
Physics Procedia 00 (2010) 1–11

Physics Procedia

Consensus Analysis of Networked Multi-agent Systems�

Qi-Di Wu, Dong Xue, Jing Yao

The Department of Control Science and Engineering, Tongji University, Shanghai, P. R. China

Abstract

This paper discusses the problem of consensus for multi-agent systems and convergence anal-
ysis. The decentralized consensus control strategy is implemented based on artificial potential
functions (APF). Due to the existence of local minima in the APF, some special functions are
introduced to settle that limitation. A convergence of consensus protocol is defined to investigate
the consensus problem and based on Lyapunov approach sufficient conditions for this conver-
gence principle are established. The main contribution of this paper is to provide a valid decen-
tralized consensus algorithm that overcomes the difficulties caused by nonlinearity and switching
coupling topology, and therefore has its obvious practical applications. Finally, simulation results
are included.

Keywords: Consensus, artificial potential function, convergence analysis, switching topology,
multi-agent system.

1. INTRODUCTION

In recent years, decentralized coordination of multi-agent systems (MAS) has become an ac-
tive area of research and attracted much interest from rather diverse disciplines including animal
behavior, system control theory, biophysics, social science, and computer science. Due to the
advance in communication and computation consensus study has evolved into the field of en-
gineering applications, such as scheduling of automated highway systems, cooperative control
of unmanned aerial vehicles (AUV), formation control of satellite clusters, synchronization of
coupled oscillators, flocking of multiple robotic systems, etc [2].
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In the study of cooperative control of multi-agent systems, consensus means to agree upon
certain quantity of interest, such as a representation of the center and shape of a formation,
the direction of motion for a multi-agent swarm, and the target trajectory, which depends on the
states of systems. A consensus algorithm (or strategy) is an interaction principle that specifies the
information exchange among multi-agent systems [7]. Such problem is usually called consensus
problem, which is one of the foundation of decentralized control field.

Consensus problems for MAS have been studied for a long time [7, 8], and consensus al-
gorithms have applied in formation control [1], flocking [8] and sensor networks [11]. In [14],
Vicsek et al. proposed a discrete-time model of multi-autonomous agents, and demonstrated
that without any exogenous control all the agents move in the same direction when the noise
is small and the density is large. The linearized Vicsek’s model was studied by Jadbabaie et
al [13] and it was proved that all the agents converge to a common steady state provided that
the interconnection graph is jointly connected. Furthermore, in [12] Moreau proposes that more
communication do not always necessarily lead to faster convergence and may eventually even
lead to a loss of convergence. On the other hand, if the interconnection graph of multi-agent
system is not globally interconnected, it needs to introduce an external controller to make sys-
tem reach consensus. The decentralized approaches like artificial potential functions (APF) have
been studied extensively for path-planning of multiple agents in the past decades [1, 2]. In [2] the
authors present a swarm model with individuals that move in one-dimensional space according
to an attractant/repellent or a nutrient profile. In view of recent papers on APF-based control for
consensus, a fundamental problem is the existence of local minima that may occur in a potential
field [1]. This article proposes a novel method to deal with the APF which could solve the local
minima problem effectively.

Convergence analysis for consensus is equivalent to prove that in an Euclidean space all
the state of agents is asymptotically stable [5], [12]. In general, there are two main methods
to analyze this problem. The first one is algebraic graph theory [7, 8], and the other one is
nonlinear methods which include Lyapunov’s direct method [4], set-value Lyapunov theory [12],
nonnegative matrix theory and characteristic equation theory. This article selects the second
method to analyze the decentralized consensus algorithm.

Furthermore, in view of recent studies [1, 2], most systematic frameworks omit the nonlinear
influence from the environments, the couplings and switching topologies among the agents. Mo-
tivated by recent results on complex dynamical network [3, 4], a novel framework is presented in
this paper to describe the nature characteristics of MAS, such as the nonlinearity and switching
coupling topology. Other consensus researches including flocking for multi-agent systems, time-
delays in agents’ communication and switching topology, system uncertainty, and asynchronous
consensus, can be found in [7]-[9], [12].

