.1472 -0.0052 0.0018 0.9120

1.0000

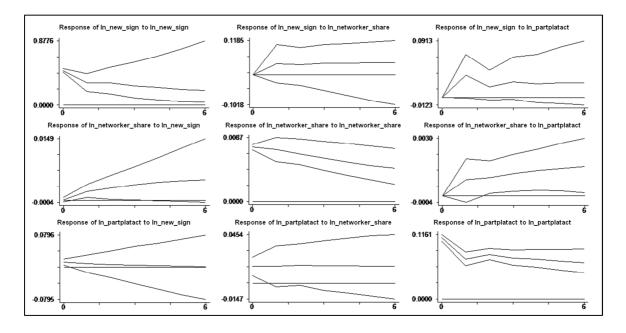
.0065469

u2

Appendix 70 Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share ln_partplatact; All Regions

. pvar ln_new_ GMM started :		etworker_s1	hare ln_part	platact, lag(l)	gmm monte 1000
accumulating m calculating bi			2,3,calculat	ing b2sls	
finished accur					
Result			by system (GMM	
number of obse					
EQ1: dep.var					
		h CMM	se_GMM	+ C104	
L.h.ln	new sign		.18303725		
L.h_ln_network					
L.h_ln_par	tplatact	.05233474	.0929927	.56278338	
EQ2: dep.var	: n_in	_networker_	_snare		
		b_GMM	se_GMM	t_GMM	
			.00247019		
L.h_ln_networ	-				
			.00266534	1.1783431	
EQ3: dep.var					
		b_GM			
				14 1.4437356	
				0201082752	
L.h_ln_par				18 18.46646	
just identifie					
symmetric uu[3	3,31				
		ln_new_	_sign ln_ne	tworker_share	ln_partplatact
ln_new_	_sign	.3064	17672		
ln_networker_s	share	.000	73554	.0001053	
ln_partpla	atact	.0225	52687	.00026775	.02279412
Residuals corr	relation m	atrix			
	ul	u2	u3		
ul	1.0000				
u1	1.0000				
u2	0.1269	1.0000			
	0.0050				
u3		0.1705	1.0000		
	0.0000	0.0002			

GMM finished : 17:56:43

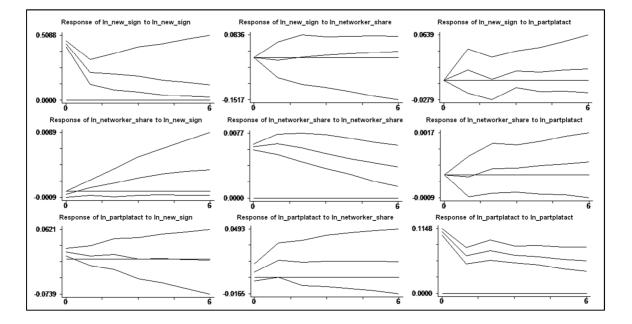

Starting Monte-Carlo loop : 17:56:44 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 17:56:50

pvar ln_new_sign ln_networker_share ln_partplatact, lag(2) gmm monte 1000 GMM started : 18:00:38 accumulating matrices equation 1,2,3,calculating b2sls accumulating metrices equation fraction fraction fractions calculating big ZuuZ matrix finished accumulating ZuuZ — Results of the Estimation by system GMM_ number of observations used : 475 EQ1: dep.var : h_ln_new_sign b GMM se GMM t GMM b_GMM L.h_ln_new_sign .62725218 L.h_ln_networker_share 4.6240144 L.h_ln_partplatact .32232461 L2.h_ln_new_sign .22114736 L2.h_ln_networker_share -3.0180067 .15223641 5.6416256 .18946703 .07664856 4.1202506 .81962446 1.7012174 2.885212 -.93344074 3.2332065 L2.h_ln_partplatact -.29321136 .197454 -1.4849603 EQ2: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM b_c490 L.h_ln_new_sign .00416722 L.h_ln_networker_share .94356155 L.h_ln_partplatact .00746708 L2.h_ln_new_sign -.005774867 L2.h_ln_networker_share -.05774867 L2.h_ln_partplatact -.00468626 se_GMM .00195357 .13771814 .00624538 .00128616 .12070075 t_GMM 2.1331295 6.8513963 1.1956167 -.51839085 -.47844497 .00698155 -.67123514 EQ3: dep.var : h_ln_partplatact b_GMM se_GMM t_GMM .06123196 .02807545 1.5434458 .06123196 .50575201 10.101605 -.7356306 -.47361012 4.4122414 .0645503 .01534721 1.1551786 .0665415 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share
 .2247753
 .00008816 .00005409 ln_partplatact ln_new_sign ln_networker_share ln_partplatact .00617844 .00011936 .01265057 Residuals correlation matrix 1 ul u2 u3 ul 1.0000

u2	0.0244	1.0000	
u3	0.1162		1.0000
	0.0113	0.0015	

GMM finished : 18:00:40

Starting Monte-Carlo loop : 18:00:40 , total 1000 repetitions requested i-38, i-76, i-114, i-152, i-190, i-228, i-266, i-304, i-342, i-380, i-418, i-456, i-494, i-532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 18:00:48



. pvar ln_new_sign ln_networker_share ln_partplatact, lag(3) gmm monte 1000 GMM started : 18:05:12 GMM started : 18:05:12 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______Results of the Estimation by system GMM______ number of observations used : 462 EQ1: dep.var : h_ln_new_sign b_GMM se_GMM t_GMM b_uswith b_low se_GMM .12675892 6.4302174 .16786011 .08969164 5.645187 3.82117 -.251253 .78668219 2.5812227 .47303833 .19078041 -.72220995 L3.h_ln_new_sign L3.h_ln_networker_share L3.h_ln_partplatact .08637125 .05274437 1.6375442 3.65635 .10077408 .07911776 .12677857 .62406258 EQ2: dep.var : h_ln_networker_share b GMM se GMM t GMM L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_networker_share D_GMM .00238239 1.0623608 -.00080845 .00006934 se_GMM .00144092 .11272914 .00463244 .00113455 L_GMM 1.6533848 9.4240122 -.17451893 .06111431 -1.1649835 -.14827844 .12727943 L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_networker_share L3.h_ln_partplatact .00331225 .00802946 .41251245 .00075093 .00067487 1.112695 -.01452607 -.00156729 07192437 -.20196311 .00444296 -.35275813 EQ3: dep.var : h_ln_partplatact b GMM se GMM + GMM L.h_ln_new_sign -.00354816 L.h_ln_networker_share 2.4185237 L.h_ln_partplatact .6066478 L2.h_ln_new_sign .00022812 .02724879 1.7319991 .08024771 .0167369 -.13021349 1.396377 7.5596895 .01362951 L2.h_ln_ews_sign .00022812 L2.h_ln_etworker_share -2.0734669 L2.h_ln_partplatact .32187054 L3.h_ln_ews_sign -.0195521 L3.h_ln_etworker_share .1437529 L3.h_ln_partplatact -.00540801 1.6622837 -1.2473725 .10115135 3.1820685 .01083818 -1.8415644 .95439762 .15066601 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share .19493753 -.00020351 .00003688 .00622668 .00002324 ln_partplatact ln_new_sign ln_networker_share ln_partplatact .01217473 Residuals correlation matrix ul u3 u2

ul	1.0000		
u2	-0.0760 0.1030	1.0000	
u3	0.1279 0.0059	0.0353 0.4495	1.0000

GMM finished : 18:05:14

Starting Monte-Carlo loop : 18:05:14 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 18:05:23

pvar ln_new_sign ln_networker_share ln_partplatact, lag(4) gmm monte 1000 GMM started : 18:13:42 accumulating matrices equation 1,2,3, calculating b2sls : h_ln_new_sign EQ1: dep.var
 b_GMM

 L.h_ln_newsign
 .49042256

 L.h_ln_networker_share
 -3.9217306

 L2.h_ln_newsign
 .2601484

 L2.h_ln_newsign
 .2601484

 L2.h_ln_newsign
 .0502482

 L2.h_ln_newsign
 .0832158

 L3.h_ln_newsign
 .0832158

 L3.h_ln_networker_share
 7.5938485

 L3.h_ln_networker_share
 -1.2014385

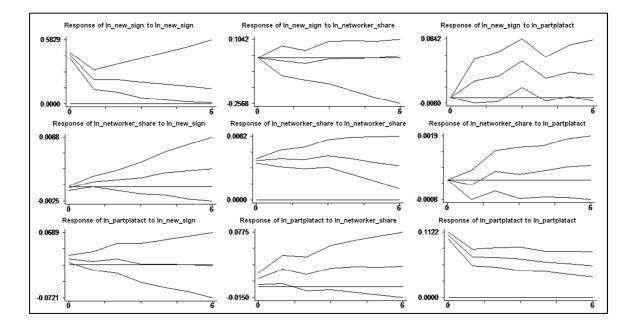
 L4.h_ln_networker_share
 -1.2014385

 L4.h_ln_netpatatat
 -.28729336
 b GMM se GMM t GMM se_GNM t_GNM .1246872 3.9332229 10.321132 -.37997098 .18180154 1.2365987 .09688746 2.6850622 8.1980548 -.21423159 .21259392 .0923661 1 1991741 .06939426 4.2533342 .23596818 .04653761 2.3200516 1.7853872 .6098317 .52802885 2.3200516 -.51784988 .16508636 -1.7402913 EQ2: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM
 b_GMM

 L.h_ln_new_sign
 .00255089

 L.h_ln_networker_share
 1.0588241

 L.h_ln_partplatact
 -.0019889


 L2.h_ln_new_sign
 -.00285846

 L2.h_ln_networker_share
 -.0828647
 .00109144 .12008969 2.4287922 2.428/922 8.8169445 -.57187472 -.8132093 -.49787208 .00347786 .00105564 .16643773 L2.h_in_partplatat L2.h_in_partplatat L3.h_in_networker_share L3.h_in_partplatat L4.h_in_new_sign L4.h_in_networker_share .0062047 .00663079 .93573984 .00013826 .00075062 .18420013 -1.0233495 .66565538 -3.2125317 .13726388 .12595273 -.00486194 .0005407 -.20113895 .00475101 .00081228 .06261073 L4.h_ln_partplatact .00112947 .00297435 .37973583 EQ3: dep.var : h_ln_partplatact <u>b_0M4</u> L.h_ln_new_sign 1.792e-06 L.h_ln_partplatact 55233478 L.h_ln_networker_share 3.5190622 L.h_ln_networker_offer 3.501086 L2.h_ln_networker_share 3.9898666 L2.h_ln_networker_share 3.9898666 L3.h_ln_networker_share 3.3306225 L3.h_ln_partplatact 3.326161 L4.h_ln_new_sign -.00468397 L4.h_ln_new_sign -.01131476 b_GMM se_GMM .02558058 t_GMM .00007005 .02558058 2.3210541 .07999411 .01753183 2.1725819 .08697441 .01322135 1.2158787 1.5161483
8.1547854 .17692743 -1.8364631 2.5375181 -1.699204 1.9168215 L3...[.n_inteworker_snare x.330623 1.1210670; 1.120071 L3...[...]artplatat 0.326161 .10661523 .30530661 L4.h_ln_new_sign -.00468397 .00969453 -.48315589 L4.h_ln_networker_share -1.1171474 .73395711 -1.5109713 L4.h_ln_partplatet .0194817 .07461877 .26108304 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share
 .19350175
 -.00011369
 .00002495
 .00002495 ln_partplatact ln_new_sign ln_networker_share .00509972 .01165023 ln_partplatact .00005494 Residuals correlation matrix ul u2 u3

ul	1.0000		
u2	-0.0519 0.2725	1.0000	
u3		0.1023 0.0302	1.0000

GMM finished : 18:13:44

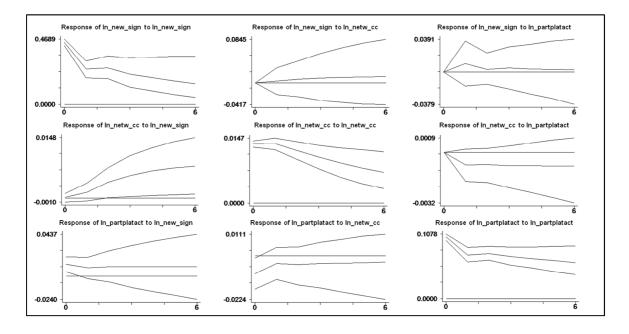
Starting Monte-Carlo loop : 18:13:45 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 18:13:54

Appendix 71 Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc ln_partplatact; All Regions

. pvar ln_new_sign ln_netw_cc ln_partplatact, lag(1) gmm monte 1000
GMM started : 18:17:29
accumulating matrices equation 1,2,3, calculating b2sls
calculating big ZuuZ matrix
finished accumulating ZuuZ
Results of the Estimation by system GMM
number of observations used : 475
EQ1: dep.var : h_ln_new_sign
b_GMM se_GMM t_GMM L.h_ln_new_sign .78598881 .11002601 7.1436634
L.h_ln_netw_cc .2516893 .81432228 .30907824
L.h_ln_partplatact .01394616 .09173177 .15203198
EQ2: dep.var : h_ln_netw_cc
b_GMM se_GMM t_GMM
L.h_ln_new_sign .01896163 .00781154 2.4273858
L.h_ln_netw_cc .79932523 .06182275 12.929306
L.h_ln_partplatact00151991 .0066883822724627
EQ3: dep.var : h_ln_partplatact
b_GMM se_GMM t_GMM
L.h_ln_new_sign .01578058 .01851201 .85245074
L.h_ln_netw_cc .06030255 .16749009 .36003655
L.h_ln_partplatact .92668882 .04653794 19.912545
just identified - Hansen statistic is not calculated
symmetric uu[3,3]
ln_new_sign ln_netw_cc ln_partplatact
ln_new_sign .25127805
ln_netw_cc .00308389 .0011587
ln_netw_cc .00980544 .00047574 .01223844
11_pd1cp1dcdcc .00000011 .0001/0/1 .01220011
Residuals correlation matrix
u1 u2 u3
ul 1.0000
u2 0.1795 1.0000
0.0001

u3 0.1768 0.1265 1.0000 0.0001 0.0058

GMM finished : 18:17:31


Starting Monte-Carlo loop : 18:17:32 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 18:17:38

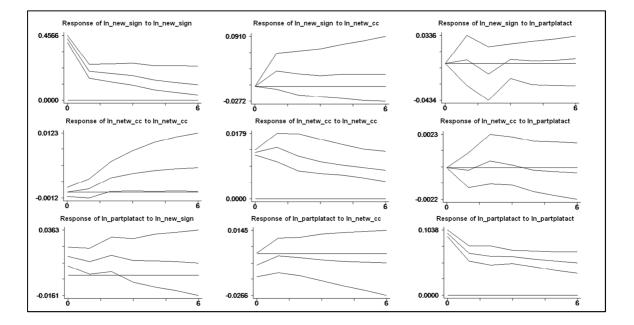
. pvar ln_new_sign ln_netw_cc ln_partplatact, lag(2) gmm monte 1000 GMM started : 18:25:21 GMM started : 18:25:21 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 462 EQ1: dep.var : h_ln_new_sign b_GMM .56800459 se_GMM t_GMM se_GMM .08269895 1.0919986 .15997051 .05758073 .70446946 L.h_ln_new_sign .5680459 L.h_ln_netw_cc .24813808 L.h_ln_partplataat .0965555 L2.h_ln_new_sign .26720302 L2.h_ln_netw_cc .02508435 L2.h_ln_partplataat -.08732431 6.8683407 .22723296 .60358345 4.6404937 .03560743 -.52638962 .16589291 EQ2: dep.var : h_ln_netw_cc se_GMM .00290684 .09462987 .00682608 .00197659 .07277843 .00601051 t_GMM 1.5579391 9.7596423 -1.1006013 b_GMM .00452868 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partplatact .00452868 .92355368 -.00751279 .004005 -.05267518 .00492262 -1.1006013 2.0262205 -.72377459 .819001 EQ3: dep.var : h_ln_partplatact t_GMM -.0272548 .64341408 10.097147 .13211171 se_GMM .01296193 .26426886 .07030286 b GMM L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partplatact -.00035327 .17003431 .70985832 .01123713 L2.h_ln_new_sign .00148456 L2.h_ln_netw_cc -.14278342 L2.h_ln_partplatact .22841487 .2464488 -.57936344 .06758703 3.3795665 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .19940321 .00030244 .00559799 ln_netw_cc ln_partplatact ln_new_sign ln_netw_cc ln_partplatact .0003272 -.00010092 .01078663 Residuals correlation matrix u2 ul u3 1 0000

uı	1.0000		
u2	0.0373 0.4239	1.0000	
u3	0.1208 0.0093	-0.0534 0.2522	1.0000

GMM finished : 18:25:23

Starting Monte-Carlo loop : 18:25:23 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 18:25:31

