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Ehern währt,
Was stoisch reift,
Doch stetig gärt.
Die Zeit verkehrt
Mühe in Freud’.
Sie zeugt den Wert.
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hervorheben. Es war mir eine große Freude, mit meinem Bürokumpel Jonas Biehler Raum
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ver Lieleg großen Einfluss auf meine Arbeit. In der Anfangsphase meiner Promotion dienten
seine Experimente als Referenz für meine Forschung, in ihrer Endphase trug er fachlich in
erheblichem Maße zu deren erfolgreichen Abschluss bei. Ich bedanke mich hiermit für seine
wertvolle Unterstützung.
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Abstract

Abstract

Eukaryotic cells are the base units of all multi-celled organisms. Despite their large morpholog-
ical variety, nearly all cells share the same fundamental intracellular organization and functions.
Among the cellular constituents, the cytoskeleton stands out. It is a highly dynamic fibrous
network consisting of different fiber species and carrying out a variety of essential intracellular
tasks. It orchestrates cell division and provides means for cell migration. It also serves as the
cell’s sensory organ.

One of the cytoskeletal filament species, actin, is of particular scientific interest. It creates
highly variable network structures, which adjust their shape and mechanical properties in ac-
cordance to current requirements. Its morphological variety is provided by a multitude of small
crosslinking proteins, which tie actin filaments together. Research on actin fiber networks is a
fruitful endeavor as it entails a better understanding of fundamental intracellular mechanisms
and, as a consequence, can advance pharmacology or the knowledge on causes and therapies of
diseases on the subcellular level.

The main focus of this work lies on the simulation-based investigation of network self-
assembly and mechanics. Owing to the microscopic scale of the problem, gaining experimental
insight below a certain spatial and temporal resolution is often unfeasible, hampering subse-
quent theoretical modeling as well. Simulations seek to remove this scientific bottleneck by
enhancing experimental observations, thereby significantly contributing to modeling and the
theoretical understanding of biopolymer networks.

The goal of this thesis is the development and application of an approach to the simulation of
crosslinked biopolymer networks, which provides answers to fundamental questions concerning
network self-assembly and the complex mechanical behavior of these networks. Therefore, in a
first step, a highly efficient simulation framework is set up, which describes single filaments and
crosslinks as micromechanical continua subject to Brownian motion. The fundamental compu-
tational method is enriched by recovered information on the discrete molecular microstructure,
which has been lost previously due to choosing a continuum description. In conjunction, molec-
ular motor activity is introduced and validated. These modeling steps allow for the investigation
of tantalizing biophysical problems such as the mechanisms behind bundle assembly, the forma-
tion and motor-induced stiffening of stress fibers, or the cooperativity between different motor
species.

Based on this strong methodic fundament, a variety of biophysical problems can be studied
successfully. Two closely related research topics are discussed here. First, the linker-mediated
emergence of various distinct thermodynamically equilibrated network morphologies is exam-
ined. Essential conclusions are drawn about dynamics and the thermodynamic causes of net-
work self-assembly. Having obtained detailed knowledge on network evolution, one can gen-
erate taylor-made in silico network geometries by using specific crosslinking proteins. Bundle
networks, for example, are a biologically most relevant network structure. Such networks serve
various purposes such as cell adhesion and mechanosensing and are generically in a state of
thermal non-equilibrium. For the first time, the proposed computational approach enables the
micromechanical simulation of biopolymer networks on biologically relevant time scales up
to several thousands of seconds and length scales of up to 10 microns. In this thesis, the ap-
proach reveals previously unknown mechanical properties of bundle networks and thus enables
modeling and the derivation of a physical theory on bundle network rheology.
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Zusammenfassung

Zusammenfassung

Eukaryotische Zellen sind die Grundbausteine vielzelligen Lebens. Trotz ihrer großen morpho-
logischen Diversität folgen die Grundzüge intrazellulärer Organisation und Arbeitsteilung ei-
nem allgemeinen Schema. In diesem Schema ist dem Zellskelett, einem dynamischen Netzwerk
verschiedenartiger Proteinfasern, eine exponierte Rolle zugedacht. Es koordiniert unter anderem
die Zellteilung sowie die Zellmigration und dient zudem als sensorisches Organ der Zelle.

Dem Zytoskelettbestandteil Aktin, welcher variable Fasernetzwerkstrukturen ausbildet, gilt
besonderes Interesse. Aktinfasernetzwerke passen sich in Form und mechanischen Eigenschaf-
ten der ihnen zugedachten Aufgabe an. Dies wird durch kleine, die Aktinfasern verknüpfende
Proteine ermöglicht, sogenannte Quervernetzer.

Die Erforschung von Aktinnetzwerken ist besonders lohnend, da neben dem grundsätzlichen
Verständnis intrazellulärer Vorgänge auch weiterführende Erkenntnisse locken, etwa bezüglich
der Auswirkung pharmakologischer Wirkstoffe oder auch krankhafter Veränderungen der Zelle,
was wiederum die Entwicklung von Therapien vorantreibt.

In dieser Arbeit liegt das Hauptaugenmerk auf der simulationsbasierten Erforschung der
Netzwerkentstehung und -mechanik. Der Erkenntnisgewinn durch Experimente ist aufgrund
der mikroskopischen Skala oftmals unmöglich, wodurch auch die weiterführende Modellbil-
dung behindert wird. An diesem Engpass setzen Simulationen an und erweitern oder erzeugen
Beobachtungen, die die Modellierung und das Verständnis der Netzwerke entscheidend prägen.

Ziel dieser Arbeit ist die Entwicklung und Anwendung einer Simulationsmethode, welche
grundsätzliche Fragen zur Selbstorganisation und zu den Ursachen für das komplexe mecha-
nische Verhalten quervernetzter Biopolymernetzwerke beantwortet. Hierfür wird zunächst ein
leistungsfähiges Simulationsgerüst aufgebaut, welches auf einem mikromechanischen Konti-
nuumsansatz für Einzelfasern und Quervernetzer unter Berücksichtigung der Brownschen Dy-
namik beruht. Die zugrunde liegende Simulationsmethode wird durch diese Arbeit erweitert,
sodass zum einen Details der diskreten molekularen Geometrie, welche durch den Kontinu-
umsansatz verlorengegangen sind, wiedergewonnen werden. Zum anderen wird ein Modell
für enzymatische Motoraktivität vorgestellt und erprobt. Diese Entwicklungen ermöglichen die
Beantwortung hochaktueller biophysikalischer Fragen, etwa nach den Mechanismen der Fa-
serbündelbildung durch Quervernetzer, der Versteifung durch molekulare Motoren oder nach
dem kooperativem Verhalten verschiedener Motorproteine.

Im weiteren Verlauf der Arbeit werden erfolgreich zwei große biophysikalische Themen-
komplexe bearbeitet. Zunächst gilt das Interesse thermischen Gleichgewichtsstrukturen, wel-
che durch das ordnende Wirken von Quervernetzern entstehen. Die Untersuchung des Faser-
Quervernetzer-Systems führt zu einem neuen, umfassenden Verständnis der Dynamik der Netz-
werkbildung sowie deren Ursachen. Dieses Wissen ermöglicht die gezielte Erzeugung von Netz-
werken mit bestimmten Eigenschaften durch die Gabe bestimmter Quervernetzer. Eine bio-
logisch besonders relevante Morphologie ist die des Bündelnetzwerks. Faserbündelnetzwerke
dienen unter anderem der mechanischen Verankerung der Zelle sowie der Zellsensorik und be-
finden sich allgemein in einem Zustand thermischen Ungleichgewichts. Die vorgestellte Metho-
de ermöglicht erstmals die Simulation biologisch relevanter Zeiträume von mehreren tausend
Sekunden und großer räumlicher Ausdehnungen bis 1000µm3. Mit ihrer Hilfe werden grund-
legend neue physikalische Netzwerkeigenschaften entdeckt, welche im Rahmen der Arbeit zu
einer umfassenden rheologischen Modellbildung und Theorie zusammengeführt werden.
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Ḡ Plateau modulus
G0 Modulus scale
ω1 Cross-over frequency
N Number of filaments in a bundle
D Bundle diameter
qn nth transverse mode
κn Bending stiffness of the nth transverse mode of a bundle
ω̄(n) mode-dependent relaxation rate
b Bundle diameter
k× Spring constant of the linker
∆ Bundling parameter
φ(t) Orientation of one principal axis of the inertia tensor
φ(ω) Spectrum of the orientations of one of the inertia tensor’s axes
S(ω) Spectrum of stress fluctuations

Nonlinear viscoelasticity of bundle networks

K Differential modulus
Klin Linear modulus
γm Strain at the peak value of K
γc Critical strain, the onset of the nonlinear deformation regime
γ̇ shear rate

Discretization, Numerics & Simulation

Wt Translational weighting functions
Wr Rotational weighting functions
It Interpolation function of translational DOFs

xix



Nomenclature

Ir Nodal interpolation function of rotational DOFs
ξ Local FE line parameter
s Global FE line parameter
X Positions of nodes
Θ Rotations of nodes
u Translational nodal displacements
θ Nodal rotational pseudo vector
ϑ Nodal multiplicative spin variable
d Nodal displacement vector
K Stiffness matrix
D Damping matrix
S Stochastic contribution to K

K Tangential stiffness matrix
r residual force vector
Λ Nodal triad
h Discretization length in space
L Discretized curve length
Le Finite element length
∆t Discrete time step size
Tsim Simulated time
i Time step index
I Maximal time step
j Index of Newton iteration
J Maximal number of Newton iterations
k Nodal index
K Maximal nodal number
Ne Number of elements per filament
wIP Weight of quadrature point
p Polynomial order of the interpolation function
Nf ,Nl,Nm Number of discretized filaments, linkers, and motors
Lf , 2Rl, Lm Filament length, linker size, and motor size
Ef ,El,Em Young’s moduli
Af ,Al,Am Cross sections
H Edge length of the simulation box
Z(µ, σ) Vector of Gaussian random numbers with mean µ and variance σ

xx



Nomenclature

Abbreviations

ABP Actin binding protein
ADP Adenosine diphosphate
ATP Adenosine triphosphate
BD Brownian dynamics
BD/FE Brownian dynamics finite element
BFE Beam finite element
COBB Cylindrical, oriented bounding box
DNA Deoxyribonucleic acid
DDCF Density-density correlation function
F-actin Filamentous actin
FDT Fluctuation-dissipation theorem
FE Finite element
FEM Finite element method
G-actin Globular actin
GMRES Generalized minimal residual
HMM Heavy meromyosin
ILU Incomplete lower upper triangular matrix
IP Integration point
KKT Karush-Kuhn-Tucker
LMM Light meromyosin
MD Molecular dynamics
MD Microtubule organizing center
OCF Orientation correlation function
PTC Pseudo-transient continuation
RNA Ribonucleic acid
SPDE Stochastic partial differential equation

xxi



.



1 Introduction

Biological cells are the base unit of life. All life on earth is composed of at least one cell. A
first distinction has to be made between procaryotes and eukaryotes. Procaryotes are organisms
that do not have a nucleus and are single-celled, whereas eukaryotes do have a nucleus and can
be multi-celled. The latter type of organism is going to be in the spotlight. Complex eukaryotic
organisms consist of a myriad of cells, that take on different shapes and carry out diverse tasks
in order to maintain the organism’s vital functions. Although cellular morphologies and func-
tionalities differ, their organizational blueprint is generic as recurring structures can be found
in all cells. One of the most important intracellular structures is the cytoskeleton, a complex
biopolymer network consisting of different species of protein filaments. This network provides
for a multitude of crucial cellular functions and, as a consequence, has received considerable
scientific appreciation over the past decades. The cytoskeleton enables cells to crawl and to
establish adhesive connections to the extracellular matrix. It orchestrates the process of cell
division and determines the temporal and spatial organization of the organelles within the cell.
Apart from a variety of metabolic activities, the cytoskeleton also serves as the cell’s sensory or-
gan. If the cytoskeleton is struck by disease, the organism is likely to perish. Beyond doubt, the
cytoskeleton is essential to eukaryotic life in all aspects and is therefore worth every painful inch
of scientific progress. Despite having been studied intensely by researchers from different dis-
ciplinary backgrounds, the cytoskeleton still remains only partially understood and attracts the
scientific attention of biologists, biochemists, biophysicists, and biologically or biomedically
oriented engineers.

The motivations for the scientific investigation of the cytoskeleton are as diverse as the in-
volved scientific disciplines. In fact, it is close to impossible to draw clear lines that distinguish
purely mono-disciplinary interests as the cytoskeleton represents a scientific playground, on
which the efforts of the various disciplines are as convoluted and intertwined as the cytoskele-
ton’s filaments. Research on the cytoskeleton can be loosely assigned to one of three kinds:
the first kind is observational, the second seeks for causal connections, and the third applies
existing knowledge.

The first kind examines the cytoskeleton to unveil previously unknown constituents or pro-
cesses. The research questions revolve around first observations of a certain biological com-
ponent, a chemical species, a process or a part of a process within the cytoskeleton. Promi-
nent examples are the experimental confirmation of the lipid double-layer of the cell membrane
(cf. [44]), the discovery of the myosin cross-bridge [96], or the direct observation of the myosin
recovery stroke, a subprocess of the enzymatic cycle of myosin [198]. The main finding is the
observation, i.e., the discovery.

The second kind of research often succeeds the first (not always since theoretical predictions
sometimes predate the observation). If a scientific discovery is made, modeling, theory, and
analysis ensue, all of which aim to explain this discovery and to point out the underlying causal
connections. Prototypical works of this kind are, e.g., models of stress fiber formation [223]
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or the well-established rheological model for entangled actin solutions [59]. Here, simulations
without an engineering background and often limited numerical performance (e.g. [114]) are
readily applied to support modeling.

Finally, the third kind makes use of the knowledge gathered by fundamental research in order
to create applications, e.g., in biomedical technology or the design of bio-inspired materials.
Cell culture technology and tissue engineering are further popular practical fields of application.
In this context, computational methods often provide predictive numerical models for single
cells or agglomerates of cells (e.g., [182]). On larger length scales, entire tissues and organs are
modeled using continuum descriptions with fitted material laws [84].

These three levels of research may be loosely attributed to disciplines. While first observa-
tions concerning the cytoskeleton are commonly made by biologists or biochemists, the in-depth
analysis in search for causal relations mostly falls to either biologists, biochemists, or physicists
depending on the problem. To a large extent, applications can be attributed to the engineering
sciences.

This work aims to provide an engineering solution to the simulation of transient biopolymer
networks, which is not restricted to applications in the engineering context. It enables the study
of networks on length scales and time scales that no other comparable computational approach is
able to access to date. This capability permits the support or even the initiation of fundamental
research in biophysics as will be demonstrated in the chapters on the self-assembly and the
rheology of semiflexible biopolymer networks.

1.1 From cell to simulation

Science’s fundamental interest in the eukaryotic cell and its cytoskeleton has been pointed out
and is readily understandable. However, having the entire cell in mind, a considerable mental
leap is required to appreciate the scientific benefit of an abstracted computational model. There-
fore, the following introduction will offer guidance by gradually motivating the most important
steps leading from the initial in vivo to the in vitro and eventually to the in silico problem.
To this end, the eukaryotic cell and its architecture are introduced in the beginning in order to
convey a basic idea of the cytoskeleton’s location and its purpose in the cellular context (Sec-
tion 1.1.1). Subsequently, the cytoskeleton is discussed in more detail, emphasizing its three
main components, their structure, and their main functions (Section 1.1.2). The scope of this
thesis is then limited further to the part of the cytoskeleton, which consists of the protein actin,
and the study of reduced actin model systems (Section 1.1.3). At this point, one arrives at the
level of abstraction of the proposed computational framework, which models the components of
this reduced model. After a few general words on the motivation behind scientific simulations,
the introduction is concluded by a brief description of the structure of this thesis (Section 1.4).

1.1.1 The eukaryotic cell

Eukaryotic cells in multi-celled organisms are often highly differentiated. They develop into
different shapes and carry out different specialized tasks within the organism. They synthe-
size and degrade bones (osteoblasts and osteoclasts), enable macroscopic motion (myocytes),
or provide sensory abilities (e.g. retinal cells, hair cells). Despite their great morphological and
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(a) Generic architecture of a eukaryotic metazoan cell (b) Cell during cytokinesis

Figure 1.1 (a) Sketch of the spatial organization of organelles within an animal cell. The individual numbers
indicate (1) plasma membran, (2) mitochondrion, (3) lysosome, (4) nuclear envelope, (5) nucleolus, (6) nucleus
(filled with chromatin), (7) smooth endoplasmatic reticulum, (8) rough endoplasmatic reticulum, (9) Golgi appara-
tus, (10) microvilli, (11) vesicles, (12) peroxysomes,(13) cytoskeletal filaments, (14) centrosome. (b) A sea urchin
zygote during cell division. Actin filaments (blue) and microtubules (orange) of the cytoskeleton are shown. The
image in Figure 1.1b has been provided by G. von Dassow [3].

functional variety, the cellular architecture can be generalized (with very few exceptions). Such
a generalized cell is shown in Figure 1.1a, which makes clear that the cell is a crowded place.
The cellular components shown in this figure as well as their primary functions will be briefly
introduced. In case that more detailed information is required, the reader is referred to compre-
hensive textbooks [4,145]. The majority of the following information on cellular constituents is
drawn from [4] if not indicated otherwise.

The central component of the cell is its nucleus, keeper of the organism’s entire set of ge-
netic information in the form of deoxyribonucleic acids (DNAs). The nucleolus resides within
the nucleus. It is tasked with ribosome production and the transcription of ribonucleic acids
(RNAs). The interior of the nucleus is separated from the intracellular environment by a lipid
bilayer, the nuclear envelope. This barrier is temporarily lifted during cell division. In most
cases, cells have one nucleus with the exception of a few multinucleate cells, e.g., in muscle,
as well as cells without a nucleus such as red blood cells. Leaving the nucleus towards the
periphery of the cell, one enters the cytoplasm. The cytoplasm consists of the cytosol and the
cell’s organelles. The cytosol accounts for about 70% of the cell’s volume and consists of water,
proteins, and ions. Proteins suspended in the cytosol account for approximately 20 - 30% of the
cytosol’s total weight. Among these proteins, the proteins that constitute the cytoskeleton can
be found.

The organelles of a cell perform specialized tasks in order to maintain the cell’s global opera-
tiveness. They are suspended in the cytosol and can be displaced by the cytoskeleton if required.
The most important organelles will be briefly introduced. Mitchondria are the power plants of
the cell. Here, the bulk of adenosine triphosphate (ATP) is produced, the main storage for
chemical energy. Mitochondria carry their own set of DNA and self-replicate like procaryotes.
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(a) Actin filaments (b) Intermediate filaments (c) microtubules

(d) Actin filament structure (e) Intermediate filament structure (f) Microtubule structure

Figure 1.2 The three main filament species of the eukaryotic cytoskeleton. Top row: (a) Actin filaments in
bundles, (b) intermediate filaments, and (c) microtubules of one and the same cell. The coloration stems from
fluorescent dye. Bottom row: Cartoons of the structures of (d) an actin filament, (e) an intermediate filament, and
(f) a microtubule. All images are taken and modified from Lodish et al. [145].

The ATP produced by the mitochondria is metabolized, for example, during protein synthesis,
noticeable fraction of which takes place in the endoplasmatic reticulum (ER), the largest single
organelle. The ER consists of flattened, lobe- or sac-like compartments delimited by mem-
branes. Beside proteins, which are built in the rough ER, lipids and fatty acids are synthesized
by the smooth ER. Proteins leave the ER by means of vesicles budding from the ER membrane.
The vesicles approach the Golgi apparatus, another membrane-bounded organelle, at one of its
two ends. Inside the Golgi apparatus, the proteins are modified, wrapped into vesicles again at
the other end, and sent to their destinations either within or outside of the cell.

Cells do not only synthesize macromolecules, they also need to digest and degrade compo-
nents that are not required anymore. In animal cells, this task is carried out by lysosomes, which
contain a large set of degradative enzymes. Peroxysomes degrades toxic peroxides. Both lyso-
somes and peroxysomes contain enzymes that would have a destructive effect on the cell if they
were to be released. In plant cells, a similar functionality is believed to be provided by the
vacuole.

With all principal organelles of the cytoplasm introduced, the focus is once again shifted back
to the cytosol as it contains the cytoskeleton, which is in the focus of this thesis The cytoskeleton
shall be introduced separately and in more detail in the following section.

1.1.2 The cytoskeleton and its filaments

The eukaryotic cytoskeleton is a complex network of filamentous proteins, which provides with
a large variety of cellular functions. Its structure is highly dynamic as filaments are constantly
polymerized and depolymerized again. The cytosol serves as a reservoir of the subunits which
constitute the filaments. Three filament species constitute the cytoskeleton: actin filaments, in-
termediate filaments, and microtubules. All three filament types constitute network structures
(see Figure 1.2). The subsequent compact introduction of the three species of cytoskeletal fila-
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1.1 From cell to simulation

(a) Lamellipodia (b) Stress fibers (c) Filopodia

Figure 1.3 Three F-Actin network structures which are often encountered in cells. (a) Lamellipodia (image
kindly provided by M. Vinzenz and J. V. Small [1]), (b) actin stress fibers [92], and (c) filopodia emerging from
lamellipodia meshwork [229].

ments comprises a description of their molecular structure, their main functions, and the network
structures they establish.

Actin filaments Actin filaments (F-actin) are the most abundant among the cytoskeletal fil-
aments and can be found throughout the cell but predominantly in the actin cortex close to the
plasma membrane, where filament growth is initiated. F-actin belongs to the group of semiflex-
ible polymers, which means that their length is close to their persistence length. The persistence
length is the length, beyond which the thermally excited filament curves noticeably [88] (more
details follow in Chapter 2; see also [107, Figure 1]). The persistence length of F-actin is
10 - 18µm. F-actin aggregates take on different morphologies depending on the actin bind-
ing protein (ABP), which crosslinks the filaments among each other. For example, Figure 1.2a
depicts aligned actin bundles in a fibroblast cell.

As shown in Figure 1.2d, an actin filament consists of globular monomer subunits, which are
referred to as G-actin. The filament is a single-stranded, levorotary helix (also termed one-start,
left-handed helix [88]) with 26 monomer subunits per period and a periodic repeat of 72 nm.
The rise per actin monomer along the helical path is 2.77 nm. The helix makes twelve full turns
before returning to its initial orientation, which means that the rotation per monomer is 166 ◦.
The size of G-actin is given as 5.5 nm [88]. F-actin has a diameter of five to nine nanometers.
The polymerization of F-actin from G-actin subunits does not occur spontaneously but requires
regulatory complexes. The length of a single actin filament is in the range of 101 µm and is
regulated by certain growth factors. F-actin is a structurally polar filament since its G-actin
subunits are polar and equally oriented. As a consequence, F-actin has two dissimilar ends, a
(+)-end and a (−)-end. F-actin determines the shape of the cell and acts as a tensile fiber in
bundles and networks. In lamellipodia, which are the locomotive units of cells and enables them
to crawl, F-actin is found in a dense, crosslinked meshwork (Figure 1.3a). This mesh pushes the
plasma membrane in the direction of motion and by doing so constantly reshapes the cell.

In the stress fibers depicted in Figure 1.3b, F-actin is localized in densely packed bundles that
allow for the transduction of forces. Stress fibers often emerge in conjunction with filopodia
protruding from the lamellipodia (Figure 1.3c). Filopodia have sensory functions but also create
focal adhesion points and support wound healing [154]. Simple unicellular organisms such
amoeba do not have filopodia but create pseudopodia, which contain actin gel, i.e., entangled
or only sparsely crosslinked actin networks, which also serve the purpose of migration. Aside
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from these transient states, F-actin also constitutes permanent structures as in the case of the
stereocilia of the inner ear, which enable hearing.

F-actin can be employed to exert forces not only in muscle but also within other cells. The
incorporation of myosin-based motors into filament aggregates allows for the constitution of
actively contracting structures such as apolar bundles [205]. An alternative way of generating
movement is by treadmilling, which propels F-actin through the cytosol and which originates
from differing polymerization rates at the ends of the filament [88]. Polymerization at the (+)-
end is five to ten times faster than at the (−)-end [24]. In summary, actin is not only an integral
part of macroscopic muscle but can also be considered the muscle of the cell.

Intermediate filaments Intermediate filaments are rope-like fibers with a diameter of ten
nanometers and are structurally more diverse than actin or microtubules. They are only ex-
pressed in certain animals (including humans). They establish fiber networks that span the entire
cell as Figure 1.2b shows. Their subunits are different polypeptides of the keratin family, differ-
ent lamins, and others [88], which constitute hair and nails but are also found in neurons. These
subunits form coiled-coil structures, that align and intertwine to establish tetrameric structures,
which in turn accumulate with other tetramers to establish filamentous structures. The princi-
pal structure is given in Figure 1.2e. Intermediate filaments are globally apolar because of the
axisymmetric arrangement of their subunits. The persistence length of intermediate filaments is
approximately 0.5µm, which makes this filament species about 30 times more flexible than F-
actin and about 104 times more flexible than microtubules. The axial stiffness of an intermediate
filament is very high compared to its bending stiffness. Networks of crosslinked intermediate fil-
aments deform easily but fail only under high mechanical loads, making intermediate filaments
the tendons of the cell.

In order to fulfill their primary function as mechanical stabilizers, intermediate filaments can
establish bonds to the membrane, to microtubules, as well as to actin filaments. Intermediate
filament networks are highly dynamic with their filaments polymerizing and depolymerizing
within minutes. The chemical mechanisms behind the build up and the decomposition of inter-
mediate filaments are only vaguely understood.

Microtubules The third filament species of the cytoskeleton is the so-called microtubule.
Microtubules are hollow cylindrical filaments with a diameter of about 25 nm, which are made
of helically arranged tubulin dimers. The polymerization of a microtubule filament from dimers
is driven by a polymerization agent called γ-tubulin. Microtubules are the stiffest among the
cytoskeletal filaments. Their persistence length is 5 mm, and if tubulin subunits were homo-
geneous and isotropic, the hypothetic Young’s modulus would be 1.2 GPa, which is close to
plexiglas [60]. As the average length of a microtubule in vivo is 25µm, it can be seen as a
straight, rigid, and hollow rod. The structure of microtubules is polar and they therefore have
two distinct ends called (+)-end and (−)-end. Polymerization and depolymerization at the (+)-
end are faster than at the (−)-end. Microtubules of animal cells emerge from a microtubule
organizing center (MTOC), the centrosome. From this location, the microtubules spread out
radially with their (+)-ends pointing away from the centrosome.

Microtubules carry out important transport-related tasks within the cell. During mitosis, mi-
crotubules constitute the mitotic spindle, which separates pairs of chromosomes. Furthermore,
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1.2 Simulations on biologically relevant time scales

motor proteins of the kinesin and the dynein family use microtubules as tracks, along which
these motors transport vesicles. Finally, cilia and flagella consist of microtubule arrangements
and serve the purpose of cell locomotion. They either propel the cell itself as in the case of
flagellates or transport particles as in the human trachea, where they remove dirt and mucus.

Due to its high stiffness and brittleness, the microtubule can be considered the microscopic
analog to bone.

1.1.3 Reduced model systems

Sections 1.1.1 and 1.1.2 convey only a faint idea of the actual complexity of a cell and its cy-
toskeleton but they make clear that intracellular space is a highly multicausal environment. Any
observation made in this environment surely is the product of a multitude of correlated influ-
ences. Drawing unambiguous conclusions is difficult. A reduction of the system complexity
presents a remedy to this problem, be it in experiments or in simulations.

The complexity of the cytoskeleton can be reduced, e.g., by limiting the model system to one
filament species. In this thesis, the one filament is the semiflexible F-actin (i.e., its in silico rep-
resentation). Having only F-actin in principle already enables research on entangled solutions.
If the formation of networks or the mechanics of certain network morphologies are examined, in
most cases, a single species of crosslinking protein is added, which will be generally referred to
as linker from here on. Experimental F-actin model systems have led to a better understanding
of the mechanics of entangled actin filaments (e.g., [58, 118]) and the various shapes and me-
chanics of crosslinked actin networks (cf. [135]). If, in addition, the examined network exhibits
motor activity, specialized but straight-forward to interpret model systems, e.g., motility assays
(e.g., [183, 189]) or single-filament/motor set-ups (cf. [88]), are used. In few cases, more than
one motor protein is employed to elucidate cooperative effects (e.g., [199]).

Theoretical work on actin networks by nature relies on abstraction and reduction of com-
plexity, be it for single filaments (e.g., [59, 160]), crosslinked networks (e.g., [14]), or active
networks (e.g., [105, 132]).

This thesis focuses on simulated networks of semiflexible biopolymers, that have proper-
ties very similar to in vitro actin networks. Simulations and experiments have the same two
fundamental components, filaments and linkers, which are suspended in a viscous fluid. The
simulation does not only model a reduced system, it relies on a reduction of model complexity
itself: a Brownian dynamics approach in conjunction with a continuum description of the net-
work constituents. Like experimental networks, the computational approach profits by design
from the same advantage: reduced causal complexity, which facilitates the interpretation of an
observation.

In the following section, the general suitability of this computational approach and its poten-
tial in view of advancing the understanding of biopolymer networks will be discussed.

1.2 Simulations on biologically relevant time scales

Traditionally, the scientific process begins with the observation of nature, from which the ob-
server deduces a model that is able to reproduce certain aspects of the observed. Modern physics
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has inverted this causality in some cases but the majority of scientific research still works ac-
cording to this principle.

A deliberate observation aiming to test a hypothesis is called an experiment. If a hypothesis
is corroborated by the outcome of an experiment, it can give rise to a model and be condensed
into a theory. This direct transition from an observation to a model represents the ideal case.
Oftentimes, however, this causal chain is interrupted for one of two reasons, the first being a lack
of data, the second being the inability to directly translate an observation into a model. In both
scenarios, computer simulations provide technological extensions that lead to additional insight
into experiments or support and sometimes even enable theoretical modeling. Simulations create
repeatable artificial observations, which allow for data acquisition and the prediction of the
behavior of the observed system.

Of course, a simulation is based upon a model as well. As such, it relies on assumptions
made at its axiomatic level. Below this threshold, everything is a product of these assumptions.
Above it, only a certain part is. If this part is known, quantifiable, and controllable, a simulation
can be scientifically useful. In a nutshell, the simulation’s base scale needs to be smaller than
the characteristic scale on which the observation is made with respect to both time and space.
Chapter 2 will detail this argument with respect to its practical application to the simulation of
biopolymer networks.

Having mentioned scales, it is worthwhile touching the topic of the regularly mentioned, but
seldom sharply defined biologically relevant time scales. The term suggests general validity
but in fact depends strongly on the characteristic time scale of the observation. In molecular
dynamics (MD) simulations of pharmaceutically relevant molecules, for example, the term bio-
logically relevant refers to times longer than a microsecond [236]. A microsecond is more than
seven orders of magnitude too short if one is interested in biopolymer network assembly and me-
chanics. Characteristic biological processes on this length scale are, e.g., the formation of actin
stress fibers and filopodia during cell migration or the polymerization of microtubules during
cell division. The time intervals, on which these processes take place, depend on the cell type
but usually span tens of minutes up to a few hours. Some examples are given to provide bounds
for what is considered biologically relevant in this thesis: filopodia form and reform within min-
utes, mitosis in mammalian cells takes approximately an hour, and cell migration takes place
on the scale of hundreds of minutes [4]. MD simulations on time and length scales such as
these are technologically infeasible. There exist various computational approaches modeling
single filaments (cf. [31]). The overwhelming majority is numerically inefficient and a rigorous
quantification of the numerical error is often impossible such that their application in long-term
simulations is limited. Brownian dynamics finite element (BD/FE) simulations, however, per-
form exceptionally well as will be shown in the upcoming chapters.

Biologically relevant length scales in the context of semiflexible biopolymer networks are
less difficult to grasp. Since one is interested in phenomena that occur on the scale of network
structures, one should in principle be able to cover system sizes on the subcellular level, i.e., of
the order 10−1 - 101 µm. The upper bound approaches the size of small cells like the human red
blood cell, which measures approximately 10µm in the direction of its largest expansion.
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1.3 Objectives and achievements
Two major research objectives can be formulated for this thesis: the development of methods
unmatched in terms of computational performance and their application to biophysical problems
that previously have been out of scientific reach.

Development of methods The thesis aspires to develop methods that enable the simu-
lation of large biopolymer networks on previously unfeasible time and length scales. To this
end, the already highly efficient single-filament model of [33, 38] will be employed to simu-
late crosslinked network structures at filament and linker concentration close to physiological
values. By an efficient parallelization of the simulation framework, filament concentrations up
to an experimental equivalent of 8µM can be simulated over time intervals spanning several
thousands of seconds, thereby enabling the study of phenomena on aforementioned biologically
relevant time scales. To the author’s knowledge, no other comparable simulation approach is
even remotely capable of reaching the level of computational efficiency displayed here.

In order to boost the method’s computational performance even further without loosing nu-
merical accuracy, extended models of filaments and linkers will be introduced. The advantages
of the new models are manifold. The extended filament model provides linker binding sites
along its entire geometry instead of only at its nodes, which remedies the modeling predicament
of coinciding mechanical and chemical resolution. Furthermore, by taking advantage of the un-
derlying mechanical description, it is possible to mimic the molecular topology of the filament
without a refinement of the discretization. Helical geometries such as in the case of F-actin or
more complex geometries as in the case of microtubules are easily parameterized by the new
model. The complementary linker model requires the capability of binding to these arbitrary
positions along the filament. This is achieved by a novel beam tying method, which connects
positions and orientations of binding sites and linker beam elements. Binding site spacings
down to the level of single monomers can be realized, which has been virtually impossible up
to this point. The use of this enhanced approach enables the simulation of systems as large as
10µm in each spatial dimension at high filament and linker concentrations. The size of the
simulated domain in fact approaches cellular dimensions.

Being able to resolve such small chemical length scales without suffering from a significant
loss of performance, the next logical step is the introduction of motor activity. Molecular motors
accomplish astounding feats in cells and the scientific urge is great to understand how these
small enzymes cooperatively give rise to large-scale motion. Therefore, a model of a molecular
motor is developed, which adequately reproduces the enzymatic activity of the non-processive
motor myosin II. The approach is developed and validated to the point of application in large-
scale network simulations.

Biophysical applications A creation without an application is called art on rare occasions,
and useless in most other cases. Therefore, the major part of the available methods is applied
to explore the self-assembly processes of semiflexible filament networks and their mechanical
properties.

The linker-mediated evolution of biopolymer networks into different morphologies represents
a computationally challenging problem, which is why it has not been attempted so far. In this
thesis, vast studies on emerging network morphologies and the phase transitions between them
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will be presented. Network evolution has been studied on time scales up to 10000 s in a few
cases. Thus, it is a showcase of the capabilities of the BD/FE approach on the one hand and
allows for scientific insights on the other hand as previously unknown mechanisms driving the
aggregation of networks have been determined.

Knowing the possible paths of network evolution allows for the mechanical testing of in
principle any of the found network architectures. The perhaps most interesting among these
networks is a homogeneous network of bundles, a generic structure found not only in cells but
also elsewhere in nature. Numerical experiments probing the linear rheology of bundle net-
works are the centerpiece of this last part of the thesis. Rheological simulations reach shear
frequencies as low as 0.003 Hz, which corresponds to time scales close to three orders of mag-
nitude larger than what has been previously reported [114,116]. By sweeping a broad frequency
band [0.003; 105] Hz, a comprehensive novel understanding of the rheology of bundle networks
is provided. For very low and very high frequencies, universal rheological properties are found
and explained theoretically.

1.4 Organization of the thesis

On its most abstract level, the thesis can be understood as the complementary effort of two
major parts. The first part of this thesis is of methodic nature and introduces the reader to
the fundamental techniques of the finite-element-based simulation of subcellular filamentous
microstructures as well as networks, which are composed of these microstructures. The second
part revolves around the application of the first part’s achievements in order to advance the
physical understanding of network mechanics, the process of network self-assembly, and the
rheology of this biologically most relevant material. The first part comprises Chapters 2 to 4,
the second part consists of Chapters 5 and 6.

The fundamental properties of BD/FE simulations of slender microstructures are reprised in
Chapter 2. It recapitulates the foundations laid by [33, 38] on the simulation of rod-like mi-
cromechanical continua and introduces the computational model for the simulation of biopoly-
mer networks, which has been elaborated by [33, 34]. The computational models of filaments
and linkers, the basic components of the network, are discussed in detail. Due to the continuum
assumption, information on the (molecular) microstructure of the filaments is lost. Chapter 3 en-
riches both the filament and the linker model such that this information can be partially retrieved.
Building up on the two preceding chapters, the model of a molecular motor will be introduced
and discussed in Chapter 4. This chapter represents the first step towards the modeling of more
complex biological motor units such as myosin thick filaments. The methodic part is concluded
at this point. Subsequently, Chapter 5 documents the first major application, which explores the
linker-mediated aggregation of filaments into thermodynamically equilibrated network struc-
tures. The chapter is based on [35,163]. It grants novel insights into the mechanisms of network
self-assembly and provides parameters that enable the precise evocation of a certain type of
network. In the subsequent Chapter 6, this knowledge enables the controlled self-assembly of
complex bundle networks, which represent a ubiquitous and basic mechanical module in biolog-
ical systems. These networks are thoroughly examined resulting in a comprehensive and novel
description of their linear rheology. In addition, some aspects of the nonlinear viscoelasticity of
these networks will be studied. This chapter is based on [164]. Finally, the outlook in Chapter 7
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will conclude this thesis by pointing out ongoing projects as well as avenues of future research
and development.

The individual chapters of the thesis aim to provide a certain degree of self-contained read-
ability by means of compact introductions to the immediate problem and a concluding numerical
validation in case of the methodic Chapters 3 and 4. There are two reading approaches to this
thesis, either in a sequential way or a chapter-wise, non-sequential fashion, both of which work
equally well.
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2 Micromechanical finite element
simulation of biopolymer networks

This is the first of three chapters that introduce the reader to the basic building blocks of
mesoscale simulations of semiflexible (bio-)polymer networks, i.e., on the scale of microns. A
finite element (FE) discretization resolves the network down to single filaments. The chapter is
divided into three parts. The first part motivates the application of beam finite elements (BFEs)
to discretize the slender polymers which constitute biopolymer networks like the cytoskeleton
(Sections 2.1 and 2.3). Furthermore, it elaborates on fundamental modeling assumptions, e.g.,
concerning the fluid phase or the application of thermal forces, by considering and weighing dif-
ferent options available in literature. In the second part, the mechanical and the numerical model
for filaments (and linkers) are introduced, pointing out selected important aspects (Sections 2.4
and 2.5). Both filament and linker molecules share the same discretization technique, namely a
FE discretization using three-dimensional, geometrically exact, nonlinear beam elements. The
last part of the chapter deals with linkers and their chemical and mechanical interactions with
the filaments (Section 2.6)

A more detailed reading of what will be compactly presented here is offered by [33]. The orig-
inal BD/FE approach was developed by C. J. CYRON, who gradually introduced the applica-
tion of stochastic and viscous forces and moments combined with and implicit time integration
scheme [36], increasingly complex drag laws [37], and the transition from two-dimensional,
planar to three-dimensional space [38]. The computational framework set up for the simulation
of biopolymer networks has been introduced in [34].

2.1 General modeling requirements

Having detailed the physical interest in the introduction to this thesis, attention is now directed
towards the choice and design of an appropriate numerical technique for the problems at hand.
The bluntly direct question of how to best simulate biopolymer networks within biological cells
may be countered by three slightly more directed, basic modeling questions:

(1) Which is the required spatial resolution?

(2) Which is the smallest required time scale?

(3) What is the largest length scale of the system?

The economic principle demands an optimal proportionality of detail and efficiency with respect
to the chosen model. Since the aim is to determine the most appropriate computational model,
the questions above may be reformulated into rather methodic requirements.
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(1) The modeling length scale has to be smaller than, yet as close as possible to the smallest
phenomenological length scale.

(2) Given (1), the smallest (discrete) time scale involved in the (numerical) model needs to
be smaller than, yet as close as possible to the smallest time scale in need of observation.

(3) Given (1) and (2), a sufficiently high computational efficiency must be guaranteed on the
system scale.

2.2 Simulation of biopolymers in literature

Based on these modeling guidelines, the appropriate computational method can be chosen. The
resolution of subatomic scales or the length scales of small molecules by means of quantum
mechanics simulations or MD simulations are infeasible as the size of the numerical problem in
terms of the number of simulated degrees of freedom (DOFs) very quickly exceeds the limits of
current computer hardware before even remotely reaching length and time scales of interest.

A review of literature on cellular and subcellular simulations thus restricts technically fea-
sible approaches in a first step to macromechanical or micromechanical (continuum) models.
Macromechanical approaches such as [170, 212] assume biopolymer networks or whole cells
to be continua. They are best suited for supercellular length scales and thus for the simula-
tion of tissues or even whole organs. These approaches usually incorporate the microstructure
implicitly by appropriate nonlinear constitutive laws, which are formulated based on assump-
tions concerning filament orientation and entanglement length. For this reason, they fail to meet
requirement (1) and are thus discarded from application.

Micromechanical approaches comprise a large variety of simulation techniques used to dis-
cretize single filaments. They range from simple Metropolis-Monte-Carlo simulations [12] to
bead-spring [91,113,116], bead-rod-models [159], rods-on-string-models [19], worm-like chain
models [93], and Finite element approaches, e.g., [142, 217, 218]. A comprehensive overview
on bead-rod-string models as the state-of-the-art approach is given in [31]. They occupy the gap
between atomistic and molecular simulation models on the one hand, and macroscopic models
on the other hand. In the context of mesoscale simulations, the former provide an unnecessarily
high spatial detail combined with the inability to efficiently cover relevant time scales and sys-
tem sizes. The latter lack the spatial resolution necessary to resolve processes on the mesoscale,
which are of scientific interest to biologists, chemists, and biophysicists. Micromechanical mod-
els such as the ones mentioned resolve polymer networks down to the level of single filaments,
which are typically of the size of several microns in length. All presented approaches have in
common that none of them so far offers the computational performance required to simulated on
the scale of hundreds of seconds, which is most important to biological processes on this length
scale. Apart from this major issue, they suffer from shortcomings such as, e.g., an incorrect
modeling or even the complete neglect of torsion and anisotropic bending [113, 116], unnatural
(but sometimes useful) inextensibility constraints [159], or the absence of thermal excitations
in models using Euler-Bernoulli [7, 167, 232] or Timoshenko beam theory [21] . Eventually, al-
though fulfilling requirement (1), they fail to meet requirements (2) and (3). Only very recently,
other micromechanical approaches based on a FE approach have been presented, that account
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for thermal excitations (e.g., [142]). In summary, the modeling requirements listed above are in
favor of a mechanically coarse-grained approach, which is best realized by a FE discretization.

2.3 Micromechanical continuum model for biopolymer
networks

Bottom-up modeling of a biopolymer network requires models of its constituents. In view of
the tremendous degree of heterogeneity and, consequently, the vast mechanical complexity of
in vivo biopolymer networks like the cytoskeleton, simplifications are necessary, which leads
to modeling only the mechanically most important constituents. First, there are long slender
polymers serving as the matrix and providing the mechanical backbone of the network. The
most important representatives are semiflexible actin filaments (Lp≈ 15µm), intermediate fila-
ments (Lp≤ 1µm), and microtubules (Lp> 1mm) [162]. The second family of molecules are
the linkers, which establish connections between separate filaments. Finally, there is a fluid, in
which both filaments and linkers are immersed. In a cell, this fluid phase would correspond to
the cytoplasm.

2.3.1 General modeling strategy
As elaborated above, the most suitable solution is the application of a mechanical coarse-
graining up to the scale of single filaments, which represents the largest possible length scale
to consistently model mechanical properties on the network scale. On this length scale, the
application of continuum models is legitimate judging from experiments with single f-actin fil-
aments as will be argued later on. Linkers are modeled as continua as well, although they are
considerably smaller than filaments. The decision to do so will be elaborated below.

Fluid phase To a large extent, the interior of eukaryotic cells is occupied by a fluid phase,
which is characterized by small Reynolds numbers due to the microscopic scale, low flow veloc-
ities and a high viscosity (cf. PURCELL’s Life at low Reynolds number [175]). It is considered
incompressible. In both experimental studies as well as theoretical analyses, in order to un-
derstand the causes for observed phenomena, the model system should feature a certain degree
of simplicity. Thus most biopolymer networks studied in literature tend to have filaments and
linkers immersed into fluids with very simple flow states: in most cases, the fluid velocity field
is assumed to be zero or corresponding to a simple shear flow. Given these circumstances, com-
plex hydrodynamic models such as [20, 40, 70] may be replaced by a much simpler approach,
that accounts for the influence of the fluid only in terms of effective anisotropic drag forces on
any solid structure suspended in it. Literature offers a large number of ways to calculate ef-
fective friction coefficients for such fluid drag models (e.g., [19, 69, 88, 168]). Such simplified
models of the fluid’s influence on structures do not include the interaction of different structures
among another via the fluid. However, slightly more sophisticated approaches that incorporate
the cross-influence among different solid objects [47, 181] could be employed in the future. In
light of the implications of this modeling decision, the fluid – as an explicitly simulated en-
tity – is neglected. Its effective contribution to the dynamics of structural components will be
presented in Section 2.4.
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Filaments In biological fiber networks, filamentous proteins can be found in abundant num-
bers. They are polymers, which are long, slender and have a comparatively high bending stiff-
ness EI , which results in persistence lengths Lp∼ 16µm (F-actin, [130]) up to Lp∼ 5mm (mi-
crotubules, [88]). The persistence length represents one of the most important quantities in the
description of slender polymers, which is why it will be discussed in a slightly more detailed
fashion. The intuitive understanding is that the persistence length marks the distance beyond
which the bending of a filament becomes noticeable. The persistence length of a filament con-
fined to two spatial dimensions is defined as

〈cos(γ(s)− γ(0))〉 = exp

(
− s

2Lp

)
, (2.1)

where 〈.〉 is the time average, γ(s) denotes the angle enclosed between the tangent of the fila-
ment at position s along the filament and an arbitrarily chosen reference direction [88]. Derived
from the Principle of Equipartition of Energy (cf. [126] ), a more convenient relation from the
point of view of modeling filaments in simulations is given by

Lp =
EI

kBT
(2.2)

with Boltzmann constant kB and absolute temperature T . With this relation, Lp can be set
by means of appropriate material and global model parameters. While Equation (2.1) can be
exploited experimentally to measure the persistence length of stiff polymers like microtubules,
another measure is the end-to-end distance〈

L2
e2e

〉
= 2L2

p

[
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Lp

)
− 1 +

L

Lp

]
, (2.3)

with curve length L, which is commonly used to find the persistence length of semiflexible
polymers, which lie in the focus of this thesis. The term semiflexible refers to polymers with
Lp∼L. Equations (2.2) and (2.3) are also useful for consistency checks and the evaluation of a
numerical implementation [36].

Filaments represent the backbone of a biopolymer network, accounting for a major part of
the mechanical response to forces exerted on the network. Biological filaments are polymeric
macromolecules consisting of a large number of molecular subunits (e.g., globular actin or tubu-
lins, cf. Figure 2.1a). The question arises, whether one has to explicitly account for the molec-
ular structure or if a coarse-grained modeling approach can be motivated in order to describe
their dynamics. At T > 0K, thermally induced oscillation of atoms around their rest position
entail interatomic and intermolecular (elastic) collisions. Now consider a filament set amongst
fluid molecules. The fluid molecules gain translational and rotational momentum and transfer
them to other fluid molecules or the filament. The molecules’ trajectories are random causing
the filament to take on randomly bent shapes, which can be observed with a light-optical micro-
scope. From optical data and the knowledge of experimental conditions such as temperature or
solvent viscosity, mechanical properties of the filament can be deduced. Experiments strongly
suggest (e.g., [209, 225]) that approaches modeling single filaments as mechanical continua are
valid, if one is interested in studying physics on the filament length scale and above [88]. Many
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modeling approaches exist, which vary in complexity and mathematical rigor. They may be di-
vided into basically two kinds: both simple and intuitive bead-spring, bead-rod, or even simpler
inextensible chain models on the one side, and on the other side more intricate models employ-
ing, e.g., one of the many beam formulations, among which some fully account for extension,
bending, torsion, and shear in a consistent, nonlinear fashion. The former kind mainly enjoys
popularity among natural scientists, while the latter is usually applied to engineering problems.
The tendency towards more rigorous models has become evident in recent years as the introduc-
tory excerpt on topical literature implies (cf. Section 2.1). In engineering, reduced models such
as the Euler-Bernouilli beam theory or the Timoshenko beam theory have long been applied to
problems in structural mechanics, that deal with long slender geometries. The term reduced
refers to the number of explicitly modeled spatial dimensions, which in a beam’s case is its
curved shape in the longitudinal dimension. First ideas date back as far as the 18th century.