The paper is organized as follows: a dynamical model of the MAS is introduced and a con-
troller based on a general artificial potential function is designed in Section II; the convergence
analysis and technical proof are specified in Section III; in Section IV, specific potential func-
tions are introduced to show how to eliminate the local minima; finally, conclusions are made in
Section V.

2. MATHEMATICAL MODEL

Let J = [t0,+∞) (t0 ≥ 0), R+ = [0,+∞). N and Rn denote, respectively, the set of natural
numbers and n-dimensional Euclidean space. For x = (x1, . . . , xn)� ∈ Rn, the norm of x is
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‖x‖:=
( n∑

i=1
x2

i

) 1
2

. Correspondingly, for A = (ai j)n×n ∈ Rn×n, ‖A‖:=λ
1
2
max

(
AT A
)
. The identity matrix

of order n is denoted as In (or simply I if no confusion arises).
In general, a multi-agent system consisting of N individuals in an n-dimensional Euclidean

space can be considered as a complex network. Each agent can be considered as a node in the
complex network, and each edge represents a communication link between two agents. Suppose
that each agent can sense and update the information of multi-agent system such as the positions
of other agents and the preassigned path in every step. Such a dynamical network is described
by

ẋi = Axi + f (t, xi) + τ
N∑

j=1
j�i

Dσi jΓ(x j − xi) + Bui. (1)

where i = 1, 2, . . . ,N,t ∈ J, A, B are known to be real constant matrices with appropriate di-
mensions. f : J × Rn → Rn is a continuously differentiable nonlinear function representing the
group motion (i.e. trajectory dynamics of MAS), which is assumed to be identical for each agent.
xi = (xi1, xi2, · · · , xin) ∈ Rn are the state variables of node i and mean positions of agent i in this
paper. Scalar τ > 0 denotes the communication coupling strength between agents and Γ ∈ Rn×n is
a 0−1 matrix linking the coupling variables. Dr =

(
Dr

i j

)
N×N

is the communication coupling con-
figuration matrix: if there is a connection between agent i and agent j( j � i), then Dr

i j = Dr
ji = 1,

(r = 1, 2, . . . ,m); otherwise, Dr
i j = Dr

ji = 0, where m means the amount of switch modes. Fur-

thermore, the diagonal elements of matrix Dr are defined byDr
ii = −

N∑
j=1, j�i

Dr
i j = −

N∑
j=1, j�i

Dr
ji,

where i = 1, 2, . . . ,N.
Switch signal σ : R+ → {1, 2, · · · ,m} represented by {σk} according to (tk−1, tk] → σk ∈

{1, 2, · · · ,m}, is a piecewise constant function. When t ∈ (tk−1, tk], the σkth subsystem is activated
[3]. The time sequence {tk} satisfies t1 < t2 < · · · < tk < · · · , limk→∞ tk = ∞, and t1 > t0. ui

denotes the external controller, and it is derived from artificial potential function as the following
discussion.

There are many studies focusing on the artificial potential function (APF) [1]-[2], which can
be divided into two types: attractive potential and repulsive potential. Here, a decentralized
controller for consensus of multi-agent system (1) is suggested as follows: ui = −∇xi J(x) =

−∇xi

N∑
j=1
j�i

J(‖x j−xi‖), where xT =
[
xT

1 , x
T
2 , · · · , xT

N

]
∈ Rn×N , J : R+ → R is a potential function, ‖x j−

xi‖ =
( n∑

k=1
(x jk − xik )

2
) 1

2

and Ji j(‖x j − xi‖) denote the distance and the potential function between

two agents, respectively. For the convergence purpose, the potential function J(x) is required
to have a unique minimum at a desired distance between the agent based on the convergence
conditions.

