L aplacian Trajectory Vector Fieldsfor Robotic
Movement I mitation and Adaption

Thomas Nierhoff, Sandra Hirche, and Yoshihiko Nakamura

Abstract Vector field methods for trajectory following are generaitynputed of-
fline before execution and thus only applicable to statiettaries. In contrast this
paper introduces Laplacian trajectory vector fields (LT¥BE)a computationally ef-
ficient method for creating convergent vector fields towardiiscretized reference
trajectory. In case of environmental changes both the véietid and the reference
trajectory can be quickly recomputed. The conducted erpat uses a HRP-4
robot in order to display the applicability to daily life griems.

1 Introduction

Vector fields are a standard method for reactive trajectdapton, allowing one to

calculate a desired movement vector for any point in spadkeatoiding obstacles
and maintaining a desired movement behavior. Probably lthesband most used
vector fields in robotics are potential fields [8, 1], focigson collision avoidance in
both static and non-static environments by superimpospgltent forces from each
obstacle. Other approaches have the goal of a safe phystegdction with a human
user [12], goal convergence in constrained environmefntsr[§lobal convergence
towards closed curves [5]. A recent trend focusing on inaitefearning incorporates
the modulation of a dynamical system [6, 4], thus overcontivegproblem of get-

ting stuck in a local minimum and being able to encode moreptexmovements.

An elaborate approach for convex-shaped obstacle avadahite maintaining the

shape of a goal-driven motion is presented in [7].
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Most of the presented vector field methods for trajectorjofaing are learnt
offline and assume the underlying trajectory not to be chamyging execution.
Yet in the presence of large disturbances or environmehehges this can cause
undesired and possibly diverging trajectories [3]. Anralétive option presented in
this paper is to recompute the trajectory and recalcul&eetbulting vector field for
faster convergence.

The contribution of this paper is a method to construct caging vector fields
for arbitrarily, discretized trajectories. Regarding gqurtational complexity, the
vector field is recalculated quickly whenever the trajectuas to be updated. Con-
vergence of the integral curves along the trajectory towana end point can be
ensured by interpolating between multiple first-order dyital systems. Continu-
ity of the vector field within specified bounds is proven. Besmthe vector field
depends only on a few parameters its calculation can be atitted fully and com-
bined with a Programming by Demonstration approach as shmowre experiment
using an HRP-4 robotic platform.

2 Approach

2.1 Laplacian Vector Fields

Let a trajectory be the combination of a p&h= [p(t1),p(t2),...,p(t)]T € R™M
with n sampling point9(ti) and associated temporal informatipre R. For sim-
plicity, P = [p(t1),p(t2),...,p(tn)]T is rewritten asP = [p1,p2,...,pn]". The tra-
jectory consists of trajectory segmentsdefined as the line segment between two
subsequent sampling poirgs pi+1, i € {1,...,n—1}, see Fig. 1. Every trajectory
segment has a mid poipfj = % lying on the hyperplank; with correspond-
ing normal vecton; = Hg:ﬁig:\\' The vector fields for the remainder of this paper
are of the general form

p=Aip+Dbj, 1)

with A € R™™M b € R™, For thei-th trajectory segment, they can be split up as

Ai = A +AL, (2)
bi = by +bj,

consisting of a parallel vector fieM; = {A;,bj; } responsible for guiding an object
along the trajectory and an orthogonal vector fiéld= {A ,;,b;} for convergence
towards the trajectory in case of a sudden disturbance derdo calculate the ele-
ments of the vector fields, we define an orthonormal badi¥"with basis vectors
aji, J €{1,...,m} such thata;; coaligns withp;1 — p;. It is assumed that the
eigenvectors;; of A; coincide witha;;. The scalar vaIueﬁHj_,i andAj; denote
the eigenvalues oA ; andA ;. Then the parallel vector field; has to fulfill the
conditions
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Ali=A)2i=--=Ami =0, (3)
p(pmi) = PP g,
t|+l_t|

that is a vector field with constant velocity parallel to fkth trajectory segment.
The orthogonal vector fieN | ; has to fulfil the condition

