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Abstract. We propose an efficient first order primal-dual method for
solving variational problems with nonconvex regularization such as TV q.
It is based on the recent idea in [1] to reformulate an existing primal-dual
algorithm for convex optimization using Moreau’s identity. A systematic
comparison to recent state of the art algorithms for nonconvex optimiza-
tion (iteratively reweighted `1 optimization, quadratic splitting and con-
vex relaxation methods) shows that the proposed algorithm has several
advantages. Compared to iterative reweighting it does not require Lips-
chitz continuity or concavity of the regularizer and thus is also applicable
to the case q = 0. Unlike the quadratic splitting approach it requires no
additional hyperparameters. In contrast to convex relaxation methods
it does not require a discretization of the color values and is orders of
magnitudes faster and memory efficient. Numerous experiments indicate
that TV q is a well suited prior for piecewise constant images and allows
to better preserve discontinuities than classical TV regularization.

1 Introduction

Regularization is of central importance in inverse problems and variational infer-
ence. In the early 1990s, total variation (TV ) was pioneered as a discontinuity-
preserving regularizer [2] and it still ranges among the most popular and ver-
satile regularizers [3]. Nevertheless, studies on natural images indicate that the
statistics of filter responses are more faithfully represented by heavy-tailed dis-
tributions giving rise to nonconvex regularizers [4, 5]. Among the most popular

Input Image
(430× 384)

Noisy Image
(Gaussian, σ = 0.3)

TV -denoised
(PSNR=22.49)

TV q-denoised
(PSNR=23.47)

Fig. 1. We propose a simple and efficient algorithm for solving TV q regularized prob-
lems. The above comparison shows that for q < 1 (here q = 0.5), we are able to better
preserve discontinuities and obtain higher PSNR-values than standard TV denoising.
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nonconvex and discontinuity-enhancing first order regularizers are truncated lin-
ear, truncated quadratic (Mumford-Shah) and TV q-regularizers.

While many efficient algorithms have been proposed for variational problems
with convex regularization [6–8], the efficient optimization of nonconvex func-
tionals and in particular TV q-regularized functionals remains an open challenge.

1.1 TV q Regularized Variational Problems

In this work we consider energy minimization problems of the following form

min
u∈X

D(u) +R(∇u)︸ ︷︷ ︸
=:E(u)

(P)

where D : X → R is a convex dataterm and R : Y → R a nonconvex and
nonsmooth regularizer.

X and Y are finite dimensional vector spaces

X =
{
u | u : Ω → Rk

}
, Y =

{
g | g : Ω → Rd×k

}
(1)

where Ω is a discretized d-dimensional rectangular domain and k the number of
color channels. The spaces are endowed with the standard euclidean norm ‖·‖
and inner product 〈·, ·〉. With ∇ : X → Y we denote a linear operator mapping
from X to Y describing a discretization of the gradient, e.g. by standard forward
differences and div = −∇∗ denotes its negative adjoint.

We also consider the linearly constrained formulation

min
u, g
D(u) +R(g) s.t. g = ∇u, (C)

which is equivalent to the previous formulation in the sense that every minimizer
of (P) is also a minimizer of (C). The regularizer R is usually of the form

R(g) =
∑
x∈Ω

R(g(x)) (2)

and as a particular choice we consider the nonconvex and nonsmooth TV q reg-
ularizer

R(g(x)) = λ |g(x)|q (3)

where q ∈ [0, 1). With |·| we denote the Frobenius norm. We will stick to the
convention throughout the whole paper that ‖·‖ is the norm on X or Y while |·|
is the Euclidean norm of an element at an individual pixel location x ∈ Ω.

The parameter λ ≥ 0 describes the trade off between regularization and data
fidelity. In this work we only consider a quadratic dataterm

D(u) =
∑
x∈Ω

|u(x)− f(x)|2 (4)

where f : Ω → Rk is the input image and |·| is in this case the usual Euclidean
norm on Rk.
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In the special case q = 1 the above model reduces to the Rudin, Osher and
Fatemi (ROF) model [2]. For q = 0 it corresponds to the piecewise constant
Mumford-Shah [9] and the Potts model [10]. In this case it is well known that
finding a global minimizer amounts to solving a NP-hard optimization prob-
lem [11].

