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Abstract
We study the phenomenology of supersymmetric flavor models. We show how
the predictions of models based on spontaneously broken non–Abelian discrete
flavor symmetries are altered when we include so–called Kähler corrections.
Furthermore, we discuss anomaly–free discreteR symmetries which are compatible
with SU(5) unification. We find a set of symmetries compatible with suppressed
Dirac neutrino masses and a unique symmetry consistent with the Weinberg
operator. We also study a pseudo–anomalous U(1)R symmetry which explains
the fermion mass hierarchies and, when amended with additional singlet fields,
ameliorates the fine–tuning problem.

Zusammenfassung
Wir untersuchen die Phänomenologie von supersymmetrischen Flavormodellen.
Wir zeigen, dass die Vorhersagen von Modellen, die auf spontan gebrochenen
nichtabelschen diskreten Flavorsymmetrien basieren, sich ändern, sobald wir
sogenannte Kählerkorrekturen berücksichtigen. Wir diskutieren außerdem anoma-
liefreie diskrete R Symmetrien, die kompatibel mit SU(5)–Vereinheitlichung sind.
Wir finden mehrere Symmetrien, die mit unterdrückten Dirac Neutrinomassen
kompatibel sind, und eine einzigartige Symmetrie, die mit dem Weinbergoperator
kompatibel ist. Wir untersuchen auch eine pseudoanomale U(1)R Symmetrie,
welche die fermionische Massenhierarchie erklärt und welche, wenn man sie mit
zusätzlichen Singlets erweitert, das „fine–tuning“ verbessert.
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Chapter 1

Introduction

The recent discovery of the Higgs boson, with a mass of (125± 1) GeV [1,2], marks a triumph
for the standard model (SM) of particle physics, which has been an extremely successful
theory in the last decades. However, the SM is still challenged by several problems. First,
it is clear that the SM cannot be the fundamental theory since gravity is not incorporated.
Secondly, there is no reasonable candidate field for dark matter, which accounts for 27%
of the energy density of the universe [3], within the SM. Finally, there is the cosmological
constant problem.

The smallness of the Higgs mass demonstrates the hierarchy problem of the SM since the
Higgs mass, in principle, should receive large quantum corrections due to loop effects [4, 5].
The experimental value, therefore, requires a fine–tuning of the different contributions to the
Higgs mass in order to cancel each other, which is considered “unnatural” [6].

The hierarchy problem can be solved by the introduction of supersymmetry (SUSY) [7], a
spacetime symmetry that introduces for each SM particle a supersymmetric partner, which
differs in spin by 1/2. The fermion loop corrections to the Higgs mass, which cause the
hierarchy problem, are then systematically canceled by the bosonic partner of the fermions,
which contribute with an opposite sign to the Higgs mass. Therefore, supersymmetry is one
of the most common extensions of the standard model, especially since SUSY also provides
a viable dark matter candidate and improves gauge coupling unification [8].
However, SUSY also suffers from several problems, like the µ problem. Here, the super-

symmetric Higgs mass needs to be sufficiently suppressed in order to avoid the reintroduction
of the hierarchy problem. We will later show that this problem can be solved with the help
of R symmetries, i.e. symmetries that do not commute with the supersymmetry generators.
Additionally, experiments, measuring a rather heavy Higgs boson [1, 2], put pressure

on supersymmetric models since the simplest SUSY models predict a lighter Higgs boson.
Solving this issue either requires, again, fine–tuning or an extension of the simplest SUSY
models. We will discuss such extensions later in this thesis.

So far we have not discussed another important issue of the standard model, the prediction
of massless neutrinos. In the last decades many experiments confirmed the existence of
neutrino masses [9–19] and recently experiments have even entered the precision phase of
measuring the neutrino mixing parameters, e.g. the mixing angle θ13 was shown to be much
larger than zero [20–25], contrary to previous expectations. Neutrino masses are, therefore,
in obvious contradiction to the SM and require physics beyond the standard model, e.g. the
see–saw mechanism [26–29], in order to explain the origin of neutrino masses.

Many models try to explain the neutrino mixing pattern with the help of a spontaneously
broken flavor symmetry. However, the recent measurement of a non–vanishing θ13 challenged
many of these predictions. We show in this thesis that the predictions of such models might be,
in general, dramatically modified as soon as one considers effects from the Kähler potential,
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so–called Kähler corrections. Even though the Kähler potential is a function specific to
supersymmetry, the implications of the Kähler corrections apply to the non–supersymmetric
case as well.
The outline of this thesis is as follows: In chapter 2 we introduce the basic concepts

of supersymmetry and discuss several supersymmetric example models. Furthermore, we
present a method that allows us to compute the superpotential to all orders. Chapter 3
discusses the nature and origin of neutrino masses and we also provide current experimental
results for the mixing parameters. In chapter 4 we show how the µ problem can be solved
by relating it to supersymmetry breaking while also allowing for viable neutrino masses. We
achieve this with the help of R symmetries. In chapter 5 we introduce the flavor problem of
the (supersymmetric) SM. As a possible solution thereof we discuss flavor symmetries: first
a pseudo–anomalous U(1)R symmetry that explains the fermion mass hierarchies and then
non–Abelian discrete symmetries for the neutrino mixing. Chapter 6 focuses on corrections
to the predictions of such non–Abelian discrete flavor symmetries by considering additional
Kähler potential terms and their implications. In chapter 7 we combine many of the previous
ideas by building a model based on a pseudo–anomalous U(1)R symmetry with a residual ZR4
that explains all the fermion mass hierarchies and solves the hierarchy problem without any
fine–tuning. The neutrino mixing in such models might be described through a non–Abelian
flavor symmetry. We end this thesis in chapter 8 with our conclusions.
Parts of this work have been published:

[30] The mu term and neutrino masses.
Mu-Chun Chen, Michael Ratz, Christian Staudt and Patrick K.S. Vaudrevange.
Published in Nucl.Phys. B 866, (2013) 157-176. e-Print: arXiv:1206.5375
[hep-ph].

[31] On predicitions from spontaneously broken flavor symmetries.
Mu-Chun Chen, Maximilian Fallbacher, Michael Ratz and Christian Staudt.
Published in Phys. Lett. B 718, (2012) 516-521. e-Print: arXiv:1208.2947
[hep-ph].

[32] Predictivity of models with spontaneously broken non–Abelian discrete
flavor symmetries.
Mu-Chun Chen, Maximilian Fallbacher, Yuji Omura, Michael Ratz and Christian
Staudt.
Published in Nucl.Phys. B 873, (2013) 343-371. e-Print: arXiv:1302.5576
[hep-ph].

[33] Towards a UV completion of the Dirac NMSSM.
Mu-Chun Chen, Michael Ratz, Graham G. Ross, Christian Staudt, Volodymyr Takhistov
and Patrick K.S. Vaudrevange.
To be published.
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Chapter 2

Supersymmetric models
One of the most persuasive extensions of the standard model is supersymmetry. SUSY
solves the hierarchy problem by relating bosons and fermions to each other. This is done by
introducing an anti–commuting symmetry generator Q such that

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉, (2.1)

i.e. for each SM particle there exists a superpartner whose spin differs by 1/2, which cancels
the unwanted corrections to the Higgs mass. However, SUSY not only solves the hierarchy
problem, it also provides an attractive dark matter candidate and improves gauge coupling
unification compared to the SM [8].
In this chapter we briefly review several supersymmetric models, starting with the most

famous one, the minimal supersymmetric standard model (MSSM). With the help of the
MSSM we introduce the superpotential and the Kähler potential, while also discussing the
idea of R symmetries and SUSY breaking.1 We then introduce extensions of the MSSM, in
particular the recently proposed Dirac NMSSM [36]. This chapter ends with a review of how
to determine the superpotential to all orders with the help of the Hilbert basis [37–39].

2.1 The minimal supersymmetric standard model
We briefly introduce the basic concepts of supersymmetry and the MSSM in the following
sections, for a more detailed review cf. [34, 35] and references therein.

2.1.1 Basic SUSY
In N = 1 supersymmetric theories, ordinary (Minkowski) spacetime with the coordinates xµ,
where µ = 0, 1, 2, 3, is extended by the two Grassmann variables θα, θ†α̇, where α, α̇ = 1, 2.
Therefore, points in “superspace” are given by the coordinates xµ, θα, θ†α̇. This means that we
have to promote our usual fields from functions of the spacetime coordinate xµ to superfields,
which are also functions of the superspace coordinates θα, θ†α̇, e.g. Ψ(x, θ, θ†). A so–called
chiral superfield is given by

Ψ = ϕ(y) +
√

2 θ ψ(y) + θ θ F (y) , (2.2)

with yµ = xµ + i θ σµ θ†. Here, ϕ is a complex scalar, ψ is a two–component fermion and F
is an auxiliary field, i.e. it has no kinetic term in the Lagrangian. Chiral superfields Ψ have
the property that

D†α̇ Ψ = 0 , (2.3)
1In this introductory part we closely follow [34,35].
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and

Dα Ψ∗ = 0 (2.4)

for anti–chiral superfields. Here, Dα is the chiral covariant derivative.
In order to build a supersymmetric Lagrangian one has to build a function of such

chiral superfields and integrate over the coordinates θα, θ†α̇, taking into account that they
are Grassmann variables, i.e. we can only integrate with the measures

∫
d2θ,

∫
d2θ† and∫

d2θ d2θ†. In the following sections we discuss the two most important supersymmetric
functions, the superpotential W and the Kähler potential K; the discussion of the gauge
kinetic function can be found in one of the reviews [34,35]. However, let us first determine the
necessary superfields for a phenomenologically appealing model, i.e. a model that contains
the SM with minimal ingredients.

2.1.2 The MSSM
The minimal supersymmetric standard model is a supersymmetric theory with minimal
particle content. As the standard model, the MSSM has the gauge group SU(3)C×SU(2)L×
U(1)Y and its particle matter content is summarized in table 2.1.

Qi U i Di Li Ei Hu Hd(
3,2, 1

6

) (
3,1,−2

3

) (
3,1, 1

3

) (
1,2,−1

2

)
(1,1, 1)

(
1,2, 1

2

) (
1,2,−1

2

)
Table 2.1: Matter content of the MSSM and their representation under the SM gauge group

SU(3)C × SU(2)L ×U(1)Y. The index i = 1, 2, 3 denotes the generations.

Compared to the SM there is one additional Higgs field, which is necessary in order to
write down a phenomenologically viable theory, e.g. to write down all SM Yukawa couplings,2
as we will discuss in more detail in the next section.

2.1.3 The superpotential
Arguably, the most important ingredient for any supersymmetric theory is the superpotential
W . It is a gauge invariant, holomorphic function of the chiral superfields. Due to its
holomorphicity, it is related to the supersymmetric Lagrangian through

L ⊃
∫

d2θW (Ψ) + c.c. . (2.5)

Given the field content of the MSSM from table 2.1 we can write down its superpotential,

W = YuQU Hu + YdQDHd + Ye LEHd + µHuHd + . . . , (2.6)

where we have suppressed family indices. The first three terms lead to the usual Yukawa
interaction terms in the Lagrangian and the ellipsis contains terms that violate either baryon
or total lepton number, e.g. they would promote proton decay.3 They are given by

W ⊃ LLE + LHu +QLD + U DD . (2.7)
2The additional Higgs field is also needed for anomaly cancellation.
3Note that due to the holomorphicity of W we had to introduce an additional Higgs field to be able to write
down all Yukawa terms.
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2.1 The minimal supersymmetric standard model

These operators are usually forbidden by an additionally imposed Z2 symmetry, called R
parity or matter parity. Under this symmetry all matter fields have charge 1 and the Higgs
fields have charge 0. Furthermore, the superspace variable θ also has charge 1.4 On top of
forbidding the dangerous operators in equation (2.7), the symmetry also ensures that the
lightest supersymmetric particle is stable, since SM fermions have zero charge, whereas, their
superpartners have charge 1 and SUSY particles can, therefore, only be created in pairs.
After imposing matter parity the MSSM superpotential is given by

WMSSM = YuQU Hu + YdQDHd + Ye LHdE + µHuHd . (2.8)

So far we have not addressed the so–called µ term of WMSSM, which is a parameter with
mass dimension 1 in front of the Higgs bilinear HuHd, i.e. it is a supersymmetric mass term
for the Higgs bilinear. If the µ term is unsuppressed, meaning that there is no reason for it
to be of the size of the electroweak scale, the hierarchy problem is reintroduced.5 This issue
is called the µ problem and it can be solved either by ensuring that the size of the µ term is
of the correct order or by forbidding the term by some symmetry argument. As it turns out,
only so–called R symmetries, which we introduce briefly in section 2.1.5, can forbid the µ
term, assuming anomaly freedom [40]. We discuss this further in chapter 4 and provide a
phenomenologically appealing example of a µ term prohibiting symmetry in section 4.2.4.

2.1.4 The Kähler potential

We have just introduced the superpotential, which is a holomorphic function of chiral
superfields necessary to build a supersymmetric Lagrangian. Another supersymmetric
function is the Kähler potential K, which, unlike the superpotential, is a real function of
both chiral and antichiral superfields,

L ⊃
∫

d2θ d2θ†K(Ψ,Ψ∗) +
(∫

d2θW (Ψ) + c.c.
)
. (2.9)

At tree level the Kähler potential is canonical, e.g. for the lepton sector we have

Kcanonical ⊃
(
Lf
)†
δfg L

g +
(
Rf
)†
δfg R

g , (2.10)

with f, g being indices in flavor space and L,R denoting the left– or right–handed leptons,
respectively. A canonical Kähler potential ensures correct kinetic terms in the Lagrangian
since for a chiral superfield, cf. equation (2.2), the D term of Ψ†Ψ, i.e. the component
proportional to (θθ)(θ†θ†), is given by

Ψ†Ψ ⊃ (θθ)(θ†θ†)
[
∂µϕ∗ ∂µϕ+ iψ† σµ ∂µψ + F ∗F

]
+ . . . , (2.11)

where the ellipsis stand for total derivative terms we can ignore [34]. Therefore, integrating
over all θ and θ† components gives the correct kinetic terms.

4Therefore, matter parity is sometimes considered an R symmetry; however, it is not a proper R symmetry
as we discuss in section 2.1.5.

5We discuss the connection between the µ term and the Higgs mass in a bit more detail in section 2.2.1.
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Chapter 2 Supersymmetric models

2.1.5 R symmetries
Supersymmetry allows for an additional type of symmetry, so–called R symmetries, to be
present. The R symmetry generator does not commute with the SUSY generator Q, hence,
the coordinates θ and θ† also transform under this symmetry with charges qθ and −qθ,
respectively.6 This implies that if a given Lagrangian is supposed to be invariant under an
R symmetry, allowed Kähler potential terms have to have R charge

qK = 0 , (2.12)

whereas terms from the superpotential have R charge

qW = 2 qθ . (2.13)

This follows from equation (2.9) and from the transformation property of dθ, which has R
charge −qθ.
Given an Abelian R symmetry we can also determine the charges of the superfield

components. Assuming a chiral superfield Ψ has R charge rΨ, we can use equation (2.2) and
determine the charges of its scalar ϕ and fermionic component ψ, as well as the R charge of
its F term, i.e.

rϕ = rΨ , rψ = rΨ − rθ and rF = rψ − 2 rθ . (2.14)

This discussion shows that the in section 2.1.3 introduced R parity, a supposed ZR2
symmetry, is not a proper R symmetry since the superpotential has the charge

qW = 2 qθ mod 2
= 0 mod 2 . (2.15)

Hence, we see, in general, that there is no R symmetry of order 2. Later we discuss two
types of R symmetries further, discrete ZRM symmetries in chapter 4 and then a continuous
U(1)R symmetry in chapter 5.

2.1.6 SUSY breaking
Supersymmetry, besides its many benefits, cannot be an exact theory, otherwise superpartners
would have been discovered in experiments already. Therefore, any realistic supersymmetric
model must contain SUSY breaking and, analogously, to electroweak symmetry breaking we
would expect SUSY to be broken spontaneously. There is a myriad of spontaneously broken
SUSY models and given the vast amount of literature on the topic, we refer to the review by
Martin [34] for more details.
Here, we briefly introduce general soft supersymmetry–breaking terms, i.e. the breaking

terms are of positive mass dimension and no quadratic divergences to scalar masses occur.
In a general Lagrangian, we can have the following possible soft breaking terms [34],

Lsoft =
[
−
(1

2 Ma λ
a λa + 1

6 A
ijk ϕi ϕj ϕk + 1

2 b
ij ϕi ϕj + ti ϕi

)
+ h.c.

]
−
(
m̃2
)i
j
ϕj∗ ϕi , (2.16)

6We are only considering Abelian R symmetries here. Obviously, similar statements are possible for
non–Abelian R symmetries [41].
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2.2 Beyond the MSSM

where the ϕi are the scalar components of the superfields and the λa are the superpartners
of the SM gauge bosons, the gauginos. In the MSSM we now have three mass terms Ma,
one for each gauge group, three so–called A terms in one–to–one correspondence to the
Yukawa matrices and the b term for the Higgs bilinear, which in the MSSM is called the Bµ
term. Furthermore, there is one slepton mass matrix m̃ for every MSSM field from table 2.1,
which we call the soft masses. The couplings ti vanish in the MSSM since there are no gauge
singlets in the theory.7
The A terms and the soft masses in the MSSM are 3 × 3 matrices in flavor space, and

initially there is no reason why these matrices should be diagonal or constrained in any way,
thus, introducing a large arbitrariness into the theory. Altogether we have order 100 new
parameters introduced through soft SUSY breaking into MSSM [34,42] and in section 5.1 we
discuss the implications and problems following from this fact, focusing, in particular, on the
soft masses.
Let us discuss the origin of SUSY breaking. It is generally assumed that supersymmetry

is broken in some hidden sector and that its breaking is mediated to the visible sector, e.g.
the MSSM, through some particle interaction. The soft breaking terms from equation (2.16)
then occur through the F term of the messenger particle. If, for example, SUSY is broken
through gravitational interactions in the hidden sector, the breaking scheme is called gravity
mediation [43,44], which we assume from here on. In this case one usually considers a spurion
field X whose F term breaks SUSY, i.e. X = θ θ FX with 〈FX〉 6= 0. In such a scenario the
A terms are generated in the superpotential through

W ⊃ X

Λsoft

(
Y X

)
fgh

Ψf Ψg Ψh , (2.17)

whereas the soft masses are generated in the Kähler potential,

K ⊃
(

X

Λsoft
nfg

(
Ψf
)†

Ψg + h.c.
)

+ X†X

Λ2
soft

kfg
(
Ψf
)†

Ψg . (2.18)

Here, Λsoft is the messenger scale, and in the case of gravity mediation it is given by
Λsoft = MP. The couplings Y X , n and k are matrices in flavor space and, as stated above, at
first there are no constraints on their structure. The vacuum expectation value (VEV) of
X breaks SUSY, therefore, the soft masses and A terms from equation (2.16) are created.
The order parameter of this symmetry breaking is for gravity mediation the gravitino mass
m3/2 [43, 44], which can be estimated as

m3/2 ∼
〈FX〉
MP

, (2.19)

and due to equation (2.18) it should be comparable to the other sparticle masses.

2.2 Beyond the MSSM

In the previous section we introduced the basic concepts of supersymmetry and the MSSM.
Now, we want to focus on next–to–minimal supersymmetric models first by showing the

7This changes if we introduce right–handed neutrinos.

17



Chapter 2 Supersymmetric models

shortcomings of the MSSM and then how these can be improved or even removed by extending
the theory.
For example, the MSSM suffers from a proton decay problem through the presence of

dimension four and five operators, e.g. QQQL. Even though such a term is suppressed,
it still promotes proton decay to a phenomenologically unacceptable level. We present a
symmetry that forbids such operators in chapter 4 and now discuss another problem of the
MSSM, the µ problem.

2.2.1 The µ problem and the Higgs mass in the MSSM
A main concern of the MSSM is the µ term in equation (2.8), which, if unsuppressed,
reintroduces the hierarchy problem into the MSSM. However, a small µ term from the start
is considered unnatural unless it is due to a symmetry argument.
Let us examine why an unsuppressed µ term is such a big problem by looking at the

connection between the µ term and the measured Higgs mass, which has recently been
determined by the LHC to be (125± 1) GeV [1,2]. The issue is highlighted when we look at
the Z boson mass in the MSSM, which is given by [34]

m2
Z =

|m2
Hd
−m2

Hu
|√

1− sin2(2β)
−m2

Hu −m
2
Hd
− 2 |µ|2 . (2.20)

Here, m2
Hu,Hd

are the Higgs scalar masses from SUSY breaking and β determines the ratio
between the two Higgs VEVs with

tan(β) = vu
vd

with v =
√
v2
u + v2

d = 246 GeV , (2.21)

where vu,d are the VEVs of the neutral scalar components of Hu and Hd, respectively. In
order for equation (2.20) to be in agreement with experiments all new parameters have to
be within the order of the Z boson mass, including, in particular, the µ term.8 However,
such a value for µ is unnatural and, therefore, we need a symmetry argument to forbid the µ
term or suppress its size to acceptable values. We present such a symmetry and a related
mechanism in chapter 4.
Even if we assume that the µ problem is solved, e.g. through some symmetry, there are

still issues matching equation (2.20) with experiments. The MSSM Higgs scalar mass m2
h is

naturally small [34], therefore, the supersymmetric parter of the top quark, the stop, needs
to have a relatively large mass in order to lift the Higgs mass to its measured value. However,
the stop masses also contribute to m2

Hu
, as can be seen in the renormalization group (RG)

equation [36]

µRen
d

dµRen
m2
Hu = 3

8π2 y
2
t

(
m2
Q̃3

+m2
t̃R

)
+ . . . , (2.22)

where µRen describes the renormalization scale. Hence, large left– or right–handed stop
masses, m

Q̃3
and m

t̃R
, respectively, increase m2

Hu
, which means that we need significant

cancellations between contributions in equation (2.20) for an experimentally viable Z boson
mass. This is considered the fine–tuning problem of the MSSM, since the parameters have
to be tuned at a level of at least 1% [45]. For a more detailed discussion of this issue we
refer to [34] and references therein.

8Alternatively there can be cancellations between the terms which is a fine–tuning problem.
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2.2.2 The NMSSM and the GNMSSM
One way to reconcile the Higgs mass and supersymmetry without tuning the stop mass is to
extend the MSSM. In the next–to–minimal supersymmetric standard model (NMSSM) [46–48]
we add a SM singlet superfield N to the MSSM. This field interacts with Higgs fields trough
the superpotential and we get

W ⊃ λN HuHd + µHuHd + W (N) , (2.23)

where λ is a dimensionless coupling and W (N) the singlet superpotential. Let us assume
that we have W (N) = µN

2 N2, where µN is the supersymmetric singlet mass, and the scalar
potential [47]

Vsoft ⊃ m2
N |N |2 , (2.24)

with the SUSY breaking soft mass mN . The Higgs mass is then raised through the soft mass
and the superpotential interactions [36]

∆m2
h = λ2 v2 sin2(2β)

(
m2
N

µ2
N +m2

N

)
. (2.25)

Such a term raises the Higgs mass for a considerably large mN , but there are some caveats
considering the size of this soft mass. It is clear that for very small mN � µN , the extra
contribution to the Higgs mass in equation (2.25) decouples. However, the singlet soft mass
mN contributes to the Higgs soft masses m2

Hu,d
at one–loop level, e.g. in the RG equation

for m2
Hu

[36],

µRen
d

dµRen
m2
Hu = 3

8π2 y
2
t

(
m2
Q̃3

+m2
t̃R

+m2
N

)
+ . . . , (2.26)

which depends on m2
N , hence, requiring it to be of similar size as the Higgs mass.

Raising the Higgs mass to acceptable values with a large m2
N in equation (2.25), also

increases m2
Hu

through equation (2.26), and we need substantially large fine–tuning in order
to make equation (2.20) experimentally viable again, thus, spoiling naturalness.
The conventional NMSSM comes with a discrete Z3 symmetry in order to forbid an

unsuppressed linear term N in the superpotential. Under this symmetry all fields have
charge 1, which allows N HuHd and a term N3 in W (N), which can also be used in order
to raise the Higgs mass to an acceptable value [48]. However, this symmetry suffers from a
domain wall problem [49,50] and also does not allow the Weinberg operator. This makes this
symmetry, and hence the NMSSM, even more undesirable and we might want to consider a
more general extension of the MSSM.
A more general singlet extension of the MSSM with one singlet field N is the so–called

generalized NMSSM (GNMSSM) [48,51] with the superpotential

W = ξ N + 1
2 µN N

2 + 1
3 κN

3 + WMSSM , (2.27)

where ξ, µN and κ are order one parameters with mass dimension 2, 1 and 0, respectively.
This model needs to suppress the first two parameters such that their sizes are m2

3/2 and
m3/2, respectively, in order to be phenomenologically viable. Then, it does not suffer as much
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Chapter 2 Supersymmetric models

from the fine–tuning problems of the NMSSM [51,52]. However, we do not discuss this here
in further detail since we cannot use the GNMSSM later in chapter 7 for model building
reasons, and we switch in the next section to an alternative modification of the original
NMSSM proposal, which solves the fine–tuning problem of the (N)MSSM and is compatible
with our method in chapter 7.

2.2.3 The Dirac NMSSM
Since the NMSSM does not solve the fine–tuning problem of the MSSM completely, the
authors of [36] have modified the NMSSM proposal by adding an additional singlet N to the
NMSSM setting. Then, they introduce additional U(1) symmetries in such a way that N
and N only receive a Dirac mass M . The superpotential of the theory is given by

W = λN HuHd +M N N + µHuHd + WYukawas , (2.28)

and the U(1)PQ ×U(1)N Peccei–Quinn–like symmetries are summarized in table 2.2.

Hu Hd N N µ M

U(1)PQ 1 1 -2 -2 -2 4

U(1)N 0 0 0 1 0 -1

Table 2.2: Extra U(1)PQ ×U(1)N Peccei–Quinn–like symmetries of the Dirac NMSSM.

We can see that the U(1)N symmetry effectively couples N to the dimensionful parameter
M , therefore, forbidding a coupling to the Higgs bilinear HuHd. Also, these symmetries
forbid other unwanted terms, for example, large tadpoles for the singlets. However, there is
no reason for these symmetries to be present at first, especially since the massive parameters
µ and M are charged under them and break them explicitly. We address this issue again
later in chapter 7.
Compared to the NMSSM there is one new term in the scalar potential after SUSY

breaking,

Vsoft ⊃ m2
N |N |2 +m2

N
|N |2 . (2.29)

The soft mass m2
N

contributes to the new Higgs quartic coupling |λHuHd|2 and the SM–like
Higgs mass is increased by [36]

∆m2
h ⊃ λ2 v2 sin2(2β)

(
m2
N

M2 +m2
N

)
. (2.30)

This term looks very similar to equation (2.25), hence, we might worry about fine–tuning.
However, since N only couples through a dimensionful parameter, i.e. M , to all of the
NMSSM setting, its soft mass does not contribute to the RGEs for m2

Hu,Hd
[36]. In fact

the RGE for the up–type Higgs at one–loop level is given by equation (2.26), i.e. only m2
N

contributes [36]. This allows for a large m2
N

without any fine–tuning and since equation (2.30)
does not vanish for mN �M , we can raise the Higgs mass to phenomenologically viable size.
The authors of [36] also include a study of the fine–tuning for the Dirac NMSSM. There,

they fix the Higgs mass to (125± 1) GeV and then compute the fine–tuning in dependence
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of the Dirac mass M and the soft mass mN .9 As a result, they find a large parameter region
for the Dirac NMSSM with acceptable fine–tuning: it is given by 700GeV .M . 5 TeV and
mN & 2 TeV. The least fine–tuned region can be found for M ∼ 2 TeV and mN & 10 TeV,
and their benchmark model has µeff := µ+ λ 〈N〉 = 150 GeV, M = 1 TeV and mN = 10 TeV.
They also require mN . 1TeV in order to avoid the fine–tuning problem of the NMSSM. We
show later in chapter 7 how we can realize such a scenario naturally in some flavor models,
while incorporating additional nice features [33].

2.3 The superpotential to all orders
Having introduced the basic concept of SUSY in the previous sections, we see that the
superpotential plays an important role in any theory. Therefore, it seems natural to try
to determine the full superpotential for a given theory. This entails finding all possible
holomorphic gauge invariant terms, so–called monomials, and also ensuring that they have
the correct R charge, if any field is charged under an R symmetry.

