
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Sicherheit in der Informatik

Middleware-based Security

for Future In-Car Networks

Alexandre Bouard

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Uwe Baumgarten

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Claudia Eckert

2. Prof. Refik Molva, Ph.D.

(EURECOM, Sophia Antippolis, France)

Die Dissertation wurde am 17.03.2014 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 21.07.2014 angenommen.

Foreword

This dissertation has been submitted in partial fulfillment of the requirements for the
degree of Doktor der Naturwissenschaften at the department of Informatics, Technical
University Munich (TUM). This study has been carried out in the period from October
2010 to August 2014.

Personal Acknowledgements

The last few years at the BMW Research and Technology Office of Munich have been
very exciting, challenging and rewarding. Full of new perspectives, deadlines, accom-
plishments and memories, it has been an incredible experience to learn, develop and
share. This thesis represents a substantial part of the research I conducted for my PhD.
This would not have been possible without the people around me. I now would like to
sincerely thank them.

First and foremost, I would like to thank my advisor, Prof. Claudia Eckert, not only
for giving me the chance to do a Ph.D. at the TUM, but more importantly for supervising
me during these years and providing me with enlightening discussions and helpful advice.
My next sincere thanks go to my ’industrial’ advisors: Dr. Daniel Herrscher for taking
and trusting a young French student into his ’SEIS’ team, Dr. Benjamin Weyl for his
excellent guidance and fruitful comments, and Dr. Dennis Burgkhardt for his continuous
support and useful tips. I would also like to express my gratitude to Prof. Ulrich Finger,
director of EURECOM for encouraging me and giving me the contacts to start this
journey.

Furthermore, my experience at BMW would have been as been the same without
my awesome colleagues, co-authors and friends. Thank you for helping me navigate
through the infinite processes and rules of BMW, for correcting my German, for having
nice discussions and for all the fun.

At last, but not least, I want to express my deep gratitude to my family for their sup-
port and care throughout all these years. Special mention goes to my parents, Monique
and Jean-Paul Bouard, for being there for me at all times and to my wife, Dr. Mariam

v

Kaynia, for being my true source of inspiration and motivation. Without you, I would
not have achieved all these accomplishments and joyful memories.

Project Acknowledgements

The research presented here took place within the project SEIS - Security in Embedded
IP-based Systems. The research project explored the usage of the Internet Protocol (IP)
as a common and secure communication basis for electronic control units in vehicles. The
project was partially funded by the German Federal Ministry of Education and Research
(support codes 01BV0900 - 01BV0917). I would like to thank all SEIS partners directly
or indirectly involved in this research.

München, August 29, 2014 Alexandre Bouard

vi

Abstract

Each year, car manufacturers are competing to provide new and trendy automotive
features for safety, driving assistance and infotainment. For this purpose, today’s cars
take advantage of powerful electronic platforms and embed more and more sophisti-
cated connected services. More than just ensuring their role of a safe transportation
mean, which remains nonetheless their primary function, cars have seen an extension of
their paradigm towards the driving pleasure and the infotainment domain. Thus, they
process large amounts of sensitive data, e.g., personal information, industrial secrets;
they are increasingly tethered to the external environment via smartphones, Internet or
other road-side units; and like the consumer electronics world , they will very soon host
downloadable and on-the-fly installable Third-Party Applications (TPAs). However, the
car pervasive computerization exposes them to unintentional programming bugs and to
common security attacks targeting not only the data they contain but also their own
integrity. Today, traditional automotive technologies cannot protect against any of these
threats. Without any countermeasures, these security vulnerabilities could lead to un-
fortunate consequences: lawsuits, damages to the enterprise reputation, loss of billions
of dollars, driving discomfort or even worse, endangering the life of the car passengers.

The transition towards Ethernet/Internet Protocol (IP)-based on-board communica-
tions and mature security protocols could be a first, but not sufficient, step to respond
to these security and privacy issues. This thesis is in line with this evolution and fo-
cuses on the design and implementation of an automotive IP-based security middleware
leveraging local and distributed information flow techniques in order to protect the car
against on-board and external threats.

Unlike previous automotive approaches, security is defined and enforced at the mid-
dleware level. This approach allows to abstract the security interfaces and simplify
its maintenance and verification. A suitable modularization eases the fulfillment of
all security and functional requirements. A security architecture for middleware was
developed within this thesis leveraging hardware security platforms. The middleware
provides mechanisms for on-board and external secure communication channels as well
as dedicated security decision- and enforcement-points.

In addition to just providing strong security between two on-board electronic plat-
forms, an authorization model based on decentralized information flow control was fur-
ther developed and integrated into the middleware layer. The model enforces label-based
policies in order to follow the propagation of data of interest within the whole car and
to safely and securely integrate untrustworthy use cases like smartphones or TPAs. An
advanced approach based on dynamic data flow tracking was also investigated and cou-
pled to the previous model. It provides mechanisms for deeper introspection and finer
control of the TPA.

Then, a proof-of-concept implementation demonstrates the feasibility of the developed

vii

security framework. It shows that the security risks can be mitigated via the middle-
ware. Performance benchmarks demonstrate that such a middleware could provide a
high throughput and relatively high bandwidth while ensuring the necessary security
guarantees for authentication, encryption, integrity and authorization. However, this
approach also showed its limits and requires the use of additional methods when a very
high bandwidth is necessary.

As a conclusion, this thesis demonstrates that middleware-based security can be leve-
raged to achieve holistic security in cars. It provides the necessary general basis to build
suitable security mechanisms adaptable to both threats and use cases. While these con-
cepts were developed and assessed for an automotive context, they can also be extended
to other demanding distributed systems, like trains, aircraft or smart buildings.

viii

Zusammenfassung

Jedes Jahr bieten die Autohersteller neuere und modernere Fahrzeugfunktionen hin-
sichtlich Sicherheit, Fahrerassistenz und Infotainment an. Zu diesem Zweck nutzen heu-
tige Fahrzeuge leistungsfähige elektronische Plattformen und betten immer mehr an-
spruchsvolle Funktionen ein. Fahrzeuge entwickelten sich daducrch von einfachen aber
sicheren verkersmitteln zu Statussymbolen für Fahrspaß und Infotainment. Dazu verar-
beiten die Fahrzeuge große Mengen von sensiblen Daten, wie zum Beispiel persönliche
Informationen oder Betriebsgeheimnisse. Dafür werden sie immer häufiger mit Smart-
phones, Internet oder anderen Infrastrukturen wie Ampeln, vernetzt. Schon bald werden
darüber hinaus, wie in der “Consumer Electronic”-Welt, herunterladbare Anwendun-
gen von Drittanbietern (TPAs) angeboten werden. Mit der allgegenwärtigen Integration
von Computern ins Farhrzeug steigt jedoch die Gefahr von Programmierfehlern und
Sicherheitsangriffen auf Fahrzeugdaten und deren Integrität. Allerdings bieten aktuelle
Technologien in der Automobilindustrie keinen ausreichenden Schutz gegen diese Bedro-
hungen. Ohne die geeigneten Gegenmaßnahmen könnten Sicherheitslücken fatale Folgen
haben. Neben Klagen, Schäden des Unternehmensrufs und finanziellem Verlust könnte
sogar die Gesundheit der Insassen gefährdet werden.

Die Integration von Ethernet/Internet Protocol (IP)-basierter Bordnetzkommunika-
tion und deren Sicherheitsprotokolle kann als erste, aber nicht ausreichende Maßnahme
betrachtet werden, um auf diese Sicherheits-und Datenschutz-Probleme zu reagieren. Die
vorliegende Arbeit fokussiert sich auf den Entwurf und die Umsetzung einer Fahrzeug-
IP-basierten Sicherheits-Middleware, die lokale und verteilte Informationsflusstechniken
nutzt, um das Auto gegen interne und externe Bedrohungen zu schützen.

Zu diesem Zweck werden Sicherheitsmechanismen auf Middleware-Ebene definiert und
durchgesetzt. Dieser Ansatz erlaubt, Sicherheitsschnittstellen zu abstrahieren und deren
Wartung und Verifikation zu vereinfachen. Eine geeignete Modularisierung erleichtert die
Erfüllung von Sicherheits- und funktionalen Anforderungen. Darüber hinaus wurde im
Rahmen dieser Arbeit eine Sicherheitsarchitektur für die Middleware entwickelt, welche
Hardware-Security-Module beinhaltet. Die Middleware bietet Mechanismen für sichere
Kommunikationskanäle, sowohl fahrzeugintern als auch -extern, sowie dedizierte Security
Decision und Enforcement Points an.

Zusätzlich zu dieser Sicherheitsschicht auf der Kommunikationsebene wurde ein Au-
torisierungsmodell auf Basis einer Decentralized Information Flow Control entwickelt
und in die Middleware-Schicht integriert. Das Modell setzt Label-basierte Regeln ein,
um die Ausbreitung von relevanten Daten innerhalb des gesamten Fahrzeugs nachzuvol-
lziehen. Dies ermöglicht die sichere Integration von nicht vertrauenswürdigen Anwen-
dungsfällen, wie Smartphones oder TPAs. Ein weiterentwickelter Ansatz basierend auf
Dynamic Data Flow Tracking wurde ebenfalls untersucht und in das bestehende Mo-
dell integriert. Die Anbindung ermöglicht Mechanismen zur präzisen Beobachtung und

ix

Steuerung der TPAs.

Mittels einer Proof-of-Concept Implementierung wurde die Umsetzbarkeit des Sicher-
heitsframeworks gezeigt. Darüber hinaus zeigt die Implementierung, dass die Sicherheits-
risiken auf der Middleware-Ebene reduziert werden können. Mit Hilfe von Performanz-
Benchmarks konnte gezeigt werden, dass eine solche Middleware-basierte Lösung, trotz
hohem Sicherheitslevel einen hohen Durchsatz und eine relativ große Bandbreite ermög-
licht. Bei extrem hohen Bandbreiten zeigt sich allerdings, dass zusätzliche Methoden
erforderlich sind.

In Summe zeigt diese Arbeit, dass middlewarebasierte Sicherheitslösungen genutzt
werden können, um ganzheitliche Sicherheit im Auto zu gewährleisten. Solche Lösungen
bieten die notwendigen technischen Grundlagen, um an Bedrohungen und Anwendungs-
fälle angepasste Sicherheitsmaßnahmen umzusetzen. Obwohl diese Sicherheitskonzepte
im automobilen Kontext entwickelt und bewertet wurden, können diese auch für andere
anspruchsvolle verteilte Systeme, wie z.B. Züge, Flugzeuge oder intelligente Gebäude,
adaptiert werden.

x

Résumé

Chaque année les constructeurs automobiles, rivalisant d’ingéniosité, proposent de nou-
velles fonctionnalités innovantes assurant la sécurité, l’aide à la conduite et l’infodivertis-
sement. A cette fin, les voitures profitent aujourd’hui de plates-formes électroniques per-
formantes permettant l’intégration de services connectés de plus en plus sophistiqués.
En plus d’assurer la fonction première de la voiture, à savoir être un moyen de transport
sûr, le paradigme associé à celle-ci couvre désormais les aspects liés au plaisir de la con-
duite et au domaine de l’infodivertissement. Ainsi aujourd’hui, les voitures traitent de
grandes quantités d’informations sensibles, par exemple, des données privées ou des se-
crets industriels; elles sont de plus en plus connectées au monde extérieur par le biais de
smartphones, d’Internet ou d’autres infrastructures présentes en bord de route; et très bi-
entôt, elles pourront héberger des applications tiers (TPA) téléchargeables et installables
à la volée. Néanmoins, l’informatisation de celles-ci qui progresse irrémédiablement les
expose à des défaillances liées à des bugs de programmation ou à des attaques informa-
tiques qui non seulement ciblent les données que la voiture peut contenir, mais aussi son
intégrité de fonctionnement. Aujourd’hui, les technologies traditionnellement utilisées
dans le monde de l’automobile ne peuvent pas les protéger efficacement contre ces me-
naces. Sans protection, ces failles de sécurité peuvent avoir des conséquences fâcheuses
: poursuites judiciaires, dégradation de la réputation de l’entreprise, perte financière,
inconfort de conduite ou même pire, mise en danger de la vie des passagers.

L’introduction de communications de bord basées sur l’Ethernet/Internet Protocol
(IP) et sur des protocoles de sécurité éprouvés peut être vue comme un premier pas,
mais reste insuffisante pour répondre à toutes les questions relatives à la sécurité de la
voiture et à la protection de la vie privée des utilisateurs. Cette thèse s’inscrit dans ce
contexte de changement et porte essentiellement sur la conception et la mise en œuvre
d’un middleware de sécurité pour les voitures utilisant l’Ethernet/IP. Ce middleware tire
avantage de méthodes de contrôle de flux d’informations appliquées de manière locale et
distribuée afin de protéger la voiture contre tout type de menaces internes et externes.

Ainsi dans ce contexte, la sécurité est définie et appliquée au niveau du middleware.
Cette approche permet de définir par abstraction les interfaces de sécurité et de sim-
plifier leur maintenance et leur vérification. Une définition appropriée des modules fa-
cilite la satisfaction de toutes les exigences requises en termes de fonctionnalité et de
sécurité. Une architecture de sécurité du middleware s’appuyant sur des plates-formes
de sécurité matériel (HSM) a été développée spécifiquement dans le cadre de cette thèse.
Le middleware permet de développer des mécanismes pour l’établissement de canaux de
communication sécurisés internes et externes, ainsi que pour des interfaces dédiées à la
résolution et l’application des décisions de sécurité.

Il a été possible de développer et d’intégrer un modèle d’autorisation basé sur des
règles de Decentralized Infomation Flow Control au sein de la couche middleware, tout

xi

en fournissant une solution sécurisée pour les communications entre deux plates-formes.
Le modèle applique des règles de labels qui permettent de suivre la propagation de
données sensibles à bord de la voiture et d’intégrer en toute sécurité des cas d’utilisation
risqués comme ceux de smartphones ou de TPAs. Une approche plus approfondie fondée
sur les principes de Dynamic Data Flow Tracking a également été étudiée et associée au
modèle précédent. Il permet de fournir des mécanismes de sécurité pour une introspection
plus profonde et un contrôle plus affiné de la TPA.

Ensuite, la mise en œuvre du système de sécurité objet de cette thèse a montré la
faisabilité de la réalisation de celui-ci et de son exploitation. Elle démontre ainsi que
les risques de sécurité peuvent être atténués en regroupant les mécanismes de sécurité
au niveau du middleware. Des tests de performance montrent par ailleurs qu’un tel
middleware peut fournir un débit de requête élevé et une bande passante relativement
large tout en assurant les garanties de sécurité nécessaires. Cependant, cette approche a
aussi montré ses faiblesses et nécessite l’utilisation de méthodes additionnelles, lorsqu’une
bande passante très élevée est requise.

En conclusion, cette thèse démontre que la sécurité au niveau du middleware peut être
mise à profit pour atteindre un état de sécurité holistique au sein de la voiture. Elle définit
des bases techniques générales et nécessaires pour mettre en place des mécanismes de
sécurité appropriés qui peuvent s’adapter à la fois aux cas d’utilisation et aux menaces
rencontrées. Bien que ces concepts aient été développés et évalués pour un contexte
lié à l’automobile, ils peuvent également être étendus à d’autres systèmes distribués
nécessitant des niveaux de sécurité similaires, comme par exemple les trains, les avions
ou les bâtiments intelligents.

xii

Contents

Abstract vii

Zusammenfassung ix

Résumé xi

1 Introduction 1
1.1 Motivation . 1
1.2 Goals & Approach . 3
1.3 Contributions . 4
1.4 Outline . 6

2 Automotive On-board Architecture and Investigated Scenarios 9
2.1 About Today’s Car . 9

2.1.1 On-board communications . 10
2.1.2 C2X communications . 13
2.1.3 Security Research . 15

2.2 About Tomorrow’s Car . 18
2.2.1 The Future On-board Network . 19
2.2.2 The Future On-board Communication Protocols 21
2.2.3 Securing the Future On-board Communication Protocols 23
2.2.4 The Future Multi-platform Antenna 26

2.3 Security Threats and Risk Analysis . 27
2.3.1 The Attackers . 27
2.3.2 Their Motivations . 28
2.3.3 The Threats That Can Be Leveraged 29
2.3.4 The Attacker Model . 35

2.4 Automotive Functional Requirements . 36
2.5 Summary . 37

xiii

Contents

3 Automotive IP-based Security Architecture 39
3.1 Middleware Security . 39

3.1.1 Automotive Middleware . 40
3.1.2 Security Middleware Extension (SME) 42
3.1.3 Functional Use Case and SME Management 54

3.2 Security Communication Proxy . 58
3.2.1 Towards Secure Automotive Proxy-Middleware 59
3.2.2 Information Flow Control, a First Approach 60
3.2.3 Extending the SME for a Security Communication Proxy 61
3.2.4 Security & Trust Level (STL) Taxonomy 63

3.3 Middleware and Security Discussion . 66
3.3.1 About the SME Architecture . 67
3.3.2 About the Security Proxy Architecture 69
3.3.3 About the STL approach . 70
3.3.4 Security Gains . 70

3.4 Summary . 72

4 Information Flow Control in Cars 73
4.1 Decentralized Information Flow Control (DIFC) 74

4.1.1 DIFC Related Work . 74
4.1.2 DIFC Model . 77
4.1.3 DIFC-enabled Middleware . 80
4.1.4 Discussion . 84
4.1.5 Conclusion . 86

4.2 Dynamic Data Flow Tracking (DDFT) 86
4.2.1 DDFT Related Work . 87
4.2.2 Tracking and Controlling the Execution via DDFT 88
4.2.3 Middleware-based propagation of DDFT taints 90
4.2.4 Discussion . 92
4.2.5 Conclusion . 93

4.3 Combining DIFC/DDFT . 94
4.3.1 DIFC/DDFT-enabled Middleware 94
4.3.2 Discussion . 97
4.3.3 Conclusion . 101

4.4 Summary . 101

5 Prototypical Evaluation and Discussion 105
5.1 Evaluation Methodology . 105

5.1.1 Functional Evaluation of a Secure Runtime 106
5.1.2 Testing Environment . 108
5.1.3 Engineering-driven Middleware Development and Setup 108

xiv

Contents

5.2 Middleware . 109
5.2.1 Etch Middleware . 110
5.2.2 Performance Results & Interpretation 114

5.3 Security Communication Proxy . 115
5.3.1 Etch Proxy . 115
5.3.2 Performance Results & Interpretation 117

5.4 Monitoring & Controlling the TPA . 118
5.4.1 Isolation and Virtualization . 119
5.4.2 DDFT Engine . 120
5.4.3 TPA monitoring evaluation . 121

5.5 Discussion . 127
5.6 Summary . 130

6 Conclusion and Outlook 131
6.1 Summary and Conclusion . 131
6.2 Outlook and Implications . 134

Acronyms 137

Bibliography 143

A Appendix 163
A.1 Numerical values of Figure 5.5 . 163
A.2 Numerical values of Figure 5.6 . 163
A.3 Numerical values of Figure 5.7 . 164

Curriculum Vitae 165

xv

List of Figures

2.1 Schematic of a modern on-board network. 10
2.2 Schematic of a future on-board network. 20
2.3 Automotive protocol suite. 22
2.4 Considered use cases. 31
2.5 A concrete big use case. 33

3.1 Overview of an automotive IP-based middleware and its integration within
the ISO/OSI model. 42

3.2 Connections between functional middleware and SME. 44
3.3 Functional use case: Open connection & data sending (client side). . . . 56
3.4 Functional use case: Open connection & data sending (server side). . . . 57
3.5 STL life cycle. 61
3.6 Binary decision tree for TL evaluation. 65
3.7 STL vector and main evaluation criteria. 66

4.1 Label-based lattice. 78
4.2 Example of label usage. 80
4.3 Overview of the DIFC-enabled middleware architecture. 81
4.4 Example of on-board label distribution. 82
4.5 DIFC-enabled automotive scenario. 84
4.6 Example of code with data dependencies and taint propagation. 89
4.7 Overview of the DDFT framework in the on-board network. 91
4.8 Architecture for DIFC/DDFT coupling. 95

5.1 Architecture of the Etch Java-binding. 111
5.2 Header serialization & in-band protocol of the Etch middleware. 113
5.3 Architecture of the Etch-enabled communication proxy. 116
5.4 Schematic view of a HU architecture leveraging virtualization and mid-

dleware for a secure TPA integration. 119
5.5 Throughput and bandwidth performance of the Client–Server scenario. . 122

xvii

List of Figures

5.6 Throughput and bandwidth performance of the CE device–Proxy–HU–
TPA scenario. 124

5.7 Throughput and bandwidth performance of the CE device–Proxy–TPA

scenario. 126

xviii

List of Tables

2.1 Comparison between several automotive bus technologies. 11
2.2 Comparison of different protocols for securing the on-board communications. 24
2.3 The attackers and their motivations. 30

3.1 Partial API of the CSM. 46
3.2 Partial API of the KMM. 48
3.3 Partial API of the SCM. 49
3.4 Partial API of the AMM. 51
3.5 Partial API of the PMM. 52
3.6 Partial API of the IDM. 54
3.7 C2X Scenarios and assigned TL. 65
3.8 SME specifications. 68

4.1 Table comparing the three IFC approaches of Chapter 4. 99
4.2 Table comparing the three IFC approaches for attacks on the access control.102
4.3 Table comparing the three IFC approaches for TPA-based attacks. 103

5.1 Throughput performance of the Etch middleware. 115
5.2 Throughput performance of the Etch proxy. 118
5.3 Normalized throughput performance of the Client–Server scenario. 123
5.4 Normalized throughput performance of the CE device–Proxy–HU–TPA

scenario. 125
5.5 Normalized throughput performance of the CE device–Proxy–TPA scenario.127

xix

Listings

5.1 Definition of a Etch IDL file with specification of security metadata . . . 114

xxi

C
ha
pt
er

1

Chapter 1
Introduction

1.1 Motivation

During the last two decades, vehicles have evolved into very complex systems embedding
powerful electronic platforms for various purposes, e.g., safety, driving assistance, info-
tainment. While still fulfilling their primary goal as safe transportation means, cars are
now offering a plethora of new connectivity interfaces and communicate with numerous
external communication partners: Internet, Consumer Electronic (CE) devices, Road-
Side Units (RSUs) and other cars [53]. Besides, like smartphones, cars will soon host
Third-Party Applications (TPAs) [115]. Such connectivity capacities and new applica-
tion features will obviously allow a better car customization and a stronger tethering
between all on-board and external communication partners. But on the other hand, they
may raise the threat level and increase the attack likeliness via these newly extended
communication interfaces.

Recently, cars have been shown to be vulnerable to simple attacks involving packet
sniffing/injection and more complex ones, like buffer overflows. Those were performed
by attackers having physical access to the car and its on-board network [102], but later
ones have shown the feasibility to compromise some cars through most of their external
communication interfaces [35, 152]. Then, today’s automotive applications are mostly
developed for a specific platform and for a precise car model. Car manufacturers gene-
rally know their developers and can therefore contractually set certain responsibilities
and testing processes. While not providing an entirely perfect security, such a strategy
allows car makers to keep the application integration process under their control. Load-
able and on-the-fly installable applications revolutionized the CE world but may shake
up the static architecture of the car. While being mostly intended for the infotainment
purpose, TPAs, CE-based applications and other online services will have full access to
the Internet, to several on-board functions and may secretly compromise the car in-
tegrity, steal the car manufacturer intellectual property and leak the driver’s private
data [164].

1

1 Introduction

At a functional level, limited communication technologies (e.g., Controller Area Net-
work (CAN), Media Oriented Systems Transport (MOST)) and drastic requirements
for low latency and high robustness left only very little space to security. Part of the
solution seems to lie in the use of Ethernet and the Internet Protocol (IP) as a standard
for on-board communication [63]. A larger bandwidth and mature security protocols
will allow to secure the communications between two on-board platforms, but may re-
main insufficient for consistent access control mechanisms in order to achieve a holistic
security solution. Not considering the whole information security problem, i.e., how in-
formation travels through the system, may lead to privacy breaches and, even worse, to
safety malfunctionings, which could endanger the passengers’ life. From this situation,
several challenges can be formulated.

First, future automotive applications will become more and more complex. They will
be as demanding in terms of performance and robustness as today, remain distributed
between several on-board platforms and exchange very large objects like environment
models [174]. Like today, they will simultaneously trigger safety and infotainment func-
tionalities and handle large amounts of sensitive data for drivers and car manufacturers.
Thus all on-board functions and data should be protected accordingly against any ma-
licious mischief.

Then, cars are expected to increasingly use all their Car-to-X (C2X) communication
interfaces. Until now, their communication capacities were quite limited, developed and
maintained under the control of the car manufacturer. But future external communi-
cation partners will soon be able to communicate directly with the on-board network.
Of course, adding encryption and authentication will easily prevent several attacks like
eavesdropping of the on-board network or addition of a new on-board node. But this
will not solve the whole access control problem. Smartphones, online services and TPAs

are potentially malicious, but may still be authenticated and authorized to communicate
with the car. Thus they should not get access to all on-board resources, e. g., functions,
data, memory, computation power. In addition, the access control mechanisms should
be distributed over all on-board platforms.

Finally, cars currently benefit from the lack of transparency of their technologies and
their limited external interfaces. Most security investigations were recently performed
by academia and published on locations with very research-oriented impact. Combin-
ing more efficient C2X interfaces with the introduction of well-known technologies, like
Ethernet, IP and other commodity platforms, may change the situation and attract
more attackers.

As a consequence and in order to keep on producing safe and trustworthy vehicles,
car manufacturers need to secure the on-board architecture accordingly and to design
on-board software bases that can efficiently manage all on-board secure communications,
leverage secure hardware features and enforce consistent access control mechanisms.

2

C
ha
pt
er

1

1.2 Goals & Approach

1.2 Goals & Approach

Automotive security cannot be handled like traditional IT security. Cars are sophisti-
cated systems embedding millions of lines of code [34] and subject to very high functional
requirements for high performance and robustness. From this situation, several goals for
this thesis can be identified and are listed below:

Security goal: The security architecture should leverage the transition of the car
towards an Ethernet/IP on-board network. More than just providing communication
security, the security architecture should define a security management model for on-
board and external access of on-board functions and data. Finally the resulting frame-
work should ensure a safe and secure integration of untrustworthy external (e. g., CE
device, online service) and on-board (e. g., TPA) communication partners.

Engineering goal: The development and management of security mechanisms should
follow an engineering-driven model. The addition of security should not significantly
increase the software complexity. The verification and maintenance of the secure on-
board architecture should be efficient and potentially managed by a limited group of
persons.

Functionality goal: Considering that the lives of the car passengers are at stakes,
the security-enabled car should provide equivalent functional and safety performance
as today. The addition of security within future Ethernet/IP-based on-board network
should not add more latency or result in a higher risk of error.

Regarding the thesis approach, the first task is to analyze the current weaknesses
and drawbacks of the current on-board network architecture. A second analysis of
the Ethernet/IP architecture then highlights which communication protocols may be
used and which kind of immediate security measures may be applied, i. e., existing
protocols, standards. After this analysis phase, the definition of a secure software ar-
chitecture may start. Considering the number of cases to handle, i. e., protecting the
on-board functions, data and managing the communication security, the security should
be application-independent. The middleware layer is like a Swiss army knife when it
comes to manage communications from a functional point of view and is already ex-
tensively investigated and developed for the automotive purpose. The flexibility of this
piece of software should be and will be leveraged for security between on-board plat-
forms and for integrating external and on-board untrustworthy use cases. However, a
consistent distributed authorization model for on-board function access and data mana-
gement should also be specified. For this purpose, a formal access control model should
abstract all information exchanges as basic flows and provide an efficient enforcement
of security rules ensuring the car integrity and the data confidentiality. Regarding the
other on-board untrusted components (i. e., TPAs), more intrusive methods enforced at
a local level providing full control should also be investigated and integrated. Finally, a
proof of concept should attest of the feasibility of all these concepts performing together
and conclude, whether this thesis fulfills its goals.

3

1 Introduction

1.3 Contributions

This thesis investigates the earlier mentioned security challenges and also demonstrates
how to enforce security at the middleware level in an automotive context. The proposed
middleware architecture provides an efficient on-board security management as well as
a secure integration of very untrusted scenarios on which the car manufacturer has no
control. More than just focusing on security, this architecture takes into account the
automotive specifications of the whole car life cycle including the runtime but also the
development phase. Despite the increasing car sophistication, the middleware-based
approach abstracts all communications and security mechanisms and enables an easy
maintenance and verification of the software components.

In short, the major contributions of this thesis are fourfold:

1. Security Middleware Extension (SME). The SME architecture ensures security
flexibility and does not depend on a specific middleware, i. e., it can be integrated
in a large number of middleware architecture. It includes all the necessary mecha-
nisms to manage the establishment of on-board secure communication channels
and access control decision- and enforcement points for on-board functions and
data management. Its modularization allows to customize the middleware layer
depending on the asset to protect, on the platform capacities and, if present, to
leverage secure hardware solutions.

2. Security Communication Proxy. All C2X communications are decoupled between
external and on-board networks at the communication proxy level installed on C2X
antennae, on the edge of the on-board network. As first and last communication
barrier, the proxy enforces filtering of inbound and outbound messages and com-
municates with on-board components via a middleware-based in-band protocol.
More than just a filter, the proxy assesses on-the-fly the security and trust level of
the communication and of its participants based on an adapted taxonomy.

3. Automotive Decentralized Information Flow Control (DIFC). The extended DIFC
model enforces a car-wide consistent access control for a secure on-board data ma-
nagement and function access. Instead of defining numerous policies, all network
exchanges are abstracted as flows of information. Each asset is assigned a label,
on which a limited number of policies are enforced within the middleware. Labels
and policies therefore allow to monitor, process or block flows of information di-
rectly from the middleware level. Additionally, such abstraction enables an easy
and secure integration of untrustworthy on-board and external components.

4. Automotive Dynamic Data Flow Tracking (DDFT). Extended DDFT mechanisms
can also ease the integration of TPAs. The DDFT customization possibilities and
its fine-grained enforcement ensure a total control over untrusted applications.
Besides a middleware-based coupling via the proxy and the DIFC model allows
the DDFT-monitored TPA to stay fully functional while fully controlling it, i. e.,
controlling what it receives, gets access to and sends on the network.

4

C
ha
pt
er

1

1.3 Contributions

In the course of the research done in this thesis, the following papers were published:

1. Benjamin Weyl, Maximilian Graf and Alexandre Bouard: Smart Apps in einem
vernetzten (auto)-mobilen Umfeld: IT-Security und Privacy. Chapter in
the book Smart Mobile Apps, 2012 [180]

2. Alexandre Bouard, Johannes Schanda, Daniel Herrscher and Claudia Eckert: Au-
tomotive Proxy-based Security Architecture for CE Device Integration.
In Proceedings of the 5th International Conference on Mobile Wireless Middle-
ware, Operating Systems and Applications (MOBILEWARE ’12), Berlin, Ger-
many, November 13–14, 2012 [27]

3. Alexandre Bouard, Benjamin Glas, Anke Jentzsch, Alexander Kiening, Thomas
Kittel, Franz Stadler and Benjamin Weyl: Driving Automotive Middleware
Towards a Secure IP-based Future. In Proceedings of the 10th International
Conference on Embedded Security in Cars (ESCAR ’12), Berlin, Germany, Novem-
ber 28–29, 2012 [24]

4. Florian Sagstetter, Martin Lukasiewycz, Sebastian Steinhorst, Marko Wolf, Alexan-
dre Bouard, Willian R. Harris, Someh Jha, Thomas Peyrin, Axel Poschmann and
Samarjit Charaborty: Security Challenges in Automotive Hardware/Soft-
ware Architecture Design, In Proceedings of the 16th International Conference
on Design, Automation & Test in Europe (DATE ’13), Grenoble, France, March
18–19, 2013 [154]

5. Alexandre Bouard, Maximilian Graf and Dennis Burgkhardt.: Middleware-based
Security & Privacy for In-car Integration of Third-party Applications.
In Proceedings of the 7th IFIP WG 11.11 International Conference on Trust Ma-
nagement (IFIP TM ’13), Málaga, Spain, June 3–7, 2013 [26]

6. Alexandre Bouard, Hendrik Schweppe, Benjamin Weyl and Claudia Eckert: Le-
veraging In-Car Security by Combining Information Flow Monitoring
Techniques. In Proceedings of the 2nd International Conference on Advances
in Vehicular Systems, Technologies and Applications (VEHICULAR ’13), Nice,
France, July 21–25, 2013 [28]

7. Alexandre Bouard, Benjamin Weyl and Claudia Eckert: Practical Information-
Flow Aware Middleware for In-Car Communication. In Proceedings of the
1st International Academic Workshop on Security, Privacy and dependability for
CyberVehicles (CyCar ’13 Co-located with CSS ’13), Berlin, Germany, November
4, 2013 [29]

8. Alexandre Bouard, Dennis Burgkhardt and Claudia Eckert: Middleware-based
Security for Hyperconnected Applications in Future In-Car Networks, In

5

1 Introduction

EAI Endorsed Transactions on Mobile Communications and Applications Journal,
Vol. 13, Num. 3, December, 2013 [23]

1.4 Outline

Based on the approach in Section 1.2, this thesis consists of six chapters: an introduction
(Chapter 1), a background overview (Chapter 2), three main concepts and evaluation
chapters (Chapters 3 to 5) and a summary (Chapter 6). Considering the disparity of
the considered topics, all chapters also include their own specialized related work.

Chapter 1. Introduction. This first chapter provides a motivation overview and
gives a first insight about today’s cars and their future evolution. In this context, prob-
lem statement as well as goals and approach are clearly stated. The main contributions
of this work and a brief outline are also then formulated.

