
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Nachrichtentechnik

Coding for Relay Networks and
Effective Secrecy for Wire-Tap Channels

Jie Hou

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor–Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Dr. rer. nat. Holger Boche

Prüfer der Dissertation: 1. Univ.-Prof. Dr. sc. techn. (ETH Zürich) Gerhard Kramer
2. Prof. Young-Han Kim, Ph.D.

University of California, San Diego, USA

Die Dissertation wurde am 08.05.2014 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 02.08.2014 angenom-
men.





iii

Acknowledgements

I thank Professor Gerhard Kramer for his generous support and guidance during my

time at LNT, TUM. Whether for a cup of coffee or for a technical meeting, Gerhard’s

door is always open, for he has genuine interest in his students and research. I also thank

Gerhard for his effort and care in shaping my thinking and approach to research: solve

problems in the simplest way and present results in the most concise way. I am surely

going to benefit more from this motto in the future. I further thank Gerhard for the

many opportunities he created for me, especially the trip to USC. Thank you Gerhard!

At the beginning of my Ph.D. study, I had the honor to work with the late Professor

Ralf Kötter. Thank you Ralf, for giving me the opportunity to pursue a Dr.-Ing. degree

and for providing valuable advises.

I thank Professor Young-Han Kim for acting as the co-referee of my thesis and for

his suggestions. Special thanks go to Professor Hagenauer and Professor Utschick for

their support during the difficult times at LNT. I would like to thank the colleagues at

LNT for having created a pleasant atmosphere over the course of my Ph.D.. Several

people contributed to it in a special way. Hassan Ghozlan, a true “Trojan”, shared the

moments of excitement and disappointment in research. I very much enjoyed the con-

versations with Hassan, both technical and non-technical, on some of the “long” days.

My office-mate Tobias Lutz became a good friend and we had good times on and off work.

Finally, I am most indebted to my family who shared my ups and downs and who

always stood by my side: my late father Gongwei and my mother Jianning. Without

their love and support, I would not be where I am. The last word of thanks goes to

Miao and Baobao for their love and for making my life a pleasant one.

München, May 2014 Jie Hou





v

Contents

1. Introduction 1

2. Preliminaries 5

2.1. Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Information Measures and Inequalities . . . . . . . . . . . . . . . . . . . 6

3. Short Message Noisy Network Coding 7

3.1. System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1. Memoryless Networks . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2. Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.3. Encoders and Decoders . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2. Main Result and Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1. Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.2. Backward Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1. Decoding Subsets of Messages . . . . . . . . . . . . . . . . . . . . 19

3.3.2. Choice of Typicality Test . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.3. Optimal Decodable Sets . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.4. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4. SNNC with a DF option . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



vi Contents

3.5. Gaussian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1. Relay Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2. Two-Relay Channels . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.3. Multiple Access Relay Channels . . . . . . . . . . . . . . . . . . . 33

3.5.4. Two-Way Relay Channels . . . . . . . . . . . . . . . . . . . . . . 36

3.6. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4. Multiple Access Relay Channel with Relay-Source Feedback 39

4.1. System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2. Main Result and Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3. The Gaussian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5. Resolvability 51

5.1. System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2. Main Result and Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1. Typicality Argument . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2. Error Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.3. Converse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6. Effective Secrecy: Reliability, Confusion and Stealth 63

6.1. Wire-Tap Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2. Main result and Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.1. Achievability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.2. Converse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.3. Broadcast Channels with Confidential Messages . . . . . . . . . . 73

6.2.4. Choice of Security Measures . . . . . . . . . . . . . . . . . . . . . 74

6.3. Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



Contents vii

7. Conclusion 81

A. Proofs for Chapter 3 83

A.1. Treating Class 2 Nodes as Noise . . . . . . . . . . . . . . . . . . . . . . . 83

A.2. SNNC with joint Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.3. Backward Decoding for the Two-Relay Channel without Block Markov

Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.4. Rates and Outage for Gaussian Networks . . . . . . . . . . . . . . . . . . 91

A.4.1. Relay Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.4.2. Two-Relay Channels . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.4.3. Multiple Access Relay Channels . . . . . . . . . . . . . . . . . . . 99

A.4.4. Two-Way Relay Channels . . . . . . . . . . . . . . . . . . . . . . 103

B. Proofs for Chapter 5 109

B.1. Proof of Lemma 5.2: Non-Uniform W . . . . . . . . . . . . . . . . . . . . 109

B.2. Proof of Lemma 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

C. Abbreviations 115





ix

Zusammenfassung

Diese Arbeit untersucht zwei Probleme in Netzwerk-Informationstheorie: Codierung

für Relaisnetzwerke und (präzise) Approximationen der Wahrscheinlichkeitsverteilungen

basierend auf nicht-normalisierter Kullback-Leibler Divergenz und deren Anwendungen

zur sicheren Kommunikation in Netzen.

Im Rahmen der ersten Problemstellung wird zuerst Netzcodierung in rauschbehafteten

Netzen mit kurzen Nachrichten (SNNC) untersucht. SNNC ermöglicht Rückwärtsde-

codierung, die einfach zu analysieren ist und die gleichen Raten wie SNNC mit Sliding-

Window Decodierung und Netzcodierung mit längen Nachrichten (LNNC) mit gemein-

samer Decodierung liefert. SNNC ermöglicht auch den Relais die frühzeitige Decodierung,

wenn die Kanalqualität gut ist. Dies führt zu gemischten Strategien, die die Vorteile von

SNNC und decode-forward (DF) vereinigen. Wir präsentieren einen iterativen Algorith-

mus, der diejenigen Nutzer findet, deren Nachrichten als Rauschen behandeltet werden

sollten, um die besten Raten zu gewährleisten. Anschließend wird der Vielfachzugriff-

Relaiskanal (MARC) mit Relais-Quelle Rückkopplung untersucht. Wir leiten mit einer

neuen DF Codierung die Ratenregionen her, die die Kapazitätsregion des MARC ohne

Rückkopplung einschließen. Dies zeigt, dass Rückkopplungen die Kapazitätsregionen in

Mehrnutzernetzwerken vergrößen können.

Im Rahmen der zweiten Problemstellung zeigen wir zuerst, dass die minimale Rate, um

eine Verteilung präzis zu approximieren, eine Transinformation ist. Die Genauigkeit ist

mit Hilfe der nicht-normalisierten Kullback-Leibler Divergenz gemessen. Anschließend

wenden wir das Ergebnis auf Kommunikationssicherheit in Netzen an und definieren

ein neues effektives Sicherheitsmaß, das starke Sicherheit und Heimlichkeit beinhal-

tet. Dieses effektive Maß stellt sicher, dass der Lauscher nichts von der Nachricht mit-

bekommt und auch nicht in der Lage ist, die Präsenz der bedeutsamen Kommunikation

zu detektieren.
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Abstract

This thesis addresses two problems of network information theory: coding for relay

networks and (accurate) approximations of distributions based on unnormalized infor-

mational divergence with applications to network security.

For the former problem, we first consider short message noisy network coding (SNNC).

SNNC differs from long message noisy network coding (LNNC) in that one transmits

many short messages in blocks rather than using one long message with repetitive encod-

ing. Several properties of SNNC are developed. First, SNNC with backward decoding

achieves the same rates as SNNC with offset encoding and sliding window decoding for

memoryless networks where each node transmits a multicast message. The rates are the

same as LNNC with joint decoding. Second, SNNC enables early decoding if the channel

quality happens to be good. This leads to mixed strategies that unify the advantages

of decode-forward and noisy network coding. Third, the best decoders sometimes treat

other nodes’ signals as noise and an iterative method is given to find the set of nodes

that a given node should treat as noise sources. We next consider the multiple access

relay channel (MARC) with relay-source feedback. We propose a new decode-forward

(DF) coding scheme that enables the cooperation between the sources and the relay to

achieve rate regions that include the capacity region of the MARC without feedback.

For the latter problem, we show that the minimum rate needed to accurately ap-

proximate a product distribution based on an unnormalized informational divergence

is a mutual information. This result subsumes results of Wyner on common informa-

tion and Han-Verdú on resolvability. The result also extends to cases where the source

distribution is unknown but the entropy is known. We then apply this result to net-

work security where an effective security measure is defined that includes both strong

secrecy and stealth communication. Effective secrecy ensures that a message cannot be

deciphered and that the presence of meaningful communication is hidden. To measure

stealth we use resolvability and relate this to binary hypothesis testing. Results are

developed for wire-tap channels and broadcast channels with confidential messages.



1
Introduction

Network information theory extends Shannon’s seminal work [1] and seeks answers for

two questions: what are the ultimate limits for

⊲ reliable and secure data transmission

⊲ data compression with fidelity criteria

in multi-user networks? For some special networks, the solutions are known, e.g., the

capacity region of the two-user multiple access channel (MAC) [2,3] and the Slepian-Wolf

problem [4] (compressing two correlated sources). However, the solutions for general

multi-user networks remain elusive. For instance, the capacity for the relay channel is

open for over 40 years.

In order to deepen our understanding in theory and gain insight for practical imple-

mentations, we address two topics in network information theory in this thesis, namely:

⊲ Short message noisy network coding (SNNC)

⊲ Resolvability with applications to network security.
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SNNC is a coding scheme for relay networks where every node forwards a quantized

version of its channel output along with its messages. SNNC combined with appropriate

decoding methods [5–9], for instance backward decoding, achieves the same rates as its

long message counterpart (LNNC) [10, 11] with joint decoding and provides a simpler

analysis since per-block processing is possible. The rate bounds have a nice cut-set

interpretation and generalize the results in [12–15] in a natural way. Also, SNNC allows

the relays to switch between decode-forward (DF) and quantize-forward (QF) depending

on the quality of the channels, thereby achieving a boost in performance.

On the other hand, resolvability addresses the minimal rate needed to mimic a target

distribution with some distance measure. Wyner considered this problem based on

normalized informational divergence [16] and Han-Verdú studied it based on variational

distance [17]. The same minimal rate, which is a Shannon mutual information, was

shown to be necessary and sufficient to produce good approximations for both measures

in [16,17]. We show that the same rate is also necessary and sufficient to generate good

approximations based on unnormalized informational divergence. We then apply this

result to establish a new and stronger security measure termed effective secrecy that

includes both strong secrecy and stealth. The effective secrecy measure includes hiding

the messages and hiding the presence of meaningful communication.

The thesis is organized as follows.

Chapter 2 introduces notation and useful definitions as well as inequalities that will

be used throughout this thesis.

Chapter 3 discusses SNNC for networks with multiple multi-cast sessions. We show

that SNNC with backward decoding achieves the same rates as SNNC with sliding

window decoding and LNNC with joint decoding. Backward decoding also provides a

simpler analysis since per-block processing is enabled. More importantly, we show that

SNNC enables the relays to choose the best strategy, DF or QF, depending on the

channel conditions which leads to mixed strategies that unify the advantages of both

DF and QF. Numerical results show that mixed strategies provide substantial gains

compared to SNNC (LNNC) and other strategies in rates and outage probabilities for

networks without and with fading, respectively.

Chapter 4 deals with the multiple access relay channel (MARC) with relay-source

feedback. We introduce a new DF coding scheme with feedback and establish an achiev-
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able rate region that includes the capacity region of the MARC. We compare this region

with the achievable SNNC rates developed in Chapter 3. The results show how coop-

eration improves rates and how network geometry affects the choice of coding strategy.

In Chapter 5, we consider the resolvability problem based on unnormalized infor-

mational divergence. Our result subsumes that in [17, 18] when restricting attention to

product distributions and the proof is simpler.

In Chapter 6, we apply the resolvability result in Chapter 5 to network security

and establish a new and stronger security measure, effective secrecy, that includes strong

secrecy and stealth. We also relate stealth to binary hypothesis testing. Results are

developed for wire-tap channels and broadcast channels with confidential messages.

Finally, Chapter 7 summarizes the results and discusses open research problems that

are related to the work in this thesis.





2
Preliminaries

2.1. Random Variables

Random variables are written with upper case letters such as X and their realizations

with the corresponding lower case letters such as x. Bold letters refer to random vectors

and their realizations (X and x). Subscripts on a variable/symbol denote the vari-

able/symbol’s source and the position in a sequence. For instance, Xki denotes the

i-th output of the k-th encoder. Superscripts denote finite-length sequences of vari-

ables/symbols, e.g., Xn
k = (Xk1, . . . , Xkn). Calligraphic letters denote sets, e.g., we

write K = {1, 2, . . . , K}. The size of a set S is denoted as |S| and the complement set

of S is denoted as Sc. Set subscripts denote vectors of letters, e.g., XS = [Xk : k ∈ S].

A random variable X has distribution PX and the support of PX is denoted as

supp(PX). We write probabilities with subscripts PX(x) but we often drop the sub-

scripts if the arguments of the distributions are lower case versions of the random vari-

ables. For example, we write P (x) = PX(x). If the Xi, i = 1, . . . , n, are independent

and identically distributed (i.i.d.) according to PX , then we have P (xn) =
∏n

i=1 PX(xi)
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and we write PXn = P n
X . We often also use Qn

X to refer to strings (or sequences) of i.i.d.

random variables. For X with finite alphabet X we write PX(S) =
∑

x∈S PX(x) for any

S ⊆ X .

We use T n
ǫ (PX) to denote the set of letter-typical sequences of length n with respect

to the probability distribution PX and the non-negative number ǫ [19, Ch. 3], [20], i.e.,

we have

T n
ǫ (PX) =

{
xn :

∣∣∣∣∣
N(a|xn)

n
− PX(a)

∣∣∣∣∣ ≤ ǫPX(a), ∀a ∈ X
}

(2.1)

where N(a|xn) is the number of occurrences of a in xn.

2.2. Information Measures and Inequalities

The entropy of a discrete random variable X is defined as

H(X) =
∑

x∈supp(X)

(−P (x) log P (x)) . (2.2)

Let X and Y be two discrete variables with joint distribution PXY . We write the mutual

information between X and Y as

I(X; Y ) =
∑

(x,y)∈supp(PXY )

P (x, y) log
P (x, y)

P (x)P (y)
. (2.3)

The informational divergence and variational distance between two distributions PX and

QX are respectively denoted as

D(PX ||QX) =
∑

x∈supp(PX)

P (x) log
P (x)

Q(x)
(2.4)

||PX − QX ||TV =
∑

x∈X

|P (x) − Q(x)|. (2.5)

Pinsker’s inequality [21, Theorem 11.6.1] states that

D(PX ||QX) ≥ 1

2 ln 2
||PX − QX ||2TV. (2.6)
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Short Message Noisy Network

Coding

Noisy Network Coding (NNC) extends network coding from noiseless to noisy networks.

NNC is based on the compress-forward (CF) strategy of [21] and there are now two

encoding variants: short message NNC (SNNC) [5–9, 22–27] and long message NNC

(LNNC) [10, 11, 15]. Both variants achieve the same rates that include the results of

[12–14] as special cases.

For SNNC, there are many decoding variants: step-by-step decoding [21–24], sliding

window decoding [5, 6], backward decoding [7–9, 25, 26] and joint decoding [26]. There

are also several initialization methods. The papers [5, 6, 24] use delayed (or offset)

encoding, [7] uses many extra blocks to decode the last quantization messages and [9]

uses extra blocks to transmit the last quantization messages by multihopping. We remark

that the name of the relaying operation should not depend on which decoder (step-by-

step, sliding window, joint, or backward decoding) is used at the destination but is a

generic name for the processing at the relays, or in the case of SNNC and LNNC, the
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overall encoding strategy of the network nodes.

More explicitly, SNNC has

⊲ Sources transmit independent short messages in blocks.

⊲ Relays perform CF but perhaps without hashing (or binning) which is called

quantize-forward (QF).

⊲ Destinations use one of the several decoders. For instance, SNNC with CF and

step-by-step decoding was studied for relay networks in [22, Sec. 3.3.3], [23, Sec.

V], and [24]. The papers [5, 6] studied SNNC with sliding window decoding. The

papers [7–9, 25, 26] considered SNNC with backward decoding. SNNC with joint

decoding was studied in [26].

We prefer backward decoding because it permits per-block processing and gives the most

direct way of establishing rate bounds. However, we remark that the sliding window

decoder of [5,6] is preferable because of its lower decoding delay, and because it enables

streaming.

LNNC uses three techniques from [15]:

⊲ Sources use repetitive encoding with long messages.

⊲ Relays use QF.

⊲ Destinations decode all messages and all quantization bits jointly.

One important drawback of long messages is that they inhibit decode-forward (DF)

even if the channel conditions are good [8]. For example, if one relay is close to the source

and has a strong source-relay link, then the natural operation is DF which removes the

noise at the relay. But this is generally not possible with a long message because of its

high rate.

Our main goals are to simplify and extend the single source results of [7, 8, 25] by

developing SNNC with backward decoding for networks with multiple multicast sessions

[9]. We also introduce multihopping to initialize backward decoding. This method

reduces overhead as compared to the joint decoder initialization used in [7]. The method
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W1 → (X1, Y1)W2 → (X2, Y2)

W3 → (X3, Y3)

Wk → (Xk, Yk)

WK → (XK , YK)

...
...

· · ·

P (y1, . . . , yK |x1, . . . , xK)

Figure 3.1.: A K-node memoryless network. The network is a DMN if the alphabets of
Xk and Yk are discrete and finite for k = 1, . . . , K.

further enables per-block processing for all signals, i.e., all messages and quantization

indices.

This chapter is organized as follows. In Section 3.1, we state the problem. In Section

3.2, we show that SNNC achieves the same rates as SNNC with sliding window decoding

and LNNC for memoryless networks with multiple multicast sessions. In Section 3.3,

we discuss the results and relate them to other work. In Section 3.4, we present coding

schemes for mixed strategies that allow relay nodes to switch between DF and QF

depending on the channel conditions. Results on Gaussian networks are discussed in

Section 3.5. Finally, Section 3.6 concludes this chapter.

3.1. System Model

3.1.1. Memoryless Networks

Consider the K-node memoryless network depicted in Fig. 3.1 where each node has one

message only. This model does not include broadcasting messages and was used in [11]

and [28, Ch. 15] . Node k, k ∈ K, has a message Wk destined for nodes in the set Dk,

Dk ⊆ K \ {k}, while acting as a relay for messages of the other nodes. We write the set
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of nodes whose signals node k must decode correctly as D̃k = {i ∈ K : k ∈ Di}. The

messages are mutually statistically independent and Wk is uniformly distributed over

the set {1, . . . , 2nRk}, where 2nRk is taken to be a non-negative integer.

The channel is described by the conditional probabilities

P (yK|xK) = P (y1, . . . , yK |x1, . . . , xK) (3.1)

where Xk and Yk, k ∈ K, are the respective input and output alphabets, i.e., we have

(x1, . . . , xK) ∈ X1 × · · · × XK

(y1, . . . , yK) ∈ Y1 × · · · × YK .

If all alphabets are discrete and finite sets, then the network is called a discrete memory-

less network (DMN) [29], [30, Ch.18]. Node k transmits xki ∈ Xk at time i and receives

yki ∈ Yk. The channel is memoryless and time invariant in the sense that

P (y1i, . . . , yKi|w1, . . . , wK , xi
1, . . . , xi

K , yi−1
1 , . . . , yi−1

K )

= PY K |XK (y1i, . . . , yKi|x1i, . . . , xKi) (3.2)

for all i. As usual, we develop our random coding for DMNs and later extend the results

to Gaussian channels.

3.1.2. Flooding

We can represent the DMN as a directed graph G = {K, E}, where E ⊂ K × K is a set

of edges. Edges are denoted as (i, j) ∈ E , i, j ∈ K, i 6= j. We label edge (i, j) with the

non-negative real number

Cij = max
xK\i

max
PXi

I(Xi; Yj|XK\i = xK\i) (3.3)

called the capacity of the link, where I(A; B|C = c) is the mutual information between

the random variables A and B conditioned on the event C = c. Let Path(i,j) be a path

that starts from node i and ends at node j. Let Γ(i,j) to be the set of such paths. We
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1 2 3 4C32C21 C43

C34C12 C23

Figure 3.2.: A line network with 4 nodes. Each node can communicate reliably with any
other node as long as Cij > 0 for all i, j.

write (k, ℓ) ∈ Path(i,j) if (k, ℓ) lies on the path Path(i,j). We may communicate reliably

between nodes i and j if

Rij = max
Path(i,j)∈Γ(i,j)

min
(k,l)∈Path(i,j)

Ckl (3.4)

is positive. We assume that Rij > 0 for all nodes i with a message destined for node j.

Observe that if Cij > 0 for all i, j, then at most K − 1 hops are needed for node i to

reliably convey its message at rate

min
j∈K

Rij (3.5)

by multihopping to all other nodes in the network. Hence, for a K-node memoryless

network at most K(K − 1) hops are needed for all nodes to “flood” their messages by

multihopping through the network.

Example 3.1. A line network with 4 nodes is depicted in Fig. 3.2. Node 1 has a

message for node 4 and we assume that C12 > 0, C23 > 0 and C34 > 0 so that node 1 can

communicate reliably to node 4 by multihopping through nodes 2 and 3 with 3 hops.

3.1.3. Encoders and Decoders

We define two types of functions for each node k:

⊲ n encoding functions fn
k = (fk1, . . . , fkn) that generate channel inputs based on

the local message and past channel outputs

Xki = fki(Wk, Y i−1
k ), i = {1, . . . , n}. (3.6)
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⊲ One decoding function

gk(Y n
k , Wk) = [Ŵ

(k)
i , i ∈ D̃k] (3.7)

where Ŵ
(k)
i is the estimate of Wi at node k.

