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1 Introduction

Core-collapse supernova explosions are the catastrophic deaths of stars, with more than about
eight times the mass of our sun. They are among the most powerful cosmic events. During
such an explosion more energy is released in a few seconds than the star has previously
emitted by radiation over its whole lifetime. These events are highly complex phenomena,
where a variety of physical ingredients, such as fluid dynamics, relativistic gravity, weak
interactions, nuclear reactions, and the thermodynamics of nonrelativistic and relativistic
plasmas of arbitrary degeneracy play a role in the gravitational collapse of a massive star
and the subsequent explosion. Thus, all four known forces of nature, are involved in making
supernovae a prime example for a “multi-physics problem.” To make progress by quantitative
investigations of this highly complex and nonlinear problem towards a deeper understanding
of the explosion mechanism, one needs to rely heavily on large-scale computer simulations. It
is the goal of this thesis to take a major step forward in the numerical modeling of supernovae
to gain an improved understanding of the underlying explosion mechanism.

1.1 The Paradigm of the Delayed Neutrino-driven Explosion
Mechanism

Ever since Colgate & White (1966) proposed that neutrinos play an important role in powering
the explosion of core-collapse supernovae, the favored scenario for more than 40 years has
been the delayed neutrino-heating explosion mechanism. The current state of research into
the detailed process of the core-collapse supernova mechanism has been reviewed by Bethe
(1990); Janka et al. (2007); Janka (2012); Janka et al. (2012); Burrows (2013). We provide
here a brief summary of the basic picture.

All stars create energy by the fusion of lighter elements to heavier ones. In the case of stars
with more than about eight times the mass of our sun, they pass through successive stages
of nuclear burning of hydrogen, helium, carbon, neon, oxygen, and finally silicon. Since
iron possesses the highest binding energy per nucleon, no more energy can be released by
further nuclear burning. Thus, such stars develope an onion-shell like structure with a cores
consisting of iron-group nuclei. The mass of this core is continuously increasing, since silicon
burning still take place at the surface of the iron core. When the iron core at the center of the
massive star reaches the Chandrasekhar mass limit of roughly 1.4 solar masses, the electron
degeneracy pressure can no longer stabilize the core. It collapses because the stabilizing
pressure of degenerated electrons is reduced by captures on nuclei and photo-dissociation of
heavy nuclei. These processes decrease the number of leptons per baryon, the electron fraction
Ye, and thus, result in a further pressure reduction. Consequently, the collapse is accelerated.
A huge amount of neutrinos is released, which can initially freely escape from the inner core of
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the star. When the central density reaches ρ ≈ 1012 g/cm3, an important development during
collapse sets in. At these densities, neutrinos essentially become trapped in the core, as their
diffusion time becomes larger than the collapse time. From this point on, the inner core of
the star collapses almost adiabatically and homologously, until the central density reaches
nuclear saturation density (2.7 · 1014 g/cm3). The collapse is stopped by the stiffening of the
equation of state due to repulsive interactions between nucleons. The rebound of the inner
core launches a shock wave into the outer core as it collides with the outer regions of the iron
core, which are still falling inwards at supersonic speed. However, it turns out that this formed
shock wave is not sufficiently energetic to directly trigger a supernova explosion. It quickly
loses energy because of photo-dissociation of heavy nuclei into free nucleons. Once it reaches
densities below 1011 g/cm3, the shock wave is further weakened because rapid deleptonization
associated with an energy loss occurs in the region behind the shock front as it becomes
transparent to neutrinos. Within a few milliseconds, the post-shock matter stops to move
outwards. However, the shock front continues to be pushed to larger radii, since more and
more matter is accreted onto the nascent proto-neutron star. Typically, the outward-moving
shock finally stalls at a radius between 100 and 200 km and afterwards recedes again. As the
matter behind the shock has negative velocities and thus is falling inward, the shock becomes
an accretion shock.

Neutrinos streaming off the forming neutron star can revive the stalled shock. Most of the
gravitational energy released during the collapse of the inner core of the star is carried away
by neutrinos. They deposit a small fraction of their energy in the layers between the young
proto-neutron star and the shock surface. Mainly by charged current neutrino νe captures on
free nucleons the material behind the shock is heated up by the following reaction channels,

νe + n −→ p+ e−, (1.1)

ν̄e + p −→ n+ e+, (1.2)

and these layers are cooled by the corresponding inverse processes,

e− + p −→ n+ νe, (1.3)

e+ + n −→ p+ ν̄e. (1.4)

Neutrino heating is proportional to r−2, whereas neutrino cooling falls much steeper with a
r−6 dependency (Janka 2001; Janka et al. 2012). As a consequence, there exists a so-called
gain radius, where neutrino heating and cooling balance each other.

By the persistent energy deposition of neutrinos into the region between the gain layer and
the shock front, i.e. the gain layer, the pressure behind the supernova shock front is increased.
If neutrino heating is strong enough to overcome the ram pressure of the infalling material,
the shock can be driven outwards leading to a supernova explosion.

1.2 The Importance of Hydrodynamic Instabilities

The observation of the supernova SN1987 was a major breaktrough in the understanding of
the mechanism of core-collapse supernovae. For the first time, it was shown that the ejected
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mass distribution was highly anisotropic (Hillebrandt et al. 1989; Arnett et al. 1989; McCray
1993; Nomoto et al. 1994; Müller 1998). This insight can only be explained if hydrodynamic
instabilities grow shortly after core bounce (Kifonidis et al. 2003, 2006; Hammer et al. 2010).

Even more importantly, in modeling core-collapse supernovae it turned out that spherically
symmetric simulations with a self-consistent treatment of neutrino effects fail to explode for
stars above 10 solar masses (Bruenn 1985, 1987; Burrows et al. 1995; Mezzacappa et al. 2001;
Rampp & Janka 2000, 2002; Liebendörfer et al. 2001, 2005; Buras et al. 2003b; Thompson
et al. 2003) with the notable exception of low-mass progenitors incorporating a O-Ne-Mg core
(see the 1D explosion of Kitaura et al. 2006 investigating a 8.8 M� progenitor of Nomoto
1987).

Thus, nowadays there is a universal consensus in supernova theory that the neutrino-driven
explosion mechanism heavily relies on the supporting action of multidimensional effects. Two
hydrodynamic instabilities have been identified that play a potentially important role in the
accretion flow between the stalled supernova shock and the forming neutron star:

Neutrino heating is strongest near the gain layer, as its strength decreases quickly with in-
creasing distance from the gain radius, and thus, establishes a negative entropy gradient in the
gain layer, which is unstable to buoyancy-driven convection as already recognized by Bethe
(1990). Neutrino-driven convection manifests itself in the form of high-entropy bubbles, that
transport heated material from close to the gain layer to the shock front, pushing the shock
front farther out (Dolence et al. 2013). Moreover, cool matter can flow down towards the
gain layer to be heated more efficiently. Indeed, the first generation of multi-dimensional
simulations confirmed convective activity in the postshock layer (hot-bubble convection) and
its supportive effect for a neutrino-driven explosion (Herant et al. 1992; Burrows & Fryxell
1992; Herant et al. 1994; Burrows et al. 1995; Janka & Müller 1996; Müller & Janka 1997).

A distinctly different phenomenon, which plays an important role in the supernova core, was
found by Blondin et al. (2003) through purely hydrodynamic simulations of adiabatic accretion
flows behind a stalled shock. This so-called “standing-accretion shock instability” (SASI) is
demonstrated by large-scale ` = 1 and ` = 2 sloshing motions of the shock front (i.e., the
dipole and quadrupole terms of an expansion in spherical harmonics) manifesting in bipolar
sloshing of the shock with pulsational strong expansion and contraction. In three dimensions
it can also develop ` = 1,m = ±1 spiral modes (Blondin & Mezzacappa 2007; Iwakami
et al. 2009; Fernández 2010). This instability of the shock itself has been further studied by
several follow-up hydrodynamic studies (Blondin & Mezzacappa 2006, 2007; Ohnishi et al.
2006; Scheck et al. 2008; Iwakami et al. 2008, 2009; Fernández & Thompson 2009b; Fernández
2010). While Blondin & Mezzacappa (2006) and Laming (2007) propose a purely acoustic
cycle, with the help of a linear stability analysis for the instability, Foglizzo (2002); Foglizzo
et al. (2006, 2007); Yamasaki & Yamada (2007) suggested an advective-acoustic cycle for
amplifying the characteristic oscillatory growth of the SASI. Guilet & Foglizzo (2012) have
recently given strong arguments for the hypothesis of an advective-acoustic cycle by a detailed
analysis of the mode frequencies. Furthermore, Foglizzo et al. (2012) have developed a shallow
water analogue, the SWASI experiment, in which the water flow between a circular reservoir
and a central tube as sink mimics the accretion flow that feeds the nascent neutron star. With
the role of the shock and of acoustic waves being played by a hydraulic jump and surface water
waves, respectively, similar sloshing and spiral motions are observed as in the hydrodynamic
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simulations of collapsing stellar cores.

Violent hydrodynamic mass motions in the postshock layer push the shock farther out and
prolong the dwell time of the accreted matter in the heating region. Thus, it is expected
that both convection and the SASI increase the volume-integrated energy deposition rate
of neutrinos in the gain layer sufficiently to enable a supernova explosion. Indeed, multi-
dimensional hydrodynamic simulations proved that neutrino-driven explosion are enabled
by nonradial mass motions, while the corresponding spherical symmetric models failed to
explode. (Herant et al. 1994; Burrows & Fryxell 1992; Burrows et al. 1995; Janka & Mueller
1995; Janka & Müller 1996; Fryer & Heger 2000; Marek & Janka 2009; Murphy & Burrows
2008; Nordhaus et al. 2010; Hanke et al. 2012; Suwa et al. 2010).

The first multi-dimensional simulations performed with self-consistent energy-dependent neu-
trino transport on the same level as in the state-of-the art 1D models, could only partially
confirm the success of the mentioned studies with a simplified description of neutrino effects
(Buras et al. 2006a,b; Marek & Janka 2009). Although the important role of non-radial effects
on the development of a successful explosion has been confirmed, a rather small number of
progenitors could be evolved into the explosion phase. Fortunately, in the past years the num-
ber of successful self-consistent explosion models is growing (Müller et al. 2012b,a; Bruenn
et al. 2013; Suwa et al. 2010 and the reviews of Janka 2012; Janka et al. 2012). However,
one still has to prove the robustness of the delayed neutrino-driven explosion mechanism for
a wide range of progenitor models. Is the support of hydrodynamic instabilities sufficient to
enable explosions for arbitrary progenitor structures?

1.3 Advancing to Three-dimensional Modeling

Indeed, the aforementioned 2D studies have underlined the importance of non-radial hydro-
dynamic mass motions in the postshock layer, such as convection and the SASI for reviving
the stalled supernova shock. While these studies have confirmed the concept of the delayed
neutrino-driven explosion mechanism, they suffer from the assumption of axisymmetry. Once
this artificial symmetry assumption is dropped, the fluid dynamics in the postshock layer will
essentially evolve in a different manner in a full 3D setup. The imposition of 2D symmetry
incorporates artifacts, such as numerical perturbations along the preferred symmetry axis,
which amplifies the growth of hydrodynamic instabilities, and the “inverse turbulent energy
cascade” (Kraichnan 1967), which transports turbulent energy from small to large spatial
scales in 2D. Fragmentation of the postshock flow and the development of vortex structures
is not possible, whereas hydrodynamic structures, such as convective bubbles, are forced to
a toroidal structure around the artificial symmetry axis and thus, are inherently larger. As
nature is 3D, it is the most urgent goal in core-collapse supernova modeling to advance to
fully three-dimensional simulations to gain insight into the effect of the deficiencies of forced
symmetry.

As three-dimensional hydrodynamic simulations of core-collapse supernovae are computa-
tionally very challenging, the first generation of studies comparing 2D and 3D simulations
employed simple, analytical neutrino heating and cooling terms. This approach allows to
mimic the principal effect of neutrinos on the hydrodynamic flow, while avoiding the ex-
treme computational load of full neutrino transport (Nordhaus et al. 2010; Hanke et al. 2012;
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Burrows et al. 2012; Murphy et al. 2013; Dolence et al. 2013; Couch 2013). Employing the
simple neutrino heating and cooling scheme of Murphy & Burrows (2008), the Princeton
group claimed that their 3D models explode more easily and readily compared to the 2D
cases (Nordhaus et al. 2010; Burrows et al. 2012; Dolence et al. 2013). Contrary, we found
that there is little difference in the onset of the explosion in 2D and 3D (Hanke et al. 2012). A
further study of Couch (2013) reported a yet different conclusion, claiming that 3D explosions
are even harder to obtain.

In the light of the diverging results of the simplified 3D studies with a neutrino heating and
cooling scheme, full three-dimensional neutrino-radiation hydrodynamic simulations are ur-
gently needed to clarify the role of 3D effects for the neutrino-driven mechanism, although such
simulations are far more challenging than the ones reported so far reported. The mentioned
studies neglected neutrino losses from the neutron star interior such that the neutron star was
not able to shrink below ∼60 km. Compared to simulations with full neutrino transport (e.g.
Marek & Janka 2009; Müller et al. 2012b,a), the shock radius remained rather large and the
time matter can stay in the gain layer was long. Under such conditions, the development of
the SASI is suppressed (Scheck et al. 2008), while the growth of neutrino-driven convection is
supported (Foglizzo et al. 2006). As 3D models with higher sophistication of neutrino trans-
port might meet the conditions for SASI growth, further refinement of the sophistication in
3D models is necessary to clarify the role of the different hydrodynamic instabilities in the
supernova core for the explosion mechanism.

1.4 Organization of this Thesis

As the available high-performance computing resources have increased sufficiently, the goal of
this project is to perform the very first 3D simulations of core-collapse supernova explosions
with fully self-consistent neutrino transport on the level of the most sophisticated axisymmet-
ric simulations (Buras et al. 2006a,b; Marek & Janka 2009; Müller et al. 2012b,a). In doing so,
we take a major step forward in our understanding of the true nature of the neutrino-driven
explosion mechanism.

Furthermore, we have performed a large set of fully self-consistent simulations in axisym-
metry. So far, successful explosion models were restricted to some selected progenitors. By
investigating a great number of stellar progenitors in multi dimensions we prove the viability
of the neutrino-driven mechanism for several progenitor structures. For example, Müller et al.
(2012a) pointed out the dependence of the growth condition of the SASI on the details of
the conditions in the supernova core. Moreover, our investigations are motivated by recent
systematic studies of the connection between progenitors and remnants (O’Connor & Ott
2011) as well as the properties (Ugliano et al. 2012) of core-collapse supernovae. Mainly with
the help of the latter study, we can identify promising candidates for an explosion, which are
worth investigating in a fully self-consistent setup. The exploration of the parameter space
of progenitor models in 2D helps us to identify promising candidates for an explosion to be
simulated in 3D.

In this thesis, we present the performed multi-dimensional neutrino radiation-hydrodynamics
simulations in the following manner: In Chapter 2, we introduce the Vertex-Prometheus
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code and the underlying equations of neutrino radiation-hydrodynamics. Within a brief re-
port about the employed numerical methods, we generalize the 2D program of Buras et al.
(2006a) to a full 3D code. Our set of axisymmetric simulations performed with the Vertex-
Prometheus code is presented in Chapter 3, where we study the dependence of the neutrino-
driven explosion mechanism on the progenitor structure. We complete the analysis of our
multi-dimensional simulations in Chapter 4 by studying the influence of the numerical setup.
The main topic of this thesis, the first self-consistent multi-dimensional simulations of core-
collapse supernova explosions without any symmetry restrictions, is discussed in Chapters 5
and 6. Presenting 3D simulations of a 27M� progenitor model of Woosley et al. (2002) and
a 20M� star based on the presupernova models of Woosley & Heger (2007), we focus in
Chapter 5 on the growth of hydrodynamic instabilities, the SASI and convection, in a 3D
setup. For the first time, we report about unambiguously identified SASI activity in a 3D
simulation with detailed neutrino transport (see Hanke et al. 2013 for the discussion of the
27M� progenitor case). As our 3D models fail to explode opposite to the corresponding
2D cases, we identify possible reasons for the negative outcome of the 3D simulations along
the arguments of Hanke et al. (2012) as well as Dolence et al. (2013) and Couch (2013). A
purely convective 3D model based on the 11M� progenitor model of Woosley et al. (2002),
is discussed in Chapter 6. Chapter 7 contains a summary of our work.



2 The Vertex-Prometheus Neutrino Radiation
Hydrodynamics Code

To investigate the physical driving mechanism that is responsible for the supernova explosion,
we apply the numerical code Vertex-Prometheus throughout this thesis. This tool was
specifically developed to perform simulations of core-collapse supernova explosions of massive
stars. Vertex-Prometheus was originally developed by Rampp & Janka (2002) for tackling
the problem of neutrino transport in spherical symmetry (1D). The code was extended to a
two-dimensional (2D) version by Buras et al. (2006a). In this thesis we present the three-
dimensional (3D) version without symmetry restrictions.

Since the 1D and 2D version of the Vertex-Prometheus code have already been described
extensively in the literature, this chapter puts a stronger emphasis on the governing equations
underlying the multidimensional problem and their basic numerical implementation, instead
of an in-depth documentation of the full code. Nevertheless, we will shortly elaborate on the
implementation of the additional terms necessary for the 3D version.

The inner core of a massive star consists of matter that can be treated as an ideal fluid (Müller
1998), for which viscosity and heat conduction can be neglected, although including neutrino
transport re-introduces some of these non-ideal effects self-consistently. Therefore, the equa-
tions of hydrodynamics, supplemented by advection equations for the chemical composition
of the fluid, can be applied to follow the time evolution of the stellar plasma. However, neu-
trinos have to be treated completely different from the stellar plasma, namely as radiation,
since the mean free path of neutrinos between interactions becomes comparable to or even
larger than the dimensions of the system in the supernova problem. The concept of hydrody-
namics is then no longer valid and neutrinos have to be treated as a radiation field described
by a distribution function that evolves according to kinetic theory. Thus, the propagation
of neutrinos and their interaction with the stellar medium has to be treated by solving the
Boltzmann equation separately. For this reason, our algorithm employs an operator splitting
approach to couple the two sets of evolution equations; i.e., for each cycle of the code the
hydrodynamic part and the neutrino radiation transport part are solved subsequently in two
independent steps.

When we present both parts of the code in the following, we formulate the underlying equa-
tions in spherical coordinates with radius r, latitudinal angle θ, and azimuthal angle φ. Spher-
ical coordinates are well suited for exploiting the approximate symmetry of the stellar core
and to ensure that the investigated part of the star is well resolved.
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2.1 The Hydrodynamics Part: The Prometheus Code

In the hydrodynamics part, the stellar matter is described by the Eulerian, non-relativistic
equations of hydrodynamics for an ideal, inviscid fluid. These conservation laws for mass,
momentum, and energy read in spherical coordinates (r, θ, φ) as follows:

• Mass conservation:

∂ρ

∂t
+

1

r2

∂

∂r
(r2ρvr) +

1

r sin θ

∂

∂θ
(ρ sin θvθ) +

1

r sin θ

∂

∂φ
(ρvφ) = 0. (2.1)

• Momentum conservation:

∂ρvr
∂t

+
1

r2

∂

∂r
(r2ρv2

r ) +
1

r sin θ

∂

∂θ
(ρ sin θvθvr) +

1

r sin θ

∂

∂φ
(ρvφvr)

+

{
ρ
−v2

θ − v2
φ

r

}
+
∂P

∂r
= −ρ∂Φ

∂r
+QMr , (2.2)

∂ρvθ
∂t

+
1

r2

∂

∂r
(r2ρvrvθ) +

1

r sin θ

∂

∂θ
(ρ sin θv2

θ) +
1

r sin θ

∂

∂φ
(ρvφvθ)

+

{
ρ
vrvθ − v2

φ cot θ

r

}
+

1

r

∂P

∂θ
= −

[
ρ

r

∂Φ

∂θ

]
+QMϑ , (2.3)

∂ρvφ
∂t

+
1

r2

∂

∂r
(r2ρvrvφ) +

1

r sin θ

∂

∂θ
(ρ sin θvθvφ) +

1

r sin θ

∂

∂φ
(ρv2

φ)

+

{
ρ
vrvφ + vθvφ cot θ

r

}
+

1

r sin θ

∂P

∂φ
= +QMφ . (2.4)

• Energy conservation:

∂e

∂t
+

1

r2

∂

∂r
[r2(e+ P )vr] +

1

r sin θ

∂

∂θ
[(e+ P ) sin θvθ] +

1

r sin θ

∂

∂φ
[(e+ P )vφ]

= −ρvr
∂Φ

∂r
−
[
ρ
vθ
r

∂Φ

∂θ

]
+QE + vrQMr + vϑQMϑ + vφQMφ . (2.5)

Here, ρ denotes the mass density, vr, vθ, and vφ the radial, lateral, and azimuthal components
of the velocity, P the pressure, e = ρ[ε+ (v2

r +v2
θ +v2

φ)/2] the specific total energy (with ε the

specific internal energy), and Φ the gravitational potential of the fluid. The term ∂Φ
∂φ does not

appear in the equations above and terms containing ∂Φ
∂θ are marked with squared brackets,

because in all 3D runs and their corresponding 2D runs only the monopole approximation
of the Poisson equation is applied to treat self-gravity (see Section 2.1.2). The neutrino
source terms for momentum and energy transfer are labelled by QMr, QMϑ, QMφ, and QE,
respectively.
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Note that the terms in curly brackets are fictitious forces. They appear because the directions
of the base unit vectors in spherical polar coordinates vary in space in general curvilinear
coordinates such as the spherical coordinates applied here.

The set of equations (2.1–2.5) has to be closed by an equation of state (EoS) which relates the
gas pressure P to the density ρ, and to the internal energy ε. Since in general the equation
of state also requires the chemical composition for determining the gas pressure P , one has
to solve additional conservation laws for the mass fractions Xi of individual nuclear species i
to follow the time evolution of the compostion:

∂(ρXi)

∂t
+

1

r2

∂

∂r
[r2(ρXi)vr] +

1

r sin θ

∂

∂θ
[(ρXi) sin θvθ] +

1

r sin θ

∂

∂φ
[(ρXi)vφ] = Ri. (2.6)

Here, Ri is the source term for an individual nucleus, which expresses the rate of composition
changes by nuclear reactions for species i. In case the medium reaches nuclear statistical
equilibrium (NSE), the chemical composition is determined via the equation of state by the
gas density, the temperature, and one additional quantity, the electron fraction Ye. It is also
needed in the non-NSE regime for computing the contributions of electrons and positrons in
the equation of state. Thus one additional conservation law for Ye has to be solved as follows:

∂(ρYe)

∂t
+

1

r2

∂

∂r
[r2(ρYe)vr] +

1

r sin θ

∂

∂θ
[(ρYe) sin θvθ] +

1

r sin θ

∂

∂φ
[(ρYe)vφ] = QN. (2.7)

The source term QN represents the rate of change of the net electron number density and is
caused by emission and absorption of electron flavor neutrinos. Yet, even in case of NSE, the
equations (2.6) have to be solved for each individual species to be able to follow temporal
compositional changes, which are caused by mixing processes that lead to changes in the
internal energy.

2.1.1 Numerical Solution

In the hydrodynamics part of the code, we employ the Newtonian finite-volume code Prometheus
(Fryxell et al. 1989, 2000) as a hydrodynamics solver to numerically integrate the equations
(2.1–2.7). It is a direct implementation of the “Piecewise Parabolic Method” (PPM) of Colella
& Woodward (1984), which is a time-explicit, third-order in space, second-order in time
conservative Godunov-type scheme (Godunov 1959) that employs an exact Riemann-solver
(Colella & Glaz 1985). Prometheus is particularly well suited for following discontinuities
in the fluid flow like shocks, contact discontinuities, or boundaries between layers of different
chemical composition. Its capability of solving multi-dimensional problems with high compu-
tational efficiency and numerical accuracy is of great advantage in performing the simulations
presented in this thesis. Prometheus was improved and supplemented by additional prob-
lem specific features to be applicable to core-collapse supernova simulations by Keil (1997)
and Kifonidis et al. (2003). It makes use of the “Consistent Multifluid Advection” (CMA)
method of Plewa & Müller (1999) for ensuring an accurate advection of different chemical
components of the fluid. In the vicinity of strong shocks the hydrodynamics solver is switched
to the HLLE solver of Einfeldt (1988) to avoid spurious oscillations. This so-called “odd-even
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decoupling” occurs if such shocks are aligned with one of the coordinate axis of the grid
employed in multi-dimensional simulations (Quirk 1994; Kifonidis et al. 2003).

The hydrodynamics solver Prometheus integrates only the left-hand sides of equations (2.1–
2.7). All terms which appear on the right-hand sides are computed separately in operator
split steps. Firstly, the source terms Ri responsible for changes of the composition depend
on nuclear burning, nuclear dissociation, and recombination of the chemical elements, which
is taken into account in an approximative fashion according to Appendix B.2 of Rampp &
Janka (2002). The neutrino source terms of momentum and energy transfer QMr, QMϑ, QMφ,
and QE are calculated by solving the equations of neutrino transport, which will be described
in the following section.

2.1.2 Treatment of Self-Gravity

Although Prometheus is essentially a Newtonian code, some effects of general relativity
are taken into account approximately in the calculation of the gravitational potential Φ. In
spherical symmetry, the gravitational potential Φ = ΦGR

1D includes general relativistic effects
such as contributions of the pressure and energy of the stellar medium and neutrinos as
described in detail in Marek et al. (2006). In the 3D simulations presented in this thesis and
the corresponding 2D runs we use only the spherically symmetric potential ΦGR

1D (i.e. the
monopole term) computed from angular averages of the evolved variables. In all further 2D
simulations a multi-dimensional gravitational potential is applied with the effects of general
relativity taken into account as described in Buras et al. (2006a). The gravitational potential
can be written symbolically as Φ2D = ΦNewt

2D +
(
ΦGR

1D − ΦNewt
1D

)
. As described in Müller &

Steinmetz (1995), the Newtonian gravitational potential ΦNewt
2D for a 2D axisymmetric mass

distribution is evaluated by expanding the integral solution of the Poisson equation into a
Legendre series. General relativistic effects are incorporated approximately by the correction
term ΦGR

1D − ΦNewt
1D , where ΦNewt

1D is the Newtonian counterpart of the spherical symmetric
effective general relativistic potential. This procedure ensures very good consistency with full
general relativistic simulations of core-collapse supernovae in one-dimensional (Liebendörfer
et al. 2005) and in 2D simulations (Müller et al. 2012b).

2.1.3 Equation of State

The equations of hydrodynamics have to be closed by an appropriate equation of state, which
must be suitable for the extreme physical conditions in the supernova core. During the
collapse of the core of a massive star, the nuclear saturation density ρ0 ≈ 2.7 · 1014 g/cm3

and temperatures of about the 10 MeV and more are reached. Since for example the density
decreases by several decades from the innermost part of the core to the outer burning shells,
different equations of state have to be applied to cover the whole density range.

