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 Introduction 

 The pancreas gives rise to a variety of different neo-
plasms with diverse origins, differentiation and biologi-
cal behaviour  [1] . Traditionally, pancreatic tumours have 
been defined using histopathological features, i.e., mor-
phological characteristics only. The spectrum of histo-
pathological entities has grown rapidly with the wide-
spread and standardized use of immunohistochemistry. 
The advent of standardized molecular biological tools 
has, however, triggered a surge in the investigation of 
pancreatic tumours on a molecular level to elucidate the 
mechanisms of tumourigenesis, local recurrence and me-
tastasis in order to identify new therapeutic targets. This 
has led to the identification of frequent molecular altera-
tions typical of certain tumour entities, and these altera-
tions are increasingly used to classify or subclassify pan-
creatic tumours.

  Genetic Characteristics of Pancreatic Tumours 

 Genetic changes are analysed either on a chromosom-
al level, usually by determining loss of heterozygosity, or 
on a gene level, by amplification and sequencing. Micro-
array techniques are increasingly applied to study chang-
es of transcriptional expression in pancreatic tumours as 
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 Abstract 

 Recent advances in molecular biology, biochemistry and ge-
netics have broadened our understanding of tumourigene-
sis and of the maintenance and spread of pancreatic cancer 
far beyond traditional microscopic histopathological analy-
sis. While the main focus of pancreatic cancer research has 
been on pancreatic ductal adenocarcinoma, molecular re-
search has also led to a better understanding of rare tumours 
of the pancreas, as well as to the definition of previously un-
known tumour entities that can only be identified through 
the application of molecular tools. Furthermore, molecular 
analysis increasingly reveals the genetic and cell biological 
heterogeneity of established tumour entities, making sub-
classification of tumours possible. Genetic and molecular 
approaches may, therefore, not only lead to a better under-
standing of the pathogenesis of pancreatic tumours, but 
also culminate in more precise diagnosis as well as individu-
ally tailored treatment strategies for affected patients. 
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compared to normal pancreatic tissue. Characteristic ge-
netic alterations of some pancreatic tumours are listed in 
 table 1 .

  In the case of pancreatic ductal adenocarcinoma 
(PDAC), the most frequent tumour of the pancreas, a 

number of these alterations have been identified and 
linked to a tumour progression model beginning with in-
traductal epithelial proliferations (pancreatic intraepithe-
lial neoplasia (PanIN)) and developing into invasive pan-
creatic cancer [reviewed in  2, 3] . Mutations of the K-ras 

Tumour entity Genetic alteration Frequency Ref.

PDAC K-ras 75–100% 2, 44
INK4A (p16, CDKN2A) 40–100% 8, 45
TP53 40–87% 6, 7, 9
DPC4/SMAD4/MADH4 55–66% 9, 10
INK4B (p15, CDKN2B) 27–48% 2
FHIT 66–70% 2

PET
Non-functional LOH (6q, 11q) >60% 46

LOH (11p, 21q) 50% 46
LOH (3p) 45% 43
LOH (p16/MTSI) 43%
LOH (MEN 1) 55%
LOH (p53) 50%

Functional1
Insulinoma LOH (MEN 1) 22% 43

12p (Ras) 21%
LOH (MADH4/SMAD4) 27%

Glucagonoma LOH (3p) 71%
LOH (MEN 1) 80%
LOH (MADH4/SMAD4) 60%

Acinar cell CA LOH 11p 50% 47
APC 23% 47

Cystic tumours
IPMN K-ras 0% normal

75% high-grade dysplasia
17, 18

DPC4/SMAD4/MADH4 19
STK1/LKB1 20
P13KCA 21

MCN2 K-ras 89% carcinoma
20% adenoma

13

TP53 44% carcinoma
0% adenoma

13

DPC4/SMAD4/MADH4 14% carcinoma
100% adenoma

14

SCN VHL 40% 24, 25

SPT �-Catenin >90% 26

Only mutations with a high frequency are listed. PDAC = Pancreatic ductal adeno-
carcinoma; PET = pancreatic endocrine tumour; MCN = mucinous cystic neoplasm; 
IPMN = intraductal papillary mucinous neoplasm; SPT = solid-pseudopapillary tumour; 
LOH = loss of heterozygosity.