Let us for the moment start without an R symmetry present; we discuss monomials for R
symmetries later in section 2.3.3. For a given theory with gauge group G we assume that
there is a finite set of holomorphic gauge invariant monomials, which we call basis monomials,
and that we can combine these basis monomials in order to construct the full superpotential.
In this way a superpotential term, i.e. any gauge invariant monomial M , can be written as

M =
H∏
i=1

M ηi
i with ηi ∈ N0 , (2.31)

where Mi are the basis monomials and H the finite number of basis monomials. Now all we
need to do is to find all basis monomials Mi and we can determine the superpotential to all
orders.
Unfortunately, even constructing all basis monomials for the MSSM is rather compli-

cated [53]. However, in [37] it was found that for a particular set of gauge symmetries,
U(1) symmetries in [37], we can determine the so–called Hilbert basis in order to determine
all holomorphic gauge invariant monomials. In this procedure, the Hilbert basis method,
each Hilbert basis vector corresponds to a holomorphic gauge invariant monomial and by
determining the full Hilbert basis we also find the full basis of the monomials. In the following
sections we review how this procedure works for several gauge groups and then we turn to
the case of R symmetries [39].

Note that holomorphic gauge invariant monomials are in one–to–one correspondence with
D–flat directions [54], and, therefore, determining the Hilbert basis for a theory does not
only allow us to compute the superpotential to all orders, but we also automatically find all
D–flat directions in the given theory.

2.3.1 Hilbert basis for continuous non–R symmetries
In [37] it has been shown how to compute the Hilbert basis in the case of U(1) symmetries.
Let us start with one U(1) symmetry and F fields φi, then a monomial

M =
F∏
i=1

(φi)ni with ni ∈ N0 , (2.32)

9For a more detailed discussion of the considered fine–tuning measure, cf. [36].
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is gauge invariant if
F∑
i=1

ni qi = 0 , (2.33)

where qi are the U(1) charges of the respective fields. Since we want to find holomorphic
gauge invariant monomials we need the powers ni to be integers and ni ≥ 0. Writing the
powers and the charges into vectors this can be understood as the scalar product of two
vectors, i.e. qT · n = 0 where qT = (q1, . . . , qF ) and n = (n1, . . . , nF )T .

This can be generalized to L U(1) symmetries and possible solutions are then found by
solving

F∑
i=1

ni q
(j)
i = 0 ∀j ∈ {1, . . . , L} , (2.34)

which is the same as substituting the charge vector q with a charge matrix Q and solving

Q · n = 0 where Q ∈ ZL×F and n ∈ NF
0 . (2.35)

It was pointed out in [37] that this problem is well–known in mathematics [55–57] and that
these so–called homogeneous linear Diophantine equations can be solved with the help of
computer algorithms [58,59].
The solutions are given by the Hilbert basis H , which a is a minimal set of vectors,

H = {h(1), . . . , h(H)} , (2.36)

where h(i) are the Hilbert basis vectors. Note that H is the finite length of the basis which
cannot be predicted but has to be determined within the algorithm. With this basis at hand,
we can write every solution n of equation (2.35) as

n =
H∑
i=1

ηi h
(i) with ηi ∈ N0 . (2.37)

Here, every solution n corresponds to a holomorphic gauge invariant monomial and every
basis vector h(i) corresponds to a basis monomial Mi from equation (2.31).
In [38,39] we pointed out that we can also find holomorphic gauge invariant monomials

for SU(N) gauge theories by assigning each field U(1) charges according to the Cartan
subalgebras of the gauge group. In the case of a SU(N) gauge group, which has rank N − 1,
we can assign N − 1 U(1) charges given by the diagonal generators of the SU(N). We
can then again construct a charge matrix Q and solve equation (2.35). The caveat of this
procedure is that we have to “translate” the solutions and that we also find redundant or
vanishing ones which we have to remove from the set. A review of this process can be found
in [38,39] or has been automated in an associated Mathematica package [60].

2.3.2 Hilbert basis for discrete non–R symmetries
For discrete Abelian ZM symmetries we can use a similar method [39]. The invariance of a
monomial under a ZM is given when

F∑
i=1

ni pi = 0 mod M , (2.38)
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where pi are the discrete charges of the fields. This is easily translated in a vector equation
if we introduce a dummy field with charge −M and write

(−M,p1, . . . , pF ) ·


m
n1
...
nF

 = 0 with m ∈ N0 . (2.39)

We can again compute the Hilbert basis for this equation; however, we have to truncate the
found basis vectors and discard the first entry because it only represents the dummy field
and not any physical field.

It is obvious that this can be extended to several, e.g.K, discrete symmetries by introducing
K dummy fields. We construct a charge matrix, solve for the Hilbert basis, and truncate
the found solutions of the first K elements. The truncated Hilbert basis vectors then again
represent basis monomials of equation (2.31).

2.3.3 Hilbert basis for Abelian R symmetries
Let us consider the situation for Abelian R symmetries [39]. At first, the situation seems to
be very similar, as a monomial is invariant under a ZRN symmetry if it fulfills a condition
like in equation (2.38). The only difference is that the monomial has to have the charge of
the superpotential instead of zero, i.e. for a ZRN symmetry where the superpotential has R
charge 2 we get

F∑
i=1

ni ri = 2 mod M , (2.40)

where the ri are the R charges of the fields.10 We can translate this into a vector equation
by introducing another dummy field, so we get

(−2,−N, r1, . . . , rF ) ·


`
m
n1
...
nF

 = 0 with ` ∈ {0, 1} . (2.41)

Obviously, for ` = 1 this is equivalent to equation (2.40). Solutions with ` = 0 describe
monomials with R charge 0 and we can always multiply such a term to a monomial with R
charge 2 and still have a valid superpotential term. Therefore, we split the found solutions
into two parts: so–called inhomogeneous solutions ninhom, which have ` = 1 and describe
possible superpotential terms, as well as homogeneous monomials nhom with ` = 0, which
describe monomials with vanishing R charge. In this way we can describe a general solution
n to equation (2.41) as

n = n
(i)
inhom +

H0∑
h=1

ηh n
(h)
hom with ηh ∈ N0 , (2.42)

10In general the superpotential has R charge 2 qθ and we simply chose qθ = 1 as an example.
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where n(i)
inhom is any of the inhomogeneous solutions and H0 is the number of homogeneous

solutions. As we can see, every inhomogeneous solution on its own is equivalent to a
superpotential term, unlike the homogeneous terms, which always need an inhomogeneous
one in order to be permitted, and of course all of these have to be truncated just like
in section 2.3.2.

Note that it is also possible to determine the Hilbert basis for U(1)R symmetries by simply
searching for solutions that fulfill

F∑
i=1

ni ri = 2 , (2.43)

i.e. only introducing one dummy field for the superpotential charge.
Similar to all previous cases we can generalize this procedure to several R symmetries, like

in section 2.3.2 we need to add a dummy field for every symmetry and one overall dummy
field for the superpotential charge.

2.3.4 Usage of the Mathematica package
It is possible to compute the Hilbert basis for a gauge group consisting of several U(1), SU(N),
ZN , ZRN and U(1)R symmetries. We just need to combine all previous procedures and build
one large charge matrix with several dummy fields and then truncate the found basis vectors
accordingly. For the case of U(1) and SU(N) symmetries this has been automatized in a
Mathematica package [60] accompanying the publication of [38, 39]. As input parameters
the package uses the given fields, the gauge groups involved and the representations of the
fields. Since the publication of [38, 39] our Mathematica package has been updated in order
to also be able to compute holomorphic gauge invariant monomials for discrete R and non–R
symmetries, as well as U(1)R symmetries.

Therefore, the package allows us to find holomorphic gauge invariant monomials, and thus
D–flat directions, for a given theory. Since it is capable of distinguishing between monomials
with zero R charge and monomials with the superpotential charge, we can also use it in order
to determine the Kähler potential for a theory by introducing conjugate fields with opposite
charge and then determining all homogeneous monomials, i.e. possible Kähler potential terms
due to their zero R charge.
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Chapter 3

Neutrino mixing and masses

We review the experimentally well–known fact that neutrinos are massive particles and, thus,
they oscillate. We introduce the standard parametrization of neutrino mixing and review
the oscillation process. We also present the current experimental results, in particular, of
the mixing angles. Finally, we end the chapter by briefly discussing the possible origin and
nature of neutrino masses with a slight focus on the see–saw mechanism.

3.1 Neutrinos have mass and oscillate
The disappearance of solar neutrinos was a long–standing problem in particle physics [61–63],
which was solved by the introduction of neutrino masses. Today, due to a large number of
experiments [9–19], the existence of neutrino masses is well–established. These experiments
also revealed that neutrinos have at least three generations and that their masses are all
very small, i.e. the heaviest neutrino is lighter than a few eV. Note that for the rest of this
thesis we assume that we have three neutrino generations.
Massive neutrinos imply that their flavor eigenstates do not have to be their mass eigen-

states; therefore, we cannot diagonalize the neutrino mass matrix and the charged lepton
Yukawa matrix simultaneously. For Majorana neutrinos, which we discuss below in section 3.3,

V T
ν,Lmν Vν,L = diag(m1,m2,m3) , (3.1)

V †e,Rme Ve,L = diag(me,mµ,mτ ) , (3.2)

the matrices Vν,L and Ve,L are not equal to each other. The Pontecorvo–Maki–Nakagawa–
Sakata (PMNS) matrix UPMNS describes the mismatch between both transformations, which
is also present for Dirac neutrinos, and is defined as

UPMNS := V †e,L Vν,L . (3.3)

Neutrinos oscillate [64–66] since UPMNS is not equal to the identity matrix, and the relationship
between flavor eigenstates νe,µ,τ and mass eigenstates ν1,2,3 is given by νe

νµ
ντ

 = UPMNS

 ν1
ν2
ν3

 =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3


 ν1
ν2
ν3

 . (3.4)

3.1.1 Standard parametrization of neutrino oscillations
The mixing matrix UPMNS describes the details of neutrino oscillations and is parametrized
by three mixing angles and several phases. We can decompose the PMNS matrix into three
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matrices

UPMNS = diag (eiδe , eiδµ , eiδτ ) · V (θ12, θ13, θ23, δ) · diag (e−iα1/2, eiα2/2, 1) , (3.5)

the first matrix carries the unphysical fermionic phases δe,µ,τ and the third matrix contains
the Majorana phases α1,2. The Majorana phases are only present if neutrinos are Majorana
particles, a possibility we discuss below in section 3.3, and these phases influence the rate of
potential neutrinoless double–β decay [67,68].

The matrix V in equation (3.5) is the lepton sector equivalent of the Cabibbo–Kobayashi–
Maskawa (CKM) matrix [69,70] and it is given by

V :=

 1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13 e

−iδCP

0 1 0
−s13 e

iδCP 0 c13


 c12 s12 0
−s12 c12 0

0 0 1


=

 c12 c13 s12 c13 s13 e−iδCP

−s12 c23 − c12 s23 s13 eiδCP c12 c23 − s12 s23 s13 eiδCP s23 c13
s12 s23 − c12 c23 s13 eiδCP −c12 s23 − s12 c23 s13 eiδCP c23 c13

 , (3.6)

where δCP is the CP violating phase. Here, sij stands for sin θij and cij denotes cos θij ,
where the θij are the mixing angles between the different generations and a measure of the
probability for two generations to mix, i.e. for θij = 0 there is no mixing between the two
generations. Conventionally, θ12 is called the solar, θ23 the atmospheric and θ13 the reactor
neutrino mixing angle. These angles fulfill 0 ≤ θ12 ≤ π/4 and 0 ≤ θ13 , θ23 ≤ π/2 [71].

3.1.2 Neutrino oscillations
Since neutrinos have non–zero masses there is a non–vanishing probability that if we see a
neutrino ν` of flavor ` = e, µ, τ at a point x = 0, we might find a neutrino of flavor `′ at
distance x = L. Experiments use this in order to detect neutrino oscillations, cf. section 3.2,
and by varying the so–called baseline L these experiments become sensitive to a particular
oscillation process.

With help of the just introduced standard parametrization we can analytically determine
the probability for a neutrino of flavor ` to oscillate into flavor `′, which we denote with
P (ν` → ν`′). We usually assume that a neutrino ν` is a superposition of the massive neutrino
eigenstates νj and according to equation (3.4) this can be written as

|ν`〉 =
∑

j=1,2,3
U`,j |νj〉 , (3.7)

where U = UPMNS. Using a plane wave ansatz for the mass eigenstates and the ultrarelativistic
limit we can now express the probability P (ν` → ν`′) in dependence on the baseline L and
the initial energy of the neutrino E. The general form is given by [71]

P (ν` → ν`′) = |〈ν`′ |ν`〉|2 = δ``′ − 4
∑
j>k

Re
(
U∗`j U`′j U`k U

∗
`′k

)
sin2

(
∆m2

jk

4E L

)

+ 2
∑
j>k

Im
(
U∗`j U`′j U`k U

∗
`′k

)
sin
(

∆m2
jk

2E L

)
. (3.8)
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We can see that the result depends on the squared mass differences ∆m2
jk = m2

j −m2
k and

that the dependency on the angles is given by the different contributions of the mixing
matrix U . As we see from equation (3.8), at least two neutrinos νj need to have different
masses for neutrino oscillations to occur.

Depending on the situation, this formula simplifies and the main contribution comes from
a particular mixing angle θij , i.e. varying the baseline L and the initial energy E allows us
to probe for different neutrino oscillations. This is being done in many experiments and we
are going to discuss several results in the following section.

3.2 Current experimental data
In section 3.1.1 we introduced the standard parametrization for neutrino oscillations, most
importantly the three mixing angles θij . In the last decades many experiments have measured
these angles with great accuracy [9–19]. Most recently, the discovery of a non–zero θ13 was
a great success for experiments [20–25] and a challenge for theoretical models, since many
models predict a small or vanishing θ13. In fact, several popular models predict the so–called
tri–bi–maximal mixing pattern, which we discuss in section 5.3.1. Table 3.1 summarizes the
current best fit values for the mixing angles, based on two global analyses [72,73]. Note that
the authors of [72] find two disconnected best fit values for θ23, one of them in agreement
with [73]. How to resolve this issue is an ongoing debate.

θ12 θ13 θ23

Team I [72] (±1σ):
(
33.36+0.81

−0.78

)◦ (
8.66+0.46

−0.46

)◦ (
40.0+2.1

−1.5

)◦
⊕
(
50.4+1.3

−1.3

)◦
sin2×101 (±1σ) 3.02+0.13

−0.12 0.227+0.023
−0.024 4.13+0.37

−0.25 ⊕ 5.94+0.21
−0.22

Team II [73] (±1σ):
(
33.6+1.1

−1.0

)◦ (
8.93+0.46

−0.48

)◦ (
38.4+1.4

−1.2

)◦
sin2×101 (±1σ) 3.07+0.18

−0.16 0.241+0.025
−0.025 3.89+0.24

−0.20

Table 3.1: Current best fit values from Gonzalez et al. [72] (Team I) and from Fogli et al. [73]
(Team II) for the mixing angles.

The absolute scale of neutrino masses is experimentally very hard to determine [74] and
the current model–independent upper bound is given for the total mass of all neutrino
generations. It is determined through cosmological constraints [75] to be

mtot =
∑

mν < 0.23 eV . (3.9)

It is also unknown if the neutrino masses are hierarchical and, if so, what kind of hierarchy
they have. The different spectra are

degenerate: m1 ∼ m2 ∼ m3 , (3.10a)
normal hierarchy: m1 < m2 � m3 , (3.10b)
inverted hierarchy: m3 � m1 < m2 . (3.10c)
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Chapter 3 Neutrino mixing and masses

The lower bound for the neutrino masses is dependent on the assumed neutrino mass
hierarchy, for normal hierarchy the lower bound is mtot > 0.06 eV, and for inverse hierarchy
mtot > 0.1 eV [72].
On the other hand, the mass differences between the three generations ∆mij are experi-

mentally accessible [76,77] and their best fit value can be found together with the best fit
value for the CP violating phase δCP in table 3.2. Note that for these quantities it is also
important to distinguish between the cases of normal and inverted hierarchy.

δCP (N)⊕ (I) ∆m2
21 [10−5 eV2] ∆m2

31 (N)⊕∆m2
32 (I) [10−3 eV2]

Team I [72] (±1σ):
(
300+66
−138

)◦
7.50+0.18

−0.19 2.473+0.070
−0.067 ⊕−2.427+0.042

−0.065

Team II [73] (±1σ):
(
194+51
−55

)◦
⊕
(
196+69
−46

)◦
7.54+0.26

−0.22 2.43+0.06
−0.10 ⊕−2.42+0.11

−0.07

Table 3.2: Current best fit values from Gonzalez et al. [72] (Team I) and from Fogli et al. [73]
(Team II) for δCP as well as the mass differences for normal (N) and inverted (I)
hierarchy.

Comparing the values of table 3.1 and table 3.2 to what we know from mixing in the quark
sector [69–71], we can see that neutrino mixing is different, i.e. the mixing angles are large,
and we discuss this in more detail in chapter 5 when we come to the flavor problem.

3.3 Origin and nature of neutrino masses

The origin and nature of neutrino masses remains an unsolved problem in the SM, since
it predicts massless neutrinos. Therefore, an extension of the SM is necessary in order to
explain neutrino masses. This can be done by either including new, higher–dimensional
operators or by adding additional particles to the model, and we discuss examples of both
ideas in the following.

There is still uncertainty regarding whether neutrinos are Dirac or Majorana mass particles,
where the latter means that they are their own anti-particles. Unfortunately, experiments
have trouble distinguishing between these two cases. One way to resolve this question is by
searching for neutrinoless double–β decays, which are mediated by exchanging light Majorana
neutrinos; however, the searches were so far unsuccessful [78,79].
One proposal to extend the (MS)SM, in order to accommodate massive neutrinos, is the

introduction of the so–called Weinberg operator LHu LHu, a higher–dimensional operator
describing neutrinos as Majorana particles. Obviously, we would need to explain the origin
of such a dimension–five operator as well as deal with the fact that this operator violates
lepton number conservation.

Another extension of the (MS)SM to account for neutrino masses is to include additional
gauge singlets, the right–handed neutrinos νi, in the particle spectrum. The neutrinos would
be Dirac particles and their Yukawa coupling, for the MSSM, would be given by

W ⊃ Yν LHu ν . (3.11)

This is a particularly nice and simple proposal, but unfortunately it is also problematic since
the Yukawa coupling seems to be quite unnatural. We know that the size of the neutrino
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masses has to be in the eV or sub– eV, range but the Higgs VEV vu is of the order of
100GeV, and so the couplings in the neutrino Yukawa matrices would have to be very small,

Y ij
ν ∼

mν

vu
∼ 10−11 . (3.12)

Therefore, this simple extension cannot be a viable option unless we can explain the size
of this unnaturally small number.1 Also, with this approach the neutrino hierarchies and
mixing would be expected to be similar to the quark sector, which as we know is not the
case.
However, so far, we have ignored that the Majorana mass term for the right–handed

neutrinos is also an allowed operator when we introduce right–handed neutrinos. This leads
us to another proposal explaining neutrino masses, the famous see–saw mechanism [26–29].2
In this scenario, we have the neutrino Yukawa coupling and the Majorana mass term,

W ⊃ Yν LHu ν +MR ν ν , (3.13)

where we suppress flavor indices. Here, MR is the Majorana mass of the right–handed
neutrinos and the entries in Yν are O(1), therefore, in contrast to equation (3.12).

In order to explain the see–saw mechanism, let us for a moment assume that we only have
one left– and one right–handed neutrino, ν and ν, respectively. We can then rewrite the
superpotential terms in order to include the full neutrino mass matrixM,

W ⊃ ΨT
ν MΨν with Ψν =

(
ν
ν

)
, (3.14)

with

M =
(

0 mD

mD MR

)
, (3.15)

where mD is the Dirac neutrino mass proportional to Yν . We can compute the eigenvalues
of the matrixM, and if we assume the Majorana mass for the right–handed neutrinos to be
very heavy, i.e. MR � mD, we get the two eigenvalues m1,2 to be

m1 ∼
m2
D

MR
and m2 ∼MR . (3.16)

We can see that by increasing MR, pushing the right–handed neutrino out of the observable
spectrum, we decrease the other mass eigenvalue.
In reality we know that we have three left–handed neutrinos and if we assume to have

three right–handed neutrinos, we get forM a 6× 6 matrix,

M =

 0 mD

mD MR

 , (3.17)

1In section 4.2 we provide a set of symmetries justifying such a scenario by relating the Yukawa coupling to
SUSY breaking.

2We focus here on the type I see–saw mechanism.
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and each entry here is now a 3× 3 matrix. The situation does not change compared to the
one just discussed above, we end up with three light and three heavy eigenvalues with masses
similar to equation (3.16). The effective light neutrino mass matrix Mν can be computed via
the see–saw formula

Mν ∼ mDM
−1
R mT

D . (3.18)

Again, we see that we relate the smallness of the observed neutrino masses to very heavy
right–handed neutrinos. If we plug in the experimentally known values, we end up with a
see–saw scale Λν close to the GUT scale, which hints at a unification scenario.
The see–saw mechanism is a very good approach in order to explain the smallness of the

left–handed neutrino masses while simultaneously explaining the non–observance of right–
handed neutrinos due to their large mass. Furthermore, it is rather naturally implemented
in SUSY SO(10) GUT theories, since a gauge singlet, i.e. a right–handed neutrino, is part of
every 16 representation and the theory allows for the necessary Yukawa coupling and for a
heavy Majorana mass term for the right–handed neutrinos.
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Chapter 4

The µ term, R symmetries and neutrino
masses

In this chapter we present a solution the µ problem based on R symmetries and we show how
neutrino masses can be related to this. We explore several constraints for R symmetries that
allow for Dirac and Majorana neutrino masses and we end the chapter with a classification
of these symmetries.

4.1 Solving the µ problem
We saw in section 2.1 that the MSSM suffers from the so–called µ problem, i.e. the question
why the size of the µ term is of the order of the electroweak scale. In this section we present
a solution to this problem based on the Giudice–Masiero mechanism [80] and we also discuss
how we can forbid the µ term with the help of R symmetries.

4.1.1 The Giudice–Masiero mechanism
A solution to the µ problem is given by the Giudice–Masiero mechanism [80]. In this
mechanism the holomorphic Higgs bilinear mass term is created effectively in the Kähler
potential

K ⊃ kHuHd
X†

MP
HuHd + h.c. , (4.1)

where kHuHd is a coefficient, MP is the Planck scale and X is the SUSY breaking spurion
field with X = θ θ FX , cf. equation (2.19). The above Kähler potential gives rise to an
effective superpotential if FX acquires a VEV,

Weff ⊃ kHuHd
〈FX〉
MP

HuHd =: µeff HuHd . (4.2)

Therefore, the Giudice–Masiero mechanism successfully explains the existence of an (effective)
µ term, and for 〈FX〉 ∼ m3/2MP it is of the order of the gravitino mass, i.e. µeff ∼ m3/2.
There is a caveat to this idea. The solution proposed by Giudice–Masiero creates the µ

term effectively, hence, it has to be absent in the first place for the mechanism to actually
work. We want to forbid the µ term by a symmetry; however, the potential symmetries have
several constraints. First of all, there are arguments that in any model of quantum gravity
there are no global symmetries and that all symmetries are gauged, see e.g. [81] for discussion.
Secondly, since the MSSM allows for precision gauge unification, any additional symmetry
must not spoil unification and, therefore, should commute with SU(5). Finally, anomaly
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freedom is also a necessary constraint for any symmetry since otherwise quantum gravity
would introduce inconsistencies [82–85]. As we show in the following section, imposing the
last two constraints requires that the symmetry is an R symmetry [86,87] and since there
are no continuous R symmetries in the MSSM [88], we focus our following discussion and
classification on discrete, Abelian R symmetries of the order M , i.e. ZRM symmetries (cf. [41]
for non–Abelian R symmetries).

4.1.2 Only R symmetries can forbid the µ term

As stated above we focus our discussion on ZRM symmetries and we also impose anomaly
freedom as well as compatibility with SU(5) unification. Let us recall the ZRM anomaly
coefficients of the MSSM, where we assign SU(5)–universal ZRM charges, q5 for the 5 multiplet
(Df

, Lf ) and q10 for the 10 multiplet (Qf , Uf , Ef ), here f = 1, 2, 3 is the flavor index. With
these assignments at hand the anomaly coefficients are given by [30,87]

AR3 := ASU(3)C−SU(3)C−ZRM
= 1

2

3∑
f=1

(
3qf10 + qf5

)
− 3qθ , (4.3a)

AR2 := ASU(2)L−SU(2)L−ZRM
= 1

2

3∑
f=1

(
3qf10 + qf5

)
+ 1

2 (qHu + qHd)− 5qθ , (4.3b)

AR1 := AU(1)Y −U(1)Y −ZRM
= 1

2

3∑
f=1

(
3qf10 + qf5

)
+ 3

5

[1
2 (qHu + qHd)− 11qθ

]
. (4.3c)

Obviously, qθ is the superspace charge, which does not necessarily have to be scaled to
one [30].

Furthermore, we know that in order for the MSSM to unify at the GUT scale, we require
anomalies to be universal and to cancel via the Green–Schwarz (GS) mechanism [89]

AR3 = AR2 = AR1 = ρ mod η with η :=
{
M/2 , if M even ,
M , if M odd . (4.4)

Here, ρ is a constant which is proportional to the discrete shift of the GS axion. Hence, it is
an indicator if the GS mechanism is at work since for ρ = 0 there is no axion shift and the
symmetry is then anomaly–free without the use of the GS mechanism.
Another important constraint for the ZRM symmetries comes from the ’t Hooft anomaly

matching condition [6, 90], which is particularly interesting since we look at symmetries
which are compatible with SU(5) unification. At the GUT level there is only the anomaly
coefficient ASU(5)2−ZRM

; however, by looking at the SU(5) subgroups SU(3)C and SU(2)L we
can introduce the two anomaly coefficients ASU(5)

SU(3)2
C−Z

R
M

and ASU(5)
SU(2)2

L−Z
R
M

, which at the GUT
level fulfill the condition

A
SU(5)
SU(3)2

C−Z
R
M

= A
SU(5)
SU(2)2

L−Z
R
M

. (4.5)

The SU(5) anomaly coefficient and, therefore, the ones for SU(3)C and SU(2)L [30,87] are
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given by

ASU(5)2−ZRM
= Amatter

SU(5)2−ZRM
+Aextra

SU(5)2−ZRM
+ 5qθ , (4.6a)

A
SU(5)
SU(3)2

C−Z
R
M

= Amatter
SU(3)2

C−Z
R
M

+Aextra
SU(3)2

C−Z
R
M

+ 5qθ , (4.6b)

A
SU(5)
SU(2)2

L−Z
R
M

= Amatter
SU(2)2

L−Z
R
M

+Aextra
SU(2)2

L−Z
R
M

+ 5qθ , (4.6c)

where the last terms are the contributions from the gauginos, which for SU(3)C and SU(2)L
can be split into two parts

SU(3)C : 5qθ = q
SU(3)C
adj + q

SU(3)C
GUT = 3qθ + 1

2 · 2 · 2 · qθ , (4.7a)

SU(2)L : 5qθ = q
SU(2)L
adj + q

SU(2)L
GUT = 2qθ + 1

2 · 2 · 3 · qθ . (4.7b)

The first contributions are from the adjoint representations of the respective group, whereas
the last terms come from the extra gauginos of the GUT multiplets.
In order to retrieve the SM, we have to break the GUT symmetry while leaving the ZRM

symmetry intact. This will remove the GUT contributions qSU(N)
GUT from equations (4.7). After

GUT breaking we have two new anomaly coefficients

A
SU(5) broken
SU(3)2

C−Z
R
M

= A
SU(5)
SU(3)2

C−Z
R
M

− qSU(3)C
GUT = A

SU(5)
SU(3)2

C−Z
R
M

− 2qθ , (4.8a)

A
SU(5) broken
SU(2)2

L−Z
R
M

= A
SU(5)
SU(2)2

L−Z
R
M

− qSU(2)L
GUT = A

SU(5)
SU(2)2

L−Z
R
M

− 3qθ , (4.8b)

which should be equal in order for the anomaly coefficients to be universal, due to ’t Hooft
anomaly matching condition. Since we assume for the matter content to be equal, i.e.
Amatter

SU(3)2
C−Z

R
M

= Amatter
SU(2)2

L−Z
R
M
, we get for their differences

A
SU(5) broken
SU(3)2

C−Z
R
M

−ASU(5) broken
SU(2)2

L−Z
R
M

= A
SU(5)
SU(3)2

C−Z
R
M

−ASU(5)
SU(2)2

L−Z
R
M

+ qθ

= Aextra
SU(3)2

C−Z
R
M
−Aextra

SU(2)2
L−Z

R
M

+ qθ ,

!= 0 mod η (4.9)

which can only be true if there are contributions of split multiplets in Aextra
SU(N)2−ZRM

. Therefore,
as a direct consequence of ’t Hooft anomaly matching we have split multiplets after GUT
breaking, i.e. below the GUT scale.