To accommodate the whole density range, the equation of state is divided into a “high den-
sity” and a “low density” part. In this thesis, the tabulated nuclear equation of state of
Lattimer & Swesty (1991) with a nuclear incompressibility of 220 MeV and a symmetry en-
ergy parameter of 29.3 MeV is applied in the “high density” regime. This nuclear equation of
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Figure 2.1: Sketch of the different equations of state applied in the simulations in the density-
temperature plane. Above a threshold value ρlow the high-density EoS is applied. The
low-density regime is divided in two parts: above a temperature of 0.5 MeV NSE is as-
sumed, and below that value matter is treated as a Boltzmann gas taking into account
nuclear burning.

state is chosen for all simulations in this thesis, because it best matches current constraints
of nuclear theory and astrophysical observations (see Hempel et al. 2012; Hebeler et al. 2010;
Steiner et al. 2010) compared to other commonly used equations of state. On the one hand
measurements give a value of 240 MeV for the bulk incompressibility modulus of symmetric
nuclear matter (Shlomo et al. 2006), and on the other hand the employed EoS is compatible
with a recently observed neutron star mass of two solar masses (Demorest et al. 2010). The
nuclear equation of state of Lattimer & Swesty (1991) is based on the compressible liquid
drop model of Lattimer et al. (1985), which describes the transition from inhomogeneous to
homogeneous matter using a Maxwell construction. In this EoS the nucleon-nucleon interac-
tions is expressed through a Skyrme-like potential and the nuclear statistical equilibrium NSE
is assumed above a temperature of 0.5 MeV. It describes the baryonic part of inhomogeneous
matter as a mixture of free protons, neutrons, α-particles, and one representative heavy nu-
cleus, whereas the homogeneous supernuclear phase consists only of interacting protons and
neutrons.

Below a threshold density ρlow, the EoS described above is extended by an equation of state
that considers electrons, positrons, photons, free protons and neutrons, α-particles, and up
to 20 nuclear species in thermodynamic equilibrium. In this thesis, during the collapse phase,
this threshold density ρlow is set to 3 · 108 g/cm3 and changed to 1 · 1011 g/cm3 at bounce.
The applied low-density equation of state of Janka (1999) as implemented by Rampp & Janka
(2002) treats the nuclei as classical Boltzmann gases, and electrons and positrons as Fermi
gases with arbitrary degeneracy. Above a temperature of T = 0.5 MeV nuclear statistical
equilibrium is assumed and the equation of state is replaced by a full NSE composition table
as describe in Buras et al. (2006a).
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Figure 2.2: Illustration of the phase space coordinates (see the main text).

2.2 The Neutrino Radiation Part: the Vertex Code

2.2.1 Overview

The neutrino source terms for the energy, momentum, and electron fraction entering the
hydrodynamic equations (2.1–2.5) are determined by the solution of the equations of neutrino
transport in the Vertex code. In order to describe neutrinos as a radiation field, the specific
neutrino intensity I is introduced, which is defined such that

δE = I(x,n, ε, t) dA cosϑ dΩ dεdt (2.8)

is the amount of neutrino radiation energy in the neutrino energy interval (ε, ε+ dε) stream-
ing through a surface dA inclined with the angle ϑ relative to its direction of propagation
n(Θ,Φ) during the time interval dt. The specific neutrino intensity is related to the neutrino
distribution function f(r, ϑ, φ, ε,Θ,Φ, t) in phase space by

I =
ε3

h3c2
f . (2.9)

The time evolution of the specific neutrino intensity I is determined by the transfer equa-
tion of radiation transport, while the Boltzmann equation of statistical physics describes the
evolution of the neutrino distribution function itself,(

1

c

∂

∂t
+

∂

∂s

)
I = η − χI . (2.10)

The transport equation describes the temporal changes of the radiation energy streaming
through a fluid element of length ds caused by emission and absorption of neutrinos with
the stellar fluid. These processes are expressed by the collision term on the right hand side
η−χI with the emissivity η and the opacity χ. Since the collision term itself depends on the
specific intensity, the Boltzmann equation has an integro-differential character. As depicted
in Fig. 2.2, the time-dependent neutrino intensity, is defined in a six-dimensional phase space,
since it describes in every point in real space (r, ϑ, φ) the propagation of neutrinos with energy
ε into the direction n = n(Θ,Φ) at time t.
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Although there are now first efforts at a direct discretization of the full six-dimensional prob-
lem by a so-called SN scheme (Kotake et al. 2012; Sumiyoshi & Yamada 2012), in practice the
dimensionality of the problem has to be reduced to avoid the still unacceptable computational
costs of full multi-dimensional transport.

For reasons of numerical efficiency, we solve the equations for the two moments of the neutrino
intensity with a variable Eddington factor (see Section 2.2.3) instead of tackling the Boltzmann
equation directly, which is a very accurate approach, since the neutrino source terms entering
the hydrodynamic equations (2.1–2.5) just depend on integrals of I over momentum space.
Hereby, the 0th to 3rd order moments are defined as

J ,H,K,L, . . . (r, ϑ, φ, ε, t) =
1

4π

∫
I(r, ϑ, φ, ε,Θ,Φ, t)n0,1,2,3,... dΩ (2.11)

where dΩ = sin Θ dΘ dΦ, n = (cos Θ, sin Θ cos Φ, sin Θ sin Φ), and exponentiation represents
repeated application of the dyadic product. If the variable Eddington factors are exact, this
approach is equivalent to an exact solution of the Boltzmann equation.

2.2.2 The System of Equations

The multi-dimensional version of the Vertex transport code employs the so-called “ray-
by-ray-plus” approach to reduce the size of the problem even further. In this approach, one
assumes that I is independent of Φ, which amounts to the assumption that the lateral and az-
imuthal fluxes are zero and that the pressure tensor is diagonal. Then each of the angular mo-
mentums of the specific neutrino intensity is expressed by a scalar just depending on three spa-
tial dimensions, and one dimension in momentum space: J,H,K,L = J,H,K,L(r, ϑ, φ, ε, t).
Although not all terms with lateral or azimuthal gradients or components vanish, the neutrino
moments equations are reduced to a spherically symmetric version of the moment equations
at different angular coordinates ϑ and φ. Therefore, the moment equations almost decouple
from each other, and for a fixed angle along a “radial ray” the moment equations can be
solved independently as Nθ ×Nφ identical spherically symmetric problems with Nθ ×Nφ be-
ing the number of grid zones in angular direction. As pointed out by Buras et al. (2006a) the
additional non-vanishing terms in our approximation associated to the lateral advection of
neutrinos in the optical thick regime and the nonradial neutrino pressure gradients cannot be
neglected if unphysical convective activity in the proto-neutron star is to be avoided. These
terms yield the “ray-by-ray-plus scheme”, in which the evolution of the neutrino energy and
flux is governed by the following transport equations in Newtonian O(v/c) approximation as
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shown in (Buras et al. 2006a, Appendix B):(
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Here βr = vr/c, βϑ = vϑ/c, and βφ = vφ/c, where vr, vϑ, and vφ are the components of
the hydrodynamic velocity, and c is the speed of light. The functional dependencies βr =
βr(r, ϑ, φ, t), J = J(r, ϑ, φ, ε, t), etc. are suppressed in the notation. In these transport
equations for the neutrino energy and flux the quantities C(0) and C(1) denote the zeroth and
first moment of the collision term in the Boltzmann equation.

The system of equations (2.12–2.13) is closed by imposing two additional relations to express
the higher moments K and L by K = fK · J and L = fL · J , where fK and fL are variable
Eddington factors computed from the formal solution of a model Boltzmann equation as de-
scribed in Rampp & Janka (2002) (see below). The additional terms of the multi-dimensional
code version which do not not appear in the O(v/c) equations in spherical symmetry are set
in boldface.
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2.2.3 Method of Solution

In order to numerically integrate equations (2.12–2.13), three operator-split steps are carried
out corresponding to a lateral, azimuthal, and a radial sweep. For this reason, the compu-
tational domain [0, rmax]× [ϑmin, ϑmax]× [φmin, φmax] is covered by Nr radial, Nϑ latitudinal,
and Nφ longitudinal zones, where ϑmin = 0 and ϑmax = π correspond to the north and south
polar axis of the spherical grid, and setting φmin = 0 and φmax = 2π covers the full sphere.

In the first two steps the lateral and azimuthal advection of the neutrino with the stellar fluid
is tackled treating the boldface terms in the first lines of Eqs. (2.12–2.13) and thus coupling
the angular moments of the neutrino distribution of neighboring angular zones. For this
purpose, the following two advection equations are considered one after the other.

1

c

∂Ξ

∂t
+

1

r sinϑ

∂(sinϑβϑ Ξ)

∂ϑ
= 0 , (2.14)

1

c

∂Ξ

∂t
+

1

r sinϑ

∂(βφ Ξ)

∂φ
= 0 , (2.15)

where Ξ represents one of the moments J or H. Although the additional indices of Ξ are
suppressed for clarity in Eqs. (2.14–2.15), both advection equations have to be solved for each
radius, each energy bin, and for each type of neutrinos.

After integrating over the volume of a zone (i+ 1
2 , k+ 1

2 , l+
1
2), where i, k, and l are the indices

of the radial, lateral, and azimuthal zones, the finite-volume discretization of the equation for
lateral advection (2.15) reads
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with the volume element ∆Vi+ 1
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(2.17)

are used for computing the lateral fluxes across the interfaces of the angular zones. The
time-step is restricted by the Courant-Friedrichs-Lewy (CFL) condition:

∆tϑ,CFL = min
i,k,l

∆xϑ;i+ 1
2
,k+ 1

2
,l+ 1
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2
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ri+ 1
2
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2
,k+ 1

2
,l+ 1

2

∣∣∣ , (2.18)
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where ∆xϑ is the zone width in lateral direction.

The finite-differenced version of the equation for azimuthal advection (2.15) reads again after
integrating over the volume of a zone,
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with the volume element ∆Vi+ 1
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and the time-step is limited by:

∆tφ,CFL = min
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One can estimate that for typical zone widths and velocities in the convective region of the
neutron star at least for axisymmetric simulations the time-step limitation is not restrictive.
It is always limited by other constraints. However, due to the small zone widths at the polar
axis in three-dimensional setups, the time step constraints of the azimuthal step tφ,CFL can
become similar to the constraints given by the radial discretization of the moment equations.

In the third and computationally most intensive step all remaining terms of Eqs. (2.12–2.13)
are solved by performing the radial sweep. The terms in boldface not yet taken into account
in the first two steps have to be included into the discretization scheme for the radial sweep.
These additional terms only depend on the hydrodynamic velocities vϑ and vφ, which are a
constant input value for the transport solver. Thus they do not couple the neutrino moments
of neighbouring angular zones and can be added in a straightforward way. For each fixed
pair of angles (ϑk+ 1

2
, φl+ 1

2
) along a radial ray, we employ exactly the same solution method

as described in depth in Rampp & Janka (2002) to discretize the moment equations.

In order to solve Eqs. (2.12–2.13) the so-called variable Eddington factor technique is em-
ployed: The variable Eddington factors fK = K/J and fL = L/J closing the moment equa-
tions (2.12–2.13) are extracted from the solution of a model Boltzmann equation. For this
purpose, it is sufficient to consider a simplified Boltzmann equation omitting some velocity
dependent terms since the model Boltzmann equation is only used to compute normalized
moments of the neutrino intensity. Thereby, the variable Eddington factors are calculated by
an iteration procedure between the zeroth and first neutrino moment and the formal solution
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of the Boltzmann equation. During the iteration, estimates of the moments J and H are
obtained by a solution of the moment equations (2.12–2.13) to compute the source terms in
the Boltzmann equation. With the right-hand side known, a formal solution of the model
Boltzmann equation is computed by means of the so-called tangent ray method (Mihalas
& Mihalas 1984; Rampp & Janka 2002). Once the Eddington factors are determined, the
moment equations are solved to get an improved estimate for the neutrino moments. This
procedure is iterated until the Eddington factors converge, and finally the moment equa-
tions are again numerically integrated to update the energy and electron fraction of the fluid.
Since typically only a few iteration steps are required for numerical convergence, the entire
procedure is computationally efficient.

The hyperbolic system of moment equations is discretized with fully backward, first-order
accurate time differencing, and second-order accurate in space. This requires the solution of
a linear system by means of a Newton-Raphson iteration with explicit construction and direct
inversion of the corresponding Jacobian matrix.

The finite-volume discretization of the moment equations (2.12–2.13) guarantees conservation
of the total neutrino energy up to order O(v2/c2). However, Rampp & Janka (2002) solve
two additional moment equations for the neutrino number density J = J/ε and number flux
density H = H/ε to guarantee also exact conservation of the neutrino number. In order
to avoid this additional computational load, we use a special second-order finite difference
representation for the terms governing advection in energy space developed by Müller et al.
(2010).

In contrast to the multi-dimensional generalization of the variable Eddington factor method
suggested by Rampp & Janka (2002), we determine the variable Eddington factors on each
radial ray separately instead of determining the variable Eddington factors only once for an
“angular averaged” radial ray, as done e.g. by Buras et al. (2006a). Although this procedure
is computationally more intensive, it allows the code to be parallelized very efficiently.

The Vertex code solves the fully coupled moment equations for the transport of electron
neutrinos νe and anti-neutrinos ν̄e, and, separately, the moment equations for one additional
single neutrino species νx representing all other “heavy lepton neutrinos”. Treating muon
and tauon neutrinos and their antiparticles as a single species is justified since in the inner
core of a proto-neutronstar the fluid contains only few muons and tauons implying almost
vanishing chemical potentials. Furthermore, the opacities are nearly equal for all “heavy
lepton neutrinos”, although weak magnetism introduces an asymmetry between neutrinos
and anti-neutrinos of all flavors (Horowitz 2002).

The moments of the collision integrals C(n) on the right-hand side of the moment equations
are determined by various neutrino-matter and neutrino-neutrino interaction rates during the
iteration procedure. An overview of the neutrino interactions is given in Table 2.1.



18 2. The Vertex-Prometheus Neutrino Radiation Hydrodynamics Code

Reaction References

νe± 
 νe± Mezzacappa & Bruenn (1993a)
Cernohorsky (1994)

νA 
 νA Horowitz (1997)
Langanke et al. (2008)

νN 
 νN Burrows & Sawyer (1998)
νen 
 e−p Burrows & Sawyer (1998)
νep 
 e+n Burrows & Sawyer (1998)

νeA
′


 e−A Bruenn (1985), Mezzacappa & Bruenn (1993b)
Langanke et al. (2003)

νν̄ 
 e−e+ Bruenn (1985), Pons et al. (1998)
νν̄NN 
 NN Hannestad & Raffelt (1998)
νµ,τνµ,τ 
 νeνe Buras et al. (2003a)
νµ,τνe 
 νµ,τνe Buras et al. (2003a)

Table 2.1: Overview of the neutrino-matter and neutrino-neutrino interactions included in the Ver-
tex code. The actual physical treatment of the specific rate calculations can be found in
the corresponding references. The numerical implementation is given in Rampp & Janka
(2002), Buras et al. (2003a), and Buras et al. (2006a). The symbol ν represents any neu-
trino or anti-neutrino, the symbols e−, e+, n, p, denote electrons, positrons, free neutrons
and protons, respectively, whereas A, and N are nuclei and nucleons.

2.2.4 Coupling to the Hydrodynamics

The neutrino transport equations (2.12–2.13) are coupled to the hydroynamical part by the
source terms

QN = −4πmB

∫ ∞
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ν̄ (ε)
)
, (2.22)
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ϑ,ν(ε) , (2.25)

QMφ = −4π

c

∫ ∞
0

dε
∑
ν

C
(1)
φ,ν(ε) , (2.26)

where mB denotes the baryon mass, C
(0)
ν the zeroth and C

(1)
r,ν , C

(1)
ϑ,ν , C

(1)
φ,ν the r-, ϑ-, and φ-

component of the first moment of the collision integral. The source terms depend on the sum
of the moments of the collision integral over all neutrino types ν ∈ {νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ}. In
the followingthe index ν is suppressed for the sake of simplicity.

The “ray-by-ray-plus” approach to multi-dimensional neutrino transport assumes the lateral
and azimuthal fluxes in the co-moving frame to be zero, enforcing a radial flux. However,
Buras et al. (2006a) pointed out that the angular components of the momentum transfer from
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neutrinos to the hydrodynamic fluid, described by the source terms QMϑ and QMφ have to be
included in the Euler equation of hydrodynamics when the neutrinos are tightly coupled to
the medium in the optical thick regime. Therefore, one should solve the moment equations
for both non-radial fluxes to get the lateral and azimuthal transport of neutrino momentum.
Under the assumption of a purely radial neutrino flux and a diagonal neutrino pressure tensor,
these equations read

C
(1)
ϑ (ε) =
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1
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, (2.27)
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Since we want to describe the lateral moment transfer of neutrinos in the optically thick
regime, one can assume neutrino diffusion and thus an isotropic neutrino distribution (i.e. J ≡
3K). Following Buras et al. (2006a), this approximation implies that the first term on the
right-hand side vanishes in Eqs. (2.27–2.28) if we ignore neutrino viscosity. One can also
assume stationary conditions, i.e. ∂/∂t ≡ 0. When integrating over the neutrino energy,
the terms with the energy derivative in Eqs. (2.27–2.28) cancel and thus the two moment
equations simplify significantly:∫ ∞

0
dεC

(1)
ϑ (ε) =
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The numerical discretization of Eqs. (2.29–2.30) reads
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With the help of the neutrino source terms QMϑ and QMφ determined by Eqs. (2.25–2.26)
together with Eqs. (2.29–2.30) we are able to compute the momentum transfer between neu-
trinos and the stellar fluid. Together with the neutrino advection terms appearing in the
neutrino transport equations (2.12–2.13), we can properly describe neutrino convection in the
proto-neutron star.
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The aforementioned assumptions for Eqs. (2.29–2.30) are only valid in the optically thick core

of the supernova and thus, C
(1)
ϑ i+ 1

2
,k+ 1

2
,l+ 1

2
= 0 and C

(1)
φ i+ 1

2
,k+ 1

2
,l+ 1

2

= 0 are just evaluated if

the density ρi+ 1
2
,k+ 1

2
,l+ 1

2
in a zone is higher than 1012 g cm−3. This threshold value is specif-

ically chosen for the core-collapse supernova environment, since matter becomes optically
thin to neutrinos around this density and momentum transfer and the advection of neutrinos
ceases.



3 The Progenitor Structure Dependence of
the Explosion Mechanism in Axisymmetry

Multi-dimensional simulations of core-collapse supernova explosions with detailed neutrino
transport have long been restricted to a handful of numerical models. Thus, until now just a
rather small number of progenitors could be evolved into the explosion phase by the means of
multi-dimensional simulations with spectral neutrino transport. (Buras et al. 2006b; Marek
& Janka 2009; Müller et al. 2012b,a; Bruenn et al. 2013; Suwa et al. 2010). These simulations
focused on a few selected progenitor stars. Although still restricted to axisymmetry, we
present a broad study of the progenitor structure dependence of the explosion mechanism for
the first time. To do so, we employ the fully self-consistent radiation hydrodynamics code
Vertex-Prometheus described in the previous chapter.

Recently, O’Connor & Ott (2011) performed a systematic study of failing core-collapse su-
pernovae and investigated how the zero-age main sequence (ZAMS) mass of the progenitor
stars determines black hole formation. Employing a neutrino leakage scheme instead of full
transport and restricting their simulation set to spherical symmetry (i.e. 1D), they identified
a single parameter, the compactness of the stellar core at bounce, to estimate the outcome
of a core-collapse supernova, i.e. wether the star explodes or a black hole is formed. Ugliano
et al. (2012) performed a large set of supernova simulations in spherical symmetry with a
more elaborate treatment of the neutrino transport focusing on the progenitor-explosion and
progenitor-remnant connection. Applying the grey approximation of neutrino transport of
Scheck et al. (2006) they calibrate their method such that the explosion properties of progen-
itors around 20 solar masses are compatible with SN 1987A. They found that all stars below
∼15M� yield neutron stars, whereas more massive progenitors can produce either black holes
or neutron stars. For the purpose of the study presented here, we choose progenitor models
which are promising candidates for successful explosions according to the results of Ugliano
et al. (2012). Here, we overcome two significant restrictions of the mentioned studies, although
our model set is not as large as the simplified ones of O’Connor & Ott (2011) or Ugliano et al.
(2012) due to the tremendous requirement of computing resources of our simulations with
full neutrino transport: On the one hand the models presented here are performed in multi
dimensions allowing the development of non-radial instabilities, such as convection, and, on
the other hand the simulations are fully self-consistent without any parametrization.

With the set of self-consistent, multi-dimensional simulations presented in this chapter we
aim to address the following questions:

• Does the neutrino-driven explosion mechanism of core-collapse supernovae work for a
wide range of progenitors?

• What is the progenitor-explosion connection in the context of self-consistent core-
collapse supernova simulations? How is the onset of the explosion determined by the
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progenitor structure?

• Is the threshold criterion for successful and failing core-collapse supernovae determined
by O’Connor & Ott (2011) and Ugliano et al. (2012) valid?

• Can the critical condition identified by Burrows & Goshy (1993), which can be consid-
ered to separate exploding from nonexploding models, applied to our model set?

• What is driving the explosion? Which kind of instability is responsible for triggering a
runaway condition of the hydrodynamic flow behind the supernova shock?

We will complete this chapter by comparing our results obtained with the Vertex-Prometheus
code with the axisymmetric simulations of Bruenn et al. (2013) and a summarize of our find-
ings.

3.1 Overview of the investigated Set of axisymmetric Simulations

The simulations presented in this chapter were performed assuming axisymmetry (i.e. 2D)
with the Vertex-Prometheus simulation code discussed in Chapter 2. From the onset of
gravitational collapse until 10 ms after shock formation, all models are simulated in spherical
symmetry. At this point, the multidimensional simulations are started from the 1D models
by imposing random seed perturbations of the density with an amplitude of 0.1 % to allow
for the growth of aspherical instabilities. As demonstrated by Buras et al. (2006b), it makes
hardly any difference whether a non-rotating model is computed in multi dimensions from the
onset of gravitational collapse or whether the described method is used, since hydrodynamic
instabilities do not develop before shock formation.

The axisymmetric simulations are computed on a spherical polar grid with initially 400 non-
equidistant radial and 128 angular zones. The radial zones are distributed from the center
to an outer boundary of 10000 km, which is sufficiently far out to ensure that the gas there
remains at rest until the simulations are stopped several hundred milliseconds after core-
bounce. The altitudinal grid runs from the north to the south pole of the 2D grid, which
corresponds to an angular resolution of 1.41◦. During the simulations the number of radial
grid zones is increased to ensure adequate resolution in the proto-neutron-star surface region,
where the density gradient steepens with time due to the shrinking of the neutron star.
The innermost 1.6 km of the inner core of the star (corresponding to the innermost 6 radial
zones) are computed in spherical symmetry to avoid excessive time step limitations imposed
by the CFL condition. Here, the Courant-Friedrichs-Lewy condition (Courant et al. 1928)
is a necessary condition for the numerical stability of the explicit hydrodynamics solver. It
requires that the time step of the explicit algorithm has to be sufficiently small so that no
information can travel more than one zone. Thus, the CFL time step is minimal at the center
of the employed spherical grid, because the lateral width of a zone becomes very small.

For the first time, it is possible to perform a large set of multi-dimensional simulations with
fully self-consistent elaborate neutrino treatment until very late after bounce. A single model
requires continuous computing on 128 strong individual computing cores for several months.
In Table 3.1 we summarize the investigated models. Fourteen runs are based on the presu-
pernova models of Woosley et al. (2002) and four on the models of Woosley & Heger (2007).
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Model MZAMS ξ1.75 ξ2.5 texp Lexp Ṁexp MNS

[M�] [ms] [1052 erg/s] [M�/s] [M�]

s11.2 11.2 0.073 0.005 332 1.90 0.117 1.33
s12.4 12.4 0.265 0.028 634 2.14 0.142 1.61
s13.2 13.2 0.335 0.049 610 2.42 0.152 1.66
s14.4 14.4 0.514 0.124 733 2.61 0.195 1.79
s16.8 16.8 0.353 0.158 480 2.52 0.244 1.59
s17.2 17.2 0.368 0.168 402 2.62 0.259 1.59
s18.4 18.4 0.653 0.188 520 4.25 0.342 1.85

s19.6 19.6 0.296 0.119 361 2.68 0.144 1.61
s20.2 20.2 0.250 0.105 355 2.21 0.120 1.59
s21.6 21.6 0.464 0.181 505 2.86 0.266 1.70
s22.4 22.4 0.531 0.200 395 3.09 0.291 1.71
s26.6 26.6 0.561 0.227 325 2.89 0.251 1.71
s27.0 27.0 0.523 0.232 395 2.78 0.264 1.71
s28.0 28.0 0.516 0.235 414 2.89 0.257 1.71

s12-2007 12 0.232 0.023 750 2.02 0.142 1.58
s15-2007 15 0.545 0.181 549 3.42 0.398 1.77
s20-2007 20 0.770 0.285 295 3.77 0.385 1.83
s25-2007 25 0.813 0.329 342 3.71 0.373 1.92

Table 3.1: Summary of the investigated axisymmetric models based on the presupernova models of
Woosley et al. (2002) and Woosley & Heger (2007), where the latter models are labelled
with “-2007”. For each model the ZAMS mass is given, followed by the compactness
parameters ξ1.75 and ξ2.5 determined from the presupernova model data. Next, the time
texp is specified, when the onset of explosion takes place. For the explosion time texp we

give the electron neutrino luminosity Lexp, the mass accretion rate Ṁexp, and the neutron
star mass MNS.

In the following, we focus on the first large set of models, while we discuss the simulations
based on the progenitor profiles of Woosley & Heger (2007) separately in Section 3.7.

In Table 3.1, we list the compactness parameters ξ1.75 and ξ2.5 for each model together with
its zero-age main-sequence (ZAMS) mass. According to Equation (10) of O’Connor & Ott
(2011) it is defined as

ξM =
M/M�

R(Mbary = M)/1000 km
, (3.1)

where we set either M = 1.75M� or M = 2.5M�. The radius R(Mbary) is the radial
coordinate that encloses this mass. Although O’Connor & Ott (2011) insisted that it is crucial
to compute ξM at core bounce as the only physical and unambiguous point to determine the
initial conditions for the postbounce dynamics, there is no perceivable difference whether ξM
is evaluated at the onset of gravitational collapse or at the time of bounce for the investigated
solar-metallicity progenitors (Ugliano et al. 2012). The mass shells enclosing M = 1.75M�
or M = 2.5M� are hardly affected by gravitational collapse until core bounce. We directly
evaluate the compactness parameters from the presupernova data, since our simulation grid
does not cover the mass shells enclosing M = 2.5M� of models with a low compactness
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Figure 3.1: Compactness parameter for the fourteen investigated presupernova models of Woosley
et al. (2002) versus ZAMS mass as evaluated from the presupernova data. Both investi-
gated parameters ξ1.75 and ξ2.5 are shown. The precollapse structure and the ZAMS mass
are completely uncorrelated.

parameter.

