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Abstract— This paper introduces a new comprehensive so-
lution for the open problem of uncalibrated 3D image-based
stereo visual servoing for robot manipulators. One of the main
contributions of this article is a novel 3D stereo camera model to
map positions in the task space to positions in a new 3D Visual
Cartesian Space (a visual feature space where 3D positions
are measured in pixels). This model is used to compute a
full-rank Image Jacobian Matrix (Jimg), which solves several
common problems presented on the classical image Jacobians,
e.g., image space singularities and local minima. This Jacobian
is a fundamental key for the image-based control design, where
uncalibrated stereo camera systems can be used to drive a
robot manipulator. Furthermore, an adaptive second order
sliding mode visual servo control is designed to track 3D visual
motions using the 3D trajectory errors defined in the Visual
Cartesian Space. The stability of the control in closed loop with
a dynamic robot system is formally analyzed and proved, where
exponential convergence of errors in the Visual Cartesian Space
and task space without local minima are demonstrated. The
complete control system is evaluated both in simulation and on
a real industrial robot. The robustness of the control scheme is
evaluated for cases where the extrinsic parameters of the stereo
camera system change on-line and the kinematic/dynamic robot
parameters are considered as unknown. This approach offers
a proper solution for the common problem of visual occlusion,
since the stereo system can be moved to obtain a clear view of
the task at any time.

I. INTRODUCTION

Visual servoing control (VSC) is an approach to control
motion of a robot manipulator using visual feedback signals
from a vision system. This has been one of the most active
topics in robotics since the early 1990s[1]. The vision system
can be mounted directly on a robot end-effector (eye-in-hand
configuration) or fixed in the work space (fixed-camera con-
figuration). Aditionally, visual servoing approaches differ in
the way in which error functions are defined. In Image-Based
Visual Servoing (IBVS) the error function is defined directly
in terms of image features. In Position-Based Visual Servoing
(PBVS) the error function, which is specified in the task
space coordinates, is obtained from the visual information
[2]. The conclusion drawn in many of the previous works,
e.g.,[1] and [3], is that the IBVS method is more favorable
than the PBVS method, since the IBVS has low sensitivity
to camera calibration errors.
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Two main aspects have a great impact on the behavior
of any visual servoing scheme: the selection of the visual
features used as input of the control law and the form of
the control scheme. This work focuses on the study of IBVS
design, where these two fundamental problems are handled:
First, the definition of a new image Jacobian (Jimg) for a
stereo camera system in fixed-camera configuration (see Fig.
1). Second, the design of a Dynamic Visual Servoing control
for robot manipulators, which includes unknown camera and
robot parameters (kinematic and dynamic).

An IBVS usually employs the image Jacobian matrix
(Jimg) to relate end-effector velocities in the manipulator’s
task space to the feature parameter velocities in the feature
(image) space. A full and comprehensive survey on Visual
Servoing and image Jacobian definitions can be found in [1],
[2], [4] and more recently in [5]. In general, the classical
image Jacobian is defined using a set of image feature mea-
surements, usually denoted by s, and it describes how image
features change when the robot manipulator pose changes
ṡ = Jimgv. In Dynamic Visual Servoing we are interested in
determining the manipulator’s required dynamical behavior
to achieve some desired value of image feature parameters.
This implies calculating or estimating the image Jacobian
and using its inverse to map the image feature velocities ṡ
into a meaningful state variable required for the control law,
usually the generalized joint velocities q̇.

In general, the image Jacobian can be computed using
direct depth information (depth-dependent Jacobian) [6],[7],
or by approximation via on-line estimation of depth of the
features (depth-estimation Jacobian) [2], [5], [8], [9], or us-
ing depth-independent image Jacobian matrix [10],[11],[12].
Additionally, many papers directly estimate on-line the com-
plete image Jacobian in different ways [13],[14],[15],[16],
[17]. However, all these methods use redundant image point
coordinates to define (as a general rule) a non-square image
Jacobian, which is a differentiable mapping from SE(3) to
s ∈ R2p (with p as the number of feature points). Then,
a generalized inverse of the image Jacobian matrix needs
to be computed, which leads to well-known problems such
as the image space singularities and local minima. In oder
to obtain a full-rank Image Jacobian, [18] proposed an
approach where the definition of the features is based on a
combination of both IBVS and PBVS approaches, attempting
to incorporate the advantages of each method. However, this
method requires the exact camera calibration, and in the
presence of calibration errors the convergence of the error
functions (in the image or in the task space) can not be
guaranteed.