Filaments in biological cells have length-to-thickness ratios, which easily exceed 50. Semi-
flexible filaments usually feature even higher ratios, e.g., F-actin with values of r= l/d≥ 500.
At such ratios, beam theory becomes applicable (cf. [29, 193]). Modeling slender structures in
cellular environments as beams can thus be motivated both theoretically and computationally.
Theoretically, beam models are fully capable of an accurate description of filament dynamics. In
terms of computational efficiency, spatial discretizations based on BFE formulations combined
with an implicit time integration scheme are unmatched. As a result of overall positive mechani-
cal and numerical properties, filaments are modeled and discretized with three-dimensional, ge-
ometrically exact, nonlinear BFEs, which are path-independent and strain-invariant, and based
on the work of [29, 30, 103].

Linkers The last among the modeled constituents of biopolymer networks are the so-called
actin binding proteins (ABPs), crosslinkers, or simply linkers. The most general term linker will
be applied from here on. Linkers undergo chemical reactions with binding domains on filaments
and are able to establish mechanical connections between filaments. In most cases, biologically
relevant linkers are macromolecules with a mass of about 50− 200 kDa, e.g., α-actinin [43,153]
and filamin [224], which can be found in muscle cells. Covalent bonds and ions like Ca2+ can
also act as linkers [11], but are not of specific relevance in this thesis.

Linkers are considerably smaller than filaments, often measuring only a few nanometers in
size as in the case of scruin or fascin. Arguably it might be insufficient to model these linkers
as continua as well due to their convoluted molecular structure or their complex kinematics in
case of active proteins such as myosin [15,27]. However, as long as the focus lies on mesoscale
mechanics rather than the accurate portrayal of the (molecular) dynamics of single linkers, this
simplified model of a linker is still applicable. As a consequence, detached, solute linkers are
modeled as point-like particles, which do not affect the mechanical properties of the network.
Linkers, that actually connect two separate filaments, can be described as short, stiff rods and
thus be represented by beams as well. Chemical interactions between linkers and filaments are
modeled according to [34].
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(a) molecular representation (b) continuum representation

(c) Cosserat continuum

Figure 2.1 (a) An actin filament consists of a large number of actin monomers, which take the quaternary struc-
ture of a left-handed, 1-start helix. It is surrounded by myriads of fluid molecules (not shown). At finite temper-
ature, their random trajectories cause intermolecular collisions, which make the filament take on some contorted
shape. (b) Coarse graining the molecular structure, one arrives at a continuum description of the filament, which is
affected by forces and moments representing the effect of thermal excitation and drag due to the surrounding fluid.
(c) Dimensional reduction leads to Cosserat continuum description: the filament’s center line and the orientation
of its cross sections are described by am enhanced one-dimensional continuum.

2.4 Mechanical model of a semiflexible filament

The filament model used in this thesis was introduced by [38] and will be presented in a com-
pact manner, laying the technical foundations for modeling extensions and numerical examples
to come. Full details can be found in C. J. CYRON’s doctoral thesis on a Micromechanical
continuum approach for the analysis of biopolymer networks [33].

2.4.1 Balance of linear and angular momentum

Modeling filaments, or in fact any slender structure shaped like a rod, is most elegantly done
by a description as a one-dimensional Cosserat continuum. The term slender refers to the basic
modeling assumption that one dimension of the geometry is significantly larger than the other
two (L� (4A/π)−1/2 in case of a circular cross section). In R3, such extended continua feature
an additional set of 3 rotational DOFs, which describe the orientation of the cross sections. In
other words, the two lateral dimensions are accounted for by rigid orthonormal triads, whose
origins coincide with the centroids of the cross sections. The set of all centroids is the center
line of the continuum. In general, any geometrical configuration of a rod-like microstructure of
curve length L on a time interval [0; T] can be described by a pair of functions, that determine
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the spatial positions of the material points and the orientations of the cross sections at these
points. All cross sections remain planar, have a circular shape, and are assumed rigid. The curve
parameter s∈ [0;L] represents the scalar argument of the vector-valued function definitions

x : [0;L]× [0; T]→ R3, (s, t) 7→ x(s, t), (2.4a)
θ : [0;L]× [0; T]→ R3, (s, t) 7→ θ(s, t). (2.4b)

where x(s, t) maps s to its time-dependent position in R3 and θ(s, t) does the same for the
orientation of the respective cross section. Rotations are expressed in terms of so-called pseudo
vectors [28] of the form

θ= [θ1, θ2, θ3]T , θ =
√
θTθ. (2.5)

The correct mathematical treatment is a non-trivial matter and represents one of the main chal-
lenges in the formulation of geometrically exact beam models [29]. Pseudo-vectors parametrize
a group of three-dimensional rotations, which represents a nonlinear manifold and thus is in con-
trast to a vector space with defining properties such as additivity, commutativity, etc.. In other
words, the prefix “pseudo” implies non-additivity in R3. A pseudo vector unites two pieces
of information: the unit vector of θ/θ defines the axis of rotation, while its L2-norm deter-
mines the rotation angle θ. With (physically sensible) initial configurations x0 =x(s, t= 0) and
θ0 =θ(s, t= 0) and boundary values for s = {0, L}, Equations (2.4a) and (2.4b) fully describe
the space/time evolution of the geometrical configuration of a filament. Solutions of (x,θ) can
be found solving the beam’s equations of motion, i.e. the conservation equations of linear and
angular momentum, which read

f ′s(x,θ, s, t) = f stoch(x,θ, s, t) + f visc(x,θ, s, t) + f ext(x, s, t), (2.6a)
m′s(x,θ, s, t) = mstoch(x,θ, s, t) +mvisc(x,θ, s, t) +mext(x, s, t)+ (2.6b)

+ x′(s, t)× f s(x,θ, s, t).

Equation (2.6) is a so-called stochastic partial differential equation (SPDE). Quantities (.)el
denote elastic, (.)stoch stochastic, (.)visc viscous, and (.)ext other external contributions, all of
which represent line loads in the context of one-dimensional continua. The elastic section force
f s(x,θ, s, t) and the section moment ms are defined as the integral of the internal stresses and
their resulting moment, respectively. The prime-operator denotes ( . )′= ∂( . )/∂s. For the sake
of visual clarity, from here on, the bracketed list of arguments of functions will be omitted in
unambiguous cases, e.g., f visc(x,θ, s, t) simply becomes f visc.

2.4.2 Forces and Moments
Elastic forces and moments Dimensionally reduced mechanical representations of beams
describe their geometrical configuration by means of orientations. Various ways for the para-
metrization of orientations exist, one of which is the description by means of orthonormal rota-
tion matrices Λ∈R3×3 of the special orthogonal group

SO(3) := {Λ : R3 → R3 linear | ΛTΛ = 1, det Λ = 1}, (2.7)

which incorporates all rotations in three-dimensional Euclidean space (cf. [193]). Geometry
and elastic response are crucially related since any geometrical configuration can be understood
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as the result of acting and reacting forces. The calculation of rotation matrices Λ by means of
pseudo-vectors θ is performed introducing a spin matrix, which is a skew-symmetric represen-
tation of an arbitrary vector v ∈R3×1 given by

◦
v =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 . (2.8)

It parametrizes a vector product operation and will be henceforth denoted with an overset “◦”.
The mathematical relation between rotation matrices and rotation pseudo-vectors is described
by an exponential map, which according to [193] reads

Λ(
◦
θ) = exp(

◦
θ) = 1 +

sin ‖θ‖
‖θ‖

◦
θ +

1− cos ‖θ‖
‖θ‖2

◦
θ2. (2.9)

The infinite series exp(
◦
θ) is compactly expressed by what is commonly known as Rodrigues’

formula (cf. [193]). The columns of Λ represent the base vectors of the triad, which are as-
sociated to the principal directions of the corresponding cross section. In the following, Λ(θ)
is abbreviated as Λ unless stated otherwise. Further details can be found in [30, 103], and the
appendices of [38]. Using orientations Λ, Young’s modulus E, and shear modulus G, elastic
section forces and moments of the employed beam model can be written as

f s = ΛCfγ, (2.10a)
ms = ΛCm[κ− κ0] (2.10b)

with the material strain measure γ = ΛTx′− [ 1 0 0 ]T and reference orientation Λ0 = Λ(θ0),
as well as current and initial curvature vectors κ and κ0, which are only given implicitly by their
triad representations

Λ′ =
◦
κΛ, Λ0

′ =
◦
κ0Λ0 (2.11)

in the current and the reference configuration, respectively. The constitutive matrices are

Cf =

EA 0 0

0 GA2 0

0 0 GA3

 , Cm =

GIr 0 0

0 EI2 0

0 0 EI3

 , (2.12)

where A is the cross section area and A2 =A3 denotes the cross section area with a shear cor-
rection factor for circular cross sections. Ir = I2 + I3 represents the polar moment of inertia,
i.e., in the direction perpendicular to the planar cross section, and I2 = I3 are the area moments
of inertia with respect to the in-plane principal axes.

Viscous forces and moments The surrounding fluid damps the motion of a filament.
Strictly speaking, formulae for drag components introduced in [33] only account for the damp-
ing of straight rigid rods. However, as single segments of a filament, on which these forces act,
are nearly straight in the case of semiflexible filaments, the formulae may be applied in good
approximation of the exact values. As already elaborated in Section 2.3.1, the present model
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2.4 Mechanical model of a semiflexible filament

refrains from a complex description of the interaction between the fluid phase and the filament.
Rather, simple velocity-dependent drag laws

f visc = Dt (ẋ− v(x)) = Dtẋrel, (2.13a)

mvisc = Dr (θ̇ −w(x)) = Drθ̇rel (2.13b)

are employed with v(x) and w(x) as translational and angular velocities of the fluid, respec-
tively. Consequently, ẋrel and θ̇rel are the relative velocities. In many cases, v(x) =w(x) = 0
as the fluid is assumed to be at rest. However, flow patterns such as simple oscillatory shear
occurring in rheological studies may be easily incorporated this way. In order to calculate the
anisotropic drag forces acting on a segment, appropriate damping matrices have to be set up.
Therefore, as a first step, damping constants per unit length

γ⊥ = 4πη, γ‖ = 2πη, γa = 4πηr2 (2.14)

are defined with rod radius r and the fluid’s dynamic viscosity η, which characterize the damping
behavior perpendicular and parallel to the segment’s axis as well as for the segment’s rotation
around its axis. These damping constants are calculated from global damping constants

ζ⊥ = γ⊥L, ζ‖ = γ‖L, ζa = γaL, (2.15)

which are given with respect to the total length of the filament. Values for ζ can be drawn
from textbooks (e.g., [88, Table 6.2]) or experimentally determined. The topical outline in Sec-
tion 2.3.1 already hints at the complexity of modeling hydrodynamic interaction. The decision
to employ this set of simplified damping constants can be motivated due to sensible numerical
results already found appropriate for semiflexible filaments [37, 69]. More elaborate damping
constants presented in [168] have been tried [38], yet perceptible differences were not observed
on the network scale. Translational and rotational damping matrices with respect to a segment’s
principal axes take the form

Dt,loc =

γ‖ 0 0

0 γ⊥ 0

0 0 γ⊥

 , Dr,loc =

γa 0 0

0 0 0

0 0 0

 . (2.16)

From here on, subscripts {t, t} mark translational quantities and {r, r} refer to rotational quan-
tities. Finally, accounting for the orientation of a segment in R3, its damping matrices read

Dt = Λ Dt,loc ΛT (2.17a)

Dr = Λ Dr,loc ΛT (2.17b)

Alternatively, Equation (2.17a) can be expressed as

Dt = γ⊥1 + (γ‖ − γ⊥)‖X ′(s)‖−2x′ ⊗ x′ (2.18)

with identity tensor 1∈R3×3 and Jacobian ‖X ′(s)‖, which norms the tangential vector to unit
length. The ⊗-operator represents the tensor product. According to [33], this formulation can
be applied in a more straight-forward manner than Equation (2.17a).
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2 Micromechanical finite element simulation of biopolymer networks

Stochastic Forces and Moments At finite temperature, molecules have kinetic energy
causing them to move around, bounce off each other and exchange their energy through elastic
collisions. In such thermal environments, collisions are undirected and random, which causes
a microscopic particle to change its trajectory randomly due to forces and moments acting on
it. Assuming a sealed-off environment without heat fluxes across its boundaries as well as a
spatially invariant temperature, these forces and moments can be described as random variables
of stochastic processes. Assuming both forces and moments to be Gaussian, one can define the
stochastic processes by their first and second moments, i.e. their means and covariance matrices.
The Principle of Equipartition of Energy determines how much energy each DOF receives on
average, which is kBT/2 for a point-like particles [88]. Appendix 4.1 in [88] offers the deriva-
tion of this fundamental thermodynamic theorem. With respect to beam models, this statement
translates to each of a beam’s eigenmodes having this amount of energy, which directly relates
to the amplitude of these modes. By understanding that thermal fluctuations and viscous drag
are two effects stemming from a common origin [45], one realizes that the response of a me-
chanical system to a spontaneous (random) excitation has to equal its response to a small applied
force. What is sloppily expressed in words, can be mathematically derived and culminates in
the so-called fluctuation-dissipation theorem (FDT) [127]. Condensed into formulae, it states
that forces and moments f stoch,mstoch ∈R3×1 of a thermodynamically equilibrated system with
space/time-invariant temperature T of obey

〈f stoch(s, t)〉 = 0, (2.19a)

〈f stoch(s, t)⊗ f stoch(s∗, t∗)〉 = 2kBTδss∗δtt∗Dt, (2.19b)

〈mstoch(s, t)〉 = 0, (2.19c)

〈mstoch(s, t)⊗mstoch(s
∗, t∗)〉 = 2kBTδss∗δtt∗Dr, (2.19d)

where 〈 . 〉 denotes mean values, δ is the Dirac function written in a slightly abbreviated manner
δss∗ := δ(s−s∗) and δtt∗ := δ(t−t∗). Equations (2.19a) - (2.19d) state that the realizations of
the stochastic processes are spatially and temporally uncorrelated [37]. Therefore, a constant
power spectral density is observed in Fourier space, which is a defining characteristic of White
noise. Altogether, the properties of the kind of stochastic process described above allow for the
formulation of stochastic forces and moments in terms of their respective generalized derivatives
of standard vector-valued Wiener processes W t(s, t) and Wr(s, t) in three spatial dimensions.
The mathematical nature of generalized derivatives will not be elucidated further than stating
that they represent an extension of the concept of a derivative to non-smooth functions as any
detailed discussion would definitely extend well beyond the scope of this thesis. The inclined
reader is referred to mathematical textbooks such as [90]. A scalar Wiener process W(t) is
characterized by

(I) W(t= 0) = 0

(II) W(t) is almost surely continuous in t

(III) W(t) has stationary, independent increments
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2.4 Mechanical model of a semiflexible filament

(IV) W(t)−W(t0)∼N (0, t− t0) for 0 ≤ t0 ≤ t and normal distribution N (µ, σ2).

The extension to a vector-valued Wiener process is straight-forward as the spatial components
are independent of each other. Based on the considerations presented above and having ensured
consistency with stochastic theory [38], the discrete stochastic forces and moments are given by

f stoch =
√

2kBT St
∂2W t(s, t)

∂s∂t
, (2.20a)

mstoch =
√

2kBT Sr
∂2Wr(s, t)

∂s∂t
(2.20b)

with damping matrices satisfying Dt = StSt
T and Dr = SrSr

T as one requires here the value of
the standard deviation.

External forces and moments Deterministic external forces and moments may be applied
to filaments of biopolymer networks, e.g., mechanically, in order to study creeping phenomena.
Their incorporation utilizes standard procedures amply described in standard textbooks, e.g., in
the form of Neumann boundary conditions (cf. [235]), and will thus not be further discussed.
Such boundary conditions can be utilized, e.g., to conduct simulations of the creeping behavior
of networks.

Other kinds of external forces and moments may arise from interactions between filaments
due to mechanical contact or intermolecular forces. Contact interactions are commonly referred
to as steric interactions in physical literature, where atoms are assumed to occupy a certain
volume, which allows intrusions only when associated with an energetic cost. Finite element
literature with a focus on contact interactions offers solutions that can adequately model steric
interactions by means of contact potentials. Such potentials usually contain simple expressions
equivalent to the potential of linear-elastic springs [129, 228]. In Chapter 5, an Augmented-
Lagrange regularization of the contact between two beams ensures a minimization of the volume
overlap. A short outline of the method is given in Appendix B.1. There are several approaches
to the detection and evaluation of mechanical contact between beams (e.g., [41, 42, 228]).

Electrostatic interactions depend on a molecule’s structure and the electric charge patterns
created by the molecule’s constituents. In fact, all intermolecular forces originate from electro-
static interactions and may be (theoretically) calculated solving Schrödinger’s Equation [51,73].
However, finding exact solutions even for such simple problems as the interaction between two
hydrogen atoms is virtually impossible, which is why one resorts to a classification of inter-
molecular interaction forces by categories such as strength or range [101], e.g., by means of
Van-der-Waals forces, hydrogen bonds, or dipole-dipole forces. Although bearing a negative
electrostatic charge, actin filaments are assumed to be uncharged for all applications in this
thesis because of its Debye length of ∼1nm [107] in ionic solutions.

External electric or magnetic fields can be applied in order to analyze biomolecules such as
proteins or nucleic acids. The electrophoretic analyses of deoxyribonucleic acids (DNA) by
means of computer simulations (e.g., [111, 112]) are an interesting future topic, but are only of
limited interest here.
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2 Micromechanical finite element simulation of biopolymer networks

2.5 Discretization

In this section, a brief outline of the discretization procedure will be given, which is applied
in order to numerically model both filaments and linkers in space and time. By no means, a
detailed derivation of the discretized terms is attempted. Rather the following pages summarize
which force and moment contributions have to be accounted for in order to arrive at a compre-
hensive dynamic micromechanical model of a filament. If in need of a more detailed description
of viscous and stochastic terms, the reader is referred to [33, 38]. The vast and complex topic
of nonlinear, geometrically exact, three-dimensional beam (element) formulations, is well dis-
cussed by [29] as well as in preceding publications of [192, 193] and [30, 103].

2.5.1 Weak form

As a first step towards a FE discretization, the equations of motion given by Equation (2.6) have
to be reformulated such that they allow for a variational approach, which is necessary when
applying the finite element method (FEM). The general idea behind a variational approach is to
formulate the (physical) problem in a way which allows for the minimization of some character-
istic problem-specific error term. In the context of mechanics, this idea leads to the formulation
of virtual work expressions, which state that the work done by an infinitesimal perturbation of
the system must vanish. In structural mechanics, one may think of these perturbations as dis-
placements. The term weak form reflects the less strict requirements towards differentiability of
the testing functions as well as the fact, that the balance equations only need to be satisfied in
their integral form. Arbitrary nodal weighting functions

Wt(s) = Wr(s) =
[
diag(W[1](s)), diag(W[2](s)), . . . , diag(W[K](s))

]
(2.21)

chosen from a sufficiently large function space are used to reformulate the translational Equa-
tion (2.6a) and the rotational Equation (2.6b). Both matrices share a layout equal to that of the
interpolation function matrix It from Equation (2.25). With infinitesimal virtual translational
and rotational displacements δu and δϑ, one may rewrite these equations to take on the form of
virtual work expressions

δuT

L∫
0

Wt
Tf ′sds = δuT

L∫
0

Wt
T (fstoch + fvisc + fext)ds, (2.22a)

δϑT

L∫
0

Wr
T(m′s + x′ × fs)ds = δϑT

L∫
0

Wr
T (mstoch + mvisc + mext)ds. (2.22b)

The weak form of Equations (2.22) can be obtained by an integration by parts such that eventu-
ally, the weighted residuals read

L∫
0

Wt
′Tfs ds =

L∫
0

Wt
T(fstoch + fvisc + fext)ds +

[
Wt

TfΓ

]L

0
, (2.23a)
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2.5 Discretization

L∫
0

Wr
′Tms −Wr

Tx′ × fsds =

L∫
0

Wr
T(mstoch + mvisc + mext)ds +

[
Wr

TmΓ

]L

0
(2.23b)

with boundary terms ( . )Γ.

2.5.2 General remarks on discretization in space and time

According to [33], the SPDE (2.6) can be discretized with FEs in space and by an Implicit
Euler scheme in time. The integration of an SPDE is a theoretically intricate endeavor with
many potential pitfalls, such as, e.g., the choice of an appropriate integral convention. The
reiteration of the entire derivation and proof of principle of the here used method goes well
beyond the scope of this work. Readers in search for a more detailed lecture are referred to
topical publications [33, 38]. Without detailing the derivation, the following sections’ intention
simply is to provide an overview of BD/FE simulations with beam elements.

The formulaic goal is the discretized form of the SPDE, which reads

F′s
i
= Fi

stoch + Fi
visc + Fi

ext, (2.24a)

M′
s
i
= Mi

stoch + Mi
visc + Mi

ext + Mi
s (2.24b)

at a discrete time ti = i∆t with i ∈ {0, 1, 2, . . . , I} and a step size ∆t = Tsim/I, where Tsim marks
the upper bound of the interval of simulated time [0;Tsim]. This interval is subdivided into I+1
equidistant points in time. For discrete quantities, the convention is introduced of denoting them
with sans-serif typeface.

The one-dimensional parameter space [0; L], within which the neutral line of the continuum
is described, is discretized with K nodes, which are equally spaced at a distance h= L / (K− 1).
Each node is located at its respective discrete line parameter position s[k] with k ∈ {1, 2, . . . ,K}.
Furthermore, the kth node at the ith time step has associated vectors xi[k] ∈ R3,θi[k] ∈R3, which
hold the approximated positions and rotations according to Equations (2.4a) and (2.4b), respec-
tively. Unless explicitly required, the superscripted i will be from here on omitted in favor of a
slender notation as it is implied that the discussed equations are evaluated at discrete time ti. The
interpolation schemes of translational and rotational quantities usually differ from each other in
R3. The interpolation of translational DOFs is realized following an isoparametric approach for
K− 1 linear elements with K nodes. Using an interpolation matrix

It(s) =
[
diag(I

[1]
t ), diag(I

[2]
t ), . . . , diag(I

[K]
t )
]
∈ R3×3K (2.25)

with nodal interpolation blocks diag(I
[k]
t ) ∈ R3×3 and polynomials functions I[k]

t (here: Lagrange
polynomials) as well as the nodal position vector

X =
[
(x[1])T, . . . , (x[K])T

]T
, (2.26)

the interpolated translational positions at time ti can be written as

x(s) = It(s)X. (2.27)
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2 Micromechanical finite element simulation of biopolymer networks

The nodal interpolation functions I[k]
t can be chosen equal to the nodal weighting functions W[k]

t .
The vector of nodal rotations

Θ =
[
(θ[1])T, . . . , (θ[K])T

]T

(2.28)

cannot in general be interpolated as conveniently as its translational counterpart Equation (2.26).
Rotational quantities require different and more elaborate means of interpolation [103, 179],
which will be discussed in more detail in Chapter 3. The current beam model meets two funda-
mental mathematical and mechanical requirements: path-independence and strain-invariance.
Path-independence in the context of conservative vector fields demands equality of all integrals
along arbitrary paths for fixed integral bounds. Mechanically, this property means that all path-
independent load cases are reproducible as such by the beam formulation. For example, imagine
the simple static case of a beam, that is straight in its relaxed state, with statically defined sup-
port, which is subject to a lateral load F leading to a deformed configuration. If a sequence
of nF load steps adding up to F does not depend on the order of its individual steps, then the
order must not matter for the beam model as well. Strain-invariance refers to the objectivity
of the strain measure, which means it remains unimpaired by constant motion or rigid body
rotations [30].

The employment of rather complex generalized interpolation functions for the interpolation
of rotations is essential in order to fulfill these conditions. They have to enable the computation
of an approximate representation θ(s) of the exact rotation field θ(s) from Equation (2.28) in
a way that fulfills the two essential requirements given above. Such an interpolation scheme in
general leads to a nonlinear relation between ϑ(s) and ϑ[k]

θ(s) = f(θ[k], s). (2.29)

If an interpolation scheme meets these requirements, it can be applied to a FE discretization in
space combined with an implicit time integration scheme. Further details on the interpolation of
rotations will be given in Chapter 3, where they enable the formulation of appropriate rotational
constraints for extended filament and linker models. Implicit time integration requires the math-
ematical means to arrive at an iterative solution of a nonlinear system of equations. Therefore,
the linearized form of the differential equations is evaluated using a Newton scheme. The term
linearization is used equivalently to a Taylor series expansion truncated after the linear term.

With the simplest implicit time integration scheme, the Implicit Euler method, the transla-
tional velocity field can be approximated by

ẋ(s) ≈ It(s)
xi − xi−1

∆t
(2.30)

and the rotational velocity field (node-wise) by

θ̇(s) ≈ ∆θi(s)

∆t
. (2.31)

with an implicitly defined nodal rotation increment

∆Λ(∆θi) = Λi(Λi−1)−1, (2.32)
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2.5 Discretization

which describes the rotational difference from the old to the current step. As before in the con-
tinuous case, the abbreviation Λ(.) := Λ(θ(.)) is used. Instead of a common Newton-Raphson
scheme, a method called pseudo-transient continuation (PTC) is utilized [38, 56], which in-
creases the convergence radius of the conventional Newton scheme by heuristic means. The
inclined reader is referred to [38, Appendix I] as further explications do not greatly contribute
in the present context.

2.5.3 Discretized forces and moments
Equations (2.24) can be detailed in terms of their individual discretized force and moment con-
tributions. The discretized weighted residuals read

L∫
0

Wt
′Tfs ds︸ ︷︷ ︸
Fs

=

L∫
0

Wt
Tfstoch ds︸ ︷︷ ︸
Fstoch

+

L∫
0

Wt
Tfvisc ds︸ ︷︷ ︸
Fvisc

+

L∫
0

Wt
Tfext ds +

[
Wt

TfΩ

]L
0︸ ︷︷ ︸

Fext

, (2.33a)

L∫
0

Wr
′T(ms − x′ × fs) ds︸ ︷︷ ︸

Ms

=

L∫
0

Wr
Tmstoch ds︸ ︷︷ ︸
Mstoch

+

L∫
0

Wr
Tmvisc ds︸ ︷︷ ︸
Mvisc

+ (2.33b)

+

L∫
0

Wr
Tmext ds +

[
Wr

TmΩ

]L

0︸ ︷︷ ︸
Mext

Theoretically, any set of weighting functions satisfying Equation (2.23) is suitable. In practice,
weighting functions Wt and Wr are often chosen equal to interpolation functions It (Bubnov-
Galerkin approach). However, this statement exclusively applies to translational DOFs and
does not cover the interpolation of finite rotations, for which special interpolation functions are
employed.

Inertial forces and moments What separates the mechanics of microscopic from that
of macroscopic structures is the dominance of viscous and stochastic forces over inertia. In
fact, in overdamped microscopic systems, inertial effects may be neglected completely [88]
leading to a simplified form of Langevin dynamics, which commonly referred to as Brownian
dynamics (BD). What remains, is an SPDE of first order in time.

Elastic forces and moments Elastic forces and moments result from the discretization of
the weak form as presented in [30,103]. After intricate derivations involving a special treatment
of rotations in three-dimensional Euclidean space, the authors arrive at a strain-invariant, path-
independent nonlinear, geometrically exact beam formulation, whose description would by far
exceed the scope of this thesis. The model itself is well-established and has the capability of
fully accounting of the most essential elastic effects occurring in slender structures such as actin
filaments: axial extension, bending, shear, and torsion. Due to the specificities of rotational
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2 Micromechanical finite element simulation of biopolymer networks

interpolation, it is practical writing down the discretized elastic forces and moments in a node-
wise form. In brief, without further detailing the derivation, the discretized elastic forces and
moments read

F[k]
s =

L∫
0

W′[k]
t ΛCfγ ds, (2.34)

M[k]
s =

L∫
0

W′[k]
t ΛCmκ−W[k]

t
◦
x′ΛCfγ ds, (2.35)

where γ,κ denote material strains and I[k]
t denotes the kth 3×3 nodal block of It.

Viscous forces and moments Due to the time discretization by an Implicit-Euler scheme,
Equations (2.13) are discretized as

Fvisc =

L∫
0

Wt
TDtIt ds

Xi − Xi−1

∆t
, (2.36a)

Mvisc =

L∫
0

Wr
TDr

∆θi

∆t
ds. (2.36b)

Note that the damping matrices Dt and Dr are constant, i.e., strictly speaking, they apply only
to straight, rigid rods. In view of the small curvature of the individual beam elements, this
approximation is acceptable.

Stochastic forces and moments The discretized, stochastic, translational and rotational
excitations are given by

Fstoch =
√

2kBT

L∫
0

Wt
TSt

∂2W t(s, t
i)

∂s∂t
ds ≈

∑
IP

√
2kBTwIP

∆t

[
Wt

TSt
]

sIP
Z(0, 1), (2.37a)

Mstoch =
√

2kBT

L∫
0

Wr
TSr

∂2W r(s, t
i)

∂s∂t
ds ≈

∑
IP

√
2kBTwIP

∆t

[
Wr

TSr
]

sIP
Z(0, 1). (2.37b)

Index IP loops over integration points, wIP represent quadrature weights, ant sIP localizes the
integration points in parameter space. Finally, Z(0, 1) denotes a vector-valued Gaussian random
variable with zero mean and unit variance for each of its vector entries. The approximation of
the stochastic terms is supported by theoretical considerations, which demonstrate the validity
of a coarse-graining applied to W . This coarse-graining results in piecewise constant stochastic
contributions in space and time [37], which in turn lead to the formulae of Equation (2.37).
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2.6 Mechanical and chemical model of a linker molecule

Figure 2.2 All possible chemical states of a linker molecule: a free linker, which moves through the fluid driven
by stochastic excitations and damped by viscous forces (•). Singly bound linkers are attached filaments with one
of their reactive domains (•). Finally, linkers that have established a crosslink between two filaments, are called
doubly bound (•).

Deterministic external forces and moments External forces and moments can be di-
rectly adopted from textbooks in the case of being accounted for by deterministic Neumann
boundary conditions [29]. The evaluation of mechanical contact requires a discretized distance
measure, that evaluates the existence of contact, and which is commonly referred to as the gap
function. In case that contact is detected, the repulsion forces resulting from the contact interac-
tion of contacting bodies are evaluated in their discrete form. Electrostatic interactions for now
remain unconsidered due to being effectively shielded by the surrounding fluid.

2.6 Mechanical and chemical model of a linker
molecule

In experiments, biomolecules, that can act as transient, reversible crosslinks, establish non-
covalent connections with actin filaments [137]. Usually such linker molecules have two actin
binding domains separated by a linker-specific distance 2Rl. There are linkers with more than
two actin binding domains. However, such variants are not accounted for at this point. In reality,
linkers consist of more than just their chemically active domains and feature more complex
geometries. As pointed out in Section 2.3.1, a simplified model is often sufficient and will be
employed in the following.

2.6.1 Chemical states of a linker

In this idealized model, a linker can be found in three distinct chemical conditions, which are
all present in Figure 2.2. Initially, a linker is a solute of the fluid phase and thus free. When it
enters the vicinity of a potential binding site located on a filament, there is a certain probability
of establishing a chemical bond to that filament. A linker, that has established one connection to
a filament, is called singly bound. If the second reactive domain of linker happens to also bind
to a filament, it is referred to as doubly bound. The linker then constitutes a crosslink between
two filaments and contributes to the mechanical behavior of the network.
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2 Micromechanical finite element simulation of biopolymer networks

2.6.2 Free linkers in solution

A free linker, i.e., one which is not attached to any filament, can be modeled as a point-like
particle in solution, which is why the notation immediately follows the discrete typeface con-
vention. It has a centroid position xl and a velocity ẋl. Around the position of the centroid,
the linker model assumes a reaction volume in the shape of a spherical shell including radii
R∈ [Rl −∆Rl;Rl + ∆Rl]. A linker is subject to stochastic thermal forces, viscous drag, and, in
some cases, external forces of some kind. Its equation of motion reads

fvisc,l(xl, ẋl, t
i) = fstoch,l(xl, t

i) + fext,l(xl, t
i). (2.38)

Subscripts follow the principle set up in Section 2.4.1, such that fvisc,l, fstoch,l, and fext,l denote
forces due to viscous drag, stochastic forces, and deterministic external forces, respectively.

Viscous forces A free linker moving through the fluid phase feels viscous drag forces.
Again, the effect of the fluid on linker is only modeled in terms of appropriate drag laws, neglect-
ing whatever more complex interaction between fluid and solid particle might occur. Hence, the
viscous force vector reads

fvisc,l = ζl(ẋl − v(xl)) (2.39)

with an effective friction coefficient ζl = 6πηRl in accordance to Stoke’s law (cf. [88, Table 6.2]).

Stochastic forces A free linker performs Brownian motion in a thermal bath. As in the
case of filaments, stochastic forces acting on a linker molecule can be modeled by a standard
Wiener process W l(t

i) ∈ R3×1. Then

fstoch,l =
√

2kBTζlṠ l(t
i). (2.40)

From Equations (2.39) and (2.40), it can be deduced that in absence of external forces and
assuming a constant friction coefficient, one may simply update the spatial position of a linker
during the current time step by

xi
l = xi−1

l +

√
kBT ∆t

ζl
∆W i

l, (2.41)

where ∆W i
l =W l(t

i)−W l(t
i−1) is the increment of the Wiener process.

External forces In general, external forces due to excluded volume effects, electrostatic
forces, or the application of some external force field influence the dynamics of a linker molecule.
Such force contributions are neglected for now as the volume fraction of filaments and linkers
combined is low, electrostatic effects are considered marginal in the context of semiflexible net-
works (cf. Section 2.4.2), and other deterministic external forces are not applied in order to keep
the problem simple and the results interpretable.
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2.6 Mechanical and chemical model of a linker molecule

2.6.3 Singly bound linkers

Reaction kinetics In Section 2.6.1, the chemical states of a linker have been described in
general. The two-staged reaction involving linkers L and filaments F reads

L + 2F
k+



k−

LF + F
k+



k−

FLF (2.42)

with an experimentally measured chemical association rate constant k+ and a respective disso-
ciation rate constant k−. The association rate constant of this second order reaction depends on
the reactants’ concentrations and is given in units of M−1s−1, where M≡mol/L represents the
molar concentration of a substance. The dissociation rate constant is given in s−1 owing to the
reverse reaction being of order one.

Values for rate constants are mostly drawn from either in vivo and in vitro experiments or,
alternatively, from MD simulations. Experimental values can be drawn from a variety of sources
in literature, e.g., [152] provides experimentally measured rate constants for actin-myosin bonds
(k+∼10−6M−1s−1, k−∼0.1-1s−1). Other biologically relevant linker species like fascin, α-
actinin, or filamin feature dissociation rate constants on a similar range [133].

At this point, the question arises how to include the experimentally observed global rate
constants k+ and k− in a numerical model that explicitly accounts for the dynamics of single
linker molecules. The single molecule association rate constant needs to model the likelihood
of a binding event, when a linker and an unoccupied binding site enter each others’ reaction
volumes. In order to break reaction kinetics down to the level of single molecules, a modified
rate constant kon is required, which is deduced from chemical kinetics. The rate equation of the
association of linkers to filaments reads

rLF = k+[L][F] (2.43)

with bracketed terms denoting concentrations of the respective species. The requirement for the
single molecule association rate is

kon = Ck+, (2.44)

where C takes on the dimension of a concentration. The nature of this prefactor is readily
explicable; it is the concentration corresponding to a single linker having entered the reaction
volume Vreact of a binding site, which is located on a filament (hence the ”1“ in Equation (2.45)).
Consequently the unit of the modified rate constant is s−1. Eventually, the in silico rate constants
can be written as

kon = NA
1

Vreact
k+, koff = k− (2.45)

with Avogadro constant NA = 6.022×1023mol−1. Vreact is a parameter of the numerical model
and does not have a direct real-life equivalent. Isolated within Vreact, the reaction can be in-
terpreted as a pseudo-first order reaction, during which the linker switches from its free to its
bound state. This assumption is valid here since the availability of a binding site at this stage is
guaranteed. In other words, the concentration of binding sites within Vreact can be considered
so large that it can be factored in the rate constant.
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2 Micromechanical finite element simulation of biopolymer networks

(a) formation of a
filament-linker bond

(b) Crosslink establishment (c) free energy diagram

Figure 2.3 Free linkers that are considered for the establishment of chemical bonds to binding sites on filaments
have to fulfill a simple geometrical condition: (a) the linker molecule needs to enter the reactive volume of the
binding site located at xA, which is modeled as a spherical shell with finite thickness but is only represented in 2D
here for clarity. (b) The establishment of a crosslink adheres to the same pattern, only with a second binding site at
location xB . However, the radius is changed corresponding to a linker that is free to swivel around its joint. Sketch
of the free energy diagram clarifying the binding energy ∆G of the chemical reaction.

Binding events When a free linker arrives in the vicinity of a binding site as illustrated in
Figure 2.3 and their distance is ∆l =Rl±∆Rl, the binding probability can be calculated as

pon = 1− exp(−kon∆t), (2.46)

which is the probability of a unit Poisson process with mean µ= kon∆t [180]. The probabilistic
evaluation of the reaction potential on the level of single molecules is a common procedure in
stochastic simulations (cf. [6]). As the linker is now attached to one filament (singly bound),
its position is no longer updated independently, but is coupled to the movement of the filament.
Binding to a second filament follows the same procedure.

Linkers attached to one filament may already change its hydrodynamic cross section, thus
altering filament dynamics. However, it is assumed that this kind of alteration does not funda-
mentally change the dynamic behavior of a single filament in a way, that additional physical
phenomena (e.g., fluid-structure interaction) have to be taken into account. Thus, such effects
of singly bound linkers on a filament are neglected here. If need be, the effect may be incor-
porated into the model by modifying the filament’s damping matrices Dt and Dr depending on
the bonding status of the linker.

Unbinding events The chemical bond between a linker and a filament is reversible in
most cases unless the reverse reaction is inhibited in some way. The bond F-actin and heavy
meromyosin (HMM) ,e.g., can be made permanent by addition of glutaraldehyde [137]. This
reverse reaction is modeled again as a Poisson process and the dissociation potential is given by

poff = 1− exp(−koff∆t). (2.47)
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2.7 Periodic boundary conditions

Having introduced both binding and unbinding events, it is now possible to characterize the
strength of the chemical bond by means of its binding energy

∆G = ln

(
kon

koff

)
. (2.48)

The free energy diagram of this reaction helps visualizing ∆G (Figure 2.3c): it represents the
height of the energy wall that needs to be overcome in order to return the linker to its free state.

2.6.4 Doubly bound linkers: crosslinks

When linkers establish bonds with two filaments, they constitute crosslinks, i.e., they are doubly
bound. As such, they alter the mechanical behavior of the network. On the one hand, they
provide additional pathways for load transfer. On the other hand, they reduce the number of
thermally excited eigenmodes of filaments, which entails structural stiffening.

These properties demand for a more complex model. As a consequence, a doubly bound
linker is no longer modeled only as a point-shaped particle but as rod-like continuum. The
underlying mechanical description is that of a beam with an adequate constitutive law and ma-
terial parameters. The mechanical model described in Section 2.4 can be applied to doubly
bound linkers as well. Hence, linkers can be discretized with finite beam elements applying
the same principles as in the case of filaments. At this point, mechanical connections between
separate filaments can be established between nodes of elements on separate filaments only. In
Chapter 3, this restriction will be lifted by introducing extended models for both filaments and
linkers.

2.7 Periodic boundary conditions

The filament model and the linker model as well as their chemical and mechanical interaction
model stand ready to be applied. Using an unbounded simulation volume, however, leads to
dispersion of filaments and linkers alike. In the context of discrete fiber simulations (e.g., [94,
115, 167]), periodic boundary conditions are a popular means to guarantee time- and – with
respect to the control volume – space-invariance of an observed quantity, and to improve and
facilitate statistics. In the following, mainly cubic simulation volumes with an edge length H
will be used. By convention, the simulation box is located in the first octant and occupies the
three-dimensional interval [0 ;H]×[0 ;H]×[0 ;H]. Any spatial position x̄ compliant to periodic
boundary conditions can be given for each spatial component i by

x̄i = xi −
⌊
H−1xi

⌋
H, (2.49)

where xi denotes the position before application of periodic boundary conditions and b . c is
the floor function. Rotations remain unaffected. A sensible ratio between the characteristic
dimensions of a structure (e.g., the length of filaments) and the periodic repeat H helps to avoid
finite size effects dominating the simulation outcome.
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2 Micromechanical finite element simulation of biopolymer networks

2.8 Concluding remarks
In this chapter, the methodic foundations of the numerical experiments presented in the follow-
ing chapters have been laid. Mechanical models for filaments and linkers have been introduced.
Both species interact with each other by means of a simple chemical reaction model as well as,
if chosen, by mechanical contact. The high computational efficiency of the model allows for
the simulation of large complex network structures over time intervals that cover most of the
relevant processes within eukaryotic cells.

Based upon this numerical framework, further modeling steps are discussed in Chapter 3 and
Chapter 4. While the former chapter recovers the molecular structure of filaments previously
lost due to mechanical coarse-graining, the latter presents an approach to modeling molecular
motor activity in biopolymer networks. In Chapter 5 and Chapter 6, which focus on advances in
physics by means of simulations, theory, and experiments, the mechanical and chemical models
provides the basis for all simulation-based research presented in this thesis.
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3 Extended micromechanical
approach – the reintroduction of
sub-continuum microstructure

Any act of abstraction is inevitably accompanied by a loss of detail. The micromechanical model
of Chapter 2 gains numerical efficiency by abstraction of its microstructure, which represents the
essence of any mechanical continuum approach. Expressed most generally, it trades short length
scales for long time scales. This chapter is about the retrieval of length scales lost in abstraction.

To this end, the filament model as well as the linker model are extended. The first exten-
sion provides geometrical information reminiscent of the monomeric architecture of the coarse-
grained, and thus microstructurally featureless filament model. Obviously, the chemical topol-
ogy of the filament is directly affected. The second extension enables the linker model to profit
from the first. The joint goal of all measures to be presented is to gain access to a new set of
biophysical problems without abandoning the advantages of the original approach.

This chapter is the second in a series of three methodic chapters and comprises three main
parts. It will first elaborate in more detail on the necessity of model enhancements, including a
brief discussion of a few shortcomings, that the current model still suffers from, and a selection
of possible areas of application (Section 3.1). Subsequently, the reader will be acquainted with
the methodic realization (Sections 3.2 and 3.3). Finally, both phenomenological and quantitative
comparisons will be drawn between the original and the extended model in order to ensure
equivalence (or more) in their capability to tackle problems on the network scale (Section 3.4).

3.1 Decoupling chemical and mechanical resolution

The original model in principle suffers from the same deficiency that eliminates MD simulation
as a candidate for micromechanically modeling entire biopolymer network structures on the
scale of 1 - 10µm: the inseparableness of the mechanical resolution from the chemical resolu-
tion, i.e., each mechanical base unit (in MD, a single molecule) is generally capable of chemical
interaction. This property limits MD approaches to length scales well below the dimensions of
a cell and to insufficiently large time scales for most cellular processes. The very same prop-
erty also diminishes or in some cases may even nullifies one of the main advantages of the
original FE approach [38]: computational efficiency gained by mechanical coarse-graining. In
cases, where a fine chemical discretization is mandatory, the original model has to refine its
mechanical discretization as well. The investigation of the mechanics of filament bundles of-
ten requires such a refinement (cf. [80]) in order to adequately model their chirality. The term
chirality was first introduced by LORD KELVIN in [204] and applies to objects which cannot be
superimposed on their mirror images. The human hand is perhaps the most prominent example
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3 Extended micromechanical approach – the reintroduction of sub-continuum microstructure

(a) Mechanical resolution = chemical resolution (b) Mechanical resolution 6= chemical resolution

Figure 3.1 Sketch of the basic modeling idea. (a) FE discretization and chemical resolution are equivalent. (b)
the chemical resolution remains the same, while the mechanical discretization is chosen coarser.

for chirality. The helical geometry of F-actin has been shown to play an important role in the
assembly of single filaments into chiral bundles [64]. Depending on the linker species, bundle
systems can be self-limiting: the competing effects of chiral (over-)twist of the bundle and the
bending of individual filaments result in an energetic trade-off, that becomes manifest in a finite
bundle diameter. Self-limiting bundle systems have been observed experimentally [23,190] and
elaborated theoretically [63, 80, 85]. Their findings suggest that helicality can be crucial to the
mechanism of self-limitation, which implies the necessity of resolving the monomeric structure
of a filament. Globular actin, the monomeric subunit of F-actin, is a few nanometers in size.
The resolution of this length scale with the original FE model would require the refinement of
the discretization down to monomer level, which easily exceeds refinement factors of 50. Not
only would the computational cost quickly increase to the point of infeasibility, but also would
this step result in compromising the intention a the continuum approach, which definitely has
not been introduced meticulously only to return to modeling monomers.

In light of this predicament, the straight-forward remedy lies with decoupling the chemical
topology from the mechanical discretization of a filament. First of all, this means that the size
of single beam elements discretizing a filament should remain constant at the very least, or – if
possible – be increased further. Simply put: adjacent nodes should be placed as far apart from
each other as possible while keeping the errors due to discretization within acceptable bounds.
The considerations above can be condensed to formulate two basic modeling requirements:

(I) Capability of placing discrete chemical interaction sites, whose location is independent of
the location of FE nodes.

(II) Capability of a linker beam element to establish a mechanical connection between two
arbitrary locations on (not necessarily two separate) filaments.

If executed correctly, a computational framework including these two features allows for the
simulation of high chemical resolutions at a nearly unchanged computational cost. On the other
hand, it allows for an even coarser mechanical discretization in case of problems that the original
approach could already handle, but for which an unnecessarily fine mechanical discretization
had to be chosen.
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3.2 Extended filament model

(a) relative rotation of the binding site (b) Helicality in a simulation

Figure 3.2 (a) binding site orientation is considered fixed at a relative angle θ∆b with respect to the second prin-
cipal axis vb of the material triad at the corresponding position. The first principal direction by convention points
towards the (+)-end of the filament. (b) In silico semiflexible network with Nf = 104 filaments, and Lf = 4µm,
corresponding to a filament concentration cf = 2µM and a molar ratio R= 1.0 (Nl≈ 1.5×105 linkers). Binding
sites with a spacing db = dg = 2.77 nm (i.e., all monomers are binding sites) are entirely occupied by singly bound
linkers.

3.2 Extended filament model

First, the numerical model of the actin filament will be enhanced. It is the prelude to the sub-
sequent and significantly more intricate extension of the numerical linker model in Section 3.3
and provides the chemical reaction sites, that become mechanical connections along the inter-
polated filament geometry, i.e., between physically existing FE nodes. All required instruments
are readily available from the standard filament model presented in Chapter 2.

3.2.1 Parametrization of the monomeric structure of F-actin

Chapter 1 has already expanded on the molecular structure of actin filaments. Hence only
properties directly related to model parameters are recalled here.

An actin filament consists of globular actin monomers (G-actin) organized in a structure, that
can be seen either as a right-handed double helix with an offset of one monomer between the
two strands or as a left-handed single helix [88]. See Figure 1.2d for a sketch of the helical
arrangement of monomers, that constitute the filament. In the following, the latter description is
used owing to its geometrical simplicity. A straight actin filament in its stress-free state features
a rotation angle of α≈ 166◦ between one monomer of the helix to the next. The translational
increment between two such consecutive G-actin units is dg = 2.77 nm [196]. The periodicity
of the helix is D= 72 nm, which corresponds to nD = 26 monomeric subunits per period. Al-
though different linker species establish bonds with different chemical binding domains on the
filament and do not necessarily bind equally to all monomers, the most generic case of a linker
is portrayed here, which means it can in principle establish chemical bonds with an arbitrary
monomer. In order to quantify the hypothesis of Section 3.1, the following example is given.
The ratio of the FE length used later on in Chapter 5 and the monomeric distance mentioned
above amounts to hf/dg≈ 45. Extrapolating this to a filament of length Lf = 5µm implies dis-
cretizing it with Ne = 1805 beam elements. Finally, considering not only one but hundreds of
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3 Extended micromechanical approach – the reintroduction of sub-continuum microstructure

simulated filaments, a refinement of this magnitude heavily affects the computational perfor-
mance. With a rising number of DOFs, the overall simulation time is increasingly dominated by
the linear solver. At this point, the only means to effectively increase computational efficiency
is the reduction of system size, i.e., a reduction of DOFs.

