
ABSTRACT: The BUS approach is a recently proposed method [1] for Bayesian updating of models with structural reliability 

techniques. Especially for high-dimensional problems, the combination of BUS with subset simulation [2] is shown to be 

efficient in drawing samples from the posterior distribution. The BUS approach can be considered an extension of rejection 

sampling, where a standard uniform random variable is added to the space of random variables. Each generated sample from this 

extended random variable space is accepted if the sample of the uniform random variable is smaller than the likelihood function 

scaled by a constant c. The constant c has to be selected such that it’s reciprocal is not smaller than the maximum of the 

likelihood function. For 1/c considerably larger than the maximum of the likelihood function, the efficiency of the approach 

decreases. However, in many cases the maximum of the likelihood function is not known in advance. In this contribution, we 

propose a technique for adaptively selecting the parameter c. This causes the rejection/acceptance criterion to change throughout 

the simulation. The proposed approach is compared to the TMCMC method proposed by Ching and Chen in [3] by means of a 

numerical example. We show that the proposed approach maintains the efficiency of BUS for problems with many random 

variables.  
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1 INTRODUCTION 

Bayesian analysis provides a consistent framework to reduce 

uncertainties in existing models through new information. The 

uncertainties in the model are expressed by means of input 

parameters that are regarded as uncertain. The new 

information is then used to update our prior belief about the 

parameters of the model to a resulting posterior belief. If the 

posterior model cannot be derived analytically, samples of the 

posterior have to be generated numerically.  

Markov chain Monte Carlo (MCMC) methods constitute a 

popular class of methods to sample from the posterior 

distribution [4,5]. One problem with MCMC methods is that 

the samples used after an initial burn-in phase may not have 

reached the stationary distribution of the Markov chain [6]. 

Another problem is that the MCMC algorithm can usually not 

be applied efficiently for problems with many uncertain 

parameters. Some MCMC algorithms [7,8] can cope with 

such problems, they require however additional evaluations of 

the likelihood function or its gradient for each sample. The 

burn-in problem is efficiently tackled for problems with just a 

few uncertain parameters by the TMCMC method [3], which 

belongs to the class of sequential particle filter methods [9].  

An approach that does not suffer a burn-in problem and can 

potentially cope with high-dimensional problems (i.e., 

problems with many uncertain parameters) was recently 

proposed by Straub and Papaioannou [1]: Bayesian updating 

with structural reliability methods, termed BUS. The 

downside of BUS is that prior to the analysis a constant   has 

to be selected, where     should not be smaller than the 

maximum value that the likelihood function can take. 

However, in many cases the maximum of the likelihood 

function is not known in advance. If     is chosen 

considerably larger than the maximum of the likelihood 

function, the efficiency of the approach decreases.  

In this contribution, we propose a technique for adaptively 

selecting the constant  . The adaptive variant of the BUS 

approach is compared to the TMCMC method by means of 

three numerical examples. 

2 BAYESIAN MODEL UPDATING 

Let   denote the new information that becomes available in 

the form of measurements or observations. Furthermore, let   

be the vector of model parameters that are considered 

uncertain in the analysis. The likelihood of observing   given 

the parameter set   is expressed as       . The learning 

process is formalized through Bayes’ theorem as: 

          
               (1) 

Where probability density function (PDF)      represents our 

prior belief of the distribution of  ,        is the resulting 

posterior distribution, and    acts as a scaling constant: 

                   
 

 (2) 

If             
 

, the constant    is equivalent to the 

evidence of the assumed model class, i.e.,         [10]. 

The evidence is a measure for the likelihood of a model class. 

In case of multiple model classes, knowledge of the evidence 

allows us to evaluate the posterior plausibilities of the 

individual model classes. The plausibilities are required for 

Bayesian model class selection and Bayesian model averaging 

[11,12]. Therefore, it is of advantage if a method for Bayesian 

updating does not only return samples from the posterior 

distribution, but returns an estimate of the evidence as well. 
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2.1 Bayesian Updating with structural reliability methods 

In the BUS approach [1], the updating problem is interpreted 

as a structural reliability problem. As a consequence, methods 

that were originally developed for structural reliability 

analysis can be applied to represent the posterior distribution. 