In the context of control schemes, kinematic-based con-
trols cannot yield high performance and guarantee stability
because the nonlinear forces in robot dynamics are neglected.
This problem known as Dynamic Visual Servoing was studied
by Hashimoto et al.[19] for the eye-in-hand setup and by
Zergeroglu et al. [20] for the fixed-camera configuration.
Their methods work well when the camera intrinsic and
extrinsic parameters are known. In order to avoid tedious
and costly camera calibration, Astolfi et al. [21], Bishop et al.
[22], Hsu et al. [23], Dean et al. [24] and Kelly [25] proposed
to employ an adaptive algorithm to estimate the unknown
camera parameters on-line. However, these methods are
applicable to planar manipulators only. The problem of 3D
uncalibrated visual servoing with robot dynamics has been
tackled with new adaptive controllers [11],[26]. However, the
image jacobians in these approaches are not full-rank and
they have the above mentioned problems.

In this paper, we address the problem of controlling a robot
manipulator to trace time-varying desired trajectories defined
in an uncalibrated image space, taking explicitly into account
the robot dynamics in the design and in the passivity proof.
The contribution of this paper can be summarized into three
aspects: 1) The introduction of a new stereo camera model
based on a virtual composite camera system. This model
provides a new 3D visual feature for the IBVS method.
This feature is a representation of task positions in a 3D
visual space. 2) Using this stereo camera model, we design
a new image Jacobian which maps velocities from the task
space to the 3D visual space. The dimension of the image
feature vector, obtained from the stereo camera model, allows
a full-rank Jacobian, whose singularities depend exclusively
on parameters defined by the user. 3) An adaptive second
order sliding mode visual servo control using the proposed
image Jacobian has been implemented for 3D visual motion
tracking. The control law is designed to cope with uncertain-
ties in the robot dynamic/kinematic and camera parameters.
Moreover, we extend the implementation of this adaptive
image-based control law to include environment constraints,
such as: robot singularities avoidance and (self-/obstacle-)
collision avoidance. By means of Lyapunov stability analysis,
we demonstrate the convergence of errors in both the 3D
Cartesian visual space and task space without local minima.
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Fig. 1. Description of robotic experimental setup.

In order to evaluate the control approach and the proposed
models, experiments have been conducted in both simulation
and on a real industrial robot. In simulation, we control

the robot without environment constraints to better illustrate
the robustness of the system to uncertainties in the robot
parameters and changes in the extrinsic parameters of the
stereo system. In the experimental setup, we integrate the
visual servoing system in a Human-Robot-Interaction (HRI)
scenario (see Fig. 1). In this scenario, we reproduce a more
realistic environment including obstacles, robot singularities,
visual occlusion, collision avoidance and sporadic loss of
targets. We prove that the system is always stable and can
be used for HRI tasks.

A. Organization

This paper is organized as follows. First, in Section II
we will introduce the new 3D Camera Model. This model
defines the complete 3D Visual Jacobian, which will be
used in the Section III to design an adaptive image-based
3D visual servoing. In the same section, the passivity proof
is shown and a validation in simulation with remarks about
robustness and adaptability of the control is given. In Section
IV we present the adaptive image-based torque controller
which includes environment constraints. We explain the
capabilities of this control and its different properties, such as
robot singularity avoidance and collision avoidance. Section
V provides an overview of the HRI setup (Fig. 1) and
shows the obtained results under different conditions. Finally,
Section VI draws the conclusions and future work.

II. 3D CAMERA MODEL
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Fig. 2. Image Projections: The figure depicts the different coordinate frames
used to obtain a general 3D visual camera model. Xb ∈R3×1 is the position
in meters [m] of an Object with respect to the world coordinate frame
(wcf) denoted by Ob. OCl and OCr are the coordinate frames for the left
and right cameras, respectively. Rb

Cl
∈ SO(3) represents the orientation of

wcf with respect to the left camera. OV is a reference coordinate frame for
the virtual orthogonal cameras Ov1,2 where RCl

V ∈ SO(3) is its orientation
with respect to OCl . λ is the distance from Ovi to OV along each optical
axis i. The vectors pl , pr ∈ R2×1 are the projections of the point Xb in the
left and right cameras. Finally, pvi ∈ R2×1 represents the projection of the
Object in the virtual cameras Ovi .

A. Problem Statement

In the classical IBVS methods, the sensory feedback sig-
nals are directly chosen as the image feature measurements
s. The vector Xb ∈ R3×1 represents the position vector of a



target object in the task space, defined in the world coordi-
nate frame (wcf). The vector s = [x1,y1, ...,xp,yp]

T ∈ R2p×1

contains the image feature measurements of all p feature
points on the target object. Then, the relation between ṡ and
Ẋb is given by ṡ = JimgẊb, where Jimg ∈ R2p×3 is known as
the image Jacobian.