In the discrete setting it was shown by Nikolova et al. [12, Theorem 1] that
minimizers of the above problem for values of q ∈ (0, 1) are piecewise constant.
This makes the above functional especially attractive for the restoration of car-
toon, clip-art, text and other piecewise constant images.

1.2 Related Work

The fact that the TV q regularizer is nonconvex, nondifferentiable and not Lip-
schitz continuous makes efficient optimization of related problems hard. The
functional may possess many local optima and typical gradient based optimiza-
tion schemes are not applicable due to nonsmoothness.

Second order methods. Hintermüller and Wu [13] tackle the TV q problem
by proposing a convergent Newton-type algorithm. While second order methods
usually converge within a few iterations, they are complicated to implement,
have high per iteration cost and are less amenable to parallelization. Our method
significantly differs from that approach as it only consists of simple and explicit
update steps that are easy to implement and parallelize.

Quadratic Splitting. Another track of algorithms are alternating minimiza-
tion methods which are based on the well-known quadratic penalty method. In
the classic quadratic penalty method the constrained cost function (C) is aug-
mented by a quadratic term that penalizes constraint violation in order to arrive
at an unconstrained optimization problem:

min
u, g
D(u) +R(g) +

τ

2
‖g −∇u‖2. (5)

This augmented cost function is then solved for increasing values of τ → ∞.
Since joint minimization over u and g is difficult, minimization is usually carried
out in an alternating fashion:

gn+1 = arg min
g∈Y

R(g) +
τn
2
‖g −∇un‖2,

un+1 = arg min
u∈X

D(u) +
τn
2
‖∇u− gn+1‖2,

τn+1 = κ τn.

(6)

The parameter κ > 1 is typically chosen between 1.05 and 2. Variations exist
where the alternating minimizations are repeated several times before increasing
the penalty parameter τn [5].
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This method has appeared under many different names throughout literature
such as quadratic splitting (QS) or quadratic decoupling/relaxation.

Krishnan et al. [5] apply it for anisotropic nonconvex TV q-regularized inverse
problems such as denoising and deblurring. For the nonconvex subproblem in g
they propose to use a look-up table and give closed form solutions for q = 1/2
and q = 2/3.

A disadvantage of this approach is that it is unclear how the parameter κ
should be chosen, as the solution depends heavily on that choice. Furthermore
the subproblem in u requires to solve a linear system. This means that the update
scheme is not fully explicit. Additionally, it is not clear how the computed solu-
tion relates to the original cost function due to the quadratic term. Our proposed
method is fully explicit and does not depend on additional hyperparameters.

Iterative Reweighting. Nonconvex regularizers which are well approximated
from above by a quadratic function (for instance smooth functionals) can be
minimized using the iteratively reweighted least squares algorithm (IRLS). The
nondifferentiable `q functions are however better approximated by an `1-norm
instead of the squared `2-norm. Recently, an iterative reweighted `1 algorithm
(IRL1) to handle linearly constrained nonconvex problems such as (P) was
proposed [14].

Its update scheme consists of solving a sequence of convex `1 subproblems.
In each of the subproblems one minimizes a majorizing convex approximation
obtained by linearization of the initial nonconvex cost function. This assumes
that the regularizer is concave and Lipschitz continuous.

Since the TV q regularizer is not Lipschitz, a regularized variant is considered
in [14] with a small ε > 0:

R̂(|g(x)|) = λ (|g(x)|+ ε)q. (7)

In contrast to that method, our algorithm can also handle the boundary case
q = 0 and does not require an additional ε parameter for making the penalty
function Lipschitz continuous.

Convex Relaxation Methods. Another possibility of solving nonconvex prob-
lems are convex relaxation approaches. These methods try to approximate the
convex envelope of the original problem. They usually provide solutions which
are close to the global optimum and come with optimality bounds.

The lifting method described in [15–17] is also applicable to the TV q problem
for scalar valued images u : Ω → R. We give a short description of this in
Section 2.