Chapter 2. Automotive On-board Architecture and Investigated Scena-
rios. This chapter provides a detailed description of the car Electrical/Electronic (E/E)
architecture and some related work. Firstly, today’s architecture and shortcomings are
presented and discussed. Then, tomorrow’s architecture and security benefits are looked
into and set the context of this work. After what, an analysis of forthcoming threats is
provided and thoroughly describes the automotive surface of attack, the different classes
of attackers and their motivations. This section also leads to a formal definition of the
attacker model followed by this thesis. Finally some additional requirements related to
the automotive world are formulated as well.

Chapter 3. Automotive IP-based Security Architecture. This chapter presents
a secure middleware architecture for future on-board communication infrastructures.
First the modularization of the security middleware extension is described. Part of the
Application Programming Interface (API) of each module is provided and presented in
situ within a functional use case illustrating the interactions between security modules
and functional middleware. Then an architecture for a secure C2X communication proxy
and a first approach for Information Flow Control (IFC) are presented. The IFC is sup-
ported by the definition of a practical taxonomy allowing to determine the security and
trust level of C2X communications. This chapter ends with an intermediary discussion
debating the benefits of securing a system at the middleware level in this manner and
its limits.

Chapter 4. Information Flow control in Cars. This chapter presents an car-
wide authorization model enforced at the middleware level. A formal access control
model based on Decentralized Information Flow Control (DIFC) is formalized and ex-
tended for a secure management of on-board communications and a secure integration
of external C2X communicating partners and TPAs. Then an advanced approach for
TPA integration based on Dynamic Data Flow Tracking (DDFT) is also investigated
and is coupled to IFC model presented in Chapter 3. After what, a third approach
is described and proposes to leverage both DIFC- and DDFT-based models thanks to

6

C
ha
pt
er

1

1.4 Outline

adapted security interfaces through which information can be exchanged. This chapter
finally ends with a discussion comparing the resulting IFC models and provides some
first recommendations.

Chapter 5. Prototypical Evaluation and Discussion. This chapter addresses
the implementation implications of the concepts presented in the chapters 3 and 4. First
the evaluation methodology is introduced and discusses the different factors to assess
and the testing environments. It also provides more information about the automo-
tive software development and the car life cycle. The proof-of-concept developed for
this thesis is then presented; this includes the descriptions of the used technologies,
the developed modules and their integration with each other. At the same time, the
performance results of the different implemented components are listed and discussed.
Finally this chapter ends with a final discussion putting in parallel security and func-
tional evaluations. Some additional recommendations and system limitations are also
debated here.

Chapter 6. Conclusion and Summary. This last chapter concludes the thesis.
The major contributions are summarized here and discussed to highlight how they fulfill
the goals and requirements defined in Chapters 1 and 2. An outlook is also provided
and presents some directions that should also be investigated.

7

C
ha
pt
er

2

Chapter 2
Automotive On-board Architecture and
Investigated Scenarios

Cars became very complex goods, which experience today multiple increasing security
issues. This background chapter aims at providing a description of the Electrical/Elec-
tronic (E/E) architectures of both current and future vehicles and highlighting the major
security threats to consider. It also proposes to discuss in details the security aspects of
the four main scenarios investigated by this thesis: the on-board communications, the
integration of online services, of CE devices and of on-board Third-Party Applications
(TPAs). This chapter includes a significant part of the related work of this document.
But considering the disparity of the considered topics, all following chapters also include
their own specialized related work.

The on-board architecture of modern cars is discussed in Section 2.1. Afterwards,
a potential architecture for future on-board Ethernet/IP-based network is debated in
Section 2.2. Then the attacker model and threats considered by this thesis are presented
in Section 2.3. Finally, Section 2.4 describes in more details the different requirements
in term of functionality and security that this work should consider.

2.1 About Today’s Car

Until a few years ago, vehicular communications only meant in-vehicle or on-board
communications, i. e., between internal car components. But with the multiplication of
interfaces communicating with the outside, C2X communications became as essential
and critical as the on-board ones. From proprietary interfaces for diagnosis, these C2X
interfaces are now leveraging all the potential of the GSM, the 3G, the wave band around
5,9 GHz as proposed by the IEEE 802.11p standard [1] and very soon LTE.

This section is structured in three points: (1) the in-vehicle communications, (2) the
C2X communications and (3) some related work about automotive-specific security and
research projects. While the two first parts describe the situation and related security

9

2 Automotive On-board Architecture and Investigated Scenarios

Figure 2.1: Schematic of a modern on-board network. The ECUs () are connected
by buses. Gateway ECU may connect several buses with each other ()
or may be connected to C2X interfaces such as the OBD-II port or some
wireless antennae (). The network topology of these bus technologies has
not been respected.

issues, the third part lists a set of actions that academia and industry investigated and
developed to enhance the car security.

2.1.1 On-board communications

This subsection is divided in two: (1) a precise description of the on-board communica-
tion infrastructure of modern cars and (2) the resulting security issues.

2.1.1.1 On-board Network

Today, the on-board network of premium vehicles has grown in a heterogeneous com-
munication infrastructure including up to 80 interconnected Electronic Control Units
(ECUs). As shown in Figure 2.1, a large variety of networking technologies allows to
organize the ECUs around specific domains and results in a complex and cost-intensive
architecture: several CAN [33] or Local Interconnect network (LIN) [110] subnets, a
FlexRay subnet [59], a MOST subnet [125] and sometimes an Ethernet one [63]. These
bus technologies come with their own custom protocols, which are not directly interoper-
able. As a consequence, dedicated application layer gateways are needed to interconnect
them. But in time of increasing need for inter-domain communications and more band-
width, such gateways became an obstacle for innovation.

Table 2.1 provides more information about all mentioned bus technologies. CAN is
predominant in the on-board network. It establishes communications via broadcasted

10

C
ha
pt
er

2

2.1 About Today’s Car

Table 2.1: Comparison between several automotive bus technologies. “Possible harm”
describes the consequences of an issue on such bus (error or attack).

Low-CAN High-CAN FlexRay LIN MOST

Domain body
body, power power train, power train, telematics,

train, chassis chassis, safety chassis multimedia

Standard
ISO

ISO 1198
FlexRay LIN MOST

11519-2 consortium consortium consortium

Max. 125
1 Mbit/s 20 Mbit/s 19,2 kbit/s

25-150

Bandwidth kbit/s Mbit/s

Topology bus bus star bus ring

Max. num-
24 10 22 per star 16 64

ber of nodes

Applications
lights, engine,

airbags
windows, CD/DVD

wipers transmission doors player

Control event-
event-driven

time/event-
time-driven

time/event-

mechanism driven driven driven

Posible Risk of accident Loss of Data theft

harm Loss of assistance or control functionality Loss of comfort

11

2 Automotive On-board Architecture and Investigated Scenarios

and 8-bytes-long signals and uses a priority-based arbitration. This communication
paradigm makes it suitable for messages sent to multiple recipients, even if it is rarely
the case in practice. Then, MOST connects the infotainment domain and is used for
complex tasks. It allows to exchange larger frames and exists in 3 versions, i. e., MOST25,
MOST50, MOST150 providing a bandwidth of, respectively 25, 50 and 150 Mbit/s.
Although MOST150 is a mature technology, its integration is still in progress for most car
manufacturers. For applications with high bandwidth and hard real-time requirements,
FlexRay proposes a scheduling featuring both static and dynamic communication slots
assigned for all applications. The static slots provide very deterministic communications
and allow to meet the real-time requirements. Finally, LIN is mostly used to connect
small ECUs and sensors with limited criticality, even if a functional issue (or an attack)
on the door locking could have dramatic consequences, such as the theft of the vehicle
or to lock in the car occupants.

On-board automotive applications are divided into elementary blocks over diverse
ECUs. They can usually rely on engineering-driven middleware in order to exchange mes-
sages. AUTOSAR [32] provides a common interface for signal-based CAN and FlexRay
messages. On the other side, MOST proposes a very sophisticated middleware based on
function blocks and which follows the principle of Remote Procedure Call (RPC).

The automotive industry also started to use Ethernet as communication media for
high-end use cases. Ethernet in the APIX2 solution allows to establish transmission
channels for audio and video between the Head Unit (HU), i. e., the central infotain-
ment platform of the car, and the Rear Seat Entertainment (RSE) system [89]. Car
manufacturers also started to use Ethernet for diagnosis purpose and to connect ECUs
requiring large data transfer for initialization or update, e. g., the HU, the navigation
ECU [14].

2.1.1.2 Security Issues

For a long time automotive security has been limited to anti-theft devices such as im-
mobilizers and secure RFID transponders for car key. But recently, several research
works highlighted numerous security issues due to a lack of protection on the commu-
nication buses and to poor ECU implementations. These issues and an increasing use
of C2X communications reoriented the academic and industry research toward more
holistic security solutions. Here follows a more detailed list of these issues. This non-
exhaustive list focuses on the intrinsic problem of the on-board network. Most mentioned
attacks [102, 77] have been performed through the OBD-II port or through open physi-
cal interfaces, i. e., without any intrusive methods. Attacks on external communication
interfaces of the car are mentioned in the next subsection and some related work about
automotive security is provided later in Section 2.1.3.

Insufficient bus security: None of the legacy automotive buses were designed with
security in mind. They all lack the necessary protection mechanisms to provide authen-
tication, integrity or confidentiality [75]. Performance requirements and the length of

12

C
ha
pt
er

2

2.1 About Today’s Car

a CAN packet, for example, do not allow to perform encryption or the addition of a
Message Authentication Code (MAC) or of a digital signature. With CAN, all packets
are received by every node, allowing all nodes to sniff and inject any type of packet
and making a secure key distribution mechanism even harder to setup. Similarly the
protocol used over CAN or FlexRay do not provide mechanisms for data authentication
or freshness.

Protocol misuse: Attacks may be possible by abusing one protocol specification [186].
First, a LIN subnet can be disabled by sending a malicious sleep frame. Then, a Denial
of Service (DoS) attack can be launched on a CAN bus by misusing the priority-based
arbitration of the bus and sending messages only with the highest priority. Finally, a
misuse of error messages can also be leveraged to disconnect CAN and FlexRay nodes
from their bus.

Poor protocol implementation: The protocol implementation may not reflect
the actual standard specifications. For safety reasons, the engine control ECU cannot
supposedly be put in reprogramming mode when the car moves. However, real-world
tests showed the inverse and actually were able in this way to isolate the ECU from any
CAN communication [102].

Weak ECU authentication: It has been shown that some ECU implementations
provide no or weak authentication schemes, that are easy to break by brute-force attack.
Such flaws may allow to request the “protected” reprogramming mode of the ECU
enabling its re-flashing and for example to create a gateway forwarding packets between
two subnets [102].

Poor ECU implementation: Today’s car contains up to 100 millions of lines of
code [34]. This amount makes a thorough code verification impossible and may result
in multiple vulnerabilities leading to buffer overflow exploits. The infotainment system
of several cars was shown to present such weak spots. An input path of the Windows
Media Audio (WMA) parser, not specifying the maximum input length could be used
to launch a buffer overflow attack. The shellcode burnt on a CD, which is then played
in the car CD/DVD player, allowed to send multiple CAN packets over the on-board
network [35].

Gateway misuse: Attacks through the OBD-II port can also allow to leak (private)
information exchanged over the on-board network. The manipulation of the diagnostic
protocol and a replay of modified diagnostic sessions allow to make the central gateway
forward both diagnostic and non-diagnostic-related traffic to the outside [77].

2.1.2 C2X communications

C2X communications include all message exchanges performed by the car with an exter-
nal entity, e. g., CE devices, Internet, RSUs, other cars. A modern car leverages today
a plethora of C2X interfaces and antennae, which are located on a dedicated ECU like
the Global Positioning System (GPS) or directly integrated as a part of a bigger ECU,
like the Bluetooth interface of the HU. Unlike on-board communications which seemed

13

2 Automotive On-board Architecture and Investigated Scenarios

protected by the physical car body, the security threats induced by communicating with
the outside over external and often wireless untrusted network are obvious. As a matter
of fact, car manufacturers always provided layers of security for these use cases, which
nonetheless are not flawless. These communications can be classified depending on their
range of efficiency: physical-range, short-range and long-range. The remaining of this
subsection does not provide an exhaustive list of C2X communication channels, but
rather focuses on the ones considered by this work, i. e., related to an IP-based context,
and on related security considerations.

2.1.2.1 Physical-range C2X communications

These communications usually involve the physical tethering of a device to the car, e. g.,
through a Universal Serial Bus (USB) interface, the OBD-II Port, or by inserting an
information medium into the car, e. g., a CD. The security risks and attacks here have
already been discussed in the previous subsection and shown that these communications
are currently the most investigated attack vector.

The security layer of the USB interface allows some applications developed by the
car manufacturer and installed on the plugged device to establish secure communication
channels with the HU. These legit applications are equipped with a certificate signed by
the car manufacturer which defines their rights for a set of infotainment and car-status
functions. These certificates are generally not protected and thus can be extracted from
their applications in order to be misused.

2.1.2.2 Short-range C2X communications

These communications are occurring within the car cockpit and are performed by wireless-
enabled devices, e. g., CE device over Wi-Fi, Bluetooth, or by on-board wireless sensors,
e. g., Tire Pressure Monitoring Sensor (TPMS) via radio frequency.

Wi-Fi and Bluetooth provide standard methods allowing strong communication en-
cryption and password/PIN-based authentication. The related antennae are usually
present on the HU, which enforces an Access Control List (ACL) defining the function
availability. These authorized features are generally limited and not security-critical,
e. g., phone book, phone call, audio system, car statistics. Some Bluetooth interfaces
showed to contain weakly protected function like strcpy() allowing attackers to perform
a buffer overflow attack and execute arbitrary code on the HU [35].

Then, TPMSs are supposed to only communicate with the tire pressure monitoring
ECU. While the car body actually shields these communications, the wireless signal was
shown to be heard up to 40 meters away, which makes remote car tracking based on the
sensor ID possible. Due to a lack of security on the communication protocol, it was also
demonstrated that an attacker could spoof the wireless communication. The attacker
was therefore able to send wrong information to the ECU, display them on the digital
instrument panel and drain the sensor battery [152].

14

C
ha
pt
er

2

2.1 About Today’s Car

2.1.2.3 Long-range C2X communications

These wireless communications occur with entities outside the car, e. g., via IEEE
802.11p for communicating with other cars or GSM/3G for Internet or the emergency
call purpose.

The security related to the GSM/3G communications is mostly under the network
provider’s responsibility. The car is in charge of the application-level security, e. g.,
build a TLS-protected channel for an IP traffic. For the moment, communications with
a CE device or with Internet are routed through a back-end server acting like a firewall.
The server delivers to the car only authorized and valid function calls or provides static
web pages, i. e., without any embedded JavaScript code. Via these methods, critical
functions like door locking or shutting down the engine are possible and relatively safe
to perform. However this solution is expensive, not scalable on the long term and may
not be fully secure [119].

Like the Bluetooth interface, the emergency call interface may also be vulnerable.
After a reverse-engineering of the aqLink protocol, it was found that some cars were as-
suming to encounter traffic with a packet size of less than 100 bytes. Without any length
checking procedure, a buffer overflow could be performed and make execute arbitrary
code on the telematics platform hosting the aqLink interface [35].

2.1.3 Security Research

In contrast to a few years ago, today’s car manufacturer cannot ignore the IT secu-
rity threats anymore. As a consequence, during the last decade, both academia and
industry proposed several research works and large-scale projects to secure automotive
communications infrastructures.

2.1.3.1 Academic Work

The first task was to address, quantify and classify the security problems. For this
purpose several approaches were taken. At a theoretical level, Wolf et al. [186] investi-
gated the weaknesses of the on-board protocols and potential attacks. Lang et al. [106]
discussed the risk of opening the on-board network to external IP-based networks and
formalized a set of several attack scenarios. At a practical level, Hoppe et al. [75]
tested attacks on the CAN bus and on real hardware sets on experiment tables. They
also investigated the possibility of performing sniffing and replay attacks via simulation
and proposed an adapted version of the CERT taxonomy [78] for the automotive pur-
pose [72]. At a “real-world” level, the center for automotive embedded systems security
demonstrated the feasibility of attacking the whole car. Using techniques for packet
sniffing, fuzzing and reverse engineering, they compromised several cars first with a lo-
cal access to the OBD-II port [102] and then remotely by exploiting vulnerabilities of
external communications interfaces [35]. The rest of this section presents a selection of

15

2 Automotive On-board Architecture and Investigated Scenarios

new security features proposed to secure the on-board network:
Securing the CAN protocol and the on-board architecture: A first approach

is to directly work on the CAN protocols. Chávez et al. [39] proposed to encrypt the
CAN frame by using a lightweight RC4 algorithm and provided the related pseudocode.
The authors evaluated the induced latency for different lengths of frames (greater or
equal to 8 bytes) but did not consider the authentication schemes or any mechanism to
establish the session key. Regarding the authentication, Nilson et al. [137] proposed to
use a Cipher-Block Chaining MAC. A 64-bit MAC is produced out of 4 consecutive CAN
messages, each of them receives 16 bits of the MAC in their cyclic-redundancy-code-field.
But such a protocol induces delay for verifying integrity and authentication, since all
messages need to have arrived. In addition it does not consider the data freshness nor
the case where the MAC verification fails.

A second approach is to restructure the on-board architecture at a deeper level. Groll
et al. [65] proposed to regroup the ECUs in trusted groups, where the ECUs share a
same symmetric key. A key distribution centre in the vehicle is responsible for the key
and cryptographic management. The trusted groups are defined in ACLs signed by the
car manufacturer and stored/enforced by the centre. No real-world implementation is
provided, only an evaluation of the latency induced by the encryption of the packet with
several symmetric or asymmetric algorithms.

A third approach is to make use of attestation-based security leveraging the Trusted
Platform Module (TPM) [169] capacities of an ECU. Oguma et al. [139] proposed to use
a remote-attestation protocol to verify the validity of the software running on an ECU.
A central master ECU collects the attestation hash of each ECU and generates the sym-
metric encryption key for the valid pairs. However, again no real-world implementation
was provided.

These approaches focus on providing security (i. e., encryption and/or authentica-
tion/integrity) to the CAN protocols. However the CAN bus only provides very con-
strained properties that make the security management very unpractical:

• Message length: the CAN frames are 8 bytes long and cannot be extended. As
a consequence, for 32 bits of data, CAN can only carry a MAC of 32 bits at most.
CAN FD proposes to transmit frames of up to 64 bits on a CAN bus. However
its adoption by the car industry is not clear and cannot yet be considered as an
option.

• Available resources: in addition to the bandwidth, the number of CAN-IDs is
also limited and cannot be extensively used to provide additional messages for key
exchanges or authentication mechanisms.

• Bidirectional protocols: the broadcasting and event-driven nature of CAN limit
the use of bidirectional security protocols, especially the use of authentication
challenges for time-critical situations.

• Real-time capabilities: ECUs may have to respond within 1 ms [139]. In case of
a protocol using a MAC, the MAC needs to be generated, transmitted and verified

16

C
ha
pt
er

2

2.1 About Today’s Car

within this time frame. Such delay cannot be guaranteed if the MAC is complex
to compute or transmitted over several messages.

• Interoperability: security-enabled CAN nodes may have to be interoperable with
non-security equipped nodes in order to allow an implementation of the current
on-board network of a car manufacturer. As a consequence, all messages need to
still be broadcasted and available to the whole network, which clearly limits the
use of encryption.

In addition, none of the works previously mentioned, which focus on legacy communi-
cation buses, do really consider, if they need it, the key distribution process in itself,
i. e., which algorithms and protocols are used to exchange or establish the encryption
keys. They assume it flexible enough and secure. However until now, no flexible enough
car-wide solution was proposed. Unlike the automotive world, the IP world already pro-
poses for this Public Key Infrastructure (PKI)-based solutions that could be adapted
for cars [55].

Developing automotive Intrusion Detection Systems (IDSs): Larson et al. [108]
proposed and evaluated a CAN-based IDS. Considering that the CAN protocols are not
specifying the identity of the message sender and receiver, they choose to not develop a
network-based IDS, but rather an introspection-based IDS. The IDS is implemented di-
rectly on the CAN controller and inspects all incoming and outgoing packets to checks if
some requirements on the message fields, the retrieval and emission rates are respected.
They consider that the most critical assets to protect were the gateway ECUs, which
are also the most difficult to protect per IDS since all their interfaces have to cooperate
together, e. g., to detect lost or corrupted messages.

On the other side, Hoppe et al. [76] opted for a anomaly- and network-based IDS. By
looking at the rate of a specific type of packet, the IDS can compare the resulting value
to the normal one and detect anomaly, e. g., an increase of traffic when the car is idle.
They then investigated the way of displaying the warning of an intrusion [73]. Instead
of sending it to a centralized server, they chose to directly inform the driver via a human
computer interface. Depending on the criticality of the attack, audio, visual or haptic
messages are transmitted to the driver.

2.1.3.2 Automotive & Security Projects

During the last decade, academia, car manufacturers and their subcontractors have laun-
ched a series of large scale projects with governmental support aiming at securing cars.
The European Union (EU) project SeVeCom [159] was one of the first and addressed
the security issues of future vehicle communication networks, i. e., the security of C2X
communications. While having designed several C2X protocols using encryption and
authentication mechanisms, they mostly kept their work at a theoretical level. The
field operational tests were later performed by the German project simTD [163], which
implemented the protocols on their C2X communication platforms. This project also

17

2 Automotive On-board Architecture and Investigated Scenarios

proposed a security architecture relying on a PKI for long-term car identity as well as
short-term identities in order to provide pseudonymity [18]. However none of these two
projects really formalized the transition of data between outside and inside or consid-
ered the damages that external data could cause on the inside. Their on-board security
was relying on strong security components on the edge of the in-vehicle network and
performing the enforcement of static ACLs.

Regarding the in-vehicle security the EU project EVITA [57] designed on-board proto-
cols and architectures aiming at providing security and trust already within the vehicle,
i. e., at the ECU and sensor level. They proposed a modular framework for the ECUs,
which allows to establish internal secure communication channels and leveraging embed-
ded Hardware Secure Modules (HSMs). Some security nodes called Security Masters
take care of the key distribution, policy management and IDS and support the other
ECUs to secure their on-board traffic. As follow-up the German project “Sicherheit in
Eingebetteten IP-basierten Systemen (SEIS)” investigated the feasibility of using Ether-
net and IP as standards for automotive on-board communications [63]. Security was one
of their major concerns. Their security architecture is partly inspired by EVITA. Part
of the research explained in Chapter 3 was led during the SEIS project and concerns
a secure middleware architecture. The EU project OVERSEE [143] investigated the
possibility to reduce the total number of ECUs by developing super-powered ECUs ful-
filling the function of several ECUs. These super ECUs leverage the HSM of EVITA
and virtualize a full embedded IP network allowing communications between the em-
bedded virtual ECUs. The German project Aramis [7] is currently running and is about
designing a secure embedded multicore architecture running safety-critical functionali-
ties. Such system would for example allow to have simultaneously on the HU a safety
partition and an Android-based partition for infotainment sharing the same physical
platform, e. g., the HU hardware but also the display screen.

2.2 About Tomorrow’s Car

Future automotive uses cases for driver assistance, infotainment and C2X connecti-
vity have all increasing requirements for bandwidth availability and computation power.
However, as seen in the previous section, security concerns and technology limitations
in term of bandwidth and interoperability currently slow down their development and
integration into cars. Part of the solution may lie in the use of fast buses and more
flexible networking protocols like Ethernet/IP [157], an option already investigated by
the SEIS project [63] for several reasons:

• Limited cost: instead of equipping each car with a model-specific and complex
cable network, car manufacturer will wire each ECUs with a simpler Ethernet
based network composed of inexpensive single pair unshielded cables [140].

• Bigger bandwidth: the automotive variant of the 100 Mbit Ethernet is a valid
alternative to the MOST150 and may soon lead to its Gbit version. In addition to

18

C
ha
pt
er

2

2.2 About Tomorrow’s Car

a high bandwidth, Ethernet also provides a high throughput, a relevant evaluation
criterion for CAN-based use cases.

• Scalable and easy ECU coupling: the use of automotive switches will consi-
derably simplify the network addressing and ECU coupling. Ethernet/IP subnets
will be simply plugged together via switches and routers and will avoid the con-
figuration of complex interface gateways.

• Available standards: a plethora of standard protocols designed for Internet
will be directly applicable or customized for the automotive purpose. First at a
functional level, Ethernet/IP already benefits from efficient transport (e.g., TCP,
UDP) and network management (e.g., ICMP, ARP) protocols . Then at a security
level, they provide mature and secure protocols already strengthened against real-
world attacks (e. g., MACsec, IPsec, SSL/TLS).

• Easy migration strategy and flexible communication paradigm: Ethernet
and IP allow unicast but also broadcast and multicast communications, a necessary
requirement for some CAN-based use cases. Ethernet also offers synchronous and
isochronous data transmission (IEEE AVB [85]), as MOST does it for Audio/Video
traffic. Finally an Ethernet/IP-based API can easily be compatible and support
the existing APIs of CAN-based and MOST-based applications.

While being functionally suitable Ethernet/IP does not directly solve all security issues,
e. g., security communication management, function/data access control. Since IP and
Ethernet are well-known standards they could actually lead to more attacks on the on-
board network. The rest of this section discusses in more details the following points: (1)
the architecture of the future on-board network in Section 2.2.1, (2) the future on-board
communication protocols in Section 2.2.2, (3) the future on-board security protocols in
Section 2.2.3 and (4) the future C2X multi-platform antennae in Section 2.2.4.

2.2.1 The Future On-board Network

Figure 2.2 presents a simplified architecture of a future on-board network. In a similar
way as today, the future one will be composed of several Ethernet/IP subnets interlinked
at the level of a central router. Each ECU of each subnet will be connected via a
hierarchical tree, composed of several switches. This architecture allows to reach an
optimal tradeoff for suitable performance and Quality of Service (QoS), i. e., to balance
the tree and not have a congested subnet [109]. Figure 2.2 only shows the first level
of each tree. Unlike current architecture where ECUs are physically organized around
a domain, the ECUs will be in the future only logically assigned to a domain and will
have to rely on security for a domain-based separation. Their physical assignment to
a specific subnet will depend on their localization of the car and on an optimization of
the whole tree. Additionally, all wireless C2X interfaces will be regrouped on a Multi-
Platform Antenna (MPA), described in more details in Section 2.2.4. Both OBD-II port
and MPA will be directly connected to the central router via the proxy. The rest of this

19

2 Automotive On-board Architecture and Investigated Scenarios

Figure 2.2: Schematic of a future on-board network. The ECUs () are connected per
Ethernet buses. The proxy () is connected to the central router () and
is the only component managing C2X interfaces such as the OBD-II port
or the multi-platform antenna. This distribution of the domain-based ECUs
and master is given as an example. (Info. = Infotainment)

section presents the different domains, namely the Drive-, Chassis-, Body-, Advanced
Driver Assistance and Safety (ADAS)- and Infotainment-domain.

The Drive domain concerns the ECUs responsible for the engine and transmission con-
trol. Both communications between engine ECUs and between engine- and transmission
ECUs can be considered as real-time communications with high reliability requirements.

The Chassis domain contains the ECUs responsible for driving control use cases like
the Electronic Stability Control (ESC) or the Anti-lock Braking System (ABS). They
also involve real-time communications and need to react based on different sensor values
in a short time to ensure their safety purpose.

The Body domain hosts the ECUs managing several comfort functions like the electric
seat adjustment or the control of the convertible roof. These functions are not as critical
as the ones of the two previous domains. But their malfunctioning could still cause severe
driving discomfort or financial car damages. Additionally, the diagnosis functionality is
usually part of this domain.

Since a decade, numerous ADAS systems have been implemented in cars, e. g., adap-
tive headlights, automated parking, adaptive cruise control, lane departure warning and

20

C
ha
pt
er

2

2.2 About Tomorrow’s Car

night vision. In order to achieve their purpose, the use cases of the ADAS domain use
complex sensors based on ultrasounds, radars, lasers or cameras. Additionally, they
require to have a large amount of data transported from the sensor to the ADAS ECU
and are subject to real-time requirements comparable to the Chassis or Drive domains.

The Infotainment domain includes the ECUs taking part in audio/video use cases as
well as some C2X connections, e. g., for the Internet. It concerns, among others, the
HU with originally the FM radio and later the management of additional media data
like CD/DVD chargers, digital/satellite radio and digital TV. Another use case is the
on-board navigation, which relies on the current GPS position, pre-stored maps, sensor
information and additional data received via radio waves or Internet. Most of these
use cases are enabled via an Internet connectivity, which allows numerous services, e. g.,
mails, weather consultation, exchange of information between vehicles. It may also soon
enable to perform a remote car diagnosis, in order to optimize the maintenance and to
know in advance which components to fix in the garage.

With an increasing number of ADAS features, it now makes sense to change in depth
the car structure. Instead of having each costly sensor directly coupled to an ADAS
ECU, it becomes interesting to decouple it from its ECU. A dedicated ECU aggregates
all sensor information into an environment model that can be sent to all interested ECUs.
Because not all information of this model may be interesting for a resource-limited ECU,
an intermediary ECU in each domain, called master ECU receives the full model and
redistributes the relevant information. In a realistic vehicle, a domain will contain at
least a master ECU and potentially some other ECUs depending on which options and
services were ordered by the customer.

Thus the Sensor domain contains all the sensors of the car. The sensor master collects
all sensor information, generates the environment model and periodically forwards it to
the other masters.

2.2.2 The Future On-board Communication Protocols

Before specifying the protocols that the on-board network will use, it makes sense to
briefly define the different communication streams that have to be carried. These streams
can be classified as following and will be described in more details along this section:

• Automotive infrastructure management;

• Transport of Audio/Video (A/V) data;

• Clock synchronization;

• Control traffic;

• IP-based Data Communication.

The considered protocols are presented in Figure 2.3. These protocols may be catego-
rized in 5 clusters: 2 clusters as basis of the communication stack system, namely the

21

2 Automotive On-board Architecture and Investigated Scenarios

Figure 2.3: Automotive protocol suite (adapted from [157]). These protocols are pre-
sented in function of their disposition in the ISO/OSI model. The dashed
boxes designate the categorization described in section 2.2.2. In this figure
MAC means media access control.

Automotive Ethernet and the IP/TCP Stack, and 3 clusters transporting the commu-
nication streams mentioned in the previous list, namely the Automotive Protocols, the
Audio Video Bridging (AVB) Protocols and the Automotive Middleware.

Basis clusters: As basis of the on-board communication stack lies the protocols
for the Automotive Ethernet. It is composed of the BroadR-Reach physical protocols
standardized by the OPEN ALLIANCE that will serve to encode the Ethernet packets
over single-pair unshielded wire. Then on top of the physical layer, the layer-2 protocols
compliant with the IEEE standards 802.3 and 802.1Q provides the mechanisms for media
access control addressing and Virtual Local Area Network (VLAN).

The IP/Transport Control Protocol (TCP) Stack protocols sit above the Automotive
Ethernet cluster. They provide mechanisms for IP addressing as well as several other
features for address configuration, resolution and signaling. This cluster also provides
the transport protocols for all application-layer protocols of the car. This cluster is not
automotive-specific and comes into car without any major modification.

Stream clusters: The management of the automotive infrastructure is provided by
two car-specific protocols relying on the IP/TCP stack. First, the UDP-NM protocol is
specified by the AUTOSAR standard committee and specifies the protocols for coordi-
nating the transition between normal functioning and bus-sleep mode of the network [9].
Then, the second protocol concerns the flashing and diagnosis of the ECUs, e. g., the
proprietary High Speed Fahrzeugzugang (HSFZ) protocol of BMW, and may rely either
on User Datagram Protocol (UDP) or TCP depending on the situation requirements.

Then, unlike MOST which was designed for the A/V transport, Ethernet is more
multi-purpose. The AVB Task Group designed protocols for transporting A/V streams

22

C
ha
pt
er

2

2.2 About Tomorrow’s Car

in local networks and defined IEEE 1722 standards running directly on the Ethernet
layer [86]. This standard achieves a very precise and synchronous playback when used
with a clock synchronization protocol like the standard IEEE 802.1AS [84]. In addition
the IEEE 1722 allows to save the overhead caused by the IP and transport headers.

Clock synchronization is also essential when synchronizing the speaker playback and
video display. Thanks to hardware-based timestamps, the IEEE 802.1AS reaches a
high precision, i. e., under the microsecond range. This standard is an extension of the
precision time protocol version 2 (PTPv2) and can be used directly on the Ethernet
layer or over UDP/IP. The precision is obviously the highest with the version running
directly on Ethernet. However, the high precision clock may impact the security. The
hardware-based timestamping is performed by the Ethernet device after the security
mechanisms and as a consequence the integrity and authentication of the frame may
seem corrupted.

Then, in addition to these features, the car needs some Control Traffic mechanisms,
e. g., to start/stop an A/V stream, to get the current speed, GPS coordinates, to trans-
fer the driver’s playlist information. Due to the diversity of tasks and requirements, the
car needs flexible and general protocols. These tasks are therefore assigned to the mid-
dleware and its associated Service Discovery (SD) mechanisms. The description of this
layer and its security constitute the main focus here and are addressed in more detail in
Chapter 3, 4 and 5.

Finally, the IP-based Data Communication concerns the infotainment domain but
are not depicted in Figure 2.3. The most explicit example considers the network file
system to establish between HU and RSE, so that the RSE can access the navigation
information or the movies stored on the HU. Several protocols already exist for this
purpose, perform over IP and UDP and propose their own security mechanisms, e. g.,
FTP [147], NFS [162].