If we consider ∆Xb as the input to a robot controller,
then we need to compute the inverse mapping of ṡ as
∆Xb = J+img∆s, where ∆∗ is an error function defined in
the space ∗, J+img ∈ R3×2p is chosen as the Moore-Penrose
pseudoinverse of Jimg, which leads to the two characteristic
problems of the IBVS method: the feature (image) space
singularities and local minima. In this case, the image
Jacobian is singular when rank(Jimg) < 3, while the image
local minima are defined as the set of image locations
Ωs =

{
s|∆s = 0,∆Xb 6= 0,∀s ∈ R2p×1

}
when using redundant

image features.
In this work, we define a new type of visual features such

that a full-rank image Jacobian Matrix (Jimg ∈ R3×3) can
be obtained. The key idea of this model is to combine the
stereo camera model with a virtual composite camera model
to get a full-rank image Jacobian to map velocities of a target
object (ẊCl ) to velocities of the image features (in our case,
pixel velocities in the 3D visual space, denoted here by Ẋs),
see Fig. 2.

This new 3D visual model can be computed in 3 main
steps.

1) Use the standard stereo vision model [27] to recover
the 3D relative position of an object with respect to
the reference frame of the stereo system OCl

1. This
position is denoted by XCl ∈ R3×1.

2) The Cartesian position XCl is projected on two vir-
tual cameras Ovi . This projection is a crucial step,
since it modifies the dimension of the mapping from
two 2D-image feature measurements of all p points
(s = [pl1 , pr1 , ...plp , prp ]

T ) to a single 3D visual vector
snew = Xs ∈ R3×1 in a 3D Visual Cartesian Space.
Since s represents the position XCl ∈ R3×1 in the
image feature space, the maximum dimension of s is
3. Therefore, if S ∈ R2p×1 (as is commonly defined
in the classical methods) there will be 2p−3 linearly
dependent elements in s. In this work, we propose a
virtual projection that reduces the dimension of s and
generates 3 linearly independent elements to compute
a full-rank image Jacobian (Jimg).

3) The final step is to transform the visual space velocities
(Ẋs) to joint velocity space (q̇) via the image Jacobian
(Jimg). This is achieved using the robot Jacobian J(q)
(Js = JimgJ(q)).

The following sub-sections are devoted to explain each of
these steps in detail.

B. Stereo Vision Model
The relation between right camera and left camera is given

by the orientation matrix Rr
l ∈ SO(3) and the translation

1This step could be considered as an intermediate mapping between the
stereo image space and the virtual composite image space.

vector tr
l ∈R3×1. Using these transformations we can define

the projection matrices PCl and PCr ∈ R3×4 for each camera
as PCl = Kl

[
I3×3 03×1

]
and PCr = Kr

[
Rr

l tr
l

]
, where

Kl and Kr are the intrinsic camera matrices of the left and
right cameras2.

Then, defining the observed image points in each camera
as pl = [x1 y1]

T , pr = [x2 y2]
T , we can use triangulation

[27] to compute the relative position XCl = [xc yc zc]
T of

the point Xb with respect to the left camera OCl . This can be

done by solving the system A
[

XCl
1

]
= 0, where

A =


x1 pl

31− pl
11 x1 pl

32− pl
12 x1 pl

33− pl
13 x1 pl

34− pl
14

y1 pl
31− pl

21 y1 pl
32− pl

22 y1 pl
33− pl

23 y1 pl
34− pl

24
x2 pr

31− pr
11 x2 pr

32− pr
12 x2 pr

33− pr
13 x2 pr

34− pr
14

y2 pr
31− pr

21 y2 pr
32− pr

22 y2 pr
33− pr

23 y2 pr
34− pr

14


(1)

where, pl
i j denotes the element (i, j) in PCl , and pr

i j denotes
the element (i, j) in PCr .

Before integrating the stereo camera model with the virtual
composite model, a re-orientation of the coordinate frame
OCl is required. This is achieved by defining a new coordinate
frame OV with the same origin as OCl . The projection XV =
[xV yV zV ]

T of XCl in OV is defined as (see Fig. 2)

XV = RCl
V XCl . (2)

where RCl
V is the orientation of the reference frame3 OV with

respect to OCl .

C. Virtual Composite Camera Model

In order to get the 3D visual space, we define two virtual
cameras attached to the stereo camera system using the
coordinate frame OV (see Fig. 2). We use the pinhole camera
model [27] to project the relative position XV to each of the
virtual cameras Ov1 and Ov2 .