Our proposed approach has several advantages over the convex relaxation. It
has a much smaller memory footprint, orders of magnitudes lower computation
times, does not require a discretization of the intensities and can be applied to
vector valued images.
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Nonconvex Primal-Dual Algorithm for the Mumford-Shah Functional.
Strekalovskiy and Cremers [1] recently proposed an efficient algorithm for mini-
mizing both the piecewise smooth and piecewise constant Mumford-Shah func-
tional. By reformulating an existing primal-dual algorithm for convex optimiza-
tion using Moreau’s identity, they were able to extend its applicability beyond
convex regularizers, and applied it to the nonconvex Mumford-Shah functional.
This way they achieved promising results with real-time capacity. They consid-
ered the truncated quadratic potential term

RMS(g(x)) = min
(
λ, α|g(x)|2

)
(8)

with λ > 0 and α > 0. Our algorithm is based on the same idea to reformulate
the primal-dual algorithm given in [8]. Thus we will give a detailed description
of the approach in the next section. We note that in the limit case q = 0 the
proposed method is identical to the algorithm from [1] for α =∞ in (8).

1.3 Contribution

We apply the proposed algorithm reformulation from [1] to the TV q problem.
Our contributions are as follows:

– We propose a simple and efficient algorithm for computing the arising non-
convex `q proximal mapping for arbitrary values of q > 0 and a concise
analytic solution for the special case q = 1/2.

– We carry out numerical experiments to show convergence of the proposed
algorithm. Furthermore we experimentally show that TV q indeed is a well
suited regularizer for the restoration of piecewise constant images.

– We provide a systematic comparison indicating that the proposed algorithm
performs favorably to quadratic splitting and iteratively reweighted `1 op-
timization in terms of lower energies, lower computation time and higher
PSNR values.

– The resulting algorithm is easy to implement and parallelize as it only con-
sists of simple and explicit update steps.

2 Convex Relaxation for TV q

In this section we will shortly describe how to apply the convex relaxation
method from [18, 15] to the TV q problem at hand. The method allows to con-
vexify functionals of the form∫

Ω\Su

h(x, u(x),∇u(x)) dx+

∫
Su

d(s, u−(s), u+(s)) ds (9)
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where u ∈ SBV (Ω). The set Ω ⊂ R2 denotes a continuous image domain and
Su the jump set of the function u where it jumps from u− to u+. Note that
the convex relaxation approach, which is also known as functional lifthing, is
only applicable to scalar images u. Thus we will always assume k = 1 in our
comparisons with convex relaxation.

As mentioned at the end of Section 1.1, it is a reasonable assumption that
the minimizers of the TV q functional are piecewise constant images. Therefore
we set the function h to the following

h(x, u(x),∇u(x)) = (u(x)− f(x))2 +

{
0 if ∇u(x) = 0

∞ otherwise
(10)

and for the jump penalization we set

d(s, u−(s), u+(s)) = |u−(s)− u+(s)|q. (11)

For further details on how to obtain and solve the convexification of that problem
using the lifting approach we refer to [17].

3 Proposed Optimization Method

3.1 Primal-Dual Algorithm [8] for Convex R
Let us first review the primal-dual algorithm [8] in the convex setting since the
proposed algorithm is a reformulation of that method. For this we first introduce
the Legendre-Fenchel or convex conjugate [19] of a general function f : X → R

f∗(y) := max
x∈X

〈y, x〉 − f(x), (12)

as well as the proximal mapping

proxτ,f (y) := arg min
x∈X

f(x) +
‖x− y‖2

2τ
(13)

for τ > 0. Since for proper, convex and lower-semicontinuous functions R it
holds that R = (R∗)∗ we can rewrite

R(g) = max
q∈Y

〈g, q〉 − R∗(q). (14)

This allows us to introduce a variable splitting in the primal problem (P) by
substituting (14) in (P). We arrive at the following saddle-point formulation

min
u∈X

max
q∈Y

〈∇u, q〉 − R∗(q) +D(u). (PD)

The primal-dual algorithm aims to find a saddle-point by performing alternating
gradient ascent in the dual variable q and gradient descent in the primal variable
u and is given as

qn+1 = proxσ,R∗ (qn + σ∇ūn) ,

un+1 = proxτ,D
(
un + τ div qn+1

)
,

ūn+1 = un + θ(un+1 − un),

(15)
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with parameters σ, τ > 0 and 0 ≤ θ ≤ 1. Due to the variable splitting, the prox-
imal mappings appearing in the algorithm have a simple form. The authors of
[8] prove that this algorithm converges to a saddle-point of (PD) for appropriate
step sizes τσ‖∇‖2 < 1 and θ = 1.

3.2 Naive Application for Nonconvex R
Let us now consider the naive application of algorithm (15) for the nonconvex
regularizer

R(g) =
∑
x∈Ω

R(g(x)), R(g(x)) = |g(x)|q, 0 ≤ q < 1 (16)

where R : Rd×k → R. For that we will require the Legendre-Fenchel conjugate
of R. The following proposition will reveal that this conjugate is not very useful.

