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Abstract 

A probabilistic spatio-temporal model for fire risk prediction based on Bayesian networks is presented. It 

predicts daily fire risk on houses and vegetated areas in the mesoscale (1 km² spatial resolution). The BN 

model consists of three parts. (1) The fire occurrence model, which involves as predictive variables the 

weather conditions (expressed by the Fire Weather Index - FWI), land cover types, population and road 

density. It predicts the probability of a fire occurring daily in each 1km². (2) The fire behavior model, 

triggered by the occurrence model, which includes the influence of actual and past weather conditions, fire 

behavior indices and topography. (3) The damage model, which predicts the expected losses relevant to 

houses and vegetated areas conditional on a fire hazard. Vulnerability (resistance capacity) and exposure 

(values at risk) indicators are used to quantify the damage, which also depends on the fire suppression 

efficiency. The final output of the model are the expected house damage costs (the risk to houses) and the 

restoration costs for the vegetation (the risk to vegetated areas). The BN model is exemplarily established 

for Cyprus. The conditional probability distributions of the BN variables are populated with data from the 

time period 2006-2009, regression model results and expert knowledge. Data from 2010 for Cyprus are 

used as verification dataset. The results are shown in daily maps with 1 km² spatial resolution.  
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1. Introduction  

  

Fire risk prediction can support the planning of measures for fire prevention (e.g. thinning, 

prescribed burning) and risk mitigation (e.g. allocation of suppression resources, raising 

preparedness). In order to quantify fire risk, the predictive model must include models for fire 

occurrence, fire behavior and fire consequences. Due to the randomness inherent in the wildfire 

process and because the modeling is subject to uncertainty in all three stages (occurrence, 

behavior, damages), fire risk prediction is ideally carried out in a probabilistic format. Fire 

occurrence is influenced by weather conditions, human presence and vegetation types. Fire 

behavior is influenced mainly by local weather conditions (e.g. wind speed), topography and fuels 

(Forestry Canada 1992). Fire damages depend to a large extent on fire severity and the 

vulnerability of assets (Cohen 2000).   

In this study, we focus on the Mediterranean area, where most fires occur due to human 

intervention as a result of arson or negligence, favored by long dry summer periods (Keeley et al. 

2012).We propose a probabilistic spatio-temporal model based on Bayesian networks, which 

predicts daily fire risk on houses and vegetated areas in the mesoscale (1 km² spatial resolution). 

Bayesian Networks (BN) are graphical probabilistic models that can effectively represent complex 
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processes with multiple random variables, their interdependencies and the associated 

uncertainties. 

 

2. Methods  

 

The predictive BN model consists of three parts: (1) The fire occurrence model, which includes as 

predictive variables weather conditions (expressed by the Fire Weather Index - FWI of the 

Canadian Forest Fire Weather Index System - CFFWIS), land cover types, population and road 

density, and which predicts the probability of a fire occurring in each spatial-temporal unit, i.e. 

daily and per 1km². (2) The fire behavior model, triggered by the occurrence model, which is a 

function of the actual and past weather conditions, the fire behavior indices of the CFFWIS and the 

topography. (3) The damage model, which predicts the expected losses relevant to houses and 

vegetated areas conditional on fire hazard. Vulnerability (resistance capacity) and exposure 

(values at risk) indicators are used to quantify the damage, which also depends on the fire 

suppression efficiency. The final results of the combined model are the risk to houses (expected 

house damage costs [€]) and the risk to vegetation (vegetated area damage costs [€]). After a 

short introduction to BN in section 2.1, the three parts of the model are presented in sections 2.2 

– 2.4, and the combined model is provided in 2.5. 

 

2.1. Bayesian networks 

 

Bayesian Networks (BN) are directed acyclic graphs and consist of nodes, arcs and conditional 

probability distributions attached to the nodes (Jensen and Nielsen 2007). In a discrete BN, which 

is used in this study, each node represents a discrete random variable, whose sample space 

consists of a finite set of mutually exclusive states. The arcs qualitatively describe the dependence 

structure among the random variables.  