2.2.3 Securing the Future On-board Communication Protocols

This section aims at selecting the most suitable security protocol to secure the on-
board communications. Therefore based on the type of streams defined earlier, several
requirements for the communication security can be defined:

• Protection of A/V content : for legal reasons, the protection of such contents may
be required, in order to prevent an attacker from eavesdropping the content and
reusing it illegally.

• Protection against unauthorized manipulation: it concerns the protections against
an attacker, who could intercept messages, modify them and reinject them or
just replay them at a later time. These manipulation aims at gaining additional
unauthorized features or disabling safety mechanisms. They could damage the car
integrity and also lead to warranty fraud.

23

2 Automotive On-board Architecture and Investigated Scenarios

Table 2.2: Comparison of different protocols for securing the on-board communications.

Evaluation Criteria MACsec [83] IPsec [99] SSL/TLS [48] - DTLS [150]

Protected layers L2 and above L3 and above L5 and above

Protection paradigm one-hop end-to-end end-to-end

Application control No Yes with [185] Yes

Communication aggregation Yes Yes No

Key exchanges available Yes Yes Yes

Support preshared keys Yes Yes Yes

Support EAP [2] Yes Yes No

Authentication Yes Yes Yes

Encryption Yes Yes Yes

Robustness against Injection Yes Yes No

Protect AVB protocols Yes No No

Protect control data Yes Yes Partially

Protect IP communications Yes Yes No

• Privacy protection: privacy is a growing concern. Due to the increasing number of
customization and location-based services, the car processes a considerable amount
of sensitive data, e. g., current position, address book, data from social networks.

With Ethernet and IP, the security risk increases: the attacks are easier to perform
since they are well-know technologies. Additional communication security mechanisms
are required. As earlier mentioned, the focus here is to asses which security protocols
are suitable for the defined use cases. A more detailed attacker model is defined later in
Section 2.3 and considered to assess the main security concepts of this thesis.

Three mature security protocols hardened by the “public community” and operating
at different levels of the communication stack have been selected and are evaluated in
Table 2.2.

Security protocols: MACsec [83] protects the communication stack above the
Ethernet layer (L2) and is thus very powerful. However this protocol usually requires
a hardware-supported encryption, which may be a big disadvantage for in-car embed-
ded systems and their resource-limited platforms. This protocol also does not provide
end-to-end security and only protect communications between two IP nodes directly
connected.

Internet Protocol security (IPsec) [99] can be used in tunnel and transport mode and
protects the layers 3 and above. Considering the staticity of the on-board network,
IPsec channels can be opened between all required ECUs. Therefore only the transport
mode is considered here. Like MACsec, this protocol can allow several application

24

C
ha
pt
er

2

2.2 About Tomorrow’s Car

communications to use a same secure channel (i. e., communication aggregation).
Secure Socket Layer (SSL)/Transport Layer Security (TLS) [48] and Datagram Trans-

port Layer Security (DTLS) [150] only protect the layers 5 and above. The application
has to embed the security mechanisms in its code and can only open a secure chan-
nel for itself. These protocols allow to control the security from the application level,
which is interesting in Internet but relatively limited in a closed environment like the
car. Besides, SSL/TLS provides a limited robustness against TCP injection [173].

SSL/TLS and DTLS do not provide enough security guarantees against injection and
do not protect all protocols of Section 2.2.2. Unlike IPsec, MACsec may protect the A/V
traffic and the clock synchronization. However, certain content providers may require
to use High-bandwidth Digital Content Protection (HDCP) [113] and make the use of
MACsec less relevant. Since A/V traffic is not critical, HDCP-like security mechanisms
should suffice. Then the clock synchronization of infotainment use case, e. g., synchro-
nization of audio and video, is also not critical. Even if the drift between audio and
video is too big, the discomfort cannot be a cause of disturbance for the driver. There-
fore such synchronization may be unprotected. However, some critical ECUs may also
require date and time information, e. g., feature (de-)activation. For these cases, a high
precision is little relevant, therefore the synchronization can be performed with the IEEE
802.1AS standard running over IP and UDP. The synchronization can take reliable time
sources like the GPS or a trusted back-end server and transport the traffic to protect
over IPsec. Other traffics, like for control or IP-based data communication, can also be
protected with IPsec from the emitting ECU to the receiving ECU and over the same
security channel. The use of IPsec is therefore recommended for control, IP-based data
communication and time synchronization with non-high precision.

Key exchange: In order to establish IPsec channels, two security key managements
are possible: (1) statically configured keys or (2) dynamically exchanged keys through
the on-board network. Usually IPsec uses the Internet Key Exchange version 2 (IKEv2)
for dynamic key establishment [97]. However its complexity may be problematic for
embedded systems like in the car. Therefore a solution would be to use static key stored
in a secure part of the hardware or to use a lightweight version of IKEv2 [100].

Protocol Robustness: Considering the high safety requirement of the car, car ma-
nufacturers have to make sure that the different communications do not influence each
other, e. g., video streams should not disturb the traffic received by the engine controller
ECU. The domain-based architecture is essential here; the domains are isolated from
each other through VLAN techniques. The priority of a domain traffic can be balanced
according to its importance. In addition, the domain masters, who benefit from addi-
tional computation power, may be used as security nodes, isolating the domain from
each other and even being able to detect a compromised node, like an IDS.

In order to increase the system robustness, the port-ingress rate limitation provided
by default by the Ethernet switches can be leveraged. The on-board communication
patterns are quite static and known on beforehand by the car manufacturers. Therefore
this feature could easily limit the propagation of DoS attacks for example.

25

2 Automotive On-board Architecture and Investigated Scenarios

Adding security at the communication level obviously limits the possibility of an at-
tacker to add a new active component to the on-board network, replace an old one and
to listen/inject messages. However, as seen in Section 2.1, most attacks were performed
by getting plugged to the OBD-II port and just leveraging this “ready-to-use” interface.
Already today, in high-end cars, the OBD-II port include a CAN-Ethernet port and
could be protected by IEEE 802.1X security [87]. This standard supports secure service
identification as well as some Layer-2 encryption. But due to some governmental regu-
lations, the car has to provide an easily accessible port allowing to access a few internal
functionalities without security. Even if limited in numbers, these few functions provide
a direct on-board access and could still be leveraged to launch a DoS attack.

As a conclusion, even if IPsec, a lightweight IKEv2 and some switch filters provide
security at the communication level, they do not specify what should happen on the
ECU and its applications during the communication channel establishment and access
control enforcement phases. With this in mind, Chapters 3 and 4 aim at answering these
shortcomings.

2.2.4 The Future Multi-platform Antenna

Research to design new MPAs gained a strong interest with the development of intelli-
gent transport vehicles. Such vehicles require C2X connectivity with both other vehicles
(C2C) and the surrounding infrastructures (C2I). Future use cases foresee that all vehi-
cles will gather sensor information about the traffic and the road state, aggregate them
and share them with other users, i. e., via the user’s devices, the infrastructures or other
cars. The considered cases mostly aim at improving the safety, e. g., collision avoid-
ance, emergency braking, or hazardous location notification, but not only, they may
also soon concern the infotainment domain. For these purposes, the cars need reliable
low-latency vehicular communications. The combination of multiple antennae, i. e., with
IEEE 802.11p at 5,9 GHz for C2C and with the 2G/3G/4G cellular standards for C2I,
improves the system reliability and the robustness of C2X communications [121].

Due to aesthetic reasons and cost considerations, car manufacturers restrict the num-
ber of mounting points and locations of these antennae. By current conventions, the
signals of the different antennae of the car are processed centrally on the HU and repre-
sent a significant cost of cabling. A cheaper approach consists of mounting the MPA at
the roof top location and coupling it to a centralized gateway performing all the signal
processing and redistribution of the C2X traffic to the on-board network. The MPA and
processing unit are as consequence a whole ECU, which is called communication proxy
for the rest of this thesis.

In addition to the mentioned long-range C2X interfaces, the proxy can also deal with
short-range interfaces like Bluetooth or Wi-Fi to couple the driver’s smartphone and
may even be in charge of the OBD-II interface. The security of the communication
leaving the on-board network over the MPA is ensured by existing standard solutions,
i. e., Bluetooth PIN/encryption security, WPA2 for Wi-Fi, signature-based security for

26

C
ha
pt
er

2

2.3 Security Threats and Risk Analysis

C2C communications. On the other hand, the security of cellular communications (i. e.,
2G, 3G, 4G) is still ensured by the network provider. Although these communications
may be integrity-protected, authenticated and/or encrypted, such security mechanisms
do not consider the authorization problematic, i. e., which messages are authorized to
get in or out. With such a communication proxy, car manufacturers have now the
possibility to set up a central security C2X gateway enforcing a consistent security model
over all external communication interfaces. The Chapters 3 and 4 aim at designing and
developing such a C2X access control model.

2.3 Security Threats and Risk Analysis

The car was not developed as a “security-by-design” product. As a consequence, the
surface of attack is quite broad. This section describes first the traditional attackers
and threats of the automotive world and then focuses on the ones considered by this
work. The section is organized as follows: (1) presentation of the attacker profiles in
Section 2.3.1, (2) description of their motivations in Section 2.3.2, (3) analysis of the
exploitable threats in Section 2.3.3, and (4) formal definition of the attacker model for
this thesis in Section 2.3.4.

2.3.1 The Attackers

Every person in contact with the car, physically or remotely, during its production or
during runtime, may be considered as a potential attacker. The attackers as well as their
capacities are listed as follows:

• Owner/driver is a legal user of the car. She is not usually capable of conducting
extensive modifications on the car. She entrusts others (e.g., the tuner) for per-
forming them. She benefits from the car manipulations or attacks (e. g., opening
the convertible roof while driving), but may not be aware of the consequences,
e. g., loss of functionality, car degradation, warranty/insurance issues.

• Motor mechanic is usually mandated by the owner to perform the maintenance
and reparation. Through this context she is capable to manipulate the car.

• Tuner is entrusted by the owner to perform modifications on the car, e. g., com-
ponent installation and/or configuration increasing the car performance.

• Employee of the car manufacturer can, as an insider, add or manipulate, e. g.,
during implementation phase, some functionalities that could be used later during
an attack. She can also pilfer some car components and sell them later.

• Hacker is an IT expert interested in the functionalities of the cars and investigating
their security weaknesses. She usually uses reverse-engineering techniques and aims
at discovering weak/flawed interfaces. She is usually more interested in publishing
her work than causing any real damage and earning money out of it.

27

2 Automotive On-board Architecture and Investigated Scenarios

• Organized crime aims at taking illegally possession of the car, i. e., stealing and
exploiting it . Such organization benefits from the support of IT specialist familiar
with all kind of attacks. Their resources in term of money, skills and people are
limitless.

• Terrorist uses the car for its illegal activities. For this purpose, she also aims at
being at little conspicuous as possible, when targeting a car. Like the organized
crime, her resources may be limitless.

2.3.2 Their Motivations

Before choosing which attacker to focus on, it is important to really understand which
motivations drive an attacker. After listing the main motivations to attack a car, Ta-
ble 2.3 proposes to link the attackers to their motivations:

1. Car theft : the car is stolen with its entry key or by thwarting the door locking and
immobilizer system, in order to sell the car as spare parts or as a whole.

2. Car tuning : this action is usually motivated by the owner, who wants to add more
value to his car but without having to pay for it. However the owner is usually not
capable of performing such modifications (e. g., performance increase, functionality
activation) and asks the tuner to do so. Organized crime may also use car tuning
to increase the selling price of the car.

3. Illegal usage of stolen electronic equipment : The owner is interested in paying less
for a spare part. Like in the previous case, the owner is incapable of performing
the installation and asks the tuner to do it. The motor mechanics can also use
these cheaper parts to fix his customers’ cars and charge them with the price of a
legit component.

4. Blackmail : An employee of the car manufacturer can threaten her employer to
reveal some production secrets or to lower the quality of some newly produced
cars. A hacker can threaten the car manufacturer to perform attacks on its cars.
The organized crime can blackmail a person by taking her car or using personal
extracted from her car. The terrorist can threaten to manipulate a large amount
of cars in order to ask for the release of a prisoner or for other forms of support.

5. Theft of intellectual property : An employee of the car manufacturer can steal
intellectual property of her company to sell it or blackmail the company. In both
cases, it is motivated by a large financial gain. The organized crime can also do
it as part of its usual activities. Information about critical functionalities like the
car locking, immobilizer or other protections are very valuable.

6. Manipulation of displayed information: The owner can mandate a tuner to lower
the mileage of the car, in order to increase the car selling price. The organized
crime may have the same interest but also with other car information, e. g., wrong
traffic information to reroute a car of interest.

28

C
ha
pt
er

2

2.3 Security Threats and Risk Analysis

7. Leverage of the emergency mode: The emergency mode is a error-safe mode laun-
ched after a critical error of the electronic of the car, which restrains the car
capacity, e. g., maximal speed, engine rotation. A car manufacturer employee can
leverage the threat of this mode to blackmail her employer. A hacker can attempt
to launch this mode for a research purpose. A terrorist can launch a large-scale
attack starting this mode and propagate as much damage and panic as possible.

8. Increase of the attention on security issues : A hacker can be interested in showing
the feasibility of exploiting an interface weakness. Such a goal is usually followed
by the academia or other conference about IT security [19].

9. Increase of her own reputation: A hacker can through a successful attack increase
her reputation. A terrorist could also use an attack to increase the media coverage
for her cause.

10. Passenger endangering : This motivation mostly concerns the terrorists, who can
through this mean achieve their goals and get attention on their cause.

11. Privacy infringement : A hacker could publish online or sell some driving profiles.
The organized crime could use this information to follow a car or a specific person.
A terrorist could follow the location of a high-value target for an assassination
attempt or a bombing.

12. Leakage of information/secrets : The gain of secret information mostly concerns
several aspects, e. g., retrieval of specifications about the cryptographic behavior
of the car (keys and protocols), of information about online financial transactions,
of passwords.

These motivations can be classified in two clusters: for motivations 1 to 6, the attacker
is motivated by a financial gain. On the other hand, the items 6 to 12 are motivated
to show the weaknesses of the car in order to harm the car, its passenger, the car
manufacturer or to benefit from media coverage. This thesis focuses on the on-board IT
security and as a consequence will not bring solution to the motivations 4 and 5 which
mostly concern the human factor.

2.3.3 The Threats That Can Be Leveraged

Before describing the threats that an attacker could leverage for her own purpose, the use
cases considered by this work should be clearly stated. They are depicted in Figure 2.4
and consider an automotive on-board network as it has been presented in Section 2.2.
They feature both internal and external untrusted components, over which the car ma-
nufacturer has no control. Internally, the TPA benefits from the computation power of
the HU. The TPAs have to be opposed to the original software, which is present on the
ECUs, installed during the car assembly and developed by the car manufacturer or its
subcontractors. The TPA may communicate with several ECUs applications and with
the Internet and some CE devices over the MPA. In addition, Internet services and CE

29

2 Automotive On-board Architecture and Investigated Scenarios

Table 2.3: The attackers and their motivations. (The attacker and motivation categories
have been shortened, but still follow the indexing presented in this section.)

Attackers Owner/ Mecha-
Tuner

Emplo-
Hacker

Orga.
Terrorist

Motivation Driver nics yee Crime

1) Car theft /

2) Car tuning /

3) Stolen. equip. / / /

4) Blackmail / / / /

5) Intel. prop. / /

6) Disp. manip. / /

7) Em. mode / / /

8) Sec. issues /

9) Reputation / /

10) Endangering /

11) Privacy / / /

12) Info. gain / / / / /

: motivates the attack / : performs the attack

devices may also be authorized to get access to some on-board applications. The TPA,
the CE devices and Internet services are considered as conform to the internal API of
the car. However they may present a poor and unsecure implementation that may be
exploited by an attacker.

The rest of this section presents the interfaces threatening the on-board communica-
tion infrastructure, namely (1) the on-board software, (2) the CE devices, (3) Internet,
(4) the TPAs and (5) the OBD-II port.

Original ECU software: The computerization of the car leads to an increase of the
on-board application complexity and as a consequence of the amount of code to maintain
and verify. While the application specifications are provided by car manufacturers, the
development is usually performed by multiple subcontractors. Even if car manufactu-
rers assess functionally all software modules, their quality in term of security remains
quite heterogeneous. As shown in Section 2.1, the car software presents multiple com-
munication interfaces and weaknesses, which are actively investigated by the research
community.

The attacks on an automotive software are very similar to the ones present on tra-
ditional distributed software systems. These attacks can be classified based on their
goals:

• Software Corruption: Attacks aim at modifying or destroying automotive data and

30

C
ha
pt
er

2

2.3 Security Threats and Risk Analysis

Figure 2.4: Considered use cases. Solid right-angle lines represent the wired on-board
network. The dashed arrows represent external communications over differ-
ent wireless networks.

services. They are usually resulting from software and implementation weaknesses,
i. e., weak security mechanisms, leveraging a poor implementation, exploiting a se-
curity weakness to launch some executable code via buffer overflow [4], format
string [158] or Return-Oriented Programming (ROP) [160] attacks. These attacks
generally allow an unauthorized usage of the ECU, e. g., discovery of wrong ser-
vices, ECU memory modification, ECU re-flashing.

• Information Disclosure: Successful attacks result in unauthorized access to mid-
dleware assets (mostly data). Attackers aim at stealing automotive information
from the driver (privacy infringement) or from the car manufacturer (industrial
espionage). Like previously, these attacks leverage the poor implementation of the
authentication and authorization mechanisms of the ECU.

• Service Interruption: Here the service availability is affected, in order to pro-
duce delay or block the application. Attacks aim at making the service unusable
or slower, they usually consist in resource exhaustion (e. g., jamming, flooding),
unauthorized service deactivation or in producing errors (e. g., injection of bogus
packets).

CE device: User-installable applications for CE device are already used to customize
the car [80, 88]. However their integration presents a significant security risk. Even when
testing the applications and controlling their publication via some official distribution
channels like the Appstore of Apple, the CE industry does not manage to eliminate all
malicious applications [164]. A malicious application on a CE-device could steal and use
the security credentials stored on the device to establish a secure communication channel
with the car. Such an application could get authenticated by the proxy, get a direct
access to the on-board network and launch the software attacks mentioned in the previous
paragraph. The user’s security unawareness and her weak security configurations (e. g.,
weak password, no or misconfigured security software) increase this risk of corruption.

31

2 Automotive On-board Architecture and Investigated Scenarios

In order to circumvent some of these problems, mobile Operating Systems (OSs) (e. g.,
iOS, Android) provide libraries implementing secure communication protocols, strong
authorization and isolation mechanisms, which are reliable as long as the device is well-
configured and not rooted or jailbroken. For Android, academic works propose additional
solutions such as taint tracking [54], virtualization [107], behavioral analysis [187], en-
forcement of mandatory access control [127] or analysis of remote duplicates [145]. These
approaches mostly concern the internal security of the CE device and are little relevant
to ensure the in-car security. Promising work about remote attestation for mobile devices
has been published [133, 15], but is based on trusted hardware which is still relatively
far from reaching mass production.

Internet: Internet offers a limitless number of online infotainment services. However
these services and the servers, on top of which they are running, present similar risk to
the ones encountered by the CE device. As soon as they get authenticated and have
their messages forwarded by the proxy within the car, they may, as previously, launch a
software attack.

To ensure some security on Internet, major IT security actors like Symantec [165]
propose to support companies and their online services to build trustworthy services.
They confirm the service identity by signing the SSL certificate of the web site and also
regularly scan the servers to detect the presence of a malware. All these actors take
advantage of their reputation and the fact that most current web browsers recognize
them as valid certification authorities.

Another solution for trust is to leverage the experience of a community or of other
Internet peers and to establish a reputation-based trust as it already exists for on-
line services [161] or wireless ad-hoc networks [166]. However, these solutions are not
security-proactive and necessitate to detect an active attack in order to propagate the
information to other community members.

Third-Party Application (TPA): A last option to provide innovative infotainment
services is to open cars to TPAs. The TPA could benefit from its internal status to easily
get access to on-board functions while communicating with external entities like Internet
or the users’ CE devices. Obviously this integration raises numerous security questions,
since the security risks are even higher than with the CE devices and Internet. The
TPA would be directly installed on an on-board platform like the HU, which does not
directly host very safety-critical applications. However the TPA could still cause driving
discomfort by compromising the HU. Besides, with a direct writing access to the on-
board network, the TPA could also send and receive data, making it easy to launch
software attacks on remote safety-critical ECUs.

The in-car integration of TPAs is only at its beginning [60, 115]. Car manufacturers
usually provide the developers with an adapted in-car API and invite them to submit
their applications. Before their acceptance, the applications go through a validation
process assessing their programming quality, compliance with the car as well as if they
may excessively disturb the driver’s focus. This approach is the one adopted by Apple
and has also shown to not be flawless. Until now, no publication reported any security

32

C
ha
pt
er

2

2.3 Security Threats and Risk Analysis

Figure 2.5: A concrete big use case. This use case features distributed components com-
municating together. The arrows linking on-board components are symbolic
communication link and do not reflect the structure of the on-board network.
The communications are numeroted and categorized whether they happen
on-board (1.X), with the outside (2) or with the TPA (3.X).

issues yet and very few scientific works addressed these issues from a security point of
view. Another interesting approach from Daimler proposed to integrate to the on-board
network a dedicated ECU running a custom Android [144]. But even if the ECU was
physically separated from any neuralgic component of the car, no real solution against
on-board attacks on other ECUs was provided, e. g., DoS attacks.

OBD-II port: As explained in Section 2.1, the OBD-II port has been extensively used
to attack the on-board network due to its easy access, i. e., generally located under the
dashboard. Its unprotected accessibility allows to easily plug a device that can either
flood the on-board network, retrieve sensitive information or send a security exploit
compromising an ECU.

This thesis aims at improving the information security in cars and defines the following
goals: (1) design of an on-board secure software architecture allowing the establishment
of internal and external secure communication channels and performing access control for
both data management and function access; (2) design of secure mechanisms for the on-
board integration of internal (e. g., TPA) and external (e. g., online service) components.

An overall use case: For the purpose of discussion, a use case involving all “threats
that can be leveraged” is built up in this paragraph. This big use case will be used later in
Chapter 3, 4 and 5 to evaluate the security gains provided by the developed architecture.
The use case is presented in Figure 2.5.

This use case features both on-board and external components and both original
automotive and third-party developed pieces of software. The on-board entities are
listed as follows:

33

2 Automotive On-board Architecture and Investigated Scenarios

• The HU generally referred to an ECU managing the stereo system of the car, i. e.,
radio, audio functions, CD player. A modern advanced HU goes a little bit further
and now controls the whole infotainment system of the car, e. g., music, navigation
and also some vehicular functions like the door chimes. Basically, it handles critical
information like intellectual property of the car manufacturer or driver’s private
data. But it does not trigger safety-critical functions. A faulty HU would not have
dramatic consequences but may disturb the driver.

• The ABS, contrary to the HU, triggers safety-critical functions but does not handle
sensitive information. The ABS allows the wheels to maintain tractive contact
with the road and prevents them from locking up while braking. ABS and HU can
communicate together in order to exchange braking status information. A faulty
ABS could have dramatic consequences and make the driver lose the control of her
vehicle.

• The Powertrain Control Module (PCM) range of action is not as safety-critical as
the ABS. The PCM gets information from various sensors in order to control some
actuators of the combustion engine and ensures its optimal performance. HU and
PCM communicate together, e. g., to exchange the engine status. However, PCM
and ABS are not supposed to exchange any information. A faulty PCM would
result in a malfunctioning engine, so in poor car performance. However the driver
could still keep control of its vehicle.

• The Vehicle Speed Sensor (VSS) measures the transaxle output, i. e., wheel speed,
and sends it to the PCM and the ABS. With such information, the PCM can mod-
ify some engine functions, e. g., ignition timing, transmission shift points and the
ABS can optimize the brake pressure. A faulty sensor may cause some drivability
issues considering the number of functions it is involved in.

• The TPMS monitors the air pressure inside the pneumatic tires and reports it to
the ABS. A faulty TPMS would make the ABS less efficient and would result in
a bad tyre wear out.

• The GPS module receives continuous information about the vehicle location, time
and weather and provides it to the HU. A faulty GPS module may provide wrong
information and decrease the quality of the navigation system.

• The communication proxy is the main gateway towards external wireless networks,
e. g., Wi-Fi, 3G, Bluetooth. A faulty proxy would prevent the car from communi-
cating with the outside.

• The TPA is a my Driving Coach application. It receives personal driving infor-
mation (e. g., braking, engine, road information) from several ECUs, e. g., HU,
ABS. It aggregates them, sends them to a CE device or to an online server and
receives in return driving recommendations to display. The figure 2.5 does not re-
flect any aspect of the TPA integration, i. e., hosting on a traditional or dedicated
ECU. The TPA should not directly communicate with the ABS or the PCM due
to safety considerations.

34

C
ha
pt
er

2

2.3 Security Threats and Risk Analysis

Outside the on-board network, the CE device may communicate via the communication
proxy with the TPA and the ECU A only. The CE device makes use of a legit API
released by the car manufacturer. However, the communication API with the TPA

cannot be regulated in a same way.

2.3.4 The Attacker Model

Adversary models are essential for security risk analysis and can also be formalized. For
example, the Dolev-Yao-model [50] defines an attacker with full control over the network
who can intercept, modify and replay all exchanged messages.

In this work, the adversary model is based on an extended version of the Dolev-Yao-
model. The attacker may be present on both on-board and external C2X networks. She
is assumed to have a timely unrestricted access to the vehicle as well as full technical
knowledge of the system, i. e., of the protocols and running software. However, she is
assumed to be polynomially bounded in computational power and storage. Thus the
current cryptographic primitives (e. g., AES, RSA) can be assumed to be secure, since
there is no algorithm known to break them in a reasonable time. Besides she cannot
successfully guess random numbers. However, due to the scope of this thesis work,
the attacker is limited to software-based attacks. Thus she cannot physically tamper
any ECU, e. g., memory content reading or re-flashing. Hardware-based attacks are
in principle out of reach of a software/middleware-based security solutions. This work
partly addresses DoS attacks, but does not focus on them.

Concretely, her attack of surface includes on one side the on-board wired network in-
cluding the OBD interface and on the other side all C2X communication channels able to
carry IP packets, i. e., Wi-Fi, Bluetooth for short range communications and 2G/3G/4G
for the long range ones. Other communication channels for key-entry, radio-channels and
other addressable channels (emergency calls, remote diagnostics) are considered as out
of scope. Additionally, the attacker can compromise external entities, like the driver’s
CE devices or a valid online service. She can also use the TPA interface, i. e., publish
her own malicious TPA or compromise a TPA already installed in the car.

The attack scenarios can be generalized to 2 groups of attacks: (1) the integrity attacks
related to the attacker motivations 1 to 3 and 6 to 10, and (2) the confidentiality attacks
related to the motivations 8, 9, 11 and 12:

1. Integrity Attack Scenario: The attacker leverages her access to the on-board
network to send bogus packets (e. g., a shellcode) or in case of a TPA access/modify
local resources of the HU (e.g., filesystem) in order to disturb the car functioning,
e. g., disabling the braking assistance, modifying the information displayed by the
instrument cluster.

2. Confidentiality Attack Scenario: The attacker can also leverage her access to
the on-board network, by trying to elude her authorizations and retrieve sensitive
data, directly via the proxy or via another application from which the attacker is

35

2 Automotive On-board Architecture and Investigated Scenarios

able to receive messages. More specifically, thanks to a malicious TPA, the attacker
can get access to sensitive data, stored on the HU (e.g., the home address of the
driver in the navigation module) or received from another service (e.g., preference
settings of a user from the seat controller). Even without the appropriate permis-
sion, the data may be sent to the outside by the TPA, either directly over the proxy
or through an intermediate step, for example a buggy service communicating with
the outside.

These two scenarios are later used in Chapter 4 to evaluate the proposed security solu-
tions.

2.4 Automotive Functional Requirements

Automotive applications are very demanding pieces of code, subject to drastic func-
tional requirements. The rest of this section lists some additional requirements that an
automotive security architecture should fulfill:

1. Safety considerations : parts of the software components have high safety require-
ments, e. g., assistance for steering and braking. The software of both sensor and
actuator has usually to respond within the millisecond. The addition of security
should provide a response performance at least similar to the one provided by cur-
rent car IT system. Besides it should not increase the risk of error or of blocking
the system.

2. Resource limitations : For cost-efficiency, the processing power and storage capac-
ities of the ECU are assessed and limited to their minimum. The security should
also be consistent with this fact and be optimized in order to use as little resources
as possible.

3. Start-up delay : The ECU software needs to be ready within a short delay after
the engine started. This requirement limits the possibility of initializing a security
configuration at each start, e. g., key exchange, complex policy negotiation.

4. Power saving : Like the engine, the software should be energy-efficient. It is usu-
ally considered that 100W of continuous power correspond to 0,1l/100km of fuel
consumption.

5. External communication: The number of standards for C2X communications is
quickly increasing. The security should be adaptive to the used standards, their
evolution and provide an optimal protection of the car.

6. Software development : The software of a car is increasingly complex. Its deve-
lopment involves not only the car manufacturer but also numerous subcontractors

36

C
ha
pt
er

2

2.5 Summary

and has to be adapted to each ECU platform. Besides its development is ge-
nerally integrated within an iterative process, which requires multiple phases of
testing and modifications. As a consequence, the development should be modu-
lar and allow the security part to be under the responsibility of a security expert
team. More information about automotive software development is provided later
in Section 5.1.3.

7. External infotainment applications : The development of on-board TPAs, CE-based
applications and other online services cannot be controlled by a car manufacturer.
The on-board security architecture should not be dependent on these external
applications to provide any security support. In addition, the API available for
these cases should provide good usability, limit the system complexity and be as
security-unaware as possible.

8. Life cycle: Cars have a long life cycle, i. e., around 15 years. The software should
be maintained all along this time lapse and should provide efficient mechanisms to
be updated, e. g., rekeying process, policy update, addition of new C2X security
protocols.

2.5 Summary

Current automotive technologies showed their limit both in term of functionality and
security. The evolution of the automotive E/E architecture towards a full Ethernet/IP
network could on one side provide better performance and flexibility to achieve new use
cases and on the other side could make use of mature security protocol from the Internet
world. However based on the attacker model and threats defined in this chapter, such
an evolution may not be sufficient. A secure software architecture as well as a formal
access control model for on-board communications, TPAs and C2X communications has
still to be defined.

37

C
ha
pt
er

3

Chapter 3
Automotive IP-based Security Architecture

As motivated in Chapter 2, Ethernet/IP and associated security protocols will be exten-
sively used by car manufacturers as standard for on-board communications. However
the software architecture and security for on-board and C2X communications have not
been standardized yet.

This Chapter provides an overview of the software basis of a security framework, pro-
viding secure communications and a secure execution environment. The architecture of
an automotive security middleware is described in Section 3.1. After which, specifications
about the security communication proxy are given in Section 3.2. Finally Section 3.3
discusses the benefits of this security architecture and pinpoints its shortcomings.

As mentioned earlier in Chapter 1, part of this work on security middleware archi-
tecture occurred within the SEIS project. The author led the middleware security work
stream and reports here part of his results in Section 3.1.2. The modular architecture
distribution, the modules for policy and authentication management are his original
contributions. The modules for secure channels, crypto-services, kew management and
intrusion detection are inspired from SEIS [25] and adapted for the need of this thesis.

Parts of this chapter were previously published in Driving Middleware Towards a
Secure IP-based Future [24], Automotive Proxy-based Security Architecture for CE Device
Integration [27], Middleware-Based Security and Privacy for In-car Integration of Third-
Party Applications [26], and Middleware-based Security for Hyperconnected Applications
in Future In-Car Networks [23].

3.1 Middleware Security

A main challenge when designing security for cars is to provide homogeneous and adap-
tive solutions performing on a large variety of embedded devices and operating systems.
For this purpose, the application layer and especially the middleware are optimal work
bases to facilitate the definition of a security layer common to every ECU. The middle-
ware is a software component present on every ECU and managing the communications

39

3 Automotive IP-based Security Architecture

between applications of a distributed environment. In addition to easy the ECU inter-
actions, this software layer can leverage its distributed architecture and enforce security
as well.

This section firstly provides a general definition of the middleware layer and then
discusses the automotive specifications it should comply with in Subsection 3.1.1. Sub-
section 3.1.2 then presents the architecture of the Security Middleware Extension (SME)
and provides a thorough description of each of its modules. Afterwards, Subsection 3.1.3
proposes the description of a functional use case and highlights the general functioning
of the SME and its modules. This chapter only considers the performance factor at a
qualitative level. A quantitative assessment is later provided in Chapter 5.

3.1.1 Automotive Middleware

The middleware abstracts the communication management from the application level.
Usually the development of distributed applications is a very expensive, time-consuming
and error-prone task when using network OS primitives. As a consequence, the sepa-
ration of the application logic from the communication management greatly facilitates
the mission of the developers. A team of middleware experts focuses on developing the
software basis for communication and security, which provides optimized interfaces to
couple all necessary automotive applications. At the software level, the application acts
as if all remote functions and resources were available locally. By following the formal
definition given by Issarny et al [96], the middleware should define:

• an Interface Definition Language (IDL), i. e., a programming-language-independent
syntax and semantic allowing to describe the communication interfaces;

• a high level addressing scheme, i. e., a convention of the network to locate the
resource, in the considered case it will be IP addresses and machine ports;

• a coordination model based on an interaction and paradigm semantics, i. e., seria-
lization rules, which allow remote applications to produce and consume streams
of data. Practically these rules allow a complex object on a first platform and in
a specific programming language to be transformed into an ordered series of data
blocks that can be deserialized on a second platform using its own programming
language;

• a transport protocol, i. e., a protocol to achieve the communications between two
remote platforms, in this case UDP/IP or TCP/IP;

• a naming and discovery protocol, i. e., a protocol including conventions to publish
and discover resources, e. g., via broadcast communication or via a central server
and multicast, like the Bonjour protocol [6].

