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Abstract

In the present work a finite element based hybrid ALE-fixed-grid fluid-structure interaction (FSI)
approach for simulation of complex two- and three-dimensional FSI problems involving large
structural deformations is developed. The two main features of the proposed FSI method are
as follows: first, it is able to deal with large and complex structural deformations. Second, it
provides a proper resolution of the flow features at structural surface throughout the simula-
tion, which is essential in order to resolve steep gradients in normal direction for high Reynolds
number flow. In this approach, the structure, which is described in Lagrangian formulation, is
surrounded by a surface layer of deformable stretched fluid elements based on an Arbitrary-
Eulerian-Lagrangian (ALE) formulation. This deformable fluid patch, which is embedded in
the fixed-grid Eulerian background fluid domain, moves and deforms with the structure, and
provides an appropriate boundary layer mesh over the simulation time. The surface coupling
between the two fluid domains is imposed weakly using a stabilized formulation at the common
fluid-fluid interface. In other words, overlapping meshes are used without introducing overlap-
ping solutions. The structure and the moving fluid are coupled in the same way as in classical
ALE-based FSI approaches.

The method is derived in two main steps: First, a stable and robust extended finite element
(XFEM)-based embedded fluid formulation for viscous as well as convective dominated flows
is introduced. It is built from the following essential ingredients: since the fluid patch ends in
the middle of background elements, an XFEM-based approach is introduced to model a sharp
separation between active and inactive regions on background grid. Boundary conditions on the
embedded interface are imposed weakly using Nitsche’s formulation. Nitsche’s stabilization pa-
rameter is determined via a local eigenvalue problem, which provides a reliable, and an automatic
computation of Nitsche stabilization parameter for any element’s shape or form, or polynomial
orders. Face-oriented stabilizations are applied to take control over ghost values, balance fluid
instabilities in the interface zone, and to improve the system conditioning. To overcome the insta-
bilities caused by the convective mass transport across the fluid-fluid interface, additional inflow
stabilization terms are introduced. A detailed numerical analysis of the stabilized embedded fluid
formulation shows the optimal error convergence in viscous and convective cases, independent
of the size of cut elements, or the position of the interface. This formulation is applied to moving
interfaces, introducing a new XFEM time-integration approach, which results in a robust and
stable solution over time.

In the next step, the structural equations are coupled with the proposed embedded fluid formu-
lation into a monolithic FSI system. Solving such nonlinear FSI system with Newton-Raphson
scheme in a straightforward way leads to further complexities regarding the Eulerian description
of fixed-grid background fluid in combination of moving fluid patch. In order to avoid these
complexities, a novel FSI approach stated as relaxing ALE approach is proposed. The key idea
of relaxing ALE approach is that the position of the internal fluid-fluid interface does not change
during the Newton-Raphson scheme, and it is updated only at the end of each time step.

Two- and three-dimensional numerical examples are presented to validate the proposed ap-
proach, and to demonstrate its superior performance. These examples prove that robust, stable
and accurate solution is achieved independent of the position of internal fluid-fluid interface or
the complexity of the form of fluid patch. Furthermore, the method provides feasibility of re-
solving steep gradients within the boundary layer around the structural surface, in addition to



handling the large deformation of structure with ease. Thus, the present FSI approach is best
suited for complex real-world FSI problems.
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Zusammenfassung

In dieser Arbeit wurde ein neuer Ansatz zur Simulation von komplexen zwei- und dreidimen-
sionalen Problemen der Fluid-Struktur-Interaktion (FSI) entwickelt, der insbesondere fiir Fille
groBer Strukturdeformationen geeignet ist. Das auf Finiten Elementen basierende Verfahren ver-
wendet zwei gekoppelte Fluidfelder, die jeweils auf dem Arbitrary-Langrangian-Eulerian(ALE)-
und Euler-Ansatz beruhen. Die vorgestellte Methode hat folgende charakteristische Merkmale:
Einerseits werden beliebig grole und komplexe strukturelle Verformungen zufriendenstellend
behandelt. Dabei bietet das Verfahren andererseits eine stetig prazise Auflosung von Stromungs-
eigenschaften entlang der Strukturoberflache. Diese Eigenschaft ist grundlegend fiir die Erfas-
sung hoher wandnormaler Gradienten von Stromungen hoher Reynolds-Zahl. Im vorgestellten
Ansatz wird das Strukturgebiet, das wie iiblich in Lagrangescher Beschreibung gegeben ist, von
einer Schicht grenzschichtspezifisch gestreckter Fluidelemente auf ALE-Basis umbhiillt. Dieses
Netz aus verformbaren Fluidelementen wird in ein Hintergrundgitter aus Fluidelementen in
Euler-Betrachtung eingebettet. Das ALE-Netz folgt den Bewegungen und Deformationen des
Strukturfelds liber den gesamten Simulationszeitraum hinweg und stellt so eine dauerhaft hohe
Auflosung des Grenzschichtbereichs sicher. Die oberflichenbasierte Kopplung zwischen den
beiden Fluidnetzen wird schwach erfiillt, unter Verwendung einer stabilisierten Formulierung an
der gemeinsamen Grenzflache. Somit werden iiberlappende Netze genutzt, ohne dass iiberlap-
pende Losungen eingefiihrt werden. Die Kopplung zwischen Struktur und ALE-Fluid erfolgt in
gleicher Weise wie bei klassischen ALE-basierten FSI-Ansitzen. Im folgenden soll die Methode
in zwei Schritten hergeleitet werden. Zunéchst wird eine stabile und robuste Fluidformulierung
vorgestellt, die auf der eXtended Finite Element Method (XFEM) beruht und sowohl fiir viskos
als auch fiir konvektiv dominierte Stromungen giiltig ist. Dabei wird der XFEM-basierte Ansatz
gewdhlt, um im Hintergrundgitter zwischen aktiven und inaktiven, vom ALE-Gitter bedeckten
Regionen zu unterscheiden, da diese an beliebiger Stelle innerhalb eines Hintergrundelements
auftreten konnen. Die Kontinuitét entlang der Fluid-Fluid Grenzfliche wird unter Verwendung
der Nitsche-Methode schwach erfiillt. Der Stabilisierungsparameter der Nitsche-Kopplung wird
iiber die Losung eines lokalen Eigenwertproblems ermittelt. Dies bietet eine verldssliche Be-
stimmung des Nitsche-Parameters fiir Elemente beliebiger Art, Geometrie oder polynomialer
Ordnung. Um die Werte von Freiheitsgraden im inaktiven Fluidbereich zu kontrollieren, Insta-
bilitdten an der Grenzfliche zu vermeiden und die Kondition des Systems zu verbessern, werden
flachenorientierte ("face-oriented”) Stabilisierungsterme angewendet. Um Instabilititen auszu-
gleichen, die aus konvektivem Massentransport iiber die Fluid-Fluid-Grenzflache herriihren,
werden zusitzliche Einstromterme eingefiihrt. Eine detaillierte numerische Analyse der stabi-
lisierten eingebetteten Fluidformulierung zeigt optimale Fehlerkonvergenz sowohl in viskos als
auch in konvektiv dominierten Féllen. Diese ist auBerdem unabhéngig von der Groe geschnit-
tener Hintergrundelemente oder der Position der Fluid-Fluid-Grenzfliche. Die Formulierung
wird schlieBlich mithilfe eines neuen Ansatzes zur XFEM-Zeitintegration auf Fille mit be-
wegten Grenzflichen erweitert. Damit kann eine robuste und stabile Losung iiber die Zeit er-
reicht werden. Der zweite grofe Schritt umfasst die Vereinigung der Strukturgleichungen mit
der vorgeschlagenen eingebetteten Fluidformulierung zu einem monolithischen FSI-System.
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Die Losung solcher nichtlinearer FSI-Probleme mit einem Newton-Raphson-Verfahren in der
iiblichen Art fiihrt zu Schwierigkeiten, die sich aus der Kombination der gewéhlten Euler-Be-
schreibung im Hintergrundgitter mit bewegten eingebetteten Netzen ergibt. Um dies zu vermei-
den, wird ein neuer Losungsansatz entwickelt: Das "Relaxing ALE”-Prinzip. Der Grundgedanke
hier ist, dass sich die Position der eingebetten Fluid-Fluid-Grenzflache wihrend der Newton-
Raphson-Iteration nicht dndert und erst am Ende des jeweiligen Zeitschritts aktualisiert wird.
Am Ende dieser Ausarbeitung werden zwei- und dreidimensionale Beispiele vorgestellt, um den
neuen FSI-Ansatz zu validieren und seine Vorteile aufzuzeigen. Diese Beispiele zeigen, dass
eine robuste, stabile und prizise Losung unabhédngig von der geometrischen Form oder der Po-
sition des eingebetteten Fluidnetzes erreicht werden kann. Der neue Ansatz bietet somit die
Moglichkeit, hohe Gradienten innerhalb der Grenzschicht an der Strukturoberflache aufzulosen,
wihrend er gleichzeitig groBBe Strukturdeformationen zuldsst. Die vorgestellte Methode ist daher
hervorragend fiir komplexe FSI-Probleme der realen Welt geeignet.
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1 Introduction

1.1 Motivation

Fluid-structure interaction (FSI), which is one of the most important and challenging multi-
physics phenomena, can be defined as an interaction of a flow field with a movable or deformable
structure. FSI plays a significant role in many engineering and scientific fields. Some exemplary
engineering systems, where the FSI problems are considered as an essential factor are aircraft
wings, turbine blades, bridges, airbags or tent-roofs. FSI also appears in many biological prob-
lems, such as various arterial and venous circulatory blood flows, respiration of air by the lungs,
cellular immersion, red blood cells in blood plasma and swimming jelly fish.

FSI problems are most often too complex to obtain an analytical solution to their model equa-
tions. Furthermore, it is not always possible to carry out an experiment to a specific problem,
since such experiments are often too costly or the required facilities are limited. Thus, for
complex problems often numerical simulations are the only way to investigate the fundamen-
tal physics involved in the interaction of fluid and structure. In many scientific and engineering
fields, numerical simulations accompany experimental results, to eliminate or reduce the neces-
sity of performing experiments. Hence, development and application of efficient and accurate
numerical methods for complex FSI problems have gained great attention over the last decades.

The present work concentrates on the development of a new FSI approach particularly suited
for the interaction of incompressible flow with deformable, compressible or incompressible
structures, undergoing large deformations. The two main features of the proposed FSI method
are as follows: first, it is able to deal with unlimited and complex structural deformations. Sec-
ond, a proper mesh resolution around the structural surface, constructed a priori, is preserved
during the whole simulation time. This makes the method best suited for real-world FSI prob-
lems, since having a boundary layer mesh around the structural surface, where boundary layers,
are usually present, and flow separation and re-attachment could occur, is an important prerequi-
site for achieving reliable results for complex FSI problems. A possible application for the FSI
approach developed in this thesis is, for example, the modeling of the interaction of flapping
biofilm streamers, which are clusters of microbial aggregates connected to a tail elongated from
the cluster in the direction of the flow, with the fluid surrounding them, see e.g. Taherzadeh et al.
[166] and Coroneo et al. [53]. Other attractive engineering applications are, for instance, flows
around and/or induced by rotating components, such as a submarine or a rotating propeller.

FSI methods can be classified by various factors. Important features for classifying FSI meth-
ods are, e.g. the principal FSI approaches, i.e. the formulations of structure and fluid field and
the way quantities at the common fluid-structure interface are transferred, or the coupling strate-
gies. In the following, first, a short overview of the coupling strategies is given. Afterwards, an
overview of the most important existing principal FSI approaches, which motivate the develop-
ment of the new FSI approach in this thesis, and their key features are provided. For the sake
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of clarity, the principal FSI approaches, discussed in the following, are subdivided into three
main groups, classical ALE-based FSI approaches, fixed-grid FSI approaches and hybrid FSI
approaches.

1.2 Coupling strategies to fluid-structure interaction
simulations

The coupling strategies are an important factor for classifying FSI methods. Regarding cou-
pling strategies, the FSI methods can be divided into two main groups, staggered or partitioned
schemes and monolithic schemes. Partitioned methods are based on the evaluation of the single
fields and transferring the coupling information between the fields. One type of partitioned meth-
ods are weak coupling methods, where each field is solved only once in every time step. It has
been shown that these approaches are applicable for compressible flow problems, e.g. aeroelas-
ticity, see Farhat [68]. However, weak coupling methods are unstable for incompressible flows
as a result of the well-known artificial added-mass effect, shown by Causin et al. [44] and Forster
et al. [74]. On the other hand, strong coupling methods iterate the field solvers until a converged
solution in every time step is achieved. The coupling is, for example, based on classical Dirich-
let/Neumann algorithm. Several acceleration schemes have been introduced to improve the con-
vergence behavior of strong coupling methods. Strong coupling methods are covered in detail,
e.g. in Fernandez and Moubachir [71], Kiittler and Wall [121], Le Tallec and Mouro [125], Mok
and Wall [141], and Kiittler and Wall [122]. Another class of coupling schemes are monolithic
schemes, which are also strong coupling methods, see e.g. Heil [99], Kiittler [120], Kloppel
et al. [117] and Mayr et al. [135]. In contrast to partitioned methods, monolithic schemes solve
the entire FSI problem in a global system simultaneously. For challenging FSI problem, the use
of a monolithic approach is either essential or it outperforms partitioned schemes in terms of
robustness, performance and computational costs. Some example of these challenging FSI prob-
lems are channels with flexible walls, see Heil [99], or biological problems like the modeling
of human red blood cells, see Kloppel and Wall [116]. A comparison and performance analy-
sis between partitioned and monolithic schemes can be found in Heil et al. [100] and Kiittler
et al. [123]. To solve the global FSI system, in Heil [99] block preconditionered Newton-Krylov
schemes were suggested. Gee et al. [81] proposed efficient preconditioners based on algebraic
multigrid techniques. For an overview of strong coupling FSI schemes the interested reader is
referred to Kiittler et al. [123].

1.3 Principal approaches to fluid-structure interaction
simulations

1.3.1 Arbitrary-Lagrangian-Eulerian (ALE)-based FSI approaches

Arbitrary-Lagrangian-Eulerian (ALE)-based FSI methods are the most popular and most widely
used approaches in commercial and research FSI-codes. The formulation of the flow field is
based on an ALE formulation, whereas the structure is described in a Lagrangian framework.
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The ALE formulation of the fluid field allows for solving the flow field on a deformable grid,
which undergoes the same deformation as the structure at the common fluid-structure interface.
The deformation of the fluid mesh inside the domain is arbitrary and extended from the mo-
tion of the fluid at the interface with an appropriate grid motion algorithm, which minimizes
the discretization error and avoids distorted elements as much as possible. The ALE-based FSI
approach can be traced back to the early works by, e.g. Belytschko et al. [23], Belytschko and
Kennedy [25], Hirt et al. [104], Hughes et al. [108] and Donea et al. [63]. A noteworthy advan-
tage of the ALE-based approach is that the position of the structure within the fluid domain is
known a priori and, therefore, a proper fine mesh can be constructed near the structural surface to
resolve the flow features around it. However, large structural deformations can distort the fluid
mesh such that re-meshing and mesh-updating become unavoidable. Hence, the optimal fluid
mesh around the structure can often not be preserved.

This shortcoming of the ALE-based FSI algorithm was the motivation for developing alter-
native FSI approach, the so-called fixed-grid methods, which is discussed in the forthcoming
section.

1.3.2 Fixed-grid FSI approaches

Fixed-grid FSI approaches use formulations on a fixed Eulerian grid formulation to describe
the fluid field, as usual for fluid problems without moving interfaces. The key idea of fixed-
grid approaches is that the structure moves independently of the fluid grid. Therefore, unlimited
and complex deformations of the structure are basically possible. The fluid-structure interface
is usually described explicitly by the surface of the structure or implicitly, e.g. via level-set
functions. It divides the fluid domain into two subdomains, the actual physical fluid subdomain
and a void/fictitious fluid subdomain, which has no physical meaning and is covered by the
structure field. The fictitious fluid subdomain may be treated differently depending on the actual
fixed-grid approach. The coupling conditions at the fluid-structure interface need to be enforced
weakly, since the fluid-structure interface is usually not aligned with element boundaries, but
located in fluid element interiors. In the forthcoming paragraphs, some of the most important
fixed-grid FSI approaches are briefly outlined.

Immersed boundary (IB) method and its derivations are one of the earliest classes of the fixed-
grid FSI approaches. The IB method was originally developed by Peskin [145] to simulate blood
flow and muscle contraction in a beating heart, see also Peskin [146]. Other similar approaches
such as extended immersed boundary methods or immersed finite element methods were devel-
oped later by, for example, Wang and Liu [176] and Zhang et al. [182], or other variations such as
in Leveque and Calhoun [129] and Lee and Leveque [126]. For an overview of IB methods see,
e.g. Mittal and Iaccarino [138]. The key idea of the IB method is that the computation of the flow
is extended into the fictitious fluid subdomain. The fluid velocities on the fictitious subdomain
are interpolated into the structure domain to evaluate the structural deformation. The structural
elastic forces are then interpolated back into the fluid domain, which result in additional body
forces in the fluid equations. IB methods have been considered as a useful tool for biomechanical
problems, where the flow with immersed soft boundaries has to be modeled.

The Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) methods (see, e.g. Baai-
jens [4], De Hart et al. [57], Glowinski et al. [86, 87], Van Loon et al. [170] and Yu [181]) which
have some similarities to IB methods, are another class of fixed-grid approaches. As for IB meth-
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ods, in the DLM/FD approach the fluid-structure coupling takes place between the fictitious fluid
subdomain and the structure, i.e. also for DLM/FD the coupling between fluid and structure is
a volumetric coupling. In this approach, the fluid and structure degrees of freedom are solved
usually in a monolithic system with an additional Lagrange multiplier unknown to enforce the
kinematic coupling between the fictitious fluid subdomain and the structure. Hence, the fictitious
subdomain is forced to undergo the same deformation as the structure.

However, the most IB and DLM/FD methods are not appropriate approaches for FSI prob-
lems, which require an accurate representation of the quantities at the interface, since the meth-
ods do not deliver accurate and sharp representations of the stress jumps over the fluid-structure
interface. Furthermore, for IB methods exists some mesh-size dependencies between fluid and
structure to achieve an accurate kinematic matching between them. Moreover, since the interac-
tion between fluid and structure fields is a volumetric coupling, the structure is affected by an
artificial viscosity or it is forced to be incompressible, see Wall et al. [174]. For a more detailed
overview of the mentioned fixed-grid approaches, the interested reader is referred to Wall et al.
[174] and Gerstenberger and Wall [83]. Other fixed-grid approaches using level-set functions,
often based on finite-difference or finite-volume methods, are given, for example, in Fedkiw
et al. [70] or Cirak and Radovitzky [50].

The shortcomings of the methods explained above were the motivation for developing a new
fixed-grid approach for two-dimensional FSI problems based on an extended finite element
method (XFEM) and Lagrange multipliers (LM) by Gerstenberger and Wall [84]. The XFEM,
originally introduced by Belytschko and Black [22] and Moés et al. [139] for crack problems,
makes it possible to model a jump across interfaces. Lagrange multipliers are used to enforce the
coupling condition weakly along the interface. The XFEM-based FSI approach is able to repre-
sent a sharp interface between physical and fictitious fluid subdomains. Thus, discontinuities in
velocity and pressure fields and the derivatives like stresses across the fluid-structure interface are
represented accurately. This is an important aspect to preserve the conservation properties at the
interface and avoid any incorrect energy transfer across the interface. Furthermore, no mesh-size
dependencies between structure and fluid fields exist and the mesh sizes can be chosen indepen-
dently. Moreover, due to the surface coupling along the interface, the influences of the fictitious
subdomain are eliminated. This approach was extended to three-dimensional problems by Ger-
stenberger and Wall [85] and Gerstenberger [82] by using a mixed/hybrid formulation, where an
additional discontinuous stress field is defined on the background fluid field to enforce the cou-
pling condition along the fluid-structure interface. Legay et al. [128] described an XFEM-based
approach for FSI problems and free surfaces using a level-set function and Lagrange multipliers.
Other XFEM-based space-time approaches for FSI problems were proposed by Legay and Kolke
[127], Zilian and Legay [185], and Kolke and Legay [118]. Another fixed-grid approach intro-
duced by Baiges and Codina [10] is referred to as a fixed-grid ALE approach. In this method,
as in other fixed-grid approaches, the background fluid is defined on a fixed mesh but, addition-
ally, the method makes use of an ALE formulation to deal with the difficulties arising due to the
Eulerian formulation of the fluid domain in combination of moving boundaries.

An important issue for ensuring reliable simulations of complex FSI problems is a proper res-
olution of the flow features around the structural surface. The above-mentioned XFEM-based
fixed-grid approach allows in fact for large deformations of the structure, but unlike in ALE-
based methods, it is not possible to generate an appropriate mesh around the structure. Par-
ticularly for high Reynolds number flow, having a boundary layer mesh around the structural
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surface is essential. The inability of existing fixed-grid approaches to match this requirement
usually prevents them from being used for complex FSI problems in real-world applications. A
rather straightforward solution would be a local, adaptive mesh refinement and coarsening com-
bined with error estimator-based and/or heuristics-based refinement indicators, as described in
Gerstenberger and Wall [83] for two-dimensional FSI problems. An overview of adaptive em-
bedded mesh techniques is given by Lohner et al. [130]. However, such an adaptive approach
becomes rather inefficient for three-dimensional problems involving large motions of the struc-
tural surface, since either larger regions often have to be refined and/or the mesh updates may
have to be done very often during the simulation. Furthermore, the refinement usually occurs si-
multaneously in each spatial direction and, therefore, it is almost impossible to efficiently resolve
the boundary layers by using extremely stretched elements, particularly in the three-dimensional
case.

In the forthcoming section, an overview of most important approaches, which make use of two
fluid meshes and allow for constructing surface layer of fitted fluid mesh around the structure, is
given. These approaches are classified into hybrid FSI approaches, in this work.

1.3.3 Hybrid FSI approaches

Chimera methods, originally introduced by Steger et al. [159], make use of overlapping fluid
meshes to model FSI problems with large structural deformation. The structure is surrounded
by a surface-fitted moving fluid patch, which is located in a fixed-grid background fluid mesh.
The Chimera method was proposed for flexible mesh generation of the flow simulation around
rigid bodies such as flow around a complex space-shuttle vehicle or an unsteady flow around a
helicopter. Other Chimera-like methods were developed later, for example, by Meakin and Suhs
[136], Vazquez et al. [171], Wang and Parthasarathy [177] or Houzeaux and Codina [107]. To
treat flexible structures, the ALE-Chimera method, based on a combination of ALE and Eulerian
fluid formulations, was proposed by Gamnitzer and Wall [80], see also Wall et al. [175]. In the
ALE-Chimera method the structure is surrounded by a surface-fitted ALE fluid mesh, which
moves and deforms with the structure. In contrast to the ALE-based approach, the ALE fluid does
not cover the entire fluid domain, but rather moves with the structure in the fixed-grid background
fluid. Therefore, on the one hand, large deformation of the structure is possible and, on the other
hand, the ALE mesh allows for an accurate resolution of the structural surface. However, the
Chimera schemes have some drawbacks. They make use of the overlapping zone of two fluid
domains to get a converged solution after iterating between the fluid domains. The solution of
the both fluid regions are matched by a weak Dirichlet/Neumann coupling. This introduces an
additional iteration step over the overlapping fluid grids to obtain the fluid solution. Beside this
additional cost, there is a dependency on the size of the overlapping domain; this region has to
be large enough to achieve a converged solution.

As an extension to the two-dimensional XFEM/LM-based fixed-grid FSI approach by Ger-
stenberger and Wall [84], described in Section 1.3.2, a hybrid Lagrange-multiplier based over-
lapping mesh approach combining ALE and fixed-grid Eulerian formulations was proposed by
Gerstenberger and Wall [83] for two-dimensional FSI problems. In this approach, as in the ALE-
Chimera approach, a fine surface layer of deformable fluid elements based on ALE formulation
1s added to the structural surface, which moves and deforms with the structure. The ALE-based
fluid patch captures the flow near the fluid-structure interface with an appropriate fine mesh. This
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fine layer of flexible fluid elements is then embedded into the fixed-grid background fluid mesh.
However, in contrast to the ALE-Chimera approach, the coupling between the two fluid subdo-
mains is a weak surface coupling based on the XFEM/LM-method, i.e. no iterations between
the two fluid domains are performed. The structure and the fluid patch are coupled based on
the classical ALE-based method described above. A similar approach for three-dimensional sta-
tionary FSI problems, however, with a fixed interface between two fluid domains, was recently
introduced by Massing et al. [133].

An example of a non-overlapping mesh approach, which also enables constructing surface
layer of fitted fluid mesh around the structure is the shear-slip method proposed by Behr and
Tezduyar [20]. The shear-slip method is able to handle flow problems with moving interfaces
including regularly large deformations, i.e. straight-line translations or rotations. The fluid mesh
is divided into three subdomains, two stationary meshes and an instationary thin mesh between
them. At each time step, the elements in a thin zone of the fluid mesh undergo ’shear’ deformation
to the nearest nodes of the stationary mesh. The thin zone is subsequently remeshed by a ’slip’
of the connectivity of the nodes. This approach was applied to three-dimensional flow problems
with rotating mechanical components in Behr and Tezduyar [21].Another non-overlapping mesh
approach based on a non-uniform rational B-spline (NURBS) was proposed by Bazilevs and
Hughes [15] for the computation of the flow around rotating components. Also here, the method
consists of a fluid subdomain which surrounds the structure and rotates with it. The moving
fluid patch is then located in a stationary fluid subdomain. The interface between the rotating
and stationary fluid, which has a circular or cylindrical form, keeps its form throughout the
simulation.

An attractive approach for mesh tying of non-matching fluid discretizations at an arbitrary in-
terface based on a dual mortar method (see e.g.Wohlmuth [178]), was recently proposed by Ehrl
et al. [66]. The dual mortar method is based on dual Lagrange multipliers, which are constructed
according to biorthogonality condition and can thus be condensed easily from the global system
of equations. This approach can be extended to FSI problems with locally large structural de-
formations, e.g. rotations. A fine fluid patch surrounds the structure, which is then coupled to a
bigger fluid domain based on the dual mortar approach. To maximize the feasible deformation
of the structure, the patch and background fluid domains are both described in ALE formulation.
Since the patch fluid mesh slides at the background mesh, the connectivity of the nodes has to be
recomputed in every time step. A similar approach to this is the sliding mesh method introduced
by Kloppel [115]. The sliding mesh approach is a pure ALE-based FSI approach with only one
fluid domain, which allows large structural rotations in a sliding of the fluid grid on the structural
surface.

A general sketch of three main FSI approaches developed at the Institute of Computational
Mechanics at the Technische Universitat Miinchen to date, described in this section, ALE-based
FSI approach, fixed-grid FSI approach and XFEM/LM-based hybrid ALE-fixed-grid method, is
given in Figure 1.1.

1.4 Research objective

The method developed in this thesis and outlined in the following is aiming at a robust, accu-
rate and efficient general FSI approach for complex two- and three-dimensional problems, in
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Figure 1.1: Stretch of possible FSI approaches: (a) ALE-based FSI approach (b) Fixed-grid FSI
approach (¢) Hybrid ALE-fixed-grid FSI approach.

particular, the interaction of incompressible flow with deformable, compressible or incompress-
ible structure, without any limitations regarding models and approaches in individual fields. The
structure should be able to undergo large and complex deformations, involving a proper reso-
lution of the flow features around its surface throughout the simulation. Fixed-grid methods are
counted among the most interesting approaches when dealing with large deformations of the
structure, since they allow for unlimited and complex deformation of the structure without any
distorted fluid elements or remeshing procedures. Among them, the XFEM-based methods have
very desirable properties, such as surface coupling between fluid and structure without any in-
fluence of the fictitious fluid on the structure, and a sharp representation of the quantities at the
interface. However, a combination of a fixed-grid approach with a proper resolution of the flow
features around the structural surface throughout the simulation applicable for complex three-
dimensional problems is still missing. Hence, in this thesis a three-dimensional robust, accurate
and stable hybrid ALE-fixed-grid FSI approach, inspired by the XFEM-based hybrid approach
for two-dimensional FSI problems of Gerstenberger and Wall [84], allowing for large structural
deformations in combination with a deformable fluid mesh around the structure is developed.
The deformable fluid mesh follows the structural deformation and, therefore, captures the flow
near the fluid-structure interface throughout the whole simulation.

1.4.1 Requirements

In the following, based on the explanation given above, the most important requirements for de-
veloping such a hybrid ALE-fixed-grid FSI approach for complex three-dimensional FSI prob-
lems are highlighted.
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Lagrangian formulation of the structure The structure domain should be modeled using a
Lagrangian formulation, exploiting the existing implementations. Moreover, it should be able to
deal with existing structural models and approaches without introducing any restrictions.

No mesh-size dependencies As mentioned above, a drawback of Chimera methods is that
they make use of the overlapping zone to get a solution after iterating between both fluid do-
mains. However, to get a converged solution, the overlapping domain should be large enough.
To have an appropriate fitted mesh around the structure individual for each particular FSI prob-
lem, it is essential to eliminate the limitations regarding the mesh-size dependencies between
the patch fluid and the fixed-grid background fluid. Hence, a surface coupling between the patch
fluid and the background fluid is desired without introducing overlapping solutions as in Chimera
methods.

No extra cost due to fictitious fluid As aforementioned, solving the fictitious fluid intro-
duces an extra cost in the global system. A FSI approach is desired with no influence of the
fictitious fluid, i.e. no extra cost in terms of introducing a redundant solution in the overlapping
region.