A conditional probability table (CPT) is attached to each of the nodes, defining the 

probability distribution of the variable conditional on its parents. If we consider a BN with discrete 

random variables � � ���, … , ��	, then the full (joint) probabilistic model of these variables is the 

joint Probability Mass Function (PMF), 
��
 � 
���, … , ��
, which can be specified with the help 

of the chain rule: 


��
 � 
���|����, … , ��

�����|����, … , ��
 … 
���|��

���
 (1) 

By making use of the independence assumptions encoded in the graphical structure of the 

BN, this chain rule reduces to 


��
 � � 
���|
����


�

���
 (2) 

wherein 
����
, are realizations of the parents of �� (i.e. the variables with a link pointing to ��). In 

words, the joint probability mass function (PMF) of all random variables in the BN is the product of 

the conditional PMFs of all random variables given their parents. Therefore, the graphical 

structure of the BN, together with the conditional PMFs 
���|
����

, are sufficient for specifying 

the full (joint) probabilistic model of � � ���, … , ��	. 

Inference in the BN model is performed through updating. When one or several variables 

are observed, this information (evidence e) is propagated through the network and the joint prior 

probability of all nodes is updated to its posterior. The posterior joint probability of a set of 

variables � � � in the network given the evidence � is:  
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��|�
 � 
��, �


��
  (3) 

 

The joint probabilities 
��, �
 and 
��
 are computed following Eq. 2. Efficient algorithms 

for performing these computations in rather complex networks exist, which are implemented in 

software such as GeNIe (Decision Systems Laboratory 2013) or Hugin (HUGIN EXPERT 2012).  

In the context of the proposed model for wildfire risk assessment, the main advantage of 

the BN is not its computational effectiveness but that it facilitates the combination of information 

from various sources in a single model. 

 

 

2.2. Fire occurrence model 

 

The fire occurrence model, which is described in detail in (Papakosta and Straub 2014), is based on 

the assumption that fire occurrences are independent of each other for a given fire rate. Hence 

the number of fires in an area of size � during one day, �, has the Poisson distribution, with PMF: 

 


� | "
 � �"�
�
 ! exp�&"�
 ,  � 0,1,2, …  (4) 

 

wherein " *+,..�,/0
123·56²8 is the mean occurrence rate and α = 1km² is the area of the cell.  

" is calculated by a regression model with explanatory variables FWI, population density, 

road density and land cover types. The predictive model based on the regression results of 

(Papakosta and Straub 2014) is 

 

log�"
 �  &10.90 = 0.0329 · ?@A = 0.3217 · CD�E EF GHIJ & 0.0234
· �CD�E EF GHIJ
� & 0.0010 · LD
MN�IHD  EF GHIJ 

(5) 

 

The resulting BN for fire occurrence is shown in Figure 1. The node fire occurrence rate " is 

a parent of the node Fires �, whose CPT is defined by the Poisson PMF, Eq. (4). The fire 

occurrence rate is a child of the nodes FWI, population density, road density and land cover types, 

following the deterministic relation of Eq. (5). The CPTs of the explanatory variables are learnt 

from data of the test bed area. 

 

 

 

Figure 1 - Bayesian network for Fire occurrence. The fire occurrence rate *OP.QRPST
UVW·XYZ8 is a function of road density, 

population density, Fire Weather Index (FWI) and land cover types.  

Road density

Population density

Land cover

FWI
Fire occurr. rate λ

Fire Ν
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2.3. Fire behavior model 

 

The fire behavior model presented in Figure 2 is adapted from (Zwirglmaier et al. 2013). The 

variables are chosen from a wider range of potential variables to represent the processes 

influencing the resulting burnt area of a fire. In the fire behavior model, the target/predicted node 

is Burnt area. Burnt area is influenced by fire occurrence, land cover types, topography, recent 

weather conditions, and fire behavior indices. The latter three are hidden variables, meaning that 

they cannot be observed. They are included to reduce the number of parents of the node Burnt 

area. Topography combines the influence of the variables Wind Speed [km/h], Slope [°] and Aspect 