The model for the virtual camera 1 is given by

pv1 =

[
xv1

yv1

]
=

1
−yV +λ

αR(θ)

[
xV −o11
zV −o12

]
+

[
cx
cy

]
(3)

where θ is the rotation angle of the virtual camera along
its optical axis, O1 = [o11 o12]

T is the position of the
optical center with respect to the coordinate frame OV , C1 =
[cx cy]

T is the position of the principal point in the image
plane, λ is the distance from the virtual camera coordinate
frame Ov1 to the reference frame OV along its optical axis,
α and the rotation matrix R(θ) are defined as:

α =

[
f β 0
0 f β

]
R(θ) =

[
cosθ −sinθ

sinθ cosθ

]
(4)

Since this model represents a user-defined virtual camera,
all its parameters (extrinsic and intrinsic4) are known, in fact,

2These parameters can be computed off-line.
3This reference frame is fixed and defined by the user and hence assumed

to be known.
4Since the virtual cameras are user-defined, we can set the same intrinsic

parameters and λ values for both cameras.



in the defined configuration of the virtual cameras θ = 05

(see Fig. 2).
Similarly, the virtual camera 2 is defined as:

pv2 =

[
xv2
yv2

]
=

1
xV +λ

αR(θ)

[
yV −o21
zV −o22

]
+

[
cx
cy

]
(5)

In order to construct the 3D visual Cartesian space Xs ∈
R3×1, we combine both virtual camera models as follows.

Using the properties of the rotation matrix R(θ) and the
fact that α is a diagonal matrix, from (3), xv1 can be written
in the form

xv1 = γ1
xV −o11

−yV +λ
− γ2yv1 + γ3, (6)

where the constant parameters γ1, γ2, γ3 ∈ R are explicitly
defined as

γ1 =
f β

cosθ
, γ2 = tan(θ), and γ3 = cx + cyγ2. (7)

Based on (5) and (6), we define the 3D Visual Camera
Model representation Xs = [xs ys zs]

T using the orthogonal
elements [xv1 xv2 yv2 ]

T

Xs =

 xv1
xv2
yv2

=

Rα︷ ︸︸ ︷[
γ1 01×2

02×1 αR(θ)

]
xV−011
−yV+λ
yV−021
xV+λ

zV−022
xV+λ

+ρ (8)

where ρ = [γ3− γ2yv1 cx cy]
T .

D. Visual Jacobian

In the previous section, we defined that the position of
a point XV projected in the 3D Visual Space is given by
Xs

6 as (8). The Optical Flow can be obtained with the time
derivative of (8) as follows7:

Ẋs =

Jα︷︸︸︷
Rα Jv ẊV = Jα ẊV (9)

where the image Jacobian Matrix Jv ∈ R3×3 is defined as

Jv =


1

−yV+λ

xV−o11
(−yV+λ )2 0

− yV−o21
(xV+λ )2

1
xV+λ

0
− zV−o22

(xV+λ )2 0 1
xV+λ

 (10)

This image Jacobian Matrix Jv represents the mapping from
velocities defined in the reference frame OV to velocities
(pixels/s) in the 3D visual space. In order to complete the
3D visual mapping we need to include the transformations
from OV to Ob. This transformation is given by the following
equation (see Fig. 2)

XV = RCl
V (Rb

Cl
Xb + tb

Cl
) (11)

5The reason to introduce the auxiliary coordinate frame OV is to simplify
the composite camera model by rotating the coordinate frame OCl in an
specific orientation, such as θ = 0.

6In this work, we use Xs instead of the classical notation s because Xs is
more than a image feature measurement, in fact, it defines a position vector
in the 3D visual space.

7Given that θ = 0, then γ1 = f β , γ2 = 0, ρ = [cx cx cy]
T and

Rα = diag( f β ) ∈ R3×3.

where, Rb
Cl

and tb
Cl

are the rotation matrix and the translation
vector between frame OCl and Ob.

Taking the time derivative of (11) and substituting the
robot Differential Kinematics Ẋb = J(q)q̇, equation (9) can
be rewritten in the form

Ẋs = Jα RCl
V Rb

Cl
Ẋb = JimgẊb (12)

= JimgJ(q)q̇ = Jsq̇ (13)

where J(q) ∈ R3×3 is the analytic Jacobian matrix of the
robot manipulator, and the image-based Jacobian matrix Js ∈
R3×3 is defined as the Visual Jacobian.