The architecture and requirements for automotive middleware have already been spe-
cified in Chapter 2 and in [178, 179]. This section only mentions here some of their main

40

C
ha
pt
er

3

3.1 Middleware Security

characteristics. In addition to an efficient and flexible serialization, the automotive mid-
dleware will provide RPC functionalities for bidirectional communications as well as a
Publish/Subscribe functionality allowing the mapping of functions similar to the ones
provided by the MOST notifications and the CAN signals. UDP and TCP will used as
standard transport protocol depending on the application requirements.

Figure 3.1 presents the different components of an on-board middleware in the ISO/OSI
model. The middleware concerns the representation (L5) and session (L6) layers, on top
of the TCP/IP stack. The session semantic layer belongs to the session layer as well
and specifies the transmission type (i. e., synchronous or asynchronous) and the function
call error semantic (e. g., maybe, at-least-once, exactly-once). The serialization layer,
in the representation layer, implements the middleware coordination model. Practically,
the middleware comprises a skeleton code written in a binding language (e. g., C or
Java), which implements the serialization/deserialization processes as specified by the
communication interface definitions. The middleware development can take advantage
of custom compilers automatically generating the skeleton code based on an IDL-based
definition of the communications interfaces. For an overall communication security, the
security framework should be able to link its enforcement to all layers of the communi-
cation stack involved by the chosen security protocols.

All ECUs of a same car run the same middleware, i. e., share the same serialization
rules. However different platform specifications in term of resource and performance
(e. g., a sensor versus a HU) may allow the more powerful ECUs to take part in more
complex use cases than the weaker ones. Weckemann et al [178] defined three interop-
erable middleware categories allowing different levels of complexity and communication
paradigms: Maximum, Medium and Minimum. In order to be consistent with this pre-
vious work, the approach presented here follows the same methodology and establishes
a three-level security solutions described in Section 3.3.

Related work about middleware security: After a thorough evaluation phase at a
pure functional level [177], car manufacturers came to the conclusion that they had to
build up their own middleware. Automotive middleware should be modular, flexible
and interoperable. The same requirements apply to security. Obviously traditional mid-
dleware architectures already provide multiple security mechanisms [3]. But depending
on the use cases and functional requirements they are subject to, they may offer very
different security levels: from complex authorization model and strong communication
security for poor performance and high security [16] to simple static ACL and very simple
authentication schemes for high efficiency but low security[138]. The automotive context
is extremely demanding and its real-time requirements make most middleware unsuit-
able [183]. Besides they usually do not provide the necessary security modularization or
interoperability required to establish distinct levels of middleware security.

Since a few years, the avionics industry is confronted to similar security issues [167].
Like cars, they wish to open up their connectivity panel in order to intensify com-

41

3 Automotive IP-based Security Architecture

Figure 3.1: Overview of an automotive IP-based middleware and its integration within
the ISO/OSI model. In this figure MAC means media access control.

munications between the plane and the outside (e. g., ground-based or plane-to-plane
communications) and directly tether infotainment services of customers’ devices to their
on-board network. Despite few available research works, the approaches are not focus-
ing on the software or the middleware level, but rather tend towards firewalls, physical
network separations [155] and the use of strong security protocols [168].

3.1.2 Security Middleware Extension (SME)

In comparison to the CE industry, car manufacturers may seem to be conservative
even sometimes reluctant to technical innovation, but the complexity of the car ar-
chitecture and its functional requirements make the integration of new features very
challenging. Each car manufacturer may develop and optimize one middleware for a
specific car model, even sometimes depending on the provided infotainment or ADAS
features. Therefore instead of developing a security solution for a specific middleware,
car manufacturers of the SEIS project decided to cooperate and design a generic security
framework, developed as an extension that can be easily coupled to most automotive
IP-based middlewares [24].

The SME provides the bases for all necessary security services, i. e., enforcement of a
secure application runtime and establishment of secure communication channels. The
SME is composed of several modules. A module is an abstract representation of a spe-

42

C
ha
pt
er

3

3.1 Middleware Security

cific security service, independent from its implementation characteristics, i.e., whether
the whole module is implemented on one ECU or distributed over several. The SME
communicates with the functional middleware via the Security Abstraction Layer (SAL).
The concrete implementations of the security mechanisms and protocols are provided
by the plug-ins, encapsulated within the modules. The SME architecture is designed to
offer scalability, flexibility and middleware independence and as a consequence follows
the next principles:

• Suitable modularization: each module is configured based on specific requirements,
e. g., use cases, security levels, QoS, expected error rate, and therefore can be op-
timized for its target purpose. A suitable modularization allows to define different
versions of each module providing an adapted choice of security plug-ins.

• Abstraction of the security interfaces : the assembly of complex and modular sys-
tems requires the definition of suitable and abstract interfaces. They simplify
the module interconnections, their verification and clarify the coupling of security
mechanisms to their enforcement locations, i. e., at the application-, middleware-,
transport-, network- or physical-levels.

• Configurability : the car and its security infrastructure should allow static and
dynamic configuration updates during the car assembly or later during its daily
usage.

Designing an application with security in mind is a very complex task. The SME
aims at simplifying and automating this process. Each application and communication is
mapped with a set of both functional and security requirements, that can be for example
declared during the communication interface description and the automatic generation
of a skeleton code or at the application level, directly during the function call. The
SME allows car manufacturers to mitigate the risk of security misconfiguration in the
application.

The SME consists of six modules specialized in six different security purposes. Fi-
gure 3.2 presents the communication interactions between modules and with the func-
tional middleware. The modularization is based on a three-layer organization:

• The Decision Layer provides security decisions by means of security policies and
detects any security violation. It consists of the Policy Management Module
(PMM) and the Intrusion Detection Module (IDM).

• The Communication Layer is in charge of the establishment and verification of the
secure communication channels. It manages all plug-ins necessary for the protocol
implementations and related filters. This layer consists of the Secure Channel
Module (SCM) and the Authentication Management Module (AMM).

• The Cryptographic Layer is responsible for the key management and the crypto-
graphic processing management. It consists of the Crypto-Service Module (CSM)
and the Key Management Module (KMM). Depending on the expected security

43

3 Automotive IP-based Security Architecture

Figure 3.2: Connections between functional middleware and SME. In this figure MAC
means media access control.

level, the security implementation of this layer may be located in a HSM. In this
case only the API managing these functionalities are in the software and as a
consequence part of the SME.

Such a modularization allows to optimally leverage all software and hardware capaci-
ties of an ECU and to establish different middleware security levels. A detailed descrip-
tion of each module and levels are provided in the rest of this chapter. Extensions of
the API presented here are provided in Bouard et al [25].

3.1.2.1 Crypto-Service Module (CSM):

Most security mechanisms rely on a couple of security primitives and algorithms, which
have to be carefully chosen depending on the layer of enforcement and the asset they
aim to secure. These primitives and algorithms are based on the usage of sensitive and
secret cryptographic material, i. e., the keys. In most academic work, the integrity, the
authenticity and the confidentiality of such a material is a basic assumption to secure a
system, e. g., a car. However, this is usually one of the most challenging assets to protect:
security mechanisms are as secure as their base primitives, their implementation, the
hardware and the software they are executed on.

Based on various types of security primitives and algorithms, the CSM provides all
cryptographic services for encryption/decryption, digital signature generation/verifica-
tion and processing of MACs. Processes invoking the CSM can parameterize their re-

44

C
ha
pt
er

3

3.1 Middleware Security

quests and specify which algorithm, primitives to use and which data to process. De-
pending on the ECU security properties, e. g., secure key storage, protected processing
environment, and its computation resources, the cryptographic services can be imple-
mented locally on the ECU or centrally on a dedicated Security Master ECU. For the
latter case, the request to the local CSM is forwarded to the Security Master ECU via
a secure network channel. The CSM abstracts the cryptographic processing from its
actual implementation and location.

Regrouping the security processing in a single service offers several advantages. Firstly,
this service is the only one requiring a direct access to the secret cryptographic material.
All other processes, even the ones ruling as the owner of the key, do not get access to it
and only need a key handle, i. e., an identifier, to express which key to use. Exchanges
of key handles and additional parameters replace exchanges of keys in plaintext and
as a result reduce the need of confidentiality and the risk of disclosure. The actual
keys are only communicated from the KMM to the CSM and use a dedicated protected
channel. Ideally such level of security can be achieved when integrating CSM and KMM
in a protected environment, e. g., in a HSM [49] or in a Secure Hardware Extension
(SHE) [61, 184].

Secondly, the pooling of all cryptographic function and material is beneficial as well.
It allows an easier verification and enforcement of secure programming guidelines, e. g.,
for protection against side-channel attacks. The runtime security management is also
simplified; it allows to directly identify the right implementation on the right platform.
Maintenance and addition of new algorithms and primitives can be administrated cen-
trally for a better crypto-agility. Cryptographic processing should always be performed
in a secure and potentially isolated environment. Secure CSM approaches may leverage
secure virtualization with hypervisor and strong separation of memory between privi-
leged and unprivileged processes. If an additional level of security is required, HSM
solutions may also be used and involve access restricted processing units reserved for
the cryptographic processing only [181, 31]. For real-time environment with resource-
intensive primitives and algorithms like asymmetric cryptography with large keys (e. g.,
RSA [151], ECC [101, 123]), specific HSMs may provide hardware acceleration per-
forming quicker than software modules. As a consequence, the CSM, responsible of all
cryptographic services, is a crucial component of the trust anchoring of the whole car.
A part of the CSM API is described in Table 3.1.

3.1.2.2 Key Management Module (KMM):

The KMM provides a secure access to the cryptographic primitives, i. e., encryption keys
and other security credentials necessary to all cryptographic processings. The KMM
is tightly coupled to the CSM, together they form a trusted zone, where the actual
primitives can be securely exchanged. The security primitives cannot leave this zone.
If an application or a security module other than the CSM requests a key, the KMM
answers indirectly and provides the related key handle. The key handles can be used to

45

3 Automotive IP-based Security Architecture

Table 3.1: Partial API of the CSM (Exceptions are omitted for a better clarity).

• generateAuthData
byte[] generateAuthData(int mode, int handle, byte[] data)

Description returns the MAC or the digital signature of the argument data
Parameters - mode: the type of signature or MAC to generate

- handle: the key/credentials to use
- data: the data, from which the result is processed

• verifyAuthData
boolean verifyAuthData(int mode, int handle, byte[] data)

Description returns true if the signature or MAC is valid, false otherwise
Parameters - mode: the type of signature or MAC to verify

- handle: the key/credentials to use
- data: the MAC or signature to verify

• payloadEncrypt
byte[] payloadEncrypt(int algo, int handle, byte[] data)

Description returns an encrypted payload
Parameters - algo: the encryption algorithm to use

- handle: the encryption key to use
- data: the data to encrypt

• payloadDecrypt
byte[] payloadDecrypt(int algo, int handle, byte[] data)

Description returns a decrypted payload
Parameters - algo: the decryption algorithm to use

- handle: the decryption key to use
- data: the data to decrypt

46

C
ha
pt
er

3

3.1 Middleware Security

invoke cryptographic functions of the CSM. The CSM can trigger the getKey() function
by providing a key handle and retrieve the key it requires to complete its cryptographic
action.

One of the main tasks of the KMM is to hide the cryptographic material from any
unauthorized party. Keys and other credentials are sensitive information that should
be protected accordingly, however this protection also depends on the ECU capabilities.
An ECU, physically equipped with a HSM, should store its sensitive material in the
encrypted storage of the HSM and keep the encryption key secure, i. e., thanks to physical
protection providing tamper evidence (e. g., physical seal), resistance (e. g., shielding),
detection (e. g., sensor) or response (e. g., key erasing). If no HSM is provided, the
KMM should implement additional measures to protect its keys, like hiding them in the
ECU flash memory. Obviously this last approach is less secure and only increases the
attacker’s effort to find and retrieve the keys.

The automotive world is extremely cost-driven, the number of HSM in a car is therefore
expected to be kept at its minimum. Thus an ECU, equipped with a HSM should be
able to offer specialized security services to others which are missing them. One of
these services is to provide a remote secure storage for cryptographic keys. These “key
servers”, a.k.a. Security Master ECUs, can store cryptographic material that is too
sensitive to be stored in an unsecured flash memory. Interactions with the “key servers”
can be integrated into the local KMM of a non-HSM-equipped ECU, in order to hide the
complexity of remotely requesting a key access. A part of the KMM API is described in
Table 3.2.

3.1.2.3 Secure Channel Module (SCM):

In current and future connected cars, new features generally result from the intercon-
nection of functions present across several ECUs. Communication interfaces are defined
during the car development phase in order to facilitate the exchanges of information and
the invocation of remote functions. On-board communications are generally use-case-
specific and have precise requirements for QoS but also for security. The middleware
approach provides clear and simple APIs, which allow to transmit complex objects ex-
pressed in a certain programming language and to also specify certain requirements. As
said earlier, most of these approaches lack the features to express security in a flexi-
ble manner. Instead, the security tasks are generally left to the application developer,
which have to implement their own custom solutions directly at the application layer.
Designing and implementing security is not trivial and should therefore be part of the
middleware as well.

The SCM aims at solving such an issue by offering to the application a transpar-
ent communication service which meets its security requirements. The SCM hides the
complexity of the security mechanisms by offering a simple API, e. g., close from the
standard POSIX socket API [82]. In order to establish a new communication channel,
the application invokes the function openSecConnection(), which specifies the target

47

3 Automotive IP-based Security Architecture

Table 3.2: Partial API of the KMM (Exceptions are omitted for a better clarity).

• getKey
byte[] getKey(int handle)

Description returns an encryption key or some security credentials to a CSM,
but only a key handle to other entities

Parameter - handle: the identifier of the key to retrieve

• createKey
int createKey(int storage, int type, int size)

Description creates a new key, stores it and returns its handle
Parameters - storage: the identifier of the storage to use (HSM protected or not)

- type: the type of the key to create (symmetric vs asymmetric)
- size: the size of the key to create

• storeKey
int storeKey(int storage, byte[] key)

Description stores a given key and returns its handle
Parameters - storage: identifier of the storage to use (HSM protected or not)

- key: the encryption key to store

application and passes the desired security parameters as argument. These require-
ment arguments clarify the security properties of the communication to establish. They
may define whether the communication should be authentic, integrity-protected or con-
fidential and which security credentials to use. Based on these requirements, the SCM
determines the most suitable communication protocols to use. The specification of such
arguments is optional, if nothing is provided the SCM may request the “by default”
communication properties from the PMM.

The SCM coordinates the action of the SME modules. It conducts the AMM during
the authentication process of the communication establishment. It provides the CSM
and KMM with cryptographic tasks to perform. Finally it cooperates with the PMM,
in order to comply with the ECU security requirements and policies. A part of the SCM
API is described in Table 3.3.

3.1.2.4 Authentication Management Module (AMM):

The AMM takes part of the authentication process of every internal or external commu-
nicating entity. Its tasks are twofold: accounting and enforcing. Implemented locally on
every ECU of the car, it stands in the middle of the communications between the SCM
and the CSM and supports them during the authentication process.

Regarding its accounting role, the AMM establishes a mapping of the authentication
status of every communicating entity: the authentication scheme, the status of the au-

48

C
ha
pt
er

3

3.1 Middleware Security

Table 3.3: Partial API of the SCM (Exceptions are omitted for a better clarity).

• openSecConnection
int openSecConnection(int ECU_ID, int auth_level,

int conf_level, int int_level)

Description opens a secure channel to ECU_ID and returns a channel identifier
Parameters - ECU_ID: Identifier of the ECU to communicate with

- auth_level: required strength of the authentication scheme
- conf_level: required strength of the encryption
- int_level: required strength of the integrity mechanisms

• secListen
void secListen(int interface, int auth_level, int conf_level,

int int_level)

Description opens a listening interface
Parameters - ECU_ID: Identifier of the ECU to communicate with

- auth_level: minimal strength of accepted authentication schemes
- conf_level: minimal strength of accepted encryption types
- int_level: minimal strength of accepted integrity mechanisms

• forward in
boolean forward_in(byte[] data)

forwards the data received from a remote peer to the functional
middleware, returns true if the middleware of the application received
it, false otherwise

Parameter - data: data to pass to the application

49

3 Automotive IP-based Security Architecture

thentication protocol completion and the security credentials that were used, i. e., the
handles. Its role includes also the management of the authentication security material,
e. g., requesting new cryptographic material, revoking security authentication tokens or
certificates. On a HSM-equipped ECU, the AMM administrates the accounting features
related to hardware-based remote attestation. In addition, the AMM supports the IDM
by sending it regular reports about the system authentication status for intrusion de-
tection analysis. When located on the edge of the on-board network and taking part of
C2X communications, the AMM is also in charge of the pseudonym management.

For every security protocol, the authentication mechanisms play an essential role and
give a proof of origin to every exchanged frame. As an enforcer, the AMM task is about
synchronizing the KMM and CSM, so that they can generate and verify the appropriate
authentication fields at the right moment. A part of the AMM API is described in
Table 3.4.

3.1.2.5 Policy Management Module (PMM):

The PMM is responsible for the policy management and for every policy decision process
of the SME, middleware and application layers. Its role is mostly consultative; the
application, middleware or security module requesting a policy decision has to enforce
the decision itself. With support of the IDM, the PMM can make sure that no on-
board entity is misbehaving and can actively react to stop or limit the impact of a
security breach, e. g., with process isolation or recovery process. The PMM is a module
implemented on every ECU. This module should locally dispose of all necessary policies
and context information in order to reduce the latency and the risk of error. Like the
KMM for the keys, the PMM abstracts the policy management and the remote fetching of
policies present on other ECUs. In order to limit the system complexity an redundancy,
a central interface is responsible to deploy the policies and security configurations during
a security update. These security updates are periodically performed all along the car
lifespan, when the car is stopped.

Designing access control models (i. e., policy management and policy format) for com-
plex and real-time systems can be challenging. Suitable tradeoffs between decision-
making performance and level of expressiveness have to be defined. With respect to
the car functional requirements for low latency and error rate, the system enforces two
policy formats:

• Middleware-level policy. These policies are requested and enforced by the mid-
dleware. They defined which communications are authorized, over which protocols
and sometimes with which security credentials. They are static and quite simple.
A more sophisticated version of them is provided in Chapter 4.

• Application-level policy. These policies are requested and enforced by the
application, i. e., directly given to the application through the function interface
getPolicyDecision(). They are more expressive and need application know-

50

C
ha
pt
er

3

3.1 Middleware Security

Table 3.4: Partial API of the AMM (Exceptions are omitted for a better clarity).

• startAuthentication Server
int startAuthentication_Server(int ECU_ID, int auth_method,

byte[] data)

Description verifies the received authentication fields and returns the authen-
tication status of ECU_ID (authenticated, non-authenticated, pending
or blacklisted)

Parameters - ECU_ID: Identifier of the ECU to communicate with
- auth_method: authentication method/schemes to verify
- data: MAC or signature that has to be verified

• startAuthentication Client
byte[] startAuthentication_Client(int ECU_ID, int auth_method)

Description returns the suitable authentication data to start the authentication and
logs the authentication status

Parameters - ECU_ID: Identifier of the ECU to communicate with
- auth_method: authentication method/schemes to verify

• finishAuthentication Server
byte[] finishAuthentication_Server(int ECU_ID, int auth_method)

Description returns the suitable authentication data to finish the authentication and
logs the authentication status

Parameters - ECU_ID: Identifier of the ECU to communicate with
- auth_method: authentication method/schemes to generate

• finishAuthentication Client
int finishAuthentication_Client(int ECU_ID, int auth_method,

byte[] data)

Description verifies the received authentication fields and returns the authen-
tication status of ECU_ID (authenticated, non-authenticated, pending
or blacklisted)

Parameters - ECU_ID: Identifier of the ECU to communicate with
- auth_method: authentication method/schemes to verify
- data: MAC or signature that has to be verified

51

3 Automotive IP-based Security Architecture

Table 3.5: Partial API of the PMM (Exceptions are omitted for a better clarity).

• getPolicyDecision
int getPolicyDecision(int ID, int action, byte[] action_arg)

Description returns the decision of a policy evaluation (0 granted, 1 refused,
2 no available answer, 3 invalid)

Parameters - ID: Identifier of the ECU/application requesting an authorization
- action: Type of the requested resource (e. g., communication
, file access)
- action_arg: appropriate complement of the requested resource
(e. g., protocol, resource identifier)

• getPolicy
byte[] getPolicy(int policy_ID)

Description returns the requested policy(ies)
Parameter - policy_ID: Identifier of a policy or a group of policies

ledge. They generally regulate access to a resource, e. g., database, file, physical
mechanisms. They are particularly adapted to non-time-critical applications, e. g.,
with user interaction or dynamic tethering of external devices like smartphones or
online services.

This work does not recommend any policy language. Expressive policy languages like
XACML [142] often necessitate slow evaluation engines and as a consequence need to
be evaluated on a case-by-case basis. An example of light automotive policy language
based on the ASN.1 format can be found in Idrees et all [81]. A part of the PMM API
is described in Table 3.5.

3.1.2.6 Intrusion Detection Module (IDM):

The IDM is about protecting the car against external tampering and attacks targeting
a single or multiple ECUs. This module is distributed over several ECUs. Each imple-
mentation does not run necessarily the same intrusion detection mechanisms, but they
cooperate with each others. The cooperation between all on-board IDMs establishes
a distributed IDS embedded at the middleware level. All collected raw data can be
transmitted to a central IDS nodes, a.k.a. Security Master ECUs, performing their ana-
lysis and taking further decisions about which countermeasures to launch. An example
of automotive countermeasure is to write an entry in the log-file. But it could be a
more active process, e. g., sending warning signals to the driver and notify her about an
on-going attack [74].

Like in the traditional computer world, the IDM can include multiple common mecha-
nisms allowing it to detect an intrusion [10]:

52

C
ha
pt
er

3

3.1 Middleware Security

• Host-based IDS: These mechanisms mostly monitor the internal vitals of a
computer and log all unexpected and unauthorized behaviors for later analysis.
Such an IDM can be customized to the automotive needs of an ECU, e. g., for
an intensive processing of multimedia data stream or for processing of safety-
critical sensor data. The car architecture is quite static, the IDM can therefore
be aware of the repartition of computational resources allocated for each purpose
(e. g., infotainment, ADAS, power-train, cabin control) and detect any anomaly. A
host-based IDM can in addition participate in the cooperative IDS by periodically
requesting remote attestations from other platforms [103].

• Network-based IDS: Such an approach monitors the network traffic. This relies
on signature-based mechanisms, comparing the traffic with pre-configured and pre-
determined attack patterns. As mentioned in the precedent bullet, the staticity
of the ECU can be applied to the network exchanges as well. The IDM can
also set boundary rates to certain types of exchanges and detect an abnormal
traffic increase or decrease [75]. When implemented on the C2X gateway, the IDM
should be able to monitor external communication interfaces and detect remote
DoS attacks as well.

• Introspection-based IDS: This approach allows the IDS to monitor a system
from an external point of view and is particularly used for virtualized environ-
ment [62]. The IDS, implemented on the physical ECU, gathers information pro-
vided by the hypervisor and then performs recognition tests of machine instruc-
tion patterns in order to assume the state of the virtual partition. An approach
for introspection-based monitoring is later investigated in more details for TPA
monitoring in Chapter 4.

In addition to these three locally enforced approaches, a central IDM can leverage the
other security modules and collect their logs. The AMM could inform the IDM about
unsuccessful authentication attempts with invalid or revoked security credentials. The
PMM could report every policy infringing situation it has been asked to evaluate. Finally
the SCM could notify all unauthorized attempts of communication establishment.

Considering the automotive cost and performance requirements, it seems clear that
only ECUs handling sensitive and non-time-critical assets will be equipped with sophis-
ticated IDM, i. e., host- and introspection-based. The addition of network-based IDS for
all on-board and C2X gateway or router ECUs is also strongly recommended. A part of
the IDM API is described in Table 3.6.

3.1.2.7 Security Abstraction Layer (SAL):

The SAL is optional and not necessary if the middleware can directly make use of
the SME implementation. The SAL provides a logical interface linking applications and
middleware to the SME in specific cases, e. g., when middleware and SME are not written
in the same language or not compiled together. A generic API (e.g., Inter-Process

53

3 Automotive IP-based Security Architecture

Table 3.6: Partial API of the IDM (Exceptions are omitted for a better clarity).

• notifyViolation
boolean notifyViolation(int module_ID, int ids_method,

int event_type, byte[] event_arg)

Description returns true if the event is considered as an intrusion and launches,
adapted countermeasures, or returns false otherwise

Parameters - module_ID: Identifier of the emitting IDM module
- ids_method: Method of intrusion detection (network, introspection)
- event_type: type of the event (unauthorized access, communication)
- event_arg: additional information about the event to notify

• sendAnalysisData
boolean sendAnalysisData(int module_ID, int data_type, byte[] data)

Description analyzes raw event data from non-IDM and returns true if the
data are accepted and treated, or returns false otherwise

Parameters - module_ID: Identifier of the module providing the data
- data_type: type of the data to analyze (log, network input)
- data: raw data to analyze

Communications (IPCs) with the SME, or a JNI-based API [141] for communication
between Java and C implementations) allow the developer to transparently contact the
SME and take care of the module dependencies.

3.1.3 Functional Use Case and SME Management

Section 3.1.2 described in details every module of the SME and provided part of their
API. This section presents a simple example of communications between two on-board
applications and demonstrates the interactions between the functional application/mid-
dleware and the SME. This example considers the connection establishment process
and data exchange between an on-board client and an on-board server. This use case
features a bidirectional communication channel. The server is assumed to be already
configured in order to receive incoming communications, i. e., the cryptographic material
is in place and the serversocket is listening. On the other side, the client is assumed to
be set up with valid cryptographic material allowing it to initiate a communication with
the server.

3.1.3.1 SME Management – Client Side

Figure 3.3 presents a graphical sequence chart highlighting the runtime of the client.
Only the local implementation of the modules is represented here. For a better under-
standing, cases where a module should perform a remote request for a key or a policy are

54

C
ha
pt
er

3

3.1 Middleware Security

not considered. The runtime is pictured in four steps. Steps 1 to 3 describe the secure
channel establishment, which starts with invocation of the opensecConnection() by
the Client Application. Step 4 is launched by the function send() and describes the
emission of data from the client to the server. For more simplicity the IDM, which is
involved only if a security violation is noticed, is not drawn here.

Step 1 – Authorization: The openSecConnection() call is performed on the SCM.
The SCM seeks for a policy decision to the PMM, which may authorize a communica-
tion with the requested server and the requested security configuration. If no security
argument is provided by the Client Application, a “by default” configuration of the
communication in addition to the policy decision is requested.

Step 2 – Authentication (1st phase): Once the SCM is sure that the connection
is permitted, the second step, i. e., the authentication, may start. The SCM contacts
the AMM, which launches the handshake process. The AMM calls the CSM with the
appropriate key handle and a precise description of which type of MAC or signature to
generate. The CSM then retrieves the necessary cryptographic material from the KMM,
completes its tasks and sends the result to the AMM, which forwards it the SCM. The
SCM plug-in, responsible of the chosen security protocol, performs the serialization of
the Session-Establishment Message. The SCM passes it to the CSM for encryption and
then sends the encrypted version to the server via the network.

Step 3 – Authentication (2nd phase): After reception of the Session-Establish-
ment Response of the server, the SCM passes the packet to the AMM. The packet is
then decrypted and the authentication fields are verified by the CSM. After what, the
CSM provides the AMM and the SCM with its answer. The AMM notifies the successful
authentication process in its log file. The SCM can also notify the Client Application
about the success of the communication establishment.

Step 4 – Secure communication: The Client Application and SME went through
the authentication process and session establishment and can now directly communicate
with the server. The SCM sends directly the packets provided by the send() function
call of the Client Application after having it encrypted by the CSM.

3.1.3.2 SME Management – Server Side

In a similar manner, Figure 3.4 presents the same functional use case, but this time
from the server point of view. The Server Application gets initiated through a routine
like seclisten(). The SCM waits for an incoming connection at least as secure as the
configuration provided by the function arguments.

Step 1 – Authorization: Like in the previous case, the session establishment process
starts, with the SCM asking the PMM whether the communication channel with the
security configuration proposed by the client side may be opened.

Step 2 – Authentication (1st phase): After a positive acknowledgement, the SCM
is allowed to decrypt the packet via the CSM, which automatically loads the appropriate
key from the KMM. Via the AMM, the SCM has the authentication fields verified by

55

3 Automotive IP-based Security Architecture

F
igu

re
3.3:

F
u
n
ction

al
u
se

case:
O

p
en

con
n
ection

&
d
ata

sen
d
in

g
(clien

t
sid

e).

56

C
ha
pt
er

3

3.1 Middleware Security

F
ig

u
re

3.
4:

F
u
n
ct

io
n
al

u
se

ca
se

:
O

p
en

co
n
n
ec

ti
on

&
d
at

a
se

n
d
in

g
(s

er
ve

r
si

d
e)

.

57

3 Automotive IP-based Security Architecture

the CSM. If these fields are valid, the SCM allows the socket to be bound to the client
and to receive data from it.

Step 3 – Authentication (2nd phase): The SCM builds the final part of the
handshake, i. e., the Session-Establishment Response, and asks the AMM to generate
the appropriate authentication fields via the SCM. The SCM then serializes the packet,
has it encrypted by the SCM and finally sends it to the client side.

Step 4 – Secure Communication: After completion of the session establishment
process, the Server Application is ready to receive messages from the client. After the
reception of a Secured-Message, the SCM can decrypt the message via the CSM and if
it is valid, forwards it to the functional middleware of the Server Application via the
function call forward_in().

Additional comments: This example presents a very simple session establishment
with a two-way handshake. More complex handshakes and key establishment protocols
can be supported in a similar way. The SCM processes the additional message exchanges
as in Steps 2 and 3 of the client and server. However, the automotive system is subject
to drastic safety and performance requirements and generally cannot afford the latency
and error risks induced by complex security mechanisms. The session establishments du-
ring runtime should be therefore kept simple and efficient. More complex features and
dynamic key exchange should be mostly performed along the assembly line or during
periodic system updates, when the car is stopped. As a consequence, the SME con-
figuration of most platforms, especially the resource-limited ones, should be static and
should encompass simple middleware-based policies, the setup of security associations
for on-board IPsec channels between ECUs and the distribution of preshared keys.

3.2 Security Communication Proxy

Car manufacturers intend to centralize most C2X communication interfaces around a
single Multi-Platform Antenna (MPA) [120]. More than just a super antenna, the MPA
is a complete ECU directly connected to the on-board Ethernet network and equipped
with a fully functional IP-based middleware. The MPA provides a great opportunity to
build efficient security solutions, applicable to all C2X communication types and easy
to verify and maintain.

This section firstly motivates why the MPA necessitates a special security design in
Subsection 3.2.1, after what Subsection 3.2.2 introduces a first automotive approach
for C2X Information Flow Control (IFC). Then, the MPA security architecture and
in particular specificities of its SME are presented in Subsection 3.2.3. Finally, the
concept of Security & Trust Level (STL), which provides a security taxonomy for external
communication partners, is described in Subsection 3.2.4.

58

C
ha
pt
er

3

3.2 Security Communication Proxy

3.2.1 Towards Secure Automotive Proxy-Middleware

The on-board middleware may be optimized for static and resource-limited configura-
tions, but limited as for dynamic C2X use cases involving the MPA. The integration
of a large variety of external communication partners requires additional features for
a more efficient service discovery and flexibility. In addition controlling information
flows in distributed systems like cars is essential for holistic security solutions. ECUs
internally exchange genuine packets and therefore only require secure communication
channels and simple access control mechanisms. But the integration of untrusted com-
munication partners, over which the car manufacturer has no control, is quite risky and
necessitates more complex security mechanisms.

CE devices, Internet services, RSUs and others cars are heterogeneous systems, whose
functional and security capabilities depend on several factors, e. g., their OS, hardware.
Car manufacturers cannot ban certain types of smartphones, competitor car models or
trendy online services from connecting to their cars, just because they do not fit all of
their requirements. Instead of restricting the car access to specific classes of devices
or services, the on-board architecture needs to be adaptive and so does the underlying
security infrastructure. Cars and more specifically their MPA have to be able to integrate
all external communicating entities over a wide range of media (e.g, Wi-Fi, LTE, 3G,
IEEE 802.11p) and communication protocols (e. g., automotive- or web service-specific).
At the same time, the complexity of the MPA should not exponentially rise. The car
has to rely on the MPA and its programmable platform for managing the access between
external and on-board networks in a secure way. For the rest of this work, the terms
security communication proxy designate the software/hardware components of the MPA
where the security is implemented.

More than just a packet forwarder, the proxy decouples every communication between
inside and outside similarly to a NAT router. The decoupling mechanisms allow the car
to use on the inside a limited set of optimal security protocols, while letting the choice of
the outside protocol to third-party developers. Ethernet/IP will allow a bigger internal
bandwidth able to carry large objects, will increase the number of remotely-available
functions on every ECU and as a consequence will enable a large and demanding C2X
traffic. However, the verification of both security requirements and packet validity for
every message will not be possible only at the proxy level. The proxy cannot perform
deep packet inspection and should stay unaware of the application level. But at the same
time, the ECUs are never in direct contact with any external devices or services and are
incapable of taking holistic security decisions. Therefore in addition to decoupling the
C2X communication, the proxy should propose some cooperation mechanisms allowing it
to support the ECU in its security decision process. This proxy architecture is suitable
in this sense and allows to share the security enforcement between proxy and ECUs:
while the proxy manages the external security protocols, the ECUs enforces their own
security decisions based on additional context information provided by the proxy.