The average error probability for the network is defined as

P (n)
e = Pr



⋃

k∈K

⋃

i∈D̃k

{Ŵ
(k)
i 6= Wi}


 . (3.8)

A rate tuple (R1, . . . , RK) is achievable for the DMN if for any ξ > 0, there is a sufficiently

large integer n and some functions {fn
k }K

k=1 and {gk}K
k=1 such that P (n)

e ≤ ξ. The capacity

region is the closure of the set of achievable rate tuples. For each node k we define

Kk = {k} ∪ D̃k ∪ Tk, Tk ⊆ D̃c
k \ {k} (3.9)

where Tk has the nodes whose messages node k is not interested in but whose symbol

sequences are included in the typicality test in order to remove interference. We further

define, for any S ⊂ L ⊆ K, the quantities

IL
S (k) = I(XS ; ŶScYk|XSc) − I(ŶS ; YS|XLŶScYk) (3.10)

IL
S (k|T ) = I(XS ; ŶScYk|XScT ) − I(ŶS ; YS|XLŶScYkT ) (3.11)

where Sc in (3.10) and (3.11) is the complement of S in L. We write RS =
∑

k∈S Rk.

3.2. Main Result and Proof

The following theorem is the main result of this chapter.

Theorem 3.1. For a K-node memoryless network with one multicast session per node,

SNNC with backward decoding achieves the same rate tuples (R1, . . . , RK) as SNNC

with sliding window decoding [5, 6] and LNNC with joint decoding [10, 11]. These are
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the rate tuples satisfying

0 ≤ RS < IKk

S (k|T ) (3.12)

for all k ∈ K, all subsets S ⊂ Kk with k ∈ Sc and S∩D̃k 6= ∅, where Sc is the complement

of S in Kk, and for joint distributions that factor as

P (t)

[
K∏

k=1

P (xk|t)P (ŷk|yk, xk, t)

]
P (yK|xK). (3.13)

Remark 3.1. The set Kk (see (3.9)) represents the set of nodes whose messages are

known or decoded at node k. In other words, from node k’s perspective the network has

nodes Kk only.

Example 3.2. If D = D1 = · · · = DK , then the bound (3.12) is taken for all k ∈ K and

all subsets S ⊂ Kk with k ∈ Sc and S ∩ D 6= ∅, where Sc is the complement of S in Kk.

Example 3.3. Consider K = {1, 2, 3, 4} and suppose node 1 has a message destined for

node 3, and node 2 has a message destined for node 4. We then have D̃3 = {1} and

D̃4 = {2}. If nodes 3 and 4 choose T3 = {2} and T4 = {∅} respectively, then we have

K3 = {1, 2, 3} and K4 = {2, 4}. In this case the rate bounds (3.12) are:

Node 3:

R1 < I(X1; Ŷ2Ŷ3Y3|X2X3T ) (3.14)

R1 + R2 < I(X1X2; Ŷ3Y3|X3T ) − I(Ŷ1Ŷ2; Y1Y2|X1X2X3Ŷ3Y3T ) (3.15)

Node 4:

R2 < I(X2; Ŷ4Y4|X4T ) − I(Ŷ2; Y2|X2X4Ŷ4Y4T ) (3.16)

3.2.1. Encoding

To prove Theorem 3.1, we choose Kk = K for all k for simplicity. We later discuss the

case where these sets are different. For clarity, we set the time-sharing random variable T
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Block 1 · · · B B + 1 · · · B + K · (K − 1)
X1 x11(w11, 1) · · · x1B(w1B, l1(B−1))

Ŷ1 ŷ11(l11|w11, 1) · · · ŷ1B(l1B|w1B, l1(B−1)) Multihop K messages
...

...
...

... to K − 1 nodes
XK xK1(wK1, 1) · · · xKB(wKB, lK(B−1)) in K · (K − 1) · n′ channel uses

ŶK ŷK1(lK1|wK1, 1) ŷKB(lKB|wKB, lK(B−1))

Table 3.1.: SNNC for one multicast session per node.

to be a constant. Table 3.1 shows the SNNC encoding process. We redefine Rk to be the

rate of the short messages in relation to the (redefined) block length n. In other words,

the message wk, k ∈ K, of nBRk bits is split into B equally sized blocks, wk1, . . . , wkB,

each of nRk bits. Communication takes place over B + K · (K − 1) blocks and the true

rate of wk will be

Rk,true =
nBRk

nB + [K · (K − 1) · n′]
(3.17)

where n′ is defined in (3.20) below.

Random Code: Fix a distribution
∏K

k=1 P (xk)P (ŷk|yk, xk). For each block j = 1, . . . , B

and node k ∈ K, generate 2n(Rk+R̂k) code words xkj(wkj, lk(j−1)), wkj = 1, . . . , 2nRk, lk(j−1) =

1, . . . , 2nR̂k , according to
∏n

i=1 PXk
(x(kj)i) where lk0 = 1 by convention. For each wkj and

lk(j−1), generate 2nR̂k reconstructions ŷkj(lkj|wkj, lk(j−1)), lkj = 1, . . . , 2nR̂k , according to
∏n

i=1 PŶk|Xk
(ŷ(kj)i|x(kj)i(wkj, lk(j−1))). This defines the codebooks

Ckj = {xkj(wkj, lk(j−1)), ŷkj(lkj|wkj, lk(j−1)),

wkj = 1, . . . , 2nRk , lk(j−1) = 1, . . . , 2nR̂k , lkj = 1, . . . , 2nR̂k} (3.18)

for j = 1, . . . , B and k ∈ K.

The codebooks used in the last K(K − 1) blocks with j > B are different. The blocks

j = B + (k − 1) · (K − 1) + 1, . . . , B + k · (K − 1) (3.19)

are dedicated to flooding lkB through the network, and for all nodes k̃ ∈ K we gen-

erate 2n′R̂k independent and identically distributed (i.i.d.) code words xk̃j(lkB), lkB =
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1, . . . , 2n′R̂k , according to
∏n′

i=1 PXk̃
(x(k̃j)i). We choose

n′ = max
k

nR̂k

min
k̃∈K

Rkk̃

(3.20)

that is independent of k and B. The overall rate of user k is thus given by (3.17) which

approaches Rk as B → ∞.

Encoding: Each node k upon receiving ykj at the end of block j, j ≤ B, tries to find

an index lkj such that the following event occurs:

E0(kj)(lkj) :
(
ŷkj(lkj|wkj, lk(j−1)), xkj(wkj, lk(j−1)), ykj

)
∈ T n

ǫ

(
PŶkXkYk

)
(3.21)

If there is no such index lkj, set lkj = 1. If there is more than one, choose one. Each

node k transmits xkj(wkj, lk(j−1)) in block j = 1, . . . , B.

In the K − 1 blocks (3.19), node k conveys lkB reliably to all other nodes by multi-

hopping xkj(lkB) through the network with blocks of length n′.

3.2.2. Backward Decoding

Let ǫ1 > ǫ. At the end of block B + K · (K − 1) every node k ∈ K has reliably recovered

lB = (l1B, . . . , lKB) via the multihopping of the last K(K − 1) blocks.

For block j = B, . . . , 1, node k tries to find tuples ŵ(k)
j = (ŵ

(k)
1j , . . . , ŵ

(k)
Kj) and l̂(k)

j−1 =

(l̂
(k)
1(j−1), . . . , l̂

(k)
K(j−1)) such that the following event occurs:

E1(kj)(ŵ
(k)
j ,̂l(k)

j−1, lj) :
(
x1j(ŵ

(k)
1j , l̂

(k)
1(j−1)), . . . , xKj(ŵ

(k)
Kj, l̂

(k)
K(j−1)),

ŷ1j(l1j|ŵ(k)
1j , l̂

(k)
1(j−1)), . . . , ŷKj(lKj|ŵ(k)

Kj, l̂
(k)
K(j−1)), ykj

)
∈ T n

ǫ1

(
PXKŶKYk

)
(3.22)

where lj = (l1j , . . . , lKj) has already been reliably recovered from the previous block

j + 1.

Error Probability: Let 1 = (1, . . . , 1) and assume without loss of generality that wj = 1

and lj−1 = 1. In each block j, the error events at node k are:

E(kj)0 : ∩lkj
Ec

0(kj)(lkj) (3.23)
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E(kj)1 : Ec
1(kj)(1, 1, 1) (3.24)

E(kj)2 : ∪(wj ,lj−1)6=(1,1) E1(kj)(wj , lj−1, 1) (3.25)

The error event Ekj = ∪2
i=0E(kj)i at node k in block j thus satisfies

Pr
[
Ekj

]
≤

2∑

i=0

Pr
[
E(kj)i] (3.26)

where we have used the union bound. Pr
[
E(kj)0

]
can be made small with large n, as

long as (see [20])

R̂k > I(Ŷk; Yk|Xk) + δǫ(n) (3.27)

where δǫ(n) → 0 as n → ∞. Similarly, Pr
[
E(kj)1

]
can be made small with large n.

To bound Pr
[
E(kj)2

]
, for each wj and lj−1 we define

M(wj) = {i ∈ K : wij 6= 1} (3.28)

Q(lj−1) = {i ∈ K : li(j−1) 6= 1} (3.29)

S(wj , lj−1) = M(wj) ∪ Q(lj−1) (3.30)

and write S = S(wj , lj−1). The important observations are:

⊲ (XS , ŶS) is independent of (XSc, ŶSc, Ykj) in the random coding experiment;

⊲ The (Xi, Ŷi), i ∈ S, are mutually independent.

For k ∈ Sc and (wj, lj−1) 6= (1, 1), we thus have

Pr
[
E1(kj)(wj , lj−1, lj)

]
≤ 2−n(IS−δǫ1(n)) (3.31)

where δǫ1(n) → 0 as n → ∞ and

IS =

[
∑

i∈S

H(XiŶi)

]
+ H(XScŶScYk) − H(XSŶSXScŶScYk)

= I(XS ; ŶScYk|XSc) +

[
∑

i∈S

H(Ŷi|Xi)

]
− H(ŶS|XKŶScYk). (3.32)
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By the union bound, we have

Pr
[
E(kj)2

]
≤

∑

(wj ,lj−1)6=(1,1)

Pr
[
E1(kj)(wj, lj−1, 1)

]

(a)

≤
∑

(wj ,lj−1)6=(1,1)

2
−n(IS(wj,lj−1)−δǫ1 (n))

(b)
=

∑

S:k∈Sc

S6=∅

∑

(wj ,lj−1):

S(wj ,lj−1)=S

2−n(IS−δǫ1 (n))

(c)
=

∑

S:k∈Sc

S6=∅

∑

M⊆S,Q⊆S
M∪Q=S


∏

i∈M

(2nRi − 1)
∏

i∈Q

(2nR̂i − 1)


 · 2−n(IS−δǫ1 (n))

<
∑

S:k∈Sc

S6=∅

∑

M⊆S,Q⊆S
M∪Q=S

2nRM2nR̂Q2−n(IS−δǫ1 (n))

(d)

≤
∑

S:k∈Sc

S6=∅

3|S|2n(RS+R̂S−(IS−δǫ1 (n)))

=
∑

S:k∈Sc

S6=∅

2
n

[
RS−(IS−R̂S−

|S| log2 3
n

−δǫ1 (n))

]

(3.33)

where

(a) follows from (3.31)

(b) follows by collecting the (wj , lj−1) 6= (1, 1) into classes where S = S(wj , lj−1)

(c) follows because there are

∏

i∈M

(2nRi − 1)
∏

i∈Q

(2nR̂i − 1) (3.34)

different (wj , lj−1) 6= (1, 1) that result in the same M and Q such that M ⊆ S,

Q ⊆ S and S = M ∪ Q

(d) is because for every node i ∈ S, we must have one of the following three cases occur:

1) i ∈ M and i /∈ Q
2) i /∈ M and i ∈ Q
3) i ∈ M and i ∈ Q
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so there are 3|S| different ways of choosing M and Q.

Since we require R̂k ≥ I(Ŷk; Yk|Xk) + δǫ(n), we have

IS − R̂S ≤ IS −
∑

i∈S

I(Ŷi; Yi|Xi) − δǫ(n)

= IK
S (k) − δǫ(n). (3.35)

Combining (3.26), (3.27), (3.33) and (3.35) we find that we can make Pr
[
Ekj

]
→ 0 as

n → ∞ if

0 ≤ RS < IK
S (k) (3.36)

for all subsets S ⊂ K such that k ∈ Sc and S 6= ∅. Of course, if IK
S (k) ≤ 0, then we

require that RS = 0.

We can split the bounds in (3.36) into two classes:

Class 1 : S ∩ D̃k 6= ∅ (3.37)

Class 2 : S ∩ D̃k = ∅ or equivalently S ⊆ D̃c
k (3.38)

LNNC requires only the Class 1 bounds. SNNC requires both the Class 1 and Class 2

bounds to guarantee reliable decoding of the quantization indices lj−1 for each backward

decoding step. With the same argument as in [5, Sec. IV-C], we can show that the Class

2 bounds can be ignored when determining the best SNNC rates. For completeness, the

proof is given in Appendix A.1. SNNC with backward decoding thus performs as well

as SNNC with sliding window decoding and LNNC with joint decoding. Adding a time-

sharing random variable T completes the proof of Theorem 3.1 for Kk = K for all k.

The proof with general Kk follows by having each node k treat the signals of nodes in

K \ Kk as noise
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3.3. Discussion

3.3.1. Decoding Subsets of Messages

From Theorem 3.1 we know that if node k decodes messages from nodes in Kk and some

of the Class 2 constraints in (3.38) are violated, then we should treat the signals from

the corresponding nodes as noise. In this way, we eventually wind up with some

K̃k = {k} ∪ D̃k ∪ Tk, Tk ⊆ D̃c
k \ {k}, (3.39)

where all Class 2 constraints are satisfied, i.e., we have

0 ≤ RS < IK̃k

S (k|T ), for all S ⊆ Tk, S 6= ∅ (3.40)

and we achieve as good or better rates. In this sense, the sets K̃k are important even for

LNNC. These sets seem difficult to find in large networks because many constraints need

to be checked. However, provided that the sets K̃k are known, we have the following

lemma.

Lemma 3.2. For the K-node DMN, the rate tuples (R1, . . . , RK) are achievable if

RS < IK̃k

S (k|T )

for all k ∈ K, all subsets S ⊂ K̃k with k ∈ Sc and S ∩ D̃k 6= ∅, K̃k = {k} ∪ D̃k ∪ Tk,

Tk ⊆ D̃c
k \ {k}, where Tk satisfies (3.40) and for any joint distribution that factors as

(3.13).

Proof: The proof follows by including the messages from nodes in K̃k satisfying

(3.40) in the typicality test at every destination k in Theorem 3.1.

3.3.2. Choice of Typicality Test

Theorem 3.1 has a subtle addition to [25] and difference to [11, Theorem 2] and [30,

Theorem 18.5], namely that in (3.12) each k ∈ K may have a different set K̃k of nodes

satisfying all Class 2 constraints whose messages and quantization indices are included
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1

2

3

(a) Both nodes 1 and 2
are sources and relays

1

2

3

(b) Node 2 acts as a re-
lay for node 1

Figure 3.3.: Examples of a three-node network with different rate pairs.

in the typicality test. But we can achieve the rates in (3.12) at node k with SNNC by

using backward decoding and treating the signals from the nodes in K \ K̃k as noise.

Hence we may ignore the Class 2 constraints in (3.38) when determining the best SNNC

rates.

The following example suggests that it may not be surprising that the SNNC and

LNNC rate regions are the same. Consider the network in Fig. 3.3, where K = {1, 2, 3}.

Suppose both nodes 1 and 2 act as sources as well as relays for each other in transmitting

information to node 3 (see Fig. 3.3(a)). Referring to Theorem 3.1, the SNNC and LNNC

bounds are (see Fig. 3.4):

R1 < I(X1; Ŷ2Y3|X2) − I(Ŷ1; Y1|X1X2Ŷ2Y3) (3.41)

R2 < I(X2; Ŷ1Y3|X1) − I(Ŷ2; Y2|X1X2Ŷ1Y3) (3.42)

R1 + R2 < I(X1X2; Y3) − I(Ŷ1Ŷ2; Y1Y2|X1X2Y3) (3.43)

However, suppose now that node 2 has no message (R2 = 0) and acts as a relay node

only (see Fig. 3.3(b)). Then LNNC does not have the bound (3.42) while SNNC has

the bound (3.42) with R2 = 0 and Ŷ1 = ∅. We ask whether (3.42) reduces the SNNC

rate. This is equivalent to asking whether SNNC achieves point 1 in Fig. 3.4. It would

be strange if there was a discontinuity in the achievable rate region at R2 = 0.
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R1

R2

Point 1

Point 2

Figure 3.4.: Illustration of the achievable rates for the network of Fig. 3.3(b).

3.3.3. Optimal Decodable Sets

SNNC was studied for relay networks in [7]. For such networks there is one message

at node 1 that is destined for node K. We thus have D̃K = {1} and D̃c
K \ {K} =

{2, . . . , K − 1}. The authors of [7] showed that for a given random coding distribution

P (t)P (x1|t)
∏

k∈D̃c
K

P (xk|t)P (ŷk|yk, xk, t) (3.44)

there exists a unique largest optimal decodable set T ∗, T ∗ ⊆ D̃c
K \{K}, of the relay nodes

that provides the same best achievable rates for both SNNC and LNNC [7, Theorem 2.8].

We now show that the concept of optimal decodable set extends naturally to multi-source

networks.

Lemma 3.3. For a K-node memoryless network with a fixed random coding distribution

P (t)
K∏

k=1

P (xk|t)P (ŷk|yk, xk, t) (3.45)

there exists for each node k a unique largest set T ∗
k among all subsets Tk ⊆ D̃c

k \ {k}
satisfying (3.40). The messages of the nodes in T ∗

k should be included in the typicality

test to provide the best achievable rates.

Proof: We prove Lemma 3.3 without a time-sharing random variable T . The proof

with T is similar. We show that T ∗
k is unique by showing that the union of any two sets

T 1
k and T 2

k satisfying all constraints also satisfies all constraints and provides as good or
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better rates. Continuing taking the union, we eventually reach a unique largest set T ∗
k

that satisfies all constraints and gives the best rates.

Partition the subsets Tk ⊆ D̃c
k \ {k} into two classes:

Class 1: RS < IKk

S (k) for all S ⊆ Tk;

Class 2: There exists one S ⊆ Tk such that RS ≥ IKk

S (k).

We may ignore the Tk in Class 2 because the proof of Theorem 3.1 shows that we can

treat the signals of nodes associated with violated constraints as noise and achieve as

good or better rates. Hence, we focus on Tk in Class 1.

Suppose T 1
k and T 2

k are in Class 1 and let T 3
k = T 1

k ∪ T 2
k . We define

K̃1
k = {k} ∪ D̃k ∪ T 1

k (3.46)

K̃2
k = {k} ∪ D̃k ∪ T 2

k (3.47)

K̃3
k = {k} ∪ D̃k ∪ T 3

k . (3.48)

Further, for every S ⊆ K̃3
k, define S1 = S ∩K̃1

k and S2 = S ∩(K̃3
k \S1). We have S1 ⊆ K̃1

k,

S2 ⊆ K̃2
k, S1 ∪ S2 = S and S1 ∩ S2 = ∅. We further have

RS
(a)
= RS1 + RS2

(b)
< I

K̃1
k

S1
(k) + I

K̃2
k

S2
(k)

(c)
= I(XS1; Ŷ

K̃1
k

\S1
Yk|X

K̃1
k
\S1

) − I(ŶS1; YS1|XK̃1
k

Ŷ
K̃1

k
\S1

Yk)

+ I(XS2; Ŷ
K̃2

k
\S2

Yk|X
K̃2

k
\S2

) − I(ŶS2; YS2|XK̃2
k

Ŷ
K̃2

k
\S2

Yk)

(d)

≤ I(XS1; Ŷ
K̃3

k
\S

Yk|X
K̃3

k
\S

) − I(ŶS1; YS1|XK̃1
k

Ŷ
K̃1

k
\S1

Yk)

+ I(XS2; Ŷ
K̃3

k
\S

Yk|X
K̃3

k
\S2

) − I(ŶS2; YS2|XK̃2
k

Ŷ
K̃2

k
\S2

Yk)

(e)

≤ I(XS1 ; Ŷ
K̃3

k
\S

Yk|X
K̃3

k
\S

) − I(ŶS1; YS1|XK̃3
k

Ŷ
K̃3

k
\S

Yk)

+ I(XS2; Ŷ
K̃3

k
\S

Yk|X
K̃3

k
\S2

) − I(ŶS2; YS2|XK̃3
k

Ŷ
K̃3

k
\S2

Yk)

(f)
= I(XS ; Ŷ

K̃3
k
\S

Yk|X
K̃3

k
\S

) − I(ŶS ; YS|X
K̃3

k

Ŷ
K̃3

k
\S

Yk)

(g)
= I

K̃3
k

S (k) (3.49)
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where

(a) follows from the definition of S1 and S2

(b) follows because both T 1
k and T 2

k are in Class 1

(c) follows from the definition (3.10)

(d) follows because all Xk are independent and conditioning does not increase entropy

(e) follows because conditioning does not increase entropy and by the Markov chains

X
K̃3

k
\S1

Ŷ
K̃3

k
\S

Yk − YS1XS1 − ŶS1 (3.50)

X
K̃3

k
\S2

Ŷ
K̃3

k
\S2

Yk − YS2XS2 − ŶS2 (3.51)

(f) follows from the chain rule for mutual information and the Markov chains (3.50)

and (3.51)

(g) follows from the definition (3.10).

The bound (3.49) shows that T 3
k is also in Class 1. Moreover, by (3.49) if k includes the

messages of nodes in K̃3
k in the typicality test, then the rates are as good or better than

those achieved by including the messages of nodes in K̃1
k or K̃2

k in the typicality test.

Taking the union of all Tk in Class 1, we obtain the unique largest set T ∗
k that gives the

best achievable rates.

Remark 3.2. There are currently no efficient algorithms for finding an optimal decod-

able set. Such algorithms would be useful for applications with time-varying channels.