AJ_l,i = 07
A2i=Aigi=...=A1mi <0, (4)
p(pmi) = 0,

i.e. the line througlp;, pi;1 being the only stable set of equilibrium points. By defin-
ing Aj; andbj; as

Aji =0, (5)
~_ Pir1—Pi
=

it suffices (3). A heuristic approach is used to find a soluttmat suffices (4). By
remembering that
p=ALp+bii, (6)

one can create the equation system

p(Pmi) =0,
P(pmi +azi) =0, @)
P(Pmi+aqi) = —Kiagi, Yqe{2,...,m}

and solve it for the variables iA |j andb ; in order to construct the orthogonal
vector field. The strength parametgr> 0 adjusts the influence of the orthogonal
vector fieldV, ;, accounting for the rate at which any object converges batke
trajectory after a disturbance. Note that the norm of anyorec ; caused the vector
field V; is directly proportional to the minimal distanchk,; to the line through

pi+l7pi as
IV Lill = miKi- (8)

When moving along a trajectory, an interpolation schemeraaog to (9) with the
weighting factow; € [0, 1] blending over the vector fields of subsequent trajectory
segments is proposed in order to avoid discontinuities

b= Wi (A +b7) + (1= W) (A1 +biga). ©)

The trajectory segmenmtis defined by the two points, pi 1, the trajectory segment
Ti+1 by piy1, Piy2. Letthe projection of an object position onto theegment b@p;

and its relative length, = ‘l‘ﬁi;’gi‘h . The interpolation scheme weight is given as
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Fig. 1 Vector field example for a trajectory consisting of two segmentand 7;1. Left side:
Calculated vector field both after superposition and split tpimdividual parallel and orthogonal
vector fields. Right side: Schematic view.

rf=ri—05],

M1 =|ri;1—05], (10)
. M
I i

with the offset of 05 moving the moment of switching to the hyperpldneNote
that this interpolation scheme is only well defined for ist@tion angles;

(Pi+2—Pis1) - (Pi+1—pi)) m
= arcco <=, 11
” 5<|pi+z—pi+1||||pi+1—pi|| 2 ()

The approach can be readily combined with Laplacian TrajgdEditing [11], al-
lowing one to deform the underlying trajectory proactivedile still being able
to recompute the new vector field quickly. For collision alamce, one can use an
arbitrary superimposing method, for example potentiatifi@r the method in [7].

2.2 Convergence

Two aspects of convergence are investigated: Transitiomergence (any poirg
either on the hyperplanig or in betweerh; andh;; eventually converges ta_ 1)
and point converge (any point on the last hyperplana or beyond convergence
to the last poinpy). By combining both convergence properties one can thusrens
that a point moving along the trajectory eventually conesrtppy,.
To prove transition convergence, the vector figld) always has to point in di-

rection ofn;, 1 as

p(s) niz1 > 0. (12)

By decomposing(s) as
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P(S) = W (Vi +V1i) +Wa(V)iy1+Viit1), (13)

it accounts both for the orthogonal/parallel componenthefvector fields/, Vi 1
and a interpolation scheme with weights, w». Looking at the geometric proper-
ties, (12) can be rewritten as

wa([|vyill cogy) — [Iv.ill sin(y)) + Wzl |Vjisal > O,
W ([|v)il| cOY) — dmiki SIN()) +Wz([V)ja]| > O. 14)

The minimal values of (14) are given fan, = 1,w, = 0, resulting in
[vjill cogy) > dmikisin(y). (15)

(15) is a necessary condition for transition convergenepmdnding on the intersec-
tion angley it defines an admissible region around the trajectory segmbaose
extent can approach for y — 0 in the limiting case or O foy; — 7.

Point convergence fqy, can be achieved by creating a vector figl€or the last
trajectory segment such that it fulfills

)\Ln - Azjn — ... = )\m,n < O, (16)
p(pn) = 07

that is a point attractor fgp, which can be created following the idea in (7). The
proof is analogous to the one for transition convergence.