Naturally, we now wonder where these split multiplets come from. Since SM matter fields
come in complete SU(5) representations, the Higgs multiplets are obvious candidates to
cancel the difference from equation (4.9), and using this gives us

Aextra
SU(2)2

L−Z
R
M
−Aextra

SU(3)2
C−Z

R
M

= qθ mod η

1
2 (qHu + qHd − 2qθ) = qθ mod η

qHu + qHd = 4qθ mod 2η
qHu + qHd = 2qW mod 2η . (4.10)
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We can now easily see that for an R symmetry µHuHd is not an allowed superpotential
term, since 2qW does not equal qW when qW 6= 0.1 Therefore, non–R symmetries, which
have qθ = qW = 0, cannot forbid the µ term.
Furthermore, we can constrain the order of our ZRM symmetry. The Giudice–Masiero

mechanism creates an effective µ term of the order of the electroweak scale; however, this
requires the term HuHd to be neutral under the R symmetry, i.e. qHu + qHd = 0. Using this
in equation (4.10), we get

2qW = 4qθ = 0 mod M , (4.11)

therefore, setting

qθ = M

4 , (4.12)

which means that the order M of our symmetry has to be divisible by 4.

4.2 The relation between R symmetries and neutrino masses
So far we have discussed how to solve the µ problem with the help of the Giudice–Masiero
mechanism and anomaly–free, SU(5)–compatible ZRM symmetries. In this section we want to
show that there is a set of symmetries with these properties, and the connection between
such symmetries and neutrino masses. The only additional constraint so far was that the
orderM is divisible by 4 and we now discuss what else we have to impose for either Majorana
or Dirac neutrinos.

4.2.1 Requirements for neutrino mass models
Before we distinguish between Dirac and Majorana neutrinos, we also demand that the
symmetries allow for the usual Yukawa couplings. This puts further restrictions on the
charges. First of all, in order for the up– and down–type Yukawa couplings to be allowed we
require

Yu : 2q10 + qHu = qW mod M , (4.13a)
Yd : q10 + q5 + qHd = qW mod M , (4.13b)

where equation (4.13b) is the same condition as for the charged lepton Yukawa Ye. Putting
those conditions together we get

3q10 + q5 + qHu + qHd = 2qW mod M . (4.14)

The Giudice–Masiero mechanism should be allowed, i.e. qHu + qHd = 0, and hence

3q10 + q5 = 2qW mod M 6= qW mod M . (4.15)

Since we know from equation (4.12) that 2qW = 4qθ = M , this sets the relation between q10
and q5 to

q5 = −3q10 mod M . (4.16)
1Obviously, this is only true for non–trivial R symmetries, i.e. M ≥ 3.
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Furthermore, equation (4.15) automatically forbids dangerous dimension–five operators
10 10 10 5. Dimension–four operators 10 5 5 are also immediately absent from the superpo-
tential since

q10 + 2q5 = −5q10 mod M , (4.17)

describes the R charge of such an operator, which is forbidden if −5q10 6= qW . Therefore,
we see that demanding for the usual Yukawa couplings to be present automatically forbids
problematic higher dimensional operators.
Now, if our ZRM symmetries meet all the above constraints, distinguishing between Dirac

and Majorana neutrinos mainly comes down to either allowing or forbidding the existence of
the Weinberg operator. However, for Dirac neutrinos we also have to think about the Dirac
neutrino Yukawa coupling, which we will do in the next section.

4.2.2 Dirac neutrinos
We now take a closer look at Dirac neutrinos. This means that the ZRM symmetries have to
forbid the existence of the Weinberg operator LHu LHu and we want the operator LHu ν
to be neutral under the ZRM , i.e.

qν = −qHu − qL mod M , (4.18)

where ν is the right–handed neutrino. We demand the latter in order to create an effective
neutrino mass term from the Kähler potential, analogously to the Giudice–Masiero mechanism.
This is easily achieved since there are no further constraints on ν and we can adjust its value
freely [91–93]. If LHu ν is neutral, we can have

K ⊃ kLHuν
X†

M2
P
LHu ν + h.c. (4.19)

in the Kähler potential, where kLHuν is a dimensionless coefficient. Recall from equation (4.1)
that X is the spurion field that breaks SUSY with 〈FX〉 ∼ m3/2MP and, therefore, we have
an effective Dirac neutrino Yukawa coupling

Weff ⊃ kLHuν
〈FX〉
M2

P
LHu ν ∼ kLHuν

m3/2
MP

LHu ν , (4.20)

which provides a direct connection between the size of the µ term, µ ∼ m3/2, and the
smallness of neutrino masses through their effective Yukawa coupling

Yν ∼
m3/2
MP

∼ µ

MP
. (4.21)

This condition leads to realistic neutrino masses if we assume m3/2 to be in the TeV range.
We have collected all conditions on our ZRM symmetries and we have established a link

between the size of the µ term and Dirac neutrino masses. We can look for symmetries
fulfilling all these conditions and our results, up to order M = 36, are summarized in
table 4.1. All these 15 symmetries are inequivalent, which has been checked by computing
their Hilbert basis from section 2.3, i.e. if two symmetries predict the same Hilbert basis,
they are equivalent.
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M q10 q5 qHu qHd qθ ρ qν

4 0 0 2 2 1 1 2
4 2 2 2 2 1 1 0
8 1 5 2 6 2 2 1
12 1 9 4 8 3 3 11
12 2 6 2 10 3 3 4
12 4 0 10 2 3 3 2
16 1 13 6 10 4 4 13
24 1 21 10 14 6 6 17
28 1 25 12 16 7 7 19
28 2 22 10 18 7 7 24
28 4 16 6 22 7 7 6
32 1 29 14 18 8 8 21
36 1 33 16 20 9 9 23
36 2 30 14 22 9 9 28
36 4 24 10 26 9 9 2

Table 4.1: Anomaly–free, SU(5)–compatible and discrete ZRM symmetries that forbid the µ
term and the Weinberg Operator while allowing the Giudice–Masiero mechanism
and small Dirac neutrino masses. We checked up to order M = 36.

Let us now discuss some explicit example models. We start with the ZR8 symmetry since
there is only one of this order. The Hilbert superpotential basis for this example is given by
its inhomogeneous monomials (with R charge 2qθ)

ν4 ;
(
LLE

)
ν ; LHdE ;

(
LLE

)4
;
(
LLE

)2
(LHu)2 ; (LHu)4 , (4.22)

while the homogeneous monomials (with zero R charge) are

ν8 ; LHu ν ; (LHu)8 ;
(
LLE

)5
ν ;

(
LLE

)4 (
LHdE

)
;

HuHd ;
(
LLE

)
ν5 ;

(
LHdE

)
ν4 ;

(
LLE

)2 (
LHdE

)
(LHu)2 ;(

LLE
)8

;
(
LHdE

)2
;
(
LLE

) (
LHdE

)
ν ;

(
LLE

)2
ν2 ;(

LLE
)3

(LHu) ;
(
LHdE

)
(LHu)4 ;

(
LLE

)
(LHu)3 . (4.23)

Here, we omitted all quark operators for brevity. Recall from section 2.1.5 that any su-
perpotential term has to have R charge 2qθ = qW , therefore, they either consist of an
inhomogeneous term or of an inhomogeneous term times one or several homogeneous terms.
Hence, this model forbids the µ term at the perturbative level while allowing for an effective
µ term and an effective Dirac neutrino Yukawa since LHu ν and HuHd are neutral. Further-
more, the model forbids the Weinberg operator but the usual Yukawa couplings are present,
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i.e. LHdE has the correct R charge.2 This model allows us to write down the following
terms in the Kähler potential,

K ⊃ X†
(
kHuHd
MP

HuHd + kLHuν
M2

P
LHu ν + kQQQL

M3
P

QQQL

)
+ h.c. . (4.24)

Assigning a VEV to the spurion field X, hence, breaking SUSY and the R symmetry, creates
an effective superpotential of the form

Weff ∼ m3/2HuHd +
m3/2
MP

LHu ν +
m3/2
M2

P
QQQL , (4.25)

where we find the desired effective µ term and Dirac neutrino Yukawa coupling of the right
order, cf. equation (4.21). We also see that an effective dimension–five operator QQQL has
been created, which is in agreement with equation (4.16) since 10 10 10 5 operators have zero
R charge. However, this term is heavily suppressed and, therefore, well within experimental
bounds for proton decay. Let us further note that assigning a VEV to the spurion breaks
the ZR8 symmetry down to a non–R Z4 symmetry, with the charge assignment(

q10 q5 qHu qHd qν
)

=
(

1 1 2 2 1
)
. (4.26)

This symmetry gets broken down further when the Higgs scalars attain their VEVs and we
end up with the familiar matter parity.
Other examples of the Hilbert basis for the ZR12 symmetries can be found in appendix A.

Now, we discuss some problems of the Dirac neutrino models with the help of the ZR4
examples.

4.2.3 Problems of models with Dirac neutrinos
Let us investigate two more examples from table 4.1, the two ZR4 symmetries. For the first
ZR4 , the inhomogeneous monomials are given by

ν ; LHu ; LHdE , (4.27)

and the homogeneous monomials contain ν2. Here, we again omit terms with quarks. The
basis for the second ZR4 is similar, its inhomogeneous monomials are

LHu ; LHdE , (4.28)

and this time the homogeneous monomials contain ν.
These configurations are somewhat troublesome since they violate matter parity, e.g. LHu.

Furthermore, both symmetries allow to create a non–perturbative right–handed neutrino
mass term, i.e. ν2, which would be of the size of the µ term.3 However, we can easily
solve these problems by imposing the Z4 from equation (4.26) on both models. After this
additional symmetry is imposed, both ZR4 × Z4 symmetries have the same Hilbert basis, i.e.
they are equivalent. For this configuration the inhomogeneous monomials are given by

LHd E ;
(
LLE

)
ν ;

(
LLE

)
(LHu)3 ;

(
LLE

)3
(LHu) , (4.29)

2As well as QU Hu and QDHd which are not displayed here.
3Which can be interesting if we want a see–saw model with masses around the TeV scale.
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and the homogeneous ones are

ν4 ; HuHd ; (LHu) ν ; (LHu)4 ;
(
LHdE

)
(LHu)

(
LLE

)3
;(

LHdE
)2

;
(
LLE

) (
LHdE

)
ν ;

(
LLE

)2
ν2 ;(

LLE
)2

(LHu)2 ;
(
LHdE

)
(LHu)3

(
LLE

)
;
(
LLE

)4
. (4.30)

This is a much more satisfactory setting since the matter parity violating terms are again
forbidden while maintaining the desirable features.

Unfortunately, there is a more problematic feature of all our ZRM models. So far, we have
only considered superpotential terms that do not include quarks. However, if we take a look
at the second term in equation (4.22) and in equation (4.29), we see the operator LLE ν.
By itself, this operator is not alarming, but we should notice that in GUT language this is
a 5 5 10 operator contracted with ν and any other such operator is allowed, e.g. U DD ν.
Furthermore, this operator is always present, since we want LHu ν to have zero R charge,
cf. equation (4.18),

qν + qHu + q5 = 0 mod M , (4.31)

and putting this together with the conditions that we have in order to allow for down–type
Yukawa couplings, equation (4.13b),

q10 + q5 + qHd = qW mod M , (4.32)

we get

q10 + 2q5 + qHu + qHd + qν = qW mod M . (4.33)

Since the Giudice–Masiero mechanism requires that the Higgs bilinear is neutral under the
R symmetry, i.e. qHu + qHd = 0, we get

q10 + 2q5 + qν = qW mod M , (4.34)

therefore, U DD ν is always allowed. This operator causes problems, in particular, when we
look at the first two field generations since the superpotential term

W ⊃
kU DD ν

MP
U1D1D2 ν , (4.35)

mediates proton decay via gluino exchange. This means that the process p→ K+ + ν would
be observed; which has not been the case so far.

One way to potentially circumvent this problem is to assume that SUSY breaking follows
mirage mediation [94–96], where heavy squarks can naturally occur and suppress this process
sufficiently.
Another option is to change the setting in such a way that the discrete ZRM symmetries

originate from a pseudo–anomalous U(1)R symmetry. In this scenario we can still have
sufficiently small Dirac neutrino masses, but the potentially dangerous proton decay operator
U DD ν can be forbidden by the holomorphicity of the superpotential. We present such
symmetries later in section 5.2 and an explicit example in section 7.3.2.

Let us also note that there are other symmetries that forbid proton decay operators in the
context of Dirac neutrinos that do not suffer from this problem [97].
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4.2.4 Majorana neutrinos and a unique ZR4 symmetry
After addressing constraints for Dirac neutrinos in the previous section we now take a look at
ZRM symmetries allowing Majorana neutrinos. We require the conditions from section 4.2.1
to be fulfilled as well as the Weinberg operator to be present in the superpotential,

2q5 + 2qHu = 2qθ mod M . (4.36)

Recall that we have a condition from equation (4.13a) for the up–type Yukawa,

2q10 = 2qθ − qHu mod M

= 2q5 + qHu mod M , (4.37)

where the last line is due to equation (4.36). We also want the down–type Yukawa, equa-
tion (4.13b), to be allowed,

q10 = 2qθ − q5 − qHd mod M

= q5 + 2qHu − qHd mod M , (4.38)

where again the last line is due to equation (4.36). Putting these two conditions together we
get

3qHu − 2qHd = 0 mod M . (4.39)

We have qHu = −qHd since we require the Giudice–Masiero mechanism to be allowed, and we
end up with 5qHu = 0 mod M , implying that qHu = 0. Therefore, we get the charges to be

qHu = qHd = 0 mod M , (4.40a)
q10 = q5 = qθ mod M . (4.40b)

This follows directly from equation (4.37) and equation (4.38).
Given the charge relations from equation (4.40b) we see that this symmetry commutes

with SO(10) and we could define the charge of the 16 multiplet to be q16 = q10 = q5. As we
know from the end of section 4.1.2, the order M of our ZRM symmetry has to be divisible
by four, so the first possible symmetry admitting Majorana neutrinos is a ZR4 symmetry,
previously discussed in [40,98], and the matter charges can be found in table 4.2.

Hu Hd 10 5 θ

ZR4 0 0 1 1 1

Table 4.2: ZR4 charges for the MSSM fields in SU(5) notation. The superpotential has R
charge 2 since the superspace coordinate θ has charge 1.

It has been shown [40] that this symmetry is the only one fulfilling the conditions from sec-
tion 4.2.1, i.e. being anomaly–free, µ term and proton decay forbidding, while being consistent
with SO(10) unification, and that any other symmetry with M 6= 4 is just a trivial extension
of this ZR4 symmetry [87]. Note that this claim is independent of the choice of qθ [30].
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In the previous two sections we showed that there is a class of anomaly–free, SU(5)–
compatible, Abelian ZRM symmetries, which connect the size of the µ term directly to the
smallness of Dirac neutrino masses. However, in this section we showed that for the case
of Majorana neutrinos, there is a unique symmetry with all the desirable features, and
which even commutes with SO(10). In the following chapter we continue by taking a closer
look at models which describe Dirac and Majorana neutrinos and how we might make
phenomenological predictions, especially for neutrino mixing, by introducing a so–called
flavor symmetry.
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Chapter 5

Flavor model building
In this chapter we discuss the general idea of flavor model building. We first remind the
reader of problems regarding flavor in the SM and the MSSM, e.g. the occurrence of flavor
changing neutral currents (FCNCs), and we introduce flavor symmetries, which help us deal
with this issue. We then examine models with spontaneously broken flavor symmetries. First,
we discuss models based on a U(1)R symmetry, which explains the fermion hierarchies in the
quark and charged lepton sector while also predicting a viable CKM matrix. Second, we
discuss non–Abelian flavor symmetries, which in our examples deal with the important issue
of neutrino mixing; in particular, we discuss models that predict a tri–bi–maximal (TBM)
neutrino mixing pattern.

5.1 The flavor problem and flavor symmetries
The standard model, as well as its supersymmetric extension, suffers from several problems
regarding flavor [42,99]. Foremost, the nature and origin of flavor is not understood, which
introduces a large amount of free parameters in our theory, e.g. a softly broken MSSM has
order 100 undetermined parameters [34, 42] and these are at first unrelated, cf. section 2.1.6.
Furthermore, several differences between the lepton and the quark sector seem to be rather
arbitrary. Taking a look at the absolute mass scales of quarks and charged leptons, e.g. of
the electron and the top quark, we see that the electron mass me = 511 keV is much smaller
than the top mass mt = 173GeV. The difference gets even more prominent when we consider
neutrino masses since we saw in section 3.1 that the sum of the neutrino masses is between
0.02 eV . mtot . 0.6 eV� mt. The smallness of neutrino masses can be either explained via
the see–saw mechanism, cf. section 3.3, or, for Dirac neutrinos, can be related to R symmetry
breaking effects and the size of the µ term, as we showed previously in section 4.2. The
question of why there is such a huge difference between lepton and quark masses is, however,
so far unresolved.
We know from experimental observation that neutrinos have mass and, therefore, they

mix. Currently, we even enter the precision measurement phase of the mixing angles, which
turn out to be rather large, cf. section 3.2,

9◦ . θνij . 38◦ , (5.1)

where θνij is a neutrino mixing angle. Comparing these to the quark mixing angles θqij , which
we get from the CKM matrix [69–71],

0.2◦ . θqij . 13.0◦ , (5.2)

we see that there is almost no mixing in the quark sector, whereas there is large mixing
for neutrinos. We can compare the structure of the mixing matrices, VCKM and UPMNS
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ẽR

µ e

γ

µ̃R

B̃

Figure 5.1: Contribution of (m̃2
RR)21 via bino exchange to µ→ e γ, where the mass insertion

is indicated by ×.

respectively, by displaying the approximate absolute values of their entries,

VCKM ∼

 ≈ 1 0.2 0.001
0.2 ≈ 1 0.01

0.001 0.01 ≈ 1

 , UPMNS ∼

 0.8 0.5 0.2
0.4 0.6 0.7
0.4 0.6 0.7

 , (5.3)

where we can see that the CKM matrix is basically the unit matrix plus small off–diagonal
corrections, whereas the PMNS matrix is far from this situation. The presented values of
the mixing angles and matrix entries are, at first glance, completely arbitrary and it is not
understood why either situation should by realized in Nature. In particular, there is no
apparent reason why the mixing in both sectors should be so fundamentally different.

In supersymmetry yet another issue arises due to our lack of understanding for flavor: the
possibility of FCNCs. General soft terms, as we have seen in section 2.1.6, are, in principle,
new sources of flavor changing neutral currents. Take, for example, a soft mass term for the
right–handed sleptons r̃,

Lsoft ⊃ −r̃† m̃2
RR r̃ , (5.4)

where there is no reason that m̃2
RR should be diagonal. However, an off–diagonal mass

term that mixes the different sleptons, e.g. (m̃2
RR)21 µ̃

∗
R ẽR, contributes to flavor–violating

processes. Here, the contribution would be to the decay µ→ e γ, see figure 5.1. Furthermore,
there are more terms in the soft breaking Lagrangian which promote flavor–violation, e.g.

Lsoft ⊃ −˜̀† m̃2
LL
˜̀− ˜̀ALR r̃ , (5.5)

which contribute to µ→ e γ via wino or bino loops if m̃2
LL or ALR are non–diagonal. The

process µ→ e γ, however, is unobserved and the experimental bounds are quite stringent,
i.e. Br(µ → e γ)exp < 2.4 × 10−12 from [71] or the more recent, and even more stringent
bound by the MEG collaboration Br(µ→ e γ)exp < 5.7× 10−13 [100]. This means that the
off–diagonal elements of the soft mass matrices have to be sufficiently small or even absent,
but unfortunately, there is no intrinsic reason why this should be the case.
So far, we have addressed many problems regarding flavor. Several of these can be

(partially) solved by introducing so–called flavor symmetries, which we discuss in the next
section.

5.1.1 Flavor symmetries
Introducing flavor symmetries in the SM or MSSM may help us deal with several of the
above mentioned problems and also constrain the large amount of undetermined parameters.
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These flavor symmetries may be thought of as the source of the observed patterns of fermion
mixing and masses. The canonical approach is to introduce a flavor symmetry GF at a
high scale Λ and then break the symmetry spontaneously by assigning VEVs to so–called
‘flavon’ fields, which are SM singlets in non–trivial representations of the flavor symmetry. In
this way we create inter–family relations by connecting the Yukawa couplings to each other,
therefore, significantly reducing the amount of free parameters in the theory. Note that an
additional GUT symmetry would further reduce the amount of free parameters by relating
quarks to leptons.
It is instructive to demonstrate the procedure with the help of a modified version of the

familiar Froggatt–Nielsen (FN) mechanism [101]. Let us assume we extend the MSSM with a
flavor symmetry U(1)F; therefore, our gauge group is given by [SU(3)× SU(2)×U(1)]SM ×
U(1)F. We also add some flavon Φ, which is a SM singlet but carries charge under U(1)F.
Furthermore, we assign U(1)F charges to the MSSM fields in such a way that the Yukawa
couplings are forbidden, i.e. the operators Ψf Ψg Ψh have a non–zero U(1)F charge, where
Ψf,g,h describe matter superfields with the flavor indices f, g, h. However, by assigning
appropriate charges to the different fields and picking the right power nfgh of the flavon
field, the term

W ⊃ yfgh
(Φ

Λ

)nfgh
Ψf Ψg Ψh , (5.6)

where yfgh is a dimensionless coupling and Λ the flavor scale, can be made to have vanishing
charge under U(1)F, therefore being a valid superpotential term. The flavor symmetry is
unbroken above the scale Λ, which we assume to be around the Planck scale MP. If we
now break the flavor symmetry by assigning a VEV to the flavon Φ, we create an effective
superpotential of the form

Weff ⊃ Y fgh Ψf Ψg Ψh (5.7)

with the Yukawa couplings given by

Y fgh := yfgh
(〈Φ〉

Λ

)nfgh
. (5.8)

This rather simple example illuminates several nice features of flavor symmetries. Usually,

ε := 〈Φ〉Λ , (5.9)

is called the expansion parameter and it is now related to symmetry breaking effects.
Assuming that ε < 1, usually one picks 0.1 . ε . 0.2, it becomes clear that we can create a
mass hierarchy between the different members of a family by choosing appropriate powers
nfgh, i.e.

nfgh = −
(RΨf +RΨg +RΨh)

RΦ
, (5.10)

and the appropriate charges of the matter superfields.1 This mechanism and variants of it
have been known for a long time, e.g. if there is only one flavon field, as shown so far, we
have the famous Froggatt–Nielsen mechanism [101].

1In a somewhat obvious notation RΨf is the U(1)F charge of the field Ψf and similar for other fields.
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Furthermore, we see that by choosing a more sophisticated setting of flavons we can try
to explain the flavor mixing pattern by the dynamics of the underlying symmetry, and,
for example, we can choose more than one flavon in order to split the flavor group after
symmetry breaking into different sectors. If we assume in addition a more sophisticated, e.g.
a non–Abelian discrete, flavor symmetry, these sectors might experience residual symmetries
after the breaking of the flavor symmetry and the predictions of such models can be inferred
from these sector symmetries,2 therefore being experimentally testable. The only requirement
is that we pick a large enough flavor group at the high scale, which we then break down to
subgroups in the different sectors via flavon VEV assignment. This can be especially rich in
structure if the flavons themselves are in non–trivial irreducible representations of the flavor
group because their VEVs might be non–trivially aligned. We demonstrate this mechanism
with the help of an A4 example in section 5.3 where we need three additional flavons in order
to create two sectors with different residual symmetries and a rich phenomenology.

In addition to the just discussed U(1)F symmetry, there is a variety of other possible flavor
groups and several models have been constructed. Some of these models are based on other
continuous symmetries like SU(2) or SU(3) and, more recently, many models with discrete
symmetries have emerged, most of them utilizing discrete non–Abelian symmetries like S3,
S4, A4, T′, ∆(27) and many more. For a review consult [102] and references therein. These
models lead to several different kinds of mixing patterns. Models with bi–maximal mixing
pattern [103, 104] and tri–bi–maximal mixing pattern [105, 106] have been favored in the
past when their results were within experimental limits. Also, models with non–Abelian R
symmetries have been recently discussed for the possibility of flavor model building [41].
In the following section we discuss FN models based on a U(1)R flavor symmetry and

afterwards we focus on models with an A4 or T′ flavor symmetry. Specifically, we examine
A4 which exhibits a tri–bi–maximal mixing pattern in the neutrino sector, i.e. predicting
a vanishing θ13. Given the measurement of a rather large θ13, TBM models are currently
becoming less popular; however, with the help of an A4 example, we want to show later
in chapter 6 that it might be too early to give up on certain flavor models.
Before we finish our discussion of flavor symmetries and continue with explicit flavor

models, we show why flavor symmetries help with dangerous FCNC inducing terms, which
we mentioned earlier in section 5.1. Consider the soft SUSY breaking operator

Lsoft ⊃ −˜̀† m̃2
LL
˜̀ , (5.11)

which originates from the Kähler potential term

K ⊃ − 1
Λ2

soft
kfgX†X L†f Lg , (5.12)

where Λsoft is the soft breaking scale, X is the SUSY breaking spurion and kfg is a matrix
in flavor space, which does not have to be diagonal. However, if we assume that L is in an
irreducible representation r of some flavor group GF we get constraints on kfg. Obviously,
kfg L†f Lg has to be invariant under a transformation of the flavor symmetry. Written with
matrices this means

L† k L = (Dr L)† k (Dr L) = L†
(
D†r kDr

)
L , (5.13)

2We call them sector symmetries since they do not have to be symmetries of the Lagrangian.
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where Dr is the representation matrix of r. Therefore, we require

D†r kDr
!= k , (5.14)

and by Schur’s lemma this can only be fulfilled if k ∝ 1, therefore, m̃2
LL is diagonal. We get

the same result for similar terms, e.g. m̃2
RR in

Lsoft ⊃ −r̃† m̃2
RR r̃ , (5.15)

can only have m̃2
RR ∝ 1 if the r̃i are in an irreducible representation of the flavor group.

Diagonal soft breaking terms imply non–existing mixing angles in family space which means
that different generation sleptons do not mix, therefore, removing FCNCs at leading order.
However, there is still mixing induced by the so–called A terms, e.g. ALR from

Lsoft ⊃ −˜̀ALR r̃ . (5.16)

We usually assume that the couplings ALR are of similar size as the corresponding Yukawa
matrices, i.e.

ALR = aLR Ye , (5.17)

where aLR is some O(1) coefficient. This only allows for the third families to have large
couplings, which is due to their very large mass within experimental limits. This is obviously
an assumption; however, it seems reasonable that there should not be a large deviation
between the Yukawa matrices and the corresponding A terms, hence we do not consider this
assumption to be unnatural. Flavor symmetries can, therefore, forbid dangerous FCNCs at
leading order.

5.1.2 Alternatives to flavor symmetries
Before we discuss explicit flavor models in the next section we review briefly some alternatives
to flavor symmetries. Consider again the problem of FCNCs in supersymmetry. General soft
breaking terms as we have seen them in section 2.1.6 allow for FCNCs since the soft mass
matrices, e.g. m̃2

RR or m̃2
LL from

Lsoft ⊃ −r̃† m̃2
RR r̃ − ˜̀† m̃2

LL
˜̀ , (5.18)

do not have to be diagonal in family space. However, a popular scheme is just to assume
SUSY breaking is “flavor universal” and that due to this universality such matrices are
diagonal. As above, this renders all mixing effects in the soft terms irrelevant besides the
ones coming from the so–called A terms, e.g. ALR, which again we assume to be of the same
order as the Yukawa couplings, i.e. the mixing is within experimental limits. These two
assumptions together are usually referred to as “soft supersymmetry–breaking universality”
and it is quite popular in gravity–mediated models such as minimal supergravity (MSUGRA)
and the constrained minimal supersymmetric models (CMSSM) [34]. Obviously, a sensible
UV complete theory would be required to explain these assumptions somehow.
Another possibility to circumvent the danger of FCNCs is to assume, or to explain,

that squark masses are so large that they suppress FCNCs sufficiently. This seems to be
contradictory to the original purpose of supersymmetry, i.e. explaining the hierarchy problem;
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however, since the LHC excludes more and more parameter space for small squark masses,
these models are becoming more attractive [107].

