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Abstract Vector field methods for trajectory following are generallycomputed of-
fline before execution and thus only applicable to static trajectories. In contrast this
paper introduces Laplacian trajectory vector fields (LTVF)as a computationally ef-
ficient method for creating convergent vector fields towardsa discretized reference
trajectory. In case of environmental changes both the vector field and the reference
trajectory can be quickly recomputed. The conducted experiment uses a HRP-4
robot in order to display the applicability to daily life problems.

1 Introduction

Vector fields are a standard method for reactive trajectory adaption, allowing one to
calculate a desired movement vector for any point in space while avoiding obstacles
and maintaining a desired movement behavior. Probably the oldest and most used
vector fields in robotics are potential fields [8, 1], focusing on collision avoidance in
both static and non-static environments by superimposing repellent forces from each
obstacle. Other approaches have the goal of a safe physical interaction with a human
user [12], goal convergence in constrained environments [9] or global convergence
towards closed curves [5]. A recent trend focusing on imitation learning incorporates
the modulation of a dynamical system [6, 4], thus overcomingthe problem of get-
ting stuck in a local minimum and being able to encode more complex movements.
An elaborate approach for convex-shaped obstacle avoidance while maintaining the
shape of a goal-driven motion is presented in [7].
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Most of the presented vector field methods for trajectory following are learnt
offline and assume the underlying trajectory not to be changed during execution.
Yet in the presence of large disturbances or environmental changes this can cause
undesired and possibly diverging trajectories [3]. An alternative option presented in
this paper is to recompute the trajectory and recalculate the resulting vector field for
faster convergence.

The contribution of this paper is a method to construct converging vector fields
for arbitrarily, discretized trajectories. Regarding computational complexity, the
vector field is recalculated quickly whenever the trajectory has to be updated. Con-
vergence of the integral curves along the trajectory towards an end point can be
ensured by interpolating between multiple first-order dynamical systems. Continu-
ity of the vector field within specified bounds is proven. Because the vector field
depends only on a few parameters its calculation can be automatized fully and com-
bined with a Programming by Demonstration approach as shownin the experiment
using an HRP-4 robotic platform.

2 Approach

2.1 Laplacian Vector Fields

Let a trajectory be the combination of a pathP = [p(t1),p(t2), . . . ,p(tn)]T ∈ R
n×m

with n sampling pointsp(ti) and associated temporal informationti ∈ R. For sim-
plicity, P = [p(t1),p(t2), . . . ,p(tn)]T is rewritten asP = [p1,p2, . . . ,pn]

T . The tra-
jectory consists of trajectory segmentsτi defined as the line segment between two
subsequent sampling pointspi,pi+1, i ∈ {1, . . . ,n−1}, see Fig. 1. Every trajectory
segment has a mid pointpm,i =

pi+pi+1
2 , lying on the hyperplanehi with correspond-

ing normal vectorni =
pi+1−pi

‖pi+1−pi‖ . The vector fields for the remainder of this paper
are of the general form

ṗ = Aip+bi, (1)

with A ∈ R
m×m,b ∈ R

m. For thei-th trajectory segment, they can be split up as

Ai = A‖i +A⊥i, (2)

bi = b‖i +b⊥i,

consisting of a parallel vector fieldV‖i = {A‖i,b‖i} responsible for guiding an object
along the trajectory and an orthogonal vector fieldV⊥i = {A⊥i,b⊥i} for convergence
towards the trajectory in case of a sudden disturbance. In order to calculate the ele-
ments of the vector fields, we define an orthonormal basis inR

m with basis vectors
a j,i, j ∈ {1, . . . ,m} such thata1,i coaligns withpi+1 − pi. It is assumed that the
eigenvectorse j,i of Ai coincide witha j,i. The scalar valuesλ‖ j,i andλ⊥ j,i denote
the eigenvalues ofA‖i andA⊥i. Then the parallel vector fieldV‖i has to fulfill the
conditions



Laplacian Trajectory Vector Fields for Robotic Movement Imitation and Adaption 3

λ‖1,i = λ‖2,i = . . .= λ‖m,i = 0, (3)

ṗ(pm,i) =
pi+1−pi

ti+1− ti
> 0,

that is a vector field with constant velocity parallel to thei-th trajectory segment.
The orthogonal vector fieldV⊥i has to fulfil the condition

λ⊥1,i = 0,

λ⊥2,i = λ⊥3,i = . . .= λ⊥m,i < 0, (4)