Performing spherically symmetric simulations, O’Connor & Ott (2011) found that neutrino-
driven explosions can be launched up to a compactness parameter ξ2.5 ≤ 0.45, while above this
threshold black holes are formed. However, Ugliano et al. (2012) determined in their study a
significantly lower limit for black hole formation. While not specifying a sharp dividing line,
they saw a wide range of ξ2.5 values between around 0.15 and 0.35 where explosions can both
occur and fail. Although our simulation set is limited, we aim to investigate how the self-
consistent and the multi-dimensional character of our study affects or shifts the limit of ξ2.5

for driving explosions. As shown in Figure 3.1 the computed models are chosen such that all
progenitors experience a progenitor compactness below ξ2.5 ∼ 0.235. All of the corresponding
models of Ugliano et al. (2012) explode according to their chosen calibration making this
progenitors promising candidates for successful explosions. While O’Connor & Ott (2011)
chose M = 2.5M� for the compactness parameter of the progenitor as the relevant mass
scale for black hole formation, focusing on the preexplosion phase as we are doing, O’Connor
& Ott (2013) use ξ1.75. Because of the much smaller relevant mass scale, this parameter might
be better suited for the investigation of the postbounce preexplosion phase and is displayed
in Figure 3.1. Both values differ. While the parameter ξ2.5 exhibits a clear trend with a small
spread of the individual value, ξ1.75 reflects the lower mass range of the progenitor structure
more individually. Note also that we do not investigate any model in the mass range of
22 − 25M� with high compactness as these models do not explode in the parametric study
of Ugliano et al. (2012).

Besides the progenitor-dependent compactness parameter, the precise density structure of the
individual presupernova models is an important factor for the development of an explosion.
For each model, the density structure versus radius and versus enclosed mass is displayed in
Figure 3.2. Remarkably, for all heavier investigated models between 19 and 28 solar masses
the interface between the silicon shell and the oxygen-enriched silicon shell is located at the
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Figure 3.2: Density profiles vs. radius (top) and vs. enclosed mass (bottom) for progenitors of Woosley
et al. (2002) covering the inner 10000 km (i.e. the computational domain) at the onset of
core collapse. The left panels show models with lower ZAMS mass and the right panels
model with higher ZAMS mass.

same position, for example at around 2500 km for the 19.6M� star model. This boundary
layer is very pronounced and connected to a steep decline of the density at this position.
However, lower mass models vary in the position of the weaker Si/SiO interface. Especially,
the models with a ZAMS mass of 12.4, 13.2, 14.4, and 18.4 solar masses encounter almost no
noticeable jump in the density profile.

3.2 Dependence of the Postbounce Evolution on the Precollapse
Structure

Trajectories of the average shock radius are depicted in Figure 3.3. All of the investigated
models explode as predicted by Ugliano et al. (2012). However, the overall postbounce evo-
lution depends significantly on the individual model with a wide variation of the onset of
the explosion in time. Models shown in the right panel of Figure 3.3 with higher ZAMS
mass evolve in a similar manner. The shock retreats until around 220 ms after bounce when
the Si/SiO composition-shell interface reaches the accretion shock. This point of time is
connected to a steep decrease of the mass accretion rate (Figure 3.4). Shortly afterward the
shock starts to expand, and after some time the runaway condition for an explosion is reached.



26
3. The Progenitor Structure Dependence of the Explosion Mechanism in

Axisymmetry

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
time after bounce [s]

0

100

200

300

400

av
er

ag
e 

sh
o
ck

 r
ad

iu
s 

[k
m

]

s11.2
s12.4
s13.2
s14.4
s16.8
s17.2
s18.4

0 0.1 0.2 0.3 0.4 0.5 0.6
time after bounce [s]

0

100

200

300

400

av
er

ag
e 

sh
o
ck

 r
ad

iu
s 

[k
m

]

s19.6
s20.2
s21.6
s22.4
s26.6
s27.0
s28.0

Figure 3.3: Time evolution of the average shock radius for models with lower ZAMS mass (left panel)
and with higher ZAMS mass (right panel). The shock position is defined as the surface
average over all angular directions. The models with lower ZAMS mass show a fully
uncorrelated onset of the explosion, whereas the heavier models mainly start to explode
shortly after the boundary between the silicon shell and the oxygen-enriched silicon shell
is reached.

Most outstanding examples are models “s19.6” and “s20.2” with a very strong interface. The
shock of these models expands almost continously outward after the arrival of the interface.
The time delay between the arrival of the interface and the development of an explosion is
largest for model “s21.6”, since for this case the steep decrease of the mass accretion rate is
smallest compared to the other cases. Mainly, for the low mass progenitors (12.4, 13.2, 14.4
and also 18.4 solar mass cases) the situation changes. Connected to a much weaker Si/SiO
composition-shell interface (see Figure 3.2), the mass accretion rate depicted in the left panel
of Figure 3.4 decreases smoother and there is no steep drop of the mass accretion rate. These
models have in common that they explode relatively late although at different points of time
when the mass accretion rate has decreased sufficiently. As the most extreme model, the 14.4
solar mass case even explodes as late as 733 ms after shock formation. It is astonishing that an
explosion can still be triggered at such a late time after bounce. For the sake of completeness,
we also included the 11.2 solar mass case in our study, which has been studied intensively
in previous works (Buras et al. 2006b; Marek & Janka 2009; Müller et al. 2012b). Here, the
Si/SiO composition-shell interface arrives already at around 80 ms after bounce at the shock
surface and at this point of time the mass accretion rate drops steeply to a much lower value
of 0.19 M�/s than the other models. Thus, contrary to the other models with a higher ZAMS
mass, the shock of this particular model is pushed out very early (see left panel of Figure 3.3
and the explosion model of Buras et al. 2006b; Marek & Janka 2009). Due to the peculiar
character of this model, it does not fit to the rest of the model set, and we consider it as a
special case.

Why does our model set split into two subsets with on the one hand heavier models with
the tendency to earlier explosions and on the other hand lighter models experiencing late
explosions? This question can be understood in the context of a critical value of the neu-
trino luminosity acting against the mass accretion rate onto the stalled supernova shock that
is required to drive a neutrino-driven explosion (e.g., Burrows & Goshy 1993; Janka 2001;
Fernández 2012). In the framework of this concept, the supernova shock can be revived when
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Figure 3.4: Time evolution of the mass accretion rate, Ṁ(r) = 4πr2ρ(r) |v(r)|, evaluated at 400 km
for models with lower ZAMS mass (left panel) and with higher ZAMS mass (right panel).
Models with a steep decrease of the mass accretion rate connected to the arrival of the
boundary between the silicon shell and the oxygen-enriched silicon shell tend to explode
easily and relatively fast. After the strongly aspherical shock surface passes a distance of
400 km from the center, the evaluation of the mass accretion rate is influenced by strong
mass motions behind the supernova shock front.

either the neutrino luminosity and thus the neutrino-heating rate in the gain layer is suffi-
cient high or the mass accretion rate is low enough. Later, we will focus in more detail on the
concept of a critical condition that separates exploding from non-exploding models (Burrows
& Goshy 1993). Models, which tend to explode earlier, have, in general, a higher ZAMS
mass of at least 16 solar masses. The luminosities of electron- and electron-antineutrinos of
these models depicted in Figure 3.5 are relatively high in the first two hundred milliseconds
of the postbounce evolution, because the high mass accretion rate at this time period (see
Figure 3.4) induces a high accretion luminosity. Thus, lots of neutrinos deposit energy in the
gain layer and heat the region behind the stalled shock. A higher mass acrretion rate and thus
more neutrino heating before the arrival of the interface is supportive for a faster explosion.
For example, compared to the similar case “s22.4”, the mass accretion rate of model “s21.6”
is lower before the earlier drop of the mass accretion rate. Thus, the gain region of this
model is less heated in the early postbounce evolution and explodes later. When the Si/SiO
composition-shell interface arrives at the shock, which is also reflected in a drop of the neutrino
luminosities and mean energies (Figures 3.5,3.6), the ram pressure of the material falling on
the stalled supernova shock is reduced, although there is still a lot of energy stored in the gain
layer due to the high accretion luminosity. This combination is very supportive for the revival
of the shock. Furthermore, it is necessary that then the mass accretion rate is sufficiently
low enough that the neutrino heating of the gain layer can overcome the ram pressure of the
material falling on the shock. Empirically, the mass accretion rate of the investigated models
has to drop below a value of somewhat below 0.3 M�/s to reach hydrodynamic conditions
favorable for an explosion (see Table 3.1 for the exact values of the mass accretion rate at the
point of explosion and the discussion in the next section). Since compared to other heavier
models the mass accretion rate of the two models “s19.6” and “s20.2” is significantly lower
after the Si/SiO interface passed the shock, these models can explode earlier. The explosion
of the light models with 12.4, 13.2, and 14.4 solar masses is delayed for several hundred mil-
liseconds. The Si/SiO interface of these models is relatively weak and thus it takes a long
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Figure 3.5: Time evolution of neutrino luminosities for models with lower ZAMS mass (left panel) and
with higher ZAMS mass (right panel). The upper, middle, and lower panels indicate the
luminosities for νe, ν̄e, and νµ/τ , respectively. Angular averaged quantities are extracted
at a fiducial observer radius of 400 km. Note that the curves have been smoothed using a
running average over 5 ms.

time until the mass accretion rate decreased so far that neutrino heating can overcome the
ram pressure. Model “s18.4” is an interesting case. Here, shock revival happens after 520 ms
at a still high mass accretion rate of 0.342 M�/s. The continously decreasing mass accretion
rate is still such high, that a lot of hot matter accreted on the neutron star induces a high
neutrino luminosity (Figure 3.5) and neutrino heating to push the shock outwards against the
still huge amount of accreted matter. In total, our model set fully confirms the concept of a
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Figure 3.6: Time evolution of neutrino mean energies for models with lower ZAMS mass (left panel)
and with higher ZAMS mass (right panel). The upper, middle, and lower panels indicate
the mean energies for νe, ν̄e, and νµ/τ , respectively. Angular averaged quantities are
extracted at a fiducial observer radius of 400 km. Note that the curves have been smoothed
using a running average over 5 ms.

favorable interplay of the neutrino luminosity and the mass accretion rate and demonstrates
a strong dependence on the specific progenitor structure.

What are the implications of our simulations so far? Most importantly, all models explode,
although their detailed progenitor structure is very different. Thus, according to Table 3.1
(see also Fig 3.1) self-consistent explosions are possible up to a compactness parameter of at



30
3. The Progenitor Structure Dependence of the Explosion Mechanism in

Axisymmetry

least ξ2.5 = 0.235. This value fits into the range of compactness parameter between ξ2.5 = 0.15
and ξ2.5 = 0.35 of Ugliano et al. (2012), where successful and failing supernova explosions
are possible. However, in this study our aim is to demonstrate that the neutrino-driven
supernova mechanism works for a wider range of progenitors self-consistently and we have
chosen optimistic cases of the study of Ugliano et al. (2012). Scanning a further sequence of
self-consistent and multi-dimensional models, one could determine the final threshold value of
the compactness parameter for an explosion. Remarkably, the compactness parameter of the
exploding model “s25-2007” based on a 25 solar mass progenitor of Woosley & Heger (2007),
which will be discussed later in Section 3.7, amounts to ξ2.5 = 0.329. That is almost the upper
threshold value of Ugliano et al. (2012). It is still an interesting question to determine the
exact location of islands of black hole formation in the mass range between 15 and 30 solar
masses investigating failing cases of Ugliano et al. (2012). We have shown that the onset of
the explosion strongly depends on the detailed progenitors structure. Presupernova models
of Woosley et al. (2002) with a higher compactness parameter explode easier and faster than
models with a lower compactness parameter. Thus, there is no direct correlation between the
explosion time (see Table 3.1) and the compactness parameter.

Although we have already discussed the principal evolution of our models, the detailed inves-
tigation of the driving explosion mechanism is still missing. We will continue the discussion
with an analysis of the conditions in the gain region behind the supernova shock front.

3.3 Conditions in the Gain Layer

As already mentioned, the stalled accretion shock can be revived if neutrino heating behind
the shock is sufficient strong to compete with the downward advection of gas in the gain
layer (e.g., Burrows & Goshy 1993; Janka 2001). In other words, the conditions in the gain
layer become favorable for an explosion if the “advection timescale” measuring the time the
accreted gas requires to pass the gain layer becomes longer than the “heating timescale”
needed for neutrino heating to deposit an energy equivalent to the binding energy of the
matter. Thus, the shock can expand sufficiently to create a runaway situation eventually
leading to an explosion when τadv/τheat & 1 holds for a sufficiently long time (Janka 2001;
Thompson et al. 2005; Fernández 2012). Indeed, in 2D simulations (Buras et al. 2006b;
Scheck et al. 2008; Murphy & Burrows 2008; Marek & Janka 2009) it has been shown that
the timescales τadv and τheat are useful diagnostic quantities for understanding the specific
outcome of the simulation runs.

In principle, we follow the analysis framework of Müller et al. (2012b) for properties of the gain
layer, which is mainly based on the definitions proposed in Buras et al. (2006b) and Marek &
Janka (2009). For spherically symmetric setups, one can simply define the advection timescale
τadv as a measure how long accreted matter with an average postshock velocity 〈vr〉 needs to
fall from the shock Rs to the gain radius Rg,

τadv =

∫
Rg<r<Rs

1

| 〈vr〉 |
dr . (3.2)

To generalize this definition to a multi-dimensional situation, when nonradial instabilities
influence significantly the postshock flow, several possibilites have been proposed in the liter-
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Figure 3.7: Time evolution of diagnostic quantities for the conditions in the gain layer for models with
lower ZAMS mass (left panel) and with higher ZAMS mass (right panel). The heating
timescale (top), the advection timescale (middle), and the mass in the gain layer (bottom)
are shown. The definitions of these diagnostic quantities are given in the text. Note that
the curves have been smoothed using a running average over 5 ms.

ature (Buras et al. 2006b; Marek & Janka 2009; Scheck et al. 2008; Murphy & Burrows 2008;
Pejcha & Thompson 2012). Following Müller et al. (2012b) and Janka (2012) we choose a
measure of the of the advection timescale, which can be evaluated readily, the dwelling time



32
3. The Progenitor Structure Dependence of the Explosion Mechanism in

Axisymmetry

0.1 0.2 0.3 0.4 0.5 0.6 0.7
time after bounce [s]

0

0.2

0.4

0.6

0.8

1

1.2

ad
v

ec
ti

o
n

 /
 h

ea
ti

n
g

 t
im

es
ca

le

s11.2
s12.4
s13.2
s14.4
s16.8
s17.2
s18.4

0.1 0.2 0.3 0.4 0.5
time after bounce [s]

0

0.2

0.4

0.6

0.8

1

1.2

ad
v

ec
ti

o
n

 /
 h

ea
ti

n
g

 t
im

es
ca

le

s19.6
s20.2
s21.6
s22.4
s26.6
s27.0
s28.0

Figure 3.8: Time evolution of the ratio of the advection timescale to the heating timescale in the gain
layer for models with lower ZAMS mass (left panel) and with higher ZAMS mass (right
panel). Note that the curves have been smoothed using a running average over 5 ms.

of matter in the gain layer (Buras et al. 2006b; Marek & Janka 2009):

τdwell ≈
Mgain

Ṁ
, (3.3)

where Ṁ is the mass accretion rate of the gas through the shock and Mgain is given by the
mass enclosed in the gain layer between the gain radius Rg and the shock radius Rs,

Mgain =

∫
Rg<r<Rs

ρdV. (3.4)

Thus, the dwelling timescale can be expressed by two readily available quantities, which allows
for a straightforward evaluation of this quantity.

The second timescale, the heating timescale, is computed as the ratio of the binding energy
Ebind of the material in the gain layer and the volume-integrated neutrino heating rate Q̇heat

in that region,

τheat =
Ebind

Q̇heat

. (3.5)

Here, the binding energy Ebind is the volume integral over the sum of the specific kinetic,
internal, and gravitational binding energy in the gain layer,

Ebind =

∫
Rg<r<Rs

[
ρ

(
v2

2
+ ε

)
+ ρΦ

]
dV, (3.6)

and the neutrino heating rate Q̇heat is the integrated neutrino energy deposition rate per
volume qe in the gain layer,

Q̇heat =

∫
Rg<r<Rs

qe dV. (3.7)

In Figure 3.7 we summarize the heating and the advection timescale as well as the mass in the
gain layer for all investigated models. The general trends discussed in the previous section are
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Figure 3.9: Time evolution of the heating efficiency Q̇heat/(Lνe + Lν̄e) computed as the ratio of the
neutrino heating rate and the sum of the electron-neutrino and electron-antineutrino lumi-
nosities for models with lower ZAMS mass (left panel) and with higher ZAMS mass (right
panel). Note that the curves have been smoothed using a running average over 5 ms.

reflected in these diagnostic quantities. While the heating timescale continuously decreases
with time, the advection timescale increases significantly at the arrival of the boundary be-
tween the silicon shell and the oxygen-enriched silicon shell, especially for heavier models. At
this point, they experience a strong decrease of the mass accretion rate and thus, the longer
advection timescale allows matter to stay much longer in the gain layer as before the arrival
of the interface. The postshock flow is much longer heated to gain enough power to drive
the shock outwards. This effect is strongest for models with a very strong interface (“s19.6”,
“s20.2”, and “s26.6”), which start to explode relatively shortly after the arrival of the inter-
face. Having a much weaker interface, models “s21.6” and “s28.0”, experience a very long
delay until the onset of the explosion displayed by a strong rise of the advection timescale
and thus, the ratio of advection to heating timescale (Figure 3.8). This fact suggests that it is
not the reduction of the mass accretion rate at the infall of the Si/SiO interface that triggers
directly the explosion, but that instead growing hydrodynamic instabilities discussed later
in Section 3.5 must be responsible to trigger the late-time rise of τadv/τheat along neutrino
heating.

The advection timescale of low mass models (“s12.4”, “s13.2”, “s14.4”, and also “s18.4”)
decreases continuously until it stabilizes at a level of about 5 ms. This decrease is connected
to the shrinking mass contained in the gain layer. Nevertheless, these models stil explode at
very late times after bounce. One reason is the increasing neutrino heating rate Q̇heat and
the corresponding increase in the neutrino heating efficiency (Figure 3.9) defined as the ratio
of the total energy deposition rate to the sum of the radiated νe and ν̄e luminosities:

η = Q̇heat/ (Lνe + Lν̄e) . (3.8)

According to Janka (2001, 2012) the neutrino energy deposition in the gain layer can be
estimated as

Q̇heat ∼
Lνe 〈Eνe〉

2

r2
gain

Mgain , (3.9)
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Figure 3.10: Time evolution of the total energy in the gain layer for models with lower ZAMS mass
(left panel) and with higher ZAMS mass (right panel). Note that the curves have been
smoothed using a running average over 5 ms.

and thus the heating efficiency η is proportional to

η ∼ 〈Eνe〉
2

r2
gain

Mgain . (3.10)

The heating efficiency is the only quantity that increases systematically even before the ex-
plosion because of the slowly growing mass of the gain layer and the continuously increasing
mean energies of the neutrinos radiated away (Figure 3.6) overcompensating the slow decline
of the accretion luminosity (Figure 3.5) according to Equation 3.10 (Marek & Janka 2009;
Müller et al. 2012b). For example, the heating efficiency of the late exploding models “s13.2”
and “s21.6” rises already significantly before the shock expansion starts from about 3% and
4% at 300 ms to final values of 4% and 7%, respectively, at around 500 ms. Thus, at late
times, a larger fraction of the energy radiated by neutrinos can be deposited in the gain layer
and consequently heat the postshock flow more efficiently.

Around the onset of the explosion the advection timescale increases steeply. Higher pressures
in the gain layer are responsible to transport more and more mass from deeper layer of the gain
region outwards until a dominant fraction of the mass in the gain layer begins to move outward
(Figure 3.7). The shock can expand sufficiently to create a positive feedback loop by further
increasing τadv. Once the critical condition of τadv/τheat & 1 is reached (Figure 3.8), a runaway
situation is established with continuous shock expansion. The total energy in the gain layer
depicted in Figure 3.10 is lifted towards positive values with the growing accumulation of mass
in the gain layer indicating that the postshock material gets unbound. Note that Fernández
(2012) demonstrated that transition finally occurs when the fluid in the gain region reaches
positive specific energy. The timescale ratio criteria τadv/τheat & 1 is already reached when
the total energy in the gain layer just starts to rise towards positive while it is still negative
(compare Figure 3.8 and Figure 3.10). At the beginning of the runaway shock expansion, only
a small fraction of the fluid in the gain layer is rising, while the most part of the gain layer is
following behind afterwards (see also Section 3.5). The binding energy is only positive, when
the whole gain layer is expanding. For our models, the concept of the τadv/τheat ratio is a
viable criterion for the evolution of the exploding models.



3.4 The Concept of a Critical Curve 35

0.1 0.2 0.3 0.4 0.5 0.6

M M
NS

  [M  
2
/ s]

5

10

15

L
ν

e <
E

ν
e>

2
 [

1
0

5
4
 e

rg
/s

 M
eV

2
]

s13.2
s16.8
s19.6
s27.0

Figure 3.11: Critical curve for the electron-antineutrino luminosity times the squared mean energy
(Lν̄e × 〈Eν̄e〉

2
) versus mass accretion rate times neutron star mass (Ṁ ×MNS) based on

the explosion parameters (depicted by stars) of the fourteen investigated presupernova
models of Woosley et al. (2002). For each model the the exact quantities are extracted at

the onset of explosion. Additionally, the time-dependent relation between Lν̄e × 〈Eν̄e〉
2

and Ṁ ×MNS is shown for four selected simulations. The trajectories of Lν̄e × 〈Eν̄e〉
2

are evolving from left to right towards the critical curve depicted by the stars.

3.4 The Concept of a Critical Curve

We have already mentioned that for a certain mass infall rate onto the accretion shock steady-
state solutions cannot exist, once the neutrino luminosity exceeds a critical threshold value
and thus neutrino heating is sufficiently strong. Such a critical condition separates exploding
from nonexploding models and has been identified by Burrows & Goshy (1993) based on
steady-state solutions of neutrino-heated and cooled accretion flows between the stalled shock
and the proto-neutron star surface. In terms of this condition, either the driving neutrino
luminosity must be sufficiently high to overcome the infalling mass on the stalled shock or
the damping mass accretion rate must be low enough to launch a successful explosion. Thus,
according to Burrows & Goshy (1993) the critical condition Lν(Ṁ) defines a curve separating
the region above, where neutrino heating is strong enough to push the stalled shock outward
and trigger an explosion, from the region below, where steady-state accretion solutions can
exist.

Performing an extensive parameter study, Murphy & Burrows (2008) investigated the concept
of a critical condition with time-dependent hydrodynamic simulations. Applying parametrized,
local neutrino heating and cooling terms, they followed the postbounce evolution for different,
fixed values of the driving neutrino luminosity. Since the mass accretion rate decreases with
time according to the characteristic density profile of the initial structure of the investigated
progenitor (see Figure 3.2 for the model set presented here), in this parametrized approach
each simulation determines the critical value of the mass accretion rate Ṁexp at which the
explosion becomes possible for the specific employed value of the neutrino luminosity Lν . By
systematically varying the driving neutrino luminosity Lν , one samples pairs of the critical
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values (Ṁexp,Lν) defining a critical curve Lν(Ṁ). By the means of their simulations set,
Murphy & Burrows (2008) confirmed the existence of a critical condition separating explo-
sion from accretion. Their 1D results verified the critical curve of Burrows & Goshy (1993)
obtained by steady state solutions, while the corresponding 2D results showed that the crit-
ical luminosity is generally lowered ∼30% in 2D compared to 1D in their considered highly
idealized setup. Nordhaus et al. (2010) extended the investigations of Murphy & Burrows
(2008) by including 3D runs and found a further reduction of the critical luminosity by 15–
25% compared to the 2D case. Following the approach of Murphy & Burrows (2008) and
Nordhaus et al. (2010) and thus applying parametrized, local neutrino heating and cooling
terms, in Hanke et al. (2012) we performed hydrodynamic simulations in one, two, and three
dimensions to prove the results of the previous investigations. While we observe a similar
reduction of the threshold luminosity value of the 2D simulations in Hanke et al. (2012), we do
not find any further decrease in our 3D models in the framework of this simple, parametrized
neutrino description. Further studies (Burrows et al. 2012; Dolence et al. 2013; Couch 2013)
have investigated the concept of a critical condition for shock revival to determine the effect of
three-dimensional fluid dynamics on the postbounce dynamics. Although details are different,
these works confirmed the results of our simplified 3D study of Hanke et al. (2012).

However, one has to be cautious to interpret the outcome of these investigations, since it has
not been finally shown that the simple concept of a critical threshold condition separating
explosions from continuous shock stagnation is applicable beyond the highly idealized setups
applied in the aforementioned studies. None of them has properly taken into account the
complex feedback between hydrodynamics and neutrino transport effects. By adopting a
fixed driving neutrino luminosity and assuming a constant neutrino mean energy, feedback
effects of the hydrodynamics on the neutrino emission are ignored, for example the proper
time evolution of the neutrino luminosities and mean energies and the lack of the appropriate
contraction of the neutron star due to lasting neutrino emission.

In this subsection, we aim to investigate if the concept of a critical condition can be applied
to our fully self-consistent 2D model set, thus overcoming the limitation of a simplified,
parametrized setup. However, to answer this question, a simple relation of the mass accretion
rate at which the explosion becomes possible to the driving neutrino luminosity is not sufficient
to take into account properly the hydrodynamic postbounce evolution of the supernova core.
In contrast to the simplified studies, instead of assuming a fixed neutrino temperature, the
neutrino mean energies are increasing by time (Figure 3.6) making neutrino heating more
efficient (see Section 3.3), while the neutrino luminosities are decreasing by time (Figure 3.5).

Although we give in Table 3.1 the critical values of the electron neutrino luminosity Lexp and
the mass accretion rate Ṁexp at the time of the explosion sets in (measured as the point of
time, when the ratio of the advection to heating timescale exceeds one), we derive now a
more suitable relation between the critical neutrino luminosity and the corresponding mass
accretion rate. Applying scaling relations to the advection and heating timescale introduced
in the previous section, we will estimate the critical luminosity.

At first, according to Janka (2012), we apply the following scaling relation for the advection
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timescale (Equation 3.2):

τadv =

∫
Rg<r<Rs

1

| 〈vr〉 |
dr ∼ Rs

vpre−shock
∼ R

3/2
s√
MNS

. (3.11)

Here, the average postshock velocity | 〈vr〉 | is estimated as a large fraction of the pre-shock
velocity vpre−shock just infront of the shock, which states (Janka 2001):

vpre−shock = −α
√

2GMNS

Rs
, (3.12)

with α ∼ 1/
√

2 (Bethe 1990, 1993; Bruenn 1993). In Equation 3.11, the shock radius Rs itself
can be expressed in terms of the electron antineutrino luminosity Lν̄e and mean energy 〈Eν̄e〉
(Janka 2012):

Rs ∼

(
Lν̄e 〈Eν̄e〉

2
)4/9

R
16/9
g

Ṁ2/3M
1/3
NS

. (3.13)

On the other hand, applying the scaling relation Equation 3.9 and assuming a time-independent
specific binding energy in the gain layer, the heating timescale (Equation 3.2) fulfills the fol-
lowing dependencies:

τheat =
Ebind

Q̇heat

∼
R2

g

Lν̄e 〈Eν̄e〉
2 . (3.14)

The critical condition for the runaway of the shock can then be formulated by setting both
timescales equal and thus, applying the scaling relations (3.11) and (3.14) together with
Equation 3.13 leads to:

Lν̄e 〈Eν̄e〉
2 ∼

(
ṀMNS

)3/5
R−2/5

g . (3.15)

This relation defines a critical curve for Lν̄e 〈Eν̄e〉
2 as function of the product of the mass

accretion rate and the mass of the neutron star ṀMNS. Equation 3.15 displays properly the
dependence of the critical curve on the time-dependent neutrino luminosity and mean energy
and the feedback effects of the hydrodynamics on the neutrino evolution.