Then the inverse differential kinematics that relates gener-
alized joint velocities q̇ and 3D visual velocities Ẋs is given
by

q̇ = Js
−1Ẋs = J(q)−1Jimg

−1Ẋs (14)

Remark 1: Singularity-free Jimg. From (9) and (12), we

can see that Jimg
−1 = Rb

Cl

−1RCl
V
−1

Jv
−1R−1

α . The matrices
Rb

Cl
,RCl

V ∈ SO(3) are non-singular. Rα = diag( f β ) ∈ R3×3

consists of user-defined virtual camera parameters. Then,
det(Jv) = 0→ det(Jimg) = 0. This condition is present only
when: 1) O11 +λ = 0 and O21−λ = 0 or 2) xV = −λ and
yV = O21 or 3) xV = O11 and yV =−λ . However, O11, O21
and λ are also defined by the user. Then, a non-singular
Jimg can be obtained using the condition O11 = O21 > λ >
max(xVmax ,yVmax), where xVmax and yVmax are delimited by the
robot workspace defined wrt OV .

Therefore, the singularities of Js are defined only by the
singularities of J(q). Hence, to guarantee a non-singular 3D
visual mapping an approach to avoid robot singularities must
be implemented. In Section IV, we discuss this issue and
propose a solution.

Remark 2: Sensitivity to Camera Orientation Rb
Cl

. The
orientation matrix Rb

Cl
requires a special attention because

can cause system instability. Instead of demanding an exact
off-line calibration of this parameter, the problem is tackled
in two parts: a) A coarse on-line estimation of the orientation
matrix is computed using the real-time information generated
by the robot (see Section II-E) and b) Estimation errors for
the complete Jacobian Js are taken into account in the control
design. Thus, a robust control approach is designed to cope
with these errors (including Rb

Cl
and the stereo-rig intrinsic

parameters), see Section III-C.

E. On-line Orientation Matrix Estimation

We define this system as uncalibrated because we not only
assume that the calibration of the stereo vision system (left
camera OCl ) with respect to the wcf (Ob) is unknown, but
also consider the possibility of on-line modification of the
parameters that define this relationship (e.g. Rb

Cl
). The stereo-

rig is assumed to be known, which is not a strong constraint
because the entire stereo system is referenced with respect
to the left camera (see Fig. 2), and this can be done off-line.
Nevertheless, an exact calibration of the stereo system is
also not required because errors in estimation of these visual
parameters are handled in the control design (see Section
III-C).



In order to compute the visual Jacobian, in this work we
use an on-line orientation matrix estimator, where two sets of
position points defined in each coordinate frame Ob and OCl
are used. These sets are generated while the robot is moving.
The estimation approach can be summarized as follows.

Let datasets A and B be the sets of end-effector positions
defined with respect to Ob and OCl , respectively. The problem
is to find the best rotation Rb

Cl
that will align the points in

dataset A with the points in dataset B. This rotation matrix
can be obtained by computing the matrix

M =
n

∑
i=1

(Ai−CA)(Bi−CB)
T (15)

where CA,B is the centroid of the data set (A,B). Then a least-
squares fit of the rotation matrix can be written as Rb

Cl
=

Udiag
(
1,1,det

(
UV T

))
V T , where U,V are computed from

SV D(M). This rotation matrix is prone to errors of estimation
which are considered in the next section.

III. ADAPTIVE IMAGE-BASED 3D VISUAL
SERVOING

In this section we describe the design of an adaptive
image-based dynamic control. This control method includes
the robot dynamics in its passivity proof.

A. Non Linear Robot Dynamic Model

The dynamics of a serial n-link rigid, non-redundant, fully
actuated robot manipulator can be written as follows

M(q)q̈+C(q, q̇)q̇+G(q)+Bq̇ = τ. (16)

where q ∈ Rn×1 is the vector of joint positions, τ ∈ Rn×1

stands for the applied joint torques, M(q) ∈ Rn×n is the
symmetric positive definite inertia matrix, C(q, q̇)q̇ ∈ Rn×n

is the vector of centripetal and Coriolis effects, G(q) ∈Rn×1

is the vector of gravitational torques, and finally B ∈ Rn×n

is a diagonal matrix for the viscous frictions.
The robot model described in (16) can be written in terms

of a known state robot regressor Y =Y (q, q̇, q̈)∈Rn×m and an
unknown robot parameter vector Θ∈Rm×1 by using nominal
references q̇r and q̈r as follows:

M(q)q̈r +C(q, q̇)q̇r +G(q)+Bq̇r = YrΘ (17)

Subtracting the linear parameterization equation (17) to
(16), produces the open-loop error dynamics

M(q)Ṡq +C(q, q̇)Sq = τ−YrΘ (18)

with the joint error surface Sq defined as Sq = q̇− q̇r, where
q̇r represents the nominal reference of joint velocities. This
nominal reference can be used to design a control in the 3D
visual space.