The remedy for this shortcoming in terms of the filament model is simple, as the solution
only requires making use of inherent features of the filament’s continuum description. In the
following, requirement (I) of Section 3.1 will be realized. To this end, it is necessary conveying
helicality as a geometrical feature of the filament down to its constituting beam elements, i.e,
the handling of interpolated joints (binding sites), rests with the respective finite element. Thus,
with filament length Lf and the local element line parameter ξ ∈ [−1; 1], a general map that links
global (filament) parameter space to local (element) parameter space

ξ : [0; Lf ]→ [−1; 1], s 7→ ξ(s, Lf) (3.1)

is defined, resulting in the availability of inter-nodal binding sites as illustrated by Figure 3.1.
This simple measure already provides independent handles on binding site resolution and the
mechanical discretization.

In a second step, binding sites are associated with an orientation, which can be motivated
considering the helical structure of the actin filament and potential applications (cf. Section 3.1).
The parametrization of rotations will be described in more detail in the subsequent Section 3.3.
At this point, however, it is sufficient to state that each material point of the continuum has
an associated orthonormal triad Λ(s)∈R3×3 with base vectors {u, v,w}, which describes the
orientation of the (planar) cross section at location s. In analogy to Equation (3.1), a map is
introduced governing the connection between location and orientation of the binding sites. It is
generally defined as

Λb : ξ(s) 7→ Λb(ξ(s)) (3.2)

and can be practically realized by one of various mathematical parametrizations (e.g., rotation
vectors, quaternions, Euler angles). Having the efficient and ready-to-use framework of the
beam formulation at hand, orientations are treated by means of pseudo-vector representations.
Hence, making use of Equations (3.16) and (3.17), one can describe the orientation of a binding
site at local parameter ξb = ξ(sb) as

Λb(ξb) = exp(
◦
θ∆b(ξb))︸ ︷︷ ︸
=:Λ∆b

Λ(ξb), (3.3)

where the L2-norm of the pseudo-vector θ∆b = ‖θ∆b‖ describes the angular difference to the
second base vector of the interpolated triad, i.e., the material normal. The axis of rotation is
given by θ∆b/θ∆b = u = ub. The triad Λ(ξb) denotes the material triad at the current binding
site position. Recall from Section 2.4.2 that the ◦-operator denotes the skew-symmetric ma-
trix representation of a pseudo-vector. In order to have the second base vector vb(sb) of the
associated triad describe a left-handed single helix, θ∆b has to obey

θ∆b(ξb) = αξb/db. (3.4)

The distance between two consecutive binding sites on a filament db≥ dg depends on the mod-
eled linker species: HMM for example is known to bind to actin every db = 36 nm [88], which
corresponds to half a periodic repeat of F-actin. By design, the filament model is now chiral,
which is illustrated by the simulation snapshot in Figure 3.2b.
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3.2 Extended filament model

(a) distance criterion (b) orientation criterion (c) mutual distance and orientation

(d) 3D representation with conoidal reaction volumes

Figure 3.3 Establishment of chemical filament-linker bonds with helically oriented reaction volumes: considered
binding site (•) and free linker (•) lie apart Rl−∆Rl≤∆l≤Rl+∆Rl (a). The linker is located in a cone with axial
vector v∆b and may bind to the filament (b). The singly bound linker adopts the perspective of its binding site at xA.
When its reaction volume and one of another binding site at xB overlap mutually as given, a crosslink is established.
The thick dashed line indicates the linking direction (c). The volumes are reduced to 2D representations for clarity.
A three-dimensional representation of a filament with physiologically spaced binding sites (db = dg = 2.77 nm)
and conoidal reaction volumes (pale blue), some of which (orange) have just been entered by a linker (red). The
reaction volumes’ orientations v∆b are depicted as red lines (d).

3.2.2 Binding events and modified reaction volumes

Now that chirality has been introduced to the mechanical filament model from Section 2.4, the
orientations of the reaction volumes treated accordingly. Theoretical work done on the sub-
ject of bundle size control assumes explicit orientations of binding sites [80]. An extension of
the chemical reaction model of Section 2.6 will be presented, which incorporates all necessary
means for the simulation of helically oriented binding sites and their respective reactive do-
mains. Figure 3.3 illustrates the entire (reversible) reaction process, at which end a double bond
between two binding sites xA, xB of two separate filaments is established.

(I) Distance criterion: a linker with position xl has to be located in the reaction volume
of a binding site (at position xA), a spherical shell, satisfying Rl−∆Rl≤∆l≤Rl+∆Rl

(Figure3.3a). The binding potential is given by Equation (2.46).
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3 Extended micromechanical approach – the reintroduction of sub-continuum microstructure

(II) Orientation criterion: the conoidal reaction volume has an opening angleϕb (Figure 3.3b).
Only linkers located in this subvolume of the initial spherical shell are eligible for linking.

(III) Mutual overlap criterion: In order to establish a crosslink between two filaments, the
reaction volumes of the linker and the free binding site have to overlap in a way such that
a binding corridor exists between positions xl and xB (Figure 3.3c).

3.2.3 Structural polarity of filaments
Actin filaments are polar macromolecules due their monomers being polar and oriented in the
same direction. Filaments thus have two different ends, (+) and (−). Polarity affects polymer-
ization rates as well as the traveling direction of myosin molecules, that attach to the filament.
In view of modeling motor proteins such as myosin II (cf. Chapter 4), structural polarity is an
essential property that needs to be accounted for. Polarity as a model feature is easily included
by defining the direction of the first principal axis ub of triad Λb as pointing towards the (+)-end
(Figure3.2a).

3.3 Extended linker model
The centerpiece of this chapter is a computational approach which allows linkers – or rather
their beam element representations – to establish mechanical connections at positions that are
located in between the FE nodes of filaments. The approach accomplishes this by enforcing
equality of positions and orientations between the linker element and the binding site position
on the filament.

3.3.1 Design concept
Simply put, a linker attaches to a filament and remains at its attachment site (until random de-
tachment), which entails the formulation of a most basic and very intuitive requirement: the
location of each of the two reactive domains of a linker must coincide with the location of the
respective binding site of the filament for the duration of their chemical bond. The locations
of the reactive domains are determined by the dynamics of the beam element representing the
linker. The locations of the binding sites can be computed using the interpolation schemes of
the BFE formulation of the filaments. Having determined both locations, a constraint must be
defined, that relates these two locations in a way which reflects the kinematical and kinetic prop-
erties of the connection. An analogous train of thought leads to the definition of an appropriate
rotational constraint.

3.3.2 Geometrical and mechanical interpolation and constraint
formulation for a two-noded beam element

The applied BFE formulation coincides with the one used to discretize filaments (cf. Sec-
tion 2.3.1), the main reason for this choice being its consistent and reliable handling of in-
terpolated rotations in three-dimensional scenarios. Since it discretizes a crosslink, it is labeled
element C from here on (cf. Figure 3.4a).
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3.3 Extended linker model

Introduction of essential quantities and notation Throughout the remaining chapter,
it is advantageous to distinguish between two sets of quantities. Quantities attributed to the first
set exist only implicitly in the frame of the interpolation and tying procedure. They will be in-
dicated by the fractal letter v (→virtual). The second set of quantities comprises everything that
is accounted for by or explicitly leads to entries in the global system of equations. This second
type will be marked with the fractal letter r (→real). Element C establishes a mechanical con-
nection between two beam elements A and B with two nodes, which usually (not necessarily!)
belong to two separate filaments as depicted in Figure 3.4a. In principle, higher order Lagrange
interpolation functions can be applied leading to a larger number of nodes for elements A and
B. The advantage of higher order interpolation function lies with a reduced error due to dis-
cretization. Element C has two nodes, which is sufficient due to the high stiffness of the linker.
These two nodes will eventually not factor into the global system of equations due to mathe-
matical considerations presented later on. The nodal positions are given by vectors xvA and xvB.
These rather elusive virtual nodes will be labeled vA and vB. The indices reflect that each inter-
polated node is assigned to one of the filaments’ elements A or B. The computed mechanical
quantities of nodes vA and vB are distributed onto four real nodes r[k]

A and r
[k]
B , respectively, with

superscripted nodal index k= {1, 2}. The locations of the virtual nodes in terms of the local
scalar line parameters ξA and ξB are denoted as ξ̃A and ξ̃B. In general, from here on, the fractal
characters v and r will indicate virtual and real quantities.

The method will only be discussed for the simplest case of Reissner beam elements A and
B having two nodes. In principle, it is applicable to beam elements with an arbitrary number
of nodes. In fact, it is independent of the type of beam element. Although there is a need
to account for model-specific characteristics (e.g., the type of shape functions, the number of
nodes per finite element, DOFs accounted for, or the technique of rotation interpolation, etc.),
the fundamental idea is universal. It could thus be loosely referred to as beam tying, since
geometrically non-matching nodes are mechanically tied together by a mathematical mapping
procedure. The mechanical coupling between virtual and real nodes is achieved by

(i) Formulation of suitable geometrical constraints concerning both translational and rota-
tional DOFs of virtual nodes vA and vB, that are tied to the interpolated positions at ξ̃A
and ξ̃B by these constraints.

(ii) Linearization of the resulting nonlinear equations of motion.

(iii) Elimination of the DOFs of the virtual nodes such that only the contributions of nodes r[k]
A

and r
[k]
B enter the global discretization.

In accordance to Equations (2.4), the translational position vector field and the rotation vector
field of the continuum, which is discretized by element A, are given by xA(ξA)∈R3×1 and
ΛA(ξA)∈R3×3, respectively. For the continuum discretized by element B, analogous vector
fields are denoted as xB(ξB) and ΛB(ξB).

3.3.3 Linearized system of equations for a tied two-noded
Reissner beam element

As a first step and for the purpose of a later application in the linearization of the modified resid-
ual, the linearized system of equations needs to be determined for a standard three-dimensional,
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3 Extended micromechanical approach – the reintroduction of sub-continuum microstructure

(a) Two filament elements connected by an interpolated linker element (b) Interpolation of rotation

Figure 3.4 (a) Internodal connectivity. (I) Two arbitrary beam elements A and B with interpolated triads
ΛA(ξ̃A),ΛB(ξ̃B) at their interpolated (binding site) positions xA(ξ̃A), xB(ξ̃B). (II) A two-noded crosslinker beam
element with virtual nodal triads ΛvA,ΛvB at their virtual node positions xvA, xvB . (III) Virtual node positions and
orientations are coupled to the interpolated positions and rotations of the four real nodes x

[kE ]
rE . (b) Sketch of the

Interpolation of rotational triads along the line parameter ξ by means of rotation matrices Λ.

geometrically exact, nonlinear Reissner beam element with two nodes. Here, the concrete ex-
ample of the beam formulation by [103] is discussed.

General remarks In order to solve a nonlinear system of equations implicitly, one requires
an iterative scheme, which minimizes a residual with respect to a (well-)chosen control quantity.
The minimization procedure evaluates a linearized form of the system of nonlinear equations in
a series of J∈N+ iterative steps j. If the control quantity measuring the quality of the numerical
approximation – usually a vector norm of the residual displacements and/or the residual itself –
meets a given threshold during the Jth step, the scheme is considered converged. The residual
represents the imbalance between all present internal and external forces due to the approxi-
mate character of numerical schemes in general. In many cases, Newton methods represent an
adequate choice. However, aiming for increased efficiency and robustness in order to enable
simulations on time intervals spanning several hundreds of seconds, additional measures in the
form of a PTC scheme are taken [38, 56], modifying the tangential stiffness matrix K by addi-
tion of artificial damping terms, that fade away once convergence within a J iterative steps is
most probable. Essentially, increasing efficiency is synonymous to achieving larger time step
sizes without deterioration of numerical accuracy. Increased robustness results in the recovery
of convergence of the Newton scheme even if the informed guess of the predictor step or any
of the following iterations is such that the radius of convergence is exceeded. As the discussion
of iterative solution schemes does not substantially promote the understanding of the mechan-
ical model, the reader is referred to [38, Appendix I], where the PTC scheme is presented in
sufficient detail.

Linearization procedure The linearized problem for the interpolated element C can be
denoted as a truncated Taylor series expansion around expansion point d{j}v , i.e., all higher or-
der terms are neglected leaving only the linear term involving the directional derivative of the
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3.3 Extended linker model

residual. Hence, the system of linearized equations

K{j}v ∆d{j}v = −r{j}v ∈ R6×1 (3.5)

features the directional derivative

K{j}v =
∂r{j}v
∂dv

∣∣∣∣
d
{j}
v

∈ R6×6, (3.6)

which is identified as the tangential element stiffness matrix of element C for the jth iterative
step. For the remaining part of this section, the superscript j is dropped from quantities, that
obviously depend on the iterative step number. Hence, unless explicitly specified, all symbols
(except for the interpolation function matrices) relate to the jth iterative step. The tangential
stiffness matrix is obtained by linearization of the weak form. The linearized residual of the
interpolated beam element C reads

Lin δΠ =

(
δuv

δϑv

)
︸ ︷︷ ︸

=δdv

T

Lin r
!
=0︷ ︸︸ ︷[(

rvt

rvr

)
︸ ︷︷ ︸

=rv

+

[
Kuu

v Kuϑ
v

Kϑu
v Kϑϑ

v

]
︸ ︷︷ ︸

=Kv

(
∆uv

∆ϑv

)
︸ ︷︷ ︸

=∆dv

]
= 0. (3.7)

As before, the index v indicates quantities attributed to the virtual nodes of the interpolated
beam element C. The variations of the nodal translational and rotational displacements of the
virtual nodes as well as the linearized displacements are given by

δdv = ( δu[1]T
v δu[2]T

v δϑ[1]T
v δϑ[2]T

v )T ∈ R12×1, (3.8a)

∆dv = ( ∆u[1]T
v ∆u[2]T

v ∆ϑ[1]T
v ∆ϑ[2]T

v )T ∈ R12×1. (3.8b)

Furthermore, the vector of residual forces is denoted as rv, and Kv is the element stiffness matrix.
The individual terms of the element stiffness matrix are given in Appendix A.

Next, in order to tie the interpolated beam element C to beam elements A and B at arbitrary
inter-nodal positions, constraints must be formulated that keep element C fixed to its positions
and orientations at its locations on these elements.

3.3.4 Constraint formulations
Translational constraints The enforcement of translational constraints is by far easier than
it is for rotations, which is why it will be discussed first. Both elements A and B in principle
receive the same mathematical treatment, that is to say their mechanical interaction with element
C is modeled the same way. Hence, from here on, instead of writing down equations twice, the
placeholder E ∈ {A,B} will indicate relevance for both elements. Let the vector

Xi
rE =

(
x[1] T
rE x[2] T

rE

)T

∈ R6×1 (3.9)

with nodal positions x[k]
rE ∈R3×1, that hold the values of the FE approximation of the continuous

solution xE . The superscripted i marks the ith discrete time step as introduced in Chapter 2.
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3 Extended micromechanical approach – the reintroduction of sub-continuum microstructure

As before, from here on throughout this chapter, temporal index i will be omitted in order to
maintain an as simple as possible notation. Using interpolation function matrix It(ξ)∈R3×6,
the interpolated positions in R3 may be readily calculated by

xE(ξE) = It(ξE)XrE , (3.10)

where matrix It is in principle given by Equation (2.25) and contains linear nodal shape functions
I
[1]
t = (1− ξ)/2 and I

[2]
t = (1 + ξ)/2. Note that s∈ [0; Le] is commonly used in the literature on

beams (e.g., [103]). It needs to be mapped to FE parameter space ξ ∈ [−1; 1] with the help of
J= ds/dξ= ‖x0,ξ‖. The notation (.),ξ means the derivative with respect to ξ. In some cases, an
explicit dependence on the global line parameter s instead of ξ is required (e.g. for the rotational
interpolation in Equation (3.24)). Whenever possible, the local parameter will be applied.

One may now formulate a vector-valued translational constraint, that ensures a fixed distance
between the positions of the two nodes and the respective interpolated positions. With the
position vector of the virtual nodes of element C, Xv = ( xT

vA xT
vB )T, and the nodal position

vector of the real nodes Xr = ( X T
rA X T

rB )T, the constraint reads

Ht = Xv − X̃ =
[
1̃ −Ĩt

] [Xv

Xr

]
∈ R6×1, (3.11)

where X̃ denotes the vector of interpolated positions and 1̃ ∈ R6×6 an appropriately dimen-
sioned identity matrix in order to fit the interpolation function matrix

Ĩt =

[
It(ξ̃A) 0

0 It(ξ̃B)

]
∈ R6×12, (3.12)

which in conjunction with Xr determines the interpolated coupling positions on elements A and
B. The formulation of translational constraints clearly does not pose a problem and is readily
implemented. Note that the constraint is given in a general way, leaving open how exactly the
constraint is fulfilled. In the most simple case of equality constraints, Ht = 0.

Accordingly, the variation of the translational constraint can be written as

δHt = δuv − δũ =
[
1̃ −Ĩt

] [δuv

δur

]
= 0 ∈ R6×1. (3.13)

with the variations of the four real nodes δur = ( δuT
rA δuT

rB )T. In order to complete the

translational constraint formulation, its linearization with ∆ur = ( ∆uT
rA ∆uT

rB )T is given by

∆Ht =
[
1̃ −Ĩt

] [∆uv

∆ur

]
= 0 ∈ R6×1. (3.14)

Rotational constraints Mathematical measures constraining the orientation of the linker
cross section are more complicated than their translational analogs. The interpolation of rota-
tions requires specific procedures, which are only briefly outlined in the course of the chapter as
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3.3 Extended linker model

this topic is as vast as it is intricate. The following procedure applies to the beam formulation
of [103], which is used throughout the chapter. The basic course of action, however, remains
the same as in the translational case.

As an essential requirement, interpolated triads need to be accessible by means of an unam-
biguous parametrization. This is achieved as follows. The parameter describing the rotational
field is the local rotational pseudo vectorψlE(ξE). It is conveniently interpolated between nodes
r
[1]
E and r

[2]
E by

ψlE(ξE) = It(ξE)
[
(ψ

[1]
lE )T (ψ

[2]
lE )T

]T

∈ R3×3 (3.15)

The reader’s attention is directed towards the fact that linear interpolation is possible without
the loss of objectivity in the case of the local pseudo vector, which represents the rotation with
respect to a reference frame ΛR fixed to the element. By contrast, this interpolation is incorrect
for the case of global rotation vectors. The local pseudo vectors ψ[1]

lE and ψ[2]
lE represent the

rotations of triads fixed at nodes r[1]
E and r

[2]
E . The interpolated rotational field can be described

by a compound rotation
ΛE(ξE) = ΛRE exp(

◦
ψlE(ξE)) (3.16)

with a reference triad
ΛRE = Λ[1]

E exp(
◦
φ1/2) (3.17)

as illustrated in Figure 3.4b. In principle, the referential orientation can be chosen arbitrarily.
Here, by definition, the relative rotationφ1/2 := 0.5φ

[12]
E is chosen, which describes the state of

rotation halfway between both nodes [30]. It can be computed from the rotation from the first
onto the second node

exp(
◦
φE

[12]) = Λ[1] T
E Λ[2]

E (3.18)

with the two nodal rotation matrices Λ[k]
E ∈R3×3. The interpolated triad from Equation (3.16)

can be expressed by other means, e.g., by the corresponding rotational pseudo-vector θE(ξE).
The variety of possible parametrizations of rotations entails an equally large variety of po-

tential constraint formulations. One such formulation will be presented, which enforce con-
straints on the basis of pseudo-vector representations of rotations. To this end, rotation couplings
{ΛvA,ΛA(ξ̃A)} and {ΛvB,ΛB(ξ̃B)} have to be created by constraining rotation differences Λ∆A

and Λ∆B, respectively. In advance, the reader is again reminded of the notation E ∈ {A,B},
which avoids repetition of formulae due to elements A and B being treated equally. As stated
above, the approach constrains the mechanical system in terms of the rotation difference Λ∆E ,
which is computed from

Λ∆E = ΛvEΛ
T
E(ξ̃E). (3.19)

Given a matrix representation of the rotation difference Λ∆E and its pseudo-vector counterpart
θ∆E∈R3×1, the constraint function can be defined in general as

HrE : R3×3 → R3×1,Λ∆E 7→ θ∆E . (3.20)

In the present case, HrE = 0. Individual constraints have to be formulated for each of the two
interpolated nodes tied to elements E . Each nodal constraint reads

ΛvE
!

= ΛE(ξ̃E) = ΛRE exp(
◦
ψlE(ξ̃E)). (3.21)
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3 Extended micromechanical approach – the reintroduction of sub-continuum microstructure

The variation of this rotational constraint is best expressed by means of spin variables. It is
given by

δϑvE
!

= δϑE(ξ̃E) = ItE(ξ̃E)δϑrE ∈ R3×1, (3.22)

where δϑrE = ( δϑ
[1] T
rE δϑ

[2] T
rE )T denotes the variations of the nodal spin variables of ele-

ment E . Note that the nodal translational interpolation function ItE ∈R3×3 (cf. Equation (2.25))
is applicable here. The linearization of the rotational constraint yields

∆ϑvE
!

= ∆ϑE(ξ̃E) = IrE(ξ̃E)∆ϑrE (3.23)

with the matrix of nodal rotational shape functions of element E as IrE = [ I[1]
r I[2]

r ]∈R3×6.

According to [103], the linearized spin variables ∆ϑrE = ( ∆ϑ
[1] T
rE ∆ϑ

[2] T
rE )T cannot be inter-

polated as conveniently as their variations from Equation (3.22), in which case a simple linear
interpolation scheme is sufficient. As stated in [103], the shape function IrE allows for the in-
terpolation in the SO(3) and preserves objectivity. The shape function of the kth node is given
by

I[k]
r (ξ) = ΛRE

[(
1− T−1(ψlE(s)) I[k]

t (ξ) T(ψ
[k]
lE )
)

V[k] + I[k]
t (ξ) T−1(ψlE(ξ))T(ψ

[k]
lE )
]

ΛT
RE

(3.24)

with the transfer matrix

T(θ) =
θθT

θ2
+

θ/2

tan(θ/2)
(E− θθ

T

θ2
)− 1

2

◦
θ ∈ R3×3, (3.25)

which relates the additive nodal variations δθ to the non-additive nodal variations δϑ by

δθ = T(θ)δϑ. (3.26)

The inverse of Equation (3.25) is denoted as

T−1(θ) =
sin θ

θ
1 +

1

θ2
(1− sin θ

θ
)θθT +

1

2

(
sin (θ/2)

θ/2

)2
◦
θ. (3.27)

Finally, the summarized contributions of the node-to-node rotationφ[12] are given node-wise by

V[1] =
1

2

(
1 +

1

φ[12]
tan

φ[12]

4

)
◦
φ[12], V[2] =

1

2

(
1− 1

φ[12]
tan

φ[12]

4

)
◦
φ[12]. (3.28)

The symbol 1∈R3×3 denotes an identity tensor. The transfer matrix in Equation (3.25) arises
from rather lengthy derivations and, for example, can be found in [17, 99]. In contrast to trans-
lational interpolation schemes, the rotational interpolation functions (3.24) explicitly depend on
the current, deformed configuration.

The final step towards the completion of the new formulation introduces the rotational tying
matrix Ĩr, which is a block-diagonal matrix of the form

Ĩr =

[
I[1]
r (ξ̃A) I[2]

r (ξ̃A) 0 0

0 0 I[1]
r (ξ̃B) I[2]

r (ξ̃B)

]
∈ R6×12. (3.29)
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3.3 Extended linker model

This matrix assembles the known nodal interpolation functions I[k]
r into a form which facilitates

the incorporation into the linearized system of equations. At this point, all pieces of the puzzle
have been gathered. The next and final step is to piece them together in order to acquire the
linearized form of the constrained problem.

Before proceeding to the linearized problem, the element spin variables as well as their varia-
tions and increments are assembled in the respective spin variable vectors ϑr = ( ϑT

rA ϑT
rB )T,

δϑr = ( δϑT
rA δϑT

rB )T, and ∆ϑr = ( ∆ϑT
rA ∆ϑT

rB )T.

3.3.5 Linearized system of equations of the constrained problem

The constraints demand the equality of positions and orientations of virtual and real nodes,
which is expressed by Ht = Hr = 0. The modified stiffness matrix can be written as

Kr(dr) =

(
Ĩ
T

t

Ĩ
T

t

)[
Kuu

v Kuϑ
v

Kϑu
v Kϑϑ

v

](
Ĩt

Ĩr

)
, (3.30)

which for the case of two-noded beam elements has the dimension R24×24. The element force
vector is given by

rr(dr) =

(
Ĩ
T

t rvt

Ĩ
T

t rvr

)
. (3.31)

In the end, the tangential stiffness matrix Kr and the element force vector rr solely depend
on the displacement vector dr = ( uT

r ϑT
r )T∈R24×1 of the four real nodes r[k]

E . With its varia-

tion δdr = ( δuT
r δϑT

r )T and the linearization ∆dr = ( ∆uT
r ∆ϑT

r )T, the resulting linearized
residual reads

Lin δΠr = δdT
r [rr(dr) + Kr∆dr︸ ︷︷ ︸

Lin rr

] = 0⇒ rr(dr) + Kr∆dr = 0. (3.32)

This linearized formulation can be readily incorporated into a FE framework in accordance to
standard textbook procedures (e.g., [234]).

3.3.6 A preview on constraint enforcement by Lagrange multipliers

It has been emphasized that the chosen constraints Ht = Hr = 0 are the most simple ones to
enforce and effectively do not even require the introduction of additional DOFs, which was
demonstrated in the course of this chapter. However, the physical reality might not always be
as simple as it fortunately is for the case of chemical bonds which are fixed to their bonding
location. With increasing kinematical and kinetic complexity, the formulation of the constraint
has to be more sophisticated as well.

At this point, it seems worthwhile introducing the fundamental ideas behind Lagrange mul-
tipliers, which can be utilized in the formulation of constrained optimization problems. In a
mathematical sense, optimization seeks to find the best solution out of some problem-specific
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3 Extended micromechanical approach – the reintroduction of sub-continuum microstructure

set of possible solutions. To this end, Lagrange multipliers represent a popular means of mini-
mizing an objective function

y(x) : RNd → R, Nd ≥ Nc, (3.33)

whose solution space is constrained by a secondary function c(x) = 0 containing constraints
in Nc dimensions. In the context of the previously presented application, these constraints
arise from the requirement of spatial and orientational congruence of pairs of material points.
However, as implied, more complex constraint function could be required. Eventually one
arrives at the formulation of a constrained optimization problem

minx
(
y(x)

∣∣c(x)
)
. (3.34)

The introduction of Lagrange multipliers λ∈RNc leads to a modified objective function

ymod(x,λ) = y(x) + λ · c(x). (3.35)

In order to minimize this expression, one has to find x∗ such that the variation of ymod

δymod(x) = δy(x) + δλ · c+ λ · δc(x)
!

= 0. (3.36)

In-depth information on the formulation of constraints in numerics can be drawn from [146].

Incorporation into the weak form Lagrange multipliers are introduced into the system
of equations as additional unknowns. They appear as an additional summand in a modified
potential, which reads

Πmod = Π + λTH (3.37)

and which leads to a so-called saddle-point problem, as a submatrix of zeros is introduced into
the graph of the stiffness matrix due to the additional DOFs. By means of static condensation,
the number of secondary Lagrange-multiplier-based DOFs may be reduced depending on the
problem. In fact, the simplistic problem presented in this chapter can be conceived as the result
of a complete condensation of the Lagrange multiplier DOFs.

The variation of the modified potential with respect to the primary unknowns, displacements
d, and secondary unknowns λ is given by

δΠmod = δΠ + δλTH(d) + δH(d)Tλ. (3.38)

The minimization of Πmod with respect to d in the presence of λ requires this variation to vanish
for arbitrary δd and δλ, meaning

δΠmod = 0 (3.39)

ensuring an exact satisfaction of the constraint at the cost of additional DOFs introduced by
λ. Often one can identify λ and H(d) as work conjugate, which makes Equation (3.38) a
virtual work expression. This convenient feature of the Lagrange multiplier method makes it an
especially popular tool for the derivation of weak forms in the FE context.
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3.4 Numerical examples

Constraints, that exceed the present ones in terms of their intricacy, could be employed in
more demanding problems such as the modeling of processive and non-processive enzymes.
For example, the non-processive behavior of myosin-II involves multiple time-variant phases.
Myosin II can slide along the filament and reattach firmly at some point [4]. The description
of this biological process can be more or less directly translated into a constraint formulation,
that is a function of both space and time. Other examples would be the walk of kinesin on
microtubules or the activity of dynein (cf. the subsequent Chapter 4), which both are highly
processive molecular machines [233]. They are able to travel along a microtubule without dis-
sociating from it, which is a key aspect of processivity. As motor activity such as mentioned
above involves complex molecular kinematics, appropriate constraints may be formulated more
easily if the general (theoretical) framework of a Lagrange-multiplier-based method is used as
a starting point rather than the condensed version of the underlying system of equations. Fur-
ther development of the approach towards more complex (processive) constraint formulations
is deemed a promising field of research in the future, as it could help understand mechanisms
of intracellular transport or cell division on a larger scale than, e.g., molecular dynamics ap-
proaches are able to handle. Cooperative effects of different well-understood molecular motors
could be studied and quantified (e.g., [199]), leading to a better understanding of how different
motor species team up to boost their efficiency .

3.4 Numerical examples

In this section, both quantitative and a qualitative numerical examples will be presented. The
first example demonstrates path-independence and objectivity of the interpolated beam element.
The second example reproduces all principal network architectures found in [35] with the origi-
nal beam formulation for filaments and linkers. Finally, the new approach is tested on two linear
rheology problems. While the first example simply tests whether the approach works (testing
the interpolation and the (virtual) constraints), the latter examples will additionally feature per-
formance tests to document the development of computational cost, and ascertain its possible
use in rheological studies.

It is noted beforehand that detailed discussions on the subjects of self-assembly and the rhe-
ology of networks follow in Chapters 5 and 6, respectively. The examples of this section simply
serve the purpose of validating the extended filament and linker models with respect to their
fundamental operativeness and correct implementation.

3.4.1 Validation of constraint enforcement

As already implied above, the present example rather aims at verifying the correctness of the
implementation and constraint enforcement than at an evaluation of the beam model itself,
for which path-independence and objectivity were proven by [103]. Here, examples 1 and 3
from [103] are computed for the current implementation using the simplest possible geome-
try of two two-noded filament beam elements and one two-noded linker beam element ties to
the other two as depicted in Figure 3.4a. As stated during the previous derivations, all involved
elements are based upon the same path-independent and objective beam formulation. The exem-
plary beam has a cross section area A= 0.1µm2, moments of inertia of the principal directions
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3 Extended micromechanical approach – the reintroduction of sub-continuum microstructure

of the cross section I2 = I3 = 8.38×10−5µm4, Young’s modulus E= 1.2×108 Pa, Poisson’s ra-
tio ν = 0.3, and a shear correction factor γ= 1.1. The nodes of the filament beam elements have
the coordinates x[1]

rA = [0, 0, 0]T, x[2]
rA = [0, 1, 0]T, x[1]

rB = [1, 0, 0]T, and x[2]
rB = [1, 1, 0]T. The ty-

ing positions are located at ξvA = − 0.1 and ξvB = 0.8, which are given in the FE parameter
space ξ ∈ [−1; 1] defined in section 2.4.1. For the sake of completeness, it is stated that the real
nodes do not additionally belong to conventional beam elements in contrast to the initial prob-
lem description in Section 3.1. Nodes r[1]

A and r
[2]
A are subject to translational Dirichlet boundary

condition enforcing zero displacement. All four nodes are subject to prescribed rotations

θ
[1]
rA =

 1

−0.5

0.25

 , θ
[2]
rA =

 1.25

−0.75

0.1

 , θ
[1]
rB =

−0.4

0.7

0.1

 , θ
[2]
rB =

−0.45

0.5

0.2

 . (3.40)

Note that these rotations do not equal the prescribed rotations chosen by [103], thus leading
to different results. The demonstration of path-independence requires equality of results upon
application of different rotation increments. Test case (a) makes the beam rotate by applica-
tion of a single rotation. Test case (b) applies two different rotations in sequence, which are
0.25θ

[1]
rA, 0.2θ

[2]
rA, 0.5θ

[1]
rB and 0.6θ

[2]
rB followed by 0.75θ

[1]
rA, 0.8θ

[2]
rA, 0.5θ

[1]
rB and 0.4θ

[2]
rB. Ta-

ble 3.1 lists the rotational strains κ at the center of the beam, i.e, ξ= 0.0 and the interpolated
displacements uvB at the free end of the beam. Strain-invariance is verified by a third test case
(c) superimposing a rigid body rotation θ�= [0.2, 1.2, −0.5]T on the prescribed deformation
enforced by Equation (3.40). The resulting rotations for test case (c) can be extracted from
Λ(c) = exp(

◦
θ(c)) = exp(

◦
θ�)) exp(

◦
θ(ξrB))). The results presented in Table 3.1 do not grant new

insights recalling that a verified beam element provides the mathematical foundation of the
model. However, they demonstrate the reliability of the interpolation of the virtual nodes and
thus serve as a proof of concept.

3.4.2 Network morphologies in crosslinked semiflexible networks
The second study seeks to recreate all four network morphologies presented and discussed in
Chapter 5: homogeneous-isotropic, bundle, cluster, and lamellar networks (cf. Figure 5.2). The
structural polymorphism of crosslinked semiflexible networks such as the cytoskeleton relies
heavily on the linker species involved, which are distinguished by their preferred binding angle
φ, and the linker-to-binding site ratio nl (see Table 3.2). In addition, the computational per-
formance is investigated for all morphologies at different numbers of elements Ne discretizing

test sequence κ1(L/2) κ2(L/2) κ3(L/2) u1
vB u2

vB u3
vB

(a) 1 increment −1.32303 0.263443 −1.43698 0.17273 0.08015 −0.35218

(b) 2 increments −1.32303 0.263443 −1.43698 0.17273 0.08015 −0.35218

(c) Rigid body rot. −1.32303 0.263443 −1.43698 − − −

Table 3.1 Components of the rotational strain κ(L/2) and the displacement uvB at the free tip of the beam for
the different rotation incrementation sequences. Note that in (c) uvB are not given as problem (c) differs from
problems (a) and (b), which results in different values that are not comparable.
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3.4 Numerical examples

Figure 3.5 Network morphologies that emerge from simulations with the new linker beam element. Each of the
filaments (green) of length Lf = 4µm is discretized with Ne = 8 beam elements. All four principal network phases
found in Chapter 5 are reproducible: homogeneous isotropic phase (not shown), bundle phase, cluster phase, and
lamellar phase. For better visibility, filaments with a diameter of 5-7 nm are visualized with doubled thickness.

a single filament. The referential quantity for all conducted simulations is the total number of
binding sites on filaments, Nb, which is kept constant for all simulations. Five different dis-
cretizations are evaluated with respect to computation time needed to reach 30000 time steps,
which equals a simulated time of Tsim = 300 s at a step size ∆t= 0.01 s. The simulated time in-
terval is large enough to ensure the development of all network morphologies. All discretizations
have a common number of Nf = 208 filaments, which corresponds to a filament concentration
of cf = 4µM. Filament length is set to a constant Lf = 4µm. Filaments discretization varies
and takes on values of Ne ∈{8, 16, 24, 32} FEs per filament, which corresponds to discretiza-
tion lengths hf ∈{0.5µm, 0.25µm, 0.167µm, 0.125µm}. The original FE formulation without
extensions (see Chapter 2) and hf = 0.125µm as well as Nb = 6864 binding sites is chosen as
a reference. Other key simulation parameters include H= 5µm as edge length of the cubic
simulation volume, dynamic viscosity of the surrounding fluid η= 10−3Pa s, and the thermal
energy of the system kBT = 4.045×10−3aJ. A comprehensive list of simulation parameters can
be found in Tables D.1 and D.2 in the appendices.

As discussed in Section 5.2, the encountered network morphologies are sensitive to the pre-
ferred binding angle φ, which is the angle enclosed by the filaments’ tangents at the binding
sites. Relative linker concentration nl and φ are chosen according to the phase diagram estab-
lished in Chapter 5 (cf. Figure 5.5). Their respective values for each simulation are provided
in Table D.3 of the appendix. Results for Ne = 8 show the emergence of the expected network
morphologies, which are illustrated in Figure 3.5. For low linker concentrations, the network
stays isotropic and homogeneous with respect to both filaments and linkers. Above a certain

parameter description homogeneous bundle cluster lamellar

nl=Nl/Nb relative linker concentration 0.058 0.204 0.138 0.204
φ±∆φ preferred binding angle 7

16
π± π

16
π
16
± π

16
7
16
π± π

16
7
16
π± π

16

Table 3.2 Simulations with different FE discretizations feature tuples of relative linker concentrations nl and
preferred binding angles φ, that lead to one of the morphologies found in Chapter 5.
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3 Extended micromechanical approach – the reintroduction of sub-continuum microstructure

linker concentration, the so-called crosslink saturation threshold, one witnesses the formation
of aggregates. For linkers that prefer crosslinking parallel filaments, bundles are observed.
Linkers with a preference for orthogonal filaments create clusters at intermediate linker concen-
trations and highly ordered orthogonal lattices or lamellar aggregates. It is demonstrated, that
the same morphologies can be reproduced, however, at a lower computational cost due to the
reduced number of global DOFs. This effect, which reflects one of the essential advantages of
the extended formulation, will be studied in detail in the following. Figure 3.6 summarizes the
results of a numerical study, which focuses on the computational effects of choosing coarser
filament discretizations. The presented data results from data evaluation on the time interval
t∈ [100 s; 300 s]. The lower interval boundary is chosen such that the respective network struc-
ture has already developed its characteristic shape.

First, simulations yielding homogeneous isotropic networks are discussed, which are illus-
trated in the first column of Figure 3.6. The comparison of homogeneous isotropic networks
shows that the computational effort for the case with interpolated linkers and Ne = 32 is ≈20 %
higher than the simulation using standard node-to-node linkers at an equal number of elements
per filament Ne = 32. This is hardly surprising since the interpolation of positions and rotations
and the set-up of element stiffness matrices needs to be performed for each linker element. The
additional effort of providing inter-nodal binding sites entails the observed increase in com-
putation time. Throughout all simulations, only ∼100 crosslinks are constantly present at any
time for all discretizations – too small a number to significantly affect the total computation
time. However, investigating the total number of linker elements, the satisfactory conclusion
can be drawn that the interpolated linker approach does not significantly alter the statistics of
binding and unbinding events, i.e., the number of crosslinks is independent of the discretization
(within the studied bounds, of course). Linker administration (running search algorithms, eval-
uating binding potentials, interpolation of nodal positions/rotations, etc.) is more costly, which
is understandable considering the increased effort of handling a doubled number of DOFs per
linker molecule. However, in view of computation times decreasingly contributing to the overall
temporal effort with increasing mesh refinement, one may state that this matter of expense is a
minor one. Moreover, remedies to this problem are readily available in standard literature and
do not directly affect mechanics. The summed temporal costs per time step for the use of linear
and – as a consequence – the non-linear solver in Figure 3.6 again scale nearly linearly.

The picture changes upon examination of the other morphologies, which are linker-dominated.
The bundle phase is the most demanding network structure in terms of computational cost. This
is only natural as it provides a maximal number of potential binding sites for crosslinks. Gener-
ally, isotropic linkers, i.e. without binding angle limitations, the emerging network architecture
will always be bundles. Imagine sitting at a filament binding site close to the neutral line of
a bundle. Potential binding partners then include all binding sites within a sphere of radius
Rl. This statement is also true for a cluster. However, the radially oriented filaments lead to a
quick depletion of binding partners with increasing distance from the cluster core. Although
the number of simulated linker molecules is more than three times higher than in the homoge-
neous isotropic case, linker administration takes about the same amount of time. The reason
for this seemingly paradox outcome is simple. For reasons of efficiency, doubly bound linkers
may be skipped by linker management routines since their location and mechanical behavior
is now completely defined by their FE model. Studying the second column of Figure 3.6, one
can easily identify the cost driver: the solution procedure of the linearized system of equations
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Figure 3.6 Columns: Network morphologies. Rows: Total simulation time for various discretizations, PTC
time per time step, linear solver time/timestep, linker administration time (search algorithms, linking/unlinking,
addition/deletion of elements), average number of linker elements, and total number of FEs. Dashed lines depict
values for the standard linker case, dash-dotted lines provide errors.
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3 Extended micromechanical approach – the reintroduction of sub-continuum microstructure

are responsible for more than 60% of the total time consumption of the iterative solutions pro-
cedure. The cause is straight-forward. Since linker elements in general increase the degree
of nodal connectivity, off-diagonal entries in the global system of equations increase in num-
ber as well. The incorporation of four instead of only two nodes per linker element amplifies
this problem and thereby further diminishes the performance of the solution procedure. Off-
diagonal terms are counterproductive in terms of solver efficiency as they lead to ill-conditioned
stiffness matrices. Due to the limited scope of this thesis, efforts to increase solver efficiency
by means of an optimized and problem-specific treatment of the global stiffness matrix have
not been undertaken. However, putting the hypothetically possible leap in performance and the
practical outcome into perspective, the need for improvement is obvious and implies possibil-
ities for future improvements. Another noteworthy observation is the variance in linear solver
times for finer filament discretizations, which is caused by the stochastic nature of the problem.
Due to stochastic binding-/unbinding events, the graph of the global stiffness matrix is subject
to random changes in each time step. Favorable matrix layouts lead to short solution times,
while extremely unfavorable ones lead to a noticeable increase in the solution time increase (up
to ∼13 s for Ne = 32). In general, the spread of solution times increases with the number of
elements per filament Ne.

Finally considering the average number of linker elements, a slight increase by 1-1.5% is
recorded. In view of the fact that only one simulation has been performed per discretization,
this minor aberration may be excused. One possible explanation might be rooted in the loss
of an increasing number of explicitly simulated thermal fluctuations with decreasing Ne. The
present two-noded Reissner beam element interpolates positions only linearly. The quality of the
approximation deteriorates with decreasing Ne, as all transverse modes of fluctuation between
two FE nodes of a filament are omitted. As a consequence, the number of available binding
sites increases, since the set of possible geometrical configurations of the filament is drastically
reduced. A more accurate interpolation scheme would most probably alleviate this shortcoming.
See this chapter’s outlook (Section 3.5) for a slightly more detailed elaboration of the problem.

The cluster network with its approximately 400 linker elements exhibits a near linear scaling
of the total simulation time (cf. the third column of Figure 3.6). Other measures, such as the
nonlinear solver time, behave according to expectations as well. The number of linker elements
varies more noticeably than in the previously discussed cases, that is, the deviation amounts to
about 5% depending on Ne. However, with respect to the total number of binding sites Nb, it
still represents only a minor influence on the overall simulation as the bottom row of Figure 3.6
shows. The scaling of the total number of elements in the simulations is overall linear.

The lamellar phase offers high number of potential double-binding sites for linkers as well
and in this respect resembles the bundle phase. The fourth column of Figure 3.6 thus in principle
displays a similar behavior as the bundle phase with a slightly less pronounced nonlinear scaling
of the computational effort. However, the flat geometry leaves less binding site combinations
than the bundle does, resulting in a slightly lower computational cost due to a smaller average
number of linker elements.

Overall the numerical bottleneck can be pinned on the linear solver. As expected, the higher
connectivity due to the involvement of four instead of two FE nodes per linker element leads
to noticeably higher overall simulation times. For discretizations tested here, the superiority
of the original node-to-node linker is not surprising. However, the selling point of this linker
formulation is found elsewhere. The new linker element becomes the economically sensible
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(a) Network architecture
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(b) Rheological spectrum

Figure 3.7 Rheological spectrum of a bundled semiflexible network, wich is modeled using interpolated linker
elements. Storage modulus (blue) and loss modulus (red) show the expected scaling relation, which differs from the
classic {G′, G′′}∼ω3/4 at high frequencies. Furthermore, the slight dip in G′′ as well as the low frequency scaling
{G′, G′′}∼ω1/2 are also reproduced. Note the intersection of G′ and G′′ at 1rad/s as assumed in Section 2.3.3
of [133].

choice, when the total number of binding sites Nb is increased. The global system size remains
constant for the new linker element independent of Nb, while the original approach entails an
increase of DOFs. Eventually, a further refinement of the mechanical discretization becomes
computationally infeasible, which makes a good case for the new linker.

3.4.3 Linear rheology of semiflexible bundle networks
The final validation of the overall operativeness of the new linker model is performed by means
of rheological simulations. The goal is to recreate the joint mechanical effects of thousands
of simultaneous crosslinks. The results are cross-checked against validated results presented
in Chapter 6. A network consisting of Nf = 360 filaments (cf = 4µM) with Ne = 12 elements
per filament is probed on a broad frequency interval f∈[3×10−3; 3×105]Hz. The number of
binding sites Nb = 11880 is chosen equal to the examples in Chapter 6, which corresponds to a
distance db = 0.125µm between two adjacent filament binding sites. The network was prepared
by letting the network self-assemble for ∼1200 s until it reached a geometrical state that almost
exclusively consisted of bundles (see Figure 3.7a). The cubic simulation box with edge length
H= 6µm contains Nl = 9000 linker molecules, of which approximately 6000 are doubly bound
within the bundles. A comprehensive parameter list is provided in Table D.9.

As Figure 3.7b demonstrates, all characteristic features of the generic rheological spectrum of
a bundle network from Chapter 6 are reproduced. For high frequencies, the moduli display the
typical power law behavior native to bundle networks of semiflexible filaments. The frequency-
dependent scaling of G′∼ω0.95 differs noticeably from that of G′′∼ω0.55 and both are thus in
contrast to the classic understanding of the high frequency scaling of semiflexible networks,
which is G′,G′′∼ω3/4 [59,118]. The intermediate frequency regime shows a very subtle inflec-
tion resulting in a local maximum for G′′ at a frequency of about 1Hz. This observation is in
agreement with experiments [14, 138]. Furthermore, the low-frequency square root scaling can

55



3 Extended micromechanical approach – the reintroduction of sub-continuum microstructure

(a) Network architecture
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(b) Rheological spectrum

Figure 3.8 (a) homogeneous, isotropic network made of single filaments, that are decorated by linker molecules.
(b) rheological spectrum of a homogenous-isotropic network with storage modulus G′ (blue) and loss modulus G′′

(red) . At entanglement points, linkers establish crosslinks to other filaments. Compared to bundle networks, the
minimum in G′′ at intermediate frequencies is slightly more pronounced in accordance to experiments [137]. The
low-frequency square-root scaling is recovered. At high frequencies, the moduli’s scaling behavior is G′,G′′∼ω.

be seen, which again is in agreement with experiments mentioned before. The loss modulus ex-
ceeds the storage modulus for this particular sample, meaning that viscous dissipation exceeds
elasticity. This second intersection – the first having occurred in the high-frequency regime –
is a feature that is hinted at in [133], yet has not been directly observed there due to a compar-
atively low dissociation rate constant koff ≈ 0.07s−1 (in vivo) mentioned in [134]. Whether or
not a second intersection of G′ and G′′ is observed most probably depends on crosslink density.
The lower this density is in a bundle, the greater the dissipative contribution to the complex
modulus. Eventually at sufficiently low linker densities, viscous effects exceed elasticity.

3.4.4 Linear rheology of homogeneous isotropic networks

HMM is known to constitute crosslinked actin networks made up of single filaments. These
networks remain homogeneous and isotropic regardless of linker concentration [137,203]. This
property can presumably be attributed to HMM attaching itself to an actin filament with both
its S1 domains, blocking two binding sites, which leads to a decrease of the number of binding
site pairs eligible for crosslinks between separate filaments. Only at filament entanglement
points can crosslinks be established, which is a somewhat trivial statement but, given that HMM
constitutes homogeneous, isotropic networks, stresses the fact that such a network offers less
opportunities for double bonds than, e.g., a bundle network.

Simulations are set up with an almost identical parameter set as the bundle network exam-
ple in Section 3.4.3: among others, the size of the simulation box (H= 6µm), filament con-
centration cf = 4µM and the number of linkers Nl = 9000 remain unchanged (cf. Table D.9).
The linkers are, however, not isotropic anymore, but exhibit a binding angle preference of
3π/8≤φ≤ π/2 when establishing crosslinks between two separate filaments, and are explicitly
allowed to bind to the same filament with both their reactive sites. Additionally the distance

56



3.5 Conclusions and outlook

between two adjacent filament binding sites is reduced to db = 15.625 nm and filaments are chi-
ral. In the present case, chirality plays only a minor role due to large linkers (2Rl = 100 nm),
which find enough binding opportunities regardless of the binding site orientation. The network
in Figure 3.8a, which is used for linear rheology simulations, has undergone evolution for a sim-
ulated time of ∼800 s. Figure 3.8b shows the frequency-dependent viscoelastic response of the
network in the regime of small deformations. Clearly, the local maximum of G′′ at intermediate
frequencies (∼10 rad/s) is more prominent than it is for bundle networks,i.e., the difference
between the dip in G′′ and its local maximum is larger. In contrast to bundle networks, the
local maximum in G′′ at the characteristic frequency ωc is not shifted to ωc/2π <koff , but rather
equals the off-rate, which again is in agreement with experiments [137]. Absolute values of
the maxima are comparable with G′′(ωc)≈ 0.7 Pa, the difference between the G′′-minimum and
the maximum. This distinction between the two network morphologies is in agreement with
experiments on actin/HMM networks [137] and actin/fascin bundle networks (e.g., [138]). It
can be understood by the decreased number of crosslinks between filaments, which makes the
unbinding of a single linker weigh more in a homogeneous isotropic network than in a bun-
dle. If an intra-bundle crosslink detaches, there are still plenty of crosslinks left in the bundle
cross section. In homogeneous isotropic networks, however, the detachment of a linker may
already mean the loss of a crosslinked entanglement point, i.e. the free filament length at the
unbinding site grows leading to increased dissipation. In the low frequency regime, the scaling
G′,G′′∼ω1/2 is observed, which serves as another proof for a generic power law regime, which
is not only limited to bundle networks as discussed in Chapter 6. At high frequencies, both
moduli seem to approach a common power-law scaling G′,G′′∼ω.