2.3 Spatial Bounds Approximation

Whereas conservative spatial bounds of the deviation ofrttegjial curveC from
the reference path can be given which hold for any- 0, a good approximation
can be made under the assumptiono 0 and||vi,.1|| = ||lv;i||. Then for an object
starting from the hyperplanie with an initial distancedm 1 to the trajectory - see
(8) - the resulting distanog, s when passing the hyperplahgcan be calculated as

Om,s = dm,l—/VJ_dX7
~ Om1 rlexp —KiAt), (7)

||pm|+1—pm|||
~d exp )
] T

with [ as the integral over the integral cur@and4; as the time required to
traverse from the hyperplagto hj 1.
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3 Experimental Evaluation

The experiment consists of a movement imitation task whebeatton has to be
pressed while avoiding an obstacle. To adapt to envirorshehtinges, LTVF and
Laplacian trajectory editing [11] are combined with a Pesgming by Demonstra-
tion (PbD) framework [10, 2]: Whereas the PbD framework psdua prototypic
(i.e. regressed) trajectory, Laplacian trajectory editi® used to deform the pro-
totypic trajectory in case of large environmental chan@egsequently, LTVF are
used to create movements converging to the prototypicctiaje in case of small
disturbances (e.g. a slightly varied starting position).

The human hand movement is recorded at a frame rate of 200hkiz aid/ortex
motion capture system. Five demonstration rollouts arfopmed in which the hand
is moved from various starting positions through a narromngl to press a button,
see Fig 2a. All demonstrations are aligned in the temponalado using Dynamic
Time Warping. Then Gaussian Mixture Regression gives apypic trajectory with
corresponding spatial covariance matkixfor thei-th sampling point. The spatial

variance is used to determine the strength parame@rm of the vector field.

This ensures quick convergence towards the trajectoryavieethe spatial variance
is low, corresponding to constrained sections of the ttajgcOn the other hand a
high variance implicitly assumes free space, resultingim Values ofk;. Shown
in Fig 2b are the five rollouts (orange trajectories). Theodal tube is centered
around the prototypic trajectory. The color of the tube espnts the vector field
strengthk; whereas the tube diameter is directly proportional to ttstadicedm, s
in (17). The result is a funnel in which convergence accardinthe spatial bounds
approximation can be guaranteed. Adaption to a varied@mvient (varied obstacle
position, different button to press) can be achieved bygetang the trajectory using
Laplacian trajectory editing, see Fig 2c. Fig 2d shows tipeaguction of only two
trajectories from different starting positions using a HRBbotic platform.

4 Discussion

Experiments show how the presented approach can be readilyined with other
approaches and applied to robotic movement imitation prabl Differing from
other approaches based on Gaussian mixture models whiehttd@arn the mix-
ture model for every new trajectory, no learning is necgssdren using LTVF.
This makes the approach applicable for real-time apptioativhere online trajec-
tory modifications are necessary. Because at any time irestidne vector field has
to be computed based only on two adjacent trajectory segmniémtomputational
complexity is independent of the shape or length of the ¢tajg. Moreover, tight
spatial boundaries can be specified which are helpful fdisoah prediction and
avoidance. A drawback is that methods based on Gaussianmnixiodels like Dy-
namic Movement Primitives have useful theoretical prapsrin terms of global
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Fig. 2 Experimental results. Human demonstration (a), processed regulddption to a changed
environment (c) and adapted movement using a HRP-4 robot (dhligtiged in (a) and (d) in red
are the human/robot arm, two boxes representing the obstaeléutton to be pressed and the
hand trajectory

stability and robustness to disturbances. ConvergencElgF on the other hand
can be shown only on a local scale. Hence any disturbance ¢éargugh may lead
to divergent behavior, making it necessary to recomputedference trajectory.
Differing from Gaussian mixture models which are genertithe-independent, the
presented approach is time-variant as one has to keep tfdlok object’s current
trajectory segment. This can be used to resolve issuesdiagaself-intersecting
paths.

5 Conclusion and Future Work

This paper presents a generic method to construct convergetor fields towards
a discretized reference trajectory. In case the traje¢samstargeted, the vector field
can be reconstructed quickly without the need of an expdipttmization routine.
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The guaranteed convergence, low computational complaxithiarge spatial adap-
tion range makes it predestined to be used with other appesdor collision avoid-
ance and vector field adaption.

Future work will be focused on an improved version extendimg presented

approach to continuous trajectories.
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