Minus Wind Direction [same, opposite, perpendicular]. Recent weather conditions summarizes the 

effect of Relative humidity (RH) [%], mean RH over the last 3 days [%], mean RH over the last 21 

days [%], accumulated precipitation over the last 21 days [mm], mean temperature of the last day 

[°C] and mean temperature over the last 7 days [°C]. Initial fire behavior influences the three 

Indices of the CFFWIS, namely Fine Fuel Moisture Code (FFMC), Initial Spread Index (ISI) and Βuild-

up index (BUI).  

The BN for fire occurrence (Figure 1) is included in the BN for fire behavior. The variable 

land cover, which is used for predicting the fire occurrence rate, is also influencing the burnt area 

directly. However, the node LC grouped is introduced to group the land cover types grouped in 

fewer classes. This reduces the number of free parameters of the variable burnt area and 

facilitates the parameter learning with hidden variables.  

 

 
 
Figure 2 - Bayesian network for the prediction of Burnt area. Hidden variables are shown in grey. Indices of the CFFWIS 

- FWI: Fire Weather Index, FFMC: Fine Fuel Moisture Code, ISI: Initial Spread Index, BUI: Built-Up Index. 

 

 

2.4. Fire consequences model  

 

The fire consequences model estimates the house damage cost and the restoration cost for 

vegetated areas. The cost is a function of the hazard characteristics, and the consequences that 

might occur. Wildfire consequences are a function of vulnerability and exposure of the affected 

biotic and abiotic systems (e.g. human properties, infrastructure, soil and air quality). Vulnerability 

describes the degree of expected damage as a function of hazard intensity (UNDRO 1991, 

Thywissen 2006). Exposure refers to the items at risk, such as house density.  

Risk is the expected consequences of wildfires and can be formulated as a function of the 

hazard [, the resulting damages \ and the consequences ] as,  
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C � E_,`�]	 � a 
�[
 a 
�\|[
]�\, [
E\
 ` 

E[
_

 (6) 

E_,` denotes the expected value with respect to [ and \. 
�\|[
 is the probability 

distribution of damage \ conditional on the hazard [, i.e. it describes the vulnerability, and 

C�\, [
 is the cost as a function of damage and hazard. The inner integral in Eq. (6) describes the 

expected consequences for a given hazard: 

 

E`�] | [	 � a 
�\|[

`

]�\, [
E\ (7) 

 

In the consequence model, the expected costs conditional on hazard characteristics 

E`�] | [	 are estimated.  

We introduce a model to estimate wildfire consequences on house damage and vegetated 

area damage (Figure 3). The model is based on the assumption that consequences are influenced 

by the exposure of the items to fire, the flammability of the items and the suppression 

effectiveness. As with the fire occurrence and behavior models, the modeling is conducted at the 

mesoscale.  

The variables that describe the hazard [, and which are outputs of the fire occurrence and 

behavior models, are Burnt area detailed, Fire type and FWI. Fire type can be a surface fire with 

flame length <3.5m, surface fire with flame length >3.5m and crown fire. Burnt area is here 

expressing wildfire severity. 

Vulnerability is expressed by the suppression effectiveness and the damage on houses and 

vegetated areas (nodes House damage, Area damage and Construction type). The node Fire 

Containment in 24 hrs and its parents represent the probability of a fire being contained by the 

firefighting crews within 24 hrs. Fire containment in 24 hrs is influenced by FWI, Time for ground 

attack, Air suppression and Vegetation type. The nodes influencing the vulnerability variable Fire 

containment in 24 hrs are based on (Plucinski et al. 2012, Plucinski 2012), where fire containment 

is the dependent variable and the parameters are defined as a result of logistic regression analysis 