B. Joint Velocity Nominal Reference

Considering equation (14), q̇r can be defined as

q̇r = Js
−1Ẋsr (19)

where, the 3D visual nominal reference Ẋsr is given by

Ẋsr =

(
Ẋsd −Kp∆Xs +Ssd −K1

∫ t

t0
Ssδ

(ζ )dζ

−K2

∫ t

t0
sign

(
Ssδ

(ζ )
)

dζ

) (20)

Ssδ
= Ss−Ssd ,Ss =

(
∆Ẋs +Kp∆Xs

)
,Ssd = Ss (t0)e−κt (21)

where Ẋsd is the desired visual velocity; ∆Xs = Xs−Xsd is
the visual position error, ∆Ẋs is the visual velocity error,
Kp = Kp

T ∈ R3×3
+ and K j = K j

T ∈ R3×3
+ (with j = 1,2) and

Ssδ is the visual error surface.
Using (19-21) in Sq we obtain:

Sq = q̇− q̇r = Js
−1 (Ẋs− Ẋsr

)
= Js

−1Se (22)

with

Se = Ssδ
+K1

∫ t

t0
Ssδ

(ζ )dζ +K2

∫ t

t0
sign

(
Ssδ

(ζ )
)

dζ (23)

where Se is the extended visual error manifold.

C. Uncertainties in Js

The above definition of q̇r depends on the exact calibration
of Js. However, this is a very restricted assumption. Hence,
the uncertainties in the Visual Jacobian Js should be taken
into account in the control design. To achieve this, the
uncalibrated nominal reference is defined bŷ̇qr = Ĵs

−1
Ẋsr (24)

where Ĵs is an estimate of Js such that Ĵs is full-rank
∀q ∈ Ωq, and Ωq =

{
q|det(J (q)) 6= 0,∀q ∈ Rn×1

}
defines

the singularity free workspace. Then, the uncalibrated joint
error surface is:

Ŝq = q̇− ̂̇qr = Sq−∆JsẊsr (25)

with ∆Js = Ĵs
−1− Js

−1 as the estimation errors, which in-
cludes both intrinsic and extrinsic parameters.

D. Control Design

Consider a robot manipulator in closed loop with the
following second order sliding visual servoing scheme,

τ =−Kd Ŝq + ŶrΘ̂ (26)
˙̂
Θ =−ΓŶr

T Ŝq (27)

where Θ̂ is the on-line estimation of the constant robot pa-
rameter vector, Kd = Kd

T ∈Rn×n
+ and Γ∈Rm×m

+ are constant
matrices. This adaptive on-line estimation together with the
second order sliding mode in Ssδ

handle the uncertainties on
the robot dynamic/kinematic and camera parameters.

E. Stability Proof

The stability proof is conducted in three parts:



1) Boundedness of the closed loop trajectories: The un-
calibrated closed-loop error dynamics between (18) and (26-
27) gives

M (q) ˙̂Sq = τ− ŶrΘ−C (q, q̇) Ŝq (28)

=−Kd Ŝq + Ŷr∆Θ−C (q, q̇) Ŝq (29)

with ∆Θ = Θ̂−Θ.
The uncalibrated error kinematic energy can be used as a

Lyapunov function in the following form as:

V =
1
2

[
Ŝq

T
M (q) Ŝq +∆Θ

T
Γ
−1

∆Θ

]
(30)

Considering the time derivative of (30) in closed loop with
(26-29), V̇ yields

V̇ = Ŝq
T

M ˙̂Sq +
1
2

Ŝq
T

ṀŜq +∆Θ
T

Γ
−1 ˙̂

Θ (31)

=−Ŝq
T

Kd Ŝq + Ŝq
T

Ŷr∆Θ−∆Θ
T ŶrŜq =−Kd

∥∥Ŝq
∥∥ (32)

where, the property (17) in terms of Ŝq has been used.
Selecting a positive Kd , equation (32) becomes negative

definite and this proves the passivity of the robot dynamics
(16) in closed loop with (26-27). Then, the following prop-
erties of the closed-loop state arises

Ŝq ∈ L∞→ Se ∈ L∞ =⇒
(

Ssδ
,
∫ t

t0
sign

(
Ssδ

(ζ )
)

dζ

)
∈ L∞ (33)

Which implies that all the signal states are bounded, specially
(q̇r, q̈r) ∈ L∞ and

(
Ẋsr , Ẍsr

)
∈ L∞.