59

3 Automotive IP-based Security Architecture

Related work about proxy security: Corporate network security and automotive on-
board security present numerous similarities, especially when integrating mobile devices.
Recently several companies took advantage of the Bring Your Own Device (BYOD) trend
in order to lower their asset costs and employee efficiency, but also faced major security
issues [126, 69], e. g., theft of industrial secrets, dysfunctions of their network infrastruc-
ture. Their approach mostly relies on strong authentication mechanisms and device in-
tegrity measurements in order to establish network connections or a VPN access [47, 40].
The integrity measurements usually check the version of the device spyware, antivirus
and, if available, the presence of a secure element [47]. However, such approaches only
regulate the internal network access and usually lack specifications for resources- and
data-management.

Plane manufacturers want also to allow passenger to connect via their personal mobile
devices to infotainment resources of the plane. But as mentioned in the previous section,
plane security for the moment relies on a physical separation between critical and non
critical networks [155]. In opposition to planes, automotive use cases often leverage
simultaneous integration and interconnection of functions from critical and non critical
domains and make such an approach not suitable.

3.2.2 Information Flow Control, a First Approach

Section 3.2.1 announced the notion of cooperation mechanisms between proxy and ECU.
For this purpose, an in-band middleware protocol was extended and allows to exchange
additional security metadata. Concretely the middleware header is extended with a new
field specifying the security and trust context in which the data are exchanged between
the car and an external communication partner. Instead of directly considering the
privacy aspect of any single piece of information, the new middleware protocol focuses
on the trust, a communication peer is granted by the car and intends to quantify it.
Thus, the security aspect characterizes how secure the external communication is. On
the other side, the trust aspect characterizes how trustworthy the remote device of online
service is considered to be. This context in term of security and trust is called Security
& Trust Level (STL).

In order to distinguish whether the STL describes the current communication situation
or whether it describes a required situation in order to send a message to the outside,
two types of STLs are defined:

• The STLSTATUS, generated by the proxy and enforced by the ECU, this STL
allows the ECU to evaluate the risk it is taking if it processes the related message.

• The STLREQ, generated by the ECU and enforced by the proxy, this STL allows
the proxy to evaluate whether the message can be forwarded and whether it fits
the requirements imposed by the middleware which produced the data.

The life cycle of the STL is graphically described in Figure 3.5. The STL taxonomy
maps abstract security concepts and requirements to concrete protocols mechanisms. It

60

C
ha
pt
er

3

3.2 Security Communication Proxy

Figure 3.5: STL life cycle. Messages are symbolized by an envelope, the STL metadata
by a medal. A STLSTATUS is only exchanged from the proxy to an ECU,
whereas a STLREQ can be exchanged from an ECU to the proxy or between
ECUs. The figure features a CE device, but it can be also replaced by other
external entities, e. g., online service, RSU.

allows an efficient and generic security enforcement at the ECU level, independently of
the external protocol or situation specificities. More precisions about where the STL are
enforced and how it is evaluated are given respectively in Subsections 3.2.3 and 3.2.4.
Security for C2X communications relies here on the fact that the whole C2X traffic
goes through the proxy. This assumption was already mentioned in the attacker model
presented in Section 2.3.4. This point is however later discussed in Section 3.3.2.

3.2.3 Extending the SME for a Security Communication Proxy

This subsection describes (1) the architecture of the security proxy and (2) how the SME
on an ECU can be STL-enabled for a secure proxy–ECU cooperation.

3.2.3.1 STL-enabled Security Communication Proxy

The proxy is implemented on the MPA and stands in the middle of every communication
occurring between an internal entity and the outside. Unlike traditional NAT routers
simply forwarding IP packets, the proxy really decouples the communications and may
act like a translation interface between external protocols (e.g., HTTP) and internal
middleware-based protocol.

The proxy is a critical element of the car, essential in all C2X communications and in
direct contact with untrusted networks and external attackers. As a result, the proxy
disposes of a strong security architecture equipped with a HSM for secure key storage
and hardware-based cryptographic processing. Its SCM is designed to provide internal

61

3 Automotive IP-based Security Architecture

communication interfaces over static IPsec channels and an external dynamic interfaces,
compatible with a wide range of web-based and middleware-based protocols providing
security or not. More than just handling the authentication process for both internal and
external entities, its AMM also manages the car pseudonyms and their short-term cer-
tificates used during privacy-infringing use cases, e. g., for position broadcasting during
an emergency braking. Regarding the C2X policy management, PMM and SCM of the
proxy play a major role for the STL concept. For each external communicating entity,
the PMM evaluates and transmits to the SCM a STLSTATUS to add to the middleware
header of every inbound packet (M1 in Figure 3.5). The proxy is application unaware,
but depending on the entity identity PMM and SCM can enforce a domain-based fil-
tering on inbound messages, e. g., an online service for social network logged into the
car, even on behalf of the driver, will not get access to any functions of the power train
management. Inversely before forwarding an outbound message (M3 in Figure 3.5), the
proxy makes sure that the STLREQ provided by the ECU, at the origin of the message,
is conform to the actual STL of the communication status, i. e., to the STLSTATUS. More
details about STL evaluation and rules are provided in Section 3.2.4. Finally, as earlier
mentioned in the section about the IDM, the proxy is equipped with a combination of
IDS, e. g., host-, traffic- and introspection-based IDS, allowing it to be more resilient
against external attackers.

3.2.3.2 STL-enabled On-board Security Middleware

Present on every ECU, the middleware relies on the SME for all security services. In
order to enforce the STL policies, the SME architecture is only slightly modified. The
main modifications concern the PMM for the evaluation of adapted STL-based policies
and the SCM for the enforcement of the policy decision for both received and emitted
packets.

Based on the received STLSTATUS, the PMM decides whether it is safe and authorized
to process such a packet. The STLSTATUS informs the SME about the likelihood of
an attack, e. g., an unauthorized data modification, while they were traveling over the
external wireless network. Depending on the ECU capacity, the SME may chose a more
protected execution environment in order to process the received data, e. g., parsing SQL-
based access requests through a specific security parser or running JavaScript pieces of
code in an isolated web browser.

On the other hand, a received STLREQ, determines the sensitivity of the data con-
tained in the message payload. The STL requires PMM and SCM to decide whether
their application level is allowed to receive such data, i. e., whether their applications
offer enough confidentiality guarantees to not leak the information. Inversely, when
sending a message, the SCM extends the middleware header with a STLREQ reflecting
the sensitivity of the payload, i. e., industrial secret or private information of the driver.
Generally data labeled with STLREQ are produced by other ECUs and therefore do not
present any integrity risk therefore only their confidentiality is considered.

62

C
ha
pt
er

3

3.2 Security Communication Proxy

For this chapter, all on-board communications are labeled with a STLSTATUS or a
STLREQ. As a consequence, even if an ECU or an on-board multicast address inadver-
tently forward a STL labeled message to the proxy, i. e., to the outside, the proxy can
still enforce a suitable STL rule. The applications on top of the middleware are totally
STL transparent, the STL enforcement happens at the SME level. Like most on-board
policies, the STL-based policies are defined by car manufacturers at design time and are
established based on the use cases the applications are involved in.

3.2.4 Security & Trust Level (STL) Taxonomy

Section 3.2 introduced the concept of STL and defined it as the security and trust context
in which data are (STLSTATUS) or should be (STLREQ) exchanged with the outside. The
rest of this subsection proposes the evaluation of (1) the STL security aspect, (2) of the
STL trust aspect and (3) the enforcement of STL rules.

3.2.4.1 Security Level (SL)

The Security Level (SL) is defined as a qualitative description of the security strength
of an external communication. Concretely, a specific SL value is associated to each C2X
security protocol. These protocols can be located on different layers of the communica-
tion stack and combined together, in this last case only the higher security level is taken
into account. The different levels and the security requirements, they have to comply
with, are characterized as follows:

SL=0 Communication protocols providing no or weak security or presenting exploitable
design flaws. Here “weak” designates security mechanisms that can be broken in
less than 4 hours, i. e., less than an average driving time, only attacks performed
when the car is active/driven are considered.
Examples: Plaintext; WEP encryption; TLS+DES or RC4 with a 56-bits key;

SL=1 Communication protocols providing strong authentication of the external peers
and data integrity, i.e., against unauthorized modifications.
Examples: WPA2 encryption; Message in plaintext protected by HMAC-
SHA-1;

SL=2 Communication protocols as secure as SL=1 and in addition providing strong
confidentiality, i.e., one secret key per user, no shared key between users.
Examples: TLS+AES; IPsec+AES;

SL=3 Communication protocols as secure as SL=2 and assuring the presence of a
secure hardware element protecting the cryptographic materials of the external
peer.
Examples: SL2-protocol + remote attestation.

63

3 Automotive IP-based Security Architecture

3.2.4.2 Trust Level (TL)

The Trust Level (TL) is defined as an abstract representation of how trustworthy an
external data sender/receiver is. The notion of trust is usually defined as a mix between 3
components: reputation, reliability and security [161, 66, 116]. The security has already
been considered, thus the TL focuses on the 2 remaining ones. The evaluation criteria
of the TL should be clear and easy to assess. This work considers that data may only be
misused, if they are (1) physically and (2) juridically accessible, i.e., (1) if the data leave
the car and (2) if the receiver is legally allowed to endanger the user’s privacy, e. g., data
selling/forwarding, data stored on an unprotected server. The TL should reflect these
risks and is evaluated based on the following criteria:

• Criterion 1 (Cr. 1) “Local Usage”: determines whether the data are limited
to an on-board usage only.

• Criterion 2 (Cr. 2) “Anonymization”: determines whether data have to be
anonymized, when released out, i.e., whether an external receiver may be able to
trace back the identity of the car or of the user.

• Criterion 3 (Cr. 3) “Jurisdiction”: determines whether the external receiver is
considered as a safe Place Of Jurisdiction (POJ), i.e., whether the servers hosting
the online service are located in a country imposing a regulation protecting the
user’s privacy.

In order to determine the TL of an external peer, the simple binary decision tree
presented in Figure 3.6 is used. Every criterion is evaluated iteratively, a “true” answer
stops the process and sets the TL value. Highly sensitive data, like industrial secrets,
are only reserved for a internal usage (Cr.1=true) and are labeled as requiring a very
trustworthy usage (TL=3). Very sensitive data, like the car position, can leave the car
but have to be untraceable (Cr.2=true), i. e., anonymized at the proxy level (TL=2).
Data with a low sensitivity, like the driver’s name, can be forwarded to services presenting
a safe POJ (Cr.3=true, TL=1). While Cr.1 and Cr.2 are easy to assess and enforce by
the proxy, Cr.3 needs to be specified by privacy experts, for example relying on literature
inspecting the data protection laws of different countries [111].

The TL scale orders the level of trustworthiness, from data that can be sent to un-
trusted entity (TL=0) to data that have to be sent to on-board entity only (TL=3).
Obviously such ordering is not exclusive, but it allows very trusted external entity to
receive data that may be sent to untrusted peers, e. g., a peer able to receive data with
a TL=2 is also authorized to receive data with TL=1 or 0.

In order to test the validity of this taxonomy, the TL of four realistic C2X scenarios are
evaluated: the social network Facebook [58], which receives information from the car via
the driver’s account; Safebook [44], a privacy-aware peer-to-peer social network, which
allows the user to locally store its data (i. e., in the car) and have full control about the
release thereof; an online banking service having its servers in Germany, which allows

64

C
ha
pt
er

3

3.2 Security Communication Proxy

Figure 3.6: Binary decision tree for TL evaluation.

Scenarios Cr.1 Cr.2 Cr.3 TL

Facebook false false false 0

Safebook false false false 0

Banking false false true 1/0

LHW false true - 2/1/0

Table 3.7: C2X Scenarios and assigned TLs. (LHW: Local Hazard Warning).

to manage from the car the driver’s account; and a Local Hazard Warning (LHW) car
function, broadcasting safety messages, including the car position, to other road users.
Results are provided in Table 3.7. Because of an unsafe POJ of its servers, i. e., the
USA [111], Facebook should only receive non-sensitive data. The Safebook’s peers (i.e.
“friends”) cannot be considered as being in a safe POJ and therefore are in the same
case as Facebook. The Bank servers in Germany, a safe POJ [111], can receive TL=1-
and TL=0-labeled data. As for the LWH scenario, other cars will receive the TL=2
labeled data only if the proxy is sure that they have been anonymized.

The TL taxonomy is relatively simple and seems to provide an efficient way to control
the information release to the outside world. But further tests with more use cases
should be performed. The TL criteria are very coarse, but give to car manufacturers an
easy way to configure a “by default” privacy/trust-aware behavior. For a more flexible
usage, users should be able to change the assigned TL of an online service, like a social
network of their choice and allow it to receive some data with TL=1 as well.

3.2.4.3 The STL Enforcement Rules

Security and trust are two independent variables, which require two different types of
enforcement. Anonymized data with a TL=2 may be sent with a SL=1 in plaintext (e.g.
LHW scenario), while data of TL=1 may be sent with a SL=2 because the driver wants
to keep them private. Therefore the STL is defined as the concatenation of the SL and

65

3 Automotive IP-based Security Architecture

Figure 3.7: STL vector and main evaluation criteria.

the TL, as shown in Figure 3.7. For an efficient enforcement, the STL is limited to 4
values for the SL and 4 for the TL and can code the resulting vector over 4 bits.

Concretely, data arriving to the proxy with a STLREQ=(slreq,tlreq) will be allowed
to be released to an external service or device X assigned a STLSTATUS=(slx,tlx): 1) if
X complies with the conditions of the received TL, i. e., if tlreq ≤ tlx and 2) if the
communication with X with the conditions of the received SL, i. e., if slreq ≤ slx. However,
such conditions may be too constraining and may never allow certain data to leave the
car. Declassification methods allowing to assign a lower STL to some data or to add just
an exception on the proxy should be possible. But those methods should only be part
of use cases predefined by car manufacturers and if necessary should involve the driver’s
decision, e. g., if it is her private data. Further considerations about declassification
methods are not provided in this work.

STL-based policies are statically implemented in the ECUs and have to be evaluated on
a case-by-case basis. They do not require any regular update. Either the ECU generates
the data to be sent and associates its own STLREQ depending on the appropriate policy,
or the ECU received the data from another ECU and before forwarding them, labels
them with the received STLREQ. The proxy should regularly receive notifications to
update the TL of new external services and the SL of new or flawed communication
protocols. The CE device case is a little bit particular. But since this device gets
authenticated by the proxy, a STLSTATUS is assigned to it. This STL depends on the
used connection protocol for the SL and is assigned a TL=1, since it is assumed that
the user’s device is under her control and is therefore safely handling her own private
data.

3.3 Middleware and Security Discussion

This Section concludes this chapter and provides a discussion about the SME architec-
ture in Subsection 3.3.1 and about the security communication proxy in Subsection 3.3.2.
In addition to listing the pros and cons of the two architectures, this section also pro-
poses three security configurations for the SME setup. Then, Subsection 3.3.3 pinpoints
the remaining issues and limitations of the SME/STL approach and the challenges it
does not tackle yet. Finally, Subsection 3.3.4 evaluates the middleware security reaction

66

C
ha
pt
er

3

3.3 Middleware and Security Discussion

for concrete attacks on the use case of Section 2.3.3.

3.3.1 About the SME Architecture

Implementing security at the middleware level allows to follow an engineering-driven
software development. Security and middleware developers may remain unaware about
what the applications are really doing. They only need to have a superficial insight
of this layer, i. e., the application purpose, some requirements and a clear definition of
the communication interfaces. Instead of designing new security mechanisms, the SME
leverages current security protocols and technologies from the Internet and CE world
and optimizes their usage to fit to the requirements of the automotive world.

More than only providing access control mechanisms and secure communications, the
security middleware layer can be considered as a protective barrier for all automotive
applications. Developing a single middleware for the whole car allows car manufacturers
to apply security programming guide lines to avoid security attacks, like buffer over-
flows [64, 79, 118] and reduce the amount of code to verify and maintain. In addition
to these development approaches, methods for software security assurance evaluation
can be used to formalize penetration tests and anti-requirements, i. e., implementation
to avoid [93, 95, 92]. In a next future, model-based design approaches with formalized
verification models will automate these tasks and significantly reduce the integration
effort [42]. For the moment, they are mostly used for verifying the correctness of tran-
sition system at the functional level (e. g., fault-tolerance), but could also be extended
for security in order to automatically patch any automotive software [30].

Then, the SME benefits from a flexible and modular design allowing the different SME
versions to be interoperable and adaptable to most automotive platforms and use cases.
At a functional level, the SMEs can secure the three middleware versions designed by
Weckemann et al [178]. In addition, they leverage previous work on hardware security,
e. g., the three-level HSMs of EVITA [182]. Table 3.8 presents in more details the three
SME levels and their specifications.

Nonetheless adding security should neither degrade the car performance nor cause
additional faults in the functional middleware and its applications. This work does not
aim at investigating the impact of faults on safety or security. The following paragraph
just briefly presents some issues and provides a few research approaches. Faults are
defined as any interruption of the normal operativeness of a system or of any of its
sub-components. They include both accidental and intentional ones, e. g., an attack.
Numerous safety mechanisms allow to cope with accidental faults, e. g., high redun-
dancy, fall-back mechanisms, error detection or self testing. However intentional faults
are harder to detect, differentiate and isolate. When a fault occurs, the fault detec-
tion mechanisms should be able to identify it, create a fault awareness and restore the
service. This paragraph does not propose new mechanisms, but shortly discusses the
reaction scenario of an automotive Fail Safe Mode (FSM). In case of a malfunctioning
security service, such process should be launched only if the car is unable to restore all

67

3 Automotive IP-based Security Architecture

T
ab

le
3.8:

S
M

E
sp

ecifi
cation

s
of

th
e

th
ree-level

m
id

d
lew

are
ap

p
roach

(M
A

X
IM

U
M

,
M

E
D

IU
M

an
d

M
IN

IM
U

M
S
ecu

-
rity

)

S
M

E
secu

rity
level

M
A

X
IM

U
M

S
ecu

rity
M

E
D

IU
M

S
ecu

rity
M

IN
IM

U
M

S
ecu

rity

C
S

M
&

K
M

M
-

E
V

IT
A

h
ig

h
H

S
M

[182]
-

E
V

IT
A

m
ed

iu
m

H
S

M
[182]

-
E

V
IT

A
ligh

t
H

S
M

[182]

S
C

M
&

A
M

M

-
IP

sec
ch

a
n

n
el

m
an

agem
en

t
-

IP
sec

ch
an

n
el

m
an

agem
en

t
-

IP
sec

ch
an

n
el

m
an

agem
en

t

w
ith

p
resh

ared
key

an
d

d
y
n

am
ic

w
ith

p
resh

ared
key

an
d

d
y
n

am
ic

w
ith

p
resh

ared
key

key
estab

lish
m

en
t

v
ia

IK
E

v
2

key
estab

lish
m

en
t

v
ia

IK
E

v
2

-
V

P
N

tu
n

n
el

m
an

agem
en

t

(e.g
.,

rem
ote

fl
ash

in
g

an
d

d
iagn

osis)

P
M

M
-

m
id

d
lew

are-b
ased

p
olicies

-
m

id
d

lew
are-b

ased
p

olicies
-

m
id

d
lew

are-b
ased

p
olicies

-
ap

p
lication

-b
ased

p
olicies

-
ap

p
lication

-b
ased

p
olicies

ID
M

-
h

o
st-b

a
sed

ID
S

-
h

ost-b
ased

ID
S

-
n

o
ID

S

-
n

etw
ork

-b
a
sed

ID
S

-
n

etw
ork

-b
ased

ID
S

-
in

trosp
ectio

n
-b

ased
ID

S

E
x
a
m

p
les

o
f

E
C

U
s

-
H

U
-

en
gin

e
con

trol
-

sen
sors

E
C

U
s

-
C

2X
G

a
tew

ay
-

E
S

P
con

trol
-

b
rake

actu
ator

-
cen

tral
rou

tin
g

gatew
ay

-
airb

ag
actu

ator

68

C
ha
pt
er

3

3.3 Middleware and Security Discussion

necessary security services to an acceptable level of functionality. A complete reboot
or deactivation of the system is not feasible, the car should always be maneuverable
and able to restart the engine even when being in FSM. The FSM measures can be
summarized in two classes of actions that should be performed simultaneously. First,
at a security level, the car should be able to shut down completely or partly the buggy
security service, e. g., stop encryption between some ECUs or bypass some access control
mechanisms. Secondly, at a functional level, it should be able to adapt other non-faulty
services in order to limit the impact of the error and the newly unprotected surface
of attack, e. g., by deactivating all C2X communication interfaces, limiting the driving
speed or the engine revolutions per minute and informing the drivers about the error
status via audio or visual signals. The FSM should be used as last resort since an attack
could aim at leveraging it in order to disable some security features or limit the car
functionality and performance.

The SME architecture and related recommendations aim at limiting errors and their
propagation. The focus was to reduce the presence of Single Point of Failure (SPF),
which increases the risk of high latency and system blocking. Every ECU is independent
of its security decisions and is capable of establishing its own communication channels
during the car runtime. However, for cost reasons and to avoid components redundancy,
the SME includes some central interfaces, e. g., Security Master ECU, but only for non
time-critical functionalities, like rekeying, policy updates or IDS mechanisms.

3.3.2 About the Security Proxy Architecture

The communication decoupling at the proxy level offers several advantages. First the
Third-Party (TP) developers can remain security-unaware and are free to choose their
own communication protocols, as long as the proxy or the on-board applications are
compatible with them. Secondly, on-board communications occur on a unique set of
middleware based on strong security protocols. Thirdly the middleware protocol can be
extended with a STL field in order to support holistic security decisions at the ECU
level. However, even if the C2X communication traffic will generally remain small in
comparison to the total on-board traffic, the proxy is a unique interface for all C2X use
cases and could act as a bottleneck. Further tests on actual implementations should be
performed in order to confirm or abnegate this consideration.

Then, ECUs and proxy rely on each other’s integrity for delivering of valid and ac-
curate STL. An attacker may want to bypass or corrupt the proxy and tamper the
STL process. The malicious messages would be assigned the STL of a trustworthy sit-
uation and would get access to more functionalities. Current HSM architectures only
include secure boot mechanisms and would not be able to counteract runtime attack.
The proxy IDM here plays an essential role. The integration of hypervisor or microker-
nel architectures [90] could provide isolation and monitoring between the different C2X
communication interfaces of the proxy. Each group of communications (e. g., Wi-Fi-, 3G-
or LTE-based) in one cell disposes of their own security mechanisms and may be isolated

69

3 Automotive IP-based Security Architecture

from each other. As a result, despite a successful attack, the proxy can shut down the
compromised cell, potentially restart it and still be functional. Further investigations,
not performed in this work, need to be done in order to determine the suitability of the
approach.

Finally, several use cases involving automotive software downloads and on-board firm-
ware updates may require end-to-end security solutions, e. g., activation of the ECU
reprogramming mode. For such use cases, the proxy should be able to provide secure
tunneling, e. g., VPN-like, between a server of the car manufacturer and the targeted
ECU. The infrastructures of the proxy and of these ECUs (e. g., HU) require to be
designed and adapted accordingly.

3.3.3 About the STL approach

The enforcement of STL rules in the middleware is relatively simple to manage and
can be efficiently performed. Nonetheless it requires that car manufacturers determine
the authorized STLs for every single communication interface. This STL definition can
certainly be easily described and integrated to the middleware development thanks to
the IDL. But the STL remains mostly focused on the release of information to the
outside world and only considers whether the messages can leave the car, whether they
include private data and on what kind of C2X security channels they can be transmitted.
Analyzing and verifying on-board STL-based information flows may be quite complex
and not very relevant for exclusively-on-board communications. Additionally, the STL
considers no information integrity but just its confidentiality. Besides , the system
implicitly considers a unique user, i. e., the driver. Adding to the STL the ID of a user
or of the information source may not be sufficient without a proper formalization.

Then, for the moment, the SME/proxy architecture does not consider any solution
for integrating Third-Party Applications (TPAs). Additional mechanisms should be
added to the car communication infrastructure in order to constrain TPAs to respect the
authorized on-board information flows defined by car manufacturers and to not disturb
the overall car functioning. Finally this chapter does not propose any formal evaluation
of the STL taxonomy or a clear integration of the user preferences. Instead, the goal was
to describe concrete and easily-enforceable examples of security and trust levels based
on clear security requirements and quantitative parameters.

3.3.4 Security Gains

This section evaluates the security gains of this architecture in the context of the use
case presented in Section 2.3.3. A few network and middleware attacks are listed here.
For each of them, a short description about how the system reacts to the threat is then
provided.
Eavesdropping: An attacker with physical access to the on-board network can listen
to the on-board communications and gain access to sensitive exchanged information,

70

C
ha
pt
er

3

3.3 Middleware and Security Discussion

e. g., driver’s private data being exchanged between proxy and HU.
Security measures: Via their SCM, ECUs establish secure channels leveraging strong

encryption (e. g., AES encryption with IPsec) and preventing an attacker without know-
ledge of the keys to decipher the communication. The encryption keys are assumed to be
stored in a tamper-resistant HSM and therefore out of reach of the attacker considered
here.

Result: This attack cannot be leveraged and harm the car, its passenger or the car
manufacturer.

Replay attack: An attacker with physical access to the on-board network can reinject
a message earlier sent, e. g., to bypass the VSS and send a null speed to the HU and
watch TV or open the convertible roof while driving.

Security measures: Via the SCM, ECUs establish secure channel leveraging nonces
for freshness verification and preventing an attacker from replaying a message. Besides
if detected, the SCM can notify the IDM for suspicion of replay.

Result: This attack can easily be detected and cannot cause any harm to the car, its
passenger or the car manufacturer anymore.

Addition of a new network node: An attacker with physical access to the on-
board network could plug a new ECU, e. g., a new HU, get access to more features and
potentially make the whole system unstable.

Security measures: ECUs via their SCM establish secure channels approved by their
PMM. The communication from a new ECU with an unknown set of cryptographic
material would be dropped by their SCM, because it was not recognized by their PMM.
Besides if detected, the SCM can notify its IDM for invalid communication.

Result: This attack can easily be detected and cannot cause any harm to the car, its
passenger or the car manufacturer anymore.

ECU corruption: All ECU hardware attacks, i. e., physical manipulations, are assumed
as out of scope. Therefore attacks covered by this work have to be network based and
sent to a communication interface of the ECU.

Security measures: Developing a middleware-based software architecture reduces the
amount of code to verify against stack pointer overwriting attacks like buffer overflows [4].
Secure coding guidelines can be specified and reduce the risk of such attacks. Besides
the use of a HSM and its secure boot allows to detect any memory modification (e. g.,
invalid running code) but cannot be used during runtime. The only solution is to rely on
host-based IDMs, however due to the performance requirements they cannot be setup
everywhere in the car.

Result: The attack is alleviated but cannot be completely stopped.

Denial of service attack: An attacker with access to the on-board network could
launch a DoS attack, e. g., jamming the network to prevent communications between
ABS and VSS or sending multiple requests to the PCM in order to isolate it from the
network or from a TPA installed on the HU consuming all resources of its host and
making it ineffective.

71

3 Automotive IP-based Security Architecture

Security measures: Network-based DoS attacks can easily be detected by strategically-
placed IDMs monitoring the network. However, at this point of the thesis, a DoS attack
launched by the TPA cannot be fought back.

Result: This attack cannot be successful at the network level anymore but can still
succeed if performed by a TPA or on a ECU without host-based IDM.

Unauthorized function/data access: 1) An attacker with remote access (via the
proxy) to the on-board network could subscribe to an on-board multicasting address in
order to have the vehicle GPS information forwarded to an untrusted online server. 2)
A attacker could program its own TPA, have it installed on the HU, leverage the HU
secure communication channels and leak GPS information or disable the ABS.

Security measures: GPS information is labeled as private by the GPS module itself. If
an attacker manages to have it forwarded, the proxy would recognize the label and stop
it before leaving the car. At this point of the thesis, such a TPA-based attack cannot be
fought back.

Result: Leakage of private data to an external untrusted entity can be mitigated,
except if the connected CE device is compromised and leak information. Same as before,
TPA-based attacks are not considered yet.

This section shows that the integration of secure communication protocols, efficient
policy management and HSM can counteract numerous attacks presented in the related
work of Chapter 2. Software corruption and DoS attacks can be mitigated by security
mechanisms integrated within the middleware. Attacks related to unauthorized resource
access and TPA integration have to be deeper investigated in the next chapter.

3.4 Summary

This chapter presented a new middleware-based security architecture, namely the SME,
which leverages the new bandwidth and computation capacity of next-generation on-
board communication networks and enhances its security. The goals of the SME are
twofold: establishing security channels and providing suitable in-car access control
mechanisms. Working at the middleware level allows to abstract all security consid-
erations from the application logic and to develop a secure software layer based on
security and engineering-driven guidelines.

Regarding the C2X communications and integration of online services, the communi-
cation decoupling performed at the proxy level allows to internally preserve the security
and communication homogeneity. Third-Party developers of CE-based applications may
remain security-unaware, the proxy is in charge of assessing the security and trust of the
communication and supports the ECUs for the enforcement of appropriate security deci-
sions. The extension of the in-band middleware protocol gives the opportunity to cars to
enforce a STL-based approach for IFC. The STL is described in details in this chapter
and enables information releases respecting the confidentiality of both passengers and
car manufacturers.

72

C
ha
pt
er

4

Chapter 4
Information Flow Control in Cars

While providing efficient management for the establishment of secure communication
channels, the SME and the security communication proxy rely on quite simple access
control mechanisms that may be insufficient to mitigate the security and privacy risks
related to C2X communications. Besides the integration of Third-Party Applications
(TPAs) results in new on-board security threats, that the on-board infrastructure should
also consider.

This chapter presents an efficient and scalable security model providing Information
Flow Control (IFC) and access control at different levels: (1) at the network level in
order to efficiently control communications and information flows between on-board
applications developed by car manufacturers (2) at the application level in order to
deeply monitor TPAs and fully control their execution environment. Like in Chapter 3,
the middleware leverages the large bandwidth capacity of Ethernet/IP and serves as
glue to hold all security features together: across the on-board network and across the
different local levels of security enforcement.

First, Section 4.1 introduces in details a first formal IFC approach of this thesis, which
leverages a new automotive Decentralized Information Flow Control (DIFC) model cou-
pled to an isolation environment hosting the TPAs. Then, Section 4.2 describes and
explains a second approach making use of the STL-based model of Chapter 3 and Dy-
namic Data Flow Tracking (DDFT) techniques for a full control over the TPA. Finally,
Section 4.3 proposes a third IFC approach, which combines the two solutions developed
in the two previous sections, i. e., the combination of the DIFC model and the DDFT
techniques. The two first approaches are independent and present their own related work
and discussions; the last one proposes a comparative discussion and provides architecture
recommendations from a pure security point of view.

Parts of this chapter were previously published in Middleware-Based Security and Pri-
vacy for In-car Integration of Third-Party Applications [26], Practical Information-Flow
Aware Middleware for In-Car Communication [29], Leveraging In-Car Security by Com-
bining Information Flow Monitoring Techniques [28], and Middleware-based Security for

73

4 Information Flow Control in Cars

Hyperconnected Applications in Future In-Car Networks [23].

4.1 Decentralized Information Flow Control (DIFC)

Focusing on the security of the communication link, i. e., on authentication or encryption
and simple ACLs, will not solve all information security issues of distributed systems
like cars. The range of action of these mechanisms is limited to communications between
two on-board platforms, i. e., two ECUs. Thus they do not provide any solution against
mistakes at the application layer or untrusted communication partners, e. g., CE devices
or TPAs abusing from their capacities to leak sensitive information or misuse some on-
board resources. On the other hand, the staticity of the communication channels allows
car manufacturers to partly know on beforehand a big part of the traffic generated
by the ECUs. This knowledge can help them to define abstract zones including whole
ECUs or some applications and in which pieces of information from same sensitivity may
flow. The traffic may therefore be labeled depending on its sensitivity. Such abstraction
allows to delegate the design of the security management to a team of security experts.
These experts may only have a superficial understanding of the application, i. e., what
information comes in and out and can really fully focus on the management of this
security zones.

In order to formalize these zones and traffic labeling, this first approach rely on DIFC.
DIFC provides methods and rules to control which pieces of information can be ex-
changed and how they spread across the on-board network. The middleware is also
considered as a trusted computing base in comparison to the potentially flawed appli-
cations running over it. This software layer allows the car to act as a data safe by
regulating how the information is accessed and leaves the on-board network.

After having given an overview about traditional IFC approaches and related work in
Subsection 4.1.1, Subsection 4.1.2 introduces a DIFC model for automotive environment.
Then, Subsection 4.1.3 presents how such a model is integrated to the SME and to the
security communication proxy. Afterwards, Subsection 4.1.4 proposes a first discussion
about the solution advantages and disadvantages.

4.1.1 DIFC Related Work

IFC is not a new topic. Already in the 1960s, Lampson was demonstrating the insuffi-
ciency of only using access control mechanisms to protect sensitive data [105]. Informa-
tion leakage occurs when a first entity A is authorized to access an object of a second
entity B and discloses it to a third one C, whereas C does not have the object authoriza-
tion access from B. This confinement issue can be extended to the integrity level, when
A modifies a resource of B on behalf of C, even though C is not authorized to do so.

