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Abstract

Two information theoretic topics are studied: cascades/tree-structured networks of error-

free half-duplex-constrained relays and the trapdoor channel. In the former case, a cod-

ing scheme is developed which represents data by an information-dependent allocation

of the transmission slots of the relays. The strategy achieves capacity for a single source.

For cascades/trees composed of an infinite number of half-duplex-constrained relays and

a single source, an explicit capacity expression is derived. Interestingly, the capacity

in bits per use in the binary case is equal to the logarithm of the golden ratio. If the

cascades/trees include a source and relays with their own information, we show that

the strategy achieves the cut-set bound when the rates of the relay sources fall below

certain thresholds. Subsequently, we demonstrate that certain well-studied classes of

codes, namely erasure codes and constrained codes, are natural codes in the context

of half-duplex transmission. Specifically, we focus on noise-free half-duplex-constrained

line networks with two sources where the first node and either the second node or the

second-last node act as sources. In both cases, the capacity region is established. The

achievability scheme for the first case uses the new idea that links with a half-duplex-

constrained sink can be interpreted as erasure channels. We then address infinite-depth

trees of error-free half-duplex-constrained relays and show that the multicast capacity

is achieved using constrained coding at the source and simple symbol forwarding at the

relays. All codes introduced in this thesis outperform the standard approaches for half-

duplex networks, namely to require each network node to listen and to send half of the

time, organized in a deterministic fashion. In the second part of this thesis, the problem

of maximizing the n-letter mutual information of the trapdoor channel is considered.

We show that 1
2

log2

(
5
2

)

≈ 0.6610 bits per use is an upper bound on its capacity. This

upper bound proves that feedback increases the capacity of the trapdoor channel. We

further present two novel views on the trapdoor channel. First, by deriving the under-

lying iterated function system (IFS), it is shown that the trapdoor channel with input

blocks of length n can be regarded as the nth element of a sequence approximating a

fractal. Second, an algorithm is presented that characterizes the trapdoor channel and

resembles the recursion of generating all permutations of a given string.
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Zusammenfassung

Diese Arbeit untersucht zwei Themen aus der Informationstheorie: Kaskaden bzw.

Netze mit einer Baumtopologie, aufgebaut aus rauschfreien, half-duplex beschränkten

Relais, und den Trapdoor Kanal. Ein Kodierungsschema wird eingeführt, welches Sende-

daten durch die informationsabhängige Allokation von Sendezeitschlitzen repräsentiert.

Die Strategie erreicht die Kapazität im Falle einer Quelle. Für Kaskaden bzw. Bäume,

bestehend aus einer unendlichen Anzahl von Relais und einer Quelle, wird eine explizite

Kapazitätsformel hergeleitet. Interessanterweise ist die Kapazität in Bits pro Kanal-

nutzung im binären Fall gleich dem Logarithmus des Goldenen Schnitts. Im Fall von

Kaskaden bzw. Bäumen, aufgebaut aus einer Quelle und aus Relais mit eigener Sende-

information, zeigen wir, dass die Kodierungsstrategie die Cut-Set Schranke erreicht, falls

die Senderaten der Relais-Quellen unterhalb bestimmter Schranken liegen. Anschließend

demonstrieren wir, dass die Auslöschungskodierung und die Constraint-Kodierung natür-

liche Kodierungsansätze für half-duplex beschränkte Netze sind. Im Speziellen befassen

wir uns mit zwei Typen rauschfreier half-duplex Kaskaden mit zwei Quellen. In beiden

Fällen wird die Kapazitätsregion hergeleitet. Das Erreichbarkeitsschema für einen der

beiden Fälle basiert auf der neuen Idee, dass Links mit einer half-duplex beschränkten

Senke im eigentlichen Sinne Auslöschungskanäle sind. Anschließend wenden wir uns un-

endlich tiefen Bäumen hin. Wir zeigen, dass Constraint-Kodierung an der Quelle und

das Weiterleiten von Symbolen an den Relais die Multicast-Kapazität erreicht. Alle

vorgestellten Kodierungsansätze schlagen hinsichtlich der Übertragungsrate die in der

Praxis verwendeten deterministischen Ansätze. Im zweiten Teil der Arbeit beschäftigen

wir uns mit dem Trapdoor Kanals. Wir zeigen, dass 1
2

log2

(
5
2

)

≈ 0.6610 Bits/Nutzung

eine obere Schranke für die Kapazität darstellt. Diese Schranke zeigt, dass Rückkop-

plung die Kapazität des Trapdoor Kanals erhöht. Abschließend präsentieren wir zwei

neue Sichtweisen. Durch das Herleiten des iterierten Funktionensystems wird zunächst

gezeigt, dass der Trapdoor Kanal mit Eingängen der Länge n als ntes Element einer

Folge betrachtet werden kann, welche ein Fraktal approximiert. Anschließend wird ein

Algorithmus präsentiert, welche den Trapdoor Kanal vollständig beschreibt und einer

Rekursion ähnelt, die alle Permutationen einer gegebenen Sequenz erzeugt.





1
Introduction

1.1. Motivation and Overview

Today’s Information Age is characterized by a significant and growing portion of mankind

having instant and ubiquitous access to information. The possibility that nearly ev-

erybody can disseminate information globally has a tremendous impact on our social,

economic and political life. Underlying these cultural developments are digital commu-

nication technologies and, in particular, wireless communication technologies. Most of

the wireless technologies have in common that affordable radio nodes are half-duplex-

constrained, i.e., a radio node is not able to receive a useful signal at the same time

and over the same frequency band within which it is transmitting. As a consequence,

transmission and reception times of each radio node in a given frequency band have to

be strictly separated. In standard designs of wireless networks, separation is achieved

by organizing transmission and reception periods in a deterministic fashion using time-

division duplex (TDD) or frequency-division duplex (FDD). However, a predetermined

transmission-reception schedule falls short of the maximum achievable rate since it ex-
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cludes the possibility to encode a part of the data in the signal timing, i.e., in the

transmission-reception schedule. This observation was made in [1].

Chapters 2, 3, 4 build upon [1] and [2] and are dedicated to the design and analysis of

timing codes. Certain relay networks are considered, namely directed cascades and trees

of error-free half-duplex-constrained relays. The term error-free means that network

links do not distort the transmitted codewords by adding noise. Specifically, we assume

that adjacent nodes in the network are connected by (q + 1)-ary noiseless links where

the nodes can choose from a q-ary transmission alphabet or decide to be silent. The

term error-free might be misleading since the relays in the network actually erase a

certain portion of the received symbols due to the half-duplex constraint. Therefore,

the half-duplex constraint can be regarded as introducing noise— an observation made

in Chapter 3. Based on the approach of refraining from channel noise, we are able to

identify and understand effects stemming from the half-duplex constraint and construct

timing codes tailored to these effects. Moreover, we demonstrate that certain well-

studied classes of codes, namely erasure codes and constrained codes, are natural in

the context of half-duplex-constrained transmission. The proposed codes are optimal

in most cases and always outperform the simplest possible coding approach used in

practical applications, namely to require each network node to listen and to send half of

the time, organized in a deterministic fashion.

The idea of timing has been considered in other disciplines like computer network-

ing and neural coding. In computer networking, timing has been used as a method for

constructing covert channels, which enable the secret transfer of information. Switching

between different packet rates or timing of acknowledgments in an information depen-

dent manner are two examples for encoding secret information by means of timing.

A survey of techniques for creating, detecting and combating covert channels is given

in [3]. Another discipline where timing plays an important role is neural coding, i.e., the

science of how the nervous system encodes signals which are delivered by the sensory

organs. It is known that sensory signals are converted into sequences of action potentials

called spike trains in which sensory information is encoded through the timing of the

spikes [4]. Ongoing research tries to answer the question of how spike patterns represent

our perception of the world.

Chapters 5 and 6 are independent of Chapters 2, 3, 4. The focus is on the trapdoor
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channel, a discrete binary channel with memory, which was introduced by David Black-

well in 1961 [5]. The term memory refers to the property that each channel output

depends not only on the current input but also on past inputs and outputs. Another

term used for the trapdoor channel is finite state channel (FSC) because the past in-

puts and outputs can be interpreted as the state of the channel. Many well-known

examples of FSCs serve as models for fading channels and for intersymbol interference.

Within these models, it is commonly assumed that the current output and the resulting

state are statistically independent conditioned on the current input and the previous

state [6, Chapter 4.6]. This assumption is not valid for the trapdoor channel, which is

one reason why deriving its capacity seems to be challenging and is an open problem.

The feedback capacity on the other hand is known [7]. In Chapter 5, we derive an upper

bound on the capacity of the trapdoor channel. It turns out that this upper bound

is strictly smaller than the feedback capacity, which shows that feedback increases the

capacity of the trapdoor channel. This result is intuitive but not obvious at first glance.

An example of a channel with memory where the no-feedback capacity equals the feed-

back capacity is the POST channel [8]. In Chapter 6, we investigate the structure of

the trapdoor channel. We point out that its conditional probability matrix is a fractal.

The approach is motivated by the idea that non-standard tools could help to solve the

capacity problem. Moreover, we derive the underlying iterated function system (IFS).

Interestingly, the trapdoor channel is related to the Sierpinski triangle.

1.2. Outline and Contributions of the Thesis

This thesis is divided into 7 chapters. We briefly outline the contribution of each chapter

below. The core of the material is presented in Chapters 2, 3, 4, 5, 6. The chapters are

based on the following scientific articles:

⊲ T. Lutz, C. Hausl, and R. Kötter, “Bits through deterministic relay cascades

with half-duplex constraint,” IEEE Trans. Inf. Theory, vol. 58, pp. 369–381,

Jan. 2012.

⊲ T. Lutz, G. Kramer, and C. Hausl, “Capacity for half-duplex line networks with

two sources,” in Proc. IEEE Int. Symp. Inf. Theory, Austin, TX, Jun. 13-18
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2010, pp. 2393–2397.

⊲ F. R. Kschischang and T. Lutz, “A constrained coding approach to error-free half-

duplex relay networks,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6258–6260,

May 2013.

⊲ T. Lutz, “Recursions for the trapdoor channel and an upper bound on its capac-

ity,” in Proc. Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI, USA, Jun. 29 -

Jul. 4, 2014, pp. 2914–2918.

⊲ T. Lutz, “Various views on the trapdoor channel and an upper bound on its

capacity,” submitted to IEEE Trans. Inf. Theory.

Chapter 2 continues our initial work started in [2]. We study error-free half-duplex-

constrained relay cascades, i.e., networks where a source, a sink and a certain number

of intermediate source/relay nodes are arranged on a line and adjacent node pairs are

connected by error-free (q + 1)-ary pipes. A coding scheme is developed, which uses an

information-dependent allocation of the transmission/reception slots of the relays. The

basic idea of the scheme was already presented in [2]. We extend the scheme to q-ary

transmission alphabets and present its recursive construction in an improved manner.

We then show that the strategy achieves capacity for a single source and that the capac-

ities are significantly higher than the rates achieved with a predetermined time-sharing

approach. For cascades composed of an infinite number of half-duplex-constrained relays

and a single source, we derive an explicit capacity expression. Interestingly, the capacity

in bits/use for q = 1 is equal to the logarithm of the golden ratio. If the cascade includes

a source and relays with their own information, we show that the strategy achieves the

cut-set bound when the rates of the relay sources fall below certain thresholds. Finally,

we point out that the coding scheme is well-suited for other half-duplex networks. This

is demonstrated by means of broadcast trees and the butterfly network.

The focus of Chapter 3 is on error-free half-duplex-constrained relay cascades with

two sources, where the first node and either the second node or the second-last node

in the cascade act as sources. In both cases, we establish the capacity region of rates

at which both sources can transmit independent information to a common sink. The

achievability scheme presented for the first case builds up on the scheme presented in
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Chapter 2 and uses the new idea that links with a half-duplex-constrained sink can be

interpreted as erasure channels. Therefore, the half-duplex constraint can be regarded

as introducing noise. The achievability scheme for the second case is based on a random

coding argument using superposition coding.

Chapter 4 shows that the multicast capacity of an infinite-depth tree-structured

network of error-free half-duplex-constrained relays (which was derived in Chapter 2)

can be achieved using constrained coding at the source and symbol forwarding at the

relays. The approach is substantially less complex than the timing codes proposed in

Chapter 2. Moreover, if applied to finite depth trees, the resulting transmission rates are

strictly larger than the corresponding time-sharing rates. Finally, we provide examples

of encoders and show how to construct them using the state-splitting algorithm.

In Chapter 5, the problem of maximizing the n-letter mutual information of the

trapdoor channel is considered. We relax the problem by permitting distributions that

are not probability distributions. Subsequently, we find explicit solutions for any n ∈ N.

It is then shown that 1
2

log2

(
5
2

)

≈ 0.6610 bits per use is an upper bound on the capacity

of the trapdoor channel. This upper bound, which is the tightest upper bound known,

proves that feedback increases the capacity. As a byproduct, two recursions result, each

of which is interesting in its own right.

In Chapter 6, two novel views are presented on the trapdoor channel. First, by

deriving the underlying iterated function system (IFS), it is shown that the trapdoor

channel with input blocks of length n can be regarded as the nth element of a sequence

of shapes approximating a fractal. Second, an algorithm is presented that fully charac-

terizes the trapdoor channel and resembles the recursion of generating all permutations

of a given string.

In Chapter 7, we summarize and discuss open problems.

We adopt notational conventions that are standard. Random variables are denoted by

capital letters (e.g., X) and their corresponding alphabets are denoted by corresponding

calligraphic letters (e.g., X ). Frequently, random variables will appear with two sub-

scripts (e.g., Xv,k). In this case, we are referring to the kth instance of the random vector

Xv. In later chapters, subindices indicate the dimension of vectors and matrices. They

have to be taken to the power of two. E.g., In is the 2n× 2n identity matrix. A list with

the complete mathematical notation and abbreviations is shown in Appendix A.





2
Bits Through Deterministic Relay

Cascades With Half-Duplex

Constraint∗

2.1. Introduction

Consider a relay cascade, i.e., a network where a source node, a sink node and a certain

number of intermediate source/relay nodes are arranged on a line and where adjacent

node pairs are connected by error-free (q + 1)-ary pipes. Suppose the source and a

subset of the relays wish to communicate independent information to the sink under

the condition that each relay in the cascade is half-duplex-constrained, i.e., is not able

to transmit and receive simultaneously. This approach lets us understand half-duplex-

constrained transmission without having to consider channel noise. Moreover, we may

∗This chapter is based on the following publication [9]: IEEE Trans. Inf. Theory, vol. 58, no. 1, pp.
369-381, Jan. 2012 (together with Christoph Hausl and Ralf Kötter).
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RelaySource Sink

Figure 2.1.: A noiseless relay cascade composed of three nodes.

use combinatorial arguments instead of stochastic arguments. A natural strategy for

half-duplex devices is to define a time-division schedule a priori. Under this assumption,

the capacity or rate region of various half-duplex-constrained relay channels [10], [11] and

networks [12] has been determined. We will, however, show that predetermined time-

sharing falls considerably short of the theoretical optimum, i.e., higher rates are possible

by an information-dependent allocation of the transmission/reception slots of the relays.

The meaning of information-dependent allocation is illustrated in the following example.

Example 2.1. Consider the noiseless relay cascade depicted in Fig. 2.1. Let W0 =

{0, . . . , 7} be the message set. In each block b = 1, 2, . . . of length 4, the source wishes

to communicate a randomly chosen message w0;b ∈ W0 to the sink via a single half-

duplex-constrained relay node. A direct link between the source and the sink does not

exist. Suppose the alphabet of both source and relay equals {0, 1,N} where N indicates

a channel use without transmission and {0, 1} is a q = 2-ary transmission alphabet. The

half-duplex constraint is modeled as follows. When the relay uses symbol N, i.e., the

relay is off, it is able to listen to the source without error and otherwise not. Let x0(b)

be the codeword chosen by the source encoder to represent w0;b in block b and let x1(b)

indicate the codeword chosen by the relay encoder for representing w0;b−1 in block b. The

coding scheme is illustrated in Table 2.1. The source encoder maps each message w0;b

to x0(b) by allocating the corresponding binary representation of w0;b, i.e., three bits, to

four time slots. The precise allocation of the three bits to four time slots is determined

by the following protocol. In the first block, the source allocates three bits to the first

three time slots of x0(1). Now assume that the source has already sent codeword x0(b)

to the relay. Based on the first two binary digits of the noiselessly received codeword

x0(b), the relay encoder determines which of the four time slots to use for transmission

in x1(b + 1). In particular, 00, 01, 10, 11 in x0(b) tell the relay to send either in the

first, the second, the third or the fourth time slot of x1(b + 1). The binary value to be

transmitted in x1(b+1) is equal to the third bit in x0(b). Since the source encoder knows
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Table 2.1.: Illustration of the Timing Scheme described in Example 2.1.

block b w0;b x0(b) x1(b) ŵ0;b−1

b = 1 1 (001) 001N NNNN -

b = 2 2 (010) N010 1NNN 1

b = 3 4 (100) 1N00 N0NN 2

b = 4 7 (111) 11N1 NN0N 4
...

...
...

...
...

the scheme used by the relay, it can allocate its three new bits in x0(b+ 1) to those slots

in which the relay is able to listen. Hence, the relay encodes a part of its information

in the timing of the transmission symbols. The sink forms the estimate ŵ0;b−1 of w0;b−1

based on the received relay codeword x1(b) using both the position of the transmission

symbol and its value. In this example, a rate of 0.75 bit per use (abbreviated as b/u

in the remainder) is achievable if the number of blocks becomes large. By allowing

arbitrarily long codewords, we will show that an extension of the strategy approaches

1.1389 b/u. A similar example for q = 1 was shown in [1, 13].

The outline of this chapter is as follows. Section 2.2 reviews information theoretic

results about line networks. In Section 2.3, we introduce the channel model. A coding

strategy is introduced in Section 2.4, which uses an information-dependent allocation of

the transmission/reception slots of the relays. It is then shown in Section 2.5 that the

strategy achieves the capacity of relay cascades with a single source. In particular, it

approaches a rate equal to

Cm−1(q)
def
= max

PX0...Xm

min
1≤i≤m

H(Yi|Xi), (2.1)

where m − 1 indicates the number of relays in the cascade and Xi and Yi are the sent

and received symbol of the ith relay. For cascades composed of an infinite number of

half-duplex-constrained relays, we show that the capacity is given by

C∞(q)
def
= log2

(

1 +
√

4q + 1

2

)

b/u.
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Remarkably, C∞(1) is equal to the logarithm of the golden ratio and C∞(2) is 1 b/u.

If the cascade includes a source and relays with their own information, the strategy

achieves the cut-set bound if the rates of the relay sources fall below certain thresholds.

This is shown in Section 2.6. We finally show in Section 2.7 that the proposed coding

strategy can be applied to tree structured networks and to the half-duplex-constrained

butterfly network. In the latter case, the proposed timing strategy outperforms the

well-known XOR-based network coding strategy [14].

2.2. Related Literature

The classical relay channel goes back to van der Meulen [15]. Further significant re-

sults concerning capacity and coding were obtained by Cover and El Gamal in [16]. A

comprehensive literature survey of various decode-and-forward (DF) and compress-and-

forward (CF) strategies for small relay networks is given in [17]. General relay networks

are difficult to analyze (even the capacity of the non-degraded single relay channel is

an open problem). Motivated by the observation that cascades are more accessible for

analysis and are fundamental building blocks of general communications systems, vari-

ous source and channel coding problems have been examined (without the assumption

of half-duplex-constrained nodes).

Yamamoto [18] considers a deterministic three node line network where the first node

generates two random sequences. The region of achievable rates is found such that the

second node is able to reconstruct the first sequence and the third node the second

sequence within prescribed distortion tolerances. These results are extended to longer

lines and branching communication systems in the same paper. A related version of the

three node source coding problem is investigated in [19]. The encoder at the first node

intends to communicate a random sequence within certain distortion constraints to the

relay and the destination under the assumption that the relay and the destination have

access to individual side information about the source. The authors derive inner and

outer bounds for the rate-distortion region and characterize scenarios where both bounds

coincide. Another distributed source coding problem for the three node line network is

examined in [20]. In contrast to the cases before, the relay acts as a source which is
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correlated to the source at the first node. The destination wishes to estimate a function

of the output of the two sources. Inner and outer bounds on the achievable rate region

are provided such that an arbitrarily chosen distortion constraint is satisfied.

The channel capacity of three node line networks with no processing at the middle

terminal was examined in an early work [21]. The author asks which channel of the set

of binary channels with equal capacity has to be cascaded with itself in order to achieve

the largest end-to-end capacity. The answer is that a symmetric binary channel under

cascade has a higher end-to-end capacity than an asymmetric binary channel under

cascade with the same capacity (unless the channels have very low capacity). Finite

length cascades of identical discrete memoryless channels are considered in [22] again

under the assumption that the intermediate terminals do not possess any processing

capability and that the transition matrix of the subchannels is nonsingular. By means of

the eigenvalue decomposition of the transition matrix, the channel capacity is derived.

Another work which investigates cascades composed of identical discrete memoryless

channels is [23]. In contrast to [22], it is assumed that the intermediate relay nodes

are able to process blocks of a fixed length. It is then shown that the capacity of

the infinite length cascade equals the rate of the zero-error code of a single link and

that the capacity is always upper-bounded by the zero-error capacity of a single link.

In [24], the problem of finding the optimal ordering of a set of n distinct binary channels

is analyzed such that the capacity of the resulting cascade is maximized. The question

results from the observation that ordering has a strong influence on the capacity because

matrix multiplication is not commutative. In the case of binary channels with positive

determinants the authors are able to specify the optimal ordering.

In this chapter, the idea of timing is applied to half-duplex line networks. Timing is

not a new idea in information theory and has already been used within the framework of

queuing channels. Anantharam and Verdú showed [25] that encoding information into

the time differences of arrivals to the queue achieves the capacity of the single server

queue with exponential service distribution. The discrete-time version of this problem

was analyzed in [26]. In [27], Kramer developed a memoryless half-duplex relay channel

model and noticed that higher rates are possible when the transmission and reception

time slots of the relay are random since one can send information through the timing

of operation modes. The work in [1] further points out that half-duplex relay cascades
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are physically degraded relay networks and hence their capacity with one message is

achieved by the DF protocol derived in [28].

2.3. Network Model

Consider the discrete relay cascade as depicted in Fig. 2.2. The underlying topology

corresponds to a directed path graph in which each node is labeled by a distinct number

from V def
= {0, . . . , m} with m > 1. The integers 0 and m belong to the source and

the sink, respectively, while all remaining integers 1 to m − 1 represent half-duplex-

constrained relays, i.e., relays which cannot transmit and receive at the same time. The

connectivity within the network is described by the set of edges E def
= {(i, i + 1) : 0 ≤

i ≤ m − 1}, i.e., the ordered pair (i, i + 1) represents the communications link from

node i to node i+ 1. The output of the ith node, which is the input to channel (i, i+ 1)

is denoted as Xi and takes values in the alphabet X def
= {0, . . . , q − 1} ∪ {N} where

Q def
= {0, . . . , q− 1} denotes the q-ary transmission alphabet while N is meant to signify

a channel use in which node i is not transmitting. We assume that all nodes use the same

transmission alphabet (though the following derivations would hold if the cardinality of

the transmission alphabets depends on the node index). The input of the ith node, which

is the output of channel (i− 1, i) is denoted as Yi and is given by

Yi =







Xi−1, if Xi = N

Xi, if Xi ∈ Q
, (2.2)

where 1 ≤ i ≤ m. Channel model (2.2) captures the half-duplex constraint as follows.