2) Second-order sliding modes: From (22) and (25) we
obtain

Ŝq = Js
−1Se−∆JsẊsr (34)

Using (23), (34) can be written as

Ssδ
=−K1

∫ t

t0
Ssδ

(ζ )dζ −K2

∫ t

t0
sign

(
Ssδ

(ζ )
)

dζ +Ψ (35)

with Ψ = Js
(
Ŝq +∆JsẊsr

)
,

Taking the time derivative of (35) and multiplying it by
ST

sδ
, we can prove the sliding mode regimen

ST
sδ

Ṡsδ
≤−K1

∥∥Ssδ

∥∥−µ
∣∣Ssδ

∣∣ (36)

with µ = K2−
∣∣ d

dt Ψ
∣∣. If K2 ≥

∣∣ d
dt Ψ
∣∣, then a sliding mode at

Svδ
= 0 is induced at ts =

|Ss
δ
(t0)|

µ
. Moreover, notice that for

any initial condition Ssδ
(t0) = 0 then ts = 0, which implies

that the sliding mode is guaranteed for all time.
3) Exponential convergence of visual tracking errors:

Since a sliding mode exists at all times at Ssδ
(t) = 0, then

Ss = Ssd , therefore ∆Ẋs = −Kp∆Xs + Ss (t0)e−κt ∀t, which
implies that the 3D visual tracking errors converge to zero
exponentially fast.

Remark 3: Convergence of ∆Xb without local minima.
Given that Jimg is full-rank ∀t, from (12) can be seen that
∆Xs = 0→ ∆Xb = 0 without local minima. This is the most
important impact of designing a full-rank image Jacobian
which, in general, is not obtained with the classical methods.

F. Simulation

The torque level adaptive control is evaluated in simulation
to better illustrate the robustness of the system to uncer-
tainties in the robot parameters and changes in the extrinsic
parameters of the stereo system.

In this case, we simulate a 6DOF industrial robot where
the last three joints are controlled in a static position with a
PID-like controller. The real robot dynamic parameters were
used to simulate the robot in closed loop with the control
approach in (26-27). Also real camera parameters were used
to simulate the camera projections.

The task is defined as follows: the robot end-effector
is commanded to draw a circle in the world coordinate
frame using the trajectory Xbd = (0.2sin(ωt),0.2cos(ωt)−
0.8,0.5), where ω = 10rad/sec. Simulations are carried out
in Matlab 2010a.

Fig. 3 shows the results obtained from the simulation,
where the 3D visual position/velocity tracking can be ob-
served. During the simulation, an estimate of robot parame-
ters and a coarse-calibrated camera intrinsic parameters are
used in the control law, and at time t = 4s, t = 7s, the extrinsic
camera parameters are altered, see Fig. 3. From the plots it
can be observed that even when the parameters change, the
controller is capable to cope with these uncertainties and
maintain stability of the system. In the case of changes in
the orientation matrix Rb

Cl
, the controller can handle the un-

certainty to a certain extent (approx. 20% error). Therefore,
a suitable technique to generate a rough estimation of Rb

Cl
is

needed to guarantee the stability (see Section II-E).
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Fig. 3. Simulation results: The exponential convergence of the tracking
errors is depicted. It can be seen that the trajectories are stable, even when
the parameters change t = 4s and t = 7s. a),b) The position errors in both
task space (meter) and 3D visual Cartesian space (pixel) are shown. c) The
parameters of the stereo camera pose are illustrated, notice how they change
in time. d) is the tracking trajectory in task space.

IV. 3D VISUAL SERVOING WITH ENVIRONMENT
CONSTRAINTS

In the real experiment, we integrate the visual servoing
system in a HRI scenario, where enviroment constraints,
such as: robot singularites avoidance, (self-/obstacle) col-
lision avoidance must be included to generate a safe and
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singularity-free trajectory for the robot. In this work, we
modeled the environment constraints as a total force F ,
which includes singularity avoidance force Fr, self-collision
avoidance force Fc, obstacle-collision avoidance force Fo,
etc. Fig. 4 shows the integration of the control with the
environment constraints.

1) Singularity Force: An example of how to compute
this force is given by Fr = −KrPrDr−BrẊe f , where Ẋe f is
the velocity of the end-effector, Kr,Br ∈ R3×3 are constant
matrices, and we define ∆q as the absolute value of the
difference between qi and qsingularity, Dr is the direction of
gradient for the maximum manipulability factor µ . Then,
Pr = eαr∆q−1, where αr is a constant to control the stiffness
of the applied force.

2) Collision Avoidance Forces: We use the artificial po-
tential field approach to compute the forces for collision
avoidance problem, where the obstacles are repulsive sur-
faces for the manipulator. This force is given by Fo =
−KoPoDo−BoẊe f , with Po = eαo(Disto−ho)− 1, where hs is
the minimum distance between the obstacle and robot arm on
the xoy plane, and Do is the direction of the force, obtained
between the center of the obstacle and the end-effector.