. pvar ln_new_sign ln_netw_cc ln_partplatact, lag(3) gmm monte 1000 GMM started : 18:31:30 GMM started : 18:31:30 accumulating matrices equation 1,2,3,calculating b2s1s calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 449 EQ1: dep.var : h_ln_new_sign b GMM se GMM + GMM L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partplatact L2.h_ln_new_sign .47169289 1.2102875 .04092419 .22159871 se_GMM .06762868 1.4056158 .1727335 .05595075 6.9747467 .86103725 .23692098 3.9606031 L2.h_ln_netw_cc -1.1817262 1.2050209 -.98066862 L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_netw_cc L3.h_ln_partplatact -.1731647 .20179265 -.85813187 .04720549 1.685055 .56473135 7006724 80598478 .16168648 1.0702635 EO2: dep.var : h ln netw cc b GMN + GMM se_GMM .00238913 .22293633 .00866258 t_GMM 1.1234658 3.5131678 -.75702947 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partplatact .0026841 .78321275 -.00655783 L.h_in_partplatact L2.h_ln_new_sign L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_partplatact L3.h_ln_partplatact .0044972 .0021189 2.1224217 .0044972 .01439433 .00830232 .00071149 .073612 -.00488773 .20608645 .06984600 .00726067 .00178455 .07980633 .00534134 1.1434653 .39869556 .92238291 -.9150753 EQ3: dep.var : h_ln_partplatact b_GMM .00203787 .12859623 se_GMM .0124032 .27044418 t_GMM .1643017 .47550009 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_netw_cc .12899623 L.h_ln_partplatact .6776098 L2.h_ln_new_sign .01293285 L2.h_ln_netw_cc .18140383 L2.h_ln_partplatact .16845252 L3.h_ln_new_sign .0290232 L3.h_ln_netw_cc .04791752 L3.h_ln_netw_cc .0491952 .06749631 10.039213 .06749631 .01121372 .19374338 .09022647 .00831331 .13574383 1.1533059 -.93630985 1.8669968 -1.5520078 -.3529996 .10200257 .79463528 just identified - Hansen statistic is not calculated metric uu[3,3] sуn ln_new_sign .18784736 .00025583 ln_netw_cc ln_partplatact ln_new_sign .0003047 ln_netw_cc ln_partplatact .00666171 -.00007041 .01005136 Residuals correlation matrix ul u2 u3 ul 1.0000 u2 0.0339 0.4742 1.0000


GMM finished : 18:31:31

u3

0.1533 -0.0399 1.0000

0.0011 0.3991

Starting Monte-Carlo loop : 18:31:31 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=68, i=644, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 18:31:40

EQ1: dep.var

L2.h_ln_partplatact L3.h_ln_new_sign

L3.h_ln_netw_cc L3.h_ln_partplatact L4.h_ln_netw_cc L4.h_ln_netw_cc

L4.h_ln_partplatact

L.h_ln_new_sign L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partplatact L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partplatact

L3.h_ln_new_sign L3.h_ln_netw_cc

L3.h_ln_partplatact L4.h_ln_new_sign L4.h_ln_netw_cc L4.h_ln_partplatact

L2.h_ln_netw_cc L2.h_ln_partplatact L3.h_ln_new_sign L3.h_ln_netw_cc L3.h_ln_partplatact L4.h_ln_new_sign

L4.h_ln_partplatact

symmetric uu[3,3]

ln new sign ln_netw_cc ln_partplatact

Residuals correlation matrix

ul

u2

u3

GMM finished : 18:39:37

L4.h_ln_netw_cc

b_GMM L.h_ln_new_sign -0.0182711 L.h_ln_netw_cc .09987722 L.h_ln_partplatact .7346608 L2.h_ln_new_sign .01339715 L2.h_ln_netw_cc -.05275639

EO3: dep.var

EQ2: dep.var

. pvar ln_new_sign ln_netw_cc ln_partplatact, lag(4) gmm monte 1000 GMM started : 18:39:35 GMM started : 18:39:35 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____Results of the Estimation by system GMM______ number of observations used : 436

: h_ln_new_sign b GMM

.43586386 1.22762 .2268725 .20792758 -.9884185 -.20227845

.03198567

.03198367 .54583513 .30172355 .07252535 .03114658

-.26362131

-.00841482

.00458188 .08099484 .00396127

.00332423

-.01569242

-.00134921

-.00424739 .08502987 .00089088

b GMM

: h_ln_partplatact

-.05275639 .16623224 -.01562029 -.06380371 .1307804 .00499998

.02611383

-.09597165

just identified - Hansen statistic is not calculated

.0056404

u2

ln_new_sign .18465264 .00035283

ul

0.0514 1.0000

1.0000

0.2842 0.1319 -0.0461 0.0058 0.3367

: h_ln_netw_co b_GMM .00050965 .75289883

b_GMM L.h_ln_new_sign .43886386 L.h_ln_netw_cc 1.22762 L.h_ln_partplatact .2268725 L2.h_ln_new_sign .20792758 L2.h_ln_netw_cc -.9884185

se GMM

se_GMM .06695642 1.5132032 .14953043 .05994373 1.572609 .19724955

.05539614

1.51681 .21436973 .04141632 .52540685

.18428566

se_GMM .00199312 .23232706

.00563003

.00213482 .16067082 .00774547 .00248814

.12425233

.00530303 .00219004 .06554787 .00459876

GMN

se_GMM .01218884 .29145345 .07070667 .01130049 .20899153

.08975202 .00932299 .16359562 .12288878 .00806342

.12155748

.06514764

.00025592

- 00007391

u3

1.0000

t GMM

6.5096644

.8112724 1.5172329 3.4687129 -.62852148

-1.0254951

.57739894

.35985727 1.4074914 1.7511297 .05928088

-1.4305037

t_GMM .25570609 3.2406851

-1.4946318

2.146262 .50410425

1.3360291

-.12629474

-.25442318

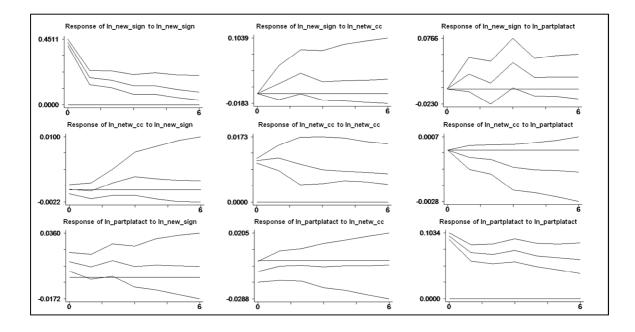
-1.939415 1.297218 .19372279

+ GMN

t_GMM -.14990021 .34268668 10.390262 1.1855373

-.25243315

-.25243315 1.8521282 -1.6754588 -.3900087 1.0642176 .62008184


.21482705

-1.4731409

ln_netw_cc ln_partplatact

Starting Monte-Carlo loop : 18:39:38 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 18:39:47

00990336

Appendix 72 Estimation Results PVAR(1)-(4) ln_new_signups ln_average_degree In_partintactplat; All Regions

. pvar ln_new GMM started : accumulating b finished accur Resuli number of obse EQ1: dep.var	07:44:27 matrices e ig ZuuZ ma mulating S ts of the ervations	equation 1, atrix ZuuZ Estimation used : 488	2,3,calcula by system	ting b2sls		gmm monte	1000
Lgr. dep.var							
		b_GMM	se_GMM	t_GMM			
L.h_ln_	new_sign	.72707247	.23219063	3.13136			
L.h_ln_average	e_degree	.57875145	.77820555	.74369998			
L.h_ln_partin	tactplat	.05133002	.03702788	1.3862535			
EQ2: dep.var	: h_lr	n_average_d	legree				
		b_GMM	se_GMM	t_GMM			
L.h_ln_	new_sign	.00426038	.01034391	.41187376			
L.h_ln_average	e_degree	.87221359	.03947212	22.096955			
L.h_ln_partin	tactplat	.01034163	.00286838	3.6053972			
EQ3: dep.var	: h_lr	partintac	tplat				
		b_GMM	I se_GM	IM t_GN	IM		
L.h_ln_	new_sign	.07774444	.0869721	.4 .8939004	9		
L.h_ln_average	e_degree	04557478	.2788796	11634209	8		
L.h_ln_partin	tactplat	.9234877	.0235639	39.19073	4		
just identifie	ed - Hanse	en statisti	c is not ca	lculated			
symmetric uu[3,31						
		ln_new_s	ign ln_ave	rage_degree	ln_par	tintactpla	at
ln_new_:	sian	.28067					
ln_average_ded		.00161	722	.00103081			
ln_partintact	-	.03333		.0017567		.0919078	34
Residuals correlation matrix							
	u:	L u2	u3				
ul	1.0000)					
u2	0.0940	1.0000					
42	0.0380						
		-					
	1						

0.2063 0.1795 1.0000 u3 0.0001 0.0000

GMM finished : 07:44:29

Starting Monte-Carlo loop : 07:44:30 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 07:44:37

. pvar ln_new_sign ln_average_degree ln_partintactplat, lag(2) gmm monte 1000 GMM started : 07:50:21 GMM started : 07:50:21 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______Results of the Estimation by system GMM______ number of observations used : 475 EQ1: dep.var : h_ln_new_sign se_GMM .1884214 1.7798101 .10435794 .09793238 .92147909 b_GMM t_GMM
 b_GKM

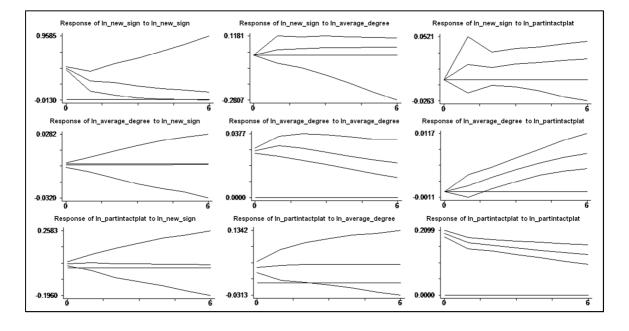
 L.h_ln_new_sign
 .5654782

 L.h_ln_average_degree
 1.1052107

 L.h_ln_partintactplat
 .08992268

 L2.h_ln_new_sign
 .19415979

 L2.h_ln_average_degree
 -.51432


 L2.h_ln_partintactplat
 -.06192005
 1.9825903 -.641829 .09801375 EQ2: dep.var : h_ln_average_degree b_GMM .00010718 se_GMM .00813784 t_GMM .01317104 L.h_ln_new_sign L.h_ln_average_degree L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partintactplat 1.1009398 .13110636 8.3973032 .005948 .005948 -.00097705 -.18533247 .00303522 .00684053 .00489433 .11517133 .0074786 -.1996293 -1.6091893 .40585426 EQ3: dep.var : h_ln_partintactplat se_GMM .07395598 .77872636 .05009206 .03568814 t_GMM .29099511 .48148946 16.922098 -.5064452 b GMM L.h_ln_new_sign .02152083 L.h_ln_average_degree .37494854 L.h_ln_partintactplat .84766272 L2.h_ln_new_sign -.01807409 L2.h_ln_average_degree -.23633935 L2.h_ln_partintactplat .08891088 .54122114 -.43667798 .04178457 2.12784 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat
.22043046
-.00039397 .00076233 ln_new_sign ln_average_degree ln_partintactplat .00076233 .01346027 .04234862

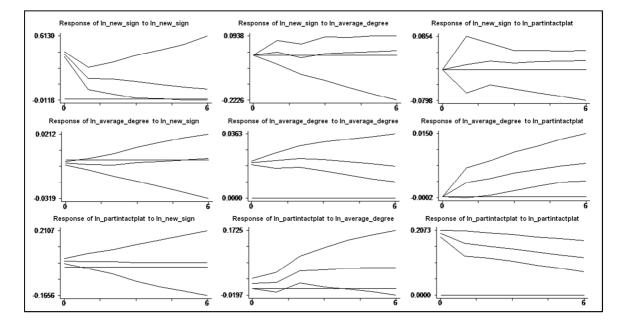
Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	-0.0305 0.5078	1.0000	
u3		0.1928	1.0000

GMM finished : 07:50:23

Starting Monte-Carlo loop : 07:50:24 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=68, i=646, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 07:50:31

pvar ln_new_sign ln_average_degree ln_partintactplat, lag(3) gmm monte 1000 GMM started : 07:52:21 accumulating matrices equation 1,2,3, calculating b2sls EQ1: dep.var : h_ln_new_sign se_GMM .15774062 1.674675 .22630002 .09265497 b GMM + GMM L.h_ln_new_sign L.h_ln_average_degree L.h_ln_partintactplat .46021891 .62661225 .0616609 .22149947 t_GMM 2.9175676 .37416947 .27247413 2.3905839 L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_average_degree -1.6303731 .78915697 -2.0659681 .10882267 .02050095 .18838856 .06404315 .08165936 1.3716468 -.03374224 2.33468 -.37890239 L3.h_ln_partintactplat .08905261 EQ2: dep.var : h_ln_average_degree b_GMM L.h_ln_new_sign -.00317806 n_average_degree 1.0455857 se_GMM t_GMM .00646938 -.49124644 L.h_ln_average_degree L.h_ln_partintactplat .12151919 8.6042846 .0170999 .01103776 L2.h_ln_new_sign L2.h_ln_average_degree L2.h_ln_partintactplat L3.h_ln_new_sign .08944421 .06469218 -.92371845 1.6193142 .00038221 .00427319 .00038221 .00807633 -.00976862 .00487185 .00427319 .12484239 .01057533 .00300859 L3.h_ln_average_degree -.12814911 .05158778 -2.484098 L3.h_ln_partintactplat .00021061 .00550031 .03829109 EQ3: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM t_GMM .16517574 .29851786 L.h_ln_new_sign .01064206 .06442871 L.h_ln_average_degree L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_average_degree .24374967 .81653294 .24374967 .84155395 .01443556 1.6070561 .07940715 -.01175214 .81653294 .11971832 .03104425 .86230422 7.02945 .46499956 1.8636765 .81420425 L2.h_ln_partintactplat .09752731 L3.h_ln_new_sign .02916724 -.4029224 L3.h_ln_average_degree L3.h_ln_partintactplat -1.4776442 -.01889888 .46091384 -3.2059012 .04746248 -.39818567 just identified - Hansen statistic is not calculated symmetric uu[3,3] In_new_sign In_average_degree In_partintactplat
.19124661
-.0012396 .00040294
.01477976 .00019933 .040143 ln_new_sign ln_average_degree ln_partintactplat Residuals correlation matrix ul u2 u3 1.0000 ul u2 -0.1412 1.0000 0.0023

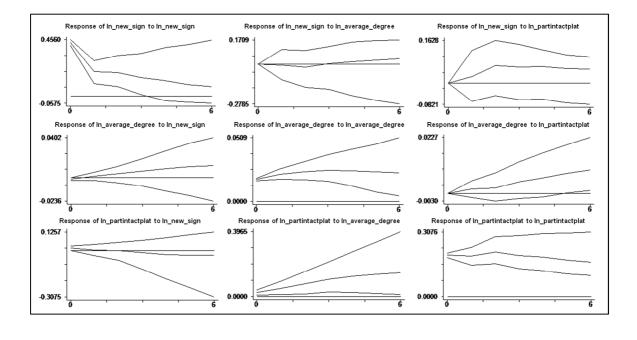

GMM finished : 07:52:24

u3

0.1687 0.0493 0.0003 0.2902

1.0000

Starting Monte-Carlo loop : 07:52:24 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 07:52:32


. pvar ln_new_sign ln_average_degree ln_partintactplat, lag(4) gmm monte 1000 GMM started : 07:58:08 GeVM started : 07:58:08 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 449 EQ1: dep.var : h_ln_new_sign b_GMM L.h_ln_new_sign .45349445 L.h_ln_average_degree -.48085176 L.h_ln_partintactplat .1184102 L2.h_ln_new_sign .22142315 L2.h_ln_average_degree -.91059225 L2.h_ln_average_degree .3105926 L2.h_ln_new_sign .05854875 L3.h_ln_new_sign .205854875 b GMM se GMM t GMM t_GMM 3.41716 -.1512898 .41145069 2.4793418 -.45132813 se_GMM .13271092 3.178349 .28778708 .08930723 2.0175836 .15799106 1.1184782 .07228615 .80995807 L3.h_ln_new_sign .05854875 L3.h_ln_average_degree 1.8674401 L3.h_ln_partintactplat -.15680667 L4.h_ln_new_sign .02235766 L4.h_ln_average_degree -.27342006 L4.h_ln_average_degree .27342006 .07228615 .80995807 1.3357772 1.3980177 .15495564 -1.0119455 .06056417 .36915659 .98957504 -.27630048 .08234552 -.69880071 EQ2: dep.var : h_ln_average_degree se_GMM .00497128 .13171285 1.3956327 9.2126554 .01040381 .9218903 .00458492 .00438492 .12683139 .01045932 .0030727 .07379794 -1.2370823 -.92561178 .44195096 -.64808971 .00747 .00029504 -.07863182 -.00368471 L3.h_ln_partintactplat L4.h_ln_new_sign L4.h_ln_average_degree L4.h_ln_partintactplat .82506006 .10017376 -1.7560671 -.59030379 .00905389 .00294532 .04477723 .00624206 EQ3: dep.var : h_ln_partintactplat b GMM SO GMM se_GMM t_GMM .04570587 -.41037996 1.2197189 1.2759472 .11949099 8.1440068 L.h_ln_new_sign -.01875677 L.h_ln_average_degree 1.556297 L.h_ln_partintactplat .97313541 L2.h_ln_new_sign -.01499266 .03091694 -.48493334 1.0031619 -.46021782 L2.h_ln_average_degree -.461673 L2.h_ln_average_degree - .461673 L2.h_ln_partintactpla L3.h_ln_new_sign -.02448784 L3.h_ln_average_degree .10158059 L3.h_ln_artintactpla -.17751596 L4.h_ln_new_sign -.02473076 L4.h ln_average demre - 555550 1.0031619 -.46021782 .08870992 1.2922736 .02770739 -.88380168 1.0387977 .09778669 .10688611 -1.660758 .02330041 -1.0613872 -.5596549 .01947774 L4.h_ln_average_degree .69799061 -.80180865 .07167993 .27173209 L4.h_ln_partintactplat just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_average_degree ln_partintactplat
 .18660126
 -.00060531 .00031363
 .00031363 ln new sign 04001361