Stable, accurate and robust coupling between two fluid subdomains To apply a de-
formable fluid patch in complex three-dimensional FSI problems it is crucial to satisfy high
demands on the weak coupling between the background fluid and patch fluid. This coupling
needs to be stable, accurate, robust and independent of the position of the internal fluid-fluid
interface between two fluid subdomains or the complexity of the form of the patch fluid. After
all, a smooth transition of the solution across the fluid-fluid interface has to be achieved for any
interface position. Thus, developing a stabilized embedded fluid formulation, which results in a
robust and accurate solution for every position of the fluid-fluid interface in viscous as well as
convective dominated flow is essential.

Stable and robust solution over time In contrast to ALE formulations, where the grid of
the fluid domain is deformed with the moving boundary and provides an appropriate description
for it, the Eulerian formulation is naturally inappropriate for moving interfaces, as the fluid grid
is generally not aligned with the interface. This leads to an inconsistency, since integrals on the
time dependent background fluid involve values from the last time step, which change their de-
grees of freedom over time. Thus, to deal with this inconsistency, developing an appropriate and
efficient XFEM time-integration approach to handle the Eulerian fixed-grid background fluid
in combination with moving interfaces is crucial. This time-integration approach together with
the stabilized embedded fluid formulation should provide a stable, accurate and robust solution
throughout the simulation, aiming at a smooth transition of the velocity and pressure fields across
the fluid-fluid interface at any time.

Monolithic solution scheme The structural equations together with the fluid-fluid system
need to be solved in a monolithic scheme, i.e. without any iterations between the fixed-grid
background fluid, the fluid patch and the structure. However, the combination of the Eulerian
background fluid together with the moving fluid patch results in further complexities with respect
to solving the global nonlinear problem monolithically with a Newton-Raphson scheme. It leads
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to a global system, which changes its degrees of freedom in every Newton step. The reason is that
a new position of the fluid-fluid interface gives rise to a new physical and fictitious background
fluid mesh and, thus, new degrees of freedom arise and some degrees of freedom are removed
in every Newton step. Moreover, the missing values of the previous Newton step, which are
required in the present Newton step have to be reconstructed with the XFEM time-integration
approach aforementioned. This process brings in a perturbation in every Newton step, which
would prevent any convergence or result in a poor convergence behavior of the Newton-Raphson
scheme. Hence, an algorithm is required to deal with this problem. The achieved accuracy of the
solution of the monolithic hybrid FSI approach should be equivalent to the well-established
monolithic ALE-based approach.

1.4.2 Proposal for hybrid ALE-fixed-grid FSI approach

This thesis describes a hybrid ALE-fixed-grid FSI approach for complex two- and three-dimens-
ional FSI problems with large structural deformation, which combines the advantages of fixed-
grid and ALE-based FSI methods, addressing all aforementioned requirements. The structure is
described as usual in a Lagrangian formulation, which is surrounded by a surface layer of de-
formable fluid elements based on an ALE formulation. This deformable fluid patch, which is then
embedded in the fixed-grid Eulerian background fluid, deforms with the structure and provides
an appropriate boundary layer mesh throughout the simulation. The coupling between the struc-
ture and the moving fluid is handled in the same way as classical ALE-based FSI approaches.
The surface coupling between the two fluid domains is imposed weakly using a stabilized for-
mulation. Thus, in other words, overlapping meshes are used without introducing overlapping
solutions. The most important ingredients of the presented method are given in the following:

e As the embedded fluid subdomain ends in the middle of the background fluid elements, the
first step toward the stabilized embedded fluid formulation is to decouple the background
fluid into a physical and a fictitious subdomain, i.e. to describe a jump from the physical
values of the background fluid to zero along the fluid-fluid interface. For this purpose, an
XFEM-based formulation, using a flexible framework for handling multiple degrees of
freedom for nodes of a fixed-grid background mesh is presented, see also Schott and Wall
[154] and Shahmiri et al. [156, 157].

e The coupling between the physical background fluid and the embedded fluid is then im-
posed weakly along the fluid-fluid interface. For this purpose, a stabilized embedded fluid
formulation for viscous as well as convective dominated flow independent of the position
of the fluid-fluid interface is proposed. The essential ingredients of the embedded fluid
formulation are as following: The coupling condition on the fluid-fluid interface is im-
posed weakly using Nitsche’s formulation (Nitsche [144]), and the Nitsche parameter is
determined via a local eigenvalue problem. Face-oriented and ghost-penalty stabilizations,
according to Burman and Hansbo [38] and Burman et al. [42] are applied to control the
ghost values at the interface zone adequately, balance fluid instabilities at the interface
zone for both viscous and convective dominated flows, and, control the conditioning of
the system. To overcome the instabilities caused by convective mass transport across the
fluid-fluid interface, additional inflow stabilization terms at the fluid-fluid interface are
introduced, see also Shahmiri et al. [156].
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e For time discretization of the embedded fluid formulation, finite difference schemes are
employed. To deal with the inconsistency of the combination of Eulerian fixed-grid back-
ground fluid and moving fluid-fluid interface, a new XFEM time-integration approach is
developed. This approach, together with the stabilized embedded fluid formulation, results
in a stable and robust solution for any time, see also Shahmiri et al. [156].

e The structure and the fluid patch are coupled in same way as the ALE-based FSI approach.
This allows the use of coupling algorithms originally developed for classical ALE-based
FSI approaches. The whole system is solved in a monolithic system as presented, for ex-
ample, in Gee et al. [81]. For the monolithic system, the fluid-fluid interface is an internal
interface, which is hidden in the fluid system, and does not affect the FSI coupling di-
rectly. To solve the monolithic FSI system and deal with the Eulerian description of the
background fluid combined with the moving fluid patch, a relaxing ALE approach is pro-
posed.

To conclude, all the ingredients mentioned above result in a novel hybrid ALE-fixed-grid FSI
approach to perform reliable simulations of complex two- and three-dimensional FSI problems.
The proposed FSI approach is implemented in the multiphysics research-code BACI (Wall and
Gee [173]), written in C++ and developed at the Institute of Computational Mechanics at the
Technische Universitidt Miinchen. The parallel framework is based on the open-source libraries
of Trillinos by Sandia National Laboratories, see Heroux et al. [103].

1.5 Outline

The methods and the algorithms presented in this thesis are organized in the same order as the im-
portant ingredients required for the monolithic hybrid ALE-fixed-grid FSI approach mentioned
above, starting with the finite element formulation of individual fields and the XFEM-based em-
bedded fluid formulation, and ending with the hybrid ALE-fixed-grid FSI approach. Thus, the
remainder of the presented work is organized as follows:

In Chapter 2 the basic concepts of continuum mechanics, governing equations and the spatial
and temporal discretization of single fields are reviewed. Then a hybrid fluid-structure formu-
lation including its coupling conditions is proposed, which allows for separately considering of
the coupling at the fluid-fluid interface and at the fluid-structure interface in the forthcoming
chapters.

Chapter 3 concentrates on the stabilized embedded fluid formulation. An embedded fluid for-
mulation based on an extended finite element method (XFEM) for transient problems and sta-
tionary interface is developed step-by-step, which is applied to moving interfaces afterwards.
First, an XFEM-based formulation for the fixed-grid background fluid subdomain is presented.
Afterwards, the focus is shifted to the weak enforcement of coupling conditions on the fluid-
fluid interface. In this context, different coupling methods and various stabilization terms are
discussed, and finally a stabilized embedded fluid formulation independent of the position of
fluid-fluid interface for viscous and convective dominated flows is introduced. The proposed
formulation is then extended to moving interfaces by introducing a new XFEM time-integration
approach for the Eulerian background fluid. The proposed stabilized embedded fluid formulation
is validated for the case of stationary as well as moving embedded fluid.

10



1.5 Outline

Chapter 4 combines the stabilized embedded fluid formulation, proposed in Chapter 3, and the
structure field into a coupled FSI system, which is solved in a monolithic scheme. The challenge
of solving the derived monolithic FSI system in combination of moving embedded fluid and
fixed-grid background fluid is explained, and a new method stated as relaxing ALE approach is
introduced. Numerical examples validate the hybrid ALE-fixed-grid FSI approach and show the
ability and performance of the proposed method.

The conclusion in Chapter 5 reviews the achievements and the key points necessary for de-
veloping the hybrid ALE-fixed-grid FSI approach. Furthermore, it provides directions for future
work.

11






2 Governing Equations

In this chapter, first, a short introduction to the systems of reference is given. Afterwards, in Sec-
tion 2.2, the basic concepts of continuum mechanics and governing equations for structure field
are reviewed. The Section 2.3 focuses on fluid field, containing the governing equations for in-
compressible flow of a Newtonian fluid in an Eulerian and Arbitrary-Lagrangian-Eulerian (ALE)
description. Subsequently, Section 2.4 contains a short introduction to fluid grid motion. Finally,
the new hybrid ALE-fixed-grid fluid-structure interaction (FSI) approach will be introduced and
the related coupling conditions will be presented.

2.1 System of references

An important consideration before simulating any numerical method is an appropriate choice
of a reference system. The methods of continuum mechanics make use of three different refer-
ence systems: the material or Lagrangian formulation, the spatial or Eulerian formulation and
the Arbitrary-Lagrangian-Eulerian (ALE) formulation, a term that was introduced by Hirt et al.
[104]. Usually the structure is described in time-dependent Lagrangian formulation, where the
position and physical properties of the particles are described in terms of the material coordi-
nates. For pure fluid problems the time-independent Eulerian description is used, where the ob-
server is spatially fixed and watches the fluid passing. The ALE formulation is introduced to deal
with fluid problems involving moving boundaries like in classical ALE-based FSI approach. In
ALE framework the mesh follows the motion of the boundary, while it deforms arbitrarily in the
domain, i.e. the mesh moves with a velocity independent from the fluid. In the present work, the
three named reference systems are employed. The structure is as usual described in Lagrangian
formulation, denoted as X. The fluid domain is divided in two parts, which are described in Eu-
lerian and ALE reference systems, denoted as x and x, respectively. For a detailed description of
the reference systems the interested reader is referred to Wall [172] and Donea and Huerta [62].

2.2 Structure

This section contains a brief introduction to basic structural continuum equations. The field of
structural mechanics is covered by a huge amount of literature. For a detailed explanation of
structural mechanics the reader is referred to the classical textbooks, for example, by Crisfield
[54, 55], Wriggers [179] and Zienkiewicz and Taylor [183].
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2 Governing Equations

2.2.1 Kinematics

A structural deformation is mostly described in Lagrangian or material formulation. To describe
the deformation of a structure two frames of reference have to be introduced. The reference
or initial configuration €2 describes the domain occupied by all material points X at the time
t = 0. On the other hand, the current configuration €27 denotes the momentary position X at an
arbitrarily time ¢. The displacement d® in current configuration is then defined as

d=x-X 2.1

The deformation gradient tensor F' relates a line element dX in the reference configuration X to
a line element dx in current configuration x as

dx = FdX. (2.2)

The deformation gradient F' can be split into a volume-preserving rigid body motion part 12 (an
orthogonal rotation tensor), and a volume-changing stretch part U, the so-called stretch tensor,

as
F=R. U. (2.3)

The symmetric right Cauchy-Green tensor C' is defined as
C=F'""F=U""R"RU=U"U, (2.4)

which does not contain the rotational part of the deformation any more. It describes the mapping
of the squares of the line elements between reference and current configuration

dx -dx =dX- - C - dX. (2.5)

The Green-Lagrange strain tensor is a very common strain measure in nonlinear solid mechanics.
It is defined as ]

E = 5(FT-F—I), (2.6)
in the reference configuration. The Green-Lagrange strain tensor E is 0 in the undeformed con-
figuration.

2.2.2 Constitutive equation

The second Piola-Kirchhoff stress tensor S is defined as
S=(detF)F'.0°-F ", (.7)

where o defines the physical Cauchy stresses of the structure. In this work, hyper-elastic ma-
terials are used, which implies the existence of a strain-energy function W. A formulation of

hyper-elastic materials reads as
ov oV
S=2—=—. 2.8
oC OFE 2:8)
Particularly, in the present work, the St.-Venant-Kirchhoff and Neo-Hookean materials are em-
ployed. The former describes a linear relation between S and F', while for a Neo-Hookean
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2.2 Structure

material a nonlinear stress-strain relationship is obtained. The St.-Venant-Kirchhoff material is
based on a quadratic strain energy function

)\S
Uy = E(tr E)Y + 'E : E, (2.9)

with A* and p° representing the Lamé parameters, which are related with the Young’s modulus
E and Poisson’s ratio v° via

Ev?
A= 2.10
(1+v%)(1—2v9) (2-10)
and B
S —— 2.11
P =50 1) @11
The strain-energy function for the Neo-Hookean materials is given as
. IU“S S /\s 2
\I/NH_?(trC—i%)—/L an+7(ln J) (2.12)
with J defined as determinant of the deformation gradient tensor, J = det F'.
2.2.3 Balance of linear momentum
The dynamic equilibirium at a structural point in reference configuration is defined as
pd* —Div(FS) = p*b° in Q x (0,7), (2.13)

.. 2 S
where d5 =

a2 is the second material time derivative in the Lagrangian reference system.

The equation (2.13) states an equilibrium between the forces of inertia, internal forces, and an
external body force b® in the undeformed structure configuration €25. Hereby, p°* denotes the
structural density defined per unit undeformed volume and Div the divergence in the Lagrangian
reference system. The primary unknown is the structural displacement d°. The internal forces
are defined in terms of Piola-Kirchhoff stress tensor S (2.7) and the deformation gradient F’
(2.3). As initial condition at £ = 0 the initial structural displacement and its first material time
derivative, the velocity, have to be employed

d(t=0)=d, ds(t=0)=d; in Q. (2.14)

The boundary conditions are decomposed into Dirichlet and Neumann boundary conditions,
denoted as 0127, and 023, respectively. The applied boundary conditions are given as

d* = ds on 0Q% x (0,7T), (2.15)
(FS) - N*=h° on 90% x (0,7), (2.16)

where h*® is the traction vector and IN® denotes the normal vector. Furthermore, the prescribed
Dirichlet values are denoted as d. In the material configuration, the mass conservation is always
fulfilled and will not be considered any further. The balance of linear momentum together with
the constitutive equation and the kinematic equation define a system of coupled nonlinear partial
differential equation of hyper-elastic structure dynamics.
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2 Governing Equations

2.2.4 Weak formulation

In order to derive a finite element approximation of the structural systems of equations, a weak
form is required. After multiplication of balance of linear momentum (2.13) with the virtual
displacements dd® and integration by parts, the weak form can be stated as:

Find d* € W, such that for all dd°® € V; holds

(0d*, p°d?) . + (Grad éd*, F'S) ,, = (6d*, p°b%) . + (od*, ’_‘s>a% . 2.17)
The solution spaces and the corresponding test function spaces are defined as

Wy = {d’ € [H'(Q%))?

loqs, = d?}, (2.18)

V= {6d° € [Hl(QS)ﬂ 5d*|p0s, = 0}. (2.19)

By (., )Q and (-, -) o0, » the standard inner products over the reference domain and Neumann
part of the boundary are denoted.

2.2.5 Discretization

For the spatial discretization of the structural system the finite element method is applied. A large
amount of literature is available on finite element methods in structural mechanics. Some exam-
ples are Hughes [109] and Zienkiewicz and Taylor [183].The weak form (2.17) is discretized in
space by replacing the unknown field d*, the virtual displacement d® and the second material
time derivative d* by

d; (x, 1) ZN (2.20)
od; (x,t) = ZN( )ods, (2.21)
d; (1) ZN (2.22)

Hereby, the nodal values d;, dd; and df from the corresponding discrete formulation spaces are
interpolated by the trilinear shape functions N;(x) with n denoting the overall number of nodes.
In the present work, eight-noded trilinear hexahedral (hex8) solid elements are used. Introducing
the discrete approximations (2.20) into the weak form results in the following semi-discrete
system of nonlinear differential equation in matrix notation

Msds + F(d®) —F, =0, (2.23)

where M* denotes the structural mass matrix and F; represents the nonlinear vector of internal
forces, as it depends on the current displacement. Furthermore, the vector of external forces is
denoted by F{,,. For the time discretization of the structural system finite difference schemes

are applied to the semi-discrete system (2.23). Particularly, the generalized-a method based on
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2.2 Structure

a Newmark method is employed. The generalized-a scheme shifts the time point at which the
discretized equations are evaluated to a generalized mid-point. While the Newmark method eval-
uates the discrete equation at the time point ¢" !, the generalized-o makes use of the intermediate
points t"T17% and "1~ The nodal displacements and the velocities at the new time step ¢!
are approximated by

) —A. —28 . -
gt = gt gy T Bgon V=20 o 2.24
: 1 \ 1 . 1-28

s;nt+1l s,n+1  gsny s,m s,n 22
d BAL (d ) ﬁAtd 283 d’ 2:25)

with the parameters v € [0,1] and 8 € [0, %] The displacements, the velocities and the accel-
erations, at mid-points are linear interpolations of the corresponding start and end vectors. They
are defined as

dS,TH’l*Oéf — (1 _ &f)ds,nJrl + &fd&"’ (2.26)
ds,nJrlfaf — (1 _ af)ds,nJrl + Oéfds’n, (2.27)
'ds,n-i—l—oem — (1 - &m)as7n+1 + amas’”, (228)

with the parameters o, o, € [0, 1]. The nonlinear equation of motion at the generalized mid-
points becomes

Ms'ds,n—f—l—am + F (d57n+1_04f) — FZ’)Z:-‘_I_af =0, (2.29)

nt
with
Far 7% = (1 — ap) P ™ + asFar. (2.30)

2.2.6 Linearization

In order to solve the nonlinear system (2.29) using a Newton-Raphson method, the nodal forces
Fs (d>"*172r), which are nonlinear in the displacements d*"!, e.g. in the case of using nonlin-
ear material law, need to be linearized. The nonlinear discretized equation (2.29) evaluated at the

generalized mid-point in residual form can be written as

P(dvmH) = Meds e L (dhrrer) — P = o, (2.31)
Using Taylor expansion, the nonlinear residual is linearized at the end of time step at t"*! as
s qsn+1 s qsn+1 or* (ds?m_l) s,;n+1
rr(diy ) =0=r(d""") + g Z.AdiiH +h.o.t. (2.32)
Omitting the higher order terms (h.o.t.), the linear system
—ar;gi:l) iAd;?flﬂ = —r(d¥" ) (2.33)

is obtained, with Ad}}"} ! as unknowns. The matrix formulation of the linear system (2.33) reads
as
n+1 s 1n+1 s 1n+1
(S e ) = e .34
After solving (2.34) for the displacement increments Ad:f:fr "in every iteration, the new dis-
placements at iteration step ¢ + 1 are updated as

diit = A (2.35)
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2 Governing Equations

2.3 Fluid

Within this section, the basic fluid equations in Eulerian and ALE framework will be introduced.
The topic of continuum fluid mechanics is a very broad field. The intention of this section is to
present the equations and notations which will be used in the present work, rather than giving a
full description of continuum fluid mechanics. For general textbooks of continuum fluid mechan-
ics the reader is referred for example to the books of Ferziger and Peric [72] and Lai et al. [124].
A more detailed presentations of the fundamental equations can also be found in Wall [172] and
Gravemeier [88]. More information on the description of flow on Arbitrary-Lagrangian-Eulerian
(ALE) framework can be obtained in Donea and Huerta [62], Donea et al. [64] and Wall [172].
Important textbooks on finite element methods on flow problems are for example Donea and
Huerta [62], Gresho and Sani [89] and Zienkiewicz et al. [184]. In this section a standard finite
element formulation for incompressible flow will be derived.

2.3.1 Kinematics

The Eulerian description, which is mostly used in fluid mechanics, is presented in the following.
The velocity w is the primary kinematic unknown of a flow problem. The acceleration of a fluid
particle is given by the materiel time derivative of the velocity, which appears in the momentum
equation. It is expressed by a local time derivative and a convective term as

Du OJu|  Odu

Dt dtlx ot

+u-Vu. (2.36)

X

Moreover, the symmetric part of the gradient of the velocity is called strain rate tensor, which is
defined as

e(u) = %(Vu + (Va)'), (2.37)

with V indicating the spatial derivatives with respect to fixed Eulerian framework x.

2.3.2 Constitutive equation

The Cauchy stresses o at a fluid point can be decomposed into the hydrostatic pressure p and
the shear stress tensor 7
o=—-pl+T. (2.38)

The shear stress tensor 7 = f(e(u)) is a function of strain rate tensor. For a Newtonian flow the
function f(€(w)) is considered as a linear function. The constitutive equation is then defined as

o =—pl +2pe(u), (2.39)

where 1 denotes the dynamic viscosity, which is equal to kinematic viscosity times fluid mass
density ;1 = vp'. Furthermore, the kinematic pressure is defined as

Piin = 2. (2.40)
p
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2.3 Fluid

2.3.3 Conservation of mass

A fundamental law of Newtonian mechanics is the conservation of mass contained in a material
volume. For the incompressible fluid, where the density p' is considered as a constant, the rate
of the mass change should be directly related to the inflow and outflow boundaries, if no mass
sources or sinks are present. This relation is given as

/u -n/ dI' =0, (2.41)
I

where n/ denotes the outward pointing normal of the boundary. The mass balance also terms
the continuity equation in the fluid domain )/, which is defined as

V-u=0 in Qf x(0,7). (2.42)

2.3.4 Conservation of linear momentum

The balance of the linear momentum at a fluid particle inside the fluid domain 2/ in Eulerian
description is given by

pf%—?‘ +pu-Vu=V-o+pb in QO x(0,7), (2.43)

where b denotes the body force. Inserting the constitutive equation (2.39) results in the Eulerian
formulation of the momentum balance of the transient incompressible Navier-Stokes equations
in the convective form

+plu - Vu+Vp —2uV - e(u) = p'b' in Q x (0,7), (2.44)

X

Du
N

with the strain rate tensor defined in (2.37).

2.3.5 Incompressible Navier-Stokes equations

The linear momentum (2.44) together with the conservation of mass (2.42) result in the transient
nonlinear incompressible Navier-Stokes equations in Eulerian description

pr + plu - Vu + Vp — 2uV - €(u) = p'bf in Qf x (0,7), (2.45)
V-u=0 in Qf x(0,7). (2.46)
The unknown fields are the velocity field v and the pressure p. For the Navier-Stokes equa-

tions appropriate initial and boundary conditions have to be prescribed. As an initial condition a
velocity field in initial fluid domain Qg

w(t=0)=u’ in QJ (2.47)

is required, which has to satisfy V - u = 0 to achieve a well posed problem. For the pressure
field there is no initial condition, as it rather acts like a Lagrange multiplier for the incompress-
ibility condition. Thus, the role of the pressure is to adjust itself to satisfy the incompressibility
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2 Governing Equations

condition. The fluid boundary is split into Dirichlet and Neumann boundaries, indicated as 89};
and 00, respectively. The boundary conditions on 92, and 9QY, are given as

u=1a on Q) x(0,T), (2.48)
o-nf =h on 904 x(0,T), (2.49)

where w denotes the prescribed velocity field, h the traction vector and nn/ the outward pointing
normal of the boundary.

2.3.6 ALE form of the incompressible Navier-Stokes equations

In this section, the incompressible Navier-Stokes equations will be introduced in Arbitrary-
Lagrangian-Eulerian (ALE) description. For further discussion of the solution of the Navier-
Stokes equations on an ALE mesh the reader is referred to Forster [73].

In a fluid-structure interaction (FSI) problem one has to deal with moving boundaries and
changing domain. Hereby, the structural equations are given in Lagrangian formulation and,
thus, can track the motion of the interface. In ALE-based FSI approaches this problem is solved
by defining the fluid domain in ALE formulation, where the fluid mesh follows the movement
of the boundary but it is not attached to the motion of the fluid particles inside the fluid domain
Q)/. This approach can be traced to the early works of Hirt et al. [104], Belytschko and Kennedy
[25], Belytschko et al. [23], Hughes et al. [108] and Donea et al. [63].

Following Férster [73], the spatial coordinates of a particular point in x € Q/ are given by a
unique mapping

x=p(x,t), te(0,T) (2.50)

where x denotes the reference system, which tracks the moving boundaries but moves arbitrarily
inside the fluid domain. To derive the Navier-Stokes equations in ALE framework, the material
time derivative should be expressed with respect to the deforming reference system. The material
time derivative of f(x(x,t),t) after applying the chain rule results in

Df _df(x,t)| , 0fxt)Ox| _ af(x,t)‘ Of(x,t) Ox Ox
Dt ot X aX ot Ix ot X 0x aX ot
Assuming that f is equal to the spatial coordinate x, then the material time derivative, i.e. the

temporal change of the spatial position of a material point is the velocity w. Considering (2.50)
the velocity reads as

(2.51)

X

we DX _ 0X(x>t)‘ Ix(x, t) Ox

Dt at  Ix ox Ot

The first term of (2.52), which denotes the temporal change of the spatial position of a reference

point, is identified as the velocity of the reference system u?. Using the both equations (2.51)
and (2.52) one can derive the ALE expression of the material time derivative of a function f as

D_f_é’f(x,t)‘
Dt It Ix

The ALE convective velocity c can now be introduced as the difference of the material velocity
and the mesh velocity

(2.52)

X

+(u—uf) - VF. (2.53)

c=u—u’. (2.54)
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2.3 Fluid

The equation (2.53) is also named as fundamental ALE equation and denotes that the material
time derivative of a quantity f is equal to the temporal change of f in the reference system x and
the transport of f due to a relative motion of the system expressed by a convective term. Using
the fundamental ALE equation (2.53) an ALE formulation of the momentum balance equation
(2.44) can be derived as

ou

pfa +plc-Vu=V-a+pb in Qf x(0,7). (2.55)
X

In the ALE version of the linear momentum equation all spatial derivatives refer to the Eule-
rian system x and the only quantity described in the reference system Yy is the time derivative.
The linear momentum (2.55) together with conservation of mass (2.42) result in the transient
incompressible Navier-Stokes equations in ALE description

ou

pfa + pfc -Vu+ Vp—2uV - e(u,) = pfbf in O x (O, T), (2.56)

X

V-u=0 in Qf x(0,7). (2.57)

2.3.7 Weak formulation

The weak formulation is obtained by multiplication of the strong form with appropriate test
functions for velocity and pressure leading to the weighted residual. The weighted residual is
integrated over the domain €)/. A sequenced partial integration results in a final weak form of
the problem. The idea is to reduce the required order of differentiability for the solution fields
and fulfill the equations in an integral sense. The weak form of the incompressible Navier-Stokes
equation in Eulerian description after integration by parts, becomes

ou
(v,pf—)m + (v, p'u - Vu)ﬂf + (¢, V- u)m — (V- v7p)m

t - (2.58)
—|—(e(v), QME(U))Qf = (”>pfb)m + <”> h>asz-1fv )

which is the base of spatial discretization as it will be discussed later in this section. It has to
be pointed out that the sign of the weighted continuity equation (q, \E u) qs can be chosen
arbitrarily. In (2.58), for stability reasons the sign is chosen opposite to the term — (V ‘v, p) oF
Similar to (2.58), the weak formulation of the Navier-Stokes equations in ALE formulation is
given as

ou
(U’pfa)m + ('v,pfc-V'u,)Qf + (q,V : U)Qf - (V : v,p)m

] - (2.59)
+(e(v), 2pe(u)) o, = (v,0'0) o + (v, h>asz{v :
The trial space for the velocity and pressure are defined by
W, = {ue [Hl(Qf)P‘ ulygr =}, (2.60)
W, = L*(Q)). (2.61)
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2 Governing Equations

In the case of a pure Dirichlet problem, i.e. if 9Q/ = 8QfD the pressure is defined up to a constant.
In this case, the trail space for pressure changes to L?(€2f)/R. The corresponding weighting
functions are defined as

- 1rofy13 —
V, ={v e [H ()] v\me = 0}, (2.62)
V, :=L*(Q)). (2.63)
Hereby, for the integrals the usual notations for inner products, i.e. (f,g)qr = fo x)dQ)
and (f, g) o0, = faﬂf f(x)g(z)dx , are used.

2.3.8 Discretization

The incompressible Navier-Stokes equations need to be discretized in space and time. In the
presented work, the finite element method is employed for the discretization of fluid equations in
space and the finite difference method for the discretization in time. For the time discretization,
the one-step-6 method is considered. The one-step-f method applied to the general first order
ordinary differential equation y = f(y,t) can be stated as

n+1 n
y R—

At
where At denotes the time step and 6 the one-step- parameter. For ¢ = 1 the backward Euler
scheme is obtained, for 6 = 0 the forward Euler scheme and for § = % the trapezoidal rule
or Crank-Nickolson scheme. While the backward Euler and forward Euler scheme are first or-
der accurate, the Crank-Nickolson scheme is a second order accurate scheme and free of any
spurious damping. Applying the one-step-6 scheme (2.64) to the weak form (2.58) it yields

=0f(y" Y + (1= 0)f(y" "), (2.64)

f
P
(U’ 6U)Qf + ("’7pr : vu)ﬂf + (Q7 V- u)Qf
— (V- v,p)Qf + (e(v), 2,ue(u))m (2.65)
f
P is A
= (v, 6Uh t)m + <’v,h>m}cV + ('v,pfbf)m,

with © = Atf denoting the time factor. In (2.65), to shorten the notation the index n + 1 is
omitted. Furthermore, the history value u"st is defined as

u™ = u" + At(1 - 0)u". (2.66)

For the spatial discretization the standard (Bubnov-)Galerkin scheme is applied with the corre-
sponding discrete spaces denoted as V}, and ()}, In this work, for the finite element discretization,
trilinear eight-noded hexahedral elements for velocity and pressure are used. To discretize the
fluid, the same shape functions for both velocity and pressure fields are applied. The discretized
velocity and pressure fields, w;, and py, are given as

= Z N;(z)u,;, (2.67)

Z N;()p;, (2.68)
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and the corresponding discrete test functions v, and gy,
vp(z) = Ni(z)v;, (2.69)
on(x) = Ni(@)g;. (2.70)

Hereby, the values u, p, v and ¢ are discretized by the trilinear shape functions N;(x) with n
denoting the number of overall nodes. The discrete values are now applied to the semi-discrete
weak formulation (2.65), resulting in a discrete formulation defined as:

Find (up, pr) € Vi, X Qp, such that V(vy, q,) € Vi, X @y holds

£
(”hv p_uh)ﬂf + (Uh’ pluy, - Vuh)m + (q}“ V- uh)m

©
—(V v, pn) o + (€(vn), 2u€(up)) s 271)
T . £

Moreover, the discrete residual terms in Eulerian formulation

RS (wn, pn) :=(vn, 6uh)Qf + (v, pluy - V) o, — (V-0 pn) o
+(€(vn), 2ne(un)) gy, — <vh’ﬁ>89{\, — (vn, p'd") s (2.72)
f .
—(’Uh,%ut,f“)m,
R (wn, pn) = (an, V - un) o (2.73)

are introduced. Linearization of (2.72) and (2.73) with respect to the unknowns u,, and py, results
in the contributions of the linearized system as it will be shown in Section 2.3.10. The resulting
discrete nonlinear system can be written in matrix notation as

1
@M}’u”*1 + [CF(u) + KFJu™ ™ 4 GFpmtt = ff + ff +fE (2.74)
—(GFY'ut! = 0. (2.75)

The vectors of velocity and pressure unknowns at the time step ¢"™! are denoted as u™™! and
p" T, respectively. The matrices MF, CF, KF. GF and (GF)" refer to mass matrix, convective ma-
trix, viscous matrix, gradient operator and discrete divergence operator, respectively. The terms
at the right side of (2.74) refer to the body forces, Neumann conditions and the values from the
time step ¢".