V. EXPERIMENTS

A. System Review

This system consists of 3 sub-systems, a) the Visual
Stereo Tracker, b) the Robot Control System and c) the 3D
visualization System, see Fig. 1.

1) Visual Stereo Tracker: The stereo system is composed
of 2 USB cameras fixed on a camera tripod. The stereo rig is
uncalibrated with respect to the wcf and can be moved. The
parameters of the virtual cameras (see Section II) are selected
such that Jα is always non-singular. In order to compute τ

and avoid multiple-sampling system, an extended Kalman
filter (EKF) is used to estimate the visual position (sampling
period 1ms), where the reference is updated each 30ms with
the real visual data of both cameras.

2) Robot Control System: The robot system comprises of
a StaübliTX90 industrial robot arm (6DOF), a CS8C control
unit and a Workstation running on GNU/Linux OS with real-
time patch, see Fig. 1. The data communication between
the PC and the control unit is in a local network based on

TCP/IP. In this article, the robot is controlled in torque
mode using a Low Level Interface (LLI) library.

3) 3D Visualization System: This module performs
OpenGL based real-time rendering of the workspace in 3D.
It uses Qt and Coin3D as its backbone. The system updates
the configuration of the robot arm and the positions of the
target in real-time. This is achieved by means of TCP/IP
communication.

B. Experiment Results

In this case we use a simple color-based visual tracker to
identify the target (green) and the robot end-effector (red).
The target is held by a human, and the control goal is to
follow the object in the human hand with the end-effector.
The stereo vision tracking system provides the positions of
both red and green cubes with respect to the stereo coordinate
frame. This information is mapped to the 3D visual Cartesian
space to compute the errors. Using the adaptive control a
dynamic collision/singularity free trajectory can be obtained.

During the experimental validation, several behaviors are
evaluated. These behaviors are depicted in Fig. 5 and Fig. 6.

Fig. 5 a) shows how the robot handles self-collisions, the
system generates a collision-free trajectory (red line) instead
of moving directly to the target. Fig. 5 b) demonstrates the
obstacle avoidance. The blue line is the target motion and the
red line is the robot end-effector motion. In the center, there
is a static obstacle. The robot can avoid it while continuing
to track the target.
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Fig. 5. Experiment results: a) Self-collision avoidance. b) Obstacles
avoidance.

Fig. 6 demonstrates the visual servoing control in com-
bination with different forces. Fig. 6 f) and a) show visual
tracking with and without obstacle avoidance, respectively.
Fig. 6 c) illustrates the result of singularity avoidance, the
robot does not reach the singular condition (q3 = 0), even
when the user tries to force it. Fig. 6 e) shows self collision
avoidance. Fig. 6 d) depicts table avoidance where the motion
of the robot in the z−axis is constrained by the height of the
table (the end-effector is not allow to go under the table).

The primary advantage of our system is when the target
object is occluded, the stereo system can be moved to
maintain the targets in the field of view, see Fig. 6 h). After
moving the stereo system, our approach can use real data to
estimate the orientation matrix on-line. The control absorbs
the perturbations and maintains the overall stability.

The system proves to be stable and safe for HRI scenarios,
even in situations where the target is lost (due to occlusions
by the robot or the human), see Fig. 6 b) and g). In this case,



the robot system disables the contribution of τ (visual servo-
ing contribution) and reacts only to collision and singularity
forces. The visual tracking is resumed as soon as the target is
visible again. A video where these behaviors are illustrated
can be downloaded under: http://youtu.be/INwI2pDWYYo

Fig. 6. System behaviors: a) The control uses the information of both
cameras to track the object. b) The robots stops when the target is lost
until is visible again. c) Singularity avoidance. d) Table avoidance. e) Self-
collision avoidance. f) Obstacle avoidance. g) When the object is occluded,
then robot changes its behavior. h) The camera can be moved when the
target is occluded. The orientation matrix is estimated on-line.

VI. CONCLUSIONS
We proposed a novel image-based controller for 3D image-

based visual servoing using uncalibrated stereo vision sys-
tem. The control was evaluated both in simulation and on a
real industrial robot. The obtained results show the stability
of the control even with parametric uncertainties. Further-
more, this work extends the adaptive image-based control law
to include enviroment constraints. As a result, information
about the environment and the kinematic constraints can
be integrated with the 3D visual servoing to generate a
robot dynamic system with trajectory free of collisions and
singularities. This approach was evaluated in a real HRI
scenario. The future work is to include an advanced object
tracker to improve the performance. Also, the extension to
6D (visually control the position and orientation of the end-
effector using the visual Cartesian space) is being analyzed.
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