When we only consider the neutrino mixing sector, there is an interesting idea to explain
the mixing pattern called anarchy [108]. In this scheme the neutrino mixing pattern does
not follow a certain pattern or symmetry, but all the entries of the mixing matrix are of
similar size and randomly distributed. This idea works particularly well for large mixing
angles, as we have partially seen in the neutrino case. It has been recently argued [109] that
the idea of anarchy is still compatible with current experimental limits and that measuring
θ23 has, at this point, the most power to distinguish between anarchy or theoretical models.
However, anarchy models lack any predictivity and, therefore, we return to flavor models in
the next sections.

5.2 U(1)R Froggatt–Nielsen models with residual symmetries
So far the only explicit flavor model we have discussed were FN models [101] based on a
U(1) symmetry. However, in a recent paper [110] the possibility of having FN models with a
U(1)R symmetry was also discussed. There, the general idea is that these models have a
pseudo–anomalous (or “omalous” [111]) U(1)R symmetry, which explains the fermion mass
hierarchies while also exhibiting a residual symmetry, the ZR4 symmetry from section 4.2.4,
which forbids certain unwanted operators.

In this section we first discuss the originally proposed models, then we argue that the
found models, in particular the charge assignment of the fields, can be improved and present
more appealing examples. Before summarizing the features of such models we also briefly
discuss the neutrino mixing in the different sets of models.

5.2.1 U(1)R FN models

The authors of [110] proposed FN models with a U(1)R instead of a U(1) symmetry. This
situation is similar to the one in equation (5.6), i.e. an operator Y fgh Ψf Ψg Ψh is created in
the superpotential through assigning the flavon field Φ a VEV,

W ⊃
(Φ

Λ

)nfgh
Ψf Ψg Ψh , (5.19)

where we ignore this time undetermined O(1) coefficients. The key difference to the case
around equation (5.6) is that here the powers nfgh are given by

nfgh =
2Rθ − (RΨf +RΨg +RΨh)

RΦ
(5.20)

since we are considering an R symmetry. We see that the operators without the flavon fields
have R charge 2Rθ − nRΦ, with n ∈ N since the superpotential is holomorphic. When the
flavon now acquires a VEV we, like in the original FN case, generate the hierarchies due to
the different family charges and the symmetry breaking parameter is again given by ε := 〈Φ〉

Λ ,
the expansion parameter, and we usually set ε ∼ 0.2.
There is a huge amount of possible charge assignments and, subsequently, FN models.

The authors of [110], therefore, impose several constraints on the symmetries. First, the
symmetries should explain the fermion mass hierarchies and mixing patterns, as in the
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5.2 U(1)R Froggatt–Nielsen models with residual symmetries

original FN model [101]. Secondly, they should be anomaly–free with respect to the Green–
Schwarz mechanism [89]. Thirdly, the U(1)R symmetry is spontaneously broken when the
flavon acquires a VEV and the charge assignment should allow for a residual ZR4 symmetry
as in section 4.2.4. This, together with other considerations [110], already fixes the charge of
the superspace coordinate θ to Rθ = ±1

4 RΦ.
These constraints influence the charge assignment of the fields and the field charges are

summarized in equation (B.1) and equation (B.2) in appendix B.1. Note that the constraints
are parametrized by additional integers. The most important ones are: x ∈ {0, 1, 2, 3},
which determines the top to bottom mass ratio, y ∈ {−1, 0, 1}, which parametrizes the CKM
mixing matrix and z ∈ {0, 1}, which gives the ratio between the lepton masses. Using these
parameters the Yukawa matrices are schematically given by [112]

Yu ∼

 ε8 ε5+y ε3+y

ε7−y ε4 ε2

ε5−y ε2 1

 , Yd ∼ εx

 ε4 ε3+y ε3+y

ε3−y ε2 ε2

ε1−y 1 1

 ,

Ye ∼ εx

 ε4+z ε2−∆L
21 ε−∆L

31

ε4+z+∆L
21 ε2 ε−∆L

32

ε4+z+∆L
31 ε2+∆L

32 1

 , (5.21)

with ∆L
ij = RLi − RLj and where we ignore the undetermined O(1) coefficients. In our

convention the superpotential reads

W ⊃ (Yu)ij Qi U j Hu + (Yd)ij QiDj Hd + (Ye)ij LiEj Hd . (5.22)

After imposing those constraints one finds 3× 34 different models and their field charges
are normalized with respect to the flavon charge, which in [110] is given by RΦ = −1 and,
therefore, Rθ = ±1

4 . The authors categorize the models according to the value of the y
parameter, i.e. y = −1, 0, 1, and then number them from #1–12, where for each number
there is a sub–structure according to the value of x, e.g. model #1a has x = 0, cf. [110] for
more details.
As mentioned above, the models found are supposed to be anomaly–free through the

Green–Schwarz mechanism, and, therefore, the authors of [110] demand anomaly universality
for the SM gauge group, cf. equation (4.4) for the discrete case,

ASU(3)2
C−U(1)R = ASU(2)2

L−U(1)R = AU(1)2
Y−U(1)R = ρ , (5.23)

where ρ is a constant. They also impose that AU(1)2
R−U(1)Y

= 0, which is solved by setting

RHd = 1
3(14Rθ − 18− 3x− 2z) [3RL1(12− 16Rθ + 2x+ 3z) + 18

+ 2 ∆L
21(6− 8Rθ + x+ z) + 2 ∆L

31(3− 8Rθ + x+ z)− 156Rθ
+x(14Rθ − 36− 6x) + z(−2z − 5x− 12Rθ)− 18y + 104R2

θ

]
. (5.24)

Due to this anomaly constraint the 3 × 34 models almost always have highly fractional
charges, or very large integer values after normalization, cf. table 5.1.

However, in the next section we argue that this does not need to be the case since we can
solve the AU(1)2

R−U(1)Y
= 0 constraint without adjusting RHd .
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# RHd RHu RQ1 RQ2 RQ3 RU1
RU2

RU3
RD1

RD2
RD3

RL1 RL2 RL3 RE1
RE2

RE3

6b 253
130 −123

130
3199
780

2419
780

859
780

4169
780

1829
780

269
780 −427

780 −1207
780 −1207

780 −339
260 −339

260 −339
260

1523
260

743
260

223
260

6c 353
150 −203

150
3869
900

2969
900

1169
900

4999
900

2299
900

499
900 −137

900 −1037
900 −1037

900 −269
300 −269

300 −269
300

1813
300

913
300

313
300

Table 5.1: Examples with highly fractional U(1)R charges from [110] for z = 0, x = 1, 2 and
the CKM parameter y = 0.

5.2.2 Removing the AU(1)2
R−U(1)Y anomaly coefficient

The authors of [110] need to impose AU(1)2
R−U(1)Y

= 0 and, hence, they set RHd as in equa-
tion (5.24). However, we want to follow the discussion by Banks and Dine [85] and allow
for extra states, which are chiral w.r.t. U(1)R, to be present.3 We allow this since we do
not assume to posses a UV complete model. We choose the R charges of the extra states in
such a way that they decouple at a high scale, i.e. at U(1)R breaking, but still cancel the
AU(1)2

R−U(1)Y
anomaly while shifting the ASM2−U(1)R anomaly coefficients universally.

Let us introduce, for example, an extra pair of SU(2) doublets, Y = (1,2)1/2 and Y =
(1,2)−1/2 as well as an extra pair of SU(3)C triplets Z = (3,1)1/3 and Z =

(
3,1

)
−1/3 with R

charges RZ = RY = r and RZ = RY = −r − nRφ + 2Rθ with r ∈ Q and n ∈ N. Assigning
the charges in such a way allows for superpotential terms

W ⊃ Φn

Λn−1 Z Z + Φn

Λn−1 Y Y . (5.25)

This automatically sets n ≥ 0 due to the holomorphicity of the superpotential. In fact,
we need n 6= 0, otherwise the field pairs would not be chiral w.r.t. U(1)R and already be
massive before U(1)R breaking. After we break the U(1)R to its discrete subgroup ZRM we
get effective mass terms for both pairs.
Introducing such field pairs shifts the AU(1)2

R−U(1)Y
anomaly in a non–trivial way by

∆AU(1)2
R−U(1)Y

= 2
√

3
5
[
−(r −Rθ)2 + (−r − nRΦ +Rθ)2

]
= 2

√
3
5
[
(nRΦ)2 − 2nRΦ (Rθ − r)

]
. (5.26)

We can now, for given RΦ and Rθ, always choose this shift in such a way that it cancels the
AU(1)2

R−U(1)Y
anomaly coefficient. The SM anomaly coefficients all shift universally due to

presence of the extra field pairs, and in SU(5) normalization this is given by

∆ASU(3)2
C−U(1)R = ∆ASU(2)2

L−U(1)R = ∆AU(1)2
Y−U(1)R

= 1
2 [(r −Rθ) + (−r − nRΦ +Rθ)] = −nRΦ

2 . (5.27)

The shift in AU(1)2
R−U(1)Y

does not spoil the universality here.
In section 5.2.3 we show an example of the just presented procedure; however, we can

also just drop the AU(1)2
R−U(1)Y

= 0 constraint since it does not lead to new solutions, as

3The authors of [110] exclude this possibility since they want to write down a UV complete model from the
beginning.
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we can see when we perform a hypercharge shift. This means that it is always allowed to
simply shift the U(1)R charges of the fields by α qY, where α is a field–invariant constant
and qY the hypercharge of the field. If we consider the example #6b from table 5.1 we can
set RHu = 0 by choosing α = 123

65 . Then using this α for all fields in table 5.1, i.e.

Rnew = 12
(
Rmodel #6b + 123

65 qY

)
, (5.28)

we get the new field charges in table 5.2, where the factor 12 normalizes the charges to
integer value. Note that the charges are the same as if we simply drop the anomaly coefficient
AU(1)2

R−U(1)Y
all together and set RHu = 0 by hand.

5.2.3 Models with modified charges
As we have just seen, we can always fulfill the AU(1)2

R−U(1)Y
anomaly condition; therefore,

we can adjust the R charge of the Higgs fields,

RHd +RHu = −z + 8Rθ , (5.29)

through the hypercharge shift. We set RHu = 0, thus RHd = −z + 8Rθ, whereas the charge
relations of the other fields, cf. equation (B.1), remain unchanged. Putting all of this together
we can now again compute the charges for the models in [110] and we find more appealing
charges [33]. We also start with RΦ = −1 and Rθ = ±1

4 and then normalize the results
to integer value. The results can be found in appendix B.2. This leads to two different
possible flavon charges, either −4 or −12, i.e. after symmetry breaking we end up with a
ZR4 or ZR12, respectively, residual symmetry. The ZR4 symmetry is hereby the desired one
which we described in section 4.2.4. Furthermore, we can decompose the ZR12 symmetry into
a ZR4 × Z3 symmetry, where the ZR4 again is the desired one and the Z3 is the non–trivial
center of SU(3)C, ZSU(3)C

3 . Since this does not constrain any SM couplings and the symmetry
is non–anomalous we can ignore the ZSU(3)C

3 factors, hence, the Z3 symmetry from here on.
All of this can be illustrated with the help of example #6b from table 5.1. After dropping

the unnecessary anomaly constraint we recomputed the field charges in table 5.2 and the
charges simplify significantly. Furthermore, we see that we end up with a ZR12 symmetry

φ θ Hd Hu Q1 Q2 Q3 U1 U2 U3 D1 D2 D3 L1 L2 L3 E1 E2 E3

U(1)R -12 3 12 0 53 41 17 49 13 -11 1 -11 -11 -27 -27 -27 93 57 33

ZR12 0 3 0 0 7 7 7 11 11 11 11 11 11 3 3 3 3 3 3

ZR4 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Z
SU(3)C
3 0 0 0 0 1 1 1 2 2 2 2 2 2 0 0 0 0 0 0

Table 5.2: Example #6b for x = 2 and y = z = 0 where ZR12 = ZR4 × Z
SU(3)C
3 . We rescaled

the ZR4 charges..

after the flavon acquires its VEV, which is the desired ZR4 symmetry times the non–trivial
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center of SU(3)C. Let us also note that the same thing happens in all other examples with
RΦ = −12 in appendix B.2.
We use another example in order to show how to cancel the AU(1)2

R−U(1)Y
anomaly by

introducing additional fields: example #12c with y = −1 from appendix B.2. Setting
RHu = 0 and normalizing the charges to integer values gives us a more appealing charge
assignment than in [110], and the charges are summarized in table 5.3. Again, we can see
that after U(1)R breaking we obtain the familiar ZR4 symmetry.

φ θ Hd Hu Q1 Q2 Q3 U1 U2 U3 D1 D2 D3 L1 L2 L3 E1 E2 E3

U(1)R -4 1 8 0 15 15 7 19 3 -5 7 -1 -1 -5 -5 -9 27 19 15

ZR4 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5.3: Example #12c for x = 1, y = −1 and z = 0.

In section 5.2.2 we said that we can introduce additional fields in order to cancel the
AU(1)2

R−U(1)Y
anomaly, which allows us to set RHu = 0, and this can be achieved by

introducing field pairs Y − Y and Z − Z, which, since they have a non–vanishing R charge,
shift the anomaly

∆AU(1)2
R−U(1)Y

= 2
√

3
5
[
(nRΦ)2 − 2nRΦ (Rθ − r)

]
= 2

√
3
5
[
16n2 + 8n (1− r)

]
. (5.30)

Obviously, we can now find n and r in order to cancel the anomaly, which for the charges
in table 5.3 is given by

AU(1)2
R−U(1)Y

=
√

3
5 750 . (5.31)

The first integer solution for n and r, fulfilling

AU(1)2
R−U(1)Y

+ ∆AU(1)2
R−U(1)Y

= 0 , (5.32)

is given by n = 1 and r = −42. Hence, we get the R charges

RZ = RY = 48 and RZ = RY = −42 . (5.33)

The superpotential terms of the field pairs then occur with one flavon field multiplied, i.e.

W ⊃ ΦZ Z + ΦY Y , (5.34)

which means that they decouple after the flavon acquires its VEV.
As mentioned in section 5.2.2 the ASM2−U(1)R anomaly coefficients are shifted universally,

∆ASU(3)2
C−U(1)R = ∆ASU(2)2

L−U(1)R = ∆AU(1)2
Y−U(1)R = −nRΦ

2 = 2 . (5.35)

We see on the one hand that we can cancel the AU(1)2
R−U(1)Y

anomaly by introducing extra
field pairs Y − Y and Z − Z, which acquire a large mass and decouple after U(1)R breaking.
On the other hand, the ASM2−U(1)R coefficients were shifted universally.
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We can also use example #12c to show how the type I see–saw mechanism works in the
models [110]. We have to introduce right–handed neutrinos νi and allow for a Dirac and
Majorana mass term, i.e. schematically we get

W ⊃
(Φ

Λ

)p
LHu ν +

(Φ
Λ

)q
Λ ν ν , (5.36)

where p, q ≥ 0 are integers. After the flavon acquires a VEV we get an effective Dirac Yukawa
matrix Yν and a Majorana mass term for the right–handed neutrinos MR.
For our example #12c in table 5.3 we can pick

Rν1 = 23, Rν2 = 19 and Rν3 = 15 , (5.37)

which allows for the Dirac and Majorana mass term to be present,

Yν ∼

 ε4 ε3 ε2

ε4 ε3 ε2

ε3 ε2 ε1

 , MR ∼ Λ

 ε11 ε10 ε9

ε10 ε9 ε8

ε9 ε8 ε7

 , (5.38)

i.e. the type I see–saw mechanism works. For this example we end up with a normal mass
hierarchy and an absolute neutrino mass scale of mν

abs ∼ O(0.1)eV, where we assume Λ ∼MP
and ε ∼ 0.2. However, this does not predict fully accurate neutrino mixing angles and we
discuss this further in the following section.

5.2.4 Neutrino mixing in U(1)R FN models

As we mentioned before, the models in [110] use the type I see–saw mechanism to create
neutrino masses, which are of the right order of magnitude. The charges of the right–handed
neutrinos have to be chosen such that they allow for an effective Dirac Yukawa matrix and a
Majorana mass term for the right–handed neutrinos, see equation (5.36). Also, the charges
should not allow for too large or too small neutrino masses after we apply the see–saw
formula.

As we showed in the previous section with the help of an example, this can be easily done
and we end up with viable neutrino masses. However, the predicted neutrino mixing is not
necessarily realistic, i.e. the mixing angles might be of the wrong size. We can see this when
we look at the neutrino mass matrices Mν predicted by the different models. As it turns out
these are independent of the charges of the right–handed neutrinos and using the see–saw
formula, cf. equation (3.18), we get

Mν ∼

 ε−2 ∆L
31 ε−2 ∆L

31+∆L
21 ε−∆L

31

ε−2 ∆L
31+∆L

21 ε2 (∆L
21−∆L

31) ε∆L
21−∆L

31

ε−∆L
31 ε∆L

21−∆L
31 1

 εZ , (5.39)

where Z is negative integer with −9 ≤ Z ≤ −5; its precise value is chosen in order to predict
accurate neutrino masses and can be found in [110]. Since the mass matrix solely depends
on the ∆L

ij , up to the eZ factor, only three different patterns occur, regardless of x, y, z. We
have ignored O(1) coefficients so far.
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Therefore, for all models #1–2 as well as #11–12, which have ∆L
21 = 0 and ∆L

31 = −1, the
neutrino mass matrix is given by

M (A)
ν ∼

 ε2 ε2 ε
ε2 ε2 ε
ε ε 1

 εZ . (5.40)

Such a mass matrix only predicts semi–realistic neutrino mixing, in particular, the atmospheric
mixing angle θ23 turns out to be suppressed by a factor of ε. Therefore, we need some
fine–tuning between the O(1) coefficients to overcome this. On the other hand, the angles
θ12 and θ13 are roughly of the correct size.
All models #3–4, where ∆L

21 = ∆L
31 = −1, have the neutrino mass matrix

M (B)
ν ∼

 ε2 ε ε
ε 1 1
ε 1 1

 εZ , (5.41)

and in general predict mixing angles of correct order of magnitude. From this point of view,
these models are somewhat preferred.

A different situation is given for models #5–10, which have ∆L
21 = ∆L

31 = 0, and, therefore,
the mass matrix

M (C)
ν ∼

 1 1 1
1 1 1
1 1 1

 εZ . (5.42)

Such a mass matrix usually gives too large of a reactor mixing angle θ13 since none of its
entries is suppressed. This problem can be overcome in two ways, either by fine–tuning
the O(1) coefficients or, looking at the structure of M (C)

ν , by introducing a non–Abelian
flavor symmetry. For these models #5–10 we might be tempted to dismiss the problem
altogether and refer to the anarchy scheme, introduced in section 5.1.2, which fits well with
this pattern. However, as we mentioned above, this scheme is rather undesirable due to its
lack of predictivity, thus it only provides an interesting alternative.
In summary, we showed that in order for the type I see–saw mechanism to work, only

models #3–4 do not require fine–tuning or additional ingredients, e.g. a non–Abelian flavor
symmetry. Nonetheless, all models are somehow capable of providing (semi–)realistic neutrino
mixing. A caveat is that models #9–10 often predict too large neutrino masses and are,
therefore, not experimentally viable.

An alternative solution for all models is to consider the case of Dirac neutrinos only [33]. As
we have seen in section 4.2.2 it is possible to have strongly suppressed Dirac Yukawa matrices
Yν for the right–handed neutrinos from R symmetries. In section 4.2.2 this was done by
creating the Dirac Yukawa matrices effectively from the Kähler potential, cf. equation (4.19),

K ⊃ X†

M2
P
LHu ν y Weff ⊃ Yν LHu ν with Yν ∼

m3/2

MP
, (5.43)

which means that the Yukawa matrices are due to the supersymmetry breaking spurion X.
Such a scenario can be realized by choosing large negative R charges for the right–handed
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neutrinos and hence for the spurion X, i.e. they have the same sign as the flavon Φ. Then, the
Majorana mass term for the νi and the Dirac Yukawa matrix are forbidden by holomorphicity
and we end up with Dirac neutrinos as in equation (5.43).

Besides being an interesting alternative to the type I see–saw case, this also does not suffer
from the potential proton decay problem as in section 4.2.3 since an operator U DD ν, like
in equation (4.35), is forbidden by the holomorphicity of the superpotential, cf. section 7.3.2
for an explicit example.

5.2.5 Summary of U(1)R FN models

In the previous sections we showed that Froggatt–Nielsen models based on a U(1)R symmetry
allow us to address several issues simultaneously. A major caveat of the original models [110]
was that they had highly fractional charges; however, we showed in section 5.2.2 that we
can remove the unnecessary anomaly constraint AU(1)2

R−U(1)Y
= 0 that was responsible for

these charges and in section 5.2.3 we presented more appealing charge assignments for some
examples. A summary of all improved charges can be found in appendix B.2 and now we
briefly summarize the main features of the models again.

The models have the familiar ZR4 symmetry, cf. section 4.2.4, as a residual symmetry, they
are anomaly–free due to the GS mechanism and forbid the µ term as well as dangerous
proton decay operators. Furthermore, the models predict phenomenologically viable fermion
masses and hierarchies, in particular for the quark and charged lepton masses as well as
for the CKM matrix. The neutrino mixing is more complicated and was either explained
by the type I see–saw mechanism or through Dirac neutrinos alone. We often need some
fine–tuning to make the models phenomenologically acceptable or a non–Abelian flavor
symmetry. Therefore, we focus in the rest of this chapter on such symmetries and the
predictions they make for neutrino mixing.

5.3 Models with discrete, non–Abelian flavor symmetries

In the previous section we discussed models that mainly focused on the fermion mass
hierarchies and the CKM mixing matrix. However, we saw in section 5.1 that the mixing in
the lepton sector, i.e. the neutrino mixing, is especially interesting since it is so different from
the CKM case. For the rest of this chapter we, therefore, focus our discussion on the lepton
sector and on how to address the issues there with non–Abelian flavor symmetries since
several interesting models with discrete, non–Abelian flavor symmetries exist. In particular,
we focus on supersymmetric extensions of the SM with an additional flavor symmetry at the
high scale, which gets spontaneously broken by assigning VEVs to some or many flavons. We
start by reviewing in detail a popular model [113,114] based on the alternating group A4 [106],
also called tetrahedral group, in order to demonstrate how flavor model building works for
discrete non–Abelian flavor symmetries. We then continue with another well–known model
based on the double cover of the alternating group, T′ [115].

5.3.1 A model based on an A4 flavor symmetry

The discrete, non–Abelian group A4 is the alternating group on four elements, i.e. the even
permutations of a set with four elements, which is the symmetry group of a tetrahedron. It
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is necessary to recall the basic group properties of A4 before we continue. We choose a basis
where the group is generated by

S = 1
3

 −1 2 2
2 −1 2
2 2 −1

 , T =

 1 0 0
0 ω2 0
0 0 ω

 , with ω = e
2πi
3 . (5.44)

The symmetry has four inequivalent irreducible representations, three of them one–dimensional
and one three–dimensional. The singlets are denoted by 1, 1′ and 1′′, whereas the triplet is
denoted by 3. There are several multiplication laws and the non–trivial ones are

1′ ⊗ 1′ = 1′′ , 1′′ ⊗ 1′′ = 1′ , 1′ ⊗ 1′′ = 1 , (5.45)

with the most important one being

3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3s ⊕ 3a . (5.46)

Here, we call 3s the symmetric and 3a antisymmetric triplet contraction. Given two triplets
a and b, in components their contractions look like

(a⊗ b)1 = a1 b1 + a2 b3 + a3 b2 , (5.47a)
(a⊗ b)1′ = a3 b3 + a1 b2 + a2 b1 , (5.47b)
(a⊗ b)1′′ = a2 b2 + a1 b3 + a3 b1 , (5.47c)

(a⊗ b)3s
= 1√

2

 2a1 b1 − a2 b3 − a3 b2
2a3 b3 − a1 b2 − a2 b1
2a2 b2 − a1 b3 − a3 b1

 , (5.47d)

(a⊗ b)3a
= i

√
3
2

 a2 b3 − a3 b2
a1 b2 − a2 b1
a3 b1 − a1 b3

 , (5.47e)

where (a⊗ b)R means that a and b are contracted to the representation R. Please note
the important (complex) coefficients in front of the triplets, which are often absent in the
literature. In appendix C we review another basis for A4 and its connection to the just
presented one.
Having the basic group properties at hand, we can now start reviewing the previously

mentioned model by Altarelli et al. [113,114] which will give us tri–bi–maximal mixing for
neutrinos. In this model all SM matter fields are in irreducible representations of A4. All the
charged leptons transform as singlets: eR as 1, µR as 1′′ and τR as 1′. The Higgs fields Hu

and Hd transform as trivial singlets 1, whereas the left–handed lepton doublets transform
as a triplet 3. There are additional fields in this model: three flavons, which will break the
flavor symmetry. There are two triplets, Φν and Φe, as well as another trivial A4 singlet ξ.
In order to distinguish between the two flavon triplets and to achieve tri–bi–maximal mixing,
the model is also amended by a Z4 symmetry. Φe and the Higgs fields stay invariant under
this symmetry, whereas Φν and ξ change their signs. The leptons transform with opposite
complex phases, i.e. L→ iL and R→ −iR. The field content is summarized in table 5.4.
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eR µR τR L Hu Hd Φν Φe ξ

A4 1 1′′ 1′ 3 1 1 3 3 1

Z4 3 3 3 1 0 0 2 0 2

Table 5.4: Summary of the A4 model by Altarelli et al. [113,114].

Assigning the just listed charges allows us to write down the following superpotential, split
into two sectors,

Wν = λ1
Λ Λν

{
[(LHu)⊗ (LHu)]3s

⊗ Φν

}
1

+ λ2
Λ Λν

[(LHu)⊗ (LHu)]1 ξ , (5.48)

We = he
Λ (Φe ⊗ L)1 Hd eR + hµ

Λ (Φe ⊗ L)1′ Hd µR + hτ
Λ (Φe ⊗ L)1′′ Hd τR , (5.49)

where λ1,2 and he,µ,τ are dimensionless couplings. Λ and Λν denote the flavor scale and
the see–saw scale, respectively. After electroweak symmetry breaking we can substitute the
Higgs fields for their VEVs, i.e.

〈Hu〉 =
(

0
vu

)
and 〈Hd〉 =

(
vd
0

)
. (5.50)

Then, using the multiplication laws from equation (5.47), we want to compute mass matrices
for the neutrinos and for the charged leptons from the different sectors

Wν = 1
2L

T mν L and We = RT me L . (5.51)

mν gets contributions from the Φν term

{
[(LHu)⊗ (LHu)]3s

⊗ Φν

}
1
→ v2

u√
2


 2L2

1 − 2L2 L3
2L2

3 − 2L1 L2
2L2

2 − 2L1 L3

⊗ Φν


1

=
√

2 v2
u

[(
L2

1 − L2 L3
)

Φν1 +
(
L2

3 − L1 L2
)

Φν3+(
L2

2 − L1 L3
)

Φν2
]
, (5.52a)

and from the ξ term

[(LHu)⊗ (LHu)]1 ξ → v2
u

[
L2

1 + 2L2 L3
]
ξ . (5.52b)

This gives us for mν

mν = v2
u

Λ Λν

 2λ2 ξ + 2
√

2λ1 Φν1 −
√

2λ1 Φν3 −
√

2λ1 Φν2
−
√

2λ1 Φν3 2
√

2λ1 Φν2 2λ2 ξ −
√

2λ1 Φν1
−
√

2λ1 Φν2 2λ2 ξ −
√

2λ1 Φν1 2
√

2λ1 Φν3

 . (5.53)
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The charged lepton Yukawa matrix is computed similarly from the terms

(Φe ⊗ L)1 Hd eR → vd (L1 Φe1 + L2 Φe3 + L3 Φe2) eR , (5.54a)
(Φe ⊗ L)1′ Hd µR → vd (L3 Φe3 + L1 Φe2 + L2 Φe1)µR , (5.54b)
(Φe ⊗ L)1′′ Hd τR → vd (L2 Φe2 + L1 Φe3 + L3 Φe1) τR , (5.54c)

which results in me

me = vd
Λ

 he Φe1 he Φe3 he Φe2
hµ Φe2 hµ Φe1 hµ Φe3
hτ Φe3 hτ Φe2 hτ Φe1

 . (5.55)

The A4 symmetry gets now broken by assigning VEVs to the flavons, and they are given by

〈Φν〉 = (v, v, v)T , (5.56a)

〈Φe〉 =
(
v′, 0, 0

)T
, (5.56b)

〈ξ〉 = w . (5.56c)

A key ingredient of this model is the structure of these VEVs, the so–called VEV alignment.
After breaking the symmetry in such a way the charged lepton Yukawa matrix becomes
diagonal,

me = vd diag (ye, yµ, yτ ) , (5.57)

where ye,µ,τ = he,µ,τ
v′

Λ . However, the neutrino mass matrix reads as

mν =

a+ 2d −d −d
−d 2d a− d
−d a− d 2d

 , (5.58)

where we define a = 2λ2
v2
u

Λν
w
Λ and d =

√
2λ1

v2
u

Λν
v
Λ .