The ALE formulation of the semi-discrete form of the Navier-Stokes equation differs from
(2.71) in the convective term, which is defined in ALE formulation as

(vn, plen - V) - (2.76)
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Accordingly, the discrete residual term in ALE formulation are defined as

Rifu(umph) :=(vp, 6uh)m + (vn, pley, - Vuh)m — (V- Uh,ph)ﬂf
+(e(vh), 2ue(uh))m — <vh, B>3Q{v — (vh,pfbf)m 2.77)
£
—(Um%ught)m,
R (wn, pn) :=(qn, V - wn) o - (2.78)

2.3.9 Stabilization

The standard (Bubnov-)Galerkin scheme for incompressible flow suffers from two major insta-
bilities, instability of convection-dominated flow and inf-sup instability in the case of equal order
interpolations of velocity and pressure field. Different methods have been proposed to overcome
these instabilities. A famous family of stabilization approaches are the residual-based methods.
The well-known Streamline-Upwind/Petrov-Galerkin (SUPG) method, introduced by Brooks
and Hughes [30], and Pressure-Stabilizing/Petrov-Galerkin (PSPG) method, by Hughes et al.
[111] overcome the instabilities of standard Galerkin scheme. Furthermore, the interior penalty
techniques of discontinuous Galerkin methods have been applied to continuous Galerkin meth-
ods leading to another class of stabilization methods, edge-/face-oriented stabilization schemes,
introduced originally by Burman et al. [42]. These methods will be discussed in detail in Section
3.5. A comparison of these stabilization techniques and other methods as Local projection-based
stabilization techniques (LPS), see e.g. Becker and Braack [18] and Braack and Burman [26],
is given by Braack et al. [27]. In the following, the famous residual-based stabilizations will be
presented.

The first type of instability is due to the presence of the convective term in the momentum
equation. Such difficulties increase by convection dominated flow, i.e. for high values of the
Reynolds number. In order to overcome this instability, the SUPG term

Z ('“'h - Voy, Tmr)zlh)gf (2.79)

€

is added to the standard Galerkin terms. In (2.79), Ty, represents the residual of the momentum
equation in Eulerian description

Y, = pfW + plwy - Vuy, + Vpr, — 2uV - €(uy) — p'bl. (2.80)
X
Furthermore, Ze denotes the sum of interior finite element domains. The stabilization parameter
7™, which is inspired by Franca and Valentin [75] and Barrenechea and Valentin [12], is defined
as

1
= _ , 2.81)
o max(ér,1) + s - max(&, 1)
with LonA s
ver At me||u
&= m:hz L b= (2.82)
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2.3 Fluid

Hereby, m,; denotes a positive constant related to the element type (see Harari and Hughes
[97]), and At and ¢y denote the time step size and a constant depending on the numerical time-
integration scheme (e.g. ¢ = 6 for one-step-6)), respectively. Moreover, the SUPG term in ALE
framework reads as

> (en- Von, 7"18) o (2.83)

€
with the residual of the momentum equation in ALE description defined as

ou
oh = 'Ofa_th + plen - Vuy, + Vp, — 2uV - €(uy) — pfbﬁ. (2.84)

X

T

The second numerical difficulty is the so-called inf-sup instability. The resulting matrix structure
of the standard Galerkin (2.71) represents a saddle-point nature, due to the pressure field, which
acts as a Lagrange multiplier term on the incompressibility constraint. Thus, a suitable choice
of function spaces for velocity and pressure is necessary for the matrix to have a full rank. The
requirement for such an appropriate choice is that the velocity and pressure spaces have to satisfy
an inf-sup condition also named as Ladyzhenskaya-Babuska-Brezzi (LBB) condition, see Brezzi
and Fortin [29]. To satisfy this condition, LBB-conforming finite elements have to be used. An
example of stable velocity-pressure pairs are the Taylor-Hood elements, see Taylor and Hood
[167]. If the choice of velocity and pressure spaces does not satisfy the inf-sup condition, this
condition has to be circumvented, i.e. the standard Galerkin formulation needs to be stabilized.
It has to be noted that the inf-sup instability appears for any Reynolds number. PSPG method,
originally introduced by Hughes et al. [111], stabilizes the standard Galerkin scheme, by adding
nonzero entries to the zero block of the system and eliminating the saddle-point structure of the
system. A combination of residual-based stabilizations SUPG/PSPG in application of Navier-
Stokes equations was introduced by Tezduyar et al. [168]. The PSPG stabilization term is defined
as

> (Van, ") o (2.85)

€

with the residual of the momentum equation given in (2.80), or as

> (Van T L) o (2.86)

€

in ALE framework with the residual of the momentum equation given in (2.84).

Finally, for a better control of incompressibility condition in convection dominated flow, a
grad-div stabilization term also called as bulk viscosity or least-square incompressibility con-
straint term, proposed by Hansbo and Szepessy [96],

> (Vo 7)o (2.87)

€

with the discrete residual of continuity equation

r, =V -, (2.88)
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is added to the discrete Galerkin terms. The stabilization parameter 7¢ is defined as

T¢ = @ -min(&2, 1), (2.89)
where &, is provided in (2.82). All the stabilization parameters depend on the characteristic
element length h. The choice of the element parameter is not defined very clear. An overview
of different element length parameters can be found in Gamnitzer [79]. In the present work,
for the SUPG method the stream length definition is chosen. It estimates the element length in
direction of fluid velocity (see also Wall [172]). In the case of the PSPG and the least-square
incompressibility constraint term, the volume-equivalent diameter, which is the variant based on
a pure geometrical choice, is chosen (see Gamnitzer [79]).

Finally, the discrete nonlinear stabilized formulation in Eulerian framework can be defined
as a combination of standard Galerkin terms, defined in (2.72) and (2.73) together with the
contributions of residual-based stabilizations as

Ry (wn, pr) = Ry, (wn, pr) + Z(uh Vo, 7T o
€

+ 3 (Vo 7)o (2.90)
€
Ry (wn, pr) = By, (wn, pn) — Z(V% Tmr;?h)gf‘ (2.91)
€

Accordingly, in ALE framework the discrete nonlinear stabilized formulation reads as

R (wn, pr) = Ry, (wn, pn) + Z(Ch VR, 7)o
(&

+ Z(V v, TCTZ)Qf’ (292)
c
R;E?E(uhyph) = Rifp(“haph) - Z(th, 7" h) of (2.93)
(&

2.3.10 Linearization

For the Newtonian fluid with constant density the only nonlinear term is the convective term.
Adding residual-based stabilization SUPG, adds an additional source of nonlinearity to the for-
mulation. In the present work, the Newton-Raphson method is employed to solve the nonlinear
system, which requires a full linearization of the terms. By applying a Taylor expansion to the
nonlinear systems of equations, the stabilized fluid residual at the iteration step ¢ + 1 is given as

rstab n+1 rstab n+1 8;;“‘3 (‘)?lab n+1 Ay ntl

_ N — u p
rgtab - 0 o r?tab + 8r;‘ab ar;“’b Ap + hOt (294)
P il po i . op i+1

Hereby, ri'®® and r;“’b denote the vectors of nonlinear stabilized fluid residuals. Omitting the

higher order terms and using the matrix notations, the linearized system at step 7 + 1 and the
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time step t"** reads as

{ MF + CF 4 GSUPG | GBV GF 4 GSUPG ]"H [ Au ]"H [ pstab rﬂ

_ (GF)T 4+ GPSPG GPSPG Ap r;ab

p

(2.95)

% i+1 %

In (2.95), the stabilization matrices are denoted as SSUPC, SPSPG and SBY. By summing up the

standard Galerkin matrices, the linear system (2.95) can be written as

SUPG BV supG 7t n+1 stab 1 n+1
[Fuﬁs +SP Py, S } lAU] :[ ) } (2.96)

Fpu + SPSPG SPSPG Ap rstab )

% p i

which has to be solved in every iteration step i + 1 of each time step t"*1. After solving (2.96) for
the velocity and pressure increments, Au?jll and Apﬁf, in every iteration step, the new velocity
and pressure at the iteration step ¢ + 1 are updated as

uft =t A (2.97)
prit = pitt 4+ Aplil. (2.98)

2.4 Fluid grid motion

In Section 2.3.6, the incompressible Navier-Stokes equations in ALE reference system have been
presented. In ALE formulation, the deformation of the boundaries of the fluid domain follows the
fluid motion at the boundary, while the deformation of the mesh inside the domain is arbitrary.
There is no unique way to describe the fluid mesh motion inside the domain. However, having
an appropriate algorithm, which minimizes the discretization error and avoids distorted elements
is crucial. At the same time, the algorithm should allow for large deformation of the domain.
Several approaches have been introduced in literature. As an example, spring-algorithms, which
treat the edges of the fluid grid like a elastic spring and possibly add torsion springs to the nodes
were proposed by Batina [13], Farhat et al. [69] and Degand and Farhat [58]. In the present
work, a quasi-elastostatic pseudo-structure approach, is used, which will be discussed briefly
in the following. For a detailed description of this approach and an overview of other methods
the reader is referred to Wall [172]. In this approach the mesh is considered as an elastic body.
The governing equations of the ALE field are based on the simple structure equation in spatial
coordinates

V-09=0, in QALE (2.99)
d? = dv, on OOALE, (2.100)

In (2.100), d9 describes the mesh displacement which is prescribed on the boundary. The stresses
are calculated based on the simple St.-Venant-Kirchhoff material

o? = Ntr(e?)I + 2u%€9, (2.101)
with linear strain measure €9 defined as

e?(d?) = = (Vd! + (Vd9)"). (2.102)

N | —
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2 Governing Equations

The A\ and pf are the Lamé constants, which are related to the material parameters Young’s
modulus £Y and Poisson’s ratio »9. By multiplication of (2.99) with the virtual displacements
0d? the weak formulation is obtained as

(6d9,V -09),,. = 0. (2.103)

For the discretization of the weak form (2.103) trilinear eight-noded elements are used. The
discrete fields dj and dd] results from

dé (x,t) ZN (2.104)
odd (1) ZN )od? (¢ (2.105)

with /V; denoting linear shape functions. Applying the discrete forms to the weak formulation
the resulting ALE linear system reads as

[ A]] d]=0. (2.106)

In the following section, the coupled fluid-structure problem and the problem definition includ-
ing the required coupling conditions are discussed.

2.5 Coupled fluid-structure problem

A fluid-structure interaction (FSI) problem consists of the description of fluid and structure fields
and the coupling conditions at their common interface. The FSI coupling is a surface coupling,
where the interaction of fluid and structure fields only takes place at the shared interface. In
the classical FSI approach the fluid domain is described in the ALE formulation. This allows
the fluid mesh to attach to the structure at the common interface throughout the simulation. In
the hybrid ALE-fixed-grid approach a mixed Eulerian-ALE formulation for the fluid field is
used. The fluid domain is divided into two fluid subdomains with the same material properties; a
moving embedded fluid subdomain and a fixed-grid background fluid subdomain. The embedded
fluid subdomain, which is described in ALE formulation, surrounds the structure and follows
the movement and deformation of it. Thus, at the FSI interface, which is the common interface
between embedded fluid and the structure, the embedded fluid mesh has the same motion of the
structure. This moving ALE-fluid is referred to as embedded fluid as it is embedded into the
fixed-grid background fluid, which is described in Eulerian formulation. This section is devoted
to a brief description of the setup of the hybrid ALE-fixed-grid FSI formulation including the
problem definition and the coupling conditions.

2.5.1 Problem definition

In Figure 2.1, a general setup of the hybrid ALE-fixed-grid FSI approach is shown. Let 2/ =
QPUQe be the whole fluid domain. The fluid domain 2/ is separated into a fixed-grid background
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Of = QluOe Of = QbuOe
(a) (b)

Figure 2.1: (a) The fluid domain €/ is divided into a background fluid subdomain ©2* and an
embedded fluid subdomain Q¢ via the fluid-fluid interface I'*F. The embedded fluid
subdomain interacts with the structure domain ° at the fluid-structure interface '™,
(b) The interface I''F also divides the entire background fluid in a physical part 2°
and an inactive void/fictitious part Q°~. The inactive void/fictitious fluid subdomain
Q= is covered by the embedded fluid subdomain ¢ and the structure domain 2°.

fluid subdomain 2* and an embedded fluid subdomain Q¢ by fluid-fluid interface I''F. Further-
more, the interface I''F subdivides the background fluid into an active physical part identified
with ©° and an inactive void/fictitious part 2°~, which is covered by Q¢ and 2* (see Figure 2.1b).
The coupling of the two fluid subdomains, 0b and Q°, takes place only at the shared interface,
I'FF. The fluid domain €/ interacts with the structure domain Q° at the fluid-structure interface
™! via the embedded fluid subdomain °.

2.5.2 Coupling conditions

The last part of this section, addresses the coupling conditions at both interfaces depicted in Fig-
ure 2.1, i.e. the fluid-fluid interface T'FF and the fluid-structure interface I'FS!. First the constraints
at the physical fluid-structure interface I'™! between embedded fluid subdomain 2¢ and struc-
tural domain €2° will be introduced. Then, the internal coupling conditions between embedded
fluid subdomain ¢ and background fluid subdomain 2° at the fluid-fluid interface I''F will be
provided. Besides the Dirichlet and Neumann boundaries, I'™ and I'™! represent the third kind
of boundary, where a surface coupling between different domains takes place. At both interfaces
the domains are coupled through kinematic and dynamic coupling constraints.

Coupling conditions at the fluid-structure interface

At the physical fluid-structure interface I'™! a no-slip condition as the kinematic constraint is
assumed. This implies no mass flow across the interface, thus, the normal velocities at the in-
terface have to match. Furthermore, a relative tangential movement between the embedded fluid
and the structure is prohibited. Therefore, the kinematic condition at the fluid-structure interface
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reads as .
aCiFFS]

ot

Hereby, u’s; denotes the velocity field of the embedded fluid subdomain at I'™" and d the
displacement of the structure at I'™!. This condition couples the physical fields, i.e. the velocity
of embedded fluid subdomain with the displacement of the structure field. On the other hand,
as a non-physical condition, the embedded fluid velocity and the embedded grid velocity at the
fluid-structure interface have to be the same

=ulss on I x (0,7). (2.107)

U?Fs[ = U%FSI on FFSI X (0, T) (2108)
Considering (2.107), this condition can be expressed by

adf‘m ad‘%m FSI
= I 0,7 2.109
ot o " < (0,7), (2.109)

which is equivalent to the following equation after integration with respect to time
e = dle  on I x (0,7). (2.110)

Hereby, d?ps; denotes the grid displacement of the embedded fluid at the fluid-structure interface
I'"!. The dynamic equilibrium at the fluid-structure interface I'*! is given as

o -n‘=—-o°-n® on I'™ x(0,7), (2.111)

which implies that the surface traction of the embedded fluid and the structure have to be equal.
Hereby, n¢ is the normal vector with respect to (2¢ and n® the normal vector with respect to (2°
at the shared interface, as shown in Figure 2.1a. It holds n¢ = —n* at '™,

Coupling conditions at the fluid-fluid interface

Also at the internal fluid-fluid interface '™ the kinematic and dynamic continuities have to be
assured. The velocities of the background fluid subdomain 2° and the embedded fluid subdomain
Q¢ have to be equal at the common interface I''F. This condition can be expressed by

W = ulw, on I x (0,7). (2.112)

In (2.112), u’}FF and ufy denote the velocity of the background fluid subdomain and embedded
fluid subdomain, respectively. Furthermore, the momentum balance requires the surface tensions
to be equal

o’ n’=—-6°n° on I'™x(0,7), (2.113)

where n? is the normal vector with respect to 2° and n¢ the normal vector with respect to ¢ at
I'FF, and it holds n® = —n*®, as depicted in Figure 2.1a.
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3 An XFEM-based embedded fluid
formulation

As it has been discussed in the previous chapter, a stabilized embedded fluid formulation, which
is the focus of this chapter, is an important step towards developing the hybrid ALE-fixed-grid
FSI approach. In the first part of this chapter, a stabilized embedded fluid formulation based on
the extended finite element method (XFEM) for transient problems with stationary interfaces,
having regard to applying it to moving interfaces, is developed step-by-step. For this purpose,
the standard finite element formulation for incompressible flow, given in Section 2.3, is extended
to a coupled formulation of embedded and background fluid subdomains. First, an XFEM-based
formulation for fixed-grid background fluid subdomain using cut elements, is presented. After-
wards, the focus is shifted to the main challenge of the embedded fluid formulation: finding a
stable formulation for weak enforcement of coupling conditions at the embedded fluid interface.
In this context, different coupling methods and various stabilization terms are discussed. This
coupling needs to be robust, stable and accurate independent of fluid-fluid interface position or
the complexity of the form of the embedded fluid subdomain. For an evaluation of different
coupling methods a study of convergence behavior is carried out. In the end, a stabilized XFEM-
based embedded fluid formulation for stationary interfaces is presented. In the second part of
this chapter, the proposed formulation is extended to handle moving interfaces by introducing a
new approach to deal with XFEM time-integration issue in Eulerian background fluid formula-
tion. Finally, the proposed method is validated numerically for two- and three-dimensional flow
simulations involving stationary and moving interfaces.

3.1 Problem definition

As a first step towards the embedded fluid formulation, a fluid domain O/ is considered. For the
purpose of using different discrete function spaces for the spatial approximation of the solution at
different parts of the fluid domain, the domain €/ is separated into an embedded fluid subdomain
Q¢ and a background fluid subdomain Qb. Now, the problem consists of two fluid subdomains
and the internal fluid-fluid interface. This is a simplified version of the problem definition given
in Section 2.5.1, where the structure and subsequently the fluid-structure interface, which is the
shared interface between embedded fluid subdomain and the structure, are omitted.

The general setup of the embedded fluid formulation is shown in Figure 3.1a. Let f =
2’ UQ° be the whole fluid domain. The interface between the embedded fluid domain Q¢ and the
fixed-grid background fluid domain 2° is denoted as I'™F. The fluid subdomain € is discretized
with the classical Finite Element mesh 7, where the elements are aligned with the fluid-fluid
boundary I'*F. For the background fluid subdomain 2° the fixed-grid mesh 7 using cut elements
is applied, which is independent of the interface position, see Figure 3.1b. As a result of this,
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Figure 3.1: (a) The domain €/ is separated into an embedded fluid subdomain ¢ and a back-
ground fluid subdomain Q° by the fluid-fluid interface I'*F. (b) The interface I''F
also divides the entire background fluid subdomain in a physical fluid subdomain
2’ and an inactive void/fictitious fluid subdomain Q°~, which is covered by ¢. The
subdomain €2 is discretized with the classical finite element mesh 7, aligned with
the fluid-fluid interface I'*F. For the approximation of background fluid subdomain a
fixed-grid mesh 7 using cut elements is applied, which is independent of the inter-
face position.

the interface I'™F subdivides the background fluid mesh into an active physical part aligned with
()’ and an inactive void/fictitious domain part Q°~, which is covered by ¢, see Figure 3.1b.
Therefore, the physical part of background fluid subdomain €2°, depends on the position of I''F.
The coupling of the flow fields in 2° and Q¢ only takes place at the shared interface I'™", where
the coupling conditions (2.112) and (2.113), defined in Section 2.5.2, are enforced weakly. In
Figure 3.1a, n’ and n¢ denote the outward pointing normal vectors with respect to subdomains
QP and Q°, respectively.

In Figure 3.2, the spatial discretizations of the embedded fluid subdomain and background
fluid subdomain are depicted. The entire physical fluid domain is divided into background fluid
subdomain and embedded fluid subdomain by the fluid-fluid interface. For the embedded mesh
T, the classical continuous finite element approximation

Ve = {v e C'Q°) :v|x € Q'(K) VK € T¢}

is used for the spatial discretization of the solution fields uf, (i = 1,2,3) and p® on QF, see
Figures 3.2a and 3.2b. Hereby, Q'(K) defines polynomial of order at most 1 on a hexahedral
element K, which is used in this work. However, it has to be pointed out that any other element
types with different polynomial orders can also be used. As it can be seen in Figures 3.2a and
3.2c, for the approximation of background fluid subdomain cut elements, which are not aligned
with the fluid-fluid interface, are used. The physical and void/fictitious parts of background fluid
are depicted in Figure 3.2c. A close up view of the cut elements are shown in Figure 3.2d.

In the next section, an XFEM-based spatial discretization using cut elements, which is used
for background fluid subdomain, is presented.
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(©)

Figure 3.2: (a) Different discrete function spaces for the spatial approximation of the solution at
different parts of the fluid domain are applied. For the approximation of background
fluid subdomain cut elements, which are not aligned with the fluid-fluid interface
are used. For the embedded fluid subdomain classical finite elements aligned with
the fluid-fluid interface are applied. (b) Embedded fluid subdomain approximated
with classical finite elements aligned with fluid-fluid interface. (¢) The physical and
void/fictitious parts of background fluid subdomain. (d) Close up view of the cut
elements of background fluid subdomain in the interface zone.
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3 An XFEM-based embedded fluid formulation

3.2 An XFEM-based formulation for background fluid
field

The motivation of the extended finite element method (XFEM) comes from the requirement of
describing a discontinuity sharply in the physical fields, e.g. the velocity and pressure field. As
already shown in Figure 3.1, the internal fluid-fluid interface I''F divides the background fluid in
a physical part ° and an inactive void/fictitious subdomain Q*~. Regarding to the coupling of
the physical background fluid subdomain 2° with the embedded fluid subdomain € at the shared
interface I''F, it is necessary to decouple the physical background fluid subdomain Q° from the
non-physical void/fictitious subdomain 2~ and describe the discontinuity sharply. Therefore, a
jump along the interface I''F from the physical values in Q° to zero in 2°~ need to be specified.
In this manner, fluid unknowns of the void/fictitious subdomain, which are not associated with
the cut elements, are removed and the coupling between background fluid subdomain 2 and the
embedded fluid subdomain ()¢ takes place at the interface without defining overlapping solutions.

In this section, first an introduction to the extended finite element method is given. Then,
a volume-cell representation of the background fluid subdomain, which is an alternative tech-
nique to the classical extended finite element method, will be described. Afterwards, a DOF-
management algorithm to handle several degrees of freedom (DOFs) for nodes of cut elements,
which are necessary for a precise representation of solutions on complex cut topologies will be
provided.

3.2.1 Introduction to Extended Finite Element Method (XFEM)

In real-world applications there are a number of examples, where the resulting solutions involve
non-smooth characteristics like discontinuities and singularities, which need to be described
sharply. Common examples of non-smooth solutions in solid mechanics are for instance mod-
eling of cracks or dislocations. In fluid mechanics the non-smooth solutions can be found in
modeling of shocks, boundary layers or multi-phase flows. Standard finite element approxima-
tions do not allow such behavior of the physical fields within one element. A straightforward
approach is to use the polynomial approximation spaces and align the mesh to the discontinuity.
However, for large deformations, as the discontinuity moves, such an approach requires remesh-
ing. A much more sophisticated approach is to enrich the polynomial approximation space to be
able to describe the non-smooth properties of the problem. In this way, the discontinuity can be
represented independent of the mesh for example often in a cartesian grid. In the review article
of Fries and Belytschko [77] these methods are referred to enriched methods. The enriched meth-
ods can be achieved by replacing the shape functions in the polynomial approximation space by
special shape functions or by extending/adding special shape functions to the polynomial ap-
proximations. Some of the enriched methods, which are able to describe a sharp discontinuity
arbitrarily within the domain, are the partition of unity methods (PUFEM), see e.g. Griebel
and Schweitzer [90], Melenk and Babuska [137] and BabuSka and Melenk [8], the generalized
finite element method (GFEM), see e.g. Strouboulis et al. [160] and Strouboulis et al. [161],
and extended finite element methods (XFEM), which are basically classified as similar methods
by Belytschko et al. [24] and Fries and Belytschko [77]. All these methods are based on the par-
tition of unity (PU) concept, which has been proposed by Babuska et al. [9]. For a description of
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PU concept in framework of XFEM the reader is referred to the overview article of Belytschko
et al. [24].

Originally, the XFEM was developed by Belytschko and Black [22] and Moés et al. [139] for
crack problems. It has then been applied to other problems like modeling of holes and inclusions
by Sukumar et al. [165], solidification problems for example by Chessa et al. [48], two-phase-
flow problems for example by Chessa and Belytschko [45], Grof8 and Reusken [91], Rasthofer
et al. [147], Sauerland and Fries [151] and Schott et al. [155], fluid-structure interaction prob-
lems by Gerstenberger and Wall [83, 84], Legay et al. [128] and Zilian and Legay [185] and to
combustion problems by Van der Bos and Gravemeier [169] and Henke [101]. In the concept of
XFEM, the enrichment strategies considered, are mesh-based, i.e. constructed by standard FE
shape functions, and local, i.e. the enrichment is applied locally to some nodes, and based on
PU concept. The basic idea is to locally add enrichment functions to the FE space to extend the
approximation properties. Depending on the type of discontinuity different enrichment functions
in the concept of XFEM are available. An overview of different enrichments is given by Fries
and Belytschko [77].

As mentioned above, the aim of the present work is to describe a jump from the physical val-
ues to zero in the primary variables of the background fluid domain, i.e. the velocity and pressure
fields, across the interface. This kind of discontinuity, where the variables and their gradients at
both sides of the interface are fully decoupled, is referred to as strong discontinuity, see Fries
and Belytschko [77]. In contrast to this, solutions with weak discontinuities have kinks across
the interface, i.e. they are continuous and just the gradients are discontinuous across the inter-
face. An example for these weak discontinuities is the velocity field of two-phase flow problem
by Rasthofer et al. [147].

A typical choice for describing the strong discontinuity is the Heaviside function, which has
been proposed in the early works of XFEM, for example by Belytschko and Black [22], Moé&s
et al. [139] and Dolbow et al. [60]. The Heaviside function, which is also known as void or step
function, is defined as

A 1 in Q°
zb(w):{o C g (3.1)

for the background fluid subdomain. It has to be pointed out that for the stationary interfaces
considered in this section, the Heaviside function is independent of time. The finite element
shape functions are then extended by using additional degrees of freedom combined with the
Heaviside function. The resulting velocity and pressure fields are

up (a0, 1) = (Ny(z)a)(t) + Ni(z)d(@)aj(t)), (3.2)

ph(,t) = (Ni(@)p(t) + Ny()d()ph (1), (3.3)

1

where 4% and ! represent the standard nodal degrees of freedom at a node /. Additional degrees
of freedom @ and p% multiplied with the Heaviside function 1/3(.7:) are used to enhance the
solution.

Modeling of voids can also be treated without using any enrichments. For this purpose, the

areas of the elements inside the fictitious domains are simply neglected in the integration of the
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Figure 3.3: The fluid-fluid interface I''F intersects the background fluid domain 2°. The entire
background fluid mesh is denoted as 7. The set of elements which are intersected
by I''F are signified as 7. 7* denotes the set of elements which lies in the physical
background fluid domain unified with the set of cut elements.

weak form and the integration is just performed in the physical part of the domain. As an ex-
ample, for the modeling of holes in Daux et al. [56] the degrees of freedom associated with the
nodes inside the void domain are removed from the system of equations. Treating the voids with-
out any enrichment functions provides a much more efficient and flexible implementation frame-
work. In Schott and Wall [154] a fixed-grid volume-cell spatial discretization of the fluid domain
based on a standard FEM framework is introduced. Furthermore, a general DOF-management
algorithm has been given to handle multiple sets of degrees of freedom, which are important for
fixed-grid fluid-structure interaction or multiphase-flow problems, like two-phase flow or com-
bustion. For these kinds of applications is it crucial to approximate independent solutions on two
sides of the interface within one fluid element, since they could be very different. In the present
work, the DOF-management algorithm of Schott and Wall [154] is applied to the spatial approx-
imation of the background fluid subdomain. However, as for embedding fluid patches the same
physical properties of the fluid subdomains are assumed, the solution across the interface within
one fluid element does not vary considerably. Therefore, multiple sets of degrees of freedom
are not as essential as for example for fixed-grid FSI approach. In Sections 3.2.2 and 3.2.2, the
volume-cell representation of the background fluid subdomain and the DOF-management algo-
rithm for relevant cases of embedded fluid formulation, will be presented. The formulations and
notations are closely related to Schott and Wall [154], where the volume-cell representation and
the DOF-management algorithm is formulated for a pure fixed-grid FSI approach. For represen-
tation of complex fluid topologies, which appears in modeling of thin structures in the context
of fixed-grid FSI, the interested reader is referred to Schott and Wall [154].
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Va Vs

Vo Vio

(b)

Figure 3.4: An example for a cut situation: (a) Cut elements and boundary segments. (b) Result-
ing volume-cells.

