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Abstract—We consider the downlink of a cellular network with
multiple antenna base stations (BS) and single antenna mobile
devices (MD). Whenever a BS changes its beamforming strategy,
it changes the intercell interference (ICI) at every MD in the
whole network. These changes are usually not predictable and a
BS cannot keep track of the signal to interference plus noise ratio
(SINR) of its associated MDs. Consequently, it is not optimal to
choose beamforming strategies and link rate adaptions based on
measured or assumed SINR values. We propose an optimized
shaping constraint on the transmit covariances to make the ICI
more predictable. The remaining ICI instationarity is handled
with an expected rate optimization, which takes a sampled
probability density function of the ICI into account.

I. INTRODUCTION

Uncertainty in the ICI has a variety of negative effects.

For example, the link rate adaption can fail because the

SINR during the transmission is unknown. This might lead to

unexpected outages. Some operations in higher layers, such as

scheduling and resource allocation, also depend on the SINR

and cannot be performed optimally based on assumed ICI

values.

The problem of the ICI instationarity is already addressed

in [1]. An upper bound to the possible rates in systems with

ICI instationarity is defined, where the actual SINR is assumed

to be known in each time slot. In [2], we proposed to optimize

the transmit covariances at each BS based on the expected rate

of the associated MDs. With this approach, the system for

which the transmit covariances are optimized and the system

in which the covariances are utilized become the same.

A different method was suggested in [3]. The covariances of

the transmit symbols at each BS are forced to scaled identity

matrices, which still leaves room for an optimization of the

individual beamforming vectors. This constraint completely

removes the uncertainty in the ICI variance and the SINR

values of the served MDs can be known at the BSs. But,

the shaping constraint on the transmitter also reduces the

achievable rates.

However, there is still a large gap between the two methods

and the upper bound “ICI aware”, which can only be achieved,

if the ICI is known at the transmitter. In this paper, a combi-

nation of the expected rate optimization with a less restrictive

shaping constraint is proposed. The benefits of the stabilization

and the expected rate are combined in this new method. With

a loosening factor, the strictness of the shaping constraint is

adjusted. This loosening factor can be translated to a limit on

the maximum eigenvalue of the sum transmit covariance.

The ICI could be made available with a second pilot at the

cost of an additional overhead, if the BSs synchronize the up-

date of their beamforming [4]. In an idealized network MIMO

scenario with fully centralized coordination, the problem of

ICI awareness does not arise.

The problem of the instationary ICI can also be miti-

gated with hybrid automatic repeat request (HARQ) with

incremental redundancy (IR). The authors of [5] present an

algorithm, which optimizes the scheduling decisions based on

the expected rates, where the effects of HARQ are already

taken into account. In [5], [6] the authors show that the ergodic

upperbound rate with known SINR values can be reached,

if infinitely many retransmissions are allowed at the cost of

infinite delay. HARQ is not incorporated in the expected rate

optimization in this work, but it can be added in a later work.

The used system model based on the Winner channel model

is described in Section II. The instationarity of the ICI and the

expected rate optimization are discussed in more detail in Sec-

tion III. Section IV describes the scaled identity optimization

and the newly proposed algorithm with the loosened scaled

identity constraint on the transmit covariances is presented in

Section V. Simulation results are shown in Section VI.

II. SYSTEM MODEL

A MD in the set K of all MDs is specified by the tuple

(b, k) ∈ K, where b ∈ B identifies the BS in the set B of all

BSs and k ∈ Kb the MD in the set Kb of all MDs in the cell of

BS b. In this paper, each BS has N antennas and serves K =
|Kb| single antenna MDs, respectively. The vectors h

b̂,b,k
∈

C
N contain the channel coefficients between the antennas of

BS b̂ and MD (b, k).

Block fading is assumed, where the channel stays constant

for Tblock transmit symbols. The achievable, normalized rate of

MD (b, k), within the capacity region of the MIMO broadcast

channel with dirty paper coding, can be expressed as

rb,k = ln

(
σ2 + θb,k +

∑
k̂≥k

hH
b,b,kQb,k̂

hb,b,k

σ2 + θb,k +
∑

k̂>k
hH
b,b,kQb,k̂

hb,b,k

)
, (1)

θb,k =
∑

b̂∈B\b

hH
b̂,b,k

Q
b̂
h
b̂,b,k

, (2)
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where Qb,k ∈ C
N×N is the transmit covariance matrix for

MD (b, k) and
∑

k Qb,k = Qb ∈ C
N×N is the sum transmit

covariance matrix of BS b.
∑

k̂<k
hH
b,b,kQb,k̂

hb,b,k is the

variance of the intracell interference with dirty paper coding,

θb,k is the variance of the received ICI, and σ2 = σ2
η + θbg is

the sum variance of the thermal noise σ2
η and the background

ICI. The Gaussian background ICI θbg models the BSs further

away than the closest 57 BSs for a given signal variance per

transmit antenna. All BSs have to satisfy the transmit power

constraint tr(Qb) ≤ P . The CSI measurements are assumed

error free and the costs of any signaling overhead are ignored.