After determining the mass matrices of both sectors we can compute the neutrino mixing
matrix. As we have shown at the beginning of section 3.1, the neutrino mixing matrix is
the mismatch between the diagonalization matrices for the charged lepton and the neutrino
mass matrices

UPMNS = V †e,L Vν,L . (5.59)

In the A4 example this is rather easy since me is already diagonal, hence V †e,L = 1 and
therefore UPMNS = Vν,L. The neutrino mass matrix is diagonalized independently of a, d by
the tri–bi–maximal mixing matrix

UTBM =


√

2
3

1√
3 0

− 1√
6

1√
3 − 1√

2
− 1√

6
1√
3

1√
2

 , (5.60)

which means that the overall neutrino mixing matrix UPMNS is given by the tri–bi–maximal
mixing matrix UTBM, originally proposed by Harrison et al. [105].
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5.3.2 Deviations from tri–bi–maximal mixing
The main prediction of the just discussed A4 model is the tri–bi–maximal neutrino mixing
pattern where the mixing angles are given by

θ12 = arctan 1√
2
≈ 35.3◦ , θ13 = 0◦ , θ23 = 45◦ , (5.61)

which used to be a good description of experimental data, e.g. ten years ago all values
were well within limits [71]. However, as we already mentioned in section 5.1.1 current
measurements strongly disfavor TBM since θ13 and θ23 in TBM do not agree with the global
fit of experimental data from table 3.1. In particular, the measurement of a large rather
than zero θ13 is in great tension with TBM predictions,

θexp
13 − θ

TBM
13 ≈ 9◦ . (5.62)

There are a lot of models not based on A4 suffering from this or similar problems. They
either predict TBM as well [105,106] or make very strong predictions for other mixing patterns,
e.g. bi–maximal mixing [103,104], which are also ruled out by experiments. However, often not
all holomorphic contributions to the mixing parameters were accounted for and higher–order
superpotential corrections have to be taken into account, e.g.

Wν ⊃
1

Λν ΛnOn (LHu) (LHu) and We ⊃
1

Λn ÕnRLHd , (5.63)

where On and Õn are flavon polynomials of the order n. We can then use higher–order
corrections, i.e. n > 1, to achieve agreement with experiments. The structure and order n
of these terms are also dictated by the chosen symmetry through clever assignment of the
representations or charges.

The benefit of including higher–order superpotential terms is that models remain calculable
and with the help of Hilbert basis computations from section 2.3 it is possible to compute a
basis for the superpotential, therefore, determining the superpotential to all orders. However,
one has to take into account many more terms and their different contributions, which makes
viable experimental predictions quite hard, especially while ensuring that very high orders
become negligible. Furthermore, with the help of the Hilbert basis method it might be also
possible to construct models where higher–order terms are forbidden to all orders, therefore,
fixing the predictions to small order terms.

Another issue for the predictions of most models is that very often they are not invariant
under the renormalization group (RG); therefore, corrections from the RG equations can
create changes in the predicted mixing angles [116,117], even though these corrections are
loop–suppressed. A somewhat related issue is that most models base their predictions solely
on the holomorphic superpotential, which, as we demonstrate in chapter 6, might not be
sufficient due to potentially large corrections from the Kähler potential. Before we continue
discussing such corrections we briefly review another model which does not predict the TBM
mixing pattern.

5.3.3 A model based on a T′ flavor symmetry
So far we discussed a model based on A4 which gives us TBM mixing, but there is a plethora
of other possible groups and mixing patterns. One very well–known and interesting example
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is to pick T′ as the flavor symmetry [115]. T′ is the double–covering group of A4 and it also
contains three irreducible singlet representations 1, 1′, 1′′ and one triplet 3. In contrast to
A4, there are also three doublets contained in the group, 2, 2′, 2′′.

The multiplication law for the contraction of two triplets is the same in both groups,
cf. equation (5.47). The contraction between doublets and triplets is given by

2,2′,2′′ ⊗ 3 = 2⊕ 2′ ⊕ 2′′ , (5.64)

which in components for the doublet a and the triplet b is given by,(
a1
a2

)
2,2′,2′′

×

 b1
b2
b3


3

=
( √

2 a2 b2 + a1 b1√
2 a1 b3 − a2 b1

)
2,2′,2′′

⊕
( √

2 a2 b3 + a1 b2√
2 a1 b1 − a2 b2

)
2′,2′′,2

⊕
( √

2 a2 b1 + a1 b3√
2 a1 b2 − a2 b3

)
2′′,2,2′

. (5.65)

Furthermore, we have multiplications of the doublets among each other, e.g.

2⊗ 2 = 1⊕ 3 , 2′ ⊗ 2′ = 1′′ ⊕ 3 , 2′′ ⊗ 2′′ = 1′ ⊕ 3 . (5.66)

All of these and other relations can be found, for instance, in [118] and they are especially
important when we discuss non–holomorphic corrections in the next chapter.

However, first, let us discuss the well–known model by Chen et al. [115], which is based on
an SU(5)GUT×T′ gauge group. Since it is a GUT model it contains 10 and 5 representations
which are put in different representations of T′ : the three generations of 5 in a triplet, and
the first two generations of the 10 in a doublet. The third 10 generation, as well as the Higgs
multiplets, are singlets under T′ . The GUT symmetry is broken by a higher–dimensional
multiplet. In addition to the GUT field content, the model has an extended flavon sector,
which is summarized in table 5.5. As we can see, the model is also amended by two Abelian
Z12 symmetries in order to limit the allowed operators of the Lagrangian. As above in the

φ φ′ ψ ψ′ ζ N ξ η

T′ 3 3 2′ 2 1′′ 1′ 3 1

Z12 3 2 6 9 9 3 10 10

Z12 3 6 7 8 2 11 0 0

Table 5.5: Flavon content of the T′ model.

A4 example, we have to break the flavor symmetry by assigning VEVs to the flavons along
certain directions, which are given by

〈φ〉 = φ0

 1
0
0

 , 〈φ′〉 = φ′0

 1
1
1

 , 〈ξ〉 = ξ0

 1
1
1

 ,

〈ψ〉 = ψ0

(
1
0

)
, 〈ψ′〉 = ψ′0

(
1
1

)
, (5.67)
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while the one–dimensional fields ζ, N and η, acquire non–trivial values.
In the quark sector this VEV assignment leads to a realistic CKM matrix [115], which we

do not discuss further since we focus on the lepton sector. There, a lepton mixing pattern is
realized which is very close to TBM,

θ12 ≈ 33◦ , θ23 = 45◦ and θ13 ≈ 3◦ , (5.68)

and the deviations are related to the Cabibbo angle θc through SU(5) GUT relations [115],

θ13 = θc

3
√

2
. (5.69)

Furthermore, this model started an ongoing discussion on group theoretical origins of CP
violation4 and predicts an experimentally valid absolute neutrino mass scale.

Unfortunately, the predictions of this model have been ruled out by the measurement of a
large θ13, since

θexp
13 − θ

T′
13 ≈ 6◦ , (5.70)

as we know from table 3.1. This and other experimental inaccuracies can be accommodated
by including yet another singlet into the flavon sector [121].
It is interesting to see if the predictions of the original model can be saved by including

corrections from the non–holomorphic sector, which is what we discuss in the following
chapter, first for general flavor models, then for A4 and T′.

4See [119,120] for the current discussion of CP violation from flavor symmetries.
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Chapter 6

Corrections due to Kähler potential terms

In the last chapter we looked at flavor models that, leaving the case of the U(1)R FN models
aside for the moment, describe lepton mixing solely based on the superpotential of the given
model. In this chapter we show that this is not enough since there exist corrections coming
from the non–holomorphic Kähler potential of the models. As it turns out, these corrections
are sizable and (almost) impossible to forbid, contrary to some previous statements in the
literature [122,123]. We derive these corrections for a generic, an A4 and a T′ model, and
we end this chapter by discussing the implications for mixing angle predictions and flavor
changing neutral currents.
In this chapter we only focus on the lepton sector of the given models. Let us note that

similar statements and corrections are possible for the quark sector as well, but this strongly
depends on the flavor structure of your model. Due to simplicity, we mainly use the A4
example from section 5.3.1, i.e. the lepton sector, in order to explain the Kähler corrections.

6.1 Kähler corrections
In section 2.1.4 we introduced the Kähler potential as a real function of chiral and antichiral
superfields which is canonical, i.e. diagonal, at tree level. For the lepton sector the Kähler
potential, in general, can be written as

K ⊃ L†KL L+R†KRR (6.1)

with the left–handed lepton doublets L = (L1, L2, L3) and the right–handed lepton singlets
R = (R1, R2, R3). Here, KL/R is a Hermitian matrix, the so–called Kähler metric. As we
have seen in section 2.1.4 we attain the canonical Kähler potential for KL/R = 1.

In section 5.1.1 we also introduced flavor symmetries and we briefly mentioned higher–order
correction terms from the superpotential. It is straightforward to argue that the Kähler
potential should also contain all possible terms which are allowed by the flavor symmetry,
meaning that we have to include higher–order terms,

K = Kcanonical + ∆K , (6.2)

where ∆K contains contractions of Lf and Rf and their Hermitian conjugates with the
flavons

∆K =
(
Lf
)†

(∆KL)fg Lg +
(
Rf
)†

(∆KR)fg Rg . (6.3)

Here, ∆KL and ∆KR are Hermitian matrices in flavor space which do not have to be
diagonal; their specific structure is determined by the chosen flavor symmetry, the flavon
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content of the model and the VEV structure. Especially, when the flavons acquire their
VEVs, as described in section 5.3, i.e. breaking the flavor symmetry, these matrices modify
the Kähler metric.

In order to return to a canonical Kähler potential, we have to rotate the involved fields to
account for such higher–order Kähler terms. These field redefinitions then, in turn, affect
all operators in the superpotential where redefined fields occur, in particular the Majorana
mass matrix and the charged lepton Yukawa matrix. Therefore, this affects the neutrino
mixing parameters, which were originally fixed through the flavor symmetry. This can easily
be seen when we take a look at Kähler potential part for the lepton doublets L,

KL = (Lf )† (1+ ∆KL)fg (Lg) → KL = (L′)†f1
fg(L′)g , (6.4)

where we redefined the lepton doublet L→ L′ in order to attain a canonical Kähler potential.
We have to put this redefinition into the superpotential as well, therefore, changing the
Majorana mass matrix of the neutrinos,

Wν = 1
2(L′)T mν L

′ → Wν = 1
2L

T m′ν L , (6.5)

where mν 6= m′ν . Similar things will happen for the charged lepton Yukawa matrix and, in
general, the neutrino mixing matrix will be affected by ∆KL, its size being determined by
the flavon VEV over the flavor scale.

6.1.1 Effects of canonical normalization
Before we discuss in detail how such field redefinitions can be parametrized and what effects
they have, let us clarify our assumptions. Our starting point is a model where the leptonic
mixing parameters, the masses, angles and complex phases, are determined through a flavor
symmetry, e.g. as we did in chapter 5. However, we do not assume any particular model
and our discussion does not depend on the underlying model. Therefore, the only input we
consider is the charged lepton Yukawa matrix Ye and the Majorana neutrino mass matrix
mν , and for computational reasons we choose a basis where the former is diagonal. This
means that the set of input parameters is given by six masses, three charged lepton and
three neutrino ones, and the nine mixing parameters we know from section 3.1.1 including
the so–called “unphysical” phases δe,µ,τ . Furthermore, we assume that so far the Kähler
potential is canonical and higher–order terms have not yet been taken into account.
Now, let us assume we are given a model with a spontaneously broken flavor symmetry

explaining the neutrino mixing pattern. The question naturally arises how we can parametrize
higher–order Kähler corrections and what effect they have. The contractions of MSSM fields
with the flavons can lead to corrections to the canonical Kähler potential, i.e. a change in
the Kähler metric in equation (6.1), which is then given by the following Hermitian matrices

KL/R = 1+ ∆KL/R , (6.6)

and due to the presence of ∆KL/R the leptons L and R are not canonically normalized
anymore. Therefore, we have to rotate the fields in order to remove off–diagonal terms,

L′ = HL L , (6.7a)
R′ = HRR , (6.7b)
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6.1 Kähler corrections

where L′ and R′ are now again canonically normalized. The matrices HL/R are Hermitian
and we have the relation ∆KL/R = H2

L/R.
The presence of the Kähler corrections ∆KL/R forces us to rotate the fields. We assume

that these corrections are due to higher order flavor corrections, i.e. they are suppressed by
powers of the flavon VEV over the fundamental scale, hence it is reasonable to argue that
they can be parametrized by

∆KL = −2x1 PL , (6.8a)
∆KR = −2x2 PR , (6.8b)

where x1, 2 are infinitesimal parameters and PL/R Hermitian but not necessarily diagonal.
We choose a factor −2 for later convenience. Hence, we have HL/R = 1− x1, 2 PL/R, to first
order in x1,2, and for the fields in equation (6.7)

L′ := (1− x1 PL) L , (6.9a)
R′ := (1− x2 PR) R . (6.9b)

These field redefinitions lead to changes in the neutrino mixing matrix, i.e. in the superpo-
tential, as we already hinted at in equation (6.5). The change up to linear order in x1 is
given by

Wν = 1
2L

T m0
ν L

' 1
2
[
(1+ x1 PL) L′

]T
m0
ν

[
(1+ x1 PL) L′

]
' 1

2L
′T m0

ν L
′ + 1

2x1 L
′T
(
P TL m

0
ν +m0

ν PL
)
L′ , (6.10)

where m0
ν = mν(x1 = 0). We can now define the neutrino mass operator in dependence of x1

mν(x1) = m0
ν + x1

(
P TL m

0
ν +m0

ν PL
)
, (6.11)

and, more importantly, the change of mν with respect to x1. This differential equation is
given by

m′ν(x1) ≡ d
dx1

mν(x1) = P T m0
ν +m0

ν P , (6.12)

and from now on we use the prime notation for the derivative with respect to x1.1
We want to find an analytic expression for the change in mixing parameters with respect

to x1 and for an unspecified Hermitian PL. Since equation (6.12) has the same form as the
RG equation for the neutrino mass operator (cf. equation (B.5) of [116]), we can use the
same methods as in [116] in order to find such a solution.
Consider the x1–dependent mixing matrix mν(x1). We diagonalize it using an unitary

diagonalization matrix Uν(x1), which will also be x1–dependent, i.e.

UTν (x1)mν(x1)Uν(x1) = Dν(x1) = diag (m1(x1),m2(x1),m3(x1)) , (6.13)
1The derivative with respect to x2 can also occur but the difference will be clear within context.

63



Chapter 6 Corrections due to Kähler potential terms

and therefore,

mν(x1) = U∗ν (x1)Dν(x1)U †ν (x1) . (6.14)

If we now plug this expression into equation (6.12), evaluating the result at x1 = 0, we get

d
dx1

(
U∗ν (x1)Dν(x1)U †ν (x1)

)∣∣∣∣
x1=0

= (U ′ν)∗Dν U
†
ν + U∗ν Dν (U ′ν)† + U∗ν D

′
ν U
†
ν

= P TL U
∗
ν Dν U

†
ν + U∗ν Dν U

†
ν PL , (6.15)

where the first line equals the left–hand side and the second line corresponds to the right–hand
side of equation (6.12), the latter being evaluated at x1 = 0. In order to further simplify this
result we multiply the equation by UTν from the left and by Uν from the right, giving us

UTν (U ′ν)∗Dν +Dν (U ′ν)† Uν +D′ν = P̃ TL Dν +Dν P̃L , (6.16)

where we define

P̃L = U †ν PL Uν = U †PMNS PL UPMNS . (6.17)

Here, we use the fact that Ue(0, 0) = 1 since we start in a basis where the charged lepton
Yukawa matrix is diagonal, hence UPMNS = Uν .

6.1.2 Analytic formulae
For any unitary matrix U we can define a matrix T

T := U † U ′ , (6.18)

which is anti–Hermitian.2 Since T is anti–Hermitian it has nine independent parameters

u := {ReT12,ReT13,ReT23, ImT11, ImT12, ImT13, ImT22, ImT23, ImT33} . (6.19)

Using the standard parametrization UPMNS of neutrino oscillations from section 3.1.1 for U
in equation (6.18) we can define a TPMNS = U †PMNS U

′
PMNS, and, hence, we can completely

determine all entries for a vector uPMNS. Since TPMNS is linear in the derivatives of the
mixing parameters we can find a matrix A which maps

ξ := {θ′12, θ
′
13, θ

′
23, δ

′, δ′e, δ
′
µ, δ
′
τ , ϕ

′
1, ϕ
′
2} , (6.20)

onto uPMNS, i.e.

Aξ = uPMNS . (6.21)

Using this and TPMNS we can then determine A. Applying the inverted matrix A−1 to uPMNS
will give us analytic equations for the change in mixing parameters, e.g. θ′12 is given by

θ′12 = (ξ)1 =
(
A−1 uPMNS

)
1
, (6.22)

and similarly for the other mixing parameters.
2This follows directly from d

dx1 = d
dx

(
U† U

)
= (U ′)† U + U† U ′ = 0.
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Therefore, we found a general mapping A for any u in order to determine the change in
mixing angles. We can can apply this universal A, or rather A−1, to any u and get analytic
formulae for the change in mixing parameters. Hence, we can now also define Tν with the
x1–dependent diagonalization matrix Uν(x1) and put this into equation (6.16) and completely
determine Tν , thus u. If we apply A−1 then to this vector we compute the analytic change
in mixing angles in dependence on x1 and PL.
Now we just need to determine Tν and we do this by putting its definition into equa-

tion (6.16), which we can rewrite as

D′ν = P̃ TL Dν +Dν P̃L +Dν Tν − T ∗ν Dν . (6.23)

We can see from this equation that the left–hand side is diagonal and real, which in turn has
to apply to the right–hand side as well. Therefore, we get

m′i = 2 (P̃L)iimi +
(
(Tν)ii − (T ∗ν )ii

)
mi , (6.24)

which again has to be real. However, since the first term on the right–hand side is real,
because PL and hence P̃L are Hermitian, and the second term is imaginary, the latter needs
to vanish. This leaves us with the condition

Im(Tν)ii = 0 . (6.25)

Furthermore, we need to consider the off–diagonal terms of equation (6.23), which need to
vanish. This gives us the conditions

mi (Tν)ij − (Tν)∗ijmj = −(P̃ TL )ijmj −mi (P̃L)ij , (6.26)

such that

Re(Tν)ij = −mj Re(P̃L)ji +mi Re(P̃L)ij
mi −mj

= −mi +mj

mi −mj
Re(P̃L)ij , (6.27a)

Im(Tν)ij = −mj Im(P̃L)ji +mi Im(P̃L)ij
mi +mj

= −mi −mj

mi +mj
Im(P̃L)ij . (6.27b)

These equations, together with equation (6.25), now allow us to fully determine Tν .
Then, if we apply the inverse of the matrix A from equation (6.21) to the vector u, using

the just computed components from Tν as its entries, we get analytic formulae for the change
in mixing parameters for general x1 and PL. Furthermore, we see that including higher–order
terms in the Kähler potential modifies the mixing parameters, in particular the mixing angles
θij , and we call these changes Kähler corrections.
So far we only considered changes in the neutrino mass operator, but also the charged

lepton sector changes due to the field redefinitions in equation (6.9),

We = −RT Y 0
e L+ h.c.

= −R′T
(
(HR)−1

)T
Y 0
e (HL)−1 L′ + h.c.

' −R′T (1+ x2 (PR)T )Y 0
e (1+ x1 PL)L′ + h.c.

' −R′T (Y 0
e + x2 (PR)T Y 0

e + x1 Y
0
e PL)L′ + h.c. . (6.28)
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Here, the charged lepton Yukawa matrix can be diagonalized by a bi–unitary transformation
and we get the unitary matrix Ue(x1, x2) acting on the left side. As we can see this matrix
depends on x1 and x2. Next, we follow a similar procedure as before, e.g. introducing the
matrix Te, but now it is convenient to split Te into two parts, one matrix T x1

e that corresponds
to the changes due to x1 and another part T x2

e that corresponds to the changes from x2.
We can again determine all terms in Te and, therefore, the full T matrices in order to get

the change in mixing angles. Putting everything together we get [32]

T x1 = −U †PMNS T
x1
e UPMNS + Tν , (6.29a)

T x2 = −U †PMNS T
x2
e UPMNS . (6.29b)

Using this result and the matrix A from equation (6.21) we can now derive the change in
mixing parameters to first order in x1 and x2, i.e. due to PL and PR, respectively. The
resulting analytic formulae for the Kähler corrections can be found as a Mathematica
package [124]. Note that without specifying any initial conditions the formulae are very
lengthy but they might simplify significantly as we see in section 6.3.2.

6.2 Kähler corrections to example models

In the previous section we showed how Kähler corrections give rise to changes in mixing
parameters and we derived analytic formulae describing these changes. The question remains
what terms give rise to these corrections. We already mentioned that they are given by
contractions of matter fields with flavons. In detail, we are going to discuss two forms of
such corrections: linear and quadratic ones.

If we consider, for instance, the lepton doublets L of a given model, assuming they are in an
irreducible representation r of some flavor group GF, then linear, i.e. first order corrections
will be given by

∆Klinear =
∑
i

κΦi
Λ L†r (L⊗ Φi)r + h.c. , (6.30)

where Φi are some of the flavons of the theory and κΦi is a dimensionless coupling. As
always, Λ describes the flavor scale. This is an allowed Kähler potential term if (L⊗ Φi) is
contracted to the same representation r as L is in, therefore, we can only consider flavons Φi

whose representation allows such a contraction. When the flavons Φi receive their VEV we
change the Kähler metric Kfg from its canonical form

Kfg = δfg + ∆Kfg = δfg + (αPfg + h.c.) , (6.31)

with α being a constant times an infinitesimal parameter. Then, ∆Kfg, or rather Pfg, leads
through canonical normalization to the changes discussed in the previous section.
The linear corrections are only suppressed by one power of the expansion parameter
〈Φi〉/Λ, making them rather large. It is trivial to find such corrections if the flavon is in the
singlet representation of the flavor group GF; however, in such cases the flavon VEV does
not change the mixing parameters since it will only change the overall normalization and,
therefore, we will not consider singlet contributions from here on, neither in linear, nor in
quadratic corrections.
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There is a general caveat to the discussion of first–order terms. Obviously, the linear
corrections are only possible if Lr and (L⊗Φi)r are in the same irreducible representation of
GF and of the overall gauge group. However, if the flavons are charged under any additional
symmetry, e.g. an Abelian ZN , such terms will be forbidden. Furthermore, even if the model
does not have any additional symmetry in the first place, it is easy to find one that charges
the Φi.

The situation is different when we consider second–order terms. These quadratic corrections
are of the form, again for the lepton doublets,

∆Kquadratic =
∑
i,j

∑
r,r′

κΦi,j
Λ2

(
(L⊗ Φj)†r ⊗ (L⊗ Φi)r′

)
1
, (6.32)

where κΦi,j is a dimensionless coupling and the sum over r, r′ represents all possible repre-
sentations (L⊗ Φi,j) can be contracted to. Obviously, both factors have to be in the same
representation, thus r = r′. A similar problem as for the linear contractions arises since a
general term as we have it in equation (6.32) can always be forbidden if the various flavons
Φi,j are charged differently under some additional symmetry. Thus, we only consider terms
where i = j, simplifying our equation to

∆Kquadratic =
∑
i

∑
r

κΦi
Λ2 (L⊗ Φi)†r (L⊗ Φi)r . (6.33)

where the contraction to the singlet representation was omitted. In the following, we always
imply that we contract Kähler potential terms to the singlet 1.
Such terms cannot be forbidden by any conventional symmetry and induce corrections

to the mixing parameters, which are suppressed by two powers of the expansion parameter
〈Φi〉/Λ. Furthermore, all flavor models based on spontaneously broken flavor symmetries
have them and we can write similar terms for the right–handed leptons as well.

6.2.1 An A4 example

After introducing the general structure of Kähler corrections we now consider explicit models
and we start with the A4 example by Altarelli et al. [113,114] from section 5.3.1. The model
has two flavon triplets Φν and Φe,3 and since L is also in the triplet representation, we can
write the following linear terms for the lepton doublet

∆Klinear =
∑

i∈{a,s}

κ(i)
Φν
Λ L† (L⊗ Φν)3i +

κ
(i)
Φe
Λ L† (L⊗ Φe)3i

+ h.c. , (6.34)

where the index i differentiates between contractions to the symmetric or antisymmetric
triplets 3a,s, cf. equation (5.47). We get four different corrections after the flavons acquire

3Recall that we do not consider singlets for the Kähler corrections.
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their VEVs. The contractions for a generic triplet Φ in components is given by

L† (L⊗ Φ)3s = 1√
2

[
(L†1)(2L1Φ1 − L2Φ3 − L3Φ2) + (L†2)(2L3Φ3 − L1Φ2 − L2Φ1)

+ (L†3)(2L2Φ2 − L1Φ3 − L3Φ1)
]
, (6.35a)

L† (L⊗ Φ)3a = i
√

3
2
[
(L†1)(L2Φ3 − L3Φ2) + (L†2)(L1Φ2 − L2Φ1)

+ (L†3)(L3Φ1 − L1Φ3)
]
. (6.35b)

The Kähler metric Kfg changes when the flavons acquire their VEVs, see equation (5.56).
For the flavon Φν with VEV 〈Φν〉 = (v, v, v)T the deviation from the canonical form ∆Kfg

is given by

(∆K )(s)
Φν = κ

(s)
Φν

v

Λ
1√
2
P

(s)
〈Φν〉 + h.c. , (6.36a)

(∆K )(a)
Φν = iκ(a)

Φν
v

Λ

√
3
2 P

(a)
〈Φν〉 + h.c. , (6.36b)

with

P
(s)
〈Φν〉 =

 2 −1 −1
−1 −1 2
−1 2 −1

 , (6.37a)

P
(a)
〈Φν〉 =

 0 1 −1
1 −1 0
−1 0 1

 . (6.37b)

However, for Φe with 〈Φe〉 = (v′, 0, 0)T we get the Kähler corrections

(∆K )(s)
Φe = κ

(s)
Φe
v′

Λ
1√
2
P

(s)
〈Φe〉 + h.c. , (6.38a)

(∆K )(a)
Φe = iκ(a)

Φe
v′

Λ

√
3
2 P

(a)
〈Φe〉 + h.c. , (6.38b)

with the P matrices

P
(s)
〈Φe〉 = diag(2,−1,−1) , (6.39a)

P
(a)
〈Φe〉 = diag(0,−1, 1) . (6.39b)

In the model from section 5.3.1 only terms with Φe, i.e. equation (6.39a) and equation (6.39b),
are inducing changes since Φν is charged under an additional Z4 shaping symmetry. However,
as we discussed above we could introduce additional symmetries to forbid the Φe contributions
as well.
This is not possible for quadratic terms of the form (L⊗ Φ)† (L⊗ Φ), with Φ = Φν,e.