Figure 3.11 depicts for each single model run the respective value pair (Lν̄e×〈Eν̄e〉
2 , Ṁ×MNS)

at the time of the onset of the explosion indicating the specific critical condition for runaway.
At first glance these stars can be collected to a critical curve Lν̄e×〈Eν̄e〉

2 (Ṁ×MNS) although
each individual model run depends on a specific density profile of the respective progenitor
star and thus cannot be compared to each other in principle. Indeed, Figure 3.11 demonstrates
that a critical condition for explosion can be formulated for our self-consistent model set. In
the context of a critical curve, model “s18.4” is a particular case as mentioned in Section 3.2.
It fulfills the criteria for runaway already at a very high mass accretion rate of 0.342M�/s
(Table 3.1) since a high accretion part of the neutrino luminosity is induced and thus neutrino
heating is sufficient strong to overcome the relative high damping mass infall on the shock.
This model represents the outlier on the top right side of Figure 3.11 and demonstrates
that there is a steep rise of the critical curve depicted by the critical pairs of each model
below 0.342M� s−1 (to compare to the values depicted in Figure 3.11 multiply with the
corresponding neutron star masses denoted in Table 3.1). This is a noticeable difference to
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the principal results of a simple power-law of Burrows & Goshy (1993), who assumed steady-
state conditions of the hydrodynamic postshock flow and neglected an accretion contribution
to the neutrino luminosity. Applying realistic progenitor structure profiles, we found in Hanke
et al. (2012) analogously to Couch (2013) a similar steep rise of the critical curve, although
we argued that this feature is linked to the specific employed analytic description of neutrino
effects.

The critical curve depicted by the stars in Figure 3.11 separates the region above for explosions
and the region below, where still steady-state accretion solutions can be maintained by the
hydrodynamics conditions in the postshock layer. Performing our hydrodynamic simulations
we track the post-bounce evolution of each individual collapsing star and depict four trajecto-
ries of representive models in the (Lν̄e ×〈Eν̄e〉

2)− (Ṁ ×MNS) plane of Figure 3.11. Since the
mass accretion rate decreases with time according to the density profile that is characteristic
of the initial progenitor structure (Figure 3.4, although MNS is slowly increasing by time), a
trajectory evolves from right to left on the horizontal axis of Figure 3.11 until (Ṁ ×MNS)
reaches the critical value depicted by a star and the model develops an explosion. Indeed,
such a trajectory of our models is always below or right of the critical curve and thus, there
is a steady-state solution for the hydrostatic configuration of a model prior to the explosion
sets in. The illustration of such time-dependent trajectories that are representing the hydro-
dynamic evolution of a simulation run fully confirms the concept of a critical condition and
a critical curve that is separating explosion from ongoing accretion even for self-consistent
models with proper neutrino transport and feedback of the hydrodynamics on the neutrino
evolution.

3.5 Driver of the Explosion, the Growth of Instabilities

After discussing the critical condition we aim to answer the question what is actually making
the postshock layer unstable and allows a runaway situation to be established. Non-radial
fluid mass motions are crucial to push the shock farther out increasing the time matter
can stay in the gain layer. Both, convection and the SASI, increase the energy deposition
of neutrinos sufficiently to finally revive the stalled shock. In this section, we investigate
the growth conditions of both hydrodynamic instabilities in dependence of the respective
progenitor model.

Typically, the high mass-accretion rate of individual supernova models (Figure 3.4) leads to
very small shock radii, which stabilizes at very small radii of up to ∼80 km (Figure 3.3).
In consequence, the advection timescale is reduced significantly (Figure 3.7, middle panel),

since it scales with the shock radius roughly with τadv ≡ R
3/2
s (see Equation 3.11 and cf.

Scheck et al. 2008). As shown by Foglizzo et al. (2006), the linear growth rate ωSASI of the
advective-acoustic cycle amplifying the SASI growth is given in terms of the cycle efficiency
Q and the duration τcyc of the cycle by

ωSASI =
ln |Q|
τcyc

. (3.16)

Consequently, as argued by Müller et al. (2012a), the duration of an advective-acoustic cycle
τcyc is short for a small shock stagnation radius and thus short advection timescale. Hence,
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Figure 3.12: Time evolution of the coefficients of the spherical harmonics expansion of the shock
surface for selected models with lower ZAMS mass (left panel) and with higher ZAMS
mass (right panel). The top panels show the coefficient of the dipole a1 and the bottom
panels the coefficient of the quadrupole a2 normalized to the amplitude of the ` = 0
mode (i.e. the shock radius). Note that the curves have been smoothed using a running
average over 5 ms.

for our set of simulation runs with a typical short advection timescale we can expect favorable
conditions for an effective SASI growth.

For quantifying this more verbal argumentation by a detailed analysis, we perform a decom-
position of the angular-dependent shock surface Rs(θ) into Legendre polynomials Pl(cos θ).
The expansion coefficients al are given by (see e.g. Müller et al. 2012b,a)

al =
1

2

π∫
0

Rs(θ)Pl(cos θ) d(cos θ) . (3.17)

The coefficients al are the 2D counterpart of the corresponding 3D formulas applied in Sec-
tion 5.2.

The time evolution of the a1 coefficient of the dipole mode is depicted in Figure 3.12 (upper
panels) for several selected models and indicates that at t ∼ 120 ms sloshing motions of
the shock surface start to grow with a relative small growth rate, when the postshock flow
becomes aspherical as indicate by the increase of the lateral kinetic energies in Figure 3.13
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Figure 3.13: Kinetic energy of lateral mass motions Ekin,θ (top) and the velocity dispersion
〈
v2
θ

〉
(bottom) in the gain layer as function of time after bounce for selected models with
lower ZAMS mass (left panel) and with higher ZAMS mass (right panel). Both quantities
are a possible meassure for the combined activity of convection and SASI. The velocity
dispersion

〈
v2
θ

〉
in the gain region, which is related to the lateral kinetic energy Ekin,θ

by the relation
〈
v2
θ

〉
= 2Ekin,θ/Mgain, provides a direct measure for the typical measure

for the typical velocities of convective and SASI motions, while the lateral kinetic energy
depends also on the mass contained in the gain region. Note that the curves have been
smoothed using a running average over 5 ms.

(upper panels). All models experience strong quasi-periodic shock oscillations with a short
oscillation period. At around t ∼ 220 ms, i.e. when the Si/Si0 shell interface has reached the
shock and the accretion shock has dropped considerably for models with higher ZAMS mass,
the SASI oscillation period increases with the longer advection timescale while the advective-
acoustic cycle operates (Foglizzo et al. 2007; Scheck et al. 2008; Guilet & Foglizzo 2012).
The models maintain large shock oscillations although they are less regular when the shock
expands. Similar behavior can be observed for the other lighter progenitor models, which can
maintain short shock oscillations over several hundred of milliseconds until the shock motion
reaches the nonlinear regime with its non-oscillatory behavior and larger SASI amplitudes,
when the shock expansion sets in.

The time evolution of the quadrupole mode depicted by the a2 SASI coefficient in Figure 3.12
(bottom panels) is noticeable. Shortly before shock revival all models develop a strong (pro-
late) quadrupol deformation of the shock. For the more massive models with faster explosions
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Figure 3.14: Time evolution of the growth parameter χ for selected models with lower ZAMS mass
(left panel) and with higher ZAMS mass (right panel). The treshold value of χ ≈ 3 is
reached at first for the 11.2 solar-mass progenitor at about 120 ms after bounce, while
all heavier stars reach the criteria for convective instability at around 220 ms. Note that
the curves have been smoothed using a running average over 5 ms.

the a2 SASI coefficient continuously grows to larger and larger positive values directly from
the onset of SASI growth at t ∼ 120 ms, while the strong increase of the quadrupole mode sets
in at around t ∼ 450 ms after bounce for the very late exploding lighter simulation runs. The
development of a strong quadrupole mode for all exploding models is a strong hint that the
runaway expansion of the shock is obviously facilitated by the artificial symmetry axis. Thus,
the strong quadrupole deformation of the shock surface enables the postshock layer to be
pushed more and more outwards along the symmetry axis towards one direction periodically,
while most of the matter behind the shock is still at rest.

The SASI instability with its high growth rates for the dipole and quadrupole modes (Fig-
ure 3.12) lead to large-amplitude bipolar shock oscillations pushing the shock outwards to
larger radii step by step. In consequence, the dwelling time of the hydrodynamic fluid be-

hind the shock grows, since it scales with the shock radius roughly with τadv ≡ R
3/2
s (see

Equation 3.11 and cf. Scheck et al. 2008) and thus, the accreted material is exposed longer to
neutrino heating in the gain layer. Finally, by continuous SASI shock oscillations the shock
can be driven outwards sufficiently to create a positive feedback loop by further increasing
the advection timescale of the matter in the gain layer until an explosion with continuous
shock expansion is induced (see the discussion in Section 3.3 and in Marek & Janka 2009;
Müller et al. 2012b).

Moreover, the supportive role of the SASI for reviving the stalled shock manifests in large
supersonic lateral velocities in the postshock flow induced by continuous phases of large-
amplitude shock expansion and contraction. Depicted in Figure 3.13 (top panels) the kinetic
energy of non-radial mass motions Ekin,θ shows quasi-periodic variations with spiky maxima
and minima, which are typical for the presence of low-order SASI modes as pointed out by
Hanke et al. (2012). In their parametric study a successful explosion is triggered, especially
for models at the explosion threshold, by large-scale mass flows as associated with strong
SASI activity. Here, as reflected by growing fluctuations of the angular kinetic energies the
onset of explosion in our self-consistent models is facilitated in a similar manner.
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Figure 3.15: Snapshots of selected models with lower ZAMS mass (s11.2, s12.4, s13.2, and s18.4, from
top left to bottom right) depicting the entropy per baryon s at the respective time of
explosion.

The velocity dispersion
〈
v2
θ

〉
in the gain region, which is related to the lateral kinetic energy

Ekin,θ by the relation
〈
v2
θ

〉
= 2Ekin,θ/Mgain, provides a direct measure for the typical measure

for the typical velocities of convective and SASI motions, while the lateral kinetic energy
depends also on the mass contained in the gain region. This quantity is continuously increasing
by time for all models (Figure 3.13, bottom panels) indicating a growth of SASI and convective
motions by time. Mainly, for the lighter models (left panel), the ongoing increase of the
strength of non-radial mass motions is very supportive for the developing an explosion even
several hundreds of milliseconds after bounce. According to Müller & Janka (2014) the lateral
kinetic energy scales with

Ekin,θ

Mgain
∼

(
Q̇heat

Mgain

)2/3

. (3.18)
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Figure 3.16: Snapshots of selected models with higher ZAMS mass (s19.6, s20.2, s21.6, and s28.0,
from top left to bottom right) depicting the entropy per baryon s at the respective time
of explosion.

As already argued in the discussion of the neutrino heating efficiency in Section 3.3 the ratio
Q̇heat/Mgain scales with Lνe 〈Eνe〉

2 (see Equation 3.9). Similar to the late time increase of
the neutrino heating efficiency (Figure 3.9) the continuous increase of the neutrino mean
energies depicted in Figure 3.6 is responsible for the increase of the velocity dispersion and
thus, is fostering the growth of large-scale aspherical mass motions inducing the onset of the
explosion. This trend may also be responsible for the late-time explosion reported in Marek
& Janka (2009).

By trend, the situation of the hydrodynamic postshock flow in our simulation runs is favorable
for the growth of the standing accretion-shock instability, since the other generic hydrody-
namic instability in the supernova core, convection is suppressed in our models as observed in
the full neutrino-hydrodynamic simulations by Marek & Janka (2009) and as pointed out by
Scheck et al. (2008) performing parametric hydrodynamic studies of the post-bounce dynam-
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ics. On the one hand the neutrino energy deposition in the gain layer of our simulations is too
weak to generate a steep negative entropy gradient necessary for developing convection as can
be seen by comparing the driving neutrino luminosities of our models (Figure 3.5) with the
ones of exploding parametric models of Scheck et al. (2008) (see e.g. their Figure 18). On the
other hand, the nuclear equation of state of Lattimer & Swesty (1991) with a nuclear incom-
pressibility of 220 MeV employed in our simulations generates rather compact neutron stars
(Steiner et al. 2010; Hebeler et al. 2010). Thus, the forming neutron star contracts rapidly
from ∼75 km to ∼40 km in our sophisticated supernova model (for a recent comparison of
different high-density nuclear equation of state in spherical supernova simulations see Steiner
et al. 2013) and enforces the retraction of the shock radius, which scales directly with the
radius of the neutron star according to Janka (2012). In consequence, the gas in the post-
shock region is rapidly advected towards the gain region suppressing the growth of convective
motions.

To quantify this argumentation and to determine the importance of convection in our models,
Figure 3.14 displays the critical parameter χ for the growth of convection as evaluated from
spherically averaged stellar quantities in the gain layer of selected, axisymmetric models with
different preexplosion masses according to Equation (3) in Müller et al. (2012a),

χ =

∫ 〈Rs〉

〈Rg〉

ImωBV

| 〈vr〉 |
dr , (3.19)

where ωBV is the Brunt-Väisälä frequency. The integration is performed between the average
gain radius 〈Rg〉 and the average shock radius 〈Rs〉. Note that only regions contribute to the
integral where ω2

BV < 0 indicates local instability. The parameter χ roughly measures the ratio
between the advection timescale of the flow through the gain layer and the growth timescale
of convection. Since perturbations are advected out of the gain layer with the accretion flow
in a finite time, convection can develop only when perturbations are amplified sufficiently
strongly within this time. For the linear regime (i.e., for small initial perturbations) Foglizzo
et al. (2006) found the threshold condition of χ & 3 for convective activity to develop in
the accretion flow of the gain layer. This result of mathematical analysis is supported by
numerical studies in 2D by Buras et al. (2006b); Scheck et al. (2008); Fernández & Thompson
(2009b,a).

While the SASI becomes active when aspherical mass motions start to develop at around
t ∼ 120 ms as indicated in Figure 3.13, the condition for convective instability remain sub-
critical. Convection is damped because of the low neutrino-heating rate in our self-consistent
models with the Vertex-Prometheus code and the short advection timescale as already
discussed previously. The absence of convection may be supportive for the early development
of SASI activity as argued by Müller et al. (2012a) for their 27M� progenitor. Indicated by
the critical parameter χ in Figure 3.14 (right panel) the threshold condition of χ & 3 for
convective activity is reached for more massive models at around t ∼ 220 ms, i.e. when the
Si/Si0 shell interface has reached the shock and the accretion shock has dropped considerably
for models with higher ZAMS mass. Because of the significant reduced mass accretion rate
the shock expands to large radii and thus, the higher advection timescale increases the value
of χ. For example, the relatively fast exploding models “s19.6” and “s20.2” show convective
activity with a critical parameter well above χ & 3. On the other hand, we observe a
very interesting trend of the critical parameter especially of the light models with 13.2, and
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18.4 solar masses. While χ remains sub-critical for a long time, from around t ∼ 250 ms
the condition for convection becomes more and more favorable until at around t ∼ 500 ms
convective activity is fully established, when the timescale ratio τadv/τheat exceeds unity
(Figure 3.8) and shock expansion sets in (Figure 3.3). We can identify two reasons for the
continuous development of convective activity for this models. The large-amplitude sloshing
motions of the stalled shock induce lateral flow activity in the postshock region (Figure 3.13)
and the development of fluid elements with very steep unstable entropy gradients (Marek &
Janka 2009). Hence, the ongoing strong SASI shock motions can trigger secondary convective
activity (Buras et al. 2006b; Scheck et al. 2008). Moreover, the continuous increase of the
velocity dispersion depicted in Figure 3.13 (bottom panels) due to the more efficient neutrino
energy deposition (Figure 3.9) is directly reflected in the increase of the critical parameter for
convective activity.

While our models evolve similar to the model s27.0 of Müller et al. (2012a) classified as “SASI-
dominated”, the interplay between convection and SASI around shock revival seems to be
more complicated. In this fully nonlinear phase, it is hard to distinguish which hydrodynamic
instability is primarily responsible for the postshock dynamics and ultimately powers the
explosion. The dependence of the growth conditions of convection and SASI on the shock
radius is opposite. Although the shock is pushed to large radii by large SASI sloshing motions,
strong shock oscillations are maintained with a larger amplitude in our models and secondary
convective activity supports the further shock expansion. To illustrate the hydrodynamic
situation of the postshock flow around shock revival, in Figures 3.15 and 3.16 entropy color
coded snapshots of the supernova core are depicted at the onset of the explosion determined
as the moment the timescale ratio exceeds unity. The shock surface of all models develops
clearly a prolate deformation by a large-amplitude bipolar SASI oscillation. Besides small
buoyant bubbles growing behind the sloshing SASI motions of the shock surface large-scale,
high-entropy bubbles are visible, which are triggered by the SASI shock expansion phases.
As founded by Fernández et al. (2013) SASI-dominated models are characterized by the
interplay of shock sloshing motions and the formation of large-scale, high-entropy structures.
They conclude that once this bubbles are able to survive for several SASI oscillation periods
a SASI-driven explosion develops. The dominance of a large-scale bubble seeded by the SASI
shock sloshing over smaller-scale bubbles in our entropy color coded snapshots in Figures 3.15
and 3.16 let us suggest that our simulation runs are indeed SASI-dominated, while convection
has a more supportive role.

3.6 Shock Expansion and Explosion Energy

After the driving hydrodynamic instabilities discussed in the previous section are creating a
runaway situation, a continuous shock expansion sets in as indicated by the maximum shock
radius in Figure 3.17. However, the simulation are stopped already shortly after the onset
of the explosion because of the extremely computationally expensive neutrino transport. For
most models we follow the maximum shock expansion up to ∼1200 km and for models “s11.2”
and “s27.0” up to ∼2500 km.

The explosion energy is calculated by integrating over the gain region where the local binding
energy Ebind as defined in Equation 3.6 is positive (see previous studies of Buras et al. 2006a;
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Figure 3.17: Trajectories of the maximum shock radius as function of time after bounce for models
with lower ZAMS mass (left panel) and with higher ZAMS mass (right panel). The sim-
ulations have been stopped already shortly after the onset of explosion due to numerical
difficulties.
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Figure 3.18: Diagnostic explosion energies for models with lower ZAMS mass (left panel) and with
higher ZAMS mass (right panel). See the text for exact definition.

Marek & Janka 2009; Suwa et al. 2010; Müller et al. 2012b; Bruenn et al. 2013):

Eexpl =

∫
Ebind>0

Ebind dV . (3.20)

The time evolution of the explosion energies of our models is depicted in Figure 3.18. First
matter junks behind the shock become unbound typically at the onset of the explosion when
the timescale ratio exceeds unity (Table 3.1). After the shock expands beyond ∼400 km the
temperature behind the shock front drop sufficiently for the recombination of nucleons to
α-particles and consequently, the explosion energy starts to rise with a very steep gradient for
most of our models. At the final post-bounce time our models reached, we observe explosion
energies of up to Eexpl ∼ 0.7 × 1050 erg still increasing significantly e.g. with a rate of
∼ 11× 1050 erg s−1 for model “s18.4”.

At this stage, therefore, a reliable determination of the final explosion energies is not possible.
The simulations would have to be continued for several hundreds milliseconds more as demon-
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Figure 3.19: Time evolution of neutron star masses for models with lower ZAMS mass (left panel)
and with higher ZAMS mass (right panel). Note that the curves have been smoothed
using a running average over 5 ms.

strated by the neutrino-driven explosion models investigated by Scheck et al. (2006, 2008).
Our sophisticated and self-consistent neutrino transport is such computationally challenging
that it is still impossible to follow the postbounce dynamics into the postexplosion phase.
Ongoing accreted matter is partially absorbing energy from neutrino in the gain layer and
begins to rise again contributing to the budget of unbounded matter behind the outwards
traveling shock. For this reason we expect that the final explosion energy of model “s18.4”
is highest with its high rate of ongoing accretion of matter at the begin of the explosion
(Figure 3.7). Furthermore, the continuous recombination of nucleons into α-particles (and
further into heavy nuclei) behind the expanding shock front sets free energy for several hun-
dred milliseconds. For a detailed discussion of possible final values of the explosion energies,
which could finally be obtained with simulations employing the neutrino-hydrodynamics code
Vertex-Prometheus, we refer to the respective arguments in Marek & Janka (2009) and
Müller et al. (2012b). Although beyond this work, it is an interesting question, if as argued by
Marek & Janka (2009) for their 15M� explosion model the explosion energies of our models
can reach the canonical value of Eexpl ∼ 1× 1051 erg = 1B (e.g., Tanaka et al. 2009; Utrobin
& Chugai 2011), for example the observed value of SN 1987A of E87A ∼ 1.3× 1051 erg.

In the fast exploding models of Bruenn et al. (2013) (see next Section 3.7 for a comparisons of
our models with this work) the explosion energies much stronger increasing energies compared
to our models. Since their models are already starting to explode at 200 ms, there is much
more matter in the gain layer, which can be heated by neutrinos and get unbound (see for
comparison Figure 3.7 for our runs). For example, their simulation run of the 12 solar-mass
case of Woosley & Heger (2007) converges at an explosion energy of 0.38B, which are consistent
with observation for lower mass progenitors (Smartt 2009). This discrepancy between their
models and our remains to be investigated and is the most prominent difference.

The mass of the neutron star at the time the explosion sets in is given for each model in
Table 3.1 and the time evolution of the neutron star mass for each simulation run is displayed
in Figure 3.19. By trend, this quantity saturates faster than the diagnostic explosion energy
and is thus more suitable for discussing general trends of the progenitor-explosion connection
for our set of self-consistent simulations. Most of masses of the neutron star are converging in
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the mass range between 1.6 M� and 1.8 M� for the employed equation of state of Lattimer &
Swesty (1991) with a nuclear incompressibility of K = 220 MeV. However, the late exploding
models “s14.4” and “s18.4” can maintain a high mass accretion rate (Figure 3.4) for a long
time period resulting in a very heavy neutron star of 1.8 M� and 1.9 M� at the end of the
simulation. There is no clear relationship between the mass of the neutron star MNS and
the ZAMS mass MZAMS of the respective preexplosion model. The final value MNS is rather
determined by the time matter can be accreted until the explosion sets in. In general, the
distribution of our NS masses is comparable to one of Ugliano et al. (2012), which spans from
∼ 1.2 M� and ∼ 2.0 M�. By trend, our values are somehow higher than typical values of
comparable models by Ugliano et al. (2012) of 1.4–1.7 M�. That might be a consequence of
the relative late onset of the explosions with its long duration of strong accretion of matter
on the neutron star.

3.7 Investigation of Models based on the Presupernova Models of
Woosley & Heger (2007)

Recently, Bruenn et al. (2013) have presented four selected axisymmetric self-consistent simu-
lations based on the preexplosion models of Woosley & Heger (2007). Although their numer-
ical treatment of neutrino transport within their Chimera code is almost as sophisticated
as the Vertex-Prometheus code with differences in the exact neutrino solver and the
specific implementation of neutrino rates, their models exhibit significant differences in the
postbounce evolution and in shock revival. Thus, it is worth to perform these four additional
models allowing a direct comparison of the outcome of simulation results obtained by different
competing modeling groups. Most noticeable and surprisingly, all models of Bruenn et al.
(2013) explode in a similar manner nearly independently of the specific progenitor structure
exceeding the critical value for shock runaway at around 100 ms after core bounce. Based on
these results one might hope that the presupernova models of Woosley & Heger (2007) enable
faster explosions.

We have added these four additional models based on the progenitor models of Woosley &
Heger (2007) spanning progenitors of 12−25 solar masses in Table 3.1 summarizing important
model parameters. As can be deduced by the given explosion times in Table 3.1 all of
our models explode, although the runaway situation is established at completely different
postbounce times and generally much later than the models of Bruenn et al. (2013). The exact
shock trajectories of the four selected models of the Woosley & Heger (2007) presupernova
series depicted in Figure 3.20 reflect the strong dependence on the according time evolution
of the mass accretion rate (Figure 3.21). Confirming the observations in Section 3.2, both
heavier models, “s20-2007” and “s25-2007”, with a steep drop of the mass accretion rate
at 240 − 270 ms, explode relatively quickly, while both other models, “s12-2007” and “s15-
2007” with a continuous, but slow decrease of the mass accretion rate reach the conditions
for shock runaway much later. The different time evolution of the models of Bruenn et al.
(2013) and our runs might be a consequence of the different evolution of neutrino quantities,
which we show in Figure 3.22, in the left column the different neutrino luminosities of the
four simulation runs and in the right column the respective neutrino mean energies. However,
the examination of the subtle differences in both neutrino transport solvers is difficult and
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Figure 3.20: Average shock radius as function of
time after bounce for the four inves-
tigated models based on the progen-
itors of Woosley & Heger (2007).
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Figure 3.21: Mass accretion rate (measured at
400 km) as a function of time af-
ter bounce for the four investigated
models based on the progenitors of
Woosley & Heger (2007).

without a direct code comparison impossible.

The lightest investigated model “s12-2007” is ideally suited for a direct comparison between
our results obtained with the Vertex-Prometheus code and the model “B12-WH07” of
Bruenn et al. (2013) performed with their Chimera code, since Bruenn et al. (2013) provides
several entropy color snapshots for this particular model. For this reason, we depict the
time evolution of the entropy distribution in the supernova core in Figure 3.23 by several
snapshots. At 90 ms (first panel) induced by neutrino heating first small convective structures
are growing from the initially seed random perturbations. While in our model the strength
of the convective plumes is relativly weak, the convective pattern in the model of Bruenn
et al. (2013) is much more developed with a much more extended postshock region. At this
point, the evolution of both models starts to diverge. While the shock retreats in our models
due to the shrinking neutron star radius and insufficient neutrino heating (second 150 ms and
third 200 ms panel), the shock surface of the Bruenn et al. (2013) model is now continously
expanding. Neutrino-driven convection and the SASI manifested in low-mode distortions of
the shock is sufficient strong for fast shock revival. Instead, the postshock situation of our
model turns into a several hundred milliseconds long-lasting period of strong sloshing motions
of the shrinked, just ∼ 100 km large shock surface characterized by low-mode asymmetries
in the supernova core. These shock osciallations associated with the SASI are amplyfing by
time pushing the shock outwards and enlarging the gain region (compare the slightly growing
shock radius in the fifth 400 ms and in sixth 600 ms panel) As discussed in Section 3.5 these
SASI motions are responsible for shock revival in our models.