3.3.4. Related Work

Sliding Window Decoding

SNNC with sliding window decoding was studied in [5, 6] and LNNC [11] and achieves

the same rates as in [5]. SNNC has extra constraints that turn out to be redundant [5,

Sec. IV-C], [6, Sec. V-B]. The sliding window decoding in [5] resembles that in [31]
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where encoding is delayed (or offset) and different decoders are chosen depending on

the rate point. The rates achieved by one decoder may not give the entire rate region

of Theorem 3.1, but the union of achievable rates of all decoders does [6, Theorem 1].

The advantage of sliding window decoding is a small decoding delay of K + 1 blocks as

compared to backward decoding that requires B + K(K − 1) blocks, where B ≫ K.

Backward Decoding

SNNC with backward decoding was studied in [7] for single source networks. For these

networks, [7] showed that LNNC and SNNC achieve the same rates. Further, for a

fixed random coding distribution there is a subset of the relay nodes whose messages

should be decoded to achieve the best LNNC and SNNC rates. Several other interesting

properties of the coding scheme were derived. It was also shown in [27] that SNNC

with a layered network analysis [15] achieves the same LNNC rates for single source

networks. In [32], SNNC with partial cooperation between the sources was considered

for multi-source networks.

Joint Decoding

It turns out that SNNC with joint decoding achieves the same rates as in Theorem 3.1.

Recently, the authors of [26] showed that SNNC with joint decoding fails to achieve

the LNNC rates for a specific choice of SNNC protocol. However, by multihopping the

last quantization indices and then performing joint decoding with the messages and

remaining quantization bits, SNNC with joint decoding performs as well as SNNC with

sliding window or backward decoding, and LNNC. This makes sense, since joint decoding

should perform at least as well as backward decoding. Details are given in Appendix A.2.

Multihopping

We compare how the approaches of Theorem 3.1 and [7, Theorem 2.5] reliably convey

the last quantization indices lB. Theorem 3.1 uses multihopping while Theorem 2.5 in [7]

uses a QF-style method with M extra blocks after block B with the same block length

n. In these M blocks every node transmits as before except that the messages are set

to a default value. The initialization method in [7] has two disadvantages:
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⊲ Both B and M must go to infinity to reliably decode lB [7, Sec.IV-A, Equ. (34)].

The true rate of node k’s message wk is

R′
k,true =

nBRk

nB + nM
=

B

B + M
· Rk (3.52)

and we choose B ≫ M so that R′
k,true → Rk as B → ∞.

⊲ Joint rather than per-block processing is used.

Multihopping seems to be a better choice for reliably communicating lB, because the

QF-style approach has a large decoding delay due to the large value of M and does not

use per-block processing.

3.4. SNNC with a DF option

One of the main advantages of SNNC is that the relays can switch between QF (or CF)

and DF depending on the channel conditions. If the channel conditions happen to be

good, then the natural choice is DF which removes the noise at the relays. This not

possible with LNNC due to the high rate of the long message. On the other hand, if a

relay happens to experience a deep fade, then this relay should use QF (or CF).

In the following, we show how mixed strategies called SNNC-DF work for the multiple-

relay channel. These mixed strategies are similar to those in [23, Theorem 4]. However,

in [23] the relays use CF with a prescribed binning rate to enable step-by-step decoding

(CF-S) instead of QF. In Section 3.5 we give numerical examples to show that SNNC-DF

can outperform DF, CF-S and LNNC.

As in [23], we partition the relays T = {2, . . . , K − 1} into two sets

T1 = {k : 2 ≤ k ≤ K1}
T2 = T \ T1

where 1 ≤ K1 ≤ K − 1. The relays in T1 use DF while the relays in T2 use QF. Let

π(·) be a permutation on {1, . . . , K} with π(1) = 1 and π(K) = K and let π(j : k) =

{π(j), π(j + 1), . . . , π(k)}, 1 ≤ j ≤ k ≤ K. Define Ti(π) = {π(k), k ∈ Ti}, i = 1, 2. We



26 Chapter 3. Short message noisy network coding

have the following theorem.

Theorem 3.4. SNNC-DF achieves the rates satisfying

RSNNC-DF < max
π(·)

max
K1

min
{

min
1≤k≤K1−1

I
(
Xπ(1:k); Yπ(k+1)|Xπ(k+1:K1)

)
,

I(X1XT1(π)
XS ; ŶScYK|XSc) − I(ŶS ; YS|X1XT ŶScYK)

}
(3.53)

for all S ⊆ T2(π), where Sc is the complement of S in T2(π), and where the joint distri-

bution factors as

P (x1xT1(π)
)·
[

∏

k∈T2(π)

P (xk)P (ŷk|yk, xk)

]
· P (y2, . . . , yK |x1, . . . , xK−1). (3.54)

Remark 3.3. As usual, we may add a time-sharing random variable to improve rates.

Proof Sketch: For a given permutation π(·) and K1, the first mutual information

term in (3.53) describes the DF bounds [23, Theorem 1] (see also [33, Theorem 3.1]). The

second mutual information term in (3.53) describes the SNNC bounds. Using a similar

analysis as for Theorem 3.1 and by treating (X1XT1(π)
) as the “new” source signal at the

destination, we have the SNNC bounds

RSNNC-DF < I(X1XT1(π)
XS ; ŶScYK |XSc) − I(ŶS ; YS|X1XT ŶScYK) (3.55)

0 ≤ I(XS ; ŶScYK |X1XT1(π)
XSc) − I(ŶS ; YS|X1XT ŶScYK) (3.56)

for all S ⊆ T2(π). The same argument used to prove Theorem 3.1 shows that if any of

the constraints (3.56) is violated, then we get rate bounds that can be achieved with

SNNC-DF by treating the signals from the corresponding relay nodes as noise. Thus we

may ignore the constraints (3.56).

Example 3.4. Consider K = 4 and K1 = 2. There are two possible permutations π1(1 :

4) = {1, 2, 3, 4} and π2(1 : 4) = {1, 3, 2, 4}. For π1(1 : 4) = {1, 2, 3, 4}, Theorem 3.4

states that SNNC-DF achieves any rate up to

RSNNC-DF = min

{
I(X1; Y2|X2), I(X1X2; Ŷ3Y4|X3),
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Block 1 2 · · · B B + 1 B + 2 · · · B + 4
X1 x11(w1, 1) x12(w2, w1) · · · x1B(wB, wB−1) x1(B+1)(1, wB)
X2 x21(1) x22(w1) · · · x2B(w(B−1)) x2(B+1)(wB) Multihop lB+1

X3 x31(1) x32(l1) · · · x3B(lB−1) x3(B+1)(lB) to node 4 in 3n′

Ŷ3 ŷ31(l1|1) ŷ32(l2|l1) · · · ŷ3B(lB|lB−1) ŷ3(B+1)(lB+1|lB) channel uses

Table 3.2.: Coding scheme for the two-relay channel with block Markov coding at the
source.

I(X1X2X3; Y4) − I(Ŷ3; Y3|X1X2X3Y4)

}
(3.57)

where the joint distribution factors as

P (x1, x2)P (x3)P (ŷ3|y3, x3) · P (y2, y3, y4|x1, x2, x3). (3.58)

The corresponding coding scheme is given in Table 3.2.

If relay node 2 uses DF while relay node 3 uses CF-S, then by [23, Theorem 4] with

U2 = 0, any rate up to

R[CF-S]-DF < min
{
I(X1; Y2|X2), I(X1X2; Ŷ3Y4|X3)

}
(3.59)

can be achieved, subject to

I(Ŷ3; Y3|X3Y4) ≤ I(X3; Y4) (3.60)

and the joint distribution factors as (3.58). It turns out that R[CF-S]-DF in (3.59)-(3.60)

is the same as RSNNC-DF (3.57), since LNNC and SNNC do not improve the CF-S rate

for one relay [8]. But RSNNC-DF is better than R[CF-S]-DF in general.

Remark 3.4. For rapidly changing channels it is advantageous to use independent

inputs so all nodes can use the same encoder for all channel states. If X1 and X2 in the

above example are independent, there is no need to use block Markov coding (BMC).

However, we need to use two backward (or sliding window) decoders to recover the rates

(3.57). See Appendix A.3.
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Remark 3.5. How to perform DF for multiple sources is not obvious. Consider again

the three node network in Fig. 3.3, but now every node wishes to send a message to

the other two nodes. How should one set up cooperation if all nodes may use DF?

Such questions are worth addressing, since their answers will give insight on how to

incorporate mixed strategies to boost system performance.

3.5. Gaussian Networks

We next consider additive white Gaussian noise (AWGN) networks. We use X ∼
CN (µ, σ2) to denote a circularly symmetric complex Gaussian random variable X with

mean µ and variance σ2. Let ZK = Z1Z2 . . . ZK be a noise string whose symbols are

i.i.d. and Zk ∼ CN (0, 1) for all k. The channel output at node k is

Yk =




K∑

j=1
j 6=k

GjkXj


+ Zk (3.61)

where the channel gain is

Gjk =
Hjk√

dα
jk

(3.62)

and djk is the distance between nodes j and k, α is a path-loss exponent and Hjk is a

complex fading random variable.

We consider two kinds of fading:

⊲ No fading: Hjk is a constant and known at all nodes. We set Hjk = 1 for all

(j, k) ∈ K × K.

⊲ Rayleigh fading: we have Hjk ∼ CN (0, 1). We assume that each destination node

k knows Gjk for all (j, k) ∈ K × K and each relay node k knows Gjk for all j ∈ K
and knows the statistics of all other Gjl, (j, l) ∈ K × K. We focus on slow fading,

i.e., all Gjk remain unchanged once chosen.

We avoid issues of power control by imposing a per-symbol power constraint E[|Xk|2] ≤
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Pk. We choose the inputs to be Gaussian, i.e., Xk ∼ CN (0, Pk), k ∈ K.

In the following we give numerical examples for four different channels

⊲ the relay channel;

⊲ the two-relay channel;

⊲ the multiple access relay channel (MARC);

⊲ the two-way relay channel (TWRC).

We evaluate performance for no fading in terms of achievable rates (in bits per channel

use) and for Rayleigh fading in terms of outage probability [34] for a target rate Rtar.

Relay node k chooses

Ŷk = Yk + Ẑk (3.63)

where Ẑk ∼ CN (0, σ̂2
k). For the no fading case, relay node k numerically calculates the

optimal σ̂2
k for CF-S and SNNC, and the optimal binning rate Rk(bin) for CF-S, in order

to maximize the rates. For DF, the source and relay nodes numerically calculate the

power allocation for superposition coding that maximizes the rates. For the Rayleigh

fading case, relay node k knows only the Gjk, j ∈ K, but it can calculate the optimal

σ̂2
k and Rk(bin) based on the statistics of Gjl, for all (j, l) ∈ K × K so as to minimize

the outage probability. For DF, the fraction of power that the source and relay nodes

allocate for cooperation is calculated numerically based on the statistics of Gjk, for all

(j, k) ∈ K × K, to minimize the outage probability. Details of the derivations are given

in Appendix A.4.

3.5.1. Relay Channels

The Gaussian relay channel (Fig. 3.5) has

Y2 = G12X1 + Z2

Y3 = G13X1 + G23X2 + Z3 (3.64)

and source node 1 has a message destined for node 3.
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Figure 3.5.: A relay channel.
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Figure 3.6.: Achievable rates R (in bits per channel use) for a relay channel with no
fading.

No Fading

Fig. 3.5 depicts the geometry and Fig. 3.6 depicts the achievable rates as a function of

d12 for P1 = 4, P2 = 2 and α = 3. DF achieves rates close to capacity when the relay

is close to the source while CF-S dominates as the relay moves towards the destination.

For the relay channel, CF-S performs as well as SNNC (LNNC). SNNC-DF unifies the

advantages of both SNNC and DF and achieves the best rates for all relay positions.

Slow Rayleigh Fading

Fig. 3.7 depicts the outage probabilities with Rtar = 2, P1 = 2P, P2 = P , d12 = 0.3,

d23 = 0.7, d13 = 1 and α = 3.



3.5. Gaussian Networks 31

5 7 9 11 13 15
10

−4

10
−3

10
−2

10
−1

10
0

P in dB

O
ut

ag
e 

P
ro

ba
bi

lit
y

 

 

No Relay

CF−S

LNNC (SNNC)

DF

SNNC−DF

Cut−Set Bound

Figure 3.7.: Outage probabilities f or a relay channel with Rayleigh fading.

1

2

3

4

d12 = 0.2

d13 = 0.8

d14 = 1

d23 = 0.75

d24 = 0.8

d32 = 0.75

d34 = 0.2

Figure 3.8.: A two-relay channel.

Over the entire power range CF-S gives the worst outage probability. This is because

CF-S requires a reliable relay-destination link so that both the bin and quantization

indices can be recovered. Both DF and SNNC improve on CF-S. DF performs better

at low power while SNNC is better at high power. SNNC-DF has the relay decode if

possible and perform QF otherwise, and gains 1 dB over SNNC and DF.
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Figure 3.9.: Achievable rates R (in bits per channel use) for a TRC with no fading.

3.5.2. Two-Relay Channels

The Gaussian two-relay channel (Fig. 3.8) has

Y2 = G12X1 + G32X3 + Z2

Y3 = G13X1 + G23X2 + Z3

Y4 = G14X1 + G24X2 + G34X3 + Z4 (3.65)

where the relay nodes 2 and 3 help node 1 transmit a message to node 4.

No Fading

Fig. 3.8 depicts the geometry and Fig. 3.9 depicts the achievable rates for P1 = P2 =

P3 = P and α = 3. The CF-S rates are the lowest over the entire power range. As

expected, SNNC improves on CF-S. DF performs better than SNNC at low power but

worse at high power. SNNC-DF achieves the best rates and exhibits reasonable rate and

power gains over SNNC and DF for P = −5 dB to 5 dB. The gains are because in this

power range SNNC-DF has relay 2 perform DF and relay 3 perform QF.
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Figure 3.10.: Outage probabilities for a TRC with Rayleigh fading.

Slow Rayleigh Fading

Fig. 3.10 depicts the outage probabilities with Rtar = 2, P1 = P2 = P3 = P , the geometry

of Fig. 3.8 and α = 3. CF-S gives the worst performance over the entire power range.

This is because CF-S requires a reliable relay-destination link for both relays so that the

bin and quantization indices for both relays can be decoded. DF provides better outage

probabilities than CF-S but is worse than SNNC or LNNC, since it requires reliable

decoding at both relays. SNNC-DF has the two relays decode if possible and perform

QF otherwise and gains about 1 dB over LNNC (SNNC). In general, we expect larger

gains of SNNC-DF over LNNC for networks with more relays.

3.5.3. Multiple Access Relay Channels

The Gaussian MARC (Fig. 3.11) has

Y3 = G13X1 + G23X2 + Z3

Y4 = G14X1 + G24X2 + G34X3 + Z4 (3.66)
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Figure 3.11.: A MARC.

and nodes 1 and 2 have messages destined for node 4.

No Fading

Fig. 3.11 depicts the geometry and Fig. 3.12 depicts the achievable rate regions for

P1 = P2 = P3 = P , P = 15 dB and α = 3. The SNNC rate region includes the CF-S

rate region. Through time-sharing, the SNNC-DF region is the convex hull of the union

of DF and SNNC regions. SNNC-DF again improves on LNNC (or SNNC) and DF.

Slow Rayleigh Fading

Fig. 3.13 depicts the outage probabilities with Rtar1 = Rtar2 = 1, P1 = P2 = P3 = P ,

d13 = 0.3, d23 = 0.4, d14 = d24 = 1, d34 = 0.6 and α = 3. CF-S has the worst outage

probability because it requires a reliable relay-destination link to decode the bin and

quantization indices. DF has better outage probability than CF-S, while LNNC (or

SNNC) improves on DF over the entire power range. SNNC-DF has the relay perform

DF or QF depending on channel quality and gains 1 dB at low power and 0.5 dB at

high power over SNNC.

Remark 3.6. The gain of SNNC-DF over SNNC is not very large at high power. This is

because the MARC has one relay only. For networks with more relays we expect larger

gains from SNNC-DF.
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Figure 3.12.: Achievable rate regions for a MARC with no fading.

5 7 9 11 13 15
10

−4

10
−3

10
−2

10
−1

10
0

P in dB

O
ut

ag
e 

P
ro

ba
bi

lit
y

 

 

No Relay

CF−S

DF

LNNC (SNNC)

SNNC−DF

Cut−Set Bound

Figure 3.13.: Outage probabilities for a MARC with Rayleigh fading.
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Figure 3.14.: A TWRC.
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Figure 3.15.: Achievable sum rates (in bits per channel use) for a TWRC with no fading.

3.5.4. Two-Way Relay Channels

The Gaussian TWRC (Fig. 3.14) has

Y1 = G21X2 + G31X3 + Z1

Y2 = G12X1 + G32X3 + Z2

Y3 = G13X1 + G23X2 + Z3 (3.67)

where nodes 1 and 2 exchange messages with the help of relay node 3.
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Figure 3.16.: Outage probabilities for a TWRC with Rayleigh fading.

No Fading

Fig. 3.14 depicts the geometry and Fig. 3.15 depicts the achievable sum rates for P1 =

5P, P2 = 2P, P3 = P and α = 3. DF gives the best rates at low power while SNNC

provides better rates at high power. The CF-S rates are slightly lower than the SNNC

rates over the entire power range. SNNC-DF combines the advantages of SNNC and DF

and achieves the best rates throughout.

Slow Rayleigh Fading

Fig. 3.16 depicts the outage probabilities with Rtar1 = 2, Rtar2 = 1, P1 = 5P , P2 = 2P ,

P3 = P , the geometry of Fig. 3.14 and α = 3. CF-S has the worst outage probability

since it requires that both relay-destination links (3 − 1 and 3 − 2) are reliable so that

the bin and quantization indices can be recovered at both destinations 1 and 2. DF is

better than CF-S, while LNNC (or SNNC) improves on DF. SNNC-DF lets the relay

use DF or QF depending on the channel conditions and gains over about 2 dB at low

power and 1 dB at high power over LNNC (or SNNC).
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3.6. Concluding Remarks

SNNC with joint or backward decoding was shown to achieve the same rates as LNNC

for multicasting multiple messages in memoryless networks. Although SNNC has extra

constraints on the rates, these constraints give insight on the best decoding procedure.

SNNC enables early decoding at nodes, and this enables the use of SNNC-DF. Numerical

examples demonstrate that SNNC-DF shows reasonable gains as compared to DF, CF-S

and LNNC in terms of rates and outage probabilities.



4
Multiple Access Relay Channel with

Relay-Source Feedback

The multiple access relay channel (MARC) [35] has multiple sources communicate with

one destination with the help of a relay node (Fig. 3.11). Results on coding strategies

for the MARC were discussed in [23, 31, 35–38]. In all previous work, the information

flow from the sources to the relay and the destination was considered. However, no

information flow in the opposite direction (feedback from the relay or the destination to

the sources) was considered. It turns out [39–41] that feedback can increase capacity of

the multiple-access channel (MAC) [2, 3].

In this chapter, we incorporate feedback from the relay (Fig. 4.1) and establish an

achievable rate region that includes the capacity region of the MARC without feedback

[35]. We use a DF coding scheme where the sources cooperate with one another and with

the relay due to the feedback. As a result, the relay can serve the sources simultaneously

rather than separately [35–37] and higher rates are achieved. We also compare these

results with the achievable SNNC rates developed in Chapter 3 with and without the
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Figure 4.1.: A two-source MARC with relay-source feedback.

relay feedback and show that cooperation improves rates, and that network geometry

influences the choice of coding strategies.

This chapter is organized as follows. In Section 4.1 we state the problem. In Section

4.2 we derive an achievable rate region for the MARC with relay-source feedback. Section

4.3 discusses Gaussian cases and shows that feedback can increase the capacity region

of the MARC.

4.1. System Model

We use the notation developed in Sec. 3.1. We study the two-user discrete memoryless

MARC with feedback (Fig. 4.1); the results extend naturally to multi-user and Gaussian

cases. The node k, k ∈ {1, 2}, has a message Wk destined for node 4. The messages

are statistically independent and Wk is uniformly distributed over 1, . . . , 2nRk , k = 1, 2,

where 2nRk is taken to be a non-negative integer. The relay node 3 assists the commu-

nication by forwarding information to node 4 and feeding back its channel outputs to

nodes 1 and 2. The channel is described by

P (y3, y4|x1, x2, x3) (4.1)
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and the feedback link is assumed to be noiseless.

We define the following functions:

⊲ n encoding functions fn
k = (fk1, . . . , fkn), k = 1, 2, 3, that generate channel inputs

based on the local messages and past relay channel outputs

Xki = fki(Wk, Y i−1
3 ), i = {1, . . . , n} (4.2)

where W3 = ∅.

⊲ One decoding function that puts out estimates of the messages

g4(Y
n

4 ) = [Ŵ1, Ŵ2]. (4.3)

The average error probability is

P (n)
e = Pr

[
(Ŵ1, Ŵ2) 6= (W1, W2)

]
. (4.4)

The rate pair (R1, R2) is said to be achievable for the MARC with feedback if for any

ξ there is a sufficiently large n and some functions {fn
k }3

k=1 and g4 such that P (n)
e ≤ ξ.

The capacity region is the closure of the set of all achievable rate pairs (R1, R2).

4.2. Main Result and Proof

We have the following theorems.

Theorem 4.1. The capacity region of the MARC with feedback is contained in the set

⋃





(R1, R2) :

0 ≤ R1 ≤ I(X1; Y3Y4|X2X3)

0 ≤ R2 ≤ I(X2; Y3Y4|X1X3)

R1 + R2 ≤ min{I(X1X2; Y3Y4|X3), I(X1X2X3; Y4)}





(4.5)

where the union is taken over all joint distributions PX1X2X3Y3Y4 .