Originally used for the context of military multi-level systems [171], IFC is a type
of mandatory access control, which attempts to solve these issues. Principals, i. e.,

74

C
ha
pt
er

4

4.1 Decentralized Information Flow Control (DIFC)

persons, and objects, i. e., documents are assigned labels characterizing a sensitivity
level. The access decisions are regulated by a “can flow to” partial order. For example,
a principal labeled as “secret” can read a document of lower level like “confidential”
but not of a higher level like “top secret” (simple security property of the Bell-Lapadula
model [12]) and cannot write on a document of lower level (?-property [12]). This last
model is focused on protecting the information flow confidentiality, but others like the
Biba model [17] can insist on the integrity protection. In a similar way, an IFC-protected
object can be seen as having a contaminating or tainting effect, i. e., a principal having
access to a labeled object must be assigned the same security label and will transmit it to
all other objects it accesses like a contamination. However, this compartmentalization
of a system in label-based zones still remains coarse-grained and requires to have an
object declassification feature, i. e., a possibility to modify labels that should occur in
highly-trusted centralized units.

DIFC has been first introduced by Myers and Liskov in 1990s and allows a discre-
tionary control of policy decisions delegated to each principals and objects and not
relying on any central administration [130]. For example, every automotive application
and middleware could be in charge of their own labels and administrate them during
runtime in order to protect the user’s and car manufacturer’s policy as well as the car
integrity. The rest of this subsection focuses on two major lines of research related to
the enforcement of DIFC: (1) programming languages and (2) operating systems.

4.1.1.1 Programming Languages

Jflow [128] and its successor Jif [129] are java-based programming languages implemen-
ting a DIFC model. They provide program annotations expressing data security labels
and make use of custom compilers to track and enforce information flows within a pro-
gram. They rely on static code analysis. Variables are labeled based on their owners (i. e.,
some principals) and other principals can overwrite the labels, i. e., declassify and modify
them, only if all owners allowed it. Originally they do not provide any interaction with
the OS, e. g., for file or socket management and perform on a closed-world assumptions,
which can be invalidated if the program use dynamic extensions [67]. These languages
are only designed for a single sequential program without concurrency or dynamic label
update.

Following Jif-based approaches extended the language to make it fit some requirements
of real-world applications. The rest of the paragraph does not provide an exhaustive
list of Jif-based extensions, just some of the most relevant ones. SIESTA [70] allows to
combine Jif and SELinux [117] to label files and sockets as well and use the mandatory
access control functionality of SELinux directly from the application level. Several ad-
ditional extensions provide methods to dynamically update the labels hierarchy [71] or
methods to add new labels and principals after compilation time [170]. The SIF frame-
work allows to build Jif-based web applications, where labeled applications are mapped
as principals, can get authenticated and establish secure sessions [38]. Additional work

75

4 Information Flow Control in Cars

on robust declassification methods prevents principals from retrieving information likely
to be used to influence the IFC system [37].

Outcome: The development of automotive applications should not involve any cus-
tom programming language and add more complexity for the application developer like
security annotations in the source code. Additionally the approach, earlier explained in
this chapter, states a security at a coarser level for information flow, e. g., between ap-
plication blocks, and not at the variable or object level. Besides these languages cannot
be used to secure TPA, because by definition, TP developers are untrusted and do not
program in a secure and reliable way.

4.1.1.2 Operating Systems

In comparison to programming languages, OSs rather manage tags instead of policies
linked to principals. Tags identify groups of principals and allow to have just a few
policies managing all tags, instead of one per principal. Then, they perform dynamic
checking instead of static analysis. As the system runs, OSs determine the accurate
status of an information flow, but at a coarser level, since it is not possible to really let
OSs label all variables like previously. These OSs work with process labels (including
the tags), which can be stored for later use and which abstract the notion of principal
from the model. Finally they allow to use process labels for IFC but also for resource
access control.

Asbestos [52] is a UNIX-based OS enforcing DIFC at the process level, labels are used
to express the contamination of the process and its set of tags. Asbestos provides a way
to grant these tags between processes but does not address their revocation. HiStar [190]
follows the same model but at the kernel-level. As a consequence the secure base is much
smaller and the user-level can be untrusted. In HiStar, all threads request secure labels
changes and perform all operation in their own address space. IPCs are performed
through “gates” which protect control transfer and resource allocation to avoid covert
channel attacks. DStar [191] extends HiStar over the network, controls distributed
resource allocations to avoid covert channels and exchanges tags through the network
for trust delegation. Security is ensured by a system of cryptographic certificates for
tag delegation and easy revocation. Pedigree [149] proposes a trusted kernel module for
enforcement of IFC policies on legacy applications. The module is hooked to relevant
system call of the host, the enforcement is enforced either on application hosts or on
custom switches using a custom Ethernet-based protocol. The whole architecture relies
on a central server for policy synchronization.

Flume [104] is implemented at the user-level and not influenced by different OS ver-
sioning. Flume provides simple intuitive labels (i. e., secrecy, integrity tags and owner-
ship) and keeps track of the application labels in a central tag registry. Laminar [153]
is based on Flume and combine programming languages (i. e., a modified Java Virtual
Machine (JVM)) and kernel extensions. It supports process sharing objects. Programs
using Laminar include label-assigned parts of code called “security region”. DIFC rules

76

C
ha
pt
er

4

4.1 Decentralized Information Flow Control (DIFC)

are enforced when objects are exchanged between two security regions. DEFCon [122]
is based on a modified JVM enforcing the Flume model. DEFCon blacklists part of the
Java API and proposes a new API allowing to protect objects between competitive units
embedded in the JVM.

Outcome: In contrast to most of these approaches, automotive software components
are distributed over several hardware platforms equipped with different OSs. In order to
reduce the risk of errors, the latency and maintenance complexity, the IFC cannot rely
on any central entity and cannot be directly enforced by the hardware or its OS. As a
result, the security will be enforced at the application level and will not be able to control
the file access or socket management. But at the same time, official developers of car
manufacturers can be trusted to only access authorized files and authorized middleware
API. Therefore it may still be reasonable to only enforce the access control within the
middleware in order to control information flows between application blocks.

4.1.2 DIFC Model

DIFC is about monitoring the propagation of data of interest. The automotive approach
performs its monitoring on information flows, i. e., communications between on-board
applications via the middleware. Obviously several applications run on top of a same
middleware. For an easier security management, applications sharing the same security
concerns are regrouped on a same middleware layer. The resulting group of applications
and middleware is called service. Applications can share the same concerns in terms
of (1) confidentiality, because they process, exchange data of same sensitivity and (2)
integrity, because they trigger the same mechanisms or modify the same resources. For
this reason, like processes for the DIFC-enabled OS, each service is assigned a label
expressing their security concerns. The middleware, which is independent from the
potentially flawed applications and can be easily verified, is in charge of enforcing DIFC
with these labels. The rest of this subsection describes an automotive DIFC model,
adapted from [191, 104].

4.1.2.1 Security Labels

One security label is assigned to each principal, e. g., a service. Comparing labels of
two services allows to constrain the information flows between them and therefore to
protect the information integrity and confidentiality, for example by isolating potentially
corrupted data from critical applications or preventing unauthorized disclosure of private
information.

Labels consist of two components: the first characterizing the principal’s secrecy S,
the second its integrity I. S and I are two sets of tags. A tag represents the concern
of an individual about the secrecy/privacy (in S) and integrity (in I) of some data.
Tags are unique values in the system, implemented as bit-strings, they are called with
symbolic names, like xs. The subscripts s and i of xs and xi designate, respectively a

77

4 Information Flow Control in Cars

Figure 4.1: Label-based lattice. This example includes 2 secrecy tags as and bs and
one integrity tag ci. Boxes represent service labels. Grey boxes show labels
including ci. Arrows link labels between which information can flow.

secrecy- and an integrity-tag. The x specifies the principal whose security concerns are
characterized, i. e., the service x or the CE device of the driver x. The notion service
tag and user tag designate tags characterizing the security concerns of respectively an
on-board service or a user and her CE device. Secrecy tags are “sticky”: once added
to a piece of information, it cannot flow to a principal lacking the exact same tag. On
the other hand integrity tags are fragile: a piece of information loses it as soon as the
principal processing it is differently tagged.

As shown in figure 4.1, information flows between labeled principals can be represented
in a lattice following a form of mandatory access control. Information from a principal
labeled with the secrecy tags of SA can flow to a second principal labeled with SB if and
only if the tags of SA are included in SB. Inversely, information from a principal labeled
with the integrity tags of IA can flow to a second principal labeled with IB if and only
if the tags of IA contain the ones of IB. The partial order “≺” for labels (pronounced
“can flow to”) can be formally defined as:

LA ≺ LB iff SA ⊆ SB and IA ⊇ IB,

where LA = (SA, IA) and LB = (SB, IB)

Because the services are distributed over different ECUs and do not necessarily know
each other’s labels, the exchanged messages are labeled as well. When A sends a message
M to B with LA, LM , LB their respective labels, the property LA ≺ LM ≺ LB is enforced
by the middleware of A and B. Constraining the message label allows the message to be
disclosed by A (i. e., A can label M with LA such that LA ≺ LM) and then to be accepted
by B (i. e., B checks the condition LM ≺ LB and thus LA ≺ LB). For an automotive
scenario, data stored on the HU should be tagged with different values reflecting the
different drivers’ secrecy, so that only appropriate TPAs or CE devices can receive a
message containing a particular driver’s data.

78

C
ha
pt
er

4

4.1 Decentralized Information Flow Control (DIFC)

4.1.2.2 Tag Ownership

If information could only follow the partial order “≺”, the labeled messages would only
be transmitted to principals classified at an equal or higher level of secrecy and most data
would never be able to leave the car. DIFC decentralizes the management of exceptions:
each service S may be assigned a set of tags O, allowing it to derogate from the label
restrictions included in O. S is told to own the tag of O. Obviously no service should
own all the tags of the system; a service should own only the tags necessary to remain
functional.

A new partial order “≺O” (pronounced “can flow to, given O”) taking into account
the ownership to the tag of O can then be defined. Practically, a tag t included in O
confers the possibility for a service S to omit the restriction imposed by t. For data
flowing from A to B, except for the tags included in O, the label LA contains all the
integrity tags of LB and LB contains all the secrecy tags of LA. “≺O” is formally defined
as:

LA ≺O LB iff SA −O ⊆ SB −O and IA −O ⊇ IB −O,

where LA = (SA, IA) and LB = (SB, IB)

Like earlier, A with the ownership OA can send a message M and B with the ownership
OB can receive it if and only if LA ≺OA

LM ≺OB
LB. An untrustworthy TPA will not

be given any ownership and therefore will not be able to modify its own label in order
leak the driver’s data or access other driver’s data. On the contrary the proxy will be
given the ownership of all driver’s tags in order to be able to send a driver’s data to her
CE device. The proxy provides a high security level and is trusted to use its ownership
in a secure manner.

In order to express a new security concern, during runtime a service can create and
own a new tag. At its discretion, it can grant the ownership to other services. For each
new user U, the proxy generates a new secrecy tag us and grants it to the HU, so that
the HU can label and protect the private data of U.

4.1.2.3 Dynamic Label Assignment

A Dynamic Label Assignment (DLA) is an explicit request from a service A to another
service B to increase the label of B with a new tag. The DIFC approach in this section
considers TPAs as being enclosed in isolated cells on the HU. Like for a “black box”,
the HU can only monitor the inputs and outputs of the isolated cell and therefore of the
TPA. At first the TPA is empty labeled without any ownership and thus cannot receive
any sensitive, i.e., secrecy-labeled, information or contact integrity-critical functions.
For example, in order to exchange private data of the driver d, the HU, which owns ds,
imposes per DLA the TPA to extend its label with ds. The TPA cannot take the tag
ds out of its label later and is therefore only able to send messages to services including
ds in their label or ownership. The TPA is label unaware and does not manage its own

79

4 Information Flow Control in Cars

Figure 4.2: Example of label usage preventing a TPA to inappropriately leaking infor-
mation of 2 users A and B. Ellipses are on-board labeled messages. Colored
boxes are labeled components with the user’s tag as and bs of respectively
user A and B. The proxy authenticates the CE devices, creates the new tags
and as and bs and communicates with the HU database to grant it their
ownership. In order to send to the TPA a user’s raw data, the HU database
performs a DLA extending the label of the TPA.

label. Instead, a trusted dedicated service of the HU is in charge of it and filters all
inputs/outputs of that TPA.

For the purpose of this paragraph, Figure 4.2 is kept simple and illustrates an example
of how to use labels to protect the confidentiality of two users. The proxy owns the two
tags as and bs but only maps one tag to each communication interface. The two TPAs

are obviously running in two environment cells isolated from each other. Security here
partly relies on a good isolation of the cells. More information about these mechanisms
is provided in Section 5.4.1.

Reselling and scrapping the car are part of the vehicle life cycle and should also be
taken into considerations. DIFC can support these phases. The HU owns the right on
the private data stored in the car and could erase all sensitive data. Car manufacturers
could for example develop a procedure leveraging this point that could be performed by
mechanic approved by the car manufacturer. Such a solution is not further discussed in
this work.

4.1.3 DIFC-enabled Middleware

In order to provide suitable performance and to limit the risk of error, the DIFC moni-
toring is only applied to on-board information flows between services. Applications in
a same service share the same security concerns and therefore can be labeled together.
Services are isolated from each other in their own address space or physically separated,
i. e., on different ECUs. Enforcement of DIFC at the middleware level is indeed more

80

C
ha
pt
er

4

4.1 Decentralized Information Flow Control (DIFC)

Figure 4.3: Overview of the DIFC-enabled middleware architecture. A labeled message
M is exchanged between 2 applications (App.) of S and R services through
a secure channel. L and O designate the service label and ownership. xs, ys

and xi are secrecy and integrity tags. (SME: Security Middleware Extension,
PMM: Policy Management Module, SCM: Secure Channel Module,)

suitable: this software layer is common to every service, easily auditable and in charge
of the network communications. The architecture of the DIFC-enabled middleware is
depicted in Figure 4.3, for more simplicity the SME architecture has been simplified and
only focuses on the relevant modules. Applications in different services interact through
their middleware, which provides the functional logic for communication and protocol
implementation (SCM). The middleware header of every message is extended with a
field containing the message label, e. g., with the label of service S. The SCM makes sure
that the communication channel is valid and that the partial order ≺O is respected. For
this second task, the SCM is supported by the PMM which is aware of the service label
and ownership and can provide the right DIFC policy decision for both incoming and
outgoing traffics, e. g., the middleware of service R enforcing LM ≺OR

LR. Applications
are DIFC-unaware and do not take part of the label management. The remainder of
this section provides more specifications about the automotive label assignment, policies
and management.

4.1.3.1 Label Assignment

Each service x is labeled with its own integrity and secrecy tags (xi, xs) characterizing
its own security concern. The assignment of additional label tags or tag ownership is
defined by car manufacturers at design time and depends on the use cases the service is

81

4 Information Flow Control in Cars

Figure 4.4: Example of on-board label distribution over 3 use cases. The labels include
secrecy and integrity labels. For more simplicity, the services are not shown
and ECUs are assumed to run one service each. The naming of the label
follows the ECU abbreviation, whose security concern they express. The
ownership allows the Nav(igation) ECU, HU and proxy to take part in several
use cases.

involved in. During runtime, the proxy is the only one able to create new tags related
to a new user profile and to grant them to relevant ECUs, like the HU. The addition
of new services is not considered. Therefore no new service tag is generated during
runtime, i. e., after the car left the assembly line. But obviously, new service tags would
force the car maker to update the middleware label and ownership of every middleware
communicating with the new service.

A tag distribution was applied as example on three use cases and can be found in
Figure 4.4. The use cases concern the infotainment (customization), the safety (active
brake) and the engine control (driving management) purposes. They present different
levels of sensitivity, handling private information or triggering critical actions. A suitable
labeling allows to isolate the information flows in distinct areas not disturbing and
compromising each other. A specific configuration of the ownership label in trusted
ECUs also allows these information flows to be processed by ECUs and applications
involved in several of these use cases.

A second tag distribution approach is to follow the domain-based architecture of the
car presented in Section 2.2.1. Each service of a domain X gets assigned the tag X for
secrecy and integrity. Secure services on the edges of these domains, i. e., communicating
with other domains are given the ownership of the tags they require. As a consequence
simple services, i. e., without ownership, can freely communicate within a domain and

82

C
ha
pt
er

4

4.1 Decentralized Information Flow Control (DIFC)

go through secure services with appropriate ownership in order to reach services in
another domain. The secure services perform their declassification privileges based on
their ownership according to security policies predefined by car manufacturers. While
being extremely simple, this approach may not provide the expected fine-grained security
enforcement, especially during complex use cases and is therefore not recommended.

4.1.3.2 Label Policies

In addition to the application policies presented in Chapter 3, a new type of middleware
policy can be specified. These policies are still enforced in the SCM and evaluated in the
PMM but now carry DIFC information as well. As mentioned in the subsection 4.1.1,
DIFC allows to limit the number of policies and their complexity by enforcing logical
relationships on the labels. Depending on the service label assignment, the policies now
enforce the partial orders ≺ or ≺O. Practically they specify which labels are authorized
for incoming messages, and which label to add to every outgoing message. Defined by
the security experts, the label policies are defined during the design phase and remain
static during runtime.

4.1.3.3 Label Management

On-board services exchange messages for various purposes and may store them along
with their DIFC label. For example, a tracking application on the HU may frequently
request GPS coordinates and car status information, storing these data and their secrecy
label in order to protect the concerned driver’s privacy. However, in case of complex
data fusion involving different labels from users and services, managing the resulting
label may be problematic. Concatenating all labels together may lead to message that
may be refused by every on-board service. Instead prioritization rules have to defined, in
order to keep one secrecy tag and one confidentiality tag for every message. The labels
are kept simple and easy to be processed by the SME. Prioritization rules depend on the
tags and the relevancy of the security concern they have to protect. This paragraph only
gives an idea about how they should be designed. For example, a secrecy tag of a service,
handling sensitive information of the car manufacturer, should have a higher priority
than a user secrecy tag, because sensitive data for the car manufacturer should stay in
the car and not be disclosed to any user. These rules mostly concern the secrecy tags,
the integrity tags are “fragile” and dependent on the service and middleware producing
the data, i. e., realizing the data fusion. The choice of labeling the data with its own
service tag is specific to every service and its capacity of producing safe data respecting
a certain level of integrity. The prioritization rules are not expected to be extensively
used, only for car customization use cases, e. g., statistics about a driver’s driving, user’s
voice recording, picture management.

83

4 Information Flow Control in Cars

Figure 4.5: DIFC-enabled automotive scenario. Rectangles represent services running on
an independent middleware. Round boxes represent DIFC unaware applica-
tions, devices and files. Solid arrows represent authorized middleware-based
communications.

4.1.4 Discussion

In order to illustrate how the DIFC approach helps to build a secure on-board system,
this subsection focuses on the scenario presented in Figure 4.5. The label distribution of
this scenario has been established, so that the following on board communications can
be authorized. The proxy may simultaneously communicate with a HU Service, the TPA

and some external devices not part of DIFC-protected system; that is why it is empty
labeled and owns all the tags it needs. Then the HU Service may communicate with
first a service of sensor A, then a service of controller B, the proxy and finally a TPA.
Even if the HU database is not an active component, the resource is labeled as well so
that TPA and HU Service can get access to it. The CE device is virtually labeled by the
proxy after authentication, for more clarity the representations of the tag generation,
granting processes as well as the TPA DLA are omitted here.

4.1.4.1 Security Evaluation of an Automotive Scenario

The DIFC does not propose any hierarchy of privileges, on contrary all services are
mutually distrustful. As a consequence the effects of a successful attack or bug are
limited to the tags of the labels whose applications have been compromised.

After authenticating the CE device as belonging to an authorized user, the proxy, if
necessary, generates the user tags ds and di and binds the device to them. If new, the
proxy then explicitly grants them to the HU. The HU can after appropriately label the
driver’s data, label the TPA and act on the driver’s behalf, e. g., by requesting a TPA

DLA with ds and di. CE devices are untrustworthy components, they cannot handle
their own label, instead the proxy enforces at the edge of the network a DIFC-based
filter. In a same way, the TPAs cannot be in charge of their label. For this purpose they
run in an isolated cell and communicate through a dedicated part of the HU service

84

C
ha
pt
er

4

4.1 Decentralized Information Flow Control (DIFC)

which acts similarly as a proxy between TPA and on-board services.

Controlling information flows with a TPA: The TPA is minimally trusted and
is confined to the tags ds and di. The secrecy tag ds constrains the TPA to read only
sensitive data belonging to the driver. The ownership of the integrity tag di allows
the TPA to write on the driver’s data. The presence of di in its label would force the
TPA to receive di labeled information and prevent it from accessing other nonsensitive
information like configuration files. In the considered scenario, a malicious TPA is limited
to send messages only to the driver’s device and can only modify his data. A label only
including ds, without di or ownership of di, would limit its data access to “read-only”.
Because a CE device is bound to a user’s identity and communicates with the TPA, the
label of the TPA is limited to tags of only one user as well, so that they can communicate
together.

The isolation environment ensures that the TPA cannot exhaust or corrupt critical
HU resources. The environment allows to assign a single dedicated communication
interface between untrusted TPA and trusted HU service. Both system integrity and
confidentiality are maintained by the dedicated HU service. On one side, it unlabels
and applies DIFC filters to incoming messages. On the other side, it labels outgoing
messages with a label including ds and sometimes di depending on the invoked function,
e. g., (ds, di) for writing in the HU database.

Controlling information flows with a CE device: A CE device is restricted to
the tags of its owner. It can only contact services labeled with no or with the owner’s
integrity tag and therefore cannot modify data considering the integrity of another user.
In addition, the CE device of a user U can only receive us-labeled or unlabeled, i. e.,
nonsensitive, information, which limits the risk of information leakage. The proxy ge-
nerates the new tags necessary for the devices of the new users it communicates with.
It owns them and is empty labeled, in order to always be able to communicate with
any new device or Internet service. The scenario demonstrates a case with a CE device,
but the same DIFC mechanisms can also be extended to online services and other C2X
communication partners. Either these entities are logged in on behalf of a known person,
of an institution (e. g., local authorities) or directly on their own behalf (e. g., RSU).

Controlling information flows with the other on-board components: Labels
can also constrain information flows between services. The HU service can receive mes-
sages from ECU A only if the HU has the tag as in its label or ownership. Therefore,
even when forwarded by a multicast address by mistake, messages from A containing
sensitive information will never been handled and sent out by the proxy or by another
service without the tag as. On the other hand the HU owns the tags as and ds, the HU
can therefore make some messages from A available to the TPA through a declassifica-
tion process, i. e., a careful use of the ownership to take out the secrecy tag of A from
the data. An ECU B with bi in its label, will only receive data (e. g., call to trigger a
mechanism) from ECUs with bi in their label or ownership.

85

4 Information Flow Control in Cars

4.1.4.2 Limitations and Proposed Countermeasures of the DIFC approach

A successful attack should only impact the label of the compromised services. But an
attacker could also guess some tags and use forged labeled messages to get access to
sensitive information or critical functionalities. In order to limit these effects, a few
measures can be taken. First, the size of a service should be kept small, so that they
only handle a little number of tags. Then every message should be extended with an
unforgeable token specifying which tags are included in the sender’s label and ownership.
The token has to be signed by a trusted entity and easily verifiable by the receiver and
can prevent a compromised service to use any kind of tag. These solutions should reduce
the impact of an attack but were not further investigated.

TPAs are running in an environment isolated from the rest of the HU. Depending
on the environment capacities, attacks like exhaustion of the cell resources can be de-
tected and some measures can be taken. However, several users (e. g., a driver and
some passengers) imply to have several environments (e. g., Virtual Machines (VMs))
running simultaneously, i. e., one per user. This approach requires a lot of resource.
As a consequence, the feasibility and practicability will depend mostly on the platform
capacity, e. g., memory and CPU speed, and also on the cost that car manufacturers and
customers will be ready to pay.

4.1.5 Conclusion

This first approach proposes to use DIFC to solve the information security issues of
the car on-board communication infrastructure. It can be easily integrated within the
middleware and comply with the necessity to abstract security from the application
level. Labels, ownership and DLA allow to express the security concerns of different
levels of security required by all on-board applications. DIFC allows to compartment
the network in labeled zones preserving the information confidentiality and car integrity.
Such a model and an adapted proxy filtering are also convenient for the integration of
external devices and online services. However, DIFC alone cannot mitigate the risk
induced by TPAs. Carefully chosen isolation mechanisms and dedicated trusted services
need to be added. In addition, since the TPAs are labeled as producing necessarily user
confidential messages, the DIFC may be too rigid and unsuitable for various TPA use
cases generating a large amount of non sensitive traffic but requesting as input sensitive
information.

4.2 Dynamic Data Flow Tracking (DDFT)

DIFC showed to be quite suitable for static on-board use cases but less for the integration
of TPAs. The DIFC approach considers indeed the TPA like a black box, i. e., the car is
totally unaware of what happens within the executable and can only isolate it, monitor
the resources it consumes, its Input/Outputs (I/Os). A solution to provide a more

86

C
ha
pt
er

4

4.2 Dynamic Data Flow Tracking (DDFT)

fine-grained enforcement could be to get an insight of what is occurring in the running
application, for example thanks to DDFT.

DDFT was successfully applied in various security domains in order to shed light on
different aspects of the interactions of local and distributed components. Practically, it
allows to taint and track data of interest as they propagate within a running application
or system of applications. The second IFC approach of this thesis is completely inde-
pendent from the first one and considers on-board services exchanging STL-based labels
and not the DIFC ones. It proposes to leverage DDFT for cross-host taint tracking and
to integrate it with other automotive and distributed security mechanisms, namely the
SME and STL. The DDFT engine instruments the middleware of the TPA to follow and
propagate STL information through the network.

After having given an overview about DDFT related work in Section 4.2.1, Sec-
tion 4.2.2 describes in more details the DDFT engine and its relevancy for the auto-
motive purpose. Then, Section 4.2.3 presents the integration of the DDFT within the
automotive context and the SME. Afterwards, Section 4.3.2 provides a discussion about
the approach.

4.2.1 DDFT Related Work

DDFT qualifies the action of monitoring a flow of tainted data at runtime within a
running application (i. e., a process) or a running system composed of several processes.
Through DDFT, data of interest are recognized according to predefined taint configu-
rations and associated with metadata usually called taint tags.

DDFT is not a new topic, it was successfully applied for various security purposes
like detection and defense against security attacks [136, 148], malware analysis [188]
or privacy-oriented system monitoring [54], but also for non-security application like
visualization of information flow between components of a system [131] or software
debugging [8]. For the automotive context, DDFT could be applied to support the
on-board security with very untrusted use cases like the integration of TPA. It would
allow to track and protect privacy-sensitive information as it gets processed by the TPA

and released to other on-board applications. It could also allow to install the TPA on
critical ECU locations with more resources like directly on the HU and to track unsafe
data, raise alerts or restrict the usage of sensitive HU operations.

Originally, taint tracking was performed to follow the propagation of tainted data in
one single process, but also got extended to entire hosts thanks to VM- and emulator-
based systems. The rest of this subsection provides more information on these two
approaches and extends the topic to DDFT in distributed environment.

4.2.1.1 Single-process DDFT

Single-process DDFT tools [148, 98, 43, 36] instrument every machine instruction per-
formed by a process. For this purpose, they generally make use of Dynamic Binary

87

4 Information Flow Control in Cars

Instrumentation (DBI) frameworks like Pin [114] or Valgrind [135]. They usually suffer
from significant decrease of performance and need additional memory storage for taint
propagation, referred as shadow memory. They do not require any source code modifi-
cation or customized OS. Single-process DDFT was intensively investigated in order to
improve its performance, e. g., TaintTrace [36] and LIFT [148] combines efficient custom
instrumentation framework with code static analysis to speed-up the taint access.

4.2.1.2 Cross-process DDFT

Cross-process DDFT tools capture system-wide, generally OS-wide, data flows and
mostly rely on modified runtime environments [54] or emulators like XEN [11], QEMU [13,
188, 146]. They are usually heavyweight systems requiring an extensive maintenance.
They instrument every instruction performed in the host and as a consequence impose a
very significant overhead for the overall system. To alleviate such performance penalties,
several work tried to assist DDFT with hardware extension [45, 172]. TaintDroid [54]
alleviates these issues by regarding some libraries as “trusted”, i. e., not monitored.

4.2.1.3 DDFT and Distributed Environment

Solutions for DDFT in distributed systems generally offer little reusability and require
every peer to run the DDFT tool. DBTaint [46] targets data flows in SQL databases of
web applications to protect their integrity, e. g., against SQL injections or XSS attacks.
Neon [192] uses a modified NFS server to initialize and track the taints and to en-
force adapted filtering on inbound/outbound packets. Taint-Exchange [189] proposes a
generic framework based on libdft [98] allowing exchanges of taints over the network but
without proposing any concrete security model or policy enforcement. The automotive
approach [156] proposes a security model using a DDFT tool [98, 43] and network taint
exchanges for every application running on the on-board network. While enhancing the
security, these approaches will not meet the automotive latency requirements, if every
on-board application is instrumented.

Outcome: Considering the car requirements for low latency, this second IFC ap-
proach is oriented towards efficient single-process DDFT like in [189, 156]. The TPA is
DDFT-monitored, while trusted applications of the HU remain not monitored. Potential
misbehavior of the TPA is locally contained by the DDFT tool. Communications be-
tween TPA and other on-board services are secured thanks to the exchange of SLT-based
information and adapted policy enforcement in SMEs of trusted services.

4.2.2 Tracking and Controlling the Execution via DDFT

DDFT tools allow to monitor every machine instruction performed within a running
application, i. e., to monitor every system call and to track every data flow between
registers and memory. They raise a warning or stop the runtime in case of a behavior in

88

C
ha
pt
er

4

4.2 Dynamic Data Flow Tracking (DDFT)

Figure 4.6: Example of code with data dependencies (on the left side – in bold, the data
to taint) and taint propagation (on the right side). Line 4 is empty.

contradiction with its security policies. To do so, they mostly rely on DBI frameworks,
which inject custom code into the unmodified application binary depending on the in-
voked system call or encountered instruction, e. g., a piece of code for the enforcement
of a taint-based security policies. The DDFT monitoring can be explained by looking
at these three instances: i) the taint sources, ii) the taint propagation and iii) the taint
sinks. The rest of this section refers to Figure 4.6 and the pseudocode it presents.

4.2.2.1 Taint Sources

Taint sources are programs or memory locations, where data enter the monitored system
after invocation of a function or system call. If recognized as data of interest, they are
tainted and tracked. The taint value depends obviously on the protected assets, i. e.,
integrity and/or confidentiality. Originally DDFT was used to protect software vulnera-
bilities from being exploited and a simple binary tainting was sufficient to track untrusted
data, i. e., one bit of shadow memory tainting a byte of memory. But considering the
goals of this thesis to both protect the system integrity and the information sensitivity,
taints are required to express more values with regard to the input sources and their
sensitivity level. As a consequence, the data of the TPA may be tainted depending on
their STL, i. e., four bits of shadow memory tainting a byte of memory.

Then, taint sources also depends on which problem the security should tackle. The au-
tomotive scenario is less and less different from the computer world. All traditional I/O
channels used by the TPA can be considered as sources : inter-process communication
(e. g., pipe), filesystem, network socket and sensor input (e. g., temperature, pressure).
The DDFT tool monitors the functions receiveBuffer() (line 1) and readBuffer()

(line 2) and tags the buffers x and y accordingly. For instance, a buffer read from a
file of the user will be tainted with a STL=(2,2) or (1,1) depending on its sensitivity,
data from a file considered as the intellectual property of the car manufacturer with
STL=(*,3). Data directly from a sensor input, i. e., not linked to any user identity, can-
not be considered as sensitive and are tagged with STL=(0,0). The case of the network
taint source is treated later in Section 4.3.1.

89

4 Information Flow Control in Cars

4.2.2.2 (intra-)Taint Propagation

All along runtime, tainted data are tracked while being copied, altered or aggregated
by the application. Data resulting from different tainted inputs (e.g., processBuffer()
line 4) receive the most relevant taint, i. e., the higher trust and security level. In the
example, z is produced out of x and y, as a consequence the bytes computed from
x are tainted (1,1), from y (2,2) and from x and y (2,2). The taints are stored and
dynamically propagated in the shadow memory mapped to the real memory. For cost
reasons, the number of taint value and therefore the size of the shadow memory are
kept small and do not consider the data integrity. Since the development of the TPA

cannot be controlled, the whole binary and especially all data it modifies or produces
are considered as potentially unsafe to process. Besides considering this labeling, cases
of implicit data flow are not handled by this approach [43].

4.2.2.3 Taint Sinks

Like sources, taint sinks are function calls and memory locations, where the presence
of a taint is checked in order to enforce a policy. The policies concern decisions about
transmitting data to a specific function, or using the data as program control data (e.g.,
return address). Like sources, they are problem-specific. In the current case it concerns
functions and system calls writing to a standard output (e.g., in a file, write() on line
4) or sent them over the network (sendBuffer() on line 5). For writing in a file, the
data and file sensitivity have to be similar, i. e., private data in user’s personal files and
sensitive data of car manufacturers in files labeled accordingly. For this purpose, the
DDFT engine lists all accessible files and maps them with the data sensitivity that they
contain and can receive. As mentioned earlier, the case of the network taint source is
treated later in Subsection 4.3.1.

4.2.3 Middleware-based propagation of DDFT taints

If well configured, DDFT tools allow locally to eliminate numerous attacks related
to stack pointer overwriting, like buffer-overflows [4], format-string exploits [158] or
ROPs [160] while following the propagation of sensitive information. However, other
trusted automotive services cannot benefit from such security mechanisms without dra-
matic performance penalty. As a consequence trusted services rely on the secure imple-
mentation of their middleware and their SME, to protect them against attacks from the
TPA. The IFC between service and TPA is ensured by DDFT tool via exchange of STL
metadata through the in-band middleware protocol.