(Table 1). The probability L of fire containment in 24hrs is defined as, 

 

ln d L
1 & Le � fg = f�??\A = f�hiDM EIHjF = fk�HiIHjF (9) 

 
wherein FFDI is the McArthur Forest Fire Danger Index, hiDM EIHjF is the time needed 

for ground suppression crews to reach a fire spot and �HiIHjF is the corresponding time for air 

suppression crews.  
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Figure 3 – Bayesian network for fire consequences 

 

The vulnerability node House damage represents the degree of damage, i.e. the 

susceptibility of the house portfolio in the cell. The vulnerability is influenced by Fire type, Fire 

containment in 24 hrs, Construction type and House stock. It is expressed as percentage of houses 

totally damaged in 1 km². The node Area damage is the corresponding vulnerability node for the 

vegetated area damage. It represents the degree of damage in 1 km². It is expressed as a 

percentage of the total area (1km²). 

 Urban/Rural, House Stock, Construction Value, House Density, Land Cover types, 

AgricultureForestShrub, Restoration cost, Restoration time are considered as exposure indicators. 

Urban/Rural discriminates urban from rural areas, which influences the house density [house/km²] 

and the house stock. House stock accounts for the house type portfolio in the mesoscale. It 

describes the combination of house types in 1km², which include single houses, semi-

detached/row houses, and apartments. The node House damage cost is calculated as 

 

[DMGF E�j�hF lDGI
� mMi I �iF� · [DMGF E�j�hF · ]D GIiMlIHD  n�NMF · [DMGF EF GHIJ (10) 

 

The node Land Cover types, represents the land cover types as classified in the 

nomenclature of the Corine Land cover types. The node AgricultureForestShrub classifies the land 

cover types based on the vegetation type. Restoration cost [€] is the cost for restoring previous 

land cover based on premiums paid country wise by the EU Rural Development Programs. 

Restoration time [yrs] is the time needed for restoring previous land cover type (Oehler et al. 

2012).  The node Area damage cost is calculated based on results in (Oehler, Oliveira et al. 2012) 

as 

 

oiF� E�j�hF lDGI � 

mMi I oiF� · oiF� E�j�hFE · CFGIDi�IHD  lDGI · �1 = i
pqrstuvs�t� s�wq 
(11) 

where i � 3% is the discount rate.  
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Table 1: Fire Containment in 24hrs: regression parameters (Eq.9) (Plucinski et al. 2012), (Plucinski 2012)  

 

  fg f� f� fk 
Vegetation 
Type 

Suppression intercept F/G FDI ground time air time 

grass ground 2.41124 &0.02454 &0.51708  
forest ground 1.168703 &0.024632 &0.20104  
shrub ground 1.664122 &0.019558 &0.282204  
grass ground&air 4.80436 &0.042789 &0.66977 &0.3253 
forest ground&air 3.83561 &0.05031 &0.29845 &0.34783 
shrub ground&air 3.75257 &0.03704 &0.3184 &0.08101 

 

 

 
2.5. Fire risk model  
 
The Fire risk model of Figure 4 is obtained as the combination of the fire occurrence model, the 

fire behavior model and the fire consequences model. This model predicts the risk to Houses and 

vegetated areas.  

 
 

 
 

Figure 4 – Combined Bayesian network for fire risk. 

The BN is coupled with a GIS. Spatial feature groups, such as points, lines and polygons, are 

processed, stored and managed in a GIS database. Georeferenced spatial features are projected 
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onto a grid with 1 km² cell size, which serves as the spatial resolution of the model. The geospatial 

features are associated with variables in the BN. In each cell, an instance of the BN models the 

wildfire risk. With the specific geospatial features associated with a cell, the wildfire risk associated 

to that cell can be calculated from the BN model. Spatial dependence is represented through the 

dependence of the observed indicator variables, but not through the BN itself. ArcGIS 10.1 is used 

for geospatial analysis and mapping (ESRI 2012).  

The parameters of the exposure indicators are learned with the attribute data of the 

geospatial features. Evidence (information on the observed variables) is given on the hazard 

characteristics and exposure indicators and is propagated in the network and the posterior 

marginal distributions for each variable are estimated. 
 