Let   be a standard uniform random variable defined on the 

interval      . Combining   with the uncertain parameter 

vector   to be learned gives the augmented outcome space 

     . Note that for the joint probability density function of 
      the following relation holds:                  
    , since       ; therefore,        and      will be used 

interchangeably. Furthermore, let the domain   be defined as: 

                (3) 

where   is a positive constant such that            for all 

 . Straub and Papaioannou [1] showed that  

         
   

                (4) 

and, consequently, Eq. (1) can be written as: 

        
           

                  

 (5) 

The denominator in Eq. (5) constitutes a structural reliability 

problem with limit-state function [13]: 

                   (6) 

The limit-state function is defined such that it is          if 

outcome       is inside the domain  ; and          if it is 

outside  . If the reliability problem is solved via a sampling 

based approach, the samples generated from the prior        

that fall into the domain   will be distributed according to the 

posterior        [1]. Let    denote the probability that a 

sample from        will fall into  ; i.e.,                
  . The scaling constant   , defined in Eq. (2), is linked to    

through:  

          (7) 

The simplest application of this idea is the rejection sampling 

algorithm [14,1] for drawing   samples from the posterior 

distribution: 

1. Set counter    . 

2. Propose a sample            : 

a. Draw      from the prior distribution     . 

b. Draw      from the uniform distribution 

defined on      . 

3. If               : 

a. Accept the proposed sample            . 

b. Increase the counter      . 

4. Go to step 2 as long as    . 

The above algorithm is equivalent to applying Monte Carlo 

simulation for solving a structural reliability problem with 

limit-state function       . The simulation continues until   

failures are observed. On average, the procedure needs to be 

repeated      times, where    is the probability of accepting 

a proposed sample. The probability    can be estimated as the 

number of accepted samples divided by the total number of 

samples. If the posterior distribution does not match the prior 

distribution well,    becomes small and renders the algorithm 

inefficient. However, as was pointed out in [1], other 

structural reliability methods can be used instead of the simple 

rejection sampling algorithm. 

2.2 BUS with subset simulation 

In this paper, subset simulation (SuS) is applied to perform the 

reliability analysis. SuS was proposed by Au and Beck in [2] 

and is an adaptive Monte Carlo method that is efficient for 

estimating small probabilities in high dimensional problems. 

The advantage of BUS with subset simulation is that the same 

MCMC methods that render subset simulation efficient for 

high-dimensional problems can be applied. With SuS, the 

domain   is expressed as the intersection of   intermediate 

nested domains   , where             . The 

domains    are defined as the sets            , where 

                  holds. Samples of 

             are denoted                           . 

SuS starts with drawing    random samples                 

from the prior distribution     . Note that the samples are 

realizations from       conditional on the domain   . The 

scalar      is picked as the   -percentile of the set 

                     

  
, where    is usually chosen equal to 10% 

in each step. If the   -percentile is negative,      is set to zero 

and        is set to the fraction of negative values in the list, 

otherwise          . Consequently,           realizations 

conditional on    are also in the domain     . In order to 

obtain    realizations in the domain     , Markov chain 

Monte Carlo (MCMC) methods are used to generate    

           additional samples of     , where the           

original realizations of      are used as seed values for the 

Markov chains. The described iterative process is continued 

until        . Note that samples from the domain    

follow the posterior distribution. Let   denote the number of 

samples to be generated from the posterior distribution. If 

    , the MCMC sampling at the  th iteration step is 

continued until   (and not only   ) realizations from the 

domain    are available. The acceptance probability can be 

estimated as         
 
   . For a more detailed description of 

the sampling procedure, the reader is referred to Straub and 

Papaioannou [1]. 

2.3 Adaptive variant of the BUS approach 

An advantage of the BUS approach is that several methods 

from structural reliability can be readily applied to perform 

the Bayesian analysis. If it is combined with SuS as described 

above, it inherits the advantage of SuS that it is applicable in 

high dimensions. The only difference compared to solving a 

structural reliability problem is that the coordinates of the 

samples that fall into the failure domain have to be stored, 

because they are samples of the posterior distribution. 

However, the required choice of the constant   might be a 

problem, because the true maximum that the likelihood can 

take, denoted   , is not always known in advance. On the one 

hand, choosing the constant   too conservative, i.e.,       , 

will decrease the efficiency of the method, since the 

acceptance probability    that has to be estimated decreases 

with a decreasing  :         . On the other hand, if   is 

selected too large, the obtained samples might not follow the 



posterior distribution. In the remainder of this section, we 

propose a procedure to learn the parameter   adaptively. The 

proposed procedure is based on the combination of BUS with 

subset simulation (see section 2.2). However, the 

implementation of subset simulation has to be modified, 

compared to its traditional application for reliability analysis. 

Just as for BUS with subset simulation, the domain   is 

expressed as the intersection of   intermediate nested 

domains   , where             . Let         be 

intermediate limit-state functions defined as: 

                     (8) 

The constants                  are set equal to the 

reciprocal of the maximum value of the likelihood of the 

samples obtained in all previous steps. This ensures that 

       , i.e.             . We now distinguish 

two kinds of intermediate domains,    and   
 . The former are 

nested, whereas the latter are not necessarily. The domains   
  

are defined through         as   
              , where 

        , with      and     . The domains    are 

defined as      
        , which ensures that they are nested.  