Proposition 1 Let R(g) = |g|q and 0 ≤ q < 1. The Legendre-Fenchel conjugate
is given by

R∗(q) =

{
0, |q| = 0

∞, |q| 6= 0
(17)

and the biconjugate (convex envelope) (R∗)∗ is zero everywhere.

Proof. By definition of the Fenchel conjugate we have

R∗(q) = max
g∈Rd×k

〈q, g〉 −R(g) = max
c∈R

c|q|2 − |c|q|y|q (18)

where we wrote g = c q for some c ∈ R since that expression maximizes the inner
product. Since for 0 ≤ q < 1 the function c grows faster than |c|q the supremum
evaluates as∞ unless q = 0. From the definition of (R∗)∗ it follows immediately
that it has to be zero everywhere.

Thus the saddle-point problem (PD) is the same for all values of 0 ≤ q < 1.
Furthermore, the proximal step of algorithm (15) in R∗ just amounts to setting
the iterate qn+1 = 0. Hence, the direct application of (15) with nonconvex R
does not make much sense and does not result in a useful optimization method.

3.3 Reformulation Using Moreau’s Identity

As noted in [1], the key idea is to reformulate the q-update step in (15) using
Moreau’s identity:

proxσ,R∗(q̃) = q̃ − σ prox1/σ,R(q̃/σ). (19)

The application of Moreau’s identity is valid, since we are still working in the
convex setting. The reformulated algorithm now reads

q̃n+1 = qn + σ∇ūn,
qn+1 = q̃n+1 − σ prox1/σ,R(q̃n+1/σ),

un+1 = proxτ,D(un + τ div qn+1),

ūn+1 = un + θ(un+1 − un),

(20)
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Fig. 2. Left: The primal residual for the constraint g = ∇u does not converge to zero
for constant step sizes but for the variable step size scheme it does. Right: For each

choice of step sizes we precomputed a “converged solution” u∗ = u106 . For constant
step sizes we do not observe convergence to each precomputed u∗ and the error stops
decreasing and starts oscillating. For the variable step size scheme the error converges.

and is completely equivalent to (15) in the convex setting in the sense that it
produces exactly the same iterates. However the reformulated algorithm now
does not involve R∗ anymore, so an application to a nonconvex R makes more
sense now.

A remaining question is the appropriate choice of step sizes σ and τ . In [1]
the following choice of step sizes was suggested

θn = 1/
√

1 + 2γτn, σn+1 = σn/θn, τn+1 = τnθn, (21)

with τ0 = 1/(2d) and σ0 = 1/2. This scheme works remarkably well for noncon-
vex regularizers, though we do not have a satisfying theoretical explanation for
that yet. Furthermore, the authors of [1] show experimentally that the algorithm
converges for this step size scheme and prove boundedness of the iterates.

This is the step size scheme from the accelerated primal-dual algorithm for
uniformly convex functions [8, Alg. 2]. It comes with the property that the algo-
rithm provably converges with rate O(1/n2) in the convex setting. Furthermore,
it is shown in [8] that τn → 0 and σn →∞ with rate O(1/n).

The parameter γ is the uniform convexity constant of the dataterm D. Uni-
form convexity of D is defined as

D(y) ≥ D(x) + 〈w, y − x〉+
γ

2
‖y − x‖2, ∀w ∈ ∂D(x), y ∈ X. (22)

For the quadratic term (4) it can be quickly verified that (22) is satisfied with
any 0 < γ ≤ 2.

3.4 Behavior of (20) for Constant Step Sizes

In our experiments the algorithm (20) for nonconvex regularizers does not con-
verge for constant step sizes σ, τ and any overrelaxation parameter θ ∈ [0, 1].
Furthermore it failed to find good energies. No matter how the constant step
sizes were chosen the behaviour of the algorithm is oscillatory, as depicted in
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Algorithm 1: Proposed Algorithm for TV q minimization