3.2.2 Volume-cell representation of background fluid domain

For the volume-cell representation of the background fluid subdomain, introduced by Schott and
Wall [154], some more notations have to be introduced. The entire background fluid, i.e. the
physical part 2° and the void/fictitious part of background fluid 2°~, is discretized with a fixed-
grid finite element mesh 7, which is not aligned with the interface I''F (see Figure 3.3). The
set of the finite elements K intersected by I''F is given by 7' := {K € T|K NI #£ 0}.
Elements in 7! are called cut elements. Furthermore, 7* denotes the set of all finite elements
which lie in the physical background fluid domain unified with the set of cut elements, 7* :=
{K € T|K N Qb+ (0}. The introduced element sets, 7* and 7', are depicted in the Figure 3.3.

As is can be seen in Figure 3.3, the fluid-fluid interface I''F, which is represented explicitly by
the boundary of the embedded fluid mesh, intersects the elements of background fluid mesh. This
intersection subdivides a cut background fluid element KX € 7' into several arbitrary complex
formed polyhedra, the so called volume-cells denoted as V;, which are located in the physical
part as well as in the inactive/fictitious parts of the background fluid subdomain. A volume-cell
which is located in the physical part of background fluid 2°, is denoted as an active fluid volume-
cell. The volume-cells which do not lie in the physical fluid domain 2’ are not required and will
not be considered anymore. Hence, the physical background fluid domain Q2 consists of its
active fluid volume-cells. The number of active fluid volume-cells for a cut element depends on
the position of the interface; there can be one fluid volume-cell, or more. Therefore, the physical
fluid volume for a cut element K consists of active volume-cells, which are not connected within
an element

Qb = {V C KN Q" polyhedra | V; N V; = 0 fori # j}. (3.4)

For elements, which are uncut (K ¢ 7T') the element itself is equal to the volume-cell,
K = V. Furthermore, the interface I'™" is subdivided into small parts, which are associated
with the underlying background fluid element. These element boundary parts are denoted as
g, =T NK,.
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3 An XFEM-based embedded fluid formulation

In Figure 3.4, an example for a cut situation is depicted. The underlying cut elements are de-
noted as Ky, K3, K, K5, K¢, Kg, Ky € T'. The interface I''™F is subdivided into small element
parts ', , 'y, 'k, , Uk, 'y, ', and I' ) associated with the cut elements Ko, K3, Ky, K5, K,
Ks and Ky, see Figure 3.4a. The cut elements consist of their active fluid volume-cells

Q(;Q = {‘/2}7 Ql;fg = {‘/3}7 QZ}Q = {‘/;l}v
D, = {V5,Ve}, O, =zt Qe = {Va}, (3.5)
Ql}(g = {‘/10}

All cut elements with the exception of K5 consist of one active fluid volume-cell, while K5 is
divided into two non-connected active fluid volume-cells. For elements, which are not interested
with I''F, i.e. K| and K7, the fluid volume-cell is the element itself, see Figure 3.4b, and it can
be expressed by

Consequently, based on the volume-cell representation, the background fluid subdomain can be

described as
o=Jok= W (3.7)

KeTx KeTx VGQ%

Furthermore, based on the subdivision of the interface I'*f into boundary element parts associ-
ated with the volume cell, as depicted in Figure 3.4a, the I''F can be expressed as

=) [ Txnv), (3.8)

KeTt veqsb,

with V denoting the boundary of the volume-cell V. Considering the volume-cell information,
the volume-cell based standard finite element space of continuous approximations can be refor-
mulated as

VEi={v e C' Q") 1 v|y € Q1K) VYV € Q% VK € T}, (3.9)

where Q! defines the polynomial of order at most 1. The element’s volume-cell approximation
is based on the standard polynomial shape functions N? of the underlying background fluid
element /' and can be written as

Nen

vy = Nl(x) -0, (3.10)
=1

where n., denotes the number of nodes in element K. As it can be seen in Figure 3.4b, some
elements involve more than one non-connected active fluid volume-cells, such as element K.
In order to approximate independent solutions at different sides of the interface within one fluid
element more than one set of degrees of freedom (DOF-set) have to be used. The number of
DOF-sets of a node depends on the connection between the volume-cells, which will be de-
scribed in detail in the following section. Hence, in (3.10) the degrees of freedom v* are assigned
to the respective volume-cell V. Again, in the following section, the formulation is adopted
from Schott and Wall [154].
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b % Qb

N

— supp(N,,) — supp(N,,)
(2) (b) (©)
Qb
1
Mo MG - VicCieq, CVic e,
E | Cn, = {C,Co} DOF-set k; for n; w.r.t. V3 DOF-set ky for n; w.r.t. Vs
(d (e) ()
Qb Qb Qb
4
n 8 n n
He,  Ee Vip C Cy € C, “vcec,
LW ¢, = {01, 0y} DOF-set k; for ny, w.r.t. Vi DOF-set ky for ny w.r.t. V5
(@ (h) (@)

Figure 3.5: Illustration of DOF-management algorithm.
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3 An XFEM-based embedded fluid formulation

3.2.3 A DOF-management algorithm for complex topologies

In this section, a DOF-management algorithm, introduced by Schott and Wall [154], will be
reviewed for background fluid mesh. To approximate the solution accurately for finite ele-
ments with more than one non-connected volume-cells, multiple DOF-sets are used. The DOF-
management algorithm is based on two phases.

In the phase I, the number of DOFs for each node is determined. Afterwards, in phase II,
for each volume-cell, the respective DOF-numbers of all nodes of its underlying element are
assigned. This volume-cell based DOF-set information is then used for the assembly procedure
of discrete weak formulation.

The number of required DOFs for a node n is influenced by the support of the shape functions
of the node N,,, which is denoted as supp{ N, }. The supp{N, } is defined by the patch of ele-
ments which surround the node. Therefore, all the active fluid volume-cells, which are located
in supp{ N, } influence the DOFs of the node n. For the purpose of determining the number of
DOFs required for a node, the number of connected active fluid volume-cells within supp{N,,}
of node has to be found. The connected active volume-cells are identified by the facets between
the elements. In a 2D case, the facets are reduced to a 1D line, while in a 3D case they become
arbitrary shaped polygons between two volume-cells. Mathematically, as introduced in Schott
and Wall [154], the connections between the active fluid volume-cells are expressed by

C = {V C supp{N"} UQ*|V € C : IPATH(V,V)} (3.11)

with

PATHq(V,V) == (V = Vo, Vi, , Vi, Vi = V)

. . (3.12)
with V; NV, = ffacet,V; € C,i =0,--- | k.

PATH. denotes the connection between the volume-cells via facets. The set of the connec-
tions with respect to the shape-function support of the node n is then referred to as C,, i.e.
Cn, = {Cy,Cy, - - }. For every connection of volume-cells C' C C,, the respective node obtains
a DOF-set, which can be either a physical or ghost DOF-set. However, a node can have at most
one physical DOF-set. The number of DOF-sets for a node is then equal to |C,|, which denotes
the number of elements of C,,.

In the next phase of the algorithm, every volume-cell obtains the respective DOF index for
all nodes of its underlying element. In the phase I, every DOF of a node has been assigned
to a connection of volume-cells C, € C,. Therefore, every node in combination of a volume-
cell is already connected to one connection of volume-cells Cy. In this step, each volume-cell
obtains the index k of volume-cell connections (), as its DOF-set index for each node n of
the element K. The volume-cell based DOF-set information (ky, ko, - - - , ky,,,) is then used in
assembly procedure of the weak formulation.

In Figure 3.5, the DOF-management algorithm is demonstrated for two nodes n; and n, using
bilinear elements in a 2D case. The same numbering of elements and volume-cells as in Fig-
ure 3.4 is chosen. Figure 3.5a shows the number of DOF-sets related to all nodes of elements
Ky,---, Ky. The nodes n; and ny have two DOF-sets. All other nodes carry one DOF-set. The
supp{ N, } of the nodes n; and n, are shown in Figures 3.5b and 3.5c, respectively. Figures 3.5d,
3.5e and 3.5f refer to DOF-management procedure of the node n,. First, the connected volume-
cells in supp{N,} of the the node n; have to be determined. As depicted in Figure 3.5d, two
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3.2 An XFEM-based formulation for background fluid field

non-connected volume-cell connections, C and Cs, exist in supp{ N, }. The arrows show the
connections of the volume-cells through the facets. As there are two connections of volume-cells
for the node n4, i.e. |C,, = 2|, the node n; obtains two DOF-sets. In Figures 3.5¢ and 3.5f, the
phase II of the algorithm for Node n; concerning the volume-cells V5 C C} and V5 C (5 is
shown. As the volume-cell V5 belongs to the connection ', the DOF-set key k; is assigned to
ny in combination of V5 (Figure 3.5¢). For n; in combination of V5, for which holds V5 C (5,
the DOF-set key £ is assigned (Figure 3.5f).

The DOF-management algorithm for the Node n, is depicted in Figures 3.5g, 3.5h and 3.51.
In the first phase, the number of DOF-sets according to the amount of volume-cells connections
is determined, which is 2, as two volume-cell connections in supp{NV,,, } exist, i.e. |C,,| = 2 (see
Figure 3.5g). Afterwards, DOF-set keys for n, regarding volume-cells Vy and V5 based on the
associated connections are assigned (Figures 3.5h and 3.51).

3.2.4 Numerical integration

As already shown in Section 3.2.2, the cut algorithm decomposes the elements in the physical
background fluid subdomain into volume-cells (3.7), and the interface '™ into boundary seg-
ments, which are associated to the volume-cells (3.8). In order to perform integration of the
weak form, 1.e. evaluating the stiffness matrix for the cut elements, the shape functions and their
derivatives have to be integrated over the resulting irregularly shaped volume-cells. The usual
Gaussian quadrature rule, which is used for regular elements can not be used in cut elements
and, thus, the numerical integration in XFEM needs special care.

The straightforward and mostly used approach for integration over the irregular shaped volume-
cells is the tessellation method, as for example in Gerstenberger and Wall [85], Sukumar et al.
[164] and Massing et al. [131]. In this approach, the volume-cells V; are decomposed into regular
shaped sub-volume-cells, which are generally tetrahedra or hexahedra. These sub-volume-cells,
which are aligned along the interface, are called integration-cells. The integration-cells are then
transformed to the parameter space of the cell, and then the Gaussian rules are applied in the
parameter space of the cell. As the quadrature points are defined within the parameter space of
the cells, they have to be transformed to the element parameter space using appropriate interpo-
lations. Finally, the integration over the volume-cell is performed by collecting the integration
points of all integration-cells. The integration over the boundary segments performs in a simi-
lar way. First, the boundary interface I'f, associated to a volume-cell is subdivided into regular
shaped geometries, the so called boundary integration-cells. The boundary integration-cells are
then transformed into a two-dimensional cell parameter space. Also here, the standard Gaus-
sian integration rules are applied in the parameter space of the boundary integration-cell and
some transformations from the boundary integration-cell parameter space to element parame-
ter space and finally to physical space are required. The visualization of the coordinate systems
and the complete overview of all required transformations is given in Henke [101] and Schott
[153]. Although tessellation delivers accurate results, its applicability to complex problems is
difficult. The division of volume-cells into integration and boundary integration-cells is a time-
consuming process. Moreover, the decomposition procedure in 3D is complicated to implement
and challenging in terms of robustness. Particularly when dealing with problems including mov-
ing interfaces like FSI problems, where the decomposition of complex volume-cells has to be
performed at every time step. Another drawback of the tessellation approach is the high number
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3 An XFEM-based embedded fluid formulation

of Gauss point, required in integration-cells. The reason is that the integration-cells are usually
arbitrarily oriented in the background element parameter space and not necessarily oriented to
the mesh, where higher order polynomials occur. In Gerstenberger [82], an investigation for the
required number of Gauss points is given.

Another class of integration methods in XFEM are the adaptive quadrature methods. Un-
like the tessellation method, the integration-cells are not aligned to the interface, see for exam-
ple Strouboulis et al. [161] and Xiao and Karihaloo [180]. To keep the error small, the size of
the integration-cells has to be very small, Sudhakar and Wall [162]. The number of the required
Gauss points is therefore higher and in many cases accurate results are not achieved.

Another class of methods is based on using moment fitting equations. In these methods,
the moment fitting equations are used to construct quadrature rules for complex 2D and 3D
shapes. To obtain a quadrature rule for such complex shapes of order n, all the monomials
¢ = {2'y/2* i+j+k < n} have to be integrated over the volume-cell. Afterwards a quadrature is
fit to integrate these monomials exactly. Different methods are used to integrate ¢. Mousavi and
Sukumar [143] uses the Lasserre’s method to integrate the base functions. The use of Lasserre’s
method restricts the applicability of method to convex volumes. Sudhakar and Wall [162] ap-
plied the divergence theorem to integrate ¢. The divergence theorem enables the integration over
convex and concave volume cells. However, as investigated in Sudhakar and Wall [162], it is
difficult to obtain the location of the quadrature points in 3D problems and the achieved results
are not as accurate as the tessellation approach.

Another class of methods use divergence theorem for numerical integration of polynomials
over complex polyhedra. Using the divergence theorem, the domain integral is transformed into
boundary integrals, i.e. integrals over the boundaries of the domain, which are the facets of the
polyhedra. The facet integrals are easily computed with the help of quadratures available for
regular shaped boundary integration-cells as triangles and quadrilaterals. Most of the available
methods of this kind assume that the integrand is predefined, or symbolic computations are used
during the integration process, see Sudhakar et al. [163] for more detail. In the recent work
of Sudhakar et al. [163], the divergence theorem is applied to FEM problems, without using
symbolic computation packages, since using symbolic computation packages would reduce the
efficiency and is not desirable in the context of FEM. Hereby, the need of symbolic computation
in the transformation procedure is eliminated by using the one-dimensional Gauss quadrature
rule. In the following a short overview of this procedure is given. The application of divergence
theorem converts the domain integral into integrals over the facets of the volume-cell

/V-FdR:/F-ndS. (3.13)
R S

Hereby, R denotes the region in R® bounded by the surface S and n denotes the outward pointing
normal of R on S. Since the integrand of interest (F) is a scalar, in order to use the divergence
theorem, it should be expressed as the divergence of a vector as

V- F=F. (3.14)

Using
F = G(z)i+ 05 + Ok, (3.15)
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with 4, 5 and k denoting unit normal vectors along z-, y- and z-directions, respectively, results in
the line integration

—/x}"dx. (3.16)

Hereby,  is a reference point, which is needed to compute G(z). Using the equations (3.14) and
(3.15) converts the expression (3.13) to

/de:/g(x)nz ds, (3.17)
R s

with n, the component of n along x-direction. The equation (3.17) can be written as

Ny
/ FdR = Z/ G(x)n, dF;, (3.18)
R i=1 7

where N/ is the total number of the facets and F; denotes the i'" facet of the polyhedra. If G(z) is
available, the equation (3.18) can be directly evaluated. In order to avoid symbolic computations,
the one-dimensional Gauss quadrature rule is applied to compute G(z).

The integration procedure for 2D polygons and 3D polyhedra is described in Sudhakar et al.
[163] in detail. The results demonstrated in Sudhakar et al. [163] show the accuracy and effi-
ciency of the proposed method, which is comparable to tessellation method. Moreover, in con-
trast to tessellation technique the method is easy-to-implement and robust. In the present work,
along with tessellation technique, this recently developed technique has been applied.

3.3 Enforcement of fluid-fluid interface conditions

In this section, the weak enforcement of coupling conditions at the embedded fluid interface
I'*F, which is the main challenge of the embedded fluid formulation, will be discussed. For
applicability of such fluid patches in complex FSI problems it is crucial to satisfy high demands
on the coupling between background fluid and embedded fluid subdomains. This coupling needs
to be accurate, robust and independent of the interface position or the complexity of the shape of
embedded fluid subdomain. Furthermore, it has to be applicable to complex three-dimensional
problems. Taking into account the weak form of the transient incompressible Navier-Stokes
equations, given in Section 2.3.7, the weak formulation of embedded fluid formulation after
partial integration on both fluid subdomains, Qb and Q°, reads as

b

(00 ] g+ (0, )
+("V-ub), — (Vv ,p) + (e(v’), 2ue(u?))
+<v 0 -nb — 2ue(u’) -nb>FFF

(o rou® )QPJF( e V), (3.19)
(q V- u) (V v ,p) (e 2ue(ue))gﬁ
+ (v°,p° - n° — 2pue(u) - )
= (V" Ry + (07 00") g + (07, 9B .
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3 An XFEM-based embedded fluid formulation

The terms at I''F result from the fact that the test functions v® and v do not vanish at the fluid-
fluid interface I''F. Defining nn := n® = —n® and the jump operator [f] := f° — f¢ at the shared
interface, the weak form (3.19) becomes

a b
(v 7ﬂf; )op + (07, 0w V),
(", V), — (V- v»p) + (€(v"), 2p€(u’))
e a e
%0 | e +( e Vul), (3.20)

+(45 V) = (V- vm) + (e(v%), 2pe(u?)),
(lv.p-n —2pe(u) - n])pw
b pb f2b fpe
= (v, h >8Q’]’V + (0", 0'0") o + (v°, 6%
It should be noted that in (3.19) and (3.20) the coupling conditions
wler = ubm Vo € I'F (3.21)
and
o’ nt=—-0°n° VrelT (3.22)
have not been included yet. In this work, we will make use of the following weighted interface
average operators
{a} := Kk’a® + K%a®, (a) := k°a® + K'aC, (3.23)
where the weights x°, k* > 0 are real numbers satisfying x¢ + k* = 1. Then, for two sufficiently
smooth functions x and y the following relationship holds

[zy] = () [y] + [z]{y}- (3.24)
Applying relation (3.24), the flux coupling condition in the fifth line of (3.20) is transformed to
([v.p+ 1 — 2pe(w) - nl)pe = ([0]. {p- 1 — 2ue(w) 1)) (3.25)

Considering the special discretizations of embedded fluid and the background fluid subdomains,
using classical and cut finite elements, respectively, as shown in Section 3.2, the semi-discrete
formulation of embedded fluid formulation without any coupling terms becomes:

Find (u$,p§) € V¢ x Q% and (u},pl) € V¥ x Q% such that V(v§,qf) € Vi x Q% and
V(vh, q)) € Vi x Q% holds

(0
(’UZ’p Uh a:)Qb (’U 7p u’h VU’h)Qb

(Q}mv uh) (v vhvph)Qb (€< 2:“’6 u’h )Qb
ou
+(vg, = X)ge+(vh>pc Vg o (3.26)
+(a5, V- up) oo — (V- 05, 05) o + (€(v]), 2p€(u)) .

+ ([vn], {pn - 7 — 2pe(us) - n}) o
= (Vh By + (V1 0'0") o + (v, ')
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Hereby, equal-order continuous approximations on 3D linear hexahedral elements for all velocity
components, u, v, (i = 1,2,3) and the pressure fields of both fluid subdomains, py, gy, are
used such that

vl ub e V= {v e [COU)P vy € [QUEK)]P VYV € Q% VK € T}, (3.27)
an: vy € Qp = {g € COY) : qlv € Q'(K)VV € O, VK € T}, (3.28)
vi, ul € Ve = {v € [C°(Q9))? vk € [Q'(K)]? VK € T¢}, (3.29)
G, 1h, € Q5 = {g € C(Q°) : |k € Q'(K) VK € T°}. (3.30)

Hereby, Q' (K) defines polynomial of order at most 1 on a hexahedral element K, which is used
in this work.

The focus of following part of the work is the weak imposition of the coupling conditions
(3.21) and (3.22), which have not been included in (3.26) yet. In the following, first, an overview
of different coupling methods, including the classical as well as the relevant methods for 3D-
incompressible Navier-Stokes equations, are given. Next, the main methods, which can be used
for the weak coupling of both fluid subdomains, are explained in detail.

3.3.1 Overview of different methods

The weak enforcement of the coupling conditions, has been an active research topic in the last
years. The imposition of boundary conditions in a weak sense occurs in different contexts. For
instance, between element boundaries of neighboring elements in discontinuous Galerkin ap-
proaches, where the constraint is aligned to the mesh, imposing Dirichlet boundary conditions
in a mesh that does not match the boundary of the computational domain, as in the context of
fictitious domain methods or immersed boundary methods, see e.g. Codina and Baiges [51],
or mesh tying of two non-conforming discretizations, see e.g. Ehrl et al. [66]. The coupling of
background and embedded fluid subdomains belongs to the wide class of interface problems,
where the constraints have to be enforced along an embedded interface, which is not aligned to
the element boundaries. Other examples for such problems are premixed combustion problems,
see e.g. Henke [101] or two-phase flow problems, see e.g. Schott et al. [155].

A classical method for imposing constraints weakly is the Lagrange multiplier method in-
troduced by Babuska [6]. Lagrange multiplier approach has been applied to XFEM problems,
for example, in the early works of Ji and Dolbow [112]. The constraint is enforced by adding
an additional parameter, the Lagrange multiplier, to the system. However, the Lagrange multi-
plier method has shown several difficulties when dealing with interface problems. It has been
shown by Ji and Dolbow [112], Simone [158] and Moés et al. [140] that a most convenient
choice of the Lagrange multiplier space results in instabilities at the interface and decreases the
overall convergence rate. The reason is that the Lagrange multiplier space needs to satisfy the
“inf-sup’ condition, or known as Ladyzhenskaya-Babuska-Brezzi (LBB) condition, see Brezzi
[28] and Babuska [5]. Stable Lagrange multiplier spaces have been developed by Moés et al.
[140] and Béchet et al. [16]. These approaches are based on coarsening the discretization of
the multiplier with respect to bulk mesh. Another remedy is to stabilize the Lagrange multiplier
method, which has been discussed in Mourad et al. [142], and Dolbow and Franca [61]. Nitsche’s
method, Nitsche [144], which will be discussed in detail in the following, can be considered as a
stabilized Lagrange multiplier method by adding a stabilization term. However, all these studies

45



3 An XFEM-based embedded fluid formulation

are limited to two-dimensional problems. The Lagrange multiplier method requires addition-
ally a surface mesh, which is difficult to generate robustly for three-dimensional problems. The
Lagrange multiplier method has been applied to two-dimensional fixed-grid FSI problems and
embedded fluid patches by Gerstenberger and Wall [83, 84].

Another class of methods are the penalty methods. In contrast to Lagrange multiplier method,
the penalty method does not introduce any new primary variable to the system and penalize
the constraint by adding a penalty parameter, see e.g. Hautefeuille et al. [98]. This makes the
method easy to implement. Furthermore, no special care regarding stability issues has to be
taken. The main drawback of this method is that the method is variationally inconsistent, i.e.
the exact solution of the differential equation does not satisfy the weak formulation. The desired
problem is only solved if the penalty parameter goes to infinity, Hautefeuille et al. [98], Sanders
et al. [150]. This leads to a further difficulty, which is the choice of the penalty parameter. A
too large penalty parameter leads to ill-conditioning of the system, whereas choosing a small
parameter results in a bad approximation of the solution. An overview of penalty methods for
flow problems is given by Reddy [148].

Nitsche’s method was introduced to enforce Dirichlet boundary conditions weakly, by Nitsche
[144]. It can be said to be an intermediate between the both mentioned methods, as it combines
the advantages of them. The formulation is variationally consistent, it is a stabilized method,
no primary variable, as in Lagrange multiplier method, is added, and, thus, it can be easily
extended to three-dimensional problems. Hence, Nitsche’s method can be considered as a con-
sistent penalty formulation or a stabilized Lagrange multiplier method. The idea behind it is to
replace the Lagrange multipliers through their physical representation, the fluxes at the inter-
face. Nitsche’s method has been first applied to elliptic interface problems on intersected meshes
by Hansbo and Hansbo [92]. Later, Becker et al. [19] studied Nitsche’s method for incompress-
ible elasticity problems. In Hansbo et al. [93] an approximation of second order elliptic prob-
lems on composite grids based on Nitsche’s method has been proposed. Further studies have
been done by Dolbow and Harari [59]. An overview of Nitsche’s method for interface prob-
lems in given by Hansbo [94]. Nitsche’s method has been also used for discontinuous Galerkin
methods, e.g. by Hansbo and Larson [95] for incompressible elasticity. For Nitsche’s method,
as for penalty methods, a user-defined stabilization parameter is required. However, in contrast
to penalty method, the Nitsche parameter is viewed rather as a stabilization parameter than a
penalty parameter and it does not need to be chosen large in order to asymptotically enforce
the constraint, see Hautefeuille et al. [98]. The Nitsche parameter can be estimated for arbitrary
shape, form and polynomial order of elements through a series of local eigenvalue problems.

Another approach applied to fluid-structure interaction based on a mixed/hybrid formulation
was proposed by Gerstenberger and Wall [85], where an additional discontinuous element stress
field is defined on cut background mesh to enforce the boundary/coupling condition. In con-
trast to the classical Lagrange multiplier method, the additional stress unknown is introduced as
a field in the domain, which acts as a traction force at the interface. Furthermore, the method
involves an implicit stabilization in the formulation, which is automatically incorporated in the
formulation independent of the polynomial order or the spatial discretization. This implicit sta-
bilization corresponds to the estimation of the Nitsche parameter via solving local eigenvalue
problems, however, in contrast to Nitsche’s method, it is included automatically in the formu-
lation and evolves from the weak formulation itself. Moreover, the method allows for complete
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condensation of additional stress unknowns on the element level. In Shahmiri et al. [157], this
method has been applied to embed fluid patch meshes into background fluid mesh.

Baiges et al. [11] introduced a symmetric variant of mixed/hybrid stress-based method of Ger-
stenberger and Wall [85] and showed the similarity of the symmetric stress-based method to
Nitsche’s method. Similar to the mixed/hybrid stress-based method of Gerstenberger and Wall
[85], this method makes use of an additional discontinuous stress field based on viscous stresses
to enforce the boundary/coupling conditions. Also for this method, the extra stress field can then
be condensed from the linear system on the element level.

In the following, the focus is on the three last methods mentioned above, Nitsche’s method,
mixed/hybrid Cauchy stress-based method (MHCS) of Gerstenberger and Wall [85] and symmet-
ric variant of it introduced by Baiges et al. [11], stated as a mixed/hybrid viscous stress-based
formulation (MHVS) in this work, which are all applicable to three-dimensional embedded fluid
formulation. The differences and similarities in the formulations and solution behaviors will
be discussed in the context of embedded fluid formulation. The formulations and notations of
MHCS method are closely related to the formulation used in Shahmiri et al. [157]. The formula-
tion of classical Lagrange multiplier method and penalty method for Poisson interface problems
can be found for example in Henke [101]. For the formulation of MHVS method applied to
Poisson and Stokes problems in context of embedded patches the interested reader is referred to
Kruse [119].

3.3.2 Nitsche’s method

In this section, Nitsche’s method is applied for the weak coupling of background fluid subdomain
(2’ and embedded fluid subdomain Q¢. In (3.26), the discrete weak formulation of embedded fluid
formulation without applying any coupling conditions is given. The semi-discrete embedded
fluid formulation of (3.26) including the coupling conditions on the shared interface I'*" using
Nitsche’s method becomes:

Find (u$,p;) € V¢ x Q% and (ul,p?) € VP x Q% such that V(v§,qf) € Vi x Q% and
V(vl,qb) € Vi x QY holds

Ou?l
(vz,pt% x)Qb + (v}, p'uf - V“h)gb
+(an, Vo ug) g — (V- v, 13) o + (€(07), 21€(uy))

+ (vz,

)
_X) + (g, plef, - Vg,
)

+(q5, V- uh) - (V- ’vh,ph) + (e(vy), 2ue(u;, (3.31)
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e
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The first four lines of (3.31) refer to the weak form of the Navier-Stokes equations of the two fluid
subdomains. The terms on the fifth line result from partial integration of the standard Galerkin
terms, which remains at I''F due to not vanishing test functions and correspond to the fifth line of
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3 An XFEM-based embedded fluid formulation

(3.26). These viscous and pressure interface terms are called the consistency terms. The terms at
line six are required for a consistent weak imposition of coupling conditions, i.e. all the coupling
terms vanish for an exact solution. It is possible to choose 5, = 1 or 3, = —1, which results in a
symmetric or non-symmetric viscous part of Nitsche’s formulation. The formulation introduced
by Nitsche [144] was symmetric to reflect the symmetry of the underlying Poisson problem. The
non-symmetric version of Nitsche’s method was proposed later by Freund and Stenberg [76].
Choosing 3, = —1 leads to out-canceling of the viscous interface terms for (v, qn) = (un, pp)
and results in a better stability behavior. However, it has been shown in Arnold et al. [3] that
it can lead to suboptimal convergence behavior. In the recent work of Burman [33], it has been
proven for weak imposition of boundary conditions of a Poisson problem that the non-symmetric
Nitsche’s formulation is stable and results in an optimal convergence behavior in the H'-norm
for polynomial orders k > 1. The convergence rate of the error in the L?-norm is though sub-
optimal with half a power of A. In this work, a symmetric variant of the viscous interface term
Bn = 1 is chosen. Corresponding to the anti-symmetric formulation of standard Galerkin pres-
sure term, a negative sign to the pressure Lagrange multiplier term, — ({q;, - n}, [up])pee, has
been applied. The terms in the sixth line of (3.31) are referred to as so-called adjoint consistency
terms. The term in the seventh line is known as coercivity term, Nitsche stabilization term or
Nitsche penalty term since it needs to balance the lack of coercivity introduced by the viscous
consistency and viscous adjoint consistency terms of symmetric version of Nitsche’s formula-
tion. As shown in Burman [33], the non-symmetric version of Nitsche’s formulation is stable
without the penalty term for uncut elements. The Nitsche stabilization term, again introduces
the coupling condition (3.21) consistently with a stabilization parameter «’'. In the following the
meaning and the choice of the stabilization parameter o’ will be discussed.