In_average_degree -.00060531 .0003163 In_partintactplat .00743208 .00039481 Residuals correlation matrix ul ul ul ul 1.0000 .000 .000

u2	-0.0791 0.0939	1.0000	
и3		0.1116 0.0180	1.0000

GMM finished : 07:58:13

Starting Monte-Carlo loop : 07:58:14 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 07:58:24

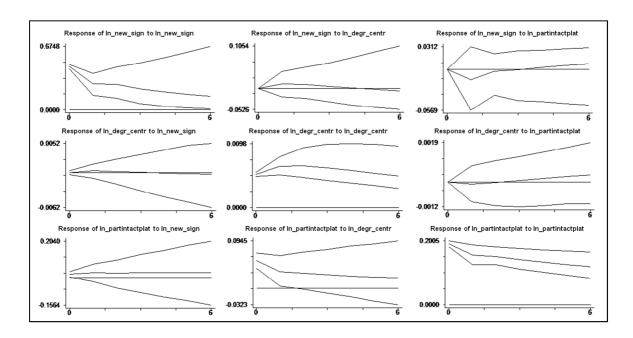
ln_new_signups

ln_degree_centralization ln_partintactplat; All Regions

pvar ln_new_sign ln_degr_centr ln_partintactplat, lag(1) gmm monte 1000 . pvar in_new_sign in_degr_centr in_partintactplat, lag GMM started : 08:01:32 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 487 r : h_ln_new_sign EQ1: dep.var b GMM se GMM t GMM L.h_ln_ew_sign .6989706 17706937 3.9475323 L.h_ln_degr_centr .52732773 2.2699309 .22231004 L.h_ln_partintactplat .04928142 .03119676 1.5796966 EQ2: dep.var : h_ln_degr_centr b_GMM se_GMM t_GMM L.h_ln_new_sign .00232538 .00278408 .83524314 L.h_ln_degr_centr .90210823 .04714328 19.135456 L.h_ln_partintactplat .00021828 .00064257 .33969247 EQ3: dep.var : h_ln_partintactplat b_GMM se_GMM t_GMM L.h_ln_new_sign .03081501 .07112721 .433228 L.h_ln_degr_centr .79961523 1.0836481 .737892 L.h_ln_partintactplat .92746301 .0240668 38.537025 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .25517897 -.00015714 .01815519 ln_degr_centr ln_partintactplat ln_new_sign ln_degr_centr ln_partintactplat .00007143 .00021245 .04773542 Residuals correlation matrix ul u2 u3 1.0000 ul u2 -0.0380 1.0000

u2 -0.0380 1.0000 0.4031 u3 0.1647 0.1154 1.0000 0.0003 0.0108

GMM finished : 08:01:34

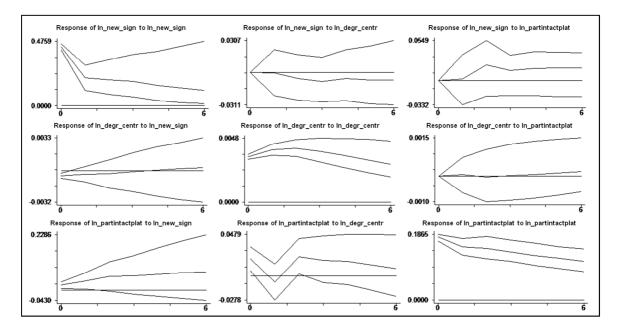

Starting Monte-Carlo loop : 08:01:35 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte=Carlo loop : 08:01:41

pvar ln_new_sign ln_degr_centr ln_partintactplat, lag(2) gmm monte 1000 GMM started : 08:06:01 GMM started : 08:06:01 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____ Results of the Estimation by system GMM_____ number of observations used : 474 EQ1: dep.var : h_ln_new_sign b_GMM L.h_ln_new_sign .61998501 L.h_ln_degr_centr 6.0869297 L.h_ln_partintactplat -.09501553 se_GMM t_GMM .16083623 3.8547597 3.7359338 1.6292927 .1400422 -.67847783 L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partintactplat .21338612 -6.8558262 .06744864 3.1636829 3.5200963 .1120815 .12623802 .88785853 EQ2: dep.var : h_ln_degr_centr se_GMM t_GMM .00272135 .58936172 .21622751 4.6000026 .00269274 .13795232 .00121929 -1.1475187 b_GMM .00160386 .99464711 .00037147 L.h_ln_new_sign L.n_in_new_sign .00100380 L.h_ln_degr_centr .99464711 L.h_ln_partintactplat .00037147 L2.h_ln_new_sign -.00139916 L2.h_ln_degr_centr L2.h_ln_partintactplat -.06889272 .0001361 -.36658349 .18793187 .0024255 EQ3: dep.var : h_ln_partintactplat b GMM se GMM t GMM L.h_ln_new_sign .02539893 L.h_ln_degr_centr -1.2791968 L.h_ln_partintactplat .81292094 L2.h_ln_new_sign -.01181341 .06483885 .39172398 2.408643 -.53108609 .0942988 8.6206923 .02474499 -.47740616 L2.h_ln_degr_centr 1.0402687 L2.h_ln_partintactplat .12423503 2.0244971 .51384056 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .21197815 -.0001357 .00855492 ln_degr_centr ln_partintactplat ln_new_sign ln_degr_centr ln_partintactplat .00005364 .00023549 .03996275 Residuals correlation matrix ul u2 u3 1.0000 ul u2 -0.0405 1.0000

	0.3785		
u3	0.0932	0.1610 0.0004	1.0000

GMM finished : 08:06:02

Starting Monte-Carlo loop : 08:06:03 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 08:06:10



pvar ln_new_sign ln_degr_centr ln_partintactplat, lag(3) gmm monte 1000 GMM started : 08:09:01 accumulating matrices equation 1,2,3, calculating b2sls accumulating metrices equation fraction fraction fractions calculating big ZuuZ matrix finished accumulating ZuuZ — Results of the Estimation by system GMM_ number of observations used : 461 EQ1: dep.var : h_ln_new_sign b GMM se GMM + GMM L.h_ln_new_sign .48501368 L.h_ln_degr_centr 5.3839907 L.h_ln_partintactplat -.03476546 .13001784 2.7298725 .12696976 3.7303624 1.9722499 L.A.IA.partintactplat L2.A.ln_new_sign L2.A.ln_degr_centr L2.A.In_partintactplat L3.A.ln_new_sign L3.A.ln_degr_centr L3.A.ln_partintactplat .19156354 .08159311 2.3477905 4.6204555 -2.3922454 .15204673 .11311794 4.9059401 -.08141823 .1082597 1.4044628 04433425 2 5514801 .0880689 1.6834144 -.92448329 EQ2: dep.var : h_ln_degr_centr se_GMM .00228312 .20884699 t_GMM .52079779 4.1430829 b_GMM L.h_ln_new_sign .00118905 .h_ln_degr_centr .8652704 n_partintactplat .00214903 L.h_ln_degr_centr L.h_ln_partintactplat .00291891 .73624504 L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partintactplat L3.h_ln_new_sign -.00020716 .00130693 -.15850706 .14994886 .2064037 .72648338 .14994880 -.00221224 -.00057794 .00256031 -.86405099 -.90590207 L3.h_ln_degr_centr -.10415815 .06275492 -1.6597608 L3.h_ln_partintactplat .00056526 .00151586 .37290151 EQ3: dep.var : h_ln_partintactplat b_GMM L.h_ln_new_sign .03198038 L.h_ln_degr_centr -1.1492207 L.h_ln_partintactplat .79515287 L2.h_ln_new_sign .047705839 L2.h_ln_degr_centr 5.2913916 L2.h_ln_partintactplat .16588343 L3.h.ln new sign _ 0100000 b_GMM se_GMM .05218575 .61281824 2.5823879 -.4450225 -1.1492207 .79515287 .04705839 5.2913916 .16598343 -.01942621 .09219583 .03205884 3.811681 .09255882 1.4678757 1.3882042 1.7932751 -.71634083 L3.h_ln_new_sign .02711867 L3.h_ln_degr_centr -4.7306842 L3.h_ln_partintactplat -.04312977 2.5609632 -1.8472285 .06261653 -.68879202 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_degr_centr ln_partintactplat .18753672 ln_new_sign ln_degr_centr ln_partintactplat .00003646 .01009159 .00002126 .03452386 Residuals correlation matrix ul u2 u3

In_partintactplat .01009159 .00002126 Residuals correlation matrix ul 1.0000 u2 -0.1300 1.0000 0.0052 u3 0.1254 0.0190 1.0000 0.0070 0.6847

GMM finished : 08:09:03

Starting Monte-Carlo loop : 08:09:04 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=684, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 08:09:12

EQ1: dep.var

L.h_ln_new_sign L.h_ln_degr_centr L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_degr_centr L2.h_ln_partintactplat

L2.n_in_partintactpiat L3.h_in_ew_sign L3.h_in_degr_centr L3.h_in_partintactpiat L4.h_in_new_sign L4.h_in_degr_centr L4.h_in_partintactpiat

L.h_ln_new_sign

L3.h_ln_partintactplat

L4.h_ln_new_sign L4.h_ln_degr_centr L4.h_ln_partintactplat

L2.h_ln_partintactplat L3.h_ln_new_sign

L3.h_ln_degr_centr L3.h_ln_degr_centr L3.h_ln_partintactplat L4.h_ln_new_sign L4.h_ln_degr_centr

symmetric uu[3,3]

ln_degr_centr
ln_partintactplat

ln_new_sign

ul

u3

GMM finished : 08:11:50

Residuals correlation matrix

L.h_ln_new_sign ...vozvos. L.h_ln_degr_centr .69165677 L.h_ln_partintactplat ..00200859 L2.h_ln_new_sign .00043598 L2.h_ln_degr_centr .28836894 L4.h_ln_partintactplat .00002603 L3.h_ln_new_sign .00022631 L3.h_ln_degr_centr .05357894 1.3.h un bartintactplat .00224551

EQ3: dep.var : h_ln_partintactplat

b_GMM L.h_ln_new_sign .01240826 L.h_ln_degr_centr .62687739 L.h_ln_partintactplat .82051311 L2.h_ln_new_sign .01483351 L2.h_ln_degr_centr 1.7625747 L2.h_ln_new_sign -.0161249 L3.h_ln_new_sign -.0161249 L3.h_ln_new_sign .0201249

L4.h_ln_partintactplat -.06395457

EQ2: dep.var

. pvar ln_new_sign ln_degr_centr ln_partintactplat, lag(4) gmm monte 1000 GMM started : 08:11:48 accumulating matrices equation 1,2,3,calculating b2s1s

: h_ln_new_sign

calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM number of observations used : 448

b_GMM

b_GMM .47138346 6.6670353 .08661831 .18528779 -13.617826 .12836119

.06038391

6.272736

- 19575347

-.19575347 .02814549 .76309544 .03593607

b_GMM .0020033 .69165677

.00234551

-.00025649

-.15335788

-1.3014236

-1.3014238 .00567721 -.01843339 -2.2853013

ln_new_sign .18315169 -.00023702

.00770296

u2

just identified - Hansen statistic is not calculated

ul

-0.0979 1.0000 0.0384

0.1101 0.0701 1.0000 0.0197 0.1387

1.0000

b GMM

: h_ln_degr_centr

se_GMM .11878305 3.0645588 .11577017 .08300073 3.8288804 .11460825

.11460835

.06554786

3.3702077

.11752039 .04036781 1.9849923 .09391355

se_GMM .0021893 .2237939 .00190133 .00120414

.232648 .00191777 .00070431 .08417238

.00174292

.00044623

.05901562

.00127791

se GMM

.03363377

.03363377 1.8043988 .06488408 .02475071 2.0571254

.06955607

2.0184652 .07021857 .01530669 1.9462152

u3

.04725052 -1.3535208

.00003203

.0000648

Starting Monte-Carlo loop : 08:11:51 , total 1000 repetitions requested i-38, i-76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=646, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 08:12:00

t_GMM 3.9684403 2.1755286 .74819195 2.2323635 -3.5566079

1.1199986

.92121868

1.8612313

-1 6656978

.69722617 .38443245 .3826506

t_GMM .91504202

3.0905971 -1.0564125 .36207033

.36050731 .03781143 .6365383 1.345738

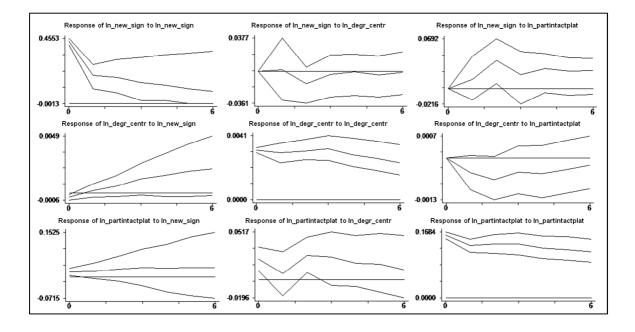
-.57479092

-2.5985983

-.73770889

t GMM

.36892267 .36892267 .34741621 12.645831 .59931667 .85681442 2.6247413


-.0717986

-.64475899

.08085055 -1.2042702

ln_degr_centr ln_partintactplat

.02671217

Appendix 74 Estimation Results PVAR(1)-(4) ln_new_signups ln_networker_share ln_partintactplat; All Regions

. pvar ln_new_sign ln_networker_share ln_partintactplat, lag(1) gmm monte 1000 GMM started : 09:15:39 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM number of observations used : 488							
EQ1: dep.var	: h_ln_	new_sign					
L.h_ln_networ) L.h_ln_partir	ter_share	.77612097 2.3538621 .02713307	.03360313	3.6843036 1.169517 .8074565			
EQ2: dep.var	: h_ln_	networker_	share				
L.h_ln_network L.h_ln_partir	tactplat	.00165093 .80613088 .00165868	.00102082	.53620154 18.778815 1.624845			
EQ3: dep.var	: h_ln_	partintact	plat				
L.h_ln_network L.h_ln_partir	ter_share	.32078434 .9209915	.07817298 .84467088 .02227876	.37977436 41.339433			
symmetric uu[3	3,3]						
ln_new_ ln_networker_s		.290	_sign ln_ne 02856 .1978	tworker_share	ln_partintactplat		
ln_partintact	plat	.0380	6253	.00016936	.09436447		
Residuals correlation matrix							
	ul	u2	u3				
ul	1.0000						
u2	0.0220 0.6272	1.0000					
u3		0.0566 0.2122	1.0000				

GMM finished : 09:15:40

Starting Monte-Carlo loop : 09:15:41 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 09:15:48 . pvar ln_new_sign ln_networker_share ln_partintactplat, lag(2) gmm monte 1000 GMM started : 09:18:48 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ ______ Results of the Estimation by system GMM______ number of observations used : 475 EQ1: dep.var : h_ln_new_sign b GMM se GMM t GMM L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partintactplat .59401565 4.9084501 .0824716 .19985259 .1729051 5.6724108 .10902678 .08063694 3.4355009 .86531992 .75643435 2.4784249 L2.h_ln_new_sign .19985259 L2.h_ln_networker_share -3.159639 L2.h_ln_partintactplat -.06145859 3.2763783 -.96436943 .10916745 -.5629754 EQ2: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM t_GMM .82943973 7.3216737 1.7181308 -.97305924 -.49955699 b_GMM .00193903 .9440194 .00411379 -.0013488 -.0557112 -.0025233 L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partintactplat L2.h_ln_new_sign se_GMM .00233776 .12893492 .00239434 .00138615 L2.h_ln_networker_share L2.h_ln_partintactplat .1115212 -.88527843 EQ3: dep.var : h_ln_partintactplat se_GMM .06782938 2.9136775 .05083332 .02914923 2.194796 .04543937 b_GMM t_GMM
 b_GMM