The constants    defining   
  are chosen such that a fraction    

of the samples in      fall also in the domain   
 . For    

    , the condition         holds. However, if        ,    

might be larger than     . In this case, the domain   
  might 

not be entirely contained in     
 . In the last step, with      , 

it is      
 , since         , for any        .  Note that for 

   any value can be selected, but in case         it is 

              , and the procedure presented in the 

following will reduce to the one described in section 2.2. If 

the value of    is not known, it is suggested to set     . 

In the following, samples of    are denoted                   

        . The procedure starts with drawing       

random samples                 from the prior distribution 

    . These samples are realizations conditional on the 

domain   . The constant      is picked as      

                          
   

    , where L(          is the 

likelihood value that is associated with sample       . The 

scalar      is picked as the   -percentile of the set 

                        

  
, where    is usually chosen equal to 

10% in each step. If      is negative,      is set to zero and 

       is set to the fraction of negative values in the list, 

otherwise          . All samples for which 

                         holds are also realizations from the 

domain     . These samples are used as seeds in the MCMC 

method to generate additional samples, so that in total      

realizations from      are available, where        if 

          

   
   and         otherwise. The described 

iterative process is continued until                . The 

   from Eq. (2) can be estimated as                
 
   . 

Note that      will be larger than     , because   is equal to 

the reciprocal of the largest likelihood value that was observed 

in the simulation. However, we conjecture that the samples 

           

 
 will follow the posterior distribution for most 

practical situations. The validity and performance of the 

method is demonstrated by numerical examples.  

2.4 TMCMC 

In this section, we briefly summarize the transitional Markov 

chain Monte Carlo (TMCMC) method [3], since we will use it 

as a reference to compare the performance of the adaptive 

BUS in the numerical examples. TMCMC belongs to the class 

of sequential particle filter methods [9]. The idea is to start 

with samples from the prior distribution, and in subsequent 

steps, gradually transform the shape of the sampling 

distribution such that it approaches the posterior distribution. 

For this purpose, Eq. (1) is transformed as: 

                     (9) 

where          denotes the stage number, and the 

         are chosen such that               . 

Consequently, for     ,       is equal to the prior 

distribution     ; and for    ,       matches the posterior 

distribution       . 

Ching an Chen [3] proposed to select      such that the 

coefficient of variation of               becomes   , with 

       . Let        with      denote the  th sample 

from distribution       at stage  , where    is the number of 

samples generated at each stage. Furthermore, let           

with          denote the coefficient of variation of the set 

                 
   

  
 at stage  , where L(          is the 

likelihood value that is associated with sample       . Based 

on the set of samples            

  
, the value of      can be 

determined as: 

                             (10) 

In the initial stage (i.e., for    ),    samples        are 

drawn from the prior distribution. Samples          of 

distribution         can be obtained from the set of samples 

           

  
 by the following procedure: 

1. For each          compute a weighting 

coefficient        as:  

                     
    

 (11) 

2. Compute the mean of the weighting coefficients: 

    
 

  
       

  
    (12) 

3. Perform a resampling of            

  
 according to the 

weights       , i.e. draw    samples from the discrete 

distribution in which each value        has probability 

      . The samples obtained through the resampling 

step are denoted         
  and follow distribution 

       .  

4. For each sample         
            perform a 

single MCMC step, where the sample         
  acts as 

seed value of the chain. The obtained sample is 

denoted         . 

The procedure is repeated until        . Let   bet the 

total number of posterior samples that we want to obtain. If 

     and     , the MCMC sampling is continued until 



  realizations are avialable. The evidence introduced in 

Eq. (2) can be estimated as       
   
   . 

Note that steps (3) and (4) are taken from the algorithm 

proposed in [9], and differ from the original TMCMC 

algorithm proposed in [3], wherein steps (3) and (4) are 

performed as: 1. initialize the samples         
           

as         
         and set    , 2. select an index   from 

       with probability proportional to the weights       , 3. 

perform a single MCMC step with the sample         
  as seed 

and overwrite         
  with the obtained sample, 4. set 

                 
 , 5. set       and continue with step 2 

as long as     . We use the modified TMCMC procedure, 

because it reduces the bias and the variance in the obtained 

posterior estimate considerably. 

3 NUMERICAL EXAMPLES 

In the following we will compare the adaptive variant of the 

BUS approach (referred to as aBUS) with BUS with subset 

simulation, and with the variant of the TMCMC method 

described in the previous section by means of three examples. 