ṗ(pm,i) = 0,

i.e. the line throughpi,pi+1 being the only stable set of equilibrium points. By defin-
ing A‖i andb‖i as

A‖i = 0, (5)

b‖i =
pi+1−pi

ti+1− ti
,

it suffices (3). A heuristic approach is used to find a solutionthat suffices (4). By
remembering that

ṗ = A⊥ip+b⊥i, (6)

one can create the equation system

ṗ(pm,i) = 0,

ṗ(pm,i +a1,i) = 0, (7)

ṗ(pm,i +aq,i) = −κi aq,i, ∀q ∈ {2, . . . ,m}

and solve it for the variables inA⊥i andb⊥i in order to construct the orthogonal
vector field. The strength parameterκi > 0 adjusts the influence of the orthogonal
vector fieldV⊥,i, accounting for the rate at which any object converges back to the
trajectory after a disturbance. Note that the norm of any vector v⊥i caused the vector
field V⊥i is directly proportional to the minimal distancedm,i to the line through
pi+1,pi as

‖v⊥i‖= dm,iκi. (8)

When moving along a trajectory, an interpolation scheme according to (9) with the
weighting factorwi ∈ [0,1] blending over the vector fields of subsequent trajectory
segments is proposed in order to avoid discontinuities

ṗ = wi(Ai +bi)+(1−wi)(Ai+1+bi+1). (9)

The trajectory segmentτi is defined by the two pointspi,pi+1, the trajectory segment
τi+1 by pi+1,pi+2. Let the projection of an object position onto theτi segment bepp,i

and its relative lengthri =
‖pp,i−pi‖
‖pi+1−pi‖ . The interpolation scheme weightwi is given as
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Fig. 1 Vector field example for a trajectory consisting of two segmentsτi and τi+1. Left side:
Calculated vector field both after superposition and split up into individual parallel and orthogonal
vector fields. Right side: Schematic view.

r′i = |ri −0.5|,
r′i+1 = |ri+1−0.5|, (10)

wi =
r′i+1

r′i + r′i+1
,

with the offset of 0.5 moving the moment of switching to the hyperplanehi. Note
that this interpolation scheme is only well defined for intersection anglesγi

γi = arccos

(

(pi+2−pi+1) · (pi+1−pi)

‖pi+2−pi+1‖‖pi+1−pi‖

)

<
π
2
, (11)

The approach can be readily combined with Laplacian Trajectory Editing [11], al-
lowing one to deform the underlying trajectory proactivelywhile still being able
to recompute the new vector field quickly. For collision avoidance, one can use an
arbitrary superimposing method, for example potential fields or the method in [7].

2.2 Convergence

Two aspects of convergence are investigated: Transition convergence (any points
either on the hyperplanghi or in betweenhi andhi+1 eventually converges tohi+1)
and point converge (any point on the last hyperplanehn−1 or beyond convergence
to the last pointpn). By combining both convergence properties one can thus ensure
that a point moving along the trajectory eventually converges topn.

To prove transition convergence, the vector fieldṗ(s) always has to point in di-
rection ofni+1 as

ṗ(s)T ni+1 > 0. (12)

By decomposinġp(s) as
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ṗ(s) = w1(v‖i +v⊥i)+w2(v‖i+1+v⊥i+1), (13)

it accounts both for the orthogonal/parallel components ofthe vector fieldsVi,Vi+1

and a interpolation scheme with weightsw1,w2. Looking at the geometric proper-
ties, (12) can be rewritten as

w1(‖v‖i‖cos(γi)−‖v⊥i‖sin(γi))+w2‖v‖i+1‖ > 0,

w1(‖v‖i‖cos(γi)−dm,iκi sin(γi))+w2‖v‖i+1‖ > 0. (14)

The minimal values of (14) are given forw1 = 1,w2 = 0, resulting in

‖v‖i‖cos(γi)> dm,iκi sin(γi). (15)

(15) is a necessary condition for transition convergence. Depending on the intersec-
tion angleγi it defines an admissible region around the trajectory segment whose
extent can approach∞ for γi → 0 in the limiting case or 0 forγi → π

2 .
Point convergence forpn can be achieved by creating a vector fieldV for the last

trajectory segment such that it fulfills

λ1,n = λ2,n = . . .= λm,n < 0, (16)

ṗ(pn) = 0,

that is a point attractor forpn which can be created following the idea in (7). The
proof is analogous to the one for transition convergence.