The stability/coercivity of Nitsche’s method

As mentioned above, Nitsche stabilization term, (a/[v], [us]) e, has to balance the negative
amount of coercivity due to the viscous consistency and adjoint consistency terms of symmetric
version of Nitsche’s formulation. The Nitsche stabilization parameter o/ has to be sufficient
large to ensure coercivity but not too large, to prevent ill-conditioning of the system matrix.
Furthermore, a too large penalty parameter o/ can cause spurious kinks in the pressure field at
the interface region, which results from the over-penalization of the coupling condition (3.21) in
a weak sense. An appropriate choice of the stabilization parameter o is essential to have a stable
and accurate solution. It has been shown by Dolbow and Harari [59] and Hautefeuille et al. [98]
for Poisson embedded interface problems that the smallest choice of o/ depends on a positive
constant (', such that the following inequality holds

||vvh : nHL2(FK) <Ch- ||VUhHL2(QK)' (3.32)

This inequality relates the Lo-norm of the normal fluxes at the interface segments to the Lo-norm
of the gradient on the element domain with a mesh dependent constant C'. It holds for the whole
domain but also for each of the elements adjacent to the interface. As shown, e.g. by Hautefeuille
et al. [98], applying the Cauchy-Schwarz inequality to the viscous standard consistency term
and using (3.32) lead to a lower bound of the stabilization parameter . Considering the case
of linear tetrahedral elements, where Vv, = const, the constant C'; can be defined by a simple
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3.3 Enforcement of fluid-fluid interface conditions

geometric relation between the surface area and the physical volume as

2 meas(I'f)
] (3.33)

An optimal choice for the Nitsche stabilization parameter is then given by o/ > C%.

Dependent on the choice of the weights in the average operators in (3.31), x; and k., the
definition of the consistency terms and adjoint consistency terms alters. Thus, the definition of
the stabilization parameter o' depends on the choice of k;, and k.. In Annavarapu et al. [2],
the dependency of the stabilization parameter on the weighting of Nitsche’s formulation for
cut elements is studied and it is shown that an arbitrary choice of Nitsche’s weights such that
they sum to unity, could lead to a large value of the stabilization parameter. In this work, for
simplicity only two cases are considered: the background element weighting for k, =1 = 1—k,
and embedded element weighting for k., = 1 = 1 — k;. In the following, first, the choice of
the stabilization parameter for background element weighting and then for embedded element
weighting will be discussed.

For the background element weighting with x, = 1 and s, = 0, the consistency and adjoint
consistency terms become

+ <[[Uh]]7p?z ’ n>FFF - <[[vh]]> QIUG(U’I;L) ’ n>]_"FF

3.34
U Fund)per — o (2106 (02) - 12, fun]) o 539

Similar to the work of Dolbow and Harari [59], Hautefeuille et al. [98] and Griebel and Schweitzer
[90], and the process described above, a lower bound of Nitsche stabilization parameter o/ can
be derived from the mesh dependent element-wise constant C? for which the following inverse
inequality holds

le(w}) - nllferns < Ol - lle(wh) g (3.35)

where K € T denotes a cut element. The inequality (3.35) shows the relation between the
L?-norm of viscous fluxes at the interface segment of a cut element K and the L?-norm of the
strain rate tensor at the physical part of the background fluid element. It can be shown, that the
formulation is coercive for an element-wise Nitsche stabilization parameter

o = SpuCh, (3.36)

with a sufficiently large &, where § is independent of £, the position of I''F and material proper-
ties. However, since the background element weighting is considered, C% in (3.35) depends on
the position of the interface I''f and, therefore, also on the mesh size h. As mentioned above,
for linear tetrahedral elements the parameter C% can be defined by a relation between coupling
surface area of the background fluid element and physical background fluid element volume as

meas(I'™F N K)

b _
Ck = meas(Q N K)

(3.37)

Equation (3.37) makes the interface position dependency of C% clear, which leads to further
difficulties regarding critical cut situations. An example for a critical cut is a sliver cut, as de-
picted in Figure 3.6a. As it can be seen, for a sliver cut, the physical background fluid element
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Figure 3.6: Examples of critical cut situations: (a) The fluid-fluid interface T'™F intersects the
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background fluid domain. The result of the intersection is a critical sliver cut, where
the physical volume of the element /K tends to zero and surface area remains
constant. This results in unboundedness of stabilization parameter o/, and over-
weighting of the weak imposition of the coupling conditions and, moreover, in un-
bounded condition numbers. (b) Another example for a critical cut. The physical part
of background fluid element is small, thus, the support of the nodal shape functions
of ghost-node n, becomes small. This leads to non-physical values at ghost-node n,
and unbounded condition numbers.
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Figure 3.7: (a) In the case of background element weighting, the cut elements of background
fluid domain and their contribution on shared interface I''F affect the mesh depen-
dent element-wise constant C'%. To balance the missing coercivity the viscous ghost-
penalty operator is applied to F¢. (b) In the case of embedded element weighting,
the constant C'% and the stabilization parameter o/ depend on whole embedded fluid
elements which share one side with T'F,

()’ N K tends to zero, while the coupling surface area I''F N K stays constant, which result in
unboundedness of stabilization parameter o/, and unbounded condition numbers, as discussed
in Burman and Hansbo [39]. Furthermore, as shown in Schott and Wall [154], such a choice of
stabilization parameter could lead to a over-weighting of the weak imposition of the coupling
condition compared to other domain terms and result in a non-physical solution at the inter-
face region. Another example for a critical cut is depicted in Figure 3.6b, where the physical
part of background fluid element, 2 N K, is small. In this case, the support of the nodal shape
functions of ghost-node n, becomes small, such that not enough information for the node n, is
available to determine its value. This results in unbounded condition numbers, and moreover, in
a non-physical ghost-values at n, if using standard residual-based stabilizations at cut elements,
since they are performed only on the small physical background fluid of element K, depicted as
0 N K in Figure 3.6b. The fluid instabilities at cut elements will be discussed in Section 3.5. It
has to be pointed out that problems with fluid instabilities also appear in the case of the sliver
cut, since also there, the physical part of the background element is small, see Figure 3.6a.

To overcome the problems with critical cuts different remedies have been proposed in the con-
text of XFEM. Reusken [149] uses the strategy of blocking the ghost degrees of freedom, when
the critical cut situations occur. This strategy is based on removing the volume-cell, when the rel-
ative ratio between the physical volume of an element and the element volume becomes smaller
than a tolerance. Thus, the elements with small ratio will be considered as uncut elements. This
strategy has the main drawback that a tolerance is necessary, which is hard to determine for ev-
ery cut situation. Moreover, it would only bound the conditioning of the system and would not
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3 An XFEM-based embedded fluid formulation

overcome the stability issues. Stable-XFEM introduced by Babuska and Banerjee [7], modifies
the enrichment functions in order to improve the condition of the system. However, the method
is not able to produce independent gradients at the both sides of the interface. To overcome the
ill-conditioning and the problem with stability issues, in Burman and Hansbo [38, 39], a vis-
cous ghost-penalty operator has been proposed, which has been extended to the Navier-Stokes
equations by Schott and Wall [154]. To obtain a stable formulation in the case of background
element weighting of Nitsche’s formulation, also in this work the ghost-penalty operator

Jop(vh, up) = Y Z/agp ph2 VDY)« [Diul]ds, (3.38)

FeFqg i=1

has been applied. In (3.38), F denotes the set of faces F' between active fluid volume-cells
around the interface (see Figure 3.7a), k is the highest polynomial order in u?, and agp a user-
defined parameter. Further, D’ denotes the normal derivative on the faces with the order 4. For
linear approximations k£ = 1 the ghost-penalty term becomes

Jop(vh, uh) = Y / age - php[Vol] : [Vul]ds (3.39)

FeFg

In (3.38) and (3.39), hp is the maximal distance from the face F' to the opposite faces of the
both adjacent elements, i.e. hp = max{hg,, hr,}, where K; and K, are the two neighbor-
ing background mesh elements, which share the face F', and hg, and hg, the distances of K
and K, to face I, respectively. The operator [Vu?] denotes the jump in the velocity gradi-
ents across the adjacent elements [Vul] := Vul|x, — Vul|k,. Since we are using continuous
shape functions, the jump in the velocity gradients across the adjacent elements can be reduced
to [Vul] := Vul - n'|g, — Vul - nf|,, where n!" denotes a unit normal to the face F'. The
idea of ghost-penalty operator is a smooth continuation of the available polynomial approxima-
tion in the neighboring elements. It transfers the physical information from the physical part of
the domain to the ghost domain and, thus, takes control over the non-physical values of the ghost
degrees of freedom. It has been shown in Burman and Hansbo [39], and Schott and Wall [154]
that if the definition of element-wise Nitsche stabilization parameter o, a measure of coupling
surface area to physical domain (3.36), is replaced by a uniform scaling with the element length
e = ozﬁ, (3.40)
h
the ghost-penalty operator balances the missing coercivity and leads to a stable formulation. Fur-
thermore, it overcomes the problems with ill-conditioning and over-penalization of the coupling
conditions. In (3.40), « is a positive constant independent of the element length, the material
parameter or the interface position, and & denotes the volume-equivalent diameter characteristic
element length.

The embedded element weighting k. = 1 = 1 — k;, which has been already introduced in
the early work of Hansbo et al. [93] and is the preferred method in the present work, will be
discussed in the following.

The consistency and adjoint consistency terms for embedded element weighting read as

+ ([vnl, oy - ) pee — ([n], 20€(uy,) - 1) e

341
—gh -, Fundpee — B (2406 - 1, [en g G4
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3.3 Enforcement of fluid-fluid interface conditions

with £, = 1 for a symmetric Nitsche’s formulation. Choosing embedded element weighting
circumvents the problems with ill-conditioning of the system and over-penalization as discussed
above. In this case, similar to (3.37), the Nitsche stabilization parameter for linear tetrahedral
elements can be stated as

meas(I'™F N K)
meas(Qc N K)

However, for embedded element weighting of Nitsche’s formulation the value of C; is always
bounded, since meas(2° N K) is the entire volume of the embedded element K. Thus, in this
case, the element-wise Nitsche stabilization parameter o’ depends on a constant C,, which is
independent of interface position, for which the following inverse inequality holds

s = (3.42)

le(us,) - mllfe < Cflle(wus)]

Qe (3.43)

where Q% := Q°N K is the entire embedded fluid element /K adjacent to the interface and
' .= T'" N K denotes the boundary of K at I'*F. The elements of background and embedded
fluid mesh, boundary segments and faces, which are relevant for inverse inequalities (3.35) and
(3.43) and for the ghost-penalty operator (3.39), are depicted in Figure 3.7. The element-wise
Nitsche stabilization parameter o/, can then be determined by

oy = pCs, (3.44)

with a user-defined constant §. In Appendix A.1, the derivation of the Nitsche stabilization pa-
rameter (3.44) for Stokes problem is given. Griebel and Schweitzer [90] proposed to solve a
global eigenvalue problem to find a lower bound for the global parameter C'. The value of con-
stant C' can be estimated as the maximum eigenvalue of the problem. However, for problems
with moving interfaces this global eigenvalue problem has to be solved in every time step and
adds significance computational cost to the problem. Therefore, Embar et al. [67] and Haute-
feuille et al. [98] proposed to solve a local eigenvalue problem for each element to estimate
the element specific parameter C'. This method is applied to the embedded fluid formulation;
for every embedded fluid element adjacent to I'™" a local eigenvalue problem is solved to esti-
mate the value of C'%.. This approach provides a reliable and an automatic computation of C'
and, consequently, the Nitsche stabilization parameter o/,. In this way, Nitsche stabilization pa-
rameter can be estimated automatically for arbitrary element shapes and forms, and polynomial
orders. The maximum eigenvalue of the following eigenvalue problem

Av = \Bw, (3.45)
with
A= / (e(vy) -m) - (e(uf) - n)ds (3.46)
i
and
B = / €(vy) : €(uy,) dQ, (3.47)
Q%

gives an estimation of the constant C',. The user-defined constant ¢ has been chosen at least 2 to
ensure stability, see e.g. Embar et al. [67] and Appendix A.1.
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3 An XFEM-based embedded fluid formulation

Remark: 3.3.1. When using the embedded element weighting, due to balancing the coercivity of
the Nitsche’s formulation, the ghost-penalty operator (3.39) is not required. However, it is ben-
eficial to also apply the ghost-penalty operator in combination of embedded element weighting,
since the ghost-penalty operator takes control over the ghost DOFs of the background fluid mesh
in case of critical cuts. Furthermore, using ghost-penalty terms improve the system conditioning,
see Burman and Hansbo [38, 39] and Schott and Wall [154].

Remark: 3.3.2. In the case of background element weighting, applying ghost-penalty operator
in combination of uniform scaling with the element length of Nitsche parameter (3.40) results
in a stable formulation and an appropriate estimation of stabilization parameter, see Burman
and Hansbo [38], such that applying a measure of coupling surface area to physical domain
of Nitsche stabilization parameter (3.36), is not necessary anymore. Furthermore, as already
discussed in this section, with the measure of coupling surface area to physical domain the
Nitsche parameter depends on the position of the interface, which, in this case, would vary a lot
between elements.

Remark: 3.3.3. Particularly, it is recommended to solve the eigenvalue problem (3.45) for
stretched embedded fluid elements, which are the objective of this work in terms of applying
an appropriate boundary layer mesh around the structure for FSI problems. As mentioned above,
solving local eigenvalue problems provide good estimations for elements with arbitrary shapes
and forms. Considering the two definitions of the Nitsche stabilization parameter ', the defini-
tion with unified scaling of the element length (3.40) and measure of coupling surface area to
volume (3.44), for an uniform element, it holds %ﬁgg o~ % Thus, applying the two different
definitions would not lead to significant difference in the value of o’. However, applying (3.40)
to stretched embedded elements, would result in an inappropriate estimation of it. Furthermore,
as discussed in Embar et al. [67] and mentioned above, solving the eigenvalue problem (3.45)

provides a good estimation of Nitsche stabilization parameter for higher order elements.

Matrix formulation

In the following, the matrix formulation of the embedded fluid formulation with Nitsche’s method
will be accomplished. For this purpose, first, a time discretization of the semi-discrete embedded
fluid formulation (3.31) is given. It has to be noted that the fluid stabilization terms are not in-
cluded yet, i.e. besides the standard Galerkin terms only the Nitsche coupling terms are added to
the formulation. As given in Section 2.3.8, for the time discretization the one-step-6 scheme, is
used. The matrix formulation in the following is given for to the background element weighting
of Nitsche’s formulation. The matrix formulation of embedded element weighting of Nitsche’s
method, can be derived in the same way, which is omitted here. The discrete formulation of
nonlinear embedded fluid formulation (3.31), omitting the index n + 1 for the current time step,
reads as:

Find (u§,p§) € V¢ x Qf and (ul,pl) € VP x Q% such that V(v§,qf) € Vi x Q% and
V(vt,qb) € Vi x Q% holds
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In (3.48), the history values u, "™

e;hist

and u,” " are defined as

w™ = ul" + At(1 - 0)ul",  fori € {b,e}. (3.49)

Furthermore, © = At6, denotes the one-step- time factor. As the solution of the (3.48) is based
on the Newton-Raphson scheme, the equations have to be linearized with respect to unknown
qualities. For this purpose, the following contributions of discrete weak residuals are introduced

Rub(u27pg7 uz:]?(}i) R;tg(ph,ul;)
okl — (o) 2pe(u]) )y

—fa <2,ue CHED ug>FFF + Bo (2ue(vy) - m,uf) (3.50)
+ <a ’Uh, ul,’L>FFF — <a vh, uh>pr ,
Ryp(up, ph,us) =R (uh, ph) — (4 - 7wy ) e + (0 - 7005 e (3.51)
Rye(up, ph, us, pf) =Ry (us,, py)
— (Vs Db ) e+ (V5 20€(up) - 1) (3.52)
- <04 v}, Uh>pm: (a'vy, ) e
Ry (ufy, py) =Ry (ui, pfy)- (3.53)

The terms R, R?S, R and R;ted denote the contributions of the standard Galerkin for back-
ground and embedded fluid subdomains as defined in (2.72), (2.73), (2.77) and (2.78). The lin-
earization of the contributions of the weighted residual terms R,», R», R, and R with respect
to ub, p?, u¢ and pf, result in the rows of the linearized system. The resulting global linearized
system, which has to be solved in every Newton step ¢ is then given as
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Fubw + GZbub + GZbub + ngub Fubpb + Gprb ; GZbue + Gf:bue 0 n+1 AuP e
e G 0 o G 0 | | &
Gzeub + Ggeub Gictepb : Fueue + Ggeue Fuepe Au®
0 0 ‘ Fpeue 0 ; Ap® i+1
rz n+1
b
S
o
5]
(3.54)

In the linear system (3.54) the elements far from the interface I''F, which are not affected by
the interface coupling terms, are omitted. The unknown nodal velocity and pressure increments
are identified as Au®, Ap®, Au® and Ap®. The submatrices Fi,i, Fyi,i and Fpii, for i € {b, e},
denote the discrete standard Galerkin fluid systems for background and embedded fluid subdo-
mains as in (2.96). Since the fluid stabilization terms are not added into the formulation yet, the
block matrices at p°p® and p°p® are zero. Adding the PSPG stabilization term (2.85) or face-
oriented pressure stabilization operator, which will be explained in Section 3.5, adds two more
submatrices, Fv,» and Fpepe, into the linear system (3.54). Furthermore, the submatrices with
superscript (-)¢, G¢,, denote the Nitsche standard consistency terms, and the submatrices with
superscript (+)*, G¢,, the Nitsche adjoint consistency terms. The Nitsche stabilization matrices
are indicated as G¢,. The residual terms, r} for i € {b,e} and j € {u, p}, include the contribu-
tions of the standard Galerkin and Nitsche terms. It has to be noted that the signs of the coupling
matrices are included in each term. The linear system (3.54) is anti-symmetric regarding the
terms GZepb and szue, and Gprb and ngub' Accordingly, the linear system (3.54) is symmetric
or anti-symmetric in the viscous part depending on the parameter 3,. The coupling submatrices,
which are obtained from linearization of the weighted residual of Nitsche’s coupling terms, are
given in Table 3.1. To shorten the notation the index n + 1 is omitted.

3.3.3 Mixed/hybrid Cauchy stress-based method (MHCS)

The mixed/hybrid Cauchy stress-based method (MHCS) introduces an additional discontinu-
ous element stress field to enforce the coupling conditions. In the original publication by Ger-
stenberger and Wall [85], the additional discontinuous element stress field is introduced on the
background mesh, i.e. a background element weighting is performed. In the present work, as
in Shahmiri et al. [157], following the original publication by Gerstenberger and Wall [85], also
a background element weighting is performed, i.e. an additional discontinuous element stress
field & is defined on background fluid elements. However, as in Nitsche’s method, an embed-
ded element weighting of MHCS is possible, with the additional discontinuous stress field intro-
duced on the embedded mesh, and would avoid the problems with over-weighting of the weak
imposition of the coupling conditions for critical cuts, as discussed in Section 3.3.2. In contrast
to classical Lagrange multiplier method, this additional stress unknown is introduced as a field
in the domain. As mentioned in Section 3.3.1, the Lagrange multiplier methods have shown
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Submatrix Linearized term
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Table 3.1: Submatrices of Nitsche’s method

instabilities when dealing with interface problems since the most convenient choice of the La-
grange multiplier space results in instabilities at the interface, see Ji and Dolbow [112], Simone
[158] and Moés et al. [140]. In contrast, the MHCS method can be considered as a stabilized
Lagrange multiplier method, as its formulation involves an implicit stabilization, corresponding
to Nitsche’s stabilization term, independent of the polynomial order or the spatial discretization.
However, in contrast to Nitsche’s formulation, where additionally an eigenvalue problem has to
be solved to estimate the stabilization parameter, the stabilizing term of MHCS is automatically
included in the formulation. Furthermore, because of the discontinuity of the additional stress
field between elements, it will be condensed out on element level. The substitution of standard
consistency terms at I'*F in (3.26), which are obtained from the partial integration, with the new
traction @ - m, results in

—([v], 5" 1) e - (3.55)

Similar to the classical Lagrange multiplier method, the stress test function 7° is employed to
enforce the kinematic condition [u] = 0 on I'*F in a weak sense

— (7" n, [u]) . = 0. (3.56)

b

Hence, 7 - n can be considered as the virtual traction force along the interface.
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3 An XFEM-based embedded fluid formulation

The additional stress field ° is a symmetric tensor with six components. To close the system
of equations, a strain rate balance

i(ﬁb +pT) = €(u®), on Q° (3.57)
is added with e(u’) = $(Vul + (Vu®)T). It claims that the strain rate €(u’) derived from the
background velocity should be equal to the strain rate derived from the additional Cauchy stress
field &°. The strain rate balance (3.57) results in the extra stabilization term, which does not
exist in the classical Lagrange multiplier method. Equation (3.57) is tested with the stress test
functions 72, leading to

(7€) = (7 357" ) s = (7 50D =0 339

The resulting semi-discrete weak formulation becomes:
Find (uf, p$) € Vi€ x Q%, (ub,pl) € VP x Q% and o¢ € S, such that V(v§, ¢f) € V¢ x QF,
V(vb,q)) € Vi x Q% and V7 € S holds

('vll?mp at ‘ Qb + (’Uh’p uh ,u’l})z)Qb
+(an, V- '“’h) — (V- vhuph) + (€(vp), 2pe uh))Qb

+(vj,, pf%

)Qe+(”hapch Vuy,
)

) Jor
+(q V- ug) o — (V- 05, 05) o + (€(0]), 2u€(us)) . (3.59)
—< Rl T 1)
6] — (75 -, [un]) e
(et~ (7 50— (7 kD)
= (b B g+ (0, 0+ (05, 9 .
The finite element space S? is defined as
Spi={v e [CTH) vly € [QYUK)]P VYV € Q% VK € T*}. (3.60)

In can be seen that the standard weak form of the Navier-Stokes equations for both background
and embedded subdomains remains unchanged and the extra stress terms are simply added to
the weak fluid formulation.

Furthermore, as it can be seen in (3.60), the added discontinuous stress field 52 € 52 is defined
on the mesh 7, which is the set of elements located in the physical background fluid subdomain
unified with the set of cut elements (see Figure 3.3). However, since E?L is discontinuous between
element boundaries, the discrete strain rate balance, which corresponds to the seventh line of the
semi-discrete formulation (3.59), is satisfied elementwise for every element of 7. Hence, in the
implementation of MHCS, the additional stress-field is just added to cut elements of background
fluid 77 and can be omitted on uncut elements, which are not affected by the coupling terms.
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3.3 Enforcement of fluid-fluid interface conditions

Matrix formulation

In the following, the matrix formulation of the embedded fluid formulation with mixed/hybrid
Cauchy stress-based method is accomplished. The time discretization of semi-discrete embedded
fluid formulation (3.59), omitting the index n + 1 for the current time step, using one-step-6
scheme reads as:

Find (ug,ps) € Vh x QF, (uh,ph) € VP x Qb and &%, € S, such that V(v§, ¢f) € V¢ x Qf,
V(vb,qh) € VP x Q% and V74 € S holds

f
(’U/Z, gulf)b)ﬂb + (Uh>P uh ulf)L
")

+(an, V) g = (V- vp,00) o + (€(07), 2p€(u,

of

s, D) + (o6 e T
+(a, V- ug) e — (V05,05 o + (€(v5), 20€(us))
- <vh7hb>8ﬂ?\] - (vh7 fbb)Qb - (’Uhﬂ fbe)Qc

- <[[/Uh]]752 ’ n>FFF - <?;)l 'n, [[uh]]>pFF

Qb
Qe

)
o
)
)

(3.61)

1 1
+(T?za (uz))gb - (?ha 2M02)Qb - (T?za QMpI;LI)Qb
f .
_ (vz,%ul;;hlst)m +( e % ehls’[)Qe‘

In (3.61), the history values uzhm and uihm are defined as in (3.49). As before, the parameter

© = At#, denotes the one-step-6 time factor. In order to linearize (3.61) with respect to the
unknown qualities, the following contributions of the weak residuals are introduced

Ry (uh?p2732) th (UZW?I) - <”2a52 ’ n>]_"FF ) (3.62)
Ry (wy, ph) =R (w;, ). (3.63)
Ruﬁ(“h?phv b) RQS; (upr?z) + <,UZ>EZ ’ n>]_"FF ) (364)
(uh7ph) Rt (uprZ)a (365)
1 _ 1
R (ul;LJuhaphaah) :(T 76< ?L))Qb - (Tl;w ﬂal}ggb (Tl;w ﬂp?LI)Qb
— (T ) e+ (Th - U L - (3.66)

Hereby, R, R*', R} and R3¢ denote the contributions of the standard Galerkin terms for back-
ground and embedded fluid subdomains defined in (2.72), (2.73), (2.77) and (2.78). Linearization
of the contributions in (3.62), (3.63), (3.64), (3.65) and (3.66) with respect to the unknowns
ub, pb, ob u¢ and p¢, results in the rows of the linearized system. However, it needs to be
pointed out that only nonlinear terms in (3.61) are the standard Galerkin convective terms of
background and embedded fluid subdomains. As discussed in Section 2.3.10, in order to solve
the nonlinear system with Newton-Raphson method a full linearization of terms is required,
which leads to a incremental formulation of the linear system in context of Newton-Raphson

59



3 An XFEM-based embedded fluid formulation

scheme. Omitting the elements far from interface, the global linearized discrete system includ-
ing the additional stress unknowns is given as

Fubus Furp | Guor 1 O 0 1™ [ Aw 7™ o
L 0,0 ,0 0 Ap 7
Korwr + Gorur Karp | Korgr | Gore 0 || AT" =—| |, 66N
0 0 : Guea.b : Fueue Fuepe Au® ri
0 0 1 0 1Fpye 0 | Apt ], e

which has to be solved in every Newton step . The unknown nodal velocity and pressure incre-
ments are as before identified as Au®, Ap®, Au® and Ap®, while A" denotes the element stress
increments. The submatrices F .0, F b0 and F oo and Fyeye, Fyepe and Fie e are the background
and embedded standard Galerkin submatrices, respectively, as given in (2.95). As mentioned
above, since the fluid stabilizations are not added yet, the matrix blocks at p’p® and p°p° are
zero. The remaining submatrices result from the linearization of the boundary integral terms,
denotes as G.,, and from the linearization of the volume integral terms, denotes as K... The
matrix block Ks;s refers to the stabilization included in MHCS method, which is 0 for classi-
cal Lagrange multiplier method. The assignment of coupling submatrices, G,. and K., to the
weighted residual contributions, omitting the index n + 1, is given in Table 3.2. The residual

terms, r°. r® r2 r® and r include the contributions of the standard Galerkin and the coupling

ur 'pr g Voo

terms. As already descnbed above, the stress increments are discontinuous between elements,

Submatrix Linearized term

Cous _3<UZ,E;’L . n>FFF
—
o
Cons _8<?z -n,u2>FFF
g u _ 8ub€
G*b e 8< n UH>FFF
g u~ a
9 o1
Guea.b <v o- b >FFF
o(T
Ko 75(?’;” ﬁpZI)Qb
op (’9 b
Ko, b _46(7-1;“ QMO-Z)Q
77 Ja’

Table 3.2: Submatrices of MHCS

see the equation (3.60), and influence the velocity and pressure solutions only in cut elements via
boundary integrals G,,. Thus, for non-intersected background fluid elements, where no bound-
ary integrals exist, the stress increments can be omitted. Because of the C~!-continuity of stress
increments with neighboring elements, in the cut elements they can be condensed separately for
each element. The stress increments for a cut element K € 7' can be expressed as

AFE = (KK ) 7 (=™ = (KB, + GB ) Au™ — KE LA™ — GE, L Au®™).  (3.68)

aoub Fbue
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3.3 Enforcement of fluid-fluid interface conditions

In (3.68), Au®X and Ap™¥ denote the velocity and pressure nodal unknowns belonging to the
element K, and AG>¥ the element unknowns for the stress approximation. The vector Au®¥
contains all velocities belonging to embedded fluid elements, which intersects the background
fluid K. To condense the stress unknowns, the following element coupling matrices are defined

Curur = =G (Koi0) ™ (K + G, (3.69)
CE = —GE (KE ) KE (3.70
Cove = =G (Kgopn) T Gl 3.71)

and for the embedded fluid velocity unknowns
Cuewr = ~Glieon(KGipn) ™ (KGip + Ggo), (3.72)
CE = —GE (K ) KE,, (.73
Cueue = —Glegn (KZip) 7 GGoe- (3.74)

The residual terms are defined as

K = _GE_ (KK _,) 72", (3.75)
ol = _GE_,(KE_,)~tr2™. (3.76)
(3.77)

With these definitions, the condensed global system can be assembled from element entries in
every Newton step 7 of the time step n + 1 as

K K K K K n+1
Fubub j{' Cubub Fubpb + Cubpb : Cubuc 0
A FE 0 ‘ 0 0
T KT T T T T T K~ ~ O fgK T | K T K
K Cueub Cuepb | Fueue ]‘(" Cueue Fuepe
0 0 ! Fis e 0 )
" pru g " (3.78)
mn n
Aub,K rzyK _.I_ szK
b,K b,K
A Ap K = _A er K
% Au® % rot +c
e, K e, K
Ap i+1 p i

Considering only the cut background elements and the embedded elements, which share a side
with the fluid-fluid interface I''F, i.e. omitting the elements far from interface, the condensed
global system reads as

Fubus + Cupp Fuppp 4+ Coppp | Cubue 0 i A 1
R T 0 | .| A
Cueub Cuepb : Fueue + Cueue Fuepe AUC
0 0 | Fpeue 0 i Ap¢ i+1
A € VL)
_ |
ry, + i,
g i

61



3 An XFEM-based embedded fluid formulation

3.3.4 Mixed/hybrid viscous stress-based method (MHVS)

Similar to MHCS discussed in Section 3.3.3, the mixed/hybrid viscous stress-based method
(MHVYS), introduced by Baiges et al. [11], makes use of an additional discontinuous Lagrange
multiplier field based on viscous stresses to enforce the coupling conditions. Thus, the idea of in-
troducing an additional Lagrange multiplier field on the background fluid subdomain §2°, remains
the same, however, in contrast to MHCS instead of an additional Cauchy stress field, a viscous
stress field is introduced. As shown for MHCS method in Section 3.3.3, the additional stress
field substitutes the whole interface traction, while in the MHVS method only the viscous part
of the traction is replaced by the additional stress field. Since, again, the additional stress-based
field is discontinuous across element boundaries, it can be condensed from the linear system.
Furthermore, as for MHCS, a strain rate balance, similar to strain rate balance from MHCS
(3.57), is added. However, in contrast to MHCS, an additional equation to strain rate balance
is included to the formulation, which makes the method symmetric in its form for symmetric
problems. It has to be remarked that MHCS is a non-symmetric method even for symmetric
problems. This is the only difference between the both methods, when the stress-based methods
are applied to Poisson’s problem, due to the lack of the pressure variable. However, consid-
ering Stokes or Navier-Stokes problems, the pressure field in MHVS method is treated in the
same way as Nitsche’s method, which is the second main difference to MHCS. In the following,
again, a background element weighting is considered. However, the formulation can easily be
accomplished for embedded element weighting, where the discontinuous additional stress field
is defined on the embedded fluid elements. Furthermore, the method holds a stabilization param-
eter n to ensure stability, which can be fixed a priori, see Baiges et al. [11]. According to Baiges
et al. [11], the parameter n should be chosen greater than one (n > 1).