3.5 Conclusions and outlook

In this chapter, the BD/FE framework of Chapter 2 has been extended. The modeling augmenta-
tions allow for a decoupled handling of the molecular topology and the mechanical description.
As a result, the superior computational efficiency of the FEM can be exploited while simultane-
ously resolving macromolecular details far below the mechanical discretization length.

This chapter’s innovation is founded on two separate developments, that are closely linked
together and access their full potential only when applied in conjunction with one another. An
enhancement of the numerical model of the filament enables mechanical connections along the
entire geometry and not only at nodes of a finite element. Without a complementary linker
model, however, the extension of the filament model is pointless. Therefore linkers have been
enabled to crosslink filaments at arbitrary binding positions along their geometry.

Biological macromolecules such as F-actin or microtubules consist of discrete molecular sub-
units, which provide chemical binding sites for linkers. Knowing their molecular structure, the
topology of binding sites may be designed in order to meet the specifications of one or the other
filament species. Here, the design procedure has been discussed for the chiral biopolymer F-
actin as it is closely connected to the topic of this thesis. However, it can be easily transferred
to meet the structural specifications of the molecular geometry of other slender polymers like
triple-helical collagen or microtubules, which consist of helically arranged tubulin subunits. The
only adjustments concerns the adaption of the constitutive properties and the binding site map
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by means of orientations Λb.

Two primary model-related and methodic aspects as well as two secondary problems need to
be considered in view of future developments:

(I.1) Increase of the accuracy of the interpolated geometry by means of more fitting interpola-
tion procedures, i.e. the employment of alternative beam element formulations

(I.2) Improvement of the solution procedure regarding the efficiency of the linear solver

(II.1) Application of an efficient load balancing between the participating processors during
parallel computation

(II.2) Efficient search algorithms

With respect to item (I.1), one may consider switching to an alternative beam element formu-
lation. Fortunately, the tying method is adaptable to principally any beam or rod model. Nonlin-
ear, geometrically exact Kirchhoff beam elements appear to be the method of choice [155,156].
Beam elements of this type have only two nodes but interpolate the translational DOFs using
higher-order Hermite polynomials. The current FE model of the filament is based upon a Reiss-
ner beam formulation, which interpolates the translational displacement field using Lagrange
polynomials. The polynomial order p of Lagrange polynomials is connected to the number of
nodes K by p=K−1. Due to the more complex interpolation scheme, the Kirchhoff beam el-
ement offers a better geometrical approximation than the Reissner beam element for an equal
number of DOFs. As a consequence, one can choose a coarser discretization in order to achieve
the same accuracy as the current Reissner beam discretization. There are further advantages.
The Kirchhoff theory omits shear, which is an acceptable simplification for beams with a high
slenderness ratio. This leads to a reduction in model complexity. Furthermore, Reissner beam
elements suffer shear locking and a an ill-conditioned stiffness matrix. Lastly, in view of a future
application of beam contact formulations, the C1-continuity of the centerline of the Kirchhoff
beam element is of great advantage.

In conjunction with an appropriate beam model, solver performance can be improved as pos-
tulated by (I.2). In this chapter, only the general feasibility of the approach has been eval-
uated using an iterative GMRES solver for the linearized system with an ILU factorization
for the pre-conditioning of the global stiffness matrix. Optimized pre-conditioner settings and
problem-specific linear solver parameters are expected to improve computational performance.
In network simulations, the global stiffness matrix is subject to change in each time step as the
random addition and subtraction of linker elements affects matrix entries and may lead to an
ill-conditioned problem. Therefore, the adequacy of the initial set of solver parameters is ques-
tionable with respect to the evolved network geometry. The application of numerical methods
that aim to reduce the matrix bandwidth (e.g., based on the ideas of [32]) can yield a beneficial
effect.

Concerning (II.1): parallelized simulations require the definition of processor boundaries,
that divide the global problem into processor-specific subdomains. The stochastic nature of
network simulations can lead to an imbalance between the individual processor loads due to
an increasingly non-uniform distribution of elements among the participating processors. As
a consequence, the global computational efficiency suffers from increased solver times, which
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result from increased inter-processor communication due to the high degree of connectivity
among elements and nodes. The continued evaluation of the sensibility of processor domains
during runtime as well as their controlled redefinition, i.e. the redistribution of all DOFs and
elements, can entail an increase in computational efficiency.

Lastly, concerning (II.2) and bearing in mind that a physiological actin filament consists of
thousands of monomers, i.e., potential binding sites, efficient search routines are an essential
component of any network simulation. In the frame of this thesis, search algorithms using octree
data structures and binning strategies have been implemented and are capable of handling the
complexity of the system (cf. Appendix B.2). However, in order to further decrease search and
matching times, an improved parallelization of the search routines can be considered.

The extended computational approach can be applied to a variety of biophysical problems
such as actin bundle assembly. Here, phenomena on length scales below a numerically feasible
filament discretization determine the mechanics on the scale of single bundles. Alternatively,
the approach can be applied to increase the physical dimensions of the problem. One can exploit
the reduced number of DOFs per filament in order to explore effects of larger filament concen-
trations in enlarged volumes. Chapter 5 will feature one such example, where the characteristic
length scale of the system (the edge length of the cubic simulation box) is increased to 10µm.
Being able to access this dimension also means that modeling and simulating systems the size
of single cells cannot be considered a far-fetched goal any longer.

The decoupling of the chemical topology from the FE discretization may also help modeling
polymerization processes without having to discretize molecular subunits. Due to the fact that
polarity is already implicitly modeled by the orientation of the beams’ material triads, biological
processes like the treadmilling of actin filaments or the contraction of both polar and apolar
bundles may be the subject of future study, to which the here presented approach can contribute
greatly.

The subsequent Chapter 4 utilizes the here introduced methods and applies them to the mod-
eling of molecular motors. Furthermore, they will be picked up in Chapter 5 for an enhanced
study of linker-induced self-assembly in order to assess the effect of both a finer chemical reso-
lution as well as the effect of chirality.
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4 A beam-element based model of a
molecular motor

Life’s maybe most defining characteristic is autonomous movement driven by metabolic activ-
ity. Complex motion patterns – from facial expressions to a javelin throw – are the result of
a mechanical amplification of over ten orders of magnitude in length. What manifests in the
form of macroscopic mechanical work and kinetic energy is the joint effect of myriads of motor
proteins, molecular machines, which convert chemical free energy into mechanical work and
heat. They make things move [215].

Chapters 2 and 3 have laid the methodic foundations for the present chapter, where a sim-
plified model of a molecular motor will be motivated, discussed methodically, and validated
numerically. As the focus of this work lies with networks consisting of semiflexible filaments,
the design of the motor will be inspired by skeletal muscle myosin. However, the goal of this
chapter is not to recreate the complex kinematics of single motor proteins or even to account
for their distinct chemical cycles, but rather aims at providing an instrument, which allows for
direct mechanical insights of how the exertion of forces on biopolymer structures alter their
mechanical behavior on a larger scale.

This chapter begins with a short introduction to the vast topic of motor proteins and their
functions, which includes a brief discussion of the main motor protein families myosin, kinesin,
and dynein (Section 4.1). The introduction is followed by the description of a myosin-inspired
numerical model of a molecular motor based on BFEs. More precisely, the motor activity of
a single myosin head domain serves as the archetype of the motor (Section 4.2). Based on
this fundamental building block, more complex motor units like myosin thick filaments may be
realized in the future. In a final section, the presented approach is applied in the simulation of
so-called in vitro motility assays, which in the past provided essential experimental information
on the biochemical and mechanical properties of the myosin molecule [88] (Section 4.3). A
slightly enhanced outlook will briefly hypothesize about a modeling approach for myosin thick
filaments and their application in the simulation of contractile bundles and active biopolymer
networks.

4.1 Molecular machines

Motor proteins such as myosin or kinesin are the driving force behind an abundant variety of
intracellular processes, which have been discovered and studied in the past decades. They play
their part in such essential tasks as muscle contraction [97, 98], vesicular transport and endocy-
tosis [165], mitosis and meiosis (cf. [145]) or mechanosensing [109]. The defining purpose of
molecular motors is the amplification and acceleration of biological processes, which in their
absence would be driven by mere diffusion. According to [88], any motor protein propelled
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(a) structure of myosin II (b) structure of kinesin

Figure 4.1 Essential motor proteins. (a)actin-associated motor protein myosin II, most prominent member of the
myosin superfamily, is the eponym of the family as it was discovered first. It is localized in muscle cells, where
it assembles into thick filaments. It binds to actin filaments with its heavy chains (images modified from [61]).
In experiments involving single myosin molecules or parts of it, often only Heavy meromyosin (HMM) or the
subfragment 1 (S1) of HMM are used. (b) microtubule-associated motor proteins kinesin and dynein (not depicted)
exhibit complex kinematic patterns during force exertion. Since kinesin’s motion resembles a walking biped, it was
named the kinesin walk. The motor domains attach to the microtubule, the tail domains attach to cargo, e.g.,
vesicles (image modified from [62]).

by the hydrolysis of adenosine triphosphate (ATP) can be characterized in general by three
characteristic distance measures:

(I) working distance δw describes the distance covered during each step of the molecular
motor. It consists of a fraction δ+ attributed to the power stroke and δ− attributed to motor
being dragged along by the filament after the power stroke and before detachment, which
is referred to as drag stroke.

(II) path distance δp quantifies the distance between two consecutive substrate locations that
a motor attaches itself to.

(III) distance per ATP δATP represents the distance that is covered during the hydrolysis of a
single ATP.

These quantities can readily be converted into meaningful parameters of the here presented
model of a motor protein. A fourth, temporal quantity of great importance when characterizing

Motor Ref. working distance δw path distance δp distance/ATP δATP duty ratio r

Myosin II [88] 5 36 200-400 0.05

Kinesin [88] 8 8 16 ≥0.5

Dynein [177] ±8 8 16 ≥0.5

Table 4.1 Characteristic distance measures for the three main motor proteins. Distances are given in units of nm,
the duty ratio is dimensionless.
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motor proteins is the duty ratio
r =

τon

τon + τoff

, (4.1)

which describes the fraction of a full cycle, during which the motor is attached to its substrate.
Here, τon denotes the temporal fraction of the cycle during which the motor is attached to the
filament. The complementary time τoff then represents the time that the motor spends detached
from the filament. This value varies greatly among different types of motors as there exist
processive and non-processive motor proteins. Processive proteins like kinesin stay attached
to their substrate for many steps. Hence their duty ratio is high, usually r∼ 0.5 and above.
Most myosins on the other hand detach after each hydrolytic event, which makes them non-
processive. Consequently their duty ratios are reported to be low at r∼0.01-0.1 [87]. Literature
values for the three most prominent motor proteins are listed in Table 4.1 [88].

4.1.1 Actin motors

Molecular taxonomy The myosin superfamily consists of about 20 different motor pro-
teins, which share filamentous actin as their binding partner. All of them are capable of force
generation via ATP hydrolysis, an exothermic reaction that severs the terminal inorganic phos-
phate and produces adenosine diphosphate (ADP). Given a sufficiently high ATP concentration,
myosin motors exhibit either processive or non-processive behavior depending on the species.
Myosin V is processive, while myosin II is not. Here, myosin II will be treated in more detail
since it will loosely pose as the archetype for the numerical model. Hence, from here on, the
term myosin will refer to type II of the superfamily. It consists of two heavy chains (the head
domains) and as four light chains of amino acids (the necks and the tail), of which sketches
are provided in Figure 4.1a. Initially being thought to exist only within muscle cells (hence the
prefix myo), myosin II became the eponym for an entire family of motor proteins, which in the
following decades was identified in many other cell types as well, e.g., in cells of stereocilia in
the inner ear (myosin I, [9]) or in retinal cells (myosin III, [143]).

Force generation Muscle contraction is attributed to the motor activity of myosin, which
is driven by ATP hydrolysis. The reaction lead to a series of conformational changes in the
protein’s head domains [195]. Myosin exhibits a cyclic motor activity, which can be divided
into five distinct states (cf. textbooks such as [4], alternatively [194]). The initial, yet short-
lived state is called rigor configuration, where one of the two heavy chain head domains is
attached to the filament. This state is depicted in Figure 4.2a. ATP attaching to a specific binding
pocket of the head domain of myosin causes a small conformational change, which results in the
myosin head detaching from the filament. At this point, the head is free to slide along the actin
filament (Figure 4.2b). ATP hydrolysis subsequently entails a large conformational change,
which makes the head domain move δw≈ 5 - 15 nm in (+)-direction [145, 226] (Figure 4.2c).
It then reattaches to the next binding site (Figure 4.2d). Myosin does not follow the helical
path laid out by the actin monomers but rather maintains a translation parallel to the filament
axis [88]. It hydrolyzes one ATP per step, so that the working distance equals the distance per
ATP: δw = δATP. Having reattached to the filament, the severed phosphate is set free resulting in
another large conformational change, which is commonly referred to as power stroke. The stroke
is not explicitly depicted. Rather, it represents the transition form Figure 4.2e to Figure 4.2e.
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(a) rigor state (b) ATP attachment (c) ATP hydrolysis

(d) Phosphate release / Power stroke (e) Recovery / return to rigor state

Figure 4.2 Sketch of the enzymatic cycle of myosin: (a) rigor configuration, where one of the myosin heads is
firmly attached to actin (green). (b) ATP (blue) binds to myosin. (c) In the wake of ATP hydrolysis to ADP and
phosphate (purple), the head domain undergoes a conformational change. It slides along the filament. (d) The head
domain reattaches to the next available F-actin binding site, triggering a conformational change, which causes the
ejection of the phophate. This causes another large conformational change, the power stroke. (e) Recovery of the
initial (rigor) configuration at the new position after a relative translation of δw.

During a major part of the cycle, however, the myosin head spends in a slow conformational
change, which reproduces the initial rigor configuration at the new binding position, which is
illustrated in Figure 4.2e. Expressed in terms of formulae, the consecutive steps describing the
reaction kinetics of actomyosin interaction according to [148] read

AM + ATP
 M ·ATP

M + ATP
 M∗ADP ·P
A + M∗ADP ·P
 AM + ADP + P

(4.2)

with A, M, and P representing the chemical species actin, myosin, and phosphate, respectively.
As Figure 4.2 shows, only one of the two myosin heavy chains is involved actively at a time.

The structural polarity of F-actin is of essential importance as it controls the direction of
movement of the myosin motor. Except for type VI, all myosins move towards the barbed
or (+) end of the actin filament. Through their catalytic activity, which leads to molecular
movement, motors exert forces, which can be measured in experimental set-ups. Their range of
magnitude is given by 1-7 pN with a mean force Fav = 3.4± 1.2 pN [52]. Other sources report
similar values of 2-6 pN [16, 68]. The path distance is reported to be δp =D/2≈ 36 nm, which
corresponds to half an F-actin repeat. Corresponding experiments have also shown that myosin
motors do not follow the helically winding path of actin monomers but rather move parallel to
the filament’s axis [88].

Under certain environmental conditions, e.g., at low salt concentrations, myosin molecules
clot together forming thick filamentous structures at whose ends active domains with numerous
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single myosin motors can be found. These thick filaments can be found in muscle cells, where
the first myosin structures to be discovered and usually comprise ≈600 myosin heads. They
enable actin displacements of up to 0.7µm per cycle [88, 194], which are essential to muscle
contraction as well as to contractility in apolar actin bundles [131, 132, 205].

4.1.2 Microtubule motors

As previously mentioned, proteins of the kinesin and the dynein superfamily are the main molec-
ular motors associated with microtubules. Their main task is the vesicular transport of proteins,
nutrients, and metabolites, but also entire organelles, which is paramount to the overall oper-
ativeness of a cell’s metabolism. Kinesins predominantly move towards the (+)-end of the
microtubule, while dyneins move in the opposite direction.

Kinesin Kinesin was first described by [216] and is an ATPase like myosin, converting chem-
ical energy by ATP hydrolysis. It supports cell division (mitosis and meiosis), and carries
cargo though the cell towards its destination (e.g., anterograde transport of cargo in axons,
i.e. center→periphery). It is a dimer consisting of two heavy chains of amino acids, which
bind to two light chains. The light chains form an α-helical coiled coil structure, to whose tail
domains cargo vesicles usually, but not exclusively, attach (cf. Figure 4.1b). The motion pattern
of kinesin is believed to be a hand-over-hand mechanism [231], which is slightly reminiscent of
a waddling duck (cf. Figure 4.1b). With each step and while hydrolyzing ATP , kinesin covers a
distance of δw≈ 8 nm along a microtubule, where it attaches to tubulin subunits [188]. Hence,
depending on the tubulin dimer ordering, kinesin either walks parallel to the axis or in a helical
fashion.

Dynein Dynein is predominantly localized in the cytoplasm [147] but it can also be found in
axonemes, that enable the motility of cilia and flagella [174]. For example, it provides the means
for retrograde transport of vesicles and organelles in axons [187]. Dynein consists of two heavy
chains, which contains the active head domains, six intermediate chains, as well as several light
chains. It is a processive enzyme, which means that at least one of its two head domains is bound
to a tubulin subunit at a time during its enzymatic activity. The precise crystal structure of the
dynein heads has only very recently been resolved [120]. The two heads capacitate dynein of
actively walking down a microtubule. It has the same working distance as kinesin, but can also
walk backwards and sideways [177].

4.2 Numerical model of a non-processive molecular
motor

In this section, a kinematically abstracted model of a molecular motor is presented, which can be
used to study effects of motor proteins on structures on a larger length scale, e.g., on the scale of
biopolymer networks. It models non-processive motor activity. Therefore, it bears resemblance
to myosin motors, or, more precisely, to the active part containing the heavy chains, HMM. In
one respect, it stays loyal to the original concept presented by A. F. HUXLEY [96], which has
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only two states: on and off. However, it additionally incorporates a basic idea concerning motor
kinematics in the sense, that a rotatory motion is performed, which resembles the swinging
cross-bridge model (cf. [195]) and the swinging lever arm hypothesis (cf. [82]). With regard
to the significantly more complex motion patterns of the processive microtubule motors kinesin
and dynein, more demanding procedure are without a doubt required in order to account for
their kinematics. In this case, the Lagrange-multiplier approach from Chapter 3 may present a
methodical solution by adjusting both the geometrical information passed to the filament model
and the constraint formulation of the motor element such that both agree with the molecular
structure of the microtubule on the one side and with the motor’s cyclic pattern on the other.
The following sections, however, are restricted to the case of non-processivity and leave the
above mentioned for future research.

4.2.1 Modeling strategy

Geometrical and kinematic abstraction The modeling of the kinematics of motor pro-
teins is a difficult endeavor if performed on the level of their molecular structure. Both actin
and microtubule motors undergo complex conformational changes, which are not completely
understood to date. The geometrical and kinematic abstraction of the molecular motor bears the
risk of oversimplification if crucial details of the motor mechanism are omitted. Nonetheless, it
represents a necessary step towards modeling motors as one-dimensional continua.

By no means, a precise reproduction of a motor protein’s motion pattern is attempted in this
thesis. Rather this chapter proposes the model of a contractile, rotating rod-like unit, which
mimics the properties of a myosin head in a way that allows for the principal re-creation of its
motor activity. This contractile unit will be discretized with a single geometrically exact beam
element in conjunction with the constraint-based interpolation approach of Chapter 3. As such,
it is capable of resolving the length scale of the path distance δp of myosin, while it simulta-
neously profits from the much coarser mechanical discretization in terms of computational effi-
ciency. The decision to model a non-processive motor is owed to the focus of this thesis, which
lies on actin-based biopolymer networks. Myosin motor activity dominates in actin structures,
which further supports the decision of making it the centerpiece of this chapter.

Model of the power stroke mechanism Some controversy surrounds the actual mech-
anism, by which force is generated. There are two main propositions, that are in fundamental
contradiction to each other. One proposition is that the interaction of the motor head domain
with ATP only provides a corset, that channels thermal excitations (e.g., [25, 150, 178]), hence
playing the role of a Maxwell daemon. This description is often referred to as thermal ratchet,
which assumes that the power stroke is a purely thermal effect. On the other hand, the power
stroke may be triggered by a large conformational change itself. Before releasing the energy
stored in a spring-like mechanism, the apparatus would need to be cocked. Such an approach
is described in [88] and is found to be favorable, when modeling actomyosin bonds [66, 67].
Again, there exist several theories on how a motor arrives at this cocked state, either by a slow
conformational change or a less extreme thermal ratchet mechanism than the one mentioned
first. In [86], a mixed model is proposed, which takes the lever for a thermal ratchet, while
simultaneously speculating about the existence of hidden spring elements providing elasticity.
Although the discovery of muscular contraction due to myosin activity dates back more than
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half a century, there are noticeable gaps in the knowledge on the exact mechanism of myosin
motors. It appears to be still open to speculation, which part of the motor actually provides
the property of a spring (cf. [86, 89]). For example, the successful observation of the so-called
recovery stroke dates back only a few years [198].

In light of the variety of propositions, all of which have been shown to account for certain
properties of motor proteins, the numerical model will adhere to its strong mechanical founda-
tion. As the mechanical features considered above can be readily recreated using the present
beam element formulation, the question is, how to consistently reproduce the effect of a mo-
tor rather than its detailed inner workings. Hence, conformational changes will be modeled
using different reference configurations, that refer to one or the other molecular conformation.
Their reaction kinetics will be portrayed similarly to the existing framework for filament-linker
interaction from Chapter 2 and 3. Forces and step lengths are load-dependent [200], i.e. the
enzymatic cycle depends on mechanical loading as well, which is not included in the present
model.

Model of conformational change The model, which is going to be elaborated in the
following, combines the idea of the spring element of the power stroke model and a rotational
motion reminiscent of the swinging cross-bridge model or its successor, the swinging lever
arm hypothesis [82]. In the first model, the entire S1 subfragment (i.e. the head domain) of
myosin is involved in the rotation, while in the latter, only the light chain of the neck region
rotates. The reason for this combination can be readily explained. A simple contraction of the
beam modeling the motor tends to just pull the filament towards the motor’s joint location xm.
A simultaneous rotation about xm, however, allows for a tangential transport trajectory of the
filament. As a consequence of these modeling assumptions, an appropriate parametrization of
the motor geometry leads to working distances very well comparable to real motors such as
myosin. Details are given in Section 4.2.4.

In extension of previously introduced methods, the modification leading to an actively con-
tracting and relaxing rod-like continuum is quickly accomplished. Based on the general frame
of the model elaborated above and the analysis of the cyclic activity discussed in Section 4.1.1,
one may design an activity pattern that mimics the actual behavior of a myosin head or – further
enhancing the model – a thick filament (cf. Section 4.4.2).

4.2.2 Force-dependent model of chemical bonds

As previously introduced, the likelihood of a bond establishing or dissociating is evaluated
by Boltzmann probabilities (2.46) and (2.47). In many cases, however, the dissociation rate
constant koff is affected by a tension or compression of magnitude F acting on the bond. The
so-called Bell model [10] incorporates this force-dependence in order to arrive at the relation

kbell = koff exp

(
F∆x

kBT

)
(4.3)

between the reference off-rate koff in the absence of force and the force-dependent off-rate kbell.
The effect of force on the dissociation reaction can be thought of as a change in height of the en-
ergy barrier between two chemical states. For a catch bond as in the present case, this property is
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(a) Free energy diagram (b) Types of chemical bonds

Figure 4.3 (a) The effect of an applied force to a catch bond. If the bond is compressed, the transition state x12

becomes easier accessible and the reaction is accelerated. If the bond is put under tension, the barrier is heightened
and the transition becomes less favorable. (b) pictograms conveying an intuitive understanding of the nature of the
two bond types.

reflected in the sketched free energy diagram of Figure 4.3. Tensile forces strengthen the bond,
which is expressed in a heightened energy barrier between the states 1 and 2. Compression on
the other hand leads to bond weakening, which is reflected in a lowered barrier. The characteris-
tic distance ∆x depends on the type of chemical bond, commonly has the magnitude of several
nanometers, and can be drawn from experiments (e.g., [222]). The behavior of kbell depends
on whether the chemical bond in question is under tension or compression. This information
is readily available in simulations and can be directly drawn from the beam model representing
the motor. As the Bell model describes a one-dimensional relation, the question arises, which
force measure to apply in the three-dimensional case. Candidates are the magnitude of internal
translational forces Fl of the linker element or the contribution with respect to a certain direction
of the material frame (e.g., normal forces at the nodes). Taking into account the axial strain ε,
the force Fl entering Equation (4.3) is given by

Fl =

{
|Fl| if ε > 0, tension
−|Fl| if ε < 0, compression

. (4.4)

Depending on the characteristic distance ∆x, a chemical bond can be characterized by

∆x =


> 0 , slip bond : tension weakens bond
< 0 | Fl≤F̄l , catch bond : tension strengthens bond up to F̄l

= 0 , force-independent , kbell = koff

. (4.5)

The chemical bond between the motor head domain and the filament can be modeled as a catch
bond with the characteristic distance of ∆x= − 2.5± 0.6 nm entering the Bell model (4.3),
when ADP is bound to the head domain [68]. A fairly simplified, yet intuitive way of think-
ing about the character of slip bonds and catch bonds is depicted in Figure 4.3b: a tensile
force acting on a slip bond has a purely destructive effect on the bond, while the same tensile
force evokes self-locking in a catch bond. The threshold force was quantified experimentally as
F̄l≈ 6pN [68], beyond which kbell increases with load. There are more advanced and complex
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approaches (e.g., [222]) than the Bell model for the description of the influence of mechanical
load on chemical reactions. However, due to its simplicity and the availability of experimen-
tal values for ∆x, the Bell model is often assumed to be a good approximation when model-
ing force-dependence. Choosing ∆x< 0, the Bell model describes catch bond behavior [173].
Eventually, these considerations lead to a force-dependent probability of bond dissociation

pbell = 1− exp(−kbell∆t). (4.6)

4.2.3 Cyclic motor activity and motor-filament interaction
In this section, key features of the model will be introduced, which aim to recreate the cyclic
activity of a molecular motor. Furthermore, light will be shed on the specifics of the interaction
between motor and filament.

The enzymatic cycle Reaction equations (4.2) have to be made available to the mechanical
model. In order to mimic the effect of the conformational changes rather than their chemical or
kinematic details, the reactive cycle is simplified. ATP is not explicitly simulated but is taken
into account implicitly by its probability of attachment to the motor domain by means of a
Poisson process. The following two steps, i.e., the separation of the phosphate and its release,
which triggers the power stroke, are jointly modeled in the wake of the attachment process.
What remains, are two basic conformations: a long state l and short state s of the motor’s head
domain, which are interrelated by chemical transitions with effective reaction rate constants kls
and ksl. The probability of the chemical transition and its reversal are given by

pls = 1− exp(−kls∆t), psl = 1− exp(−ksl∆t). (4.7)

This way, the activity of the motor can be tuned according to the implicitly given ATP concen-
tration. Attachment to filaments only occurs in the long, cocked state l, which is followed by
contraction to the short state s at some proximal, post-attachment point in time (of course, given
a finite contraction rate constant kls). Between attachment and the subsequent power stroke, a
motor may detach based on Equation (4.6). Furthermore, the power stroke model does not allow
for detachment during the stroke or, in other words, until the motor has completely performed
its stroke, displacing the filament by stroke distance δ+. The stroke distance of the motor is in-
cluded in its working distance δw. If the motor detaches at zero strain, δ+ = δw. The difference
δ−= δw−δ+ is called the drag stroke distance and accounts for the distance that the still attached
motor is dragged along with the moving filament. During the drag stroke, which typically last
for ≤1 ms, the motor is compressed [88], leading to a significant increase of koff (reported
value: koff ∼ 2000s−1, [88]), leading to a strongly increased likelihood of detachment from the
filament. The recovery stroke, during which the motor head is detached from the filament, is
only accounted for by the off-time τoff , that determines reattachment time scale. At the end of
recovery, the motor returns to state l, another cycle begins. In order to achieve this recovery be-
havior, one may in principle employ one of two approaches, by either directly declaring a time
slot of duration τoff or, which is more elegant, leave the recovery to probabilistic instruments.
The definition of the recovery rate constant is given by

ksl = 1/τoff , (4.8)
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(a) Two considered binding sites... (b) ..., of which only one is available due to polarity

Figure 4.4 Structural polarity of filaments is modeled with the help of material triads at the binding sites. Here,
only the tangents are depicted. (a) Two potential binding sites, of which one fulfills the polarity condition with
respect to motor position xm (blue, µ>0), while the other does not (red, µ<0). (b) Additionally, the considered
binding site is tested for compliance with angle interval [ϕ−δ ;ϕ+

δ ].

which means that a recovery stroke is expected to take place with a probability p(ir∆t≥τoff) = 1
with ir ∈N+ denoting the number of recovery time steps, i.e, since the latest detachment. In Sec-
tion 4.1, the duty ratio has been reported to be of the magnitude r∼ [0.01;0.1]. In the following,
this ratio will be set to an intermediate r= 0.05, such that τoff = 38 ms.

Polarity criterion The establishment and the maintenance of a chemical bond between mo-
tor and filament depends on filament polarity. A motor is only able to bind to a filament if the
orientation of the filament with respect to the motor’s current position allows for it. The ori-
entation and the polarity of a filament is determined by means of the orientation of its material
triads. The 3×3 binding site triad Λb can be extracted from the beam model using Equation (3.3),
where the first column represents the unit tangent tb of the filament at this particular location
(see Figure 4.4a). The definition of the (+)-end of the filament to be located in the direction of
tb enables the formulation of a polarity condition in a fairly straight-forward way. For a given
pair of locations xb for the binding site and xm for the motor , it reads

µ = (xb − xm) · tb =

{
≥ 0, fulfilled
< 0, not fulfilled

(4.9)

and represents the signed scale of the vector contribution parallel to tb.

Geometrical criteria Apart from structural polarity, the model of the motor is required to
adhere to a set of geometrical criteria. The formulation of these criteria is motivated by geom-
etry (i.e. motor size) and kinematics (i.e. possible motor configurations). The first criterion
demands a certain proximity of the motor and the considered binding site, which is expressed
by ‖dmb‖= ‖xb − xm‖∈ [Lm−∆Lm; Lm+∆Lm] and has been introduced in Section 2.6.3. Here,
Lm denotes the size of the motor, ∆Lm is a heuristically chosen tolerance. The second criterion
further diminishes the set of potential binding sites. It is motivated by the need to inhibit the
establishment of bonds that most likely do not occur with actual motor proteins due to geo-
metrical and kinematic restrictions. In other words, this criterion implicitly excludes unwanted

70



4.2 Numerical model of a non-processive molecular motor

and unnatural motor positions without modeling the exact (molecular) geometry of the motor.
Assuming a working distance δw = 5 nm, one may give an estimate of the angular restriction
of both the motor’s and the binding site’s reaction volumes. In fact, the means used to create
helically oriented binding sites presented in Section 3.2 (cf. Figure 3.3) can be directly applied
to this problem, where both binding partners have to lie in each other’s scope.

Next, the dimension of the motor unit needs to be quantified. In the case of a myosin
head, there exists an α-helical structure of length dl≈ 8.5 nm, which serves the purpose of a
lever [226]. During the large conformational change, this lever rotates by approximately 70◦

covering a distance of ∼10 nm in the process [88]. The length of the entire head domain can
be roughly approximated by ∼ 2 - 3 dl, which provides an appropriate estimate for the motor
size Lm. In order to achieve working distance δw by means of a longitudinal contraction, the
angle covered by the rod during the power stroke – from state l to s – needs to be in the range
of θls≈ 15◦. A good estimate for an upper angular bound is given by ϕ+

δ ∼ arcsin(δw/Lm),
which helps excluding improbable, yet possible motor-substrate pairings within the limits set
by structural polarity. The actual value in simulations should be chosen such that ϕ>ϕ+

δ . The
enforcement of this angular restriction is ensured by simply evaluating the enclosed angle

ϕmb = arccos(dmb,⊥/dmb), (4.10)

where dmb = ‖dmb‖ and dmb,⊥= ‖dmb,⊥‖ are the L2-norms of the difference vector between
motor position xm and binding site location xb and its projection orthogonal to the binding site
tangent tb, respectively. Finally, in order to avoid the motor simply pulling down the filament
instead of tangentially displacing it, the motor’s reaction volume is additionally bounded by ϕ−δ
at the lower end. Its value should be small (geometrical considerations imply <ϕ+

δ /10). Motors
are allowed to bond to filaments within the angular interval [ϕ−δ ;ϕ+

δ ], which upon attachment
results in slanted motors as Figure 4.4b implies. The choice of these angles influences reac-
tion kinetics as the reactive volume depends on them. Making the interval too narrow makes
chemical activity cease.

4.2.4 Modeling of conformational change

Continuum mechanics interpretation of conformational change The mechanical
part of force generation triggered by the reaction model from Section 4.2.3 is accomplished
by an update of the translational and orientational reference configurations. What seems at
first like a primitive meddling with basic model parameters, can in fact be motivated in a very
satisfying, since fundamental way. Conformational change is the effect observed during the
translation from one local free energy minimum to another. The two states are separated by
an energy barrier of some reaction-specific height. The energy needed to overcome that barrier
between the two states is provided by ATP hydrolysis in the case of motor proteins (or by
thermal fluctuations depending on the model). Having eventually overcome the barrier, the new
conformation seeks to stabilize at its local free energy minimum. A change in the reference
configuration of the beam model achieves an analogous behavior. The Poisson process (4.7)
modeling the arrival and hydrolysis of ATP provides the trigger for the change of reference
configuration, creating an off-balance restoring force, that drives the beam to approach its new
unstrained configuration. On its way there, the beam displaces the filament as does the real
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(a) (b)

Figure 4.5 A longitudinal contraction in conjunction with a rotation of the reference material triad results in
an updated reference configuration that enables a power stroke covering the targeted working distance δ+. Left:
Reference configurations pre and post power stroke. Right: The filament is pushed along by the motor, which has
deformed towards its updated reference configuration.

myosin head. Hence, the (re)set of the reference state not only has the same effect on the
filament as a conformational change, but also adheres to the same energy principle.

Parametrization of conformational change The power stroke will be modeled by a
contraction λ and a rigid body rotation by an angle θls of the motor element. The aim is to enable
a motor-driven filament trajectory which is parallel to the filament’s tangent tb at the motor
attachment site. Such a modeling decision may vary from reality but entails a few geometrical
properties that facilitate the parametrization of the power stroke. The motor is assumed to attach
itself to a filament in a slanted configuration (cf. Figure 4.5a). The new reference length is then
calculated such that the beam’s stress-free configuration is perpendicular to tb.

As the power stroke model considers the source of the stroke to be a quadratic spring potential
W =EmAmδ

2
w/(2Ls) with Young’s modulus Em, cross section Am, and the short target reference

length Ls, the energy stored in the cocked state l may simply be released by altering the (re-
laxed) reference length Ll of the rod-like continuum representing the motor. Note the difference
between the power stroke model and the beam model at state l: while the power stroke model is
actually strained and locked in that configuration, the beam model is instantaneously strained,
when the reference configuration is set to state s. The updated reference length of the beam is
given by

Ls = λLl (4.11)

with Ll being the length of the long, cocked state. The scale factor is then easily calculated as
λ= dmb,⊥/dmb. A sensible choice of the binding angle interval [ϕ−δ ;ϕ+

δ ] as well as adhering
to the geometrical criteria formulated above (also, cf. Figure 4.4), the working distance of the
motor model can be tuned to values around the experimentally observed working distance δw,
but may vary depending on the geometrical situation.

In a simultaneous step, material triads Λm and Λb of the current configuration are utilized to
compute the updated referential rotations of the beam element representing the motor. As the
degree of contraction is governed by λ, so is the rotation of triads Λm and Λb. As depicted in
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Figure 4.5a, the angle by which the triads need to be rotated is given by

θls = ϕmb = cos−1 λ, (4.12)

which directly relates to the geometry described by Equation (4.10). The axis of rotation can be
determined bearing in mind that vector dmb needs to be rotated to come to lie in the direction of
dmb,⊥. The rotation can be parametrized by its pseudo-vector representation

θls = θls
dmb × dmb,⊥

‖dmb × dmb,⊥‖
, (4.13)

with which one may retrieve the orthonormal triad describing the associated rotation

Λls = exp(
◦
θls). (4.14)

The updated rotation, where the power stroke is expected to terminate, can thus be formulated
as

Λm,s = ΛlsΛm,l, Λb,s = ΛlsΛb,l (4.15)

with matrices Λ(.),l and Λ(.),s denoting orientations of entity (.) in their respective long and short
conformation.

This modeling step somewhat reflects the idea of the swinging cross-bridge. Both the swing-
ing cross-bridge model as well as the swinging-lever-arm hypothesis feature slightly more com-
plex kinematics than the here proposed model (cf. [82, 195]). However, the following section
will argue that such a kinematic simplification is acceptable for mesoscale simulations. There
exists another mechanically motivated reason for the incorporation of rotations. The applied
beam formulation allows for the transduction of moments. This needs to be accounted for by
an alteration of the referential rotations, since otherwise the longitudinal contraction has to do
work against the bending stiffness of the two joints, which has not been reported to occur for
the actomyosin bond (and probably never will be due to the difficulty of such a measurement).

The entire update procedure is depicted in Figure 4.5, which illustrates the general mechanism
leading to a translation of the filament. As a consequence of changing the reference orientation,
the beam experiences restoring moments in xm and xb. Eventually, the superposition of contrac-
tion and rotation yields the desired stroke distance δ+ as illustrated in Figure 4.5b. Using the
inverse relation of Equation (4.15), the update can be undone if necessary, e.g, if the return to
state l is explicitly modeled. For all subsequent numerical examples, however, this behavior is
not considered, since the motor detaches from the filament and recovers its long state without
being represented by a beam element.

With this relation, one may transcend from one to the other basic conformation and exert
forces on filaments to which the motors are currently attached. From [88], it is known that
the entire power-stroke sequence lasts for about 1ms, of which a portion of τ−≈ 0.4ms can be
attributed to the drag stroke. The remaining time τ+ represents the temporal fraction, during
which the motor is active. This time scale is used to quantify the rotation increment for a given
time step size ∆t, which simply is

∆θls =

{
θls if ∆t ≥ τ+

∆t
τ+
θls if ∆t < τ+

. (4.16)
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The valid objection remains that the cocked state of the power stroke model is pre-stressed
and the beam in the present model is not as its reference length is Ll. This minor deficit seems
tolerable considering the already significant degree of abstraction of the model as compared to
a real motor. Also, the spring of HMM has yet to be discovered. Lastly, the primary intention
is the modeling of an effect rather than the precise properties of molecular motors. In summary,
the model is deemed adequate for its designated purpose.

4.2.5 Comprehensive incorporation of all modeling aspects into
the existing finite element framework

In principle, the functionalities introduced in the preceding sections of this chapter can be ap-
plied in conjunction with an arbitrary nonlinear, geometrically exact beam element, that ac-
counts for rotations in some way. However, there are consequences resulting from the chemical
resolution, which require additional measures.

The computational bottleneck is characterized by the path distance of myosin, which is
δp = 36 nm. The standard network model introduced in Chapter 2 requires direct nodal con-
nectivity and thus a mechanical discretization that matches the path distance of the molecular
motor. In order to put things into perspective, this particular value for δp entails a mesh re-
finement by a factor of 3.5 as compared to the numerical experiments conducted in chapters 5
and 6. This implies an increase in the total number of DOFs by the same factor. While the
additional computational effort for modeling myosin may in some cases still be handled effi-
ciently by means of adequate search algorithms and a sensible parallelization of computational
processes, the gap between the chemically required and the mechanically needed discretization
length takes on disadvantageous proportions, especially, when the path distance is reduced to
meet the value of kinesin δp≈ 5.5 nm and each tubulin subunit on a microtubule represents a
potential binding site.

However, a remedy to this predicament has been introduced in Chapter 3, where chemical
binding sites do not have to coincide with FE nodes anymore. Hence, the simulation of motor-
filament assemblies is enabled by a triad of measures, which comprises the discretization of the
motors with interpolated beam elements (cf. Section 3.3), the provision of inter-nodal binding
site positions on filaments in order to keep their mechanical discretization acceptably coarse,
and, lastly, the model that governs the reaction kinetics and the enzymatic cycle of the molecular
motor.

4.3 Numerical examples

For the purpose of model validation, an experiment with well-defined properties has been cho-
sen: an in vitro actin/HMM motility assay. Motility assays like the ones shown in Figure 4.6
represent commonly used experimental set-ups (cf. [4]) and are often employed in order to
study the properties of motor proteins and how they affect their cargo under well-controllable
lab conditions (e.g., [68, 121, 189]). The aim of this chapter is to demonstrate that a sensible
choice of parameters for in silico motors leads to observations on the filament scale, which are
well comparable to in vitro values. Two quantities will serve the purpose of model validation:
forces exerted by the linkers (or, as a matter of fact, their internal forces) and the average ve-
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Figure 4.6 The two basic motility assay set-ups. Left: Bead assay with motors (red) attached to a microbead and
filaments (green) attached to the microscope coverslip. Right: Gliding assay with motors attached to the coverslip
and filaments which are free to move.

locity of transportation of single filaments. A particular choice of model parameters such as the
contraction factor λ or the rod length Ll entails parameter-specific forces and velocity values.
By choosing parameters carefully, one may then taylor the motor model such that it reflects the
effect of motors on their cargo as known from a great variety of experiments (e.g., [52,183,189],
see also Table 4.2 and Table 4.3).

In the subsequent sections, two numerical experiments will be conducted, of which the first
resembles an experiment by [214] as it is restricted to one-dimensional diffusion (Section 4.3.2).
The second example is of more complex nature and simulates a two-dimensional motility as-
say as depicted in Figure 4.8b (Section 4.3.3). All relevant simulation parameter are listed in
Tables D.4 (basic motor parameters), D.5 (quasi-1D assay), and D.6 (2D-assay).

4.3.1 Motility assays in experiments

Motility assays have two components: motors and their cargo. There are two basic assay ge-
ometries: bead assays and gliding assays, their discriminating feature being which species is
movable and which is fixed. In bead assays, filaments are fixed and motors are attached to a
microbead, which is pushed around by motor activity (Figure 4.6a). In gliding assays, filaments
are transported across a lawn of fixed motors (Figure 4.6b). Here, numerical representations of
gliding assays are studied and compared to experiments, where HMM serves as the motor, while
its affiliate filament F-actin is the cargo. HMM comprises the two globular head domains and
their α-helical levers and is chemically severed from its tail domain, light-meromyosin (LMM),
prior to being used in the assay. The assay itself consists of a microchamber with a volume of
usually some tens of µL, which is filled with a fluid containing ATP. The motors are attached to
a microscope coverslip (see the cartoon in Figure 4.8a). Fluorescence-labeled filamentous actin
is added in order to track the motor-driven path of motion. The snapshot depicted in Figure 4.8a
shows some fluorescent actin filaments (most of the filaments, however, remain unlabeled). Fil-
ament density ρf is usually chosen as the control parameter for the assay. Depending on ρf , the
system can be characterized as a low-density motility assay or a high-density motility assay. At
low densities, filaments are disordered. With increasing density, however, polar patterns emerge
and collective motion can be observed. In [183], the filament threshold density is located at
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4 A beam-element based model of a molecular motor

about ρ∗f = 20µm−2. The example in Section 4.3.3 will recreate the low-density phenomenol-
ogy of this kind of experimental set-up.

The presence of certain chemical additives in the buffer solution alter the dynamic behavior of
filaments, which allows for the evaluation of otherwise inaccessible information. One such addi-
tive is methyl cellulose, which is a highly viscous synthetic chemical compound (trivia: methyl
cellulose is used in movies for the representation of slime, ooze, or lava). Its effect on actin
filaments is very useful for studying motor transport velocities even at very low motor densi-
ties. In direct sequence to this section, numerical results will be presented that recreate the ρm-
dependent transport velocity of filaments in a one-dimensional problem. Afterwards, a more
complex simulation of a two-dimensional motility assay is discussed.

4.3.2 Transport velocity of filaments in one-dimensional in silico
motility assays

As mentioned in Section 4.3.1, the diffusive behavior of actin filaments can be altered by chem-
ical additives to ease the experimental quantification of motor activity. The effect of such addi-
tives can be reproduced computationally, which leads to a very simplistic, yet equally informa-
tive in silico problem, which is going to be outlined below.

Experimental background One of the experiments reported by [214] (data plotted in [88,
p. 221, Figure 13.3]) evaluates actin filament transport velocities vf depending on myosin motor
surface density ρm using an in vitro gliding assay . The addition of the thickener methyl cellulose
increases the viscosity of the buffer solution to values in the range of η= 0.05-0.1 Pas. It is
reported to greatly slow down lateral diffusion while having nearly no effect on the longitudinal
transport velocity of filaments. The reason for the use of methyl cellulose is to keep filaments
close to the motor-covered surface of the coverslip. As a consequence, transport velocities can
be measured far below the threshold surface density ρ∗m, which is the density, above which motor
activity is observable for a filament of a certain length (see [88, p. 200] for exemplary values).

Problem description The simplest way of reproducing the experiments of [214] is to re-
strict the filament to its longitudinal DOF, which can be easily accomplished by a prescription
of zero-displacement conditions on the Dirichlet boundary. The purpose of this series of simula-
tions is the calibration of the motor model, which eventually leads to a sensible set of modeling
parameters.

A visualization of three distinct temporal configurations is depicted in Figure 4.7a, where a
filament is transported in direction of its (−)-end. In analogy to the experiment, the filament
length is set to Lf = 2µm. It is discretized with 10 BFEs and features binding sites spaced
db = 36 nm corresponding to the path distance δp of myosin. The given motor surface density ρm
translates to a corresponding line density ρm,1D =

√
ρm, which is varied to account for different

motor densities ranging on the interval [30 ; 3000]µm−2. A periodic boundary condition is
employed in global x-direction (i.e. the direction of filament translation) with a periodic repeat
of H= 10µm. Temperature is set to T = 303.15 K in order to recreate the lab conditions reported
in [214]. The viscosity of the surrounding buffer solution is raised to η= 0.05 Pas to account
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(a) Simulation snapshots
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Figure 4.7 (a) Snapshots from three different points in time illustrating the transportation of the green filament in
(−)-direction by motors (blue, red) and across the periodic boundary. Motors are attached to the ground, which is
modeled by beam elements as well (orange). The pictures show larger than usual linkers (Lm = 85 nm) for visual
clarity. (b) Mean filament transport velocity 〈vf 〉 depending on the motor density ρm in the presence of methyl
cellulose [88, 214] for linkers of length Lm = 20± 10 nm.

for the addition of methyl cellulose. The simulated time is given as Tsim = 20 s with a time step
size of ∆t= 5×10−4 s.

Motor parameters The size of a motor is set to Lm = 20± 10 nm in order to be close to the
actual size of a myosin head, which is about 20-30 nm [88] assuming a lever length of 8.5 nm
and a head of approximately double that size. The variation determines the distance interval of
the reactive volume of the linker and might also be loosely considered as a size variance of the
motors. The stroke distance in the unloaded case is set to δ+,0 = 10 nm. The actual distance δ+

in simulations varies from this value as the new relaxed state is not necessarily reached. The lo-
cal rate constant modeling the probability of attachment of a motor to a filament is chosen to be
kon = 180 s−1 and the corresponding off-rate koff = 0.09s−1 as given for HMM by [152]. The lat-
ter rate constant is relevant to detachment processes without a prior power stroke, i.e., it models
spontaneous detachment of the motor from the filament. The rate constant governing the prob-
ability of a power stroke is set to kls = 800 s−1. Note that this parameter is set heuristically here
in order to ensure a quick contraction after attachment to the filament, i.e., a high ATP concen-
tration is assumed. The motor’s cycle time is set to τc = 40 ms, which determines the recovery
rate constant ksl by means of Equation (4.8). The duty ratio is chosen as r= 0.05. The stiffness
of HMM has been experimentally determined by [219] as cm = 0.69± 0.47pN/nm. From data
by [202], the motor model’s circular cross section can be calculated as Am = 4.75×10−6µm2,
which results in a Young’s modulus in the range of Em = 3.0×106 pN/µm2.