Input: Input Image f : Ω → Rk, parameters q ≥ 0, λ > 0.
Init : u0 = f , q0 = 0, τ0 = 1/(2d), σ0 = 1/2, γ = 1.8.
for n ≥ 0 until ‖un+1 − un‖1 / |Ω| ≤ ε do

q̃n+1 = qn + σn∇ūn

qn+1 = prox by (19) and (26) with q̃n+1 and σn

ũn+1 = un + τn div qn+1

un+1 = prox by (24) with ũn+1 and τn
θn = 1/

√
1 + 2γτn, σn+1 = σn/θn, τn+1 = τnθn

ūn+1 = un + θn(un+1 − un)

Fig. 2. For the constant step sizes we picked τ = c/(2d) and σ = 1/(2c) for
various choices of c ∈ {100, 10−1, 10−2}. As suggested by Fig. 2 it seems that
smaller step sizes lead to better results. So the step size scheme suggested in
[1] where σn → ∞, τn → 0, θn → 1 is a natural choice. We observed the best
performance with the choice γ = 1.8 and used it throughout all our experiments.

3.5 Interpretation of the Reformulated Algorithm (20)

Let us further define an auxiliary variable g for the prox-result in the update
step for qn+1 in (20). This allows us to rewrite the algorithm in the following
way:

gn+1 = prox1/σ,R(∇ūn + (1/σ)qn),

qn+1 = qn + σ
(
∇ūn − gn+1

)
,

un+1 = proxτ,D(un + τ div qn+1),

ūn+1 = un + θ(un+1 − un).

(23)

Let us consider the saddle-point problem that is obtained by considering the
constrained primal problem (C) and introducing a Lagrange multiplier q for the
constraint. The resulting saddle-point formulation is given as

min
u, g

max
q
D(u) +R(g) + 〈q,∇u− g〉. (PD*)

The update step in gn+1 in (23) can be interpreted as a gradient descent step
with step size 1/σ on the saddle-point function (PD*) in the variable g, except
that instead of the usual starting point gn we use ∇ūn which should be equal
to gn in the limit n→∞. The update step in qn+1 in (23) is a gradient ascent
step for the Lagrange multiplier q with step size σ. Finally, the update step in
un+1 is again a gradient descent step in the variable u.

3.6 Evaluation of the Proximal Mappings

What is left in order to apply the algorithm (20) is to calculate the proximal
mappings involving D and R. Since there is no coupling between the individual
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Input Image λ = 5, q = 1 λ = 4, q = 0.9 λ = 3.5, q = 0.8

λ = 2.7, q = 0.6 λ = 2.2, q = 0.4 λ = 1.5, q = 0.2 λ = 1.35, q = 0

Fig. 3. Effect of the parameter q illustrated on a color image. Values of q < 1 lead to
piecewise constant results and smaller values of q lead to higher contrast between the
regions. λ was manually adjusted so adjacent images have the highest visual similarity.

pixels anymore, they can be evaluated pointwise for every x ∈ Ω. For notational
convenience we introduce the functions D : Rk → R and R : Rd×k → R which
correspond to the pointwise terms.

The proximal mapping for D does not pose any difficulties. By a short cal-
culation (see e.g. [8]) it can be obtained that the minimizer û ∈ Rk of the
optimization problem

proxτ,D(ũ) = arg min
u∈Rk

|u− f |2 +
|u− ũ|2

2τ
(24)

is given by

û =
ũ+ 2τf

1 + 2τ
(25)

with ũ ∈ Rk. f ∈ Rk is the input image evaluated at the according point x ∈ Ω.
The evaluation of the proximal mapping in R is more involved since it cannot

be carried out in closed form for the generic case 0 ≤ q < 1. It requires finding
the solution to the following minimization problem:

proxτ,R(g̃) = arg min
g∈Rd×k

|g − g̃|2
2τ

+ λ|g|q. (26)
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Input
(256× 229)

Noisy (σ = 0.5)
PSNR=6.0

q = 0.2, λ = 1
a) PSNR=14.3

q = 0.2, λ = 1.6
b) PSNR=16.5

q = 0.8, λ = 1.1
c) PSNR=18.4

Fig. 4. The effect of the parameter q for image denoising. a), b) While smaller values
of q lead to sharp boundaries and clearer regions, large noise outliers are not being
removed since big jumps get penalized less. Higher values of λ are required in order
to remove them, which leads to the removal of detailed structures. c) We found values
around q ≈ 0.8 to yield the overall highest PSNR values as it describes a good trade-off.