In the subsequent discussion, assume Ji j(‖x j − xi‖) satisfy:

(i) The potentials Ji j(‖x j− xi‖) are symmetric and satisfy ∇xi Ji j(‖x j− xi‖) = −∇x j Ji j(‖x j− xi‖).
(ii) There exist corresponding functions ηi j : R+ → R such that

−∇xi Ji j(‖x j − xi‖) = (x j − xi)ηi j(‖x j − xi‖). (2)

(iii) For all i, j = 1, 2, . . . ,N, ηi j(‖x j − xi‖) > 0 always hold.
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In order to simplify following calculation, ηi j(‖x j − xi‖) are written as ηi j in short. The
necessity of this assumption will be analyzed in Remark 3.1 in Section 3. So, the controller of
the multi-agent system 1 can be written as

ui =

N∑

j=1
j�i

−∇xi J(‖x j − xi‖) =
N∑

j=1
j�i

(
x j − xi

)
ηi j, (3)

3. CONVERGENCE ANALYSIS

With the above preparation, the main results of this paper are presented in this section. Firstly,
rewrite the dynamical framework (1) as

ẋi = Axi + f (t, xi) + τ
N∑

j=1
j�i

Dσi jΓ(x j − xi) + B
N∑

j=1
j�i

ηi j

(
x j − xi

)
, i, j = 1, 2, . . . ,N. (4)

In the subsequent discussion, the following notations are defined

η = min
i, j=1,2,...,N

ηi j, (5)

λ = max
i, j=1,2,...,N

(
λmax(A) + φi j (t)

)
, (6)

Xi j = x j − xi, where i, j = 1, 2, . . . ,N, and t ∈ J. φi j(t) are continuous bounded functions on J,

which satisfy
(

f (t, x j) − f (t, xi)
)�

Xi j ≤ φi j(t)X�i j Xi j, where xi, x j ∈ Rn, i, j = 1, 2, . . . ,N.
According to (4) the time derivative of Xi j is

Ẋi j = AXi j + f (t, x j) − f (t, xi) + τ
N∑

k=1

(
DσjkΓXjk − DσikΓXik

)
+ B

N∑

k=1

(
η jkX jk − ηikXik

)
,

where i, j = 1, 2, . . . ,N.
The following definition is needed to facilitate the development of the main results.

Definition 3.1. The system (4) is said to reach consensus, if the state of every agent asymptoti-
cally converges to an n-dimensional agreement space characterized by the following equation:
x1 = x2 = . . . = xN.

Theorem 3.1. For the multi-agent system (4), if the following inequality

λIn − NηB − τNDr
i jΓ < 0 (7)

holds for all i, j = 1, 2, . . . ,N and r = 1, 2, . . . ,m, where η and λ are given by (5) and (6). Then
consensus is asymptotically reached for arbitrary initial states xi(0) ∈ Rn.
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Proof. Without loss of generality, define a common Lyapunov function: V(Xi j) = 1
4

N∑
i=1

N∑
j=1
‖Xi j‖2,

where Xi j = x j − xi. Its corresponding time derivative is

V̇ =
1
2

N∑

i=1

N∑

j=1

(
Xi j

)�
Ẋi j

=
1
2

N∑

i=1

N∑

j=1

X�i j AXi j +
1
2

N∑

i=1

N∑

j=1

X�i j

(
f (t, x j) − f (t, xi)

)
+

1
2
τ

N∑

i=1

N∑

j=1

N∑

k=1

(
DσjkX�i jΓXjk

−DσikX�i jΓXik

)
+

1
2

N∑

i=1

N∑

j=1

N∑

k=1

(
η jkX�i j BXjk − ηikX�i j BXik

)

≤ 1
2

N∑

i=1

N∑

j=1

X�i j AXi j +
1
2

N∑

i=1

N∑

j=1

φi j(t)X�i j Xi j +
1
2
τ

N∑

i=1

N∑

j=1

N∑

k=1

(
DσjkX�i jΓXjk

−DσikX�i jΓXik

)
+

1
2

N∑

i=1

N∑

j=1

N∑

k=1

(
η jkX�i j BXjk − ηikX�i j BXik

)
(8)

Noticed that the coupling configuration matrix Dσ is symmetric and Xi j = −Xji, thus the third

sum of (8) is Ψ3 = −τ
N∑

i=1

N∑
j=1

N∑
k=1

(
DσjkX�jiΓXjk + DσikX�ikΓXi j

)
.