The number of posterior samples generated by each method is 

1000. The number of samples in the intermediate levels is also 

set to 1000. For both BUS and aBUS, the threshold 

probability    is set to    . The constant   in BUS is set 

equal to      , and    in aBUS is  . The target coefficient of 

variation in TMCMC is        . 

The component-wise Metropolis-Hastings algorithm was 

applied as MCMC method in BUS and aBUS. The standard 

deviation of the Gaussian proposal distribution was modified 

adaptively such that the acceptance rate of the individual 

chains is close to 0.44 (compare [15]). For TMCMC the 

Metropolis-Hastings algorithm is applied. As proposal 

distribution the multivariate Gaussian distribution is used, 

where the covariance matrix is estimated from the set of 

current samples [3]. Ching and Chen [3] suggest to scale the 

covariance matrix of the proposal distribution with a constant 

factor of     . Contrary to that, in the following studies we 

scale the covariance matrix of the proposal distribution such 

that the acceptance rate of the MCMC chains is close to 0.44, 

because it reduces the bias and the variance in the obtained 

posterior estimate considerably.  

3.1 Example 1  unimodal distribution 

Let   be a  -dimensional random vector. The components 
             of   are independent and have identical 

distributions. The prior distribution of   is      
      

 
   , where   is the probability density function (PDF) 

of the univariate standard normal distribution. The likelihood 

of the problem is defined as         
 

  
  

        

  
  

   , 

where        and       is selected such that the evidence 

        is independent of the dimension  . The 

performance of the different methods is investigated for 

increasing  . Since both the prior and the likelihood are 

Gaussian, the problem at hand has an analytical solution. The 

mean of the likelihood that typically represents the measured 

quantity can be computed as: 

               
        

             
    

The mean and standard deviation of a posterior    is:   
      

     

   
        

   
,   

       
 

      
 . The maximum value the 

likelihood can take is            
       

 . 

In a first study, the estimated evidence     is compared to the 

true evidence   . Let      denote the mean of    . In Table 1 

the ratio     
    is listed, where the value in brackets is the 

coefficient of variation (C.o.V.) of the estimate, denoted     . 

The quantities      and      were estimated by a 1000 runs of 

the updating problem. Looking at the results listed in Table 1, 

we see that the estimated evidence is biased for TMCMC, 

BUS and aBUS. For all three methods, the bias for     is 

larger than the bias for    . Independent of the dimension 

 , the bias of the TMCMC estimate is clearly larger than the 

one of BUS and aBUS. For    , the bias of the TMCMC 

and BUS estimate increases with an increasing  , where the 

bias increases faster for TMCMC than for BUS. For BUS, the 

dependency of the bias on the dimension can be explained 

through the acceptance probability   : since the evidence is 

kept constant and    increases as   increases, the acceptance 

probability         decreases, where        for BUS and 

this example. For smaller acceptance probabilities, more 

subset steps are required in BUS. This increases the 

correlation of the posterior samples and, thus, the bias in the 

estimate of the evidence [2]. We believe that the relatively 

strong bias in the TMCMC estimate for this example is due to 

the learning of the covariance structure of the intermediate 

MCMC proposal distributions from the corresponding 

intermediate samples. We observed that if a similar technique 

to obtain the proposal distribution is applied in the MCMC 

step of the BUS approach, the bias in the estimate of the 

evidence will increase considerably for this example. 

Comparing BUS and aBUS, BUS performs slightly better than 

aBUS for     ; whereas for      it is the other way 

round. The observation that aBUS performs slightly better 

than BUS for higher dimensions can be explained by 

comparing the acceptance probabilities of the BUS and the 

aBUS problem: The last column in Table 1 lists the mean of 

the largest observed likelihood value in aBUS divided by   . 

As the dimension increases, this ratio decreases considerably 

and, thus, the acceptance probability         that has to be 

computed in aBUS is larger than the one in BUS – which 

explains the smaller bias in the aBUS estimate of the 

evidence.  

In a second study, we look at the number of model runs 

required to draw 1000 samples from the posterior distribution. 

The mean number of model runs required to draw 1000 

samples from the posterior is listed in Table 2. The values 

were obtained as the average of performing the updating 

problem 1000 times. For this example, the number of model 

runs required depends on the dimension   for the three 

investigated methods. For BUS and aBUS this is a direct 

consequence of the decrease in the acceptance probability for 

increasing  : As the acceptance probability decreases, the 

number of intermediate subset steps increases on average. For 

TMCMC, the mean of       increases up to     , and 



decreases for    . However, we believe that the observed 

decrease might, at least partially, be a side effect of the strong 

bias observed in Table 1. For      , BUS and aBUS need a 

smaller number of model runs than TMCMC. aBUS performs 

slightly better than BUS, where the difference increases for 

increasing  . Again, this is a consequence of the acceptance 

probability that has to be computed. 