Proof: Theorem 1 is a special case of the cut-set bound [28, Theorem 15.10.1].
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Theorem 4.2. An achievable rate region of the MARC with relay-source feedback is

⋃





(R1, R2) :

0 ≤ R1 ≤ I(X1; Y3|UX2X3)

0 ≤ R2 ≤ I(X2; Y3|UX1X3)

R1 + R2 ≤ min {I(X1X2; Y3|UX3), I(X1X2X3; Y4)}





(4.6)

where the union is taken over joint distributions that factor as

P (u)
3∏

k=1

P (xk|u)P (y3, y4|x1, x2, x3). (4.7)

Proof: In every block, the sources and the relay cooperate through the feedback

to help the receiver resolve the remaining uncertainty from the previous block. At the

same time, the sources send fresh information to the relay and the receiver.

Random Code: Fix a distribution P (u)
∏3

k=1 P (xk|u)P (y3, y4|x1, x2, x3). For each

block j = 1, . . . , B, generate 2n(R1+R2) code words uj(wj−1), wj−1 = (w1(j−1), w2(j−1)),

w1(j−1) = 1, . . . , 2nR1, w2(j−1) = 1, . . . , 2nR2, using
∏n

i=1 P (uji) . For each wj−1, gener-

ate 2nRk xkj(wkj|wj−1), wkj = 1, . . . , 2nRk, k = 1, 2, using
∏n

i=1 P (x(kj)i|uji(wj−1)) and

generate an x3j(wj−1) using
∏n

i=1 P (x(3j)i|uji(wj−1)). This defines the codebooks

Cj = {uj(wj−1), x1j(w1j|wj−1), x2j(w2j|wj−1), x3j(wj−1),

wj−1 = (w1(j−1), w2(j−1)), w1(j−1) = 1, . . . , 2nR1 , w2(j−1) = 1, . . . , 2nR2,

w1j = 1, . . . , 2nR1, w2j = 1, . . . , 2nR2

}
(4.8)

for j = 1, . . . , B.

Encoding: In blocks j = 1, . . . , B, nodes 1 and 2 send x1j(w1j |wj−1) and x2j(w2j|wj−1),

and node 3 sends x3j(wj−1) where w0 = w1B = w2B = 1. The coding scheme is depicted

in Table 4.1.

Decoding at the relay: For block j = 1, . . . , B, knowing wj−1 the relay node 3 puts out

(ŵ1j, ŵ2j) if there is a unique pair (ŵ1j, ŵ2j) satisfying the typicality check

(x1(ŵ1j |wj−1), x2(ŵ2j |wj−1),u(wj−1), x3j(wj−1), y3j) ∈ T n
ǫ (PUX1X2X3Y3). (4.9)
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Block 1 2 3 · · · B
U u1(1) u2(w1) u3(w2) · · · uB(wB−1)

X1 x11(w11|1) x12(w12|w1) x13(w13|w2) · · · x1B(1|wB−1)
X2 x21(w21|1) x22(w22|w1) x23(w23|w2) · · · x2B(1|wB−1)
X3 x31(1) x32(w1) x33(w2) · · · x3B(wB−1)

Table 4.1.: Coding scheme for MARC with feedback.

Otherwise it puts out (ŵ1j , ŵ2j) = (1, 1). Node 3 can decode reliably as n → ∞ if

(see [20])

R1 < I(X1; Y3|UX2X3)

R2 < I(X2; Y3|UX1X3)

R1 + R2 < I(X1X2; Y3|UX3). (4.10)

Decoding at the sources: For block j = 1, . . . , B − 1, assuming knowledge of wj−1,

source 1 puts out ŵ2j if there is a unique ŵ2j satisfying the typicality check

(x1(w1j|wj−1), x2(ŵ2j|wj−1),u(wj−1), x3(wj−1), y3j) ∈ T n
ǫ (PUX1X2X3Y3). (4.11)

Otherwise it puts out ŵ2j = 1. Node 1 can reliably decode w2j if (see [20])

R2 < I(X2; Y3|UX1X3) (4.12)

and n is sufficiently large. Similarly, source 2 can reliably decode w1j if

R1 < I(X1; Y3|UX2X3) (4.13)

and n is sufficiently large. Both sources then calculate wj = (w1j, w2j) for the cooperation

in block j + 1. The constraints (4.12)-(4.13) are already included in (4.10) and do not

further constrain the rates. This is because the sources observe the relay’s channel

outputs and have knowledge about their own messages.

Backward decoding at the receiver: For block j = B, . . . , 1, assuming correct decoding

of (w1j, w2j), the receiver puts out ŵj−1 if there is a unique ŵj−1 satisfying the typicality
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check

(x1(w1j |ŵj−1), x2(w2j|ŵj−1), x3(ŵj−1), y4j) ∈ T n
ǫ (PX1X2X3Y4). (4.14)

Otherwise it puts out ŵj−1 = 1. The receiver can decode reliably as n → ∞ if (see [20])

R1 + R2 < I(X1X2X3; Y4) (4.15)

which yields the reliable estimate wj−1 = (w1(j−1), w2(j−1)). Continuing in this way, the

receiver successively finds all (w1j, w2j). This completes the proof.

Remark 4.1. In (4.2), instead of three destination bounds, we have only one since the

receiver needs only one joint decoding to recover both sources’ messages. Without feed-

back, a common approach is to use successive interference cancellation, i.e., first decode

one source’s message while treat the other source’s message as noise. The resulting rate

region is smaller and time-sharing between different decoding orders is useful.

Remark 4.2. The rate region (4.6) is achieved with backward decoding which incurs

a substantial decoding delay. With offset encoding [31] we may enable sliding window

decoding to achieve the same region as in (4.6) and enjoy a reduced delay.

Corollary 4.3. An achievable SNNC rate region of the MARC is

⋃





(R1, R2) :

0 ≤ R1 ≤ I(X1; Ŷ3Y4|X2X3)

0 ≤ R1 ≤ I(X1X3; Y4|X2) − I(Ŷ3; Y3|X1X2X3Y4)

0 ≤ R2 ≤ I(X2; Ŷ3Y4|X1X3)

0 ≤ R2 ≤ I(X2X3; Y4|X1) − I(Ŷ3; Y3|X1X2X3Y4)

R1 + R2 ≤ I(X1X2; Ŷ3Y4|X3)

R1 + R2 ≤ I(X1X2X3; Y4) − I(Ŷ3; Y3|X1X2X3Y4)





(4.16)

Proof: Apply Theorem 3.1.
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Corollary 4.4. An achievable SNNC rate region of the MARC where the sources use

the feedback from the relay is

⋃





(R1, R2) :

0 ≤ R1 ≤ I(X1; Ŷ2Ŷ3Y4|X2X3) − I(Ŷ1; Y3|X1X2X3Ŷ2Ŷ3Y4)

0 ≤ R1 ≤ I(X1X3; Ŷ2Y4|X2) − I(Ŷ1Ŷ3; Y3|X1X2X3Ŷ2Y4)

0 ≤ R2 ≤ I(X2; Ŷ1Ŷ3Y4|X1X3) − I(Ŷ2; Y3|X1X2X3Ŷ1Ŷ3Y4)

0 ≤ R2 ≤ I(X2X3; Ŷ1Y4|X1) − I(Ŷ2Ŷ3; Y3|X1X2X3Ŷ1Y4)

R1 + R2 ≤ I(X1X2; Ŷ3Y4|X3) − I(Ŷ1Ŷ2; Y3|X1X2X3Ŷ3Y4)

R1 + R2 ≤ I(X1X2X3; Y4) − I(Ŷ1Ŷ2Ŷ3; Y3|X1X2X3Y4)





(4.17)

Proof: Apply Theorem 3.1.

4.3. The Gaussian Case

The Gaussian MARC with feedback from the relay has

Y3 = G13X1 + G23X2 + Z3

Y4 = G14X1 + G24X2 + G34X3 + Z4 (4.18)

where Z3 ∼ CN (0, 1), Z4 ∼ CN (0, 1) and Z3 and Z4 are statistically independent, and

the channel gain is

Gjk =
1√
dα

jk

(4.19)

where djk is the distance between nodes j and k, and α is a path-loss exponent. We

impose a per-symbol power constraint E[|Xk|2] ≤ Pk and choose the inputs to be

X1 =
√

α1P1 · U +
√

ᾱ1P1 · X ′
1

X2 =
√

α2P2 · U +
√

ᾱ2P2 · X ′
2

X3 =
√

P3 · U (4.20)
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where U, X ′
1, X ′

2 are independent Gaussian CN (0, 1), 0 ≤ αk ≤ 1 and ᾱk = 1 − αk,

k = 1, 2. In blocks j, j = 1 . . . , B, the two sources devote a fraction αk of the power,

k = 1, 2, to resolving the residual uncertainty from block j − 1 and the remaining

fraction ᾱk to sending fresh information. The residual uncertainty can be resolved with

an effective power

Peff =
(

G14

√
α1P1 + G24

√
α2P2 + G34

√
P3

)2

(4.21)

while it in [35] can be resolved only with an effective power

P ′
eff =

(
G14

√
α1P1 + G34

√
α3P3

)2

+
(

G24

√
α2P2 + G34

√
ᾱ3P3

)2

(4.22)

where 0 ≤ α3 ≤ 1, ᾱ3 = 1 − α3, because the relay splits its power to serve the sources

separately rather than simultaneously. Let C(x) = log2(1 + x), x ≥ 0. Referring to

Theorem 4.2, an achievable rate region of the Gaussian MARC with feedback is

⋃





(R1, R2) :

0 ≤ R1 ≤ C (ᾱ1G2
13P1)

0 ≤ R2 ≤ C (ᾱ2G2
23P2)

R1 + R2 ≤ C (ᾱ1G
2
13P1 + ᾱ2G2

23P2)

R1 + R2 ≤ C (ᾱ1G
2
14P1 + ᾱ2G2

24P2 + Peff)





(4.23)

where the union is over αk satisfying 0 ≤ αk ≤ 1, k = 1, 2. Referring to Corollary 4.3,

an achievable SNNC rate region of the Gaussian MARC is

⋃





(R1, R2) :

0 ≤ R1 ≤ C
(

G2
13P1

1+σ̂2
3

+ G2
14P1

)

0 ≤ R1 ≤ C (G2
14P1 + G2

34P3) − C
(

1
σ̂2

3

)

0 ≤ R2 ≤ C
(

G2
23P2

1+σ̂2
3

+ G2
24P2

)

0 ≤ R2 ≤ C (G2
24P2 + G2

34P3) − C
(

1
σ̂2

3

)

R1 + R2 ≤ C
(
G2

14P1 + G2
24P2 +

G2
13P1+G2

23P2+P1P2(G13G24−G14G23)2

1+σ̂2
3

)

R1 + R2 ≤ C (G2
14P1 + G2

24P2 + G2
34P3) − C

(
1

σ̂2
3

)





(4.24)
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where the union is over σ̂2
3 satisfying σ̂2

3 > 1
G2

34P3
. Referring to Corollary 4.4, an achievable

SNNC rate region of the Gaussian MARC with feedback is

⋃





(R1, R2) :

0 ≤ R1 ≤ C
(

G2
13P1(σ̂2

2+σ̂2
3)

σ̂2
2+σ̂2

3+σ̂2
2 σ̂2

3
+ G2

14P1

)
− C

(
σ̂2

2 σ̂2
3

σ̂2
1(σ̂2

2+σ̂2
3)+σ̂2

1 σ̂2
2 σ̂2

3

)

0 ≤ R1 ≤ C
(

G2
13P1(1+G2

34P3)

1+σ̂2
2

+ G2
14P1 + G2

34P3

)
− C

(
σ̂2

2(σ̂2
1+σ̂2

3)

σ̂2
1 σ̂2

3(1+σ̂2
2)

)

0 ≤ R2 ≤ C
(

G2
23P2(σ̂2

1+σ̂2
3)

σ̂2
1+σ̂2

3+σ̂2
1 σ̂2

3
+ G2

24P2

)
− C

(
σ̂2

1 σ̂2
3

σ̂2
2(σ̂2

1+σ̂2
3)+σ̂2

1 σ̂2
2 σ̂2

3

)

0 ≤ R2 ≤ C
(

G2
23P2(1+G2

34P3)

1+σ̂2
1

+ G2
24P2 + G2

34P3

)
− C

(
σ̂2

1(σ̂2
2+σ̂2

3)

σ̂2
2 σ̂2

3(1+σ̂2
1)

)

R1 + R2 ≤ C
(

G2
13P1+G2

23P2+P1P2(G13G24−G14G23)2

1+σ̂2
3

+ G2
14P1 + G2

24P2

)

−C
(

σ̂2
3(σ̂2

1+σ̂2
2)

σ̂2
1 σ̂2

2(1+σ̂2
3)

)

R1 + R2 ≤ C (G2
14P1 + G2

24P2 + G2
34P3) − C

(
1

σ̂2
1

+ 1
σ̂2

2
+ 1

σ̂2
3

)





(4.25)

where the union is over all (σ̂2
1 , σ̂2

2, σ̂2
3) such that (R1, R2) is non-negative.

Remark 4.3. The rate region in (4.25) recovers that in (4.24) when both σ̂2
1 and σ̂2

2 go to

infinity, i.e., both nodes 1 and 2 quantize so coarsely that Ŷ1 and Ŷ2 become statistically

independent of X1, X2 and Y3. This implies that better rates can be achieved if all nodes

in the network cooperate by quantizing the feedback (channel outputs) and forwarding

extra information to the other nodes. The cooperation incurs no additional cost in terms

of power but requires more sophisticated encoders and decoders. More importantly, it

relies on the non-selfish behavior of the nodes. For example, in the MARC case, nodes 1

and 2 could just ignore the feedback Y3, because they are not obliged to help each other.

But when they do, they both gain.

Fig. 4.2 depicts the rate regions of the MARC with and without feedback for P1 =

P2 = P3 = 15 dB, d13 = d23 = 0.2, d14 = d24 = 1, d34 = 0.8 and α = 3. The DF

region with feedback is larger than that without feedback [35]. Also, the DF region with

feedback includes the cut-set region without feedback which confirms that feedback can

indeed increase the capacity of the MARC. Further, the SNNC region with feedback

includes that without feedback. This shows that cooperation helps. Note that the

DF region with feedback is larger than the SNNC regions with and without feedback

suggesting that DF is preferable for a network geometry where the relay is close to

the sources. Fig. 4.3 depicts the rate regions for P1 = P2 = P3 = 15 dB, d13 = 0.7,



48 Chapter 4. Multiple Access Relay Channel with Relay-Source Feedback

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

R
1
 (bits/channel use)

R
2 (

bi
ts

/c
ha

nn
el

 u
se

)

 

 
DF Region with Feedback

Cut−Set Region without Feedback

DF Region without Feedback

SNNC Region with Feedback

SNNC Region without Feedback

Figure 4.2.: Rate regions for MARC with and without feedback for P1 = P2 = P3 = 15
dB, d13 = d23 = 0.2, d14 = d24 = 1, d34 = 0.8 and α = 3.
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Figure 4.3.: Rate regions for MARC with and without feedback for P1 = P2 = P3 = 15
dB, d13 = 0.7, d23 = 0.75, d14 = d24 = 1, d34 = 0.25 and α = 3.
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d23 = 0.75, d14 = d24 = 1, d34 = 0.25 and α = 3. The cut-set region without feedback is

the largest. The DF region with feedback is larger than the DF region without feedback,

but is included by the SNNC regions with and without feedback which overlap in this

case. Thus, for a geometry where the relay is close to the destination, SNNC provides

better rates. In any case, DF with feedback performs at least as well as DF without

feedback.





5
Resolvability

What is the minimal rate needed to generate a good approximation of a target distri-

bution with respect to some distance measure? Wyner considered such a problem and

characterized the smallest rate needed to approximate a product distribution accurately

when using the normalized informational divergence as the distance measure between two

distributions. The smallest rate is a Shannon mutual information [16]. Han-Verdú [17]

showed that the same rate is necessary and sufficient to generate distributions arbitrarily

close to an information stable distribution in terms of variational distance. Note that

normalized informational divergence and variational distance are not necessarily larger

or smaller than the other.

The main contributions of this chapter are to develop a simple and direct proof to

show that the minimal rate needed to make the unnormalized informational divergence

between a target product distribution and the approximating distribution arbitrarily

small is the same Shannon mutual information as in [16, 17] and we extend the proof

to cases where the encoder has a non-uniform input distribution. Our result implies

results in [16] and [17] when restricting attention to product distributions (in particular
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PW

W = {1, . . . , M} Un
V n

Qn
V |U PV nEncoder

Figure 5.1.: Coding problem with the goal of making PV n ≈ Qn
V .

Theorem 6.3 in [16] and Theorem 4 in [17]). We remark that Hayashi developed closely

related theory via Gallager’s error exponent in [42] and Bloch and Kliewer considered

non-uniform distributions for secrecy in [43]. We also refer to results by Csiszar [44,

p. 44, bottom] who treats strong secrecy by showing that a variational distance exhibits

an exponential behavior with block length n [44, Prop. 2]. This result implies that

an unnormalized mutual information expression can be made small with growing n

via [44, Lemma 1]. Finally, Winter states such a result in [45] but provides no proof.

This chapter is organized as follows. In Section 5.1, we state the problem. In Section

5.2 we state and prove the main result. Section 5.3 discusses related work and extensions.

5.1. System Model

Consider the system depicted in Fig. 5.1. The random variable W is uniformly dis-

tributed over {1, . . . , M}, M = 2nR, and is encoded to the sequence

Un = f(W ). (5.1)

The sequence V n is generated from Un through a memoryless channel Qn
V |U and has

distribution PV n . A rate R is achievable if for any ξ > 0 there is a sufficiently large n

and an encoder such that the informational divergence

D(PV n||Qn
V ) =

∑

vn∈supp(PV n )

P (vn) log
P (vn)

Qn
V (vn)

(5.2)

is less than ξ. We wish to determine the smallest achievable rate.
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PW
W Un(·) Un(W )

Qn
V |U

V n

Un(1) Un(2) Un(M)

· · ·

· · ·

Qn
U Qn

UQn
U

Encoder

PV n

Figure 5.2.: The random coding experiment.

5.2. Main Result and Proof

Theorem 5.1. For a given target distribution QV , the rate R is achievable if R >

I(V ; U), where I(V ; U) is calculated with some joint distribution QUV that has marginal

QV and |supp(QU)| ≤ |V|. The rate R is not achievable if R < I(V ; U) for all QUV with

|supp(QU)| ≤ |V|.

We provide two proofs, one with Shannon’s typicality argument and the other with

Gallager’s error exponent [46] where we extend results in [42]. Consider the random

coding experiment in Fig. 5.2. Suppose U and V have finite alphabets U and V,

respectively. Let QUV be a probability distribution with marginals QU and QV . Let

UnV n ∼ Qn
UV , i.e., for any un ∈ Un, vn ∈ Vn we have

Q(un, vn) =
n∏

i=1

QUV (ui, vi) = Qn
UV (un, vn) (5.3)

Q(vn|un) =
n∏

i=1

QV |U(vi|ui) = Qn
V |U(vn|un). (5.4)

Let C̃ = {Un(1), Un(2), . . . , Un(M)} be a random codebook, where the Un(w), w =

1, . . . , M , are generated in an i.i.d. manner using Qn
U and occur with probability 1

M
. V n

is generated from Un(W ) through the channel Qn
V |U (see Fig. 5.2) and we have

P (vn|C̃) =
M∑

w=1

1

M
· Qn

V |U(vn|Un(w)). (5.5)
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Note that if for a vn we have

Qn
V (vn) =

∑

un∈supp(Qn
U

)

Qn
U(un)Qn

V |U(vn|un) = 0 (5.6)

then we have

Qn
V |U(vn|un) = 0, for all un ∈ supp(Qn

U). (5.7)

This means P (vn|C̃) = 0 and supp(P
V n|C̃

) ⊆ supp(Qn
V ) so that D(P

V n|C̃
||Qn

V ) < ∞. We

further have

E

[
Qn

V |U(vn|Un)

Qn
V (vn)

]
=
∑

un

Qn
U(un) ·

Qn
V |U(vn|un)

Qn
V (vn)

= 1. (5.8)

5.2.1. Typicality Argument

The informational divergence averaged over W , C̃ and V n is (recall that P (w) = 1
M

, w =

1, . . . , M):

E[D(P
V n|C̃

||Qn
V )]

(a)
= E

[
log

∑M
j=1

1
M

· QV n|Un(V n|Un(j))

Qn
V (V n)

]

=
M∑

w=1

1

M
· E


log

∑M
j=1 Qn

V |U(V n|Un(j))

MQn
V (V n)

∣∣∣∣∣∣∣∣
W = w




(b)

≤
M∑

w=1

1

M
· E


log

(
Qn

V |U(V n|Un(w))

MQn
V (V n)

+
M − 1

M

)
∣∣∣∣∣∣∣∣
W = w




≤
M∑

w=1

1

M
· E


log

(
Qn

V |U(V n|Un(w))

MQn
V (V n)

+ 1

)
∣∣∣∣∣∣∣∣
W = w




(c)
= E

[
log

(
Qn

V |U(V n|Un)

M · Qn
V (V n)

+ 1

)]
(5.9)

where

(a) follows by taking the expectation over W , V n and Un(1), . . . , Un(M);
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(b) follows by the concavity of the logarithm and Jensen’s inequality applied to the

expectation over the Un(j), j 6= w, and by using (5.8);

(c) follows by choosing UnV n ∼ Qn
UV .