In order to make the second term become identical to the first, rename the summation index

i by j in the second term, then Ψ3 = −τ
N∑

i=1

N∑
j=1

N∑
k=1

DσjkX�jiΓXjk.

One can verify that Xj j = 0, so as to the equation can be extended as

Ψ3 = −τ
N∑

i=1

N−1∑

k=1

N∑

j>k

DσjkX�jiΓXjk − τ
N∑

i=1

N−1∑

k=1

N∑

j<k

DσjkX�jiΓXjk .

Change over j and k in the second term, so Ψ3 turns to

Ψ3 = −τ
N∑

i=1

N−1∑

k=1

N∑

j>k

DσjkX�jiΓXjk − τ
N∑

i=1

N−1∑

j=1

N∑

k< j

DσjkX�kiΓXk j = −τ
N∑

i=1

N−1∑

k=1

N∑

j>k

Dσjk
(
X�ji + X�ik

)
ΓXjk .

Since X�ji + X�ik =
[
x�i − x�j + x�k − x�i

]
= X�jk, thus

Ψ3 = −τ
N∑

i=1

N−1∑

k=1

N∑

j>k

DσjkX�jkΓXjk = −Nτ
N−1∑

i=1

N∑

j>i

Dσi jX
�
i jΓXi j. (9)

Then the fourth sum of (8) is similarly analyzed, as follows:

Ψ4 = −
N∑

i=1

N∑

j=1

N∑

k=1

η jkX�ji BXjk = −
N∑

i=1

N−1∑

k=1

N∑

j>k

η jkX�ji BXjk −
N∑

i=1

N−1∑

k=1

N∑

j<k

η jkX�ji BXjk

= −
N∑

i=1

N−1∑

k=1

N∑

j>k

η jkX�ji BXjk −
N∑

i=1

N−1∑

j=1

N∑

k< j

η jkX�ki BXk j

Q.-D. Wu et al. / Physics Procedia 3 (2010) 1921–1931 1925



Author / Physics Procedia 00 (2010) 1–11 6

= −
N∑

i=1

N−1∑

k=1

N∑

j>k

η jkX�jkBXjk = −N
N−1∑

i=1

N∑

j>i

ηi jX
�
i j BXi j.

In terms of (5), one has

Ψ4 ≤ −Nη
N−1∑

i=1

N∑

j>i

X�i j BXi j, (10)

where η is defined in (5).
Now according to (8), (9) and (10), the derivative V̇ becomes

V̇ ≤ 1
2
λ

N∑

i=1

N∑

j=1

X�i j Xi j − Nτ
N−1∑

i=1

N∑

j>i

Dσi jX
�
i jΓXi j − Nη

N−1∑

i=1

N∑

j>i

X�i j BXi j

=

N−1∑

i=1

N∑

j>i

X�i j

(
λIn − NηB − τNDσi jΓ

)
Xi j

Finally V̇ turns into a quadratic form, and according to (7) it is easily to have V̇ < 0. Based
on Definition 3.1, consensus of MAS (4) is asymptotically reached. Here is the complete proof
of Theorem 3.1.

Remark 3.1. Notice conditions (7), if ηi j > 0, it is easy to find that the controller can accelerate
the convergence, which is identical with the assumption (III). On the other hand, if the ηi j < 0,
the controller hinders the convergence.

Remark 3.2. As many papers mentioned [3, 4, 15], there is a close relationship between the
number of nodes and convergence effect in a multi-agent system consensus. Especially, as the
number of nodes increasing, the speed of convergence increases obviously. Similarly, the number
of connections in the multi-agent system has the same effect on convergence as the node number,
that is, less the elements Dr

i j = 0 in Dr in (1), it is easier to get convergence. These results will
be illustrated in the following section.

4. POTENTIAL FUNCTIONS DISCUSSION

As mentioned above, the multi-agent system (1) may have different performance based on the
potential function Ji j(‖x j−xi‖). In this section, we illustrate how the potential function influences
the consensus by several examples.