III. INSTATIONARITY OF THE INTERCELL INTERFERENCE

In the considered scenario, the BSs do not coordinate

their beamforming. The channels between an MD and the

interfering BSs are not measured. The interference is regarded

as noise. Even in scenarios with cooperation among the BSs

this type of interference cannot be completely eliminated.

Cooperation is always limited in realistic systems, because the

measurement of all interference channels and a coordination

of all beamformers in the network cannot be implemented [7],

[8]. This interference over the unmeasured channels scales

with the common transmit power at the BSs and such systems

are always interference limited.

In addition, the variance of the interfering symbols at the re-

ceivers cannot be known before the transmission. The BSs are

assumed to calculate their transmit covariances in a distributed

manner and the update process is not synchronized between

the BSs. Even if all BSs would update their beamforming at

the same time, the ICI could not be known before the BSs have

choosen their transmit covariances. The ICI at each MD will

change the moment any BS applies a new transmit covariance.

Therefore, the BSs compute their transmit covariances based

on assumed ICIs θ̃b,k. The BSs are blind to the ICI changes

and take the risk, that the actual ICI θb,k increases and the MD

cannot decode the transmitted symbols or that θb,k decreases

and valuable resources are wasted [1]. This problem can be

formulated as

řb,k =

{
r̃b,k = rb,k|θb,k=θ̃b,k

, for θ̃b,k ≥ θb,k,

0, for θ̃b,k < θb,k,
(3)

where r̃b,k and řb,k are the assumed and achievable rate with

the assumed ICI θ̃b,k, respectively.

Most optimizations in the literature utilize for the assumed

ICI the expectation of the ICI, an ICI realization from a

previous step, or ignore this problem at all. This results in

a mismatch between the utility of the optimization and the

actual performance measure. To counteract this problem, the

expectation of the rate with respect to the random ICI variance

Θb,k is considered, which can take any value θb,k ≥ 0, as

proposed in [2]:

EΘb,k
[řb,k] = r̃b,kFΘb,k

(
θ̃b,k

)
, (4)

where FΘb,k

(
θ̃b,k

)
= P

(
θ̃b,k ≥ θb,k

)
is the probability, that

the transmission is successful or the cumulative distribution

function (CDF) of the random ICI variance evaluated at θ̃b,k.

With this step, the sum utility

R =
∑

(b,k)∈K

r̃b,kFΘb,k

(
θ̃b,k

)
, (5)

is reached, which corresponds to the performance measure.

As the interference is regarded as noise, the utility of a MD

depends only on the beamforming of the serving BS. The

network utility optimization splits into individual cell sum

utility optimizations:

Rexpected,b = max
Qb,k�0,θ̃b,k≥0 ∀(b,k)∈Kb

∑
(b,k)∈Kb

r̃b,kFΘb,k

(
θ̃b,k

)
,

s.t. tr(Qb) ≤ P. (6)

The transmit covariances Qb,k and the assumed ICI θ̃b,k in

problem (6) can be optimized with an alternating optimization

as described in [2]. For a fixed assumed ICI, the probability of

a successful transmission is fixed and a weighted utility opti-

mization with respect to the transmit covariances remains. For

fixed transmit covariances, the assumed ICI can be optimized

with a root finding algorithm.

To perform the described procedure, the CDFs of the ICI

at each associated MD need to be available at the serving BS.

The CDFs can be approximated with long term measurements

at the MDs. It could also be possible to estimate a rough

CDF directly based on the channel measurements. This would

not require any additional measurements and feedback for the

CDF. If the update process at the BSs is synchronized, it will

be possible to measure θb,k with a second pilot, which removes

the uncertainty in the ICI afterwards but increases the overhead

[4].

IV. SCALED IDENTITY CONSTRAINT

With the interference stabilization method from [3], the sum

transmit covariances at the BSs are constraint to scaled identity

matrices. Note, that the individual transmit covariances for

the MDs can still be optimized. With the stabilization, a BS

always knows the ICI at its associated MDs during the data

transmission. The ICI is measured before the beamforming

is selected. Due to the shaping constraint, the ICI does not

change during the optimization of the transmit covariances.