Alternatively, we can make the steps (5.9) more explicit:

E[D(P
V n|C̃

||Qn
V )]

(a)
=

∑

un(1)

· · ·
∑

un(M)

M∏

k=1

Qn
U(un(k))

∑

vn

M∑

w=1

1

M
· Qn

V |U(vn|un(w))


log

∑M
j=1 Qn

V |U(vn|un(j))

M · Qn
V (vn)




=
M∑

w=1

1

M

∑

vn

∑

un(w)

Qn
UV (un(w), vn)

M∑

k 6=w

∑

un(k)

M∏

l 6=w

Qn
U (un(l))


log

∑M
j=1 Qn

V |U(vn|un(j))

M · Qn
V (vn)




(b)

≤
M∑

w=1

1

M

∑

vn

∑

un(w)

Qn
UV (un(w), vn)


log


Qn

V |U(vn|un(w))

M · Qn
V (vn)

+
M∑

j 6=w

∑

un(j)

[
Qn

UV (un(j), vn)

M · Qn
V (vn)

]




=
M∑

w=1

1

M

∑

vn

∑

un(w)

Qn
UV (un(w), vn)

[
log

(
Qn

V |U(vn|un(w))

M · Qn
V (vn)

+
M − 1

M

)]

≤
M∑

w=1

1

M

∑

vn

∑

un(w)

Qn
UV (un(w), vn)

[
log

(
Qn

V |U(vn|un(w))

M · Qn
V (vn)

+ 1

)]

(c)
= E

[
log

(
Qn

V |U(V n|Un)

M · Qn
V (V n)

+ 1

)]
. (5.10)

We remark that the identity after (a) is valid for M = 1 by interpreting the empty sum

followed by an empty product to be 1. We may write (5.9) or (5.10) as

E

[
log

(
Qn

V |U(V n|Un)

M · Qn
V (V n)

+ 1

)]
= d1 + d2 (5.11)

where

d1 =
∑

(un,vn)∈T n
ǫ (QUV )

Q(un, vn) log

(
Q(vn|un)

M · Q(vn)
+ 1

)

d2 =
∑

(un,vn)/∈T n
ǫ (QUV )

(un,vn)∈supp(Qn
UV

)

Q(un, vn) log

(
Q(vn|un)

M · Q(vn)
+ 1

)
.
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Using standard inequalities (see [20]) we have

d1 ≤
∑

(un,vn)∈T n
ǫ (QUV )

Q(un, vn) log

(
2−n(1−ǫ)H(V |U)

M · 2−n(1+ǫ)H(V )
+ 1

)

≤ log

(
2−n(1−ǫ)H(V |U)

M · 2−n(1+ǫ)H(V )
+ 1

)

= log
(
2−n(R−I(V ;U)−ǫ(H(V |U)+H(V ))) + 1

)

≤ log(e) · 2−n(R−I(V ;U)−2ǫH(V )) (5.12)

and d1 → 0 if R > I(V ; U) + 2ǫH(V ) and n → ∞. We further have

d2 ≤
∑

(un,vn)/∈T n
ǫ (QUV )

(un,vn)∈supp(Qn
UV

)

Q(un, vn) log

((
1

µV

)n

+ 1

)

≤ 2|V| · |U| · e−2nǫ2µ2
UV log

((
1

µV

)n

+ 1

)

≤ 2|V| · |U| · e−2nǫ2µ2
UV · n · log

(
1

µV
+ 1

)
(5.13)

and d2 → 0 as n → ∞, where

µV = minv∈supp(QV )Q(v)

µUV = min(v,u)∈supp(QUV )Q(u, v). (5.14)

Combining the above we have

E[D(P
V n|C̃

||Qn
V )] → 0 (5.15)

if R > I(V ; U) + 2ǫH(V ) and n → ∞. As usual, this means that there must exist a

good code C∗ with rate R > I(V ; U) that achieves a divergence D(PV n|C∗||Qn
V ) smaller

than or equal to the average in (5.15) for sufficiently large n. This proves the coding

theorem.

Remark 5.1. The cardinality bound on supp(QU) can be derived using techniques

from [47, Ch. 15].
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Remark 5.2. If V = U , then we have R > H(V ).

Theorem 5.1 is proved using a uniform W which represents strings of uniform bits.

If we use a non-uniform W for the coding scheme, can we still drive the unnormalized

informational divergence to zero? We give the answer in the following lemma.

Lemma 5.2. Let W = BnR be a bit stream with nR bits that are generated i.i.d. with

a binary distribution PX with PX(0) = p, 0 < p ≤ 1
2
. The rate R is achievable if

R >
I(V ; U)

H2(p)
(5.16)

where H2(·) is the binary entropy function.

Proof: The proof is given in Appendix B.1.

Remark 5.3. Lemma 5.2 states that even if W is not uniformly distributed, the in-

formational divergence can be made small. This is useful because if the distribution of

W is not known exactly, then we can choose R large enough to guarantee the desired

resolvability result. A similar result was developed in [43] for secrecy.

5.2.2. Error Exponents

We provide a second proof using Gallager’s error exponent [46] by extending [42, Lemma

2] to asymptotic cases. Consider −1
2

≤ ρ ≤ 0 and define

En
0 (ρ, Qn

UV ) = ln
∑

vn

{
E[P

V n|C̃
(vn|C̃)

1
1+ρ ]

}1+ρ
(5.17)

E0(ρ, QUV ) = ln
∑

v

{
∑

u

Q(u)Q(v|u)
1

1+ρ

}1+ρ

(5.18)

EG(R, QUV ) = inf
− 1

2
≤ρ<0

{E0(ρ, QUV ) + ρR} . (5.19)

Due to [42, Lemma 2], we have the following properties concerning En
0 (ρ, Qn

UV ) and

E0(ρ, QUV ):

Property 1:

En
0 (0, Qn

UV ) = E0(0, QUV ) = 0 (5.20)
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Property 2:

∂En
0 (ρ, Qn

UV )

∂ρ

∣∣∣∣∣
ρ=0

= −E[D(P
V n|C̃

||Qn
V )]

∂E0(ρ, QUV )

∂ρ

∣∣∣∣∣
ρ=0

= −I(V ; U) (5.21)

Property 3:

∂2En
0 (ρ, Qn

UV )

∂ρ2
≥ 0

∂2E0(ρ, QUV )

∂ρ2
≥ 0 (5.22)

Due to [46, Theorem 5.6.3], we have





EG(R, QUV ) < 0 if R > I(V ; U)

EG(R, QUV ) = 0 if R ≤ I(V ; U)
(5.23)

By extending [42, Sec. III, Inequality (15)] to asymptotic cases, we have the following

lemma.

Lemma 5.3. We have

En
0 (ρ, Qn

UV ) ≤ enEG(R,QUV ). (5.24)

Proof: The proof is given in Appendix B.2.

Combining Properties 1-3, we have En
0 (ρ, Qn

UV ) and E0(ρ, QUV ) are convex in ρ, for

−1
2

≤ ρ ≤ 0 and (see Fig. 5.3)

ρ · (−E[D(P
V n|C̃

||Qn
V )]) ≤ En

0 (ρ, Qn
UV ) (5.25)

which means

E[D(P
V n|C̃

||Qn
V )] ≤ En

0 (ρ, Qn
UV )

−ρ
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En
0 (ρ, Qn

UV )ρ · (−E[D(P
V n|C̃

||Qn
V )])

E0(ρ, QUV )

ρ · (−I(V ; U))

0 ρ−1
2

Figure 5.3.: An example of En
0 (ρ, Qn

UV ) and E0(ρ, QUV ).

(a)

≤ enEG(R,QUV )

−ρ
(5.26)

where (a) follows from Lemma 5.3. The right hand side of (5.26) goes to 0 as n → ∞
as long as (see (5.23))

R > I(V ; U). (5.27)

Remark 5.4. This proof applies to continuous random variables by replacing the sums

in the proof of Lemma 5.3 with integrals.

Remark 5.5. The average divergence E[D(P
V n|C̃

||Qn
V )] can be viewed as the mutual

information I(C̃; V n) from the random codebook C̃ to the output V n [42, Sec. III]. To

show this, denote C as a realization of C̃ and we have (see (5.10))

I(C̃; V n) =
∑

C

P (C)
∑

vn

P (vn|C) log
P (vn|C)

Qn
V (vn)

=
∑

un(1)

· · ·
∑

un(M)

M∏

k=1

Qn
U(un(k))

∑

vn

M∑

w=1

1

M
· Qn

V |U(vn|un(w)) log

∑M
j=1

1
M

Qn
V |U(vn|un(j))

Qn
V (vn)

= E


log

∑M
j=1

1
M

Qn
V |U(V n|Un(j))

Qn
V (V n)




= E[D(P
V n|C̃

||Qn
V )]. (5.28)
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Thus, as E[D(P
V n|C̃

||Qn
V )] → 0 we have I(C̃; V n) → 0 which means that C̃ and V n

are (almost) independent. This makes sense, since as P
V n|C̃

→ Qn
V one is not able to

distinguish which codebook is used to generate the output.

5.2.3. Converse

The converse follows by removing the normalization factor 1
n

in [16, Theorem 5.2] . We

here provide a direct and simpler proof. Consider a given target distribution QV and any

code C with rate R and code words of length n. Using the requirement D(PV n ||Qn
V ) < nξ,

for some ξ > 0, we have

nξ > D(PV n ||Qn
V )

=

[
∑

vn

P (vn)
n∑

i=1

log
1

QV (vi)

]
− H(V n) (5.29)

=

[
∑

vn

P (vn)
n∑

i=1

log
1

QV (vi)

]
−

n∑

i=1

H(Vi|V i−1)

(a)

≥
[

n∑

i=1

∑

v

PVi
(v) log

1

QV (v)

]
−

n∑

i=1

H(Vi)

=
n∑

i=1

D(PVi
||QV )

(b)

≥ nD(PV ||QV ) (5.30)

where PV = 1
n

∑n
i=1 PVi

, (a) follows because conditioning does not increase entropy, and

(b) follows by the convexity of D(PX ||QX) in PX . We also have

nR ≥ I(V n; Un)

≥ I(V n; Un) + D(PV n ||Qn
V ) − nξ

(a)
= H(V n) − H(V n|Un) +

[
n∑

i=1

∑

v

PVi
(v) log

1

QV (v)

]
− H(V n) − nξ

(b)

≥
[

n∑

i=1

∑

v

PVi
(v) log

1

Q(v)

]
−
[

n∑

i=1

H(Vi|Ui)

]
− nξ

=

[
n∑

i=1

∑

v

PVi
(v) log

1

QV (v)

]
+




n∑

i=1

∑

(u,v)

PUiVi
(u, v) log QV |U(v|u)


− nξ
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= n


∑

(u,v)

PU(u)Q(v|u) log
Q(v|u)

Q(v)


− nξ

(c)

≥ n


∑

(u,v)

PU(u)Q(v|u) log
Q(v|u)

Q(v)


− nξ − nD(PV ||QV )

= n


∑

(u,v)

PU(u)Q(v|u) log
Q(v|u)

Q(v)


− n


∑

(u,v)

PU(u)Q(v|u) log
PV (v)

Q(v)


− nξ

= nI(V ; U) − nξ (5.31)

where PU = 1
n

∑n
i=1 PUi

, (a) follows by (5.29), (b) follows because conditioning does

not increase entropy, and (c) follows by D(PV ||QV ) ≥ 0. We further require that

D(PV ||QV ) → 0 as ξ → 0. Hence, we have

R ≥ min
PU :PV =QV

I(V ; U) (5.32)

where P (v) =
∑

u P (u)Q(v|u).

5.3. Discussion

Hayashi studied the resolvability problem using unnormalized divergence and he derived

bounds for nonasymptotic cases [42, Lemma 2]. We have outlined his proof steps in

Sec. 5.2.2. Theorem 5.1 can be derived by extending [42, Lemma 2] to asymptotic

cases (see 5.2.2) and it seems that such a result was the underlying motivation for [42,

Lemma 2]. Unfortunately, Theorem 5.1 is not stated explicitly in [42] and the ensuing

asymptotic analysis was done for normalized informational divergence. Hayashi’s proofs

(he developed two approaches) were based on Shannon random coding.

Theorem 5.1 implies [16, Theorem 6.3] which states that for R > I(V ; U) the normal-

ized divergence 1
n
D(PV n ||Qn

V ) can be made small. Theorem 5.1 implies [17, Theorem 4]

for product distributions through Pinsker’s inequality (Equ. (2.6)).Moreover, the speed

of decay in (5.26) is exponential with n. We can thus make

α(n) · E
[
D(P

V n|C̃
||Qn

V )
]

(5.33)
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vanishingly small as n → ∞, where α(n) represents a sub-exponential function of n that

satisfies,

lim
n→∞

α(n)

eβn
= 0 (5.34)

where β is positive and independent of n (see also [42]). For example, we may choose

α(n) = nm for any integer m. We may also choose α(n) = eγn where γ < β.

Since all achievability results in [48] are based on [17, Theorem 4], Theorem 5.1 ex-

tends the results in [48] as well. Theorem 5.1 is closely related to strong secrecy [49,50]

and provides a simple proof that Shannon random coding suffices to drive an unnormal-

ized mutual information between messages and eavesdropper observations to zero (see

Chapter 6 below).

Theorem 5.1 is valid for approximating product distributions only. However extensions

to a broader class of distributions, e.g., information stable distributions [17], are clearly

possible.

Finally, an example code is as follows (courtesy of F. Kschischang). Consider a chan-

nel with input and output alphabet the 27 binary 7-tuples. Suppose the channel maps

each input uniformly to a 7-tuple that is distance 0 or 1 away, i.e., there are 8 channel

transitions for every input and each transition has probability 1
8
. A simple “modula-

tion” code for this channel is the (7, 4) Hamming code. The code is perfect and if we

choose each code word with probability 1
16

, then the output V 7 of the channel is uni-

formly distributed over all 27 values. Hence I(V ; U) = 4 bits suffice to “approximate”

the product distribution (here there is no approximation).



6
Effective Secrecy: Reliability,

Confusion and Stealth

Wyner [51] derived the secrecy capacity for degraded wire-tap channels (see Fig. 6.1).

Csiszár and Körner [52] extended the results to broadcast channels with confidential

messages. In both [51] and [52], secrecy was measured by a normalized mutual in-

formation between the message M and the eavesdropper’s output Zn under a secrecy

constraint

1

n
I(M ; Zn) ≤ S (6.1)

which is referred to as weak secrecy. Weak secrecy has the advantage that one can trade

off S for rate. The drawback is that even S ≈ 0 is usually considered too weak because

the eavesdropper can decipher nS bits of M , which grows with n. Therefore, [49] (see

also [44]) advocated using strong secrecy where secrecy is measured by the unnormalized
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mutual information I(M ; Zn) and requires

I(M ; Zn) ≤ ξ (6.2)

for any ξ > 0 and sufficiently large n.

In related work, Han and Verdú [17] studied resolvability based on variational distance

that addresses the number of bits needed to mimic a marginal distribution of a prescribed

joint distribution. Bloch and Laneman [43] used the resolvability approach of [17] and

extended the results in [52] to continuous random variables and channels with memory.

The main contribution of this chapter is to define and justify the usefulness of a new

and stronger security measure for wire-tap channels that includes not only reliability

and (wiretapper) confusion but also stealth. The measure is satisfied by random codes

and by using the simplified proof of resolvability based on unnormalized informational

divergence developed in Chapter 5 (see also [45, Lemma 11]). In particular, we measure

secrecy by the informational divergence

D(PMZn||PMQZn) (6.3)

where PMZn is the joint distribution of MZn, PM is the distribution of M , PZn is the

distribution of Zn, and QZn is the distribution that the eavesdropper expects to observe

when the source is not communicating useful messages. We call this security measure

effective secrecy.

One can easily check that (see (6.7) below)

D(PMZn||PMQZn) = I(M ; Zn)
︸ ︷︷ ︸

Non-Confusion

+ D(PZn||QZn)
︸ ︷︷ ︸

Non-Stealth

(6.4)

where we interpret I(M ; Zn) as a measure of “non-confusion” and D(PZn||QZn) as a

measure of “non-stealth”. We justify the former interpretation by using error probability

in Sec. 6.2 and the latter by using binary hypothesis testing in Sec. 6.3. Thus, by making

D(PMZn||PMQZn) → 0 we not only keep the message secret from the eavesdropper but

also hide the presence of meaningful communication.

We remark that the choice of default behavior QZn in (6.3) will depend on the appli-
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Joey

Chandler

Ross

M

W

Xn

Y n

Zn

M̂

Qn
Y Z|XEncoder

Decoder

I(M ; Zn)

D(PZn||Qn
Z)

Figure 6.1.: A wire-tap channel.

cation. For example, if the default behavior is to send a code word, then QZn = PZn

and one achieves stealth for “free”. On the other hand, if the default behavior is of the

type QZn = Qn
Z , then we must be more careful. We mostly focus on the case QZn = Qn

Z .

We also remark that one need not consider stealth as being combined with confusion as

in (6.4), see Sec. 6.2.4 below. We combine these concepts mainly for convenience of the

proofs.

This chapter is organized as follows. In Section 6.1, we state the problem. In Section

6.2 we state and prove the main result. Section 6.3 relates the result to hypothesis

testing. Section 6.4 discusses related works.

6.1. Wire-Tap Channel

Consider the wire-tap channel depicted in Fig. 6.1. Joey has a message M which is

destined for Chandler but should be kept secret from Ross. The message M is uniformly

distributed over {1, . . . , L}, L = 2nR, and an encoder f(·) maps M to the sequence

Xn = f(M, W ) (6.5)

with help of a randomizer variable W that is independent of M and uniformly distributed

over {1, . . . , L1}, L1 = 2nR1 . The purpose of W is to confuse Ross so that he learns little

about M . Xn is transmitted through a memoryless channel Qn
Y Z|X. Chandler observes

the channel output Y n while Ross observes Zn. The pair MZn has the joint distribution
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PMZn. Chandler estimates M̂ from Y n and the average error probability is

P (n)
e = Pr

[
M̂ 6= M

]
. (6.6)

Ross tries to learn M from Zn and secrecy is measured by

D(PMZn||PMQn
Z)

=
∑

(m,zn)
∈supp(PMZn )

P (m, zn) log

(
P (m, zn)

P (m) · Qn
Z(zn)

· P (zn)

P (zn)

)

=
∑

(m,zn)
∈supp(PMZn )

P (m, zn)

(
log

P (zn|m)

P (zn)
+ log

P (zn)

Qn
Z(zn)

)

= I(M ; Zn)
︸ ︷︷ ︸

Non-Confusion

+ D(PZn||Qn
Z)

︸ ︷︷ ︸
Non-Stealth

(6.7)

where PZn is the distribution Ross observes at his channel output and Qn
Z is the default

distribution Ross expects to observe if Joey is not sending useful information. For

example, if Joey transmits Xn with probability Qn
X(Xn) through the channel, then we

have

Qn
Z(zn) =

∑

xn∈supp(Qn
X

)

Qn
X(xn)Qn

Z|X(zn|xn) = PZn(zn). (6.8)

When Joey sends useful messages, then PZn and Qn
Z are different. But a small D(PMZn||PMQn

Z)

implies that both I(M ; Zn) and D(PZn||Qn
Z) are small which in turn implies that Ross

learns little about M and cannot recognize whether Joey is communicating anything

meaningful. A rate R is achievable if for any ξ1, ξ2 > 0 there is a sufficiently large n and

an encoder and a decoder such that

P (n)
e ≤ ξ1 (6.9)

D(PMZn||PMQn
Z) ≤ ξ2. (6.10)

The effective secrecy capacity CS is the supremum of the set of achievable R. We wish

to determine CS.
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6.2. Main result and Proof

We prove the following result.

Theorem 6.1. The effective secrecy capacity of the wire-tap channel is the same as the

weak and strong secrecy capacity, namely

CS = sup
QV X

[I(V ; Y ) − I(V ; Z)] (6.11)

where the supremum is taken over all joint distributions QV X satisfying

QZ(z) =
∑

v,x

QV X(v, x)QZ|X(z|x) (6.12)

and the Markov chain

V − X − Y Z (6.13)

where QZ is the default distribution at the eavesdropper’s channel output.

One may restrict the cardinality of V to |V| ≤ |X | .

6.2.1. Achievability

We use random coding and the proof technique of Sec. 5.2.1.

Random Code: Fix a distribution QX and generate L · L1 code words xn(m, w), m =

1, . . . , L, w = 1, . . . , L1 using
∏n

i=1 QX(xi(m, w)). This defines the codebook

C = {xn(m, w), m = 1, . . . , L, w = 1, . . . , L1} (6.14)

and we denote the random codebook by

C̃ = {Xn(m, w)}(L,L1)
(m,w)=(1,1). (6.15)

Encoding: To send a message m, Joey chooses w uniformly from {1, . . . , L1} and

transmits xn(m, w). Hence, for a fixed codebook C̃ = C every xn(m, w) occurs with
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probability

PXn(xn(m, w)) =
1

L · L1
(6.16)

rather than Qn
X(xn(m, w)) (see (6.8)) and Qn

Z may not be the same as PZn. Further, for

every pair (m, zn) we have

P (zn|m) =
L1∑

w=1

1

L1
· Qn

Z|X(zn|xn(m, w)) (6.17)

P (zn) =
L∑

m=1

L1∑

w=1

1

L · L1

· Qn
Z|X(zn|xn(m, w)). (6.18)

Chandler: Chandler puts out (m̂, ŵ) if there is a unique pair (m̂, ŵ) satisfying the

typicality check

(xn(m̂, ŵ), yn) ∈ T n
ǫ (QXY ). (6.19)

Otherwise he puts out (m̂, ŵ) = (1, 1).