The case q = 0. An important special case is q = 0, which corresponds to
Potts regularization. In this case the minimization (26) can actually be solved
explicitly as described in [1]:

proxτ,R(g̃) =

{
0 if |g̃| ≤

√
2τλ

g̃ otherwise.
(27)

The general case 0 < q < 1. For the general case we first note that the
evaluation of the proximal operator (26) can be reduced to a problem in a single
scalar variable.

Proposition 2 Given g̃ ∈ Rd×k, τ > 0, q ∈ (0, 1) and λ > 0, the solution of
the proximal operator

proxτ,R(g̃) = arg min
g∈Rd×k

|g − g̃|2
2τ

+ λ|g|q

has the form ĝ = tg̃ for some real t ≥ 0.

Proof. A proof is given in the appendix of [20].

Since we now know that the optimal solution is a scalar multiple of g̃ we substi-
tute g = tg̃ in (26) and get the following new scalar problem

arg min
t≥0

(t− 1)2

2
+ αtq (28)

for α = τλ|g̃|q−2 ≥ 0. Thus, evaluating the proximal operator (26) reduces to
solving the above problem (28) for t ≥ 0.

The minimization problem (28) can be solved in closed form for certain values
of q such as 1/2 or 3/4 as described in [5]. We provide a more concise analytic
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Input Image
(200× 182)

Noisy, σ = 0.3
(PSNR=10.5)

u0 = f
(PSNR=19.8)

Random u0

(PSNR=20.7)
u0 = 0

(PSNR=20.8)

Fig. 5. We show the effect of using different initializations (λ = 0.5, q = 0.5). Since
the optimization problem is highly nonconvex it might have many local minima. If
we initialize the algorithm with the degraded image, the algorithm often gets trapped
in a bad local minimum where the noise outliers are not getting removed. This effect
becomes worse for smaller values of q and higher noise variances. The results produced
by using a random or zero initialization are almost identical.

solution for the special case 1/2 and an efficient algorithm based on Newton’s
method for the general case in the appendix.

The final nonconvex primal-dual algorithm for TV q denoising is summarized
in Algorithm 1. We stop the iterations when there is no significant change in the
solution anymore, which we observed to be the case when ‖un−un−1‖1/|Ω| ≤ ε.
In practice we set ε = 5 · 10−5.

4 Numerical Experiments

We implemented all considered algorithms using CUDA to run on GPUs. We
used double precision for the convergence experiments and float precision for
all other experiments. All numerical experiments were carried out on a GTX680
graphics card. We used cuFFT 1 for the FFT calculations required by the
quadratic splitting approach.

4.1 Effect of TV q Regularization

In Fig. 3 we show the effect of the parameter q on a natural image. We show
the results produced by our method for various values of q. The regularization
parameter λ was adjusted so that two adjacent images in Fig. 3 have the lowest
Euclidean distance.

Values of q < 1 lead to piecewise constant approximations and for smaller
values of q we observe higher contrast between the regions. That is because
for smaller values of q, bigger jumps are penalized less and less. In the border
case q = 0 all jumps are penalized equally. Note that the proposed algorithm
produces consistent results in a sense that smaller values of q systematically lead
to a higher contrast between the regions.

1 https://developer.nvidia.com/cufft
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Fig. 6. Experimental convergence of the proposed algorithm on the 256 × 256 lena
image. We observe convergence for both the normalized energy (En − E∗)/(E0 − E∗)
and the normalized energy En/E0 for various values of q and λ.

In Fig. 4 we illustrate how the denoising performance of the algorithm de-
pends on the parameter q. While smaller values of q lead to desirable sharper
boundaries and higher contrast, strong noise outliers do not get removed any-
more due to the lower penalization of large jumps. Finding the correct value of q
means finding a good trade off and values of q ≈ 0.75 lead to the highest PSNR.

4.2 Dependance on the Initialization

Since the optimization problem is nonconvex we show the dependance of the
solution on the initialization in Fig. 5. If we initialize the algorithm with a noisy
input image we observe overall higher energies and a more noisy final solution.
Initializing the algorithm with a constant image leads to the best results. Al-
though the initial problem is nonconvex, the proposed algorithm turns out to be
surprisingly robust w.r.t initial values.
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Fig. 7. We show the energy decrease over time for the image from Fig. 8 and two
different values of q. Our proposed algorithm minimizes the energy functional faster
than the iterative reweighted `1 and quadratic splitting method. The quadratic splitting
method converges to a significantly higher energy, especially for lower values of q.