Assume relay i is in transmission mode, i.e., Xi ∈ Q. Then relay i hears itself (i.e.,

Yi = Xi) but cannot listen to node i − 1 or, equivalently, relay i and node i − 1 are

disconnected. If relay i is not transmitting, i.e., Xi = N, it is able to listen to relay i− 1

via a noise-free (q+1)-ary pipe (i.e., Yi = Xi−1). The sink listens all the time. Hence, its

input Ym is given by Ym = Xm−1. Another interpretation of the channel model is that the

output Xi of relay i controls the position of a switch which is placed at its input. If relay i

is transmitting, the switch is in position 1 otherwise it is in position 2 (see Fig. 2.2). Since

a pair of nodes is either perfectly connected or disconnected, we obtain a deterministic
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X0

Xi

XiXi−1

Xi−1 Yi

YiYi−1

Yi−1

XmYm

RelayRelay
ii− 1

11

2 2

Figure 2.2.: A noiseless half-duplex relay cascade described by switches and feedback.

network with PY1...Ym|X0...Xm
∈ {0, 1} that factors as

[
∏m−1

i=1 PYi|XiXi−1

]

PYm|Xm−1
where

PYi|XiXi−1
is determined by (2.2). Finally, we note that

Xi,n = fi

(

Yn−1
i ,Wi

)

. (2.3)

That is, the transmission symbol of node i at time n is a function fi(·) of the previously

received symbols Yn−1
i and its message Wi.

2.4. A Timing Code for Relay Cascades

2.4.1. Information Flow

Every node v ∈ {0, . . . , m− 1} draws its message Wv uniformly and independently from

the message set Wv =
{

1, . . . , 2nRv

}

where wv;b denotes the message sent by node v to

node v + 1 in block b. Each block has length n. Observe that this setup includes the

special case that only a subset of the relays communicate own information to the sink

by setting the rate of the remaining relays to zero. The relays allocate their information

to the codewords as follows. At the end of block b− 1, relay v carries out two tasks. It

decodes the messages {w0;b−v, . . . , wv−1;b−1} from the received codeword yv(b − 1) and

draws a new message wv;b. The decoded messages together with the new message are

then forwarded to node v + 1 by choosing a sequence xv(b). Source node 0 sends one

message w0;b per block represented through x0(b). We assume an initialization period of

m−1 blocks. In the first block node 0 forwards information, in the second block nodes 0

and 1 forward information and so forth. From the mth block onwards all nodes (except
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the sink) forward information. Thus, the sink does not decode until the end of the mth

block. Since a very large number of transmission blocks is considered, we can neglect

the initial delay.

2.4.2. Construction

A coding strategy is introduced, which implements the information flow described in

Section 2.4.1. The strategy relies on the observation that information can be represented

not only by the value of code symbols but also by the position of code symbols, i.e., by

timing the transmission and reception slots of the relay nodes. The strategy requires

synchronization on the symbol level through a shared clock. The codebook construction

is recursive and guarantees that adjacent nodes do not transmit at the same time. The

following encoding techniques are applied at the source and the relays where nv denotes

the number of transmitted symbols of node v within one block of n symbols.

⊲ At relay m−1: Relay m−1 represents information by choosing nm−1 transmission

symbols per block from the q-ary transmission alphabet Q combined with allocat-

ing the nm−1 symbols to the transmission block of n symbols. Thus, qnm−1

(
n

nm−1

)

different sequences xm−1 of length n are available at relay m − 1. Observe that

qnm−1 equals the number of distinct sequences when the q-ary symbols are located

at fixed slots while
(

n

nm−1

)

equals the number of possible transmission patterns.

⊲ At relay v, 1 ≤ v ≤ m − 2: Observe that the effective codeword length of relay v

reduces to n−nv+1 since relay v+1 cannot listen to relay v when it (i.e., relay v+1)

transmits. For each transmission-listen pattern used by node v+1, node v generates

qnv

(
n−nv+1

nv

)

different sequences by allocating nv transmission symbols from the

alphabet Q in all possible ways to the n − nv+1 listen slots of the pattern. The

remaining slots of the pattern, i.e., the slots in which node v+1 transmits, are filled

with off symbols N.1 Similar to before, qnv equals the number of possible distinct

sequences when the q-ary symbols are located at fixed slots while
(

n−nv+1

nv

)

equals

the number of possible transmission-listen patterns of relay v given a particular

pattern of relay v + 1.

1Any symbols from X can be used for filling since the next relay is not able to listen.



2.4. A Timing Code for Relay Cascades 15

⊲ At node 0: The source uses the (q + 1)-ary alphabet X = Q ∪ {N} for encoding

where the off symbol N is used as a regular alphabet symbol. Due to the half-

duplex constraint at relay 1, the effective codeword length of the source reduces

to n − n1 since relay 1 cannot pay attention to the source when it (i.e., relay 1)

transmits. Thus, the source is able to generate (q + 1)n−n1 different sequences x0.

The remaining n1 slots are filled with off symbols N.1

Next, the maximum size of W0, W1, . . . , Wm−1 is derived. We immediately have

|W0| ≤ (q + 1)n−n1. (2.4)

Both the source and the relays choose their messages uniformly and independently of

each other. Hence, relay v needs to reserve
∏v−1

i=0 |Wi| sequences per transmission pat-

tern of relay v + 1 to represent any arriving messages {w0;b−v, . . . , wv−1;b−1}. Arriving

messages are encoded by each relay v with transmission patterns and a fixed number

kv ∈ {0, . . . , nv} of transmission symbols. Observe that transmission patterns can only

be used for encoding arriving messages. If relay v would encode own messages wv;b by

means of transmission patterns, node v − 1 would not know when node v listens since

wv;b and, therefore, the transmission pattern of node v is not known by node v − 1.

The remaining nv − kv transmission symbols per transmission pattern are used by

relay v for encoding own messages wv;b. Hence

v−1∏

i=0

|Wi| ≤ qkv

(

n− nv+1

nv

)

for all v ∈ V \ {0, m} (2.5)

and

|Wv| ≤ qnv−kv . (2.6)

Example 2.2. We construct a code for a relay cascade composed of four nodes V =

{0, . . . , 3} such that R0 > 0, R1 = 0 and R2 > 0. The transmission alphabet is binary,

i.e., q = 2, and the selected code parameters are n = 4, n1 = 1, n2 = 2, k1 = 1, k2 = 0,

(n3 = 0). Plugging these values in (2.4) to (2.6) yields |W0| = |W2| = 4 and |W1| = 1.

Table 2.2a depicts possible codebooks C0, C1, C2 for nodes 0, 1, 2. Table 2.2b shows how

to use the codebooks in order to send the messages given in column two and three.
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w0 C0 C1 C2

0 N0NN e 0NNN f 0NNN g 0NNN (a, e) N0NN (b, f) 0NNN (c, e) N0NN (d, f) NBNC a

1 N1NN e 1NNN f 1NNN g 1NNN (a, e) N1NN (b, f) 1NNN (c, e) N1NN (d, f) BNCN b

2 NN0N e NN0N f N0NN g NN0N (a, g) NNN0 (b, g) NNN0 (c, g) NN0N (d, g) NBCN c

3 NN1N e NN1N f N1NN g NN1N (a, g) NNN1 (b, g) NNN1 (c, g) NN1N (d, g) BNNC d

(a) Codebooks for nodes 0, 1, 2.

block b w0;b w2;b x0(b) x1(b) x2(b) ŵ0;b ŵ2;b

b = 1 3 - NN1N NNNN NNNN - -

b = 2 1 - 1NNN NN1N NNNN - -

b = 3 2 0 NN0N N1NN 0NN0 3 0

b = 4 - 2 NNNN NNN0 1N0N 1 2

b = 5 - 3 NNNN NNNN N11N 2 3

(b) Illustration how to use the codebooks.

Table 2.2.: Illustration of the Timing Code constructed in Example 2.2.

Consider first C2. The four underlying transmission patterns, arbitrarily chosen from

the
(

4
2

)

possible patterns, are shown in the last column of Table 2.2a. Each transmission

pattern is identified with a unique color r ∈ {a, b, c, d}. The n2 = 2 binary transmission

slots within each pattern are marked with B,C ∈ {0, 1}. The transmission patterns

are used by node 2 to represent source messages w0. For instance, pattern a represents

w0 = 0, pattern b represents w0 = 1 and so forth. Own messages w2 are encoded using the

transmission symbols B and C according to the following assignment w2 7→ (B,C): 0 7→
(0, 0), 1 7→ (0, 1), 2 7→ (1, 0), 3 7→ (1, 1). Next, C1 is considered. Observe that C1 needs

to be constructed such that node 1 is able to represent one random message from the

4-ary set W0 in each block independently from the transmission pattern used by node 2

in the same block. Hence, four codewords per transmission pattern a, b, c, d have to be

constructed. Consider pattern a for instance. When node 2 uses pattern a, node 1 can

encode its information in slots one and three. The following mapping w0 7→ (x1,1, x1,3)

can be chosen by node 1 to encode information in slot one and three: 0 7→ (0,N),

1 7→ (1,N), 2 7→ (N, 0), 3 7→ (N, 1). By allocating each of the four values of (x1,1, x1,3)

to the N-slots of pattern a and by forcing node 1 to be off when node 2 transmits (i.e.,

allocating symbol N to slots 2 and 4), we obtain the codewords in the first column

of C1. Applying the same procedure to pattern b, c, d yields column two, three, four

of C1. The labels (r, s) ∈ {a, b, c, d} × {e, f, g} next to each codeword in C1 have the
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following meaning. The first color r indicates the transmission pattern in C2 from which

the codeword was constructed. The second color s refers to transmission patterns in C1

from which transmission patterns in C0 with the same color are constructed.

Finally, C0 is considered. Clearly, source node 0 has three time slots t1, t2, t3 available

per transmission block for encoding. Let x0,t1
, x0,t2

, x0,t3
∈ {0, 1,N} denote the symbols

used by node 0 for encoding a particular message w0 ∈ W0. The following mapping

w0 7→ (x0,t1
, x0,t2

, x0,t3
) can be chosen for encoding: 0 7→ (0,N,N), 1 7→ (1,N,N), 2 7→

(N, 0,N), 3 7→ (N, 1,N). By allocating all values of (x0,t1
, x0,t2

, x0,t3
) to the listen slots of

codewords in C1 with second color s ∈ {e, f, g} and by requiring that node 0 is off when

node 1 transmits, we obtain the codewords in C0 colored with s.

It should be noted that merely four from 27 possible sequences are used in the mapping

w0 7→ (x0,t1
, x0,t2

, x0,t3
). Hence, C0 could be designed such that node 0 is able to send

⌊27/4⌋ additional messages to a sink at node 1, which corresponds to an additional rate

of 0.6462 b/u.

Adjacent nodes are able to cooperate since each node knows the message(s) to be

forwarded by the next node as well as the coding strategy applied by the next node.

Hence, a node is aware of the codeword used by the next node and it can pick its codeword

from the appropriate column. The codewords in block b are chosen as follows. Based

on message w0;b−2, the encoder at node 0 determines the color of x2(b). Thus, it knows

the first color r, of codeword x1(b). Based on this information, the encoder at node 0

determines the second color s of x1(b) using w0;b−1. This color tells node 0 from which

column in C0 it has to pick x0(b), namely from a column whose codewords are colored

with s. The precise choice within that column depends on the new source message w0;b.

Similarly, based on message w0;b−2, the encoder at node 1 determines color r of x2(b).

Hence, it knows that x1(b) needs to be chosen from a column of C1 where the entries

have r as their first color. The precise choice within the column depends on message

w0;b−1. The encoder at node 2 knows {w0;b−2, w2;b} at the beginning of block b. Message

w0;b−2 determines the transmission pattern of x2(b) while w2;b specifies the transmission

symbols B and C within the pattern.

We conclude the example by demonstrating how the codebooks C0, C1, C2 have to

be used such that source node 0 is able to transmit messages 3, 1, 2 to node 3 (and of

course to relay nodes 1 and 2) while relay source 2 transmits messages 0, 2, 3 to node 3.
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We point out that the transmission strategy uses the agreement that each node picks its

initial codeword from the first column of its codebook. The result is shown in Table 2.2b.

2.4.3. Achievable Rate Region

We now determine the rate regionR due to the coding strategy proposed in Section 2.4.2.

As usual, Ri
def
= log (|Wi|) /n where 0 ≤ i < m. Without loss of generality we assume

that R0 > 0 since the rate region of a cascade with R0 = 0 is equal to the rate region of

a shortened cascade where the first node with a positive rate becomes node 0 while all

previous nodes are ignored. Hence, 0 < ni < n for all 0 ≤ i ≤ m− 1. Moreover, nm = 0

by assumption and ni ≤ n− ni+1 because the number of transmission symbols used by

node i cannot exceed the number of listening slots provided by node i + 1. Using the

abbreviations pi
def
= n−1(n − ni) and p̄i

def
= 1 − pi for the portion of time relay i listens

and transmits, we obtain

0 < pi < 1 (2.7)

1 ≤ pi + pi+1 (2.8)

pm = 1 (2.9)

for all 0 ≤ i < m. The set of probability vectors (p0, . . . , pm) ∈ R
m+1 characterized by

(2.7) to (2.9) is denoted as P⋆
m+1, which is a subset of the m+ 1-dimensional probability

simplex Pm+1. By the strong law of large numbers (or by noting that the portion of

time node i listens is identical in each transmission block), we can identify the empirical

probability pi with PXi
(N) and p̄i with ∪q∈QPXi

(q). As a consequence of (2.8) and (2.9),

all distributions in P⋆
m+1 factorize as PX0

PX1|X0
. . . PXm−1|Xm

PXm
. Let H(pv) denote the

binary entropy function evaluated at pv. Using [29, Th. 1.4.5]

n−1 log

(

n

nv

)

= H (pv) + o(1) for n→∞, (2.10)

it follows from (2.4) to (2.6) that

R0 ≤ p1 log(q + 1) (2.11)
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v∑

i=0

Ri ≤ p̄v log q + pv+1H
(

p̄vp
−1
v+1

)

+ o(1) (2.12)

Rv ≤ p̄v log q (2.13)

as n→∞. As an aside, (2.12) results from adding the logarithm of (2.5) to the logarithm

of (2.6), dividing the result by n and applying (2.10). Inequality (2.12) is well-defined

since pv+1 6= 0 and p̄vp
−1
v+1 ∈ (0, 1] due to (2.7) to (2.9). As n→∞, the achievable rate

region R is given by

R = Co




⋃

p∈P⋆
m+1

Rp



 , (2.14)

where Rp indicates the region due to (2.11) to (2.13) for a particular p ∈ P⋆
m+1. The

convex hull Co(·) takes time-sharing between different regions Rp into account.

2.5. Capacity of Relay Cascades with One Source

In this section, we investigate the optimality of the coding strategy. We use the following

notation. The complement of a set S within an ambient set is denoted as Sc, the power

set of a set S is denoted as ℘(S) and XS
def
= {Xi : i ∈ S}. Further, probability mass

function is abbreviated as pmf.

2.5.1. A Simplified Cut-Set Bound for Relay Cascades

A well-known result, which bounds the rate of information flow from nodes in Sc to

nodes in S is the so-called cut-set bound.

Lemma 2.1. [30, Chapter 14] Consider a general multiterminal network composed of

m+ 1 nodes and channel PY0...Ym|X0...Xm
. Rij denotes the transmission rate between two

nodes i and j. If the information rate Rij is achievable, there is some joint probability

distribution PX0...Xm
such that

∑

i∈Sc,j∈S

Rij ≤ I (XSc;YS|XS)

for all S ⊂ {0, . . . , m}.
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Lemma 2.1 is now applied to the special case of a noise-free relay cascade. The

following proof is of greater detail than originally presented in [2].

Lemma 2.2. [2, Chapter 5] Consider a noise-free relay cascade as described in Sec-

tion 2.3. If the information rate Rv is achievable, there is some joint probability distri-

bution PXv...Xm
such that

v∑

k=0

Rk ≤ max
PXv...Xm

min
v+1≤i≤m

H(Yi|Xi)

for all v ∈ V \ {m}.

Proof. We show that it suffices to consider a subset of all network cuts. Observe that

(X0, . . . , Xv−1)−Xv − Ym holds because of (2.2) and (2.3). Hence, an upper bound on

the sum rate
∑v

k=0 Rk due to Lemma 2.1 is given by

v∑

k=0

Rk ≤ max
PXv...Xm

min
S∈M

I(XvXSc;YSYm|XSXm),

whereM = ℘ ({v + 1, . . . , m− 1}) and Sc is the complement of S in {v+ 1, . . . , m−1}.
Since the relay cascade is deterministic, we have

I(XvXSc;YSYm|XSXm) = H(YSYm|XSXm). (2.15)

Now suppose that S is nonempty and let i denote the smallest integer in S. By the

chain rule for entropy

H(YSYm|XSXm) = H(Yi|XSXm) +H(YS\{i}|XSXmYi) +H(Ym|XSXmYS) (2.16)

≥ H(Yi|XSXm), (2.17)

where (2.17) follows from the non-negativity of entropy. For each cut S with smallest

entry i, the cut Si
def
= {i, . . . , m− 1} yields

H(YSi
Ym|XSi

Xm) ≤ H(YSYm|XSXm). (2.18)

Inequality (2.18) is true because the second and third term on the right hand side of
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(2.16) drop out (since S is replaced by Si and channel model (2.2 holds). Moreover, the

remaining term H(Yi|XSi
Xm) satisfies H(Yi|XSXm) ≥ H(Yi|XSi

Xm) since S ⊆ Si and

conditioning does not increase entropy. It remains to consider S = ∅ in (2.15), which

yields H(Ym|Xm). Putting everything together, we see that
∑v

k=0 Rk is upper bounded

by

v∑

k=0

Rk ≤ max
PXv...Xm

min
v+1≤i≤m

H(Yi|XSi
Xm)

≤ max
PXv...Xm

min
v+1≤i≤m

H(Yi|Xi).

The last inequality follows again from the property that conditioning does not increase

entropy. �

2.5.2. Main Results

Theorem 2.1 was derived in [2] for the special cases q = 2, 3. We generalize the result in

the following and present a rigorous proof. This result also appeared in [1] in the sense

that the (general) cut-set bound was shown to be the capacity. Theorem 2.1 refines the

result in the sense that it shows that only m particular cuts suffice. Moreover, it uses a

new constructive achievability scheme and gives a more explicit characterization (2.20).

Theorem 2.1. The capacity of a noise-free relay cascade as described in Section 2.3

with a single source-destination pair (namely node 0 and node m) and m−1 half-duplex-

constrained relays is given by

Cm−1(q) = max
PX0...Xm

min
1≤i≤m

H(Yi|Xi), (2.19)

where the maximization is over all PX0...Xm
which have marginal pmfs PXi−1Xi

as shown

in Table 2.3a and 2.3b. Under consideration of the optimal input distribution as stated

in Table 2.3a and 2.3b, (2.19) becomes

Cm−1(q) = max
p1,...,pm−1

min
{

p1 log(q + 1), min
1≤i≤m−1

{

p̄i log q + pi+1H
(

p̄ip
−1
i+1

)}}

, (2.20)

where 0 < pi < 1, pm = 1 and pi + pi+1 ≥ 1 for all i ∈ {1, . . . , m− 1}.
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P
P
P
P
P
P
P
PP

Xi−1

Xi 0 · · · q − 1 N

0 0 · · · 0 p̄i−1/q
...

...
. . .

...
...

q − 1 0 · · · 0 p̄i−1/q

N p̄i/q · · · p̄i/q pi − p̄i−1

(a) The Marginal Pmfs PX0X1
, . . . , PXm−1Xm .

❍
❍
❍
❍
❍
❍

X0

X1 0 · · · q − 1 N

0 0 · · · 0 p1/(q + 1)
...

...
. . .

... ...
q − 1 0 · · · 0

N p̄1/q · · · p̄1/q p1/(q + 1)

(b) Pmf PX0X1
from part (a) with p0 = (1 + q − qp1)(1 + q)−1.

Table 2.3.: The Marginal Pmfs PX0X1
, . . . , PXm−1Xm

of the Input Pmf.

Proof. By Lemma 2.2, we have

Cm−1(q) ≤ max
PX0...Xm

min
1≤i≤m

H(Yi|Xi). (2.21)

In the maximization (2.21), we only need to consider input pmfs PX0...Xm
with marginal

pmfs PX0X1
, . . . , PXm−1Xm

as stated in Table 2.3a. The zero probability assignments in

Table 2.3a result from the following property [31]: a channel input can be neglected

if it produces the same channel output as another channel input and this with the

same probabilities. Consider the first column of Table 2.3a. For all k ∈ X , the inputs

(Xi−1, Xi) = (k, 0) yield Yi = 0 with probability 1. Hence, we can assume a zero

probability mass for all but one input (Xi−1, Xi) = (k, 0). The same reasoning can be

applied to the second till qth column of Table 2.3a. In summary, it is without loss to keep

only one positive entry in each of the first q columns of Table 2.3a. We decide to assign

a positive probability mass to the last entry of each of the first q columns. Let us now

address the last column of Table 2.3a. By symmetry, any permutation of the transmission



2.5. Capacity of Relay Cascades with One Source 23

symbols Xi−1 ∈ Q yields the same information flow between node i − 1 and node i.

Hence, we can choose PXi−1Xi
(k,N) = PXi−1Xi

(l,N) for all k, l ∈ Q. Consequently,

PXi−1Xi
(k,N) = p̄i−1/q for all k ∈ Q. The constraints 0 < pi < 1, pi + pi−1 ≥ 1, pm = 1

guarantee that Table 2.3a is a proper probability mass functions and that node m is

always quiet. The assumption pi 6= {0, 1} for all 0 ≤ i < m is without loss since

otherwise node i cannot use the complete alphabet X . It is now easy to check that

H(Yi+1|Xi+1) = p̄i log q + pi+1H
(

p̄ip
−1
i+1

)

for all 0 ≤ i ≤ m− 1. (2.22)

Observe that p0 occurs only in H(Y1|X1). Moreover, H(Y1|X1) is concave in p0. Hence,

H(Y1|X1) can be maximized with respect to p0 without affecting any of the other

H(Yi+1|Xi+1). Setting the partial derivative

∂H(Y1|X1)

∂p0

= − log q + log

(

1− p0

p0 + p1 − 1

)

equal to zero yields p0 = (1 + q− qp1)(1 + q)−1 and the marginal pmf PX0X1
becomes as

shown in Table 2.3b. Moreover, H(Y1|X1) becomes

H(Y1|X1) = p1 log(q + 1). (2.23)

By replacing the conditional entropy functions in (2.21) with (2.22) and (2.23), we obtain

Cm−1(q) ≤ max
PX0...Xm

min
1≤i≤m

H(Yi|Xi)

= max
p1,...,pm−1

min
{

p1 log(q + 1), min
1≤i≤m−1

{

p̄i log q + pi+1H
(

p̄ip
−1
i+1

)}}

,
(2.24)

where 0 < pi < 1, pm = 1 and pi +pi+1 ≥ 1 for all i ∈ {1, . . . , m−1}. Recall that Ri = 0

for all i ∈ V \ {0}. Using (2.11) and (2.12), we have

Cm−1(q) ≥ max
p1,...,pm−1

min
{

p1 log(q + 1), min
1≤i≤m−1

{

p̄i log q + pi+1H
(

p̄ip
−1
i+1

)}}

, (2.25)

where the maximization is with respect to P⋆
m+1. Note that P⋆

m+1 includes the set

of pmfs defined by Table 2.3a and 2.3b. In summary, (2.24) and (2.25) imply (2.19)
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and (2.20). �

Remark 2.1. (i) A more intuitive explanation for the zero probability assignments in

Table 2.3a and 2.3b is the following. Assume node i is transmitting, i.e., Xi ∈ Q.