1 Only limited data is available on other hormone-producing PETs other than insuli-
nomas and glucagonomas [43].

2 Frequency depends on invasiveness of the tumour, percentage given for tumours 
with invasive component.

Table 1. Frequent genetic alterations in 
pancreatic tumours
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oncogene are found in 75–100% of PDAC, making it the 
tumour with the highest incidence of K-ras mutations  [4] . 
A mutation in codon 12 of the K-ras oncogene accounts 
for a constitutively activated form of the small GTPase, 
which is believed to be an early event in PDAC develop-
ment  [3] . The tumour suppressor gene TP53, encoding the 
transcription factor p53, on the other hand, is affected in 
more than 50% of cases by missense mutations in its DNA 
binding domain, accompanied by allelic loss of the wild-
type gene  [5–7] . Homozygous deletion of the p16 INK4A /
p14 ARF  locus encoding the tumour suppressors INK4A/
p16 and ARF can be observed in 80–95% of PDAC, and 
occurs at a later stage of tumour progression  [8] . Finally, 
the transcription factor MADH4/SMAD4 is inactivated 
by deletion or mutation in over 50% of cases  [9, 10] .

  There is growing interest in cystic tumours of the pan-
creas since at least two types – mucinous cystic neoplasms 
(MCN) and intraductal papillary mucinous neoplasms 
(IPMN) – can be precursor lesions of PDAC  [11] . MCN 
are cystic mucin-producing lesions with a distinctive cell-
rich ovarian-type stroma. MCN typically occur in wom-
en and show an invasive component in approximately 
one third of cases  [12] . Like PanIN, invasive MCN show 
a molecular progression that mirrors histological pro-
gression from adenoma to carcinoma. The same genes 
known to be involved in PanIN progression also play a 
role in MCN tumour progression. K-ras mutations are 
detected in 20% of MCN adenomas, but feature in 89% of 
MCN with a carcinoma component  [13] , while inactiva-
tion of TP53 and MADH4/SMAD4 is found almost ex-
clusively in invasive components  [13, 14] . Furthermore, 
molecular analysis has revealed that the ovarian-like 
stroma of MCN is hormone-sensitive  [11] , and a global 
expression analysis of MCN has revealed an ovary-like 
expression programme within the stroma  [15] .

  IPMN are intraductal, mucin-producing neoplasms 
that are classified into main-duct and branch-duct types 
depending on their localization within the duct system. 
These often multifocal lesions are classified depending 
on the epithelial lining into ‘intestinal’, ‘pancreaticobili-
ary’ (mostly main duct IPMN) and ‘gastric foveolar’ (of-
ten branch-duct IPMN) types  [1] . These histological sub-
types correlate with differential expression of apomucins: 
intestinal type IPMN express MUC2 and MUC5AC but 
not MUC1, while pancreaticobiliary IPMN typically ex-
press MUC1 and MUC5AC. Gastric foveolar types solely 
express MUC5AC, but not MUC1 or 2  [16] . Molecular 
subclassification is important in IPMN since different 
types show markedly different malignancy patterns and 
prognoses  [11] . Like PanIN and MCN, IPMN exhibit a 

multistep progression from benign to malignant lesions. 
Again, K-ras mutation is an early step in IPMN tumouri-
genesis  [17, 18] , but in contrary to PanIN, MADH4/
SMAD4/PDC4 gene inactivation is uncommon in IPMN 
and is only seen in invasive components  [19] . However, 
inactivation of the Peutz-Jeghers syndrome gene STK1/
LKB1 is seen in approximately 30% of IPMN  [20] . Further 
genetic alterations frequently found in IPMN are activat-
ing mutations of the P13KCA, a member of the Akt sig-
nalling pathway  [21] . An example of increasing subclas-
sification of pancreatic tumours with molecular methods 
is the intraductal oncocytic papillary neoplasm (IOPN), 
which is regarded as a subtype of IPMN based on histo-
pathologic features. Molecular findings suggest that 
IOPN may be different from IPMN  [42] . In particular, 
IOPN lack the K-ras gene mutation and show alternate 
MUC expression  [22] .

  Serous cystic neoplasms (SCN) are microcystic tu-
mours that predominantly affect female patients. SCN 
are presumed to arise from the centroacinar duct system, 
and express MUC6 as well as Glut-1  [22, 23] . Sporadic 
SCN show von Hippel-Lindau (VHL) gene alterations in 
up to 40% of cases  [24, 25] , implicating VHL in the tu-
mourigenesis of SCN.

  While the histopathological characteristics of solid-
pseudopapillary neoplasms (SPN) – rare, sometimes cys-
tic tumours of the pancreas almost exclusively found in 
young women – are well described, the origin of SPN tu-
mour cells remains enigmatic, since they lack evidence of 
ductal, acinar or frank endocrine differentiation. The 
most typical features of SPN can therefore only be found 
on a molecular level: namely, the expression of CD10 and 
cyclin D1 and point mutations in the  � -catenin gene, 
which can be demonstrated in over 90% of the cases  [22, 
26] . Further molecular characterization of SPT is war-
ranted to elucidate their genetic origin.