A detailed comparison both of the simulations results as well as the specific code setups is defi-
nitely needed to understand the exact differences of the outcome of the simulations performed
with the Chimera code and with the Vertex-Prometheus code. Such a comparison would
allow a better understanding of the missing ingredients in our models for a faster and more
energetic shock revival as observed for the runs of Bruenn et al. (2013).
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Figure 3.22: Neutrino luminosities (left panel) and neutrino mean energies (right panel) for the four
investigated models based on the progenitors of Woosley & Heger (2007). The upper,
middle, and lower panels indicate the luminosities for νe, ν̄e, and νµ/τ , respectively.
Angular averaged quantities are extracted at a fiducial observer radius of 400 km. Note
that the curves have been smoothed using a running average over 5 ms.

3.8 Summary of the Results based on our Axisymmetric
Simulations

In this chapter, we have presented results of self-consistent axisymmetric core-collapse super-
nova simulations performed with the Vertex-Prometheus code for a wide range of massive
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presupernova models in the mass range between 11 and 28 solar masses. For the first time,
it has been possible to systematically investigate the progenitor dependence of the explo-
sion mechanism by means of multi-dimensional simulations with full neutrino transport. To
summarize, we can draw the following conclusions from our set of 2D simulations:

• We have obtained a large variety of successful core-collapse supernova explosions. Unex-
pectedly, all investigated models explode. These results are an important confirmation
that the neutrino-driven supernova mechanism works at least in 2D along previous stud-
ies (Buras et al. 2006b; Marek & Janka 2009; Müller et al. 2012b,a; Bruenn et al. 2013;
Suwa et al. 2010). We could significantly extend the set of progenitors which yield
successful core-collapse supernova explosions.

• While systematically comparing our simulation runs, we have observed a strong depen-
dence of the explosion characteristics on the specific progenitor structure. The investi-
gated set of progenitors can be divided into two classes. One the one hand there are
rather fast explosions, which start quickly after a steep drop of the mass accretion rate
on the supernova shock connected to the arrival of a strong Si/SiO composition-shell
interface and on the other hand models tend to explode late if their progenitor structure
does not incorporate such a strong density jump.

• Our models yield rather weak and relatively late explosions such as the previous 2D
studies with the Vertex-Prometheus (Buras et al. 2006b; Marek & Janka 2009) and
the Vertex-Coconut (Müller et al. 2012b,a) simulation code. Although we could not
run our simulations long enough to determine the exact final explosion energies, one can
expect significantly lower values compared to observations and the results of Bruenn
et al. (2013).

• As the neutron star shrinks quickly and thus, the stalled supernova shock front recedes
by time, the advection timescale in our models is typically very small. Thus, the con-
ditions for efficient SASI growth are favorable and the vivid SASI activity is observed
in our models playing at least a supportive role for initial shock expansion.

However, the growth of large-scale motions of the supernova shock associated with the SASI
could be an effect of the artificial symmetry axis. Will vigorous SASI activity develop in 3D
as well? Could the development of low-order modes of the shock be inhibited because of the
forward turbulent energy cascade in 3D (Hanke et al. 2012)? Will the ` = 1 sloshing mode
turn into a spiral mode when overcoming the artificial symmetry restriction (Blondin & Mez-
zacappa 2007; Fernández 2010)? Will the SASI amplitudes remain lower in 3D as suggested
by Iwakami et al. (2009)? All these questions have to be answered for realistic conditions in
self-consistent core-collapse supernova simulations in three dimensions. Urgently, the success
of our simulation setup enforcing axisymmetry has to be confirmed by simulations without
any symmetry restrictions.

Before moving onward to the discussion of our 3D neutrino-hydrodynamics simulations per-
formed with the Vertex-Prometheus code, we turn now to a short intermediate chapter
presenting further axisymmetric simulations. These models are intended to prove if and how
the results of the simulations presented in this chapter are resolution independent. Further-
more, as a preparation for the 3D simulations, we will justify our slightly changed setup used
for the 3D simulations presented later.
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Figure 3.23: Snapshots of the evolution of model “s12-2007” depicting the entropy per baryon s at
90 ms, 150 ms, 200 ms, 300 ms, 400 ms, and 600 ms after bounce.



4 The Dependence of the Postbounce
Evolution on the Grid Setup in Axisymmetry

In this chapter, we study how the numerical setup influences the postbounce evolution of our
axisymmetric simulations presented so far. In doing so, we both complete the analysis of our
2D simulations and make the transition to our full 3D simulations, which will be discussed
in the next chapters. Our numerical treatment of the explosion mechanism of core-collapse
supernova has to be tested against resolution artifacts. While we have already performed
such tests with simple neutrino source terms in Hanke et al. (2012), a small study with full
neutrino transport is compulsive to determine the effect of changed grid resolution on our
2D models. Furthermore, we aim to justify the small changes of the numerical setup used
for our 3D models, which were necessary to be able to perform the very first self-consistent
three-dimensional simulations of core-collapse supernovae under the restrictions of currently
availabe numerical and computational resources.

4.1 The Influence of Numerical Resolution

In Table 4.1, we summarize the different simulations used for our small resolution study. We
employ three different angular resolutions of 2.05◦ (88 lateral zones), 1.41◦ (128 lateral zones,
applied so far), and 0.70◦ (256 lateral zones), respectively. Additionally, the model with the
best angular resolution is recomputed with an increased number of initially 600 instead of 400
radial zones. As mentioned in Section 3.1, the number of radial zones is increased from time
to time by a numerical refine procedure to ensure a well resolved proto-neutronstar surface
region, where the density gradient steepens with time. Other changed simulation parameters
of model “s27 1dpot10km” will be discussed later in Section 4.2.

Although the same amplitude of perturbation of 0.1% in density is applied on the whole
computational grid as explained in Section 3.1, a perturbation with different grids enforces
arbitrary different wavenumbers of the initial perturbations structures zone by zone. More-
over, the time evolution of the postbounce dynamics for different simulations cannot be the
same, since the hydrodynamic flow behind the supernova shock evolves highly non-linear and
chaotic. However, it is very reassuring that the overall postbounce evolution of all three
models with different angular resolution is very similar. The maximal as well as the average
shock position depicted in Figure 4.1 lies more or less on top of each other for the differently
angular resolved models. Even more promising, the runaway of the supernova shock at the
onset of the explosion happens at exactly the same time. This nearly identical behaviour is
reflected in the perfectly same evolution of the ratio of advection and heating timescale (Fig-
ure 4.3) indicating the readiness of an explosion. Furthermore, the similarity of the models
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Model 1D Core # Ang. zones # Rad. zones Grav. Pot.

s27 1dpot10km 10 km 88 400 1D
s27 normal128 1.7 km 128 400 2D
s27 normal256 1.7 km 256 400 2D

s27 normal256 600r 1.7 km 256 600 2D

Table 4.1: Summary of investigated axisymmetric models with different simulations setups based on
the presupernova model with a ZAMS mass of 27.0 solar masses of Woosley et al. (2002).
For each setup we give the employed size of the inner spherical core, the number of choosen
latitudal and radial zones, as well as the applied version of the gravitational potential
solver.

is indicated by the the time evolution of the expansion of the shock surface into spherical
harmonics displayed in Figure 4.4. The growth of the SASI and the size of the amplitude
of the oscillations evolve very similar, although the detailed oscillation pattern differs due to
the differently imposed perturbations pattern for other resolved models. In the model with
highest angular resolution “s27 normal256” the position of the shock is somewhat larger in
the first two hundred milliseconds (Figure 4.1) also reflected in the slightly higher timescale
ratio in Figure 4.3. Consequently, the total energy deposition in the gain layer by neutrinos
is enlarged for this model as shown in Figure 4.5. Nevertheless, this model does not explode
earlier.

The equivalent outcome of simulations with different angular resolutions strongly consolidates
the conclusions made on the basis of the axisymmetric simulations presented in the previous
Chapter 3.

Contrary, in the study of Hanke et al. (2012) better resolved models explode easier and
faster because the turbulent energy cascade transports energy from small to larger scales.
As argued in Hanke et al. (2012) on the basis of parametrized, simplified models, large-
scale bubbles in the turbulent postshock flow are mainly responsible for shock expansion.
However, in our simulations performed with the Vertex-Prometheus code large-scales mass
motion are induced by strong SASI sloshing motions and rather by convection as discussed
in Section 3.5. That could explain the missing angular resolution dependence opposite to the
simplified models of Hanke et al. (2012).

Let us now turn to the discussion of the effect of an increased radial resolution comparing
the models with 400 radial zones with the additional model “s27 normal 600r” employing an
increased number of 600 radial zones. The shock radius of this model is typically roughly
10 km smaller than all other less resolved models (Figure 4.1). This is a consequence of the
slightly slower shock expansion during the first ∼ 80 ms after core bounce, because of the
smaller neutron star radius of the better resolved model at the beginning of the simulation
(Figure 4.2). Lateron, the size of the neutron star equals for all models, while the gap of 10 km
between the different radially resolved models maintains at least in the first two hundred
milliseconds. Due to the somewhat smaller shock radius and thus the reduced size of the
gain layer, the total energy deposition of neutrinos in the gain layer is reduced (Figure 4.5).
Towards the development of a runaway situation the model evolution diverges. While models
with the standard radial resolution are evolving in a similar way, shock expansion of model
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Figure 4.1: Minimum, maximum, and average
shock radius as function of time after
bounce for models with different an-
gular and radial resolution. Note that
the curves have been smoothed using
a running average over 5ms.
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Figure 4.2: Neutron star radius as function of
time after bounce for models with
different angular and radial resolu-
tion. Note that the curves have been
smoothed using a running average
over 5ms.

“s27 normal 600r” with higher employed radial resolution is obviously delayed compared to
the other models. Once a runaway situation is established, the shock radius of the standard
models depicted in Figure 4.1 starts to rise steeply in contrast to the model “s27 normal
600r”. Similarly, for this model, the criteria for an explosive situation of the postshock region,
the ratio of advection to heating timescale, is increasing continuously, but slowly towards the
critical value of unity, while the timescale ratio of all other models is sharply rising at around∼
330 ms (Figure 4.3). Because of the highly non-linear evolution of the hydrodynamic postshock
flow, a detailed understanding of the delayed explosion with increased radial resolution seems
to be difficult. Nevertheless, one might argue that due to the different initially imposed
density perturbations grow somewhat slower in smaller grid cells. Another reason could
be that the large sloshing SASI motions responsible for shock expansion in our models are
slightly damped because of the reduced cell sizes. Displaying the amplitude of the first SASI
coefficient, Figure 4.4 reflects a somehow smaller shock expansion in a SASI sloshing period,
especially at later postbounce times. While the SASI motions of the models with 400 radial
zones are getting larger and larger leading to the explosion, the SASI amplitude of model
“s27 normal 600r” remains lower delaying shock expansion.

Our finding that improved radial resolution for a fixed angular grid has a negative influence
on the development of an explosion is consistent with the results of Hanke et al. (2012) on
the basis of their strongly simplified models, although they could not obtain fully conver-
gence of the radial resolution in multi-dimensional because of an artificial dependence of their
analytical neutrino terms on the radial zone number.

4.2 A slightly simplified setup

This section is intended to justify the slightly simplified setup used for the three-dimensional
simulations with the Vertex-Prometheus code in the next chapters. To meet the extreme
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Figure 4.3: Time evolution of the ratio of the
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timescale in the gain layer for mod-
els with different angular and radial
resolution. Note that the curves have
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Figure 4.5: Time evolution of the total (time-integrated) en-
ergy deposited in the gain layer for models with
different angular and radial resolution.

compute resource demands of a single self-consistent 3D neutrino-hydrodynamics supernova
simulation the setup of the 2D simulations summarized in Section 3.1 is slightly changed.
Here, the impact of differences in the numerical setup are shortly investigated on the basis of
model “s27 1dpot10km” (see Table 4.1 for the specific changed parameters). In the previous
section investigating the angular resolution dependence we have already checked that the
reduced number of lateral zones does not impact the postbounce evolution (see the similar
evolution of the shock radius in Figure 4.1 and of the runaway criteria in Figure 4.3). Next, the
size of the spherical symmetric inner core of the grid is enlarged to 10 km and could influence
and disturb convective activity in the interior of the neutron star. Numerical tests have shown
that at around 10 km and deeper the neutron star becomes convective stable at least for the
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first 400 ms. Indeed, the strength of convective activity is the same in model “s27 1dpot10km”
and in models with the usually applied very narrow inner 1D core as the time evolution of the
size of the neutron star is exactly the same (Figure 4.2). Thirdly, necessary for performing
3D simulations we assume only monopolar gravity assuming a spherical symmetric stellar
background for calculating self-gravity. One could argue that the large-scale mass motions
associated with the SASI are suffering from a repulsive force connected to the miscalculated
gravitational potential at a certain angular position. Instead, the strength of the SASI sloshing
motions is similar for this model as indicated by the first coefficient of the spherical harmonics
expansion in Figure 4.4 and the overall similar shock oscillations and motions visible in
Figure 4.1. The overall very similar evolution of the slightly simplified model “s27 1dpot10km”
to the models employing the standard setup used so far is very reassuring for performing the
very first 3D neutrino-hydrodynamics supernova simulations with this setup changes (see next
chapter).





5 SASI Activity and Convective Overturn in
Fully Self-consistent 3D Core-Collapse
Supernova Simulations

Currently, the most urgent challenge and goal in core-collapse supernova research is to advance
from 2D to 3D modeling with full neutrino transport and to overcome the artifical symmetry
restrictions imposed so far in sophisticated models due to the tremendous compute time
requirements of a single self-consistent simulation run. The large set of axisymmetric, self-
consistent explosion models presented in the previous chapters is a great success and an
important step forward in core-collapse supernova modeling. We have successfully shown
that the neutrino-driven mechanism is able to launch explosion for a wide range of progenitor
models as indicated by previous studies (Buras et al. 2006b; Marek & Janka 2009; Müller
et al. 2012b,a; Bruenn et al. 2013; Suwa et al. 2010). However, let’s move on in our efforts in
supernova modeling!

Performing the step from 2D to 3D modeling of core-collapse supernovae several points should
be noted and summarized:

• The 2D explosions obtained so far in self-consistent setups presented in the previous
chapters seem to be somehow marginal and are exploding very late, typically several
hundred milliseconds after core bounce.

• Therefore, 3D models are urgently needed to confirm the explosion mechanism suggested
by 2D simulations! Is the driving engine of the current supernova models an artefact of
the artificial imposed symmetry restriction? Can we even get easier and faster explosion
in 3D as suggested for example by Nordhaus et al. (2010)?

• Of course, nature is three dimensional and the 2D models performed so far impose
the constraint of axisymmetry. Thus, the hydrodynamic flow in the supernova core is
forced to a toroidal structure. How will the postshock flow change when the artificial
symmetry restriction is overcome?

• Mainly, as we have already discussed in Hanke et al. (2012) on the basis of simplified,
parametrized supernova models, the turbulent cascade in 3D transports energy from
large to small scales and thus, the turbulent cascade is inverse to 2D. How will the
different energy redistribution in 2D and 3D affect the ability for an explosion?

• In this context, it is an very interesting, open question if the “standing-accretion shock
instability” (SASI; Blondin et al. 2003) also occur in 3D as a supportive aid for the
shock revival as identified in Section 3.5 and e.g. in Marek & Janka (2009).
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Thus, we will focus in this chapter on the development of hydrodynamic instabilities in
the supernova core, convection and the SASI, and then continue the overall question if we
can obtain successful explosions without any symmetry restrictions in comparison to the
exploding counterpart 2D models. Main parts of this chapter have been already presented
in the publication of Hanke et al. (2013) focussing on the 27M� progenitor of Woosley et al.
(2002). In the discussion we will include a second 3D model investigating the 20M� progenitor
of Woosley & Heger (2007).

Up to now most investigations of convection and the SASI in core-collapse supernovae have
relied on axisymmetric (2D) simulations. Three-dimensional (3D) models based on various
approximations for treating neutrino heating and cooling in the supernova core have only
recently become available, but have already sparked a controversy about the development
and mutual interaction of the two instabilities in 3D. Burrows et al. (2012) and Dolence et al.
(2013), who conducted simulations using a simple light-bulb neutrino scheme, were rather
outspoken in classifying the SASI as a subdominant phenomenon in the presence of neutrino
heating. They argued that the violent sloshing motions seen in 2D neutrino-hydrodynamics
simulations may be an artifact of the artificial symmetry assumption and are actually nothing
but 2D convection in disguise. Murphy et al. (2013) also noted that nonlinear convection
theory appears to explain the 3D flow properties of their models without the need of invoking
the SASI as an additional instability. At first glance, these findings seem to be in line with
other 3D studies relying on a similar light-bulb methodology (Iwakami et al. 2008; Nordhaus
et al. 2010; Hanke et al. 2012; Couch 2013) or on a gray neutrino transport approximation with
chosen neutrino luminosities imposed at an inner grid boundary (Wongwathanarat et al. 2010,
2013; Müller et al. 2012c). In contrast, Müller et al. (2012a) demonstrated by self-consistent,
2D, general relativistic (GR) simulations with sophisticated transport that genuine SASI
activity remains possible for sufficiently small shock stagnation radius (caused by high mass
accretion rates in the particular case of a 27M� progenitor of Woosley et al. 2002). This
suggests that details of the conditions may decide about the growth of the SASI, and that
these conditions may not only depend on the properties of the progenitor star but also on
the exact behavior of the stalled shock, which again depends on a reliable treatment of the
neutrino physics. The mentioned 3D models might simply have missed the sweet spot for
SASI growth in parameter space.

Recent Newtonian simulations by Takiwaki et al. (2012, 2013) as well as Couch & O’Connor
(2013); Couch & Ott (2013) and GR simulations by Kuroda et al. (2012) and Ott et al. (2013)
are first, tentative steps to higher sophistication in 3D models, but these works were still fo-
cused on a few progenitors only and employed crude neutrino transport methods with various
simplifications concerning the description of neutrino propagation, of neutrino interactions,
and of the energy dependence of the transport. Ott et al. (2013), using a neutrino leakage
scheme and studying the same 27M� progenitor as Müller et al. (2012a), observed low-level
SASI activity at early times, which was eventually suppressed in models which exploded be-
cause of artificially enhanced neutrino heating. Their neutrino treatment, however, is not
on par with the multi-group ray-by-ray-plus transport of Müller et al. (2012a) and therefore
comparisons with the more sophisticated 2D models of Müller et al. (2012a) should be made
only with great caution and reservation. Applying the same neutrino leakage scheme as Ott
et al. (2013), Couch & O’Connor (2013) are extending the previous work by examining the
development of neutrino-driven convection and the SASI. They found that either stability
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can dominate. In their exploding 3D models the SASI strength is reduced, while in failed
explosions the SASI grows similarly to our 2D models at late times, when the shock radius has
become sufficiently small. Moreover, Couch & Ott (2013) claim that precollapse asphericity
perturbations in the progenitor may be crucial for models at the treshold for an explosion.

In view of the poor exploration of conditions in collapsing stellar cores in 3D so far and
considering the substantial approximations that have been made in 3D supernova simulations
until now, the strong opinions uttered about the dominance of neutrino-driven convection
(Burrows et al. 2012; Murphy et al. 2013; Dolence et al. 2013) and the categorical rejection
of an important role of the SASI in “realistic” 3D supernova models (Burrows 2013) are
disturbing. Actually, it is not overly astonishing that the highly simplified setup investigated
by these authors did not show signs of any pronounced SASI activity. The growth of SASI
modes was clearly disfavored in their models by several aspects. Neglecting neutrino losses
from the neutron star interior (above an optical depth of about unity) and using a relatively
stiff nuclear equation of state the authors prevented the neutron star from shrinking below
∼60 km. Correspondingly, the shock radius remained rather large, in which case the postshock
velocities were relatively small and the advection timescale of the accretion flow through the
gain layer was relatively long. This damped the development of the SASI, whose growth rate
is roughly proportional to the inverse of the advection timescale (cf. Scheck et al. 2008). At the
same time such conditions supported neutrino-driven convection, which preferably develops
in the accretion flow for ratios χ of the advection time to the local buoyancy timescale above
a critical value of χ ≈ 3 (Foglizzo et al. 2006).

Although the theoretical understanding of the growth conditions of the SASI and neutrino-
driven convection is mostly based on linear theory (e.g., Foglizzo et al. 2007; Laming 2007;
Yamasaki & Yamada 2007; Yamasaki & Foglizzo 2008; Guilet & Foglizzo 2012), the predic-
tions were found to be consistent with the behavior seen in 2D hydrodynamic simulations
of accretion shocks in collapsing stellar cores (Scheck et al. 2008) and in full-scale 2D su-
pernova models (Müller et al. 2012a). Similarly, although it is a priori not clear whether
the SASI sloshing motions (Blondin et al. 2003) and spiral modes (Blondin & Mezzacappa
2007; Fernández 2010) observed in adiabatic accretion flows in 2D and 3D, respectively, or in
shallow-water experiments (Foglizzo et al. 2012), are conclusive for phenomena of relevance
in the convectively unstable environment of the neutrino-heated layer, violent bipolar shock
oscillations with SASI-typical characteristics were also identified to determine the evolution
of the stalled supernova shock in some progenitors and preexplosion phases (e.g., Scheck et al.
2008; Müller et al. 2012a). While the phenomenon of the SASI as an advective-acoustic in-
stability is not generically linked to 2D, strong SASI activity has so far not been detected in
full-scale 3D supernova simulations and it was speculated that its amplitude could be reduced
by the kinetic energy being shared between three instead of two dimensions (Iwakami et al.
2008), that the absence of a flow-constraining symmetry axis might disfavor coherent mass
motions of low spherical harmonics modes (Burrows 2013), or that neutrino-driven buoyancy
is generally the fastest growing nonspherical instability in supernova cores (Burrows et al.
2012).

In this chapter, we report about unambiguously identified SASI activity in the first 3D simu-
lations with detailed neutrino transport of the 27M� progenitor model that was investigated
by Müller et al. (2012a) and of the 20M� progenitor discussed in Bruenn et al. (2013). For
these 3D simulations we employed the Vertex-Prometheus neutrino-hydrodynamics code
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with detailed ray-by-ray-plus neutrino transport and the sophisticated treatment of energy-
dependent neutrino interactions presented in Chapter 2 and also applied in previous 2D
simulations with this code (e.g., Buras et al. 2006a; Marek & Janka 2009) and in the 2D GR
models of Müller et al. (2012b,a, 2013). Furthermore, this code has been extensively employed
to perform the large set of 2D simulations presented in Chapter 3. Contrary to the claims
discussed above, our model shows that despite the presence of neutrino-driven convection,
the SASI can grow no less vigorously in 3D (without any coordinate grid-imposed symmetry)
than in 2D as long as small shock radii are maintained because of high mass accretion rates
and guarantee favorable growth conditions. We also observe the development of a clear spiral
mode. SASI shock motions appear to be diminished only when the accretion rate drops after
the Si/SiO shell interface reaches the shock and the shock is able to expand to considerably
larger radii. The variation of the relative strengths of neutrino-driven convection and SASI
sloshing is consistent with experience and understanding based on previous 2D simulations.

5.1 Numerical Methods and Modeling Setup of our 3D Simulations

The calculations of the supernova models in 2D and 3D presented in this chapter were per-
formed with the elaborate neutrino-hydrodynamics code Vertex-Prometheus presented in
Chapter 2. We employ as close as possible the same setup as used for our 2D simulation set
discussed in Chapter 3. Nevertheless, to meet the tremendous computer resource demands
of a single self-consistent 3D neutrino-hydrodynamics supernova simulations the setup of the
2D summarized in Section 3.1 is slightly changed. Firstly, the angular resolution of 1.41◦ is
reduced to 2.05◦, which corresponds to a total number of angular zones of 88× 176 = 15488.
As discussed in Chapter 2 this number is equal to the number of compute cores used in par-
allel for a single model. Since a multi-dimensional simulation run needs several months of
continous computation, this number of compute cores is the upper value currently available
to us on the newest supercomputers. Secondly, in 2D and 3D the size of the spherical sym-
metric inner core of the grid is enlarged to the innermost 10 km to avoid excessive time-step
limitations due to the very small cell sizes at the poles of the 3D spherical polar grid (see
e.g. Hanke 2010). Thirdly, contrary to the models discussed in Chapter 3, in the simulations
presented here, we assume monopolar gravity, but include general relativistic corrections by
means of an effective gravitational potential (Marek et al. 2006, see Section 2.1.2). In 2D
setups we have proven that these small setup changes hardly affect the postbounce supernova
dynamics as discussed in Section 4.2. The corresponding 2D models used for comparison are
modeled exactly with the same setup as employed in the 3D models.

We simulate the evolution of the 27M� progenitor of Woosley et al. (2002), which was
previously investigated by Müller et al. (2012a) and Ott et al. (2013) and of the 20M�
progenitor of Woosley & Heger (2007) studied by Bruenn et al. (2013), both in 2D and in 3D,
using the high-density equation of state (EoS) of Lattimer & Swesty (1991) with a nuclear
incompressibility of K = 220 MeV. Both models have already been discussed in Chapter 3.
The models are computed on a spherical polar coordinate grid with an initial resolution of
nr × nθ × nϕ = 400× 88× 176 (3D) and nr × nθ = 400× 88 (2D) zones. Later, refinements
of the radial grid ensure adequate resolution in the PNS surface region. Seed perturbations
for aspherical instabilities are imposed by hand 10 ms after bounce by introducing random
perturbations of 0.1% in density on the whole computational grid.
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Figure 5.1: Snapshots of phases with convective and SASI activity in the evolution of the 27M�
model at post-bounce times of 154 ms, 223 ms, 240 ms, and 245 ms. The volume rendering
visualizes surfaces of constant entropy: The outer, bluish, semi-transparent surface is the
supernova shock, the red surfaces are entropy structures in the postshock region. The
upper left panel displays mushroom-like plumes of expanding, high-entropy matter that
are typical of neutrino-driven buoyancy. The upper right and both lower panels show
distinctly different entropy structures of dipolar (and quadrupolar) asymmetry, which
engulf the still visible buoyant plumes with their higher-order spherical harmonics mode
pattern. The entropy asymmetries of ` = 1, 2 character are caused by global shock sloshing
motions, which create hemispheric high-entropy shells in phases of shock expansion.
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Figure 5.2: Further snapshots of phases with convective and SASI activity in the evolution of the
27M� model at post-bounce times of 249 ms, 278 ms, 329 ms, and 373 ms. The upper
left panel displays a phase of violent expansion motion towards the upper left corner of
the plot. In the upper right panel at 278 ms the vivid SASI phase is over, the shock is
more spherical again, and the postshock entropy structures correspond to neutrino-driven
plumes. The large high-entropy bubbles are decaying into small mushroom-like plumes
typical of neutrino-driven convection. Both lower panels depict the shrinking surface of
the supernova shock.