According to the underlying channel model, node i is not able to listen to the

input of node i− 1 and, consequently, node i− 1 should not transmit when node i

transmits.

(ii) The marginal pmf PX0X1
as shown in Fig. 2.3b demonstrates that in order to

achieve the maximum information flow from source node 0 to relay 1, the source

has to encode with uniformly distributed input symbols when relay 1 listens, i.e.,

PX0|X1=N is the uniform distribution. One could ask why PXi−1|Xi=N is not nec-

essarily uniform for i > 1. However, in contrast to the source node, relay i − 1

receives information. The amount of received information depends on the fraction

of listening time provided by relay i − 1. Thus, choosing uniformly distributed

inputs (Xi−1, Xi) = (k,N), k ∈ X , maximizes the rate on link (i− 1, i) but might

reduce the rate on link (i− 2, i− 1).

(iii) Capacity expression (2.19) in Theorem 2.1 could also have been obtained by ap-

plying the DF-rate of Xie and Kumar [28] to the network model considered here.

However, we show achievability by a constructive coding argument while Xie and

Kumar use a pure random coding argument in their proof.

Theorem 2.2. For m→∞, i.e., for an unbounded number of relays, the capacity of a

noise-free and half-duplex-constrained relay cascade as described in Section 2.3 with a

single source-destination pair is given by

C∞(q) = log2

(

1 +
√

4q + 1

2

)

b/u. (2.26)

For the proof of Theorem 2.2, we need the following lemma.

Lemma 2.3. Consider a noise-free relay cascade of finite length as described in Sec-

tion 2.3 with a single source-destination pair (namely node 0 and node m) and m − 1
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half-duplex-constrained relays. There exists a capacity achieving input pmf PX0...Xm

such that Cm−1(q) = H(Xm−1).

Proof. Recall the capacity expression stated in Theorem 2.1 and assume H(Ym|Xm) >

Cm−1(q). We will show that PX0...Xm
can be changed such that H(Ym|Xm) equals

Cm−1(q) without forcing any of the H(Yi|Xi), 1 ≤ i ≤ m − 1, to decrease. The op-

timal input pmf as stated in Table 2.3a and 2.3b is assumed in the following. Hence,

H(Ym|Xm) = H(Xm−1|Xm) = H(Xm−1) and H(Yi|Xi) = H(Xi−1|Xi) for all 1 ≤ i ≤
m − 1. Recall (2.22) and (2.23), i.e., H(X0|X1) = p1 log(q + 1) and H(Xi−1|Xi) =

p̄i−1 log q + piH
(

p̄i−1p
−1
i

)

, 2 ≤ i ≤ m and pm = 1. The assertion is clear for m = 2.

In this case, the capacity is simply the intersection of H(X0|X1) = p1 log(q + 1) and

H(X1) = p̄1 log q + H (p̄1). In particular, C1(q) = H(X1). Let m > 2. Changing

H(Xm−1) by means of varying pm−1 does not affect H(Xi−1|Xi), 1 ≤ i ≤ m − 2, since

both expressions depend on different variables. Therefore, it is enough to consider

H(Xm−2|Xm−1). The maximum of H(Xm−1) is attained at pm−1 = 1/(q + 1). Fur-

ther, H(Xm−1) is continuously decreasing to zero when pm−1 runs through the interval

[1/(q + 1), 1]. Assume that pm−1 ≥ 1/(q + 1) and that H(Xm−1) > Cm−1(q). In order

to decrease H(Xm−1) to Cm−1(q), we just have to increase pm−1 appropriately. Observe

that increasing pm−1 does not decrease H(Xm−2|Xm−1) since its partial derivative with

respect to pm−1 is

∂H(Xm−2|Xm−1)

∂pm−1
= log

(

pm−1

pm−1 + pm−2 − 1

)

, (2.27)

which is always non-negative. This follows from 0 ≤ 1− pm−2 ≤ pm−1, where the right

inequality holds since PXm−2Xm−1
(N,N) = pm−1 − p̄m−2 ≥ 0. Hence, the argument of

the logarithm in (2.27) is always greater or equal than one. Now consider the case

pm−1 < 1/(q + 1) and H(Xm−1) > Cm−1(q). This case can be excluded. To decrease

H(Xm−1) to Cm−1(q), we can increase pm−1 to the appropriate value in the interval

[1/(q + 1), 1]. By the non-negativity of (2.27), H(Xm−2|Xm−1) can only increase. �

Proof of Theorem 2.2. We first show that the series of capacities (Cm(q))m∈N is mono-

tonically decreasing and bounded, hence convergent. Let k > l be two positive integers.

By Lemma 2.3, there exist two input pmfs such that Ck(q) = H(Xk) and Cl(q) = H(Xl).
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Then

0 ≤ Ck(q) ≤ H(Xl|Xl+1) ≤ H(Xl) ≤ Cl(q), (2.28)

where both entropy functions are evaluated with respect to the Ck(q) achieving input

pmf. The second inequality (from left) follows from (2.19) and the third inequality from

the property that conditioning does not increase entropy. The fourth inequality is due

to the fact that the Ck(q)-achieving input pmf PX0...Xk
(if marginalized to PX0...Xl

) does

not necessarily achieve Cl(q). This shows that (Cm(q))m∈N is monotonically decreasing.

Boundedness holds since 0 ≤ Cm(q) ≤ C1(q) < ∞ for all m ∈ N. Thus, C∞(q)
def
=

limm→∞Cm(q) exists. Then for any ǫ > 0 there exists a N(ǫ) ∈ N such that

|C∞(q)− Cl(q)| < ǫ, ∀l > N(ǫ). (2.29)

Hence

|H(Xl+1|Xl+2)−H(Xl|Xl+1)|
≤ |C∞(q)−H(Xl+1|Xl+2)|+ |C∞(q)−H(Xl|Xl+1)| (2.30)

< 2ǫ (2.31)

for all l > N(ǫ), where (2.30) follows from the triangle inequality while (2.31) follows

from (2.28) and (2.29). Consequently, the C∞(q)-achieving input pmf satisfies

H(Xl+1|Xl+2)−H(Xl|Xl+1) = 0 as l →∞. (2.32)

By entirely the same arguments as given in the proof of Theorem 2.1, we can assume

that the marginals PXlXl+1
and PXl+1Xl+2

of the C∞(q) achieving pmf are of the form

outlined in Table 2.3a. Then (2.32) is satisfied if and only if pl = pl+1 = pl+2
def
= p. This

choice results in marginal pmfs PXlXl+1
as illustrated in Table 2.4 for all l ∈ N0. Thus,

using (2.22), we have

H(Xl|Xl+1) = p̄ log q + pH
(

p̄p−1
)

for all l ∈ N0. (2.33)

Hence, C∞(q) is equal to the maximum of (2.33), which is (determining the zero of the
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P
P
P
P
P
P
P
PP

Xl

Xl+1 0 · · · q − 1 N

0 0 · · · 0 p̄/q
...

...
. . .

...
...

q − 1 0 · · · 0 p̄/q
N p̄/q · · · p̄/q 2p− 1

Table 2.4.: The Marginal Pmf PXlXl+1
of the C∞(q)-Achieving Input Pmf, l ∈ N0.

first derivative of (2.33) and plugging it into (2.33))

C∞(q) = log

(

1 +
√

4q + 1

2

)

attained at

p =
1

2

(

1 +
1√

4q + 1

)

.

�

Remark 2.2. (i) C∞(1) = 0.6942 b/u is equal to the logarithm of the golden ratio

and C∞(2) is 1 b/u.

(ii) The term time-sharing denotes a transmission strategy where nodes send and re-

ceive half of the time, organized in deterministic fashion. The maximum achievable

rate with time-sharing is given by Rts(q)
def
= 0.5 log(q+1) b/u. For q = 1, 2 we have

Rts(1) = 0.5 b/u and Rts(2) ≈ 0.7925 b/u. Clearly, C∞(q) is a lower bound on the

capacity of any finite length cascade where the transmission alphabet has size q. A

comparison of Rts(1) and Rts(2) with C∞(1) and C∞(2) shows that pre-determined

time-sharing falls considerably short of the capacity for small transmission alpha-

bets. For very large transmission alphabets, we have limq→∞ [C∞(q)−Rts(q)] = 0.

That is, the gap between the rates due to time-sharing and timing becomes negli-

gible.

(iii) The stochastic process {Xl : l ≥ 0} under the pmf depicted in Table 2.4 is a

stationary, irreducible Markov chain with finite state space X . Moreover, C∞(q)

is equal to the entropy rate [30, Chapter 4] of {Xl : l ≥ 0}.
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Figure 2.3.: Graphical solution of optimization problem (2.34).

We now provide numerical capacity results for various scenarios by means of Theo-

rem 2.1. In particular, we show how to obtain the capacity of a half-duplex-constrained

relay cascade with one source-destination pair for an arbitrary number of relays.

Example 2.3. Let us first consider a relay cascade with V = {0, 1, 2}, q = 2 and R1 = 0,

i.e., source node 0 intends to communicate with sink node 2 via a half-duplex-constrained

relay. By Theorem 2.1 and the optimum input pmf stated in Table 2.3b, we have

C1(2) = max
PX0X1X2

min {PX1
(N) log2 3, H(X1)} . (2.34)

Problem (2.34) exhibits a single degree of freedom and is readily solved by finding

the intersection of the two functions PX1
(N) log 3 and H(X1) (see Fig. 2.3). Hence,

C1(2) = 1.1389 b/u attained at PX1
(N) = 0.7185.

Remark 2.3. (i) Assume the relay in Example 2.3 does not have the capability to

detect when the source uses off symbols N. This behavior is modeled by setting

PX0X1
(N,N) = 0. An identical approach as taken in Example 2.3 shows that

the capacity under the described constraint equals 0.8295 b/u. Observe that this
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quantity is still larger than the corresponding time-sharing rate of Rts(2) ≈ 0.7925

bit per use.

(ii) For q = 1, the approach taken in Example 2.3 yields C1(1) = 0.7729 b/u attained

at PX1
(N) = 0.7729. The capacity of this specific model has also been obtained

in [31]. Therein, the focus was not on half-duplex-constrained transmission but on

finding the capacity of certain classes of deterministic relay channels. In [1], the

same channel model was considered and the author also noticed that the capacity

equals 0.7729 b/u. A simple coding scheme was outlined which approaches 2
3

b/u,

and extensions using Huffman or arithmetic source coding are claimed.

Example 2.4. In order to compute Cm−1(q) for m > 2, we transform (2.19) into a

convex program with linear cost function H(Y1|X1) and convex inequality constraints

H(Y1|X1)−H(Yi+1|Xi+1) ≤ 0 for all i ∈ {1, . . . , m−1}. The resulting program reads as

maximize p1 log2(q + 1)

subject to p1 log2(q + 1)− p̄i log2 q − pi+1H
(

p̄ip
−1
i+1

)

≤ 0

1−
i+1∑

j=i

pj ≤ 0

pi ∈ (0, 1), pm = 1.

By adopting a standard algorithm for constrained optimization problems (e.g., MAT-

LAB’s fmincon – a gradient-based method), the capacity Cm−1(q) was computed for

various values of m− 1 and q = 1, 2. A brief summary is provided in Table 2.5.

Table 2.5.: Capacity Results for Cascades with a Single Source.

m− 1 1 2 3 10 40 100 ∞
Cm−1(1) [b/u] 0.7729 0.7324 0.7173 0.6981 0.6946 0.6943 0.6942

Cm−1(2) [b/u] 1.1389 1.0665 1.0400 1.0066 1.0006 1.0001 1

Cm−1(1)/Rts(1)[%] 154.6 146.5 143.5 139.6 138.9 138.9 138.8

Cm−1(2)/Rts(2)[%] 143.7 134.6 131.2 127.0 126.3 126.2 126.2

We observe that Cm−1(q)/Rts(q), the relative advantage of timing codes over simple
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time-sharing, decreases when m − 1 increases and saturates at 138.8% and 126.2% for

q = 1 and q = 2, respectively.

2.6. Capacity and Rate Region of Relay Cascades

with Multiple Sources

Based on the coding strategy introduced in Section 2.4.2, we derive an achievable rate

region for cascades where every node except of the sink node can be a source. Let C↑
m−1

denote the set of all rate vectors R ∈ R
m
≥0 satisfying

C↑
m−1

def
=

{

R ∈ R
m
≥0 :

v∑

k=0

Rk ≤ H(Yv+1|Xv+1), for all 0 ≤ v < m

}

. (2.35)

By Lemma 2.2, C↑
m−1 is the cut-set region of a line network composed of a source, a sink

and m − 1 half-duplex-constrained relays where the first m nodes of the line can have

a positive transmission rate. Without loss of generality, we assume input pmfs PX0...Xm

such that the marginal pmfs PXv−1Xv
are as shown in Table 2.3. Taking into account

the resulting entropy functions (2.22) and (2.23), C↑
m−1 reads as

C↑
m−1 =







R ∈ R
m
≥0 :







R0 ≤ p1 log(q + 1)
∑v

k=0 Rk ≤ p̄v log q + pv+1H
(

p̄vp
−1
v+1

)

, for all 0 < v < m













.

Let C↑
m−1,s denote the set of all rate vectors R ∈ R

m
≥0 satisfying

C↑
m−1,s

def
=







R ∈ R
m
≥0 :







Rv = 0, for all 0 ≤ v < s
∑v

k=sRk ≤ H(Yv+1|Xv+1), for all s ≤ v < m













,

where 0 ≤ s < m. Observe that C↑
m−1,s is the cut-set region of a line network composed

of m+ 1 nodes where the first s nodes are constrained to have a transmission rate equal

to 0. Similar to before, we can assume that PXs...Xm
marginalizes according to Table 2.3.
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In particular,

C↑
m−1,s =







R ∈ R
m
≥0 :







Rv = 0, for all 0 ≤ v < s

Rs ≤ ps+1 log(q + 1)
∑v

k=sRk ≤ p̄v log q + pv+1H
(

p̄vp
−1
v+1

)

, for all s ≤ v < m













.

In contrast to the single source case, constraint (2.13) has to be considered. These

constraints stem from the coding procedure, namely that all nodes with indices greater

zero can only use transmission symbols for encoding own information. The usage of

transmission patterns for encoding own information would render cooperation with the

previous node impossible. These constraints are taken into account by introducing the

sets

Km−1,s
def
=
{

R ∈ R
m
≥0 : Rv ≤ p̄v log q, for all s < v < m

}

, (2.36)

where 0 ≤ s < m. Then

Rm−1,s
def
=

⋃

PXs...Xm

C↑
m−1,s ∩ Km−1,s (2.37)

is a set of achievable rates of a line network composed of m+ 1 nodes where the first s

nodes are constrained to have a transmission rate equal to 0. In summary, we have

shown the following theorem.

Theorem 2.3. Consider a noise-free relay cascade as described in Section 2.3 where

each node except of the sink node can act as a source. The achievable rate region Rm−1

due to the coding strategy outlined in Section 2.4.2 is given by

Rm−1 = Co

(
m−1⋃

s=0

Rm−1,s

)

, (2.38)

where Rm−1,s is defined in (2.37). The union in (2.37) is over all PXs...Xm
with marginal

pmfs PXv−1Xv
, s < v ≤ m, as depicted in Table 2.3.

As a final remark, observe that all boundary points of the cut-set region C↑
m−1 that

are achievable under the constraints (2.36) are capacity points.

Example 2.5. A half-duplex line network with node set V = {0, 1, 2} is considered (see



32 Chapter 2. Bits Through Relay Cascades With Half-Duplex Constraint

Relay-SourceSource Sink

Figure 2.4.: A noiseless relay cascade composed of three nodes with two sources.

Fig. 2.4). Node 0 and node 1 are allowed to have a positive transmission rate. We first

derive an explicit expression of the boundary of the cut-set region

C↑
1 =







R ∈ R
2
≥0 :







R0 ≤ p1 log(q + 1)

R0 +R1 ≤ p̄1 log q +H (p1)













. (2.39)

Observe that the maximum of the sum rate bound p̄1 log q+H (p1) is log(q+1), attained

at p1 = (q + 1)−1. Hence, 0 ≤ R0 ≤ 1
q+1

log(q + 1) and 0 ≤ R0 +R1 ≤ log(q + 1). Since

every boundary point satisfies the defining inequalities of C↑
1 with equality, we can express

a part of the boundary as

R1 = log(q + 1)− R0 for all 0 ≤ R0 ≤
1

q + 1
log(q + 1). (2.40)

The remaining part of the boundary of C↑
1 is derived as follows. Applying the substitu-

tion p1 = R0/ log(q + 1), which results from the first inequality in (2.39), to the second

inequality in (2.39) yields

R1 =

(

1− R0

log(q + 1)

)

log q +H

(

R0

log(q + 1)

)

−R0
1

q + 1
log(q + 1) < R0 ≤ C1(q),

(2.41)

where C1(q) denotes the capacity of the considered line network if R1 = 0.

We proceed with the computation of R1 = Co (R1,0 ∪R1,1). By (2.37), R1,0 satisfies

0 ≤ R0 ≤ p1 log(q + 1) (2.42)

0 ≤ R0 +R1 ≤ p̄1 log q +H(p1) (2.43)

0 ≤ R1 ≤ p̄1 log q. (2.44)

Observe that (2.42) and (2.43) correspond to the cut-set region C↑
1 . Hence, all rate
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boundary points of R1,0 are characterized by

R1 =

(

1− R0

log(q + 1)

)

log q +H

(

R0

log(q + 1)

)

−R0, (2.45)

where 0 ≤ R1 ≤ p̄1 log q. Using the same substitution as before, the latter constraint

can be written as

0 ≤ R1 ≤
(

1− R0

log(q + 1)

)

log q. (2.46)

Equality on the right side of (2.46) implies, taking into account (2.45), that R0 has to

satisfy

R0 = H

(

R0

log(q + 1)

)

. (2.47)

Let R⋆
0 be the fixpoint of (2.47). Two cases can be distinguished: R0 < R⋆

0 and R0 ≥ R⋆
0.

In first case, the left hand side of (2.47) is strictly smaller than the right hand side due

to the concavity of the binary entropy function. Therefore, the values for R1 due to

(2.45) violate (2.46). Hence, we can ignore the first case. In the second case, the left

hand side of (2.47) is at least as large than the right hand side. Hence, (2.46) is satisfied

and we keep R0 ≥ R⋆
0. It remains to consider R1,1, the set of all rate vectors satisfying

R0 = 0 and 0 ≤ R1 ≤ log(q+ 1). Clearly, (R0, R1) = (0, log(q+ 1)) is the rate boundary

of R1,1.

The rate boundary of R1 now follows by taking the convex hull of the rate boundary

of R1,0 and R1,1 , i.e, the convex hull of all points satisfying (2.45) for R⋆
0 ≤ R0 ≤ C1(q)

and the point (R0, R1) = (0, log(q + 1)). Hence,

R1 =







(

log q

R⋆
0

− log q

log(q + 1)
− log(q + 1)

R⋆
0

)

R0 + log(q + 1), 0 ≤ R0 < R⋆
0 (2.48a)

(

1− R0

log(q + 1)

)

log q +H

(

R0

log(q + 1)

)

−R0, R⋆
0 ≤ R0 ≤ C1(q) (2.48b)

where (2.48a) is just the straight line between the two rate vectors (0, log(q + 1)) and

(R0, R1) =
(

R⋆
0,
(

1− R⋆
0

log(q+1)

)

log q
)

.

The cut-set region C↑
1 and the rate region R1 (in b/u) are depicted in Fig. 2.5 for a bi-

nary transmission alphabet q = 2. In this case, R⋆
0 equals 0.9654 b/u. Hence, the cut-set
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Figure 2.5.: The rate regions derived in Example 2.5.

bound is achievable for R0 ≥ 0.9654 b/u. The rate region resulting from a determinis-

tic time-division schedule, i.e., time-sharing between (R0, R1) = (0.5 log2 3, 0) b/u and

(R0, R1) = (0, log2 3)) b/u, is depicted in Fig. 2.5. It can be seen that the time-sharing

region is contained in R1. We finally point out that the cut-set region C↑
1 is indeed the

capacity region. This is shown in Chapter 3.

2.7. Extension to Other Half-Duplex Networks

Relay cascades are fundamental building blocks in communication networks. The results

derived in the previous sections may be instrumental in order to determine the capacity

of half-duplex-constrained networks with different topologies.

2.7.1. Broadcast Trees

Consider the tree structured network depicted in Fig. 2.6. The root wishes to multicast

information to all other nodes where the intermediate nodes are half-duplex-constrained.

We assume noise-free bit pipes (i.e., q = 1) and broadcast behavior at nodes with more
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Figure 2.6.: A broadcast tree of depth 3.

than one outgoing edge. The multicast capacity is limited by the capacity of the longest

path in the tree, which has four edges. Hence, the multicast capacity of the considered

tree is equal to C2(1) = 0.7324 b/u (see Table 2.5), the capacity of a cascade composed

of a source, a sink and two half-duplex-constrained relays. More generally, the multicast

capacity of any directed tree composed of error-free half-duplex-constrained relays can

be obtained using Theorem 2.1 and Theorem 2.2. It approaches

C∞(q) = log2

(

1 +
√

4q + 1

2

)

b/u

as the tree-depth becomes large.

2.7.2. The Butterfly Network

A half-duplex butterfly network [14] is shown in Fig. 2.7. Nodes 1 and 2 intend to

multicast information to sink nodes 4 and 5 via both a direct link and a half-duplex-

constrained relay node 3. Similar to the previous section, broadcast transmission and

bit pipes (i.e., q = 1) are assumed. All nodes with two incoming edges behave according

to a collision model. To be more precise, a node erases received information if there was

a transmission on both incoming links.

By means of network coding (NC) with a bit-wise XOR at the relay, each source node

achieves a multicast rate of 1
3

b/u, i.e., an information flow of 2
3

b/u is received at each

sink node. The well-known strategy is that node 1 broadcasts in the first time slot a

binary symbol u1 to nodes 3 and 4, node 2 broadcasts in the second time slot a binary

symbol u2 to nodes 3 and 5 and, in the third time slot, the relay broadcasts u1 ⊕ u2 to
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1 2

3

4 5

Figure 2.7.: The binary half-duplex butterfly network.

both sink nodes.