 L.h_ln_new_sign
 .0290892

 L.h_ln_networker_share
 -.31599573

 L.h_ln_partintactplat
 .48432442

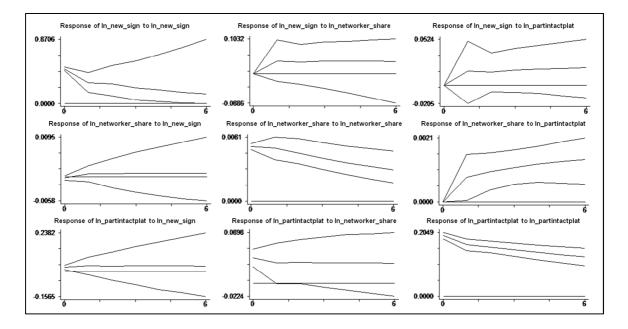
 L2.h_ln_new_sign
 -.01563189

 L2.h_ln_networker_share
 .5330611

 L2.h_ln_partintactplat
 .08931927
 .42886758 .42886758 -.10845254 16.688354 -.53627097 .24287501 1.96568

just identified - Hansen statistic is not calculated

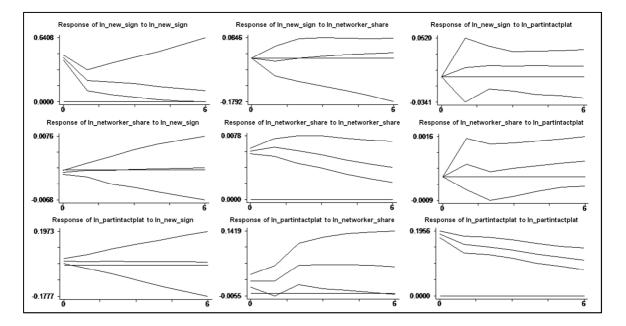
symmetric uu[3,3]


	ln_new_sign	ln_networker_share	ln_partintactplat
ln_new_sign	.22030263		
ln_networker_share	00013351	.00004715	
ln_partintactplat	.01149868	.0003021	.04070308

Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	-0.0418 0.3638	1.0000	
u3	0.1216 0.0080		1.0000

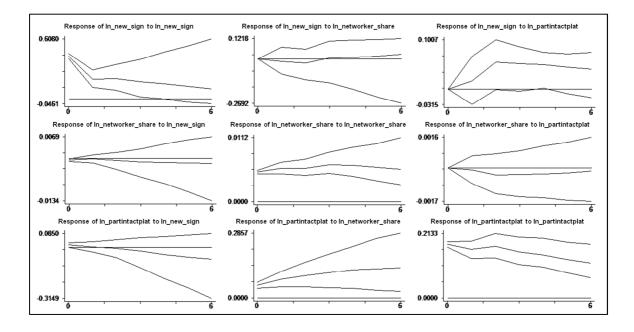
GMM finished : 09:18:50


Starting Monte-Carlo loop : 09:18:51 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 09:18:58

pvar ln_new_sign ln_networker_share ln_partintactplat, lag(3) gmm monte 1000 GMM started : 09:21:39 accumulating matrices equation 1,2,3, calculating b2sls accumulating matiles equation fraction fractional fraction fractio EQ1: dep.var : h_ln_new_sign b GMM se GMM + GMM L.h_ln_new_sign .47305234 L.h_ln_networker_share -2.5839515 L.h_ln_partintactplat .06527563 .14253772 5.986077 .14668592 3.3187871 -.43166025 L.L._In_ews_sign L2.h_ln_networker_share L2.h_ln_partintactplat L3.h_ln_ews_sign L3.h_ln_networker_share L3.h_ln_partintactplat .22426748 .0934014 5.7083601 2.4011148 3.4203139 .59917626 .00108798 .146838 .00740942 .09333821 1.7333069 3.7175741 .06735548 .10104468 .37564108 -.03645752 EO2: dep.var : h ln networker share t_GMM .48170673 9.8286191 b GMM SA GMM 6_GMM .00095635 1.0708068 .00264798 se_GMM .00198533 .10894784 .00335552 L.h_ln_new_sign L.h_ln_networker_share L.h_ln_partintactplat .78914195 L.h_in_partintactpiat L2.h_in_new_sign L2.h_in_networker_share L2.h_in_partintactpiat L3.h_in_new_sign L3.h_in_networker_share -.00058435 .00149842 .38998102 .14002561 .11372788 -1.2312339 .00411008 .00072682 .06327551 .00239994 .00399606 97225681 .00026516 .36482005 .00218872 .91198697 L3.h_ln_partintactplat EQ3: dep.var : h_ln_partintactplat se_GMM .05650155 3.0464585 b_GMM .00333437 .05901379 L.h_ln_new_sign L.h_ln_networker_share .70388613 L.h_ln_networker_share L.h_ln_partintactplat L2.h_ln_networker_share L2.h_ln_networker_share L2.h_ln_partintactplat L3.h_ln_new_sign .83012298 .07756907 10.701727 .01884602 03254895 .03254895 .57900556 3.3951483 1.7220792 .08165287 1.2137867 .0255595 -.68890194 2.3303749 -2.2829223 .04895207 -.34599411 .01884602 5.8467142 .09910917 -.01760799 L3.h_ln_networker_share -5.3200649 L3.h_ln_partintactplat -.01693713 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share ln_partintactplat
.19355633 ln_new_sign in_new_sign
ln_networker_share
ln_partintactplat .00003496 .01097423 .00014924 .0361166 Residuals correlation matrix ul u2 u3

GMM finished : 09:21:42

Starting Monte-Carlo loop : 09:21:43 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=68, i=644, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 09:21:51


pvar ln_new_sign ln_networker_share ln_partintactplat, lag(4) gmm monte 1000 GMM started : 10:27:12 accumulating matrices equation 1,2,3, calculating b2sls accumitering metrices equation fraction fractions calculating big ZuuZ matrix finished accumulating ZuuZ — Results of the Estimation by system GMM_ number of observations used : 449 EQ1: dep.var : h_ln_new_sign b GMM se GMM t GMM L.h_ln_new_sign .46384966 L.h_ln_networker_share -3.9465158 L.h_ln_partintactplat .09170832 L2.h_ln_new_sign .24612898 .12494506 3.7124288 8.4913795 -.46476733 .16698076 .54921492 .09418168 2.6133425 L.A.In.partintactplat 0.91/0332 L2.h.In.paresign .24612298 L2.h.In.partintactplat .18470789 L3.h.In.partintactplat .18470789 L3.h.In.partintactplat .1999343 L3.h.In.partintactplat .1399343 L4.h.In.partintactplat .1399343 L4.h.In.partintactplat .1399343 6.9210227 -.41763484 .13715119 1.3467465 1 0877466 .07046304 3.8147124 .133962 .04183945 2.2292579 -1.0450234 .33295898 L4.h_ln_networker_share -1.0976915 L4.h_ln_partintactplat -.07701117 1.7683132 -.62075626 .09213842 -.83582042 EQ2: dep.var : h_ln_networker_share b_GMM se_GMM t_GMM L.h_ln_new_sign .00113934 L.h_ln_networker_share 1.1348514 L.h_ln_partintactplat -.00053405 L2.h_ln_new_sign -.00184068 L2.h_ln_networker_share -.13589981 .00113934 .70700201 .00161151 .11021599 .00238529 .00145717 .18568079 -.2658165 -.73190018 -.30574725 .00316574 L2.h_ln_partintactplat -.00096792 L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_networker_share L3.h_ln_partintactplat L4.h_ln_new_sign L4.h_ln_networker_share -.00062421 .0008473 -.73670217 .14087095 .00172399 .00046535 -.20598471 .16002366 .00336316 .00085926 .07167893 .88031326 .51261178 .5415679 -2.8737136 L4.h_ln_partintactplat .0004466 .0025832 .17288501 EQ3: dep.var : h_ln_partintactplat b_GMM se_GMM L.h_ln_new_sign -.01670189 .03867803 -.43181841 L.h_ln_new_sign -.01670189 L.h_ln_networker_share 5.9088403 L.h_ln_partintactplat .90891545 L2.h_ln_new_sign -.0189286 L2.h_ln_new_sign -.01492085 L3.h_ln_new_sign -.01429085 L3.h_ln_new_sign -.01429085 L3.h_ln_networker_share .91793907 L3.h_ln_networker_share -1.2165816 L4.h_ln_networker_share -1.2165816 L4.h_ln_networker_share .012958187 .03867803 3.2350813 .08997072 .02959367 3.1860187 .08427427 1.826489 -.6396164 1.7014292 -.57415831 .02489008 .02489008 -.57415831 2.676265 .34299259 .10218161 -1.303627 .01887111 -.95727666 1.3185184 -.92268833 .06882312 .28452461 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign ln_networker_share ln_partintactplat .00581927 .00028673 .03474957 Residuals correlation matrix ul u2 ul

uı	1.0000		
u2	-0.1001 0.0339	1.0000	
и3	0.0724 0.1254	0.2949 0.0000	1.0000

GMM finished : 10:27:13

Starting Monte-Carlo loop : 10:27:14 , total 1000 repetitions requested i-38, i-76, i-114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=68, i=646, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:27:24

548

Appendix 75 Estimation Results PVAR(1)-(4) ln_new_signups ln_network_cc ln_partintactplat; All Regions

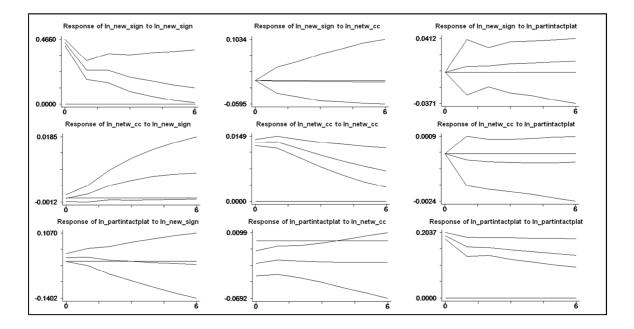
. pvar ln_new_sign ln_netw_cc ln_partintactplat, lag(1) gmm monte 1000 GMM started : 10:30:46 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ Results of the Estimation by system GMM number of observations used : 475 						
		b_GMM		t_GM		
			.14156052			
		4126586		4329123		
L.h_ln_partint	-		.04309756	1.239699	1	
EQ2: dep.var	: h_ln_	netw_cc				
		b_GMM				
L.h_ln_r	new_sign	.01842936	.01009018	1.82646	5	
L.h_ln_	_netw_cc	.79576857	.07497106	10.61434	3	
L.h_ln_partint	actplat -	.00010432	.00411295	0253634	6	
EQ3: dep.var	: h_ln_	partintact	olat			
		b_GMM	se_GMM	t_GM	м	
I. b. lp. r	new sign		.06772979			
				6979248		
L.h_ln_netw_cc24994066 .3581197269792488 L.h_ln_partintactplat .94006517 .02901953 32.394227						
parcing					1	
just identifie	ed - Hansen	statistic	is not cald	culated		
symmetric uu[3	5,3]					
		ln_new_sig		ln_netw_cc	ln_partintactplat	
ln_new_s		.2378520				
ln_netv		.0018775		.00114389		
ln_partintactp	olat	.0129116	52	.0010362	.04379041	
Residuals correlation matrix						
	ul	u2	u3			
ul	1.0000					
u2	0 1129	1.0000				
uz	0.0138	2.0000				

u3 0.1265 0.1464 1.0000 0.0058 0.0014

GMM finished : 10:30:48

Starting Monte-Carlo loop : 10:30:48 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=668, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 10:30:55

Appendix


. pvar ln_new_sign ln_netw_cc ln_partintactplat, lag(2) gmm monte 1000 GMM started : 11:13:39 GMM started : 11:13:39 accumulating matrices equation 1,2,3,calculating b2sls calculating big ZuuZ matrix finished accumulating ZuuZ _____Results of the Estimation by system GMM_____ number of observations used : 462 EQ1: dep.var : h_ln_new_sign <u>b_CMM</u> L.h_ln_new_sign .55122007 L.h_ln_netw_cc -.1103967 L.h_ln_partintactplat .03357402 L2.h_ln_new_sign .25199091 L2.h_ln_netw_cc .01753878 L2.h_ln_netw_cc .01753878 L2.h_ln_netw_cc .01753878 se_GMM t_GMM .09791614 5.6295119 1.2699004 -.08693569 .10568398 .33471503 .06574316 3.83296 .70132103 02500821 -.10263634 EQ2: dep.var : h_ln_netw_cc b_GMM .00452496 .92885123 se_GMM .00340286 .10011263 t_GMM 1.3297545 9.278062 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partintactplat -.00163288 .00436987 -.373668 1.819453 .00426587 .00234459 -.05271719 07365251 -.71575548 .00066406 .00389451 .1705108 EQ3: dep.var : h_ln_partintactplat b_GMM L.h_ln_new_sign .01004522 L.h_ln_netw_cc -.10447022 L.h_ln_partintactplat .82161012 L2.h_ln new_c' se_GMM t_GMM .04629136 .21699983 .48478524 -.21549793 .09247181 8.8849789 .02397502 -1.1669351 .50578873 -.10508054 .0739588 1.8100755 L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partintactplat -.05314855 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .19684574 .0001829 ln_netw_cc ln_partintactplat ln_new_sign .0003304 ln_netw_cc ln_partintactplat -.00029826 .00603612 .03836237

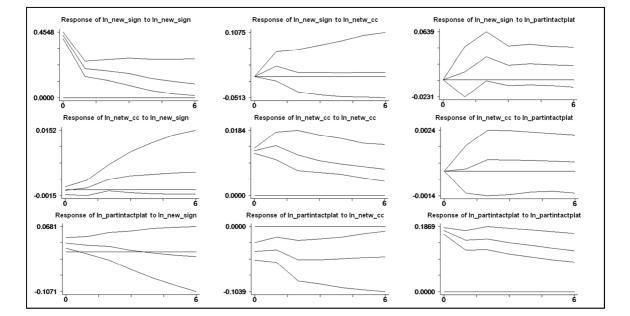
Residuals correlation matrix

	ul	u2	u3
ul	1.0000		
u2	0.0226 0.6284	1.0000	
и3		-0.0834 0.0732	1.0000

GMM finished : 11:13:41

Starting Monte-Carlo loop : 11:13:41 , total 1000 repetitions requested i-38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=608, i=644, i=624, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:13:49

Appendix

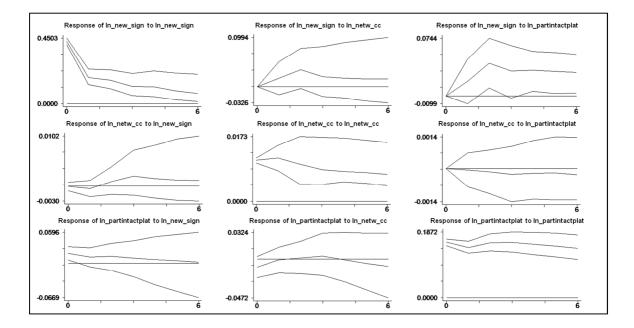

. pvar ln_new_sign ln_netw_cc ln_partintactplat, lag(3) gmm monte 1000 GMM started : 11:27:22 accumulating matrices equation 1,2,3, calculating b2sls EQ1: dep.var : h_ln_new_sign b GMM se GMM t GMM L.h_ln_new_sign .46373582 L.h_ln_netw_cc 1.134489 L.h_ln_partintactplat .04887588 L2.h_ln_new_sign .20810913 se_GMM .07676326 1.4590465 .11042977 .05905654 6.0411167 .77755507 L.h_in_partintactplat L2.h_in_new_sign L2.h_in_netw_cc L2.h_in_partintactplat L3.h_in_new_sign L3.h_in_netw_cc L3.h_in_partintactplat 3.5238961 -1.3771203 1.2137505 -1.1345992 .11046034 .12111517 .91202727 .68884425 . 75589976 91129046 -1.3860639 .09128754 EO2: dep.var : h ln netw cc se_GMM .00267708 .2265489 .00543899 b GMM + GMM t_GMM .90991051 3.4579685 -.54122493 L.h_ln_new_sign L.h_ln_netw_cc L.h_ln_partintactplat .00243591 .78339896 -.00294372 L.A._IA_partintactplat L2.A._IA_new_sign L2.A._IA_netw_cc L2.A._IA_partintactplat L3.A._IA_netw_cc L3.A._IA_partintactplat .00457756 .00228105 2.0067764 .01317718 .20357966 .06472739 .0036463 .00046781 .07456626 -.00148542 .00529364 .00192364 .08081467 .00342753 .6888077 .24318763 .92268215 -.43337832 EQ3: dep.var : h_ln_partintactplat b_GMM L.h_ln_new_sign -.00397173 L.h_ln_netw_cc -.56706698 se_GMM t_GMM .03082455 -.12884963 .51700826 -1.0968238 L.n_in_new_sign L.h_in_netw_cc L.h_in_partintactplat L2.h_in_netw_cc L2.h_in_partintactplat L3.h_in_netw_sign -1.0968238 9.2050675 -.2526331 .83999733 .09125379 .02255913 .63707111 .08056051 .02444516 -.55540336 .15671237 -.01260292 -.2526331 -.87180748 1.9452752 -.51555889 .79662924 1.0527029 .05879139 -.89837137 L3.h_ln_netw_cc .83861395 L3.h_ln_partintactplat -.05281651 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .18677084 .00017294 ln_netw_cc ln_partintactplat ln_new_sign ln_netw_cc ln_partintactplat .00030358 -.00046416 .0097278 .03268373 Residuals correlation matrix ul u2 u3 ul 1.0000 u2 0.0230 1.0000 0.6270 u3 0.1245 -0.1470 1.0000