Table 1. Statistical properties of the estimated evidence for 

increasing d (Example 1). 

 
    
  

  (    )       

  
  (

         

      
) 

  TMCMC BUS aBUS aBUS 

1 3.06 (9.8) 0.81 (4.8) 2.91 (10) 1.0 (1‰) 

2 0.69 (4.6) 1.05 (2.5) 1.74 (2.5) 0.99 (9‰) 

3 0.35 (3.0) 1.10 (2.8) 1.68 (1.9) 0.96 (3%) 

5 0.24 (7.0) 1.04 (1.7) 1.33 (1.5) 0.83 (0.11) 

7 0.09 (8.1) 1.23 (1.8) 1.30 (1.5) 0.65 (0.21) 

10 0.11 (8.1) 1.13 (1.1) 1.14 (0.9) 0.39 (0.40) 

15 0.50 (8.0) 1.14 (0.9) 1.06 (0.9) 0.14 (0.74) 

20 72.5 (9.3) 1.14 (0.9) 1.06 (1.0) 0.05 (1.13) 

 

Table 2. Mean number of model runs required to obtain 

samples of the posterior with 1000 samples per intermediate 

level (Example 1). 

  TMCMC BUS aBUS 

1 11.9      9.47      8.98      

2 12.0      10.0      9.68      

3 12.7      10.3      10.1      

5 13.0      10.8      10.7      

7 13.4      11.3      11.1      

10 13.4      12.1      11.8      

15 12.8      13.4      12.7      

20 12.3      14.7      13.6      

 

Next, the statistical properties of posterior samples of the 

random variable    are compared with the corresponding 

analytical solution. Let      
   

   
   

     
      

  denote a 

set of 1000 posterior samples of   . Furthermore, let the 

sample mean and sample variance of the samples in   be    
and   , respectively.    and    are themselves random 

variables whose theoretical mean is equivalent to the posterior 

mean and variance, i.e.,             
   and           

   
    . If the samples in   were independent, the theoretical 

standard deviation of    and    is       
         and 

       
          , respectively. Numerical estimates of 

   ,    ,    ,     were obtained by means of performing the 

updating problem 1000 times and are denoted     ,     ,     ,     . 

The estimates      and      are compared to their corresponding 

reference values in Table 3. The closer the ratio          is to 

1.0, the smaller is the bias in the estimate of the posterior 

mean of   . For BUS and aBUS the bias is negligible and 

independent of the dimension  . For TMCMC, the bias 

increases with  ; for      the bias is larger than 5%. The 

ratio          that is also presented in Table 3 can be regarded 

as an indirect measure of the correlation of the samples in  . 

A ratio of one indicates that samples in   are uncorrelated; the 

larger the ratio is compared to the optimum of one, the higher 

the correlation of the samples in  . For TMCMC, the ratio 

         is considerably larger than the one of BUS and aBUS, 

whereas the performance of BUS and aBUS is similar. The 

bias in the estimate of the posterior variance can be assessed 

by means of the ratio          listed in Table 4, where the bias 

is zero if the ratio is equal to one. For all three investigated 

methods, the bias in the estimate of the posterior variance      

is larger than the bias in the estimate of the posterior mean      
and increases with increasing  . For    , the bias in 

TMCMC and aBUS is comparable and smaller than the bias 

in BUS. For     , BUS has the smallest bias, and TMCMC 

the largest. The ratio          (Table 4) shows how much the 

standard deviation      of the estimator    deviates from the 

reference value    . The behavior of the three methods is 

similar with one exception: for      , TMCMC has the 

smallest         . 

 

Table 3. Statistical properties of the estimated posterior mean 

of    for increasing d (Example 1).  

     

   
   

    

   
  

  TMCMC BUS aBUS TMCMC BUS aBUS 

1 1.0 0.98 0.99 33.6 13.4 11.8 

2 0.99 0.99 1.00 21.6 8.7 7.7 

3 0.99 0.99 1.00 18.4 7.3 6.5 

5 0.98 0.99 1.00 10.9 6.4 5.6 

7 0.96 0.99 1.00 14.5 6.0 5.7 

10 0.93 1.00 1.00 21.5 6.3 6.6 

15 0.88 1.00 1.00 24.0 7.3 7.9 

20 0.88 1.00 1.00 20.3 8.4 9.2 

 

Table 4. Statistical properties of the estimated posterior 

variance of    for increasing d (Example 1).  