Checking equation (5.47) we can see that there are six possible correction terms from each
flavon,

(L⊗ Φ)†1 (L⊗ Φ)1 , (L⊗ Φ)†1′ (L⊗ Φ)1′ , (L⊗ Φ)†1′′ (L⊗ Φ)1′′ ,

(L⊗ Φ)†3a (L⊗ Φ)3a , (L⊗ Φ)†3s (L⊗ Φ)3s , (L⊗ Φ)†3a (L⊗ Φ)3s . (6.40)
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As we will see later, there are only five structurally different contributions PI,...,V, cf. equa-
tion (6.52). Given a generic triplet Φ, for example (L⊗ Φ)†1 (L⊗ Φ)1 is then given by

(L⊗ Φ)†1 (L⊗ Φ)1 = (L1 Φ1 + L2 Φ3 + L3 Φ2)† (L1 Φ1 + L2 Φ3 + L3 Φ2) , (6.41)

which gives the Kähler correction

∆K = κ
1

Λ2 P + h.c. , (6.42)

with

PΦ =

 Φ†1 Φ1 Φ†1 Φ3 Φ†1 Φ2
Φ†3 Φ1 Φ†3 Φ3 Φ†3 Φ2
Φ†2 Φ1 Φ†2 Φ3 Φ†2 Φ2

 . (6.43)

We now substitute the Φν for the generic flavon Φ and after acquiring its VEV, 〈Φν〉 =
(v, v, v)T , we get

v2 P〈Φν〉 = v2 PIV = v2

 1 1 1
1 1 1
1 1 1

 , (6.44)

whereas, when we use Φe instead, with 〈Φe〉 = (v′, 0, 0)T , we get the result

(v′)2 P〈Φe〉 = (v′)2 PI = (v′)2 diag(1, 0, 0) . (6.45)

Another possible second–order contraction from equation (6.40) is (L⊗ Φ)†3s(L⊗ Φ)3a ,
which for a generic triplet Φ gives us

(L⊗ Φ)†3s(L⊗ Φ)3a = i
√

3
2
[(

2L†1Φ†1 − L
†
2Φ†3 − L

†
3Φ†2

)
(L2Φ3 − L3Φ2)

+
(
2L†3Φ†3 − L

†
2Φ†1 − L

†
1Φ†2

)
(L1Φ2 − L2Φ1)

+
(
2L†2Φ†2 − L

†
1Φ†3 − L

†
3Φ†1

)
(L3Φ1 − L1Φ3)

]
, (6.46)

and, therefore, the P matrix

P = i
√

3
2

 −Φ†2Φ2 + Φ†3Φ3 2Φ†1Φ3 + Φ†2Φ1 −2Φ†1Φ2 − Φ†3Φ1
−2Φ†2Φ3 − Φ†1Φ2 −Φ†3Φ3 + Φ†1Φ1 2Φ†2Φ1 + Φ†3Φ2
2Φ†3Φ2 + Φ†1Φ3 −2Φ†3Φ1 − Φ†2Φ3 Φ†2Φ2 − Φ†1Φ1

 . (6.47)

For 〈Φ〉 = 〈Φν〉 = (v, v, v)T this gives the Kähler correction

∆K = 3
√

3
2 κV

v2

Λ PV + h.c. , (6.48)

with

PV =

 0 i −i
−i 0 i
i −i 0

 . (6.49)
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However, using 〈Φ〉 = 〈Φe〉 = (v′, 0, 0)T we get

∆K = i
√

3
2 κ

(v′)2

Λ P + h.c. , (6.50)

with

P = diag(0, 1,−1) = PII − PIII . (6.51)

These are only four of the in total possible twelve P matrices and the others can be found
in appendix D.1.
As we mentioned above, and can see in appendix D.1, most of the contractions lead to

identical P matrices, which is the reason for our up to this point random naming, e.g. PII or
PIII. It turns out, we can summarize all possible corrections for this model in terms of five
matrices, PI . . . PV, which we have all encountered so far. We can summarize them by

PI = diag(1, 0, 0) , PII = diag(0, 1, 0) and PIII = diag(0, 0, 1) , (6.52a)

which come from contractions of L with Φe, and by

PIV =

1 1 1
1 1 1
1 1 1

 and PV =

 0 i −i
−i 0 i
i −i 0

 , (6.52b)

which are contributions due to Φν . Since 〈Φe〉 = (v′, 0, 0)T , the contribution in the Kähler
potential of the first three matrices is proportional to (v′)2, and since 〈Φν〉 = (v, v, v)T , the
contributions of the last two P matrices is proportional to v2. In section 6.3 we discuss the
implications of some of the just presented corrections for the explicit model and we see that
they induce significant changes in mixing parameters, despite their quadratic suppression.
We mentioned above that there are also corrections from the right–handed leptons and

we want to briefly comment on this. In the A4 model the right–handed leptons are in the
singlet representations 1,1′ and 1′′. Therefore, the higher–order Kähler potential terms can
only look like

Kright =
3∑
i=1

∑
n=e,ν

κni
Λ2 (Ri Φn)† (Ri Φn) =

3∑
i=1

∑
n=e,ν

κni

(
R†i Ri

) (Φ†n Φn

Λ2

)
, (6.53)

where κni are dimensionless couplings. Due to this structure, we only get diagonal corrections
from the right–handed leptons, i.e. the associated P matrix is given by PR = diag(α1, α2, α3),
where the coefficients are unrelated and depend on the flavon VEVs and the couplings κni .
However, such corrections can only affect the mass eigenvalues of the charged lepton Yukawa
matrix, since we assumed that we are working in a basis where the latter is diagonal.
A variation of the discussed A4 model could also contain flavons in the 1′ and 1′′ repre-

sentation, which could lead to non–diagonal corrections in the right setup; however, just
as in the case of linear corrections this can easily be forbidden by an additional symmetry
since this requires either just one flavon, therefore being a first–order term, or two different
flavons.
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6.2.2 A T′ example
In the previous section we discussed Kähler corrections for an A4 example, but of course
the T′ example [115] from section 5.3.3 also gives rise to Kähler corrections, and, since we
have an extended flavon sector in this model, we expect an even greater variety in possible
correction terms.

Taking a look at the flavon content in table 5.5 shows that there are no allowed first–order
corrections since all flavons are charged under one of the Z12 symmetries. Furthermore,
we have the same corrections as in the A4 case, i.e. the P matrices from equation (6.52a)
and equation (6.52b) are also present. Beyond these terms there are also quadratic corrections
coming from the flavon doublets ψ and ψ′. To be specific,

(L⊗ ψ)†2 (L⊗ ψ)2 , (L⊗ ψ)†2′ (L⊗ ψ)2′ and (L⊗ ψ)†2′′ (L⊗ ψ)2′′ , (6.54)

and there are the same contractions with ψ′, but no mixed terms due to their different Z12
charges.
Taking the multiplication law from equation (5.65) we get e.g. the contribution(

L⊗ ψ′
)†

2′
(
L⊗ ψ′

)
2′ =

(√
2ψ′2 L3 + ψ′1 L2

)† (√
2ψ′2 L3 + ψ′1 L2

)
+

+
(√

2ψ′1 L1 − ψ′2 L2
)† (√

2ψ′1 L1 − ψ′2 L2
)
, (6.55)

which gives us the Kähler correction

∆K = κ2′2′

 2 (ψ′1)2 −
√

2 (ψ′1)† ψ′2 0
−
√

2ψ′1 (ψ′2)† (ψ′1)2 + (ψ′2)2 √
2 (ψ′1)† ψ′2

0
√

2ψ′1 (ψ′2)† 2 (ψ′2)2

+ h.c. . (6.56)

ψ′ has the VEV 〈ψ′〉 = (ψ′0, ψ′0)T , which gives us

∆K = κ2′2′ (ψ′0/Λ)2 P + h.c. with P =

 2 −
√

2 0
−
√

2 2
√

2
0

√
2 2

 . (6.57)

Substituting ψ′ for ψ, the same term gives us for 〈ψ〉 = (ψ0, 0)T

∆K = κ2′2′ (ψ0/Λ)2 P + h.c. with P = diag(2, 1, 0) . (6.58)

In appendix D.2 we compute all other terms from equation (6.54) with the flavons ψ, ψ′
and plug in their VEVs. For the corrections coming from the contraction of L and ψ we get
the P matrices

Pi = diag(0, 2, 1) , Pii = diag(1, 0, 2) and Piii = diag(2, 1, 0) , (6.59a)

which are proportional to (ψ0)2. The contractions with ψ′ lead to

Piv =

 2
√

2 −
√

2√
2 2 0

−
√

2 0 2

 , Pv =

 2 0
√

2
0 2 −

√
2√

2 −
√

2 2

 and

Pvi =

 2 −
√

2 0
−
√

2 2
√

2
0

√
2 2

 , (6.59b)
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which are all proportional to (ψ′0)2.
As we already mentioned, these are additional corrections in the T′ model since the P

matrices PI, . . . , PV of the A4 model from equation (6.52a) and equation (6.52b) are also
allowed by the group and flavon structure.

6.2.3 General P matrices

So far we discussed specific examples for Kähler corrections; however, it is also possible to
make general statements about the correction terms. The higher–order contributions have
to be Hermitian and, therefore, the P matrices can be expressed in form of nine Hermitian
basis matrices

P1 =

1 0 0
0 0 0
0 0 0

 , P2 =

0 1 0
1 0 0
0 0 0

 , P3 =

0 0 0
0 1 0
0 0 0

 , (6.60a)

P4 =

0 0 1
0 0 0
1 0 0

 , P5 =

0 0 0
0 0 1
0 1 0

 , P6 =

0 0 0
0 0 0
0 0 1

 , (6.60b)

P7 =

0 −i 0
i 0 0
0 0 0

 , P8 =

0 0 −i
0 0 0
i 0 0

 , P9 =

0 0 0
0 0 −i
0 i 0

 . (6.60c)

In this language, we can also express our previous results, e.g. the P matrices for T′
from equation (6.59a) and equation (6.59b),

Pi = 2P3 + P6 , Pii = P1 + 2P6 , Piii = 2P1 + P3 ,

Piv = 2 (P1 + P3 + P6) +
√

2 (P2 − P4) ,
Pv = 2 (P1 + P3 + P6) +

√
2 (P4 − P5) ,

Pvi = 2 (P1 + P3 + P6) +
√

2 (P5 − P2) , (6.61)

which makes the application of our formulae from section 6.1.2 much easier.

6.3 Implications
In the previous sections we showed that corrections due to Kähler potential terms occur in
models based on (non–)Abelian flavor symmetries and in section 6.1.2 we derived general
formulae, which describe how the mixing angles change. Now, we want to apply this
knowledge in practice, i.e. we want to see how the correction terms, which we derived
for explicit examples in section 6.2, affect the mixing angles for these well–known models.
Afterwards, we discuss the effects of these Kähler corrections on VEV alignment and FCNCs.

6.3.1 Corrections for general P matrices

Before we start discussing explicit examples, let us remind ourselves that all correction
terms from section 6.2 can be described with the help of nine Hermitian basis matrices P ,
cf. equation (6.60), and we can summarize the Kähler corrections for the P matrices by
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assuming certain initial conditions, e.g. bi–maximal or tri–bi–maximal mixing. We take the
Kähler potential to be

K = L† (1 + xL PL) L+R†R , (6.62)

where in this scenario only the left–handed sector is modified and we take PL to be one of
the nine P matrices from equation (6.60). For all matrices we take xL = 0.01 and we use for
the mass differences the PDG [71] values, cf. section 3.2. Furthermore, we fix the absolute
mass scale of the neutrinos by setting m1 = 0.01 eV. Then, using bi–maximal mixing as our
initial conditions, i.e.

θ12 = π

4 , θ13 = 0 , θ23 = π

4 , δ = undefined ,

δe = π , δµ = π , δτ = 0 , ϕ1 = ϕ2 = 2π , (6.63)

we get the results in table 6.1. On the other hand, table 6.2 contains the results when we

P1 P2 P3 P4 P5 P6 P7 P8 P9

∆θ12 [◦]: -1.0 0.20 0.51 0.20 1.0 0.51 0 0 0
∆θ13 [◦]: 0 -0.12 -0.016 0.12 0 0.016 -0.076 0.076 0.012
∆θ23 [◦]: 0 -0.023 -0.23 0.023 -0.29 0.23 0 0 0

Table 6.1: Changes of the mixing angles under Kähler corrections of the form ∆K = xL† Pi L
for x = 0.01 (cf. equation (6.60)) starting from bi–maximal mixing.

use tri–bi–maximal mixing as our initial condition, i.e.

θ12 = arcsin 1√
3
, θ13 = 0, θ23 = π

4 , δ = undefined ,

δe = π , δµ = π , δτ = 0 , ϕ1 = ϕ2 = 2π . (6.64)

We should note that in both initial conditions the phase δ is not defined since θ13 is zero.

P1 P2 P3 P4 P5 P6 P7 P8 P9

∆θ12 [◦]: -0.96 -0.28 0.48 -0.28 0.96 0.48 0 0 0
∆θ13 [◦]: 0 -0.12 -0.015 0.12 0 0.015 -0.073 0.073 0.012
∆θ23 [◦]: 0 -0.021 -0.24 0.021 -0.29 0.24 0 0 0

Table 6.2: Changes of the mixing angles under Kähler corrections of the form ∆K = xL† Pi L
for x = 0.01 (cf. equation (6.60)) starting from tri–bi–maximal mixing.

Therefore, we ensured for all P matrices that the transition of δ at θ13 = 0 is analytical [32].

6.3.2 Mixing angles in the A4 example
In section 5.3.1 we discussed a flavor model based on A4 which predicted tri–bi–maximal
mixing. However, we showed in section 6.2.1 that Kähler corrections occur for such a
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Figure 6.1: The effect of the Kähler correction ∆K on θ13, shown in equation (6.65) for
κV v

2/Λ2 = (0.2)2. The continuous line plots equation (6.66) while the dashed
line represents a numerical computation.

setting. In fact, there are five possible correction terms described by the matrices PI, ...,V
in equation (6.52). Take for example the correction due to PV, which originates from
(L ⊗ Φν)†3s(L ⊗ Φν)3a . Following its derivation in equation (6.47) we can determine the
additional Kähler potential term

∆K = κV ·
v2

Λ2 · 3
√

3 · (Lf )† (PV)fg (Lg) , (6.65)

where κV denotes an undetermined Kähler coefficient. Using our analytic formulae from sec-
tion 6.1.2 here and setting the initial conditions to tri–bi–maximal mixing we get a rather
simple formula for the change in θ13,

∆θ13 = κV ·
v2

Λ2 · 3
√

3 · 1√
2

(
2m1

m1 +m3
+ m2

e

m2
µ −m2

e

+ m2
e

m2
τ −m2

e

)

' κV ·
v2

Λ2 · 3
√

6 m1
m1 +m3

, (6.66)

where the mi are the neutrino masses and we simplified the formula by ignoring the small
contributions of the charged leptons. This even simplifies further since for very large m1,
compared to the mass differences ∆mij , we get m1/(m1+m3)→ 1/2.
Using the PDG [71] values for the mass differences we can plot ∆θ13 only depending on

m1. The result is shown in figure 6.1. Note that we set the ratio of VEV v over scale Λ to 0.2
and choose the Kähler coefficient κV = 1. As we can see in this figure the correction to θ13 is
rather large; recall that the angle is zero in the uncorrected model. In particular ∆θ13 ≈ 8.4◦
for large m1 as can be seen from our analytic formula in equation (6.66) for m1 � ∆mij .
If we now consider the change in the other two mixing angles, θ12 and θ23, we would

assume from table 6.2 that there is no change due to PV since there is no change in mixing
angles due to P7, P8 or P9, which make up PV. However, the values in table 6.2, and also
in table 6.1, are computed for a fixed mass scale and only using the linear approximation
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Figure 6.2: Changes of (a) θ12 and (b) θ23 due to the Kähler correction ∆K shown in equa-
tion (6.65) for κV v

2/Λ2 = (0.2)2, which were computed numerically.

for the change in mixing angles. But we just showed that e.g. θ13 experiences large Kähler
corrections, which in turn also influences the other mixing angles. We, therefore, computed
numerically the change in θ12 and θ23 [117] depending on the size of m1. The results can
be found in figure 6.2, again using κV v

2/Λ2 = (0.2)2 and the PDG [71] values for the mass
differences. We can see in these plots that, in contrast to θ13, the change in mixing angles is
much smaller and, therefore, θ12 and θ23 remain almost unaffected [31,32].

If we assume that the Kähler corrections are only created by PV, we could make the model
phenomenologically competitive since the current experimental value for θ13 is between 8◦
and 9◦, cf. table 3.1, which is compatible with figure 6.1. Also, the other angles do not
change much, as we see in figure 6.2, and the tri–bi–maximal predictions for them are within
the acceptable reach. Kähler corrections due to the matrix PV are also interesting because
they might create CP violation since the entries of PV are complex. Especially, this could be
of interest in regard with the ongoing discussion of CP violation from group theory and in
flavor model building [119,120].
However, so far we only discussed corrections due to PV and not due to any of the other

matrices we computed in section 6.2.1. These matrices also contribute to the correction
of the mixing angles and their effects might be quite different. If we consider for example
the Kähler corrections due to PIV, which generated by the singlet contractions, e.g. (L ⊗
Φν)†1 (L⊗ Φν)1 + h.c, we get the additional Kähler potential term

∆K = κIV ·
v2

Λ2 · 2 · (L
f )† (PIV)fg (Lg) , (6.67)

where κIV is an undetermined Kähler coefficient. Using our analytic formulae we can now

75



Chapter 6 Corrections due to Kähler potential terms

determine the change e.g. in θ12, and this is given by

∆θ12 = κIV ·
v2

Λ2 ·
√

2 ·

(
m2
µm

2
τ −m4

e

)
(
m2
e −m2

µ

)
(m2

e −m2
τ )
, (6.68)

which only depends on the charged lepton masses and not on the neutrino masses. We can
plug in the masses and get a change ∆θ12 ≈ 3.2◦ for κIV = 1 and v/Λ = 0.2. For θ23 we get
a similar result, also independent of the neutrino masses, and we get a mixing angle change
∆θ23 ≈ −2.3◦. θ13 is not changed by the Kähler correction from PIV. Note that there is an
ambiguity concerning κIV since its sign is undetermined and therefore also the signs of the
∆θij ; either way, one of the angles, i.e. θ12 or θ23, is driven away from its best fit value while
∆θ13 = 0.

We further discuss the general implications of these results for flavor model building
in section 6.3.4.

6.3.3 Mixing angles in the T′ example

In section 5.3.3 we described a flavor model based on the non–Abelian group T′ which predicts
almost tri–bi–maximal mixing but with θ13 ≈ 3◦. However, Kähler corrections occur in this
model, as we have seen in section 6.2.2. In particular, the just for A4 described matrices
PI, ...,V occur, due to the T′ triplets, as well as additional corrections from the matrices
Pi, ..., vi, cf. equation (6.59). The latter are generated from the T′ doublets. Naturally, we can
ask ourselves if the same mixing angle changes as for A4 arise in the T′model.

Even though the same correction terms as in A4 occur, the results are different in T′ . The
reason for this is given by the different initial conditions in both models. The A4 model starts
from tri–bi–maximal mixing, contrary to the T′model which predicts θ12 ≈ 33◦, θ23 = 45◦
and θ13 ≈ 3◦. Furthermore, our formulae are only applicable in a situation where the charged
lepton Yukawa matrix is diagonal, which is also not the case for the T′model. Hence, we first
have to perform a basis transformation in order to diagonalize the charged lepton Yukawa
matrix. This will not affect the mixing matrix and, thus, also not the mixing angles, since it
is a basis transformation. However, the structure of the correction matrices P changes.
So far we determined the P matrices in section 6.2.2 from a Kähler potential term

(L⊗ Φ)†r (L⊗ Φ)r which leads, after VEV insertion, to the Kähler correction

∆K ⊃ L† P L+ h.c. , (6.69)

in a basis where the charged lepton Yukawa matrix is non–diagonal. In order to use our
formulae we have to diagonalize the Yukawa matrix, which redefines the charged leptons L
through some matrix V . Therefore, we also need to redefine the P matrix

L† P L → (V L)† P V L = L† P̃ L , (6.70)

where we have P̃ := V † P V .
Using this method, and the correct initial conditions, we can now analyze the effects of

the Kähler corrections for the T′model. We start by looking at the matrix PV, or rather
P̃V, which had a rather large effect in the A4 model. We have to consider that the T′model
predicts absolute neutrino masses, e.g. m1 = 0.0156 eV, hence the mass scale is fixed and
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Figure 6.3: Change of θ13 in the T′model due to the Kähler correction from the matrix PV.
We distinguish between the results of the analytical formulae (continuous line)
and a numerical computation (dashed line).

we can only vary the expansion parameter x = VEV2/Λ2 and some Kähler coefficient κV,
which we set κV = 1. The change in θ13 can be found in figure 6.3.

From this plot we see that the maximal ∆θ13 we can get is around 3◦, which would give
us θ13 ≈ 6◦. There is the possibility that several flavons contribute to this angle, but this
requires for their effects to align and to be of similar strength in order to get θ13 ≈ 9◦, which
is rather unrealistic. Furthermore, the original T′model [115] needs to set rather small VEVs
in which case the Kähler corrections become irrelevant.

Let us now consider corrections that are not present in A4 models, i.e. corrections due to
the matrices Pi, ..., vi from equation (6.59). For example, we can pick Pvi, which is due to the
contraction (L⊗ ψ′)†2′(L⊗ ψ′)2′ in equation (6.55), where ψ′ is a T′ flavon doublet. Before
we compute the change in mixing angles, we have to again modify the matrix and, hence, get
P̃vi in a basis where the charged lepton Yukawa matrix is diagonal. Then using the correct
initial conditions and neutrino masses we can plot the mixing angle change, e.g. ∆θ23, over
the expansion parameter VEV2/Λ2 in figure 6.4.

This plot shows us that ∆θ23 does not get particularly large even for κvi VEV2/Λ2 = (0.2)2.
Also, one should consider the smallness of the VEVs in the original T′model, besides for one
flavon, which would again render the effect to be insignificant.

6.3.4 General comments on flavor symmetries

In the previous sections we discussed two interesting models and the effects that Kähler
corrections have in these cases. For both models we solely focus on quadratic corrections of
the left–handed leptons since linear corrections, although they would be less suppressed, can
easily be forbidden by an additional symmetry. The corrections for the right–handed fields
are not considered since they only change the overall normalization or can be forbidden as
well.

For the first model, based on A4, we generate phenomenologically viable θ13 ≈ 8◦ through
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Figure 6.4: Change of θ23 in the T′model due to the Kähler correction from the matrix Pvi.
We distinguish between the results of the analytical formulae (continuous line)
and a numerical computation (dashed line).

the consideration of the Kähler corrections. However, this was based only on the analysis of
one correction matrix PV while ignoring four other such matrices. We showed that for the
case of PIV the effects are very different and actually do not improve the situation since either
θ12 or θ23 are driven away from their best fit value, and similar situations occur for the other
P matrices, i.e. their effects are not compatible with experimental measurements [31,32].
The situation is different for the second model, based on T′ . Due to the changed initial

conditions, e.g. non–zero θ13 and non–diagonal charged lepton Yukawa matrix, the effects of
Kähler corrections on the mixing angles are smaller. Even if we assume a much larger VEV
over scale ratio than is given in the model, recall that in the original model [115] the ratio is
usually quite small, we can lift e.g. θ13 only up to ≈ 6◦ [32].
We derived analytic formulae in section 6.1.1 and we also provide a Mathematica pack-

age [124], which allows us to apply our discussion to other concrete models with some
flavor group GF . As we mentioned previously, quadratic corrections with one flavon Φ, i.e.
(L⊗ Φ)†r (L⊗ Φ)r where r is a representation of GF , cannot be forbidden by a conventional
symmetry and will always be present; thus one always has to consider Kähler corrections
when building a flavor model. The only way to avoid such corrections is to decrease the size
of the flavon VEV, which is usually not allowed for all flavons since the expansion parameter
of the symmetry breaking is given by VEV over scale and, therefore, determines the size of
the couplings.

The effects of the Kähler corrections show on the one hand that it might be premature to
rule out certain flavor models solely on their predictions from the superpotential. It seems
possible that previously dismissed models can become phenomenologically interesting if we
consider corrections from the Kähler potential, which bares hope for some simple models.
On the other hand, we showed that the inclusion of Kähler corrections can destroy the nice
properties of rather sophisticated constructions since they are difficult to control and (almost)
impossible to forbid. Therefore, very fine–tuned models might be spoiled by the inclusion of
the effects.
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This generates a difficult to control problem. One way out is to try to build viable models,
which include all effects from the superpotential and the Kähler potential. This can be
rather cumbersome since it is unclear how to control the Kähler corrections in a particular
way. Another option is to address precisely this part of the problem and try to gain a
better understanding of the Kähler potential and its terms. Especially the undetermined
Kähler coefficients play an important role since their size controls the effect of the Kähler
corrections. We might be able to compute them analytically, e.g. through higher–dimensional
calculations in string theory [125–127] or wave function overlaps [128,129]. However, so far,
for our purposes no significant progress has been made, thus we need to be careful when
making predictions in flavor model building, in particular, when they are solely based on the
superpotential.

6.3.5 VEV alignment

We have seen that the Kähler corrections might have severe effects on the mixing angles and
it is, therefore, somewhat natural to ask if they have further implications. One important
aspect of flavor model building is the issue of VEV alignment, i.e. the particular form the
flavon VEVs take in a given theory, and one might wonder if the Kähler corrections affect
this alignment, e.g. by changing the F–flatness conditions of the given theory. As it turns
out [32] this is not the case since the conditions are the same for a canonical and for the
corrected Kähler potential.
Furthermore, the Kähler corrections also do not change the D–flatness conditions since

for the usual models there is only the SM gauge group present and the flavon is a singlet
with respect to this group, e.g. in the A4 model. If there is a larger gauge group and the
flavon is also charged under this group the situation is more complicated and one has to
check this by hand. An exception to this is if there is only one VEV acquiring field that is
also charged under the larger gauge group; then, the D–flatness conditions automatically
remain unchanged [32], e.g. for our T′ example.
Therefore, we see that for most models the Kähler corrections do not affect the VEV

alignment of a given model.

6.3.6 FCNCs

At the end of section 5.1.1 we discussed the importance of flavor symmetries in order to
forbid dangerous flavor changing neutral currents. However, the discussion in section 5.1.1
does not take into account the possibility of Kähler corrections, which might induce FCNCs.
Let us recall the relevant Kähler potential soft–breaking terms from section 2.1.6

K ⊃
(

X

Λsoft
nfg

(
Lf
)†
Lg + h.c.

)
+ X†X

Λ2
soft

kfg
(
Lf
)†
Lg + L→ R , (6.71)

and the soft–breaking superpotential terms, i.e. the A terms

W ⊃ X

Λsoft

(
Y X

)
fg
Lf RgHd , (6.72)

where we replaced the superfield Ψ from equation (2.18) and from equation (2.17) with the
appropriate lepton or Higgs fields. Since we assume a flavor symmetry to be present, we

79



Chapter 6 Corrections due to Kähler potential terms

know from our discussion in section 5.1.1 that the matrices n and k are diagonal in flavor
space and we can define

(nL/R)fg = κL/R δfg , (6.73a)
(kL/R)fg = κ′L/R δfg , (6.73b)

with κL/R and κ′L/R being order one coefficients. We also assume that we start from a
canonical Kähler potential before we take the flavon corrections into account, i.e. the Kähler
metric K is diagonal as well,

(
KL/R

)
fg

= δfg.
These Kähler potential and superpotential terms lead to the soft–breaking Lagrangian

Lsoft ⊃ −(˜̀f )† (m̃2
LL)fg ˜̀g − (r̃f )† (m̃2

RR)fg r̃g −
(˜̀f (ALR)fg r̃g + h.c.

)
, (6.74)

where ˜̀ and r̃ denote the left– and right–handed slepton fields, respectively. As we described
in equation (2.19), the supersymmetry breaking parameter is defined by the spurion VEV
over the breaking scale and for our purposes here we define M̃2 = |〈FX〉|2

Λ2
soft

. Using this we can
express the terms in equation (6.74) by(

m̃2
LL/RR

)
fg

= M̃2
[
κ′L/R + |κL/R|2

]
δfg , (6.75a)

(ALR)fg =
√
M̃2

[
(Y X
e )fg + (nL)fi (Ye)ig + (Ye)fi (nR)ig

]
, (6.75b)

where we used equation (6.73) in the first line and where Ye is the usual electron Yukawa
coupling.

As we can see in equation (6.75a) the soft mass matrix starts out to be diagonal; however,
this is before we consider the Kähler corrections. It is also possible to have contractions of a
flavon Φ with the soft–breaking terms, e.g.