GMM finished : 11:27:24

0.0083

0.0018

Starting Monte-Carlo loop : 11:27:25 , total 1000 repetitions requested i=38, i=76, i=114, i=152, i=190, i=228, i=266, i=304, i=342, i=380, i=418, i=456, i=494, i=532, i=57 > 0, i=68, i=644, i=644, i=722, i=760, i=798, i=836, i=874, i=912, i=950, i=988, i=1000, finished M > onte-Carlo loop : 11:27:33



552

. pvar ln_new_sign ln_netw_cc ln_partintactplat, lag(4) gmm monte 1000 GMM started : 11:45:44 EQ1: dep.var : h_ln_new_sign b GMM b_GMM L.h_ln_new_sign .42425333 L.h_ln_netw_cc 1.090841 se_GMM .07456665 1.5561514 t_GMM 5.6895858 .70098645 L.h_ln_partintactplat .11632303 .11004177 1.0570808 L.h_ln_partintactplat L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partintactplat L3.h_ln_new_sign L3.h_ln_netw_cc .19635957 .06046262 3.2476194 -1.0429876 .09091814 .03555562 .38955664 1.589797 -.65605081 1.589797 .13495331 .05656009 1.5947969 .67370066 .6286344 L3.h_ln_partintactplat L4.h_ln_new_sign L4.h_ln_netw_cc L4.h_ln_partintactplat -.13557757 .13567918 .04358346 -.99925109 .06016226 1.3803921 .06016226 -.09767162 -.01654702 .56733674 . 1721581 -.17947285 EQ2: dep.var : h_ln_netw_cc b_GMM L.h_ln_new_sign -6.179e-06 L.h_ln_netw_cc .74520064 L.h_ln_partintactplat -.00573679 se_GMM .00218287 .23557831 -.0028306 3.1632821 .00471111 -1.2177148 L2.h_ln_new_sign L2.h_ln_netw_cc L2.h_ln_partintactplat L3.h_ln_new_sign .00440403 .00232278 1.8960173 .08167892 .00279201 .00305015 .15877876 .0055928 .00248448 .51441972 .49921453 1.227682 L3.h_ln_netw_cc -.02035014 .12073807 -.16854782 L3.h_ln_partintactplat L4.h_ln_new_sign L4.h_ln_netw_cc L4.h_ln_partintactplat .00397675 .00249702 .627905 .00223378 -1.9414554 .09115731 06551787 1 391335 .00334719 -.21360486 EQ3: dep.var : h_ln_partintactplat se_GMM t_GMM .02110996 -.50153085 .46068784 .65013352 .05977043 15.000448 .01778008 .13953375 .3572099 -.12594642 ~ \$400347 b GMM -.0105873 .29950861 .89658329 L.h_ln_new_sign L.n_in_new_sign L.h_ln_netw_cc L.h_ln_partintactplat L2.h_ln_netw_cc L2.h_ln_partintactplat .00248092 -.04498931 -.04498931 .1803839 -.00530656 -.08862861 -.05106694 .06351468 2.8400347 L3.h_ln_new_sign L3.h_ln_netw_cc -.30609171 -.33751454 .26259199 L3.h_ln_partintactplat -.05106694 L4.h_ln_new_sign -.002875 L4.h_ln_netw_cc -.49825934 L4.h_ln_partintactplat -.06442048 .07342518 -.69549637 .01359835 .25646983 -1.9427601 .04959749 -1.2988658 just identified - Hansen statistic is not calculated symmetric uu[3,3] ln_new_sign .18371038 .00026829 ln_netw_cc ln_partintactplat ln_new_sign ln_netw_cc .00025207 ln_partintactplat .00830425 -4.609e-06 .0256543 Residuals correlation matrix ul u2 u3 111 1.0000 u2 0.0395 1.0000 0.4109 0.1209 -0.0015 0.0115 0.9746 u3 1.0000

GMM finished : 11:45:45

Starting Monte-Carlo loop : 11:45:46 , total 1000 repetitions requested i-38, i-76, i-114, i-152, i-190, i-228, i-266, i-304, i-342, i-380, i-418, i-456, i-494, i-532, i-57 > 0, i-608, i-646, i-684, i-722, i-760, i-798, i-836, i-874, i-912, i-950, i-988, i-1000, finished M > onte-Carlo loop : 11:45:55

Appendix 76 Summary Results of Project 1

		Average Degree	Degree Centralization	Share of Networkers	Network Clustering Coefficient	Interpersonal Participation	Platform Participation	Overall Participation	Community Growth
Average Degree	est	\geq	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	\geq	\geq	+	ns	+	ns
	new	$>\!$	\sim	$>\!$	$>\!$	+	ns	+	ns
	all	\sim	\sim	\searrow	\sim	+	+	+	ns
egree Centralization	est	\leq	\sim	\leq	\leq	-			ns
	new	\leq	\sim	\leq	\leq	+	+	+	ns
	all	\leq	\sim	\leq	\sim	+	+	+	ns
hare of Networkers	est	>>	\sim	$>\!\!\!>$	$>\!\!\!>$	ns ¹⁾	+	ns +	ns
	new	\leq	\sim	>>	\sim	ns	ns	+ ns	ns
	all	\leq	\sim	\sim	\sim	+	+	+	ns
etwork Clustering Coefficient	est	\leq	\sim	\leq	\leq	ns	ns	ns	ns
	new	\leq	\sim	\leq	\leq	+	ns +-	ns +-	ns
	all	\leq	\sim	>>	\leq	+	ns +-	-	ns
terpersonal Participation	est		ns		ns	$>\!$	>	$>\!$	3 x + 1 x ns
	new	+ ns	ns	ns	ns	\sim	\sim	\sim	ns
	all	+	ns	ns +	ns	\leq	\leq	\leq	3 x ns 1 x +
latform Participation	est	+	+	+	ns	<>	<>	<>	+
	new	ns	+	ns	ns	<>	<>	<>	ns
	all	+	+	ns	ns	<>	<>	<>	ns
			ns			<>	<>	<>	3 x + ²⁾
verall Participation	est	+	+	+	ns	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$	1 x ns
	new	+ ns	ns	ns	ns	\sim	\sim	\sim	ns
	all	+	ns	ns +	ns	$>\!$	$>\!$	$>\!$	ns
ommunity Growth	est		2 x ns ³⁾ 1 x -		ns	ns	3 x ns 1 x +	ns	$>\!$
	new	ns	ns	ns	ns	ns	ns	3 x ns 1 x +	$>\!\!\!\!>\!\!\!\!>$
	all	2 x ns 1 x +	1 x +- 1 x - 1 x ns	2 x ns 1 x +	2 x ns 1 x +	3 x ns 1 x +	+	+	\searrow

In established regions, share of networkers has a non-significant influence on interpersonal participation when VAR models including share of networkers and interpersonal participation are considered. Further, in established regions, share of networkers has a positive influence on interpersonal participation when VAR models including community growth, share of networkers, and interpersonal participation are considered.
 2) In established regions, certal participation are considered.
 3) In established regions, cental participation are on software influence on degree centralization in two out of three cases and a negative influence in one out of three cases.

Augmented Dickey-Fuller Test												
	Regi	ion 1	Regi	on 2	Regi	ion 3	Regi	on 4	on 4 Region 5		Region 6	
Variable	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value	Statistic	p-value
In_new_signups	-15.6144	0.0000	-9.3395	0.0000	-5.2751	0.0008	-5.7509	0.0002	-4.8798	0.0023	-4.0869	0.0155
In_posters	-16.6739	0.0000	-7.2544	0.0000	-2.6531	0.2613	-4.0703	0.0161	-5.6425	0.0003	-2.5717	0.2946
In_participation	-15.6505	0.0000	-7.0829	0.0000	-5.7221	0.0003	-3.7962	0.0299	-3.2903	0.0860	-2.6694	0.2563
In team	-3.2739	0.0883	-1.8531	0.6550	-1.5544	0.7885	-1.9836	0.5878	-1.9066	0.6278	-5.2259	0.0009

Appendix 77 ADF Tests (constant and linear trend included)

Appendix 78 Seasonality Test; Region 1

Dependent Variable: In_new_signups								
	Coefficient	Std. Error	t-Statistic	p-value				
Constant	5.987620	0.416383	14.38009	0.0000				
M2	0.434079	0.588854	0.737159	0.4688				
M3	0.112000	0.588854	0.190200	0.8509				
M4	0.064671	0.588854	0.109825	0.9135				
M5	0.240340	0.658359	0.365060	0.7186				
M6	0.684063	0.658359	1.039044	0.3101				
M7	-1.366860	0.588854	-2.321221	0.0299				
M8	0.773046	0.588854	1.312798	0.2028				
M9	0.143849	0.588854	0.244287	0.8093				
M10	0.121286	0.588854	0.205970	0.8387				
M11	-0.038010	0.588854	-0.064549	0.9491				
M12	-0.019809	0.588854	-0.033639	0.9735				
R-squared	0.439961	Mean dependen	t var	6.061784				
Adjusted R-squared	0.159942	S.D. dependent	var	0.786862				
S.E. of regression	0.721196	Akaike info crite	erion	2.454752				
Sum squared resid	11.44271	Schwarz criterio	n	2.993468				
Log likelihood	-29.73079	Hannan-Quinn c	riter.	2.638470				
F-statistic	1.571183	Durbin-Watson	stat	1.364247				
Prob(F-statistic)	0.176609							

Sample: 2009M07 - 2012M04 Included observations: 34

Dependent Variable: In_new_signups							
	Coefficient	Std. Error	t-Statistic	p-value			
Constant	6.062101	0.338428	17.91251	0.0000			
M2	0.057634	0.478610	0.120421	0.9053			
M3	-0.451738	0.478610	-0.943853	0.3560			
M4	-0.257551	0.478610	-0.538122	0.5962			
M5	-0.865454	0.535102	-1.617362	0.1207			
M6	-0.163274	0.535102	-0.305127	0.7633			
M7	-0.549144	0.535102	-1.026241	0.3165			
M8	-1.879693	0.478610	-3.927400	0.0008			
M9	-0.553157	0.478610	-1.155757	0.2608			
M10	-0.565466	0.478610	-1.181476	0.2506			
M11	-0.969372	0.478610	-2.025391	0.0557			
M12	-0.545969	0.478610	-1.140739	0.2668			
R-squared	0.544454	Mean dependen	t var	5.496898			
Adjusted R-squared	0.305834	S.D. dependent	var	0.703551			
S.E. of regression	0.586175	Akaike info crite	erion	2.044891			
Sum squared resid	7.215627	Schwarz criteric	n	2.589076			
Log likelihood	-21.74071	Hannan-Quinn c	riter.	2.227993			
F-statistic	2.281683	Durbin-Watson	stat	1.421183			
Prob(F-statistic)	0.050109						

Appendix 79 Seasonality Test; Region 2

Sample: 2009M08 - 2012M04

Included observations: 33

Dependent Variable: Ir	n_new_signups Coefficient	Std. Error	t-Statistic	p-value
Constant	4.828067	0.632481	7.633535	0.0000
M2	0.216265	0.894463	0.241782	
M3	0.039010	0.894463	0.043613	0.9656
M4	-0.253269	0.894463	-0.283152	0.7798
M5	-0.517831	1.000040	-0.517810	0.6100
M6	0.066980	1.000040	0.066978	
M7	-0.294255	1.000040	-0.294243	0.7715
M8	-1.364372	0.894463	-1.525352	0.1421
M9	-0.812860	0.894463	-0.908768	0.3738
M10	-0.626966	0.894463	-0.700941	0.4910
M11	-0.699349	0.894463	-0.781864	0.4430
M12	-0.644563	0.894463	-0.720614	0.4791
R-squared	0.208443	Mean dependen	t var	4.405991
Adjusted R-squared	-0.206182	S.D. dependent		0.997474
S.E. of regression	1.095489	Akaike info crite		3.295567
Sum squared resid	25.202040	Schwarz criteric	n	3.839752
Log likelihood	-42.37686	Hannan-Quinn c	riter.	3.478669
F-statistic	0.502726	Durbin-Watson	stat	0.603915
Prob(F-statistic)	0.880270			

Appendix 80 Seasonality Test; Region 3

Sample: 2009M08 - 2012M04

Included observations: 33

Dependent Variable: In_new_signups								
	Coefficient	Std. Error	t-Statistic	p-value				
Constant	5.486584	0.414848	13.22551	0.0000				
M2	-0.514956	0.586684	-0.877739	0.3900				
M3	-0.548108	0.586684	-0.934247	0.3608				
M4	-0.561715	0.586684	-0.957441	0.3492				
M5	-1.035696	0.655933	-1.578967	0.1293				
M6	-0.754868	0.655933	-1.150832	0.2627				
M7	-0.660515	0.655933	-1.006986	0.3254				
M8	-1.796446	0.586684	-3.062032	0.0059				
M9	-1.503503	0.586684	-2.562712	0.0181				
M10	-0.428936	0.586684	-0.731120	0.4728				
M11	-1.143929	0.586684	-1.949820	0.0647				
M12	-0.405023	0.586684	-0.690360	0.4975				
R-squared	0.435337	Mean dependen	t var	4.710523				
Adjusted R-squared	0.139561	S.D. dependent	var	0.774622				
S.E. of regression	0.718539	Akaike info crite	rion	2.452093				
Sum squared resid	10.84225	Schwarz criteric	n	2.996277				
Log likelihood	-28.45953	Hannan-Quinn c	riter.	2.635194				
F-statistic	1.471848	Durbin-Watson	stat	1.110178				
Prob(F-statistic)	0.214661							

Appendix 81 Seasonality Test; Region 4

Sample: 2009M08 - 2012M04 Included observations: 33

Dependent Variable: In_new_signups							
	Coefficient	Std. Error	t-Statistic	p-value			
Constant	5.326009	0.231421	23.01440	0.0000			
M2	0.339194	0.327278	1.036408	0.3118			
M3	0.059758	0.327278	0.182591	0.8569			
M4	-0.269927	0.327278	-0.824764	0.4188			
M5	-0.333660	0.365908	-0.911868	0.3722			
M6	-0.039941	0.365908	-0.109155	0.9141			
M7	-0.064677	0.365908	-0.176756	0.8614			
M8	-0.525586	0.327278	-1.605929	0.1232			
M9	-0.447304	0.327278	-1.366740	0.1862			
M10	-0.354663	0.327278	-1.083673	0.2908			
M11	-0.343970	0.327278	-1.051002	0.3052			
M12	-0.317267	0.327278	-0.969411	0.3434			
R-squared	0.373205	Mean dependen	t var	5.130377			
Adjusted R-squared	0.044884	S.D. dependent	var	0.410142			
S.E. of regression	0.400832	Akaike info crite	rion	1.284741			
Sum squared resid	3.373999	Schwarz criterio	n	1.828925			
Log likelihood	-9.198225	Hannan-Quinn c	riter.	1.467842			
F-statistic	1.136708	Durbin-Watson	stat	1.849139			
Prob(F-statistic)	0.383483						

Appendix 82 Seasonality Test; Region 5

Sample: 2009M08 - 2012M04 Included observations: 33

Dependent Variable: In	Dependent Variable: In_new_signups							
	Coefficient	Std. Error	t-Statistic	p-value				
Constant	4.872624	0.587108	8.299358	0.0000				
M2	0.533392	0.830297	0.642411	0.5276				
M3	0.250791	0.830297	0.302050	0.7656				
M4	0.514708	0.830297	0.619909	0.5420				
M5	0.677171	0.928300	0.729474	0.4738				
M6	0.081116	0.928300	0.087381	0.9312				
M7	0.704794	0.928300	0.759231	0.4562				
M8	-0.587496	0.830297	-0.707573	0.4870				
M9	0.063013	0.830297	0.075892	0.9402				
M10	-0.440191	0.830297	-0.530161	0.6016				
M11	-0.625219	0.830297	-0.753006	0.4598				
M12	0.024537	0.830297	0.029552	0.9767				
R-squared	0.228366	Mean dependen	t var	4.937071				
Adjusted R-squared	-0.175823	S.D. dependent	var	0.937795				
S.E. of regression	1.016902	Akaike info crite	erion	3.146686				
Sum squared resid	21.71587	Schwarz criteric	n	3.690870				
Log likelihood	-39.92031	Hannan-Quinn c	riter.	3.329787				
F-statistic	0.564998	Durbin-Watson	stat	0.458435				
Prob(F-statistic)	0.835354							

Appendix 83 Seasonality Test; Region 6

Sample: 2009M08 - 2012M04 Included observations: 33

Appendix 84 Normality, Autocorrelation, and Heteroskedasticity Tests; Region 1

	Jarque-Bera		Breusch-Godfrey S	erial Corr LM Test ¹⁾	White Heteroskedasticity Test ²	
Model	Statistic	p-value	Statistic	p-value	Statistic	p-value
Bass	4.5578	0.1024	0.7418	0.5722	0.8463	0.5287
ARMA	0.5287	0.7677	1.9532	0.1328	1.1420	0.3893
ADL (d_In_posters)	0.4691	0.7909	2.4352	0.0737	0.6938	0.6567
ADL (d_In_posters, d_In_team)	1.0340	0.5963	1.4059	0.2634	1.1605	0.3805
ADL (d_In_participation)	0.4546	0.7967	1.2029	0.3324	0.5566	0.5790