There is no need of measuring the interference channels or

any statistics about the ICI. The problem of interference

awareness disappears at the cost of a restriction on the transmit

covariances, which reduces the possible rates. The CDF of

the random ICI variance becomes a unit step function at the

measured ICI. Again, the utility of an MD only depends on

the beamforming of the serving BS and, therefore, the network

utility optimization splits into individual utility optimizations

per cell. The optimization can be formulated as

Ridentity,b = max
Qb,k�0 ∀(b,k)∈Kb

∑
(b,k)∈Kb

rb,k,

s.t. Qb � P

N
I, (7)
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The cell utility optimization in the downlink can be trans-

formed to an uplink optimization [3]

min
Ωb�0

max
qb,k≥0 ∀(b,k)∈Kb

∑
(b,k)∈Kb

rMAC
b,k ,

s.t.
∑

(b,k)∈Kb

qb,k ≤ P, tr(Ωb) = N, (8)

rMAC
b,k = ln

∣∣∣Ωb +
∑

k̂≤k
q
b,k̂

h̃
b,b,k̂

h̃H
b,b,k̂

∣∣∣∣∣∣Ωb +
∑

k̂<k
q
b,k̂

h̃
b,b,k̂

h̃H
b,b,k̂

∣∣∣ , (9)

where Ωb ∈ C
N×N is the noise covariance matrix at BS b and

qb,k is the transmit power allocated to MD (b, k) in the uplink.

h̃b,b,k = 1√
σ2+θb,k

hb,b,k is the effective channel between

the regarded BS an the MD (b, k). This optimization is a

saddle point problem, which can be solved with an alternating

algorithm. The cell utility maximizing power allocation and

the cell utility minimizing noise realization are found in turns.

V. LOOSENED COVARIANCE SHAPING

By loosening the strict shaping constraint, a controlled

instationarity of the ICI can be introduced. This instationarity

can be handled by optimizing the expected rate. With this

approach, the two different techniques dealing with the ICI

awareness problem can be combined. A tradeoff between the

covariance shaping with the scaled identity and the expected

rate method can be found. The combined local optimization

reads as

Rloose,α,b = max
Qb,k�0,θ̃b,k≥0 ∀(b,k)∈Kb

∑
(b,k)∈Kb

EΘα,b,k
[r̃b,k] ,

s.t. Qb � α
P

N
I, tr(Qb) ≤ P, (10)

where α ≥ 1 loosens the shaping constraint. Note, that the

statistics of the random ICI variance Θα,b,k depend on the

shaping constraint. For α = 1, the shaping constraint is strict

and there is no uncertainty in the ICI. For α ≥ N the constraint

Qb � α P
N
I is not binding and the statistics of the random ICI

are the same as for the expected rate optimization without any

shaping constraint.

With the eigenvalues λb,n (n = 1, . . . , N ) of Qb and

tr(Qb) =
∑

n λb,n, problem (10) can be written as

Rloose,α,b = max
Qb,k�0,θ̃b,k≥0 ∀(b,k)∈Kb

∑
(b,k)∈Kb

r̃b,kFΘα,b,k

(
θ̃b,k

)
,

s.t. max(λb,n) ≤ α
P

N
,
∑
n

λb,n ≤ P, (11)

where FΘα,b,k

(
θ̃b,k

)
is the probability that the transmission

is successful, i.e., the CDF of the ICI evaluated at θ̃b,k, where

all BSs use the loosening factor α.

The transmit covariances Qb,k and the assumed ICI θ̃b,k in

problem (11) can be optimized with an alternating optimiza-

tion. For fixed transmit covariances, the problem simplifies to

max
θ̃b,k≥0 ∀(b,k)∈Kb

∑
(b,k)∈Kb

r̃b,kFΘα,b,k

(
θ̃b,k

)
. (12)

Setting the derivation of problem (12) with respect to the

assumed ICI θ̃b,k to zero yields

∂r̃b,k

∂θ̃b,k
FΘα,b,k

(
θ̃b,k

)
+ r̃b,k

(
θ̃b,k

)
fΘα,b,k

(
θ̃b,k

)
= 0, (13)

where fΘα,b,k
is the probability density function of Θα,b,k. The

assumed ICI θ̃b,k, which fulfills equation (13), can be found

with a root finding algorithm.

For a fixed assumed ICI, the probability of a successful

transmission is fixed and problem (11) is a weighted sum rate

maximization with a limit on the maximum eigenvalue. As

described in [9], this problem can be converted to a convex-

concave uplink optimization problem

min
βb≥0,Ωb�βbI

tr(Ωb)=
N
α
(1+βb(α−1))

max
qb,k≥0 ∀(b,k)∈Kb

∑
(b,k) qb,k=P

∑
(b,k)∈Kb

r̃MAC
b,k FΘα,b,k

(
θ̃b,k

)
,

(14)

r̃MAC
b,k = rMAC

b,k

∣∣
θb,k=θ̃b,k

(15)

where βb controls the weighting between the transmit power

and the shaping constraint. This saddle point problem can be

solved efficiently with a joint scaled gradient descent, which

updates the transmit powers qb,k and the uplink noise Ωb

in parallel. In each step, the updates have to be projected

orthogonally onto the constraint set [9].