4.2.3.1 (extra-)Taint Propagation

Figure 4.7 graphically presents a few taint sources and sinks as well as the propagation
of taints between a TPA and a service present on other ECUs. The taint propagation

90

C
ha
pt
er

4

4.2 Dynamic Data Flow Tracking (DDFT)

Figure 4.7: Overview of the DDFT framework in the on-board network. The solid lines
show the I/O data of the TPA. The colored shapes represent different levels
of sensitivity that are expressed by the taint values (i.e., yellow square (1),
red triangle (2), blue round (3)). These STL taints are injected using binary
instrumentation (Injector). The Injector monitors the execution, especially
system calls (dotted lines) and the taint propagation between memory and
registers. m1 and m2 are tainted messages sent respectively to and from
the TPA. The TPA output m2 shows a combination of sources “round” and
“square” but not “triangle” and is therefore tainted accordingly.

mechanisms between the TPA and a HU service are performed through the middleware
and follow the same principle. The system calls, related to the network socket mana-
gement (lines 2, 6 of Figure 4.6 and bullets 3, 4 in Figure 4.7) are intercepted by the
Injector of the DDFT tool. For inbound messages (bullet 3), the Injector checks whether
the emitting service is allowed to communicate with the TPA, extracts the STLREQ of
the payload from the middleware header and taints the received data in its shadow me-
mory. In the case of data received from the proxy, where no STLREQ but a STLSTATUS

is specified, data are tainted as being private, e. g.with STL=(1,1) or (2,2) depending
on the data source. For outbound messages (bullet 4), the Injector checks if the TPA

is allowed to communicate with the addressee and adds the STL taints related to the
message payload in the middleware header. Both sides of the communication establish
a secure communication channel. After the message reception, the middleware of the
receiving side extracts the taint value from the payload and enforces the suitable security
policies.

4.2.3.2 STL-based Enforcement

Unlike the DDFT tool, the middleware and the SME of an on-board service does not
show much flexibility. They enforce static policies and cannot be aware of the require-
ments and specificities of each new TPA. The middleware therefore enforces a taint-based
filtering involving generic rules for all TPAs. On one hand, the monitored TPA establishes

91

4 Information Flow Control in Cars

a communication channel over a dedicated interface of the middleware to make the SME
aware of the communication with an untrusted TPA. On the other hand, the middleware
trusts the DDFT tool to provide accurate taint values. Based on this information the
SME decides, like presented in Chapter 3, whether the service can safely process the
data and whether the service is allowed to receive data with such a sensitivity.

4.2.3.3 DDFT Configuration and Security Policies

TPAs or their middleware cannot be trusted to enforce any security policy, instead all
policies are managed and enforced by the DDFT tool. Both static and dynamic rules
can be distinguished:

a) Static rules: These rules are embedded in the DDFT tool. They mostly concern
the STL taint management, i. e., taint values, definition of taint sources, propagation
and sink rules. They are defined by car manufacturers and cannot be overridden by the
dynamic rules. Additional rules constraining the behavior of a TPA can be applied to
prevent basic DoS attacks, e. g., the DDFT engine can monitor the TPA outputs to limit
their size and their emission rate

b) Dynamic rules: These rules are loaded with the TPA in a rule set, similar to
the one provided by an Android application. They define which on-board and C2X
communications are authorized and specify the trust level of online services and devices,
they can communicate with. This rule set has to be approved and signed by the car
manufacture after a testing process. Moreover, a TPA may ask the DDFT tool to
declassify some data, i. e., to taint them with a lower STL in order to send them to a
less trusted service. These cases have to be specified in the rule set as well and concern
the driver’s data only. For example the declassification of private information may trigger
the display of a warning pop-up asking for the driver’s approval.

4.2.4 Discussion

This subsection refers to the attack scenarios presented in Chapter 2 and describes how
this second IFC approach would react under attack. Both scenarios feature an attacker
getting control of the TPA by launching for example an attack related to the overwriting
of a stack pointer. By design, the DDFT can detect such exploits and stop the program.
As result, an attacker cannot compromise the TPA integrity to perform the any of the
2 scenarios and has to leverage another system weakness.

4.2.4.1 About the Integrity Attack Scenario

This scenario considers an unauthorized access of a HU resource (e. g., file or process)
aiming at disturbing the platform functioning. A DDFT engine is traditionally used to
track information flows in the application memory but they also monitors every invoked
system call and function. It can therefore blacklist the functions and processes that the

92

C
ha
pt
er

4

4.2 Dynamic Data Flow Tracking (DDFT)

TPA should not get access to and can restrict its file access in writing and reading. This
scenario also considers the case of a TPA sending bogus packets to an ECU in order
to disturb its functioning. In a similar manner, the DDFT engine controls the socket
management and only allows communication with authorized ECUs. Then based on the
received STL, provided by the DDFT engine, the ECU is aware of the potential risk and
adapts its packet processing.

4.2.4.2 About the Confidentiality Attack Scenario

This scenario mostly considers the release of sensitive information to the outside. TPAs

receive information through multiple ways: by accessing shared memory, via filesystem
access, with inter-process communications or from the network. On one hand, the
DDFT engine monitors every of these input channels and taints data coming from them
according to their sensitivity. On the other hand, the only way to release the information
is via the on-board network and then over the proxy. This work does not consider
information leakage through other means, i. e., physical port of the ECU (USB), or
display screen. The DDFT tool monitors the socket, which tainted information is going
through and to which destination and can therefore block an unauthorized flow. If the
DDFT tool cannot enforce a decision, the addition of the STLREQ value in the message
header allows the proxy to enforce a final decision based on the actual information
sensitivity.

4.2.4.3 About the Approach

Unlike OSs like Android, which control applications with a limited set of coarse permis-
sions, this IFC approach allows a very fine-grained security enforcement. The DDFT
tool monitors every invoked function, every I/O channel of the TPA and tracks every
byte of the application memory. The taint values, coded over four bits, offer sixteen
different values expressing as much sensitivity levels. Such monitoring allows the TPA

to remain functional even when simultaneously handling very sensitive data and commu-
nicating with untrusted sources. Considering the example shown earlier in Figure 4.7,
a TPA takes as input non-sensitive (TL=0) and sensitive (TL=3) data, but is still able
to generate outputs tainted as “not containing any sensitive information” (TL=0) and
send them out. Monitoring the middleware and injecting taints allows to export the lo-
cal DDFT benefits over the network. The in-band middleware protocol makes on-board
applications information security aware and contributes to a homogeneous security en-
forcement in the whole car.

4.2.5 Conclusion

This approach makes use of the complete architecture proposed in Chapter 3, i. e., with-
out modification of the in-band middleware protocol, as the first approach is suggesting

93

4 Information Flow Control in Cars

to. It extends the security architecture with a DDFT-based monitoring of the TPA and
adequate TPA–service communication interfaces. In comparison to the approach taken
in Section 4.1, DDFT allows to consider the TPA as a “grey-box”, i. e., without pre-
vious knowledge of the TPA, to partly understand and control what is performed within
the untrusted application. DDFT intercepts I/O related system calls and propagate
fine-grained tainting information all along the TPA data processing, i. e., from the data
entrance until their release to the network. Via a customizable API, the DDFT tool pro-
vides a flexible definition of taint sources, sinks and taint propagation policies. DDFT
operates transparently in unmodified OSs, independently of the hardware platform and
allows real-world legacy applications and TPA/middleware to be efficiently monitored.

4.3 Combining DIFC/DDFT

While providing locally on the HU a very fine-grained control over the TPA, the STL/
DDFT approach lacks a formal security model for ECU-to-ECU communications. On
the other side, the DIFC-based approach suffers from its rigidity and lack of control
over the TPA. As a result the third approach proposes to combine both of them and
to leverage a formal authorization model for communications between on-board services
via DIFC and the DDFT engine to control the TPA. Practically, depending on whether
they are authorized to communicate with a TPA, the middleware of a service and its
SME may dispose of two communication interfaces. The first one is designed for a DIFC-
based serialization of the middleware header and the second one optimized for headers
containing a STL taint. Figure 4.8 pictures an Ethernet/IP-based network including
three ECUs and describes how the security mechanisms are enforced. HU and controllers
may communicate with the TPA and are therefore DIFC/DDFT-enabled, while sensors
may not and are only DIFC enabled. Applications allowed to communicate with the
TPA present two communication interfaces embedded within the middleware. The first
one is dedicated to TPA communications and enforces the STL approach. The second
one is set for regular on-board traffic and enforces the DIFC policies.

The rest of the section is organized as follows. The architecture specifications of
the DIFC/DDFT coupling and related interface policies are presented in Section 4.3.1.
Then this last IFC approach is briefly discussed and compared with the 2 others in
Section 4.3.2. Finally Section 4.3.3 proposes a security conclusion for this chapter.

4.3.1 DIFC/DDFT-enabled Middleware

The DIFC/DDFT interfaces concerns the middleware layer of services establishing direct
communications with the TPA. It allows them to interpret STL taints based on their
DIFC label. Like for the DIFC- or STL-based approach , the applications of a service
are unaware of this interface and its enforcement.

94

C
ha
pt
er

4

4.3 Combining DIFC/DDFT

Figure 4.8: Architecture for DIFC/DDFT coupling. This on-board network features
three ECUs: a sensor, a controller and a HU. A TPA is running on the
HU and monitored via DDFT. Only few applications of the HU and of
the controller are allowed to communicate with the TPA via a customised
middleware offering two interfaces. The first one is dedicated to TPA com-
munications (arrows with short dashes) and follows the STL approach. The
a second one is for regular on-board traffic (arrows with long dashes) and
follows the DIFC approach.

4.3.1.1 Design Choices

Firstly, the TPA and the DDFT engine are not part of the DIFC model and are not
assigned any label. As a result, the TPA is allowed to receive information from the whole
car. At the same time, the DDFT engine provides accurate STL taints to communicating
remote services and gives them a precise idea of the sensitivity of the TPA output. For
example, like in Figure 4.7, even if the TPA receives as inputs highly sensitive data,
the output STL may still indicate that the payload was processed out of non-sensitive
data. Contrary to the DIFC approach but similarly to the STL/DDFT one, this third
approach allows the TPA to remain very functional, even when handling highly-sensitive
data.

Secondly, in this approach, TPAs and DDFT engine only receive messages with STL
taints. This allows to keep the DDFT engine simple, efficient and generic and not to
worry about the different architecture specifications of all car models (e. g., different tag
identifiers). Then, TPAs are most likely to receive information from on-board services
and from the outside, process them and communicate towards the outside. The amount
of traffic from the TPA to on-board services will remain minor. As a consequence, the
security should be based on a taxonomy oriented towards a secure information release
with the outside, thus towards the STL.

Thirdly, due to a limited number of taints and a high risk for privacy, the data

95

4 Information Flow Control in Cars

of only one user should reach the TPA. As a consequence, all monitored TPAs are
assigned one Car User IDentity (CUID). Like for the user tags, these CUIDs are defined
and distributed by the proxy. For each message exchanged between a service and a
TPA, a STL and a CUID are added in the header. The DDFT tool filters inbound
messages based on the provided CUID. The middleware of the concerned service can
easily characterize whose privacy is concerned and ensure the transition between the
STL and DIFC models.

Lastly, like the DIFC approach, the DIFC/DDFT approach does not make use of the
STLSTATUS or -REQ for communications between on-board services. The addition of such
a field in the middleware header could obviously improve the reactivity of the system to
dynamic use cases. But cars include very static architectures and C2X communication
channels involving on-board services, which are predefined and setup in a secure way.
The addition of a STL would as a consequence be superfluous.

4.3.1.2 DIFC/DDFT-enabled Service

As a consequence, all on-board services can send data to the TPA. Their middleware
just provide the right CUID (if these data are private) and a suitable STL value. The
DIFC labels are enforced to create information flows respecting their integrity and con-
fidentiality. Since the integrity of the TPA outputs cannot be assessed, the transition
between DIFC label and STL taint only focuses on the information confidentiality.

Traffic “On-board service → TPA”: For messages flowing from an on-board
service to a TPA, the sent STL value depends on the secrecy labels of the service:

• for a label involving tags expressing a high secrecy for the car manufacturer, the STL
gets a TL=3. The SL is not relevant since the data will not leave the car. The list
of high-secrecy tags is defined by the car manufacturer and available in each service
interface.

• for a label involving tags expressing the secrecy of a user, but not expressing a high
secrecy for the car manufacturer, the STL gets a TL=2 or 1 depending on their privacy
level. The SL depends on the user’s settings since it is her own data, but as a default
value a SL=2 is advised.

• in any other case, the STL gets a TL=0 and a SL=0.

Traffic “TPA → On-board service”: For the opposite case, i.e., when the service
receives a message from the TPA, the service middleware decides whether to pass the
data to its applications based on the received STL and its own label (a star in the STL
description may characterize any kind of value between 0 and 3):

• a STL=(*,3)1 forces the middleware to pass the data to an application handling highly
confidential data that cannot leave the car. Thus an application having a user secrecy

1STL=(SL,TL)

96

C
ha
pt
er

4

4.3 Combining DIFC/DDFT

tag in its label is not able to receive such data. An authorized service should also
include high secrecy tags of the car manufacturer in its label.

• a STL=(*,1) or (*,2) forces the middleware to pass the data to an application handling
the private data of a user. Therefore a service with a user’s secrecy tag corresponding
to the received CUID field should be able to get the data.

• a STL=(*,0) indicates that the data are not sensitive and can be passed to all kind of
applications.

These last rules do not consider the SL part of the STL. If sent to the outside,
a communication from a service has to go through a DIFC-based enforcement at the
proxy level, which is already statically configured. The SL is more relevant for unknown
and dynamic cases where security has to be evaluated and configured on-the-fly, like for
C2X communications involving a TPA.

4.3.1.3 DIFC/DDFT-enabled Proxy

Most TPA outputs will aim toward the outside. As a consequence, in addition to the
traffic regulated by the DIFC model, the proxy will face STL-based traffic from the TPA

and will have to enforce a suitable filtering. For the TPA traffic, the proxy enforces
more than just a STL-based filtering. The proxy also makes sure that the CUID is
appropriate for the communication, e.g., a received CUID of a user U communicating
with U’s CE device or an online service logged in with U’s personal account. Thus, the
proxy provides two types of filtering: (1) STL-based for communications with the TPA

and (2) DIFC-based for communications with other on-board services.

4.3.2 Discussion

This section proposes first to briefly discuss the DIFC/DDFT approach. In a second
phase, a comparison table as well as relevant evaluation criteria are given in order to
pinpoint the strengths and weaknesses of the three approaches presented in this chapter.

4.3.2.1 About the DIFC/DDFT-based approach

On one hand, the DIFC/DDFT approach leverages the DIFC model for all ECU-to-ECU
communications and on the other side a DDFT monitoring and STL labeling techniques
for TPAs. This last approach does not define a new IFC concept, but rather shows the
feasibility of coupling two different types of IFC methods. At a practical level, it benefits
from the formalization of the DIFC model for static use cases and of the flexibility of
the DDFT engine for use case requiring a more dynamic security enforcement.

97

4 Information Flow Control in Cars

4.3.2.2 Comparison of 3 IFC approaches

Table 4.1 proposes to summarize and compare the three IFC approaches. The evaluation
criteria, used to establish this table are based on the attack scenarios presented in
Chapter 2 and are formulated as yes-no questions. Depending on the answer more
technical details can be provided. The answer “Yes/No” expresses a partial fulfillment
of the question. The questions are listed here as follows:

• “Enforcement” Criterion: This criterion specifies where and how the secu-
rity is enforced, whether the security takes data confidentiality and integrity into
consideration and what kind of in-band protocol is used.

• “TPA Monitoring Paradigm” Criterion: This criterion specifies which moni-
toring or “box” approach is applied to the TPA, i. e., black for an I/O monitoring
or grey for an I/O monitoring with introspection of the TPA.

• Integrity Criterion 1 (IC.1) - Does the approach prevent ECUs from being
attacked/compromised by an attacker, i. e., having physical access to the on-board
network or access through the proxy interface?

• Integrity Criterion 2 (IC.2) - Does the approach prevent the TPA from being
compromised by an external attacker? i. e., may an attack be detected before it
actually compromise the TPA?

• Integrity Criterion 3 (IC.3) - Does the approach prevent HU resources from
being exhausted by a malicious TPA and as a consequence from disturbing the
standard HU functioning?

• Integrity Criterion 4 (IC.4) - Does the approach prevent remote ECUs from
being attacked/compromised by a malicious TPA?

• Confidentiality Criterion 1 (CC.1) - Does the approach prevent the TPA from
stealthily stealing sensitive data from user or the car manufacturer, e. g., via direct
file access? The category information access describes how the access to sensitive
information is restricted.

• Confidentiality Criterion 2 (CC.2) - Does the approach provide a privacy-
aware information release with external C2X communication partners? The cate-
gories Granularity and Flexibility designates respectively at which granularity the
access control can be performed and for which types of use case it is the most
suitable.

• Confidentiality Criterion 3 (CC.3) - Does the approach protect on-board ap-
plications from a system weakness leveraged by an external attacker, e. g., leve-
raging an application or network routing misconfiguration? The categories “TPA

98

C
ha
pt
er

4

4.3 Combining DIFC/DDFT

T
ab

le
4.

1:
T

ab
le

co
m

p
ar

in
g

th
e

th
re

e
IF

C
ap

p
ro

ac
h
es

of
C

h
ap

te
r

4.

IF
C

a
p

p
ro

a
ch

e
s

E
v
a
lu

a
ti

o
n

c
ri

te
ri

a
P

u
re

D
IF

C
b

a
se

d
S

T
L

/
D

D
F

T
-b

a
se

d
D

IF
C

/
D

D
F

T
-b

a
se

d

E
n

fo
rc

e
m

e
n
t

D
is

tr
ib

u
te

d
an

d
M

id
d

le
w

ar
e-

b
as

ed

•
fo

r
in

te
gr

it
y

Y
es

,
al

l
tr

a
ffi

c
Y

es
/N

o,
in

co
m

in
g

C
2X

tr
affi

c
Y

es
,

al
l

tr
affi

c

•
fo

r
co

n
fi

d
en

ti
al

it
y

Y
es

,
al

l
tr

a
ffi

c
Y

es
,

al
l

tr
affi

c
Y

es
,

al
l

tr
affi

c

•
in

-b
a
n

d
p

ro
to

co
l

D
IF

C
la

b
el

s
S

T
L

la
b

el
s

D
IF

C
&

S
T

L
la

b
el

s

T
P

A
M

o
n
it

o
ri

n
g

b
la

ck
-b

ox
ap

p
ro

ac
h

gr
ey

-b
ox

ap
p
ro

ac
h

P
a
ra

d
ig

m

In
te

g
ri

ty

•
IC

.1
Y

es
/N

o,
in

te
g
ri

ty
p

ro
te

ct
io

n
Y

es
/N

o,
in

te
gr

it
y

p
ro

te
ct

io
n

Y
es

/N
o,

in
te

gr
it

y
p

ro
te

ct
io

n

su
p

p
o
rt

b
a
se

d
on

su
p

p
or

t
b

as
ed

on
su

p
p

or
t

b
as

ed
on

D
IF

C
in

fo
rm

at
io

n
S

T
L
S
T
A
T
U
S

in
fo

rm
at

io
n

S
T

L
an

d
D

IF
C

in
fo

rm
at

io
n

•
IC

.2
N

o,
b

u
t

T
P

A
is

ol
at

io
n

Y
es

•
IC

.3
Y

es
,

b
y

T
P

A
is

ol
at

io
n

Y
es

,
v
ia

b
in

ar
y

in
st

ru
m

en
ta

ti
on

a
n

d
I/

O
fi

lt
er

in
g

an
d

I/
O

fi
lt

er
in

g

•
IC

.4
Y

es
/
N

o,
la

b
el

in
g

of
th

e
T

P
A

I/
O

Y
es

,
T

P
A

ou
tp

u
t

m
on

it
or

in
g

w
it

h
in

te
g
ri

ty
la

b
el

s
an

d
co

m
m

u
n

ic
at

io
n

s
v
ia

d
ed

ic
at

ed
ch

an
n

el
s

C
o
n

fi
d

e
n
ti

a
li
ty

•
C

C
.1

Y
es

,
is

ol
at

io
n

o
f

th
e

T
P

A
Y

es
,

in
st

ru
m

en
ta

ti
on

of
th

e
T

P
A

in
fo
rm

a
ti
o
n
a
cc
es
s

V
ia

st
a
ti

c
d

ed
ic

at
ed

se
rv

ic
es

W
h

it
el

is
ti

n
g

of
au

th
or

iz
ed

A
P

I
fu

n
ct

io
n

s
an

d
fi

le
s

•
C

C
.2

Y
es

,
P

ro
x
y

fi
lt

er
in

g
Y

es
,

P
ro

x
y

fi
lt

er
in

g
Y

es
,

P
ro

x
y

fi
lt

er
in

g

G
ra
n
u
la
ri
ty

b
as

ed
o
n

th
e

se
t

of
u

se
r

ta
gs

b
as

ed
on

th
e

S
T

L
ta

x
on

om
y,

h
y
b

ri
d

,
b

as
ed

on
ta

g
an

d
S

T
L

a
n

d
fo

r
m

u
lt

ip
le

u
se

rs
b

u
t

fo
r

a
u

n
iq

u
e

u
se

r
fo

r
m

u
lt

ip
le

u
se

rs

F
le
xi
bi
li
ty

su
it

a
b

le
fo

r
st

at
ic

u
se

ca
se

s
su

it
ab

le
fo

r
d

y
n

am
ic

&
st

at
ic

u
se

ca
se

s

•
C

C
.3

T
P
A

is
ta
rg
et
ed

Y
es

,
fi

lt
er

in
g

a
n

d
la

b
el

in
g

Y
es

,
T

P
A

m
em

or
y

an
d

I/
O

ta
in

ti
n

g

o
f

T
P

A
I/

O

A
se
rv
ic
e
is

ta
rg
et
ed

Y
es

,
D

IF
C

la
b

el
in

g
Y

es
,

S
T

L
la

b
el

in
g

Y
es

,
h
y
b

ri
d

tr
affi

c
la

b
el

in
g

o
f

on
-b

o
ar

d
co

m
m

u
n
ic

at
io

n
s

of
on

-b
oa

rd
co

m
m

u
n

ic
at

io
n

s
(D

IF
C

-
an

d
S

T
L

-b
as

ed
)

99

4 Information Flow Control in Cars

is targeted” and “A service is targeted” specify which IFC mechanisms are used
depending on the attack target.

DIFC/DDFT combines all advantages of the DIFC and the DDFT approaches and
can be considered as the best solution from a pure security point of view. However,
as indicated in the related work of the two first approaches, such security mechanisms
may suffer from significant security penalties. These technical issues need and will be
investigated in Chapter 5.

Additionally, regarding the TPA monitoring, it seems obvious that the monitoring
solution has to be defined based on the TPA and its technical characteristics. A TPA

that can be installed that can be directly installed on the HU may be monitored by
DDFT or by DIFC in an isolated environment, whereas a TPA requiring a specific OS
like Android will be monitored by DIFC and installed in a separated partition of the
HU.

4.3.2.3 Security Gains:

The beginning of this section compared three IFC approaches based on general criteria.
The rest of this section proposes to evaluate the same approaches with concrete attacks
performed on the use case of Section 2.3.3. Attacks are separated between 1) “attacks”
trying to bypass or not respecting the access control of the car (e. g., malicious but valid
software of a subcontractor running on the middleware of the car manufacturer) and
2) the TPA-based ones. First a short description of the attacks is provided, then the
responses to these attacks are summarized in Table 4.2 and 4.3.

Attack 1.1 - Unauthorized function triggering through intermediary ECU: B triggers
a function on C on behalf of A, whereas A is not authorized to trigger any function of
C. The letters may be replaced by an automotive middleware. For example, ABS tries
to trigger the “Sport” mode of the PCM via the HU. The HU has a function interface
for that, but the ABS is not authorized to communicate with the PCM.

Attack 1.2 - Unauthorized information access through intermediary ECU: B re-
trieves information from C, initially requested by A and forwards them to A. But A is
not authorized to communicate with C. The letters may be replaced by an automotive
middleware. For example, the TPMS, requests from the ABS information from the HU
about the car status, e. g., maintenance information, to send them to the original soft-
ware subcontractor via radio frequency. The TPMS is not authorized to communicate
with the HU.

Attack 2.1 - Unauthorized function access from a TPA: Unlike the subcontractor
software, where the middleware can be trusted because it was developed by the car
manufacturer. The middleware of the TPA should not be trusted. A TPA could therefore
leverage the middleware protocol (and for example the IFC metadata) and trigger a
function it should not. For example, a TPA may want to disable the ABS, while using
the secure communication channels opened between HU and ABS.

100

C
ha
pt
er

4

4.4 Summary

Attack 2.2 - Unauthorized data release from the TPA: Similarly, a TPA could lever-
age the middleware protocol (and for example the IFC metadata) in order to retrieve
sensitive data and send them to an untrusted online server. A TPA may be able to get
information from the GPS, ABS and HU, aggregate them and forward them outside. In
order to work the TPA needs all these information but should anonymized them, in this
case the malicious TPA will try to send them with a CUID.

Attack 2.3 - TPA DoS attack: the TPA either 1) excessively consumes the HU
resources, 2) sends messages over the network with an excessive throughput rate, or 3)
sends a remote attack to another ECU, e. g., buffer overflow.

Additional notes: Simple cases of an ECU trying to trigger an unauthorized function
or to get unauthorized data was previously discussed in Section 4.1.4.

The dedicated TPA service mentioned in Table 4.3 is a middleware service between
the isolated TPA and the communicating middleware. All traffic to and from the TPA

goes through it. This service is besides responsible to enforce DIFC rules instead of the
TPA. More details about this dedicated TPA service are provided in Section 5.4.1.

This discussion does not consider the case where an ECU gets compromised. The
whole IFC framework relies on the middleware of all ECU being trusted. Measures to
cope with compromised middleware were discussed in Section 4.1.4.2.

4.3.3 Conclusion

The DIFC/DDFT approach results in the combination of two IFC approaches, also
presented in this chapter. First, a DIFC-based model is enforced on on-board communi-
cations between services and provides formalism for the establishment of integrity and
confidentiality zones (expressed by the tags in the service labels). Regarding the TPA

integration, a major issue of the DIFC solution was its staticity and lack of flexibility
as for I/O monitoring. Unlike the isolation cell, the DDFT approach provides a flexible
framework for a secure TPA integration. While allowing a deep monitoring and com-
plete control over the TPA, the DDFT can be easily coupled to the DIFC model via
DIFC/DDFT interfaces. From a security point of view, this approach seems to be the
most suitable to simultaneously secure on-board communications, integrate TPAs and
C2X communication partners.

4.4 Summary

Automotive IFC is about monitoring and controlling how information is propagating
over the on-board network and within the ECUs. Consistent with the Chapter 3, this
chapter describes the integration of IFC techniques at the middleware level. Enforcing
information security at this layer allows to abstract the security and especially the need
for confidentiality (e. g., privacy, corporate secret) and integrity in security zones, where

101

4 Information Flow Control in Cars
T

ab
le

4.2:
T

ab
le

com
p
arin

g
th

e
th

ree
IF

C
ap

p
roach

es
for

attack
s

on
th

e
access

con
trol.

A
at

th
e

en
d

of
th

e
attack

resp
on

se
m

ean
s

th
e

attack
is

d
efeated

.
A
≈

m
ean

s
th

at
th

e
attack

is
m

itigated
.

A
×

m
ean

s
th

at
th

e
attack

is
n
ot

d
efeated

.

P
u

re
D

IF
C

b
a
se

d
S

T
L

/
D

D
F

T
-b

a
se

d
D

IF
C

/
D

D
F

T
-b

a
se

d

A
tta

ck
1
.1

:
T

h
e

A
B

S
is

la
b

eled
in

in
tegrity

w
ith

a
bs

i .
T

h
e

fu
n

ctio
n

o
f

th
e

P
C

M
triggerin

g
th

e
sp

ort
m

o
d

e
on

th
e

P
C

M
is

lab
eled

p
cm

i .
T

h
e

on
ly

w
ay

o
f

triggerin
g

th
is

fu
n

ction
v
ia

th
e

H
U

is
to

h
av

e
p
cm

i
in

th
e

H
U

lab
el.

B
u

t
it

is
n

ot
th

e
case.

P
len

ty
of

d
ata

h
an

d
led

b
y

th
e

H
U

d
o

n
ot

p
resen

t
th

e
req

u
ested

in
tegrity

level.
T

h
e

H
U

ow
n

s
p
cm

i
an

d
can

ad
d

it
to

th
e

m
es-

sag
e

la
b

el
if

a
p

olicy
allow

s
it,

e.g.,
fu

n
ction

trigg
ered

b
y

th
e

d
river

from
th

e
tou

ch
screen

o
f

th
e

H
U

.
S

in
ce

th
e

call
is

received
from

th
e

A
B

S
,

n
o

p
olicy

allow
s

it,
th

e
H

U
forw

ard
s

th
e

call
w

ith
o
u

t
p
cm

i ,
th

e
call

is
th

erefore
d

rop
p

ed
b
y

th
e

P
C

M
.
→

T
h

e
S

T
L

d
o
es

n
ot

con
sid

er
in

-
tegrity,

so
if

th
e

forw
ard

in
g

in
-

terface
on

th
e

H
U

an
d

th
e

se-
cu

re
com

m
u

n
ication

ch
an

n
el

to
th

e
P

C
M

ex
ist,

th
e

call
is

for-
w

ard
ed

.
→
×

S
am

e
an

sw
er

as
in

th
e

case
P

u
re

D
IF

C
b

ased
.
→

A
tta

ck
1
.2

:
T

h
e

T
P

M
S

is
lab

eled
in

secrecy
w

ith
tp
m
s
s .

T
h

e
fu

n
ctio

n
o
f

H
U

to
retrieve

m
ain

ten
an

ce
in

fo
rm

ation
is

la
b

eled
w

ith
h
u
s .

T
h

e
on

ly
w

ay
of

g
ettin

g
th

is
in

fo
rm

ation
is

to
take

ou
t

tp
m
s
s

fro
m

th
e

m
essa

ge
lab

el
an

d
ad

d
h
u
s

in
th

e
n

ew
m

essa
ge

lab
el.

T
h

e
A

B
S

ow
n

s
h
u
s

b
u

t
like

in
th

e
p

rev
io

u
s

case
h

as
to

evalu
ate

if
th

ere
is

a
p

o
licy

to
au

th
orize

th
e

forw
ard

o
f

th
is

ca
ll.

T
h

ere
is

n
o

p
olicy,

so
th

e
call

is
forw

ard
ed

w
ith

ju
st

tp
m
s
s

an
d

d
rop

p
ed

b
y

th
e

H
U

.
→

T
h

e
T

P
M

S
is

forw
ard

ed
w

ith
a

S
T

L
=

(0;0),
sin

ce
it

can
sen

d
in

-
form

ation
in

p
lain

tex
t

v
ia

rad
io

freq
u

en
cy.

T
h

erefore
all

received
sen

sitive
in

form
ation

,
e.g.,

w
ith

S
T

L
=

(1,1)
like

th
e

m
ain

ten
an

ce
statu

s
w

ill
b

e
d

rop
p

ed
b
y

th
e

m
id

d
lew

are
of

th
e

T
P

M
S

itself
b

efore
th

e
in

form
ation

reach
es

th
e

ap
p

lication
level.

→

S
am

e
an

sw
er

as
in

th
e

case
P

u
re

D
IF

C
b

ased
.
→

102

C
ha
pt
er

4

4.4 Summary

T
ab

le
4.

3:
T

ab
le

co
m

p
ar

in
g

th
e

th
re

e
IF

C
ap

p
ro

ac
h
es

fo
r

T
P

A
-b

as
ed

at
ta

ck
s.

A
at

th
e

en
d

of
th

e
at

ta
ck

re
sp

on
se

m
ea

n
s

th
e

at
ta

ck
is

d
ef

ea
te

d
.

A
≈

m
ea

n
s

th
at

th
e

at
ta

ck
is

m
it

ig
at

ed
.

A
×

m
ea

n
s

th
at

th
e

at
ta

ck
is

n
ot

d
ef

ea
te

d
.

P
u

re
D

IF
C

b
a
se

d
S

T
L

/
D

D
F

T
-b

a
se

d
D

IF
C

/
D

D
F

T
-b

a
se

d

A
tt

a
ck

2
.1

:
C

o
n

si
d

er
in

g
th

e
sa

fe
ty

cr
it

ic
al

it
y

of
th

e
fu

n
ct

io
n

,
th

e
d

ed
ic

at
ed

se
rv

ic
e

h
as

n
o

st
at

ic
in

te
rf

ac
e

to
fo

rw
ar

d
th

is
ca

ll
.
→

T
h

e
A

B
S

IP
ad

d
re

ss
ca

n
b

e
b

la
ck

li
st

ed
b
y

th
e

D
D

F
T

to
ol

.
If

th
e

T
P

A
ca

ll
th

is
ad

d
re

ss
,
th

e
D

D
F

T
to

ol
st

op
s

th
e

T
P

A
.