Analysis: Define the events

E1 : {(M̂, Ŵ ) 6= (M, W )}
E2 : D(PMZn||PMQn

Z) > ξ2. (6.20)

Let E = E1 ∪ E2 so that we have

Pr[E] ≤ Pr[E1] + Pr[E2] (6.21)

where we have used the union bound. Pr[E1] can be made small with large n as long as

R + R1 < I(X; Y ) − δǫ(n) (6.22)

where δǫ(n) → 0 as n → ∞ (see [20]) which implies that P (n)
e is small.
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Pr[E2] can be made small with large n as long as (Theorem 5.1)

R1 > I(X; Z) + δ′
ǫ(n) (6.23)

where δ′
ǫ(n) → 0 as n → ∞. This is because the divergence averaged over M , W , C̃ and

Zn satisfies (see Equ. (5.9) )

E[D(P
MZn|C̃

||PMQn
Z)]

(a)
= E[D(PM ||PM) + D(P

Zn|M C̃
||Qn

Z|PM)]

(b)
= E


log

∑L1
j=1 Qn

Z|X(Zn|Xn(M, j))

L1 · Qn
Z(Zn)




=
L∑

m=1

L1∑

w=1

1

L · L1
E


log

∑L1
j=1 Qn

Z|X(Zn|Xn(m, j))

L1 · Qn
Z(Zn)

∣∣∣∣∣∣∣∣
M = m, W = w




(c)

≤
L∑

m=1

L1∑

w=1

1

L · L1
E


log

(
Qn

Z|X(Zn|Xn(m, w))

L1 · Qn
Z(Zn)

+ 1

)
∣∣∣∣∣∣∣∣
M = m, W = w




(d)
= E

[
log

(
Qn

Z|X(Zn|Xn)

L1 · Qn
Z(Zn)

+ 1

)]
(6.24)

where

(a) follows by the chain rule for informational divergence;

(b) follows by (6.17) and by taking the expectation over M, W, Xn(1, 1), . . . , Xn(L, L1), Zn;

(c) follows by the concavity of the logarithm and Jensen’s inequality applied to the

expectation over the Xn(m, j), j 6= w for a fixed m;

(d) follows by choosing XnZn ∼ Qn
XZ .

Next we can show that the right hand side (RHS) of (6.24) is small if (6.23) is valid

by splitting the expectation in (6.24) into sums of typical and atypical pairs (see Equ.

(5.11)-(5.14)]). But if the RHS of (6.24) approaches 0, then using (6.7) we have

E
[
I(M ; Zn|C̃) + D(P

Zn|C̃
||Qn

Z)
]

→ 0. (6.25)
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Combining (6.21), (6.22) and (6.23) we can make Pr[E] → 0 as n → ∞ as long as

R + R1 < I(X; Y ) (6.26)

R1 > I(X; Z). (6.27)

which means that there must exist one good code C∗ satisfying the above conditions and

achieves an error probability smaller than or equal to the average error probability (see

(6.22) and (6.23)). We hence have the achievability of any R satisfying

0 ≤ R < sup
QX

[I(X; Y ) − I(X; Z)]. (6.28)

where the supremum is taken over all QX such that

QZ(z) =
∑

x

QX(x)QZ|X(z|x). (6.29)

Of course, if the RHS of (6.28) is non-positive, then we require R = 0. Now we prefix a

channel Qn
X|V to the original channel Qn

Y Z|X and obtain a new channel Qn
Y Z|V where

Qn
Y Z|V (yn, zn|vn) =

∑

xn∈supp(Qn
X|V

(·|vn))

Qn
X|V (xn|vn)Qn

Y Z|X(yn, zn|xn). (6.30)

Using a similar analysis as above, we have the achievability of any R satisfying

0 ≤ R < sup
QV X

[I(V ; Y ) − I(V ; Z)] (6.31)

where the supremum is taken over all QV X satisfying (6.12) and (6.13). Again, if the

RHS of (6.31) is non-positive, then we require R = 0. As usual, the purpose of adding

the auxiliary variable V is to potentially increase R. Note that V = X recovers (6.28).

Hence, the RHS of (6.28) is always smaller than or equal to the RHS of (6.31).

Remark 6.1. The steps (6.24) imply that secrecy and stealth are attained for every

message m and not just for the average over all messages. This gives a guarantee for a

good worst case performance.

Remark 6.2. The average divergence E[D(P
MZn|C̃

||PMQn
Z)] is the sum of I(M C̃; Zn)
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and D(PZn||Qn
Z) [42, Sec. III] (see also Remark 5.5). To see this, consider

E[D(P
MZn|C̃

||PMQn
Z)]

= D(P
MZn|C̃

||PMQn
Z |P

C̃
)

(a)
= D(P

Zn|M C̃
||Qn

Z |PMP
C̃
)

= D(P
Zn|M C̃

||PZn|PMP
C̃
) + D(PZn||Qn

Z)

= I(M C̃; Zn) + D(PZn||Qn
Z) (6.32)

where (a) follows by the independence of M and the code words. Thus, as E[D(P
MZn|C̃

||PMQn
Z)] →

0 we have I(M C̃; Zn) → 0 which means that M C̃ and Zn are (almost) independent. This

makes sense, since for effective secrecy the adversary learns little about M and the pres-

ence of meaningful transmission.

6.2.2. Converse

The converse follows as in [52, Theorem 1]. We provide an alternative proof using the

telescoping identity [53, Sec. G]. Consider any code C with rate R and code words of

length n satisfying (6.9) and (6.10) for some ξ1, ξ2 > 0. We have

log2 L = nR

= H(M)

= I(M ; Y n) + H(M |Y n)

(a)

≤ I(M ; Y n) + (1 + ξ1 · nR)

(b)

≤ I(M ; Y n) − I(M ; Zn) + ξ2 · n + (1 + ξ1 · nR) (6.33)

where (a) follows from Fano’s inequality and (b) follows from (6.7) and (6.10). Using

the telescoping identity [53, Equ. (9) and (11)] we have

1

n
[I(M ; Y n) − I(M ; Zn)]

=
n∑

i=1

[I(M ; Zn
i+1Y

i) − I(M ; Zn
i Y i−1)]
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=
1

n

n∑

i=1

[I(M ; Yi|Y i−1Zn
i+1) − I(M ; Zi; |Y i−1Zn

i+1)]

(a)
= I(M ; YT |Y T −1Zn

T +1T ) − I(M ; ZT |Y T −1Zn
T +1T )

(b)
= I(V ; Y |U) − I(V ; Z|U)

(c)

≤ max
QUV X :QZ(z)=

∑
u,v,x

QUV X(u,v,x)QZ|X (z|x)
[I(V ; Y |U) − I(V ; Z|U)]

≤ max
u

max
QV X|U=u:QZ(z)=

∑
v,x

QV X|U (v,x|u)QZ|X(z|x)
[I(V ; Y |U = u) − I(V ; Z|U = u)] (6.34)

(d)
= max

QV X :QZ(z)=
∑

u,v,x
QV X(v,x)QZ|X (z|x)

[I(V ; Y ) − I(V ; Z)] (6.35)

where

(a) follows by letting T be independent of all other random variables and uniformly

distributed over {1, . . . , n};

(b) follows by defining

U = Y T −1Zn
T +1T, V = MU,

X = XT , Y = YT , Z = ZT ; (6.36)

(c) follows from (6.10) (see also Sec. 5.2.3)

(d) follows because if the maximum in (6.34) is achieved for U = u∗ and QV X|U=u∗ , then

the same can be achieved in (6.35) by choosing a QV X = QV X|U=u∗ .

Combining (6.33) and (6.35) we have

R ≤
sup
QV X

[I(V ; Y ) − I(V ; Z)]

1 − ξ1
+

ξ2 · n + 1

(1 − ξ1)n
. (6.37)

where the supremum is taken over all QV X satisfying (6.12) and (6.13). Letting n → ∞,

ξ1 → 0, and ξ2 → 0, we have

R ≤ sup
QV X

[I(V ; Y ) − I(V ; Z)] (6.38)
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Joey
Chandler

Ross

M

M0

W

Xn

Y n

Zn

M̂

M̂0

M̃0

Qn
Y Z|XEncoder

Decoder 1

Decoder 2

Figure 6.2.: A broadcast channel with a confidential message.

where the supremum is taken over all QV X satisfying (6.12) and (6.13). The cardinality

bound in Theorem 1 was derived in [30, Theorem 22.1].

6.2.3. Broadcast Channels with Confidential Messages

Broadcast channels with confidential messages (BCC) [52] are wire-tap channels with

common messages. For the BCC (Fig. 6.2), Joey has a common message M0 destined

for both Chandler and Ross which is independent of M and uniformly distributed over

{1, . . . , L0}, L0 = 2nR0. An encoder maps M0 and M to

Xn = f(M0, M, W ) (6.39)

which is sent through the channel Qn
Y Z|X. Chandler estimates (M̂0, M̂) from Y n while

Ross estimates M̃0 from Zn. The average error probability is

P ∗(n)
e = Pr

[{
(M̂0, M̂) 6= (M0, M)

}
∪
{

M̃0 6= M0

}]
(6.40)

and non-secrecy is measured by D(PMZn||PMQn
Z). A rate pair (R0, R) is achievable if,

for any ξ1, ξ2 > 0, there is a sufficiently large n, an encoder and two decoders such that

P ∗(n)
e ≤ ξ1 (6.41)

D(PMZn||PMQn
Z) ≤ ξ2. (6.42)
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The effective secrecy capacity region CBCC is the closure of the set of achievable (R0, R).

We have the following theorem.

Theorem 6.2. CBCC is the same as the weak and strong secrecy capacity region

CBCC =
⋃





(R0, R) :

0 ≤ R0 ≤ min {I(U ; Y ), I(U ; Z)}
0 ≤ R ≤ I(V ; Y |U) − I(V ; Z|U)





(6.43)

where the union is over all distributions QUV X satisfying

QZ(z) =
∑

u,v,x

QUV X(u, v, x)QZ|X(z|x) (6.44)

and the Markov chain

U − V − X − Y Z. (6.45)

One may restrict the alphabet sizes to

|U| ≤ |X | + 3; |V| ≤ |X |2 + 4|X | + 3. (6.46)

Proof: The proof is omitted due to the similarity to the proof of Theorem 6.1.

6.2.4. Choice of Security Measures

Effective secrecy includes both strong secrecy and stealth communication. One may ar-

gue that using only I(M ; Zn) or D(PZn||Qn
Z) would suffice to measure secrecy. However,

we consider two examples where secrecy is achieved but not stealth, and where stealth

is achieved but not secrecy.

Example 6.1. I(M ; Zn) → 0, D(PZn||Qn
Z) = D > 0. Suppose that Joey inadvertently

uses Q̃X rather than QX for codebook generation, where (6.23) is still satisfied. For

example, Q̃X might represent no energy while QX must have positive energy. The new
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Q̃X could result in a different expected Q̃n
Z 6= Qn

Z . Hence, as n grows large we have

D(PMZn||PMQn
Z) = I(M ; Zn) + D(Q̃n

Z||Qn
Z) (6.47)

where I(M ; Zn) → 0 but we have

D(Q̃n
Z ||Qn

Z) = D, for some D > 0. (6.48)

Ross thus recognizes that Joey is transmitting useful information even though he cannot

decode.

Example 6.2. I(M ; Zn) = I > 0, D(PZn||Qn
Z) → 0. Note that E[D(PZn||Qn

Z)] → 0 as

n → ∞ as long as (see [54, Theorem 1])

R + R1 > I(X; Z). (6.49)

If Joey is not careful and chooses R1 such that (6.23) is violated and (6.49) is satisfied,

then D(PZn||Qn
Z) can be made small but we have

I(M ; Zn) = I for some I > 0. (6.50)

For example, Joey might choose R1 = 0. Thus, although the communication makes

D(PZn||Qn
Z) small, Ross can learn

I(M ; Zn) ≈ n[I(X; Z) − R1] (6.51)

bits about M if he is willing to pay a price and always tries to decode (see Sec. 6.3).

6.3. Hypothesis Testing

The reader may wonder how D(PZn||Qn
Z) relates to stealth. We consider a hypothesis

testing framework and show that as long as (6.49) is satisfied, the best Ross can do to

detect Joey’s action is to guess.
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For every channel output zn, Ross considers two hypotheses

H0 = Qn
Z (6.52)

H1 = PZn. (6.53)

If H0 is accepted, then Ross decides that Joey’s transmission is not meaningful, whereas

if H1 is accepted, then Ross decides that Joey is sending useful messages. We define two

kinds of error probabilities

α = Pr{H1 is accepted | H0 is true} (6.54)

β = Pr{H0 is accepted | H1 is true}. (6.55)

The value α is referred to as the level of significance [55] and corresponds to the prob-

ability of raising a false alarm, while β corresponds the probability of mis-detection. In

practice, raising a false alarm can be expensive. Therefore, Ross would like to minimize

β for a given tolerance level of α. To this end, Ross performs for every zn a ratio test

Qn
Z(zn)

PZn(zn)
= r (6.56)

and makes a decision depending on a threshold F , F ≥ 0, namely





H0 is accepted if r > F

H1 is accepted if r ≤ F
. (6.57)

Define the set of zn for which H0 is accepted as

An
F =

{
zn :

Qn
Z(zn)

PZn(zn)
> F

}
(6.58)

and (An
F )c is the set of zn for which H1 is accepted (see Fig. 6.3). Ross chooses the

threshold F and we have

α = Qn
Z((An

F )c) = 1 − Qn
Z (An

F )
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An
F (An

F )c

Qn
Z

(zn)

PZn(zn)
> F

Qn
Z

(zn)

PZn (zn)
≤ F

H0 = Qn
Z H1 = PZn

Figure 6.3.: Example of the decision regions An
F and (An

F )c.

β = PZn(An
F ). (6.59)

The ratio test in (6.56) is the Neyman-Pearson test which is optimal [55, Theorem 3.2.1]

in the sense that it minimizes β for a given α. We have the following lemma.

Lemma 6.3. If D(PZn||Qn
Z) ≤ ξ2, ξ2 > 0, then with the Neyman-Pearson test we have

1 − g(ξ2) ≤ α + β ≤ 1 + g(ξ2) (6.60)

where

g(ξ2) =
√

ξ2 · 2 ln 2 (6.61)

which goes to 0 as ξ2 → 0.

Proof: Since D(PZn||Qn
Z) ≤ ξ2, we have

||PZn − Qn
Z ||TV ≤

√
ξ2 · 2 ln 2 = g(ξ2) (6.62)

where the inequality follows by (2.6). We further have

||PZn − Qn
Z ||TV

=
∑

zn∈An
F

|PZn(zn) − Qn
Z(zn)| +

∑

zn∈(An
F )

c

|PZn(zn) − Qn
Z(zn)|
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α

β

0

1

1

1 − g(ξ2)

1 − g(ξ2)

Stealth

No Stealth

Figure 6.4.: Optimal tradeoff between α and β.

≥
∑

zn∈An
F

|PZn(zn) − Qn
Z(zn)|

(a)

≥
∣∣∣∣∣∣

∑

zn∈An
F

[PZn(zn) − Qn
Z(zn)]

∣∣∣∣∣∣

= |PZn(An
F ) − Qn

Z(An
F )|

= |β − (1 − α)| (6.63)

where (a) follows by the triangle inequality. Combining (6.62) and (6.63), we have the

bounds (6.60).

Fig. 6.4 illustrates the optimal tradeoff between α and β for stealth communication,

i.e., when (6.49) is satisfied. As n → ∞ and ξ2 → 0, we have

D(PZn||Qn
Z) → 0 (6.64)

(α + β) → 1. (6.65)

If Ross allows no false alarm (α = 0), then he always ends up with mis-detection (β = 1).

If Ross tolerates no mis-detection (β = 0), he pays a high price (α = 1). Further, for

any given α, the optimal mis-detection probability is

βopt = 1 − α. (6.66)
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But Ross does not need to see Zn or perform an optimal test to achieve βopt. He may

randomly choose some A′ such that

Qn
Z((A′)c) = α (6.67)

and achieves β ′
opt = 1 − α. The best strategy is thus to guess. On the other hand, if

lim
n→∞

D(PZn||Qn
Z) > 0 (6.68)

then Ross detects Joey’s action and we can have

α + β = 0. (6.69)

We thus operate in one of two regimes in Fig. 6.4, either near (α, β) = (0, 0) or near the

line α + β = 1.

6.4. Discussion

Our resolvability proof differs from that in [43] in that we rely on unnormalized informa-

tional divergence [54] instead of variational distance [17]. Our proof is simpler and the

result is stronger than that in [43] when restricting attention to product distributions

and memoryless channels because a small D(PMZn||PMQn
Z) implies small I(M ; Zn) and

D(PZn||Qn
Z) while a small ||PXn − Qn

X ||TV implies only a small I(M ; Zn) [44, Lemma 1].

Hayashi studied strong secrecy for wire-tap channels using resolvability based on un-

normalized divergence and he derived bounds for nonasymptotic cases [42, Theorem 3].

We remark that Theorem 1 can be derived by extending [42, Lemma 2] to asymptotic

cases. However, Hayashi did not consider stealth but focused on strong secrecy, although

he too noticed a formal connection to (6.7) [42, p. 1568].





7
Conclusion

We have addressed two problems in network information theory: short message noisy

network coding (SNNC) and resolvability based on unnormalized informational diver-

gence with applications to network security. SNNC with backward decoding simplifies

the analysis and enables mixed strategies of DF and QF that provide better rates and

outage probabilities. Resolvability based on informational divergence gives a stronger

result with a simpler proof that also applies to establish a new and stronger effective

secrecy measure. This measure includes strong secrecy and the hiding of the presence of

meaningful communication.

There are several open research problems worth addressing:

1. In [11], the authors characterized the gap between the cut-set bound and the

achievable LNNC (SNNC) rates under the assumption that all network nodes

quantize at the noise level. The resulting gap increases linearly with the number

of nodes K in the network. Recently, the papers [56–58] showed that if the quan-

tization noise level is proportional to the number of nodes K at all nodes, then

the gap increases logarithmically with K.
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However, we may improve the gap by letting the nodes quantize at individual noise

levels depending on the network geometry rather than quantizing at the same noise

level. Suppose we have a network with several sources, destinations and two classes

of relay nodes:

Class 1: close to the sources but far from the destinations

Class 2: close to the destinations but far from sources

Then, the Class 1 relays should quantize coarsely, because their relay-destination

links are weak and may not support fine details. For the Class 2 relays the situation

is the other way around: they should quantize finely to exploit the strong relay-

destination links. In this way, we may get a better gap.

2. The investigation of wire-tap channels with effective secrecy was done information-

theoretically. It would be interesting to find explicit codes with rate close to the

secrecy capacity that achieve strong secrecy and stealth at the same time. Recently,

the paper [59] showed that polar coding achieves strong secrecy for degraded binary

symmetric wire-tap channels. It’s worth checking whether polar coding can also

achieve effective secrecy for a broader class of wire-tap channels.
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Proofs for Chapter 3

A.1. Treating Class 2 Nodes as Noise

If all Class 2 bounds in (3.38) are satisfied, then SNNC achieves the same rates as NNC.

In this case the decoder recovers the signals from the nodes in D̃c
k and thereby removes

interference from these nodes.

Now suppose that an S in Class 2 has RS ≥ IK
S (k). We use the argument presented

in [25] (see also [5]): for any J satisfying S ⊂ J ⊂ K such that J ∩ D̃k 6= ∅ and k ∈ J c

we have

RJ \S < IK
J (k) − RS

(a)

≤ IK
J (k) − IK

S (k)

(b)
= I(XJ ; ŶJ cYk|XJ c) − I(ŶJ ; YJ |XKŶJ cYk) − I(XS ; ŶScYk|XSc) + I(ŶS ; YS|XKŶScYk)

(c)
= I(XJ ; ŶJ cYk|XJ c) − I(XS ; ŶScYk|XSc) − I(ŶJ \S ; YSYJ \S |XKŶJ cYk)

− I(ŶS ; YSYJ \S |XKŶScYk) + I(ŶS ; YS|XKŶScYk)
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(d)
= I(XJ ; ŶJ cYk|XJ c) − I(XS ; ŶScYk|XSc) − I(ŶJ \S ; YSYJ \S |XKŶJ cYk)

(e)
= I(XJ \S ; ŶJ cYk|XJ c) + I(XS ; ŶJ cYk|XSc) − I(XS ; ŶScYk|XSc) − I(ŶJ \S ; YJ \S |XKŶJ cYk)

(f)
= I(XJ \S ; ŶJ cYk|XJ c) − I(XS ; ŶJ \S |XScŶJ cYk) − I(ŶJ \S ; YJ \S |XKŶJ cYk)

(g)
= I(XJ \S ; ŶJ cYk|XJ c) − I(ŶJ \S ; XSYJ \S |XScŶJ cYk)

(h)
= I(XJ \S ; ŶJ cYk|XJ c) − I(ŶJ \S ; YJ \S |XScŶJ cYk)

(i)
= I

K\S
J \S(k) (A.1)

where

(a) follows because RS ≥ IK
S (k) by assumption

(b) follows from the definition (3.10)

(c) follows from the chain rule for mutual information

(d) follows from the Markov chain

XScYJ \S ŶScYk − YSXS − ŶS (A.2)

(e)-(h) follow from the chain rule for mutual information and the Markov chain

XK\J XSYS ŶJ cYk − YJ \SXJ \S − ŶJ \S (A.3)

(i) follows from the definition (3.10).

The rates satisfying (A.1) are the NNC rates for the nodes in K \ S while treating the

signals from the nodes in S as noise. This shows that if any of the constraints in Class

2 is violated for NNC or SNNC, then the destination node should treat the signals from

the corresponding nodes as noise rather than decoding them.

Now repeat the above argument for the nodes in K \ S, until we reach a set K̃k ⊂ K,

for which

0 ≤ RS < IK̃k

S (k) (A.4)
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for all subsets S ⊂ K̃k such that k ∈ Sc and S 6= ∅. By the union bound, the error

probability for all destinations tends to zero as n → ∞ if the rate tuple (R1, . . . , RK)

satisfies (A.4) for all subsets S ⊂ K̃k with k ∈ Sc and S ∩ D̃k 6= ∅, where Sc is the

complement of S in K̃k, and for joint distributions that factor as

[
K∏

k=1

P (xk)P (ŷk|yk, xk)

]
P (yK|xK). (A.5)

A.2. SNNC with joint Decoding

After block B + K · (K − 1) every node k ∈ K can reliably recover lB = (l1B, . . . , lKB)

via the multihopping of the last K(K − 1) blocks.

Let ǫ1 > ǫ. Node k tries to find a (ŵ(k)
1 , . . . , ŵ(k)

B ) and (̂l(k)
1 , . . . , l̂(k)

B ) such that the

event (3.22) occurs for all j = 1, . . . , B, where lB is already known. The difference

between joint decoding and backward decoding is that the typicality test is performed

jointly over all blocks (see (A.6)-(A.8) below) while it is performed in only one block in

(3.23)-(3.25).