1) 4 lags included

2) White cross terms included

Appendix 85 ARMA Model Selection, SC; Region 1

	MA(0)	MA(1)	MA(2)
AR(0)	2.432336	2.270752	1.559030
AR (1)	0.881134	0.965654	0.865810
AR(2)	0.983022	0.956833	0.911727

	d_In_posters	d_In_posters_t-1	d_In_posters_t-2
	0.715801	0.710304	0.860101
In_new_signups_t-1	0.646536	0.697221	0.845806
In_new_signups_t-2	0.650281	0.676833	0.717513

Appendix 86 ADL (d_ln_posters) Model Selection, SC; Region 1

Appendix 87 ADL (d_ln_posters, d_ln_team) Model Selection, SC; Region 1

	d_In_posters d_In_team	d_In_posters_t-1 d_In_team_t-1	d_In_posters_t-2 d_In_team_t-2
	0.792620	0.889910	1.101684
In_new_signups_t-1	0.744639	0.864121	1.059363
In_new_signups_t-2	0.718979	0.811141	0.983472

Appendix 88 ADL (d_ln_participation) Model Selection, SC; Region 1

	d_In_participation	d_In_participation_t-1	d_In_participation_t-2
	0.775356	0.879527	0.991932
In_new_signups_t-1	0.834219	0.954396	1.057103
In_new_signups_t-2	0.944427	1.049618	1.080930

Appendix 89 ADL (d_ln_participation, d_ln_team) Estimation Output; Region 1

Dependent Variable: In_new_signups					
	Coefficient	Std. Error	t-Statistic	p-value	
Constant	6.122305	0.067306	90.96286	0.0000	
d_In_participation	0.109489	0.059972	1.825673	0.0779	
d_ln_team	0.944433	0.991476	0.952552	0.3484	
R-squared	0.194947	Mean dependen	t var	6.182461	
Adjusted R-squared	0.141277	S.D. dependent	var	0.357613	
S.E. of regression	0.331390	Akaike info crite	rion	0.715468	
Sum squared resid	3.294585	Schwarz criterio	n	0.851514	
Log likelihood	-8.805223	Hannan-Quinn c	riter.	0.761243	
F-statistic	3.632324	Durbin-Watson	stat	1.773469	
Prob(F-statistic)	0.038669				

Sample (adjusted): 2009M08 - 2012M04

Included observations: 33 (after adj.)

Lag	SC
0	1.1261
1	1.0409
2	1.0591
3	1.3942
4	1.6086

Appendix 90 VAR (d_ln_posters) Lag Order Selection, SC; Region 1

Appendix 91 VAI	(d_ln_posters) Normality, Autocorrelation, and Heteroskedastic	2-
ity Tests; Region		

	Statistic	p-value
Jarque-Bera	3.5849	0.4651
White ¹⁾	45.1995	0.3398
Autocorrelation LM		
Lags		
1	6.3215	0.1764
2	6.6913	0.1531
3	6.7823	0.1479
4	6.1512	0.1881

1) Cross terms included

	d_In_posters	In_new_signups
d_ln_posters_t-1	-0.352097	0.013539
	(0.22256)	(0.28948)
	[-1.58205]	[0.04677]
d_ln_posters_t-2	-0.000141	-0.109563
	(0.06257)	(0.08139)
	[-0.00226]	[-1.34622]
In_new_signups_t-1	-0.307220	0.047596
	(0.16470)	(0.21423)
	[-1.86529]	[0.22218]
In_new_signups_t-2	-0.053201	0.532056
	(0.20297)	(0.26400)
	[-0.26211]	[2.01534]
Constant	2.277290	2.569286
	(1.41336)	(1.83834)
	[1.61125]	[1.39761]
R-squared	0.347356	0.192075
Adj. R-squared	0.246949	0.067778
Sum sq. resids	1.696350	2.869851
S.E. equation	0.255430	0.332233
F-statistic	3.459490	1.545298
Log likelihood	1.048280	-7.101325
Akaike AIC	0.254950	0.780731
Schwarz SC	0.486238	1.012019
Mean dependent	0.031524	6.152585
S.D. dependent	0.294347	0.344099
Determinant resid covariance (dof adj.)	0.004802
Determinant resid covariance		0.003378
Log likelihood		0.228789
Akaike information criterion		0.630401
Schwarz criterion		1.092977

Appendix 92 VAR (d_ln_posters) Estimation Output; Region 1

Sample (adjusted): 2009M10 - 2012M04 Included observations: 31 (after adj.) Std. errors in (); t-statistics in []

Lag	SC
0	1.5277
1	1.6877
2	2.0166
3	2.0950
4	2.2442

Appendix 93 VAR (d_ln_participation) Lag Order Selection, SC; Region 1

Appendix 94 Normality, Autocorrelation, and Heteroskedasticity Tests; Region 2

	Jarque	e-Bera	Breusch-Godfrey Serial Corr LM Test ¹⁾ White Heteroskedas			edasticity Test ²⁾
Model	Statistic	p-value	Statistic	p-value	Statistic	p-value
Bass	0.6737	0.7140	0.1989	0.9366	0.3642	0.8685
ARMA	3.0342	0.2193	0.1546	0.9592	0.2231	0.8014
ADL (d_In_posters)	1.3811	0.5013	0.2757	0.8902	0.6054	0.8326
ADL (d_In_posters, d_In_team)	0.4148	0.8127	1.3140	0.2931	0.9250	0.5228
ADL (d_In_participation)	2.5973	0.2729	0.1425	0.9647	0.3660	0.6967

1) 4 lags included

2) White cross terms included

Appendix 95 ARMA Model Selection, SC; Region 2

	MA(0)	MA(1)	MA(2)
AR(0)	2.209832	1.905903	2.009336
AR(1)	1.101018	1.206061	1.105497
AR(2)	1.245603	1.145342	1.223243

Appendix 96 ADL (d_ln_posters) Model Selection, SC; Region 2

	d_In_posters	d_In_posters_t-1	d_In_posters_t-2
	1.066480	0.892352	0.615113
In_new_signups_t-1	0.643939	0.667703	0.489530
In_new_signups_t-2	0.662093	0.734319	0.482513

Appendix 97 ADL (d_ln_posters, d_ln_team) Model Selection, SC; Region 2

	d_In_posters d_In_team	d_In_posters_t-1 d_In_team_t-1	d_In_posters_t-2 d_In_team_t-2
	1.154047	1.095487	0.882807
In_new_signups_t-1	0.682160	0.862841	0.757570
In_new_signups_t-2	0.760223	0.935912	0.803341

	d_In_participation	d_In_participation_t-1	d_In_participation_t-2
	1.116894	1.241471	1.160391
In_new_signups_t-1	1.182873	1.331933	1.249453
In_new_signups_t-2	1.332108	1.441033	1.355845

Appendix 98 ADL (d_ln_participation) Model Selection, SC; Region 2

Appendix 99 ADL (d_ln_participation, d_ln_team) Estimation Output; Region 2

	Coefficient	Std. Error	t-Statistic	p-value
Constant	5.576517	0.074500	74.85273	0.0000
d_In_participation	0.002148	0.070537	0.030454	0.9759
d_ln_team	0.457903	0.471656	0.970842	0.3397
R-squared	0.031857	Mean dependen	t var	5.600013
Adjusted R-squared	-0.034912	S.D. dependent	var	0.385688
S.E. of regression	0.392363	Akaike info crite	rion	1.055801
Sum squared resid	4.464511	Schwarz criterio	n	1.193214
Log likelihood	-13.89281	Hannan-Quinn c	riter.	1.101349
F-statistic	0.477125	Durbin-Watson	stat	1.613187
Prob(F-statistic)	0.625351			

Sample (adjusted): 2009M09 - 2012M04 Included observations: 32 (after adj.)

Appendix 100 VAR (d_ln_posters) Lag Order Selection, SC; Region 2

Lag	SC
0	1.3659
1	1.2523
2	1.5927
3	1.9515
4	2.3836

	Statistic	p-value
Jarque-Bera	5.5053	0.2393
White ¹⁾	12.4022	0.6484
Autocorrelation LM		
Lag	JS	
1	7.7135	0.1027
2	3.2934	0.5100
3	3 1.6502	0.7997
2	4.3861	0.3563

Appendix 101 VAR (d_ln_posters) Normality, Autocorrelation, and Heteroskedasticity Tests: Region 2

1) Cross terms included

Appendix 102 VAR (d_ln_posters) Estimation Output; Region

	d_In_posters	In_new_signups		
d_ln_posters_t-1	0.033653	0.029791		
	(0.08894)	(0.10124)		
	[0.37839]	[0.29426]		
In_new_signups_t-1	-0.544473	0.098211		
	(0.16943)	(0.19287)		
	[-3.21361]	[0.50921]		
Constant	3.130658	5.050642		
	(0.94598)	(1.07687)		
	[3.30943]	[4.69013]		
R-squared	0.271414	0.015139		
Adj. R-squared	0.219372	-0.055208		
Sum sq. resids	3.481847	4.511993		
S.E. equation	0.352635	0.401426		
F-statistic	5.215289	0.215202		
Log likelihood	-10.09752	-14.11475		
Akaike AIC	0.845001	1.104177		
Schwarz SC	0.983774	1.242950		
Mean dependent	0.092584	5.605519		
S.D. dependent	0.399120	0.390783		
Determinant resid cova	0.010091			
Determinant resid cova	0.008232			
Log likelihood		-13.57893		
Akaike information crit	erion	1.263157		
Schwarz criterion		1.540703		
Sample (adjusted): 2000/110 2012/101				

Sample (adjusted): 2009M10 - 2012M04 Included observations: 31 (after adj.)

Std. errors in (); t-statistics in []

Lag	SC
0	2.8099
1	3.1766
2	3.6058
3	3.7937
4	4.1561

Appendix 103 VAR (d_ln_participation) Lag Order Selection, SC; Region 2

Appendix 104 Normality, Autocorrelation, and Heteroskedasticity Tests; Region 3

	Jarque-Bera		Breusch-Godfrey Serial Corr LM Test ¹⁾		White Heteroskedasticity Test ²⁾	
Model	Statistic	p-value	Statistic	p-value	Statistic	p-value
Bass	3.9956	0.1356	0.8590	0.5014	2.3827	0.0754
ARMA	0.1970	0.9062	0.2125	0.9291	0.2533	0.7779
ADL (d_In_posters)	0.1526	0.9266	0.3095	0.8682	0.5871	0.8462
ADL (d_In_posters, d_In_team)	0.4050	0.8167	0.6618	0.6270	1.1601 ³⁾	0.3672 ³⁾
ADL (d_In_participation)	0.4363	0.8040	0.1225	0.9731	2.4972	0.0565

1) 4 lags included

2) White cross terms included

3) White-test cannot be performed; results of Breusch-Pagan-Godfrey test

Appendix 105 ARMA Model Selection, SC; Region 3

	MA(0)	MA(1)	MA(2)
AR(0)	2.908002	2.380779	1.773791
AR (1)	1.714515	1.791451	1.896663
AR(2)	1.829673	1.785838	1.914623

Appendix 106 ADL (d_ln_posters) Model Selection, SC; Region 3

	d_In_posters	d_In_posters_t-1	d_In_posters_t-2
	2.423313	2.235955	2.216684
In_new_signups_t-1	1.337119	1.430390	1.440324
In_new_signups_t-2	1.378783	1.487752	1.279547

Appendix 107 ADL (d_ln_posters, d_ln_team) Model Selection, SC; Region 3

	d_In_posters d_In_team	d_In_posters_t-1 d_In_team_t-1	d_In_posters_t-2 d_In_team_t-2
	2.481193	2.193544	2.234687
In_new_signups_t-1	1.443401	1.472489	1.578626
In_new_signups_t-2	1.465674	1.503584	1.397695

	d_In_participation	d_In_participation_t-1	d_In_participation_t-2
	2.167412	2.207627	2.070824
In_new_signups_t-1	1.809798	1.944382	1.878309
In_new_signups_t-2	1.930968	2.034204	1.991592

Appendix 108 ADL (d_ln_participation) Model Selection, SC; Region 3

Appendix 109 ADL (d_ln_participation, d_ln_team) Estimation Output; Region 3

Dependent Variable: In_new_signups						
	Coefficient	Std. Error	t-Statistic	p-value		
Constant	2.367980	0.586861	4.034989	0.0004		
In_new_signups_t-1	0.491910	0.129459	3.799743	0.0007		
d_In_participation	-0.081519	0.135565	-0.601331	0.5525		
d_ln_team	0.038245	0.744828	0.051348	0.9594		
R-squared	0.530708	Mean dependen	tvar 2	4.522017		
Adjusted R-squared	0.480427	S.D. dependent	var (0.753969		
S.E. of regression	0.543472	Akaike info criterion		1.734791		
Sum squared resid	8.270128	Schwarz criteric	n -	1.918008		
Log likelihood	-23.75666	Hannan-Quinn c	riter.	1.795522		
F-statistic	10.55478	Durbin-Watson	stat 2	2.067765		
Prob(F-statistic)	0.000082					

Sample (adjusted): 2009M09 - 2012M04

Included observations: 32 (after adj.)

Appendix 110 VAR (d_ln_posters) Lag Order Selection, SC; Region 3

Lag	SC
0	2.9032
1	2.7323
2	2.9617
3	3.3764
4	3.7808

	Statistic	p-value
Jarque-Bera	5.7256	0.2206
White ¹⁾	6.9844	0.9581
Autocorrelation LM		
Lags		
1	7.6920	0.1035
2	3.9903	0.4073
3	1.4877	0.8288

Appendix 111 VAR (d_ln_posters) Normality, Autocorrelation, and Heteroskedasticity Tests: Region 3

0.7910

1) Cross terms included

4

Appendix 112	VAR (d_ln_)	posters) Estimation	Output; Region 3
--------------	-------------	---------------------	-------------------------

1.6985

	d_In_posters	In_new_signups
d_ln_posters_t-1	0.181184	-0.078912
	(0.18259)	(0.22594)
	[0.99228]	[-0.34926]
In_new_signups_t-1	-0.152646	0.556879
	(0.10690)	(0.13228)
	[-1.42790]	[4.20987]
Constant	0.817395	2.078857
	(0.48548)	(0.60073)
	[1.68368]	[3.46058]
R-squared	0.084907	0.389910
Adj. R-squared	0.019543	0.346332
Sum sq. resids	5.446517	8.339261
S.E. equation	0.441042	0.545739
F-statistic	1.298986	8.947429
Log likelihood	-17.03243	-23.63540
Akaike AIC	1.292415	1.718413
Schwarz SC	1.431187	1.857186
Mean dependent	0.160982	4.585148
S.D. dependent	0.445416	0.675004
Determinant resid cova	ariance (dof adj.)	0.033843
Determinant resid covariance		0.027610
Log likelihood		-32.33550
Akaike information crit	erion	2.473258
Schwarz criterion		2.750804
Sample (adjusted): 200	01110 20121101	

Sample (adjusted): 2009M10 - 2012M04 Included observations: 31 (after adj.)

Std. errors in (); t-statistics in []

Lag	SC
0	3.7227
1	3.8807
2	4.0785
3	4.3717
4	4.8425

Appendix 113 VAR (d_ln_participation) Lag Order Selection, SC; Region 3

Appendix 114 Normality, Autocorrelation, and Heteroskedasticity Tests; Region 4

	Jarque	e-Bera	Breusch-Godfrey Serial Corr LM Test ¹⁾		White Heteroskedasticity Test ²⁾	
Model	Statistic	p-value	Statistic	p-value	Statistic	p-value
Bass	1.1340	0.5672	0.9800	0.4355	7.8367	0.0002
ARMA	0.7324	0.6934	1.1367	0.3630	4.1883	0.0067
ADL (d_In_posters)	0.9997	0.6000	0.7962	0.5389	4.0724	0.0073
ADL (d_In_posters, d_In_team)	0.8806	0.6439	0.9821	0.4359	2.7663	0.0294
ADL (d_In_participation)	0.5096	0.7751	0.8138	0.5294	1.1181	0.3929

1) 4 lags included

2) White cross terms included

Appendix 115 ARMA Model Selection, SC; Region 4

	MA(0)	MA(1)	MA(2)
AR(0)	2.402301	2.329518	2.410981
AR(1)	1.779761	1.660194	1.708370
AR(2)	1.569605	1.650430	1.656891

Appendix 116 ADL (d_ln_posters) Model Selection, SC; Region 4

	d_In_posters	d_In_posters_t-1	d_In_posters_t-2
	1.765814	1.351357	1.307376
In_new_signups_t-1	1.184270	1.263389	1.303840
In_new_signups_t-2	1.194806	1.289990	1.398109

Appendix 117 ADL (d_ln_posters, d_ln_team) Model Selection, SC; Region 4

	d_In_posters d_In_team	d_In_posters_t-1 d_In_team_t-1	d_In_posters_t-2 d_In_team_t-2
	1.861859	1.539250	1.569588
In_new_signups_t-1	1.291024	1.471520	1.603793
In_new_signups_t-2	1.303501	1.495080	1.698222

	d_In_participation	d_In_participation_t-1	d_In_participation_t-2
	1.778212	1.374256	1.380276
In_new_signups_t-1	1.330413	1.371047	1.446384
In_new_signups_t-2	1.301809	1.399568	1.520971

Appendix 118 ADL (d_ln_participation) Model Selection, SC; Region 4

Appendix 119 ADL (d_ln_participation, d_ln_team) Estimation Output; Region 4

Dependent Variable: In_new_signups					
	Coefficient	Std. Error	t-Statistic	p-value	
Constant	2.946265	0.871310	3.381421	0.0023	
In_new_signups_t-1	0.228633	0.166688	1.371622	0.1819	
In_new_signups_t-2	0.152831	0.101308	1.508576	0.1435	
d_In_participation	0.417009	0.119044	3.502991	0.0017	
d_ln_team	0.304527	0.523988	0.581172	0.5661	
R-squared	0.340878	Mean dependen	t var	4.865235	
Adjusted R-squared	0.239475	S.D. dependent var		0.462450	
S.E. of regression	0.403294	Akaike info criterion 1.1		1.168387	
Sum squared resid	4.228794	Schwarz criterion 1.		1.399676	
Log likelihood	-13.11000	Hannan-Quinn c	riter.	1.243782	
F-statistic	3.361603	Durbin-Watson	stat	2.360104	
Prob(F-statistic)	0.024070				

Sample (adjusted): 2009M10 - 2012M04

Included observations: 31 (after adj.)