4.3 Convergence of the Energy

Since there is no theoretical proof of convergence yet, we validated the con-
vergence experimentally. We precomputed a u∗ = u10

6

as an approximation to
the converged solution. It can be seen in Fig. 7 that the normalized energies
(E(un)− E(u∗))/(E(u0)− E(u∗)) and E(un)/E(u0) decrease and converge.

Furthermore, we compare the energy decrease of the proposed method over
time to the iterative reweighted `1 (IRL1) and quadratic splitting (QS) method in
Fig. 7. For the iterative reweighting method we chose ε = 10−6 as a regularization
parameter to make the TV q function Lipschitz continuous. For the iterative
reweighting method we solve the inner convex optimization problem using the
same accelerated primal-dual algorithm.

Furthermore we chose κ = 1.05 in the quadratic splitting method. We ini-
tialized all algorithms with the input image (u0 = f).

For q = 0.75 the proposed algorithm finds the lowest energies significantly
faster than the other methods. For smaller values of q such as 0.5 our method
performs comparably to iterative reweighting.

The final energy found by the proposed method and iterative reweighting are
almost identical, while the quadratic splitting method converges to a significantly
higher energy.

4.4 Comparison to Other Methods

In Fig. 8 we compute a piecewise constant approximation of the input image
using the different algorithms. The figure shows that for larger values of q all
methods yield visually similar results, but for small values of q such as 0.05 the
proposed method finds solutions which are closest to the convex relaxation.

We note that the convex relaxation method took over 105 iterations to pro-
duce a piecewise constant result, which took over 10 minutes to compute on the
GPU. The proposed method yields a result of similar quality in a few hundred
milliseconds.
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Fig. 8. Piecewise constant approximation of Escher’s “Hand with Reflecting Sphere,
1935” by TV q regularization using the different algorithms. Top row: For values of
q that are close to 1 all methods yield comparable results . Bottom row: Unlike
the other approaches the proposed method gives comparable results to the convex
relaxation method, while requiring orders of magnitude less runtime and memory.

4.5 Denoising of Piecewise Constant Images

In Fig. 9 the denoising performance of the different algorithms on a piecewise
constant image is shown. We chose q = 0.8 and the hyperparameter λ was chosen
in order to obtain the highest PSNR values. We let the methods run until the
according convergence criterion is met.

Our algorithm and iteratively reweighted `1 optimization find slightly higher
PSNR values than the quadratic splitting method. In terms of runtime the pro-
posed approach outperforms the other algorithms.

5 Conclusion

Following the recent idea from [1] to reformulate a primal-dual algorithm from
convex optimization using Moreau’s identity, we proposed an efficient method
for solving TV q regularized problems. We gave experimental evidence that the
proposed algorithm converges for the suggested variable step size scheme and
showed that it does not converge for constant step sizes. Further experiments
suggest that our method performs comparably to state-of-the-art competitors
such as iteratively reweighted `1 optimization.

Furthermore we proposed an efficient method for solving the occurring non-
convex proximal mapping and gave a concise closed form solution for q = 1/2.



16 Thomas Möllenhoff, Evgeny Strekalovskiy, Daniel Cremers

Input Image
(256× 275)

Noisy, σ = 0.15
(PSNR=16.5)

QS, κ = 1.01
λ∗ = 0.24

(PSNR=29.6)
584 ms

IRL1, ε = 10−6

λ∗ = 0.3
(PSNR=30.0)

210 ms

Proposed
λ∗ = 0.3

(PSNR=30.0)
49 ms

Input Image
(256× 275)

Noisy, σ = 0.3
(PSNR=10.4)

QS, κ = 1.01
λ∗ = 0.52

(PSNR=25.7)
549 ms

IRL1, ε = 10−6

λ∗ = 0.65
(PSNR=26.2)

188 ms

Proposed
λ∗ = 0.65

(PSNR=26.2)
70 ms

Fig. 9. Denoising of a piecewise constant image with TV q regularization (here q = 0.8).
The λ parameter was manually chosen for highest PSNR. The proposed algorithm
finds comparable PSNR values to the iterative reweighting method and outperforms
the quadratic splitting approach. It is significantly faster than the other methods.

Our proposed method has several favorable properties. Its simple structure
makes it easy to implement and parallelize. Compared to the iterative reweight-
ing method it does not require the regularizer to be Lipschitz continuous or
concave, so we do not require a smoothing of the cost function and our algo-
rithm is also applicable to the border case q = 0.