K ⊃ κ′ X
†X

Λ2
soft

1
Λ2 (L⊗ Φ)†r (L⊗ Φ)r , (6.76)

where r is some representation of the flavor group. After the flavon acquires its VEV we get
effective coupling matrices, which do not necessarily have to be diagonal

(KL/R)fg = δfg − 2x (Pkin,L/R)fg , (6.77a)

(nL/R)fg = κL/R
[
δfg − 2x (NL/R)fg

]
, (6.77b)

(kL/R)fg = κ′L/R

[
δfg − 2x (Psoft,L/R)fg

]
, (6.77c)

where x is the expansion parameter of flavor symmetry breaking. Pkin describes the Kähler
corrections which we have discussed so far, e.g. in section 6.2, whereas N and Psoft come from
terms like equation (6.76), i.e. the contractions with the soft–breaking terms, and all of these
matrices are unrelated. The effective couplings are suppressed by the expansion parameter x,
which is usually given by (VEV/Λ)2 since the terms are normally created through quadratic
corrections.4

4Recall from section 6.2 that linear corrections can always be forbidden by some additional symmetry which
is not the case for quadratic ones.
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The Kähler metric now contains off–diagonal terms and, as in section 6.1.1, we have to
rotate the lepton fields in order to canonically normalize them,

Lf → L′f = [δfg + x (Pkin,L)fg] Lf , (6.78a)
Rf → R′f = [δfg + x (Pkin,R)fg] Rf , (6.78b)

and, therefore, we get transformed coupling matrices

(n′L/R)fg = κL/R
[
δfg + 2x

(
(Pkin,L/R)fg − (NL/R)fg

)]
, (6.79a)

(k′L/R)fg = κ′L/R

[
δfg + 2x

(
(Pkin,L/R)fg − (Psoft,L/R)fg

)]
. (6.79b)

Note that we only consider terms which are first order in x, e.g. there are no terms ∝
x2 Pkin Psoft. Furthermore, we might have to rotate into a basis where the charged lepton
Yukawa matrix is diagonal in order to compare our results to experiments. However, we
start with a diagonal Yukawa matrix by assumption, and the off–diagonal terms are induced
by corrections of the order x. Therefore, this will not affect n or k at the linear order since
we ignore higher order terms.

Inserting these results into equation (6.75a) we get the soft mass matrix for the sleptons,
up to linear order in x,

(m̃2
LL/RR)fg = M̃2

{(
κ′L/R +

∣∣∣κL/R∣∣∣2) δfg

+ 2xκ′L/R
[
(Pkin,L/R)fg − (Psoft,L/R)fg

]
+ 2x

∣∣∣κL/R∣∣∣2 [(Pkin,L/R)fg − (NL/R)fg + h.c.
]}

. (6.80)

We see in this equation that all off–diagonal terms are suppressed by a factor x compared to
diagonal terms and one might even think of cases where there are cancellations between Pkin,
N and Psoft, which remove the off–diagonal elements. However, for the following discussion
we assume that the off–diagonal terms are of order x.

For the A terms the situation is similar. Before we take the Kähler corrections into account
the A terms in equation (6.75b) are, in first order, diagonal since we assume that we are
in a basis where the charged lepton Yukawa matrix Ye is diagonal. However, due to the
transformations in equation (6.78) we modify the second and third term in equation (6.75b)
and from equation (6.79a) we see that the thus induced off–diagonal terms are suppressed by
a factor of x. Also, the smallness of the lepton masses suppresses these entries even further.
Furthermore, at the end of section 5.1.1 we argued that there should not be a large deviation
in size between the Yukawa couplings and the A terms, so dangerously large entries in Y X

e

should not occur. This assumption remains unchanged since the rotations in equation (6.78)
should only affect off–diagonal terms in Y X

e up to a factor of x times the diagonal entries
which are small to begin with. Therefore, this does not pose a threat.

We see in equation (6.80) that the Kähler corrections create off–diagonal terms for the soft
masses and we just discussed the case for the A terms. In both cases the off–diagonal entries
are at most of order x or even smaller. Nonetheless, FCNCs are induced by such entries, in
general through slepton, chargino, higgsino and neutralino loops. This poses experimental
constraints on the size of the off–diagonal terms and the strongest constraint comes from
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the process µ→ e γ, see e.g. figure 5.1 in section 5.1. In SUSY, photino and slepton loops
contribute to this decay and this is given by [130]

Br(µ→ e γ) = 12π α3

G2
Fm

4
SUSY

∣∣∣∣∣(δ12)LLM3(y) +
√
ymSUSY
mµ

(δ12)LR M1(y)
∣∣∣∣∣
2

+ (L↔ R) . (6.81)

Here, mSUSY is the soft SUSY breaking mass, GF is the Fermi constant and α is the fine–
structure constant. The loop factors M1(y) and M3(y) depend on the mass–squared ratio
between photino and slepton, y = m2

γ̃
/m2˜̀, where we set m˜̀ ∼ mSUSY and their precise

expression can be found in [130]. For the following analysis it is sufficient to state the
upper bounds for M1(y) and M3(y), which are given by M1(y) < 0.5 and M3(y) < 0.083.
The parameters (δ12)LL and (δ12)LR are the so–called mass insertion parameters and they
describe the ratio between the off–diagonal and the diagonal entries of either m̃2, in the
case of (δ12)LL, or the A terms, in the case of (δ12)LR. We know from equation (6.80) that
(δ12)LL ∼ x and we know from our discussion of the A terms that the off–diagonal ones are
proportional to x times the according Yukawa matrix entry. In this case we can, therefore,
estimate its size to be M̃ x yµ which gives us (δ12)LR ' (xmµ)/mSUSY.

So far we have assumed that the expansion parameter is given maximally by the Cabibbo
angle squared, i.e. x . 0.04 and we use this now for our analysis of equation (6.81) in
order to determine a bound for the supersymmetric scale mSUSY. The current experimental
limit for the decay rate µ → e γ is given by the MEG collaboration [100], i.e. Br(µ →
e γ)exp < 5.7× 10−13, and for a photino to slepton mass–squared ratio of y = 5 we have a
lower bound for the soft SUSY breaking mass of mSUSY ≥ 1 TeV, whereas for y = 2, we
get mSUSY ≥ 1.4 TeV, and for y = 0.5, we have mSUSY ≥ 1.8 TeV. As soon as we go to
mSUSY ≥ 2 TeV, the experimental limits are always satisfied and the result is independent of
the photino to slepton mass–squared ratio. 5

Therefore, it is always possible to fulfill the experimental constraints by adjusting the
soft SUSY breaking scale accordingly, thus the Kähler corrections can be sizable without
inducing too large FCNCs.

5Note that in [32] the experimental limit was given by Br(µ → e γ)exp < 2.4 × 10−12 [71], and the limits
on the soft SUSY breaking mass mSUSY were less strict, e.g. the experimental constraints were always
satisfied for mSUSY ≥ 1.4 TeV.
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Chapter 7

Holomorphic zeros and a ZR4 Dirac NMSSM

In chapter 2 we introduced supersymmetry and some supersymmetric models, in particular,
the MSSM. We noted that the MSSM, as well as its singlet extension, the NMSSM, suffers
from a fine–tuning problem. We also introduced the Dirac NMSSM, which might ameliorate
this issue; however, the extra ingredients for this model were not very well motivated and
introduced rather ad hoc.

In chapter 5 we discussed flavor symmetries, and we saw in section 5.2 that models based
on a U(1)R symmetry allow us to explain the fermion mass hierarchies and most mixing
angles, especially, if we combine the models with a non–Abelian flavor symmetry for the
neutrino mixing, cf. section 5.3.
We want to bring these two discussions together and show how we can obtain a more

natural Dirac NMSSM from a U(1)R symmetry, a model we call “ZR4 Dirac NMSSM” [33].
One of the main reasons that allows us to construct such a model in section 7.2 are the
so–called holomorphic zeros, which we will discuss in the following section.

7.1 Holomorphic zeros
In section 5.2 we discussed a pseudo–anomalous U(1)R symmetry with a residual ZR4 . Given
such a U(1)R symmetry, where the anomaly coefficients AG−G−U(1)R are greater than zero,
we need a negatively charged field to acquire a VEV in order to cancel the Fayet–Iliopoulos
term. In our case, this is the flavon Φ, which has either charge −4 or −12, depending on the
normalization of the fields. In such a scenario, any operator O with negative U(1)R charge
is forbidden by the holomorphicity of the superpotential since we cannot find a n > 0 such
that ΦnO is an allowed superpotential term. These are holomorphic zeros [131], a feature of
pseudo–anomalous U(1)R symmetries.

Take, for example, our models in section 5.2, which break the U(1)R symmetry to the well–
known ZR4 symmetry from section 4.2.4; precisely this ZR4 symmetry, where qHu = qHd = 0
and qθ = 1, cf. table 4.2, allows for a potentially dangerous superpotential term

W ⊃ XHuHd , (7.1)

if the spurion X, which breaks SUSY when its F term acquires a VEV, has R charge 2.
Then, this coupling results in a dangerously large Bµ term of the order m3/2 MP. If we
assume that the ZR4 is the residual symmetry of a spontaneously broken pseudo–anomalous
U(1)R symmetry, we can forbid such a term with holomorphic zeros. This is the case if the
spurion X carries U(1)R charge

RX = 2Rθ −RHu −RHd + nRφ with n > 0 . (7.2)
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The coupling X φmHuHd is then forbidden by the holomorphicity of the superpotential, even
though, from the perspective of the ZR4 symmetry, the coupling would be allowed. Therefore,
the dangerous Bµ term is forbidden by holomorphic zeros [33], and we use similar charge
assignments in the next section in order to forbid other unwanted terms in the superpotential.

Before we use holomorphic zeros to build a more natural Dirac NMSSM, let us note that
the holomorphic zeros get in principle lifted by non–perturbative effects [132]. Consider a
negatively charged operator O. It is possible that a term

Wnp ⊃ e−b S O , (7.3)

can be generated and is an allowed superpotential term. Here, S is the dilaton that contains
the Green–Schwarz axion a via S|θ=0 = s+ i a, and the coefficient b depends on the hidden
sector superpotential. Unfortunately, the size of these quantities can only be determined as
soon as we know the “full” theory, i.e. a UV completion of the model [33]. Therefore, we can
only estimate the size of the non–perturbative effects and it is reasonable to assume that
their size does not exceed m3/2 [33]. In the following sections we assume that the effects are
rather suppressed compared to m3/2; nonetheless, we should keep in mind that in principle
holomorphic zeros are lifted by non–perturbative effects and that their precise size depends
on the hidden sector of the UV complete model.

7.2 How to build a ZR4 Dirac NMSSM

In section 5.2 we saw that flavor models with a U(1)R–derived ZR4 symmetry have many
appealing features. So far these models predicted a MSSM particle content and, therefore,
have the same fine–tuning and Higgs issues. As we reviewed in section 2.2.3, the Dirac
NMSSM does not suffer from this problem, and we now want to embed this model within a
pseudo–anomalous U(1)R symmetry.
Let us remind ourselves what extra ingredients we need in order to obtain the Dirac

NMSSM from the usual MSSM. As we saw in section 2.2.3, the Dirac NMSSM superpotential
is given by

W = λN HuHd +M N N + WMSSM , (7.4)

where N and N are SM singlets, λ is a dimensionless coupling, and M the Dirac mass term.
Furthermore, the Higgs mass gets lifted through the soft mass of N , i.e. we also have the
soft term

Vsoft ⊃ mN |N |
2 , (7.5)

which we assume to be of order m3/2. We achieve this by introducing a SUSY breaking
spurion X, which gives us the soft term in equation (7.5) through

K ⊃ XX†

M2
P
N N

†
. (7.6)

Hence, the assumption mN = m3/2 is equivalent to 〈FX〉 = m3/2 MP. In summary, we need
to introduce the fields N , N and the spurion X.
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We need to assign appropriate U(1)R charges to the additional fields. The charge of the
singlet N is fixed directly due to the charge of the Higgs bilinear,

RN = 2Rθ −RHu −RHd . (7.7)

Given this charge assignment and the fact that RHu +RHd = 0 mod RΦ, which is given for
all models from section 5.2, we can distinguish two cases. In the first case, the charge of the
Higgs bilinear is negative and, therefore, we can have an effective linear term for the singlet
N . In fact, some terms like ΦnNm are allowed in the superpotential, and especially m = 1
would be possible. In the second case, the Higgs bilinear has positive U(1)R charge and an
effective linear term in N is forbidden by holomorphic zeros. The first case is realized in
models #1–4 in appendix B.2 and the second one in models #5–12. Thus, from now on we
only consider models #5–12 in order to build a ZR4 Dirac NMSSM.

Let us return to the charge assignment for the other fields. The Dirac mass M should be
generated effectively from the Kähler potential,

K ⊃ X†

MP

(Φ
Λ

)n
N N , (7.8)

which results in a mass of order M ∼ εnm3/2. Recall that ε = 〈Φ〉/Λ ∼ 0.2. As we mentioned
in section 2.2.3, we need mN ∼ m3/2 to be of order 10 TeV and 700 GeV .M . 5 TeV [36]
for the Dirac mass M . Therefore, we choose n = 1 in equation (7.8) which fixes the spurion
charge to

RX = Rφ +RN +RN . (7.9)

The next step is now to fix the charge of the singlet N , which is connected to the spurion
charge RX . We should remind ourselves that we want to have matter parity as a residual
symmetry after SUSY breaking. This in turn means that the spurion X should have even
ZR4 charge. We can see in equation (7.9) that the first two contributions have even charge,
hence RN should also have even charge. Therefore, we set

RN = m

2 Rφ = −2mRθ with m ∈ N , (7.10)

and we get for the spurion

RX = RN + m+ 2
2 Rφ = RN − 2 (m+ 2) Rθ . (7.11)

Here, we use Rφ = −4Rθ as is the case for models #5–12. Now all parts in equation (7.9)
are even and matter parity remains intact after SUSY breaking. Also note that we choose
m > 0 which forbids unwanted terms for the singlet N , i.e. an (effective) linear term and a
supersymmetric mass for N are forbidden by the holomorphicity of the superpotential, just
as it is the case for N .
Nonetheless, we also have to ensure that we cannot create such dangerous operators

effectively from the Kähler potential. Arguably, the most dangerous operators are the linear
terms for the singlets,

K ⊃ X†
(
φ

Λ

)a1
(
φ†

Λ

)a2

N y Weff ⊃ εa1+a2 m3/2 MPN , (7.12a)

K ⊃ X†
(
φ

Λ

)ã1
(
φ†

Λ

)ã2

N y Weff ⊃ εã1+ã2 m3/2 MPN , (7.12b)
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where ai, ãi ∈ N. We only consider the largest, i.e. most troublesome, operator, and, hence,
we either set a1 = 0 or a2 = 0, and the same for the ãi. These operators turn out to be
allowed if we choose m even in equation (7.10), and we would need to choose a very large ai,
or ãi respectively, in order to suppress their contribution significantly. Therefore, we need to
choose m odd.
However, this choice does not forbid effective supersymmetric masses for the singlets N ,

N from the Kähler potential,

K ⊃ X†

MP

(
φ

Λ

)b1 (φ†
Λ

)b2
N2 y Weff ⊃ εb1+b2 m3/2 N

2 , (7.13a)

K ⊃ X†

MP

(
φ

Λ

)b̃1 (φ†
Λ

)b̃2
N

2 y Weff ⊃ ε̃b1+b̃2 m3/2 N
2
, (7.13b)

where bi, b̃i ∈ N. Such terms occur for odd m and appropriate bi, b̃i. Note that we again
always take only one of the bi, or b̃i respectively, equal to zero in order to consider the largest
contribution.
We have potentially dangerous operators for all choices of m; however, we can choose m

to be odd, forbidding linear terms as in equation (7.12), and large in such a way that the
supersymmetric masses in equation (7.13) are sufficiently suppressed. As it turns out, the
supersymmetric mass for N is less suppressed than the one for N ,1 and its suppression is
related to m through

m =

3− 2
(
b̃1 − b̃2

)
> 0 for models #5–10 ,

5− 2
(
b̃1 − b̃2

)
> 0 for models #11–12 .

(7.14)

Recall that we want m > 0 in order for holomorphic zeros to forbid the linear terms, therefore,
we have to increase b̃2 to achieve a large suppression in equation (7.13). A suppression
of the order ε8, for example, can be achieved by choosing b̃1 = 0 and b̃2 = 8, and this
gives us supersymmetric masses of the order MeV, if we assume m3/2 ∼ 10 TeV. According
to equation (7.14) we would then need to choose m = 19 and hence RN = −38Rθ for models
#5–10, whereas for models #11–12 we would need m = 21 and RN = −42Rθ.

In summary, we find now that we can constrain the charges of the additional fields to be

RN = 2Rθ −RHu −RHd , (7.15a)
RN = −2mRθ , (7.15b)
RX = RN − 2 (m+ 2) Rθ , (7.15c)

where m > 0 is odd and chosen according to Equation (7.14) for an appropriate suppression
of the effective supersymmetric masses in Equation (7.13). This is only valid for models
#5–12.
Before we discuss an explicit realization of these models, let us note that we can avoid

supersymmetric masses for N and N altogether if we introduce a Z2 symmetry under which
only the spurion X and the singlet N are charged. Such a symmetry forbids all potentially
dangerous terms and allows any value m > 0. Furthermore, we should mention that the
MSSM µ term is also forbidden by holomorphicity but an effective µ term is generated by
the singlet VEV 〈N〉.

1We get b1 + b2 = b̃1 + b̃2 + 2, where either b1 = b̃1 = 0 or b2 = b̃2 = 0 for the largest contribution.
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7.3 An example ZR4 Dirac NMSSM

In the previous section we showed that we can add the SM singlets N , N and the spurion
X to a certain subset of the models which we discussed in section 5.2, models #5–12
from appendix B.2, in order to obtain a ZR4 Dirac NMSSM. Now we want to present an
explicit example of this procedure; for this we use model #6b from section 5.2.3. We find
the charges of the MSSM fields in table 5.2, and the U(1)R charges of the additional singlets
are chosen according to equation (7.15). Thus we get

RN = −6 , RN = −114 and RX = −132 , (7.16)

which gives us a sufficient suppression for the supersymmetric masses of N and N , i.e. b̃2 = 8
in equation (7.14). The relevant charges for the Dirac NMSSM are summarized in table 7.1.
Note that after U(1)R breaking we first get a ZR12 symmetry, which is the product of our

φ θ Hd Hu N N X matter
U(1)R -12 3 12 0 -6 -114 -132 see Table 5.2
ZR4 0 1 0 0 2 2 0 1

Table 7.1: Model #6b from Section 5.2.3 with the fields N,N and the spurion X. After the
breaking of U(1)R we get a ZR12 = ZR4 × Z

SU(3)C
3 symmetry where the ZR4 is our

desired symmetry.

desired ZR4 symmetry times the non–trivial center of SU(3)C, and we only display the ZR4
charges in table 7.1.
These charges allow us to write down the superpotential

W ⊃ λN HuHd + Yukawas , (7.17)

where λ is a dimensionless constant and the Yukawa couplings give the desired fermion mass
hierarchies and mixings as described in section 5.2. The Kähler potential contains the terms

K ⊃
(
k1

X†

MP

φ

Λ N N + h.c.
)

+ k2
XX†

M2
P
N N

†
, (7.18)

where the ki are dimensionless constants. The first bracket will lead after SUSY breaking to
a Dirac mass term of the order εm3/2, i.e. the effective superpotential is given by

Weff ⊃ λN HuHd +M N N + Yukawas , (7.19)

with M ∼ εm3/2. The second term in equation (7.18) gives us the usual soft breaking mass
of the order m3/2 for N

Vsoft ⊃ m2
N
|N |2 , (7.20)

with mN =
√
k2m3/2. The benchmark model from section 2.2.3 can now easily be reproduced,

e.g. by settingm3/2 ∼ O(10)TeV and
√
k2 ∼ 1.5, assuming as usual ε ∼ 0.2. Such a parameter

setting allows us to raise the Higgs mass to a viable value [36].
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This procedure can now be reproduced for any model #5–12 from appendix B.2, and we
obtain a ZR4 Dirac NMSSM. This relies mainly on holomorphic zeros, which forbid unwanted
operators, and we use them in the next sections again in order to explain the neutrino mixing
in these models. We will use our just discussed example model, but the procedure can be
applied to all other models as well [33]; however, we first need to distinguish between see–saw
induced and Dirac neutrinos.

7.3.1 See–saw neutrinos
So far our example model #6b did not include any right–handed neutrinos, which we need
in order to explain the neutrino mixing. The original models [110] use the type I see–saw
mechanism to explain the neutrino mixing. Therefore, we add three right–handed neutrinos
νi to the model and assign them appropriate R charges, choosing

Rνi = 45 , ∀i , (7.21)

allowing for an appropriate neutrino mass scale [110]. Now, all right–handed neutrinos have
ZR4 charge 1 after U(1)R breaking and we can write down all operators necessary for the
see–saw mechanism. The neutrino mass scale of this model is then mν

abs ∼ O(0.1) eV,2 and,
as described in section 5.2.4, the neutrino mixing matrix is given by

Mν ∼

 1 1 1
1 1 1
1 1 1

 . (7.22)

The structure of this matrix invites us to either consider an anarchical scenario for the
neutrino mixing or to introduce a non–Abelian flavor symmetry in order to control the
mixing angles, cf. section 5.3.

7.3.2 Dirac neutrinos
An alternative to the see–saw induced neutrino masses are Dirac neutrinos, as we briefly
mentioned in section 5.2.4. As in section 4.2.2, we want to have sufficiently suppressed Dirac
neutrino masses from the Kähler potential. Therefore, we need X† LHu ν to be an allowed
Kähler potential term. This automatically fixes the charge of the right–handed neutrinos

Rνi = RX −RLi −RHu , (7.23)

and for our model we have Rνi = −105 for all i, cf. table 7.1, and hence the right–handed
neutrinos have ZR4 charge 3 after U(1)R breaking. We get the effective superpotential

K ⊃ X†

M2
P
LHu ν y Weff ⊃ Yν LHu ν , (7.24)

with sufficiently suppressed Yukawa couplings, i.e.

Yν ∼
m3/2

MP

 1 1 1
1 1 1
1 1 1

 , (7.25)

2This assumes ε ∼ 0.2 and that MP is the fundamental scale of our theory.
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again allowing for an interesting neutrino mixing structure.
The fact that the right–handed neutrinos have such large negative charges implies that

the Majorana mass term, as well as the superpotential Dirac Yukawa term LHu ν, is
forbidden by holomorphicity. Furthermore, dangerous proton decay operators, such as
U DD ν from section 4.2.3, are forbidden by holomorphic zeros as well.

7.4 Features of ZR4 Dirac NMSSM models

In this chapter we showed that we can construct a ZR4 Dirac NMSSM by adding three
additional SM singlets, N , N and the spurion X, to the spontaneously broken pseudo–
anomalous U(1)R flavor models from section 5.2, which all have the ZR4 from section 4.2.4
as a residual symmetry after U(1)R breaking. The resulting models explain the fermion
mass hierarchies and the CKM matrix due to the underlying U(1)R symmetry and the
flavor–dependent U(1)R charges. The models are anomaly–free via the GS mechanism and
forbid dangerous proton decay operators because of the residual ZR4 symmetry. Implementing
the Dirac NMSSM from section 2.2.3 into the U(1)R setting allows us to lift the Higgs mass
to a phenomenologically viable value with low fine–tuning.
A caveat of the original U(1)R models [110] is that they only predict semi–realistic

neutrino mixing, cf. section 5.2.4. However, we might overcome this issue by introducing
a non–Abelian flavor symmetry, as in section 5.3, which can improve the neutrino mixing
pattern significantly. The models support both possible types of neutrino masses, see–saw
induced and Dirac neutrinos, where in the latter case the Dirac neutrino Yukawa couplings
are sufficiently suppressed due to the same method as in chapter 4.
In summary, we find that by combining several ideas of the previous chapters we can

construct ZR4 Dirac NMSSM models that explain all fermion mass hierarchies and mixings,
including for neutrinos, while having a Higgs mass of suitable size with low fine–tuning [33].
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Chapter 8

Conclusions

We started this thesis by briefly reviewing supersymmetry and the Hilbert basis method,
with focus on discrete (R) symmetries, which enabled us to determine superpotentials to all
orders. We noted that the MSSM suffers from the µ problem and an unnaturally small Higgs
mass, and we showed how singlet extensions of the MSSM, in particular the Dirac NMSSM,
can lift the Higgs mass without, or with little, fine–tuning. In such a setting we introduced
two SM singlets N and N , which couple to each other via a dimensionful parameter, the
Dirac massM . The singlet N also couples to the Higgs bilinear in the superpotential, thereby
naturally raising the Higgs mass.

Furthermore, we examined the well–known fact that neutrinos are massive and, therefore,
oscillate. We introduced the standard parametrization of neutrino oscillations and gave a
brief overview of the experimental results, including the recent measurement of θ13 ≈ 9◦.
The existence of neutrino masses can be explained in several ways and we reviewed the
see–saw mechanism for Majorana neutrinos and the possibility of Dirac neutrinos.
In connection to this we analyzed how the different types of neutrino masses can be

connected to R symmetries. We found that there are anomaly–free ZRM symmetries, where
M is a multiple of 4, which forbid proton decay operators and the µ term. These symmetries
are also compatible with the Giudice–Masiero mechanism that allows us to generate a
naturally suppressed µ term, therefore, solving the µ problem. We then showed that there is
a unique ZR4 symmetry compatible with the Weinberg operator and that there is a set of
ZRM symmetries where the smallness of the Dirac neutrino Yukawa couplings is related to
the smallness of the µ term via Yν ∼ µ

MP
.

The flavor problem of the (MS)SM was examined and we provided a solution through
the introduction of spontaneously broken flavor symmetries. First, we discussed a pseudo–
anomalous U(1)R symmetry that explains the quark and charged lepton masses and hierarchies
as well as the CKM matrix through flavor–dependent U(1)R charges. The models based on
this U(1)R exhibit a residual ZR4 symmetry after U(1)R breaking, which forbids dangerous
proton decay operators. We showed that the original models [110] imposed an unnecessary
anomaly constraint and by removing this constraint we obtained much more appealing charge
assignments. However, these models do not always provide realistic neutrino mixing patterns
and, hence, rely on discrete non–Abelian flavor symmetries or the anarchy scheme. We
discussed spontaneously broken discrete non–Abelian flavor symmetry models, giving two
examples based on A4 [113,114] and T′ [115].

These models, and many similar ones, rely solely on the superpotential for their predictions.
However, we showed in this thesis that corrections from the Kähler potential are sizable
and cannot be forbidden by a conventional symmetry. We illustrated this by considering
the A4 and T′ examples, e.g. we showed that for the A4 model, which originally predicts
a tri–bi–maximal mixing pattern, with θ13 = 0, a correction to θ13 of roughly 8◦ can be
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generated by Kähler potential effects. We argue that, because these corrections are always
present, we need to gain a better understanding of the Kähler potential in order to make
sensible predictions when using spontaneously broken non–Abelian flavor symmetries.
Subsequently, we built models combining the good features of the Dirac NMSSM and of

the pseudo–anomalous U(1)R symmetries with a residual ZR4 . We showed how we can add
additional SM singlets to the U(1)R scenario and how to assign them charges in order to
achieve a Dirac NMSSM setting. We demonstrated that we can employ holomorphic zeros
in order to forbid unwanted terms like the linear terms of the singlet fields. Using these
techniques, we found a set of models, which we call ZR4 Dirac NMSSMs, that explain fermion
masses and hierarchies while simultaneously raising the Higgs mass without fine–tuning. We
argued that by combining these models with a non–Abelian discrete flavor symmetry we
might be able to also explain the neutrino mixing pattern, therefore, closing a loophole of the
original models [110]. Our ZR4 Dirac NMSSM models are compatible with both Majorana
and Dirac neutrinos, and the open question in particle physics which of the two alternatives
is realized by Nature, will hopefully be answered by experiments, e.g. [133], in the near
future.
The ZR4 Dirac NMSSM models have a very appealing phenomenology; however, we built

them bottom–up by imposing the U(1)R symmetry and the Dirac NMSSM setting by hand,
therefore, lacking control over non–perturbative effects and the hidden superpotential. It
would be interesting to see if we can obtain such models from the top–down perspective,
e.g. from string constructions. Furthermore, string models might also help us gain a
better understanding of the Kähler potential, which is necessary in order to make sensible
predictions in flavor model building. It seems, therefore, promising to further investigate string
constructions, which make non–trivial, top–down predictions for the Higgs and the flavor
sector. These predictions might be testable by the upcoming 14TeV run of the LHC [134,135],
by a possible linear collider [136] or by precision neutrino experiments [137,138].