Appendix 120 VAR (d_ln_posters) Lag Order Selection, SC; Region 4	Appendix 120	VAR (d_ln_	_posters) La	ag Order	Selection,	SC; Region 4
---	--------------	------------	--------------	----------	------------	--------------

Lag	SC
0	2.5030
1	2.5596
2	2.9627
3	3.3560
4	3.7110

Lag	SC
0	2.8355
1	3.0936
2	3.5486
3	3.9032
4	4.2896

Appendix 121 VAR (d_ln_participation) Lag Order Selection, SC; Region 4

Appendix 122 Normality, Autocorrelation, and Heteroskedasticity Tests; Region 5

	Jarqu	e-Bera	Breusch-Godfrey S	erial Corr LM Test ¹⁾	White Heteroskedasticity Test	
Model	Statistic	p-value	Statistic	p-value	Statistic	p-value
Bass	1.4357	0.4878	0.2451	0.9100	0.4279	0.7872
ARMA	0.1655	0.9206	0.2313	0.9175	0.7623 ³⁾	0.6512 ³⁾
ADL (d_In_posters)	0.9199	0.6313	0.0972	0.9823	1.1360	0.3821
ADL (d_In_posters, d_In_team)	0.1374	0.9336	0.2549	0.9034	1.2628	0.3208
ADL (d_In_participation)	5.2616	0.0720	0.6299	0.6455	0.8172	0.4516

1) 4 lags included

2) White cross terms included

3) White-test cannot be performed; results of Breusch-Pagan-Godfrey test

Appendix 123 ARMA Model Selection, SC; Region 5

	MA(0)	MA(1)	MA(2)
AR(0)	1.130559	1.159429	1.263973
AR (1)	0.973464	1.060667	1.068808
AR(2)	1.102872	1.030990	0.612213

Appendix 124 ADL (d_ln_posters) Model Selection, SC; Region 5

	d_In_posters	d_In_posters_t-1	d_In_posters_t-2
	0.920628	0.912727	0.864978
In_new_signups_t-1	0.633947	0.618234	0.621477
In_new_signups_t-2	0.615635	0.691527	0.729264

Appendix 125 ADL (d_ln_posters, d_ln_team) Model Selection, SC; Region 5

	d_In_posters d_In_team	d_In_posters_t-1 d_In_team_t-1	d_In_posters_t-2 d_In_team_t-2
	0.984722	1.086561	1.136658
In_new_signups_t-1	0.633202	0.584746	0.670444
In_new_signups_t-2	0.592770	0.629714	0.781777

	d_In_participation	d_In_participation_t-1	d_In_participation_t-2
	1.014822	1.148115	1.270211
In_new_signups_t-1	1.081626	1.212861	1.337907
In_new_signups_t-2	1.213425	1.313855	1.398350

Appendix 126 ADL (d_ln_participation) Model Selection, SC; Region 5

Appendix 127 ADL (d_ln_participation, d_ln_team) Estimation Output; Region 5

Dependent Variable: In	n_new_signups			
	Coefficient	Std. Error	t-Statistic	p-value
Constant	5.181933	0.067320	76.97507	0.0000
d_In_participation	0.060733	0.131931	0.460342	0.6487
d_ln_team	-0.654114	0.529461	-1.235435	0.2266
R-squared	0.050318	Mean dependen	t var	5.164356
Adjusted R-squared	-0.015177	S.D. dependent	var	0.366488
S.E. of regression	0.369259	Akaike info crite	erion	0.934421
Sum squared resid	3.954205	Schwarz criteric	n	1.071833
Log likelihood	-11.95073	Hannan-Quinn c	riter.	0.979969
F-statistic	0.768271	Durbin-Watson	stat	1.408310
Prob(F-statistic)	0.473024			

Sample (adjusted): 2009M09 - 2012M04 Included observations: 32 (after adj.)

Appendix 128 VAR (d_ln_posters) Lag Order Selection, SC; Region 5

Lag	SC
0	0.9859
1	0.7182
2	1.0880
3	1.4097
4	1.6371

	p-value
3.6175	0.4602
11.6445	0.7057
1.9842	0.7387
3.1620	0.5311
7.0517	0.1332
	11.6445 1.9842 3.1620

Appendix 129 VAR (d_ln_posters) Normality, Autocorrelation, and Heteroskedasticity Tests: Region 5

0.8976

1) Cross terms included

4

Appendix 130 VAR (d_ln_posters) Estimation Output; Region 5

1.0792

	d_In_posters	In_new_signups
d_ln_posters_t-1	0.042144	0.000265
	(0.12532)	(0.21407)
	[0.33629]	[0.00124]
In_new_signups_t-1	-0.380527	0.215915
	(0.11889)	(0.20309)
	[-3.20068]	[1.06314]
Constant	2.021569	4.048394
	(0.61354)	(1.04808)
	[3.29491]	[3.86269]
R-squared	0.280018	0.043718
Adj. R-squared	0.228591	-0.024588
Sum sq. resids	1.362167	3.974895
S.E. equation	0.220565	0.376777
F-statistic	5.444942	0.640027
Log likelihood	4.449019	-12.15027
Akaike AIC	-0.093485	0.977437
Schwarz SC	0.045288	1.116210
Mean dependent	0.053844	5.167032
S.D. dependent	0.251127	0.372228
Determinant resid covaria	0.003757	
Determinant resid covaria	0.003065	
Log likelihood		1.734368
Akaike information criteric	n	0.275202
Schwarz criterion		0.552748
Sample (adjusted): 2009M	10 - 2012M04	

Sample (adjusted): 2009M10 - 2012M04 Included observations: 31 (after adj.)

Std. errors in (); t-statistics in []

Lag	SC
0	2.7976
1	3.2036
2	3.5400
3	3.5400
4	3.9423

Appendix 131 VAR (d_ln_participation) Lag Order Selection, SC; Region 5

Appendix 132 Normality, Autocorrelation, and Heteroskedasticity Tests; Region 6

	Jarqu	e-Bera	Breusch-Godfrey S	erial Corr LM Test ¹⁾	White Heterosk	edasticity Test ²
Model	Statistic	p-value	Statistic	p-value	Statistic	p-value
Bass	1.5393	0.4632	1.5905	0.2066	1.7259	0.1723
ARMA	0.0778	0.9619	2.0507	0.1191	1.5211	0.2004
ADL (d_In_posters)	0.9310	0.6278	1.5255	0.2279	6.6464	0.0002
ADL (d_In_posters, d_In_team)	1.2457	0.5364	0.2028	0.9334	1.7922 ³⁾	0.1355 ³⁾
ADL (d_In_participation)	0.2985	0.8613	2.1481	0.1123	0.7151	0.7466

1) 4 lags included

2) White cross terms included

3) White-test cannot be performed; results of Breusch-Pagan-Godfrey test

Appendix 133 ARMA Model Selection, SC; Region 6

	MA(0)	MA(1)	MA(2)
AR(0)	2.784613	2.566941	2.063918
AR (1)	2.035357	1.075621	1.754965
AR(2)	1.716624	1.813316	1.858354

Appendix 134 ADL (d_ln_posters) Model Selection, SC; Region 6

	d_In_posters	d_In_posters_t-1	d_In_posters_t-2
	2.637610	2.660286	2.614741
In_new_signups_t-1	1.401408	1.177679	1.232737
In_new_signups_t-2	1.182218	1.217586	1.182440

Appendix 135 ADL (d_ln_posters, d_ln_team) Model Selection, SC; Region 6

	d_In_posters d_In_team	d_In_posters_t-1 d_In_team_t-1	d_In_posters_t-2 d_In_team_t-2
	2.719240	2.803362	2.765944
In_new_signups_t-1	1.502560	1.323266	1.366446
In_new_signups_t-2	1.252109	1.375072	1.197374

	d_In_participation	d_In_participation_t-1	d_In_participation_t-2
	2.695698	2.668959	2.541864
In_new_signups_t-1	1.774498	1.645698	1.652759
In_new_signups_t-2	1.572423	1.616242	1.555972

Appendix 136 ADL (d_ln_participation) Model Selection, SC; Region 6

Appendix 137 ADL (d_ln_participation, d_ln_team) Estimation Output; Region 6

Dependent Variable: In	_new_signups			
	Coefficient	Std. Error	t-Statistic	p-value
Constant	0.923578	0.486269	1.899317	0.0687
In_new_signups_t-1	0.395617	0.139732	2.831260	0.0088
In_new_signups_t-2	0.423253	0.123972	3.414098	0.0021
d_In_participation	0.459654	0.143563	3.201761	0.0036
d_ln_team	1.764655	0.917797	1.922707	0.0655
R-squared	0.773052	Mean dependen	t var	5.041192
Adjusted R-squared	0.738137	S.D. dependent	var	0.849732
S.E. of regression	0.434830	Akaike info crite	rion	1.318966
Sum squared resid	4.916001	Schwarz criteric	n	1.550254
Log likelihood	-15.44397	Hannan-Quinn c	riter.	1.394360
F-statistic	22.14092	Durbin-Watson	stat	1.970038
Prob(F-statistic)	0.000000			

Sample (adjusted): 2009M10 - 2012M04

Included observations: 31 (after adj.)

Appendix 138 VAR (d_ln_posters) Lag Order Selection, SC; Region 6

Lag	SC
0	3.0855
1	2.2807
2	2.2895
3	2.7248
4	2.7770

	Statistic	p-value
Jarque-Bera	8.1027	0.0879
White ¹⁾	24.8211	0.1299
Autocorrelation LM		
Lage	3	
1	2.5524	0.6353
2	0.3826	0.9839
3	2.1632	0.7058
4	1.9310	0.7484

Appendix 139 VAR (d_ln_posters) Normality, Autocorrelation, and Heteroskedasticity Tests; Region 6

1) Cross terms included

	d_In_posters	In_new_signups
d_ln_posters_t-1	-0.186485	-0.676754
	(0.18027)	(0.20532)
	[-1.03446]	[-3.29611]
In_new_signups_t-1	-0.099823	0.723072
	(0.10322)	(0.11756)
	[-0.96707]	[6.15046]
Constant	0.625907	1.554256
	(0.51964)	(0.59183)
	[1.20451]	[2.62618]
DUM2010M01	-0.307630	-1.099859
	(0.47505)	(0.54105)
	[-0.64757]	[-2.03282]
R-squared	0.097252	0.673515
Adj. R-squared	-0.003054	0.637239
Sum sq. resids	5.451945	7.072109
S.E. equation	0.449359	0.511791
F-statistic	0.969556	18.56634
Log likelihood	-17.04787	-21.08075
Akaike AIC	1.357927	1.618113
Schwarz SC	1.542957	1.803144
Mean dependent	0.096566	5.041192
S.D. dependent	0.448675	0.849732
Determinant resid covariance	(dof adj.)	0.023654
Determinant resid covariance		0.017944
Log likelihood		-25.65634
Akaike information criterion		2.171377
Schwarz criterion		2.541438

Appendix 140 VAR (d_ln_posters) Estimation Output; Region 6

Sample (adjusted): 2009M10 - 2012M04 Included observations: 31 (after adj.) Std. errors in (); t-statistics in []

Appendix 141 VAR (d_ln_participation) Lag Order Selection, SC; Region 6

Lag	SC
0	3.6955
1	3.2193
2	3.2457
3	3.6756
4	3.8869

	Statistic	p-value
Jarque-Bera	1.3832	0.8471
White ¹⁾	26.2659	0.0938
Autocorrelation LM		
Lags		
1	6.9848	0.1367
2	1.8116	0.7704
3	0.6992	0.9514
4	0.9086	0.9233

Appendix 142 VAR (d_ln_participation) Normality, Autocorrelation, and Heteroskedasticity Tests; Region 6

1) Cross terms included

	d in norticimatica	In now denues
d la participation t 1	d_In_participation -0.312603	In_new_signups
d_ln_participation_t-1		-0.519080
	(0.15418)	(0.12928)
	[-2.02754]	[-4.01521]
In_new_signups_t-1	-0.121595	0.668948
	(0.12737)	(0.10680)
	[-0.95467]	[6.26364]
Constant	0.726068	1.809696
	(0.64629)	(0.54192)
	[1.12343]	[3.33943]
DUM2010M01	-0.470225	-1.204600
	(0.60297)	(0.50559)
	[-0.77985]	[-2.38256]
R-squared	0.177327	0.713321
Adj. R-squared	0.085919	0.681468
Sum sq. resids	8.832331	6.209860
S.E. equation	0.571947	0.479578
F-statistic	1.939946	22.39397
Log likelihood	-24.52579	-19.06544
Akaike AIC	1.840373	1.488093
Schwarz SC	2.025404	1.673123
Mean dependent	0.067440	5.041192
S.D. dependent	0.598223	0.849732
Determinant resid covarianc	e (dof adj.)	0.061726
Determinant resid covarianc		0.046824
Log likelihood		-40.52315
Akaike information criterion		3.130526
	3.500587	

Appendix 143 VAR (d_ln_participation) Estimation Output; Region 6

Appendix 144 Normality, Autocorrelation, and Heteroskedasticity Tests; Region 2

	Jarque	e-Bera	Breusch-Godfrey S	erial Corr LM Test ¹⁾	White Heterosk	edasticity Test ²⁾
Model	Statistic	p-value	Statistic	p-value	Statistic	p-value
ADL (In_posters)	0.2326	0.8902	0.8700	0.4969	1.5625	0.1909
ADL (In_participation)	0.8323	0.6596	0.3125	0.8668	0.4982	0.7747

1) 4 lags included 2) White cross terms included

	In_posters	In_posters_t-1	In_posters_t-2
	0.877494	0.552876	0.508251
In_new_signups_t-1	0.672232	0.540714	0.579620
In_new_signups_t-2	0.673011	0.586247	0.690336

Appendix 145 ADL (ln_posters) Model Selection, SC; Region 2

Appendix 146 ADL (In_participation) Model Selection, SC; Region 2

	In_participation	In_participation_t-1	In_participation_t-2
	1.231156	1.035221	1.156715
In_new_signups_t-1	1.034700	1.142054	1.267413
In_new_signups_t-2	1.103198	1.208404	1.312589

Appendix 147 VAR (In_posters) Lag Order Selection, SC; Region 2

Lag	SC
0	1.9917
1	1.2665
2	1.5649
3	1.9105
4	2.3430

Appendix 148 VAR (ln_posters) Normality, Autocorrelation, and Heteroskedasticity Tests; Region 2

	Statistic	p-value
		•
Jarque-Bera	2.4169	0.6596
White ¹⁾	16.2124	0.3681
Autocorrelation LM		
Lags		
1	7.9877	0.0920
2	5.8530	0.2104
3	0.2454	0.9931
4	2.7915	0.5933

1) Cross terms included

679 0.221438
29) (0.13845)
64] [1.59943]
.0.223234
89) (0.20615)
30] [-1.08286]
735 5.775340
42) (0.63203)
57] [9.13777]
65 0.095890
94 0.033538
4.169228
97 0.379166
81 1.537870
980 -12.79795
37 0.987372
50 1.124785
5.600013
67 0.385688
dj.) 0.010619
0.008721
-14.93975
1.308734
1.583560

Appendix 149 VAR (ln_posters) Estimation Output; Region 2

Std. errors in (); t-statistics in []