The coding strategy introduced in Section 2.4.2 yields a rate of 0.7729 b/u at each sink

node. The longest path in the network consists of two edges. Hence, by means of timing,

node 1 is able to send information at a rate of C1(1) = 0.7729 b/u to nodes 4 and 5.

Similarly, node 2 can send information to nodes 4 and 5 at a rate of C1(1) = 0.7729 b/u.

Time-sharing of both source nodes yields a multicast rate of 0.7729 b/u. Decoding at

sink nodes 4 and 5 is done as follows. Assume that node 1 is sending information. The

sequence received at sink node 4 is a “superposition” of the sequence sent by source

node 1 on the direct link (1, 4) and of the relay sequence sent on the edge (3, 4). Due

to the timing-strategy, source node 1 and the relay never transmit in the same time

slot. Hence, sink node 4 is able to extract the information sent by source node 0 from

the received sequence by applying the following protocol. In the very first block, source

node 0 broadcasts a message to sink node 4 and the relay while the relay is quiet. Sink

node 4 and the relay are able to decode successfully. In the second block, the relay

broadcasts the decoded message to nodes 4 and 5 while source node 0 broadcasts a new

message to relay node 3 and sink node 4. Since sink node 4 knows the relay strategy

and, therefore, the sequence used by the relay for encoding the source message of the

previous block, it can determine the new source message sent on the direct link (1, 4) by

“subtracting" the relay sequence from the received sequence (which is a superposition of

the source- and the relay sequence). Sink node 5 is also able to decode the received relay

sequence by applying the rules of the timing strategy introduced in Section 2.4.2. The

procedure is repeated in the following blocks and is used in the same way to transmit
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information from source node 2 to sink nodes 4 and 5.

2.8. Discussion

The half-duplex constraint is a property common to many wireless networks. In order

to overcome the half-duplex constraint, practical transmission protocols split the time

of each network node into transmission- and reception-periods, organized in determin-

istic fashion. This is not optimal from an information theoretic point of view as we

demonstrate by means of noise-free relay cascades of various lengths with one or mul-

tiple sources. We show that significant rate gains are possible if additional information

is encoded by means of timing on the symbol level. On the other hand, timing on the

symbol level requires the relays to switch on and off rapidly and to do synchronization

among the relays on the symbol level. These requirements can be loosened by sacrificing

a bit of the timing rate, i.e., by timing sub-blocks of transmission symbols instead of

single transmission symbols. We finally point out that channel model (2.2) and the tim-

ing codes introduced in Section 2.4.2 exhibit similarities with the model and the code

proposed in [32] for a memory with defective cells. Therein it is assumed that a certain

number t of defective cells of a memory composed of n cells always read out a 0, and

others always a 1, regardless of what binary symbols are actually stored in them. The

objective is to reliably store information under the assumption that the encoder knows

the positions and the types of error. Surprisingly, n − t bits can be reliably stored in

the memory for large n. The coding scheme is based on the idea that a codebook is

generated for each pattern of defective cells. This model resembles our half-duplex relay

model in the sense that every time a relay transmits it causes a defective slot in the

received sequence while symbols are perfectly received in non-transmission slots. More-

over, by means of cooperation, the sender is aware of the defective slots. The coding

approaches we proposed are also based on building up a codebook for every possible

pattern of defective slots.





3
Capacity for Half-Duplex Line

Networks with Two Sources†

3.1. Introduction

In Chapter 2, we considered error-free half-duplex-constrained line networks where a

source and a subset of the relays send independent information to the destination. In

case of a single source-destination pair, the capacity of cascades and trees of arbitrary

depth was established. For the more general case, namely that also the relays are

information sources, we stated an achievable rate region in Theorem 2.3. An open

question is whether the achievable rate region is the capacity region? So far we know

only that the rate region coincides with the cut-set region if the transmission rates of

the relay sources fall below certain thresholds. In this chapter, we answer the question

for the special case of error-free half-duplex line networks with two sources where either

†This chapter is based on the following publication [33]: Proc. IEEE Int. Symp. Inf. Theory, Austin,
TX, Jun. 13-18 2010, pp. 2393-2397 (together with Gerhard Kramer and Christoph Hausl).
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the first or the last relay in the cascade is the second source. In both cases, we establish

the capacity region. The achievability scheme presented for the first case builds up on

the scheme presented in Chapter 2 and uses the new idea that links with a half-duplex-

constrained sink can be interpreted as erasure channels. The achievability scheme for

the second case is based on a random coding argument using superposition coding.

X0
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XkX1

X1

Yk

Y1

Y1 Xm−1Ym−1

Ym

Ym

Xm

Xm

1

2 EncDec Mux
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W1

(a) Error-free half-duplex line network where the first two nodes are sources.
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X0 XkX1 YkY1 Xm−1

Xm−1
Ym−1

Ym−1

Ym

Ym

Xm

Xm

1

2 EncDec Mux

W0

W0

Wm−1

Wm−1

(b) Error-free half-duplex line network where the first node and the second last node are
sources.

Figure 3.1.: Error-free half-duplex line networks with two sources.
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This chapter is structured as follows. The system model is introduced in Section 3.2.

The capacity regions for the first and the second case are derived in Section 3.3 and

Section 3.4, respectively. We end with concluding remarks in Section 3.5.

3.2. Network Model

Consider the error-free half-duplex line network with two sources, as depicted in Fig. 3.1,

where either the first relay or the last relay is the second source. The system model is

a special case of the model introduced in Fig. 3.1. In particular, each half-duplex-

constrained relay behaves according to (2.2).

We make the following observation. A network link with a half-duplex-constrained

node at the receiving side is effectively an erasure channel where the receiver can decide

which positions to erase. Moreover, the erasure probability equals the probability that

the receiving node transmits. The observation can be deduced as follows. If relay i

Xi−1 YiRelay Relay
ii− 1

Xi ∈ Q

(a) Relay i transmits.

Xi−1 YiRelay Relay
ii− 1

Xi = N

(b) Relay i listens.

Figure 3.2.: An error-free half-duplex link interpreted as erasure channel.

transmits, it is disconnected from relay i−1 due to (2.2), which is depicted in Fig. 3.2a.

Therefore, each symbol sent by relay i − 1 is erased. Since relay i obviously knows its

transmission slots, it also knows the erasure locations. If relay i is off, it can perfectly

listen to relay i− 1 via a error-free (|Q|+ 1)-ary channel, which is depicted in Fig. 3.2b.

The following assumptions regarding the generation and the encoding of information

are made. At the beginning of a new block b of n channel uses, source node 0 and

relay i ∈ {1, m − 1} produce a uniformly and independently drawn message W0;b ∈
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{

1, . . . , 2nR0

}

and Wi;b ∈
{

1, . . . , 2nRi

}

, respectively. Based on the received sequence in

block b, sink node m forms the estimates ŵ0;b−(m−1) and ŵi;b−(m−1−i) of W0;b−(m−1) and

Wi;b−(m−1−i). The following encoding functions for the kth time instance are considered:

x0,k = f0,k(W0;b) (3.1)

xi,k = fi,k(Wi;b,Y
k−1
i ) (3.2)

xl,k = fl,i(Y
k−1
l ) for all l 6= {0, i,m}. (3.3)

3.3. The First Relay is a Source

Theorem 3.1. The capacity region C of the line network depicted in Fig. 3.1a is

C =
⋃

PX0...Xm







R0 ≤ H(Y1|X1)

R0 +R1 ≤ min2≤i≤m H(Yi|Xi)







. (3.4)

It suffices to take the union over all probability distributions PX0...Xm
of the form

PX0
PX1

PX2|X1
PX3|X2

. . . PXm|Xm−1
(3.5)

with marginal pmf PX0X1
as shown in Table 3.1 and marginal pmfs PXiXi+1

, i ∈ N as

shown in Table 2.3a.

Proof. At the end of block b− 1, node 0 and relay 1 choose new messages w0;b and w1;b,

which are sent in block b using the sequences x0(w0;b) and x1(w0;b−1, w1;b), respectively.

Each of the remaining relays forwards a pair of messages from the previous blocks. In

particular, relay i sends xi(w0;b−i, w1;b−(i−1)) in block b, where 2 ≤ i ≤ m− 1.

Code Construction:

⊲ Relay i, 1 ≤ i ≤ m−1: The relay nodes apply the same cooperative coding strategy

as introduced in Section 2.4.2. In particular, the number of codewords available

at relay i to encode a pair of messages
(

w0;b−i, w1;b−(i−1)

)

is upper bounded by

|W0| · |W1| ≤ |Q|ni

(

n− ni+1

ni

)

. (3.6)
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⊲ Source node 0: In contrast to the coding strategy introduced in Section 2.4.2,

node 0 does not cooperate with node 1. Following the observation made in Sec-

tion 3.2, it uses an optimal point to point erasure channel code with alphabet X
for encoding W0;b. Each symbol received at relay 1 is erased with a probability of

1− PX1
(N).

Achievable Rates: The first link in the cascade is a |X |-ary erasure channel with

erasure probability 1 − PX1
(N). It is well-known [34, Chapter 8] that the capacity of

such a channel equals PX1
(N) log |X | achieved by a uniform input distribution over X .

Due to the channel model, we clearly have

H(Y1|X1) = H(X0|X1 = N) ≤ PX1
(N) log |X |, (3.7)

with equality if PX0
is the uniform distribution over |X |. Hence, an optimal erasure

channel code for the first link satisfies R0 = H(Y1|X1) − ǫ with ǫ → 0 as n → ∞.

Moreover, independent X0 and X1 suffice to achieve equality in (3.7). Further, by the

proof of Theorem 2.1, we have

|Q|ni

(

n− ni+1

ni

)

→ 2nH(Yi+1|Xi+1) as n→∞ (3.8)

for 1 ≤ i ≤ m− 1. Hence, R0 +R1 ≤ min2≤i≤m H(Yi|Xi).

The converse is immediate. By Lemma 2.2, the bounds in (3.4) are the cut-set upper

bound (2.35) of the considered network.

Property (3.5) and the pmfs PXiXi+1
, i ∈ N0, follow from the following consideration.

Due to channel model (2.2), H(Yi|Xi) = PXi
(N)H(Xi−1|Xi = N) for all 1 ≤ i ≤ m.

Hence, H(Yi|Xi) is a function of PXi−1Xi
and the Markov chain X1 − · · · − Xm holds.

Further, by the same arguments made in the proof of Theorem 2.1, we may assume

marginal pmfs PXiXi+1
as shown in Table 2.3a for all i ∈ N. For PX0X1

, we may assume

the distribution shown in Table 3.1 because it achieves the upper bound in (3.7). The

probability masses were chosen such that X0 and X1 are independent and PX0
is uniform,

thus matching the properties of X0 and X1. �

Remark 3.1. An application of Theorem 3.1 to the setup considered in Example 2.5
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❍
❍
❍
❍
❍
❍

X0

X1 0 · · · q − 1 N

0 p̄1/[q(q + 1)] · · · p̄1/[q(q + 1)] p1/(q + 1)
... ...

. . .
...

...q − 1
N p̄1/[q(q + 1)] · · · p̄1/[q(q + 1)] p1/(q + 1)

Table 3.1.: Optimum Pmf PX0X1
for Source Node 0 using an Erasure Code.

shows that the achievable rate region (2.48) is not the capacity region if R0 ≤ R⋆
0. How-

ever, by letting source node 0 use an independent erasure code, as we did in Theorem 3.1,

we get rid of constraint (2.44). The reason is that source node 0 and relay 1 do not co-

operate anymore, which enables the relay to encode own information also by means of

transmission patterns. Hence, the capacity region is equal to the cut-set region C↑
1 :

R1 =







log(q + 1)− R0, 0 ≤ R0 <
1

q + 1
log(q + 1)

(

1− R0

log(q + 1)

)

log q +H

(

R0

log(q + 1)

)

− R0,
1

q + 1
log(q + 1) ≤ R0 ≤ C1(q).

The capacity region for q = 2 is depicted in Fig. 2.5.

3.4. The Last Relay is a Source

In this section, we derive the capacity region of the line network shown in Fig. 3.1b.

Since the achievability proof is based on a random coding argument, we first introduce

a couple of tools that are widely used in information theory.

Definition 3.1. [35, Chapter 2] The ǫ-typical set T (n)
ǫ (X) is the set of n-sequences x,

which satisfy

T (n)
ǫ (X) = {x : |π(x|x)− PX(x)| ≤ ǫPX(x) for all x ∈ X} , (3.10)

where π(x|x) is the type of symbol x based on sequence x, i.e.,

π(x|x) =
|{i : xi = x}|

n
for x ∈ X .
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The notion of a ǫ-typical set can be extended in a natural way to random vectors, for

example (U,X, Y ), by considering the random vector as a single random variable. The

corresponding notation is T (n)
ǫ (U,X, Y ). The next lemma is used in many achievability

proofs of multiuser theorems.

Lemma 3.1 (Packing Lemma [35]). Let (U,X, Y ) ∼ PUXY . Let (Ũ, Ỹ) be a pair

of arbitrarily distributed random n-sequences, not necessarily distributed according to
∏n

i=1 PUY (ũi, ỹi). Let X(w), w ∈ W, where |W| ≤ 2nR, be random n-sequences, each

distributed according to
∏n

i=1 PX|U(xi|ũi). Further assume that X(w), w ∈ W, is pairwise

conditionally independent of Ỹ given Ũ, but is arbitrarily dependent on other X(w)

sequences. Then, there exists δ(ǫ) that tends to zero as ǫ→ 0 such that

lim
n→∞

P

{(

Ũ,X(w), Ỹ
)

∈ T (n)
ǫ (U,X, Y ) for some w ∈ W

}

= 0

if R < I(X;Y |U)− δ(ǫ).

In the following definition, the standard notion of a random code is tailored to the

problem setup considered here.

Definition 3.2. A
(

2nR0 , 2nRm−1, n
)

code for the line network shown in Fig. 3.1b consists

of

⊲ two message sets W0 = {1, . . . , 2nR0} and Wm−1 = {1, . . . , 2nRm−1} where

– we split W0 into B sub-blocks W0;b, b = 1, 2, . . . , B, that each take on 2nR0

values;

– we split Wm−1 into B sub-blocks Wm−1;b, b = 1, 2, . . . , B, that each take on

2nRm−1 values.

⊲ m encoders where

– the encoder at node i, 0 ≤ i ≤ m − 2, assigns a codeword xi

(

w0;b−[i;m−1]

)

of length n to the messages
(

w0;b−[i;m−1]

)
def
=
(

w0;b−i, . . . , w0;b−(m−1)

)

∈ Wm−i
0

for transmission in block b;

– the encoder at node m − 1 assigns a codeword xm−1

(

w0;b−(m−1), wm−1;b

)

of

length n to the messages
(

w0;b−(m−1), wm−1;b

)

∈ W0 ×Wm−1 for transmission

in block b.
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⊲ m decoders where

– the decoder at node i, 1 ≤ i ≤ m− 1, assigns an estimate ŵ0;b−(i−1) ∈ W0 or

an error message to the received n-sequence yi(b);

– the decoder at node m assigns an estimate
(

ŵ0;b−(m−1), ŵm−1;b

)

∈ W0×Wm−1

or an error message to the received n-sequence ym(b).

Definition 3.3. The average probability of error in block b

⊲ at node i, 1 ≤ i ≤ m− 1, is

P
(n)
i;b = P

{

Ŵ0;b−(i−1) 6= W0;b−(i−1)

}

;

⊲ at node m is

P
(n)
m;b = P

{(

Ŵ0;b−(m−1), Ŵm−1;b

)

6=
(

W0;b−(m−1),Wm−1;b

)}

.

A rate pair (R0, Rm−1) is achievable if there exists a sequence of
(

2nR0 , 2nRm−1, n
)

codes

such that

lim
n→∞

P
(n)
i;b = 0

for all i = 1, . . . , m and b = 1, . . . , B.

Theorem 3.2. The capacity region C of the line network depicted Fig. 3.1b is

C =
⋃

PX0...Xm−1







R0 ≤ min {min1≤i≤m−2 H (Yi|Xi) , H (Ym−1|UXm−1)}
Rm−1 ≤ H(Ym|U)

R0 +Rm−1 ≤ H(Ym)







.

The union is over all probability distributions PX0...Xm−1
of the form

PX0
PX1

PX2|X1
. . . PXm−2|Xm−3

PU |Xm−2
PXm−1|U , (3.11)

where |U | ≤ |Xm−2| · |Xm−1|+ 2.
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3.4.1. Achievability Proof for Theorem 3.2

Random codebook generation:

⊲ Fix a pmf PX0
PX1

PX2|X1
. . . PXm−2|Xm−3

PU |Xm−2
PXm−1|U .

⊲ Randomly and independently generate 2nR0 sequences u
(

w0;b−(m−1)

)

of length n,

w0;b−(m−1) ∈ {1, . . . , 2nR0}, each according to
∏n

l=1 PU(ul).

⊲ Codebook at node m − 1: For each u
(

w0;b−(m−1)

)

, randomly and independently

generate 2nRm−1 sequences xm−1

(

w0;b−(m−1), wm−1;b

)

, wm−1;b ∈ {1, . . . , 2nRm−1},
each according to

∏n
l=1 PXm−1|U(xm−1,l|ul) (see Fig. 3.3a).

⊲ Codebook at node m − 2: For each u
(

w0;b−(m−1)

)

, randomly and independently

generate 2nR0 sequences xm−2

(

w0;b−(m−2), w0;b−(m−1)

)

, w0;b−(m−2) ∈ {1, . . . , 2nR0},
each according to

∏n
l=1 PXm−2|U(xm−2,l|ul) (see Fig. 3.3b).

⊲ Codebook at node i, 0 ≤ i < m − 2: For each xi+1

(

w0;b−[i+1;m−1]

)

, randomly

and independently generate 2nR0 sequences xi

(

w0;b−[i;m−1]

)

, w0;b−i ∈ {1, . . . , 2nR0},
each according to

∏n
l=1 PXi|Xi+1

(xi,l|xi+1,l) (see Fig. 3.3c).

Encoding: To send w0;b−i in block b, node i transmits xi

(

w0;b−[i;m−1]

)

, 0 ≤ i ≤ m − 2

based on the previously sent messages {w0;b−[i+1;m−1]}. Similarly, to send w0;b−(m−1) and

wm−1;b in block b, node m− 1 transmits xm−1

(

w0;b−(m−1), wm−1;b

)

.

Decoding: The decoder at node i, 1 ≤ i ≤ m − 2, declares at the end of block b

that ŵ0;b−(i−1) is sent if it is the unique message such that

(

xi−1

(

ŵ0;b−(i−1), w0;b−[i;m−1]

)

,xi

(

w0;b−[i;m−1]

)

,yi(b)
)

∈ T (n)
ǫ (Xi−1, Xi, Yi).

The decoder at node m− 1 declares at the end of block b that ŵ0;b−(m−2) is sent if it is

the unique message such that

(

u
(

w0;b−(m−1)

)

,xm−2

(

ŵ0;b−(m−2), w0;b−(m−1)

)

,xm−1

(

w0;b−(m−1), ŵm−1;b

)

,ym−1(b)
)

∈ T (n)
ǫ (U,Xm−2, Xm−1, Ym−1).
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u(1)

u(2)

u(k)

u(2nR0 )
xm−1(k, 2nRm−1)

xm−1(k, 1)

xm−1(k, l)

(a) Random codebook construction for node m− 1.

u(1)

u(2)

u(k)

u(2nR0 )
xm−2(k, 2nR0)

xm−2(k, 1)

xm−2(k, l)

(b) Random codebook construction for node m− 2.

xi+1(1, . . . , 1)

xi+1(1, . . . , 2)

xi+1(k1, . . . , km−1−i)

xi+1(2nR0 , . . . , 2nR0)

xi(1, k1, . . . , km−1−i)

xi(l, k1, . . . , km−1−i)

xi(2
nR0 , k1, . . . , km−1−i)

(c) Random codebook construction for node i, 0 ≤ i < m− 2.

Figure 3.3.: Random codebook construction for the network depicted in Fig. 3.1b.
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The decoder at sink node m declares at the end of block b that
(

ŵ0;b−(m−1), ŵm−1;b

)

is

sent if they are the unique messages such that

(

u
(

ŵ0;b−(m−1)

)

,xm−1

(

ŵ0;b−(m−1), ŵm−1;b

)

,ym(b)
)

∈ T (n)
ǫ (U,Xm−1, Ym).

Analysis of the probabilities of error: We assume without loss of generality that
(

W0;b−(m−1), . . . ,W0;b,Wm−1;b

)

= (1, . . . , 1, 1). Moreover, we assume that all decoding

steps in previous blocks were successful. Then the decoder at node i, 1 ≤ i ≤ m − 2,

makes an error if and only if one or both of the following events occur:

E (n)
i,1 =

{

(Xi−1 (1, . . . , 1) ,Xi (1, . . . , 1) ,Yi(b)) /∈ T (n)
ǫ (Xi−1, Xi, Yi)

}

,

E (n)
i,2 =

{(

Xi−1

(

w0;b−(i−1), 1, . . . , 1
)

,Xi (1, . . . , 1) ,Yi(b)
)

∈ T (n)
ǫ (Xi−1, Xi, Yi)

}

for some w0;b−(i−1) 6= 1. The average probability of error for the decoder in block b at

node i is upper bounded as

P
(n)
i;b ≤ P

(

E (n)
i,1

)

+ P

(

E (n)
i,2

)

.

By the law of large numbers, the first term P

(

E (n)
i,1

)

goes to zero as n→∞. Regarding

the second term, observe that Xi−1

(

w0;b−(i−1), 1, . . . , 1
)

is conditionally independent of

(Xi−1 (1, 1, . . . , 1) ,Yi(b)) given Xi (1, . . . , 1) for w0;b−(i−1) 6= 1 and is distributed accord-

ing to
∏n

k=1 PXi−1|Xi
(xi−1,k|xi,k(1, . . . , 1)). Hence, by Lemma 3.1, P

(

E (n)
i,2

)

tends to zero

as n → ∞ if R0 < I(Xi−1;Yi|Xi) − δ(ǫ) = H(Yi|Xi) − δ(ǫ), where the equality follows

from channel model (2.2).

Next, the average probability of error for the decoder at node m− 1 is analyzed. The

decoder makes an error if and only if one or both of the following events occur:

E (n)
m−1,1 =

{

(U (1) ,Xm−2 (1, 1) ,Xm−1 (1, 1) ,Ym−1(b)) /∈ T (n)
ǫ (U,Xm−2, Xm−1, Ym−1)

}

,

E (n)
m−1,2 =

{(

U (1) ,Xm−2

(

w0;b−(m−2), 1
)

,Xm−1 (1, 1) ,Ym−1(b)
)

∈ T (n)
ǫ (U,Xm−2, Xm−1, Ym−1)

}
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for some w0;b−(m−2) 6= 1. The average probability of error for the decoder in block b at

node m− 1 is upper bounded as

P
(n)
m−1;b ≤ P

(

E (n)
m−1,1

)

+ P

(

E (n)
m−1,2

)

.