92



Appendix A

The Hilbert superpotential bases for models
with ZR12 symmetries

In chapter 4 we discussed symmetries that solve the µ problem with the help of R symmetries.
We showed that this can also be related to neutrino masses. In particular for Dirac neutrinos
we showed in section 4.2.2 how the smallness of the Dirac Yukawa coupling can be related to
the µ term through SUSY breaking.

We presented a set of ZRM symmetries in table 4.1 that forbid neutrino masses perturbatively
and for models with two ZR4 symmetries and a ZR8 symmetry, we presented the Hilbert
superpotential basis. Here, we provide further examples based on the ZR12 symmetries
in table 4.1. Let us recall from section 2.3 that a possible superpotential term M contains
only one inhomogeneous monomial and an arbitrary combination of homogeneous monomials.

There are three examples which have a ZR12 symmetry, with differing Hilbert basis, i.e. the
three ZR12 symmetries are inequivalent. The first symmetry has the charges(

q10 q5 qHu qHd qθ ρ qν̄
)

=
(

1 9 4 8 3 3 11
)
, (A.1)

which leads to the inhomogeneous monomials(
LHdE

)
; (LHu)6 ; ν̄6 ;

(
LLE

)
ν̄ ;(

LLE
)6

;
(
LLE

)4
(LHu)2 ;

(
LLE

)2
(LHu)4 , (A.2)

whereas the homogeneous ones are given by(
LLE

)12
; (LHu)12 ; HuHd ; (LHu) ν̄ ;

(
LLE

) (
LHdE

)
ν̄ ;

ν̄12 ;
(
LHdE

)
(LHu)6 ;

(
LHdE

)2
;
(
LLE

)7
ν̄ ;(

LLE
)

(LHu)5 ;
(
LLE

)6 (
LHdE

)
;
(
LHdE

)
ν̄6 ;(

LLE
)2

ν̄2 ;
(
LHdE

) (
LLE

)4
(LHu)2 ;

(
LLE

)5
(LHu) ;(

LHdE
) (

LLE
)2

(LHu)4 ;
(
LLE

)
ν̄7 ;

(
LLE

)3
(LHu)3 . (A.3)

The second ZR12 symmetry has the charge assignment(
q10 q5 qHu qHd qθ ρ qν̄

)
=
(

2 6 2 10 3 3 4
)
, (A.4)

which gives us for the inhomogeneous monomials(
LHdE

)
;
(
LLE

)3
;
(
LLE

)
ν̄ ;

(
LLE

)
(LHu)2 , (A.5)
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and for the homogeneous monomials(
LLE

)6
;
(
LLE

)4
ν̄ ;

(
LHdE

) (
LLE

)3
; HuHd ;

(LHu) ν̄ ; ν̄3 ; (LHu)3 ;
(
LHdE

)
(LHu)2

(
LLE

)
;(

LLE
)2

(LHu) ;
(
LHdE

)2
;
(
LLE

)2
ν̄2 ;

(
LHdE

) (
LLE

)
ν̄ . (A.6)

The final ZR12 symmetry has(
q10 q5 qHu qHd qθ ρ qν̄

)
=
(

4 0 10 2 3 3 2
)
, (A.7)

as its charges, and with these we get the inhomogeneous monomials

ν̄3 ;
(
LHdE

)
;
(
LLE

)
ν̄ ; (LHu)3 ;

(
LLE

)2
(LHu) , (A.8)

and the following homogeneous ones

(LHu)6 ;
(
LHdE

)
(LHu)3 ; HuHd ;

(
LHdE

) (
LLE

)2
(LHu) ;

(LHu) ν̄ ;
(
LLE

)3
;
(
LLE

)
(LHu)2 ;

(
LHdE

)2
;(

LHdE
)
ν̄3 ;

(
LHdE

) (
LLE

)
ν̄ ;

(
LLE

)
ν̄4 ; ν̄6 ;(

LLE
)2

ν̄2 . (A.9)
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Appendix B

Charge assignments for U(1)R FN models

B.1 Charge equations for all fields

In the original computation the authors [110] set Rφ = −1, however, we should note that all
integers in this section, i.e. x, y, z, ζ, ∆H , ∆L

ij and any integer number, are given in units of
−Rφ. Therefore, we can return to the general setting by multiplying all additional integers
with −Rφ. We chose another possibility to get our results in appendix B.2, we used Rφ = −1
to solve the charge constraints and rescale the resulting charges afterwards [33].

B.1.1 All fields besides the Higgs

The authors of [110] summarized the constraints for the U(1)R charges of all fields, besides
the Higgs fields, in the following way, with ∆L

ij = RLi −RLj ,

RQ1 = 1
3

[
39
4 −RHd + x+ 2y + z − ζ − ∆H

2 − 4Rθ

]
, (B.1a)

RQ2 = RQ1 − 1− y , (B.1b)
RQ3 = RQ1 − 3− y , (B.1c)
RU1

= −RQ1 −RHu + 8 + 2Rθ , (B.1d)
RU2

= RU1
− 3 + y , (B.1e)

RU3
= RU1

− 5 + y , (B.1f)
RD1

= −RQ1 −RHd + 4 + x+ 2Rθ , (B.1g)
RD2

= RD1
− 1 + y , (B.1h)

RD3
= RD1

− 1 + y , (B.1i)

RL1 = RHd + 1
4
(
2∆H + 1

)
, (B.1j)

RL2 = RL1 −∆L
31 + z + 3ζ − 4Rθ , (B.1k)

RL3 = RL1 + ∆L
31 , (B.1l)

RE1
= −RL1 −RHd + 4 + x+ z + 2Rθ , (B.1m)

RE2
= RE1

+ ∆L
31 − 2− 2z − 3ζ + 4Rθ , (B.1n)

RE3
= RE1

−∆L
31 − 4− z , (B.1o)

where ζ ∈ {−1, 0}. We get ∆H from demanding the ZR4 symmetry after U(1)R breaking and
its value depends on other model parameters, ∆H = Z + 2z − 1

2 − 2 ∆L
31 − 14Rθ, where Z is
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a negative integer, which for example determines the neutrino mass scale, cf. section 5.2.4.
Its precise value depends on the given model [110].

B.1.2 Higgs charges
In [110], the authors also constrain the Higgs charges

RHd = 1
3(14Rθ − 18− 3x− 2z) [3RL1(12− 16Rθ + 2x+ 3z)

+ 2 ∆L
21(6− 8Rθ + x+ z) + 2 ∆L

31(3− 8Rθ + x+ z)− 156Rθ + 18

+x(14Rθ − 36− 6x) + z(−2z − 5x− 12Rθ)− 18y + 104R2
θ

]
, (B.2a)

RHu = −RHd − z + 8Rθ , (B.2b)

where the one for RHd comes from demanding that the AU(1)2
R−U(1)Y

anomaly cancels. We
showed in section 5.2.2 though that this constraint can be dropped, therefore, we demand
for the Higgs charges

RHd = −RHu − z + 8Rθ , (B.3a)
RHu = 0 . (B.3b)

Here, the charge of Hu is arbitrary and we can always assign a different RHu .

B.2 Tables of more appealing charge assignments
For the original and for our models we have to solve equation (B.1). However, if we solve
also equation (B.3) instead of equation (B.2), we get much more appealing charge assignments,
which we summarize here. We also provide the charges for the additional fields N , N and
X. We set RHu = 0 for all examples and the charges RN = 2Rθ −RHd , RN = −2mRθ and
RX = RN − 2 (m+ 2) Rθ as described in section 7.2. In order to get sufficiently small
supersymmetric masses for N and N , cf. equation (7.14), we choose m = 19 for models
#5–10 and m = 21 for the remaining models #11–12.
We do not provide charges for the additional singlets for models #1–4 since we exclude

them as potential Dirac NMSSM candidates [33].
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B.2 Tables of more appealing charge assignments

B.2.1 Charges for y = −1
# Rφ Rθ RHd

RQ1 RQ2 RQ3 R
U1

R
U2

R
U3

R
D1

R
D2

R
D3

RL1 RL2 RL3 R
E1

R
E2

R
E3

RN R
N

RX

1 a −4 −1 −12 17 17 9 13 −3 −11 9 1 1 −7 −7 −11 37 25 21
1 b −12 −3 −36 55 55 31 35 −13 −37 35 11 11 −21 −21 −33 123 87 75
1 c −12 −3 −36 59 59 35 31 −17 −41 43 19 19 −21 −21 −33 135 99 87
1 d −4 −1 −12 21 21 13 9 −7 −15 17 9 9 −7 −7 −11 49 37 33
2 a −4 −1 −12 19 19 11 11 −5 −13 11 3 3 −9 −9 −13 43 31 27
2 b −12 −3 −36 61 61 37 29 −19 −43 41 17 17 −27 −27 −39 141 105 93
2 c −12 −3 −36 65 65 41 25 −23 −47 49 25 25 −27 −27 −39 153 117 105
3 a −12 −3 −24 47 47 23 43 −5 −29 19 −5 −5 −21 −33 −33 87 75 51
3 b −4 −1 −8 17 17 9 13 −3 −11 9 1 1 −7 −11 −11 33 29 21
3 c −12 −3 −24 55 55 31 35 −13 −37 35 11 11 −21 −33 −33 111 99 75
3 d −12 −3 −24 59 59 35 31 −17 −41 43 19 19 −21 −33 −33 123 111 87
4 a −4 −1 −8 19 19 11 11 −5 −13 11 3 3 −9 −13 −13 39 35 27
4 b −12 −3 −24 61 61 37 29 −19 −43 41 17 17 −27 −39 −39 129 117 93
5 −4 1 4 13 13 5 21 5 −3 1 −7 −7 −7 −7 −7 25 13 5 −2 −38 −44

6 a −12 3 12 41 41 17 61 13 −11 1 −23 −23 −27 −27 −27 81 45 21 −6 −114 −132
6 b −4 1 4 15 15 7 19 3 −5 3 −5 −5 −9 −9 −9 31 19 11 −2 −38 −44
6 c −12 3 12 49 49 25 53 5 −19 17 −7 −7 −27 −27 −27 105 69 45 −6 −114 −132
6 d −12 3 12 53 53 29 49 1 −23 25 1 1 −27 −27 −27 117 81 57 −6 −114 −132
7 a −12 3 12 41 41 17 61 13 −11 1 −23 −23 −27 −27 −27 81 45 21 −6 −114 −132
7 b −4 1 4 15 15 7 19 3 −5 3 −5 −5 −9 −9 −9 31 19 11 −2 −38 −44
8 a −12 3 12 43 43 19 59 11 −13 −1 −25 −25 −33 −33 −33 87 51 27 −6 −114 −132
8 b −12 3 12 47 47 23 55 7 −17 7 −17 −17 −33 −33 −33 99 63 39 −6 −114 −132
8 c −4 1 4 17 17 9 17 1 −7 5 −3 −3 −11 −11 −11 37 25 17 −2 −38 −44
8 d −12 3 12 55 55 31 47 −1 −25 23 −1 −1 −33 −33 −33 123 87 63 −6 −114 −132
9 a −4 1 4 15 15 7 19 3 −5 −1 −9 −9 −13 −13 −13 31 19 11 −2 −38 −44
9 b −12 3 12 49 49 25 53 5 −19 5 −19 −19 −39 −39 −39 105 69 45 −6 −114 −132
9 c −12 3 12 53 53 29 49 1 −23 13 −11 −11 −39 −39 −39 117 81 57 −6 −114 −132
9 d −4 1 4 19 19 11 15 −1 −9 7 −1 −1 −13 −13 −13 43 31 23 −2 −38 −44
10 a −12 3 12 55 55 31 47 −1 −25 11 −13 −13 −45 −45 −45 123 87 63 −6 −114 −132
10 b −12 3 12 59 59 35 43 −5 −29 19 −5 −5 −45 −45 −45 135 99 75 −6 −114 −132
11 −12 3 24 35 35 11 67 19 −5 7 −17 −17 −9 −9 −21 51 27 15 −18 −126 −156

12 a −12 3 24 37 37 13 65 17 −7 5 −19 −19 −15 −15 −27 57 33 21 −18 −126 −156
12 b −12 3 24 41 41 17 61 13 −11 13 −11 −11 −15 −15 −27 69 45 33 −18 −126 −156
12 c −4 1 8 15 15 7 19 3 −5 7 −1 −1 −5 −5 −9 27 19 15 −6 −42 −52
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B.2.2 Charges for y = 0
# Rφ Rθ RHd

RQ1 RQ2 RQ3 R
U1

R
U2

R
U3

R
D1

R
D2

R
D3

RL1 RL2 RL3 R
E1

R
E2

R
E3

RN R
N

RX

1 a −12 −3 −36 59 47 23 31 −5 −29 19 7 7 −21 −21 −33 111 75 63
1 b −4 −1 −12 21 17 9 9 −3 −11 9 5 5 −7 −7 −11 41 29 25
1 c −12 −3 −36 67 55 31 23 −13 −37 35 23 23 −21 −21 −33 135 99 87
1 d −12 −3 −36 71 59 35 19 −17 −41 43 31 31 −21 −21 −33 147 111 99
2 a −12 −3 −36 65 53 29 25 −11 −35 25 13 13 −27 −27 −39 129 93 81
2 b −4 −1 −12 23 19 11 7 −5 −13 11 7 7 −9 −9 −13 47 35 31
2 c −12 −3 −36 73 61 37 17 −19 −43 41 29 29 −27 −27 −39 153 117 105
3 a −12 −3 −24 55 43 19 35 −1 −25 11 −1 −1 −21 −33 −33 87 75 51
3 b −12 −3 −24 59 47 23 31 −5 −29 19 7 7 −21 −33 −33 99 87 63
3 c −4 −1 −8 21 17 9 9 −3 −11 9 5 5 −7 −11 −11 37 33 25
3 d −12 −3 −24 67 55 31 23 −13 −37 35 23 23 −21 −33 −33 123 111 87
4 a −12 −3 −24 65 53 29 25 −11 −35 25 13 13 −27 −39 −39 117 105 81
4 b −4 −1 −8 23 19 11 7 −5 −13 11 7 7 −9 −13 −13 43 39 31
5 −12 3 12 47 35 11 55 19 −5 −5 −17 −17 −21 −21 −21 75 39 15 −6 −114 −132

6 a −12 3 12 49 37 13 53 17 −7 −7 −19 −19 −27 −27 −27 81 45 21 −6 −114 −132
6 b −12 3 12 53 41 17 49 13 −11 1 −11 −11 −27 −27 −27 93 57 33 −6 −114 −132
6 c −4 1 4 19 15 7 15 3 −5 3 −1 −1 −9 −9 −9 35 23 15 −2 −38 −44
6 d −12 3 12 61 49 25 41 5 −19 17 5 5 −27 −27 −27 117 81 57 −6 −114 −132
7 a −12 3 12 49 37 13 53 17 −7 −7 −19 −19 −27 −27 −27 81 45 21 −6 −114 −132
7 b −12 3 12 53 41 17 49 13 −11 1 −11 −11 −27 −27 −27 93 57 33 −6 −114 −132
8 a −4 1 4 17 13 5 17 5 −3 −3 −7 −7 −11 −11 −11 29 17 9 −2 −38 −44
8 b −12 3 12 55 43 19 47 11 −13 −1 −13 −13 −33 −33 −33 99 63 39 −6 −114 −132
8 c −12 3 12 59 47 23 43 7 −17 7 −5 −5 −33 −33 −33 111 75 51 −6 −114 −132
8 d −4 1 4 21 17 9 13 1 −7 5 1 1 −11 −11 −11 41 29 21 −2 −38 −44
9 a −12 3 12 53 41 17 49 13 −11 −11 −23 −23 −39 −39 −39 93 57 33 −6 −114 −132
9 b −4 1 4 19 15 7 15 3 −5 −1 −5 −5 −13 −13 −13 35 23 15 −2 −38 −44
9 c −12 3 12 61 49 25 41 5 −19 5 −7 −7 −39 −39 −39 117 81 57 −6 −114 −132
9 d −12 3 12 65 53 29 37 1 −23 13 1 1 −39 −39 −39 129 93 69 −6 −114 −132
10 a −4 1 4 21 17 9 13 1 −7 1 −3 −3 −15 −15 −15 41 29 21 −2 −38 −44
10 b −12 3 12 67 55 31 35 −1 −25 11 −1 −1 −45 −45 −45 135 99 75 −6 −114 −132
11 −12 3 24 43 31 7 59 23 −1 −1 −13 −13 −9 −9 −21 51 27 15 −18 −126 −156

12 a −4 1 8 15 11 3 19 7 −1 −1 −5 −5 −5 −5 −9 19 11 7 −6 −42 −52
12 b −12 3 24 49 37 13 53 17 −7 5 −7 −7 −15 −15 −27 69 45 33 −18 −126 −156
12 c −12 3 24 53 41 17 49 13 −11 13 1 1 −15 −15 −27 81 57 45 −18 −126 −156

98



B.2 Tables of more appealing charge assignments

B.2.3 Charges for y = +1
# Rφ Rθ RHd

RQ1 RQ2 RQ3 R
U1

R
U2

R
U3

R
D1

R
D2

R
D3

RL1 RL2 RL3 R
E1

R
E2

R
E3

RN R
N

RX

1 a −12 −3 −36 67 43 19 23 −1 −25 11 11 11 −21 −21 −33 111 75 63
1 b −12 −3 −36 71 47 23 19 −5 −29 19 19 19 −21 −21 −33 123 87 75
1 c −4 −1 −12 25 17 9 5 −3 −11 9 9 9 −7 −7 −11 45 33 29
1 d −12 −3 −36 79 55 31 11 −13 −37 35 35 35 −21 −21 −33 147 111 99
2 a −12 −3 −36 73 49 25 17 −7 −31 17 17 17 −27 −27 −39 129 93 81
2 b −12 −3 −36 77 53 29 13 −11 −35 25 25 25 −27 −27 −39 141 105 93
2 c −4 −1 −12 27 19 11 3 −5 −13 11 11 11 −9 −9 −13 51 39 35
3 a −4 −1 −8 21 13 5 9 1 −7 1 1 1 −7 −11 −11 29 25 17
3 b −12 −3 −24 67 43 19 23 −1 −25 11 11 11 −21 −33 −33 99 87 63
3 c −12 −3 −24 71 47 23 19 −5 −29 19 19 19 −21 −33 −33 111 99 75
3 d −4 −1 −8 25 17 9 5 −3 −11 9 9 9 −7 −11 −11 41 37 29
4 a −12 −3 −24 73 49 25 17 −7 −31 17 17 17 −27 −39 −39 117 105 81
4 b −12 −3 −24 77 53 29 13 −11 −35 25 25 25 −27 −39 −39 129 117 93
5 −12 3 12 55 31 7 47 23 −1 −13 −13 −13 −21 −21 −21 75 39 15 −6 −114 −132

6 a −4 1 4 19 11 3 15 7 −1 −5 −5 −5 −9 −9 −9 27 15 7 −2 −38 −44
6 b −12 3 12 61 37 13 41 17 −7 −7 −7 −7 −27 −27 −27 93 57 33 −6 −114 −132
6 c −12 3 12 65 41 17 37 13 −11 1 1 1 −27 −27 −27 105 69 45 −6 −114 −132
6 d −4 1 4 23 15 7 11 3 −5 3 3 3 −9 −9 −9 39 27 19 −2 −6 −12
7 a −4 1 4 19 11 3 15 7 −1 −5 −5 −5 −9 −9 −9 27 15 7 −2 −38 −44
7 b −12 3 12 61 37 13 41 17 −7 −7 −7 −7 −27 −27 −27 93 57 33 −6 −114 −132
8 a −12 3 12 59 35 11 43 19 −5 −17 −17 −17 −33 −33 −33 87 51 27 −6 −114 −132
8 b −4 1 4 21 13 5 13 5 −3 −3 −3 −3 −11 −11 −11 33 21 13 −2 −38 −44
8 c −12 3 12 67 43 19 35 11 −13 −1 −1 −1 −33 −33 −33 111 75 51 −6 −114 −132
8 d −12 3 12 71 47 23 31 7 −17 7 7 7 −33 −33 −33 123 87 63 −6 −114 −132
9 a −12 3 12 61 37 13 41 17 −7 −19 −19 −19 −39 −39 −39 93 57 33 −6 −114 −132
9 b −12 3 12 65 41 17 37 13 −11 −11 −11 −11 −39 −39 −39 105 69 45 −6 −114 −132
9 c −4 1 4 23 15 7 11 3 −5 −1 −1 −1 −13 −13 −13 39 27 19 −2 −38 −44
9 d −12 3 12 73 49 25 29 5 −19 5 5 5 −39 −39 −39 129 93 69 −6 −114 −132
10 a −12 3 12 71 47 23 31 7 −17 −5 −5 −5 −45 −45 −45 123 87 63 −6 −114 −132
10 b −4 1 4 25 17 9 9 1 −7 1 1 1 −15 −15 −15 45 33 25 −2 −38 −44
11 −4 1 8 17 9 1 17 9 1 −3 −3 −3 −3 −3 −7 17 9 5 −6 −42 −52

12 a −12 3 24 53 29 5 49 25 1 −11 −11 −11 −15 −15 −27 57 33 21 −18 −126 −156
12 b −4 1 8 19 11 3 15 7 −1 −1 −1 −1 −5 −5 −9 23 15 11 −6 −42 −52
12 c −12 3 24 61 37 13 41 17 −7 5 5 5 −15 −15 −27 81 57 45 −18 −126 −156
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Appendix C

Alternative A4 basis

In chapter 5 we described flavor models based on non–Abelian discrete symmetries and
in section 5.3.1 we used A4 as an example symmetry group. So far we used A4 in basis
generated by the matrices

S = 1
3

 −1 2 2
2 −1 2
2 2 −1

 , T =

 1 0 0
0 ω2 0
0 0 ω

 , with ω = e
2πi
3 , (C.1)

which gives us the multiplication law in equation (5.47). However, it also possible, and
widely used, to generate A4 with a different set of basis generators

S̃ =

 1 0 0
0 −1 0
0 0 −1

 , T̃ =

 0 0 1
1 0 0
0 1 0

 . (C.2)

In this basis the multiplication laws are the same, the trivial ones

1′ ⊗ 1′ = 1′′ , 1′′ ⊗ 1′′ = 1′ , 1′ ⊗ 1′′ = 1 , (C.3)

and the most important one

3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3s ⊕ 3a . (C.4)

The only difference is how these transformations look like in components, i.e. assuming we
have two triplets a and b we get for 3⊗ 3

(a⊗ b)1 = a1 b1 + a2 b2 + a3 b3 , (C.5a)
(a⊗ b)1′ = a1 b1 + ω a2 b2 + ω2 a3 b3 , (C.5b)
(a⊗ b)1′′ = a1 b1 + ω2 a2 b2 + ω a3 b3 , (C.5c)

(a⊗ b)3s
∼

 a2 b3 + b3 a2
a3 b1 + b3 a1
a1 b2 + b1 a2

 , (C.5d)

(a⊗ b)3a
∼

 a2 b3 − b3 a2
a3 b1 − b3 a1
a1 b2 − b1 a2

 . (C.5e)
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This new basis is related to our previously used one through the unitary transformation
matrix

Uω = 1√
3

 1 1 1
1 ω ω2

1 ω2 ω

 . (C.6)

We can relate the two bases through the transformation S̃ = Uω S U
†
ω and T̃ = Uω T U

†
ω. It

is important to note that this transformation also relates the different flavon VEVs, i.e. the
VEV (v, v, v)T in one basis is equivalent to the VEV (v′, 0, 0)T in the other basis, and vice
versa.
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Appendix D

A4 and T′ contractions

D.1 A4 contractions

In section 6.2.1 we presented a few of the possible Kähler corrections for the A4 example.
As we stated in equation (6.40), six contractions are possible for a given flavon triplet Φ

(L⊗ Φ)†1 (L⊗ Φ)1 , (L⊗ Φ)†1′ (L⊗ Φ)1′ , (L⊗ Φ)†1′′ (L⊗ Φ)1′′ ,

(L⊗ Φ)†3a (L⊗ Φ)3a , (L⊗ Φ)†3s (L⊗ Φ)3s , (L⊗ Φ)†3a (L⊗ Φ)3s . (D.1)

Since we have two different flavon triplets, Φν and Φe, there will be 12 terms in total which
we now present in the following.

We start with Φν , recalling that 〈Φν〉 = (v, v, v)T . As it turns out,

(L⊗ Φν)†1 (L⊗ Φν)1 , (L⊗ Φν)†1′ (L⊗ Φν)1′ , (L⊗ Φν)†1′′ (L⊗ Φν)1′′ , (D.2)

all give the same Kähler corrections after Φν acquires its VEV, which are represented by the
P matrix

P =

1 1 1
1 1 1
1 1 1

 . (D.3)

Also (L⊗ Φν)†3a (L⊗ Φν)3a and (L⊗ Φν)†3s (L⊗ Φν)3s give the same correction,

P = 3
2

 2 −1 −1
−1 2 −1
−1 −1 2

 . (D.4)

The last one due to Φν acquiring its VEV is coming from (L⊗ Φν)†3a (L⊗ Φν)3s and given
by

P =

 0 i −i
−i 0 i
i −i 0

 . (D.5)

Obviously, all these corrections are proportional to v2.



Appendix D A4 and T′ contractions

Let us now consider Φe with 〈Φe〉 = (v′, 0, 0)T . Here, all contractions result in diagonal
matrices, i.e.

(L⊗ Φe)†1 (L⊗ Φe)1 −→ P = diag(1, 0, 0) , (D.6a)

(L⊗ Φe)†1′ (L⊗ Φe)1′ −→ P = diag(0, 1, 0) , (D.6b)

(L⊗ Φe)†1′′ (L⊗ Φe)1′′ −→ P = diag(0, 0, 1) , (D.6c)

(L⊗ Φe)†3s (L⊗ Φe)3s −→ P = diag(4, 1, 1) , (D.6d)

(L⊗ Φe)†3a (L⊗ Φe)3a −→ P = diag(0, 1, 1) , (D.6e)

(L⊗ Φe)†3a (L⊗ Φe)3s −→ P = diag(0, 1,−1) . (D.6f)

which are all proportional to (v′)2.

D.2 T′ contractions
In section 6.2.2 we presented a few of the contractions for the T′ example and here we want
to summarize all of the ones due to the doublet contractions, i.e. the additional ones to
the already known triplet contractions. In this model we have two doublets, ψ and ψ′, and
according to equation (6.54) three possible contractions per flavon with the left–handed
lepton triplet L, e.g. for ψ we have

(L⊗ ψ)†2 (L⊗ ψ)2 , (L⊗ ψ)†2′ (L⊗ ψ)2′ and (L⊗ ψ)†2′′ (L⊗ ψ)2′′ , (D.7)

and the same terms for ψ′, so six new terms in total.
Let us start with the field ψ and recall that ψ is in the 2′ of T′ and acquires the VEV
〈ψ〉 = (ψ0, 0)T . Using this we get the three diagonal Kähler corrections

(L⊗ ψ)†2 (L⊗ ψ)2 −→ P = diag(0, 1, 2) , (D.8a)

(L⊗ ψ)†2′ (L⊗ ψ)2′ −→ P = diag(2, 1, 0) , (D.8b)

(L⊗ ψ)†2′′ (L⊗ ψ)2′′ −→ P = diag(1, 0, 2) , (D.8c)

which are all proportional to ψ2
0.

Consider the field ψ′, a 2 under T′ with the VEV 〈ψ′〉 = (ψ′0, ψ′0)T , which gives us three
different P matrices,

(
L⊗ ψ′

)†
2
(
L⊗ ψ′

)
2 −→ P =

 2
√

2 −
√

2√
2 2 0

−
√

2 0 2

 , (D.9a)

(
L⊗ ψ′

)†
2′
(
L⊗ ψ′

)
2′ −→ P =

 2 −
√

2 0
−
√

2 2
√

2
0

√
2 2

 , (D.9b)

(
L⊗ ψ′

)†
2′′
(
L⊗ ψ′

)
2′′ −→ P =

 2 0
√

2
0 2 −

√
2√

2 −
√

2 2

 , (D.9c)

which are all proportional to (ψ′0)2.
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