Appendix 150 VAR (In_participation) Lag Order Selection, SC; Region 2

Lag	SC
0	2.5205
1	2.7574
2	3.1221
3	3.5557
4	3.8828

	Jarque	e-Bera	Breusch-Godfrey S	erial Corr LM Test ¹⁾	White Heterosk	edasticity Test ²
Model	Statistic	p-value	Statistic	p-value	Statistic	p-value
ADL (In_posters)	3.7335	0.1546	0.5244	0.7187	7.7912	0.0001
ADL (In_participation)	1.0748	0.5843	0.7863	0.5449	1.2024	0.3356

Appendix 151 Normality, Autocorrelation, and Heteroskedasticity Tests; Region 4

4 lags included
 White cross terms included

Appendix 152 ADL (In_posters) Model Selection, SC; Region 4

	In_posters	In_posters_t-1	In_posters_t-2
	1.422579	1.072701	1.151360
In_new_signups_t-1	1.325504	1.086479	1.224780
In_new_signups_t-2	1.344902	1.219923	1.328218

Appendix 153 ADL (In_participation) Model Selection, SC; Region 4

	In_participation	In_participation_t-1	In_participation_t-2
	1.464579	1.063595	1.130465
In_new_signups_t-1	1.342575	1.140860	1.241161
In_new_signups_t-2	1.301523	1.255425	1.350416

Appendix 154 VAR (In_posters) Lag Order Selection, SC; Region 4

Lag	SC
0	3.0503
1	2.5049
2	2.9018
3	3.3048
4	3.6790

ty Tests; Region 4	1	
	Statistic	p-value
Jarque-Bera	0.8861	0.9265
White ¹⁾	27.3742	0.1588

Appendix 155	VAR (ln_posters) Normality, Autocorrelation, and Heteroskedastici-
ty Tests · Regi	on 4

White ¹⁾	27.3742	0.1588
Autocorrelation LM		
Lags		
1	7.4963	0.1119
2	0.8039	0.9379
3	0.4769	0.9757
4	1.9080	0.7527

1) Cross terms included

	In_posters	In_new_signups
In_posters_t-1	0.987132	0.240582
	(0.13620)	(0.16109)
	[7.24746]	[1.49349]
In_new_signups_t-1	-0.227330	0.108554
	(0.18873)	(0.22321)
	[-1.20450]	[0.48632]
Constant	1.180175	3.316628
	(0.57577)	(0.68095)
	[2.04974]	[4.87055]
DUM2009M10	2.408338	1.406254
	(0.56668)	(0.67021)
	[4.24988]	[2.09822]
DUM2012M03	1.368856	-0.199969
	(0.46083)	(0.54501)
	[2.97045]	[-0.36691]
R-squared	0.834741	0.271330
Adj. R-squared	0.810258	0.163379
Sum sq. resids	5.426039	7.589732
S.E. equation	0.448291	0.530190
F-statistic	34.09495	2.513456
Log likelihood	-17.01361	-22.38300
Akaike AIC	1.375851	1.711437
Schwarz SC	1.604872	1.940459
Mean dependent	4.069405	4.801734
S.D. dependent	1.029148	0.579652
Determinant resid covariand	ce (dof adj.)	0.011711
Determinant resid covariand	ce	0.008337
Log likelihood		-14.21903
Akaike information criterior	1	1.513690
Schwarz criterion		1.971732
Sample (adjusted): 2009M0	9 - 2012M04	

Appendix 156 VAR (ln_posters) Estimation Output; Region 4

Sample (adjusted): 2009M09 - 2012M04 Included observations: 32 (after adj.) Std. errors in (); t-statistics in []

Lag	SC
0	3.3723
1	2.9222
2	3.2745
3	3.5803
4	3.8981

Appendix 157 VAR (In_participation) Lag Order Selection, SC; Region 4

Appendix 158	VAR (In_participation) Normality, Autocorrelation, and Heteroske-
dasticity Tests;	; Region 4

	Statistic	p-value
Jarque-Bera	2.4292	0.6574
White ¹⁾	20.7119	0.2942
Autocorrelation LM		
Lags		
1	3.8773	0.4229
2	1.5128	0.8244
3	1.4465	0.8361
4	2.1201	0.7137

1) Cross terms included

	In_participation	In_new_signups
In_participation_t-1	0.919175	0.199294
	(0.13962)	(0.11958)
	[6.58343]	[1.66661]
In_new_signups_t-1	-0.073168	0.099380
	(0.24359)	(0.20863)
	[-0.30037]	[0.47635]
Constant	0.862223	3.334641
	(0.76809)	(0.65785)
	[1.12255]	[5.06897]
DUM2009M10	2.603174	1.414231
	(0.75430)	(0.64604)
	[3.45112]	[2.18909]
R-squared	0.798348	0.280985
Adj. R-squared	0.776742	0.203948
Sum sq. resids	10.20948	7.489167
S.E. equation	0.603841	0.517175
F-statistic	36.95093	3.647394
Log likelihood	-27.12733	-22.16958
Akaike AIC	1.945458	1.635599
Schwarz SC	2.128675	1.818816
Mean dependent	5.003434	4.801734
S.D. dependent	1.277966	0.579652
Determinant resid covariance	(dof adj.)	0.049374
Determinant resid covariance	0.037802	
Log likelihood		-38.40561
Akaike information criterion		2.900351
Schwarz criterion		3.266785
Sample (adjusted): 2009M09 - Included observations: 32 (aft		

Appendix 159 VAR (In_participation) Estimation Output; Region 4

Appendix 160 Normality, Autocorrelation, and Heteroskedasticity Tests; Region 5

	Jarque-Bera		Breusch-Godfrey S	Breusch-Godfrey Serial Corr LM Test ¹⁾		White Heteroskedasticity Test ²⁾	
Model	Statistic	p-value	Statistic	p-value	Statistic	p-value	
ADL (In_posters)	1.9744	0.3726	0.3161	0.8644	0.7994	0.6209	
ADL (In_participation)	1.0764	0.5838	1.0071	0.4211	1.5780	0.2230	

1) 4 lags included 2) White cross terms included

Std. errors in (); t-statistics in []

	In_posters	In_posters_t-1	In_posters_t-2
	0.869812	0.788170	0.774576
In_new_signups_t-1	0.988078	0.551131	0.628780
In_new_signups_t-2	1.003844	0.594755	0.702422

Appendix 161 ADL (In_posters) Model Selection, SC; Region 5

Appendix 162 ADL (In_participation) Model Selection, SC; Region 5

	In_participation	In_participation_t-1	In_participation_t-2
	1.041852	1.075599	1.212673
In_new_signups_t-1	1.059975	1.168069	1.294860
In_new_signups_t-2	1.117900	1.225893	1.336622

Appendix 163 VAR (In_posters) Lag Order Selection, SC; Region 5

Lag	SC
0	1.0579
1	0.3929
2	0.8007
3	1.1617
4	1.4758

Appendix 164 VAR (ln_posters) Normality, Autocorrelation, and Heteroskedasticity Tests; Region 5

	Statistic	p-value
Jarque-Bera	3.5143	0.4757
White ¹⁾	17.2703	0.3030
Autocorrelation LM		
Lags		
1	2.3786	0.6665
2	3.9492	0.4129
3	4.6646	0.3235
4	1.8267	0.7676

1) Cross terms included

	In_posters	In_new_signups
In_posters_t-1	0.705449	-0.048825
	(0.07957)	(0.13797)
	[8.86545]	[-0.35389]
In_new_signups_t-1	-0.288627	0.226265
	(0.11886)	(0.20609)
	[-2.42822]	[1.09788]
Constant	2.978649	4.232046
	(0.48576)	(0.84224)
	[6.13192]	[5.02473]
R-squared	0.761942	0.044960
Adj. R-squared	0.745524	-0.020904
Sum sq. resids	1.322739	3.976513
S.E. equation	0.213569	0.370299
F-statistic	46.40954	0.682616
Log likelihood	5.570472	-12.04074
Akaike AIC	-0.160655	0.940047
Schwarz SC	-0.023242	1.077459
Mean dependent	4.843929	5.164356
S.D. dependent	0.423365	0.366488
Determinant resid covariand	ce (dof adj.)	0.003316
Determinant resid covariand	ce	0.002723
Log likelihood		3.683850
Akaike information criterion		0.144759
		0.419585

Appendix 165 VAR (ln_posters) Estimation Output; Region 5

Std. errors in (); t-statistics in []

Appendix 166 VAR (In_participation) Lag Order Selection, SC; Region 5

Lag	SC
0	2.7878
1	2.8072
2	2.7983
3	3.1023
4	3.3118

	В	ass	A	RMA		A	DL				V	AR .		
					d_In_	posters	d_ln_pa	rticipation	d	In_p	osters	d_In	_par	ticipation
	SC	RMSE	SC	RMSE	SC	RMSE	SC	RMSE	SC		RMSE	SC		RMSE
	AIC	MAE	AIC	MAE	AIC	MAE	AIC	MAE	AIC		MAE	AIC		MAE
Region 1	0.804309 3	0.569461 4	0.865810 4	0.682572 5	0.507668 1	0.559356 3	0.775356 2	0.512529 2	1.092977	5	0.448382 1	VAR(0)	6	6
Region	0.624738 2	0.456720 2	0.684415 4	0.491148 4	0.326274 1	0.489940 3	0.684659 5	0.501042 <i>5</i>	0.630401	3	0.337662 1	VAN(U)	6	6
	1.224260 4	0.911829 5	1.101018 2	0.891237 4	0.482513 1	0.746861 1	1.116894 3	0.872336 2	1.540703	5	0.886907 3		6	6
Region 2	1.042865 4	0.631596 5	1.009409 <i>2</i>	0.611291 4	0.202273 1	0.543002 1	1.025285 3	0.600538 3	1.263157	5	0.568453 2	VAR(0)	6	6
	2.211019 4	0.303772 3	1.714515 2	0.259265 1	1.279547 1	0.329818 <i>5</i>	1.809798 3	0.260706 2	2.750804	5	0.310970 4		6	6
Region 3	2.074973 4	0.249843 3	1.622907 2	0.198933 2	0.999308 1	0.288227 5	1.672385 3	0.195050 1	2.473258	5	0.252235 4	VAR(0)	6	6
	2.280116 4	0.645011 4	1.569605 3	0.599637 3	1.184270 <i>1</i>	0.364028 2	1.301809 <i>2</i>	0.222048 1		5.5	5.5		5.5	5
Region 4	2.144070 4	0.506322 4	1.430832 3	0.499543 3	1.046857 1	0.299059 2	1.116778 2	0.180803 1	VAR(0)	5.5	5.5	VAR(0)	5.5	5
	1.201222 <i>5</i>	0.588346 <i>5</i>	0.910860 3	0.410786 <i>1</i>	0.615635 2	0.435657 2	1.014822 4	0.495176 4	0.552748	1	0.443818 3		6	6
Region 5	1.065176 5	0.535764 5	0.587056 3	0.346638 1	0.430604 <i>2</i>	0.347253 2	0.923213 4	0.407219 4	0.275202	1	0.387960 3	VAR(0)	6	6
Be also a	1.731827 4	0.651676 <i>6</i>	1.324878 2	0.095207 1	1.177679 1	0.381549 <i>5</i>	1.555972 3	0.261179 3	2.541438	5	0.304962 4	3.500587	6	0.210604 2
Region 6	1.595781 4	0.634025 <i>6</i>	1.141661 2	0.079101 1	0.992649 1	0.361416 5	1.275732 3	0.225563 4	2.171377	5	0.222500 3	3.130526	6	0.186739 2
Σ	47	52	32	30	14	36	37	32		51	39		71	6
Overall Rank	4	5	2	1	1	3	3	2		5	4		6	6

Appendix 167 Model Selection and Forecasting Performance (Bass, ARMA, ADL and VAR incl. d_ln_posters/d_ln_participation)

Appendix 168 Model Selection and Forecasting Performance (Bass, ARMA, ADL and VAR incl. ln_posters/ln_participation)

	В	ass	AF	RMA			ADL			V	AR	
					In_p	osters	In_part	ticipation	ln_p	osters	In_par	ticipation
	SC	RMSE	SC	RMSE								
	AIC	MAE	AIC	MAE								
De sieur 0	1.224260 4	0.911829 3	1.101018 3	0.891237 2	0.508251 1	1.054225 4	1.034700 2	0.876823 1	1.583560 5	1.155746 5	6	6
Region 2	1.042865 4	0.631596 2	1.009409 3	0.611291 1	0.323220 1	0.940555 4	0.897287 2	0.666234 3	1.308734 5	0.983532 <i>5</i>	VAR(0) 6	6
	2.280116 5	0.645011 3	1.569605 3	0.599637 2	1.072701 2	0.702416 4	1.063595 1	0.495923 1	1.971732 4	0.766993 <i>6</i>	3.266785 <i>6</i>	0.721041 5
Region 4	2.144070 5	0.506322 3	1.430832 3	0.499543 2	0.935288 2	0.640264 4	0.926182 1	0.477706 1	1.513690 4	0.707702 <i>6</i>	2.900351 6	0.674794 5
De silen C	1.201222 5	0.588346 4	0.910860 <i>3</i>	0.410786 1	0.551131 2	0.682844 5	1.041852 4	0.435531 2	0.419585 1	0.450178 3	6	6
Region 5	1.065176 5	0.535764 4	0.587056 3	0.346638 2	0.367914 2	0.661482 <i>5</i>	0.951154 4	0.307779 1	0.144759 1	0.408871 <i>3</i>	VAR(0) 6	6
Σ	28	19	18	10	10	26	14	9	20	28	36	34
Overall Rank	5	3	3	2	1	4	2	1	4	5	6	6

		Bass	A	ARMA				A	ADL							` >	VAR			
					1	In_posters	u p	d_In_posters	In_parti	In_participation	d_ln_pa	d_In_participation	1	In_posters	d_ln_s	d_In_posters	In_par	In_participation		d_In_participatio
	sc	RMSE	sc	RMSE	sc	RMSE	sc	RMSE	sc	RMSE	sc	RMSE	SC	RMSE	sc	RMSE	sc	RMSE	Ű	ő
	AIC	MAE	AIC	MAE	AIC	MAE	AIC	MAE	AIC	MAE	AIC	MAE	AIC	MAE	AIC	MAE	AIC	MAE	AIC	
0	1.224260 6	.224260 6 0.911829 6 1.101018 4 0.891237 5 0.508251 2 1.054225 7 0.482513 1 0.746861 1	1.101018 4	0.891237 5	0.508251 2	1.054225 7	0.482513 1	0.746861 1	1.034700 3 0.876823 3	0.876823 3	1.116894 5	1.116894 5 0.872336 2	1.583560 8	1.583560 8 1.155746 8	1.540703 7 0.886907	0.886907 4	.6 0,047	9.5	10411	9.5
z nolgan	1.042865 6	.042865 6 0.631596 5 1.009409 4 0.611291 4 0.323220 2 0.940555 7	1.009409 4	0.611291 4	0.323220 2	0.940555 7	0.202273 1	0.202273 1 0.543002 1	0.897287 3	0.666234 <i>6</i>		1.025285 5 0.600538 3		1.308734 8 0.983532 8	-	.263157 7 0.568453 2	(0) UNA	9.5	() 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.5
	2.280116 7	2.280116 7 0.645011 5 1.569605 5 0.599637 4 1.072701 2 0.702416 6	1.569605 5	0.599637 4	1.072701 2	0.702416 6	1.184270 3	1.184270 3 0.364028 2	1.063595 1	0.495923 3	1.301809 4	0.222048 1		1.971732 6 0.766993 8	9.5	9.5	3.266785 8	3.266785 8 0.721041 7	0,000	9.5
Hegion 4	2.144070 7	2.144070 7 0.506322 5	1.430832 5	1.430832 5 0.499543 4 0.935288 2 0.640264 6	0.935288 2	0.640264 6	1.046857 3	0.299059 2	0.926182 1	0.477706 3	1.116778 4	0.180803 1	1.513690 6	1.513690 6 0.707702 8	VAH(U) 9.5	9.5	2.900351 8	2.900351 8 0.674794 7	VAH(U)	9.5
Conton 6		1.201222 8 0.588346 7	0.910860 5	0.910860 5 0.410786 1	0.551131 2	0.551131 2 0.682844 8	0.615635 4	0.435657 3	1.041852 7	.041852 7 0.435531 2	1.014822 6	1.014822 6 0.495176 6	0.419585 7	0.419585 7 0.450178 5	0.552748 3 0.443818 4	0.443818 4	.6 0,041	9.5	5 000000	5
e llolfau	-	0.535764 7	0.587056 5	0.346638 2	0.367914 3	0.661482 8	0.430604 4	.066176 8 0.535764 7 0.567056 5 0.346638 2 0.367914 3 0.661482 8 0.430604 4 0.347253 3 0.961154 7 0.307779 1 0.923213 6 0.407219 5	0.951154 7	0.307779 1	0.923213 6	0.407219 5	0.144759 7	0.144759 1 0.408871 6 0.275202 2 0.387960 4	0.275202 2	0.387960 4	() UNAN	9.5	5 (0)044	.5
2	4	2 35	28	20	13	42	16	: 12	22	18	30	18	30	43	38	33	24	52	57	
Overall Rank	k 8	9	4	4	+	2	2	+	3	2.5	5.5	5 2.5	5.5	8	~	5	6	6	-	0

Appendix 169	Model Selection and Forecasting Performance (All Models)	