5.2 SASI Activity in 3D Models and its Comparison to 2D

While both the SASI and convection can lead to large-scale shock deformations, the SASI is
distinguished by a characteristic oscillatory growth and in its nonlinear stage by the quasi-
periodic, oscillatory nature of the shock motions. In 2D, the artificial symmetry constraint
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Figure 5.3: Snapshots of phases with convective and SASI activity in the evolution of the 20M� model
at post-bounce times of 184 ms, 190 ms, 195 ms, and 211 ms. Analogously to the volume
rendering of the 27M� model surfaces of constant entropy are displayed. The upper left
panel shows the dominance of a large-scale structure of dipolar asymmetry. The upper
right and both lower panels depict the violent sloshing motions of the shock surface,
which is slightly expanding by time. The entropy asymmetries of ` = 1, 2 character is
experiencing a counterclockwise rotation.

and the excitation of large-scale modes by the inverse turbulent cascade could still produce a
quasi-periodic sloshing motion even in convectively-dominated models (Burrows et al. 2012),
and a more refined analysis is necessary to identify the SASI (Müller et al. 2012a). However, in
3D the distinction is much clearer, since large-scale shock deformations caused by buoyancy-
driven convection initially evolve randomly without any identifiable periodicity and then grow
monotonically once they reach a certain threshold amplitude (Burrows et al. 2012). Periodic
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Figure 5.4: Further snapshots of phases with convective and SASI activity in the evolution of the
20M� model at post-bounce times of 218 ms, 232 ms, 291 ms, and 362 ms. The two upper
panels show the continous vivid SASI phase. At 291 ms displayed in the lower left panel
the shock surface reaches is maximal prolongation pushed towards the top edge of the
panel. Depicted in the lower right panel the extension of the shock surface is significant
smaller compared to its maximum. The deformation of the shock is reduced, while the
postshock flow is dominated by small mushroom-like plumes typical for neutrino-driven
convection bubbles.

SASI oscillations and large-scale shock deformations caused by convection can therefore hardly
be mistaken for each other in 3D.

Images of the entropy distribution in the postshock layer of our 3D simulation of the 27M�
progenitor (Figures 5.1 and 5.2) indeed provide a clear hint that both distinctly different
instabilities are at work in the shocked accretion flow around the nascent neutron star. The
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Figure 5.5: Time evolution of the minimum, maximum (solid line), and average (dashed line) shock
radius as function of time after bounce for the 27 M� SN progenitor (left panel) and the
20 M� SN progenitor (right panel). The 3D results (red) are shown together with the
corresponding 2D run (black). Note that the curves have been smoothed using a running
average over 5 ms.

instabilities develop nearly at the same time and are present simultaneously for an extended
period of the simulated postbounce evolution. The first small mushroom-like Rayleigh-Taylor
fingers of neutrino-driven convection become visible around 80–100 ms after bounce to subse-
quently grow stronger and larger in angular size over a timescale of some ten milliseconds. At
about 125 ms p.b. the rising plumes begin to cause shock deformation and a modest amount
of global asphericity of the accretion layer. Until ∼155 ms the activity in the postshock
layer is clearly dominated by neutrino-driven buoyancy (Figure 5.1, upper left panel), but at
t & 155 ms, during a phase of accelerated shock recession, coherent entropy structures show
up first. The corresponding low-mode spherical harmonics pattern clearly differs from the
buoyant mushrooms on smaller angular scales. This phenomenon is associated with shock
oscillations, which quickly amplify to bipolar shock sloshing motions and create characteris-
tic, hemispheric high-entropy shells during phases of fast shock expansion. These half-shells
of shock-heated matter engulf the buoyant bubbles of neutrino-driven convection in deeper
regions (Figure 5.1, upper right and both lower left panels as well as Figure 5.2 upper left
panel). While the sloshing axis initially wanders, it becomes more stable as the SASI sloshing
of the shock further grows in amplitude and violence between ∼195 ms and ∼240 ms. As
a consequence, an expansion of the average shock radius is driven even before the Si/SiO
composition-shell interface arrives at the shock and the mass accretion rate starts to drop
steeply at t ∼ 220 ms (Figure 5.6). The decrease of the accretion rate supports the shock
expansion, in course of which the bipolar, quasi-periodic shock pulsations gain even more
power. At t ∼ 225 ms a spiral mode seems to set in for several revolutions before the aver-
age shock radius reaches its maximum extension at ∼ 250 ms and the SASI sloshing dies off
at t & 260 ms. The presence of large-amplitude spiral motions is reflected by considerable
variations of the mean shock radius between 230 ms and 260 ms. These disappear when the
SASI activity ceases at t ∼ 260 ms (Figure 5.5). Later on, aspherical mass motions in the
postshock layer are dominated again by the buoyant plumes typical of neutrino-driven con-
vection (Figure 5.2, upper right panel and both lower panels). The radius of the shock surface
(Figure 5.5) is now continuously shrinking because of insufficient neutrino heating. Possible
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Figure 5.6: Time evolution of the runaway criterion tadv/theat for the 2D (black) and 3D (red) sim-
ulations and the mass accretion rate of the stellar core at 400 km (blue) as function of
time after bounce. The 27 M� SN progenitor (left panel) and the 20 M� SN progenitor
(right panel) are depicted. The runaway criterion is smoothed using a running average
over 5 ms.

reasons for the failing onset of the explosion in 3D will be discussed later on in Section 5.6.

Let us now turn to the discussion of our second 3D simulation of the 20M� progenitor. Im-
ages of the entropy distribution in the postshock layer (Figures 5.3 and 5.4) further solidates
the insight that both instabilities, the SASI and convection, can develop in the hydrodynamic
postshock flow in a 3D setup. It is another example of a 3D model with strong, violent
SASI activity. Please note that the corresponding 2D run performed with the same, although
slightly changed setup of the 3D model is exploding about 55 ms later than the simulation of
the 20M� progenitor of Woosley & Heger (2007) discussed in Section 3.7 (see also Table 3.1
for the exact parameters at the onset of the explosion). While changing the setup slightly
has no effect for the simulation of the 27M� progenitor setup as proved in Section 4.2), the
crucial growth of a sufficient large high-entropy bubble for triggering the explosion is delayed
in the case of the 20M� progenitor. Similarly, to the simulation of the 27M� progenitor,
first mushroom-like Rayleigh-Taylor finger of neutrino-driven convection develop around 80–
100 ms after bounce. Because of the higher mass accretion rate of this model in the first two
hundred milliseconds after bounce (Figure 5.6) the shock surface is shrinking more rapidly.
Consequently, the subsequently growth of neutrino-driven buoyancy is suppressed, which is
engulfed by a large coherent entropy structure. At t ∼ 170 ms during the phase of fast shock
recession, a low-mode spherical harmonics pattern starts to develop (Figure 5.3, upper left
panel). Noticeable, the bipolar shock oscillations transit to a fast spiral motion of the shock
surface with a counterclockwise rotation (Figure 5.3, upper right and lower left panel). The
SASI sloshing of the shock continues and grows in amplitude by time between t ∼ 170 ms and
t ∼ 290 ms (Figure 5.3, lower right panel and Figure 5.4, both upper panels). This time pe-
riod of active SASI shock oscillations is significantly longer as in the simulation of the 27M�
progenitor. While the shock radius of this model is significantly enlarged at the arrival of
the Si/SiO composition-shell interface at the shock enabling the mass accretion rate to drop
steeply, the shock surface of the 20M� progenitor model depicted in Figure 5.5 is expanding
continuously independently of the arrival of the boundary between the silicon shell and the
oxygen-enriched silicon shell at t ∼ 250 ms (Figure 5.6). At around t ∼ 291 ms (Figure 5.4,
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Figure 5.7: Time evolution of the first coefficient of the spherical harmonics expansion of the shock
surface a1 as function of time after bounce for the 27 M� SN progenitor (left panel) and
the 20 M� SN progenitor (right panel). The 3D results (red) are shown together with the
corresponding 2D run (black). Note that the curves have been smoothed using a running
average over 5 ms.

lower left panel) a large high-entropy bubble pushes the shock surface to its maximal prolon-
gation. At this point the SASI activity ceases similarly to 27M� progenitor model and later
on buoyant mushrooms are dominating the convective flow behind the shrinking supernova
shock surface (Figure 5.4, lower right panel).

This verbal description of the dynamical evolution of the postshock accretion layer is sup-
ported by a detailed analysis based on several time-dependent parameters that quantify the
characteristic features of SASI activity. To this end we perform a time-dependent decompo-
sition of the angle-dependent shock position rsh(θ, ϕ) into spherical harmonics Y m

` :

am` =
(−1)|m|√
4π (2`+ 1)

∫
Ω
rsh(θ, ϕ)Y m

` (θ, ϕ)dΩ . (5.1)

Here the Y m
` are real spherical harmonics with the same normalization as used by Burrows

et al. (2012) and Ott et al. (2013). The orthonormal harmonic basis functions are

Y m
l (θ, φ) =


√

2Nm
l P

m
l (cos θ) cosmφ m > 0 ,

N0
l P

0
l (cos θ) m = 0 ,

√
2N
|m|
l P

|m|
l (cos θ) sin |m|φ m < 0 ,

(5.2)

where

Nm
l =

√
2l + 1

4π

(l −m)!

(l +m)!
, (5.3)

Pml (cos θ) are the associated Legendre polynomials, and θ and φ are the spherical coordinate
angles. With this choice of basis functions, the coefficients with ` = 1 give the angle-averaged
Cartesian coordinates of the shock surface,

a−1
1 = 〈ysh〉 =: ay, a0

1 = 〈zsh〉 =: az, a1
1 = 〈xsh〉 =: ax, (5.4)
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Figure 5.8: Time evolution of the rms shock deformation σ as function of time after bounce for the
27 M� SN progenitor (left panel) and the 20 M� SN progenitor (right panel). The 3D
results (red) are shown together with the corresponding 2D run (black). Note that the
curves have been smoothed using a running average over 5 ms.

and a0
0 is just the average shock-radius 〈rsh〉. For axisymmetric 2D setups, the coefficients am`

for the decomposition of the shock surface into spherical harmonic components reduce to the
ones given already in Eq. (3.17).

The time evolution of the coefficients ax, ay (3D), and az (3D and 2D) is shown in Figure 5.7
for the 27M� progenitor (left panel) and the 20M� progenitor (right panel). Discussing first
the 27M� progenitor case, both in 2D and in 3D, the shock surface clearly oscillates in a quasi-
periodic manner until ∼260 ms after bounce, i.e. until shortly after the Si/SiO shell interface
has reached the shock and the accretion rate has dropped considerably between ∼220 ms and
240 ms p.b. The lower accretion rate results in a pronounced expansion of the average shock
radius (Figure 5.5), which initially is stronger in 3D. However, the 2D model maintains large
(albeit less regular) shock oscillations, with the average shock radius eventually overtaking
the 3D model at ∼300 ms when an explosion develops (i.e. somewhat later than in the GR
simulation of Müller et al. 2012a). However, it is not clear whether this difference or how
much of this difference is caused by GR effects, because the models in the present paper were
simulated with a slightly different treatment of the low-density equation of state, which led
to a significant delay (∼35 ms) of the infall of the silicon layer and a correspondingly later
arrival of the Si/SiO shell interface at the shock. By contrast, the shock continues to recede
in the 3D run. The more optimistic evolution of the 2D model compared to the failing 3D
model at late stages is consistent with the findings of Hanke et al. (2012), and could be due
to the action of the inverse turbulent energy cascade, which continues to feed energy into
large-scale modes in 2D.

Inspecting now the SASI activity of the 20M� progenitor model, Figure 5.7 displays at
first glance the discussed differences in the postbounce evolution of both 3D models. The
decomposition of the shock surface reflects the faster growth of SASI activity to its maximal
strength until ∼190 ms and later on the large shock surface oscillations in a quasi-periodic
manner in the 3D simulation of the 20M� progenitor is maintained for a long time period.
Similarly to the 27M� progenitor run, the shock expansion becomes even more favorable
for the 3D run until ∼290 ms after bounce. However, in the 2D case of this model shock
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Figure 5.9: Kinetic energy of lateral mass motions in the gain layer as function of time after bounce
for the 27 M� SN progenitor (left panel) and the 20 M� SN progenitor (right panel). The
3D results (red) are shown together with the corresponding 2D run (black). Note that the
curves have been smoothed using a running average over 5 ms.

oscillations become also less regular, nonetheless maintain large to push the shock outwards
driving the explosion. The SASI activity of the 3D model ceases resulting in a shrinking shock
surface. Thus, although the specific time evolution of the SASI activity is different due to
the respective progenitor structure, the 3D run of 20M� progenitor confirms the possibility
of developing strong SASI activity in 3D environment.

However, the evolution of the two simulations of the 27M� progenitor prior to the infall of
the Si/SiO interface is remarkable: While the amplitude of the ` = 1 mode is initially larger
in 2D, the individual components ax, ay, and az of the ` = 1 amplitude vector in 3D become
comparable to az in 2D around 200 ms, and ax even reaches considerably bigger values.
During this phase, the SASI is undoubtedly stronger in 3D than in 2D. A similar evolution
of stronger SASI activity in 3D can be detected for the 20M� progenitor, although after the
infall of the Si/SiO interface. Shortly before reaching the maximal expansion of the shock
surface at ∼290 ms after bounce the individual components of the ` = 1 amplitude vector in
3D even larger as az in 2D. Especially, the amplitude of ay is clearly larger at this phase in
time evolution.

Further confirmation of this assessment is provided by the root-mean-square deviation σ(rsh)
of the shock radius from its average value (Figure 5.8):

σ =

√
(4π)−1

∫
(rsh(θ, ϕ)− 〈rsh〉)2 dΩ (5.5)

For reasonably small amplitudes, σ is also a measure for the total power of SASI amplitudes
with different `:

σ ≈

√√√√ ∞∑
`=1

∑̀
m=−`

|am` |2 . (5.6)

Indeed, the size of shock deformation of both 3D models is larger compared to the 2D runs
during the respective phases of stronger SASI activity, between 220 ms and 240 ms after
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Figure 5.10: Power spectra of vϕ of the 27M� 3D model sampled between r = 63 km and 80 km at
post-bounce times of 222 ms (black) and 259 ms (red). At 222 ms, the strong SASI pro-
duces a distinctive peak at l = 1, which is absent during the later, convection-dominated
phase.

bounce at the infall of the Si/SiO interface for the 27M� progenitor and between 240 ms and
280 ms after bounce for the 20M� progenitor while strongest SASI activity.

The same picture emerges when we consider the kinetic energies Eθ and Eϕ associated with
motions in the θ- and ϕ-directions in the gain region,

Eθ =
1

2

∫
Vgain

ρv2
θ dV, Eϕ =

1

2

∫
Vgain

ρv2
ϕ dV. (5.7)

As shown in Figure 5.9, the total energy contained in non-radial motions of the 3D simulations
of the 27M� progenitor is also larger than in the corresponding 2D run during the relevant
phase around ∼230 ms. In the period of continuous increase of the SASI amplitude in the
3D model between t ∼ 155 ms and ∼ 240 ms, the kinetic energy grows and σ exhibits quasi-
periodic modulations signaling the shock sloshing motions. In the phase of a higher shock
deformation in 3D compared to 2D, the angular kinetic energies is also higher for the 27M�
progenitor. Most interestingly, the other 3D simulation of the 20M� progenitor experiences
a very long time period between t ∼ 220 ms and ∼ 310 ms of higher angular kinetic energies
indicating more vivid SASI and convective activity in the 3D run compared to the 2D model.
While the angular kinetic energies of the 2D models of both progenitors increases continuously
towards the explosion, the ongoing decrease of the respective kinetic energies of non-radial
motions in the 3D simulations reflects the insufficient turbulent mass motions behind the
shock.

Interestingly, during the phase of strongest SASI activity we find rough equipartition between
the kinetic energies of non-radial motions Eθ+Eϕ, and the energy Er contained in fluctuating
radial velocities,

Er =
1

2

∫
Vgain

ρ (vr − 〈vr〉)2 dV, (5.8)

where 〈vr〉 is the angle-averaged radial velocity. This equipartition is apparently not a unique
feature of buoyancy-driven turbulence (cf. Murphy et al. 2013), at least not as far as these
volume-integrated quantities are concerned.
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Figure 5.11: Time evolution of stability parameter χ for the gain layer as function of time after bounce
for the 27 M� SN progenitor (left panel) and the 20 M� SN progenitor (right panel). The
3D results (red) are shown together with the corresponding 2D run (black). Note that
the curves have been smoothed using a running average over 5 ms. During most of the
time χ < 3. This suggests conditions in the postshock accretion flow which disfavor the
growth of neutrino-driven convection relative to the development of the SASI in analogy
to the 2D model of 27 M� SN progenitor discussed by Müller et al. (2012a). Indicating
convective activity the threshold value χ = 3 is exceeded in the phase of largest shock
expansion and strongest SASI activity in both models.

A clear difference between SASI dominated and convection dominated phases of the 27M�
3D model can be observed in the power spectrum of the azimuthal velocity vϕ as a function of
multipole order `. Figure 5.10 shows the spectra for the 27M� progenitor case during a SASI
active phase (222 ms p.b.) compared to the later time (259 ms) when the SASI motions cease
and convective plumes with their higher-order multipole pattern determine the asphericities
in the postshock region again. The power spectra are evaluated with Equation (8) of Hanke
et al. (2012) for vϕ (weighted with the square root of the density) integrated over a radial
region between 63 km and 80 km. The presence of the SASI low-mode deformation at 222 ms
leads to a prominent peak of the power spectrum at low multipole orders, which is absent in
the later spectrum.

In the case of the 27M� progenitor, the shock deformation and SASI amplitude moderately
increase as the shock retreats between ∼100 ms and 200 ms p.b. (The same is true for the
specific nonradial kinetic energy in the gain layer, although the kinetic energy decreases
temporarily because of the decreasing mass in the gain region.) It is noteworthy that the
few tens of milliseconds of stronger SASI activity in the 3D model of the 27M� progenitor
coincide with a phase of more rapid shock expansion than in 2D. Conceivably, the more
energetic SASI motions provide a stronger push against the pre-shock ram pressure. A close
examination of the 〈rsh〉 in Figure 5.5 shows that some (oscillatorily modulated) SASI-aided
shock expansion seems to set in around 190 ms, i.e. already before the rapid drop of the
preshock mass-accretion rate that begins at ∼220 ms. Therefore one might speculate that
with slightly more time available for the growth of the SASI, the extra support by nonradial
SASI motions might have driven the 3D model over the threshold for a neutrino-powered
runaway expansion of the shock after the infall of the Si/SiO interface.
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Figure 5.12: Snapshot of the entropy (color coded according to color bar at the upper left corner, in
units of Boltzmann’s constant kb per nucleon) in the plane through the origin normal
to the vector n = (−0.35, 0.93, 0.12) at a post-bounce time of 152 ms in the 27M� 3D
model. The high-entropy plumes with high-order spherical harmonics pattern suggest
buoyancy-driven convective overturn of neutrino-heated matter.

The case of the 20M� progenitor provides more insight for such a speculation. In this 3D
model the conditions for longer growth of the SASI are fulfilled. Nonradial mass motions set
in earlier and cease later than in the 27M� progenitor model reflected in a more continuous
growth of the average radius 〈rsh〉 in Figure 5.5. The rms shock deformation depicted in
Figure 5.8 remains for a much longer time period at least on the level of the corresponding
2D run. Nevertheless, the SASI activity ceases similarly to the 27M� progenitor model.
Because of the inverse dependence of the SASI growth conditions to the shock radius and
thus the advection timescale (see Section 3.5 in the discussion of our set of 2D models),
we argue that SASI activity dies, when the shock attempts to enlarge to radii more than
around 200 km. Later on, we aim to discuss possible reasons why our 3D models are failing in
Section 5.6. With respect to the outcome of our two 3D simulation runs based on progenitors
incorporating a rapid drop of the preshock mass-accretion rate connected to the arrival of a
strong Si/SiO composition-shell interface, an interesting question is indeed the investigation
of further progenitor models. For example, the 15M� progenitor of Woosley & Heger (2007)
as discussed in Section 3.7 does not incorporate a significant drop of the mass accretion rate
at the arrival of the Si/SiO composition-shell interface (see Figure 3.21 for the respective
2D run) and thus, violent SASI activity could be maintained sufficiently long to act against
the higher pre-shock ram pressure. The effect of such a different progenitor structure on the
postbounce evolution of a 3D model remains to be investigated by future simulations.

Quite remarkably, the SASI is not only able to reach larger amplitudes in 3D than in 2D as
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Figure 5.13: Snapshot of the entropy (color coded according to color bar at the upper left corner, in
units of Boltzmann’s constant kb per nucleon) in the plane through the origin normal
to the vector n = (−0.56,−0.82,−0.20) at a post-bounce time of 171 ms in the 20M�
3D model. The absent of strong high-entropy plumes and the bipolar shock deformation
indicates SASI domination of neutrino-heated matter at the early evolution phase of the
20M� 3D model.

long as its growth conditions remain favorable, but it is even found to develop despite some
earlier convective activity. Already introduced in Section 3.5 for our set of 2D simulations,
Figure 5.11 displays the critical parameter χ for the growth of convection as evaluated from
spherically averaged stellar quantities in the gain layer of our 3D simulation of the 27M�
and the 20M� progenitor models according to Equation (3.19). Despite χ < 3 (Figure 5.11),
however, convection develops around 80 ms after bounce in both of our 3D simulations. This
happens because convective activity is not only seeded by the artificially imposed, random
density perturbations of 0.1% amplitude (cf. Sect. 5.1) but also by numerical perturbations
along the axis of the computational polar grid in one hemisphere, which we are not able to
damp perfectly. Although still small, these numerical effects are sufficiently large to trigger
the rise of a buoyant plume against the advection flow, which instigates further perturbations
that exceed the linear regime. In this case convection can be initiated although χ < 3
signals stability according to linear analysis (Foglizzo et al. 2006). We note in passing that
the level of seed perturbations was smaller and well compatible with linear theory in the
2D models of Müller et al. (2012a), and we also emphasize that the axial perturbations
have a noticeable effect only in the early growth phase of convection whereas no significant
axial artifacts or alarming flow perturbations near the polar axis can be observed during the
later phases of fully developed nonradial flow activity in the postshock flow (see Figures 5.1
and 5.2 for the 27M� model and Figures 5.3 and 5.4 for the 20M� progenitor). Most
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noticeably, in line with the discussion of the driving hydrodynamic instabilities emerging in
our 2D simulations in Section 3.5, the critical parameter exceeds the threshold value χ = 3
for convective activity in the phase of largest shock expansion and strongest SASI activity
triggering secondary convection (see Section 3.5 and e.g. Scheck et al. 2008). While the
condition χ > 3 remains fulfilled for the 2D models towards the explosion, the respective
value for the 3D models drops below the threshold value again emphasizing the important
supportive role of convective activity for driving. Once strong SASI and convective mass
motions have developed in the flow, the supernova core contains a noise level so high that
a subsequent decline of χ below the critical threshold of ∼3 does not imply that convective
activity is unable to continue (Müller et al. 2012a). However, it is questionable if the turbulent
motion of our 3D models is strong enough for enlarging the shock surface. By trend, the
postshock flow is dominated by a progressing fragmentation of the flow with small mushroom-
like plumes typical for neutrino-driven convection bubbles (lower right panel of Figure 5.2 for
the 27M� model and of Figures 5.4 for the 20M� progenitor, respectively), while flows on
the largest-possible scale are actually responsible for shock expansion (Hanke et al. 2012).

Investigating the 27M� progenitor model, Figure 5.12 shows a snapshot of the entropy in a
2D slice at 152 ms. Here, the post-shock flow is still dominated by multiple, intermediate-scale
plumes as familiar from buoyancy-driven convection. SASI shock sloshing becomes strong and
temporarily dominant only afterward. The argument that any convective activity arising from
sufficiently large seed perturbations will quench the SASI thus seems to be invalid. However,
the 20M� model evolves somewhat different in the early postbounce evolution. Figure 5.13
shows analogously to Figure 5.12 a snapshot of the entropy in a 2D slice at 171 ms for
the 20M� progenitor model. Here, the post-shock flow is dominated by strong SASI shock
sloshing motions and convection plumes are almost absent. Only lateron convection increases
as a consequence of the SASI when the shock expands due to strong SASI shock motion
at 200 ms. Thus, this model provides an example of a vivid SASI growth despited any
earlier convective activity much clearer than 27M� progenitor case. Thus, the competition
between convection and the SASI is obviously more subtle than a superficial reading of recent
papers (Burrows et al. 2012; Murphy et al. 2013; Müller et al. 2012b; Ott et al. 2013) might
suggest. Some relevant aspects of the competing growth conditions and interaction of the two
instabilities were discussed on the basis of 2D supernova simulations by Scheck et al. (2008).

5.3 The Spiral Mode of the SASI

While the SASI is limited to a sloshing motion along the symmetry axis in 2D, there is
the possibility of a spiral mode in 3D (Blondin & Mezzacappa 2007; Iwakami et al. 2009;
Fernández 2010), which could provide a means for angular momentum separation between
the PNS and the ejecta, and might also have different saturation properties in the non-linear
phase. In this context, based on an analysis of the models of Fernández (2010), Guilet &
Fernández (2013) derived an analytical description of the angular momentum redistribution
driven by a spiral mode of the SASI.

Detecting the spiral mode is not straightforward, as the time evolution of the coefficients
am` needs to be taken into account. Merely computing the coefficients with m 6= 0 is not
sufficient. In principle, spiral and sloshing modes can be disentangled by a Fourier analysis
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Figure 5.14: Evolution of the ` = 1 amplitude vector a1 for the 27M� simulation from three different
viewing angles. Different colors are used for the phase up to 177 ms (yellow), the phase
of strong SASI sloshing activity (magenta, up to 225 ms), clearly developed SASI spiral
motion (blue, up to 265 ms), and the late, SASI-quiet phase (red). The arrows indicate
the vector n = (−0.35, 0.93, 0.12) and its counter-vector perpendicular to the rotational
plane of the SASI (see also Figure 5.15). Note that the transition from SASI sloshing to
spiral behavior is gradual (and associated with a strong growth of the angular momentum
in the gain layer; Figure 5.17), and the color coding is based on eye inspection rather
than a precise definition.

of am` (t) (Iwakami et al. 2008) if they remain stable over several oscillation periods. We use
a somewhat different approach to visualize the character of the ` = 1 mode in our 3D model
of the 27M� progenitor here. The coefficients am1 can be combined into a vector,

a1 = (a1
1, a
−1
1 , a0

1) = (ax, ay, az), (5.9)

which is a rough measure of the angle-averaged displacement of the shock center from the
origin and also indicates the direction and amplitude of the shock deformation (neglecting
modes with higher `). We visualize the time evolution of this amplitude vector in 3D space
in Figure 5.14 with different colors of the trajectory indicating different phases of the 27M�
progenitor simulation.
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Figure 5.15: Snapshots of the rotational velocity around the origin in the plane perpendicular to
n = (−0.35, 0.93, 0.12) at post-bounce times of 224 ms, 228 ms, 241 ms, and 246 ms during
the 3D simulation of the 27M� progenitor. Red and yellow (positive velocity values)
correspond to counterclockwise rotation.

Once the SASI starts to grow vigorously (blue curve), a1 initially moves along a narrow ellip-
tical path with growing semi-major axis, indicating a predominant sloshing mode. Towards
the phase of strongest SASI activity, the trajectory becomes more circular, signaling the tran-
sition to a spiral mode. The plane of the spiral remains relatively stable until the maximum
amplitude is reached and the SASI dies down again. It is roughly perpendicular to the vector
n = (−0.35, 0.93, 0.12), i.e. there is no alignment with the axis of the spherical polar grid.
Figure 5.14 also further illustrates the different behavior during the “SASI-dominated” phase
compared to the earlier and later “convectively-dominated” phases, during which a1 evolves
in a more random fashion.