By the law of large numbers, the first term P

(

E (n)
m−1,1

)

goes to zero as n→∞. Regard-

ing the second term, observe that Xm−2

(

w0;b−(m−2), 1
)

is conditionally independent of

(Xm−2 (1, 1) ,Ym−1(b)) given U (1) and Xm−1 (1, 1) for w0;b−(m−2) 6= 1 and is distributed

according to
∏n

k=1 PXm−2|U (xm−2,k|uk(1)). Hence, by Lemma 3.1, P

(

E (n)
m−1,2

)

tends to

zero as n→ ∞ if R0 < I(Xm−2;Ym−1|UXm−1)− δ(ǫ) = H(Ym−1|UXm−1)− δ(ǫ), where

the equality follows from channel model (2.2).

Finally, the average probability of error for the decoder at sink node m is analyzed.

The decoding procedure yields an error if and only if one or both of the following events

occur:

E (n)
m,1 =

{

(U (1) ,Xm−1 (1, 1) ,Ym(b)) /∈ T (n)
ǫ (U,Xm−1, Ym)

}

and

E (n)
m,2 =

{(

U
(

w0;b−(m−1)

)

,Xm−1

(

w0;b−(m−1), 1
)

,Ym(b)
)

∈ T (n)
ǫ (U,Xm−1, Ym)

}

for some w0;b−(m−1) 6= 1. Further,

E (n)
m,3 =

{

(U (1) ,Xm−1 (1, wm−1;b) ,Ym(b)) ∈ T (n)
ǫ (U,Xm−1, Ym)

}

for some wm−1;b 6= 1, and

E (n)
m,4 =

{(

U
(

w0;b−(m−1)

)

,Xm−1

(

w0;b−(m−1), wm−1;b

)

,Ym(b)
)

∈ T (n)
ǫ (U,Xm−1, Ym)

}

for some w0;b−(m−1) 6= 1, wm−1;b 6= 1. The average probability of error for the decoder in

block b at sink node m is upper bounded as

P
(n)
m;b ≤ P

(

E (n)
m,1

)

+ P

(

E (n)
m,2

)

+ P

(

E (n)
m,3

)

+ P

(

E (n)
m,4

)

.
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By the law of large numbers, the first term P

(

E (n)
m,1

)

goes to zero as n → ∞. For

the second term, note that
(

U
(

w0;b−(m−1)

)

,Xm−1

(

w0;b−(m−1), 1
))

is independent of

(U (1) ,Xm−1 (1, 1) ,Ym(b)) for w0;b−(m−1) 6= 1. Thus, by Lemma 3.1, P

(

E (n)
m,2

)

tends

to zero as n → ∞ if R0 < I(UXm−1;Ym) − δ(ǫ) = H(Ym) − δ(ǫ), where the equality

follows from channel model (2.2). For the third term, observe that Xm−1 (1, wm−1;b)

is conditionally independent of (Xm−1 (1, 1) ,Ym(b)) given U (1) for wm−1;b 6= 1 and is

distributed according to
∏n

k=1 PXm−1|U (xm−1,k|uk(1)). Hence, by Lemma 3.1, P
(

E (n)
m,3

)

tends to zero as n → ∞ if Rm−1 < I(Xm−1;Ym|U) − δ(ǫ) = H(Ym|U) − δ(ǫ), where

the equality follows from channel model (2.2). Finally, regarding the fourth term,

observe that the tuple
(

U
(

w0;b−(m−1)

)

,Xm−1

(

w0;b−(m−1), wm−1;b

))

is independent of

(U (1) ,Xm−1 (1, 1) ,Ym(b)) for w0;b−(m−1) 6= 1, wm−1;b 6= 1. Hence, by Lemma 3.1,

P

(

E (n)
m,4

)

tends to zero as n → ∞ if R0 + R1 < I(UXm−1;Ym) − δ(ǫ) = H(Ym) − δ(ǫ),
where the equality follows from channel model (2.2).

3.4.2. Converse for Theorem 3.2

Consider a
(

2nR0, 2nRm−1 , n
)

code with limn→∞ P
(n)
i;b = 0 for all 1 ≤ i ≤ m and b =

1, 2, . . . , B. By Fano’s inequality

H
(

W0;b−(i−1)|Yn
i

)

≤ nR0P
(n)
i;b + 1 = nǫ

(n)
i;b , for all 1 ≤ i ≤ m− 1 (3.12)

and

H
(

W0;b−(m−1)Wm−1;b|Yn
m

)

≤ n(R0 +Rm−1)P
(n)
m;b + 1 = nǫ

(n)
m;b (3.13)

where ǫ(n)
i;b tends to zero as n→∞ for all 1 ≤ i ≤ m. For 1 ≤ i ≤ m− 2, we have

nR0 = H
(

W0;b−(i−1)

)

(3.14)

= H
(

W0;b−(i−1)|Wm−1;b

)

(3.15)

= I
(

W0;b−(i−1); Yn
i |Wm−1;b

)

+H
(

W0;b−(i−1)|Yn
i Wm−1;b

)

≤ I
(

W0;b−(i−1); Yn
i |Wm−1;b

)

+ nǫ
(n)
i;b (3.16)

=
n∑

l=1

I
(

W0;b−(i−1);Yi,l|Wm−1;bY
l−1
i

)

+ nǫ
(n)
i;b (3.17)
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=
n∑

l=1

I
(

W0;b−(i−1);Yi,l|Wm−1;bY
l−1
i Xl

i

)

+ nǫ
(n)
i;b (3.18)

≤
n∑

l=1

I
(

W0;b−(i−1)Xi−1,l;Yi,l|Wm−1;bY
l−1
i Xl

i

)

+ nǫ
(n)
i;b (3.19)

≤
n∑

l=1

I (Xi−1,l;Yi,l|Xi,l) + nǫ
(n)
i;b (3.20)

= nI (Xi−1;Yi|XiQ) + nǫ
(n)
i;b (3.21)

≤ nH (Yi|Xi) + nǫ
(n)
i;b , (3.22)

where2

(3.14) follows because W0;b−(i−1) is uniformly distributed;

(3.15) follows from the independence of W0;b−(i−1) and Wm−1;b;

(3.16) follows from (3.12) and the property that conditioning does not increase entropy;

(3.17) follows from the chain rule for mutual information;

(3.18) follows from (3.3), i.e., Xl
i is a function of Yl−1

i for all 1 ≤ i ≤ m− 2;

(3.19) follows from the chain rule and the non-negativity of mutual information;

(3.20) follows because Yi,l is a function of Xi−1,l and Xi,l;

(3.21) follows by defining Q to be a time-sharing random variable with Yi
def
= Yi,Q,

Xi−1
def
= Xi−1,Q and Xi

def
= Xi,Q;

(3.22) follows by expanding mutual information and using the fact that conditioning

does not increase entropy.

In order to bound R0 for i = m− 1, we start with (3.19). Before doing so, we remark

that (3.18) holds since Xl
m−1 is a function of Yl−1

m−1 and Wm−1;b due to (3.2). We have

nR0 ≤
n∑

l=1

I
(

W0;b−(m−2)Xm−2,l;Ym−1,l|Wm−1;bY
l−1
m−1X

l
m−1

)

+ nǫ
(n)
m−1;b

2One could derive (3.22) directly from (3.18) due to the deterministic network model. Because of
Section 3.4.4, we introduce a couple of additional steps.
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≤
n∑

l=1

H (Ym−1,l|VlXm−1,l) + nǫ
(n)
m−1;b (3.23)

= nH (Ym−1|UXm−1) + nǫ
(n)
m−1;b, (3.24)

where

(3.23) follows from the deterministic network model and because conditioning does not

increase entropy; further Vl
def
=
(

Xl−1
m−1,Y

l−1
m−1

)

;

(3.24) follows by defining Q to be a time-sharing random variable with U
def
= (VQ, Q),

Ym−1
def
= Ym−1,Q and Xm−1

def
= Xm−1,Q.

Next, note from (3.13) that H (Wm−1;b|Yn
m) ≤ nǫ

(n)
m;b. Hence, we have

nRm−1 = H (Wm−1;b)

= I (Wm−1;b; Yn
m) +H (Wm−1;b|Yn

m)

≤ I (Wm−1;b; Yn
m) + nǫ

(n)
m;b

=
n∑

l=1

I
(

Wm−1;b;Ym,l|W0Y
l−1
m

)

+ nǫ
(n)
m;b (3.25)

=
n∑

l=1

H
(

Ym,l|W0X
l−1
m−1Yl−1

m

)

+ nǫ
(n)
m;b (3.26)

=
n∑

l=1

H
(

Ym,l|W0X
l−1
m−1Yl−1

m−1Y
l−1
m

)

+ nǫ
(n)
m;b (3.27)

≤
n∑

l=1

H (Ym,l|Vl) + nǫ
(n)
m;b (3.28)

= nH (Ym|U) + nǫ
(n)
m;b, (3.29)

where

(3.25) follows from the chain rule for mutual information and the independence of W0

and Wm−1;b;

(3.26) follows because W0 (see Definition 3.2) and Wm−1;b determine Ym,l; further,

Yl−1
m = Xl−1

m−1;

(3.27) follows because W0 and Xl−1
m−1 fully determine Yl−1

m−1;
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(3.28) follows by Vl
def
=
(

Xl−1
m−1,Y

l−1
m−1

)

and the fact that conditioning does not increase

entropy;

(3.29) follows by defining Q to be a time-sharing random variable with U
def
= (VQ, Q)

and Ym
def
= Ym,Q.

Concerning the sum-rate, we obtain3

nR0 + nRm−1 = H
(

W0;b−(m−1)Wm−1;b

)

(3.30)

= I
(

W0;b−(m−1)Wm−1;b; Yn
m

)

+H
(

W0;b−(m−1)Wm−1;b|Yn
m

)

≤ I
(

W0;b−(m−1)Wm−1;b; Yn
m

)

+ nǫ
(n)
m;b (3.31)

=
n∑

l=1

I
(

W0;b−(m−1)Wm−1;b;Ym,l|Yl−1
m

)

+ nǫ
(n)
m;b (3.32)

≤
n∑

l=1

I
(

W0;b−(m−1)Wm−1;bXm−1,l;Ym,l|Yl−1
m

)

+ nǫ
(n)
m;b (3.33)

≤
n∑

l=1

I (Xm−1,l;Ym,l) + nǫ
(n)
m;b (3.34)

= nI (Xm−1;Ym|Q) + nǫ
(n)
m;b (3.35)

≤ nH (Ym) + nǫ
(n)
m;b, (3.36)

where

(3.30) follows becauseW0;b−(m−1) andWm−1;b are independent and uniformly distributed;

(3.31) follows using (3.13);

(3.32) and (3.33) follow from the chain rule for mutual information;

(3.34) follows from the Markov chain
(

W0;b−(m−1),Wm−1;b

)

−Xm−1,l − Ym,l and the fact

that conditioning does not increase entropy;

(3.35) follows by defining Q to be a time-sharing random variable and Ym
def
= Ym,Q,

Xm−1
def
= Xm−1,Q;

3One could derive (3.36) directly from (3.32) due to the deterministic network model. Because of
Section 3.4.4, we introduce a couple of additional steps.
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(3.36) follows by expanding mutual information and using the fact that conditioning

does not increase entropy.

To complete the proof of the converse, we need to check (3.11). Recall (3.2), namely

that Xm−1,l is a function of Yl−1
m−1 and Wm−1. Since X0,l, . . . , Xm−2,l do not depend on

Wm−1, we have the Markov chain X0,l, . . . , Xm−2,l − Xl−1
m−1Yl−1

m−1 − Xm−1,l. Hence, we

have

PUX0...Xm−1
= PUPX0...Xm−1|U

= PUPX0,l...Xm−2,l|lX
l−1
m−1

Y
l−1
m−1

PXm−1,l|lX
l−1
m−1

Y
l−1
m−1

= PUPX0...Xm−2|UPXm−1|U .

This shows X0, . . . , Xm−2−U−Xm−1. Further, the Markov chain X0−· · ·−Xm−2 holds

since Xi,l, 0 ≤ i ≤ m − 2, is a function of Yl−1
i (see (3.3)) and each Yi,l is a function

of Xi−1,l and Xi,l. We finally observe that the pmf PX0X1
as shown in Table 3.1 can be

assumed. Hence, the independence of X0 and X1 in (3.11) follows.

3.4.3. Cardinality Bound on U

In this section, we show that the cardinality of the range of U can be bounded by |Xm−2|·
|Xm−1|+ 2. The proof is based on the following lemma by Ahlswede and Körner [36].

Lemma 3.2. Let Pr be the set of all probability r-vectors p = (p1, . . . , pr) and let

fj (p), j = 1, . . . , k, be continuous functions on Pr. Then, to any probability measure µ

on (the Borel subsets of) Pr there exist (k + 1) elements pi of Pr and constants αi ≥ 0,

i = 1, . . . , k + 1 with
∑k+1

i=1 αi = 1, such that

∫

fj (p) dµ =
k+1∑

i=1

αifj (pi) , j = 1, . . . , k.

In our case, Pr is the set of all pmfs on Xm−2 × Xm−1. We can assume that Xm−2 ×
Xm−1 is ordered and we refer to the elements of Xm−2 × Xm−1 by j = 1, 2, . . . , r where

r
def
= |Xm−2 × Xm−1|. The conditional pmf

{

PXm−2Xm−1|U(j|u) : j ∈ Xm−2 × Xm−1

}

can
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be interpreted as an element of Pr and {PU(u)}u∈U as a Borel measure on Pr. Let

p = (p1, . . . , pr) ∈ Pr, Jx
def
= {j : Xm−1 = x} and consider the following r+2 continuous

functions on Pr:

⊲ fj(p) = pj, the projection on the jth coordinate of p for j = 1, 2, . . . , r;

⊲ fr+1(p) = − ∑

y∈Ym−1
x∈Xm−1

(
∑

Jx
PYm−1|Xm−2Xm−1

(y|j)pj

)

log





∑

Jx

PYm−1|Xm−2Xm−1
(y|j)pj

∑

Jx

pj



 ;

⊲ fr+2(p) = − ∑

x∈Xm−1

(

∑

Jx

pj

)

log

(

∑

Jx

pj

)

.

Then
∑

u∈U

fj

(

PXm−2Xm−1|U (·|u)
)

PU(u) = PXm−2Xm−1
(j)

for all j = 1, 2, . . . , r − 1. Further,

∑

u∈U

fr+1

(

PXm−2Xm−1|U (·|u)
)

PU(u) = H(Ym−1|UXm−1)

∑

u∈U

fr+2

(

PXm−2Xm−1|U (·|u)
)

PU(u) = H(Xm−1|U).

Note that H(Xm−1|U) equals H(Ym|U) due to the deterministic network model. Now by

Lemma 3.2, we can find a random variable U ′ with a range of at most |Xm−2| · |Xm−1|+2

values such that H(Ym−1|U ′Xm−1) = H(Ym−1|UXm−1) and H(Ym|U ′) = H(Ym|U).

3.4.4. Remark

A closer look at the proof of the converse part in Section 3.4.2 shows that the properties

of the deterministic network model were used only to bound Rm−1. Hence, by setting

Rm−1 equal to zero and U = ∅, we obtain the capacity of a noisy relay cascade, as stated

next.

Theorem 3.3. Consider a discrete memoryless relay cascade composed of a source node,

m−1 intermediate relay nodes and a sink node as depicted in the upper part of Fig. 2.2.

The links in the cascade are allowed to be noisy, i.e., they obey general pmfs PYi|Xi−1Xi
,
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i = 1, 2, . . . , m− 1, and PYm|Xm−1
. The capacity of the relay cascade is given by

C = max
PX0...Xm−1

min {I (X0;Y1|X1) , . . . , I (Xm−2;Ym−1|Xm−1) , I (Xm−1;Ym)} .

Theorem 3.3 could also have been obtained by observing that the model is a physically

degraded relay network and applying the decode-forward rate of Xie and Kumar [28].

3.5. Discussion

We derived the capacity region of half-duplex-constrained relay cascades with two sources.

The second source was either the first or the last relay in the cascade. An obvious exten-

sion is to allow any relay in the cascade to act as a second source. This case turns out

to be elusive. Though not considered in this chapter, we point out that a combination

of the random code described in Section 3.4.1, tailored to the new setup, and the timing

code introduced in Section 2.4 is capacity achieving.





4
A Constrained Coding Approach to

Error-Free Half-Duplex Relay

Networks‡

4.1. Introduction

Information transmission through a relay channel or network with error-free and/or

half-duplex-constrained relays is a problem that has been considered by several authors

[1, 2, 9, 27, 31, 33, 38, 39]. In this chapter the focus is on directed trees of error-free half-

duplex-constrained relays, as shown in Fig. 2.6. Such networks include a chain of relays

as a special case, which was the central topic of Chapter 2. The transmission objective

is to broadcast information from a source (situated at the root of the tree) to all network

nodes, each of which is half-duplex constrained. In each time slot, a node either receives

‡This chapter is based on the following publication [37]: IEEE Trans. Inf. Theory, vol. 59, no. 10,
pp. 6258-6260, May 2013 (together with Frank R. Kschischang).
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(without error) the transmission of its parent, or broadcasts information to its children,

but it may not do both.

More precisely, we assume that transmission between nodes in the network occurs

in discrete time-slots. Recall that Q = {0, . . . , q − 1} represents a q-ary transmission

alphabet, while the additional symbol N indicates a channel use without transmission.

Moreover, X = Q∪ {N}. In any given time-slot, each node of the network broadcasts a

symbol x ∈ X to its children; the node is said to be on if x ∈ Q; otherwise x = N and

the node is said to be off.

In accordance with (2.2), the half-duplex constraint is captured as follows. When a

relay is off, it is connected to its parent through a noiseless (q + 1)-ary channel with

alphabet X , and so receives the transmission from its parent without error. When a

relay is on, it cannot receive, so the symbol sent by its parent is erased.

The simplest approach to information broadcasting is to require each network node

to be off half of the time, organized in deterministic fashion so that a node is off

whenever its parent might be on. Nodes simply forward what they receive, resulting in

a transmission rate of 0.5 log2(q+ 1) bits per symbol (b/sym). By Theorem 2.2 and the

explanations in Section 2.7.1, the multicast capacity, on the other hand, approaches [9]

C(q) = log2

(

1 +
√

4q + 1

2

)

b/sym (4.1)

as the tree-depth becomes large.4 In the binary case, deterministic store-and-forward

achieves 0.5 b/sym whereas C(1) = log2 φ = 0.6924 b/sym, where φ is the golden ratio.

For trees of finite depth, even greater rates are possible. For example, for trees of depth

D = 2, a rate of C1(1) = 0.7729 b/sym is achievable in the binary case (see Table 2.5).

It is clear that deterministic store-and-forward falls short of the maximum possible

transmission rate. However, to achieve the multicast capacity of trees of finite depth

requires a sophisticated coding approach, as introduced in Section 2.4. The approach is

based on coding additional information in the on-off patterns of the nodes.

We note that on-off patterns have also been exploited for neighbor discovery in half-

duplex-constrained networks using a compressed sensing approach [40–42]. Another

4We use the unit “b/sym” instead of “b/u” since the tools, which are applied in the following, stem
from constrained coding where “b/sym” is commonly used. Moreover, C(q) is used instead of C∞(q).



4.2. Constrained Coding Background 61

problem, namely a line of three nodes where the first two nodes are half-duplex sources

and where all nodes are connected by packet erasure channels, was addressed in [43]

within a queuing-theoretic framework. In [44] a Gaussian point-to-point channel with a

sender subject to a duty cycle constraint (e.g., a half-duplex constraint) and an average

power constraint is considered. Interestingly, the optimal input distribution is shown to

be discrete, i.e., a modulated on-off signaling scheme is capacity-achieving.

In this chapter we will present a multicasting scheme, based on constrained coding,

that preserves the simplicity of the store-and-forward approach, but achieves a higher

transmission rate than deterministic store-and-forward. In particular, we show that

we can achieve a multicast rate of C(q) in any error-free half-duplex-constrained tree

network using constrained coding at the source and symbol forwarding at the relays.

The organization of the chapter is as follows. Section 4.2 provides a brief summary of

constrained coding. The multicasting scheme is introduced in Section 4.3. In Section 4.4,

we compare rates achievable in trees of finite depth using the timing code of Chapter 2

and the code proposed in this chapter. The chapter is ended with an appendix on the

state-splitting algorithm and its usage to construct a 3/2 finite-state encoder.

4.2. Constrained Coding Background

The approach we take to multicasting in a tree of half-duplex-constrained nodes uses

tools from constrained coding (or symbolic dynamics); see, e.g., [45, 46]. In a nutshell,

the field of constrained coding studies mappings from unconstrained input sequences to

output sequences obeying certain constraints. The constraints are often expressed by

specifying forbidden sub-blocks, i.e., subsequences that are not permitted to occur in

any output sequence. A classical example is the golden mean shift, which is the set of

binary sequences in which the sub-block 11 never occurs. Constrained coding has found

many applications in magnetic and optical recording systems.

The capacity of a constrained system, which is the maximum rate at which uncon-

strained binary data may be mapped to constrained output data, is defined as

C = lim sup
n→∞

1

n
log2 N(n) b/sym,
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where N(n) denotes the number of sequences in the output alphabet having length n

and satisfying the given constraint. For example, the golden mean shift satisfies the

Fibonacci recurrence: for n ≥ 2,

N(n) = N(n− 1) +N(n− 2), with N(0) = 1, N(1) = 2.

From this it can be shown that the golden mean shift has C = log2 φ, where φ =

(1 +
√

5)/2 is the golden ratio (a result that explains the name “golden mean shift”).

Interestingly, the golden ratio also arises in the analysis of the trapdoor channel [7] with

feedback, where it is shown that the capacity equals log2 φ.

It is well known that the capacity of certain constrained systems can be obtained

via an irreducible, lossless graph presentation of the constraint [45]. If G is such a

presentation, and AG is the adjacency matrix of G, then

C = log2 λ(AG),

where λ is the largest of the absolute values of the eigenvalues of AG. This formulation

of capacity will be used in the sequel.

4.3. Code Construction

We now describe the constrained coding approach taken in this paper. The transmission

protocol is trivial, amounting to simple symbol-forwarding: during any given time-slot,

every non-source node simply forwards (to all of its children) the symbol it has received

from its parent during the previous time-slot. Correct forwarding is achieved provided

that nodes obey the half-duplex constraint, i.e., that they are never on when their parent

node might be on. Under the symbol-forwarding protocol, this is accomplished if and

only if the source is never itself on in two adjacent time-slots.

Thus we arrive naturally at a constrained coding problem: the source may emit any

sequence of symbols drawn from X satisfying the constraint that no two adjacent symbols

are drawn from Q. In the language of symbolic dynamics, every transmitted sequence

is drawn from the shift of finite type denoted as XQ2 having forbidden sub-block set
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Q2 def
= Q × Q. An irreducible, lossless graph presentation of this shift is shown in

Fig. 4.1. When q = 1, this shift is equivalent to the golden mean shift.

N

N

Q

Figure 4.1.: Graph presentation of half-duplex constraint under symbol-forwarding.