Error Probability: Let 1 = (1, . . . , 1). Assume without loss of generality that wj = 1

and lj = 1 for j = 1, . . . , B. For any S ⊂ K, define

w(S)j = [wij : i ∈ S].

The error events at decoder k are:

Ek0 : ∪B
j=1∩lkj

Ec
0(kj)(lkj) (A.6)

Ek1 : (∩B
j=1E1(kj)(1, 1, 1))c (A.7)

Ek2 : ∪(wB

D̃k

6=1,wB

D̃c
k

) ∪lB ∩B
j=1 E1(kj)(wj, lj−1, lj) (A.8)

The error event Ek = ∪2
i=0Eki at node k thus satisfies

Pr[Ek] ≤ Pr[Ek0] + Pr[Ek1] + Pr[Ek2] (A.9)

where we have used the union bound. Pr[Ek0] can be made small with large n as long
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as (see (3.27))

R̂k > I(Ŷk; Yk|Xk) + δǫ(n). (A.10)

Also, we have

Pr[Ek1] = Pr[(∩B
j=1E1(kj)(1, 1, 1))c]

= Pr[∪B
j=1E

c
1(kj)(1, 1, 1)]

≤
B∑

j=1

Pr[Ec
1(kj)(1, 1, 1)]

(a)

≤ B · δǫ1(n)

= δǫ1(n, B) (A.11)

where (a) follows because Pr[Ec
1(kj)(1, 1, 1)] ≤ δǫ1(n), which goes to zero as n → ∞, for

j = 1, . . . , B [20].

To bound Pr
[
Ek2

]
, for each (wj, lj−1), we define

Sj(wj, lj−1) = {i ∈ K : wij 6= 1 or li(j−1) 6= 1} (A.12)

and write Sj = Sj(wj, lj−1). Observe that for j = 1, . . . , B :

⊲ (XSj
, ŶSj

) is independent of (XSc
j
, ŶSc

j
, Ykj) in the random coding experiment;

⊲ the (Xij, Ŷij), i ∈ Sj , are mutually independent.

We have (see (3.31) and (3.32)):

Pr
[
E1(kj)(wj, lj−1, lj)

]
≤ P(kj)(Sj) (A.13)

where

P(kj)(Sj) =





2−n(ISj
−δǫ1 (n)) if Sj 6= ∅

1 otherwise
(A.14)

and δǫ1(n) → 0 as n → ∞.



A.2. SNNC with joint Decoding 87

By the union bound, we have

Pr[Ek2] ≤
∑

(
wB

D̃k

6=1,wB

D̃c
k

)
∑

lB−1

Pr[∩B
j=1E1(kj) (wj, lj−1, lj)]

(a)
=

∑
(

wB

D̃k

6=1,wB

D̃c
k

)
∑

lB−1

B∏

j=1

Pr[E1(kj) (wj, lj−1, lj)]

(b)

≤

 ∑

wB ,lB−1

B∏

j=1

Pr[E1(kj) (wj, lj−1, lj)]


−

B∏

j=1

Pr[E1(kj) (1, 1, 1)]

(c)

≤

 ∑

wB,lB−1

B∏

j=1

P(kj)(Sj)


− (1 − δǫ1(n, B))

(d)
=




B∏

j=1

∑

wj ,lj−1

P(kj)(Sj)


− (1 − δǫ1(n, B))

(e)
<

B∏

j=1




1 +
∑

S:k∈Sc

S6=∅

∑

(wj ,lj−1)6=(1,1):

Sj(wj ,lj−1)=S

2−n(IS−δǫ1 (n))




− (1 − δǫ1(n, B))

(f)
<


1 +

∑

S:k∈Sc

S6=∅

3|S|2n(RS+R̂S)−(IS−δǫ1 (n)))




B

− (1 − δǫ1(n, B)) (A.15)

where

(a) follows because the codebooks are independent and the channel is memoryless

(b) follows by adding
(

wB
D̃k

= 1, wB
D̃c

k

)
to the sum

(c) follows from (A.13) and because (see (A.11))

Pr[∩B
j=1E1(kj)(1, 1, 1)]

= 1 − Pr[(∩B
j=1E1(kj)(1, 1, 1))c]

≥ 1 − δǫ1(n, B) (A.16)

(d) follows because P(kj)(Sj) depends only on Sj which in turn depends only on (wj, lj−1)
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(e) follows from (A.14)

(f) follows from (3.33).

Performing the same steps as in (3.35) and (3.36), we require

RS < IK
S (k) (A.17)

for all subsets S ⊂ K such that k ∈ Sc and S 6= ∅. We can again split the bounds in

(A.17) into two classes:

Class 1 : S ∩ D̃k 6= ∅ (A.18)

Class 2 : S ∩ D̃k = ∅ or equivalently S ⊆ D̃c
k (A.19)

and show that the constraints in (A.19) at node k are redundant with the same argu-

ment used for backward decoding. By the union bound, the error probability for all

destinations tends to zero as n → ∞ if the rate tuple (R1, . . . , RK) satisfies (3.12) for all

subsets S ⊂ K such that k ∈ Sc and S 6= ∅, and for any joint distribution that factors

as (3.13).

A.3. Backward Decoding for the Two-Relay

Channel without Block Markov Coding

The coding scheme is the same as in Example 3.4, except that no BMC is used (see

Table A.1). We show how to recover the rate (3.57) with independent inputs and with

2 different backward decoders.

Decoding at Relays:

1) Node 2. For block j = 1, . . . , B, node 2 tries to find a ŵj that satisfies

(x1 (ŵj), x2(wj−1), y2j) ∈ T n
ǫ (PX1X2Y2) . (A.20)

Node 2 can reliably decode wj as n → ∞ if (see [20])

R < I(X1; Y2|X2). (A.21)
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Block 1 2 · · · B B + 1
X1 x11(w1) x12(w2) · · · x1B(wB) x1(B+1)(1)
X2 x21(1) x22(w1) · · · x2B(w(B−1)) x2(B+1)(wB)
X3 x31(1) x32(l1) · · · x3B(lB−1) x3(B+1)(lB)

Ŷ3 ŷ31(l1|1) ŷ32(l2|l1) · · · ŷ3B(lB|lB−1) ŷ3B+1(lB+1|lB)

Table A.1.: Coding scheme for the two-relay channel without block Markov coding at
the source.

2) Node 3. For block j = 1, . . . , B + 1, node 3 finds an lj such that

(ŷ3j(lj |lj−1),x3j(lj−1), y3j) ∈ T n
ǫ (PŶ3X3Y3

) (A.22)

as n → ∞ if (see [20])

R̂ > I(Ŷ3; Y3|X3). (A.23)

Backward Decoding at the destination: Let ǫ1 > ǫ.

Decoder 1: 1) Multihop lB+1 to node 4 in blocks B + 2 to B + 3.

2) For block j = B, . . . , 1, node 4 puts out (ŵj , l̂j), if there is a unique pair (ŵj , l̂j)

satisfying the following typicality checks in both blocks j + 1 and j:

(
x1(j+1)(wj+1), x2(j+1)(ŵj), x3(j+1)(l̂j), ŷ3(j+1)(lj+1|l̂j), y4(j+1)

)
∈ T n

ǫ1

(
PX1X2X3Ŷ3Y4

)

(A.24)

and

(x1j(ŵj), y4j) ∈ T n
ǫ1

(PX1Y4) (A.25)

where wj+1 and lj+1 have already been reliably decoded from the previous block j + 1.

Otherwise it puts out (ŵj, l̂j) = (1, 1).

Similar analysis as in Theorem 3.1 shows that node 4 can reliably recover (wj, lj) if

R < I(X1; Y4) + I(X2; Ŷ3Y4|X1X3) (A.26)
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R < I(X1X2X3; Y4) − I(Ŷ3; Y3|X1X2X3Y4) (A.27)

0 ≤ I(X3; Y4|X1X2) − I(Ŷ3; Y3|X1X2X3Y4) (A.28)

If the constraint (A.28) is violated, then the rate bound (A.27) becomes

R < I(X1X2; Y4) (A.29)

which is a stronger bound than (A.26) and can be achieved with SNNC-DF by treating

X3 as noise. Thus, we may ignore (A.28).

Decoder 2:

1) Multihop lB+1 and lB to node 4 in blocks B + 2 to B + 5.

2) For block j = B, . . . , 1, node 4 puts out (ŵj, l̂j−1) if there is a unique pair (ŵj, l̂j−1)

satisfying the following typicality checks in both blocks j + 1 and j:

(x1(j+1)(wj+1), x2(j+1)(ŵj), x3(j+1)(lj), ŷ3(j)(lj+1|lj), y4(j+1)) ∈ T n
ǫ1

(
PX1X2X3Ŷ3Y4

)
(A.30)

and

(
x1j(ŵj), x3j(l̂j−1), ŷ3j(lj|l̂j−1), y4j

)
∈ T n

ǫ1

(
PX1X3Ŷ3Y4

)
(A.31)

where wj+1, lj and lj+1 have already been reliably decoded from the previous block j +1.

Otherwise it puts out (ŵj, l̂j−1) = (1, 1).

Node 4 can reliably recover (wj, lj−1) if

R < I(X1X2; Ŷ3Y4|X3) (A.32)

R < I(X1X2X3; Y4) − I(Ŷ3; Y3|X1X2X3Y4) (A.33)

0 ≤ I(X3; Y4|X1) − I(Ŷ3; Y3|X1X3Y4) (A.34)

If the constraint (A.34) is violated, then the rate bound (A.33) becomes

R < I(X1; Y4) + I(X2; Ŷ3Y4|X1X3) (A.35)

and the resulting R can be achieved by using decoder 1 (see (A.26)). Thus, with the
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combination of both decoders, we may ignore (A.34) and achieve the rate (3.57).

Remark A.1. Sliding window decoding with 2 different decoders also recovers the rate

(3.57) for independent X1 and X2 and enjoys a smaller decoding delay.

A.4. Rates and Outage for Gaussian Networks

In the following, let C(x) = log2(1 + x), x ≥ 0.

A.4.1. Relay Channels

No Fading

The achievable rates R with DF and CF-S are given in [23]. The SNNC and LNNC

rates are simply the CF-S rate. The SNNC-DF rate is the larger of the SNNC and DF

rates.

Slow Rayleigh Fading

Define the events

DDF =
{

Rtar < C
(
|G12|2P1(1 − |β|2)

)}

DCF-S1 =

{
R2(bin) < C

(
|G23|2P2

1 + |G13|2P1

)}

DCF-S2 =

{
R2(bin) ≥ C

(
1

σ̂2
2

+
|G12|2P1

σ̂2
2(1 + |G13|2P1)

)}

DSNNC =

{
σ̂2

2 ≥ 1

|G23|2P2

}
(A.36)

where |β|2 is the fraction of power allocated by source 1 to sending new messages. The

optimal β, R2(bin) and σ̂2
2 are calculated numerically.

The DF, CF-S, SNNC and SNNC-DF rates are

RDF = a1

RCF-S = b1



92 Appendix A. Proofs for Chapter 3

RSNNC = c1

RSNNC-DF =





RDF if DDF occurs

RSNNC otherwise
(A.37)

where

a1 = min
{
C
(
|G12|2P1(1 − |β|2)

)
,

C
(

|G13|2P1 + |G23|2P2 + 2ℜ{βG13G
∗
23}
√

P1P2

)}

b1 =





C
(

|G12|2P1

1+σ̂2
2

+ |G13|2P1

)
if DCF-S1 ∩ DCF-S2

C (|G13|2P1) if DCF-S1 ∩ Dc
CF-S2

C
(

|G13|2P1

1+|G23|2P2

)
otherwise

c1 =





min
{
C (|G13|2P1 + |G23|2P2) − C( 1

σ̂2
2
),

C
(

|G12|2P1

1+σ̂2
2

+ |G13|2P1

)}
if DSNNC

C
(

|G13|2P1

1+|G23|2P2

)
otherwise

(A.38)

and ℜ{x} is the real part of x and x∗ is the complex conjugate of x.

Remark A.2. For SNNC, event DSNNC means that

I(X2; Y3|X1) − I(Ŷ2; Y2|X1X2Y3) ≥ 0 (A.39)

and the destination can reliably recover X2 and Ŷ2 jointly which helps to decode X1.

Otherwise the destination should treat X2 as noise to get a better rate (see Theorem 3.1).

Similarly, for CF-S the events DCF-S1 and DCF-S2 mean that both X2 and Ŷ2 can be

decoded in a step-by-step fashion [21]. If DCF-S1 and Dc
CF-S2 occur, then X2 can be

recovered which removes interference at the receiver. Otherwise the relay signal should

be treated as noise.

As recognized in [60], one drawback of DF is that if the source-relay link happens to be

weak and the relay tries to decode, then the rate suffers. Hence the relay should decode

only if the source-relay link is strong enough to support Rtar, i.e., if event DDF occurs.

Otherwise, the relay should perform CF-S or QF. Different choices of relay operations
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depending on the channel conditions lead to the achievable rates with SNNC-DF.

The outage probabilities are as follows:

P out
DF = Pr[RDF < Rtar]

P out
CF-S = Pr[RCF-S < Rtar]

P out
SNNC = Pr[RSNNC < Rtar]

P out
SNNC-DF = Pr[RSNNC-DF < Rtar] (A.40)

A.4.2. Two-Relay Channels

No Fading

The achievable DF rates are [23, Theorem 1]

RDF < max {RDF1, RDF2} (A.41)

where

RDF1 = min {a21, a22, a23}
RDF2 = min {b21, b22, b23} (A.42)

with

a21 = C
(
|β1|2|G12|2P1

)

a22 = C
(

(1 − |β3|2)|G13|2P1 + |γ1|2|G23|2P2 + 2ℜ{β2G13(γ1G23)∗}
√

P1P2

)

a23 = C
(
|G14|2P1 + |G24|2P2 + |G34|2P3

+ (2ℜ{β2G14(γ1G24)∗} + 2ℜ{β3G14(γ2G24)
∗})

√
P1P2

+2ℜ{β3G14G∗
34}
√

P1P3 + 2ℜ{γ2G24G∗
34}
√

P2P3

)

b21 = C
(
|β1|2|G13|2P1

)

b22 = C
(

(1 − |β3|2)|G12|2P1 + |γ1|2|G32|2P3 + 2ℜ{β2G12(γ1G32)
∗}
√

P1P3

)
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b23 = C
(
|G14|2P1 + |G24|2P2 + |G34|2P3

+ (2ℜ{β2G14(γ1G34)∗} + 2ℜ{β3G14(γ2G34)∗})
√

P1P3

+2ℜ{β2G14G
∗
24}
√

P1P2 + 2ℜ{γ1G24G∗
34}
√

P2P3

)
(A.43)

where
∑3

i=1 |βi|2 = 1 and
∑2

i=1 |γi|2 = 1 and the optimal power allocation parameters

are calculated numerically.

The CF-S rates are (see [23, Theorem 2] with Ui = 0, i = 2, 3)

RCF-S < c21 (A.44)

subject to

g2 ≤ d2, h2 ≤ e2, i2 ≤ f2

where

c21 = C

(
|G12|2P1

1 + σ̂2
2

+
|G13|2P1

1 + σ̂2
3

+ |G14|2P1

)

d2 = C

(
|G24|2P2

1 + |G14|2P1

)

e2 = C

(
|G34|2P3

1 + |G14|2P1

)

f2 = C

(
|G24|2P2 + |G34|2P3

1 + |G14|2P1

)

g2 = C




1

σ̂2
2

+
|G12|2P1

σ̂2
2(1 + |G13|2P1

(1+σ̂2
3)

+ |G14|2P1)




h2 = C




1

σ̂2
3

+
|G13|2P1

σ̂2
3(1 + |G12|2P1

1+σ̂2
2

+ |G14|2P1)




i2 = C

(
1 + σ̂2

2 + σ̂2
3

σ̂2
2 σ̂2

3

+
|G12|2P1(1 + σ̂2

3) + |G13|2P1(1 + σ̂2
2)

σ̂2
2σ̂2

3(1 + |G14|2P1)

)
. (A.45)

The optimal σ̂2
2 and σ̂2

3 are calculated numerically.
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Referring to Theorem 3.1, the achievable SNNC rates are

RSNNC < min {c21, j21, j22, j23} (A.46)

where

j21 = C

(
|G14|2P1 + |G24|2P2 +

|G13|2P1 + |G23|2P2

1 + σ̂2
3

+
P1P2(|G13|2|G24|2 + |G14|2|G23|2)

1 + σ̂2
3

−2ℜ{G13G24G
∗
14G∗

23}P1P2

1 + σ̂2
3

)
− C

(
1

σ̂2
2

)

j22 = C

(
|G14|2P1 + |G34|2P3 +

|G12|2P1 + |G32|2P3

1 + σ̂2
3

+
P1P3(|G12|2|G34|2 + |G14|2|G32|2)

(1 + σ̂2
2)

−2ℜ {G12G34G∗
14G∗

32} P1P3

(1 + σ̂2
2)

)
− C

(
1

σ̂2
3

)

j23 = C
(
|G14|2P1 + |G24|2P2 + |G34|2P3

)
− C

(
1 + σ̂2

2 + σ̂2
3

σ̂2
2σ̂2

3

)
. (A.47)

where c21 is defined in (A.45). The optimal σ̂2
2 and σ̂2

3 are calculated numerically.

If one relay uses DF and the other uses QF, rates satisfying

RDQF < max {RDQF1, RDQF2} (A.48)

can be achieved, where

RDQF1 = min {k21, k22, k23}
RDQF2 = min {l21, l22, l23}

with

k21 = C

(
|G12|2P1(1 − |θ|2)

1 + |G32|2P3

)
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k22 = C
(

|G14|2P1 + |G24|2P2 + 2ℜ{θG14G∗
24}
√

P1P2

+
|G13|2P1 + |G23|2P2 + 2ℜ{θG13G

∗
23}√

P1P2

1 + σ̂2
3

+
(1 − |θ|2)P1P2(|G13|2|G24|2 + |G14|2|G23|2 − 2ℜ{G13G24G∗

14G
∗
23})

1 + σ̂2
3

)

k23 = C
(

|G14|2P1 + |G24|2P2 + |G34|2P3 + 2ℜ{θG14G∗
24}
√

P1P2

)
− C

(
1

σ̂2
3

)
(A.49)

and

l21 = C

(
|G13|2P1(1 − |θ|2)

1 + |G23|2P2

)

l22 = C
(

|G14|2P1 + |G34|2P3 + 2ℜ{θG14G
∗
34}
√

P1P3

+
|G12|2P1 + |G32|2P3 + 2ℜ{θG12G

∗
32}√

P1P3

1 + σ̂2
2

+
(1 − |θ|2)P1P3(|G12|2|G34|2 + |G14|2|G32|2 − 2ℜ{G12G34G∗

14G
∗
32})

1 + σ̂2
2

)

l23 = C
(

|G14|2P1 + |G24|2P2 + |G34|2P3 + 2ℜ{θG14G
∗
34}
√

P1P3

)
− C

(
1

σ̂2
2

)
(A.50)

where 0 ≤ |θ|2 ≤ 1 and the optimal θ, σ̂2
2 and σ̂2

3 for RDQF1 and RDQF2 are calculated

numerically.

Referring to Theorem 3.4, SNNC-DF achieves rates satisfying

RSNNC-DF < max {RDF, RDQF, RSNNC}. (A.51)

Slow Rayleigh Fading

Define the events

DDFV =





Rtar < V21

Rtar < V22





DDF1 = { Rtar < k21}
DDF2 = { Rtar < l21}
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DCF-S1 =





R2(bin) < d2

R3(bin) < e2

R2(bin) + R3(bin) < f2





DCF-S2 =





R2(bin) ≥ g2

R3(bin) ≥ h2

R2(bin) + R3(bin) ≥ i2





DSNNC1 =





|G24|2P2 + |G23|2P2

1+σ̂2
3

≥ 1
σ̂2

2

|G34|2P3 + |G32|2P3

1+σ̂2
2

≥ 1
σ̂2

3

|G24|2P2 + |G34|2P3 ≥ 1
σ̂2

2
+ 1

σ̂2
3

+ 1
σ̂2

2 σ̂2
3





DSNNC2 =

{
σ̂2

2 ≥ 1 + |G32|2P3 + |G34|2P3

|G24|2P2

}

DSNNC3 =

{
σ̂2

3 ≥ 1 + |G23|2P2 + |G24|2P2

|G34|2P3

}
(A.52)

where {V21, V22, V23} takes on the value {a21, a22, a23} or {b21, b22, b23} (see (A.43)) and

the choice depends on the statistics of the fading coefficients such that the DF outage

probability is minimized.

The DF rates are

RDF = min {V21, V22, V23} . (A.53)

The CF-S rates are

RCF-S =





c21 if DCF-S1 ∩ DCF-S2

c22 if DCF-S1 ∩ Dc
CF-S2

c23 otherwise

(A.54)

where c21 is defined in (A.45) and

c22 = C
(
|G14|2P1

)

c23 = C

(
|G14|2P1

1 + |G24|2P2 + |G34|2P3

)
. (A.55)
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Observe that if both DCF-S1 and DCF-S2 occur, then both the bin and quantization indices

can be decoded. If only DCF-S1 occurs, then only the bin index can be recovered.