In contrast to the quadratic splitting method we do not require a heuristical
parameter κ and we have shown that our algorithm finds solutions in terms of
much higher quality.

Unlike the convex relaxation approach we do not require a discretization of
the intensity values and our approach has orders of magnitude lower memory re-
quirements and runtimes. Furthermore it is applicable to vector valued functions
such as color images.

We believe that the proposed algorithm will be of great utility for efficiently
solving TV q regularized problems. For future work we want to study more the-
oretical properties of the algorithm such as convergence, optimality and the
appropriate choice of step sizes. Extensions to general inverse problems, prob-
lems with non-quadratic dataterms and to more advanced regularizers are also
left for future work.
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Fig. 10. The cost function (29) for three different increasing values of α. From left

to right: α ≈ 0.41 < 2
√

6
9

, α = 2
√
6

9
≈ 0.54, α = 4

3
√
3
≈ 0.77. It can be seen that the

desired stationary point is also the global minimum for α < 2
√

6
9

(left). In the equality
case, the value at the stationary point is the same as the boundary value (center). For
α > 4

3
√

3
the cost function is increasing (right).

A Evaluating the `q Proximal Mapping

As shown in the paper, evaluating the proximal operator (26) requires solving
the scalar `q problem (28). Here we give detailed information on how to solve
this problem either in closed form for q = 1/2 or with Newton’s method.

A.1 Closed form solution for q = 1/2

We will first focus on the special case q = 1/2. The problem has the form

arg min
t≥0

(t− 1)2

2
+ α t

1/2 (29)

with α = λτ |g̃|−1.5 ≥ 0.
Setting the derivative of the cost function (29) with respect to t to 0 and

substituting t = s2 we arrive at the following cubic equation:

s3 − s+
α

2
= 0 (30)

Following the work of [21] we arrive at the following closed form expression for
the root which corresponds to the minimum of (29):

ŝ =
2√
3

sin
(1

3

(
arccos

(3
√

3

4
α
)

+
π

2

))
(31)

Fig. 10 shows that for some values of α, the value at the boundary is the optimal
value. It can be shown that this holds for all α satisfying condition (32).

α >
2
√

6

9
(32)

In that case, we simply set t̂ = 0. Otherwise we find the root ŝ of (30) that
corresponds to the local minimum using formula (31) and set t̂ = ŝ 2.
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Algorithm 2: Proposed algorithm for solving the `q proximal operator.

Input: Parameters g̃ ∈ Rd×k, τ > 0, λ > 0 and q ∈ (0, 1), precision ε > 0
Output: Minimizer ĝ ∈ Rd×k of (26)
if |g̃| > 0 then

α = τλ|g̃|q−2

if α satisfies (34) then

t̂ = 0
else

// Solve for optimum using Newton’s method.
t0 = 1
for k ≥ 1 until f ′(tk)/f ′′(tk) < ε do

tk = tk−1 − f ′(tk)/f ′′(tk)

t̂ = tk

ĝ = t̂ g̃
else

ĝ = 0 // In the case g̃ = 0 we can just set ĝ = 0.

A.2 Newton’s method for general 0 < q < 1

For general values of q, we solve the scalar `q problem

arg min
t≥0

(t− 1)2

2
+ αtq (33)

using Newton’s method. A straightforward calculation reveals that for all α
satisfying the condition

α >
1

2− q

(
2

1− q
2− q

)1−q
(34)

the boundary value is lower than the value at the local minimum, so we set t̂ = 0
if (34) is satisfied and otherwise we use Newton’s method.

Note that for α = 0 the optimal point is at t̂ = 1, and for α > 0 we have
t̂ < 1. So we pick the starting point for Newton’s method t0 = 1. We perform
the iteration

tk+1 = tk − f ′(tk)/f ′′(tk)

where f(t) = (t−1)2
2 +α tq and f ′ and f ′′ denote the first and second derivatives

of f . It can be easily shown that the function f ′ is convex and increasing on the
closed interval

[
t̂, 1
]
, so Newton’s method converges to the minimum.

The final algorithm to evaluate the proximal operator (26) using Newton’s
method is given as Algorithm 2. In practice, this algorithm converges to the
minimum within a 2–3 iterations even when ε is set to machine precision.