   
  

   
  

  
  

   
  

  TMCMC BUS aBUS TMCMC BUS aBUS 

1 0.99 1.02 0.98 5.9 5.4 5.3 

2 0.98 1.14 1.01 2.6 5.4 5.1 

3 0.97 1.15 1.00 2.7 5.5 5.2 

5 0.97 1.08 0.98 3.5 5.4 5.2 

7 0.96 1.04 0.94 4.2 5.3 5.5 

10 0.90 0.98 0.93 5.2 5.4 5.7 

15 0.74 0.93 0.90 5.6 5.6 6.0 

20 0.62 0.90 0.88 4.9 5.7 6.5 

 

Let    denote            sets, each obtained from a 

different run of the updating problem. Each set    contains 

1000 posterior samples of   . Furthermore, let   =   
    
    

denote the union of all sets   . The variance of samples in the 

set    is denoted   
 . The expected value of   

 , referred to as 

   
 , is equal to the posterior variance    

    . Let       be an 

estimate of    
 , obtained with samples from either TMCMC, 

BUS or aBUS. Note that even if both the estimates      and      

are unbiased, the estimate       might be, nevertheless, biased. 

If      and      are unbiased, the bias in       is mainly 

influenced by the difference of      from its theoretical 



optimum. The ratio         
   is listed in Table 5 for different 

 . The best performance in terms of this quantity has aBUS 

followed by BUS. One exception is TMCMC for     , 

whose estimate seems to be good. However, since the 

estimates      and      are clearly biased in TMCMC for 

    , the ratio         
   loses its explanatory power. 

 

Table 5. Variance in a set of     posterior samples of   , 

obtained from     runs of the updating problem with     

samples generated in each run, divided by the reference 

variance of the posterior    (Example 1). 

  TMCMC BUS aBUS 

1 2.12 1.20 1.12 

2 1.45 1.24 1.06 

3 1.31 1.19 1.04 

5 1.09 1.15 1.00 

7 1.17 1.07 1.01 

10 1.36 1.03 0.96 

15 1.32 0.99 0.97 

20 1.03 0.95 0.95 

 

In a next study we assess the quality of the approximated 

posterior distribution of the largest and smallest coefficient in 

 . Let      denote the largest coefficient of the vector  , i.e. 

                 ; and let      denote the smallest 

coordinate of  , i.e.                   . The range   is 

defined as            . The posterior PDF of      is 

defined as: 

      
        

 

  
    

    
  

  
       

    
  

  
    

   

.  

The posterior PDF of      is defined as: 

      

        
 

  
    

    
  

  
         

    
  

  
    

   

. 

Reference values for the mean and standard deviation of 

    , denoted      
        

  , can be computed from      
  , 

and a reference value for the mean of  , denoted   
  , can be 

computed from      
   and      

  . Numerical estimates of these 

quantities, denoted       
         

      
  , obtained from 1000 

runs of the updating problem, are compared to the reference 

values in Table 6 and Table 7. The bias in the estimate       
   

is negligible for BUS and aBUS. For TMCMC, the bias is 

negligible for    , however, it increases with an increase in 

 . Similar to         , the ratio is an indirect indicator for how 

much the numerically obtained posterior samples of      are 

correlated. The larger this ratio the less efficient is the 

numerical updating technique. Looking at the values listed in 

Table 6, BUS and aBUS are comparable to each other, and 

TMCMC is clearly less efficient. In Table 7 the ratio    
    

    

and the coefficient of variation of the estimate    
   is listed. 

aBUS gives the estimate that has on average the smallest bias. 

The estimate of BUS has a small bias for     . The 

estimate of TMCMC has a small bias for     and for 

    , however, the coefficient of variation of the estimate 

is larger than the one obtained with BUS or aBUS for    . 

Table 6. Statistical properties of the posterior      for 

increasing d (Example 1).  

       
  

     
    

      
  

     

   

  TMCMC BUS aBUS TMCMC BUS aBUS 

1 1.0 0.98 0.99 33.6 13.4 11.8 

2 1.0 0.99 1.00 17.8 8.1 6.7 

3 0.99 0.99 1.00 13.9 5.3 4.4 

5 0.99 1.00 1.00 8.6 4.3 4.1 

7 0.98 1.00 1.00 9.1 5.1 5.5 

10 0.96 1.00 1.00 14.2 6.8 7.1 

15 0.95 1.00 0.99 15.9 8.1 9.2 

20 0.94 0.99 0.99 13.8 10.2 11.1 

Table 7. Statistical properties of the posterior range   for 

increasing d (Example 1).  