As already mentioned, in both mixed hybrid methods an additional discontinuous Lagrange
multiplier field & is introduced on the background fluid subdomain €2°. In MHCS method, the
additional stress field is used to substitute the whole interface traction, i.e. the standard consis-
tency terms, as shown in (3.55). In contrast, in MHVS method only the viscous traction on I''F
is substituted by & - n and the pressure terms remain unchanged, as

([vn], 1}, - M) — {[v]. @ - 1) e = 0. (3.80)
Furthermore, the weak enforcement of the kinematic coupling [u] = O is added as

—{(¢" n,[u]) e — (7* - n, [u]) e = 0. (3.81)
As for Nitsche’s method (3.34), according to the anti-symmetric formulation of standard Galerkin

pressure term, an anti-symmetric formulation for the pressure terms is chosen. Similar to the
strain rate balance of MHCS (3.57), a strain rate balance is introduced to close the system

— " —€(u’)=0, on Q" (3.82)

Additionally, a further stress equality from rearranging (3.82), the so called viscous stress bal-
ance, 1s introduced as
&’ —2ue(u’) =0, on (3.83)
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3.3 Enforcement of fluid-fluid interface conditions

which leads to the symmetric structure of the method. The strain rate balance (3.82) is tested
with stress test functions 7° multiplied by + as

(75 e 4 (7)) =0 389

(e('vb),ﬁb)m - ﬂvi(e(vb), 2,ue(ub))m =0, (3.85)

with the parameter n mentioned above. Similar to the parameter 3, of Nitsche’s method, the
parameter /3, indicates, whether the method is symmetric or non-symmetric in the viscous part,
By = lor B, = —1, respectively. After the weak form has been stated, the resulting semi-discrete
weak embedded fluid formulation without adding the fluid stabilization terms becomes:

Find (u$,pt) € V¢ x Q5. (ul,p?) € VP x QF and & € S?, such that V(v¢, ¢f) € V¢ x Q5,
V(v qb) € VP x Qb and V7 € SP, holds

(w0 2] )+ (vl )
(Qha V- Uh) (V vhvph) + ( ’Uh 2p€ uh))Qb
+(U2a e x) + (vhap cj, - Vu’h)ge
E (Qha V- uh) (V Uhaph) + (e(v?;), 2#‘5(“2))96
+< 'uh]],ph . n>FFF - <[['Uh]],EZ . n>FFF (3.86)
@ - <QZ ", [[uhﬂ>[‘FF - <FI;L - n, [[uh]]>1"FF
1 1 1

1 1
By (e(0), %) — o (€(vh), 2ue(wr) g
= </U27 Rb>an}V + (v;)n pfbb)Qb + (UZ7 pfbe) Qe?

[o] [e]

with the finite element space Sz defined as (3.60). As it can be seen, the standard weak form
of the Navier-Stokes equations remains unchanged and the extra stress terms are simply added
to the fluid weak formulation. In the following, the matrix formulation of the embedded fluid
formulation with mixed/hybrid viscous stress-based method will be presented.
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3 An XFEM-based embedded fluid formulation

Matrix formulation
The time discretization of (3.86) applying an one-step-6 scheme is given as

f
(u?w %uz)gb + (vhv P uh U?L
w)

(Q}wv Uh) (V Uh,ph) +(€ vh 2p€(uy,

ot

+ (ur, 6“2)98 + (vh, plef, - Vg,
+(qZ,V : UZ)Q - (V : vfmp;iz)ge + ( €(vy,), 2ne(uy)) .
= (Vo A g, = (V5 P'0) g = (v, b7 g
+ ([onl, 05 - ) e — ([wnl, &5 - 1) e
—(an - [un]) e — (T - 1, [n])

1
_uah)ﬂb + = n (??H G(U?L))Qb

—l—ﬁv%(e(v;’l),ﬁz)m — ﬂV%(e(vb> 2,u€(ub>)ﬂb

f .
_ (vz’%ul}){hm)m +( e % ehlst)Qe’

Qb

Qe

)
o
)
)

(3.87)

with the history values u)"™"

and u;’ hist Jefined as
w™ =l + At(1 - 0)ul",  fori € {b e} (3.88)

and © = AAt. In order to obtain the linear system, the following contributions of the discrete
weak residuals need to be linearized by the primary unknowns

Rub (uh7ph7 o-h) RStd( l})upl})L) - <v}bL7E?L ' n>FFF + <’vlbzuplsz ' n>FFF

1 . 1
+B0— (€(0), Th) g — B (€(v), 2ue(uy)) g, (3.89)
Ry (up, pp) =R (uh, py) — (a1 wp ) e + (@i - 70, 5 ) e (3.90)
Rue (pwaZ) :Rffg(uh ) + <vhv Uh n>1“FF <’02apz ' n>FFF ) (391)
Ry (uf, pf,) =R (s, p}), (3.92)
_ 1, ., 1 1
Rc‘fb(ulf)wp?w a-lf)z) = E(T?w 92 O-?L)Qb + = n (T?w E(ulf)z))Qb

— (T )+ (T U ) L - (3.93)

As before, RS, R;E?, R} and R3¢ denote the contributions of the standard Galerkin terms for
background and embedded fluid subdomains. The global linear system including the additional
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stress unknowns is given as

Fuvur + Kby Fubpb +G ubpb | Guogt + Koo 0 0 (. Aub e
,,Ff,bji(,;zuf’,,,,,g,,,,‘ ,,,,, 0 ,,,,J,Gﬂbyi,,Q,, Ap®
Ko +Gorwr 0 K Gare 0 AG®
0 Guepb : Guea-b : Fueue Fuepe Aue
0 0 w 0 N Apt |
| g i DT 69
ru
"
ru
1

It can be seen in (3.94) that in contrast to MHCS method, see (3.67), also coupling terms are
added to the standard Galerkin submatrices. As previously mentioned, the reason is that only
the viscous traction on I''f is substituted by the addition stress field and the pressure field re-
mains unchanged, see equations (3.80) and (3.81). Table (3.3) assigns the submatrices G, and
Kis to the corresponding weighted residual contributions. The residual terms are denoted by
r® r0 b and r, including the contributions of the standard Galerkin and the viscous stress-

u) " p’ 0'7 u’

based method. As in MHCS, the stress increments Aa® are discontinuous between elements and

Submatrix Linearized term
G - 8<v;);,>pl})L . n>FFF
ubp apP
c oGkt
uba b
8<qb (’9;3' ub)
prub h o - h /TFF
0 (ah T
prue T
8<?Z~n,ub> -
Gab ,#hr
Gou . 0 <?Z -n, ui)rw
g~ Uu a e
G. o _3 <vlc;71’g?}jl ’ n>FFF
u®p aépb
G ., d{vy, T -n>FFF
uco O'b
OB (e )
u-u aub
o),
o 1 —b%b b
K*b b 0+ (Th> (uh))Q
g u ? b
K*b , _ %(?f“ 2uEh)Qb
77 Ja’

Table 3.3: Submatrices of MHVS
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3 An XFEM-based embedded fluid formulation

influence the velocity and pressure solutions only in cut elements via boundary integrals G...
Furthermore, due to the discontinuity of EI;L, the discrete strain rate balance and discrete viscous
strain rate balance, lines seven and eighth of (3.86), are always satisfied for uncut elements,
thus, they can be omitted for uncut elements. For cut elements, the stress increments can be
condensed element-wise because of their C~'-continuity. Employing the third row of (3.94), the
stress increments for an element i € T reads as

AO’bK (K ) 1(_r7 (KKub + GO’ ub)A GK

K
She AU ). (3.95)
Hereby, Au®% denotes the velocity nodal unknowns belonging to the cut element K and A%
the element unknowns for the viscous stress approximation. Furthermore, Au®* contains the ve-
locities of embedded fluid elements, which intersect the background fluid K. For the condensed
linear system the following element coupling matrices has to be defined

Corr = Kitr = (G + K ) (Kige) ™ (KJo + Gole), (3.96)
Cfl;ue - —(G bgb + Kubo-b)<Ko-bo-b> lGé(bue, (3.97)

and for the embedded fluid velocity unknowns

CuKeub — _GfL(eab(Ké(b(—Tb)_l(Ké(bub + G(I—fbub), (3.98)
Cfﬂue = _GuKec‘rb(K?b&b)_lG?bue' (3.99)
The additional residual terms are defined as
K = (GE_, + KE ) (KE, )~ 1ro™, (3.100)
= —GE_,(KE,,) " 'ro”. (3.101)

Considering these definitions, the condensed global system can be assembled from element en-
tries in every Newton step 2 of the time step n 4 1

FE.+CK, FE +GE 1 CK. o 1"
Al FhorGha 9,,,,1,,,9’&; ,,,,, 0
K Cucub GuKepb : Fqi(ue j(_ Cueue FK
0 ° - e o i (3.102)
AUb7K n+1 rb’K + Cb’K n+1
Apb,K rlt;,K
Ape’ i+1 rP7 %

Omitting the elements far from interface of both fluid subdomains, i.e. considering only the cut
background elements and the embedded elements, which share a side with I''F the condensed
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global system reads as

Fuvw + Cupup Fubpb + Gubpb | Cubue 0 n Aub e
P £ G 0 1 Gpu o | | A
Cueub Guepb : Fueue + Cueue Fuepe Aue
0 0 O Fpe 0o | Apt |
: ) i+1
W G109
__| "
re +c;,
rf, ;

3.3.5 Comparison of different methods

In Sections 3.3.2, 3.3.3 and 3.3.4, three methods for weak imposition of coupling conditions
on embedded fluid interface I''F, Nitsche’s method, mixed/hybrid Cauchy stress-based method
(MHCS) and mixed/hybrid viscous stress-based method (MHVS), have been introduced. In the
following, the similarities and differences among them will be highlighted. A comparison of the
MHVS method and Nitsche’s method for Poisson’s Problem is given in the original publica-
tion by Baiges et al. [11]. Furthermore, Kruse [119] compared the three methods for Poisson’s
problem, Stokes and Navier-Stokes problems. Since Nitsche’s method is the most known and es-
tablished method among them, it will be considered as a reference formulation for the purpose of
comparison. Thus, each of the stress-based methods will be compared to Nitsche’s formulation.
Again, in this part, the formulation is restricted to background fluid element weighting, which
could be derived for the embedded fluid element weighting in the same way. First, the MHVS
method will be compared to Nitsche’s approach, since it is the more similar method to Nitsche’s
formulation.

Nitsche’s method compared to MHVS method

In the following, the mixed/hybrid viscous stress-based method (MHVS) will be compared to
Nitsche’s method in terms of signs and scaling of the terms. Considering MHVS method, after
partial integration, the viscous part of the interface traction is replaced by the introduced La-
grange multiplier at the interface & - n, and the pressure consistency term remains unchanged.
Thus, the consistency terms read as

<[[vh]]7pl})z ' n>FFF - <|:[/Uh]]761;1 : n>FFF . (3104)

Furthermore, due to discontinuity of &, the strain rate balance is element-wise satisfied. Con-
sidering the Nitsche’s standard consistency terms, obtained from partial integration

<[[,Uh]]’pz ' n>FFF - <[['Uh]]7 QME(UZ) . n>1—~FF 3 (3105)

it can be easily seen that the pressure consistency terms of the both methods are equal. Nitsche’s
weighted interface kinematic condition leads to the so-called velocity and pressure adjoint con-
sistency terms as

_ﬁn <21U’€(’Ug) - n, [[uh]]>FFF - <QZ ‘n, [[uh]]>rpp ) (3.106)
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3 An XFEM-based embedded fluid formulation

where 3, € {—1, 1} indicates a non-symmetric or a symmetric viscous part of Nitsche’s formu-
lation. On the other hand, in the case of MHVS method the weighted kinematic continuity can
be stated as

— (T, [unl) e — (@5 7 [n]) e (3.107)

with the discontinuous test stress field FZ. It is also obvious form (3.106) and (3.107) that
the pressure adjoint consistency term of Nitsche’s method corresponds to the pressure term of
weighted kinematic continuity of MHVS method. Hence, all pressure terms of MHVS method
fully correspond the one obtained for Nitsche’s method. For the further similarities to Nitsche’s
method, the condensed system has to be considered. It will be shown that after eliminating the
discontinuous stress field some of the terms cancel out and the final expression shows further
similarities to Nitsche’s method. Baiges et al. [11] showed for Poisson’s problem that the MHV'S
method, except for penalty terms, is identical to Nitsche’s formulation.

The resulting linear system after element-wise condensation of added discontinuous stress
field was shown in (3.103). The coupling matrices C,, consist of volumetric terms K,,, which
scale with the physical part of the element volume, meas(Qb N K), and of interface terms G..,
which scale with the coupling surface area, meas(FF FNK ), i.e. an element’s contribution to
the interface. On the other hand, the Nitsche stabilization parameter, o’ := §uC%, scales with
%m as shown in Section 3.3.2. With these statements, the corresponding Nitsche terms to
the MHVS can be composed. The associations of Nitsche’s stabilization terms with the MHVS
are given in Table 3.4. The user-defined parameter n of MHVS method, acts in the same way
as the parameter o of Nitsche’s formulation. As it can be seen in Table 3.4, the signs of the
penalty terms for Nitsche’s formulation and the MHVS are the same. Thus, it can be concluded
that MHVS method involves an implicit stabilization term in its formulation, corresponding to
Nitsche’s penalty term, which is automatically incorporated in the formulation independent of
the polynomial order or the spatial discretization.

In Table 3.5, the standard consistency and adjoint consistency terms of Nitsche’s method and
the corresponding terms of the MHVS method are shown. As mentioned above, the pressure
standard consistency and adjoint consistency terms are the same. Considering the velocity stan-
dard consistency terms of MHVS, the volumetric scaling meas(£2® N K) cancels out and the
remaining part has the same scale and sign as Nitsche’s velocity standard consistency term. Also
the volumetric scaling vanishes in the case of velocity adjoint consistency terms and the remain-
ing terms correspond to Nitsche’s velocity adjoint consistency terms. Furthermore, the parameter
By corresponds to the parameter 3, of Nitsche’s formulation, which leads to a symmetric or non-
symmetric formulation of the viscous part of the MHVS method.

Nitsche’s method compared to MHCS method

In the following, MHCS method will be compared to Nitsche’s method in terms of signs and
scaling of the terms. The Cauchy stress-based Lagrange multiplier field can be directly identi-
fied as real forces at the shared interface I''F. As a consequence of this, in contrast to Nitsche’s
method or the viscous stress-based method, which are very similar, the additional stress-based
field of MHCS method also includes the pressure field. This leads to significant differences in
the formulation of MHCS method. As for the comparison between MHV'S method and Nitsche’s
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Penalty terms

Nitsche’s method MHVS method
Matrix Scaling Matrix Scaling
ngub +“57T12255((1—(‘::r:[}§)) -meas(T'FF N K) _Gubc‘fb K;blﬁb G&bub +2un7nr;zzz((r;:r?§)) - meas(I'fF N K)
ngue 7“57:12255(5;:2[];) -meas(T'FF N K) _Gubc?b K;bla_b G5bue —2 nir:iaaz((l;::r?g)) -meas(I'fF N K)
Gzeub —H %m ‘meas(I™F N K)  —Gegn K;blab Ggbyb —ZMn%m - meas(I'F N K)
e w %m ‘meas(IF N K)  —Gyegb K;blab Ggbye +2unw - meas(I'F N K)

meas(QP N K)

Table 3.4: Association of Nitsche’s method with MHVS method

method given above, the formulation after condensation of the additional stress field is consid-
ered.

The association of the penalty terms for Nitsche’s method and MHCS are given in Table
3.6. As it can be seen, considering the volumetric and boundary terms, the scale of the Nitsche
parameter o ~ %m, is implicitly contained in penalty terms of the MHCS. In contrast
to the penalty terms of the MHVS method, the user-defined parameter corresponding to ¢ of
Nitsche’s stabilization parameter is not included. However, comparing again the penalty terms of
both methods, it can be asserted that the penalty term of MHCS method corresponds to Nitsche’s
penalty term § = 2.

The standard consistency and adjoint consistency terms are shown in Table 3.7. Again the vol-
umetric scaling of K32 with G,» and G, cancels out, leading to the similar terms as Nitsche’s
velocity and pressure consistency terms. While all the consistency terms of Nitsche’s method can
be identified, all adjoint consistency terms for the MHCS method are missing. In the numerical
examples, the influence of missing adjoint consistency will be shown.

Discussion

In this section, each of the stress-based methods have been compared to Nitsche’s formulation in
detail. In the following, a summary of the similarities and differences of the discussed methods
is given.

The MHVS method is very similar to Nitsche’s method. After the condensation of the addi-
tional stress field, it contains all the velocity and pressure standard and adjoint consistency terms
corresponding to Nitsche’s formulation. As for Nitsche’s method, it also contains the parame-
ter 3y, a switch for a symmetric and non-symmetric viscous part, and the parameter n, which
corresponds the J-parameter of Nitsche stabilization parameter in (3.36) and (3.44). Due to an
additional equation besides the strain rate balance (3.82), which is stated as viscous stress bal-
ance (3.83), like Nitsche’s method the formulation is symmetric in its form, i.e. if the signs of the
terms are not considered. The MHVS method treats also the pressure terms in an equal manner
like Nitsche’s method, since the additional stress field is a viscous stress and does not contain the
pressure field. Hence, as also shown by Baiges et al. [11], the MHVS method is a very similar
method to Nitsche’s method.
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3 An XFEM-based embedded fluid formulation

Standard consistency terms

Nitsche’s method MHYVS method
Matrix Scaling Matrix Scaling
szpb +meas(I'F N K) Gubpb +meas(I'F N K)
GZepb —meas(TFF N K) Guepb —meas(I'F N K)
—1 1
Zbub —2pmeas(TTF N K) —Guba.b K&”&” Ka.bub —2pmeas(IFF N K) - W -meas(2° N K)
c -1
Gueub +2pmeas(I'FF N K) —Gueﬁb Kab&b K5bub +2umeas(I'FF N K) - m -meas(Q’ N K)
Adjoint consistency terms
Nitsche’s method MHVS method
Matrix Scaling Matrix Scaling
phub —meas(I'F N K) prub —meas(I'F N K)
Zbuﬁ +meas(T'F N K) prue +meas(FFFlﬂ K)
-1
szub —2upBameas(I'FF N K) —Kuba.b Kébéb Gabub —2ufBymeas(Q® N K) - W -meas(I'F N K)
—1
szue +2ubumeas(IF N K)  —Kpz0 Kabab Ga.bue +2uBymeas(Qb N K) - meas(P A K meas(I'F N K)

Table 3.5: Association of Nitsche’s method with MHVS method

Furthermore, the characteristic of the method provides a automatic calculation of the penalty
term for arbitrary element shapes or forms and polynomial orders, which can be compared to
Nitsche’s penalty term including an eigenvalue problem to estimate Nitsche’s stabilization pa-
rameter as shown in (3.45).

On the other hand, the MHCS method holds a physical motivation, i.e. Lagrange multiplier at
the interface can be identified as a true interface traction. This leads to some differences in the
formulation between the MHCS method and Nitsche’s method or the MHVS method. The strain
rate balance is added to the formulation to close the equation. However, the strain rate balance is
the only additional equation in the formulation, leading to a non-symmetric form of the approach
even for symmetric problems. Moreover, in the final formulation after the condensation of the
stress field, it comes out that the Cauchy stress-based is free of any adjoint consistency terms for
both velocity and pressure fields. The MHVS method develops these terms from the additional
equation to the strain rate balance, the viscous stress balance, which also ensures the symmetrical
form of the approach. The missing adjoint consistency terms could be a reason for uncontrolled
pressure behavior, as it will be shown in the Section 3.7. Furthermore, no other stabilization
parameter like n of MHVS method is included, thus, it can be stated that the formulation involves
an implicit stabilization parameter with the value of 2, see Table 3.6. To sum up, the mentioned
characteristic of MHCS method leads to an unstable behavior of the method, as it will be shown
in Section 3.7. It has to be pointed out that a mathematical proof for the stability of the MHCS
method is still missing.

As a similarity between both stress-based methods and the main difference to Nitsche’s for-
mulation, it needs to be noted that in both stress-based methods, the estimation of a penalty
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3.4 Extension to convection-dominated flow

Penalty terms

Nitsche’s method MHCS method

Matrix Scaling Matrix Scaling
meas(I'FF N K) -1 meas(I''F N K)
ngub 2 m -meas(T'FF N K) _Guba'b Ké'bé'b Ga.bub +2u - m - meas(I'fF N K)
meas(I'F N K) -1 meas(I'F N K)
ngue — m -meas(T'FF N K) —Gubg,b Kc_rb&b G5bue —2u - m -meas(I'fF N K)
meas(I''F N K) -1 meas(I''F N K)
Glew Mg MK —GueprKG o —2u- Tl meas(T 0 K)
o meas(I'FF N K) - . -1 meas(I''F N K) FF
dew w0 i TN E) —GueprKCys Ganye 42 T ot - meas(TT N1 K)

Table 3.6: Association of Nitsche’s method with MHCS method

parameter is included in the formulation in a natural way, i.e. the Nitsche parameter o/ - or
the relation %m - evolves from the formulation itself. This characteristic of the meth-
ods provides an automatic calculation of the penalty term independent of the discretization or
polynomial order. Thus, the stress-based methods are comparable with a Nitsche’s formulation,
which involves solving an eigenvalue problem, where the estimation of Nitsche’s parameter is
done implicitly. Depending on the weighting side, this feature could be considered as a bene-
fit or a drawback of the stress-based methods. In case of embedded element weighting, where
the additional stress fields are introduced on the uncut embedded elements adjacent to the inter-
face, the relation % depends on the shape and form of the element. Therefore, using the
MHVS method is similar with applying a Nitsche’s formulation without any additional cost for
solving the eigenvalue problem to estimate Nitsche stabilization parameter. In contrast, apply-
ing the background element weighting of MHVS method corresponds to background element
weighting of Nitsche’s formulation in combination of solving an eigenvalue problem, which
results in a penalty parameter dependent on the position of the interface. Thus, in the case of
critical cuts (see Figure 3.6a), same problems as for background element weighting of Nitsche’s
formulation in combination of solving an eigenvalue problem, as discussed in Section 3.3.2, are
expected. The analysis in Section 3.7 confirms the dependency of background element weighting

of stress-based methods on the interface position.

3.4 Extension to convection-dominated flow

For convection dominated flow, the embedded fluid formulation needs further attention, since
the convection terms,

(vp, p'up, - Vuy) (3.108)
and
(3.109)

introduce a further instability at the interface I'™F, due to the convective mass transport across
the interface. In other words the mass conservation needs to be ensured, whenever there is a flow
crossing the interface. Mathematically, it can be shown that this instability refers to a lack of
coercivity at the interface. To examine the stability, a continuous advective velocity 3, for both

(’UZ, pfclez : VUZ)QS7
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3 An XFEM-based embedded fluid formulation

Standard consistency terms

Nitsche’s method MHCS method
Matrix Scaling Matrix Scaling
c FF _ -1 FF 1 ) b
Gubpb +meas(I'F N K) Gubﬁb Kﬁbﬁb Ka.bpb +meas(I'™' N K) - meas( 1 ) meas(Q° N K)
-1
GC b —meas(I'F N K) —Guec—,b KC—,b5b K5bpb —meas(TF N K) - m”lﬂK) -meas(Q° N K)
c -1
Gubub —2pmeas(T'F N K) —Gubab Ka—ba-b Ka.bub —2umeas(I'™F N K) - m -meas(Q° N K)
—1
Gzeub +2umeas(T'FF N K) —Gesb Ka-bab Ksbyp  +2umeas(I™ N K) - s (BN K meas(Q° N K)

Adjoint consistency terms

Nitsche’s method MHCS method
Matrix Scaling Matrix Scaling
phub —meas(TFF N K) - -
zbuﬂ +meas(I'FF N K) - -
ubub —2pBnmeas(ITF N K) - -
szue +2uBnmeas(TTF N K) - -

Table 3.7: Association of Nitsche’s method with MHCS method

fluid subdomains is assumed, which is ensured regarding to the continuity of the velocity at the
interface. Furthermore, it is assumed that v} = u? and v = u. Using the identity

V(v ®Br) = Br - Vo + v (V- Br) (3.110)

to transform the conservative and convective forms of the Navier-Stokes equations, and applying
partial integration yields for both fluid subdomains i € {b, e}

(vh7 P 6h V’Uh) (vh’ (v : IBh) ’ Z)

Do Z. (3.111)
- (Bhvvha pfvh) <vh7 (ﬁh vh>]_“FF .
Summing both fluid subdomains, 2° and Q¢, and using n := n® = —n* results in
2(v}, '8 - VUZ)Q,, +2(v5, "By - Vi) o
— (v, P'(V - Br) - op) o — (05, (V- Br) - v5:) (3.112)
<’Uh, (Bh Uh>FFF - <027 pf(/gh . n)lvz>l“FF .

Using [zy] = 2[z]{y}m with {y},, = 2(y* + y°), the standard mean value, leads to

(vh, 0'Bh - Vi)
1
2 (vh> ( ﬂh)

b T (v;;?pfﬁh : vvi)ﬂe =

) - %(fvlc;v pf(v ’ Bh) ' ’02)96 + <pf(ﬁh : n){vh}mv [[Iuhﬂ>r1=1= .

(3.113)
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3.4 Extension to convection-dominated flow

Assuming that the field 3, is divergence-free for the solution of Navier-Stokes equations, i.e.
V - By = 0, the only term in (3.113) which causes a lack of coercivity at I''F is

<pf(:3h ) n){vh}n% [[vh]]>FFF . (3.114)

To ensure the coercivity of the formulation, one has to make sure that (3.113) is positive. For this
purpose, the following expression can be added to the formulation

— (P (Bn - n){vntm, [un]) e + Yaav (P"18n - n|[on], [Un]) e (3.115)

which consistently ensures the kinematic coupling condition at the interface, [u] = 0. The
first term in (3.115), which is referred to as averaged term, is sufficient to balance the missing
coercivity from (3.113), as it has the opposite sign to (3.114). The second term is of the same type
as the Nitsche penalty term, however, with a scaling V4,03, - 12|. For any parameter 44, > 0,
the coercivity of the formulation is ensured. In the case of convection dominated flows, where
the viscosity is small, the advective scaling penalty term, the second term in (3.115), dominates
Nitsche viscous stabilization term. Using v,q4, = %, leads to

(0B ) {on e [ e + 5 (010 ol o], Fsn]) o

= { <’0f<ﬁh ) n)vfc;?uiez - uZ>I‘FF ’ if (ﬁh : ’I'L) >0

. (3.116)
<pf‘ﬁh ' ’n’|'v27 ’u’z - ’U’Z>FFF ) if (ﬁh : n) <0

which is the well-known classical upwinding scheme, see e.g. Donea and Huerta [62]. For the
classical upwinding scheme, the fluid-fluid interface is considered as two separate inflow bound-
aries with respect to the two fluid subdomains. The differentiation between the two inflow bound-
aries happens automatically dependent on the normal component of the advective velocity such
that only one of both terms is active, as shown in Figure 3.8.

B, -mn>0

Qb

Figure 3.8: Upwinding interface stabilization terms: (3.116) is active on the inflow part of the
respective subdomain Q¢ for ¢ € {b,e}. In case of B, - n > 0 an upwinding with
respect to (¢ is used, in case of 3}, - n < 0 an upwinding with respect to Q°.