Here, we divide the potential function J(x) into two classes: attractive potential Ja, and
repulsive potential Jr. And the controller (3) are the negative gradient of these two terms.

Ji j(‖x j − xi‖) = Ja(‖x j − xi‖) + Jr(‖x j − xi‖) = a(1 − e−
‖x j−xi‖2

c2 ) + b e
−‖x j−xi‖2

d2 , c > d, (11)

where ‖x j − xi‖ =
( n∑

k=1
(x jk − xik )

2
) 1

2

denotes the distance between two agents. The parameters a,

b, c, and d are positive constants representing the strengths and effect ranges of the attractive and
repulsive force, respectively. It should be emphasized that −∇Ja represents the attraction and has
a long range, whereas −∇Jr represents the repulsion and has a short range, i.e. c > d.
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So one can obtain,

ηi j = 2
( b
d2

e−
‖x j−xi‖2

d2 − a
c2

e−
‖x j−xi‖2

c2

)
. (12)

Notice that the practical communication ability of agents is limit, so R is defined as the radius
of the maximum relative range within which agents are operated, i.e. max

i, j=1,2,...,N,
‖x j − xi‖ ≤ 2R.

Based on Remark 3.1, if the following inequality a
b <

c2

d2 e
1

c2 −( 1
d2 )‖x j−xi‖2 are hold, then ηi j > 0. So

set a = 10, b = 20, c = 4, d = 0.5 and R = 0.5, and one can easily find the potential function (12)
has two minimal as shown in Fig.1. Therefore, agents will be trapped at the minimum where the
total force becomes zero, rather than at a goal position. In other words, the multi-agent systems
will have more than one convergence center.

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x
j
−x

i

J(
||x

j−
x i||)

Figure 1: The potential function J(x j − xi) in equation (12)

For the purpose of overcoming this local minima problem, a multiplicative and additive struc-
ture between the potentials of attraction and repulsion is introduced as following:

Ji j(‖x j − xi‖) = 1
a

Jr Ja + Ja = b e−
‖x j−xi‖2

d2 (1 − e−
‖x j−xi‖2

c2 ) + a(1 − e−
‖x j−xi‖2

c2 ), c > d. (13)

After that one has,

ηi j = 2
(
b(

1
d2
+

1
c2

)e−( 1
d2 +

1
c2 )(‖x j−xi‖2)

+
a
c2

e−
‖x j−xi‖2

c2 − b
d2

e−
‖x j−xi‖2

d2

)
(14)

In order to simplify following calculation, let ξi j = ‖x j − xi‖, here 0 ≤ ξi j ≤ 2R. Thus, rewrite

the equation (14) as ηi j = 2
(
b( 1

d2 +
1
c2 )e−( 1

d2 +
1

c2 )ξ2i j + a
c2 e−

ξ2i j
c2 − b

d2 e−
ξ2i j
d2

)
. Now, according to Remark

3.1, there exist positive constants a, b, c, and d satisfying the following inequality

a
b
> β(ξi j). (15)

where

β(ξi j) =
c2

d2
e−( 1

d2 − 1
c2 )ξ2i j −

(
1 +

c2

d2

)
e−

ξ2i j
d2 . (16)
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Figure 2: The function β(ξ)
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Figure 3: The configured attrac-
tion and repulsion potential function
J(‖x j − xi‖)
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Figure 4: The configured attraction
and repulsion force function F(x j − xi)
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|x
j−

x i||)

Figure 5: The function ηi j

Since ηi j > 0, thus the following inequality can be obtained:

1
d2 e−

ξ2i j
d2 − ( 1

d2 +
1
c2 )e−( 1

d2 +
1

c2 )ξ2i j

c2e−
ξ2i j
c2

=
c2

d2
e−( 1

d2 − 1
c2 )ξ2i j −

(
1 +

c2

d2

)
e−

ξ2i j
d2 = β(ξi j) <

a
b
. (17)

One can easily find β(ξ) is a monotonic bounded function. In order to derive the upper bound
a/b, the parameters c and d are chosen firstly. Then find the maximum value of β(ξi j) by a
software such as MATLAB.