Slicing the 27M� progenitor model along the plane in which a1 predominantly moves allows
us to visualize the distinctive spiral mode pattern, as shown in Figure 5.15. The snapshots of
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Figure 5.16: Snapshots of the rotational velocity around the origin in the plane perpendicular to
n = (−0.56,−0.81,−0.20) at post-bounce times of 191 ms, 196 ms, 200 ms, and 204 ms
during the 3D simulation of the 20M� progenitor.

the rotational velocity around the “axis” of the spiral mode (in the plane through the origin
perpendicular to that axis) reveal two counter-rotating regions. While these regions are
initially of comparable size, the flow in the counter-clockwise direction eventually dominates,
and the rotation of the mode pattern with a continuously shifting triple point can clearly be
seen.

Analogously, in the simulation of the 20M� progenitor model a pronounced spiral mode pat-
tern develops, which lies in the plane roughly perpendicular to the vector n = (−0.56,−0.82,−0.20).
As depicted in Figure 5.16 the snapshots of the rotational velocity around the “axis” of the
spiral mode and indicates an earlier growth of the spiral mode in this model. Thus, the
spiral model develops simultaneously to the sloshing mass motions instead of the transition
of sloshing into spiral motions in the 27M� progenitor model. Between the onset of SASI
activity at t ∼ 170 ms and the arrival of the Si/SiO composition-shell interface at the shock
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Figure 5.17: Time evolution of angular momentum components Lx, Ly, and Lz, and of the absolute
magnitude |L| of the total angular momentum contained in the gain region of the 27 M�
SN progenitor (left panel) and the 20 M� SN progenitor (right panel). Note that the
curves have been smoothed using a running average over 5 ms.

(Figure 5.6) (especially at postbounce times displayed in Figure 5.16) the spiral mass motions
rotate very fast and are much longer active than in the 27M� progenitor model.

During the short phase of strong SASI activity, angular momentum separation by the spiral
mode proceeds very efficiently, transferring a total angular momentum of ∼ 5× 1046 erg s for
the 27M� progenitor model and ∼ 10×1046 erg s for the 20M� progenitor model into the gain
region (Figure 5.17). As expected, the angular momentum separation maintains much longer
and is even stronger for the 20M� progenitor model indicating more vivid SASI activity in
this case. In both models, the direction of the angular momentum vector is extremely similar
to the normal vector of the spiral plane. However, all the angular momentum is eventually
advected out of the gain region after the SASI has died down.

5.4 Revival of SASI Activity

After reporting, for the first time, about unambiguously identified SASI activity in a 3D
simulation with detailed neutrino transport in Hanke et al. (2013), we have continued the
3D run of the 27M� progenitor to later postbounce times. As indicated in Figure 5.5 after
reaching its maximum extension at ∼ 250 ms the average shock radius is continuously shrink-
ing because of the missing support of SASI activity and insufficient neutrino heating. The
postshock region is dominated by small buoyant mushrooms (Figure 5.18, upper left panel).
At around ∼ 430 ms an interesting development in the time evolution of the postshock dy-
namics sets in. The supernova shock surface stops to shrink. As discussed in Section 3.5
the growth conditions for SASI activity become more and more favorable with a shrinking
supernova shock radius. Indeed, coherent entropy structures of dipolar asymmetry are devel-
oping, which engulf the still visible buoyant plume (Figure 5.18, upper right panel). Similar
to the 20M� progenitor case, as indicated by the following snapshots in Figure 5.18 (both
lower panels) and in Figure 5.19 (upper left panel) an obvious fast spiral SASI mode is form-
ing, which is again separating angular momentum (Figure 5.17). After some time, the spiral
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Figure 5.18: Snapshots of the first phase with revid SASI activity in the evolution of the 27M�
progenitor at post-bounce time of 415 ms, 428 ms, 435 ms, and 441 ms. As previously,
the same volume rendering visualizing surfaces of constant entropy is ued. The upper left
panel displays the significantly shrinked postshock region dominated by small buoyant
mushrooms. The upper right and both lower panels show coherent entropy structures
of dipolar asymmetry, which engulf the still visible buoyant plume and turn into spiral
moss motions.

mode induces additionally a sloshing motion of the supernova shock surface (Figure 5.19,
upper right panel) pushing its radius to larger values again (Figure 5.5). The revived SASI
activity is reflected in a corresponding increase of the kinetic energy into angular directions
(Figure 5.9) and of the deformation of the shock surface (Figure 5.8). Quantitatively, the
amplitudes of the respective SASI coefficients are already growing again before low-mode
entropy structures are showing up in the snapshots (Figure 5.7) indicating that the shrinked
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Figure 5.19: Further snapshots of the first phase with revid SASI activity in the evolution of the 27M�
progenitor at post-bounce time of 445 ms, 457 ms, 466 ms, and 481 ms. The upper left
panel depicts the still active SASI sloshing and motions, while in the upper right panel
the shock surface reaches its maximum extension and the SASI ceases of. In the lower
left panel convectivion is dominating again and in the lower right panel the postshock
region is reduced again.

postshock region provides favorable conditions for the observed SASI revival. However, as the
shock is pushed out with an absolute increase of ∼35 km by sloshing motions, SASI activity
ceases once more (Figure 5.19, lower left panel). Afterwards, convection dominates and the
size of the postshock region is reduced again (Figure 5.19, lower right panel). Continuing the
simulation of this model further, the shock radius is reduced so far that a new phase SASI
spiral and sloshing motions sets in, which dies again analogously to the first phase of revived
SASI activity. Finally, we follow the hydrodynamic evolution of the supernova core even into
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a third phase with an increasing and again shrinking shock surface and revived SASI activ-
ity. We argue that this interesting behavior of the postshock flow recurs repeatedly at later
postbounce times, but is never sufficient for pushing out the shock far enough.

At the termination of the simulation of the 20M� progenitor (∼ 425 ms after bounce) a
similar behavior can be observed. In the last ten milliseconds the shock surface starts to
expand again because of revived SASI sloshing and particularly spiral motions. While the
once again active SASI is not yet reflected in an increase of the respective SASI coefficients
(Figure 5.7), the deformation of the shock surface (Figure 5.8) as well as the kinetic energy in
angular directions (Figure 5.9) is already larger. Unfortunately, because of limited availability
of computer time resources, a phase of revived SASI activity could be not tracked completely.

5.5 Runaway Conditions and Explosion Indicators

As discussing the outcome of our set of 2D simulations in Section 3.3 favorable conditions
of the gain layer can be determined by ratio τadv/τheat (Janka 2001; Thompson et al. 2005;
Fernández 2012). This runaway criterion is depicted in Figure 5.6 and reflects the different
evolution of 2D and 3D runs of the 27 M� SN progenitor and the 20 M� SN progenitor. Prior
to the infall of the Si/SiO shell interface through the shock the hydrodynamic conditions in
the postshock flow are similar, while afterwards both progenitor models are more optimistic
for ∼80 ms in the 3D case. The timescale ratio of 20 M� SN progenitor reaches 0.8 and
thus is close to the critical value of unity in 3D. However, lateron both 3D models become
continuously more pessimistic, while the 2D models exceed the threshold criteria and go on
to explode.

Favorable conditions for an explosion are directly connected with the strength of SASI activity
in our models. Large-scale mass motions associated with sloshing and spiral shock motions
can stabilize the amount of mass in the gain layer (Figure 5.20, bottom panels), stopping
the contraction of the shock surface at t ∼ 210 ms for the 27M� progenitor model and at
t ∼ 170 ms for the 20M� progenitor model. At this point SASI activity allows more mass in
the gain layer to be accumulated by pushing the shock outwards and thus extending the gain
layer. Since the SASI is even stronger in 3D (Figure 5.7), the content of mass between the
gain radius and the shock surface that can be heated by neutrino energy deposition becomes
larger compared to 2D. While initially the extension of the shock surface is larger in 2D for
the 20M� progenitor model, the amount of mass can be maintained in 3D for more than
100 ms and thus, more mass is exposed to neutrino heating than in 2D in this time period.
As we observed in Hanke et al. (2012) in a parametric study, the postshock volume of models
closer to an explosion is more extended and thus the accumulated mass behind the shock
surface is higher. This is a further support that our 3D models are at least for certain periods
of time more favorable than the corresponding 2D run. However, when the SASI dies off (see
Section 5.2), the shock radius and the gain layer shrinks. On the contrary, at the onset of the
explosion more and more mass is accumulated behind the expanding shock surface in the 2D
case.

The effect of the different strength of SASI activity on the situation of the gain layer in 2D
and 3D is reflected similarly by the time matter can stay in the gain layer, i.e. the dwell time



84
5. SASI Activity and Convective Overturn in Fully Self-consistent 3D

Core-Collapse Supernova Simulations

0.1 0.2 0.3 0.4 0.5
time after bounce [s]

0

10

20

30

40

50

60

70

h
ea

ti
n

g
 t

im
es

ca
le

 [
m

s]

s27.0 2D
s27.0 3D

0.1 0.2 0.3 0.4
time after bounce [s]

0

10

20

30

40

50

60

70

h
ea

ti
n

g
 t

im
es

ca
le

 [
m

s]

s20-2007 2D
s20-2007 3D

0.1 0.2 0.3 0.4 0.5
time after bounce [s]

0

5

10

15

20

25

a
d

v
e
c
ti

o
n

 t
im

e
sc

a
le

 [
m

s]

s27.0 2D
s27.0 3D

0.1 0.2 0.3 0.4
time after bounce [s]

0

5

10

15

20

25

a
d

v
e
c
ti

o
n

 t
im

e
sc

a
le

 [
m

s]

s20-2007 2D
s20-2007 3D

0.1 0.2 0.3 0.4 0.5
time after bounce [s]

0

2

4

6

8

10

m
as

s 
in

 g
ai

n
 l

ay
er

 [
1

0
-3

 M
  

]

s27.0 2D
s27.0 3D

0.1 0.2 0.3 0.4
time after bounce [s]

0

2

4

6

8

10

m
as

s 
in

 g
ai

n
 l

ay
er

 [
1

0
-3

 M
  

]

s20-2007 2D
s20-2007 3D

Figure 5.20: Time evolution of diagnostic quantities for the conditions in the gain layer for the 27 M�
SN progenitor (left panel) and the 20 M� SN progenitor (right panel). The 3D results
(red) are shown together with the corresponding 2D run (black). The heating timescale
(top), the advection timescale (middle), and the mass in gain layer (bottom) are shown.
Note that the curves have been smoothed using a running average over 5 ms. The advec-
tion timescale as well as the mass in the gain layer evolves more optimistic in 3D case
for some time after the arrival of the Si/SiO composition-shell interface at the shock.

of matter, since a larger value of τadv correlates with a higher mass Mgain as τadv ≈Mgain/Ṁ
holds (see Section 3.3 and cf. Marek & Janka 2009). As depicted in Figure 5.20 (middle
panels) indeed the dwell times of matter in the gain layer are longer for certain periods in our
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Figure 5.21: Time evolution of the total (time-integrated) energy deposited in the gain region (upper
panel) and of the total energy loss (lower panel) for the 27 M� SN progenitor (left panel)
and the 20 M� SN progenitor (right panel). The 3D results (red) are shown together with
the corresponding 2D run (black). After the 2D models start to explode the corresponding
2D and 3D curves diverge.

3D simulations after the respective arrival of the Si/SiO shell interface at the shock.

While the dynamics of the postshock flow are substantially different in 2D and 3D, interest-
ingly, both in 2D and in 3D, neutrinos are heating up the gain layer and cooling the region
in front of the neutron star each with the same strength as depicted in Figure 5.21. Merely,
after the 2D models develop an explosion, neutrino heating in 2D is stronger because of a
smaller gain radius, where neutrino-energy deposition is maximal. Since the neutrino energy
deposition rate scales with Lνe 〈Eνe〉

2 according to Equation 3.9 noted in the discussion of
our set of 2D models in Section 3.3, the equal strength of neutrino heating is reflected in a
very similar time evolution of the neutrino luminsosity and mean energy shown in Figure 5.22
and Figure 5.23 for both progenitors. Both curves of each neutrino quantity are lying per-
fectly on top of each other prior to the explosion of the 2D models. Accordingly, the heating
timescale (Figure 5.20, upper panels) evolves similar in 2D and 3D and no effect of avoiding
the artificial symmetry restriction can be detected.

Finally, we want to stress that the late time periods of revived SASI activity discussed in
Section 5.4 are too weak for pushing the shock outwards because of the very small amount
of mass that can be heated up by neutrinos and the very small dwelling time of matter in
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Figure 5.22: Time evolution of the neutrino luminosities (νe solid, ν̄e dashed, and νµ/τ dashed-dotted)
as function of time after bounce for the 27 M� SN progenitor (left panel) and the 20 M�
SN progenitor (right panel). The 3D results (red) are shown together with the corre-
sponding 2D run (black). Note that the curves have been smoothed using a running
average over 5 ms. Until the onset of explosion of the 2D models, the neutrino lumi-
nosities evolve equally in 2D and 3D for both progenitors. Afterwards, the neutrino
luminosities for the 2D models is reduced, while they remain almost constant in the 3D
case.
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Figure 5.23: Time evolution of the neutrino mean energies (νe solid, ν̄e dashed, and νµ/τ dashed-
dotted) as function of time after bounce for the 27 M� SN progenitor (left panel) and
the 20 M� SN progenitor (right panel). The 3D results (red) are shown together with the
corresponding 2D run (black). Note that the curves have been smoothed using a running
average over 5 ms. Until the onset of explosion of the 2D models, the neutrino mean
energies evolve equally in 2D and 3D for both progenitors. Afterwards, the increase of
the mean energies for the 2D model is reduced, while they rise steadily in the 3D case.

the gain layer. Thus, at very late times of our 3D simulations neutrino heating cannot be
sufficient anymore to heat enough matter for a powerful shock expansion.
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5.6 Turbulent Mass Motions and the Rise of Buoyant Plumes

Let us now turn to the most important issue in the two presented 3D simulations of the 27M�
and the 20M� progenitor: The failure of an explosion in 3D. While the corresponding 2D
simulations can maintain shock expansion even at larger shock radii towards developing an
explosion, there is a fixed distance from the center of the supernova core at around 220 km for
both models, which cannot be passed by the 3D shock surface. At this radius SASI activity
ceases in 3D, because the advective-acoustic time of a SASI cycle scales with the advection
time (Foglizzo et al. 2007), which increases for an extended shock surface and a higher amount
of accumulated matter in the gain layer (Figure 5.20). The advective-acoustic cycle breaks
down when pushing the shock sufficiently far out (Figure 5.5 and 5.7). However, the 2D
model maintains large, albeit less regular, shock oscillations with the shock radius pushing
continuously out. Are the violent sloshing motions responsible for driving the explosion in
the 2D simulations an artifact of the artificial symmetry restriction as argued by Burrows
et al. (2012) and Dolence et al. (2013) on the basis of simplified simulations? This argument
is further supported by the strong, prolate deformation of our successful 2D explosions of
Chapter 3 enabling the shock outwards along the artificial symmetry axis. Because of this
geometric effect a much smaller amount of mass in the gain layer has to be initially pushed
out in 2D for launching the explosion.

In the framework of our parametrized models based on simple neutrino heating and cooling
source terms we have observed in Hanke et al. (2012) that mass motions on the largest possible
scale rather on the small scales are the actual driving agent for a successful neutrino-driven
explosion. Indeed, inspecting the volume rendering visualization of the entropy distribution
of our 3D models in Figures 5.1 and 5.2 for the 27M� and in Figures 5.3 and 5.4 for the
20M� progenitor, one can prove that the shock is driven outwards once a sufficiently large
high-entropy bubble has formed typically by SASI sloshing motions, while shock recession
is associated with a progressing fragmentation of the postshock flow. Thus, the question of
successful revival of the shock seems to be tightly linked to the ability of the postshockflow
to generate powerful coherent mass motions.

In this context, the more favorable outcome of the 2D model is connected to the fundamentally
different nature of turbulence in 2D and 3D, which has been suggested to play a crucial role
in the postshock dynamics in multidimensional simulations (Murphy & Meakin 2011; Murphy
et al. 2013). The opposite action of turbulence manifests as a consequence of the “inverse”
turbulent energy cascade (Kraichnan 1967), which pumps turbulent energy fed into the flow
by external sources from small to large scales in two dimensions, while in three dimensions
turbulent energy is redistributed to smaller scales. Neutrino energy deposition as well as
potential energy released by accreted matter falling trough the supernova shock are sources,
which supply the postshock flow with additional energy.

The different character of the turbulence energy distribution in 2D and 3D can be studied by
computing the kinetic energy spectrum E(k) of turbulent motions as a function of wavenumber
k in the gain region. The spectral shape of E(k) can already be adequately established
by considering only the azimuthal velocity vθ at a given radius using a decomposition into
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Figure 5.24: Turbulent energy spectra E(l) as functions of the multipole order l. The spectra are based
on a decomposition of the azimuthal velocity vθ into spherical harmonics at radius r =
120 km and 300 ms post-bounce time for 27 M� SN progenitor. The 2D model is depicted
by the black curve and the 3D model by the red curve. The power-law dependence and
direction of the inverse energy and forward enstrophy cascades are indicated by black
dashed lines and labels for 2D and the shifted forward energy cascade by a red dashed
line for 3D. The left vertical, dotted line roughly marks the energy-injection scale, and
the right vertical, dotted line denotes the onset of dissipation at high l for the employed
resolution.

spherical harmonics Ylm(θ, φ):

E(l) =

l∑
m=−l

∣∣∣∣∫
Ω
Y ∗lm(θ, φ)

√
ρ vθ(r, θ, φ) dΩ

∣∣∣∣2 . (5.10)

Here, the velocity fluctuations have been expressed in terms of the multipole order l instead
of the wave number k. A summation over the energies of modes with the same l has been
carried out, and in order to obtain smoother spectra, we average E(l) over 30 km in radius
and over 5 ms. One expects that the resulting spectrum E(l) directly reflects the properties
of E(k) such as the slopes in different regimes of the turbulent cascade (Hanke et al. 2012).

The computed spectra E(l) displayed in Figure 5.24 are evaluated at ∼300 ms after bounce,
when the shock position of the 2D and 3D model is similar, and at 120 km somewhat behind
the shock. The shape of the obtained spectra indeed confirms the different character of
turbulence in 2D and 3D. At wavenumbers around l = 5 kinetic energy is injected into
the postshock flow. For our neutrino-hydrodynamic simulation of the 27M� progenitor this
driving scale, which is typical of the order of a convective plume, is chosen smaller compared
to Hanke et al. (2012), because the typical size of a convective bubble is smaller for the
full-scale models presented here with a significantly shrinked shock radius. In the 3D model,
beginning at the injection scale, the energy spectra is consistent with a characteristic power-
law of the forward energy cascade with E(l) ∝ l−5/3 (Landau & Lifshitz 1959) transporting
energy to smaller scale until dissipation sets in at large l. Contrary, the 2D spectra roughly
follows a different power-law with E(l) ∝ l−3 consistent with turbulence theory (Kolmogorov
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Figure 5.25: Snapshots of the entropy per baryon s in the 27M� progenitor at 250 ms after bounce,
when the shock surface of the 3D model reaches its maximal extension. In the left panel
the 3D model is depicted in the plane of former SASI activity, while 2D model mirrored
at the symmetry axis is shown in the right panel. At this particular time the 3D shock
surface is further enlarged than the corresponding 2D case. The imprint of SASI activity
is visible in both snapshots, although the entropy structure of the 3D model is more
fragmented into fine-structured convective plumes.

1941; Kraichnan 1967), although only enstrophy, the squared vorticity of the velocity field,
is transferred to the dissipation range in this so-called forward cascade. Instead, energy is
transported in 2D towards large by the reverse energy cascade (Kraichnan 1967). In our
self-consistent 2D model, the energy cascade towards large scales deviates from the power-
law of the expected power law as symbolized in Figure 5.24, because SASI activity dominates
convection at least at the largest scales of the postshock flow. Analogously, the energy cascade
towards dissipation at high multipole number is not fully established, because convection with
vortices acting towards smaller scales has not completely developed and is engulfed partially
by SASI activity.

Our analysis of the turbulent energy spectra reflects the observation that the amount of kinetic
energy accumulated in the fluid motion on the largest possible scales is crucial to assist the
development of an explosion by the neutrino-heating mechanism. Figure 5.24 proves that
there is much more energy at large scales (actually from the highest order up to l = 20) in
2D, while the turbulent energy stored in the nonradial flow in our 3D model is dominant at
small scales (l > 20 towards dissipation). This evidence provides a natural explanation of the
finally more optimistic outcome of our 2D models and the maintainance of the SASI activity
at larger shock radius in 2D, while in 3D SASI activity ceases and the model fails to explode.

The inspection of color coded snapshots of the entropy distribution confirms the importance of
large-scale mass motions to foster the explosion (Hanke et al. 2012). Although at first glance
the convective structures of the postshock flow are fairly similar in 2D and 3D, in Figure 5.25
and Figure 5.26 the pattern of convection and turbulence in the 3D case incorporates more
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Figure 5.26: Analogous to Figure 5.25, snapshots of the entropy per baryon s in the 27M� progenitor
at 350 ms after bounce, shortly before the onset of the explosion in the 2D case. The
convective plumes are considerably smaller in 3D, while the 2D entropy distribution is
dipolar and dominated by two large buoyant plumes along the axis.

small structures and is fragmented into fine-structured plumes. When the SASI activity ceases
at around ∼ 250 ms after bounce in the 3D case, a large region of the postshock flow is still
dominated by a coherent entropy structure (Figure 5.25). Nevertheless, the turbulent energy
cascade distributes more energy to small spatial scales in 3D resulting into a growing variety
of small vortex structures and finer filaments at least in some parts of the flow. In the next
hundred milliseconds, this progress continues such that the 3D flow consists of an increasing
number of small buoyant plumes and fine filaments (Figure 5.26). Instead, the evolution of the
postshock flow in the 2D model is dominated by a dipolar low-mode structure with two large,
buoyant plumes behind the SASI deformed supernova shock along the artificial symmetry
axis. Small scale structures are almost not visible in clear contrast to the 3D case. Indeed,
Figure 5.26 demonstrate that the shock is successfully pushed out by the continuous expansion
of one dominant large buoyant bubble leading to an explosion (see also the discussion of the
representive 2D model “s12-2007” in Section 3.7).

Discussing the snapshots of the entropy distribution in Figures 5.25 and 5.26, we inevitably
encountered that SASI activity is not sufficient to finally launch an explosion. Since the
growth conditions of the SASI are inverse dependent on the shock radius (see Section 3.5),
the SASI ceases after sloshing motions have pushed out the shock surface sufficiently out as
observed for both 3D models of the 27M� as well as the 20M� progenitor. While driven
by buoyancy a large plume is able to grow in size along the symmetry axis in 2D, in our
3D simulations the dominant bubble behind the SASI deformed shock visible in the volume
rendering images of the postshock distribution (Figures 5.1, lower right panel for 27M�
progenitor and Figures 5.4, lower left panel for 20M� progenitor) stops to expand at a certain
radius. Assuming the hydrodynamic flow behind the stalled shock is dominated by buoyancy-
driven convection (Burrows et al. 2012; Murphy et al. 2013), one can roughly describe shock
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expansion by an interplay between the buoyancy force rising a convective plume upwards and
the drag force exerted by the postshock accretion flow (Dolence et al. 2013). In this context,
the size of a buoyant bubble depends on the competition between neutrino-heating and the
energy loss by the interaction between the bubble and the surrounding flow. If neutrino-
heating is dominant over the repulsive force of the accretion flow a bubble grows and thus
rises pushing the shock locally outwards. How is such a picture of buoyancy-driven growth
of bubbles helpful in distinguishing our 2D and 3D models? According to Couch (2013) the
buoyancy force of a bubble is proportional to its volume, while the drag force on the bubble
depends on the surface area of the bubble. Thus, larger bubbles rise faster than smaller,
because the ratio of both forces is more favorable for a larger bubble size. Figures 5.25
and 5.26 clearly demonstrate that in 2D buoyant plumes have much smaller surface area-to-
volume ratios than in 3D, because the 3D hydrodynamics flow consists of numerous small
convective bubbles, whereas the artificial symmetry results in large bubbles in 2D. Thus, the
3D convective structures experience a greater drag-to-buoyant force ratio hampering the rise
of plumes and consequently shock expansion.

In the framework of a buoyancy-dominated shock expansion overtaking the initial SASI driven
shock revival, shock expansion is fostered by the growth of large buoyant plumes. For several
reasons, as the forward turbulent energy cascade to smaller scales and the unfavorable ratio
of surface area-to-volume ratio of a plume, the growth of bubbles in 3D is obviously less
favorable than in 2D. This issue provides a natural explanation of failing explosions of our 3D
simulations, while the corresponding 2D runs explode marginally. Using a neutrino leakage
scheme, the results of Couch & O’Connor (2013) are in line with our observations, since their
3D models explode only if the neutrino heating energy deposition rate is increased artificially
by more than 10% compared to 2D. In this spirit, we argue that the neutrino energy deposition
calculated by full up-to-date neutrino interaction rates of the Vertex-Prometheus code is
insufficient to compensate the hampering influence of the 3D hydrodynamics.

5.7 Discussion and Conclusions

We have simulated the post-bounce evolution of the 27M� progenitor of Woosley et al.
(2002) and of the 20M� progenitor of Woosley & Heger (2007) in 2D and 3D, using the
Vertex-Prometheus code with detailed multi-group neutrino transport including the full,
sophisticated set of neutrino reactions applied previously for our 2D simulation set discussed
in Chapter 3.

Our simulations for the first time provide unambiguous evidence of the occurrence of large-
amplitude SASI shock sloshing and spiral motions and of their interplay with neutrino-driven
convection in 3D supernova core environments modeled with a “realistic” treatment of neu-
trino transport and the corresponding heating and cooling effects. Previous hydrodynamic
studies have been able to identify SASI activity, and in particular SASI spiral modes, only in
3D setups with adiabatic postshock accretion flows (Blondin & Mezzacappa 2007; Fernández
2010) and in some simulations with a simple neutrino light-bulb treatment (Iwakami et al.
2008, 2009). The shallow water analogue of the SASI was also observed experimentally, how-
ever again without the presence of buoyancy motions (Foglizzo et al. 2012). On the basis of
more recent 3D simulations with a simple neutrino light-bulb approximation (Burrows et al.
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2012; Murphy et al. 2013; Dolence et al. 2013) and 3D general relativistic models with a
neutrino leakage scheme (Ott et al. 2013) it was even concluded that the SASI is at most of
minor relevance for the dynamics of the postshock layer in collapsing stellar cores (see also
Burrows 2013).