    
  

  
    (

   
  

   
  ) 

  TMCMC BUS aBUS 

2 1.01 (26%) 1.15 (13%) 1.03 (14%) 

3 1.02 (23%) 1.12 (12%) 1.02 (12%) 

5 1.04 (18%) 1.08 (11%) 1.00 (11%) 

7 1.07 (10%) 1.05 (10%) 0.98 (11%) 

10 1.15 (11%) 1.01 (10%) 0.99 (10%) 

15 1.14 (10%) 1.00 (9%) 0.98 (10%) 

20 1.02 (8%) 0.98 (9%) 0.98 (10%) 

 

 

3.2 Example 2  sum of random variables 

In this example, we investigate the performance of the 

methods for large  , i.e. for   up to 5000. For this example, 

only the statistics of the evidence and the mean number of 

model runs are analyzed. 

Let   be a  -dimensional random vector. The components 
             of   are independent and have identical 

distributions. The prior distribution of   is      
      

 
   , where   is the PDF of the univariate standard 

normal distribution. Furthermore, let      be a function of   

that is defined as      
 

  
   

 
   . Consequently, the prior 

distribution of      is standard normal. The likelihood of the 

problem is defined through      as        
 

  
  

       

  
 , 

where        and     . The problem at hand has an 

analytical solution: The evidence    does not depend on the 

dimension   of the problem and can be evaluated as    
 

       
 
  

  

       
 
            .  

First, the estimated evidence     is compared to the true 

evidence   . Let      denote the mean of    . In Table 8 the 

ratio         is listed, where the value in brackets is the 

coefficient of variation (C.o.V.) of the estimate, denoted     . 

The quantities      and      were estimated by 1000 runs of the 

updating problem. The estimates of BUS and aBUS have, on 

average, a bias of 4%, where the bias is independent of the 

dimension. The estimate of TMCMC is unbiased for    . 

However, the bias in TMCMC increases rapidly with  . The 



coefficient of variation of the estimate does not depend on the 

dimension for BUS and aBUS if     , and increases with 

an increase in the dimension for TMCMC. Note that for 

TMCMC with 1000 samples per level, the problem can only 

be solved for       : The proposal distribution in the 

MCMC step is estimated from the covariance structure of the 

samples – which is not positive definite if the number of 

random variables is larger than the number of samples. 

In Table 9 the mean number of model runs required to draw 

1000 samples from the posterior distribution is listed. The 

values were obtained as the average of performing the 

updating problem 1000 times. The number of model runs is 

not influenced by the dimension for all three methods. Both 

BUS and aBUS require on average 40% fewer model 

evaluations than TMCMC.  

For this example BUS and aBUS clearly outperform 

TMCMC: they solve the problem with a smaller number of 

model runs and the bias of the estimated evidence does not 

depend on the dimension. The fact that neither BUS nor aBUS 

are influenced by the dimension is due to the application of 

the component-wise Metropolis Hastings algorithm in the 

MCMC step. This sampler would require additional likelihood 

function evaluations for application within TMCMC, for 

which the original Metropolis Hastings algorithm is used. 

 

Table 8. Statistical properties of the estimated evidence for 

increasing d (Example 2). 

 
    
  

  (    
) 

  TMCMC BUS aBUS 

1 1.00 (0.39) 1.05 (0.71) 1.04 (0.66) 

2 0.97 (0.59) 1.04 (0.55) 1.06 (0.54) 

3 0.91 (0.72) 1.01 (0.50) 1.05 (0.48) 

5 0.76 (0.96) 1.05 (0.58) 1.04 (0.44) 

10 0.44 (1.26) 1.04 (0.44) 1.04 (0.42) 

20 0.20 (1.89) 1.04 (0.42) 1.03 (0.41) 

100 0.13 (3.06) 1.02 (0.43) 1.06 (0.41) 

500 0.11 (3.88) 1.04 (0.42) 1.05 (0.42) 

5000  1.03 (0.44) 1.05 (0.40) 

 

Table 9. Mean number of model runs required to obtain 

samples of the posterior with 1000 samples per intermediate 

level (Example 2). 

  TMCMC BUS aBUS 

1 8.00      4.47      4.46      

2 7.97      4.70      4.68      

3 7.95      4.78      4.75      

5 8.00      4.79      4.79      

10 8.20      4.79      4.78      

20 8.34      4.78      4.78      

100 8.02      4.80      4.77      

500 7.42      4.78      4.77      

5000  4.80      4.78      

 

3.3 Example 3  2DOF dynamic problem 

The response of the two-story linear structure shown in Fig. 1 

to a narrow banded ground acceleration is investigated. This 

example was originally discussed in [3], where the 

performance of the TMCMC method is assessed.  