Referring to Theorem 3.1 the SNNC rates are

RSNNC =





min {c21, j21, j22, j23} if DSNNC1

min {m21, m22} if Dc
SNNC1 ∩ DSNNC2

min {q21, q22} if Dc
SNNC1 ∩ DSNNC3

c23 otherwise

(A.56)

where

m21 = C

(
P1(|G12|2 + (1 + σ̂2

2)|G14|2) + P1P3|G14|2|G32|2
|G32|2P3 + (1 + σ̂2

2) (1 + |G34|2P3)

+
P1P3(|G12|2|G34|2 − 2ℜ{G12G34G∗

14G
∗
32})

|G32|2P3 + (1 + σ̂2
2) (1 + |G34|2P3)

)

m22 = C

(
|G14|2P1 + |G24|2P2

1 + |G34|2P3

)
− C

(
1

σ̂2
2

+
|G32|2P3

σ̂2
2 (1 + |G34|2P3)

)

q21 = C

(
P1(|G13|2 + (1 + σ̂2

3)|G14|2) + P1P2|G14|2|G23|2
|G23|2P2 + (1 + σ̂2

3) (1 + |G24|2P2)

+
P1P2(|G13|2|G24|2 − 2ℜ{G13G24G∗

14G
∗
23})

|G23|2P2 + (1 + σ̂2
3) (1 + |G24|2P2)

)

q22 = C

(
|G14|2P1 + |G34|2P3

1 + |G24|2P2

)
− C

(
1

σ̂2
3

+
|G23|2P2

σ̂2
3 (1 + |G24|2P2)

)
. (A.57)

The event DSNNC1 means that both quantization indices can be recovered. The events

DSNNC2 and DSNNC3 mean that only one of the two quantization indices can be decoded.

The SNNC-DF rates are

RSNNC-DF =





RDF if DDFV

RDQF1 if Dc
DFV ∩ DDF1

RDQF2 if Dc
DFV ∩ DDF2

RSNNC otherwise

(A.58)
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where (see (A.49) and (A.50))

RDQF1 = min {k21, k22, k23}
RDQF2 = min {l21, l22, l23} .

The outage probabilities are as in (A.40).

A.4.3. Multiple Access Relay Channels

No Fading

The DF region of the Gaussian MARC is the union of all (R1, R2) satisfying [38, Sec. 3]

R1 < RDF1 = min {a31, a32}
R2 < RDF2 = min {b31, b32}

R1 + R2 < RDF3 = min {c31, c32} (A.59)

where

a31 = C
(
|G13|2P1(1 − |β|2)

)

a32 = C
(

|G14|2P1 + |G34|2P3 + 2ℜ{βG14(θ1G34)
∗}
√

P1P3

)

b31 = C
(
|G23|2P2(1 − |γ|2)

)

b32 = C
(

|G24|2P2 + |G34|2P3 + 2ℜ{γG24(θ2G34)∗}
√

P2P3

)

c31 = C
(
|G13|2P1(1 − |β|2) + |G23|2P2(1 − |γ|2)

)

c32 = C
(

|G14|2P1 + |G24|2P2 + |G34|2P3 + 2ℜ{βG14(θ1G34)∗}
√

P1P3

+2ℜ{γG24(θ2G34)
∗}
√

P2P3

)
(A.60)

where 0 ≤ |β|2, |γ|2 ≤ 1 and
∑2

i=1 |θi|2 = 1. The optimal power allocation parameters

are calculated numerically.
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The achievable CF-S rate region is the union of all (R1, R2) satisfying [38, Sec. 3]

R1 < d31

R2 < e31

R1 + R2 < f31 (A.61)

where

d31 = C

(
|G13|2P1

1 + σ̂2
3

+ |G14|2P1

)

e31 = C

(
|G23|2P2

1 + σ̂2
3

+ |G24|2P2

)

f31 = C

(
|G14|2P1 + |G24|2P2 +

|G13|2P1 + |G23|2P2

1 + σ̂2
3

+
P1P2(|G13|2|G24|2 + |G14|2|G23|2 − 2ℜ{G13G24G∗

14G∗
23})

1 + σ̂2
3

)
(A.62)

for some

σ̂2
3 ≥ 1 + (|G13|2 + |G14|2)P1 + (|G23|2 + |G24|2)P2

|G34|2P3

+
P1P2(|G13|2|G24|2 + |G14|2|G23|2 − 2ℜ{G13G24G∗

14G∗
23})

|G34|2P3

.

Referring to Theorem 3.1, the SNNC rate region is the union of pairs (R1, R2) satisfying

R1 < min {d31, g31}
R2 < min {e31, h31}

R1 + R2 < min {f31, i31} (A.63)

where d31, e31 and f31 are defined in (A.62) and

g31 = C
(
|G14|2P1 + |G34|2P3

)
− C

(
1

σ̂2
3

)

h31 = C
(
|G24|2P2 + |G34|2P3

)
− C

(
1

σ̂2
3

)
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i31 = C
(
|G14|2P1 + |G24|2P2 + |G34|2P3

)
− C

(
1

σ̂2
3

)

for some σ̂2
3 > 1

|G34|2P3
. The SNNC-DF rate region is the union of the SNNC and DF

rate regions.

Slow Rayleigh Fading

Define the events

DDF =





Rtar1 < a31

Rtar2 < b31

Rtar1 + Rtar2 < c31





DCF-S1 =

{
R3(bin) < C

(
|G34|2P3

1 + |G14|2P1 + |G24|2P2

)}

DCF-S2 =

{
R3(bin) ≥ C

(
1

σ̂2
3

+
|G13|2P1 + |G23|2P2

σ̂2
3 (1 + |G14|2P1 + |G24|2P2)

+
P1P2(|G13|2|G24|2 + |G14|2|G23|2 − 2ℜ{G13G24G∗

14G
∗
23})

σ̂2
3 (1 + |G14|2P1 + |G24|2P2)

)}

DSNNC =

{
σ̂2

3 ≥ 1

|G34|2P3

}
. (A.64)

The DF rate region of the Gaussian MARC is the union of all (R1, R2) satisfying (A.59).

The CF-S rate region is the union of all (R1, R2) satisfying [38]

R1 < RCF1 =





d31 if DCF-S1 ∩ DCF-S2

d32 if DCF-S1 ∩ Dc
CF-S2

d33 otherwise

(A.65)

R2 < RCF2 =





e31 if DCF-S1 ∩ DCF-S2

e32 if DCF-S1 ∩ Dc
CF-S2

e33 otherwise

(A.66)
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R1 + R2 < RCF3 =





f31 if DCF-S1 ∩ DCF-S2

f32 if DCF-S1 ∩ Dc
CF-S2

f33 otherwise

(A.67)

where

d32 = C
(
|G14|2P1

)

d33 = C

(
|G14|2P1

1 + |G34|2P3

)

e32 = C
(
|G24|2P2

)

e33 = C

(
|G24|2P2

1 + |G34|2P3

)

f32 = C
(
|G14|2P1 + |G24|2P2

)

f33 = C

(
|G14|2P1 + |G24|2P2

1 + |G34|2P3

)
. (A.68)

If both DCF-S1 and DCF-S2 occur, then the relay bin and quantization indices can be

decoded. If only DCF-S1 occurs, then only the bin index can be recovered.

Referring to Theorem 3.1, the SNNC rate region is the union of all (R1, R2) satisfying

R1 < RSNNC1 =





min {d31, g31} if DSNNC

d33 otherwise

R2 < RSNNC2 =





min {e31, h31} if DSNNC

e33 otherwise

R1 + R2 < RSNNC3 =





min {f31, i31} if DSNNC

f33 otherwise.
(A.69)

The event DSNNC means that the destination should decode the relay signal to achieve

better performance.
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The SNNC-DF rate region is the union of all (R1, R2) satisfying

R1 < RSNNC-DF1 =





RDF1 if DDF

RSNNC1 otherwise

R2 < RSNNC-DF2 =





RDF2 if DDF

RSNNC2 otherwise

R1 + R2 < RSNNC-DF3 =





RDF3 if DDF

RSNNC3 otherwise.
(A.70)

If DDF occurs, then the relay should decode which will remove interference at the relay.

Otherwise, the relay should perform QF to avoid unnecessarily lowering the rates.

Let Rtar3 = Rtar1 + Rtar2. The outage probabilities are:

P out
DF = Pr[{RDF1 < Rtar1} ∪ {RDF2 < Rtar2} ∪ {RDF3 < Rtar3}]

P out
CF-S = Pr[{RCF-S1 < Rtar1} ∪ {RCF-S2 < Rtar2} ∪ {RCF-S < Rtar3}]

P out
SNNC = Pr[{RSNNC1 < Rtar1} ∪ {RSNNC2 < Rtar2} ∪ {RSNNC3 < Rtar3}]

P out
SNNC-DF = Pr[{RSNNC-DF1 < Rtar1} ∪ {RSNNC-DF2 < Rtar2} ∪ {RSNNC-DF3 < Rtar3}]

(A.71)

A.4.4. Two-Way Relay Channels

No Fading

The DF rate region for the Gaussian TWRC is the union of all (R1, R2) satisfying

R1 < RDF1 = min {a41, a42}
R2 < RDF2 = min {b41, b42}

R1 + R2 < RDF3 = c41 (A.72)

where

a41 = C
(
|G13|2P1(1 − |β|2)

)
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a42 = C
(

|G12|2P1 + |G32|2P3(1 − |θ1|2) + 2ℜ{βG12(θ1G32)∗}
√

P1P3

)

b41 = C
(
|G23|2P2(1 − |γ|2)

)

b42 = C
(

|G21|2P2 + |G31|2P3(1 − |θ1|2) + 2ℜ{γG21(θ2G31)∗}
√

P2P3

)

c41 = C
(
|G13|2P1(1 − |β|2) + |G23|2P2(1 − |γ|2)

)
(A.73)

where 0 ≤ |β|2, |γ|2 ≤ 1 and
∑2

i=1 |θi|2 = 1. The optimal power allocation parameters

are calculated numerically.

The CF-S rate region [61, Proposition 4] is the union of all (R1, R2) satisfying

R1 < d41

R2 < e41 (A.74)

where

d41 = C

(
|G12|2P1 +

|G13|2P1

1 + σ̂2
3

)

e41 = C

(
|G21|2P2 +

|G23|2P2

1 + σ̂2
3

)

for some

σ̂2
3 ≥ max {f41, f42, f43, f44}

where

f41 =
1 + |G12|2P1 + |G13|2P1

|G32|2P3

f42 =
|G21|2P2 + 1

|G31|2P3

+
|G13|2P1(|G21|2P2 + 1)

|G31|2P3(|G12|2P1 + 1)

f43 =
1 + |G21|2P2 + |G23|2P2

|G31|2P3
,

f44 =
|G12|2P1 + 1

|G32|2P3
+

|G23|2P2(|G12|2P1 + 1)

|G32|2P3(|G21|2P2 + 1)
.
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Referring to Theorem 3.1, the SNNC rate region is the union of all (R1, R2) satisfying

R1 < min {d41, g41}
R2 < min {e41, h41} (A.75)

where

g41 = C
(
|G12|2P1 + |G32|2P3

)
− C

(
1

σ̂2
3

)

h41 = C
(
|G21|2P2 + |G31|2P3

)
− C

(
1

σ̂2
3

)

for some σ̂2
3 > 0. The SNNC-DF rate region is the union of the DF and SNNC rate

regions.

Slow Rayleigh Fading

Define the events

DDF =





Rtar1 < a41

Rtar2 < b41

Rtar1
+ Rtar2

< c41





DCF-S11 =

{
R3(bin) < C

(
|G31|2P3

1 + |G21|2P2

)}

DCF-S12 =

{
R3(bin) ≥ C

(
1

σ̂2
3

+
|G23|2P2

σ̂2
3 (1 + |G21|2P2)

)}

DCF-S21 =

{
R3(bin) < C

(
|G32|2P3

1 + |G12|2P1

)}

DCF-S22 =

{
R3(bin) ≥ C

(
1

σ̂2
3

+
|G13|2P1

σ̂2
3 (1 + |G12|2P1)

)}

DSNNC1 =

{
σ̂2

3 ≥ 1

|G32|2P3

}

DSNNC2 =

{
σ̂2

3 ≥ 1

|G31|2P3

}
.
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The DF region is the union of all (R1, R2) satisfying (A.72). The CF-S region is the

union of all (R1, R2) satisfying

R1 < RCF-S1 =





d41 if DCF-S21 ∩ DCF-S22

d42 if DCF-S21 ∩ Dc
CF-S22

d43 otherwise

(A.76)

R2 < RCF-S2 =





e41 if DCF-S11 ∩ DCF-S12

e42 if DCF-S11 ∩ Dc
CF-S12

e43 otherwise

(A.77)

where

d42 = C
(
|G12|2P1

)

d43 = C

(
|G12|2P1

1 + |G32|2P3

)

e42 = C
(
|G21|2P2

)

e43 = C

(
|G21|2P2

1 + |G31|2P3

)
.

The optimal R3(bin) and σ̂2
3 are calculated numerically.

Referring to Theorem 3.1, SNNC achieves all pairs (R1, R2) satisfying

R1 < RSNNC1 =





min {d41, g41} if DSNNC1

d43 otherwise
(A.78)

R2 < RSNNC2 =





min {e41, h41} if DSNNC2

e43 otherwise.
(A.79)

The SNNC-DF rate region is the union of the (R1, R2) satisfying

R1 < RSNNC-DF1 =





RDF1 if DDF

RSNNC1 otherwise
(A.80)
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R2 < RSNNC-DF2 =





RDF2 if DDF

RSNNC2 otherwise.
(A.81)

The outage probabilities are:

P out
DF = Pr[{RDF1 < Rtar1} ∪ {RDF2 < Rtar2}]

P out
CF-S = Pr[{RCF-S1 < Rtar1} ∪ {RCF-S2 < Rtar2}]

P out
SNNC = Pr[{RSNNC1 < Rtar1} ∪ {RSNNC2 < Rtar2}]

P out
SNNC-DF = Pr[{RSNNC-DF1 < Rtar1} ∪ {RSNNC-DF2 < Rtar2}] (A.82)





B
Proofs for Chapter 5

B.1. Proof of Lemma 5.2: Non-Uniform W

Observe that H(W ) = H(BnR) = nR · H2(p). Following the same steps as in (5.9) we

have

E[D(P
V n|C̃

||Qn
V )] = E

[
log

∑M
j=1 P (j)QV n|Un(V n|Un(j))

Qn
V (V n)

]

=
∑

w

P (w) · E


log

∑M
j=1 P (j)Qn

V |U(V n|Un(j))

Qn
V (V n)

∣∣∣∣∣∣∣∣
W = w




≤
∑

w

P (w) · E

[
log

(
P (w)Qn

V |U(V n|Un(w))

Qn
V (V n)

+ 1 − P (w)

)]

≤
∑

w

P (w) · E

[
log

(
P (w)Qn

V |U(V n|Un(w))

Qn
V (V n)

+ 1

)]

= d1 + d2 + d3 (B.1)
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where

d1 =
∑

w∈T n
ǫ (P n

X
)

P (w)
∑

(un(w),vn)∈T n
ǫ (Qn

UV
)

Qn
UV (un(w), vn)

[
log

(
P (w)Qn

V |U(vn|un(w))

Qn
V (vn)

+ 1

)]

d2 =
∑

w∈T n
ǫ (P n

X
)

P (w)
∑

(un(w),vn)/∈T n
ǫ (QUV )

(un(w),vn)∈supp(Qn
UV

)

Qn
UV (un(w), vn)

[
log

(
P (w)Qn

V |U(vn|un(w))

Qn
V (vn)

+ 1

)]

d3 =
∑

w /∈T n
ǫ (P n

X
)

w∈supp(P n
X

)

P (w)
∑

(un(w),vn)∈supp(Qn
UV

)

Qn
UV (un(w), vn)

[
log

(
P (w)Qn

V |U(vn|un(w))

Qn
V (vn)

+ 1

)]
.

(B.2)

We can bound d1 as follows (see (5.12))

d1 ≤
∑

w∈T n
ǫ (P n

X
)

P (w)

[
log

(
2n(I(V ;U)+2ǫH(V ))

2n(1−ǫ)R·H2(p)
+ 1

)]

≤ log
(
2−n(R·H2(p)−I(V ;U)−ǫ(2H(V )+R·H2(p))) + 1

)

≤ log(e) · 2−n(R·H2(p)−I(V ;U)−δǫ(n)) (B.3)

which goes to zero if R > I(V ;U)+δǫ(n)
H2(p)

and n → ∞, where δǫ(n) = ǫ(2H(V ) + R · H2(p)).

We also have

d2 ≤
∑

w∈T n
ǫ (P n

X
)

P (w)
∑

(un(w),vn)/∈T n
ǫ (QUV )

(un(w),vn)∈supp(Qn
UV

)

Qn
UV (un(w), vn)

[
log

((
1

µV

)n

+ 1

)]

≤ 2|V| · |U| · e−2nǫ2µ2
UV log

((
1

µV

)n

+ 1

)
(B.4)

which goes to zero as n → ∞ (see (5.13)). We further have

d3 ≤
∑

w /∈T n
ǫ (P n

X
)

w∈supp(P n
X

)

P (w)
∑

(un(w),vn)∈supp(Qn
UV

)

Qn
UV (un(w), vn)

[
log

((
1

µV

)n

+ 1

)]

≤
∑

w /∈T n
ǫ (P n

X
)

w∈supp(P n
X

)

P (w)

[
log

((
1

µV

)n

+ 1

)]
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≤ 4 · e−2nǫ2p2

log

((
1

µV

)n

+ 1

)
(B.5)

which goes to zero as n → ∞ (see (5.13)).

Combining the above for non-uniform W we have

E[D(P
V n|C̃

||Qn
V )] → 0 (B.6)

if R > I(V ;U)+δn(ǫ)
H2(p)

and n → ∞.

B.2. Proof of Lemma 5.3

We extend the proof of [42, Sec. III, Inequality (15)] to asymptotic cases to establish

Lemma 5.3. Recall that −1
2

≤ ρ ≤ 0. Let s = −ρ
1+ρ

so we have

0 ≤ s ≤ 1

1 + s =
1

1 + ρ
(B.7)

We also have for any a, b ≥ 0 and 0 ≤ x ≤ 1

(a + b)x ≤ ax + bx. (B.8)

Observe that for any vn we have

E[P (vn|C̃)] = E

[
M∑

w=1

1

M
· Qn

V |U(vn|Un(w))

]

= E
[
Qn

V |U(vn|Un(1))
]

= E

[
n∏

i=1

QV |U(vi|Ui(1))

]

=
n∏

i=1

E
[
QV |U(vi|Ui(1))

]

=
n∏

i=1

[
∑

u

Q(u)QV |U(vi|u)

]
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=
n∏

i=1

QV (vi) = Qn
V (vn). (B.9)

We further have

eEn
0 (ρ,Qn

UV
) =

∑

vn

{
E[P (vn|C̃)

1
1+ρ ]

}1+ρ

(a)
=
∑

vn

{
E[P (vn|C̃)1+s]

} 1
1+s

=
∑

vn



E



(

M∑

w=1

1

M
· Qn

V |U(vn|Un(w))

)1+s






1
1+s

=
1

M

∑

vn



E




M∑

w=1

Qn
V |U(vn|Un(w))


Qn

V |U(vn|Un(w)) +
M∑

j 6=w

Qn
V |U(vn|Un(j))




s





1
1+s

(B.10)

where (a) follows from (B.7). Applying (B.8) to (B.10) we have

eEn
0 (ρ,Qn

UV
) ≤ 1

M

∑

vn

{
E

[
M∑

w=1

Qn
V |U(vn|Un(w))



(
Qn

V |U(vn|Un(w))
)s

+




M∑

j 6=w

Qn
V |U(vn|Un(j))




s







1
1+s

(a)
=

1

M

∑

vn

{
E

[
M∑

w=1

(
Qn

V |U(vn|Un(w))
)1+s

]

+
M∑

w=1

(
E
[
Qn

V |U(vn|Un(w))
])

· E






M∑

j 6=w

Qn
V |U(vn|Un(j))




s





1
1+s

(b)

≤ 1

M

∑

vn



ME

[(
Qn

V |U(vn|Un)
)1+s

]
+ MQn

V (vn) ·

E




M∑

j 6=w

Qn
V |U(vn|Un(j))






s


1
1+s

(c)
=

1

M

∑

vn

{
ME

[(
Qn

V |U(vn|Un)
)1+s

]
+ MQn

V (vn) ((M − 1)Qn
V (vn))s

} 1
1+s

≤ 1

M

∑

vn

{
ME

[(
Qn

V |U(vn|Un)
)1+s

]
+ (MQn

V (vn))1+s
} 1

1+s

(B.11)

where
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(a) follows because Un(w) is independent of Un(j), j 6= w

(b) follows by choosing UnV n ∼ Qn
UV , by the concavity of xa for 0 ≤ a ≤ 1 and by (B.9)

(c) follows by (B.9)

Applying (B.8) again to (B.11) we have

eEn
0 (ρ,Qn

UV
) ≤ 1

M

∑

vn

{(
ME

[(
Qn

V |U(vn|Un)
)1+s

]) 1
1+s

+ MQn
V (vn)

}

(a)
= 1 + Mρ

∑

vn

(
E
[(

Qn
V |U(vn|Un)

) 1
1+ρ

])1+ρ

= 1 + Mρ
∑

vn

(
∑

un

Qn
U(un)

(
Qn

V |U(vn|un)
) 1

1+ρ

)1+ρ

(b)
= 1 + enρR

∑

v

(
∑

u

Q(u) (Q(v|u))
1

1+ρ

)n(1+ρ)

= 1 + en(E0(ρ,QUV )+ρR) (B.12)

where

(a) follows from (B.7)

(b) follows because the UiVi are i.i.d., i = 1, . . . , n

Optimizing over ρ, we have

En
0 (ρ, Qn

UV ) ≤ ln
(
1 + enEG(R,QUV )

)

≤ enEG(R,QUV ). (B.13)





C
Abbreviations

List of Abbreviations

AWGN additive white Gaussian noise

BCC broadcast channel with confidential messages

BMC block Markov coding

CF compress-forward

CF-S compress-forward with step-by-step decoding

DF decode-forward

DMN discrete memoryless network

i.i.d. independent and identically distributed

LNNC long message noisy network coding

MAC multiple access channel

MARC multiple access relay channel

NNC noisy network coding

QF quantize-forward



116 List of Abbreviations

RHS right-hand side

SNNC short message noisy network coding

TWRC two-way relay channel
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