For example, with c = 2, d = 0.5 and R = 5, the graphs of β(ξi j) is illustrated in Fig.2. For
the maximum value β(ξi j) = 0.153, select a

b > 0.153 to guarantee ηi j > 0. When set a = 20,
b = 10, c = 2, d = 0.5 and R = 5, the artificial potential function (13) has only one minimal as
shown in Fig.3. Fig.4 illustrates the corresponding force, i.e. ∇xi Ji j(‖x j− xi‖) and ηi j is described
in Fig.5.
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Notice that the form of controller (3) is similar with the coupling term in (1), but it is ac-
cessible by setting parameters a, b, c, d to reach an agreement regarding a certain quantity of
interest.

0
5

10
15

20
25

0
5

10
15

20
25
−10

−5

0

5

10

15

20

25

z

xy

Figure 6: State trajectories of 50 agents in 3-dimension

Substitute the specific controller into (4) and consider a multi-agent system with 50 coupled
nodes in which the dynamics of each node is periodically switched between two modes, certainly
the results should work for all arbitrary switching systems as well. They are: (I). D1

i j = 1(i, j =
1, 2, . . . , 50, and j � i). (II). D2

i j = 0( j = i + 1, and j = i + 2, i = 1, 2, . . . , 50), and others are
D2

i j = 1(i, j = 1, 2, . . . , 50, and j � i). Select a = 10, b = 3, c = 2, d = 0.5, and n = 3 here, and
the initialization positions of agents are randomly selected in a 3-dimensional space of radius 10,

i.e. R = 10. Set τ = 0.2, Γ = I3, B = I3, and A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 −1
−1 1 1
1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Select the target trajectory as following parametric vector f (t) =
[

cos(0.5t) sin(0.25t) t
]�

.
Further, if there is no special explanation, the parameters of other examples are same as this one.
With a software such as LMI toolbox in MATLAB, (7) are achieved in this example.

Moreover, a consensus error is defined to estimate the convergence effectiveness: e(t) =
N−1∑
i=1

N∑
j>i

(‖x j − xi‖). From Figs.6 − 8, one can find that after a short period, all the agents already

converge to a same state and the consensus error quickly becomes zero. In Fig.6 and Fig.8, the
red points represent the initial positions of agents. Notice that when all agents converge to the
yellow points, i.e. the multi-agent system gets the convergence, and then they travel together
along the green trajectories.

Furthermore, as presented in Remark 3.2, in order to illustrate the number of agents and the
nonzero connection Dr

i j have relation with the consensus results, respectively, consider two multi-
agent systems. One has 25 coupled nodes, and other paraments are completely same with the
above example; the other one has the same parameters with the above example except switching
modes: (I). D1

i j = 0( j = |i + 2k − 50|, j � i, i = 1, 2, . . . , 50, k = 1, 2, . . . , 25), and others are
D2

i j = 1(i, j = 1, 2, . . . , 50, and j � i). (II). D2
i j = 0( j = |i + 2k − 51|, j � i, i = 1, 2, . . . , 50, k =

1, 2, . . . , 25), and others are D2
i j = 1(i, j = 1, 2, . . . , 50, and j � i). Compared Figs.9−10 with Fig.

7, one can find the convergency time of a multi-agent system with more nodes and connections
between agents is shorter.
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Figure 7: The consensus error of
multi-agent systems: e(t)
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Figure 8: State trajectories of 50
agents in 2-dimension
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Figure 9: The consensus error of
multi-agent systems with 25 nodes
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Figure 10: The consensus error of
multi-agent systems with other cou-
pling switching topology

5. Conclusions

This paper presents a consensus control strategy for continuous-time multi-agent systems
with switching coupling topology and nonlinearity, and it is implemented based on artificial po-
tential function. A consensus controller based on a general potential function is developed into
multi-agent system, then conditions of convergence for this system are obtained. Two specific
forms of the potential functions are provided to verify the effectiveness of the proposed analysis.
It is important to note that one can set the parameters of this controller to accomplish conver-
gence of multi-agent systems without unknown internal coupling. This new approach has a good
potential to find more applications in the future.
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