Motor forces The magnitude of forces exerted by the motors in the direction of the filament
tangent tb during their power stroke phase is found to be 2.5± 1.0 pN, which overall compares
acceptably well to experimental data by [52], bearing in mind that the filament was held fixed
there while the simulated filament is translated. Forces reported by other sources are in the
same range and are listed in Table 4.2. Furthermore, compressive forces during the drag stroke
phase are found to be in the range of −1.55± 0.8 pN. Some motors are tensed before having
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4 A beam-element based model of a molecular motor

performed their power stroke. They experience forces of∼0.45 pN. A more detailed discussion
will follow for the case of the two-dimensional motility assay.

Transport velocities With the present parametrization, one arrives at a reasonably close
match to reported experimental values as Figure 4.7b proves. The density-dependent increase of
vf is captured well by the numerical model as well as the onset of saturation for ρm> 1000µm−2.
Values at high densities ρm are found to be slightly lower than reported in experiments. How-
ever, apart from the difference being moderate also in absolute values, it can be argued that the
remaining difference may result from the simulation being strictly one-dimensional. Although
methyl cellulose inhibits lateral diffusion, it certainly does not inhibit motors from participat-
ing in filament transport, which do not lie in the direction of motion but are slightly displaced
laterally. As a consequence, a larger number of motors propels the in vitro filament leading to
a higher velocity than in the case of the strictly one-dimensional in silico example. Being able
to model individual active components, which adequately approximate the known kinematic
and kinetic properties of a non-processive molecular motor, one may utilize this base unit to
build more complex motors resembling, e.g., the shape and function of myosin thick filaments
(cf. Section 4.4).

4.3.3 Simulation of a two-dimensional motility assay

The second example features a two-dimensional field of motors, which propels a number of
single filaments. While the long-term goal could be large-scale simulations of the collective
movement of filaments involving contact interactions, the short-term goal simply is the exami-
nation and validation of the model for low-density assays.

Problem description As the experiment can be conceived more or less as a two-dimensional
problem (ignoring the fact that the fluid film on top of the coverslip has a finite thickness), the
filaments in the simulation are confined within the xy-plane. The visualization in Figure 4.8b
shows Nf = 100 single filaments of length Lf = 4µm, which are distributed in an area measur-
ing 6×6µm2. This implies a filament density of ρf ≈ 3µm−2. A filament is discretized with
Ne = 16 BFEs as described in Chapter 2. All filaments are initially straight. Temperature is set
to a constant T = 293.15 K. The simulated volume is equipped with periodic boundary condi-
tions. As stated in [88], the distance between two adjacent binding sites on a filament is chosen
to equal the path distance of myosin II, δp = 36 nm. Accordingly, the matrix of motors is cho-
sen to have a square layout with a distance between two neighboring motors of db = δp as well.
The resulting motor density is ρm = 770µm−2 (Nm = 27777 motors), which is well beyond the
threshold density ρ∗m (cf. [88, p. 220], ρ∗m = 600µm−2 to move a filament with a length of
1.1µm). The microscope coverslip is modeled by a parallel array of BFEs with inter-filament
spacing ds = δp, which are spatially fixed by means of Dirichlet boundary conditions. Each cov-
erslip filament has a length Ls = 6µm. It is discretized with Ne,s = 20 BFEs of the same type
as the free filaments and has motors attached at predefined binding positions. If a mechanical
connection is established between a filament and a motor, an interpolated beam element as in-
troduced in Chapter 3 is temporarily added between the free filament and the fixed filament until
the power stroke is terminated. The motors are confined and spatially fixed in a plane parallel to
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(a) (b)

Figure 4.8 Left: Snapshot of fluorescence-labelled filaments in an in vitro gliding motility assay (modified
from [151]). Right: Perspective view of an in silico motility assay with Nf = 100 free filaments (green),
Nm≈ 28000 motor units/active linkers (blue), of which a certain number form short-lived mechanical connec-
tions with filaments (red). Nm corresponds to a motor surface density ρm≈ 770µm−2. The fixed filaments, to
which the motors are permanently attached, are not shown. The problem is constrained to two dimensions and
neglects excluded volume effects.

the filaments’ plane of motion with a separation of 20 nm, which equals the motor size Lm. The
simulation covers a time interval Tsim = 20 s at a step size of ∆t= 5×10−4 s. Further simulation
parameters like the filament’s material properties are summarized in Table D.7.

Motor parameters Motor properties are chosen equal to those for simulations of one-di-
mensional motility assays described in Section 4.3.2.

Remark on excluded volume effects/mechanical contact The collective motion of
filament assemblies beyond ρ∗f in [183] is greatly influenced by excluded volume effects. In
Chapter 5, a method for modeling beam contact based on an Augmented Lagrange scheme will
be applied to prevent filaments from overlapping in three-dimensional space. This approach
does not cover the exception of perfectly parallel contacting beams. Perfect parallel alignment
of filaments is a possible, yet highly unlikely scenario, and for that matter has been considered
negligible. In two dimensions, however, the chosen approach is not applicable as contact be-
tween parallel beams or the collision of a beam’s tip with another beam’s side are highly likely
scenarios. The former case represents a geometrical exception and is not covered by the contact
algorithm as the evaluation of the closest-point-projection fails, while the latter case is incon-
sistent with the theory of one-dimensional continua. One alternative to this beam contact for-
mulation is a FE approximation of the Lennard-Jones potential, which theoretically enables the
realization of excluded volume effects for fully arbitrary orientations of contact pairs. Other ap-
proaches for contact detection and evaluation capture the exception of parallel contacting beams
and treat it adequately [41,42]. However, both alternatives do not solve principal problems such
as a lack of numerical robustness in case of very slender beams or the undetected cross-over
of beams between iterative steps. As this numerical study purely aims at the evaluation of the
motor model, the additional complexity introduced by mechanical contact is neglected for now,
but undoubtedly must be accounted for in the future.
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Figure 4.9 (a) Distribution of exerted motor forces. Three distinct regimes are observed. From left to right:
The drag-stroke-regime (blue) with negative strains ε, where motors experience compression with a mean force
of Ft = − 0.77± 0.46 pN. A smaller peak with a mean value of Ft = 0.44± 0.23 pN represents motors that are
tensed, yet have not yet performed their power stroke (green). The third regime (red) represents motors being
underway of performing their power stroke but still remain in the power-stroke-phase as ε> 0. The mean force is
found to be Ft = 2.44± 0.7 pN. All three mean values are depicted as dashed vertical lines accompanied by error
bars. (b) distribution of filament transport velocities vf for filaments of length Lf = 4µm gathered over a simulated
time of Tsim = 20 s. The average velocity is computed as v̄f = 3.1± 1.9µm/s and is again represented in the graph
by the dashed vertical line along with error bars.

The absence of contact between beams leads to unordered, criss-crossing filaments inde-
pendent of their concentration as they do not interact with each other at all given the present
hydrodynamic model. The only implicit influence of filaments on each other is the fact that the
total number of free motors available for chemical binding is reduced by a growing number of
filaments. However, this is unproblematic as long as ρf <ρ∗f since the gradual depletion of free
motors occurs in reality as well.

It is safe to assume that the dynamics of a low-density motility assay can be approximated
by the described numerical set-up. An increase in the number of simulated filaments would
simply improve the statistical quality of statements on filament velocities and motor forces.
Although more complex phenomena such as collective motion patterns and their cause can
currently neither be observed nor explained, the basic functionality of the motor model may be
assessed very well.

Motor forces In view of the gap in geometrical complexity between the beam formulation
and the Bell model, the question arises which computed forces actually do enter the Bell model
as input parameters (cf. Section 4.2.2). Several candidates arise. A satisfactory answer to this
question can be found by studying how data was ascertained experimentally. The measurement
of forces for single motors is commonly performed using optical traps or mechanical setups. In
the former case, a microbead with attached motors is fixed to a microscope coverslip while a
filament is strung between two optically trapped beads. The motor displaces the filament leading
to a displacement of the bead. The exerted force is measured by an atomic force microscope. In
the latter case, the motor is fixed to the coverslip and the filament is held by a thin glass fiber,
that serves the purpose of miniature tweezers. Both set-ups tend to measure forces in direction
of the filament. Force values typically lie in the 100 pN-range. The measurement of the motor
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force contribution pointing in tangential direction of the filament seems the most faithful way of
data evaluation. In addition, with regard to the Bell model, it is of interest, whether the motor is
tensed or compressed. This information can be easily drawn from the mechanical model itself
in terms of the longitudinal strain ε.

Discussion Figure 4.9a features the distribution of tangential force magnitudes Ft. Forces
Ft are enriched by information on the strain state. If ε< 0, the motor is compressed and the
sign turns negative. Vice versa, if ε> 0, the motor is tensed and the force values are given
as positive. As a consequence of this convention, the Figure is dominated by the peaks of
three well-distinguishable subdistributions corresponding to the three basic states a motor takes
on while being attached to a filament. A first peak arises for negative force values, which
accounts for the motors being compressed after the power stroke is performed. The mean value
is calculated as −0.77± 0.46 pN. Motors that are compressed exhibit a much higher unbinding
probability according to the model presented in [88] and are very likely to detach from the
filament. These motors are currently engaged in the drag-stroke fraction δ− of their working
distance δ.

The second peak corresponds to motors that have attached to filaments but have not yet per-
formed their power stroke. The average force of 0.44± 0.23 pN that is exerted on the filament,
stems from motors being slightly tensed due to filament motion. Finding a motor in this state
is more unlikely than finding it in one of the other states. The relative height of the peak and
the variance of the distribution are controlled by kls. Low values result in a higher peak and a
broader distribution as motors then are more likely to remain in the pre-stroke state.

Finally the regime on the right can be attributed to motors currently performing their power
stroke. These motors are under tension (ε> 0). The average force exerted on filaments during
the power stroke phase can be quantified as 2.44± 0.7 pN. To the author’s knowledge, no
reliable experimental data has been reported on the magnitude of forces of pre-power stroke
linkers or in the drag-stroke regime, so that a comparison with numerical data is impossible.
However, there are plenty of single motor force measurements in literature, which correspond
to the third regime shown in Figure 4.9a. With model parameters chosen reasonably close to
actual motor dimensions and reaction kinetics, a very good agreement between experimentally
measured forces and their numerical counterpart is observed. The higher force values and the

Reference purpose myosin type force [pN]

Simulation - - ≥ 2.44± 0.7

MOLLOY et al. [158] measurement of single-motor forces �,• ≥ 1.8

WARSHAW et al. [226] verification of lever arm hypothesis �,�∗ 1.6± 0.3

FINER et al. [52] measurement of forces & step length � 3.4± 1.2

TAKAGI et al. [200] force & step dep. on dynamic load N ≤ 9.0

Table 4.2 Myosin motor forces found in simulation and experiments. Different rabbit skeletal muscle myosin II
parts are examined (filament N, HMM �, HMM mutants �∗,S1 fragment•, cf. Figure 4.1a). Mutants differ from
wild type myosin by the length of their neck domains. The values give a good impression of the range of exerted
forces per motor.
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smaller tolerances in experiments can be explained by the difference in set-up. Forces in most
experiments are measured with the help of a fixed filament and are restricted to one motor-
filament pair. Forces extracted during the simulation of a gliding assay obviously assess the
acting forces in a state of dynamic equilibrium, i.e. the compliances of all bound motors factor
in the equilibrium forces of each other. Of course, the reasonable matching of simulation and
experiment is not a surprise per se as simulation parameters may be chosen such that they meet
the observations. However, it is an encouraging finding that a reasonable choice of parameters
leads to comparable results albeit the considerable abstraction the model has undergone. Force
values found in various experiments are listed in Table 4.2.

Transport velocity of filaments Finally the effect of motor activity on the movement of
filaments is evaluated for this larger example. In analogy to Section 4.3.2, the transport velocity
of filaments is studied in order to assess the appropriateness of the chosen set of model param-
eters. Figure 4.9b presents the result of this simulation. It depicts the normalized distribution
of transport velocities vf . Velocities were evaluated for time intervals of ∆teval = 10∆t in order
to smoothen filament motion. A peak in the distribution can be seen at vf = 2µm/s followed
by a smooth drawn-out descent towards higher velocities. The average transport velocity is
v̄f = 3.1± 1.9µm/s and thus lies in the range of values reported in experiments. The compar-
atively broad dispersion of filament velocities is surprising at first but seems to be present also
in experimental literature. In [189], measured velocities are found to be 2-6µm/s revealing a
rather large variance, which the authors attribute to different myosin preparation. Apart from
a preparation-based dispersion of quantities, velocities vary greatly depending on the myosin
type and its origin ( [88] reports values of ∼60µm/s for myosin XI in algae). Furthermore,
the ATP concentration in the buffer solution as well as the pH of the buffer solution have a
strong influence on motor performance. Thus within the bounds of experimental uncertainties,
the numerical motor model seems to perform rather well. Table 4.3 lists velocities reported
literature.

Reference assay myosin origin Lf [µm] ρm[µm−2] vf [µm/s]

Simulation gliding - - 4 ∼770 3.1± 1.9

SHEETZ et al. [189] bead N 4,�,◦ - - 2-6
KRON et al. [121] gliding N 4,◦ ∼10 - 1-4
SCHALLER et al. [183] gliding � 4 ∼5 ∼600 4.8± 0.5

UYEDA et al. [214] gliding � 4 ∼2 40-2400 ≤ 7

TOYOSHIMA et al. [207] gliding N,�, • 4 ∼10 ∼500 ∼ 8

Table 4.3 Comparison of the simulated transport velocity with various experimental values. Different parts of
myosin (entire filament N, HMM �, S1 fragment•) from several organisms and organs (rabbit muscle4, turkey
gizzard �, slime mold◦) as well as different fragments of the myosin filament are listed. Depending additionally
on environmental conditions (motor density, ATP concentration, pH, etc.), the dispersion of velocities is large,
which implies that there is the need to individually fit the motor model to the species to be modeled.
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4.3.4 Conclusions

The effect of motor proteins on filaments depends on a multitude of both intrinsic as well as
external parameters. Filament length Lf , motor density ρm, temperature, ATP concentration,
as well as the origin of the myosin motor influence the way motors interact with their cargo.
Choosing a parametrization close to physiological conditions, the numerical motor model allows
for a good approximation of single-motor behavior. Hence, as long as motors share a common
mechanism (kinematics, enzymatic properties) as in the case of the myosin superfamiliy, the
model may be fitted to experimental findings with the help of an individual set of parameters.
In summary, the presented numerical model fulfills all requirements in order to be applied in
more complex studies as it reproduces the fundamental behavior of a motor protein. The forces
it exerts on filaments as well as the velocity of filaments resulting from motor activity are in the
range of physiological motors.

4.4 Outlook

In this chapter, a model for a non-processive molecular motor has been presented, which can
act as a basic building block for a number of scientific applications. Given robust and efficient
algorithms for contact detection and evaluation, the presented model may be utilized to study
the evolution of polar patterns of motor-driven filaments in more detail, which enhances the
knowledge of actomyosin interactions (in extension, e.g., of [183]). One may use this simple
model to build larger and more complex motor units, which have been key components in a
number of theoretical [122, 131] as well as experimental endeavors [132, 205] to elucidate the
mechanism of active bundle contraction. Bundle contractility is indeed a very interesting topic
of vivid and ongoing research as these structures provide the means for force generation within
cells. Here, myosin filaments play a vital role in both ordered and disordered filament-motor
assemblies, e.g., in sarcomeres and the contractile ring, respectively. Ordered assemblies are
crucial to muscle contraction, disordered ones play a pivotal role in cell division.

In this slightly extended outlook, ideas will be presented on how to expand the existing motor
model in order to tackle problems revolving around cellular force generation.

4.4.1 Future model refinements

The current model represents only the first step towards portraying the activity of single molec-
ular motors such as myosin. It is known for example, that the rate of ATP hydrolysis is coupled
to the amount of mechanical loading a myosin motor or an entire muscle experiences, a phe-
nomenon called the Fenn effect [49], which expresses itself in heat generation proportional to
contraction. This relation is currently not reflected in the numerical model of the molecular
motor but can be included by coupling the contraction rate constant kls to the forces acting on
the motor element. In principle, this simply entails an additional force-dependence similar to
the Bell model, which governs the strength of the motor-filament bond.
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(a) physiological myosin thick filament (b) Sketch of a possible in silico representation

Figure 4.10 Left: illustration of a physiological myosin thick filament. It has two ends with antiparallel mo-
tor arrays and a bare zone in its middle section. The red, ribbon-shaped entities represent motor head domains.
Right: simplified model of a thick filament with four motor units, which consists of four individual beam elements
representing the motors (red), and one beam element representing the filament backbone (dark green).

4.4.2 Towards modeling myosin thick filaments

Under certain physiological solvent conditions, single myosin filaments assemble into agglom-
erates, which can be characterized as rather thick filaments [4]. The light chain tail domains of
single myosin molecules assemble into bundles and create an axisymmetric filament with two
structurally identical halves. The heavy chains containing the motor units are therefore divided
into to two groups of several hundreds of motor head domains each, which have antiparallel
working directions (see Figure 4.10a). In view of the goal to study the influence of motor ac-
tivity on the scale of networks, efficiency dictates not to model single myosin head domains
by means of individual beam representations. Rather, the first strategic modeling decision has
to sum up the joint mechanical effect of all heads and condense it into a reduced set of active
motor units as shown in Figure 4.10b. The building blocks for such a motor model have all been
introduced and discussed in chapters 2 to 4. At this point, it is merely a matter of combining the
fundamental filament model from Chapter 2 with the extended model from Chapter 3 in order to
provide a sufficient resolution of binding sites required for motor activity, and finally create the
motor geometry of Figure 4.10b using four contractile beam elements introduced in the present
Chapter 4. That alone might already be sufficient to model the motor activity of myosin thick
filaments. However, [132] reports that bundle contractility can be attributed to filament buckling
caused by motors with a certain statistical dispersion in their contraction rates, their transport
velocities, and probably their sizes as well. These uncertainties may be readily included in the
model by definition of appropriate tolerances for rates and other statistically dispersed quan-
tities, which may then be randomly attributed to individual motor units and which are drawn
from an assumed governing probability distribution. Having introduced a certain dispersion to
some of the characteristic quantities, it would be possible to predict the amount of contractility
in terms of statistical measures, which would help ascertain the validity of some of the claims
about what parameter actually enables contractility.
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4.4.3 Simulation of contractile bundles and active networks of
bundles

In a further expansion of the model, the myosin thick filament representation may be applied in
the self-assembly of bundles of filaments in conjunction with other (passive) linkers. Such coop-
erative setups have been observed in the contractile ring [128] and different stress fibers [206],
where myosin II and α-actinin simultaneously interact with actin filaments. Thick filaments
are known to alter the mechanical properties of actin networks [119, 210], e.g. affecting their
rheological properties.

In the future, using the presented model, rheological studies as conducted in Chapter 6 could
be expanded to active networks, e.g., in order to compare results to theoretical predictions on
active polar gels (cf. [104]).
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5 Equilibrium morphologies of
semiflexible, transiently crosslinked
biopolymer networks

The exploration of thermodynamically equilibrated network morphologies emerging from the
interaction of semiflexible filaments and linkers is the main focus of this chapter. The equi-
librated states of networks are virtually unobservable in in vitro experiments due to their ex-
tremely long equilibration times, which is why simulations present the only available means to
study these structures phenomenologically. The main achievement of the chapter is the estab-
lishment of an equilibrium phase diagram incorporating all observed morphologies of semiflex-
ible biopolymer networks with transient linkers. It is based on results presented in [35,163] and
comprises all network phases observed so far in in vitro systems [135, 140, 213] (see Figure 5.1
for experimental images). Each of the network morphologies is discussed on the basis of de-
tailed structural information, which demonstrates how vast changes in network architecture are
triggered by fine-tuning linker concentration. It has been proposed by [13], that small changes
of key quantities (e.g., the binding energy, a second linker species, or filament length) result
in a large scale reorganization of the network structure. Having acquired detailed on linker-
mediated network evolution, one may precisely create networks by manipulation of a minimal
parameter set, which includes filament and linker concentration as well as the linker type. These
findings are invaluable for the subsequent Chapter 6, where the detailed understanding of self-
assembly processes within the simulated system allow for the generation of rheological samples
with precisely tunable mechanical properties.

It is of great interest to biophysicists, biologists, and bioengineers alike to understand how
eukaryotic cells organize and make use of their structures of networked stiff biopolymers, which
define the cell’s mechanical properties. The cytoskeleton, for example, creates vast F-actin net-
works, which are involved in a great variety of essential cellular processes. At network entan-
glement points, individual filaments are often connected to each other by crosslinks, which are
established by small linker molecules. Such composite materials are often encountered in both
natural and man-made materials. The linkers determine the macroscopic mechanical response
of a network to a large extent. In natural organic matter, crosslinks are usually established
by small proteins, but in other cases also intermolecular interactions like hydrogen bonds or
multivalent cations serve as linkers [161]. First steps in understanding polymer networks were
undertaken, however, in the wake of creation of synthetic polymer structures commonly known
as rubber [208]. The main interest of prior research endeavors lay in a general understanding
of these artificial organic materials. P.-G. DE GENNES proposed a phase diagram for dilute
solutions of polymers in order to predict their structure [39] with linkers only posing as attrac-
tion agents between polymers. Given a sufficiently high linker concentration (at the so-called
crosslink saturation threshold [172]), theory predicts a phase transition accompanied by den-

87



5 Equilibrium morphologies of semiflexible, transiently crosslinked biopolymer networks

(a) actin/HMM network (b) actin/fascin (c) actin/filamin (d) actin/Arp2/3

Figure 5.1 Different F-actin network architectures arise in vitro depending on the linker species. (a) homoge-
neous isotopric actin/HMM network (molar ratio R= 1.2), (b) actin/fascin network consisting purely of bundles
(R= 1.1), (c) actin/filamin cluster network (R= 0.1), (d) electron tomogram of the front region of lamellipodia.
Images in Figures (a)-(c) were kindly provided by K. M. Schmoller and A. R. Bausch [2]. The image in Figure (d)
is used with kind permission of M. Vinzenz and J. V. Small [1].

sity fluctuations and elastic stress variations. In recent years, research on materials consisting
of biological polymers has increased tremendously and has lead to noteworthy developments in
numerous scientific fields such as biochemistry, biophysics, medicine, and biomedical engineer-
ing [8].

Like man-made polymers, biological polymers can be organized in networks by crosslinking.
The eukaryotic cytoskeleton is a prominent example. Polymerized actin filaments are its main
mechanical constituent. They are often connected among each other by transient crosslinking
proteins. In order to understand key aspects of cytoskeletal functionality, it is often necessary
to reduce system complexity. Experiments, theory, and simulations thus mostly put their fo-
cus on two-component model systems. F-actin solutions and their viscoelastic behavior have
been amply examined in experiments using macroscopic rheology [81] as well as microrheol-
ogy [5,55,58]. Experimental findings received a thorough theoretical treatment (e.g., [53,149])
and were the subject of numerical studies (e.g., [176]). Crosslinked F-actin networks, however,
have far more interesting properties, which as well have been the topic of numerous scientific
contributions over the past few years. An variety of experiments on actin networks focuses on
the different network architectures, e.g., bundle networks (e.g., [54, 134, 136, 191]), homoge-
neous isotropic networks [137, 203], or structurally polymorphic networks (e.g., [139, 186]).
Theorists have studied, amongst others, the kinetics of random fiber networks (e.g., [77, 78]),
the consequences of microstructure on macroscopic elasticity [79], or the mechanics of fiber
bundles (e.g., [76, 80]). Finally, a large number of numerical studies have mainly examined
short time scale effects like strain-stiffening (e.g., [7,93,94,115]) and high-frequency linear vis-
coelasticity [116]. Hitherto, there is a lack of numerical experiments on network evolution over
long time scales, which can in detail explain the mechanisms behind network self-assembly as
well as geometrically and mechanically analyze the emerging network structures. This chap-
ter presents a first step towards closing this gap as linker-induced network aggregation will be
studied on larger time scales in the range of biologically relevant processes such as cell division
or migration. Filament aggregation depends on the concentration of linkers. Earlier attempts to
explain, e.g., the aggregation of F-actin crosslinked by α-actinin in the context of the de Gennes
phase diagram [201] may be inadequate due to the following reasons.
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1. Experiments clearly show different architectures depending on the linker species. Linkers
dictate whether the resulting network consists of F-actin bundles [22, 23], clusters [186],
and even lamellar structures as seen in the presence of counter ions [227] or the Arp2/3
complex in live lamellipodia [154]. A structural polymorphism such as observed in vitro
is supposed to play an important part in the organization the spatial structure of the cy-
toskeleton in living cells [135, 197].

2. Compared to flexible polymers, semiflexible polymers are much stiffer. Due to their high
stiffness, local phase separation as predicted by DE GENNES is rather unlikely. The sep-
aration of single semiflexible filaments from the aggregate while still being crosslinked
would require large bending deformations, that cannot be achieved only by thermal ef-
fects. Furthermore, as the orientation of semiflexible filaments is auto-correlated over
distances up to ∼10µm, orientational preferences of linker molecules can be transmitted
over longer distances. Therefore, crystalline meshes as in liquid crystals are more likely
to occur.

3. Thermal fluctuations of single filaments are increasingly suppressed by an increasing
amount of filament crosslinking. As filaments become more ordered, their entropy is re-
duced, i.e., the number of possible geometrical states is decreased. Within such networks,
the entropy of the linker molecules themselves may no longer be ignored.

5.1 Simulation of Network Evolution

The simulation of network evolution towards the point of thermal equilibrium poses a con-
siderable challenge. Popular models like bead-spring or bead-rod representations of slender
polymers in conjunction with an explicit time integration may be intuitive and easy to imple-
ment, yet inefficient and often methodically questionable. In fact, various micromechanical
numerical studies examined predominantly, if not exclusively, phenomena on short time and
length scales. The simulation of time intervals on the scale of several hundreds up to thou-
sands of seconds is simply impossible for most, if not all, presented computational approaches
to date. The BD/FE method by [34, 38] finally enables long-term studies, which allow for the
establishment of an equilibrium phase diagram of semiflexible filament networks. Depending
on a linker’s orientational preference when connecting two filaments, four different prototypical
network morphologies are predicted by computational model.

In order to ensure physical consistency between real filaments and their numerical repre-
sentations, sensible simulation parameters have to be employed. The cubic simulation volume
(as shown in Figure 5.2) with sides of H= 5µm and periodic boundary conditions is occupied
by Nf = {52, 105, 208, 416} filaments. If recalculated, these filament numbers correspond to
cf = {1, 2, 4, 8}µM filament concentrations, respectively. Temperature is set to T = 293.15 K
and the viscosity to η= 10−3 Pas. The filaments’ cross-sectional area is Af = 1.9×10−5µm2,
the Young’s modulus is given by Ef = 1.3×109 pN/µm2, and the moment of inertia is set to
I3 = I3 = 2.85×10−11 µm4. For a comprehensive list of parameters, the reader is referred to Ta-
ble D.7. At this point, it is worthwhile to briefly touch the topic of accuracy of data gained
from experiments and other sources tapped for reasonable simulation parameters. The measure-
ment of the persistence length of F-actin may serve as an example. According to [65], sample
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preparation clearly affects the mechanical properties. Fluorescent markers like rhodamine and
phalloidin tend to stiffen the actin filament. Directly labeled actin is reported to have a persis-
tence length of ∼8µm, rhodamine increases this value to 9.1± 0.5µm. Phalloidin stiffens the
filament by a factor of ∼1.9, so that several sources in literature [100, 130, 169] arrive at values
between 16µm and 18µm. The value predominantly chosen for simulations presented here is
9.2µm. Eventually, variations of the persistence length of this magnitude do not matter in most
cases as they do not entail significantly different physical conclusions. The reader is therefore
advised to interpret these parameters as a well informed guess, which represents a reasonable
choice within given physical and physiological boundaries.

Linker molecules are the second simulated species and interact chemically and mechanically
with the filaments. Initially, they are randomly distributed within the simulation volume. The
linker size is set to 0.08µm≤Rl≤ 0.12µm. Important material and geometrical parameters
comprise the cross section area Al = 4.75×106 µm2, Young’s modulus El = 2.56×106 pN/µm2,
and the linkers’ moment of inertia Il = 4.49×10−11 µm4. Additional parameters are summarized
in Table D.7. Reaction sites on the filaments coincide with the finite element nodes which are
equally distributed over a filament every hf = 0.125µm. The size of the linkers is in the range
of real linker proteins like filamin or α-actinin [50]. The central assumption concerning the
nature of a linker is its preference for a certain enclosed angle φ between the two filaments it
connects. Being discretized with BFEs, crosslinks can transmit forces and moments and thus
tend to maintain their preferred binding angle. Excluded volume interactions are taken into
account by the application of an Augmented-Lagrange approach for the mechanical evaluation
of contact between B-FEs (cf. [129, Chapter 6]). Entanglement is only partially modeled by this
method since the combination of a large time step with highly slender structures requires further
methodical steps such as a modified gap function, a cross-over detection, and a more robust
numerical evaluation of beam contact interaction in general. However, the present approach
already guarantees that the volumetric overlap of filaments is minimized.

5.2 The fundamental network morphologies of
crosslinked semiflexible filament networks

5.2.1 Preliminary remarks on nomenclature

In the course of this chapter, some terms are going to be used frequently such that they require an
a priori explanation. Linkers, which favor crosslinks between two filaments enclosing an angle
of about φ=π/2 will be called orthogonal linkers from here on. In analogy, linker with an
angular preference of about π/3 are termed hexagonal linkers, and linkers with a preference for
small inter-filament binding angles shall be called parallel linkers. Finally, linkers without any
orientational preference towards the filaments it connects, are referred to as isotropic linkers.

Network architectures showing a pronounced point-symmetric character will be referred to
as clusters, while sheet-like morphologies will be called lamellae. The terms bundles and ho-
mogeneous isotropic gel are self-explanatory. This terminology will be used whenever possible
in an unambiguous way, e.g., cluster is synonymous to cluster phase or cluster structure.
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5.2 The fundamental network morphologies of crosslinked semiflexible filament networks

5.2.2 Network morphologies
Given a linker concentration below the crosslink saturation threshold, the filaments in the vol-
ume form a homogeneous isotropic gel, see Figure 5.2a. Gels like these exhibit the well-
elaborated power law behavior of {G′, G′′}∼ω3/4 (see Chapter 6, Figure 6.3b). The network
mesh size, i.e., the average distance between two entanglement points, in such a network is
given by ξ= 4.5×10−2Lp, which is significantly smaller than the persistence length of a single
filament. An increase in linker concentration beyond the saturation threshold leads to filament
aggregation. Depending on the preferred binding angle interval [φ−∆φ;φ+ ∆φ], different net-
work morphologies develop. For angles φ<π/4 and a tolerance ∆φ=π/16, phase separation
occurs characterized by thick bundles of filaments in a dilute phase of single filaments. Initially,
seeds of aggregation in different places of the simulation box may lead to several smaller bun-
dles. However, these separate bundles finally aggregate into one large bundle which is depicted
in Figure 5.2b. If φ>π/4, a different structure emerges, the cluster. It has a radial symmetry
and comprises all filaments in the volume, which results in its size being limited by the length
of the incorporated filaments and thus to a maximal diameter of 2Lf . The spatial distribution of
linkers is highly non-uniform as Figure 5.2c illustrates. While the cluster core contains a very
high concentration of doubly bound linkers, the outer corona of the structure is nearly devoid of
linkers. It is therefore not surprising that filaments in the cluster core are so tightly crosslinked
that their thermal fluctuations are almost completely suppressed, whereas filaments can freely
fluctuate in the more remote regions of the cluster corona. With increasing distance r from the
cluster core, the mesh size ξ increases following the relation

ξ(r) = r(4π/Nr)
1/2 , (5.1)

where Nr =Nf is the number of radial rays originating from the center of the cluster. The
relation is visualized in Figure 5.3a. Due to this radial symmetry, the corona of the cluster phase
can be considered self-similar. The mesh size of the cluster core is constant and is comparable
to the linker length Rl. Making use of this fact, it is possible to estimate the core mesh size

ξ∗ = Rl(4π/Nr)
−1/2. (5.2)

Figure 5.3b provides complementary information on linkers. Here, the relative linker concentra-
tion is denoted as nl,rad =Nl,rad/Nb with Nl,rad being the number of linkers found in a spherical
shell with a volume Vs, thickness ∆r, and center sl. As one would expect in view of relation
(5.1), a scaling behavior nl,rad∼R−5 is observed since the volume of the spherical shell scales
with r2 for r�∆r and the spherical volume, whose surface is tangential to radially oriented
rays, scales with r3. The latter volume represents the space that filaments need to penetrate so
that a linker may establish a crosslink. Linker concentration with respect to the radial coordinate
thus has to scale inversely.

The question remains whether this cluster state is in thermodynamic equilibrium or if it rep-
resents a kinetically trapped intermediate state, as which it has been interpreted in experiments
with the linkers filamin [186] and α-actinin [140]. In these experiments, however, clusters con-
sist of bundles of actin filaments rather than single filaments, which means that the first phase
transition (from homogeneous isotropic gel to bundles) has already taken place at some lower
linker concentration. It cannot be determined if another transition eventually occurs but the ex-
perimental clusters most probably are not equilibrated. In the end, it might very well be that

91
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(a) Homogeneous isotropic phase (b) Bundle phase

(c) Cluster phase (d) Lamellar phase, φ=π/2

Figure 5.2 Network phases observed in simulations. The cubic simulation volume contains semiflexible filaments
(green), singly bound linkers (blue), and doubly bound linkers (red). Unbound linkers are not shown.

the experimental and the simulated clusters only share shapes, but differ in their thermodynamic
states.

In order to verify either the equilibrium or non-equilibrium state of the cluster, first the con-
stitution of lamellae is simulated. Lamellae establish at very high linker concentrations and rep-
resent a state of maximal geometrical order of filaments. At one point in time, usually several
hundreds of simulated seconds, where the lamellae have arrived in a stationary state, a certain
number of linkers is removed permanently from the simulated volume. The linkers left within
the volume cannot maintain the lamellar structure. The subsequent process of reorganization of
the filaments leads back to a structurally and temporally stable cluster. In analogy, linkers are
added to a stationary homogeneous isotropic gel. Again, a stable cluster emerges. As a con-
sequence, it is rather safe to assume that the cluster is in a state of thermodynamic equilibrium
given the linker specifications chosen.
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Figure 5.3 (a) Local mesh size ξ(r) as a function of the radial distance r from the center of mass sl of an
isotropic-homogeneous gel (�) and a cluster (N). While the homogeneous isotropic gel has a mesh size close to
the uniform mesh size (red dashed line), the cluster’s mesh size is constant and comparable to the linker size Rl at
the core. In the outer region with r > ξ∗, it can be described by ξ(r) = r(4π/N)1/2 (black dashed line), which is
the mesh size of a spherical bundle of rays (see inset in (b)). (b) Radially measured relative linker concentration
nl,rad =Nl,rad/Nb of the same network phases as in (a). Not surprisingly, nl,rad is nearly constant for the isotropic-
homogeneous gel. The cluster, however, features a decreasing nl,rad∼ r−5

A further increase of linker concentration leads to the formation of lamellae. Filaments
are compacted in a sheet-like assembly with either a six-fold or a four-fold broken orien-
tational symmetry as depicted in Figure 5.4. The corresponding binding angle intervals are
given as 5π/16≤φ< 7π/16 for the former and 7π/16≤φ≤ π/2 for the latter case. The linker
molecules that establish these network architectures are unordered with respect to their position
within the lamellar phase. Yet they introduce bond-orientational order in accordance to [18].
Information on bond-orientational order travels across rather large distances due to the high
bending stiffness of the filaments, which stabilizes the linker-induced order of the filaments.
The observed structures correspond to two-dimensional hexatic and squaratic liquid-crystalline
mesophases [110]. Here, these lamellae are limited in size due to a finite number of available
filaments and linkers. Theoretically, however, lamellae can expand indefinitely by adding more
filaments.

5.2.3 Parameter dependence of network morphologies

Claiming universal validity of the phase diagram – at least within chosen specifications – one is
confronted with the necessity of proving the invariance of the qualitative behavior with respect
to the most important system parameters. In a first step, these parameters were varied in a
sensible and reasonable range. Linker stiffness plays only a negligible role in the formation of
the phases. As long as it does not drop below values too small to guarantee sufficient torsional
and axial stiffness, no noteworthy differences in the emerging network phases are observed. The
variation of the length of the linkers leads to shifts in the linker saturation thresholds. Yet, the
fundamental observation of the existence of four prototypical morphologies remains unaltered.
It goes without saying that in the limit of either very short or very long linkers, observations
deviate from the statement made above. In either case, aggregation does not take place at all.
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(a) squaratic lamella (b) hexatic lamella

Figure 5.4 Two kinds of lamellar morphologies emerge depending on the preferred binding angle φ, either a
four-fold symmetry (a) or a six-fold symmetry (b) develops.

While long linkers lack the ability to impose orientational order, short linkers may yet be able
to aggregate filaments given enough free binding sites.

Interestingly, systems with isotropic linkers, i.e., without angular binding preference, always
tend to form bundles, or as a matter of fact, a network of bundles, which is in a very slowly
changing state of non-equilibrium. The network’s slowed down evolution towards the free en-
ergy minimum, a single big bundle, can be explained by the enlarged pool of possible crosslink-
ing sites as a consequence of lifting the angular constraint. The network of bundles is effectively
frozen, at least for the duration of observation.

Furthermore the effect of the persistence length of the filaments was tested on a an interval
of [0.1Lp; 10Lp]. While the saturation threshold varied slightly from case to case, no fundamen-
tal differences were observed. Contact interaction played a minor role. Considering the small
filament radius compared the linker length, i.e.,

√
Af/π � Rl, the negligible effect of contact-

ing filaments on network morphology can be readily explained. The linkers serve – at least in
the present simulations – as spacers between the filaments and thus prevent filament contact in
most cases. Only a linker with a length comparable to the filament diameter entails more pro-
nounced excluded volume effects. However, in order to observe aggregation for small linkers,
the number of potential binding sites on filaments has to be increased as well. With the BD/FE
approach introduced in [34], where filament binding sites coincide with finite element nodes,
the resolution of these length scales inevitably leads to a much finer mechanical discretization.
Hence, the advantage of coarse-graining the filament is lost. In this thesis, a method enabling
the establishment of inter-nodal crosslinks is presented in Chapter 3 that resolves this issue
by decoupling the chemical from the mechanical discretization. An enhanced study using this
method will be presented in Section 5.6. Another parameter whose effect on network morphol-
ogy was thoroughly studied is the concentration of filaments cf in the simulated volume. Within
a concentration interval of [1µM; 8µM], neither are new morphologies encountered nor do any
of the previously found structures disappear [33]. Among all parameters, it is the binding angle
deviation ∆φ that has the most pronounced impact on network morphology. An increase of ∆φ
towards ∆φ=π/2 leads to a reduction of possible network morphologies. The bundle regime
grows until – in the limit of no angular preference – only two observable domains remain: ho-
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mogeneous isotropic gels for low linker concentrations and bundles above the linker saturation
threshold.

5.3 Equilibrium phase diagram of semiflexible filament
networks with transient linkers

5.3.1 Establishment of the phase diagram

The phenomenological observations of Section 5.2.2 can be condensed into a phase diagram,
which is shown in Figure 5.5. It presents the equilibrium network morphology as a function of
the preferred binding angle of the linkers and the relative linker concentration nl = Nl/Nb. For
this particular realization of the phase diagram, filament length was chosen Lf = 4µm = 0.43Lp,
the binding angle tolerance was set to ∆φ=π/16, and the initial mesh size to ξ= 0.41µm
( = 4.5×10−2Lp) (for additional parameters, see Table D.7; standard values are underlined). As
linkers seek to maximize the number of their potential filament binding sites, nl seems an appro-
priate measure for the tendency towards filament aggregation. Experimentalists often refer to a
molar ratio R= cl/cg, where cl is the linker concentration and cg represents the concentration
of globular actin that are subsequently polymerized to filaments. In a well controllable in silico
environment as the present one, nl can easily be understood as a related quantity. In order to
obtain the information needed to establish Figure 5.5, the linker concentration nl was increased
by steps of ∆nl = 0.015, which in the case of a 4µM network corresponds to ∆Nl = 100 link-
ers. The gradual increase of linker concentration was performed for discrete preferred binding
angles (iφ−1)π/16≤φ≤ (iφ+1)π/16, iφ=1, . . . , 7. In order to ascertain the precise transition
concentration, nl was fine-tuned in steps of ∆nl = 4×10−3 (→ ∆Nl = 25).

Having studied all relevant simulation parameters contributing to equilibrium structure for-
mation and bearing in mind the relative insensibility of the qualitative findings towards these
parameters, the phase diagram presented in this chapter can be interpreted in a rather general
sense as being representative for networks made of semiflexible polymers like F-actin with tran-
sient linker molecules.

5.3.2 Discussion

Figure 5.5 predicts structural mesophases at high linker concentrations. These phases take the
form of bundles for small φ, which then gradually transcend into lamellae for increasing values
of φ. First a continuous flattening of the bundles can be observed until φ≈π/4, where filaments
aggregate into an intermediate state between bundle and lamella. Subsequently the network
structure spreads out shaping a layer-like network. Mesophases like the ones observed arise
due to the high stiffness of semiflexible polymers as compared to flexible polymers. The large
persistence length of the filaments allows for angular preferences of the linker molecules to be
conveyed over distances that are in the range of the filaments’ persistence length. Mesophase
formation has been predicted in a theoretical paper [13]. Their prediction of a cubatic phase,
which represents the three-dimensional expansion of the lamellar phase, could not be examined
in the present study as it was not observed. By contrast, both lamellar morphologies have
recently been predicted in [110], where they are referred to as tetratic and hexatic.
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Figure 5.5 Equilibrium phase diagram as a function of the preferred binding angle φ and the ratio nl =Nl/Nb of
the number of linkers and the total number of binding sites on the filaments in the volume for an angular tolerance
∆φ=π/16, filament length Lf = 4µm = 0.43Lp, and Nf = 208 filaments. The pale green spots mark data points,
each of which represents the outcome of a simulation.

Simulations with filament length Lf = 4µm and H= 5µm leading to the formation of a cluster
always result in this cluster incorporating all filaments. It is reasonable to question this finding
as it is obviously connected to the simulation box size and the finite filament concentration.
Previously, studies involving a significantly increased simulation box size were computation-
ally infeasible [35]. However, the methodic extensions introduced in Chapter 3 now allow for
such simulations. While keeping filament length Lf , filament and linker concentration cf and
cl constant, the box size was increased to H= 10µm, which in fact becomes comparable to the
size of a small cell (parameters given in Table D.8). Following the argumentation in [35], the
cluster radius has to be similar to the length of a filament. Thus an increase of the simulated
volume is predicted to lead to the formation of multiple co-existing clusters.

The enlarged simulated volume contains Nf = 1664 filaments (Ne = 8 elements per filament)
and Nl = 7200 linkers, which corresponds to a linear scaling of previous simulations, for which
clusters were observed. Figure 5.5 indicates a relative linker concentration of nl≈ 0.13 for this
case. The increase in system size requires an efficient search algorithm, which manages the
matching of linkers to potential binding sites. A geometrical binning strategy has therefore been
introduced (cf. appendix B.2).

Figure 5.6 depicts several structures confined in the enlarged simulation box. Three lamellae
as well as two clusters can be seen. The coexistence of lamellae and clusters can be explained by
a competition for linkers among the structures, which leads to spatial linker density fluctuations.
As will be elaborated later in Section 5.3.3, lamellae, compared to clusters, offer the greater
number of binding site pairs that are potential crosslinking sites between two filaments. As a
consequence, the probability of finding a doubly bound linker molecule in a lamella is higher
than in clusters.
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Figure 5.6 Result of a simulation featuring an enlarged simulation box (H= 10µm). Filament concentration
cf , filament length Lf as well as linker size Rl remain unchanged compared to previous studies in this chapter.
At t= 350 s multiple lamellar structures and two cluster structures have developed. All of them are in a (nearly)
stationary state as they have not undergone significant morphological changes for over 150 s. In order to be able to
simulate a system of this size, the extended linker beam element formulation of Chapter 3 has been applied. For
comparison, a regular simulation box (H= 5µm) is depicted as well.

In Section 5.2.2, numerical evidence has been presented that clusters are thermally equili-
brated. However, they are fragile constructs judging from the small phase domain, in which
they exist according to Figure 5.5. Once disturbed, e.g., by a small change in the local linker
density, they dissolve and reassemble into another morphology. Such disturbances occur in en-
vironments large enough to host multiple different structures such as depicted in Figure 5.6.
Here, clusters are eventually bound to be incorporated into larger superstructures, as the net flux
of linkers for clusters is negative, i.e., they lose linkers in competition with lamellae until they
cannot maintain their form anymore. As a consequence, one might have to weaken the claim
of thermally equilibrated clusters. Their existence as a thermodynamically stable morphology
depends, apart from filament persistence length, on the filament length Lf itself, and, as a matter
of fact, on its environment. A desolate cluster is stable, two clusters, however, can unite and
most probably will form a lamella.

5.3.3 Impact of linker entropy on network morphology

Here, the effect of linker entropy on network morphology will be discussed. The concept of a
linker saturation threshold for flexible polymers introduced in [172] can be shown to maintain
its validity also in the case of semiflexible polymers. Isotropic homogeneous gels represent
the thermodynamically favored architecture at low linker concentration. In this case, Nb�Nl.
Hence, conformational fluctuations of the filaments by far dominate the free energy. Filament
entropy is maximized when the distribution of filament orientations is uniform, which is equiv-
alent to White noise.
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Raising the linker concentration entails drastic changes. Since each finite element node is
a potential binding site for linkers, the total number of node pairs eligible for the establish-
ment of crosslinks factors into filament aggregation. The maximal number of these node pairs
depends on the network morphology and therefore on linker concentration. A quick estima-
tion of the density of such binding site pairs in an homogeneous isotropic gel with isotropic
linkers reveals ρdb,iso∼Rl/ξ

4. This estimate can be motivated on the one hand by the density
of filament-filament crossings in the volume, which is 1/ξ3. On the other hand, there is the
distance criterion set by the size of the linker Rl, which dictates that the probability of two fil-
ament binding sites crossing each other at a distance Rl can be written as Rl/ξ. In the case of
the presented simulations, ρdb,iso corresponds to a linker to binding site ratio nl≈ 0.03. This
threshold separates the homogeneous isotropic gel from other network aggregates, where ther-
mal fluctuations of the filaments are effectively quenched by linkers. All of these aggregates
have in common that they provide a significantly higher number of potential sites for crosslinks.
Depending on the linkers’ angular preference, the architecture providing the greatest number of
these sites are either bundles or lamellar aggregates. The cluster network can be characterized as
an intermediate stage. While it offers a higher number of potential crosslinks than the homoge-
neous isotropic gel, it still offers significantly less combinations of crosslinks than the lamellar
phase. It represents a trade-off only possible on a rather narrow intermediate interval of linker
concentration. As a hard rule, the resulting network morphology is always the one offering the
greatest number of potential crosslinks under the constraint of the present linker concentration.
In other words, the favored network type represents the maximal degree of order, which all
linkers together can energetically afford. All aforementioned observations and interpretations
thereof lead to the conclusion that linker entropy determines how filaments are condensed into
one or the other network morphology.

5.3.4 Experimental support of in silico results
In literature, plenty of experimental examples can be found that partly or wholly support the
numerical results. Homogeneous isotropic gels are known to be the predominant network mor-
phology at low linker concentrations. This state is independent of the linker species. In case of
isotropic linkers such as α-actinin, [26] reports a network of branched bundles. If one follows
the argument of [48], these kind of networks are long-lived non-equilibrium architectures. Such
networks were first reported in [185, 186] and agree well with the presented simulation results.
There are cases, where bundle networks formed by small linkers like fascin [26] may very well
be more preferable energetically than one single bundle. As argued in [23, 64], chirality of the
involved filaments play a role. Due to the fact that F-actin filaments do not possess a perfect
double-helical structure, bundle growth beyond a certain diameter becomes energetically unfa-
vorable due to an increase of strongly bent filaments. Hence, filament chirality may act as a
stabilizer of a network made of bundles. Polyvalent counter-ions such as Mg2+ or Al3+ can be
argued to have an orthogonal angular preference which originates from close-range electrostatic
repulsion of filaments [227]. In fact, there are linkers like the Arp2/3 complex that actually
exhibit a distinct angular preference: in lamellipodia, the preferred angle is explicitly known to
be φ≈ 70◦ [154,213]. Finally, networks with clusters have been reported, too, but deemed to be
kinetically trapped rather than equilibrium structures [139, 186].
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5.4 Structural analysis of network morphologies and their phase transitions

5.4 Structural analysis of network morphologies and
their phase transitions

So far, the general phenomenology of the four fundamental equilibrium network morpholo-
gies has been discussed. The subsequent Section 5.5 will thus be dedicated to a more detailed
structural examination of these morphologies and their phase transitions, which are indicated in
Figure 5.5. Prior to the discussion of phase transitions, however, it is worthwhile giving a basic
understanding of the nature of phase transitions as well as an introduction to the analytical tools
applied to examine them.