Upwinding stabilization terms can be found in the literature in different contexts. Hughes and

Wells [110] examined the conservation properties of the convective form of the Navier-Stokes
equations. The total fluxes, i.e. the convective and diffusive fluxes, are considered at the inflow
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3 An XFEM-based embedded fluid formulation

part of the boundary, while at the outflow part of the boundary only diffusive flux boundary
condition are applied. After partial integration and assuming that the convective velocity is di-
vergence free, an upwinding inflow term remains at the left side. Bazilevs and Hughes [14] also
distinguished between the treatment of inflow and outflow parts of the boundary in case of the
imposition of weak Dirichlet boundary conditions and added convective consistency terms to
the formulation. In context of the stabilization of discontinuous Galerkin finite element methods
by Arnold et al. [3], also an upwinding term is included in the formulation. Furthermore, the
same upwinding inflow term has been also described by Burman and Zunino [40] in context
of weighted interior penalties for advection-diffusion-reaction problems and by Becker [17] in
terms of treatment of inhomogeneous Dirichlet boundary conditions for Navier-Stokes equations
with Nitsche’s method. Moreover, in context of discontinuous Galerkin method, in Burman [31]
besides the upwinding stabilization term at the inflow boundary, the averaged term (the first term
of (3.115)) is included as an interior penalty term between element edges. Baiges et al. [11]
showed the stability of mixed/hybrid viscous stress-based method by adding an upwinding term
with a factor of %

Since Nitsche’s stabilization term scales with the viscosity, its value gets small for high
Reynolds number. Furthermore, for flow in tangential direction the value of |3 - 1| could become
small as well. Therefore, it is useful to redefine the Nitsche stabilization parameter in order to
preserve the penalty effect of the Nitsche stabilization term and to ensure the mass conservation
across the interface. The redefinition of the Nitsche stabilization parameter reads as

o := max(p(|Bhl| oo, SuCh). (3.117)

The additional penalty factor strengthens the coupling condition in the convective limit. Similar
penalty factors have been also introduced by Burman [32] and Schott and Wall [154]. The effects
of (3.117) will be shown in Section 3.7. In the context of two-face flow, in the recent paper
by Schott et al. [155], an additional transient factor & has also been included in the redefinition
of the stabilization parameter . This factor is useful, when the time step is very small, or if
the velocity as well as the viscosity hold very small values, e.g. in the initial phase of transient
problems starting from a zero field. However, in the present work this additional transient factor

has not been considered.

3.5 Face-oriented fluid stabilizations

As already mentioned, the standard (Bubnov-)Galerkin scheme for incompressible flow suffers
from two major instabilities: instability of convection-dominated flow and the inf-sup instability
in the case of equal order interpolations for velocity and pressure field. Different methods have
been proposed to overcome these instabilities, see e.g. Braack et al. [27]. In Section 2.3.9, the
well-known residual-based stabilization methods, i.e. the Streamline-Upwind/Petrov-Galerkin
(SUPG) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) methods have been introduced. How-
ever, the residual-based methods also have some undesirable features as: the strong coupling
between the velocity and pressure, non-symmetry of residual-based stabilizations, artificial pres-
sure boundary conditions and artificial effects at interior boundaries of elements with different
sizes. Specially, applying residual-based stabilizations in combination of fictitious domain prob-
lems using cut elements leads to under-stabilization of the cut elements and to non-physical
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3.5 Face-oriented fluid stabilizations

Qb
~FE Fo  —*+ Fp

Figure 3.9: Sets of faces: F5 denotes the interior faces of embedded fluid mesh and F5 all cut
faces and interior faces of background fluid mesh. F; indicates the set of cut faces
of the background fluid mesh.

values of the void/ghost nodes of background fluid subdomain in the case of critical cuts, as
shown in Burman and Hansbo [39], Schott and Wall [154] and Shahmiri et al. [156]. As men-
tioned in Section 3.3.2, the reason is that residual-based stabilizations are only performed at
physical parts of cut elements, hence, in the case of critical cuts (Figure 3.6b), the physical part
and subsequently the support of the nodal shape functions of ghost-nodes becomes too small.
This leads to non-physical values at ghost-nodes and unbounded condition numbers. Therefore,
in the present work, as a solution to this problem, another class of stabilization methods, the
edge-/face-oriented fluid stabilizations, has been applied to cut problems. The face-oriented fluid
stabilizations have been originally proposed by Douglas and Dupont [65] on interior penalty pro-
cedures for elliptic and parabolic problems. These methods are also well-known as continuous
interior penalty stabilizations as discussed for example in Burman [32], Burman and Fernandez
[34], Burman and Zunino [40] and Burman and Hansbo [37]. Face-oriented stabilizations have
been successfully applied to Stokes problem involving cut elements in Burman and Hansbo [38].
Schott and Wall [154] extended the face-oriented stabilizations to stabilize the three-dimensional
Navier-Stokes equations in a fictitious domain frame-work using cut elements. The face-oriented
stabilizations are based on penalty terms of the jumps over the gradients at element faces. Ap-
plying face-oriented stabilizations to cut elements gives control over the gradient jumps at all
interior element faces but also at cut faces. In this way, the stabilization is extended from the
physical domain into the ghost domain. Therefore, similar to viscous ghost-penalty stabiliza-
tions (3.39), physical values for ghost nodes and improved condition numbers are achieved.
Some other advantages of face-oriented stabilizations can be itemized as: decoupled fluid and
pressure stabilizations, symmetric stabilization terms and less artificial effects at the boundaries.
For more details about different fluid stabilizations the reader is referred to Becker and Braack
[18].
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3 An XFEM-based embedded fluid formulation

In the present work, in order to make the formulation inf-sup stable, the following face-
oriented pressure stabilization operator

thph Z/’Yp th Vph]]d (3118)
FeF;

with i € {b,e} and j € {B, E,G}, which indicates different sets of faces of the fluid do-
main is used. The sets of different faces of fluid domain is shown in Figure 3.9. The pressure
face-oriented stabilization has been introduced by Burman and Hansbo [37] and applied to cut
elements by Burman and Hansbo [38] and Schott and Wall [154]. It gives control over the pres-
sure gradient jumps of all cut faces and/or interior faces. For j = B, the pressure face-oriented
stabilization is applied to physical background fluid mesh 7, i.e. all cut faces and interior faces
of the physical background fluid mesh, and for j = E, to all interior faces of embedded fluid
mesh 7°¢. For the embedded mesh also any other class of stabilizations, e.g. residual-based sta-
bilizations, can be used. As for the embedded fluid mesh, far from the interface zone, it is also
possible to use other type of stabilizations for background fluid mesh and apply pressure face-
oriented stabilization only along the faces of cut elements 77, i.e. 5 = G in (3.118). Along
faces of the background mesh which are cut by the interface F, the stabilization operators act
as ghost-penalties (3.39), since the whole faces of cut elements, i.e. not only the physical part of
the faces, are integrated and take thereby control over the ghost values in the inactive part of the
cut elements of the background fluid mesh. The definition of the stabilization parameter ,, as
given in Schott and Wall [154], accounts for viscous dominated as well as convection dominated
regimes and is defined as

h3
h2 %TF if hp < v (viscous-dominated)
Pi=a—r (L) =4 7Y (3.119)
4 F va—f if hp > v (convection-dominated)
p

In the recent paper of Schott et al. [155], the stabilization parameter -y, additionally includes a
reactive stabilization term, which becomes useful when using small time step sizes. However, in
this work it will not be considered further. Furthermore, v, is a constant, which is set to 0.05 as
in Schott and Wall [154] and Shahmiri et al. [156].

To overcome the convective instability, a velocity gradient-based streamline stabilization op-
erator as proposed in Burman and Fernandez [35], Burman and Hansbo [36] and Schott and Wall
[154] is added

i) = 3 [ kel Vo] [Vaglds, G120

FeF;

fori € {b,e}, j € {B, E,G}, denoting different sets of faces, and -y = 0.02. In this term, the
normal component of the velocity |u! - n’| with respect to the face F is contained, which indi-
cates the streamline character of this term. Again, it has to be emphasized that also for velocity
face-oriented stabilization the faces in the interface zone are stabilized along the entire cut face.
In the convection dominated regime, the streamline face-oriented terms takes over the role of
the ghost-penalty operator (equations (3.38) and (3.39)) to improve the system conditioning. In
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3.6 Fluid stabilization at the interface

contrast to ghost-penalty, which is only active at faces of the interface zone F, the convective
stabilization operator with j = B takes control over the velocity gradient jumps of all the inte-
rior and cut faces of background fluid mesh Fpg. As for the pressure face-oriented stabilization
(3.118), it is possible to penalize only the gradient jumps across the faces of cut element F and
use other types of stabilizations for non-intersected elements. Similar to ghost-penalty operators,
(3.38) and (3.39), also in (3.118) and (3.120), hr is the maximal distance of the face F' to the op-
posite faces of both adjacent elements, i.e. hp = max{hg,, hg, }, where K; and K> are the two
neighboring elements, which share the face F'. Both stabilization operators, (3.118) and (3.120),
together lead to reasonable pressure and velocity values at the ghost nodes of the background
fluid domain, independent of the cut position for low and high Reynolds number flows, as it will
be shown in Section 3.9.

However, it needs to be mentioned that the face-oriented stabilizations have also some draw-
backs, see Burman et al. [42]. They increase the bandwidth of the matrix since information from
the neighboring elements is needed. Furthermore, from the implementation point of view further
additional data structures are required, which hold the information about faces and adjacent ele-
ments. However, in combination with cut elements, the advantage of having a robust and stable
formulation independent of interface position prevails.

In the present work, both variants, the face-oriented stabilizations on the whole background
and embedded fluid faces, and the combination of residual-based with face-oriented fluid sta-
bilizations, are used. In the latter case, the face-oriented stabilization terms are evaluated at the
background fluid elements in the interface zone T ' i.e. the cut faces F;, and residual-based
fluid stabilizations are applied additionally to all physical background fluid elements 7* and the
embedded fluid elements 7. The combination of residual-based with face-oriented fluid stabi-
lizations has also been considered by Massing et al. [132, 134] or in context of two-phase flow
for Stokes equations by Cattaneo et al. [43].

Remark: 3.5.1. Similar to ghost-penalty stabilization operator (3.38), for higher order elements
in the interface zone, the velocity and pressure face-oriented stabilization terms also need to take
control over the jumps of all the higher order normal derivatives of the faces, i.e. [D'u?] and
[Dipt] fori = 1...k, where k denotes the highest polynomial order of u}, and p?.

Remark: 3.5.2. Similar to pressure and convection face-oriented stabilizations, a gradient-based
incompressibility constraint can also be used at the element faces as given in Burman et al.
[41]. In the present work, the classical least-square incompressibility constraint term (2.87) is
used. As mentioned in Section 2.3.9, this term provides a better control of the incompressibility
condition in convection dominated flow. Using a face-oriented incompressibility stabilization on
cut elements would have some advantages due to the additional penalty effect at the interface
zone, but would additionally increase the bandwidth of the matrix.

3.6 Fluid stabilization at the interface

In this section, two other fluid stabilizations will be introduced, which additionally to face-
oriented stabilizations, given in Section 3.5, provide a smooth transition of velocity and pressure
field across the interface I'™'. Considering the continuity of the fluxes at the interface [o-n] = 0,
the interface stabilizations are based on the penalization of the jump in the velocity gradients and
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3 An XFEM-based embedded fluid formulation

the pressure fields across the interface. For this purpose, a velocity gradient-based stabilization
similar to ghost-penalty operator (3.39) is introduced as

jintv(vha uh) = / Ainty * MhF[[V’Uh]] : [[V’uh]]ds, (3121)
[FF

with iy = ap. It has to be noted that in contrast to ghost-penalty operator, the operator (3.121)
penalizes the jump in the velocity gradients of both fluid subdomains across the interface and
is not evaluated at the element faces. Furthermore, a pressure stabilization term evaluated at the
interface, which penalizes the jump in the pressure fields across the interface, is defined as

Jintp(qh, Pn) = /

Yintp + [qn] [pr]ds. (3.122)
[FF

Similar to (3.119), the stabilization parameter 7;,,, reads as

1 v,
Vintp 1= CQtpe o (1+ ﬁ) ; (3.123)

with h° denoting the characteristic background fluid element length and o, a user-defined pa-
rameter. Becker et al. [19] uses a similar stabilization term as (3.122), penalizing the jumps
of discontinuous element-wise P° pressure field across the element edges, in context of incom-
pressible elasticity. In Section 3.7, it will be shown that these additional stabilization terms result
in a smoother solution at the interface, but they do not improve the convergence behavior and,
thus, they are not considered as essential terms in the present work.

3.7 Convergence study with two-dimensional Kim-Moin
flow

In the following, the convergence behavior of the embedded fluid formulation for different meth-
ods of weak enforcement of coupling conditions at the interface, discussed in Section 3.3, and
different stabilization operators, introduced in Sections 3.4, 3.5 and 3.6, will be studied. A sim-
ilar study is given in Shahmiri et al. [156]. For this purpose, the stationary 2D-Kim-Moin flow
for viscous dominated flow and, the instationary 2D-Kim-Moin flow for convection dominated
flow, proposed by Kim and Moin [114], are used. In all cases, the behavior of the error in both
fluid subdomains and the coupling errors at the shared interface I'™" are shown. The analytical
solution to the Kim-Moin flow, also known as Taylor-Problem, is given as

u,(z,y,t) = — cos(amr) sin(ary) - exp(—2a’7*tv), (3.124)

uy(z,y,t) = sin(amry) cos(ary) - exp(—2a*r*tv), (3.125)
1

p(z,y,t) = —Z(cos(2amc) + cos(2amy)) - exp(—4a’*m’ty). (3.126)

The problem is solved on a fluid domain 2/ = [0, 1] x [0, 1], where a fluid patch Q¢ = [0.5, 0.5] x
[0.5,0.5] rotated by 45° is embedded into it, see Figure 3.10. The background fluid mesh, which
is aligned with the whole fluid domain €/, is meshed regularly with h* = 1/(2n). For the

78



3.7 Convergence study with two-dimensional Kim-Moin flow

LR
S0

S
ettty

<
25

2% p—

005
Eodels

0%
S5
S0

o
%"

e
000.....

25
oo
5%

0
i

%
252

:::
oo,
25
Sotedatets!
L

o
1599%5%
teets
<525
25055
2555
fo%a
25

o

et 80

Betetatecels
<5

s
S0
RIS
QAR
(Solelelel
<5

o

S5

(a) (b)

pressure
-0.5343 -0.01893 0.4964
[ D

Figure 3.10: 2D-Kim-Moin: Velocity field (a) and pressure field (b) with n = 24.

embedded squared mesh also a regular mesh with h° = 1/(3n) is used. For both meshes a
refinement by varying n is applied. At the outer boundary of the background fluid subdomain,
the analytic solution for the velocity, (3.124) and (3.125), is prescribed as Dirichlet boundary
condition. The pressure is prescribed at one point x = 0.5,y = 0.5 using (3.126) to fix the
pressure level. For the viscous dominated flow we solve a stationary flow at ¢ = 0. In this case,
the right-hand side bf is adapted such that the equations (3.124) to (3.126) evaluated at ¢t = 0
are the solutions of the stationary Navier-Stokes equations. For the error analysis, the following
domain error norms, for ¢ € {b, e}, and interface error norms, in analogy to Schott and Wall
[154] and Shahmiri et al. [156], are used

| , 12
et — et 2y = (/Q_(u—u;) w—w) (3.127)
| | R
1V (w — up)| 2@ = ( N V(u—uyp):Viu—up)) |, (3.128)
. A o1/2
1p = Phll 2 = (/Q_(p—pZ) “(p—11) (3.129)
_ . _ . 1/2
™2 (h = i) ll=aoeey = (O ollv™ 20 = i) 1 F2qemy) (3.130)
K
e e 1/2
||V1/2V<’U,Z;L - 'u,h) : n||H—1/2(FFF) = (Z hb||1/1/2V(ul;L - ’U,h) ' nH%Q(FE?)) ) (3131)
K
1/2 b 1 1/2 b 2 1/2
12wy — ) gprraqoery = (D a2l — ) ay) (3.132)
K
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The error norms (3.127) to (3.129) measure the L>?-errors for u, Vu and p for each fluid sub-
domain independently. The interface norms, (3.130) to (3.132), measure the enforcement of the
coupling conditions in the primal variable (3.21) and the fluxes (3.22) at the interface I'*F. For
the interface norms, (3.130) to (3.132), the characteristic background element length £, is used.
As the mesh size of the both subdomains differ from each other in a constant, taking h,; for
the both fluid domains does not influence the order of the convergence. Moreover, the coupling
condition for the fluxes is separated into viscous and pressure fluxes. Referring to Burman and
Hansbo [38], using linear elements, the optimal convergence error rate expected for the norms
(3.128) to (3.132) is O(h), and O(h?) for (3.127). It has to be noted that in this study only the
symmetric case of Nitsche’s method and hybrid/mixed viscous stress-based method, i.e. 5, = 1
and 3, = 1, respectively, are considered.

This example is organized as follows: in the first part, the user-defined parameters will be
investigated on stability and accuracy, and optimal parameters, which are required for the fol-
lowing convergence studies, will be chosen. The study is carried out for a Nitsche parameter
in (3.44) for the case of embedded element weighting of Nitsche’s method, a Nitsche parameter
a in (3.40) for background element weighting of Nitsche’s method, the ghost-penalty parameter
agp 1n (3.39), the parameter n of mixed/hybrid viscous stress-based method (MHVS), and the
interface pressure coupling stabilization parameter ay, as given in (3.123). Then, a convergence
study of different methods of weak imposition of coupling conditions at the embedded fluid in-
terface, given in Section 3.3, will be performed. To focus on these different coupling methods for
the weak enforcement of the coupling conditions, the same stabilization terms are applied to all
configurations. Next, the influence of the different fluid stabilizations, i.e. the face-oriented fluid
stabilizations, (3.118) and (3.120), the classical residual-based stabilizations, the ghost-penalty
operator (3.39) and the additional interface stabilization operators, (3.121) and (3.122), will be
investigated. Finally, a convergence study of different convective stabilizations, given in Section
3.4, regarding the weak enforcement of the coupling conditions for convection dominated flows
is provided. The results of the studies of the hybrid/mixed viscous stress-based method (MHVS)
are based on the work of Kruse [119].

All parameter studies, and the spatial convergence studies of weak coupling formulations and
stabilizations methods are performed, in viscous dominated case for a stationary dominated flow
with v = 0.1 m?/s. On the other hand, the convergence study of different convective stabi-
lizations are performed for an instationary convection dominated flow with v = 107*m?/s.
Furthermore, all face-oriented stabilizations are applied on the whole faces of background and
embedded fluid meshes, i.e. (3.118) and (3.120) with j € {B, E'}.

3.7.1 Analysis of different parameters
Nitsche parameters

For the embedded element weighting of Nitsche’s method the influence of user-defined pa-
rameter ¢ in (3.44) needs to be investigated on the stability and accuracy of the solution. For
this purpose, the error norms (3.127) to (3.132) are calculated for different values of § €
{5,7,10, 20,35, 50,100, 200, 500, 1000} and four different meshes n € {24, 32,40, 64}. All the
simulations are run with face-oriented velocity and pressure stabilizations (3.118) and (3.120)
and the additional ghost-penalty stabilization (3.39) using a parameter of agp = 0.003. A param-
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eter study for the ghost-penalty parameter is done in the subsequent paragraph which establishes
the choice of agp = 0.003. As expected, the interface norms react more sensitive to varying o
than the domain errors, see Figures 3.11. For small values of ¢, the formulation indicates the
expected instability, which is specially obvious in Figure 3.11g for § < 10. The pressure-flux
error increases for larger Nitsche parameters 6 > 50 (Figure 3.11i). Hence, in order to find a
balance between ensuring stability, minimizing the error for the coupling condition (3.21) and
not to deteriorate the flux error, a Nitsche parameter 6 ~ 35.0 seems to be an appropriate choice,
which is in good agreement with Schott and Wall [154]. It needs to be pointed out that although
theoretically a Nitsche parameter of § > 1 (see e.g. Embar et al. [67] and Appendix A.1) already
results in a coercive formulation, better error behavior in some of the norms (3.127) to (3.132) is
achieved when the maximal eigenvalue obtained from solving (3.44) is scaled with § = 35.0. The
same study is done for the Nitsche parameter « in (3.40) for a background element weighting of
Nitsche’s method with an additional ghost-penalty operator (3.39) with a ghost-penalty parame-
ter agp = 0.003 and using face-oriented stabilizations. The results are shown in the Appendix,
Figure A.1. The same behavior as the Nitsche parameter ¢ for embedded element weighting can
also be observed for the Nitsche parameter «. Thus, also here, a Nitsche parameter o ~ 35.0
seems to be an appropriate choice.

The ghost-penalty parameter

The ghost-penalty operator (3.39) is necessary in order to ensure coercivity when the Nitsche
background element weighting (k. = 0 and x;, = 1) is applied. However, it can be used to im-
prove the system conditioning, when Nitsche embedded element weighting (k. = 1 and x;, = 0)
on the whole embedded elements is used. A similar study to above is done to find an opti-
mal range for the ghost-penalty parameter agp. For different values of ghost-penalty parameter
agp € [0.001,100] and four different meshes n € {24, 32,40, 64}, the error norms, (3.127) to
(3.132), are calculated. For all simulations the embedded element weighting of Nitsche’s method
is used with 6 = 35.0, which is motivated by the previous parameter study. Furthermore, addi-
tional face-oriented velocity and pressure stabilizations are applied. In Figure 3.12, the resulting
errors are shown. As it can be seen, the L?-norms of velocity, its gradient and the velocity fluxes
are less sensitive to varying values of agp, see Figures 3.12a, 3.12b, 3.12c, 3.12d and 3.12g.
For agp > 0.5 the L?-norms of velocity fields increase slightly, see Figures 3.12a and 3.12b,
whereas the L?-norms of the pressure fields increase already for agp > 0.1, see Figures 3.12¢
and 3.12f. The most sensitive results are obtained for the pressure fluxes. There, the error in-
creases drastically for agp > 0.05, see Figure 3.12i. Whereas the coupling of the viscous fluxes
is positively influenced by the coupling condition (3.21) in the primal variable, any perturbation
at the interface can be seen in the pressure fluxes first. Motivated by the fact that in the case
of embedded element weighting of Nitsche, the viscous ghost-penalty operator is used only to
improve the system conditioning and not to ensure coercivity, a small ghost-penalty parameter
of agp = 0.003 is chosen.

The MHVS parameter

As for Nitsche’s method, the user-defined parameter n in the formulation of MHVS method
(3.86) has to be investigated. For this purpose, for different values of n € [1, 500] and three dif-
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Figure 3.11: Stationary Kim-Moin-flow: error-norms for varying Nitsche parameter 9.
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Figure 3.12: Stationary Kim-Moin flow: Error-norms for varying ghost-penalty parameter agp.
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Figure 3.13: Stationary Kim-Moin flow: Error-norms for varying interface pressure coupling pa-
rameter ..

ferent meshes n € {24, 48, 64}, the error norms, (3.127) to (3.132), are calculated. Again, all the
simulations are run with a ghost-penalty operator (agp = 0.003) and face-oriented velocity and
pressure stabilizations. Furthermore, an embedded element weighting for MHVS is chosen. The
behavior of the parameter n is similar to the Nitsche parameter ¢, which confirms the similarity
of both stabilization parameters as discussed in Section 3.3. In Appendix, Figure A.2, the do-
main and interface errors are shown. As for Nitsche’s method, the domain errors stay unchanged
to varying n and the interface norms react much more sensitive. For too small values of n, the
error in viscous fluxes gets bigger. On the other hand, for larger values of n, the pressure-flux
error increases. Thus, in order to find a balance between minimizing the error for the coupling
condition and fluxes, a parameter of n = 35.0 is chosen, which is in a good agreement with the
values of Nitsche parameters ¢ and a. The results of parameter study of Nitsche’s method and
MHVS method confirm the similarity of them, as already discussed in Section 3.3.5.

The interface pressure coupling stabilization parameter

The influence of the user-defined parameter ay,. in (3.123) of the interface pressure coupling
term (3.122) needs to be investigated on different error norms. For this purpose, for different
values of a,. € [0.001,100] and four different meshes n € {24,32,40,64}, the error norms
(3.127) to (3.132) are calculated. All the simulations are run for embedded element weighting of
Nitsche’s method with 6 = 35.0 and a ghost-penalty operator with agp = 0.003. As expected,
the pressure flux error is mostly affected by the interface pressure coupling term. The pressure
flux error decreases with increasing ay,, see Figure 3.13b. A slightly increase of the error can
be seen in the L?-error for p°, as shown in Figure 3.13c. On the other hand, the error in the
velocity fluxes remains unchanged for varying parameter oy, (Figure 3.13a). Other error norms
stay unchanged for different parameter o, as well (see Appendix Figure A.3). In order to find
a balance between minimum error in pressure fluxes and L>?-error for embedded pressure field,
the parameter oy, = 0.3 is chosen.
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3.7 Convergence study with two-dimensional Kim-Moin flow

In the next section, a convergence study for the different coupling methods is performed.
Hereby, the optimal parameters chosen in this section, i.e. Nitsche parameters 6 = 35.0 and
a = 35.0, ghost-penalty parameter agp = 0.003 and the MHVSS parameter n = 35.0, are used.

3.7.2 Analysis of different methods for weak enforcement of
coupling conditions

In the following, a spatial convergence analysis for a stationary viscous dominated flow with
v = 0.1 m?/s and mesh sizes n € {4, 8,16, 32,64, 128} for different methods of weak impo-
sition of coupling conditions at the fluid-fluid interface presented in Section 3.3, is performed.
The methods of weak imposition of coupling conditions,which will be investigated are: embed-
ded element weighting of Nitsche’s formulation (x;, = 0 and s, = 1) with 6 = 35.0, background
element weighting of Nitsche’s formulation (k, = 1 and k. = 0) with @ = 35.0, background
element weighting of mixed/hybrid Cauchy stress-based method (MHCS), and embedded and
background element weighting of mixed/hybrid viscous stress-based method (MHVS), both with
n = 35.0. In order to focus on the named coupling methods and to exclude the effects of different
stabilization operators, for all coupling strategies the face-oriented fluid stabilizations are used.
This leads to a balanced inf-sup condition of the pressure field for both subdomains and partic-
ularly on cut elements. Furthermore, for all configurations, an additional ghost-penalty operator
with agp = 0.003 is used. In order to estimate the Nitsche stabilization parameter , for embed-
ded element weighting formulation the eigenvalue problem (3.45) is solved (with § = 35.0). In
contrast, for background element weighting of Nitsche’s formulation the uniform scaling with
the element length (3.40) with oo = 35.0 1s applied, which results in a stable formulation in com-
bination of ghost-penalty stabilization. The results of domain and interface error norms, (3.127)
to (3.132), are given in Figure 3.14 in the same order of the coupling strategies listed above. In
Figure 3.14 the following abbreviations are used: Nitsche embedded element weighting (Nite),
Nitsche background element weighting (Nitb), mixed/hybrid Cauchy stress-based background
element weighting (Mhcsb), mixed/hybrid viscous stress-based embedded element weighting
(Mhvse), and mixed/hybrid viscous stress-based background element weighting (Mhvsb), all
with face-oriented and ghost-penalty stabilizations (Fos-Gp).

Both, embedded and background element weighting of Nitsche’s formulation are stable with
respect to satisfying the inverse inequality and the issue with lack of coercivity, since for the em-
bedded element weighting of Nitsche’s formulation the imposition of coupling condition on un-
cut elements is performed and for the background element weighting a ghost-penalty operator is
added to balance the missing coercivity on cut elements. This is also clear from the results shown
in Figure 3.14, as both Nitsche’s formulations show the optimal convergence behavior in all do-
main and interface norms, (3.127) to (3.132). Considering the MHV'S method, it can be seen that
the method shows different behavior for background and embedded element weighting. While
the embedded element weighting delivers optimal behavior for all domain and interface norms,
the background element weighting variant of MHVS shows unstable behavior in almost all error
norms specially in the interface norms, see Figures 3.14g to 3.14i. Dependent on the interface-
location, flux-errors vary over a large range even in the presence of the ghost-penalty operator. As
already discussed in Section 3.3.5, MHVS includes an implicit scaling with T2 which
results in a dependency of the interface position of the formulation and consequently a variation
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of the error for different meshes. Kruse [119] showed that for a non-symmetric formulation of
the MHVS (B, = —1), which corresponds to the non-symmetric Nitsche formulation, the er-
rors remain stable even though the formulation holds the same interface-dependent scaling and
the same interface positions. Burman [33] showed that the non-symmetric version of Nitsche’s
formulation is stable for uncut elements without the penalty term. The error behavior for the ve-
locity fluxes of MHCS shows a dependency on the interface positions as well, see Figure 3.14e.
However, compared to MHVS, the error varies over a lower range. It needs to pointed out that

also MHCS includes the scaling %m in its formulation, as discussed in Section 3.3.5. In
contrast to Nitsche’s method and MHVS, MHCS shows no converged behavior in the errors of
background and embedded pressure fields (Figures 3.14e and 3.14f). However, a good pressure
flux error behavior of the method can be observed, see Figure 3.14i. As already discussed in
Section 3.3.5, the MHCS method treats the pressure field in a different way as in MHVS and
Nitsche’s method, which leads to a method free of any adjoint consistency terms. This charac-

teristic of MHCS can be mentioned as a possible reason of the instability in the pressure fields.