The adjacency matrix of this presentation is given, as a function of q, as

A(q) =






1 q

1 0




 ,

which has characteristic polynomial

pq(λ) = λ2 − λ− q.

The eigenvalues of A(q) (the roots of pq(λ)) are given as

λ =
1

2

(

1±√1 + 4q
)

,

and the constrained capacity (the logarithm of the largest eigenvalue) is given as

C(q) = log2

(

1 +
√

1 + 4q

2

)

.

Remarkably—and this is the central result of this chapter—the constrained coding ap-

proach achieves the multicast capacity C(q) of infinite-depth trees, but without the

necessity of designing sophisticated timing codes as we did in Chapter 2 (see also [9]).

The capacity C(q) can be approached using methods (e.g., the state-splitting algo-

rithm) from constrained coding. Fig. 4.2 provides two examples. The first, in Fig. 4.2(a),

is a standard example in constrained coding [46] and gives a rate-(2/3) encoder for

q = 1, which achieves more than 96% of the capacity C(1) = log2 φ. The second, in
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{NN}

{NN,0N,1N}

Figure 4.2.: Encoders for (a) q = 1, R = 2/3, C(1) = log2 φ ≈ 0.6942 b/sym, (b) q = 6,
R = 3/2, C(6) = log2 3 ≈ 1.5850 b/sym.

Fig. 4.2(b), is a rate-(3/2) encoder for q = 6, which achieves more than 94% of the

capacity C(6) = log2(3). Similar examples can readily be constructed for other values

of q. For any given q, if the number of encoder states is allowed to grow, C(q) can be

approached arbitrarily closely.

4.4. Discussion

Table 5.1 compares, for q = 1, rates achievable in networks of finite depth D using

three approaches: the timing codes presented in Chapter 2, the constrained coding

approach of this chapter, and the deterministic store-and-forward approach. The row

labeled CD−1, which gives the maximum achievable rate (using timing codes), serves as a

benchmark for the other schemes (see also Table 2.5 for the values of CD−1). We observe

that C(q)/CD−1, the relative efficiency of constrained coding, rapidly converges to unity

as D increases. On the other hand, 0.5/CD−1, the relative efficiency of deterministic

store-and-forward, saturates at approximately 72%. The differences among the three

approaches however become smaller as q increases.

We observe that timing codes require nodes at different depths in a finite tree to

have different (carefully designed) on-off duty cycles that depend on the depth of the
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Table 4.1.: Achievable Rates in Networks of Finite Depth D with q = 1

D 2 3 5 11 ∞
CD−1 [b/sym] 0.7729 0.7324 0.7099 0.6981 0.6942
C(q)/CD−1 [%] 89.82 94.79 97.80 99.44 100

0.5/CD−1 [%] 64.70 68.27 70.43 71.62 72.02

tree. It is shown in Table 2.4 that these duty cycles converge to a constant as the tree

depth grows. The capacity C(q), achieved both by timing codes and by the constrained

coding approach of this paper, is the maximum rate that can be achieved with a constant

on-off duty cycle throughout the network.

We note that it might be interesting to consider a network model with noisy transmis-

sion links. In this case, techniques that combine constrained coding with error control

(as in, e.g., [47–49]) may be helpful. As a final remark, we point out that encoders,

which output sequences with a minimum number of on- and off-symbols in a row,

would greatly relieve the requirements on synchronization and switching speed of the

relays. Such encoders can be easily constructed along the lines outlined in the following

appendix.

4.A. Appendix

In this appendix, we show how to construct the rate 3/2 finite-state encoder depicted in

Fig. 4.2(b) using the state-splitting algorithm. The definition of a finite-state encoder is

as follows.

Definition 4.1. [46, Chapter 4] Let S be a constrained system (like the one shown in

Fig. 4.1). A rate p : q finite-state encoder for S is a labeled graph H such that

⊲ each state of H has out-degree 2p;

⊲ each edge of H is labeled with q symbols from the code alphabet;

⊲ S (H) ⊆ S, i.e, the set of possible sequences resulting from parsing the edges of H

is contained in S;
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⊲ H is lossless, i.e., any two distinct paths with the same initial state and terminal

state have different labelings.

The following result, known as Finite-State Coding Theorem, reveals that the ca-

pacity C of a constrained system can be approximated arbitrarily close by finite-state

encoders.

Theorem 4.1. [46, Chapter 4] Let S be a constrained system. If p/q ≤ C, then there

exists a rate p : q finite-state encoder for S.

The proof of Theorem 4.1 gives a procedure—the state-splitting algorithm—to con-

struct rate p : q finite-state encoders. In a nutshell, for a given deterministic presenta-

tion G of a constrained system S (which is not already a finite-state encoder according

to Definition 4.1), the state-splitting algorithm applies iteratively a sequence of state-

splitting transformations beginning with the qth power graph Gq. The procedure yields a

new graphical presentation of the constrained system with minimum out-degree at least

2p; then, after deleting edges such that every node has out-degree 2p, we get a rate p : q

finite-state encoder for S.

The rules for a single state-splitting transformation are described next [46, Chapter

5]. Let H = (V, E) be a labeled graph with a finite set of states V and a finite set of

edges E . Let Eu denote the set of outgoing edges from state u in H . A splitting of

state u ∈ V into two descendant states u1 and u2 is determined by a partition of Eu into

two disjoint sets Eu1
and Eu2

. The new labeled graph H ′ = (V ′, E ′), which has state set

V ′ = V \ {u} ∪ {u1, u2}, describes the same constrained system as H if the set of edges

E ′ are chosen according to the following rules:

⊲ The edges in H ′ that do not involve states u1 and u2 are inherited from H and

have the same labeling;

⊲ Let edge e in H start at a state v 6= u and terminate in state u. This edge is

replicated in H ′ to produce two edges (each with the same labeling as the original

edge in H): an edge from v to u1 and an edge from v to u2;

⊲ Let edge e in H start at state u and terminate in a state v 6= u, and suppose e

belongs to the set Eui
, i ∈ {1, 2}, in the partition of Eu. We draw in H ′ a corre-

sponding edge from state ui to state v with the same labeling as in H ;
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⊲ Let edge e be a self-loop at state u in H , and suppose that e belongs to Eui
,

i ∈ {1, 2}. In H ′ there will be two edges from state ui corresponding to e (each

with the same labeling as the original self-loop in H): one edge to state u1, the

other to state u2.

We are now ready to construct the encoder of Fig. 4.2b. This is done in three steps as

outlined in Fig. 4.3. First, the second power graph G2, depicted in Fig. 4.3a, is generated

from the golden mean shift shown in Fig 4.1 where Q = {0, . . . , 5}. Subsequently, the

left state of G2 (the state with more outgoing edges) is splitted (according to the splitting

criterions of the state-splitting algorithm), resulting in the graph shown in Fig. 4.3b. The

splitting is based on the following partition of the outgoing edges of the splitted state:

{NN, 0N, 1N,N0,N1,N2} and {2N, 3N, 4N, 5N,N3,N4,N5}. The first set corresponds to

the upper left state in Fig. 4.3b while the second set is with respect to the bottom state.

In the final step, as many edges from Fig. 4.3b are deleted such that eight outgoing

edges per state remain (see Fig. 4.3c). Observe that the deletion of edges is the reason

why the rate of the resulting 3 : 2 encoder is less than the capacity C(6) = log2 3 b/sym

of the constrained system.

{N0, . . . ,N5}

NN {N0, . . . ,N5}
{0N, . . . , 5N}

NN

(a) The second power graph G2 of the graph shown in Fig 4.1 where Q = {0, . . . , 5}.
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(b) Graph resulting from splitting the left state of G2.
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(c) Deletion of edges such that 8 outgoing edges per state remain.

Figure 4.3.: Construction of the rate 3/2 finite-state encoder depicted in Fig. 4.2(b).



5
Recursions for the Trapdoor

Channel and an Upper Bound on its

Capacity§

5.1. Introduction and Channel Model

The focus of this chapter is on the trapdoor channel. The trapdoor channel was intro-

duced by David Blackwell in 1961 [5] and is used by Robert Ash both as a book cover

and as an introductory example for channels with memory [52]. The mapping of channel

inputs to channel outputs can be described as follows. Consider a box that contains a

ball that is labeled s0 ∈ {0, 1}, where the index 0 refers to time 0. Both the sender and

the receiver know the initial ball. In time slot 1, the sender places a new ball labeled

x1 ∈ {0, 1} in the box. In the same time slot, the receiver chooses one of the two balls s0

§This chapter is based on the following publication [50]: Proc. IEEE Int. Symp. Inf. Theory,
Honolulu, HI, USA, Jun. 29 - Jul. 4, 2014, pp. 2914–2918, submitted to IEEE Trans. Inf.

Theory [51].
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(a) The trapdoor channel at time t.
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(b) The trapdoor channel at time t + 1. Here yt = st−1.

Figure 5.1.: The trapdoor channel.

or x1 at random while the other ball remains in the box. The chosen ball is interpreted

as channel output y1 at time t = 1 while the remaining ball becomes the channel state

s1. The same procedure is applied in every future channel use. In time slot 2, for in-

stance, the sender places a new ball x2 ∈ {0, 1} in the box and the corresponding channel

output y2 is either x2 or s1. The transmission process is visualized in Fig. 5.1. Fig. 5.1a

shows the trapdoor channel at time t when the sender places ball xt in the box. In the

same time slot, the receiver chooses randomly one of the two balls xt or st−1 as channel

output, in the figure the ball labeled with st−1. Consequently, the upcoming channel

state st becomes xt (see Fig. 5.1b). At time t + 1 the sender places a new ball xt+1 in

the box and the receiver draws yt+1 from st and xt+1. Table 5.1 depicts the probability

of an output yt given an input xt and state st−1.

Despite the simplicity of the trapdoor channel, deriving its capacity seems challenging

and is an open problem. One feature that makes the problem cumbersome is that the

distribution of the output symbols may depend on events happening arbitrarily far back

in the past since each ball has a positive probability to remain in the channel over any

finite number of channel uses. Instead of maximizing I(X;Y ) one rather has to consider

the multi-letter mutual information, i.e., lim supn→∞ I(Xn; Yn).

Let Pn|s0
denote the matrix of conditional probabilities of output sequences of length n

given input sequences of length n where the initial state equals s0. The following ordering

of the entries of Pn|s0
is assumed. Row indices represent input sequences and column
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Table 5.1.: Transition Probabilities of the Trapdoor Channel
xt st−1 PYt|XtSt−1

(yt = 0|xt, st−1) PYt|XtSt−1
(yt = 1|xt, st−1)

0 0 1 0
0 1 0.5 0.5
1 0 0.5 0.5
1 1 0 1

indices represent output sequences. To be more precise, the (i, j)th entry of
[

Pn|s0

]

,

indicated as
[

Pn|s0

]

i,j
, is the conditional probability of the binary output sequence cor-

responding to the integer j − 1 given the binary input sequence corresponding the the

integer i−1, 1 ≤ i, j ≤ 2n. For instance, if n = 3, then
[

P3|s0

]

5,3
denotes the conditional

probability that the channel input x1, x2, x3 = 1, 0, 0 will be mapped to the channel out-

put y1, y2, y3 = 0, 1, 0. It was shown in [53] that Pn|s0
, s0 ∈ {0, 1}, satisfies the recursion

laws

Pn+1|0 =






Pn|0 0

1
2
Pn|1

1
2
Pn|0




 (5.1)

Pn+1|1 =






1
2
Pn|1

1
2
Pn|0

0 Pn|1




 , (5.2)

where the initial matrices are given by P0|0 = P0|1 = 1. Ahlswede and Kaspi [54]

derived the zero-error capacity of the trapdoor channel, which equals 0.5 b/u. Permuter

et al. [7] considered the trapdoor channel under the additional assumption of having

a unit delay feedback link available from the receiver to the sender. They established

that the capacity of the trapdoor channel with feedback is equal to the logarithm of the

golden ratio. The achievability scheme involves a constrained coding scheme, similar to

the one introduced in Chapter 4.

In this chapter, we consider the problem of maximizing the n-letter mutual information

of the trapdoor channel for any n ∈ N. We relax the problem by permitting distributions

that are not probability distributions. The resulting optimization problem is convex but

the feasible set is larger than the probability simplex. Using the method of Lagrange

multipliers via a theorem presented in [52], we find explicit solutions for any n ∈ N. It
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is then shown that 1
2

log2

(
5
2

)

≈ 0.6610 b/u is an upper bound on the capacity of the

trapdoor channel. Specifically, the same absolute maximum 1
2

log2

(
5
2

)

≈ 0.6610 b/u

results for all trapdoor channels which process input blocks of even length. And the

sequence of absolute maxima corresponding to trapdoor channels which process inputs

of odd lengths converges to 1
2

log2

(
5
2

)

b/u from below as the block length increases.

Unfortunately, the absolute maxima of our relaxed optimization are attained outside the

probability simplex. Otherwise we would have established the capacity. Nevertheless,
1
2

log2

(
5
2

)

≈ 0.6610 b/u is, to the best of our knowledge, the tightest capacity upper

bound. Moreover, this bound is less than the feedback capacity of the trapdoor channel

proving that feedback increases the capacity.

The organization of the chapter is as follows. Section 5.2 presents the derivation of the

upper bound. In particular, the problem is set up and a useful result from the literature

is reviewed. Two recursions are then developed for the trapdoor channel based on which

the main result is derived. The chapter is concluded with Section 5.3.

5.2. A Lagrange Multiplier Approach to the

Trapdoor Channel

5.2.1. Problem Formulation

We derive an upper bound on the capacity of the trapdoor channel. Specifically, for any

n ∈ N, we find a solution to the optimization problem

maximize
PXn

1

n
I (Xn; Yn|s0)

=
1

n

2n
∑

i=1

2n
∑

j=1

pi

[

Pn|s0

]

i,j
log

[

Pn|s0

]

i,j
∑2n

k=1 pk

[

Pn|s0

]

k,j

(5.3)

subject to
2n
∑

i=1

pi = 1 (5.4)

2n
∑

k=1

pk

[

Pn|s0

]

k,j
≥ 0 for all 1 ≤ j ≤ 2n. (5.5)
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Note that PXn is a 2n-sequences (p1, . . . , p2n) where pi denotes the probability of the ith

input sequence xi, i.e., the binary sequence corresponding to the integer i − 1. Con-

straint (5.5) guarantees that the argument of the logarithm does not become negative.

The feasible set, defined by (5.4) and (5.5), is convex. It includes the set of proba-

bility mass functions, but might be larger. To see this note that (5.5) is a weighted

sum of all pk where each weight
[

Pn|s0

]

k,j
is non negative. Clearly, (5.4) and (5.5) are

satisfied by probability distributions. However, there might exist “distributions” which

involve negative values and sum up to one but still satisfy (5.5). Moreover, the objective

function n−1I (Xn; Yn|s0) is concave on the set of “distributions” satisfying (5.4) and

(5.5). Consequently, the optimization problem is convex and every solution maximizes

n−1I (Xn; Yn|s0). In the following, we use the notation

C↑
n

def
= max

PXn

n−1I (Xn; Yn|s0) .

Taking the limit of the sequence
(

C↑
n

)

n∈N
, one obtains either the capacity of the trapdoor

channel or an upper bound on the capacity, depending on whether the limit is attained

inside or outside the set of probability distributions. Since it does not matter whether

the optimization is with respect to initial state 0 or 1 (due to symmetry reasons), we do

not have to distinguish between lower capacity and upper capacity [6, Chapter 4.6]

5.2.2. Using a Result from the Literature

The reason for considering (5.5) and not the more natural constraints pk ≥ 0 for all k

is that a closed form solution can be obtained by applying the method of Lagrange

multipliers to (5.3) and (5.4). As a byproduct, (5.5) will be automatically satisfied. In

particular, setting the partial derivatives of

1

n
I (Xn; Yn|s0) + λ

2n
∑

i=1

pi (5.6)

with respect to each of the pi equal to zero results in a closed form solution of the

considered optimization problem.

This was done in [52, Theorem 3.3.3] for general discrete memoryless channels which
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are square and non singular. Note that Pn|s0
is square and non singular (see, e.g.,

Lemma 5.1 (b)). Moreover, we assume that the channel Pn|s0
is memoryless by repeat-

edly using it over a large number of input blocks of length n. Consequently, C↑
n might

be an upper bound on the capacity of the channel Pn|s0
. The reason is that some input

blocks possibly drive the channel Pn|s0
into the opposite state s0⊕ 1, i.e., the upcoming

input block sees channel Pn|s0⊕1 (whose C↑
n is equal to C↑

n of Pn|s0
by symmetry) but

not Pn|s0
. However, by assuming that the channel does not change over time, the sender

always knows the channel state before a new block is transmitted. Hence, C↑
n might

be an upper bound (even though it is attained on the set of probability distributions).

Nevertheless, this issue can be ignored if n goes to infinity because in the asymptotic

regime the channel Pn|s0
is used only once.

In summary, it is valid to apply [52, Theorem 3.3.3] which yields

C↑
n =

1

n
log2

2n
∑

j=1

exp2

(

−
2n
∑

i=1

[

P−1
n|s0

]

j,i
H (Yn|Xn = xi)

)

, (5.7)

attained at

pk = 2−C
↑
ndk, k = 1, . . . , 2n (5.8)

where

dk =
2n
∑

j=1

[

P−1
n|s0

]

j,k
exp2

(

−
2n
∑

i=1

[

P−1
n|s0

]

j,i
H (Yn|Xn = xi)

)

. (5.9)

Clearly, (p1, . . . , p2n) is a probability distribution only if dk ≥ 0. The Lagrangian (5.6)

does not involve constraint (5.5). However, the proof of [52, Theorem 3.3.3] shows that

2n
∑

k=1

pk

[

Pn|s0

]

k,j
= exp

(

λ−
M∑

i=1

[

P−1
n|s0

]

j,i
H (Yn|Xn = xi)− 1

)

(5.10)

for all 1 ≤ j ≤ 2n. Hence, (5.5) is satisfied.

For computational reasons, we write (5.7) in matrix vector notation, which reads

C↑
n =

1

n
log2

{

1T
n exp2

[

P−1
n|s0

(

Pn|s0
◦ log2 Pn|s0

)

1n

]}

, (5.11)

where 1n is a column vector of length 2n consisting only of ones while ◦ denotes the
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Hadamard product. Observe that

−
(

Pn|s0
◦ log2 Pn|s0

)

1n =
[

H (Yn|Xn = x1) , . . . , H (Yn|Xn = x2n)
]T

. (5.12)

In the remainder, we use (5.11) instead of (5.7). In particular, we find exact numerical

expressions for (5.11) in Theorem 5.1 below.

5.2.3. Useful Recursions

Definition 5.1. (a) The conditional entropy vector hn|s0
of Pn|s0

, s0 ∈ {0, 1}, is

hn|s0

def
=
[

H(Yn|Xn = x1) . . . H(Yn|Xn = x2n)
]T

(5.13)

= −
(

Pn|s0
◦ log2 Pn|s0

)

1n, (5.14)

where n ∈ N0.

(b) The weighted conditional entropy vector ωn|s0
of Pn|s0

, s0 ∈ {0, 1}, is

ωn|s0

def
= −P−1

n|s0
· hn|s0

(5.15)

= P−1
n|s0

(

Pn|s0
◦ log2 Pn|s0

)

1n, (5.16)

where n ∈ N0.

The following three lemmas provide tools that we need in order to prove recursions

for hn|s0
and ωn|s0

, as stated in Lemma 5.4 and Lemma 5.5.

Lemma 5.1. (a) The trapdoor channel matrices P2n+2|0 and P2n+2|1, n ∈ N0, satisfy

the following recursions:

P2n+2|0 =













P2n|0 0 0 0

1
2
P2n|1

1
2
P2n|0 0 0

1
4
P2n|1

1
4
P2n|0

1
2
P2n|0 0

0 1
2
P2n|1

1
4
P2n|1

1
4
P2n|0













(5.17)
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P2n+2|1 =













1
4
P2n|1

1
4
P2n|0

1
2
P2n|0 0

0 1
2
P2n|1

1
4
P2n|1

1
4
P2n|0

0 0 1
2
P2n|1

1
2
P2n|0

0 0 0 P2n|1













. (5.18)

(b) Let M0
def
= P−1

2n|0P2n|1P
−1
2n|0 and M1

def
= P−1

2n|1P2n|0P
−1
2n|1. The inverses of P2n+2|0 and

P2n+2|1, n ∈ N0, satisfy the following recursions:

P−1
2n+2|0 =













P−1
2n|0 0 0 0

−M0 2P−1
2n|0 0 0

0 −P−1
2n|0 2P−1

2n|0 0

2M0P2n|1P
−1
2n|0 −3M0 −2M0 4P−1

2n|0













(5.19)

P−1
2n+2|1 =













4P−1
2n|1 −2M1 −3M1 2M1P2n|0P

−1
2n|1

0 2P−1
2n|1 −P−1

2n|1 0

0 0 2P−1
2n|1 −M1

0 0 0 P−1
2n|1













. (5.20)

Proof. (a): Substituting P2n+1|0 and P2n+1|1 into P2n+2|0 and P2n+2|1, where the four

matrices are expressed as in (5.1) and (5.2), yields (5.17) and (5.18).

(b): Two versions of the matrix inversion lemma are [55]






A 0

C D






−1

=






A−1 0

−D−1CA−1 D−1




 (5.21)






A B

0 D






−1

=






A−1 −A−1BD−1

0 D−1




 . (5.22)

Now divide (5.17) and (5.18) into four blocks of equal size. A twofold application of (5.21)

and (5.22), first to P2n+2|0 and P2n+2|1 and, subsequently, to each of the blocks of P2n+2|0
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and P2n+2|1 yields (5.19) and (5.20). �

Lemma 5.2. Let Ĩn be the 2n × 2n matrix whose secondary diagonal entries are equal

to 1 while the remaining entries are 0. Let A be an arbitrary 2n × 2n matrix and b an

arbitrary column vector of size 2n. A left and right multiplication of A with Ĩn results

in a permutation of the elements of A. In particular, the element [A]i,j of A is shifted

to position (2n + 1− i, 2n + 1− j) in ĨnAĨn, 1 ≤ i, j ≤ 2n. Similarly, a left multiplication

of b with Ĩn turns b upside down, i.e., the ith entry of b is shifted to the (2n + 1− i)th

position in Ĩnb, 1 ≤ i ≤ 2n. Moreover,
(

ĨnAĨn

)

◦ log2

(

ĨnAĨn

)

= Ĩn (A ◦ log2 A) Ĩn.

Proof. The first two properties follow from the rules of matrix multiplication and noting

that the ith row and the ith column of Ĩn has a one at position 2n + 1− i and zeros else.

The final equality holds because it does not matter whether the Hadamard product and

the elementwise logarithm is applied before or after permuting the elements of A. �

A transformation relating Pn|0 to Pn|1, P−1
n|0 to P−1

n|1, hn|0 to hn|1 and ωn|0 to ωn|1 is

derived next.