The ground acceleration and the acceleration of the roof are 

measured every 0.02 seconds for a period of one second, 

where the measured roof acceleration is contaminated with 

white Gaussian noise. The variance of the noise   , the 

stiffness parameters   ,   , and the damping ratio   of the  

two modes are assumed uncertain. The aim of the analysis is 

to update our belief about the uncertain parameters 

conditioned on the measurements. Our prior belief is:    ,    

are uniformly distributed on the interval         ,   is 

uniform on            , and    is equally likely between 

     . The true parameter values used to generate the 

measured roof acceleration are:           ,       , 

and       . The masses are assumed known:       
 . 

 

 

Figure 1. 2DOF system investigated in Example 3. 

In this example, the maximum that the likelihood can take 

depends on the measured data. Therefore, only the 

performance of aBUS and TMCMC is assessed, and BUS is 

not considered. The performance of the two investigated 

methods is compared to a reference solution that was obtained 

numerically through rejection sampling, i.e. the obtained 

samples of the posterior are truly independent. The statistical 

properties of the reference solution were computed by running 

the updating problem more than 3000 times, and the statistical 

properties of the solutions were obtained with aBUS and 

TMCMC by 1000 updating runs.  

First, we assess how many model runs aBUS and TMCMC 

require to draw 1000 samples from the posterior distribution: 

aBUS needs on average         samples and TMCMC needs 

        samples. Consequently, with aBUS the problem is 

solved approximately 35% faster than with TMCMC.  

The averaged estimate of the evidence is 2.87       for 

aBUS, 2.79       for TMCMC, and 2.81        for the 

reference solution. Thus, the TMCMC estimate is slightly less 

biased than the aBUS estimate, however, the bias in both 

estimates is rather small. The coefficient of variation (C.o.V.) 

of the reference solution is approximately 3%, the C.oV. of 

aBUS and TMCMC is 37% and 29%, respectively. Thus, both 

aBUS and TMCMC have, due to correlated posterior samples, 

a considerable larger C.o.V. than the reference solution. 

TMCMC has a smaller C.o.V. than aBUS because its solution 

is based on more model runs.  

Next, the average means of    and    are investigated by 

means of 1000 runs of the updating problem. aBUS gives 

         for    and          for   , and TMCMC gives 



         for    and          for   . The reference solution 

is very close to the estimates of aBUS and TMCMC:      
    for    and          for   . Both methods exhibit a 

larger deviation for the C.o.V. of the estimate of the mean: for 

   the reference solution is 1.4%, whereas aBUS gives 15% 

and TMCMC 13%. The average standard deviation of    is 

        for aBUS,         for TMCMC, and        in 

case of the reference solution. Consequently, the bias in the 

standard deviation is larger than the bias in the mean, 

however, still smaller than 10% for both methods. The C.o.V. 

of the estimate of the standard deviation of 1000 posterior 

samples of    is 26% for aBUS, 22% for TMCMC, and only 

2% in case of the reference solution.  

In a last study we assess the estimated mean maximum 

interstory drift of the building during the simulated excitation. 

The average mean estimated with aBUS is           with a 

C.o.V. of 17%, and the average TMCMC estimate is      
     with 15% C.o.V. The average mean of the reference 

solution is           with a C.o.V. of 0.4%. Thus, both 

aBUS and TMCMC underestimate the maximum interstory 

drift on average by approximately 40%. The C.o.V. of the 

estimate is again considerably larger than the reference C.o.V. 

due to correlated posterior samples. 

In summary, aBUS and TMCMC behave similar for this 

example, with one exception: aBUS solves the problem with 

fewer model runs than TMCMC.  

CONCLUSION 

The recently proposed BUS approach (Bayesian updating with 

structural reliability methods) is modified by adaptively 

learning the constant  , which reflects the reciprocal of the 

maximum of the likelihood function. It is shown that the 

performance of the proposed variant of BUS is similar to the 

one of the original BUS algorithm proposed in [1]. Both 

methods clearly outperform the TMCMC method for 

problems with many random variables. One drawback of 

TMCMC is that, contrary to the BUS variants, the Metropolis-

Hastings algorithm cannot be performed efficiently in a 

component-wise manner. This renders TMCMC inefficient in 

case of high-dimensional problems. 

The advantage of the proposed adaptive BUS variant over the 

original one is that no upper bound for the maximum 

likelihood has to be specified a-priori. However, while we 

showed that the adaptive variant is working well for practical 

problems, a theoretical analysis of the results obtained with 

the algorithm is still needed.   
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