5.4.1 On the order of phase transitions

Transitions between different thermodynamic states of a system can be classified by their transi-
tion order. First-order transitions display a discontinuity in the first derivative of the free energy
with respect to a thermodynamic variable. In case of this variable being the temperature of the
system, a discontinuity in the system’s order parameter can be observed. A further characteristic
of such transitions is revealed: the temperature of the system stays constant. Melting is a pro-
totypical example for such a phase transition. In contrast to first-order transitions, second-order
transitions feature a smooth first derivative of the free energy with respect to the thermodynamic
variable of interest. Returning to the example above, the order parameter develops continuously
with temperature. The Curie point, which separates paramagnetic and ferromagnetic materials,
marks a second-order phase transition.

5.4.2 Analytical tools for the structural and mechanical analysis of
crosslinked networks

Morphology-dependent local coordinate systems All three inhomogeneous network
morphologies (clusters, bundles, and lamellae) correspond to geometrical primitives (point, line,
and plane). Their characterization may thus be facilitated by defining morphology-dependent
local coordinate frames (x1, x2, x3) aligned with the respective geometric primitive in a suitable
way. The origin of the cluster-specific coordinate frame is placed in the center of mass sl along
with an arbitrary orientation of the coordinate frame. For bundle networks, this origin is put on
the bundle’s centerline at its center of gravity and the x1-direction is defined orthogonal to it.
Finally, for the lamellae, the x1-direction is chosen orthogonal to the plane in which they lie.
Their local frames’ origin is located at sl. The coordinate frames are shown as insets of Figures
5.7b, 5.8b, and 5.11b, respectively.

Orientational distribution of filaments The distribution of filament orientations is a
characteristic measure for any kind of filamentous network. Using spherical coordinates (ϕ, ψ),
these orientations may be described by means of the orientation density functions

ρ(ϕ) =

〈
1

NfLf

Nf∑
n=1

Lf∫
0

δ [ϕ− ϕn(s)] ds

〉
, ρ(ψ) =

〈
1

NfLf

Nf∑
n=1

Lf∫
0

δ [ψ − ψn(s)] ds

〉
, (5.3)
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5 Equilibrium morphologies of semiflexible, transiently crosslinked biopolymer networks

where 〈 . 〉 denotes the time average, δ the Dirac-Delta-function and ϕn(s) and ψn(s) the orienta-
tion angles of the tangent of the nth filament at the material point s. The azimuth angle ϕ∈ [0; 2π[
is measured against the x2-direction, the polar angle ψ ∈ [0; π] against the x1-direction (cf. Fig-
ure B.2a). The functions ρ(ϕ) and ρ(ψ) are a direct measure for the degree of the orientational
anisotropy of filaments in the network. In view of the following analyses of filament orien-
tations, the reader is referred to Appendix B.3 for the correct interpretation of orientations by
means of the angles ϕ, ψ.

Orientation correlation among filaments Linkers with a preferred binding angle tend
to impose an orientation correlation between filaments close to each other. Let the position of
the mth binding site on the ith filament be x[ i ][m]

b . Then,

I = {(i,m, j, n) : Rl −∆Rl ≤
∥∥∥x[ i ][m]

b − x[ j ][n]
b

∥∥∥ ≤ Rl + ∆Rl, i 6= j} (5.4)

is the set of all index tuples belonging to pairs of binding sites on different filaments, which are
in the appropriate distance to be connected by a linker. Some of them may indeed be chemically
crosslinked, while others are not due to the lack of a linker molecule in their vicinity. Let
t[ i ][m]

b be the filament tangent vector of a binding site. Then, the correlation of orientations of
neighboring filaments can be written as the orientation correlation function (OCF)

O(θ) =
∑

(i,m,j,n)∈I

δ
(
θ − cos−1

∣∣∣t[ i ][m]
b · t[ j ][n]

b

∣∣∣) , (5.5)

where θ denotes the angle enclosed by the tangents. Given a network with perfectly random
filament orientations, the linker-mediated interactions between neighboring filaments are negli-
gible. The distribution function O(θ) is then expected approach O(θ) = sin(θ), θ∈ [0;π/2] due
to the geometric preference for angles close to π/2 between randomly oriented straight lines.
By contrast, in case of strong, linker-mediated filament-filament interactions and linkers with a
preferred binding angle φ, one expects a pronounced maximum at θ ≈ φ.

Filament order parameter The order parameter of a nematic liquid crystal is commonly
given as a scalar value

S = 〈P2(cosϑ)〉 =
1

2

〈
3(cosϑ)2 − 1

〉
(5.6)

and represents the ensemble average of the second Legendre polynomial P2 at a specific point in
time. Usually, ϑ represents the enclosed angle between the direction of rigid rod-like molecules
and a global director. In general, Equation (5.6) describes the degree of order of a nematic liquid
crystalline phase [18]. Whereas S= 0 indicates uncorrelated angles, S > 0 and S < 0 indicate a
predominance of small and large ϑ, respectively.

Here, the focus lies on the orientation of long semiflexible polymers in networks rather than
with short rigid rods as common for liquid crystals. Thus, Equation (5.6) is altered in a way
which allows to capture the varying orientation along the axis of filaments. Additionally, one
would like to compare the local filament orientation not with a given preferred direction, but
rather with the orientation of all other filaments in the network depending on their respective
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distance d. To this end, the modified order parameter reads

S(d) =
1

(N2
f − Nf)L2

f

〈
Nf−1∑
i=1

Nf∑
j=i+1

Lf∫
0

Lf∫
0

δ (d− ‖xi(si)− xj(sj)‖)
(
3ϑ2

ij − 1
)
dsidsj

〉
, (5.7)

where d is a distance and x(.)(s(.)) marks the spatial position of the (.)th filament. Furthermore,
ϑij = |ti(si) · tj(sj)| with tangents t(.)(s(.)).

Strain energy of the network Depending on the beam formulation, the internal elastic
energy or strain energy can consist of individual energy terms stemming from axial, bending,
shear, and torsional deformation. The here applied Reissner beam [30, 103] accounts for all of
these deformations, whereas recently developed Kirchhoff beam formulations [155, 156] omit
shear deformation and might be the more efficient modeling choice due to the high slenderness
ratio of the filaments and linkers. Here, based on [103], the energy

Eint =
1

2

Nf∑
if

Lf∫
0

γT
matCfγmat + κT

matCmκmat ds (5.8)

sums up the strain energy contributions of individual filaments in what can be understood as
the joint strain energy stored in the network. The strain measures γmat and κmat are defined
with respect to the material frame [103]. The constitutive matrices Cf and Cm are defined by
equations (2.12).

Two-point density-density correlation function of linkers The spatial distribution of
the linkers is an important characteristic of the network and is quantified as follows. Let the
position vectors of the Ndb doubly bound linkers (i.e., crosslinks) be x〈k〉db , k= 1, . . . ,Ndb with
components x〈k〉db,i, i= 1, 2, 3. Then, according to [18], the number density operator

n(xi) =

Ndb∑
k=1

δ
(
xi − x

〈k〉
db,i

)
(5.9)

is a measure for the spatial density of doubly bound linkers and the distribution of these linkers
can be characterized by the so-called two-point density-density correlation function (DDCF)

Ci(xi, x̂i) = 〈n(xi)n(x̂i)〉 =

〈
Ndb∑
k=1

Ndb∑
k′=1

δ
(
xi − x

〈k〉
i

)
δ
(
x̂i − x

〈k′〉
i

)〉
, (5.10)

with non-identical linker positions x〈k〉 and x〈k
′〉 and two non-identical variable points in space

x and x̂. In slight variation of Ci(xi, x̂i), one may simply evaluate the mutual distance between
two given doubly bound linkers by

Ci(di) = 〈n(xi)n(x̂i)〉 =

〈
Ndb∑
k=1

Ndb∑
k′=1

δ (di − |xi − x̂i|) δ
(
xi − x

〈k〉
i

)
δ
(
x̂i − x

〈k′〉
i

)〉
. (5.11)
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Structure function Complementary information to Equation (5.10) is given by its Fourier
transform, which can be measured directly in diffraction experiments and reads

Ixx̂(qi) =

∫
e−iqi(xi−x̂i)Ci(xi, x̂i)dxidx̂i (5.12)

with imaginary unit i=
√
−1. This expression is typically referred to as structure function.

Finally, q – with the components qi – is called the scattering wave vector. It describes the
difference between incoming and scattered waves in experimental investigations (e.g., via small
angle x-ray scattering). It may be interpreted as the frequency of spatial occurrences of detected
particles, which allows for its direct application to the analysis and classification of arbitrary
linker patterns. The structure function as the Fourier transform of Equation (5.11) is given by

Ii(qi) =

∫
e−iqidiCi(di)ddi. (5.13)

5.5 Fundamental phase transitions
All transitions are studied by gradually increasing linker concentration until morphological
changes become apparent. In the following, transitions from homogeneous isotropic gels to
bundles, clusters, and lamellae are examined, as well as transitions from clusters to lamellae.

5.5.1 The bundle transition
As illustrated in Figure 5.7, the phase transition from a homogeneous isotropic gel to a bundle
network is accompanied by an abrupt change of the network morphology at a critical linker
concentration rather than by a continuous transition. Bundling is observed for linkers that favor
connections between filaments whose axes enclose small angles up to φ = 3/16π, i.e., parallel
linkers. For the case discussed here, a binding angle φ = 1/16π and a deviation of ∆φ = 1/16π
are defined. Within the narrow concentration interval nl ∈ [0.058; 0.062] (i.e., Nl ∈ [400; 425]),
the DDCF C1(d1) in (normal) x1-direction in Figure 5.7a suddenly changes from a uniform
distribution to a peaked distribution with a sharp maximum around zero (and H because of the
periodicity of the system). The width of this peak is comparable to the bundle diameter. At con-
centrations only slightly above the critical linker concentration, phase separation is observed:
a single bundle is surrounded by free filaments devoid of linkers. Increasing the linker con-
centration further leads to a state where almost all filaments available in the simulated volume
are bound within the bundle. The corresponding structure functions I1(q1) in x1-direction in
Figure 5.7b can be interpreted as follows. A homogenous isotropic gel ideally exhibits only
a constant contribution, which is hardly surprising since a flat power spectral density of the
distances d between two linkers is detected, i.e., there are no spatial density fluctuations. En-
tering the bundle regime, a sudden rise in the amplitudes of higher frequency contributions can
be seen. This phenomenon is the consequence of a steep gradient when linker concentration
drops to values close to zero outside of the bundle. Similarly and as expected, the orientational
distribution for homogeneous isotropic networks with nl≤ 0.058 is uniform. In Figure 5.7c,
the perfect uniform distribution of azimuth angles is represented by a circle with radius 1/

√
π.

For nl> 0.062, the distribution exhibits pronounced maxima in two opposite directions, which
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Figure 5.7 Transition from homogeneous isotropic gel to bundle network. The binding angle interval is
0.0≤φ≤π/8. DDCF C1(d1) in (normal) x1-direction (a), its structure function I1(q1) (b), and azimuth angle
distribution ρ(ϕ) (c) for nl≈ 0.044 (�), 0.058 (N), 0.062 (�), and 0.073 (•) corresponding to a total number of
Nl = 300, 400, 425, and 500 linkers, respectively. The continuous black circle with radius 1/

√
π in (c) marks the

uniform distribution. The inset in (b) illustrates the orientation of the coordinate frame. In (d), the normalized
mean strain energy of the network (d) for Nf = 104 filaments (cf ≈ 2µM) is depicted.

is to be interpreted as a strong uniaxial orientational preference. The axial x2-direction is not
discussed as it does not hold valuable information.

The normalized mean internal elastic energy of all filaments, i.e., the network mean strain en-
ergy, changes noticeably upon phase transition as Figure 5.7d clearly shows. For this particular
analysis, a network with a smaller number of Nf = 104 filaments (cf ≈ 2µM) was chosen. In
order to arrive at comparable values across different filament concentrations, the energy is nor-
malized by the total number of filament binding sites Nb. The lower filament concentration leads
to a more pronounced effect of bundling on the strain energy of the network as will be explained
now. For higher filament concentrations, the drop in network strain energy cannot be detected
clearly because of phase separation, where a bundle consisting only of a part of the filaments is
surrounded by an increasing number of loose filaments. The contribution of the free filaments
masks the effect of the aggregation. The time interval, over which energies are averaged, is
given by [2000 s; 2400 s] of simulated time. The transition from a homogeneous isotropic gel to
the bundle phase between nl = 0.097 and nl = 0.112 coincides with a linker-induced drop of the
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Figure 5.8 Transition from homogeneous isotropic gel to a cluster network with preferred binding angle inter-
val 6π/16≤φ=π/2. DDCF C1(d1) (a), structure function I1(q1) (b), and azimuth angle distribution ρ(ϕ) (c)
for nl≈ 0.044 (�), 0.102 (N), 0.106 (�), and 0.117 (•) corresponding to Nl = 300, 700, 725, and 800 linkers.
The continuous black circle in (c) with radius 1/

√
π represents the uniform distribution. The inset illustrates the

orientation of the coordinate frame. In (d), the normalized mean network strain energy the shown.

strain energy of the filaments by approximately 5%. Freely fluctuating semiflexible filaments
deform and thus store energies of a few kBT mainly in their bending modes [88]. Filaments
in a bundle, however, align in a nearly straight way under the constraining effect of the linkers,
which greatly reduces the strain energy of the filaments.

5.5.2 The cluster transitions

Again changes in the DDCF, the structure function, and the orientational distribution were stud-
ied for increasing linker concentrations and for different parameter settings. Typical results
are depicted in Figure 5.8 and Figure 5.9 for preferred binding angles φ∈ [3π/8; 3π/2] and
φ∈ [π/4; 3π/8], respectively. These angular intervals represent the cases for which linkers at
very high concentrations eventually induce squaratic or hexatic order (cf.Section 5.5.4). At
intermediate linker concentrations investigated here, however, φ does not yet exert its full influ-
ence on the order of filaments as for very high concentrations. Crossing a critical concentration
of orthogonal linkers (see Figure 5.8 between nl = 0.102 and nl = 0.106), the network morphol-
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ogy abruptly changes. This change is marked by a peaked density-density correlation instead of
a hitherto nearly uniform spatial distribution of the linker molecules (Figure 5.8a). The width of
this peak is comparable to the cluster diameter. This aspect reenforces the idea of a linker-rich
core and a corona which is almost free of linkers. The structure functions of cluster networks in
Figure 5.8b exhibit finite-amplitude frequency contributions up to about the 5th harmonic, which
suggests increased spatial fluctuations in linker density. The quick monotonous decline of the
structure function, however, is a sign of a smooth decrease in linker concentration when moving
away from the cluster core.

Figure 5.8c shows the distribution of azimuth angles of the filaments. Across the phase bound-
ary, no significant changes are detected, which is an observation that also holds for the polar
angle as Figure 5.12f points out later on. Apparently, the cluster transition does not noticeably
affect the distribution of filament orientations. In Figure 5.9, the same phase transition is il-
lustrated for hexagonal linkers. The structure emerging in excess of the critical concentration
between nl = 0.113 and nl = 0.117 (Nl ∈ [775; 800]) can be classified as a cluster. It exhibits
a slightly more pronounced geometrical anisotropy as compared to clusters with orthogonal
linkers. While the general tendency expressed by an abrupt morphological reorganization is
maintained as the DDCFs in Figure 5.9a suggest, the subsequent development towards higher
nl differs from clusters with orthogonal linkers. On the broad concentration interval bounded by
nl = 0.117 and nl = 0.131, the DDCFs show signs of a smooth transition in normal x1-direction.
Indeed, at higher concentrations, a continuous flattening of the cluster can be observed. This
observation is reflected in Figure 5.9b, too, where the structure functions of networks with
nl = 0.117 to nl = 0.131 exhibit continuously increasing amplitudes for higher harmonics. The
effect is still minor, though, as the distribution of azimuth angles in Figure 5.9c implies that
filament orientations do not significantly change on both sides of the phase boundary. Yet, Fig-
ure 5.13f reveals a preference for a polar angle of ψ=π/2 already in the cluster phase. In
local coordinates, the polar angle is measured against the x1-direction. Hence, the smoothly
increasing peak at θ=π/2 confirms the flattening mentioned above.

It is important to note that despite the fundamental structural changes shown in Figure 5.8a
and Figure 5.8b, the orientation of the filaments – on a global level – remains nearly uniformly
distributed. Figure 5.10a features OCFs of a homogeneous isotropic gel as well as two clus-
ters, one with orthogonal linkers, the other with hexagonal linkers. It reveals that clusters with
orthogonal linkers are indeed nearly rotationally symmetric. The data points for the homoge-
nous isotropic gel and this cluster are almost congruential and both very close to the analytical
uniform distribution of orientations. Clusters with hexagonal linkers do not entirely maintain ro-
tational symmetry. Here, the OCF peaks slightly at θ≈ π/3 and thus deviates from the uniform
distribution.

At short distances, both clusters exhibit order parameter values S(d)> 0, i.e., a local angu-
lar correlation between filaments is detected due to the presence of crosslinks (Figure 5.10b).
Neighboring filaments are expected to include angles comparable to the preferred linker binding
angle φ. This angle for clusters is always φ>π/4 (cf. Figure 5.5) and direct linker interactions
are limited to short distances d≤Rl. Clusters with hexagonal linkers have a higher structural
order than clusters with orthogonal linkers, judging by their larger order parameter over a larger
distance interval. The order parameter quickly decreases to zero with increasing distance d
from the center of mass, which shows that filaments become uncorrelated outside of the cluster
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Figure 5.9 Transition from homogeneous isotropic gel to a cluster with hexagonal linkers, i.e., π/4≤φ≤ 3π/8.
DDCF C1(d1) in (normal) x1-direction (a), its structure function I1(q1) (b), and azimuth angle distribution
ρ(ϕ) (c) for nl≈ 0.058 (�), 0.113 (N), 0.117 (�) and 0.120 (•), 0.124 (H), and 0.131 (I) corresponding to
Nl = 400, 775, 800, 825, 850, and 900 linkers, respectively. The continuous black circle in (c) with radius 1/

√
π

represents the uniform distribution. The normalized mean network strain energy in (d) behaves in analogy to an
orthogonal cluster (cf. Figure 5.8d).

core. The small negative values around S(d≈H/2) are noteworthy as they are characteristic
for assemblies with radial symmetry (ideal point symmetry results in S(d) =−0.5).

The cluster transition, in contrast to the bundle transition, leads to an abrupt increase of the
mean network strain energy by approximately 7% both for hexagonal and orthogonal linkers as
shown in Figure 5.8d and Figure 5.9d. Both cluster types can be understood as intermediate
stages towards the highly ordered lamellae with nearly straight filaments. At this intermediate
stage, the number of linkers is already sufficient to condense filaments, yet it is not sufficiently
high to bring them to a state of higher order as in the case of lamellae. In clusters, linkers strive
towards an increased number of spots where they can connect two filaments by bending them,
thereby increasing their strain energy.
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Figure 5.10 OCFs and order parameter for cluster networks. (a) OCFs O(θ) and (b) the corresponding or-
der parameters S(d) for a homogeneous isotropic network with nl≈ 0.015 (Nl = 100,�), a cluster network with
3φ/8≤φ≤π/2 and nl = 0.120 (Nl = 825, N), a cluster network with π/4≤φ≤ 3π/8 and nl≈ 0.117 (Nl = 800,
�). The dashed black line represents the uniform distribution of filament orientations (O(θ) = sin θ and S(d) = 0
).

5.5.3 The lamella transition

Figure 5.5 reveals yet another phase transition. Leaving the phase diagram at the tip of the
cluster region towards smaller angles in the interval φ∈ [π/4; 3π/8], one encounters a small in-
terval of angles in which a homogeneous isotropic gel directly transcends to a lamella without
entering cluster phase space. Again, an initial network is chosen which has a smaller number of
Nf = 104 filaments (cf ≈ 2µM). The DDCFs in Figure 5.11c suggest that a compaction of fila-
ment takes place in the in-plane directions but that it is moderate in comparison to the direction
normal to the surface of the lamella (Figure 5.11a). Here, at concentrations between nl = 0.291
and nl = 0.299, a sudden and steep rise in linker density for small distances is detected, which
goes along with the depletion of linkers for distances d1&Rl. The structure functions reflect
the extent of morphologic change more clearly. While changes in the structure functions for
the in-plane directions (Figure 5.11d) are marginal, the normal direction (Figure 5.11b) features
drastically increased amplitudes for higher harmonics. Within the geometrical limits of the
lamella, the linker distribution remains constant, whereas perpendicular to the lamellar phase,
the linker concentration rapidly and almost instantaneously decreases to very low values. The
lamella exhibits a well-defined six-fold symmetry, which leads to a hexagonal distribution of
azimuth angles of the filaments in Figure 5.11e. The distribution of polar angles (Figure 5.11f)
peaks at ψ=π/2 due to the choice of the local coordinate frame.

The normalized mean network strain energy plotted in Figure 5.11g exhibits a similar behav-
ior as observed for the transitions from homogeneous isotropic gels to clusters and finally to the
hexagonal lamella (cf. Figure 5.9d and Figure 5.13g). In general, the reduction of filament con-
centration (i.e. Nf , cf ) gradually diminishes the cluster phase (cf. Figure 6.11 from [33]). Below
a certain concentration threshold, the cluster might even vanish completely from the phase di-
agram (which was not observed for the chosen filament concentrations). As a consequence,
the interval of linker concentrations shrinks which features an elevated strain energy level –
a distinct characteristic of the cluster phase. It vanishes for filament concentrations as low as
Nf = 104 (cf ≈ 2µM).
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Figure 5.11 Transition from homogeneous isotropic gel to a lamella with hexagonal linkers, i.e., π/4≤φ≤ 3π/8.
In this case, Nf = 104. Top row: DDCF C1(d1) in (normal) x1-direction (a) and its structure function I1(q1)
(b). Middle row: density-density-correlation function C2(d2) in (tangential) x2-direction (c) and its structure
function I2(q2) (d). Bottom row: azimuth angle distribution ρ(ϕ) (c) and polar angle distribution ρ(ψ) (f). The
networks have nl = 0.044 (�), 0.071 (N), 0.073 (�) and 0.075 (•), 0.080 (H), and 0.087 (I) corresponding to
Nl = 600, 975, 1000, 1025, 1100, and 1200 linkers. The continuous black circle with radius 1/

√
π in (c) and the

black line with ρ(ψ) = sin(ψ)/2 in (f), respectively, represent the uniform distribution. In contrast to the transitions
from the cluster to the lamellar phase (cf. Section 5.5.4), the normalized mean network strain energy rises during
the transition.
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5.5.4 The cluster-lamella transitions

If the linker concentration in cluster networks is increased further, clusters transcend into either
a squaratic or a hexatic lamella. Lamellae are highly ordered filament condensates, which are
densely crosslinked and thus are dominated by linker-filament interaction, which effectively
quench thermal fluctuations of single filaments.

The transition from cluster to lamella with orthogonal linkers is characterized by a single dis-
continuous condensation event. Clusters with orthogonal linkers are rather insensitive to a rising
linker concentration until they abruptly flatten and become lamellae, which is shown in Fig-
ure 5.12. No noticeable change in geometry is detected on a rather broad concentration interval
nl ∈ [0.131; 0.157]. Then, a minor additional increase of the linker concentration to nl = 0.160
leads to a large-scale reorganization of the network, which is detected by two abruptly expressed
orthogonal preferential orientations in Figure 5.12d. A four-fold symmetry develops. It should
be emphasized that this angular preference is not prescribed in a strong sense but rather repre-
sents the most favorable configuration in the presence of orthogonal linkers. The polar angle is
measured against the normal x1-direction of the lamella and peaks at ψ= π/2 upon transition,
which is a natural consequence of the cluster’s condensation into a more or less two-dimensional
structure (Figure 5.12e). The reorientation of filaments is accompanied by strong spatial den-
sity fluctuations in x1-direction, which are shown in Figure 5.12a and Figure 5.12b. There,
the density-density correlation suddenly peaks for low linker distances, which suggests a rapid
condensation. These peaks have a width of ∼Rl, which is about the thickness of the lamellar
phase. The corresponding structure function responds to this abrupt condensation by exhibiting
large amplitude high-frequency contributions. The in-plane x2,3-directions experience the flat-
tening as a sudden homogenization in linker density, which is detected by the density-density
correlation and corresponding structure function (Figure 5.12c and Figure 5.12d). The cluster
spreads out and as a consequence, linkers become uniformly distributed within the emerging
lamella. A macroscopic example resembling this transition is the pressure-induced bursting of
a water-filled balloon placed on a table. The balloon membrane keeps the water in a spherical
form. When more water is added, the shape does not change until the membrane yields. Then,
the water is released and finds its new surface energy minimum by spreading out on the table
(assuming gravity, of course).

In contrast to orthogonal linkers, hexagonal linkers invoke a more complex transition. Based
on the data presented in Figure 5.13, the transition can be divided into two separate stages.
The initial abrupt flattening of the cluster on the interval nl ∈ [0.131; 0.135] (Nl ∈ [900; 925]) is
followed by a smooth rearrangement of filaments over a much broader linker concentration in-
terval nl ∈ [0.135 ; 0.189] (Nl ∈ [925; 1300]). In x1-direction, both the density-density correlation
(Figure 5.13a) and the structure function (Figure 5.13b) display first an abrupt change between
nl = 0.131 and nl = 0.135 followed by a continuous evolution from a (flat) cluster to a lamella.
The first stage can be interpreted as a first-order transition, which is followed by a seamless
evolution of the network structure bearing the characteristics of a second-order phase transition.
The in-plane DDCF (x2-direction, Figure 5.13c) and its structure function (Figure 5.13d) show
the expansion of the lamella by a smooth decline of the low-distance peaks and the amplitudes
of the harmonics, respectively. Interestingly, these two instruments are insensitive with respect
to the initial morphological change. With increasing linker concentration, the preferred hexago-
nal order becomes apparent (Figure 5.13e). Meanwhile, the polar angle (Figure 5.13f) develops
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Figure 5.12 Transition from a cluster network to a lamellar network with a preferred linker binding angle interval
3π/8≤φ≤π/2. Top row: DDCF C1(d1) in x1-direction perpendicular to the lamellar phase (a) and its structure
function I1(q1) (b). Middle row: DDCF C2(d2) in (tangential) x2-direction (c) and its structure function I2(q2)
(d). Bottom row: azimuth angle distribution ρ(ϕ) (e) and polar angle distribution ρ(ψ) (f). The normalized mean
network strain energy drops abruptly during transition (g). Linker concentrations: nl≈ 0.131 (�), 0.157 (N), 0.160
(�) and 0.212 (•) corresponding to Nl = 900, 1075, 1100, and 1500 linkers.
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Figure 5.13 Transition from a cluster network to a lamellar network with a preferred linker binding angle inter-
val π/4≤φ≤ 3π/8. Top row: DDCF C1(d1) in (normal) x1-direction (a) and its structure function I1(q1) (b).
Middle row: DDCF C2(d2) in (tangential) x2-direction (c) and its structure function I2(q2) (d). Bottom row: az-
imuth angle distribution ρ(ϕ) (e) and polar angle distribution ρ(ψ) (f). Linker concentrations: nl = 0.124 (�),
0.131 (N), 0.135 (�), 0.138 (•), 0.146 (H), 0.153 (I), 0.160 (J), 0.175 (+), and 0.189 (×) corresponding to
Nl = 850, 900, 925, 950, 1000, 1050, 1100, 1200, and 1300 linkers, respectively. The normalized mean network
strain energy behaves somewhat differently than in the case of the orthogonal lamellar network (cf. Figure 5.12g).
It rises towards the transition and then smoothly decreases (g).
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Figure 5.14 (a) OCFs O(θ) and (b) the corresponding order parameters S(d) for a homogeneous isotropic
gel (�), a lamellar network with 3π/8≤φ≤π/2 and nl = 0.189 (Nl = 1300, N), and a lamellar network with
π/4≤φ≤ 3π/8 and nl = 0.189 (�). The dashed black line represents the uniform distribution of filament orienta-
tions (O(θ) = sin θ and S(d) = 0 ).

towards the limit of a Dirac impulse at ψ=π/2, as already seen in Figure 5.12f. In contrast to
orthogonal linkers in squaratic lamellae, hexagonal linkers do not immediately impose a six-fold
symmetry. The post-transition lamella merely exhibits the onset of an orientational preference.

Clearly, both lamellae represent the most favorable configurations that their linkers are able
to establish. They offer maximal combinatoric freedom for crosslinking while constraining
filaments to a minimum in positional and orientational freedom. As illustrated in Figure 5.14a,
the preferred linker binding angle induces two peaks in the OCFs O(θ) (cf. Equation (5.5)), one
close to θ=φ, the other close to θ= 0. The first peak reflects the linker-mediated orientational
preference of the filaments, while the second peak simply reflects the geometrical necessity
of having, on average, equal numbers of filaments enclosing φ and parallel filaments. The
different heights of the peaks are a result of finite size effects (i.e., finite Nf ,H). Due to the
large persistence length of the filaments, linkers impose global orientational order in lamellae,
which is reflected by the non-negative order parameter S(d) (cf. Equation (5.7)) even at greater
distances d (Figure 5.14b).

The different modes of transition become most apparent when examining the mean network
strain energy. Whereas a cluster reduces its mean network strain energy by approximately 7%
upon transition to a squaratic lamella (see Figure 5.12g), the transition to a hexatic lamella does
not display such a discontinuity (see Figure 5.13g). On the contrary, the mean network strain
energy first rises slightly even beyond the transition concentration, which can be attributed to the
strongly bent filaments within the lamella. In other words, the network has a hard time deciding
whether it is still a cluster or already a lamella. The end of the energy plateau (nl≈ 0.145-0.16)
marks the end of this intermediate stadium. Once further filament bending becomes energeti-
cally unfavorable in excess of nl≈ 0.15, the filaments are reordered into the “classic” hexagonal
geometry. From this point on, the network strain energy decreases rather smoothly as the order-
ing effect of the linkers begins to dominate.
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(a) Network strain energy (b) number of actual crosslinks

Figure 5.15 (a) Network strain energy for a homogeneous isotropic gel (top) and a hexagonal lamella (bottom).
(b) The number of doubly bound linkers Nl,db with respect to the total number of available binding sites Nb. The
network has Nf = 104 filaments and Nb = 3432 binding sites.

5.5.5 Energy conservation during network evolution

A most fundamental criterion for any kind of numerical simulation is the conservation of energy
in the system (in absence of sources, drains, and energy leakage across the system boundary).
The amount of thermal energy in the system is determined by temperature, which for the pre-
sented approach expresses itself only implicitly in terms of effective thermal forces and mo-
ments. In the context of modeling, they are simple vector-valued random variables with zero
mean and a certain variance (cf. Chapter 2). Although there exist known problems concerning
the accurate generation of pseudo-random numbers, the possibility of the random number gen-
erator creating an off-balance in energy is neglected. What remains is the energy stored by the
system’s structural constituents in form of elastic energy as well as kinetic energy. An increase
or decrease in kinetic energy would result in a violation of the Einstein-Smoluchowski relation
D = ζ/kBT as the diffusion coefficient D would be affected. This source of error has been
ruled out theoretically and heuristically in a previous work [33] by means of long term numeri-
cal studies on diffusive properties. The principle of equipartition of energy predicts the average
kinetic energy of a particle with a certain (arbitrary) mass to be 〈Ekin〉 = 3kBT/2, which is thus
only dependent on temperature. Since the effect of temperature is controlled by the underlying
stochastic processes of the BD method, the conservation of kinetic energy is not an issue here.

Since the evaluation of the internal elastic energy in the system has been put forth as being
important to the process of filament self-assembly, it seems worthwhile to monitor this quan-
tity over the course of a simulation. In Figure 5.15, the results of this survey are presented for
two representative simulations. Figure 5.15a depicts the temporal development of the summed
elastic energies of all filaments in the simulation volume for an isotropic-homogeneous net-
work (nl = 0.26) and a hexagonal lamellar network (nl = 0.35). The first case demonstrates
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5 Equilibrium morphologies of semiflexible, transiently crosslinked biopolymer networks

the stationary nature of Eint over a time interval of Tsim = 10000 s, which corresponds to 106

time steps. In the second case, network evolution is witnessed, a process, that comes to end at
t≈ 1500 s. The effect of transient crosslinking becomes apparent. Compared to a homogeneous
isotropic gel, strain energy fluctuations are more pronounced as the space/time-variant set of
crosslinks affects filament bending. Moreover, linker unbinding events may randomly lead to a
release of a portion of the stored strain energy of the filaments. As discussed in Section 5.5.3,
the mean internal elastic energy of the network increases, when it transcends from the homo-
geneous isotropic gel phase to the hexatic lamellar phase. This increase by approximately 12%
is observed in the evolutionary phase. Afterwards, the reaction between filaments and linkers
has reached chemical equilibrium. The internal elastic energy enters the stationary phase, which
is observed to be stable for more than 4000 s of simulated time. Figure 5.15b shows the num-
ber of doubly bound linkers over the course of the simulations. It detects a constant degree of
crosslinking for the homogeneous isotropic phase. For the lamellar phase, however, noticeable
fluctuations are observed (e.g., the drop at t= 2000 s). One notices that the temporal devel-
opment of the strain energy and the crosslink coverage are not correlated in an obvious way.
Although the number of crosslinks fluctuates at t≈ 2000s, the energy curve remains rather un-
affected. Most likely, the amount of stored mechanical energy is maintained also with a smaller
number of linkers if the previous loss of crosslinks is evenly distributed throughout the structure.
This statement probably does not hold for more inhomogeneous structures, where the breakage
of a few bonds may already yield a larger effect (e.g., the breakage of inter-bundle connections).
In conclusion, the numerical approach appears to be energetically stable within the time scales
of interest.

5.6 The effect of chirality on the formation of
semiflexible network structures

F-actin is known to have a left-handed, helical molecular structure [88]. As elaborated in Chap-
ter 3 and discussed in both experimental [23] and theoretical literature (e.g., [80,85]), the molec-
ular geometry limits the number of binding site pairs, which are available for crosslinking. This
leads to interesting effects like the limitation of bundle diameter for some linker species. The fo-
cus of this section lies on the influence of the helical structure on the equilibrium phase diagram.

For this study, the previously chosen geometrical specifications of the filaments leading to
Figure 5.5 are altered according to Section 3.2. The distance between two consecutive binding
sites on a filament db = 15.625 nm is eight times smaller than in previously discussed simu-
lations. Computational cost rises only slightly due to the use of the interpolated linker beam
element introduced in Chapter 3. The db of physiological F-actin is again five times smaller.
However, the present refinement should be sufficient to capture the effect of chirality due to the
following argument. Since chirality is a geometrical feature, its consequences for self-assembly
should be the same for a larger db if linker size Rl, linker stiffness, and the persistence length
of the filament Lp are scaled accordingly. Previously, Lp has been ruled out as a strong influ-
ence because a variation over two orders of magnitude did not change the essence of the phase
diagram. For large, flexible linkers like filamin, chirality supposedly does not have a notice-
able influence but shorter and stiffer linkers should “feel” chirality. Linker size is thus set to an
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(a) Phase diagram for networks of chiral filaments (b) Cluster

(c) Squaratic lamella (d) Hexatic lamella

Figure 5.16 (a) Phase diagram in presence of chiral filaments. Chirality is accounted for by helically arranged
conoidal reactive volumes (cf. Section 3.2). The spacing between binding sites is db = 15.625 nm. Phase transitions
occur at lower relative linker concentrations nl mainly due to increased number of binding sites. Furthermore, the
hexatic lamellar phase expands into the orthogonal lamellar phase regime compared to Figure 5.5. Markers within
the phase domains represent single simulations. (b) Cluster structure with nl = 0.019 (Nl = 1000) , (c) squaratic
and (d) hexatic lamellae with nl = 0.038. Due to a smaller db, the cluster core is much denser than before. At higher
nl, lamellar patches are observed. Due to filament chirality, the problem-specific crosslink saturation threshold is
shifted to slightly higher values of Nl.

intermediate value of Rl = 0.06± 0.02µm. The left-handed rotation of α≈167 ◦ per monomer
is adopted for this study and the opening angle of each binding site is set to ϕbs =π/3. The
Young’s modulus of the linkers is raised to El = 5×106pN/µm2.

5.6.1 Effects on the equilibrium phase diagram

First results regarding the effect of chirality on the phase diagram are presented in Figure 5.16.
Most importantly, none of the principal morphologies vanish and no additional ones emerge,
which on the one hand is slightly disappointing given the effort of including chirality into the
numerical model. On the other hand, the finding is reassuring that the phase diagram is of
general character.

Studying the phase diagram of chiral filament networks, features distinct from the previous
phase diagram become apparent. The hexagonal lamellar phase domain grows compared to
previous numerical studies without chirality as does the cluster phase. The reduced value for db
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5 Equilibrium morphologies of semiflexible, transiently crosslinked biopolymer networks

results in the transition being shifted to lower relative linker concentrations nl. This statement
might seem trivial at first. However, it also means, that the critical linker concentration does
not scale intuitively (i.e., linearly) with the number of available binding sites Nb. Rather the
transitions occur at very similar total linker numbers Nl. The right part of Figure 5.16 explains
the observation. A cluster structure with a densely crosslinked core as well as two lamellar
structures with φ= π/3 and φ=π/2 are depicted. As stated in previous sections, linkers strive
to maximize the number of binding sites available for crosslinking by gathering filaments around
them. The maximal binding site density depends on the discretization length of the filament
model. In previous studies, hf = db = 0.125µm. With reduced db, linkers are able to increase
the density of potential crosslinking sites in their vicinity. By doing so, they invoke the phase
transition at a comparable nl, yet only more localized. Hence, one witnesses the emergence of a
dense cluster as well as lamellar networks showing patches of highly localized linker clouds, that
bring filaments into their preferred order. Without chirality, but the same reduced binding site
distance db, the lamellae appear to be more densely packed, most probably as a consequence
of their greater binding site reaction volumes, that allow for a larger number of crosslinking
opportunities.

The effect of chirality on bundling has been the subject of a variety of publications with theo-
retical and experimental focus (see Section 3.1 for some prominent examples). The main claim
is that chirality leads to a self-limiting system in the sense that it forces crosslinked filaments
into geometrical configurations that allow only for a limited radial growth of bundles. Indeed, a
different, much slower bundle evolution than in the case of achiral filaments is observed. Even
after several hundreds of seconds, where simulations with achiral filaments have already aggre-
gated into one single bundle, there are still several bundles of very similar thickness present in
the case of chiral filaments. However, this observation must not be overrated by any means.
Bundle evolution could simply be significantly slowed down as a consequence of the smaller
reaction volumes of the binding sites. Another aspect is the greater total number of binding sites
on filaments, which also contributes to a slowed down evolution. Lastly, no detailed assessment
of the degree of filament bending and bundle torsion has taken place. At this point, without a
comparison of the strain energies of chiral and achiral bundle assemblies and a quantification of
their differences, a reliable statement cannot be made.

It goes without saying that some simulation parameters have a more pronounced effect on
self-assembly than others. With very short linkers below 5 nm, self-assembly processes come
to a hold. Bundling occurs even with very short linkers but even this structure is not observed
anymore beneath this size threshold. Another crucial parameter is the opening angle ϕbs defined
in Section 3.2.2, which restricts the perspective of a filament binding site. For the present sim-
ulations, values above π/18 were required. Otherwise, no self-assembly is observed. The angle
chosen for the presented set of simulations has been found to represent a good choice because
allows for aggregation of filaments but the chiral structure of the filament is still strongly ex-
pressed. In general, the chiral model slows down equilibration due to a more restricted reaction
volume surrounding filament binding sites and the consideration of binding site orientation.
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5.7 Conclusions

In this chapter, an equilibrium phase diagram of transiently crosslinked, semiflexible polymers
has been established. The phase diagram predicts four main network morphologies. At suf-
ficiently low linker concentrations, the formation of isotropic homogeneous gels is observed,
which are independent of the linker species. For small preferred binding angles φ, a bundle
phase is predicted. Beyond a certain binding angle, clusters and lamellar aggregates emerge.
Furthermore, it was verified that φ represents the only parameter which significantly affects net-
work morphology assuming the linkers to be stiff elastic rods. The results suggest that linker
entropy plays a major role in filament aggregation phenomena and dictates the shape of equilib-
rium structures. The occurrence of predicted structures in experimental observations is encour-
aging.

In a more detailed study, the microstructure of the four network morphologies and the phase
transitions between them were studied by means of mathematical instruments from condensed
matter physics. All relevant phase transitions exhibit clearly visible (linker-)concentration-de-
pendent discontinuities in the density distribution of the networks, i.e., they are first-order tran-
sitions (cf. section5.4.1). Both the two-point DDCFs and their structure functions provide ample
evidence of these abrupt spatial density fluctuations. The only exception: the transition from
the cluster phase to the hexatic lamellar phase, where, in addition to an initial discontinuous
structural change, a smooth development of the network’s spatial density distribution ensues.
This second stage can be considered a second-order phase transition.

For isotropic-homogeneous gels and bundles, the expected structural features, e.g., the strong
uniaxial anisotropy of the bundle, were confirmed but no essential additional properties were
observed in the course of the structural characterization. The microstructure of the cluster phase
and the lamellar phases, however, have not yet been the subject of a careful examination. In this
respect, the computational analysis presented in this chapter is the first comprehensive source
of information. The cluster phase was demonstrated to exhibit a local orientational correlation
between the filaments on short distances introduced by linker-mediated interactions. Yet on a
global level, the cluster structure is nearly isotropic, which is an important property, e.g., when
incorporating cluster phases in a continuum-mechanical setting by means of microstructurally
informed constitutive laws. Lamellae were found to exhibit either a hexagonal or an orthogo-
nal symmetry depending on the linker species. Further investigation revealed that besides this
orientational order, there is no in-plane position order of the linkers in these phases, i.e., they
are anisotropic, but homogeneous. The large stiffness of the filaments allows linkers to con-
vey their orientational preference over long distances on the scale of the filament’s persistence
length. Lamellae are not composed of a variety of small patches, each with its own anisotropic
orientational order. Rather, there is one global anisotropy and orientational order in the whole
layer of filaments. The observation of dense patches for chiral filaments does not contradict
this statement as the orientations of all patches are equal. This might change once larger vol-
umes with sides H� Lf can be simulated. Still, this finding remains valuable when modeling
lamellae on a larger length scale by suitable anisotropic constitutive laws, e.g., in the case of
lamellipodia – subcellular structures strongly involved in cell migration [154]. In fact, in view
of the ∼70◦-preference of Arp2/3 in lamellipodia and the computational results on lamellae,
there could exist an Arp2/3-mediated, thermally equilibrated actin cluster.
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5 Equilibrium morphologies of semiflexible, transiently crosslinked biopolymer networks

The simulations demonstrate that different morphologies are composed of filaments in a dif-
ferent mean stress state: in bundles as well as in lamellae, thermal fluctuations seem to be
quenched out effectively. As a consequence, internal stresses are reduced. In cluster phases,
however, filaments even exhibit an elevated mean stress state. This information can be of im-
portance for the design of suitable strain energy functions, that characterize the dependence of
the elastic energy in these morphologies as a function of the state of deformation. On the basis
of the detailed computational study presented here, a new class of constitutive models for cell
mechanics may be designed incorporating thermodynamic phase transitions and thereby allow-
ing for significantly more realistic homogenization approaches. Also owing to a previous lack
of detailed information on phase transitions between morphologies and the microstructures of
cytoskeletal networks, continuum mechanical approaches to cell mechanics so far largely ignore
the changes of the mechanical properties due to structural reorganization ( [170, 212], cf. [124]
for more references). In view of the highly dynamic interior of cells, these rather inflexible
approaches seem questionable at least.

Cytoskeletal networks and their mechanical properties are largely determined by their struc-
tural polymorphism, which allows biological cells to adapt their properties flexibly by means
of thermodynamic phase transitions. The results support the idea that biological cells are able
to trigger an extensive reorganization of their cytoskeleton by only slightly tuning linker con-
centration (cf. [13]). These changes induced by thermodynamic phase transitions are an effect
which cells can exploit, e.g., for cell motility, the assembly of stress fibers, or cell adhesion.

At least for the parameter space probed in this chapter, filament chirality did not play a crucial
role in self-assembly. All previously observed morphologies were present also when assuming
chiral filaments. Phenomena like the limitation of bundle diameter due to helical twist have
not been studied yet beyond first observations of a slowed down bundling process, the cause of
which is still rather obscure. However, the introduction of chirality in Chapter 3 has laid the
foundations for further investigations and are a promising area of future research and develop-
ment.

The immediate practical use of what has been presented in the course of this chapter is having
gained in-depth knowledge of network self-assembly. Knowing key parameters, that reliably
entail the emergence of a certain kind of microstructure, is of great advantage to the study of
mechanical properties of networks. In the following Chapter 6, this knowledge will be put to use
in order to generate isotropic bundle networks, which are ubiquitous in living cells, occurring,
e.g., in stress fibers, filopodia, in microvilli, or stereocilia. Having produced such network
samples, one may proceed and probe their rheology in the linear and nonlinear deformation
regime and eventually gain new insights into the mechanics of crosslinked fiber networks.
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6 Rheology of semiflexible
biopolymer bundle networks

The mechanical properties of cells are largely determined by the cytoskeleton, which often
takes on the form of a network of bundles. The principal constituent of these networks is the
biopolymer F-actin [46], a semiflexible filament. Bundle networks are ubiquitous structures
in the cells of eukaryotic organisms, where they are crucially involved in cell migration and
adhesion [4], contractility [205], and mechanosensing [72, 190]. Due to the high linker den-
sity within bundles, the average distance between two consecutive crosslinks is short compared
to the persistence length. Bundle networks are therefore referred to as semiflexible networks.
The mechanical properties of semiflexible networks are distinct from the better known gels of
synthetic and highly flexible polymers [71].

Purified F-actin networks have served as a model system and have been thoroughly investi-
gated in recent years (see, e.g., [138, 185, 203]). On the one hand, this kind of network allows
for the examination of key features of cellular biomechanics. On the other hand, the behav-
ior of semiflexible networks in general can be studied. A further, practical advantage is that
F-actin networks can be reliably reconstituted from monomeric actin under controlled in vitro
conditions. The elasticity of these network structures has drawn the interest of theoretical physi-
cists leading to a profound understanding of networks in thermal equilibrium [5, 81, 160]. It is
well-established that small transverse thermal deflections account for the majority of the observ-
able filament compliance and dominate the high-frequency rheology of semiflexible networks.
This initial idea paved the way for two key discoveries. First, at high loading frequencies, a
universal power law rheology was first predicted theoretically [59] and then confirmed in ex-
periments [58]. Second, a nonlinear dependence of the elastic moduli on filament concentration
could be shown [55, 102, 149].

There is, however, increasing evidence that this theory does not convincingly explain the rhe-
ology of bundle networks. This particular network morphology is encountered in in vitro sys-
tems at high linker concentrations [135]. In the case of transient linkers, the network is in a non-
equilibrium state and very slowly evolves towards its free energy minimum. For the simulated
networks, this state of minimum corresponds to a single bundle because the filaments are achi-
ral. This energy minimum is not reached within the computationally probed time scales. Some
in vitro bundle networks with chiral filaments are thought to evolve towards a different free
energy minimum. In these cases, bundle growth becomes energetically unfavorable in excess
of a certain diameter. Although the bundle size is limited, experiments have shown that these
network structures age, i.e., they, too, are in non-equilibrium [138]. The non-equilibrated nature
of bundle structures suggests that there are no universal properties to be expected. One would
expect a low frequency rheology that is sample-dependent and non-universal, with a cross-over
to Newtonian rheology at very low frequencies, while for high frequencies, one would expect to
recover the results for single filament rheology.
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6 Rheology of semiflexible biopolymer bundle networks

This chapter aims to prove otherwise. It presents the results of large in silico studies, which
help categorizing bundle network rheology in a generic way. The results imply the presence of
three rheological regimes with distinct properties. At high frequencies, linkers can be assumed
permanent such that the linear response is dominated by the mechanics of single bundles, lead-
ing to a universal scaling behavior distinct from that of single-filament networks. At lower
frequencies the mechanical response begins reflecting that the stress release caused by linker
unbinding events dominates the dissipative stress [230]. Significant sample-to-sample varia-
tions are observed, which can be explained by a non-universal dependence of the mechanical
response on sample geometry and the strong influence of linker/filament reaction kinetics. At
even lower frequencies, again a universal scaling behavior is observed, which is caused by the
dissolution of bundles over long time intervals and the large-scale collective motion of structures
within the network, which have a non-equilibrium origin.