2.3 Spatial Bounds Approximation

Whereas conservative spatial bounds of the deviation of the integral curveC from
the reference path can be given which hold for anyκi > 0, a good approximation
can be made under the assumption ofγi ≈ 0 and‖v‖i+1‖ ≈ ‖v‖i‖. Then for an object
starting from the hyperplaneh1 with an initial distancedm,1 to the trajectory - see
(8) - the resulting distancedm,s when passing the hyperplanehs can be calculated as

dm,s = dm,1−
∫

C
V⊥dx,

≈ dm,1

s

∏
i=1

exp(−κi∆ ti), (17)

≈ dm,1

s

∏
i=1

exp(−κi
‖pm,i+1−pm,i‖

‖v‖i‖
),

with
∫

C as the integral over the integral curveC and ∆t as the time required to
traverse from the hyperplanehi to hi+1.
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3 Experimental Evaluation

The experiment consists of a movement imitation task where abutton has to be
pressed while avoiding an obstacle. To adapt to environmental changes, LTVF and
Laplacian trajectory editing [11] are combined with a Programming by Demonstra-
tion (PbD) framework [10, 2]: Whereas the PbD framework produces a prototypic
(i.e. regressed) trajectory, Laplacian trajectory editing is used to deform the pro-
totypic trajectory in case of large environmental changes.Subsequently, LTVF are
used to create movements converging to the prototypic trajectory in case of small
disturbances (e.g. a slightly varied starting position).

The human hand movement is recorded at a frame rate of 200Hz using a Vortex
motion capture system. Five demonstration rollouts are performed in which the hand
is moved from various starting positions through a narrow tunnel to press a button,
see Fig 2a. All demonstrations are aligned in the temporal domain using Dynamic
Time Warping. Then Gaussian Mixture Regression gives a prototypic trajectory with
corresponding spatial covariance matrixΣi for the i-th sampling point. The spatial
variance is used to determine the strength parameterκi ∝ 1√

detΣi
of the vector field.

This ensures quick convergence towards the trajectory wherever the spatial variance
is low, corresponding to constrained sections of the trajectory. On the other hand a
high variance implicitly assumes free space, resulting in low values ofκi. Shown
in Fig 2b are the five rollouts (orange trajectories). The colorful tube is centered
around the prototypic trajectory. The color of the tube represents the vector field
strengthκi whereas the tube diameter is directly proportional to the distancedm,s

in (17). The result is a funnel in which convergence according to the spatial bounds
approximation can be guaranteed. Adaption to a varied environment (varied obstacle
position, different button to press) can be achieved by retargeting the trajectory using
Laplacian trajectory editing, see Fig 2c. Fig 2d shows the reproduction of only two
trajectories from different starting positions using a HRP4 robotic platform.

4 Discussion

Experiments show how the presented approach can be readily combined with other
approaches and applied to robotic movement imitation problems. Differing from
other approaches based on Gaussian mixture models which have to learn the mix-
ture model for every new trajectory, no learning is necessary when using LTVF.
This makes the approach applicable for real-time applications where online trajec-
tory modifications are necessary. Because at any time instance the vector field has
to be computed based only on two adjacent trajectory segments, its computational
complexity is independent of the shape or length of the trajectory. Moreover, tight
spatial boundaries can be specified which are helpful for collision prediction and
avoidance. A drawback is that methods based on Gaussian mixture models like Dy-
namic Movement Primitives have useful theoretical properties in terms of global
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Fig. 2 Experimental results. Human demonstration (a), processed results (b), adaption to a changed
environment (c) and adapted movement using a HRP-4 robot (d). Highlighted in (a) and (d) in red
are the human/robot arm, two boxes representing the obstacle, the button to be pressed and the
hand trajectory

stability and robustness to disturbances. Convergence forLTVF on the other hand
can be shown only on a local scale. Hence any disturbance large enough may lead
to divergent behavior, making it necessary to recompute thereference trajectory.
Differing from Gaussian mixture models which are generallytime-independent, the
presented approach is time-variant as one has to keep track of the object’s current
trajectory segment. This can be used to resolve issues regarding self-intersecting
paths.

5 Conclusion and Future Work

This paper presents a generic method to construct convergent vector fields towards
a discretized reference trajectory. In case the trajectoryis retargeted, the vector field
can be reconstructed quickly without the need of an explicitoptimization routine.
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The guaranteed convergence, low computational complexityand large spatial adap-
tion range makes it predestined to be used with other approaches for collision avoid-
ance and vector field adaption.

Future work will be focused on an improved version extendingthe presented
approach to continuous trajectories.
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