3.7.3 Analysis of different stabilization techniques

In the following, effects of different stabilization techniques: pressure and velocity face-oriented
stabilizations, (3.118) and (3.120), classical residual-based stabilizations, ghost-penalty opera-
tor (3.39) and the interface velocity gradient and pressure coupling stabilizations, (3.121) and
(3.122), will be investigated. The parameters a,, = 0.003 and ~,. = 0.3 are chosen from the
studies above. For this purpose, also here a spatial convergence analysis for stationary viscous
dominated Kim-Moin flow with v = 0.1m?/s and mesh sizes n € {4,8,16, 32,64, 128} is
performed for following configurations and the corresponding abbreviations: Nitsche embed-
ded element weighting with face-oriented stabilizations (Nite-Fos), Nitsche background element
weighting with face-oriented stabilizations (Nitb-Fos), Nitsche embedded element weighting
with face-oriented stabilizations and ghost-penalty operator (Nite-Fos-Gp), Nitsche embedded
element weighting with face-oriented stabilizations, ghost-penalty operator, and additional in-
terface velocity gradient and pressure stabilizations (Nite-Fos-Gp-vp), the embedded element
weighting of Nitsche’s method with residual-based pressure and streamline stabilizations, PSPG
and SUPG, (Nite-Rbs) and finally the mixed/hybrid Cauchy stress-based method with PSPG and
SUPG stabilizations (Mhcs-Rbs). It has to be noted that almost all stabilization techniques are
combined with the Nitsche’s method to exclude the effects of different coupling methods for
weak imposition of coupling conditions, as shown in previous section. The resulting domain and
error norms are given in Figure 3.15.

In this study, the importance of face-oriented stabilizations when using cut elements is high-
lighted. Whereas the velocity-norms are not influenced, the pressure solution clearly shows the
non-balanced inf-sup instability for the PSPG-stabilized formulations without pressure face-
oriented stabilization around the interface. Observing the L2-norms of the pressure field and pres-
sure fluxes at the interface, a clear improvement is obtained using the face-oriented pressure and
velocity stabilizations. This is mostly obvious for pressure fluxes at the interface (Figure 3.151)
and for the L?-norms of the pressure field in embedded domain (Figure 3.15f), where the optimal
convergence gets lost with residual-based stabilizations. This behavior is observed independent
of the coupling method, i.e. for embedded element weighting of Nitsche’s method and also
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Figure 3.14: Stationary Kim-Moin flow: Error-norms for different methods of weak enforcement
of coupling conditions.

87



3 An XFEM-based embedded fluid formulation

for mixed/hybrid Cauchy stress-based method. However, as discussed above, the mixed/hybrid
Cauchy stress-based method shows also a loss of convergence of the L2-norm of background
and embedded pressure fields due to its formulation, see Figures 3.15e and 3.15f.

Furthermore, it can be seen that using an additional ghost-penalty operator with agp = 0.003
provides the same convergence behavior as the results of face-oriented stabilizations without it,
for both embedded and background weighting of Nitsche’s method. This confirms the fact that
an additional ghost-penalty operator does not deteriorate the convergence behavior. Moreover,
for flows with small normal velocities along the interface, in the case of background element
weighting of Nitsche’s method, adding a viscous ghost-penalty operator can be necessary. This
is due to the fact that for such examples the face-oriented convective operator (3.120), which
scales with normal velocities, can not give a sufficient control over the ghost values and take
control over the system conditioning anymore.

As expected, with the additional pressure and velocity gradient stabilizations at the interface,
an improvement in the level of the pressure flux errors at the interface, Figure 3.151, can be
seen. However, with the additional interface stabilization terms the convergence rates for all
error norms remain unchanged and the optimal convergence and stability is already achieved
without adding these interface stabilizations. Thus, the additional pressure and velocity gradient
stabilizations, (3.121) and (3.122), are not considered in the final formulation, which will be
presented in Section 3.8.

Moreover, a clear improvement of the system conditioning can be observed using face-oriented
stabilizations in the interface zone. In Figure 3.16 an estimate of the condition number for
Nitsche embedded weighting with face-oriented stabilizations and the ghost-penalty operator
compared with pure residual-based stabilizations, i.e. without any face-oriented stabilizations
at the interface region is given. It can be observed that in contrast to the configuration with
residual-based stabilizations, the conditioning of the system remains bounded for all different
cut situations using face-oriented stabilizations and ghost-penalty operator.

Thus, to sum up, in these examples the importance of using face-oriented stabilizations and
ghost-penalty operators for cut elements is demonstrated. In contrast to pure residual-based
stabilizations, optimal convergence rates independent of the fluid-fluid interface position are
achieved. Furthermore, face-oriented stabilizations give an sufficient control over the ghost val-
ues and an improvement of system conditioning, which is an important issue when using iterative
solvers.

3.7.4 Analysis of inflow stabilizations for convection dominated
flow

In the following, the influence of the different convective stabilizations, introduced in Section
3.4, regarding the weak enforcement of coupling conditions for convection dominated flows
will be investigated. For the convection dominated case with v = 1074 m?/s, the instationary
incompressible Navier-Stokes equations are solved for the total time 7' = 0.3 s and time step
At = 0.003 s. For the time discretization scheme, a one-step-f scheme with § = 1 is used.
The embedded element weighting of the Nitsche’s method is used for the weak imposition of
the coupling conditions. The results of instationary computations for different convective stabi-
lization terms are shown in Figure 3.17. As in the viscous dominated stationary case, the error
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Figure 3.15: Stationary Kim-Moin flow: Error-norms for different stabilization methods.
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Figure 3.16: Stationary Kim-Moin flow v = 107! m?/s: Condition numbers for viscous domi-
nated flow.

is plotted against element length h. Figure 3.17 depicts the L2-norms of both subdomains and
the error at the interface. The computation is done for four different configurations on six dif-
ferent meshes with n € {4, 8,16, 32,64, 128}. The first curve shows the error behavior of the
averaged-inflow stabilization formulation, (3.115) with 7,4, = 0. For the second curve, the one-
sided upwinding inflow stabilization terms ((3.115) with 7,4, = 1/2, or (3.116)) are applied. The
third and forth curves are the combination of the averaged and the one-sided upwinding inflow
stabilization terms with the additional penalty formulation (3.117) controlling the mass conser-
vation for convection dominated problems. In the same order, the following abbreviations for
different inflow stabilizations are used in Figure 3.17: Nite-Fos-Gp-Av, Nite-Fos-Gp-Up, Nite-
Fos-Gp-AvP, Nite-Fos-Gp-UpP. For all variants, the embedded element weighting of Nitsche’s
methods (6 = 35.0), face-oriented fluid stabilizations, and viscous ghost-penalty stabilization
operator (agp = 0.003) are used. In order to estimate the Nitsche stabilization parameter o/, the
eigenvalue problem (3.45) is solved.

Optimal error convergence rates for domain errors can be seen for all four methods. As ex-
pected, different configurations do not have much effect on the bulk errors. The influence of the
penalty term (3.117) is obvious in the enforcement of the coupling condition at the interface
(Figure 3.17g). Here, the error for the coarser mesh, which represents the convection dominated
regime, is larger for the first and second configurations, whereas with the additional penalty
term (3.117) a clear improvement can be observed (third and forth curve). Furthermore, the
additional penalty factor does not deteriorate any other convergence behavior. It can also be
observed that the one-sided upwinding inflow stabilization terms provide better convergence
behavior than averaged-inflow stabilization, due to stronger enforcement of coupling condition
caused by 7,4, > 0. As expected, applying residual-based stabilizations (PSPG, SUPG) without
additional face-oriented interface stabilizations, results in no or poor convergence of the Newton
scheme, which indicates an unstable formulation and, thus, it is not depicted here.

To summarize, both inflow stabilization formulations, averaged and one-sided upwinding sta-
bilizations, behave the same for domain errors, and pressure and viscous fluxes. For all the
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3.7 Convergence study with two-dimensional Kim-Moin flow

considered norms, optimal convergence results, similar to the study of Schott and Wall [154],
are obtained. However, for the enforcement of the boundary condition best results are obtained
with a classical upwinding stabilization combined with the scaling (3.117).

3.7.5 Summary

In this section, first, the user-defined parameters, Nitsche parameters (6 and «), ghost-penalty
parameter agp, mixed/hybrid viscous stress-based method (MHVS) parameter n, and finally in-
terface pressure coupling stabilization parameter «,,., were investigated in terms of stability and
accuracy, and optimal values were chosen (0 = a = n = 35.0, agp = 0.003, ap,c = 0.3). After-
wards, using these optimal parameters, the convergence behavior of the embedded fluid formu-
lation for different methods of weak imposition of coupling conditions at the interface, Nitsche’s
method, MHCS method and MHVS method, introduced in Section 3.3, was studied. To estimate
the Nitsche stabilization parameter o/ for embedded element weighting, the eigenvalue prob-
lem (3.45) is solved. In contrast, for background element weighting of Nitsche’s formulation
the uniform scaling with the element length (3.40) is applied, which results in a stable formula-
tion, regarding imposition of coupling condition at the interface, in combination of an additional
ghost-penalty operator. To focus on the coupling methods, same stabilization terms were ap-
plied to all configurations. Subsequently, to investigate the effect of appropriate stabilizations,
a convergence study for different stabilization operators, given in Sections 3.4, 3.5 and 3.6, for
viscous dominated flow was carried out. Finally, the effect of different inflow stabilization terms
in a convective dominated regime was investigated.

It was shown that with appropriate Nitsche and ghost-penalty parameters, and face-oriented
stabilizations, the embedded and background element weighting of Nitsche’s method and the em-
bedded element weighting of MHVS method result in optimal convergence error rates. On the
other hand, even with the same ghost-penalty parameter and use of face-oriented stabilizations,
for the background element weighting of MHVS and MHCS methods, optimal convergence be-
havior was not achieved. As discussed in Section 3.3.5, MHVS and MHCS methods include
an implicit scaling with %m, which results in a dependency of the interface position of
the formulation and, consequently, a variation of the error for different meshes, when the back-
ground element weighting is chosen. Furthermore, in contrast to Nitsche’s method and MHVS
method, MHCS method showed no converged behavior in the errors of background and embed-
ded pressure fields, however, a good behavior of the pressure flux error was observed. As already
discussed in Section 3.3.5, the additional stress field in MHCS method is a Cauchy stress field,
and, therefore, the method treats the pressure field in a different way as for MHVS and Nitsche’s
method. This characteristic of MHCS leads to a method free of any adjoint consistency terms,
which results in instabilities in the pressure fields.

As already mentioned, additional to face-oriented stabilizations, a ghost-penalty operator
along the faces of the cut elements was added to the formulation. The same results were ob-
tained with the ghost-penalty operator, such as the results of face-oriented stabilization without
the ghost-penalty operator. However, due to the fact that for small normal velocities at the inter-
face the face-oriented convective operator, can not give a sufficient control over the ghost values,
in order to obtain physical values at ghost nodes and take control over the system conditioning,
using a ghost-penalty operator is advisable. Hence, even for the embedded element weighting,
which is a stable method regarding interface coupling, a ghost-penalty operator is added to the
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Figure 3.17: Instationary Kim-Moin flow: Error-norms for different inflow stabilization variants.
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formulation. However, it needs to be pointed out that from the parameter study the value of
ghost-penalty parameter was chosen small (agp = 0.003).

It was also shown that additional interface velocity gradient and interface pressure stabiliza-
tion terms, improve the level of error for the pressure fluxes at the interface, but stability and
optimal convergence rates are already achieved without these additional stabilization operators.
Thus, the additional pressure and velocity gradient stabilizations, are not considered in the final
formulation, which will be presented in Section 3.8.

Furthermore, in order to demonstrate the necessity and importance of using face-oriented sta-
bilizations, to overcome the fluid instabilities at cut elements, and improve system conditioning,
a comparison with classical residual-based stabilizations without any additional face-oriented
stabilizations at the faces of cut elements, was given. In contrast to pure residual-based stabiliza-
tions, with face-oriented stabilizations optimal convergence rates independent of the fluid-fluid
interface position were achieved. Furthermore, it was shown that face-oriented stabilizations
give a sufficient control over the ghost values and an improved system conditioning, which is an
important issue when using iterative solvers.

Moreover, as mentioned above, the effect of different inflow stabilization terms in convective
dominated case was investigated. It was shown that one-sided upwinding inflow stabilization
terms provide a better convergence behavior than averaged-inflow stabilization. However, best
results were obtained with one-sided upwinding stabilizations combined with the penalty term
controlling the mass conservation.

For further studies of the present work, regarding to weak imposition of coupling conditions,
the embedded element weighting of the well-established Nitsche’s method, which is performed
on uncut embedded fluid elements adjacent to the interface is used. As already mentioned, the
formulation is stable due to weak imposition of coupling conditions for every position of the
interface without adding an additional ghost-penalty operator. Besides face-oriented stabiliza-
tions to overcome the fluid instabilities on cut elements, an additional ghost-penalty operator is
used to take control over the system conditioning and to achieve physically reasonable values
at ghost nodes. Furthermore, convective interface stabilizations are applied to stabilize the weak
enforcement of the coupling conditions for convective dominated flow. In the following section,
the transient stabilized embedded fluid formulation will be extended to moving interfaces and
the final discrete stabilized embedded fluid formulation for moving interfaces will be presented.

3.8 Moving embedded fluid

In this section, the moving embedded fluid will be introduced into the framework. In terms of
fluid-structure interaction, which is the focus of the next chapter, an accurate and stable time-
integration strategy for the moving embedded fluid mesh is essential. When the embedded mesh
moves, both fluid domains, ©°(¢) and Q¢(t), become time-dependent. The movement of the
embedded subdomain, is described using the classical Arbitrary-Lagrangian-Eulerian (ALE)
concept as presented for example in Donea and Huerta [62]. In doing so, a consistent time-
discretization of the equations on the embedded fluid subdomain is given, since the ALE concept
provides an appropriate description of moving domains. The reason is that in the methods based
on the classical ALE approach, the grid of the fluid domain is deformed due to the motion of the
boundary and the flow field is solved on the deformed mesh.
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3 An XFEM-based embedded fluid formulation

As already mentioned, the equations on the time-dependent background fluid subdomain are
discretized using a fixed-grid Eulerian formulation. In contrast to ALE formulation, where the
grid of the fluid domain is deformed with the moving boundary and provides an appropriate de-
scription for it, the Eulerian formulation is naturally inappropriate for moving interfaces, since
it is generally not aligned with the interface. This leads to an inconsistency, since integrals on
the time-dependent background subdomain °(¢) involve values from the last time step, which
change their number of degrees of freedom over time. In the context of extended finite element
methods (XFEM), the space-time methods proposed in Chessa and Belytschko [46, 47] and Zil-
ian and Legay [185] are the most consistent methods. However, these methods are expensive and
challenging to implement, since a four-dimensional cut algorithm has to be implemented and,
moreover, the number of degrees of freedoms are usually doubled for space-time approaches.
In order to handle the time-integration with finite difference schemes in the context of XFEM,
several approaches, based on the reconstructing the missing values, have been proposed. Codina
et al. [52] suggest a combined fixed-grid/ALE approach, to deal with the difficulties arise due
to discretizing an Eulerian formulation in moving domains. In this approach, the fluid elements
around the interface deform to follow the moving interface using the ALE formulation. A pro-
jection step is then necessary to obtain the values from the deformed mesh into the undeformed
background fixed-grid mesh. In order to estimate the history values, in Gerstenberger [82] an
extrapolation into the fictitious domain is performed, which is followed by a projection step to
ensure the incompressibility condition in the sense of Ghost-fluid method by Hong et al. [105]
and Kang et al. [113]. In Fries and Zilian [78] the XFEM time-integration for weak disconti-
nuities is addressed. However, Henke et al. [102] showed that this approach is not applicable to
strong discontinuities. In context of premixed combustion, Henke et al. [102] proposed a semi-
Lagrangian time-integration approach to handle the XFEM time-integration issue. This approach
is based on adapting the previous numerical solutions to the current interface position by track-
ing back virtual Lagrangian particles to their previous positions, where an appropriate solution
can be extrapolated.

Considering embedded fluid formulation, as the embedded fluid €2° moves and deforms from
time step ¢ to t"*1, integrals on the time-dependent background subdomain 2°(¢) have to be
evaluated with values from the last time step, like uZ’” and ui’;", which are not available and
need to be guessed. In Figure 3.18, the problem is depicted. As the embedded fluid subdomain
¢ moves and deforms from time step ¢" to t"*1 the red node, which was located at the inactive
part of background fluid subdomain Q°~ is now with respect to the interface position FFF(t’”bl)

located at the physical background fluid subdomain 2. For this node, the needed values w,’
and uzn from the time step ¢" are not available and have to be reconstructed.

Since at the time step ¢t the embedded fluid subdomain provides the same flow field with
the same physical properties, it can be used to estimate the missing values of background fluid
mesh. For this purpose, the missing values of the node on the background fluid subdomain can
be reconstructed from the values of embedded fluid subdomain at the time step ¢". This approach
is the most appropriate method in order to reconstruct the missing values of the background fluid
subdomain, since a physical field with the same physical parameters is available in time step t",
which delivers more reasonable values than any other estimations.

In this approach, first the underlying embedded element, where the background fluid node
with missing values was located, has to be found. Running a “brute force” algorithm over all
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Figure 3.18: Time integration issue of moving embedded fluid: As the embedded fluid {2° moves
and deforms from time step t" to t"!, the red node, which was located at the
inactive part of background fluid subdomain is now with respect to the interface po-
sition I'FF(¢"*1) located at the physical background fluid subdomain. For this node,
the needed values u%” and ul;L" from the time step ¢" are not available and need
to be reconstructed. The missing values are then interpolated from the underlying

embedded element.

embedded elements and testing whether the background nodes lied in the element in the last
time step is too expensive and inefficient. Therefore, finding the underlying background element
proceeds in two parts. The first part of algorithm provides the node, a collection of embedded
elements, the background node could possibly been covered by. This is done with a parallel
octree-based search. After a small amount of possibly elements are provided, each embedded
element in this set is checked accurately to find the underlying embedded element.

Now, that the underlying embedded element is found the missing values of the background
node are interpolated from the values of the embedded element at the time step ¢" as

Nen

ay" = NP -ugy (3.133)
=1

Hereby, n.,, denotes the number of nodes in the embedded fluid element. In parallel computing,
the background node with missing values and the embedded element are not necessarily located
on the same processor. To find the correct embedded element the processors need to communi-
cate with each other, which is done by a Round-Robin scheduling scheme.

In order to ensure the discrete incompressibility, an additional step based on the idea of
Houzeaux and Codina [106] and Wall et al. [175] is added to the approach. In this step the
values of cut elements, which are reconstructed from the values of embedded fluid mesh with
classical Lagrangian interpolation functions, 'ELZ” are substituted by the solution of the following
least squares problem:

Find «;”" such that

. ~bn  xbmn|2
min 2" = w, ™|
h
/ V" =0. (3.134)
T (™)
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Hereby, 7' (") denotes the set of cut elements at time step ¢". In this way, the constructed
values of the background fluid mesh ensure the incompressibility constraint on 77 (¢"). However,
it has to be noted that the numerical examples shown in Section 3.9 are solved without this
additional step, which still result in a smooth transition of velocity and pressure field across the
interface and a stable solution during the simulation.

Finally, the discrete form of the stabilized embedded fluid formulation for moving fluid-fluid
interface using one-step-6 scheme reads as follows:

Find (u§,p5) € V¢ x Q% and (ul,ph) € VP x Q0 such that V(v§,q5) € V¢ x Qf and
V(vh,qh) € Vi x Q% holds
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= <'v27 Bb>aﬂf]’\,(tn+1) + (U;)w pfbb)gb(tn+1) + (UZ7 pfbe)ge(tnﬂ)
i f
HOh G aw ey + (O ™) ey

+6br[2(uz : V'Uha TgnpfuZhISt)Qb(thrl) (vthgnuth)Qb(W)]
e

+5er[2(ci'vvha mpfuzhm)ﬂe(twl)_l_(vqhv T U th)m(t”“)]’ (3.135)

€

where the stationary residual of the momentum equation and the continuity equation for the both
fluid subdomains are defined as

T,T’b = plul - Vb + Vb —2uV - €(ul) — p'v’, (3.136)
T = p'es, - Vg + Vp§, — 2uV - €(uf) — p'b°, (3.137)
and

rh Vol (3.138)
=V u. (3.139)

Furthermore, the history values @, " and u;"™" are defined as
,&l;thst _ ~bn + At( 0)u2”7 (3140)
u™ = w4+ AL — 0)a". (3.141)

Moreover, © = Atf, denotes the one-step-f time factor. The values of the background fluid
subdomain at the time step ¢ are denoted as 'ELI;L" and {LZ’", which are not available for the
elements in void/fictitious part of background fluid subdomain at time step ¢" and need to be
reconstructed.

The first four lines of (3.135) correspond to the standard Galerkin terms of the background
and embedded fluid subdomains. The next three lines refer to the embedded element weighting
of symmetric Nitsche’s formulation, i.e. the consistency terms, the adjoint consistency terms and
Nitsche’s penalty term. To estimate Nitsche’s stabilization parameter o, the eigenvalue problem
(3.45) is solved. The line eight refers to the convective inflow stabilization terms at the interface;
the classical upwinding term for ~v,4, = % and the averaged formulation for 7,4, = 0. The inflow
stabilization terms scale with 3} - n, which stands for the normal component of the convective
velocity of each subdomain across the interface, u?, - n for stabilizing the inflow into the back-
ground fluid subdomain and cj, - n for stabilizing the inflow into the embedded fluid subdomain.
Furthermore, the ghost-penalty and the pressure and velocity face-oriented stabilizations with
i € {G,B} and 6.5 € {0, 1} are stated at lines nine to eleven, which are treated in a full-implicit
way as in Burman and Ferndndez [35]. For ¢ = B and d.y = 1 the face-oriented stabilizations
are applied to all faces of the background and embedded fluid subdomains, while with : = G
and d.5 = 0, as for the ghost-penalty operator, the face-oriented stabilizations are applied just to
the faces of cut elements. In this case, the classical residual-based stabilizations (SUPG, PSPG
and grad-div stabilization), which are shown at the lines twelve to fifteen, are used on both fluid
subdomains to overcome the convective and inf-sup related fluid instabilities. According to this,
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the parameters d,. and J., switch between face-oriented stabilizations for the whole faces of the
fluid subdomains and face-oriented stabilizations just on the cut elements combined with clas-
sical residual-based stabilizations for all elements of background and embedded fluids. Thus, it

holds
1 fori=¢G
Sy = ort (3.142)
0 for:=208
and
1 ford,; =0
Sep = Of Ot (3.143)
0 ford.y = 1.

The definition of the residual-based stabilization parameters 7", 7¢ for i € {b,e} is given in
(2.81) and (2.89). The embedded fluid formulation (3.135) is used for the numerical examples
demonstrated in the following section.

The global linear system of (3.135), which has to be solved in every Newton step ¢ of a time
step t"*1, is given in (3.144). The unknowns on the background and embedded grids are split
into standard unknowns (S), referring to nodes far from the interface, and interface unknowns
(Z), which include the cut elements of the background fluid mesh and the embedded elements
adjacent to the interface. The standard Galerkin terms are denoted with F, while the fluid stabi-
lization terms are identified as S. Furthermore, the interface coupling terms including the Nitsche
terms and the convective inflow stabilizations are assigned to G. It has to be pointed out that the
linear system (3.135) states for an embedded element weighting of Nitsche’s method.
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3 An XFEM-based embedded fluid formulation

3.9 Numerical examples

In this section, the proposed stabilized embedded fluid formulation (3.135) will be validated
for the case of stationary embedded fluid as well as moving embedded fluid by applying the
XFEM time-integration procedure described in Section 3.8. Stationary benchmark computations
are used to demonstrate the importance of face-oriented stabilizations, and the correctness of the
formulation in case of the stationary embedded fluid in viscous dominated regime. Further ex-
amples are provided to verify the formulation in the convective dominated regime, for stationary
as well as moving embedded fluid. The numerical examples are solved with both stabilization
variants of the embedded fluid formulation (3.135), i.e. applying face-oriented stabilizations on
the whole faces of the background and embedded fluid meshes (6. = 1, &, = o, = 0 and
1 = B) and, the second possibility, using face-oriented stabilizations just on the faces of the
cut elements combined with residual-based stabilizations on the whole fluid elements (d.y = 0,
Opr = 0er = 1 and 7 = (7), to demonstrate the correctness and applicability of both stabilization
possibilities. Trilinear hexahedral elements are used in all examples. The 2D simulations are
performed as a pseudo 2D examples with one element in z-direction. The numerical examples
presented in this section are closely related to the examples given in Shahmiri et al. [156, 157].

3.9.1 Benchmark computations

In the following, the benchmark computations 2D-1 and 3D-1Z introduced by Schéifer and Turek
[152] are used to verify the proposed formulation and to demonstrate the importance of the
face-oriented fluid stabilizations on the solution. As defined in Schifer and Turek [152], the
computation is done for a laminar, incompressible, stationary flow over a cylinder with RE = 20.
The geometry configurations, particular setups, the boundary conditions as well as the reference
results are taken unchanged from Schifer and Turek [152]. For all computations a boundary
layer mesh is constructed around the cylinder, which is then embedded into the background
mesh. The cylinder is modelled using 'no-slip’ boundary condition on the internal boundary of
the embedded fluid subdomain.

Two-dimensional cylinder Benchmark

The whole background fluid of the two-dimensional cylinder Benchmark 2D-1 is a channel with
2.2m x 0.41 m and a cylinder with radius 0.05 is located at (0.2, 0.2). A parabolic inflow with a
maximum velocity of uT* = 0.3m/s and 'no-slip’ boundary conditions on the upper and lower
walls are prescribed to the channel. Furthermore, the density is set to p' = 1.0 kg/m? and for the
kinematic viscosity holds v = 1072 m?/s. The Reynolds number obtained using the definition
in Schifer and Turek [152] is then 20.

Figure 3.19 illustrates the velocity and pressure fields of the cylinder benchmark computation
using the stationary stabilized embedded fluid formulation with a Nitsche parameter of 6 = 35.0
and a ghost-penalty stabilization parameter of agp = 0.003, from the parameter studies of 2D-
Kim-Moin flow in Section 3.7.1. The face-oriented stabilizations are applied to the whole faces
of background and embedded fluid subdomains and, therefore, all the residual-based stabiliza-
tions are turned off. Computed lift and drag values (c;; Ft cdmg) are compared with the reference
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Method NE’(;F Cdrag Clift Ap

Pure FOS and GP ~ 38512 5.5814 0.0110 0.1173
Ref. lower bound - 5.5700 0.0104 0.1172
Ref. upper bound - 5.5900 0.0110 0.1176

Table 3.8: Cylinder benchmark 2D-1: Lift and drag values and the pressure difference.

paper by Schifer and Turek [152]. In Table 3.8, the lift and drag values (cj; ¢, Carag) and the pres-
sure difference Ap between front and back end of the cylinder are demonstrated. For all values,
a good agreement with the given reference values is achieved.

In order to demonstrate the influence of inappropriate stabilizations for cut elements, a second
simulation with the same geometry and setup but using classical residual-based stabilization
(SUPG and PSPG) without any face-oriented or ghost-penalty stabilizations along cut faces is
run. Also for this simulation, the embedded elements weighting of Nitsche’s method is used,
such that we have a stable interface formulation in both cases.

In Figure 3.20, the pressure and velocity fields on cut elements are shown for both simulations.
Figures 3.20a and 3.20b show results of the proposed embedded fluid formulation. As it can
be observed, using face-oriented fluid stabilizations and ghost-penalty operator in the interface
region, a smooth continuous velocity and pressure solution within the ghost domain for cut
elements is achieved. In Figure 3.21, the pressure field is plotted in z-direction, which again
demonstrates the quality of the pressure flux coupling between the two subdomains using the
proposed stabilized formulation.

In contrast, when neglecting the interface fluid stabilizations, as the case for a pure residual-
based stabilized formulation, non-physical velocity and pressure values at ghost nodes occur,
specially for regions with small physical background fluid domain, as shown in Figures 3.20c
and 3.20d. A close up view of the Figures 3.20c and 3.20d at two different interface positions is
depicted in Figure 3.22. Hereby, to show the uncontrolled ghost values along cut elements more
clearly, a different scale from Figure 3.20 is applied. Additionally, the non-physical velocity
values at ghost nodes are circled. This lack of stability is also apparent in the worse convergence
behavior of the Newton-Raphson loop.

Three-dimensional cylinder Benchmark

The setup of stationary three-dimensional benchmark 3D-1Z is similar to the benchmark 2D-1.
The whole background fluid is a channel with 0.41m x 0.41m x 2.5m with ’no-slip’ condi-
tions at the four side walls. A cylinder with radius 0.05 is surrounded by an embedded fluid

mesh. A parabolic inflow with a maximum velocity of u* = 0.3m/s in x-direction is ap-

plied at the inflow boundary and traction-free Neumann condition at the outflow. A viscosity of
v = 1073m?/s is prescribed, which results in a Reynolds number RE = 20 according to the
definition in Schifer and Turek [152]. Furthermore, the density of the flow is p' = 1.0 kg/m?.
In contrast to cylinder benchmark 2D-1, the face-oriented stabilizations are just applied to the
cut elements and residual-based stabilizations are used for all elements of both fluid subdo-

mains. As above, a Nitsche parameter of 6 = 35.0 and a ghost-penalty stabilization parameter
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velocity
0 0.2038 0.4075

(a)

pressure

-0.01428 0.05087 0.134
I |

(b)
Figure 3.19: Cylinder benchmark 2D-1: Velocity and pressure fields.

Method NEgF Cdrag Clift Ap

Res-based and FOS (interface) and GP ~ 35828 6.1662 0.0109 0.1716
Ref. lower bound - 6.0500 0.0080 0.1650
Ref. upper bound - 6.2500 0.0100 0.1750

Table 3.9: Cylinder benchmark 3D-1Z: Lift and drag values and the pressure difference.

of agp = 0.003 are used. The results of the computed lift and drag values (cj; 1, Carqq) are given
in Table 3.9, which match the reference values well. Figure 3.23 illustrates the resulting velocity
and pressure field.

3.9.2 Two-dimensional cylinder Benchmark with higher Reynolds
number

As introduced in Shahmiri et al. [157], in the following example, a similar setup to the cylinder
Benchmark 2D-1, is used to compute an unsteady flow at higher Reynolds number. This example
shows that the embedded fluid formulation deli