6.1 General remarks on rheology
Rheology means the study of flowing matter. Flow implies transience and transience is in-
evitably coupled to the concept of time. On first thought, matter in its liquid state comes to
mind, which is only natural because what is commonly termed a liquid is the kind of matter that
flows on time scales which are easily perceptible by humans. Yet, not only fluids flow but also
solid matter does. Creeping lead pipes are a commonplace example. On geological time scales,
mountain ranges and continents flow. On the other hand, liquids can be perceived as solids as
well given a short enough observation time (anyone having done a belly-flop from the spring
board of a swimming pool can tell). A characteristic measure for the fluidity of a material is
the so-called Deborah number De = tc/tp, which is the quotient of a material’s characteristic
relaxation time tc (i.e., the time scale on which it yields to applied stresses) and the observation
or probing time tp.

As the following sections will demonstrate, biopolymer networks flow as well, a fact, which is
reflected in time-scale-dependent material properties. The complex modulusG∗ is a mechanical
measure that accounts for this time-dependence and will be applied in the following examination
of the linear rheology. Materials that exhibit a time-dependence of stresses and strains, which is
expressed in a temporal phase shift between these two quantities, are called viscoelastic as they
exhibit elastic as well as viscous properties. The here studied networks are highly viscoelastic
materials. The inclined reader is referred to textbooks such as [125] for a more detailed lecture.

6.2 Micromechanical simulation of network rheology

6.2.1 Parametrization

First, the simulation box is set up in accordance with the definition of the global orthonor-
mal basis B = {ex, ey, ez} with e{x,y,z}∈R3×1. The simulation box occupies a cubic volume
V := {x ∈ R3| 0≤x{x,y,z}<H} with an edge length of H= 6µm.

The faces of the cube are equipped with periodic boundary conditions. Temperature is set
to T = 293.15 K. The Nf = 360 filaments are modeled as nonlinear, geometrically exact, three-
dimensional Reissner beams with a circular cross section of area Af = 1.9×10−5µm2, Young’s
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6.2 Micromechanical simulation of network rheology

Figure 6.1 Representative in silico bundle network, which was prepared for rheological simulations. The cubic
simulation box has a volume of V = 216µm3 and is equipped with periodic boundary conditions. It incorporates
360 (green) filaments at a corresponding concentration of cf = 4µM, which are in chemical equilibrium with
linkers at a relative linker concentration nl≈ 0.75. Red linkers have established crosslinks between filaments. Blue
linkers are bound to only one filament. Unbound linkers are not visualized for reasons of clarity.

modulus Ef = 1.3×109 pN/µm2, and moment of inertia I2 = I3 = 2.85×10−11 µm4. They are
discretized with finite beam elements of length hf = 0.125µm. As in Chapter 5, the length of a
single filament is set to Lf = 4µm and its persistence length to Lp = 9.2µm, which is close to ex-
perimental values found for pure actin without any kind of chemical stabilizer (cf. Section 5.1).
Linkers are also modeled as rod-like microstructures and, like the filaments, are discretized with
Reissner BFEs. A total number of Nl = 9000 linkers are initially distributed randomly within
volume V , which translates to a concentration of linkers cl = 0.07µM. Considering the ap-
proximately 12000 binding sites (which coincide with finite element nodes), the simulated ratio
between linkers and binding sites in the volume can be calculated as nl =Nl/Nb≈ 0.75. In ex-
periments, however, the molar ratio R is given as the ratio of linker concentration and actin
monomer concentration, which necessitates a recalculation of nl into a molar ratio R̄. Ideally,
all monomers are polymerized to F-actin (which is not the case in experiments). For the purpose
of estimation and in order to make numerical and experimental values slightly more compara-
ble, a molar ratio resembling the experimental value may be calculated as R̄=NlD/(NfLfnD)
with D= 0.072µm the helical repeat of F-actin and nD = 26 the number of actin monomers
per repeat [88]. According to this formula, the bulk of the simulated networks feature an ap-
proximated molar ratio of R̄≈ 0.018. The most important linker parameters comprise a circular
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6 Rheology of semiflexible biopolymer bundle networks

cross section Al = 4.75×10−6 µm2, a Young’s modulus El = 2.6×106 pN/µm2, moment of in-
ertia Il = 8.9×10−11 µm4, and a linker size within the interval 0.08µm≤Rl≤ 0.12µm. The
two chemical reaction sites of the linker are located at the ends of the linker molecule. Their
chemical counterparts are equally spaced along the filament. The reactions between linkers and
binding sites are modeled by Poisson processes with fixed, force-independent rate constants
kon, koff , which are related by

koff = kon exp

(
−∆G

kBT

)
(6.1)

with ∆G being the binding energy of the chemical bond and the definition of the local associa-
tion rate kon according to Equation (2.45) in Section 2.6.3. In order to evaluate the influence of
force-induced unbinding of crosslinks, Bell’s model is used [10] (cf. Equation (4.3)). The char-
acteristic distance parameter ∆x is chosen from the interval [1 nm; 4 nm] but did not show any
significant effect on the mechanical response of the network, at least not for small deformations
in the linear regime. At large strains, however, force-induced unbinding is believed to lead to
cooperative unbinding [74], setting loose avalanches of unbinding events that result in sudden
stress relaxation (cf. Section 6.4). In contrast to the study presented in Chapter 5, mechanical
contact between filaments and contact between filaments and linkers is not modeled as mechan-
ical interaction between filaments is almost exclusively attributed to linkers in the case of the
simulated bundle networks.

Figure 6.1 depicts an exemplary bundle network with 360 filaments, which corresponds to
a cf = 4µM F-actin concentration . Linker molecules can be found in three states: doubly
bound (red), singly bound (blue), and unbound (not visualized). In general, a major fraction
of the linkers is bound to two separate filaments within bundles. Only few linkers establish
bundle-bundle crosslinks. A comprehensive list of simulation parameters is given by Tables D.1
and D.9.

6.2.2 Sample preparation and application of shear strain
General remarks In order to conduct rheological simulations efficiently, e.g., in the case
of sweeping a broad frequency band, a network sample needs to be created by following the
simulation procedure described in Chapter 5. The entire work flow of rheological simulations
is illustrated in Figure 6.2. Usually, the sample preparation time is set to t0≈ 1500 s of simu-
lated time at a large time step size ∆t of 0.005 s to 0.01 s. The network, that evolves during
that time, has an average bundle thickness of approximately 150 nm, where the average bundle
incorporates about seven to eight filaments. In vitro bundles in purely bundled actin/fascin net-
works feature comparable numbers of filaments in hexagonal bundles, but with smaller bundle
diameters (8 - 10 nm at R≈ 0.01, [23]) for R values close to simulations’ R̄. The difference
in diameter results from different linker sizes (simulation: 100 nm, experiment: 5 nm), the re-
sulting bundle diameter is approximately 1.5Rl - 2Rl. In simulations using the standard linker
model from Chapter 2, the linker has to be made larger in order to enable self-assembly.

When the network has evolved into a state, which is purely bundled, the preparation of the
sample is terminated. Subsequently, a time-dependent shear pattern of choice can be applied for
a time span t̃ starting from time t= t0. Depending on the problem, different problem-dependent
shear patterns can be applied, e.g., a sinusoidal shear strain with a small amplitude γ̂= 0.01 in
the case of linear rheology.
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6.2 Micromechanical simulation of network rheology

Figure 6.2 Work flow for rheological simulations. From left to right: first, a rheological sample is prepared. The
result is a unique evolved network geometry at t= t0. Then, a frequency sweep is conducted using this sample for
each loading frequency over a time span of ten full periods at a strain amplitude of γ̂= 0.01. Finally, the stress
contribution of the loading frequency is extracted from the stress signal and the frequency-dependent dynamic
modulus is calculated.

The centerpiece of this chapter is the investigation of the linear rheology, where a broad
frequency interval [0.006π; 200000π] rad/s is probed. Instead of sweeping the frequencies se-
quentially, a branched simulation design is chosen which allows for a parallel computation of
all frequencies. This procedure has two main advantages. On the one hand, a parallelization of
the frequency sweep helps reducing the overall simulation significantly. On the other hand, it is
guaranteed that all simulations have the same initial conditions: initial time and initial network
geometry. Steps sizes for the different loading frequencies are summarized in Table D.10.

Shear imposition by means of Dirichlet boundary conditions Rheological exper-
iments with macroscopic plate rheometers apply shear strains to samples located between the
two rheometer plates. While the lower plate is held fixed, the upper plate is displaced (more pre-
cisely, rotated) with one of various temporal patterns. In this section, three such displacement
patterns will be translated into corresponding Dirichlet boundary conditions. In order to probe
the linear rheology of a sample, sinusoidal strains with small shear amplitudes are applied. By
contrast, if the stress relaxation behavior of a network is studied, a practically instantaneous
application of a fixed displacement, i.e., an approximation of a Heaviside step, is chosen. Fi-
nally, if nonlinear rheological phenomena are studied, e.g., the effect of force-induced crosslink
unbinding at high strains, a linear shear displacement ramp is applied.

The corresponding experimental procedures can be reproduced in silico by an adequately for-
mulated Dirichlet boundary value problem, which results in a displacement-driven application
of what is referred to as simple shear in solid mechanics. Dirichlet values are prescribed at –
or at least close to – both faces of the simulation box in ez-direction, i.e. at z=0 and z=H. In
the finite element context, these boundary conditions are applied to sets of boundary nodes. Let
Ωn = {nk=1, n2, . . . , nN} comprise all N finite element nodes in the discretization. Furthermore,
let Ω0⊂Ωn and ΩH⊂Ωn with Ω0 6= ΩH be subsets of Dirichlet boundary nodes close to the lower
and the upper face in ez-direction, respectively. The node set Ωd holds all nodes of finite ele-
ments that are discontinued by periodic boundary conditions in ez-direction. The assignment of
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6 Rheology of semiflexible biopolymer bundle networks

nodes nk to one of the subsets is handled by the criterion

nk


∈ Ω0 , if nk ∈Ωd ∩ zk < Le

∈ ΩH , if nk ∈Ωd ∩ H− zk ≤ Le

/∈ Ω0 ∪ ΩH , else
. (6.2)

The above conditions are only sensible as long as the element adheres to the condition Le≤H/2.
In all simulations, however, the element length is chosen to be Le�H/2. Following the intro-
ductory remarks of this section, Ω0 and ΩH are time-variant such that

{Ω0,ΩH}

{
= {∅} , if t < t0

6= {∅} , if t ≥ t0
. (6.3)

Nodal displacement boundary values for each Dirichlet node set can be written as

ûΩ0 = ut= t0|Ω0
, ûΩH

= ut= t0|ΩH
+ ûs(t)|ΩH

, (6.4)

ûs(t) = ({ûk=1(t), 0, 0}, {û2(t), 0, 0}, . . . , {ûN(t), 0, 0})T (6.5)

with ûk(t) representing node-specific temporal displacement patterns. The displacement us(t)
represents the time-variant displacement pattern. As stated before, three such patterns are of
particular interest for three different applications as given below:

ûk =


ũk sin(ω(t− t0)) for t ≥ t0 , linear viscoelasticity{
2 ũk(1− cos(ω̃(t− t0))) for t0 ≤ t < t1

2 ũk for t ≥ t1
, stress relaxation

ũn(t− t0)/(t̃− t0) for t ≥ t0 , nonlinear viscoelasticity

(6.6)

where ω, ω̃ denote angular frequencies and ũk = γ̂zk is the node-specific amplitude, which
depends on the node’s spatial coordinate zk. The first expression of Equation (6.6) corresponds
to an imposed bulk shear strain of the form

γ(t) = γ̂ sin(ω(t− t0)). (6.7)

In contrast to linear and nonlinear rheological simulations, i.e. the first and the third expres-
sion of Equation (6.6), the second expression applies to all nodes except for the ones fixed at
z= 0. This displacement pattern, commonly referred to as step strain, imposes an affine shear
deformation on the entire network.

6.3 Linear rheology of semiflexible bundle networks
Having presented the means to apply deformation to networks, the question remains how to in-
terpret the gained mechanical information. A characteristic measure of elasticity for viscoelastic
materials like the polymer networks studied in this thesis is the complex modulus

G∗(ω) = G′(ω) + i G′′(ω). (6.8)

G′ = Re{G∗} denotes the elastic contribution, while G′′ = Im{G∗} represents the dissipative
contribution. In practice, sampling the viscoelastic response of the network over a broad range
of loading frequencies leads to the determination of the rheological spectrum.
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6.3 Linear rheology of semiflexible bundle networks

6.3.1 Temporal stress reponse and its Fourier transform

The strain-induced force response FΩH
(t) of the network is readily available and can be directly

measured by means of the internal forces of the filaments at the upper face of the simulation box
(z=H). As a result, the time-dependent stress response can be written as

σ(t) = σΩH
(t) + σf (t) = FΩH

(t)/H2 + η γ̂ω cos (ω(t− t0)), (6.9)

where the first summand σΩH
represents the simulated stress. The second summand σf accounts

for the contribution of the fluid drag, which is added a posteriori due to the fact that the sur-
rounding Newtonian fluid with dynamic viscosity η (e.g., cytoplasm) is not explicitly simulated.
In order to quantify frequency-dependent contributions to σ(t), the Fourier transform of (6.9)

σ(ω) =
1√
2π

∞∫
−∞

σ(t) e−iωtdt (6.10)

is calculated. It is necessary to ensure a consistently scaled transform, which means that the
multiplicative prefactor (here: 1/

√
2π ) of the transform needs to be taken into account (e.g.,

when using different numerical algorithms). To this end, Parseval’s theorem is of fundamental
importance as it enforces energy conservation for the transition from the time to the frequency
domain. [88, Appendix 4.3] provides more information on the theorem and how to treat Fourier
spectra to make them physically meaningful. Subsequently, the contribution of the loading
frequency ωl is extracted from (6.10) such that the moduli

G′(ωl) =
Re{σ(ωl)}

γ̂
, G′′(ωl) =

Im{σ(ωl)}
γ̂

(6.11)

can be calculated. Eventually, one obtains a rheological spectrum, of which representative show-
cases are depicted in Figure 6.3.

6.3.2 The frequency regimes of linear bundle network rheology

The spectrum displays three well distinguishable regimes. At very high frequencies, the dynam-
ics of single bundles dominate the rheological behavior. In other words, bundles – not single
filaments – are the base unit of the network. Interestingly, the encountered power law regime
does not match expectations of {G′, G′′}∼ω3/4. Unbinding events are mechanically negligible
due to ωl/koff � 1, i.e., that crosslinks between filaments may be considered permanent. At
intermediate frequencies, unbinding events of linkers begin to affect rheology, which manifests
in a peak in the dissipative contribution G′′(ω) similar to a simple Maxwell-type viscoelastic-
ity [127]. Furthermore, significant sample-to-sample variation are encountered, which reveals
the non self-averaging nature of the network. This regime depends on the reaction-kinetics of
the linker-filament bond and is thus non-universal. Finally, at low frequencies, the spectrum
again displays a power law behavior, where {G′, G′′}∼ω1/2. Here, the turnover of binding and
unbinding linkers is very high thus leading to a state, where bundles begin to fall apart and to
reform elsewhere.
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Figure 6.3 (a) The three distinct rheological regimes of bundle networks. Basic chosen parameters include:
filament concentration cf = 4µM, relative linker concentration nl≈ 0.75 (R̄≈ 0.018), association rate constant
kon = 90 s−1, and dissociation rate constant koff = 3 s−1. At high frequencies (ω>ω1), one observes a scaling
behavior with G′∼ω0.98 and G′′∼ω0.57. At intermediate frequencies (ω2<ω<ω1), there is a local maximum
in G′′. Finally, in the low-frequency regime, there is a power-law viscoelasticity with {G′, G′′}∼ω1/2. (b) G′(ω)
and G′′(ω) of the same system are shown without any linkers. Here the expected G′(ω), G′′(ω)∼ω3/4 scaling
behavior is observed as predicted by [59] and experimentally validated by [58].

High-frequency regime At finite temperature, a semiflexible filament undergoes thermal
fluctuations and, on average, is found in a contorted geometrical configuration. In networks
with a mesh size ξ consisting of single filaments rather than bundles, the complex modulus at
high frequencies according to [59] can be calculated as

G∗(ω) =
1

15
ρξα(ω)−1 − iωη, (6.12)

where ρ∼ ξ2 represents the filament length density. The function α(ω) is the compliance to ten-
sion of a transversely fluctuating segment with bending stiffness κ=Ef Ix at finite temperature.
Summing up contributions from all modes n, the compliance reads

α(ω) =
1

Tq4
1L

2
p

∞∑
n=1

1

n4 − iω
2ω1

. (6.13)

The frequency ω1 = (κπ4)/(γ⊥ξ
4) denotes the relaxation rate of the slowest transverse mode

q1 =π/ξ with γ⊥ being the friction coefficient per unit filament length. Forcing filaments back
to a straight configuration by pulling at two separate points along the filament means that work
has to be done against entropic elasticity. As a consequence, transverse modes are quenched
gradually leading to the power law scaling G′,G′′∼ω3/4 reported in [59, 160].

In the case of bundles consisting of multiple crosslinked filaments, this argument does not
hold entirely. It is incorrect to assume that a bundle can be understood as a thicker filament with
a larger (effective) persistence length Lp(N ) due to the N filaments it incorporates. Rather it
has been shown that a bundle, crosslinked by harmonic springs, exhibits a scale dependence [78,
171]. According to [78], a crosslinked bundle has a mode-number-dependent bending stiffness

κn =
N 2κ

1 + (qnD)2 δEf

12k×

(6.14)
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Figure 6.4 Scaled complex moduli G∗(ω)/G0 of semiflexible networks for bundling parameters ∆ = 0, single-
filament limit (left) and ∆� 1, bundle limit (right): (a) For small ∆, G∗ approaches single filament behavior,
where both G′ and G′′ exihibit an ω3/4 scaling. (b) For large ∆, however, the moduli stray from their common
scaling exponent. (c) The consideration of bundles of different lengths smears the plateau (cf. Figure 6.3). For all
three graphs, ω1 = 1.0 and 90α(0)/π4 = 1.0.

with qn =nπ/ξ denoting the wave number, D = b
√
N the bundle diameter, δ the distance be-

tween crosslinks, and k×=ElAl/Rl the spring constant of the linker. The symbol b denotes the
spacing between the centerlines of the bundle filaments [78]. In dense bundles, b approaches
the filament diameter, in the simulated networks, the value is rather given by b→Rl. If Equa-
tion (6.14) is inserted into Equation (6.13), an enhanced expression is yielded, which contains
the characteristic (cross-over) frequency ω1. The striking consequence is that a new scaling be-
havior is found, which accounts for the effect of bundling within semiflexible networks. Based
on the compliance α(ω) of single bundles, it is now possible to calculate complex modulus
G∗(ω) of a network consisting of equally sized bundles connected to each other.

When a bundle is stretched in axial direction, transverse bending fluctuations are diminished
and the compliance – in slight variation of Equation (6.13) – can again be written as a sum over
modes [59, 78]

α(ω)/α(0) =
90

π4

∞∑
n=1

1

n4 − iω
2ω̄(n)

, (6.15)

with α(0) = ξ4/(90kBTLp(N )4) as the zero-frequency compliance of a bundle with effective
persistence length Lp(N ) = N 2Lp and ω̄(n) being the relaxation rate of the nth mode. This re-
laxation rate ω̄(n) may vary depending on the mechanical model used for the composite bundle.
However, in the limit of largeN and a fixed diameter D, it approaches the Timoshenko limit for
beam bending [57]:

ω̄(n)/ω1 =
N 2

1 + ∆n2
. (6.16)

In Equation (6.16), the dimensionless constant ∆ = N (π2/12)(Efb
2/δk×)(δ/ξ)2 is introduced,

which determines the rheology of the network at high frequencies. For ∆ = 0, single filament
scaling is recovered, i.e., {G′, G′′}∝ω3/4 as depicted in Figure 6.4a. Towards the bundle limit
∆� 1, different frequency-dependent scaling behaviors arise for G′ and G′′ as demonstrated
in Figure 6.4b: G′'ω1/2 and G′′'ω. In between the extremes, the scaling exponents vary
smoothly. Upon further study of Figure 6.3, one cannot help but notice the difference in the
slope of G′ around ω1 as compared to theoretical considerations visualized in Figure 6.4b.
Whereas Equation (6.15) predicts a plateau modulus G0, the observation made in Figure 6.3
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Figure 6.5 (a) Theoretical predictions (- · -, - · -) of the high-frequency rheology of bundle networks at concentra-
tions cf = {1, 2, 4, 8}µM fitted to simulation results (�,◦). Storage moduli G′ are depicted in blue, loss moduli
G′′ in red color. The plateau Ḡ is smeared due to the presence of bundle segments of different lengths. This
influence of different bundle lengths is demonstrated using fits with three different bundle lengths with cross-over
frequencies ω̃1 = {1.0, 0.1, 0.01} rad/s. Three different lengths do not reflect the complexity of actual bundle
networks, yet already such coarse fits capture the moduli’s slope well left and right of the cross-over. (b) Cartoon
of a bundle network with inter-bundle connections by linkers. The red marks along the filament emphasize the idea
of bundle segments in a serial circuit.

differs from the prediction by [59], where G′ rises continuously towards ω1. This observation
can be explained by considering geometrical arguments. A network consisting of bundles, that
are connected among another, features an unknown distribution of free bundle lengths. The
non-horizontal G′ mentioned above may be understood as these bundle lengths weighing into
G∗ differently. As a result, the plateau G0 is smeared. In the following, a simple proof of con-
cept will be discussed involving a primitive fit with three different bundle lengths. Choosing
characteristic frequency scales ω̃1 = {1.0, 0.1, 0.01}rad/s and weights wω̃ = {0.89, 0.09, 0.01}
leads to an inclined shape of the storage modulus G′ as depicted in Figure 6.4c. The absence of
a G′-plateau may be understood as a consequence of the heterogeneity in diameter and length of
bundle segments in the network. In Figure 6.5, four theoretical fits to data gained from simula-
tions are shown. Decent fits are already achieved assuming only three different bundle lengths.
These fits may be improved by adding more bundle lengths. Of course, more sophisticated fit-
ting procedures can be easily designed. At this point, it is not necessary since the inclusion of
only three bundle lengths already demonstrates the consistency of theory and the phenomenol-
ogy found in simulations.

Gaining experimental insight into the high-frequency behavior beyond the cross-over fre-
quency ω1 is impossible in the case of bundle networks since ω1 is too large for any currently
used experimental technique. This renders simulation the only means to examine the high-
frequency regime phenomenologically. To the author’s knowledge, macroscopic rheometers,
that measure the bulk rheology of networks, are unable to reliably assess the high-frequency
regime due to inertial effects. These kind of rheometers are limited to frequencies usually far
below ω1 of bundle networks. Microrheological set-ups such as the one used in [144] reach
frequencies up to ω≈ 103 rad/s. The cross-over frequency of entangled F-actin solutions are
lower than this value but the ω1 of bundle networks is not. An increase in bundle thickness en-
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Figure 6.6 Starting off from one initial network geometry, the off-rate koff is varied on the range [0.01 ; 10] s−1.
(a) Storage moduli G′. (b) Loss moduli G′′. Note the G′ , G′′∼ω1/2 scaling for low frequencies as well as the
growing gap between G′ and G′′ with decreasing koff at intermediate frequencies. The high-frequency regime is,
as expected, independent of koff . Linkers can be considered permanent on such short time scales.

tails an increase in ω1. Even for thin bundles that consist of only a few filaments, the cross-over
of G′ and G′′ is pushed to frequencies even beyond the reach of microrheology. For example,
the cross-over of the simulated network in Figure 6.3a is located at about 2×104 rad/s.

A considerable number of over 120 networks has been probed to support the claims on the
universal nature of the high-frequency regime. The high-frequency regime of bundle networks
has been proven insusceptible to reaction kinetics on a physically and physiologically sensible
off-rate interval koff∈[0.01; 10] s−1 as shown in Figure 6.6, where the same initial network geom-
etry was simulated multiple times with varying koff . Furthermore, it has been demonstrated that
the rheology is in principle independent of the sample (cf. the high frequencies of Figure 6.8a).

Intermediate-frequency regime Towards lower frequencies ω<ω1, a frequency-inde-
pendent, constant-valued storage modulus is predicted by (6.15), while, on the other hand, a
monotonous decrease characterizes the loss modulus (cf. Figure 6.3b and Figure 6.4a). The
expected behavior for sparsely crosslinked networks is

G′ ' ρξ

15α(0)
, G′′ ∝ ω. (6.17)

Instead, the moduli in Figure 6.3a reveals a distinct behavior. Neither G′ nor G′′ approach the
predictions by Equation (6.17). This deviation can be understood by analyzing the linkers’ abil-
ity to establish crosslinks in the presence of oscillatory shear strain. In order to acquire this
information, the positions of both binding sites involved in a double bond at time t = t0 are
tracked. Their positional drift can easily be monitored in simulations, whereas it is nearly im-
possible to observe this drift in vitro. Studying Figure 6.7, one notices that the distribution of
binding site distances broadens even at frequencies of about 20π rad/s, which are well above
koff . On average, binding site distances remain close to the linker size Rl, which implies that the
network geometry does not vary significantly over the course of the simulation. At very low fre-
quencies, bundles even start peeling apart, which is a characteristic of the low-frequency regime
discussed later on. The most intriguing observation, however, is concerned with the reduction
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Figure 6.7 (a) Distribution of distances between pairs of initially crosslinked inter-filament binding sites ob-
served during oscillatory shear at different shear frequencies, showing that the network becomes more sparsely
crosslinked at low frequencies due to bundle dissolution. Inset: Initially crosslinked binding site pairs (red/blue)
with highlighted large distances (green) between ruptured crosslinks for the ω= 0.02π rad/s case prooving the
dissolution of bundles. (b) Cartoon that illustrates bundle dissolution using the same color scheme as in the inset.1

of the actual number of crosslinks due to the application of shear strain. A simplified model
helps understanding why such a decrease in the number of crosslinks is observed. Consider
two parallel filaments connected to each other by linkers similar to the setup described in [14].
Linkers act as spacers keeping the filaments separated at an initial distance dbs = 100 nm. Un-
der oscillatory shear strain with an amplitude γ∼ 0.01, the distance between the binding sites
grows. The lateral displacement A= γdbs becomes larger than the molecular capture radius a
(Rl for the linker model), which determines the size of its reaction volume. Now, if a stretched
bond is disconnected, the current binding site distance becomes too large for an immediate re-
attachment. A disconnected linker stays singly bound for at least a time interval of half the
period length of the oscillation π/ω. The probability of a reattachment event per periodic cycle
is given by

pr ' 1− e−
kona
Aω . (6.18)

At very high frequencies, Aω approaches infinity, which leads to a reattachment probability
pr� 1. Summing over the number of oscillations, one arrives at a frequency-independent re-
duced on-rate

keff ' kon(a/A) < kon. (6.19)

The high-frequency rheology remains unaffected as it is dominated by the thermal fluctuation of
single bundles. At lower frequencies, however, the quotient is characterized by kona/(Aω)� 1
such that the reattachment probability is pr' 1 and the effective on-rate reads keff 'ω. The
off-rate is shear-invariant, which leads to a frequency-dependent Boltzmann factor keff/koff .
With decreasing ω, the effective linker density also decreases. The frequency scale kona/A for

1Figure taken and modified from [164], c©2014, American Physical Society
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Figure 6.8 (a) On the interval of ω∈[1; 1000] rad/s, the rheologcial moduli of bundle networks display pro-
nounced sample-to-sample variations. At frequencies ω> 1000 rad/s, sample deviation is small. The intermediate-
frequency regime, however, shows deviations on a broad interval. The storage moduli G′ of the different samples
are indicated by closed squares, the corresponding loss moduli G′′ by open circles of the same color. (b) Nonlinear
dependance of the plateau modulus Ḡ on filament concentration cf . The scaling lies in between the theoretical pre-
dictions for a solution of entangled filaments Ḡ∼ c11/5

f and a densely crosslinked network Ḡ∼ c5/2f [149] (dashed
lines). Ḡ is computed as the arithmetic mean of frequencies 1 - 100 Hz at kon = 90 s−1 and koff = 3 s−1.1

pronounced shear-induced bond breaking effects (in Figure 6.3a: 20π - 200π rad/s) and koff de-
termines the upper and lower bounds of the intermediate-frequency regime. A most interesting
property of the intermediate-frequency regime is the sample-to-sample variation as depicted in
Figure 6.8a. Although the different samples were prepared using identical simulation parame-
ters, the different emerging network geometries lead to significantly differing complex moduli
G(ω). The strong ∼ξ3 dependence of the plateau modulus Ḡ on the mesh size explains how
moderate changes in the mesh size drastically affect the modulus scale. An examination of
the scaling behavior of the plateau modulus with respect to filament concentration, however,
on average exhibits a well-known scaling relation. The scaling of the plateau modulus for an
entangled solution of semiflexible filaments is given as Ḡ∼ c11/5

f , the scaling for a densely
crosslinked network reads Ḡ∼ c5/2

f [149]. In Figure 6.8b, Ḡ at four different filament concen-
trations (cf = {1, 2, 4, 8} µM) is depicted. The dashed lines represent the theoretical predic-
tions the respective cases of entangled and sparsely crosslinked networks. It is shown that the
concentration-dependent plateau modulus scales within familiar bounds for semiflexible bundle
networks.

The intermediate-frequency regime crucially depends on the off-rate koff . The influence of
koff becomes apparent, when koff is varied as illustrated in Figure 6.6. The high-frequency
regime has been found invariant to koff due to its time scales lying three to five orders of magni-
tude below the characteristic unbinding time of a linker 1/koff . By contrast, the extent of what
is called the intermediate-frequency regime, depends on koff as is clearly demonstrated. The
plateau in G′ expands over an increasingly large range of frequencies with decreasing koff (Fig-
ure 6.6a). G′′ is shown in Figure 6.6b. It is pushed to smaller values for decreasing koff , which
can be understood in terms of the diminishing effect of linker unbinding on stress release and
thus dissipation.
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Figure 6.9 Stress relaxation following an affine step strain deformation at t= t0 (set to zero for clarity). (a) The
G′ ∼ G′′ ∼ ω1/2 scaling relation predicts a 1/t1/2 stress decay. For t > 200 s spontaneous fluctuations of large
amplitude overwhelm the mean stress. The stress fluctuations are accompanied by subdiffusion of the principle
axes of the moment of inertia tensor (inset). (b) Two networks with different koff for which the measured stresses
due to the imposed strain decay completely. Thick centerlines represent the mean of the respective curves, the
thinner lines represent the errors of binned subsets of the stress signal.2

Low-Frequency regime As Figure 6.3 shows, there exists a third characteristic frequency
regime towards frequencies ω� koff , where the complex modulus scales with G′∼G′′∼ω1/2.
This behavior has been previously observed in simulation [14] and experiment [220, 221]. It is
connected to transient crosslinking [75] and is invariant to filament concentration. This scaling
relation implies the existence of a power-law stress decay 1/t1/2 after applying a step strain (in
the present case ∆γ = 0.04). When looking at Figure 6.9a, however, the temporal stress re-
laxation S(t) computed from simulated data exhibits large, spontaneous stress fluctuations even
after several hundreds of simulated seconds, making it difficult to identify the expected scal-
ing behavior. This peculiarity becomes even more obvious upon comparison with analogous
step strain simulations at different koff shown in Figure 6.9b, where – apart from an individual,
off-rate dependent initial decay – stresses level off to values around zero. The question arises,
whether this observation might just be a numerical artifact leading to a violation of energy con-
servation. However, this is unlikely since in Chapter 5, the strain energy of entire networks was
monitored for several thousands of simulated seconds without displaying this kind of fluctua-
tion. Rather, the strain energy remained constant (cf. Figure 5.15) once the system had reached
a stationary state characteristic for close-to-equilibrium structures. In order to ascertain the ori-
gin of these unexpected stress fluctuations, the principal axes of the moment of inertia tensor of
the entire network are computed and visualized in the inset of Figure 6.9a. It can be clearly seen
that the principal axes tumble slightly. Each of the inertia tensor’s base vector orientations as a
function of time φ(t) can be utilized to describe the diffusive properties of the present system
statistically. Given that the studied system exhibits the diffusive behavior of a fluid, the inertia
tensor would perform rotational Brownian motion, where

|φ(ω)|2 ∝ ω−2 (6.20)

2Figure 6.9a taken and modified from [164], c©2014, American Physical Society

132



6.3 Linear rheology of semiflexible bundle networks

10−2 10−1 100 10110−6

10−5

10−4

10−3

10−2

10−1

ω [rad/s]

|S
k
(ω

)|
2
[P

a
2
s
/
r
a
d
]

 

 

kon = 90, kof f = 0.01s−1

|Sk (ω)|2
2kBT /V G”(ω)/ω

(a) Stress fluctuations in violation of the FDT
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Figure 6.10 Frequency-dependent mean square amplitude of the stress fluctuations in the low-frequency regime
stemming from in silico measurements (◦); prediction by the fluctuation-dissipation theorem as calculated ac-
cording to equation 6.23 (- -). (a) For koff = 0.1 s−1, the measured and the predicted spectrum still overlap, i.e.
the assumption of thermodynamic equilibrium is still valid. The fluctuation-dissipation theorem is applicable.
(b)However, with koff = 0.01 s−1, the measured values exceed the prediction. The network is in a non-equilibrium
state leading to increased stress amplitudes as compared to a thermally equilibrated structure.1

holds with a constant diffusion coefficient D. Alternatively, in case of an elastic network, the
system can be thought of as a Lorentzian oscillator with the relation

|φ(ω)|2 ∝ γL
(ω − ω0)2 + γ2

L

. (6.21)

The parameter γL quantifies the width of the Lorentz distribution and ω0 denotes the location of
the peak. Neither of the above predictions is observed. Rather, the best fit can be achieved by

|φ(ω)|2 ∝ ω−1, (6.22)

which implies subdiffusive behavior. These slow orientational fluctuations of the moment of
inertia tensor imply that large-scale thermal fluctuations play a key role in the low-frequency
regime.

Transiently crosslinked bundle networks are non-equilibrium structures. As such, the stress
fluctuations are enhanced by aging effects due to a slow network evolution, which has a non-
equilibrium nature. In order to further investigate this idea, the fluctuation-dissipation theorem
(FDT) is evaluated, which describes the relation between the average mean square amplitude of
the stress fluctuations 〈|S(ω)|2〉 and the loss modulus G′′(ω). It reads〈

|S(ω)|2
〉

=
2kBT

ω
G′′(ω). (6.23)

Figure 6.10 depicts two stress spectra corresponding to off-rates koff = 0.01 s−1 (Figure 6.10a)
and koff = 0.1 s−1 (Figure 6.10b). In case of the lower off-rate, the stress fluctuation amplitude
exceeds the value predicted by the FDT at lower frequencies; we detect non-equilibrium, large-
scale network reorientations that are associated with its structural aging. This observation is
incompatible with equilibrium motion. As expected, a speed-up of the network’s structural
relaxation by increasing the linker off-rate from 0.01 s−1 (used in Figure 6.9a) to 0.1 s−1 leads to
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a reduction of the observed stress fluctuations (Figure 6.9b), which pushes the network back into
the bounds predicted by the FDT (Figure 6.10b). The overall structure of all of these networks,
however, have not yet equilibrated, which is consistent with experimental observations [138].

6.3.3 Comparison of simulation and experiments

As a conclusion to the study of the linear rheology of semiflexible bundle networks, numerical
results will be compared to experimental results found in literature.

Bundling linkers A large variety of biologically relevant linker molecules is able to form
bundles of actin filaments. Each one is specific concerning binding domains on actin filaments,
size, and reaction rate constants. There are linkers that exclusively create purely bundled net-
works such as fascin or espin. Both create – superficially seen – similar network but their
effect on network mechanics is distinct from one another [134, 141]. Both linkers have been
examined with respect to their linear, non-universal, intermediate-frequency rheology and their
nonlinear elastic response. Their linear rheology already exhibits noticeable differences, which
grow even stronger in the nonlinear regime. Other linkers like filamin create bundled networks
as well, however, bundle structure and arrangement differ from actin/fascin and actin/espin net-
works [186], which is probably connected to filamin being a large and flexible linker (∼100 nm)
compared to fascin or espin (∼5 nm). Linkers of the α-actinin family exhibit a structural poly-
morphism, where one of the occurring phases consists of bundles [140]. Despite their individual
properties, however, there are linker-independent rheological properties. The transient nature of
crosslinks is essential for the mechanical behavior of a network and common to all experimen-
tally studied linkers. The degree of transience is characterized by the dissociation rate constant
koff . This rate constant is particularly influential since it determines the experimentally acces-
sible part of a rheological spectrum, which, according to this chapter’s findings, describes a
general rheology of semiflexible bundle networks. The in vivo off-rate of fascin is reported as
koff = 0.07 s−1 [134], which makes it virtually impossible to access the low-frequency regime of
the actin/fascin spectrum. There are other linker molecules, e.g., different species of α-actinin,
which have a significantly higher off-rate than fascin and, apart from a composite phase, do
form bundle networks at certain concentrations.

In this subsection, the linear rheology of an actin/α-actinin 4 network with R= 0.02 reported
by [14] is compared to the low-frequency regime predicted by simulation. In the intermediate
frequency range, the linear rheology of an actin/fascin network with R= 0.1 by [134] is set up
against an in silico example featuring the in vivo off-rate. There is no experimental data available
for the high-frequency regime beyond cross-over frequency ω1 in case of bundle networks. Here,
simulation is the sole means to access this frequency range and therefore predicts a mechanical
behavior, which might or might not become measurable in the future.

Discussion The low-frequency experimental data and the data drawn from finite element
simulations are normalized with respect to both loading frequency ω and complex modulus
G. The basic idea is that, despite the differences in filament and linker concentrations between
simulations and experiments, the spectra should be superimposable if scaled consistently. In that
sense, the normalization only removes sample-specific information. A good agreement between
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Figure 6.11 Normalized rheological spectra of simulation and experiments. Experimental data at low frequencies
(�,♦) stems from an actin/α-actinin-4 network with R= 0.02 reported by [14]. It is compared to a simulation
with kon = 60 s−1, koff = 2 s−1 (N, M). Experimental data for the intermediate-frequency regime (�, �) stems
from [136]. It is compared to a separate simulation with kon = 90 s−1, koff = 0.07 s−1 (•, ◦). The curves were
normalized with respect to ω0 at the local peak inG′′, as well asG0 =G′′(ω0), which is the corresponding value of
the loss modulus. At high frequencies, experimental data is unavailable. The slopes indicated by the dashed black
lines imply a bundling parameter of ∆≈ 2.1

simulation and experiment would support the claim on the universality of certain rheological
properties of bundle networks. The well-defined off-rate dependent local peak in G′′ is chosen
for the normalization of the curves, i.e., normalization factors ω0 and G0 =G′′(ω0) are applied.
The linker α-actinin 4 used in [14] has an assumed off-rate of approximately koff = 0.4 s−1 (with
reported values of 0.1 - 1 s−1) as compared to an in silico off-rate koff = 2 s−1, which necessitates
two separate normalization factors for the experimental and the numerical data set. In absolute
values, normalization of the experimental data is carried out using ω0,exp = 2.63π rad/s and
G0,exp = 11.71 Pa. The corresponding values for the simulated data set are ω0,sim =π rad/s
and G0,sim = 2.30 Pa. With these values, Figure 6.11 illustrates, what can be described as an
excellent match of the two compared rheological spectra. Having normalized both curve pairs by
their respective factors, their shapes are nearly congruent, which impressively demonstrates that
the finite element model accurately captures fundamental phenomena observed in experiments.
The intermediate-frequency regime predicted by simulation is also in very good agreement with
experimental values. As experimental data does not cover the local peak in G′′ , an approximate
pair of normalization factors ω∗exp and G∗(ω∗) is assumed. While the in vitro off-rate is not
explicitly known, there exist in vivo measurements as stated above. Hence, the in silico off-rate
was set to the in vivo value koff = 0.07 s−1 as it substantially influences the loss factor δl =G′′/G′

in this regime. Compared to the experimental curve, one notices the steeper rise of G′′ towards
its local peak, which can be explained by the larger size of the simulated linkers (Rl = 100 nm vs.
the size of fascin, ≈ 5 nm). The beam elements, that represent linkers, presumably have a lower
bending stiffness than fascin, thus giving rise to a more pronounced intra-bundle dissipation due
to less strongly coupled bundle filaments. The absolute values of the experimental and numerical
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normalization factors read ω0,exp = 0.008π rad/s and G0,exp = 1.0Pa and ω0,sim = 0.024π rad/s
and G0,sim = 1.48 Pa.

The high-frequency regime of Figure 6.11 cannot be compared to experimental data due
to a lack thereof. However, it can be consistently explained by what has been considered in
Section 6.3.2. Below the normalized cross-over frequency at ω1/ω0≈ 2×105, G′ and G′′ are
nearly parallel down to ω/ω0 = 104. As illustrated in Figure 6.4c, this rheological behavior is
predicted by the theoretical model and is owed to the joint effect of bundle segments of different
lengths and diameters. The distribution of these two parameters as well as the connectivity
between separate bundles determine the individual shape of the high-frequency regime.

An estimation for the bundling parameter ∆ from Equation (6.16) can be given as well. The
high-frequency regime from Figure 6.11 is characterized by ∆≈ 2. The calculation leading to
this specific value for ∆ can be found in the appendix C.

6.4 Aspects of nonlinear viscoelasticity of semiflexible
bundle networks

Bundle networks display a remarkable dependency of their mechanical response on the strain
rate γ̇= dγ/dt, which has been amply demonstrated and discussed for the case of small de-
formations in the preceding sections of this chapter. Their rheological properties in the linear
deformation regime have been shown to change drastically depending on the loading frequency.
Following up on linear rheology, the nonlinear elastic response of the simulated bundle networks
is probed. Mechanical nonlinearities arise from various sources such as the network structure
with its local anisotropies, reaction kinetics, or the interplay of linker and filament stiffness.
Here, the nonlinear elasticity of bundle networks is examined with respect to two of several
possible system parameters, which upon variation yield the same effect: a continuous transition
from strain-hardening to strain-softening behavior [133].

Bundle networks exhibit a strain-rate dependent transition from strain-hardening to strain-
softening [134]. First, it will be shown that the computational approach is capable of capturing
all effects leading to the observed behavior. In a second step, the identical behavior will be
reproduced by means of a modulation of the off-rate koff , which may vary, e.g., as a consequence
of linker mutation.

The strength of the computational approach is not limited to a mere reproduction of experi-
mental results, but rather lies in readily available information on the causes of a specific mechan-
ical behavior. Therefore, the third and final part of this section is devoted to micromechanical
phenomena which strongly affect the network’s response to nonlinear shear deformations.

6.4.1 Generic description of the nonlinear elastic response

According to [133], the nonlinear elastic behavior of biopolymer networks is most conveniently
studied using a time-invariant shear rate γ̇= const. Both experiments and simulations record a
discrete data set of stress values, create a smoothed stress signal σ(γ) as a function of shear γ,
which enables the calculation of the differential modulus K = ∂σ/∂γ, a strain-dependent ma-
terial property. Following the path of deformation with increasing γ then reveals three distinct
regimes (cf. Figure 4.14, [133]). For small strains, K remains constant. Beyond a certain strain
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threshold γc, a bifurcation admits one of two possible alternatives. If the network exhibits strain-
hardening, the differential modulus starts increasing with a power law relation K ∼ γα with a
(linker-dependent) exponent α until it peaks at γm, which marks the transition from elastic to
plastic deformation. Beyond the peak value, K decreases rapidly due to the onset of plastic de-
formation and the impending destruction of the network. If the network is weakened by strain,
the differential modulus decreases beyond γc.

6.4.2 Linker-specific nonlinear elastic response

The nonlinear elastic response differs with linker species. Actin/fascin networks are known
to exhibit a continuous transition from strain-hardening to strain-softening at high linker con-
centrations, where the network has already switched from single filaments to a purely bundled
phase [134]. As already stated, this transition can either be caused by time-dependent, non-
constitutive variables such as the shear rate γ̇ or by inherent network parameters such as molar
ratio R or the reaction kinetics of the filament/linker bond. The nonlinear response of bundle
networks depend more strongly on the specificities of the linker molecule than the response to
linear deformations. Espin, which also constitutes pure bundle networks, displays a nonlinear
response distinct from that of fascin linked networks [141]. While an increase in fascin concen-
tration elevates network stiffness but maintains the strain-hardening behavior, a similar increase
in espin concentration results in strain-weakening. Filamin seems to induce strain-hardening
independent of its concentration [186].

The computational approach reproduces the nonlinear response of actin/fascin networks very
well as will be demonstrated in the following. Most probably, adjustments to the linker model
have to be made in order to capture differing linker behavior as well.

6.4.3 Simulation of nonlinear network viscoelasticity

All core parameters are chosen according to specifications given in Section 6.2.1. However, a
few of those parameters deviate from the general setup. The shear amplitude is set to γ̂= 30%
in case of the sweep through different shear rates at a fixed off-rate koff = 3 s−1, which repre-
sents the first of two numerical studies conducted in this section. Here, four different shear
rates γ̇= dγ/dt∈{0.125, 1.25, 6.25, 12.5}%/s corresponding to an experiment in [134] are
used. For two further parameter studies, the shear rate is fixed to the respective shear rates
γ̇= 6.25 %/s and γ̇= 0.625 %/s, while the off-rate is varied on the interval koff ∈ [0.01 ; 10] s−1.
Due to the low values of koff , the shear amplitude is increased to γ̂= 35% in order to cap-
ture large strain effects at lower off-rates as well. For all simulations, the same initial network
geometry is used to ensure comparability. The network evolves until t0 = 1500 s and is then
sheared according to the Dirichlet displacement pattern introduced in Section 6.2.2. The strain
rates imply times t̃∈ [2 ; 200] s, during which prescribed nodal Dirichlet values impose the shear
deformation. Further information on the parametrization of the simulation are provided in ap-
pendix C.

In [133], the effect of forces acting on linker molecules is pointed out. They are expected
to play an important role in experiments involving large strains as they influence chemical as-
sociation and dissociation processes. Bell’s equation (4.3) is deemed an adequate model for
force-dependent reaction kinetics. The corresponding characteristic distance of the reaction
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Figure 6.12 Nonlinear shear experiment at four different strain rates γ̇. (a) Differential modulusK = ∂σ/∂γ over
strain γ. At low γ̇, the network has time for restructuring and stress release. Transient crosslinks lead to a reduction
of K at high γ. At high γ̇, the decrease of K at high γ stems from bond rupture. The inset shows analogous
experimental results for an actin/fascin network at a molar ratio R= 0.1 [134]. Matching curve colors represent
data at the same γ̇. The nonlinear rheology of actin/fascin bundle networks is captured well by the numerical
model. (b) Measured stresses at γ̇= 12.5 %/s showing stress drops at γ≈ 12 % and γ≈ 22 % due to ripping of
linkers (red arrows).

variable is set to ∆x= 10 nm to account for the higher likelihood of disruption of a strained
chemical bond as compared to an unstrained one.

The shear deformation is applied by means of a linear displacement profile mapped onto
Dirichlet nodes at z=H with peak value û= γ̂H (cf. Equation (6.6)). The resulting stresses are
treated according to Equation (6.9). A list containing the most important values for nonlinear
viscoelastic simulations is provided by Table D.11.