 

3. Testbed implementation 

 

The BN model is established for Cyprus. The conditional probability distributions of the BN 

variables are populated with data from the time period 2006-2009, regression model results and 

expert knowledge. Data from 2010 for Cyprus are used as verification dataset. The results are 

shown in daily maps with 1 km² spatial resolution.  

Figure 5 and Figure 6 exemplarily show the estimated expected damage cost (risk) for the 

two days of 2010 that had the maximum number of registered fires. The figures differentiate 

between house risk, vegetated area risk and the accumulated risk. The calculated FWI with 1km² 

spatial resolution for each day is displayed as well. The risk in each spatial-temporal unit is low due 

to the low probability of fire occurrence (in the order of 10�|). In both examples, the highest 

values of risk occur in wildland-urban interface areas.  

The effect of different influencing variables on the probability of fire occurrence is shown in 

Table 2. For fire behaviour, Table 3 summarizes the effect of the direct influencing variables on the 

probability of a burnt area > 0.1 km². 
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Table 2: Effect of influencing variables on fire occurrence probability  

Variable States Pr(Fire) 

Prior: 9.45e-5 

Change in Probability 

[%] 

FWI 0-10 4.50e-5 -52 
10-30 7.22e-5 -24 
30-60 1.60e-4 +70 
60-120 2.82e-4 +199 

LandCoverTypes 1 : Urban/Wetland/Pastures 2.17e-5 -77 
2: Arable land 2.72e-5 -71 
3: Permanent crops 1.33e-4 +40 
4: Heterogeneous agriculture 8.31e-5 -12 
5: Forests 1.80e-4 +91 
6: Shrubs/Herb. vegetation 9.34e-5 -1 
7: Open spaces 2.21e-4 +133 

Population density 0-20 7.81e-5 -17 
20-300 7.78e-5 -18 
300-4000 3.21e-4 +240 

Road density 0-0.5 9.36e-5 -1 
0.5-2 7.35e-5 -22 
2-26 1.16e-4 +23 

 

 

 
Table 3: Effect of influencing variables on burnt area  

Variable States Pr(BurntArea>0.1) 

Prior=1.70e-5 

Change in Probability 

[%] 

LCgrouped 1,4,6 1.65e-5 -3 

2,3,5 1.56e-5 -8 

7 6.54e-5 +284 

Topography 1:middle 1.97e-5 +16 

2:gradual 8.59e-6 -50 

3:steep  2.88e-5 +69 

Recent weather 1: dry 2.49e-5 +46 

2: moderate dry 1.82e-5 +7 

3: moderate humid 1.28e-5 -25 

4: humid 1.12e-5 -34 

Fire behavior indices 1: moderate 1.78e-5 +4 

2: low 1.35e-5 -21 
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Figure 5: (a) Fire Weather Index (FWI), (b) House risk, (c) Vegetated area risk, (d) Accumulated risk on 

08.10.2010 
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Figure 6:  (a) Fire Weather Inx (FWI), (b) House risk, (c) Vegetated area risk, (d) Accumulated risk on 

26.06.2010 

 

 

4. Concluding remarks 

 

While the understanding and prediction of wildfire occurrence has made significant progress in 

recent years, research on wildfire risk estimation based on exposure and vulnerability 

quantification is still evolving (Tutsch et al. 2010). Wildfire risk estimation may be facilitated by 

Bayesian Networks, which, as demonstrated in this paper, can be employed to model the wildfire 

risk in the mesoscale. The mesoscale requires that the indicators included in the model are 
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representative for a 1 km² spatial unit. This has strong implications on the modelling; as an 

example, it is necessary to identify representative building stocks and construction types not of 

individual buildings, but of portfolios of buildings. A main advantage of the BN is that different 

models from different sources can easily be combined. Of the BN for wildfire risk proposed in this 

paper, some parts are learned from data, some parts are derived from models published in the 

literature and other parts are based on expert knowledge. The graphical nature of the BN 

facilitates to consistently combine these model parts probabilistically and, not least, also facilitates 

the communication of the final model. 
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