  Epigenetic Changes in Pancreatic Tumours 

 A large number of epigenetic alterations have been 
identified in pancreatic cancer as causing differential 
gene expression  [27–35] . Analysis of epigenetic modifica-
tions of genes involved in pancreatic tumour develop-
ment may be used to subclassify tumour entities and may 
also predict biological tumour behaviour. For example, 
Sato et al.  [27]  showed that the extracellular matrix pro-
tein SPARC/osteonectin, which influences cellular dif-
ferentiation, proliferation and angiogenesis  [36] , is a fre-
quent target of DNA methylation in PDAC.
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  Cell Biological Characteristics of Pancreatic Tumours 

 Elucidating alterations on the DNA level is only one 
aspect of molecular analysis. Research has focused even 
more on changes in the expression levels of proteins in 
pancreatic tumour cells, since the biological behaviour of 
tumour cells depends on the complex interactions of pro-
teins within the cancer cells themselves and of protein-
protein interactions between cells. Deregulation of ex-
pression has been found in multiple proteins, especially 
in growth-promoting or growth-inhibiting signalling 
pathways [reviewed in  2, 3, 37 ]. The listing of the number 
of overexpressed oncogenes or of the suppressed tumour 
suppressor genes as well as of the sheer number of anal-
ysed genes is far beyond the scope of this article. Recent-
ly, a freely accessible database (www.pancreasexpression.
org) collecting all known analysed proteins and genes in-
volved in pancreatic tumour development was made 
available (see article by C. Chelala et al., this issue).

  The wealth of information that can be gained by ex-
pressional analysis of pancreatic tumours will help to fur-
ther subclassify tumour entities, leading the way to indi-
vidually tailored diagnosis and treatment options.

  Examples of New Tumour Entities Defined by 

Molecular Analysis 

 The usefulness of molecular tools in defining new tu-
mour entities is demonstrated in a recent study  [38]  that 
reports an unusual microcystic tumour of the pancreas 
histologically characterized by a tubulopapillary archi-
tecture and an expansive growth pattern. This tumour 
could not be classified on the base of conventional histo-
pathological or standard immunhistochemical charac-
teristics. In order to elucidate its origin, the authors 
checked for molecular alterations that are commonly 
found in other pancreatic tumours (see  table 1 ), such as 
K-ras, p16, p53, DPC4 and  � -catenin by immunhisto-
chemistry and gene sequencing. Furthermore, transcrip-
tional profiling by microarray analysis was employed to 
find differentially transcribed genes that are up- or down-
regulated in the tumour when compared to samples of 
known tumour entities or normal tissues. The resulting 
cluster analysis  [39, 40]  revealed that the tumour had a 
distinct profile when compared with other pancreatic tu-
mour entities. Taken together, the authors concluded that 
the tumour under investigation is a new hitherto un-
known tumour entity.
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  Fig. 1.  Cluster analysis for transcriptional 
profiling of an unknown tumour entity 
(III primary; IV liver metastasis; V ab-
dominal metastasis) compared to the pro-
files of normal pancreatic tissue (I) and 
PDAC (II). In the resulting bi-plot, each 
hybridization of an individual sample is 
depicted as a coloured square. Genes that 
exhibited significantly differential tran-
scription levels are shown as grey dots. The 
closer the co-localization of two spots 
(both genes and tumours), the higher is the 
degree of association between them. As a 
control, normal pancreatic tissue was used 
(cluster I, red circle). As all other experi-
ments were compared to this control, only 
the centre of gravity of all normal tissue 
samples is shown rather than individual 
experiments. Reprinted with permission 
(conferred through the ‘Copyright Clear-
ance Center’) from Loos et al.  [41] .   
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  The validity of such an approach has been confirmed 
by Loos et al.  [41]  who defined a solid type clear cell car-
cinoma of the pancreas as new tumour entity by applying 
the methods mentioned above ( fig. 1 ).

  Outlook 

 Molecular tools become increasingly important for 
the precise diagnosis of pancreatic neoplasms and have 
been used to subclassify already established tumour enti-
ties. Furthermore, new tumour entities are being defined 
based on molecular characteristics rather than on their 
histopathologic appearance. The abundance of informa-
tion that can be drawn from molecular analyses of gene 
alterations as well as protein expression patterns of indi-

vidual tumours goes far beyond a mere descriptive study 
of tumours, and allows instead an insight into the trig-
gering factors causing tumour development as well as the 
mechanism for tumour maintenance. Based on the exact 
tumour profile, we may be able to tailor treatment strate-
gies to the individual patient in the future as new thera-
peutic options for pancreatic tumours arise. 
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