6.4.4 Effect of strain rate variation

The results of nonlinear shear experiments in computer simulations and in vitro are compared
and remarkable similarities are found (compare Figure 6.12 and its inset). The onset of non-
linear mechanical behavior can be pinned to a critical strain γc = 1.5 - 2%. For the two higher
strain rates, hardening of the network is detected up to strains around 10% increasing modu-
lus K by up to ∼45% for γ̇= 12.5%/s for the simulated case and ∼60% in the experiment.
The two lower strain rates by contrast exhibit strain-weakening with their differential moduli
decreasing beyond γc. When compared to in vitro experiments from [134], the strain-rate de-
pendent transition from strain-hardening to strain-softening is analogous, which means that the
mechanism causing this transition is captured by the numerical model. Figure 6.12b shows the
development of measured stresses for shear displacements up to γ̂= 30% at the highest strain
rate γ̇= 12.5%/s. Clearly, an inflection point can be seen at strains around 10%, beyond which
the stress signal begins to flatten. At γ≈ 12% and γ≈ 22%, significant drops in the stress signal
are detected, which stem from linker unbinding events. The first incident occurs at strains close
to the peak stiffness of the network and contributes to the rapid decline after γm≈ 10%. In
order to investigate further, the distances of initially linked binding site pairs are evaluated (Fig-
ure 6.13). In Figure 6.13a, four characteristic developments for the distance between initially
crosslinked binding sites are shown. The majority of crosslinks remains intact during the entire
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Figure 6.13 (a) Distances of binding site pairs that were initially crosslinked at the beginning of shear displace-
ment at γ̇= 12.5%/s. The initial value of 0.1µm represents the mean linker size Rl. Colored paths mark binding
site pairs that remain close (i.e. linked) (green), that are ripped apart spontaneously at γ≈ 8% (blue) and γ≈ 11%
(brown), as well as a binding site pair that is moved apart after having been unlinked without large ripping forces.
(b) Crosslink concentration cl,c plotted over shear γ. Overall, shearing reduces the total number of doubly bound
linkers. Red arrows mark places, where larger numbers of crosslinks fail in short succession. Some of those
crosslinks are partly recovered.

course of the experiment, which is represented by the green curve, that stays close to the linker
size Rl. Then there are linkers, that rip under the influence of large forces acting on them. Such
cases are shown by the blue and the orange curve. The corresponding pairs of binding sites
remain close to each other until the force-dependent dissociation rate constant kbell increases
such that the bond eventually rips. Tension is built up in the corresponding filaments, which
is released instantaneously upon ripping. The distance between the two binding sites increases
immediately to about four times the linker size. Bond rupture events such as this one character-
ize the mechanical behavior of networks at large strains. Finally, there are uninvolved linkers,
that unbind simply due to the equilibrium off-rate koff . The distance over strain of one pair of
binding sites, that was initially crosslinked by such a linker, is highlighted in red (Figure 6.13a).
The reason for the continuous growth of distance between these two binding sites is that at least
one of them lies on a filament sheared by imposed Dirichlet displacements.

The total number of detached crosslinks is small compared to the total number of crosslinks
between filaments. The net loss of crosslinks until reaching the terminal value γ̂ amounts to only
∼2% (∼100 linkers). However, there are sudden drops of more than 50 linkers within very small
strain intervals. Such collective rupture events in bundles have been predicted recently using a
simplified model [74]. In Figure 6.13b, three such events can be seen at γ≈ 17%, 22%, and 26%,
where ∼80 linkers each fail successively (marked by red arrows). This observation supports the
hypothesis of an initial bond failure that is followed by multiple consecutive bond failures due
to a distribution of the same mechanical load to a decreasing number of linkers. Each sudden
decrease in crosslinks is followed by a phase of recovery. The number of crosslinks rises again
without reaching the numbers prior to rupture. After ripping, the network structure finds a
new temporary state of mechanical equilibrium. The ruptured links remain singly bound in the
computational model and seek to rebind, which leads to an increased probability of crosslink
formation in the area of rupture. At ∼22% shear, an especially pronounced stress release event
is recorded (Figure 6.12b).
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Figure 6.14 Spatial maps of unbinding events (a), (re)binding events (b), as well as the development of crosslink
concentration cl,c as a function of the imposed shear (c). The strain rate for this sample is γ̇= 12.5%/s. The time
scale of both the bond-breaking cascade and the healing process is approximately 0.03 s. The data shows that there
are hotspots of unlinking events within bundles. After breaking, there are healing hotspots at the corresponding
positions in the network. In (d), the elastic force magnitudes are depicted, pointing out locations of compressive
forces (F < 0) and tensile forces (F > 0). The color scale

The question remains, in what way the crosslinks fail at large strains. Experimental data on
single unbinding events is difficult, if not impossible, to obtain. Drawing such kind of infor-
mation from simulations, however, is easy. One simply has to record all binding and unbinding
events occurring over the course of the entire shear ramp and map these events to their respective
location within the volume. An excerpt of the acquired data is shown in Figure 6.14. In a shear
interval of 1.25%, unbinding and binding events are mapped to their spatial positions. Counting
the number of occurring unbinding and binding events allows for the calculation of a local event
intensity. At large shear deformations, linkers are increasingly strained, which influences their
off-rate in accordance to Bell’s model. The unbinding intensity according to Figure 6.14a is
more or less uniformly distributed, meaning that a major part of the crosslinks does not experi-
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Figure 6.15 Tuning the chemical affinity of the linker-filament bond by means of the dissociation rate constant
koff affects the nonlinear response. With increasing off-rate, the nonlinear response of the bundle network can be
tuned from strain-hardening to strain-softening behavior. (a) For γ̇= 6.25%/s, the transition from hardening to
weakening is located at koff ≈ 6s−1 (between the purple and brown curve). (b) Keeping all parameters (and the
geometry), the same transition is shifted to a lower koff ≈ 0.6%/s for γ̇= 0.625%/s (orange curve)

ence an increased off-rate due to strain. However, there are a few hotspots of linker unbinding
as the illustration clearly shows, where the unbinding intensity is about five times higher than
elsewhere. These places happen to be heavily strained locations judging by the magnitudes of
the elastic forces in Figure 6.14d. When the first crosslink ruptures, the load that was carried by
this crosslink until then, is distributed to neighboring linkers, which increases their individual
rupture probability. As a result, linkers surrounding the initial rupture site begin to detach as
well, which initiates a cascade of unbinding events as predicted by [74]. These cascades occur
predominantly within bundles.

At some point, a new transient state of mechanical equilibrium of the network is found and
the unbinding cascade terminates. The linkers, that have been previously detached by force,
have returned to being potential crosslinks. The preceding avalanche of linker unbinding events
has led to a local excess of singly bound linkers, that now seek to rebind. Unbinding hotspots
become rebinding or healing hotspots (Figure 6.14b). The loss of crosslinks is replenished by
the very same linkers, that were detached earlier (Figure 6.14c). However, no total recovery is
observed, which can be understood in terms of the considerations presented with respect to the
bond-breaking frequency regime of linear bundle rheology (cf. Section 6.3.2).

6.4.5 Effect of the dissociation rate constant

It is postulated, that variation of the chemical affinity of the filament-linker bond has a similar
effect on the nonlinear response as the variation of strain rate since both quantities are time-
dependent. In other words, it should be possible to find different pairings koff/γ̇ that lead to the
same stiffening or softening behavior.

The examination of the differential modulus and its development for different koff is shown
in Figure 6.15. A seamless transition from strain-hardening at low koff to strain-softening at
high koff is observed by gradually tuning the off-rate from koff = 0.01 s−1 to 10 s−1. Results
at two different different shear rates koff = 6.25%/s and koff = 0.625%/s are shown. Whether
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a transiently linked network structure stiffens or softens depends in a nontrivial way on the
ratio koff/γ̇. Above koff = 6 s−1, the network softens when strained with γ̇= 6.25%/s (Fig-
ure 6.15a). Below this value, first a stiffening response is recorded marked by the ascent of
the differential modulus for growing strains beyond γc≈ 1 - 2%. After reaching a maximal
value at strains between 10 - 25% depending on the respective off-rate, K decreases again hint-
ing at an ongoing “material failure” due to force-induced bond breaking events. For off-rates
koff < 0.1 s−1, the descending part of K is not reached. An identical sweep is conducted using
the same values for koff as before, but at a lower strain rate γ̇= 0.625%/s. Its results are sum-
marized in Figure 6.15b. The descending part of the differential modulus is now visible for all
off-rates. The amount of stiffening is reduced for the lower off-rates up to koff = 0.6 s−1, result-
ing in lower peaks in the differential modulus. At off-rates koff ≥ 0.6s−1, the peak valuesKm are
approximately halved compared to the higher shear rate for this particular network geometry.
Interestingly, the hardening-to-weakening transition occurs at koff ≈ 0.6 s−1, which translates to
approximately the same ratio koff/γ̇ as for the higher strain rate. Additional investigation could
lead to a better understanding of the connection between loading velocity represented by γ and
chemical kinetics represented by koff .

6.4.6 Remark on computational aspects in the nonlinear
deformation regime

A remarkable number of publications deals with phenomena in the regime of nonlinear defor-
mation by means of computational analysis ( [7, 21, 94, 123] and others). Several reasons come
to mind why this might be the case. First and foremost, the nonlinear deformation regime is
a research topic worth studying. However, there are secondary reasons of computational na-
ture as well. Oftentimes, linker unbinding dynamics are omitted [218, 232] such that the time
scales become almost irrelevant, basically leading to a free choice of the time step size. Con-
sequently, results can be obtained rather quickly, especially, when network evolution is omitted
as well (as in above references). Furthermore, there is evidence that the stretching out of the
filaments’ bending modes, which increasingly occurs at high (bulk) strains, makes the problem
good-natured in the numerical sense. The attempted argument is not quantitative in nature, but
is rather based on qualitative but reproducible observations during simulation. Consider a beam
with a statically defined support. The application of a lateral force causes the beam to bend;
the movable support yields. As the axial stiffness of structures with a high slenderness ratio
exceeds the bending stiffness by far, a numerical scheme has to resolve mechanical phenomena
spread over a broad range of time scales in the dynamic case, which leads to a stiff problem. If,
however, the beam has fixed supports on both ends, the beam’s axial stiffness dominates the re-
action to the lateral force. The tendency towards rapidly varying solutions (e.g., due to buckling)
is weakened. In the context of network simulations, this means that the more stretched out a
network sample is, the more it is dominated by the axial reaction of single filaments (cf. [167]).
Tension tends to stabilize the problem numerically, and, as a consequence, iterative schemes
exhibit an improved convergence behavior. Larger load/time steps can be made. In a sense, this
is one of the few cases, where a nonlinear problem is actually easier to solve and technically
less demanding than the corresponding linear problem, e.g., in the form of the presented linear
rheology simulations.
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6.5 Conclusions

Linear rheology of semiflexible bundle networks The focus of this chapter lay on
a theoretical and computational analysis of crosslinked, bundled semiflexible networks. The
investigations have lead to a more general understanding of the rheology of such networks and
have elucidated the origins of the mechanical behavior of bundle networks, which are distinct
from networks consisting of single semiflexible filaments. Semiflexible bundle networks play
an exposed role in cellular mechanics [184], where they enable cell migration by forming stress
fibers, support cell division and play an important role in sensory organs.

The linear rheology of semiflexible bundle networks was found to be divided into three dis-
tinct frequency regimes, each regime being dominated by one or several characteristic phenom-
ena. The postulates at the beginning of this chapter may now be considered proven.

(I) The high-frequency response is determined by the dynamics of single bundles. Their
effective bending moduli depend on geometric properties such as the length of the bundle
as well as the number of single filaments which make up the bundle. Eventually, these
influences explain the newly discovered universal scaling behavior.

(II) At intermediate frequencies, three effects can be seen as main contributors to a non-
universal network rheology. There is a newly discovered dissipative process caused by
a shear-induced reduction of the total number of crosslinks. Furthermore, it could be
shown that the rheology at intermediate frequencies is strongly depends on the individual
sample geometry. Finally, the reaction kinetics of the linker/filament bond determine the
frequency range and the ratio between viscous and elastic effects.

(III) For low frequencies, another, yet equally universal scaling behavior has been confirmed.
The rheology is determined by the dissolution of bundles and large-scale rearrangements
driven by equilibrium fluctuations at higher linker off-rates and non-equilibrium network
evolution at lower off-rates.

Nonlinear viscoelasticity In the second part, the nonlinear viscoelastic response of bundle
networks has been investigated. In the nonlinear regime, the generalization of the mechanical
influence of linkers becomes more difficult as the specificities of different linkers become more
pronounced. The in silico model of the linker exhibits a behavior similar to that of the linker
fascin. Upon imposition of large shear deformation, force-induced unbinding of linkers is ob-
served. Stress drops are directly linked to multiple consecutive bond breaking events. The fail-
ure of a few linkers leads to additional loading of surrounding linkers, which as a consequence
tend to fail as well. Weak spots in the network structure are located within bundles as the above
investigations imply. Collective cascades of unbinding events are generally followed immedi-
ately by a partial recovery of the structure in terms of the number of mechanical connections
between its filaments. This healing procedure is rapid and occurs on time scales comparable
to the rupture event. Recovery in parts and an overall decreasing number of crosslinks in the
network structure lead to a deterioration of its mechanical properties, which is represented by
the eventual decline of the differential modulus K.
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Potential engineering applications In the thriving field of biomedical engineering, pre-
dictive simulations promote the understanding of biological materials, estimate the mechanical
behavior of organs, or support medical therapy. Many applications share the need for informa-
tion on the reaction of soft tissue to mechanical loading, which is mostly provided by constitutive
laws based on a strain energy formulation (cf. [84] for a comprehensive library of strain energy
formulations). Among currently proposed material laws, there are some that already account
for cytoskeletal fiber orientation in a rather generic way [83, 170, 212], all of which suffer from
a lack of information on the actual network architecture. Using micromechanical simulations
such as the ones presented here, one could generate a mechanical sample of a network through
self-assembly and determine its mechanical behavior. Figure 6.12b already hints at the general
capability of providing mechanical data (shear stresses in this case) similar to [212, Figure 8],
where experimental results and continuum model predictions are compared. In principle, one
could establish a library of constitutive laws reflecting the distinct mechanical features of dif-
ferent network architectures, thus enabling more detailed models of, e.g., cellular growth or cell
migration on the basis of a homogenized continuum approach [170, 211]. A more costly, but
also more flexible, alternative would be the design of a multi-scale approach including Brownian
dynamics simulations at the bottom level in order to provide material parameters for constitu-
tive laws on higher levels, i.e., larger length scales. With present day hardware, however, the
feasibility of such an approach is questionable in view of the fact that the simulation of network
self-assembly alone already requires several days of computation time.

Leaving the immediate neighborhood of cellular mechanics, novel synthetic materials such as
composites made of carbon nano-tube bundles [117] or the development of molecular machines
[171] might substantially profit from the new insights.

144



7 Conclusions and outlook

7.1 Conclusions
This summary comprises the methodic and the scientific progress, which have been achieved
in the course of this thesis. Two superior goals have been formulated at the beginning of this
doctoral project. The first goal was the development of a computational framework that enables
the simulation of semiflexible biopolymer networks on time and length scales relevant to cy-
toskeletal dynamics. Systems with a spatial expansion of up to 103 µm3 have been simulated
on time intervals of several hundreds up to several thousands of seconds. The second goal was
the application of the newly developed approach to biophysical problems. Both goals have been
achieved but, as always, more is to come than what lies behind. In two separate sections, the
individual achievements will be named and briefly summarized.

7.1.1 Methods
At the starting point of this thesis, the fully functional BD/FE single-filament model of [36–38]
was available. First steps towards the simulation of networks had already been undertaken.

The parallelization of the serial code has marked a preliminary, yet necessary first step to-
wards the computational framework in its present state. As a consequence, the simulation of
networks has become computationally affordable. In Chapter 2, the explicit simulation of the
second species, the linker, and its Brownian dynamics has been introduced to the computational
model, without which none of the self-assembly phenomena could have been observed. This
rather inconspicuous detail has been pivotal for all subsequent steps. The increased computa-
tional effort of matching potential binding partners is counteracted by efficient search algorithms
such as octree data structures and geometrical binning strategies. The chemical interaction be-
tween filaments and linkers has been designed to replicate the reaction kinetics of well-known
chemical bonds between filaments and various linkers (cf. [133,152] for reaction rate constants).
Furthermore, the introduction of a confined volume by means of periodic boundary conditions
has enabled the examination of network evolution and rheological simulations.

Chapter 3 has introduced two model extensions, one for filaments and one for linkers, which
decouple the chemical from the mechanical resolution, enabling tightly stacked binding site
topologies. These modeling steps were motivated by the following shortcomings of the original
model. While the coarse-graining of filaments increases the computational efficiency of single
filament simulations without noticeable drawbacks to filament dynamics, it abandons informa-
tion on the microstructure of the filament. Linkers, which exclusively establish node-to-node
connections, mask the model’s true potential in the following way. Even if a coarser filament
discretization is viable from the mechanical point of view, the consequent reduction of chemical
binding opportunities affects reaction kinetics, which is unacceptable. Conversely, the refine-
ment of the chemical resolution to monomer level leads to an insensible mechanical resolution.
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Therefore, the extended filament model offers interpolated binding site positions along its cen-
terline. In addition, the reaction volumes were further parametrized in order to account for
binding site orientations according to the orientation of the filament subunits. In case of F-actin,
binding sites are helically oriented. Having included this modeling feature, it is now possible
to account for mechanical effects that originate from the chiral structure of the filaments. The
linker model has been capacitated to establish connections at arbitrary positions between two
finite element nodes of a filament. This modeling step has been accomplished by tying the
positions and cross section orientations of a BFE with two virtual nodes to the interpolated po-
sitions and cross section orientations of two filament elements. In contrast to other mesh tying
methods, no additional DOFs have been introduced. Rather, the contribution of the two virtual
nodes is distributed to the four real nodes of the filament elements. To this end, one exploits
the mathematical instruments for a consistent treatment of finite rotations in R3 of the nonlin-
ear, geometrically exact beam formulation by [103] as well as conventional linear finite element
interpolation schemes. The extended models for filaments and linkers are complementary and
develop their full potential only in conjunction with each other. The proposed extensions have
been implemented and validated. Apart from being able to examine the self-limiting nature of
bundles, one may now create previously unobservable network morphologies, namely a homo-
geneous isotropic network at very high linker concentrations. This network is reminiscent of
actin/HMM networks. By allowing for the occupation of two binding sites on a filament by one
and the same linker, the effect of decoration of filaments by HMM is mimicked. First rheo-
logical results show good qualitative agreement between simulation and experiment. Although
being of only minor biological relevance, passive actin/HMM networks (i.e., HMM does not act
as a motor) have posed as a model system in order to examine the effect of transient crosslinking
on network mechanics [137].

Chapter 4 has introduced a simplified model of a non-processive motor based on the develop-
ments of the preceding Chapters 2 and 3. The motor model has been parametrized to resemble
the activity of a single myosin head. The enzymatic cycle of myosin II has been translated
into modeling requirements and has been realized by means of a contractile beam, which acts
according to the mechanically relevant states of ATP hydrolysis. The modeling equivalent to
the myosin power stroke is achieved by a contraction and a superimposed rotation of the motor
beam element about its mechanical joint. Both the contraction and the rotation are achieved by
concerted changes of the motor’s mechanical reference configuration. As a result, a contractile
force and a restoring moment are induced upon alteration of the reference state. Kinematically,
the proposed motor model is similar to the swinging cross-bridge model (cf. [195]). The motor
model has been validated with the help of in silico motility assays. Having used a sensible set
of motor parameters, the observations made in in vitro motility assays have been reproduced for
the quasi-1D and the two-dimensional case.

7.1.2 Biophysical applications

Chapter 5 documents the first major application of the computational approach to a biophys-
ical problem: an equilibrium phase diagram of semiflexible polymer has been established.
This phase diagram incorporates the fundamental thermally equilibrated morphologies of cross-
linked, semiflexible biopolymer networks. Depending on the linker concentration and the linker
species, the emerging network architecture can be predicted. Furthermore, the driving influence
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behind network formation has been found. Filament entropy and linker entropy have been de-
termined as the main factor for filament aggregation. A linker seeks to maximize the number
of potential crosslinking sites in its vicinity. A thermally excited filament seeks to fluctuate as
freely as possible. The maximization of the one leads to the minimization of the other. A maxi-
mal number of crosslinking possibilities is achieved when filaments are maximally ordered and
vice versa. In addition, the cluster has been determined as an equilibrium structure rather than
a kinetically trapped intermediate state for a linker with orthogonal angle preference. This find-
ing does not contradict the claim of actin/α-actinin and actin/filamin clusters to be kinetically
trapped structures. Furthermore, all phase transitions of the model system are of first order with
the exception of the transition from the hexagonal cluster to the hexatic lamella.

In the final chapter (Chapter 6), comprehensive studies have led to the postulation of a bundle-
specific rheology with universal properties. Universal scaling behaviors have been found at very
high and very low frequencies. At high frequencies, the dynamics of single bundles dominate
rheology. In between, there is a non-universal regime, which reflects the network geometry
and the reaction kinetics of the filament/linker bond. At low frequencies, large-scale collective
motion, bundle dissolution and non-equilibrium aging phenomena dominate. Experimental data
at low frequencies exists as well as measurements in the non-universal, intermediate-frequency
regime. The experimentally accessible frequency range for most biological linkers lies in the
intermediate-frequency regime, where their specificities are more pronounced. Excellent agree-
ment with experimental data is found for the low-frequency regime, where the ω1/2 scaling has
been recovered. The intermediate-frequency regime of the simulated linker appears to be sim-
ilar to that of the physiological linker fascin. There is no experimental data available on the
high-frequency regime such that the novel scaling behavior found there serves as a prediction
and requires experimental validation. Preliminary simulations of the nonlinear viscoelasticity of
bundle networks have been performed. They demonstrate that, depending on the shear rate, i.e.,
an external influence, strain-hardening or strain-weakening occurs. The same behavior can also
result from a variation of intrinsic parameters like the affinity of the filament/linker bond. It is
speculated that the ratio of shear rate and dissociation rate constant γ̇/koff could be an interesting
parameter in order to pin down the boundary between hardening and weakening.

7.2 Outlook

In analogy to the conclusions, the outlook is best divided into two main parts: a methodic
outlook and an outlook for future biophysical applications. By contrast, possible engineering
applications are discussed as well.

7.2.1 Methods

The most pressing matter is the development of an efficient and, more importantly, robust beam
contact formulation. The evaluation of beam contact is a highly nontrivial problem as the ex-
tremely high slenderness ratios of biopolymer filaments (Lf/(2

√
Af/π)>800) lead to stiff prob-

lems. The deterioration of the convergence of the Newton scheme attributed to a multitude of
simultaneous contact pairs is in dear need of a remedy. Furthermore, randomly contacting pairs
of beams inevitably entail off-diagonal entries in the global stiffness matrix, leading to a de-
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terioration of the matrix’ condition number. This exacerbates the numerical performance. In
general, a transition from Penalty and Augmented-Lagrange methods to a Lagrange-multiplier-
based contact formulation would be of advantage. On the one hand, the use of a Lagrange multi-
plier approach enables the exact enforcement of contact constraints. On the other hand, such an
approach alleviates the unsatisfactory reliance of Penalty and Augmented-Lagrange approaches
on heuristic parameters. Potential applications with an improved beam contact formulation will
be given in the next section.

The second large topical complex deals with the replacement of the currently used Reissner
beam element formulation by a more suitable Kirchhoff beam formulation. As elaborated in
Chapter 3, the Kirchhoff beam offers several numerical advantages of secondary nature. The
most striking improvement, however, is the C1-continuous description of the beams centerline
by means of higher-order Hermite polynomials. This feature improves the geometric approx-
imation of the beam geometry compared to Reissner beam elements. In conjunction with the
extended linker model from Chapter 3, the Kirchhoff beam formulation represents a powerful
tool for the simulation of biopolymer networks. In fact, this joint approach has the potential of
becoming the referential computational model for this kind of problem. The better geometrical
approximation as compared to a Reissner beam element can be exploited by choosing a coarser
discretization. Due to the capability of the linker element to bind at arbitrary positions along the
filament, the reduction of global DOFs does not result in a loss of chemical detail. In analogy to
the contact problem, the optimization of the linear solution procedure emerges as a secondary
problem. Finally, in view of a potential refinement of the chemical resolution to the level of
single monomers, efficiently parallelized search algorithms are required to handle the additional
complexity due to a significantly higher number of potential binding partners.

The model of the molecular motor can be enhanced in order to reproduce the activity of
more complex motor units such as the myosin thick filament. The introduction of a distinction
between active motors and passive linkers for the observation of the cooperative behavior of
linkers and motors can be realized without major problems. On a methodic level, one can con-
sider switching to a Lagrange-multiplier-based constraint enforcement. Lagrange multipliers
entail a higher computational effort due to the introduction of additional unknowns. However,
this measure allows for a more flexible formulation of constraints, which could be useful for the
modeling of more complex (processive) motor activity.

A further enhancement of the filament model can be achieved by the incorporation of in-
teraction potentials between a pair of filaments or between filaments and other particles, e.g.,
linkers or other microscopic objects. Various types of intermolecular interactions are known
(cf. [101]) and can be approximated by interaction models such as the Lennard-Jones potential
or Coulomb’s law.

Finally, untapped computational potential undoubtedly lies with a more elaborate paralleliza-
tion by means of an adequate load-balancing. A periodic re-evaluation of processor-specific
subdomains of the global problem can improve the computational performance of the method.

7.2.2 Biophysical applications

A multitude of possible paths for continued and expanded research activities exist.
The most immediate avenue of future research is the nonlinear viscoelastic behavior of biopoly-

mer networks. First efforts on this topic have been made in Chapter 6 for the special case of
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bundle networks. These efforts demonstrate the potential of the available method and should
thus be put to use in future biophysical studies.

The nonlinear, geometrically exact beam formulation, that is the mechanical foundation of
the approach, is not limited to modeling semiflexible filaments. Future studies can thus involve
microtubule networks, networks of intermediate filaments, or, as a matter of fact, any type
of fiber network that comes to mind. Staying in the biological context but leaving the cell,
connective tissue made of collagen fibers could be a possible future topic of research.

In view of the progress made in Chapters 2 to 4, another area of research in the future are
so-called active networks, in which molecular motors massively influence the mechanical prop-
erties. If a passive linker species is added on top, the network stiffens by over two orders of
magnitude due to the joint effect of motors and linkers [119, 157]. By contrast, motors have
also been found to fluidize networks under certain conditions [95]. Considerable theoretical
work is being done on active gels (cf. [104]) such that simulations could in principle serve the
same purpose as in Chapter 6, where a fruitful interplay of theory and simulation has resulted
in new physical insights. Apolar assemblies of actively contracting bundles [132,205] represent
a related, but more specific topic, where the BD/FE simulations may promote a better physical
understanding.

The methods developed in Chapter 3 enable the simulation of self-limiting bundle networks,
which are constituted by small linkers like fascin [23]. Theory on this type of bundle system
suggests that bundles do not grow beyond a certain diameter because of the competing influences
of bundle twist and single-filament bending [80]. Novel insights into the self-assembly and the
intrinsic mechanical properties of such hexagonally packed bundles may be gained. However,
due to the tight packing of filaments, excluded volume effects are likely to matter. Therefore, as
stated in Section 7.2.1, improved computational approaches to modeling the mechanical contact
of slender continua are mandatory.

Another benefit of a robust beam contact formulation is the ability to study collective motion
phenomena. The high-density motility assays of [183] could be reproduced as a first step, and
then lead to extended analyses.

Given the incorporation of intermolecular interactions into the filament model, the effect of
electrostatic charges on the diffusive behavior of molecules could be studied.

Finally, on a remote but equally interesting topic, the existence of a fundamental, but previ-
ously unknown type of Casimir interactions due to thermal fluctuations can be examined and
quantified [106].

7.2.3 Engineering applications

The computational model proposed in this thesis can be used to generate information on net-
work architectures and their respective mechanical properties in analogy to the procedures in
Chapters 5 and 6. With this information at hand, the development of taylor-made continuum
approaches modeling biological materials on the tissue level could be supported. Distinct net-
work morphologies entail distinct mechanical properties as has been demonstrated in Chapter 6.
Therefore, one could account for the cytoskeletal morphology by means of suitable, microstruc-
turally informed constitutive laws. A library of material models, that offers such constitutive
laws, would most likely be of advantage when modeling certain application-specific properties
of the highly dynamic and versatile material that is the cell [108].
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7 Conclusions and outlook

The proposed methods have already proven their potential to predict material properties, al-
beit within a limited scope. There is no reason why the method itself should not be applicable to
other fibrous materials as well. Changing the filaments’ and linkers’ material properties in ac-
cordance to the a priori knowledge of the network constituents can enable the simulation-based
design of a broad spectrum of materials, that rely on interconnected fibers.
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A Linearized stiffness matrix of the
extended linker element

In Chapter 3, a method has been introduced, that ties two-noded beam elements to an arbitrary
position along the interpolated geometry of other beams. The formulation of all involved beams
is based on the work of [103]. Here, the linearized contributions to the tangential stiffness
matrix of the tied beam element are summarized. These terms eventually find their way into
equation (3.30) and enter the modified linearized residual as stated by equation (3.32).

Elastic contributions The assembly of the stiffness matrix is done best by starting at a
node-wise description owing to the node-based interpolation of rotations. The submatrix of the
element stiffness matrix for nodes j= 1, 2 and k= 1, 2 reads

K[ jk]
v =
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0
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t I′[k]

t Cf I′[ j]
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with the stresses ◦n = ΛCfγ and ◦
m = ΛCmκ. The interpolation function I[k]
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tion (3.24). Its derivative is

I′[k]
r (s) = ΛR

[
−
(

(T−1(ψl(s)))
′I[k]

t (s)T(ψ
[k]
l ) + T−1(ψl(s))I

′
t(s)T(ψ

[k]
l )
)

V[k]+ (A.2)

+
(

(T−1(ψl(s)))
′I[k]

t (s) + T−1(ψl(s))I
′
t
[k](s)

)
T(ψ

[k]
l )
]

ΛT
R.

The matrices T(ψl) and T−1(ψl) are given by equations (3.25) and (3.27), respectively. The
linearized residual for the elastic part is given as

Lin δΠ
[ jk]
v,el = δd[ jk] T

v Kv∆d[ jk]
v (A.3)

with the variation of the displacements δd[ j]
v = ( δu[ j] T

v δϑ[ j] T
v )T of node j and the linearized

displacements ∆d[k]
v = ( ∆u[k] T

v ∆ϑ[k] T
v )T of node k. Assembling the submatrices from equa-

tion (A.1) in to the element stiffness matrix K̃v for an element with two nodes, the stiffness
matrix can be written as
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 ∈ R12×12. (A.4)
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A Linearized stiffness matrix of the extended linker element

This notation is inconvenient with respect to the displacement vector definition in equation (3.8),
which groups translational and rotational rather than nodal submatrices. This inconvenience is
readily overcome by reordering equation (A.4) such that
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The following expressions for the viscous and stochastic contributions to the tangential stiff-
ness matrix stem from [33, Appendix A.5], from which they’ve been adopted in a slightly varied
notation in order to fit the conventions of this work.

Viscous contributions The translational viscous contribution to the tangential stiffness
matrix is given by
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]
I′t + Dt

[
1

∆t
− ∂v

∂x

]
It

}
ds ∈ R6×6. (A.6)

The rotational part is accounted for on the one hand by
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The assembled matrix can be denoted as

Dv =

[
Dv,t 0
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]
∈ R12×12 (A.8)

Stochastic contributions Finally, stochastic contributions for the translational part
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and the rotational part
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with ZΛ = ΛZ IP(0, 1). The assembled matrix of the stochastic contributions has the form

Sv =

[
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]
∈ R12×12. (A.11)
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Eventually, the tangential stiffness matrix of the linearized problem reads

Kv =
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and can be directly inserted into equation (3.30).
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B Methods

B.1 Mechanical contact of beams
In Chapter 5, an Augmented-Lagrange regularization for frictionless normal contact has been
applied to ensure minimal mutual overlap of filaments. Here, the most important aspects of this
method will be briefly outlined. For a more thorough reading on the modeling of mechanical
contact in simulations, the reader is referred to [129, 228].

General description of contact and its weak form The distance between the center-
lines x1(s1) and x2(s2) of two beams with circular cross sections is minimal for exactly one
pair of positions {s̃1, s̃2} if the centerlines are skew. The closest distance between two points
along the centerlines is can be calculated as

d12(s1, s2) = min‖x1(s1)− x2(s2)‖ = ‖x(s̃1)− x(s̃2)‖. (B.1)

Having determined positions s̃1 and s̃2 by exploiting that the vector ‖x(s̃1)− x(s̃2)‖ is perpen-
dicular to both x′1(s̃1) and x′2(s̃2), the normal vector

n12 =
x(s̃1)− x(s̃2)

‖x(s̃1)− x(s̃2)‖
(B.2)

can be determined. Furthermore, a distance function measuring the gap between the centerlines

g = ‖x(s̃1)− x(s̃2)‖ − r1 − r2 (B.3)

with beam radii r1 and r2 can be defined, which allows for the definition of the so-called Karush-
Kuhn-Tucker (KKT) conditions of non-penetration

g ≥ 0, λ ≥ 0, gλ = 0 (B.4)

Skipping several steps, the variation of the contact potential required for a finite element dis-
cretization reads

δΠλ =
Nc∑
n=1

λnñ
T
n(δu1,n − δu2,n︸ ︷︷ ︸

δgn

) (B.5)

Augmented-Lagrange regularization The Augmented-Lagrange regularization is set be-
tween the simpler Penalty method and the exact enforcement of contact constraints by means of
Lagrange multipliers. It reduces penetration by an iterative scheme, that adds up Penalty-like
contact forces to the limit of an exact satisfaction of the non-penetration condition. This iterative
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B Methods

procedure is referred to as Uzawa algorithm (cf. [129, Chapter 6]) and updates the contact force
of Uzawa step u+1 by

λ{u+1} =
〈
λ{u} − ε{u}g{u}

〉
, (B.6)

where 〈 . 〉 governs whether or not the update is applicable by distinguishing

〈
λ{u} − ε{u}g{u}

〉
=

{
λ{u} − ε{u}g{u} , if λ{u} − ε{u}g{u} > 0

0 , else
, with λ{0} = 0. (B.7)

The variation of the Augmented-Lagrange contact potential is given by

δΠλ,AL =
Nc∑
n=1

〈
λ{u} − ε{u}g{u}

〉
n
ñT
n(δu1,n − δu2,n). (B.8)

The symbol ε denotes the so-called penalty parameter, which represents the spring constant
of the repulsive potential. If convergence is deemed slow, this parameter can be updated, i.e.,
increased, from one to the next iterative step. The subsequent steps of discretization and lin-
earization of the weak form enable the use of this model for beam contact in a FE setting.

Limitations The Augmented-Lagrange approach to modeling the contact of beams has a few
specific drawbacks but suffers from other, more general deficiencies as well. Apart from an
increase of computational cost due to the introduction of an additional iterative loop, the choice
of the initial penalty parameter ε0 as well as possible update procedures εi+1 are heuristic and
thus problem-specific. The approach does not solve the general problem of undetected cross-
overs between iterative steps when dealing with highly slender beams. Applied to problems with
a large number of contact pairs, the Uzawa algorithm is often caught in intermediate states at
unsatisfying residual penetrations causing non-convergence. Lastly, the approach in its current
form is unable to account for the special case of contact between parallel beams. Although this
scenario is unlikely to occur, it is of advantage to model parallel contact as well in view of the
possible application of beam contact to bundles made of parallel filaments, which are ubiquitous
in biological materials.

B.2 Search Algorithms
The numerically efficient modeling of contact problems includes an efficient contact detection.
In this thesis, two such methods have been implemented: an octree-based search and a search
adopting a geometrical binning strategy.

Octree The octree data structure is a common tool for applications such as nearest neigh-
bor search or spatial indexing. It has a time complexity of O(n log(n)). A volumetric octree
consists of a parent cell (in this case, the entire cuboid (not necessarily cubic) simulation box),
which is subdivided into eight daughter cells, hence the name. Each of these daughter cells
may be refined further depending on the need to do so. This need is evaluated by means of the
number of objects in each cell. In the case of beam contact problems, each element is such an
object. The octree is refined until only a certain, a priori defined number of ≤Nstop elements
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B.2 Search Algorithms

(a) COBBs and detected potential contact pairs (b) Corresponding volumetric octree

Figure B.1 A cluster structure simulated with contact/excluded volume effects. (a) The visualization shows
the COBBs of filament elements (•), crosslinker elements (•), and COBBs of potential contact pairs (•). (b)
Volumetric discretization by means of the octree.

is located within each daughter cell. Each element is enveloped by a paraxial cylindrical ori-
ented bounding box (COBB) with a certain radius rcobb. There exist other bounding box types
but the COBB has emerged the preferable option. The radius rcobb commonly exceeds the ac-
tual beam radius by a safety factor ccobb in order to detect potential contact pairs in advance.
Having reached maximum octree refinement, a brute force search for potential contact pairs is
conducted. Each COBB is evaluated with respect to all other COBBs in the daughter cell. The
use of an octree shifts the bottleneck in computational efficiency from contact search back to the
nonlinear solution procedure. Figure B.1 shows a cluster, whose elements have been wrapped in
COBBs (Figure B.1a). The octree is built according to the COBBs and is shown in Figure B.1b.
A drawback of octree data structures is the intricate parallelization of the octree setup.

Geometric binning Geometric binning is another popular volume partitioning and search
strategy. In principle, this method creates a histogram of the spatial occurrences of objects, i.e.,
elements or free linkers, is created assigning each object within the volume to a certain bin. A
bin is a cuboid subvolume, which, in contrast to the octree data structure, results simply from the
equipartitioning of each dimension of the volume into Nbin segments. Geometric binning offers
linear access times once the volume and the object contained in it have been indexed. Both the
volumetric octree as well as geometric binning is used for finding pairs of linkers and binding
sites that are considered for chemical bond. Depending on the network architecture, either the
octree or the binning strategy is more efficient. In case of cumulated structures, the octree is
superior in most cases since the brute force portion of the search can be controlled more flexibly
than with the static bin size of the binning strategy. In more dilute phases, the binning strategy
is more efficient due to the faster indexing. An advantage of binning strategies is that they are
easily parallelized.
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B Methods

(a) Incorrect sampling (b) Correct sampling

Figure B.2 Sampling of surface S(ϕ(x), ψ(y)) of a unit sphere by means of angle functions ϕ(x) and ψ(y)
with uniformly distributed random variables x and y on the interval [0; 1]. (a) Incorrect distribution of polar angles
ψ(y) =πy, which leads to a higher density at the poles. (b) Correctly weighted polar angle withψ(y) = 2 arcsin(y).

B.3 Sampling of a uniform distribution of spherical
coordinates

The creation of initial network geometries using a meshing tool as well as the analyses involving
filament orientations rely on a description by means of spherical coordinates. While the inter-
pretation of the azimuth angle is unproblematic, the polar angle needs to be interpreted with
care (see Chapter 5). The uniform distributions of azimuth angles ϕ∈ [0;2π[ and polar angles
ψ ∈ [0; π] are given as

ρ(ϕ) =
1

2π
, ρ(ψ) =

1

2
sinψ. (B.9)

The distribution ρ(ψ) takes on the given form because of the Jacobian involved in mapping
(ϕ, ψ) to positions in Cartesian space. Results of an incorrect mapping (Figure B.2a) and the
correct procedure (Figure B.2b) are shown, where the surface of a unit sphere has been sampled.
The incorrect mapping leads to a higher density of samples at the poles, resulting in geometrical
anisotropy when generating samples or the misinterpretation of results.
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C High-frequency bundle rheology

(a) Bundling parameter ∆ (b) Zoom to range of Figure 6.11

Figure C.1 (a) The bundling parameter ∆ is plotted over the number of bundle filament N and the mesh size ξ.
(b) The same plot is shown again but zoomed to the relevant ∆-range.

The following can be found in a slightly more detailed manner in [164]. It is based on theo-
retical work done by ALEX J. LEVINE (University of California, Los Angeles).

Calculation of the bundling parameter ∆ In Chapter 6, a high-frequency bundle rheol-
ogy has been found distinct from that of networks of single filaments. The characteristic measure
determining the degree of bundling in a system ∆ has been introduced in equation (6.16). For
Figure 6.11, a parameter ∆≈ 2 was determined reflecting G′′(ω) ∼ ω0.93 and G′(ω) ∼ ω0.55.
The scaling exponents of G′ and G′′ in this figure imply that the network is currently in an inter-
mediate state between the asymptotic cases of a network purely consisting of single filaments
and a purely bundled one. For larger values of ∆, one finds only the scaling consistent with the
∆ � 1 limit discussed above. In the following, an exemplary calculation of ∆ is performed
using values from simulations.

The dimensionless parameter ∆ is given by

∆ =

(
Nπ
3

)(
LpkBT

b2δk×

)(
δ

ξ

)2

(C.1)

as written in Equation (6.16) except that the Young’s modulus of the filaments has been replaced
by their persistence length Lp. The bending modulus κ depends on the filament’s diameter b and
Young’s modulus Ef and reads

κ =
Eπ

64
b4. (C.2)

∆ is written as the product of three terms. The first term accounts for the size of the bundle by the
number of filaments within a bundle. The second term gathers the elastic properties of filaments
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C High-frequency bundle rheology

and linkers. The last term reflects the network structure. The filament diameter is b∼ 5 nm, the
average crosslink distance δ∼ 100 nm, and the linkers’ spring constant is k×= 0.122 pN/nm.
Inserting these values into equation C.1 results in

∆ ≈ 127N

(
δ

ξ

)2

. (C.3)

From examination of the network structure, the average number of filaments per bundle has
been determined as N = 5. The mesh size ranges at 1.5µm≤ ξ≤ 2.5µm. Consequently, ∆ is
within the range

1.0 < ∆ < 2.8. (C.4)

Estimations with respect to Figure 6.11 yield ∆≈ 2 with uncertainties concerning the actual
distribution of bundle thickness and the mesh size. Figure C.1 demonstrates that a deviation
from the well-known ω3/4 scaling occurs for any parameter ∆> 0. As a consequence, as soon
as there is only as much as the onset of bundling, the ω3/4 scaling will be violated.
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D Simulation parameters
Basic parameters

notation description value unit

kbT thermal energy 4.043×10−3 aJ

η viscosity of the background fluid 10−3 Pa s

Ef filament Young’s modulus 1.3×109, 2.3×109, [130] pN/µm2

Af filament cross section 1.9×10−7, 1.9× 10−5, [88] µm2

I2, I3 moment of inertia of area 2.85×10−11 µm4

J polar moment of inertia of area 5.7×10−11 µm4

Al linker cross section 4.75×10−6 [202] µm2

El linker Young’s modulus 2.56×106 [166] pN/(µm)2

Il linker moment of inertia 4.49×10−11 [202] µm2

Jl linker polar moment of inertia 8.98×10−11 [202] µm2

ν filament Poisson ratio [0.3; 0.5] -

Table D.1 Basic parameters for filament model, linkers, and system variables, if not expclicitly stated otherwise

Parameters of the performance comparison in chapter 3

notation description value unit

Nf number of filaments 208 -
Ne number of filaments 8, 16, 24, 32 -
Lf filament length 4 µm

Af filament cross section 1.9×10−5 µm2

db distance between adjacent binding sites 0.125 µm

Nl number of linkers 400, 950, 1400 µm

2Rl linker size 0.1 µm

2∆Rl linker size tolerance 0.02 µm

kon chemical association rate constant 90 s−1

koff chemical dissociation rate constant 3 s−1

H edge length of the simulation box 5 µm

Table D.2 Parameters of the filament and the linker model, of their interaction, and system parameters

beam model Ne[−] homogeneous bundle cluster lamellar time scale

Reissner, 2 nodes 32 2.461 3.980 3.276 3.714 ×105s

Reissner, interpol. 32 3.006 5.205 3.844 5.060 ×105s

Reissner, interpol. 24 2.239 4.206 2.836 3.359 ×105s

Reissner, interpol. 16 1.311 3.551 1.689 2.673 ×105s

Reissner, interpol. 8 0.805 3.433 1.216 2.352 ×105s

Table D.3 Computation times of network morphologies for standard and interpolated two-noded beam element
linkers. Ne is the filament discretization, Lf = 4µm is the filament length, and Tsim = 300 s is the simulated time.
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D Simulation parameters

Parameters of simulations of molecular motors in Chapter 4

notation description value unit

Lm motor size 0.02 µm

∆Lm motor size tolerance 0.01 µm

Em Young’s modulus of the motor 3×106 pN/µm2

δ+,0 unloaded stroke distance 0.01 µm

δp path distance 0.036 µm

kon chemical association rate constant 180 s−1

koff chemical dissociation rate constant 0.09 s−1

kls power stroke rate constant 800 s−1

τc cycle time of the motor 0.04 s

r duty ratio of the motor 0.05 −

Table D.4 Basic motor parameters of Chapter 4

notation description value unit

Tsim simulated time 100 s

∆t time step size 5×10−4 s

kBT thermal energy 4.185×10−3 aJ

η viscosity of the background fluid 0.05 Pa s

Ne discretization (elements) of the filament 10 -
Lf filament length 2 µm

Nm number of motors [55; 550] -
Ls substrate length 10 µm

Ne,s discretization of the substrate filament 20 -

Table D.5 Parameters of the one-dimensional motility assay

notation description value unit

Tsim simulated time 20 s

∆t time step size 5×10−4 s

Lf filament length 4 µm

Nf number of filaments 100 -
Ne discretization of the filament 16 -
db distance between adjacent binding sites 0.036 µm

Nm number of motors 27777 -
Ls substrate filament length 6 µm

Ns number of substrate filaments 167 -
Ne,s discretization of the substrate filament 20 -
ds distance between adjacent substrate filaments 0.036 µm

Table D.6 Parameters of the two-dimensional motility assay
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Parameters of equilibrium simulations of Chapter 5

notation description value unit

∆t time step size 2.5×10−3, 5×10−3, 0.01 s

H edge length, simulation box 2, 5 µm

Lf filament length 1, 2, 4 µm

Nf total number of filaments 52, 104, 208, 416 -
Ne finite elements per filament, Lf = 4µm 8, 16, 32 -
Lp filament persistence length 0.92, 9.2, 92 µm

Nl total number of linkers ≥100 -
2Rl linker size 0.04, 0.1, 0.2, 0.4 µm

2∆Rl linker size tolerance 0.02 µm

φ binding angle [π/16;7π/16] rad

∆φ binding angle tolerance π/16 rad

kon chemical association rate 90 s−1

koff chemical dissociation rate 3 s−1

λp contact penalty parameter 25 pN/µm

tolAL Aug.-Lag. Uzawa constraint tolerance 4.9×10−4 µm

Table D.7 Parameters for equilibrium simulations. Underlined quantities represent values that correspond to the
results presented in Chapter 5.

notation description value unit

H edge length, simulation box 10 µm

Nf total number of filaments 1664 -
Lf filament length 4 µm

Ne finite elements per filament, Lf = 4µm 8 -
Nl total number of linkers 7200 -
φ binding angle 7π/16 rad

∆φ binding angle tolerance π/16 rad

kon chemical association rate 90 s−1

koff chemical dissociation rate 3 s−1

Table D.8 Parameters of the simulation with an increased system volume of V= 1000µm3.

Remark Some quantities like the filament length Lf have been varied over a certain range in
order to test the bounds of validity of the main claim of Chapter 5, that the discovered network
morphologies are universal and therefore, within sensible physical bounds, are independent of
parameters like the linker stiffness, the filament length, or the persistence length of the filament
in the bounds of semiflexibility.

163



D Simulation parameters

Rheological simulations, Chapter 6

notation description value unit

H edge length, simulation box 6 µm

∆t0 initial time step size (before shear application) 0.01 s

Nf total number of filaments 360 -
Lf filament length 4 µm

Ne finite elements per filament 32 -
Nl total number of linkers 9000 -
2Rl linker size 0.1 µm

2∆Rl linker size tolerance 0.02 µm

∆x Bell parameter 1, 2, 4 nm

φ binding angle - rad

∆φ tolerance of binding angle - rad

kon association rate constant 30, 60, 90, 180 s−1

koff dissociation rate constant 0.01, 0.07, 0.1, 0.3, 1, 3, 6, 10 s−1

np number of full measured periods 10 -
γ̂ shear amplitude 0.01 -

Table D.9 General parameter set for simulations of the linear rheology of bundle networks.

f [Hz] ∆t [s] f ∆t f ∆t f ∆t

105 5×10−8 1000 5×10−6 10 10−4 0.1 0.0025

3×104 1.6̄×10−7 300 1.6̄×10−5 3 3.3×10−4 0.03 0.003̄

104 5×10−7 100 2.5×10−5 1 5×10−4 0 0.005

3000 1.6̄×10−6 30 8.3̄×10−5 0.3 8.3̄×10−4 0.003 0.0016̄

Table D.10 Frequency-dependent time step sizes used in linear rheology simulations.

notation description value unit

∆t0 initial time step size (before shear application) 0.01 s

∆t time step size corresponding to shear rate 0.01, 0.0025, 0.0013̄, 5×10−4, 0 .001 3̄ , 0 .005 s

∆x Bell parameter 0.01 µm

γ̇ macroscopic shear rate 0.125, 1.25, 6.25, 12.5, 0 .625 , 6 .25 %/s

γ̂ shear amplitude 30, 35 %

kon association rate constant 90 s−1

koff dissociation rate constant 3 , 0 .01 , 0 .03 , 0 .06 , 1 , 3 , 6 , 10 s−1

Table D.11 Parameters for simulations of the nonlinear viscoelasticity in Chapter 6. Slanted values correspond
to simulations where koff is varied.
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