The complete algorithm, which optimizes the transmit co-

variances and the assumed ICI powers, is listed in Algo-

rithm 1.The algorithm converges, because the cost function

improves in every step and the cost function is limited.

Convergence is typically reached after three iterations. “up-

link2downlink” is a conversion of the transmit powers and

the noise covariance matrix in the uplink to the transmit

covariance matrices in the downlink as described, e.g., in [10].

Algorithm 1 Maximization of the Expected Cell Sum Rate

with Loosened Covariance Shaping

Require: transmit power P , loosening factor α

1: θ̃b,k ← EΘα,b,k
[θb,k] ∀k � initialize assumed ICIs

2: while not converged do

3: h̃b,b,k ← 1√
σ2+θ̃b,k,i

hb,b,k ∀k � effective channels

4: [qb,k ∀k,Ωb] ← solution to problem (14)

5: Qb,k ← uplink2downlink(qb,k,Ωb)
6: θ̃b,k ← solution to problem (13)

7: end while

VI. SIMULATIONS

For the simulation results, a cellular network with 19 three

faced sites and, therefore, 57 BSs is considered. Each BS

serves the MDs within the hexagonal shaped cell it covers.

The wrap-around method is used to treat all cells equally

and the channels are generated according to the 3GPP MIMO

urban macro cell model [11]. Every BS has N = 4 transmit

antennas. In every cell, K = 4 MDs are placed uniformly

distributed and suffer from a thermal noise variance of σ2
η =
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8.3 · 10−14 W, respectively. The background interference is set

to θbg = 9.53 · 10−13 ·P , where P is the transmit power.

The simulations operate on an histogram of ICI realizations

instead of the probability distribution. The first round of ICI

realizations is generated with scaled identities as transmit co-

variances for the interfering BSs. New transmit covariances are

found with these ICI realizations and these new transmit co-

variances are used for the calculation of new ICI realizations.

Only with the second set of ICI realizations the calculated

expectation of the rates and the simulated expectation become

equal. The scaled identity matrices are always of full rank,

while the second set of covariances is not. A further iteration

with the ICI realizations and covariances does not change the

results.
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expected
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identity

Figure 1. Average user rate over transmit power

Numerical simulations to evaluate the performance of the

presented methods can be seen in Figure 1. The normalized

average user rate is plotted over the transmit power. The result

labeled with “expected” has the rates optimized according to

the expected rate algorithm from [2] without any shaping con-

straint, while “identity” is the interference robustness method

with the strict shaping constraint from [3]. Both methods yield

substantial improvement compared to the conservative link

rate adaption algorithm (“gambling”) from [1] with completely

different approaches. The newly proposed algorithm with the

loosened shaping constraint is labeled with “loosen”. The

loosening factor was selected to α = 2.4. This selection gave

the best results at high SNR values. All curves saturate for

high power because of the ICI. The saturation starts around

P = 1W, as it is assumed that all BSs transmit in the same

frequency band (reuse 1).

The influence of the loosening on the performance at high

SNR values can be seen in Figure 3. α = 1 and α = 4 are the

extreme values, where the loosening converges to the scaled

identity and the expected rate algorithm, respectively.

In low SNR scenarios (Figure 3) the effect of the ICI
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Figure 2. Influence ot the loosening at a transmit power of 83W

1 1.5 2 2.5 3 3.5 4

0.75

0.8

0.85

0.9

α

b
it

s
p
er

ch
an

n
el

u
sa

g
e

Figure 3. Influence ot the loosening at a transmit power of 0.83mW

vanishes. Therefore, the shaping constraint has no benefit and

an unrestricted optimization yields the best results.

The influence of α on the CDF of the ICI is plotted in

Figure 4 for a single MD with a single channel realization.

For α = 1, the CDF is an unit step function at the mean ICI.

The CDFs become flatter for increasing α. The possible ICI

values become less predictable.

VII. CONCLUSION

To counteract the problem of instationary ICI, we adapted

the scaled identity constraint method. This method stabilizes

the ICI powers, while it reduces the possible rates. By loos-

ening the constraint, we could limit the drawback, but the

ICI is not completely predictable any more. We handled this

unpredictability with the expected rate algorithm. We have

shown that the combined algorithm improves the achievable

rates.
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