Our findings indicate that the SASI is potentially much more important in 3D than suggested
by these previous investigations. Besides the core-density profile of the progenitor star, which
determines the temporal evolution of the mass infall rate, the more elaborate neutrino trans-
port treatment may partly be responsible for the different accretion-flow dynamics seen in our
models. The details of the neutrino description are relevant, because they can cause differ-
ences in the contraction behavior of the proto-neutron star and in the neutrino-heating in the
gain layer. Both affect the evolution of the stagnation radius of the accretion shock and thus
have a strong impact on the growth conditions for convection and the SASI. In the artificial
setup used by Burrows et al. (2012); Murphy et al. (2013); Dolence et al. (2013), the neutron
star is not allowed to deleptonize and radiate energy, therefore its radius stays unrealistically
large (50–60 km) during the whole simulated postbounce evolution (up to ∼1 s). Also the
leakage scheme of Ott et al. (2013), which can track the contraction of the proto-neutron
star and the time evolution of the neutrino emission to a certain extent, deviates significantly
from full transport models. For example, in the work of Ott et al. (2013) the mean energy
of the radiated electron neutrinos around 100 ms after core bounce is more than 60% higher
than those found with the Vertex transport code by Müller et al. (2012a), although both
groups investigated the same 27M� progenitor with relativistic methods. It is clear that the
neutrino heating found by Ott et al. (2013) was stronger and thus more favorable for larger
shock radii, which in turn was supportive of neutrino-driven convection instead of the SASI.

In contrast to the findings by Burrows et al. (2012); Murphy et al. (2013); Dolence et al.
(2013) and by Ott et al. (2013), we observe strong SASI activity in our 3D simulations both
for the 27M� progenitor and the 20M� star. The SASI can become the strongest nonradial
instability during at least some parts of the evolution and can be clearly identified by its
oscillatory growth properties and even in the nonlinear regime by its characteristic low-order
spherical harmonics modes of coherent shock motion and shock deformation. In detail, we
can draw the following conclusions from our models:

• SASI activity can develop in 3D despite and in addition to the earlier presence of
neutrino-driven buoyancy. Different from the higher-order multipole pattern that is
typical of convective plumes and downdrafts, the SASI reveals itself by coherent, large-
amplitude shock sloshing and spiral motions.

• Because of the absence of a flow-constraining symmetry axis, which also directs the
structure of neutrino-driven buoyancy in 2D models, SASI shock motions and deforma-
tion modes can be recognized more easily and more clearly in the 3D case. Interestingly,
both the 27M� and the 20M� models exhibit evolution phases in which the SASI in
3D can become stronger than in the corresponding 2D runs. The dominance of the
SASI and greater strength in 3D can be concluded not only from the large dipole and
quadrupole amplitudes of the shock deformation, but also from the higher nonradial ki-
netic energy of the postshock flow (Figure 5.9) and from a prominent peak at low-order
multipoles in the power spectrum of the nonradial kinetic energy (Figure 5.10). While
some authors hypothesized (Iwakami et al. 2008) that the SASI amplitudes in 3D re-
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main smaller than those in 2D because the kinetic energy of the nonradial flow is shared
with an additional degree of freedom, our results suggest that there is no such limitation
of the kinetic energy that can be stored in lateral and azimuthal mass motions. The
fraction of the huge reservoir of accretion energy that is converted to nonradial flows in
the postshock layer can be larger in 3D than in 2D.

• The growth of the SASI is favored by fast advection flows, because its growth rate in
an advective-acoustic cycle scales roughly inversely with the advection timescale of the
accretion flow from the shock to the neutron star surface (e.g., Scheck et al. 2008). This
is opposite to neutrino-driven buoyancy, whose growth in the accretion flow requires
that the critical ratio χ of advection timescale to buoyancy timescale exceeds a value
of about 3 (Foglizzo et al. 2006). Fully consistent with this dimension-independent
theoretical understanding, which was developed by linear analysis and hydrodynamic
modeling in 2D, we find SASI growth also in the 3D case to be strongest in phases
of small shock stagnation radii, which are connected to rapidly shrinking and more
compact proto-neutron stars as well as relatively weak neutrino heating.

• Preferentially in phases of strongest shock recession we observe bipolar (` = 1, m =
0) SASI sloshing motions to change over to a spiral (` = 1, m = 1) mode in the
3D simulations of both the 27M� and 20M� models (Figures 5.14 and 5.15 as well
as 5.16). The transition to the time-dependent rotating shock-deformation pattern
therefore seems to be favored by particularly small shock radii as demonstrated clearly
in the 20M� case with its much faster development of a spiral mode. In general,
the character of the 3D accretion flow during shock oscillation and spiraling phases
with wandering directions reveals close similarity to the behavior of the hydraulic jump
observed in the SWASI experiment (Foglizzo et al. 2012).

Our comparison of the SASI activity in the fully self-consistent 2D and 3D simulations of
the 27M� model as well as the 20M� progenitor is particularly interesting. Both models
revealed that at an early stage, when the mass accretion rate is still high and the shock
correspondingly retreats in response to the proto-neutron star contraction, the SASI can
grow despite some prior neutrino-driven convective activity. The SASI can reach even higher
amplitudes in 3D than in 2D before the accretion of the Si/SiO interface in the case of 27M�
model and similarly, 20M� progenitor simulation shows a phase of stronger SASI activity
in 3D, although at much later postbounce times. In the case of the 27M� progenitor, the
large-amplitude shock-sloshing mode eventually makes the transition to a spiral mode in 3D,
which, however, is quenched around 260 ms after bounce once the accretion rate has dropped
significantly and the shock has expanded to radii of nearly 200 km on average. Because of
faster shock recession prior to the infall of the Si/SiO interface, a spiral modes develops faster
and persists much longer in the case of the 20M� progenitor until around 290 ms, when the
shock surface has reached its maximal prolongation. Despite the faster shock expansion and
higher kinetic energy of the postshock flow, the 3D models of both progenitors nevertheless
falls short of an explosive runaway unlike the 2D simulation.

Following shock recession of our 3D model of the 27M� progenitor to later and later post-
bounce times, the advection timescale of matter becomes such short (Figure 5.20, middle
panels) that the conditions for the advective-acoustic cycle feeding the SASI are favorable
again. Coherent mass motions are showing up again, which are resulting in a fast spiral SASI
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mode. After the shock is pushed out by some extent, the revived phase of SASI activity is
over again. Although we track several such phases of late-time SASI activity, the extension of
the shock remains always at small radii. This interesting phenomenon is not powerful enough
anymore for initiating an explosion lateron.

The important difference in the explosion behavior of 2D and 3D models, which is fully con-
sistent with the results obtained in the simulations with simple neutrino heating and cooling
treatments of Hanke et al. (2012) and Couch (2013), is remarkable. Although the relevance
of the SASI in competition with neutrino-driven convection for getting explosions in 3D can
be identified only by the means of a rigorous analysis, particularly a Fourier decomposition
of the the turbulent flow (Fernández et al. 2013), we have discussed possible reasons for the
failing explosions of our 3D models in respect to the successful 2D models. It seems that
the presence of SASI activity is only temporary and that neutrino-driven convection must
dominate when the explosion sets in and the preceding shock expansion leads to disfavorable
conditions for the advective-acoustic cycle feeding the SASI. That observation is the only
plausible explanation why the SASI driven shock expansion stops in 3D. Even in the latter
case, the SASI could still play an essential role in the explosion mechanism by pushing out
the shock far enough for convection to take over in cases where convection cannot develop on
its own in an initially stabilized post-shock flow.

As observed by Fernández et al. (2013); Hanke et al. (2012); Couch (2013), in successful
axisymmetric models large-scale, high-entropy bubbles are driving the explosion, if they can
survive sufficiently long. Indeed, such a large plume continuously grows in size driving the
explosion of our 2D models (Figure 5.26 for the 27M� progenitor), while such large plumes
are also visible, but they loose all of its energy while rising in the 3D case (Figure 5.25). We
have identified two reasons why the growth of bubbles is damped in 3D:

• Turbulence in the hydrodynamic postshock flow with its opposite turbulent energy
cascade in two and three dimensions acts differently. While in 3D the forward energy
cascade transports energy to smaller and smaller scales until dissipation sets in, in 2D
the inverse energy cascade erroneously transports energy pumped into the gain layer by
neutrino heating and the release of gravitational binding energy from the injection scale
to large scales. This behavior is evident in the energy power spectra of the postshock
flow in 2D and 3D (Figure 5.24) and explains the easier growth of large buoyant plumes
in 2D conducive to the explosion.

• The raise of buoyant bubbles is determined by the competition of the buoyancy force
depending on neutrino heating and the drag force of the surrounding accretion flow.
Under the assumption of neutrino-driven convection responsible for the bubble growth
(Burrows et al. 2012; Murphy et al. 2013), shock expansion is mediated by the rise of
a sufficient large buoyant bubble (Dolence et al. 2013). Since the ratio of buoyancy to
drag force scales with the volume-to-surface area ratio of a plume (Couch 2013), such
buoyant plumes with its increasing extension ascend easier and quicker pushing the
shock outwards. While the imposed 2D geometry results in very large “3D” plumes of a
toroidal structure, no such artificial coherent structures can exist in 3D. Moreover, the
3D postshock flow is typically fragmentated into much more bubbles on smaller struc-
tures, while a few, large-scale plumes along the symmetry axis are driving the explosion
(Figure 5.25 and 5.26). Thus, the different convective structures of the postshock flow
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with is hampering effect on the rise of bubbles in 3D provide a further explanation why
our self-consistent 3D simulations are failing in respect to the marginal successful 2D
case.

In future prospective sophisticated 3D supernova models one has to discover how the effects
of the disadvantageous 3D flow geometry can be compensated by e.g. stronger neutrino
heating to finally reproduce the successful explosions in previous axisymmetric simulations
(see Chapter 3).





6 A Purely Convective model: The 11.2 M�
SN Progenitor

In this chapter we report about a further 3D hydrodynamic simulation, which we have per-
formed with our detailed, energy-dependent, three-flavor neutrino transport code Vertex-
Prometheus. The setup is the same in the previous simulations described in Section 5.1. In
addition to the models discussed so far experiencing vigorous SASI activity, here we investi-
gate the 11.2 M� progenitor of the Woosley et al. (2002) presupernova series, which has been
studied intensively in previous works (Buras et al. 2006b; Marek & Janka 2009; Müller et al.
2012b). As noted in the discussion of our set of two-dimensional simulations in Section 3.2,
this star is particularly interesting because of its distinct presupernova structure compared
to the more massive stars discussed in Chapter 5. Because the Si/SiO composition-shell in-
terface of this progenitor arrives already at around 80 ms after bounce at the shock, the mass
accretion rate is extraordinary low and the shock surface is extended to much larger radii
compared to the other presupernova models in the first 120 ms of postbounce evolution (see
left panel of Figure 3.3 in Section 3.2). Thus, we can expect that this model shows violent
convective activity in the postshock flow, while SASI shock oscillations should be suppressed
in this model because of the large advection timescales (see middle panel of Figure 3.7).
The 11.2 M� progenitor will provide more insight into the differences of the hydrodynamic
postshock flow in 2D and 3D simulations and the resulting consequences for the explosion
mechanism.

6.1 Shock Propagation and Heating Conditions

The 3D postbounce evolution of the 11.2 M� progenitor is visualized by images of the en-
tropy distribution in Figures 6.1 and 6.2. Triggered by initial seed perturbations, numerous
mushroom-like, buoyant plumes have already developed at around 120 ms after bounce. At
the early postbounce evolution, the growth of convective bubbles is significantly enhanced
compared to the previously studied progenitor models in Chapter 5, because the shock radius
increases to 200 km after the very early arrival of the Si/SiO composition-shell interface at the
shock surface at around 90 ms after bounce (Figures 6.3). Mediated by neutrino heating, the
initially small buoyant bubbles are rising and then successively replaced by larger ones. Such
large bubbles rise until they reach the shock and push it outwards until 210 ms after bounce,
when the shock has locally reached a maximum extension of 300 km at solid angles, where the
largest bubbles have formed. The shock surface can be pushed out relatively far compared
to the other two investigated progenitor models, because of the low amount of matter falling
onto the supernova shock front (Figures 6.4). However, neutrino heating is not sufficient to
finally push out the shock driving an explosion. Subsequently, the shock surface is shrinking
slowly, but monotonically until the end of the simulation.
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Figure 6.1: Snapshots of the convective overturn activity in the evolution of the 11.2M� progenitor
at post-bounce times of 124 ms, 151 ms, 179 ms, and 196 ms. The volume rendering vi-
sualizes surfaces of constant entropy: The outer, bluish, semi-transparent surface is the
supernova shock, the red-orange-yellow surfaces are entropy structures in the postshock
region. In the upper left panel at 123 ms numerous mushroom-like, buoyant plumes have
already developed. Neutrino-heated, high-entropy matter expands in typical mushroom-
like, buoyant plumes pushing the shock surface to larger radii until 210 ms (upper right
and both lower panels).

When we have stopped the 3D simulation of the 11.2 M� progenitor, the postbounce dynamic
is similarly pessimistic as the other 3D simulations presented in Chapter 5, while the corre-
sponding 2D runs with identical numerical treatment (see Section 5.1) show large-amplitude
shock oscillations amplified by the imposed artificial 2D geometry along the symmetry axis.
Depicted in Figures 6.3, the shock trajectories evolve very similar in the first two hundred
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Figure 6.2: Further snapshots of the convective overturn activity in the evolution of the 11.2M�
progenitor at post-bounce times of 252 ms, 278 ms, 291 ms, and 339 ms. Bubbles are
continuously appearing, expanding and rising, but because of insufficient neutrino heating
they are receding allowing other convective plumes to take its place. Subsequently, the
shock surface is shrinking until the end of the simulation.

milliseconds after bounce in 2D and 3D, until in the axisymmetric model a first large bubble
grows along one side of the symmetry axis, then is pushed back, and finally grows continu-
ously in an oscillatory manner by time. Noticeable, the shock surface is increasing on one
side, while most part of the matter is still at rest as the average shock radius does not yet
rise accordingly.

The runaway criterion determined by the ratio τadv/τheat (see Section 3.3 for the employed
definitions of the advection and heating timescale) reflects the supposedly favorable conditions
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of time after bounce for the 11.2 M�
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the curves have been smoothed using
a running average over 5 ms.

0 0.1 0.2 0.3
time after bounce [s]

0

0.2

0.4

0.6

0.8

1

1.2

t a
d
v
 /

 t
h
e
a
t, 

 M
 [

M
  
 /

 s
]

s11.2 2D
s11.2 3D

Figure 6.4: Time evolution of the runaway crite-
rion tadv/theat for the 2D (black) and
3D (red) simulations and the mass
accretion rate of the stellar core at
400 km (blue) as function of time af-
ter bounce for the 11.2 M� SN pro-
genitor. The runaway criterion is
smoothed using a running average
over 5 ms.

of this progenitor (Figures 6.4). At the infall of the Si/SiO composition-shell interface at the
shock surface at around 90 ms after bounce, the timescale ratio exceeds the threshold value
of unity. Lateron, the runaway criterion decreases with time almost continuously in the
3D simulation, which thus evolves very pessimistically. Contrary, the 2D model stabilizes
its even more unfavorable evolution until a runaway situation is established at 370 ms after
bounce. Depicted in Figure 6.5, the conditions of the gain layer provide further evidence of
the particular situation in this presupernova model. Because of the very low mass accretion
rate of the infalling matter on the shock, on the one hand the advection timescale is about
4–8 times higher than of the SASI dominated models of Chapter 5, and on the other hand
the accretion part of the luminosity is accordingly much lower (Figures 6.7) and thus, the
energy deposition of neutrino (Figures 6.6) results in a 2–4 times higher heating timescale.
Choosing this progenitor one hopes that the very low ram pressure on the supernova shock
can overcompensate the lower neutrino heating. Obviously, that is not the case. The gain
layer monotonically looses its mass content and as τadv ≈ Mgain/Ṁ holds (see Section 3.3
and cf. Marek & Janka 2009), the advection timescale decreases in the same. However, as
the heating timescale decreases more slowly, both timescale will never meet and a runaway
situation cannot be established anymore. Fortunately, in 2D large-amplitude shock-sloshing
motions along the symmetry axis can stabilize the amount of matter in the gain layer that can
be heated up and the conditions for an explosion become more favorable until the explosion
sets in.

In retrospective, this model might be not the optimal choice for one of our three 3D models,
which were possible to simulate within our compute time grant. While this model was mo-
tivated by the previous works of Buras et al. (2006b); Marek & Janka (2009); Müller et al.
(2012b), our the set of two-dimensional models in Section 3.2 provides more optimistic cases
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Figure 6.5: Time evolution of diagnostic quantities for the conditions in the gain layer for the 11.2 M�
SN progenitor. The 3D results (red) are shown together with the corresponding 2D run
(black). The heating timescale (top), the advection timescale (middle), and the mass in
gain layer (bottom) are shown. Note that the curves have been smoothed using a running
average over 5 ms.

for a successful 3D explosion (e.g. “s18.4”, “s19.6”, and “s20.2”).

6.2 Growth of Convection and the Suppression of SASI Activity

While both 3D models presented in Chapter 5 show periods of vigorous SASI activity, the
11.2 M� SN progenitor does not exhibit any clear evidence of SASI motions. The entropy
structures of the postshock region visible in Figures 6.1 and 6.2 are typical for convective over-
turn driven by neutrino-heating. In this section we quantify the description of the postbounce
dynamics in the 11.2 M� model. A time-dependent decomposition of the shock surface into
spherical harmonics as defined in Equation 5.1 reveals that the 3D shock surface indeed does
not show any quasi-periodic oscillations typical for SASI activity (Figures 6.9). Although
the 2D model experiences large shock oscillations, a dominant periodicity, which is typical
for SASI dominated models (Fernández et al. 2013), is missing. This result is along our ex-
pectations of Section 3.5 as the growth rate of the SASI depends inverse on the advection
timescale, which is not small enough for this model. Contrary, the large shock radius of the
11.2 M� model favors the growth of convection. Figures 6.10 displays the critical parameter
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Figure 6.6: Time evolution of the total (time-integrated) energy deposited in the gain region (upper
panel) and of the total energy loss (lower panel) for the 11.2 M� SN progenitor. The 3D
results (red) are shown together with the corresponding 2D run (black).
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χ for the growth of convection evaluated according to Equation 3.19. Although χ < 3 sig-
nals convective stability (Foglizzo et al. 2006), initiated by the initial random perturbations
buoyant plumes develop and rise towards the shock. The bubbles are initially small and suc-
cessively replaced by larger ones (Figures 6.1 and 6.2). Surprisingly, the critical parameter
χ, although increasing, remains obviously below the threshold value for convective activity of
Foglizzo et al. (2006) during the whole simulation of the 3D model. This fact is an indication
of insufficient bubble growth, although Müller et al. (2012a) emphasized that the criterion
for convective activity derived by Foglizzo et al. (2006) is only valid in the linear regime and
cannot be applied for postshock flows significantly perturbed by aspherical mass motions.
While in the respective 2D case the condition χ > 3 indicates that convection has developed
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its full strength at about 140 ms, the bubble growth in the 3D case is not enough for sufficient
shock expansion. For a discussion of the different growth of buoyant bubbles in 2D and 3D
giving reasons for the failure of our 3D models we refer to Section 5.6. The overall stronger
convective activity of the 2D model is reflected by the kinetic energies of non-radial mass
motions (Figures 6.11), which are larger for the whole postbounce evolution in the 2D case.
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In 3D, the strength of non-radial mass motion weakens at 210 ms, when the shock surface
reaches its maximal extension and shrinks afterwards.

As the images of the entropy distribution in Figures 6.1 and 6.2 displays, the size of buoyant
bubbles is locally very different and the shock surface is enlarged at angular positions, where
large bubbles rise faster pushing the shock locally outwards. As the ratio of maximum to
minimum shock radius reaches a maximum of up to Rs,max/Rs,min ∼ 1.4, the root-mean-
square deviation σ (Equation 5.5 in Section 5.2) provides further confirmation that the shock
is significantly deformed by the rise of buoyant plumes (Figures 6.12). The value for this
convective model is as large as for the 20M� progenitor during its phase of vigorous SASI
activity (see Figures 5.8, right panel). Indeed, a global, quasi-stationary dipolar deformation
of the accretion shock establishes, which is connected to a persistent asymmetry of electron
neutrino and electron anti-neutrino fluxes in one hemisphere, i.e. an asymmetry in the lepton-
number emission. However, in this thesis we focus on differences in the postbounce evolution
between 2D and 3D models, and we refer the reader to the respective publication of Tamborra
et al. (2014), which explains the subtle mechanism of this spectacular phenomenon visible in
this model termed LESA for “Lepton-number Emission Self-sustained Asymmetry”.
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In this thesis, we have presented a variety of multi-dimensional simulations of core-collapse
supernovae employing the neutrino radiation-hydrodynamics code Vertex-Prometheus.
With the help of the performed simulations, we have gained further insight into the explosion
mechanism of massive stars towards a finally comprehensive understanding of this spectacular
phenomenon. Until the advent of the newest generation of supercomputing systems, neutrino
radiation-hydrodynamics simulations have long been forced to assume axisymmetry (2D),
since simulations without any symmetry restrictions are computationally very expensive. To
overcome the artificial imposition of 2D symmetry, in which the turbulent energy cascade
is reversed and hydrodynamic instabilities are artificially amplified along the axis, we have
extended the 2D Vertex-Prometheus code of Buras et al. (2006a) to a 3D version to be
able to perform the first fully self-consistent simulations of core-collapse supernovae without
any symmetry restrictions.

Before turning to the main results of this thesis, in a first step, we have performed a large set
of axisymmetric simulations to prove the viability of the neutrino-driven explosion mechanism
for a great number of stellar progenitors. As eighteen different massive stars could be evolved
into the explosion phase, we have significantly increased the amount of successful explosion
models compared to previous studies with the same level of accuracy (Buras et al. 2006a,b;
Marek & Janka 2009; Müller et al. 2012b,a). This promising outcome of our set of simulation
runs is a great success.

Contrary to the results of Bruenn et al. (2013), our 2D models explode rather late and at
completely different postbounce times strongly depending on the specific progenitor structure.
The explosion sets in faster for models, which experience a steep drop of the mass accretion
rate on the supernova shock at the arrival of a strong Si/SiO composition-shell interface.
Stars without such a pronounced shell interface, especially the lighter investigated ones in the
mass range between twelve and fourteen solar masses, meet the conditions for shock revival
very late.

In the presented axisymmetric simulations, the growth of the so-called “standing-accretion
shock instability” (SASI; Blondin et al. 2003) is favored. It manifests in large-scale mass
motions in the postshock layer associated with low-mode oscillations of the supernova shock
front along the symmetry axis. This instability supports the growth of large bubbles, which
finally initiates the shock expansion.

Our set of self-consistent simulations in axisymmetry demonstrated the importance of non-
radial hydrodynamic instabilities, such as convection and the SASI, for reviving the stalled
supernova shock. However, overcoming this forced symmetry, the fluid dynamics in the
postshock layer will change fundamentally. For this reason, in this thesis we have presented
the first three-dimensional simulations of core-collapse supernova explosions with full neutrino
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transport performed with the same level of accuracy as in the presented 2D simulations. This
important step in the numerical modeling of core-collapse supernova explosions allows a deeper
insight into the crucial ingredients for the neutrino-driven mechanism:

The presented 3D simulations of the 27M� progenitor of Woosley et al. (2002) and of the
20M� progenitor of Woosley & Heger (2007) for the first time provide unambiguous evidence
of the occurrence of large- amplitude SASI shock sloshing and spiral motions in a fully self-
consistent setup. Our findings demonstrate the importance of the SASI also in 3D. This
instability can become the clearly strongest nonradial instability during at least some parts
of the evolution. Because of the absence of a flow-constraining symmetry axis, SASI shock
motions can be recognized and distinguished from neutrino-driven buoyancy more easily and
more readily in the 3D case. Interestingly, both 3D models exhibits evolution phases in which
the SASI in 3D can become stronger than in the corresponding 2D runs. In phases of strongest
shock recession the SASI sloshing motions change over to a spiral mode in the 3D simulations
of both the 27M� and the 20M� model. As also observed in the late-time SASI activity,
particularly small shock radii are favorable for the development of a spiral mode associated
with its rotating shock-deformation pattern.

As the growth of the SASI is favored by fast advection flows (Scheck et al. 2008), in our 3D
simulations of both the 27M� and the 20M� models SASI activity is strongest in phases
of small shock stagnation radii and thus, short advection timescales. As the dependence of
neutrino-driven buoyancy on the advection timescale is opposite (Foglizzo et al. 2006), in
phases of strong SASI activity convection is almost absent. As the SASI pushes the shock
front farther out, it dies off and convection becomes active in our 3D models.

To continue studying the dependence of both crucial instabilities in the supernova core, con-
vection and the SASI, we have presented a further 3D simulation of the 11.2M� progenitor
of Woosley et al. (2002). As in this model the mass accretion rate on the supernova shock
front is very low resulting in a slow advection flow. Thus, convection dominates and SASI
activity is absent.

Unfortunately, all investigated 3D models fail to explode. Although the 3D models evolve
very similar to the corresponding 2D runs for hundreds of milliseconds after the core bounce,
the difference in the explosion behavior is remarkable. This negative result is fully consistent
with the findings of Hanke et al. (2012) and Couch (2013) based on simplified simulations. As
the shock expansion initiated by the SASI leads to unfavorable conditions for the advective-
acoustic cycle feeding the SASI, neutrino-driven buoyancy must take over to finally initiate
successful shock revival. Along the lines of the findings of Dolence et al. (2013) and Couch
(2013), we have demonstrated that the growth and rise of large buoyant bubbles to push the
shock front further out is facilitated in 2D. Reasons for an easier growth of large buoyant
plumes in 2D conducive to the explosion are the inverse turbulent energy cascade erroneously
pumping energy from small to large scales (Kraichnan 1967), the more fragmented postshock
flow in 3D compared to artificially large coherent entropy structures in 2D, and finally the
unfavorable volume-to-surface ratio of a buoyant bubble in 3D.

This first generation of three-dimensional simulations of core-collapse supernovae employing
the full neutrino transport provides new insight into the effects of the 3D postbounce dynam-
ics on observable supernova signals, for example the neutrino emission. The presence of SASI
mass motions in the 27M� and the 20M� models leads to large-amplitude, quasi-periodical
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modulations of the neutrino emission, which could be detectable for a future galactic super-
nova (Tamborra et al. 2013). Lower-mass stellar core-collapse events, such as the investigated
11.2M� progenitor case, are dominated by neutrino-driven convection and lead only to small,
stochastic fluctuations in the neutrino signal. Furthermore, analyzing the neutrino emission
of this latter progenitor, we discovered a completely unexpected instability, which manifests
in a long-lasting, global, dipolar asymmetry of the emission of electron neutrinos and antineu-
trinos (Tamborra et al. 2014). With respect to these first very exciting results of the analysis
of the presented 3D simulations, our results provide the so far most realistic simulation data,
which can be used to predict observable supernova signals, such as the already investigated
neutrino signal and gravitational wave emission.

This thesis is an important step towards a more complete understanding of the underlying
explosion mechanism of core-collapse supernovae. Of course, a lot of work remains to be
done to further investigate the crucial effects for successful and robust supernova explosions.
The newly developed 3D version of the neutrino radiation-hydrodynamics code Vertex-
Prometheus provides an ideal tool to accurately study the missing ingredients, such as new
nuclear equation of states for neutron star matter, updated neutrino-matter-interaction rates,
the possible supportive effect of stellar core rotation (Nakamura et al. 2014; Iwakami et al.
2014), the influence of initial presupernova asperities (Couch & Ott 2013), and finally different
progenitor structures as investigated in our study with axisymmetric simulations.
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