Lemma 5.3. Let Pn|0 and Pn|1 be trapdoor channel matrices, n ∈ N0. We have the

following identities:

(a)

Pn|1 = ĨnPn|0Ĩn (5.23)

Pn|0 = ĨnPn|1Ĩn (5.24)

(b)

P−1
n|1 = ĨnP−1

n|0Ĩn (5.25)

P−1
n|0 = ĨnP−1

n|1Ĩn (5.26)

(c)

hn|1 = Ĩnhn|0 (5.27)

hn|0 = Ĩnhn|1 (5.28)
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(d)

ωn|1 = Ĩnωn|0 (5.29)

ωn|0 = Ĩnωn|1 (5.30)

(e) The row sums of P−1
n|0 and P−1

n|1 are 1.

Proof. (a): The proof is by induction. For n = 0, the identities P0|1 = Ĩ0P0|0Ĩ0 and

P0|0 = Ĩ0P0|1Ĩ0 clearly hold. Now suppose that (5.23) and (5.24) are true if n is replaced

by n− 1. Then we have

ĨnPn|0Ĩn =






0 Ĩn−1

Ĩn−1 0











Pn−1|0 0

1
2
Pn−1|1

1
2
Pn−1|0











0 Ĩn−1

Ĩn−1 0




 (5.31)

=






1
2
Ĩn−1Pn−1|0Ĩn−1

1
2
Ĩn−1Pn−1|1Ĩn−1

0 Ĩn−1Pn−1|0Ĩn−1






=






1
2
Pn−1|1

1
2
Pn−1|0

0 Pn−1|1




 (5.32)

= Pn−1|1, (5.33)

where (5.31) and (5.33) are due to the recursive expressions (5.1) and (5.2) while (5.32)

follows from the induction hypothesis. It remains to show (5.24). But (5.24) is a direct

consequence of the just proven equation and using the identity ĨnĨn = In.

(b): Follows immediately from (a) and the identity ĨnĨn = In.

(c): Starting with the definition of hn|1, we have

hn|1 = −
(

Pn|1 ◦ log2 Pn|1

)

1n

= −
[(

ĨnPn|0Ĩn

)

◦ log2

(

ĨnPn|0Ĩn

)]

1n (5.34)

= −Ĩn

(

Pn|0 ◦ log2 Pn|0

)

Ĩn1n (5.35)

= Ĩnhn|0,

where (5.34) and (5.35) hold because of (5.23) and Lemma 5.2, respectively.
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Equation (5.28) follows from (5.27) and the identity ĨnĨn = In.

(d): Starting with the definition of ωn|1, we have

ωn|1 = −P−1
n|1hn|1

= −ĨnP−1
n|0hn|0 (5.36)

= Ĩnωn|0,

where (5.36) follows by replacing Pn|1 and hn|1 with (5.23) and (5.27), respectively, and

using the identity ĨnĨn = In.

Equation (5.30) follows from (5.29) and the identity ĨnĨn = In.

(e): A standard way to compute P−1
n|0 is by Gauss-Jordan elimination. That is, a sequence

of elementary row operations is applied to the augmented matrix
[

Pn|0 In

]

such that
[

In P−1
n|0

]

eventually results. Clearly, Pn|0 and In are stochastic matrices, i.e., all row

sums are equal to one. Thus, at each stage of performing elementary row operations,

the row sum of the left matrix equals the row sum of the right matrix. In particular,

P−1
n|0 has the same row sum as In. The same arguments hold for P−1

n|1. �

We can now state the recursive law for the conditional entropy vector.

Lemma 5.4. For n ≥ 1, h2n+2|0 satisfies the recursion

h2n+2|0 =













h2n|0

1
2
h2n|0 + 1

2
Ĩ2nh2n|0 + 12n

3
4
h2n|0 + 1

4
Ĩ2nh2n|0 + 3

2
12n

1
4
h2n|0 + 3

4
Ĩ2nh2n|0 + 3

2
12n













. (5.37)

The initial value for n = 0 is given by h0|0 = 0.

Before proving Lemma 5.4, we remark that in order to refer to the ith subvector,

1 ≤ i ≤ 4, of the conditional entropy vector h2n+2|0, i.e., the subvector composed of the

((i− 1) · 22n + 1)
th to the (i · 22n)

th element, we use the superscript (i). For instance,

h(2)
2n+2|0 refers to 1

2
h2n|0 + 1

2
Ĩ2nh2n|0 + 12n. The same notation is used for the weighted

conditional entropy vector ω2n+2|0.
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Proof of Lemma 5.4. The initial value h0|0 can be computed using P0|0 = 1 in (5.14).

To show (5.37), we replace P2n+2|0 in (5.14) with (5.17) and compute each of the four

entries of the resulting vector. Clearly, h(1)
2n+2|0 = −

(

P2n|0 ◦ log2 P2n|0

)

12n = h2n|0. The

three remaining terms are

h(2)
2n+2|0 =

[

−1

2
P2n|1 ◦ log2

(
1

2
P2n|1

)

− 1

2
P2n|0 ◦ log2

(
1

2
P2n|0

)]

12n

=
[
1

2
P2n|1 −

1

2

(

Ĩ2nP2n|0Ĩ2n

)

◦ log2

(

Ĩ2nP2n|0Ĩ2n

)

+
1

2
P2n|0

−1

2
P2n|0 ◦ log2 P2n|0

]

12n

(5.38)

= 12n −
1

2
Ĩ2n

(

P2n|0 ◦ log2 P2n|0

)

12n +
1

2
h2n|0 (5.39)

=
1

2
h2n|0 +

1

2
Ĩ2nh2n|0 + 12n;

h(3)
2n+2|0 =

[

−1

4
P2n|1 ◦ log2

(
1

4
P2n|1

)

− 1

4
P2n|0 ◦ log2

(
1

4
P2n|0

)

−1

2
P2n|0 ◦ log2

(
1

2
P2n|0

)]

12n

=
[
1

2
P2n|1 −

1

4

(

Ĩ2nP2n|0Ĩ2n

)

◦ log2

(

Ĩ2nP2n|0Ĩ2n

)

+ P2n|0

−3

4
P2n|0 ◦ log2 P2n|0

]

12n

(5.40)

=
3

2
12n −

1

4
Ĩ2n

(

P2n|0 ◦ log2 P2n|0

)

12n +
3

4
h2n|0 (5.41)

=
3

4
h2n|0 +

1

4
Ĩ2nh2n|0 +

3

2
12n;

h(4)
2n+2|0 =

[

−1

2
P2n|1 ◦ log2

(
1

2
P2n|1

)

− 1

4
P2n|1 ◦ log2

(
1

4
P2n|1

)

−1

4
P2n|0 ◦ log2

(
1

4
P2n|0

)]

12n

=
[

P2n|1 −
3

4

(

Ĩ2nP2n|0Ĩ2n

)

◦ log2

(

Ĩ2nP2n|0Ĩ2n

)

+
1

2
P2n|0 −

1

4
P2n|0 ◦ log2 P2n|0

]

12n

(5.42)

=
3

2
12n −

3

4
Ĩ2n

(

P2n|0 ◦ log2 P2n|0

)

12n +
1

4
h2n|0 (5.43)
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=
1

4
h2n|0 +

3

4
Ĩ2nh2n|0 +

3

2
12n.

Observe that (5.38), (5.40), (5.42) follow from using (5.23) and

log2

(
1

2r
P2n|s0

)

= log2

(
1

2r
12n×2n ◦P2n|s0

)

= −r12n×2n + log2 P2n|s0
, r = 1, 2.

Summing up the scaled vectors P2n|012n and P2n|112n in (5.38), (5.40), (5.42) yields

the first term in (5.39), (5.41), (5.43). Finally, the second term in (5.39), (5.41),(5.43)

follows because it does not matter whether the Hadamard product and the elementwise

logarithm is applied before or after permuting the elements of P2n|0 (see Lemma 5.2). �

Lemma 5.5. (a) For n ∈ N0, ω2n|0 satisfies the recursion

ω2n+2|0 =













ω2n|0

ω2n|0 − 2 · 12n

ω2n|0 − 2 · 12n

ω2n|0













(5.44)

with initial value ω0|0 = 0.

(b) For n ∈ N, ω2n+1|0 satisfies the recursion

ω2n+1|0 =













ω2n−1|0

Ĩ2n−1ω2n−1|0

ω2n−1|0 − 2 · 12n−1

Ĩ2n−1ω2n−1|0 − 2 · 12n−1













(5.45)

with initial value ω1|0 =
[

0 −2
]T

.

Remark 5.1. The weighted conditional entropy vector ωn|0 is a palindrome for even

n ∈ N0, i.e., the vector reads the same backwards as forward.

Proof of Lemma 5.5. (a): We show by induction that (5.44) holds. The case n = 0

can be verified using Definition 5.1(b) and noting that P0|0 = P−1
0|0 = 1. Now assume
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that (5.44) holds for n−1. In order to show (5.44) for n, we evaluate ω2n+2|0 using (5.15)

and replacing P−1
2n+2|0 and h2n+2|0 with (5.19) and (5.37). Then

ω2n+2|0 =













−P−1
2n|0h

(1)
2n+2|0

P−1
2n|0

(

P2n|1P
−1
2n|0h

(1)
2n+2|0 − 2h(2)

2n+2|0

)

P−1
2n|0

(

h(2)
2n+2|0 − 2h(3)

2n+2|0

)

M0

(

−2P2n|1P
−1
2n|0h

(1)
2n+2|0 + 3h(2)

2n+2|0 + 2h(3)
2n+2|0

)

− 4P−1
2n|0h

(4)
2n+2|0













. (5.46)

Recall from Lemma 5.4 that h(1)
2n+2|0 = h2n|0. Hence, by definition, the first entry of (5.46)

is equal to ω2n|0. Replacing h(1)
2n+2|0 and h(2)

2n+2|0 in (5.46) with the corresponding expres-

sions from Lemma 5.4, we obtain

ω
(2)
2n+2|0 = P−1

2n|0

(

P2n|1P
−1
2n|0h2n|0 − h2n|0 − Ĩ2nh2n|0 − 2 · 12n

)

. (5.47)

In order to simplify (5.47), observe that

−Ĩ2nω2n|0 + ω2n|0 = 0 (5.48)

since ω2n|0 is a palindrome by hypothesis. Further, using (5.15), (5.26) and the rela-

tion Ĩ2nĨ2n = I2n, (5.48) reads

P−1
2n|0 · h2n|0 −P−1

2n|1Ĩ2n · h2n|0 = 0, (5.49)

which becomes, after a right multiplication with P2n|1,

P2n|1P
−1
2n|0h2n|0 − Ĩ2n · h2n|0 = 0. (5.50)

Finally, using (5.50) in (5.47) as well as the definition of ω2n|0 and noting that 2P−1
2n|012n =

2 · 12n (since P−1
2n|0 is a stochastic matrix by Lemma 5.3 (e)), we obtain

ω
(2)
2n+2|0 = ω2n|0 − 2 · 12n.

We continue with the third entry of (5.46). After replacing h(2)
2n+2|0 and h(3)

2n+2|0 in (5.46)
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with the corresponding expressions from Lemma 5.4, it immediately follows that ω
(3)
2n+2|0 =

ω2n|0−2 ·12n. Regarding the fourth entry in (5.46), we start with the first term in paren-

theses. Observe that

− 2P2n|1P
−1
2n|0h

(1)
2n+2|0 + 3h(2)

2n+2|0 + 2h(3)
2n+2|0

=− 2
(

P2n|1P
−1
2n|0h

(1)
2n+2|0 − 2h(2)

2n+2|0

)

−
(

h(2)
2n+2|0 − 2h(3)

2n+2|0

)

(5.51)

=− 3P2n|0

(

ω2n|0 − 2 · 12n

)

. (5.52)

Under consideration of the second and third entry of (5.46), the first parentheses of (5.51)

equals −2P2n|0ω
(2)
2n+2|0 and the second parentheses P2n|0ω

(3)
2n+2|0. Hence, equation (5.52)

holds since both ω
(2)
2n+2|0 and ω

(3)
2n+2|0 are equal to ω2n|0−2·12n. Using (5.52) in the fourth

entry of (5.46), replacing h(4)
2n+2|0 with the corresponding expression from Lemma 5.4 and

M0 with its definition P−1
2n|0P2n|1P

−1
2n|0, we have

ω
(4)
2n+2|0 = P−1

2n|0

[

−3P2n|1

(

ω2n|0 − 2 · 12n

)

− h2n|0 − 3Ĩ2nh2n|0 − 6 · 12n

]

= 3P−1
2n|0

(

−P2n|1ω2n|0 − Ĩ2nh2n|0

)

+ 6 ·P−1
2n|0

(

P2n|112n − 12n

)

−P−1
2n|0h2n|0

(5.53)

= −P−1
2n|0h2n|0

= ω2n|0.

Observe that the first parentheses of equation (5.53) evaluates to 0 since it is equal to

the left hand side of (5.50). Similarly, the second parentheses in (5.53) evaluates to 0

because P2n|1 is a stochastic matrix.

(b): Recall the recursions

P2n+2|0 =






P2n+1|0 0

1
2
P2n+1|1

1
2
P2n+1|0




 (5.54)

P−1
2n+2|0 =






P−1
2n+1|0 0

−P−1
2n+1|0P2n+1|1P

−1
2n+1|0 2P−1

2n+1|0




 , (5.55)

which follow from (5.1) and (5.21). Computing the first 22n+1 entries of ω2n+2|0 (i.e., the
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first half), using Definition 5.1(b), (5.54) and (5.55), we obtain






ω
(1)
2n+2|0

ω
(2)
2n+2|0




 = P−1

2n+1|0

(

P2n+1|0 ◦ log2 P2n+1|0

)

12n+1. (5.56)

By definition, the right hand side of (5.56) is ω2n+1|0. Hence, under consideration

of (5.44), we have

ω2n+1|0 =






ω2n|0

ω2n|0 − 2 · 12n




 . (5.57)

It remains to express ω2n|0 in (5.57) in terms of ω2n−1|0. By the same argument as just

used, the first half of the vector ω2n|0 equals ω2n−1|0. Since ω2n|0 is a palindrome, the

second half of ω2n|0 equals Ĩ2n−1 · ω2n−1|0. Hence,

ω2n|0 =






ω2n−1|0

Ĩ2n−1 · ω2n−1|0




 . (5.58)

By replacing ω2n|0 in (5.57) with (5.58), we get (5.45). The initial value ω1 =
[

0 −2
]T

follows from (5.57) and noting that ω0|0 = 0. �

Remark 5.2. The recursions derived in Lemma 5.4 and 5.5 are with respect to initial

state s0 = 0. They can be transformed to recursions with respect to initial state s0 = 1

using (5.27) and (5.29).

5.2.4. Proof of the Main Result

In this section, we evaluate (5.11) based on Lemma 5.5. In particular, we find exact

solutions to the optimization problem (5.3)-(5.5) for every n ∈ N.

Theorem 5.1. Consider the convex optimization problem (5.3) to (5.5). The absolute

maximum for input blocks of even length 2n is

C↑
2n =

1

2
log2

(
5

2

)

b/u, (5.59)
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where n ∈ N. For input blocks of odd length 2n− 1, the absolute maximum is

C↑
2n−1 =

1

2n− 1

[

log2

(
5

4

)

+ (n− 1) · log2

(
5

2

)]

b/u, (5.60)

where n ∈ N.

Proof. Without loss of generality, we assume that the initial state is s0 = 0. Recall (5.11),

which for input blocks of length 2n− k reads

C↑
2n−k =

1

2n− k log2

[

1T
2n−k exp2

(

ω2n−k|0

)]

b/u, (5.61)

where n ∈ N and k = 0, 1. For n = 1, a straightforward computation shows using (5.44)

and (5.45) in (5.61), that C↑
1 = log2

(
5
4

)

b/u and C↑
2 = 1

2
log2

(
5
2

)

b/u. Now assume that

(5.59) and (5.60) hold for some n. In particular, suppose that

1T
2n exp2

(

ω2n|0

)

=
(

5

2

)n

(5.62)

and

1T
2n−1 exp2

(

ω2n−1|0

)

=
5

4

(
5

2

)n−1

. (5.63)

We now show that (5.59) and (5.60) hold if n is replaced by n+ 1. Using the recursions

derived in Lemma 5.5, we have

1T
2n+2 exp2

(

ω2n+2|0

)

= 1T
2n

[

2 exp2

(

ω2n|0

)

+ 2 exp2

(

ω2n|0 − 2 · 12n

)]

=
(

2 + 2 · 2−2
)

1T
2n exp2

(

ω2n|0

)

(5.64)

and

1T
2n+1 exp2

(

ω2n+1|0

)

= 1T
2n−1

[

exp2

(

ω2n−1|0

)

+ exp2

(

Ĩ2n−1ω2n−1|0

)

+ exp2

(

ω2n−1|0 − 2 · 12n−1

)

+ exp2

(

Ĩ2n−1ω2n−1|0 − 2 · 12n−1

)]

= 1T
2n−1

[

2 exp2

(

ω2n−1|0

)

+ 2 exp2

(

ω2n−1|0 − 2 · 12n−1

)]

(5.65)

=
(

2 + 2 · 2−2
)

1T
2n−1 exp2

(

ω2n−1|0

)

. (5.66)
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Equation (5.65) holds since 1T
2n−1 exp2

(

Ĩ2n−1ω2n−1|0

)

= 1T
2n−1 exp2

(

ω2n−1|0

)

due to the

fact that a multiplication with Ĩ2n−1 just permutes the entries of ω2n−1|0 (see Lemma 5.2).

Finally, using (5.64), (5.66) and the induction hypotheses (5.62), (5.63) in (5.61), we

obtain

C↑
2n+2 =

1

2n+ 2
log2

[

1T
2n+2 exp2

(

ω2n+2|0

)]

=
1

2n+ 2
log2

[(

2 + 2 · 2−2
)

1T
2n exp2

(

ω2n|0

)]

=
1

2
log2

(
5

2

)

b/u

and

C↑
2n+1 =

1

2n+ 1
log2

[

1T
2n+1 exp2

(

ω2n+1|0

)]

=
1

2n+ 1
log2

[(

2 + 2 · 2−2
)

1T
2n−1 exp2

(

ω2n−1|0

)]

=
1

2n+ 1

[

log2

(
5

4

)

+ n · log2

(
5

2

)]

b/u.

�

Remark 5.3. Observe that limn→∞C↑
2n+1 = 1

2
log2

(
5
2

)

b/u where convergence is from

below. Hence, we have

max
n∈N

C↑
n =

1

2
log2

(
5

2

)

b/u.

Unfortunately, the distributions corresponding to (5.59) and (5.60) involve negative

“probabilities” — otherwise the capacity of the trapdoor channel would have been es-

tablished. We elaborate this issue in the following remark.

Remark 5.4. Note that the non-negativity of condition (5.9) does not hold for all k =

1, . . . , 2n. This can be verified as follows. For a trapdoor channel Pn|0, condition (5.9)

reads in matrix vector notation as

[

dk

]

1≤k≤2n
=
(

P−1
n|0

)T
exp2 (ωn) . (5.67)

We now compute the second last row of
(

P−1
n|0

)T
by the following recursive scheme.

Applying the matrix inversion lemma in the form of (5.21) to Pn|0, which is written as
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in (5.1), and subsequently taking the transpose, then replacing the right bottom block of

this matrix, which is 2
(

P−1
n−1|0

)T
, with the just obtained matrix times two (where n− 1

is replaced by n − 2), then applying the same procedure to the right bottom block of

2
(

P−1
n−1|0

)T
and so on until the right bottom block equals 2n−1

(

P−1
1|0

)T
shows that the

second last row of
(

P−1
n|0

)T
equals

[

0 · · · 0 2n−1 −2n−1
]

. Further, by Lemma 5.5,

the second to last entry and the last entry of ωn equals −2 and 0 if n ∈ N is even, and

−4 and −2 if n ∈ N is odd. Inserting into (5.67) yields

d2n−1 =







−3 · 2n−3 if n is even

−3 · 2n−5 if n is odd.

Hence, condition (5.9) does not hold for all k = 1, . . . , 2n.

5.3. Discussion

We focused on the convex optimization problem (5.3) to (5.5) where the feasible set

is larger than the probability simplex. An absolute maximum of the n-letter mutual

information was established for any n ∈ N by using the method of Lagrange multipliers

via [52, Theorem 3.3.3]. The same absolute maximum 1
2

log2

(
5
2

)

≈ 0.6610 b/u results

for all even n and the sequence of absolute maxima corresponding to odd block lengths

converges from below to 1
2

log2

(
5
2

)

b/u as the block length increases. Unfortunately,

all absolute maxima are attained outside the probability simplex. Hence, instead of

establishing the capacity of the trapdoor channel, we have shown only that 1
2

log2

(
5
2

)

b/u

is an upper bound on the capacity. To the best of our knowledge, this upper bound is the

tightest known bound. Notably, this upper bound is strictly smaller than the feedback

capacity [7]. Moreover, the result gives an indirect justification that the capacity of the

trapdoor channel is attained on the boundary of the probability simplex.





6
The Trapdoor Channel and Fractal

Geometry∗∗

6.1. Introduction

Unlike in previous chapters, we do not focus on the problem of deriving and attaining the

capacity of a given problem in this chapter. We rather reinterpret a given information

theoretic model, namely the trapdoor channel, in various ways by intentionally not using

information theoretic tools. The approach is motivated by the fact that the capacity of

the trapdoor channel, an open problem since 1961, seems to be difficult to solve using

standard tools from information theory. The considerable effort, e.g. taken in Chapter 5,

to solve the optimization problem (5.3) to (5.5) resulted only in an upper bound on the

capacity of the trapdoor channel. On the other hand, the trapdoor channel exhibits lots

of structure (see Lemma 5.4 and Lemma 5.5), which might give the capacity if exploited

properly. In the following, we present two novel views on the trapdoor channel. Based

∗∗submitted to IEEE Trans. Inf. Theory [51].
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on the underlying stochastic matrices (5.1) and (5.2), the trapdoor channel is described

geometrically as a fractal or algorithmically as a recursive procedure. By deriving the

underlying iterated function system (IFS), we show that the trapdoor channel with

input blocks of length n can be regarded as the nth element of a sequence of shapes

approximating a fractal. Second, we present an algorithm that fully characterizes the

trapdoor channel and resembles the recursion of generating all permutations of a given

string.

This chapter is organized as follows. In Section 6.2, we introduce the mathematical

background of fractals and, in particular, the notion of an IFS. In Section 6.3, the IFS

corresponding to the trapdoor channel is derived. We study the trapdoor channel as a

recursive procedure in Section 6.4. Concluding remarks appear in Section 6.5.

6.2. Prerequisites

We review the idea of iterated function systems and fractals. For a comprehensive

introduction to the subject, see e.g. [56]. A fractal is a geometric pattern which exhibits

self-similarity at every scale. A systematic way for generating a fractal starts with a

complete metric space (M, d). The space to which the fractal belongs is, however, not M

but the space of non-empty compact subsets of M , denoted as H(M). A suitable choice

for a metric for H(M) is the Hausdorff distance hd(A,B)
def
= max{d(A,B), d(B,A)}

where d(A,B)
def
= maxx∈A miny∈B d(x, y) and d(B,A)

def
= maxx∈B miny∈A d(x, y), A,B ∈

H(M). It is then guaranteed that (H(M), hd) is a complete metric space and that every

contraction5 ϕ : M →M on (M, d) becomes a contraction mapping ϕ : H(M)→H(M)

on (H(M), hd) defined by ϕ(A) = {ϕ(x) : x ∈ A} for all A ∈ H(M).

The following definition and theorem provides a method for generating fractals.

Definition 6.1. [56, Chapter 3.7] A hyperbolic iterated function system (IFS) consists

of a complete metric space (M, d) together with a finite set of contraction mappings

ϕn : M →M , with contractivity factors sn for n = 1, 2, . . . , N . The notation for the IFS

is {M ;ϕn n = 1, 2, . . . , N} and its contractivity factor is s = max{sn : n = 1, 2, . . . , N}.
5Let (M, d) be a metric space. Recall that a mapping ϕ : M → M is a contraction if there exists a

contractivity factor s, 0 < s < 1, such that d (ϕ(x), ϕ(y)) ≤ s · d(x, y) for all x, y ∈M .
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The fixed point of a hyperbolic IFS, also called the attractor or self-similar set of the

IFS, is a (deterministic) fractal and results from iterating the IFS with respect to any

A ∈ H(M). This is the content of the following theorem.

Theorem 6.1. [56, Chapter 3.7] Let {M ;ϕn n = 1, 2, . . . , N} be an IFS with contrac-

tivity factor s. Then the transformation Φ : H(M)→ H(M) defined by

Φ(A) =
N⋃

n=1

ϕn(A) (6.1)

for all A ∈ H(M), is a contraction mapping on the complete metric space (H(M), hd)

with contractivity factor s. Its unique fixed point, A⋆ ∈ H(M), obeys

A⋆ = Φ(A⋆) =
N⋃

n=1

ϕn(A⋆),

and is given by A⋆ = limk→∞ Φ◦k(A) for any A ∈ H(M).

Many well-known fractals, e.g., the Koch snowflake, the Cantor set, the Mandelbrot

set, etc., can be generated using Definition 6.1 and Theorem 6.1. A segment of the

Mandelbrot set is shown on the cover of the information theory book by Cover and

Thomas [30]. Another representative, the Sierpinski triangle, is introduced in the fol-

lowing example. We will later see that this fractal is related to the trapdoor channel.

Example 6.1. (Sierpinski triangle) Consider the IFS

{

[0, 1]2;ϕ1(x, y) =
(
x+ 1

2
,
y

2

)

, ϕ2(x, y) =
(
x

2
,
y + 1

2

)

, ϕ3(x, y) =
(
x

2
,
y

2

)}

. (6.2)

The affine transformations ϕn, n = 1, 2, 3, scale any A ∈ H([0, 1]2) by a factor of 0.5.

Additionally, ϕ1 and ϕ2 introduce translations by 0.5 into the x- and y-direction, re-

spectively. The Sierpinski triangle is approximated arbitrarily close by iterating Φ(A)

for any A ∈ H([0, 1]2). Fig. 6.1 shows the result after performing four iterations of (6.2).

The initial shape A in Fig. 6.1a is a triangle with corner points (0, 0), (1, 0), (0, 1) and

in Fig. 6.1b a triangle with corner points (0, 0), (1, 1), (1, 0). As one performs more and

more iterations, both sets converge to the same attractor A⋆.
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(a) The initial shape is a triangle with corner points (0, 0), (1, 0), (0, 1).
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(b) The initial shape is a triangle with corner points (0, 0), (1, 1), (1, 0).

Figure 6.1.: Sierpinski triangle after four iterations.
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6.3. The Trapdoor Channel as a Fractal

In this section, we derive a hyperbolic IFS for the trapdoor channel. Instead of working

with Pn|s0
, we take a geometric approach, i.e., Pn|s0

will be mapped to the unit cube

[0, 1]3 ⊂ R
3.

Definition 6.2. Let M denote the set
{

Pn|s0
: n ∈ N0, s0 = 0, 1

}

of trapdoor channel

matrices. The function ρ : M → [0, 1]3 represents each Pn|s0
as a shape in [0, 1]3

according to

Pn|s0
7→
(

x, y,
[

Pn|s0

]

i,j

)

, for all 1 ≤ i, j ≤ 2n (6.3)

where (i− 1) · 2−n < x < i · 2−n and 1− j · 2−n < y < 1− (j − 1) · 2−n.

Each entry
[

Pn|s0

]

i,j
of Pn|s0

is identified with a square of side length 2−n, which lies

at a distance of
[

Pn|s0

]

i,j
from the xy-plane. The alignment of the square corresponding

to
[

Pn|s0

]

i,j
with respect to the other squares in ρ(Pn|s0

) is in accordance with the

alignment of
[

Pn|s0

]

i,j
with respect to the other entries of Pn|s0

. Fig. 6.2 depicts the

representations ρ(P1|0) and ρ(P1|1). Each of the four regions within ρ
(

Pn|0

)

and ρ
(

Pn|1

)

corresponds to one of the conditional probabilities 0, 0.5 and 1. The following proposition

expresses ρ
(

Pn+1|0

)

and ρ
(

Pn+1|1

)

recursively in terms of ρ
(

Pn|0

)

and ρ
(

Pn|1

)

.

Lemma 6.1. The representations ρ
(

Pn+1|0

)

and ρ
(

Pn+1|1

)

of Pn+1|0 and Pn+1|1 satisfy

the recursion laws

ρ
(

Pn+1|0

)

=
1

2
·
{

ρ
(

Pn|0

)

+ ex, ρ
(

2 ·Pn|0

)

+ ey, ρ
(

Pn|1

)}

(6.4)

ρ
(

Pn+1|1

)

=
1

2
·
{

ρ
(

2 ·Pn|1

)

+ ex, ρ
(

Pn|1

)

+ ey, ρ
(

Pn|0

)

+ ex + ey

}

(6.5)

for all n ∈ N0.

Proof. Recursions (6.4) and (6.5) are a consequence of the structure of (5.1) and (5.2).

We just outline the derivation of (6.4). The first term 1
2
·
{

ρ
(

Pn|0

)

+ ex

}

on the right

hand side of (6.4) represents the lower right corner of (5.1). Observe that
[

Pn+1|0

]

i,j
is

equal to 1
2

[

Pn|0

]

i−2n,j−2n
for all 2n < i, j,≤ 2n+1. Hence, scaling the three dimensions

of ρ
(

Pn|0

)

by a factor of 1
2

and shifting the result by 1
2

along the x-direction yields a
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Figure 6.2.: Color map of ρ(P1|0) and ρ(P1|1).

representation of the lower right corner of (5.1) according to Definition 6.2. Similarly, the

second term 1
2
·
{

ρ
(

2 ·Pn|0

)

+ ey

}

of (6.4) represents the upper left corner of (5.1). Note

that each entry
[

Pn+1|0

]

i,j
is equal to

[

Pn|0

]

i,j
for all 1 ≤ i, j,≤ 2n. Hence, scaling the x-

and y-coordinates of ρ
(

Pn|0

)

by a factor of 1
2

and shifting the resulting figure by 1
2

along

the y-direction yields a representation of the upper left corner Pn|0 of (5.1) according

to Definition 6.2. The last term 1
2
· ρ
(

Pn|1

)

of (6.4) represents the lower left corner

of (5.1). Clearly, each entry
[

Pn+1|0

]

i,j
is equal to 1

2

[

Pn|1

]

i−2n,j
for all 2n < i ≤ 2n+1

and 1 ≤ j ≤ 2n. Hence, scaling all coordinates of ρ
(

Pn|1

)

by a factor of 1
2

yields a

representation of the lower left corner of (5.1) according to Definition 6.2. �

Recursions (6.4) and (6.5) are used below to obtain an IFS for the trapdoor channel.

Recall from Theorem 6.1 that an IFS is initialized with a single shape. Hence, it would

be desirable that the right hand side of (6.4) depends only on Pn|0 and the right hand

side of (6.5) only on Pn|1. The following proposition introduces an affine transformation

which turns ρ
(

Pn|0

)

into ρ
(

Pn|1

)

and vice versa.

Lemma 6.2. Let τ : [0, 1]3 → [0, 1]3 be defined as τ(x, y, z) = (−x+ 1,−y + 1, z).

Then

ρ
(

Pn|1

)

= τ ◦ ρ
(

Pn|0

)

(6.6)
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ρ
(

Pn|0

)

= τ ◦ ρ
(

Pn|1

)

, (6.7)

for all n ∈ N0.

Proof. Equation (6.7) follows from (6.6) by noting that τ ◦ τ = (x, y, z). It remains

to prove (6.6), which is done by induction. Observe that the affine transformation τ

corresponds to a counter-clockwise rotation through 180 degrees about the z-axis and

a translation by 1 along the x- and y-direction. Using this property, (6.6) for n = 1 is

readily verified from Fig. 6.2. Now assume that the assertion holds for some n > 1. A

direct computation of τ ◦ρ
(

Pn+1|0

)

, using the right hand side of (6.4) and the induction

hypotheses (6.6) and (6.7), shows that τ ◦ ρ
(

Pn+1|0

)

is equal to ρ
(

Pn+1|1

)

. This is

demonstrated for the first function in (6.4). Observe that

τ ◦ 1

2

{

ρ
(

Pn|0

)

+ ex

}

=
1

2

{(

−x+ 1,−y + 1,
[

Pn|s0

]

i,j

)

+ ey

}

=
1

2

{

τ ◦ ρ
(

Pn|0

)

+ ey

}

=
1

2

{

ρ
(

Pn|1

)

+ ey

}

,

where the last step follows from the induction hypothesis. �

We can now state the final recursion laws. A combination of Lemma 6.1 and Lemma 6.2,

i.e., replacing ρ
(

Pn|1

)

in (6.4) with (6.6), ρ
(

Pn|0

)

in (6.5) with (6.7) and using Defini-

tion 6.2, yields the following theorem.

Theorem 6.2. The representations ρ
(

Pn+1|0

)

and ρ
(

Pn+1|1

)

of Pn+1|0 and Pn+1|1 sat-

isfy the following recursions:

ρ
(

Pn+1|0

)

=







φ1(x, y, z) =






x+ 1

2
,
y

2
,

[

Pn|0

]

i,j

2




 ,

φ2(x, y, z) =
(
x

2
,
y + 1

2
,
[

Pn|0

]

i,j

)

, (6.8)

φ3(x, y, z) =




−x− 1

2
,−y − 1

2
,

[

Pn|0

]

i,j

2












,
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ρ
(

Pn+1|1

)

=







ψ1(x, y, z) =
(
x+ 1

2
,
y

2
,
[

Pn|1

]

i,j

)

,

ψ2(x, y, z) =






x

2
,
y + 1

2
,

[

Pn|1

]

i,j

2




 , (6.9)

ψ3(x, y, z) =




−x

2
+ 1,−y

2
+ 1,

[

Pn|1

]

i,j

2












,

where (i− 1) · 2−n < x < i · 2−n and 1− j · 2−n < y < 1− (j− 1) · 2−n and 1 ≤ i, j ≤ 2n.

Remark 6.1. The restrictions of φi and ψi, 1 ≤ i ≤ 3, to the x- and y-dimensions

are contraction mappings resulting in two hyperbolic IFS with a unique attractor each.

An approximation of the attractor for s0 = 0 is shown in the plots on the right side

of Fig. 6.3. There is also a relation to the Sierpinski triangle. Observe that φi and ψi,

1 ≤ i ≤ 2, when restricted to the xy-plane, are equal to ϕ1, ϕ2 in (6.2).

Remark 6.2. Recall that P0|0 = 1 and P0|1 = 1. Then limn→∞ ρ
(

Pn|s0

)

for s0 = 0 can

be approximated arbitrarily close by iterating (according to Theorem 6.1)






[0, 1]3;φ1 =

(
x+ 1

2
,
y

2
,
z

2

)

, φ2 =
(
x

2
,
y + 1

2
, z
)

, φ3 =
(

−x− 1

2
,−y − 1

2
,
z

2

)





(6.10)

and for s0 = 1






[0, 1]3;ψ1 =

(
x+ 1

2
,
y

2
, z
)

, ψ2 =
(
x

2
,
y + 1

2
,
z

2

)

, ψ3 =
(

−x
2

+ 1,−y
2

+ 1,
z

2

)





, (6.11)

where the initial shape can be any A ∈ H([0, 1]3) such that the restriction of A to the

z-dimension equals one. Fig. 6.3 depicts three, four, and five iterations of (6.10) with

an initial shape {(x, y, z) ∈ [0, 1]3 : z = 1}.
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(b) Four iterations.
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(c) Five iterations.

Figure 6.3.: Three, four, and five iterations of (6.10) and its projections onto the xy-
plane. The initial shape is {(x, y, z) ∈ [0, 1]3 : z = 1}. The color scale is the
same as in Fig. 6.2.
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6.4. Algorithmic View of the Trapdoor Channel

6.4.1. Remarks on the Permutation Nature

The trapdoor channel has been called a permuting channel [54], where the output is a

permutation of the input [7]. We point out that in general not all possible permutations

of the input are feasible and that not every output is a permutation of the input. The

reason that not all permutations are feasible is that the channel actions are causal,

i.e., an input symbol at time n cannot become a channel output at a time instance

smaller than n. Consider, for instance, the string 101 which, when applied to a trapdoor

channel with initial state 0, cannot give rise to an output 110. Next, not every output

is a permutation of the input because at a certain time instance the initial state might

become an output symbol and, therefore, the resulting output sequence might not be

compatible with a permutation of the input. For illustration purposes, consider again

the string 101 and initial state 0. Two feasible outputs are 010 and 001, which are not

permutations of 110.

6.4.2. The Algorithm

The following recursive procedure GENERATEOUTPUTS computes the set of feasible out-

put sequences and their likelihoods given an input sequence and an initial state. It

gives a complete characterization of the trapdoor channel. Generating outputs and their

corresponding likelihoods for a particular input sequence might be instrumental for de-

signing codes. In the following, we adopt the standard convention that the first element

of a string corresponds to index 0.

procedure generateOutputs(in, out, state, prob)

if in = ∅ then

set ← {out, prob}
else if in[0] = state then

out← out+ in[0]

set← GENERATEOUTPUTS(in.substr(1), out, state, prob)

else

out← out+ in[0]
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set← GENERATEOUTPUTS(in.substr(1), out, state, 0.5 · prob)
out[out.length()− 1]← state ⊲ in[0] is removed from the end of out

set← GENERATEOUTPUTS(in.substr(1), out, in[0], 0.5 · prob)
end if

return set

end procedure

The four variables in, out, state, prob have the following meaning: in denotes the

part of the input string that has not been processed yet, out indicates the part of

one particular output string that has been generated so far, state refers to the current

channel state, prob denotes the likelihood of out. The procedure is initialized with

the complete input string and the initial state of the channel; out is initially empty

while prob equals 1. The first if statement checks the simple case of the recursion,

namely whether the input string has been processed completely. If yes, the corresponding

output out and its likelihood prob is stored and returned in set. Otherwise, we have to

distinguish whether the next input symbol in[0] is equal to the current state or not. If

yes, the next output takes the value of in[0] with probability 1 (or of state, but both

are equal), i.e., out ← out + in[0], and the procedure GENERATEOUTPUTS is applied

recursively to the unprocessed part in.substr(1) of the input string, i.e., the substring

of in with indices greater than 0. Clearly, state and prob do not change and are passed

directly to the recursive call. In the other case, namely when in[0] is not equal to the

current state, the next output symbol will have a probability of 0.5 to be either in[0]

or state. If in[0] becomes the next channel output, the following state remains the

same. Then the remaining input string in.substr(1) is processed by the recursive call

GENERATEOUTPUTS(in.substr(1), out, state, 0.5 · prob). However, if state becomes the

channel output, then the following state will be in[0] and the remaining input string is

processed by GENERATEOUTPUTS(in.substr(1), out, in[0], 0.5 · prob).

Observe that a recursive implementation of the algorithm is needed to process inputs

of any length, which is not the case if only iterative control structures are used. We

emphasize that each of the three recursive calls of the algorithm resembles a recursion for

generating all permutations of a string (see, e.g., [57, ch. 8.3]). This gives an algorithmic

justification why some output sequences are permutations of the input sequence.
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6.5. Discussion

Two different views on the trapdoor channel were presented. We first derived the IFS of

the trapdoor channel, which was motivated by the observation that standard approaches

from information theory have failed so far to derive its capacity. Subsequently, we

described the trapdoor channel by means of a recursive procedure. The procedure,

which generates all feasible output sequences and their likelihoods given a particular

input sequence, might be helpful to construct codes for the trapdoor channel.



7
Conclusion

7.1. Summary of the Results

In this dissertation, we designed codes for half-duplex-constrained error-free networks

and investigated the trapdoor channel. The networks were directed cascades and trees

with one or multiple sources. We proposed timing codes which represent information

by an information-dependent allocation of the transmission and reception slots of the

relays. In addition, we gave several examples demonstrating the coding idea. Based on

these codes, we established the (multicast) capacity of cascades and trees with a single

source-destination pair and an arbitrary number of intermediate half-duplex-constrained

relays. For an unbounded number of relays, we derived an explicit capacity expression.

Notably, the capacity in the binary case is logarithm of the golden ratio. In case of

cascades with multiple sources, we showed that the strategy achieves the cut-set bound

when the rates of the relay sources fall below certain thresholds. We applied this result

to a three node line network with two sources for which we found a complete solution.

We further demonstrated that certain well-studied classes of codes, namely erasure
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codes and constrained codes, are natural codes in the context of half-duplex-constrained

transmission. Specifically, by combining an erasure code with our timing codes, we estab-

lished the capacity region of half-duplex cascades where the first two nodes are sources.

Further, we showed that the multicast capacity of an infinite-depth tree-structured net-

work can be achieved using constrained coding at the source and symbol forwarding at

the relays. This approach is interesting from a practical point of view. It is applicable to

finite depth trees and has low complexity while being strictly superior to deterministic

time-sharing. Examples of corresponding encoders were provided and we showed how

to construct them using the state-splitting algorithm.

In the context of the trapdoor channel, we derived an upper capacity bound, namely
1
2

log2

(
5
2

)

b/u. This upper bound shows that feedback increases the capacity of the

trapdoor channel. Two recursions resulted along the way, each interesting in its own

right. Perhaps these recursions will enjoy further applications on the way of finding the

trapdoor channel capacity. Finally, we investigated the fractal nature of the trapdoor

channel and derived the underlying iterated function system. Interestingly, the trapdoor

channel is related to the Sierpinski triangle.

7.2. Future Directions

We briefly mention some potential directions of research related to this dissertation.

In the context of half-duplex networks, one immediate direction would be to consider

a network model with noisy transmission links. A promising approach might be to

combine the codes proposed in this thesis with error-control techniques. In fact, small

alphabet sizes (e.g., binary) should be preferred since the rate gains due to timing are

largest for these cases.

As is the case with most engineering solutions, timing codes also exhibit a trade

off between performance and complexity. Indeed, by timing sub-blocks of transmission

symbols instead of single transmission symbols, the requirements on the synchronization

and the switching speed of the relays could be loosened at the expense of timing rate.

Therefore, an interesting future direction is to construct and analyze encoders, which

use the idea of timing and generate sequences with a minimum number of on- and off-
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symbols in a row. In fact, the construction of such encoders should be along the lines

of Appendix 4.A.

In Chapter 3, we established the capacity of two special cases of cascades with two

sources. We recently noticed that the general case with two sources can be solved using

a suitable combination of the timing codes proposed in Chapter 2 and the random codes

of Chapter 3. However, finding the capacity region for an arbitrary number of sources

seems to be a severe challenge.

The problems studied in the context of half-duplex networks have a strong (lossless)

source coding flavor since error-free links are considered. Hence, it might be interesting

to interpret our model and results within the framework of source coding and consider

reasonable extensions. Further, the channel model and the timing codes proposed in

Chapter 2 exhibit similarities with the model and the code proposed in [32] for a memory

with defective cells. Hence, there might exist storage applications for which our codes

are beneficial.

An interesting question in the context of the trapdoor channel (and of other channels

with memory) is whether there is a connection between fractal theory and certain in-

formation theoretic properties. It is, e.g., known that graph theory and the zero-error

capacity are well-connected [58], [59, Chapter 30].





A
Mathematical Notation and

Abbreviations

Notation

N off symbol indicating no transmission

Q transmission alphabet

Wv message set of node v

|X | cardinality of the set X
xv,k kth entry of the vector xv

Xv,k kth entry of the random vector Xv

xn
v the first n entries (xv,1 . . . , xv,n) of the vector xv

Xn
v the first n entries (Xv,1 . . . , Xv,n) of the random vec-

tor Xv

Xn the random vector (X1, . . . , Xn)
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wv;b a message sent by node v in block b

w0;b−[i;m−1] the messages
(

w0;b−i, w0;b−(i+1), . . . , w0;b−(m−1)

)

xv(b) a codeword sent by node v in block b

yv(b) a codeword received by node v in block b

nv number of transmission symbols used by node v per

block

kv number of transmission symbols used by node v per

block to encode own information

Sc complement of the set S

℘(S) power set of a set S
Pn set of all probability n-vectors p = (p1, . . . , pn)

Rts(q) time-sharing rate equal to 0.5 log2(q + 1) b/u

P
(n)
i;b average probability of a decoding error at node i in

block b of length n

φ golden ratio (1 +
√

5)/2

Pn|s0
2n × 2n matrix characterizing the trapdoor channel

with initial state s0 and input blocks of length n

N0 natural numbers including 0

N natural numbers without 0

R
n the set of ordered n-tuples of real numbers

R
n
≥ the set of ordered n-tuples of non-negative real num-

bers

ex the canonical basis vector (1, 0, 0)

ey the canonical basis vector (0, 1, 0)

ez the canonical basis vector (0, 0, 1)

In 2n × 2n identity matrix

Ĩn 2n × 2n matrix whose secondary diagonal entries are

equal to 1 while the remaining entries are equal to 0

1n column vector of length 2n consisting only of ones

1n×n 2n × 2n matrix consisting only of ones

Φ◦n n-fold composition of the function Φ
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A ◦B Hadamard product, i.e., the entrywise product, of

matrices A and B

log(·) logarithm to base e; if applied to a vector or matrix,

log(·) of each element is taken

log2(·) logarithm to base 2; if applied to a vector or matrix,

log2(·) of each element is taken

exp2(·) exponential function to base 2; if applied to a vector

or matrix, exp2(·) of each element is taken
[

Pn|s0

]

i,j
entry of Pn|s0

in row i and column j

hn|s0
conditional entropy vector of dimension 2n × 1

h(i)
2n+2|s0

subvector of h2n+2|s0
from the ((i− 1) · 22n + 1)

th el-

ement to the (i · 22n)
th element, 1 ≤ i ≤ 4

ωn|s0
weighted conditional entropy vector of dimen-

sion 2n × 1

ω
(i)
2n+2|s0

subvector of ω2n+2|s0
from the ((i− 1) · 22n + 1)

th el-

ement to the (i · 22n)
th element, 1 ≤ i ≤ 4

List of Abbreviations

b/sym bits per symbol

b/u bits per (channel) use

CF compress-and-forward

DF decode-and-forward

FDD frequency-division duplex

FSC finite state channel

i.i.d. independent and identically distributed

IFS iterated function system

pmf probability mass function

TDD time-division duplex
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