→

S
am

e
an

sw
er

as
in

th
e

ca
se

S
T

L
/D

D
F

T
b

as
ed

.
→

A
tt

a
ck

2
.2

:
W

h
en

re
ce

iv
in

g
p

ri
va

te
d

at
a,

th
e

T
P

A
is

la
b

el
ed

p
er

D
L

A
as

se
n

d
in

g
p

ri
va

te
in

fo
rm

a
ti

o
n

.
T

h
e

p
ro

x
y

co
n

si
d

er
s

al
l

la
b

el
ed

m
es

sa
g
es

fr
o
m

th
e

T
P

A
as

p
ri

-
va

te
an

d
n

ev
er

fo
rw

ar
d

s
th

em
to

an
u

n
-

tr
u

st
ed

se
rv

er
,

ev
en

if
th

ey
d

o
n

ot
in

-
cl

u
d

e
p

ri
va

te
d

a
ta

.
→
≈

B
y

tr
ac

k
in

g
in

th
e

T
P

A
m

em
or

y,
w

h
et

h
er

th
e

se
n
t

b
u

ff
er

in
cl

u
d
es

p
ri

-
va

te
in

fo
rm

at
io

n
,
th

e
D

D
F

T
ac

cu
ra

te
ly

ta
in

ts
th

e
m

es
sa

ge
b
y

in
je

ct
in

g
th

e
ta

in
t

ju
st

b
ef

or
e

se
n

d
in

g
th

e
m

es
sa

ge
.

T
h

e
p

ro
x
y

th
u

s
d

ec
id

es
,

d
ep

en
d

in
g

on
th

e
ta

in
t,

if
it

ca
n

fo
rw

ar
d

it
.
→

S
am

e
an

sw
er

as
in

th
e

ca
se

S
T

L
/D

D
F

T
b

as
ed

.
→

A
tt

a
ck

2
.3

:
1
)

T
P

A
is

is
o
la

te
d

in
it

s
ce

ll
→

2
)

th
e

d
ed

ic
at

ed
T

P
A

se
rv

ic
e

fi
lt

er
s

b
as

ed
o
n

th
e

th
ro

u
gh

p
u

t
fr

eq
u

en
cy
→

3
)

th
e

m
id

d
le

w
a
re

of
o
th

er
E

C
U

s
is

su
p

p
os

ed
to

b
e

ve
ri

fi
ed

an
d

p
ro

te
ct

ed
a
g
ai

n
st

th
es

e
a
tt

a
ck

s.
→
≈

1)
D

D
F

T
d

o
es

n
ot

p
ro

v
id

e
a

w
ay

to
li

m
it

th
e

re
so

u
rc

e
co

n
su

m
p

ti
on

(C
P

U
or

m
em

or
y
)

of
th

e
T

P
A

.
T

h
e

T
P

A
sh

ou
ld

b
e

te
st

ed
on

b
ef

or
e

h
an

d
.
→

× 2)
D

D
F

T
ca

n
d

et
ec

t
th

e
em

is
si

on
th

ro
u

gh
p

u
t

an
d

cl
os

e
th

e
T

P
A

if
it

go
es

ov
er

a
p

re
-d

efi
n

ed
li

m
it

.
→

3)
S

am
e

an
sw

er
as

in
th

e
ca

se
P

u
re

D
IF

C
b
as

ed
→
≈

1)
S

am
e

an
sw

er
as

in
th

e
ca

se
S

T
L

/D
D

F
T

b
as

ed
.
→
×

2)
S

am
e

an
sw

er
as

in
th

e
ca

se
S

T
L

/D
D

F
T

b
as

ed
.
→

3)
S

am
e

an
sw

er
as

in
th

e
ca

se
P

u
re

D
IF

C
b

as
ed

.
→
≈

103

4 Information Flow Control in Cars

the information can freely be exchanged. The middleware makes sure that these infor-
mation do not trespass the zones they have been assigned to, or if they have to, it makes
sure that they follow the IFC policies defined by car manufacturers and car users.

The first IFC approach consists in a custom DIFC model. DIFC can be efficiently
adapted to distributed systems, where an application or a group of applications can be
in charge of their resource management. For the automotive scenario, the middleware
and its applications are labeled together depending on their confidentiality and integrity
requirements. Different rules, called partial order, and communication labeling tech-
niques can be applied in order to exchange security metadata and control the data flow
of each on-board communications. It can also be applied to secure the integration of
external communication partner and TPA by means of isolation mechanisms and DIFC
filters enforced in dedicated communication proxy and on-board services.

While providing a formal model for information security, this approach remains too
static and rigid for unconventional use cases. A second and more flexible approach
combines STL-based enforcement and DDFT monitoring techniques. The DDFT engine
allows to fully control the TPA and the information propagation, while the STL proposes
a very flexible and simple security model for C2X communications.

The third approach leverages the two previous solutions: (1) DIFC model for static
on-board communications and a STL-enabled DDFT engine for TPA monitoring. The
coupling between the two models is performed by dedicated DIFC/DDFT interfaces al-
lowing simple correlation rules between DIFC labels and STL taints. This third solution
seems to be optimal in order to provide security with enough flexibility and adaptabil-
ity. However DIFC and DDFT mechanisms are often subject to significant performance
penalties and a rigorous validation of these approaches would not be relevant without
a proper functional evaluation. In the next chapter, the implementation specifications
of these approaches are described and some performance benchmarks are performed in
order to estimate the relevancy of these solutions.

104

C
ha
pt
er

5

Chapter 5
Prototypical Evaluation and Discussion

While developing several security approaches for middleware-based security and Infor-
mation Flow Control (IFC), previous chapters addressed the implementation questions
only superficially. Automotive requirements are very demanding and the security con-
cepts of this thesis involve several distinct components that should be combined ant
tested together. A proof of concept as well as a first functional evaluation are required
to prove the relevancy of this overall security architecture. Besides, Ethernet/IP is just
coming in the car development process, which means that no real-world platforms are
available for now. As a consequence a testing environment fitting the future hardware
specifications of the car needs also to be defined.

This Chapter aims at providing concrete information about the implementation of
security mechanisms at the middleware level and about the first evaluation phase. The
security architecture has been implemented and integrated within an IP-based middle-
ware, which is currently considered for an automotive purpose.

Firstly, the evaluation methodology as well as some benchmarks are presented in Sec-
tion 5.1. Then the implementation specifications of each major component are described,
tested and evaluated. Section 5.2 provides an evaluation of the security-enabled version
of the Etch middleware [56]. Section 5.3 deals with its associated communication proxy
and Section 5.4 with two Third-Party Application (TPA) monitoring types, namely
Decentralized Information Flow Control (DIFC) plus isolation based on the XEN R© hy-
pervisor [11] and DIFC plus custom version of the Dynamic Data Flow Tracking (DDFT)
engine libdft [98]. Finally all benchmark results are discussed together with the previous
security discussions in Section 5.5, and provide a first validation of these concepts.

5.1 Evaluation Methodology

The main goal of this section is to assess whether the middleware and its security can be
evaluated in a suitable way and if so, in which manner. By definition, the middleware
is a software layer providing flexible technical capabilities in term of networked services,

105

5 Prototypical Evaluation and Discussion

distributed resource management and security. This layer may serve as basis to build
and run new applications. As a consequence the middleware and its security have to be
well-architectured, reusable and provide a practical development process.

Traditionally, software and other IT systems are evaluated based on classical criteria
like performance, usability, scalability, security and robustness [68]. But the middleware
is particular, instead of filling a particular role, it can be seen as the Swiss army knife
of the software layer. Two challenges, called the Middleware-Design & Evaluation Gaps
can be identified [51] and be extended to a security middleware.

• Middleware-Design Gap: The car middleware needs to anticipate all require-
ments of future on-board automotive applications. Without becoming too com-
plex, difficult to understand, use and maintain, this software has to be complete
and sufficient for all expected use cases. Chapter 2 presented the IP-based auto-
motive use cases and the following chapters presented how and where security in
the middleware should be applied.

• Middleware-Evaluation Gap: The second challenge is about choosing what to
assess, i. e., which parts/characteristics of the middleware and which benchmarks
to consider. For a complex system architecture like cars, the middleware is used for
a plethora of use cases involving additional and non-middleware-related technolo-
gies. Several questions arise as for the evaluation: Which test applications have to
be considered? Which user features (e. g., for the developer) can be characterized
as appropriate? Which results obtained with a particular application X can be
imputed to the middleware? Are standard evaluation methods still valid? Is it
possible to evaluate a middleware out of the context of an application?

The remaining of this section provides answers for an automotive security context.
Subsection 5.1.1 describes the process of evaluating a middleware security proof-of-
concept. This subsection also presents which types of application and tests have been
performed. Subsection 5.1.2 presents the environment, in which such a new automo-
tive technology can be tested. Subsection 5.1.3 provides information and criteria about
automotive software development.

5.1.1 Functional Evaluation of a Secure Runtime

Such an evaluation basically concerns how the security middleware reacts and performs
during runtime. The design and setup phase are out of scope for now but will be
considered in the next sections. The core use cases of an automotive middleware are
an efficient RPC and notification capacities as well as opening secure communication
channels providing authentication, encryption and access control.

A danger, when implementing new software components, is to get lost in an explosion
of features. The first motivation when designing an automotive security middleware

106

C
ha
pt
er

5

5.1 Evaluation Methodology

should be to keep it simple. A first lightweight version, in C code and focused on the
core functionality of the middleware, was developed and extensively tested. A second
more complex Java version was extended and tested for more ambitious use cases within
the car. Both versions are later described in Section 5.2.

Evaluation tests should exclusively stress the middleware and its security mechanisms.
The complexity of the application running on top of it is therefore kept at its minimal
in order to focus the measurements on the performance of the secure middleware.

Scalability and robustness can be judged as less relevant for a proof-of-concept and
are out of this scope. Considering that the car infrastructure consists of 80 ECUs and
roughly the same number of middleware instances, the scalability need is relatively
limited. Besides the robustness criteria and tests for automotive software are already
defined in the ASIL standards [94].

Performance measurements allow to quantify the overhead of a system consisting of
several entities (i. e., clients and servers) communicating together over C2X or on-board
communication channels. For this purpose, measurements are repeated for different si-
tuations (e. g., on-board client and server, on-board server and a client CE device) and
for different types of traffic (i. e., exchanges of large objects or short notifications). Both
bandwidth and throughput should be computed. The bandwidth is a good performance
indicator to characterize the potential of exchanging large objects, whereas the through-
put is better to determine the system suitability for short-message communications at
high frequency.

Sections 5.2, 5.3 and 5.4, demonstrate the communication overhead for respectively
middleware (i. e., the basic components), proxy and TPA monitoring features. In or-
der to put in perspective the performance costs induced by each security mechanism,
measurements fall in several categories:

a) Blank measurements. They are performed without enforcing any kind of security
(i. e., plaintext communications) and give an offset value in order to evaluate the
security impact.

b) Minimum security measurements. They are resulting from entities communicating
over secure communication channels, i. e., providing authentication, integrity and
encryption through secure communication protocols like IPsec or SSL/TLS. They
provide a lower bound overhead imposed by a minimal security setup.

c) DIFC-based measurements. They highlight the performance penalties induced
by the enforcement of DIFC-based policies on on-board communications between
trusted services.

d) TPA monitoring measurements. They show the performance impact caused by a
secure TPA monitoring, i. e., either by DIFC & isolation or by DIFC/DDFT-based
framework.

107

5 Prototypical Evaluation and Discussion

For each measurement result, 10 measurements of 10.000 calls-plus-responses were
performed in order to calculate their means. The measurement scenarios are specified
in more details later in this chapter.

5.1.2 Testing Environment

As motivated in Chapter 2, Ethernet is already available in luxury cars for the diagnosis
purpose [157]. However the functional integration of Ethernet/IP for car has only been
recently investigated and promoted by the SEIS project [63]. Its introduction into the
car is only planned for 2018 [157]. While the future Ethernet/IP-enabled platforms
and most of their technical specifications still remain unknown, certain indications lead
to think that car manufacturers will equip their car with platforms more powerful than
today [21, 175]. On one side ambitious use cases for automated driving and infotainment
will require more resources. But on the other side a trend for simplifying of the on-board
E/E architecture emerged and tries to reduce the number of ECUs by means of capable
paravirtualized and/or multicore platforms [134, 124].

In order to test Ethernet/IP for cars, two options are available: 1) installing an
Ethernet/IP network coupled to a CAN bus in the car trunk or 2) setting up on a table an
on-board network with ECUs or commodity platforms. The Java-based implementation
has been tested for both approaches, the C version only with the second one. The results
of the next sections are performed with the second testing approach. The considered
testbed consists of computers interlinked with Gigabit Ethernet and running standard
32-bit Fedora Linux on an Intel Atom N270 (1,6 GHz) with 1GB RAM. This network
is composed of two or three computers representing: a ECU server and a ECU client
or a CE device, a proxy and a HU. The configuration of these platforms is comparable
to current UNIX-based HUs, which operate at 1,3 GHz [20]. The experiments have
been conducted when the hosts were idle, i. e., with no other user processes running
simultaneously.

5.1.3 Engineering-driven Middleware Development and Setup

It concerns the evaluation of factors related to the different phases of the car conception:
Development, Production and finally Post-Production phases. These phases are subject
to numerous functional requirements. The design, implementation and setup of the
security should be accordingly adapted.

5.1.3.1 Development Phase

All along this phase, which lasts approximately 4 to 5 years, car manufacturers de-
sign/refine the car E/E architecture. It includes choosing all expected functionalities,
communication interfaces and security mechanisms. Based on detailed bills of specifi-
cations, car manufacturers and subcontractors produce and test successive versions of

108

C
ha
pt
er

5

5.2 Middleware

ECU platforms and/or software. After what, the ECUs are cabled together, the software
components are configured (e. g., settings, policies, key distribution) and the last set of
tests is performed on a complete test car.

Development Evaluation Criterion: The software development is an iterative process,
the software goes back-and-forth between testing and refinement. Car manufacturers,
who have a full overview of the whole car, should be able to quickly and efficiently
implement, update and verify the software security components.

5.1.3.2 Production Phase

This phase starts with the actual large-scale production of the car. At this point, no
research or development teams work on the conception anymore. The development
vehicles have successfully passed all test for functionality, safety and security. During
this period, which lasts around 6 years, few minor changes are still possible but may only
be taken into account for vehicles that have not been produced yet. Earlier produced
vehicles can still be updated through normal maintenance services, e. g., online update
or visit to a maintenance garage.

Production Evaluation Criterion: During this phase, car manufacturers should be able
to easily reflash the flawed software components and update the distribution security
material of the car, e. g., stronger cryptographic keys, new protocols, new security poli-
cies. In addition, car manufacturers should still be able to easily update the software
and redistribute security material of unpatched cars.

5.1.3.3 Post-Production Phase

This phase ends the actual car production. However the vehicles still on the market have
to be maintained and supplied with spare components for both mechanical and electronic
purposes. This time period is adjusted depending on the car lifetime, generally around 15
years. Considering the potential of future remote software updates, their lifetime could
be significantly expanded. An efficient and durable security management is therefore
essential.

Post-Production Evaluation Criterion: During this last phase and like in the pre-
vious one, car manufacturers should be able to update the security material. For cost
saving, the security mechanisms should even be standardized and reusable for next car
generations.

5.2 Middleware

This section provides a description of the two middleware architectures used as im-
plementation bases. The results of their performance evaluations and their first inter-
pretations are then provided. A further discussion about the overall prototype is also
presented in Section 5.5.

109

5 Prototypical Evaluation and Discussion

5.2.1 Etch Middleware

The middleware Apache Etch was used as basis for this work implementation . Etch is
an Open Source Software (OSS) project under the Apache License 2.0, that was exten-
sively investigated as a middleware solution during the SEIS project [177]. According to
its online description, “Etch is a cross-platform, language- and transport-independent
framework for building and consuming network services. [56]” It is common practice in
the industry to use/develop an OSS in collaboration with other competitors. First the
software is not protected by any restrictive license, which makes its industrial adoption
immediate. With a large group of companies using it, the OSS gets more stable, cheaper
to maintain and easier to adopt as standard.

Etch Java-binding: Even if the Java-binding of Etch was not designed initially
for cars, it comes with numerous advantages. It first provides a comprehensive object-
oriented IDL and related compiler. They allow to specify in an IDL-based definition
file the API used by 2 communicating entities (i. e., client and servers) and generate
automatically the middleware skeleton and stub. Then Etch is transport-independent
and allows flexible RPC mechanisms, i. e., using both TCP and UDP. UDP is actually
more efficient on small foot-print platforms, because unlike TCP no channel session must
be maintained. A service consumer can directly contact the service provider and directly
access the service. Etch also features a flexible service management, which leverages both
broadcast and central repository for service discovery and sleep-time management [176].

Originally, Etch was not developed for a security purpose. The default Java-binding [5]
only proposes to establish SSL/TLS channels with an authentication of the server side.
With this in mind, the first security extensions have been to provide a mutual au-
thentication with SSL/TLS. The transport features were also extended with a secure
“at-least-once” UDP using AES-based encryption and custom authentication schemes
based on the EL-Gamal cryptography [22].

Then, the second and main task was to define where to enforce the DIFC or DIFC/
DDFT interfaces. For information, the architecture of Etch and a short description of its
functional and security components are pictured in Figure 5.1. More details about the
java binding are not necessary for the general understanding of this thesis. By design,
for each new communication session (i. e., one per client socket created, several with a
TCP server socket and one with a UDP server socket) a new class of Filter Chain (FC) is
created. Once initialized, FC starts a class Policy Manager (PM) (2), which contains all
DIFC policies and evaluation mechanisms. For inbound messages, FC receives from the
Messagizer a message payload and its security metadata, e. g., DIFC label, STL taint.
FC passes these metadata as well as the identity of the requested application to PM (2)
via the consult() function and receives the related policy decision, e. g., forward or
not forward to the application. Inversely for outbound messages, via the consult()

function, FC provides the identity of the sending application and receives the security
label or taint to add in the message header. For practical reasons, PMM and SCM are

110

C
ha
pt
er

5

5.2 Middleware

Figure 5.1: Architecture of the Etch Java-binding. The figure provides a short descrip-
tion of the functional components and presents a color hierarchy of the com-
ponents based on their security and IFC awareness. The dashed boxes rep-
resent the part of the SME, which have been implemented.

merged. SCM (2) is implemented in the FC class and enforces the decision of PM (2).
Basically, the Messagizer handles security metadata of the header like any other object

of the payload. The security part of Transport Handler, i. e., the code of SCM (1)
enforcing the decision of PM (1), only enforces a basic IP address/port filter. ECUs
communicate over IPsec together and as a consequence the application is unaware of
it. Promising solutions may come with the “Connection Latching” protocol, which
makes control information about the IPsec communication available from the application
level [185].

Etch C-binding: Because Etch originally was not developed for the embedded world,
Weckemann et al [179] developed a light C-based and automotive oriented version. C
is the programming language of most current automotive applications. This version is
optimized for platforms with small performance and is designed to be interoperable with
the Java-binding. The main motivation here was to keep this binding simple and not
directly map all functionality of Etch, but rather just the RPC and notification features
over UDP. This version does not provide any dynamic memory management, only static
allocations and processor stack pointers have been made available.

111

5 Prototypical Evaluation and Discussion

For both server and client side, the Etch middleware is composed of 3 main compo-
nents:

• main.c: The application logic is coded in this file. As pinpointed in the name, it
is the initialization point of the middleware (e. g., launching point of serversocket
or socket initialization) and its service. 2 threads are started here, one starting the
listening part and the second starting a routine, for example to launch a RPC.

• etch.c: This component is actually the logic transforming a C-based object in
its binary form and vice versa. The extraction of a first part of the header (Etch
function and Function ID) is also performed here.

• stub.c: This file includes the “real” middleware part and is where most of the
extensions have been performed. Invoked by the main.c, the functions of stub.c
are responsible for the header and payload serialization/deserialization. In addi-
tion it is responsible for the socket management, i. e., socket initialization, packet
emission and reception.

For this purpose, the stub.c was extended with a TCP functionality as well and with
the possibility for a server like a HU to establish multiple TCP connections. For this
feature, the middleware uses an array of file descriptor describing each new socket. The
select() function [112] retrieves which entry of the array to use in order to communicate
via the right socket. The car architecture is very static. It is therefore easy to start the
communication in a specific order and to logically find which socket to communicate
with.

Unlike the Java version, the enforcement of DIFC- or STL-based policies is performed
directly in the stub during the packet deserialization, as soon as the label field of the
header is encountered. For the moment, authorized labels and taints are statically stored
in an array and tested for each inbound message with a loop. Future implementation
features the use of a hash table instead, which could improve the system efficiency for a
large number of labels and taints. Similarly, the labels or taints to add in an outbound
message are hard coded in the function responsible for the message serialization.

Etch header serialization: A description of the serialization of the Etch packet is
presented in Figure 5.2. The Etch payload is composed by a series of objects: with the
first byte characterizing the data type (e. g., integer, array of characters), the four next
ones being a hash value of the object name and the rest being the actual value of the
data. Except for the Etch version which is directly a usable value, each object requires
5 bytes of “object header”. This characteristic allows a very efficient and robust payload
serialization. As a consequence, as soon as the DIFC label or STL taint is extracted, the
stub is directly aware of which type of policy to enforce and can if necessary immediately
drop the packet before completion. The DIFC label consists of 2 fields, one for the
integrity and one for the confidentiality, which can only contain one tag each, whereas
the STL taint is about one field of 6 bytes.

112

C
ha
pt
er

5

5.2 Middleware

Figure 5.2: Header serialization & in-band protocol of the Etch middleware. The lower
part of the dashed line represents the Etch header with the DIFC-based se-
rialization, while the upper part characterizes the DIFC/DDFT serialization.
The parts common to both serializations are in black, the IFC part of the
header is in red and specific to the IFC method.

Interface definition: Etch provides a compiler, which allows programmers to spe-
cify in an IDL-based definition file all function specifications and to have the middleware
stub automatically generated. This feature may also be extended with security meta-
data. These metadata may first configure the secure channel specifications, i. e., whether
an authentication is started, whether it is encrypted or whether it requires a specific in-
tegrity protection. Some may also take arguments and are an efficient way to specify
the DIFC label and ownership of a service, e. g., by directly giving the value of the tags
they need to consider. A commented service definition with is given in Listing 5.1.

Regarding the definition of DIFC-based policies, tags are defined for the whole service.
The code related to the enforcement of label-based rules is quite repetitive and can
automatically be inserted. Only the tag values should be different between the services.
Regarding the DIFC/DDFT policies, they are defined in the Chapter 4 and can be
specified in a same manner as the tags.

113

5 Prototypical Evaluation and Discussion

Listing 5.1: Definition of a Etch IDL file with specification of security metadata
1 /* Definition of the service and its DIFC label */

2

3 @DIFC_integrity(tag_i1) // definition of the integrity label

4 @DIFC_confidentility(tag_c1,tag_c2) // definition of the confidentiality label

5 @DIFC_ownership(tag_c3) // definition of the ownership

6 service Example_Service{

7

8 /* Function of A sending a message to B and returning (receiving from B) and integer */

9 @Direction(Server) // the message is sent to the server to be processed

10 @Encryption @Authentication // the communication is encrypted and authenticated

11 int function_1(string message); // function declaration

12

13 /* Function broadcasting a message */

14 @Broadcast // the message is broadcasted

15 @Authentication // the message contains an authentication code

16 void function_2(string message); //function declaration

17

18 /* Function of A sending a message to B and returning (receiving from B) and integer */

19 @Direction(Server) // the message is sent to the server to be processed

20 @Encryption @Authentication // the communication is encrypted and authenticated

21 @TPA-enabled(192.168.1.56:5555) // the function is authorized to communicate with a

22 // TPA at the specified IP address

23 @STL_inbound(sl_level,tl_level) // Inbound STL authorized to be processed

24 @STL_outbound(sl_level,tl_level) // STL to add to an outbound message

25 int function_3(string message); //function declaration

26 }

5.2.2 Performance Results & Interpretation

This first performance test aims at evaluating the average throughput of both Etch mid-
dleware versions, namely the Java-binding and the C-binding. In this setup, communi-
cations are occurring over TCP between two ECUs, i. e., two computers (a server and a
client) linked by an Ethernet cable. The client sends a first message containing a buffer
of 32 bytes of information and in return expects a buffer of 32 bytes from the server. No
computation is performed to generate these buffers. As presented in Section 5.1.1, these
measurements have been launched for different types of communication: a) in plaintext,
b) over IPsec, c) over IPsec and while enforcing DIFC. The results are presented in
Tables 5.1(1) and 5.1(2). Considering that ECUs are mostly using their middleware for
control and relatively short data, these tables only present the throughput means and
does not propose any bandwidth consideration.

Interpretation: Firstly, both implementations present similar performance. Even
if the C-binding has a slightly higher throughput, the Java-binding is a little bit less
impacted by the security measures. Unlike the Java Etch, the C implementation is a lot
simpler, does not perform any dynamic memory management and performs better.

Then the use of IPsec causes the major performance degradation of 26 to 29% and
is due to the process of encryption/decryption for each message. The use of specia-
lized HSM benefiting from hardware acceleration capacities may improve the overall
performance. The enforcement of DIFC-rules induces an additional and non-negligible
degradation of 19 to 21%. This penalty is significant but it can be limited by keeping the

114

C
ha
pt
er

5

5.3 Security Communication Proxy

Table 5.1: Throughput performance of the Etch middleware: (1) with the Java-binding
and (2) with the C-binding. The factor i presents the normalized means with
the case a) as reference, the factor ii does the same with the case b). (Enc.:
Encryption)

Mode
Throughput

(call/sec) i(%) ii(%)

a) Blank 1584 100 -

b) IPsec Enc. 1172 74 100

c) DIFC+Enc. 950 60 81

(1)

Mode
Throughput

(call/sec) i(%) ii(%)

a) 1976 100 -

b) 1402 71 100

c) 1106 56 79

(2)

number of tags low and still provides similar throughput performance as the low-speed
CAN. As a first conclusion, the performance penalty is significant. But with the high
bandwidth of Ethernet/IP, it is now possible to join small packets that were before car-
ried by several CAN frames (e. g., for an environment model). This results in a reduction
in the amount of exchanged traffic and in the need for a very high throughput.

5.3 Security Communication Proxy

This section provides a description of two Etch proxy architectures, i. e., java- and C-
binding. The results of their performance evaluations and their first interpretations are
then provided as well.

5.3.1 Etch Proxy

Like the Etch middleware, the Etch proxy is equipped with two bindings: one in Java,
the other one in C language. The architecture of the Java proxy is depicted in Figure 5.3.
The Java version implements all presented features except the STL-based filters. The C-
based version is simpler, it does not provide any service discovery feature an communicate
with one ECU but multiple external entities. It besides provides an implementation of
both DIFC- and STL-based filters

The concept of the proxy is quite straight-forward and based on service mirrors. On-
board services propose interfaces to their functions that the proxy can replicate and make
available to external devices. The external devices are unaware of the mirrors, which
give them the impression to directly communicate with the service. All car functions and
services are authenticated only once, when the ECU performs its initial authentication
handshake with the proxy. Even if the communications are decoupled, on-board services

115

5 Prototypical Evaluation and Discussion

Figure 5.3: Architecture of the Etch-enabled communication proxy.

actually get full inbound Etch messages extended with a DIFC- and STL-label and can
enforce their own security policies.

The proxy is supposed to be installed and merged to the MPA. The proxy has to be
aware of all information of both on-board and external communications. Considering
that the MPAs still are at the research level. No integration on the physical platform
has been possible yet. Instead, the proxy is implemented on a commodity platform like
the server and client previously used. All platforms are linked via Ethernet cables.

Etch Java-based Proxy: On the on-board network, both proxy and server are
equipped with simple Service Discovery (SD) features. As soon as the server is started,
it broadcasts its name and domain. If the proxy did not receive the message, the proxy
can also broadcast its presence to discover other servers. For each new SD message
specifying a function name and domain, the proxy creates an entry in ServiceRegistry.

Regarding the outside, the proxy also provides a SD interface, an external device can
contact it and receive a list of all available functions of ServiceRegistry. The device
chooses the ones it is interested in and announces its choice as well as the protocol
(secure or not) it wants to use. In return the proxy answers with an IP address and a
port where the device can consume the resource. At this moment the proxy initializes a
new MirrorManager, which in its turn initializes:

• a ClientListenerManager: This class starts the severSocket that the device has to
connect to. In addition it provides a queue for inbound messages, so that they all
go through the right filter. It also receives messages to directly send to the external
device. This class is part of the SCM and may start an SSL/TLS socketServer if
required.

116

C
ha
pt
er

5

5.3 Security Communication Proxy

• a ServiceConnectionManager: This class initializes a socket which get connected
to an on-board service. Like the ClientListenerManager it provides a queue for
outbound messages, so that they all go through the right filter. It also receives
messages to directly send to an on-board service. This class is also part of the
SCM.

• a FilterManager: Between the two previous managers, this class receives a message
from one class to the other. After having enforced the adapted IFC filter, this class
may pass the message extended or shortened to the Manager communicating with
the addressee. This class includes the PMM and part of the SCM, i. e., the part
enforcing the filters.

Such a dynamic mirror management allows to transparently have multiple services re-
questing multiple on-board functionalities.

Etch C-based Proxy: This proxy is simpler that the java version. It was built
based on a server version of the Etch middleware. It is therefore still composed of 3
components. etch.c is not modified, neither main.c, except that it does not include
any application logic (the proxy is application-unaware). Instead, the focus was brought
on stub.c. Firstly, it initializes now two communication interfaces with two different
threads. The first one is a socket accessible by an on-board service, the second one a
server socket accessible by an external device. The interfaces are programmed to be
cross-oriented, i. e., a packet arriving on one interface is forwarded on the other one.
The proxy is not dynamic, therefore it exists twice as many filtering functions on the
proxy as there are of available functions on the on-board service. Half of these filtering
functions is for inbound messages, the other half is for the outbound ones. Before
being forwarded, messages go through their specific proxy filter, DIFC- or STL-based
depending on whether a TPA is involved in the communication. Inbound packets are
directly extended with the appropriate IFC information and sent to the on-board service.
The header of outbound messages is partially deserialized in order to extract the label
and enforce a policy. The messages are finally sent to the external device without any
IFC information. For the moment only one on-board server can be connected. But
it is also possible to extend the proxy, like earlier, with an array of socket descriptors
allowing it to receive communications from multiple on-board servers.

5.3.2 Performance Results & Interpretation

This second experiments aims at evaluating the potential throughput of communications
occurring through the security communication proxy. Like previously, the communica-
tions occur between a server and a client and are traveling through the proxy. The proxy
forwards the exchanged messages in both directions. Messages are buffers containing 32
bytes of information and like previously no special computation is done to generate

117

5 Prototypical Evaluation and Discussion

Table 5.2: Throughput performance of the Etch proxy: (1) with the Java-based version
and (2) with the C-based version. The factor i presents the normalized means
with the case a) taken as reference, the factor ii does the same with the case
b). (Enc.: Encryption)

Mode
Throughput

(call/sec) (%)

a) Blank 98 100

b) TLS/IPsec Enc. 98 100

c) DIFC+Enc. 98 100

(1)

Mode
Throughput

(call/sec) i(%) ii(%)

a) 1163 100 -

b) 663 57 100

c) 632 54 95

(2)

them. Both sides of the communication use TCP. These measurements have been laun-
ched for different types of communication: a) blank communications in plaintext, b)
with encryption all along the communication, i. e., over IPsec between server and proxy
and over TLS between proxy and client, c) with encryption and while enforcing DIFC
between proxy and server. The results are presented in Tables 5.2(1) and 5.2(2).

Interpretation: Unlike the previous experiments, the results between the Java- and
the C-binding are very different. First regarding the Java-binding, this poor results
are due to an implementation issue, that could not be solved. A class of the proxy is
responsible to get the Etch message from a socket stream and put it in a queue, in order
to make sure that all packets go through the DIFC filter. But instead of retrieving a
valid Etch buffer, the function read(byte[] b) of the constructor InputStream returns
a buffer with only the first byte of the message and causes an error. The implementation
is then forced to check the size of the buffer, store it, wait for the rest and re-add the
first byte before putting it in the queue before filtering. This bug significantly slows
down the communication and causes the bad performance. Otherwise, the addition of
security imposes a latency insignificant in comparison to the InputStream issue.

Regarding the C-binding, the performance is much better. Like in the first experiments
the usage of security protocols is responsible for most of the performance degradation.
With such throughput, the addition of DIFC filtering on the proxy and on the server
becomes relatively small (∼ 2%). As a conclusion, in comparison to the first experiments,
the DIFC enforcement impact seems to be little significant at a lower frequency (∼ 600-
650 calls/sec).

5.4 Monitoring & Controlling the TPA

This section provides a description of two TPA monitoring and controlling methods
proposed in this thesis. The results of their performance evaluations and their first

118

C
ha
pt
er

5

5.4 Monitoring & Controlling the TPA

Figure 5.4: Schematic view of a HU architecture leveraging virtualization and middle-
ware for a secure TPA integration. Dashed arrows represent middleware
based communications. The communications are numbered as follows:
(1) from the TPA aiming directly to the on-board network
(2) from the TPA aiming to the TPA dedicated service of Middleware2
(3) from the dedicated service towards other local services or the network
The red cross characterizes the filters of the hypervisor blocking the commu-
nications, whereas the green check shows the same filters letting the commu-
nications through.

interpretations are then provided as well.

5.4.1 Isolation and Virtualization

Isolation and virtualization do not allow to directly monitor the TPA. Instead it provides
the TPA with a containable execution environment:

• all I/O of this environment, especially the network ones, can be caught and filtered;

• the environment gets allocated a certain amount of ECU resources (e. g., Central
Processing Unit (CPU) usage, memory) and cannot access more.

For this implementation, the Xen R© hypervisor is used [11]. Xen is an open-source type-
1 hypervisor, i. e., the hypervisor directly runs on the hardware, controls it and manages
the guest OSs running on an upper virtualization level. The integration of the TPA is
depicted in Figure 5.4 and shows the architecture of a HU hosting a partition dedicated
to the TPA. The trusted HU middleware components developed by car manufacturers,
namely Middleware1 and Middleware2, are running in the most privileged domain called
Dom0. This domain can freely communicate through the on-board network, i. e., the Xen
hypervisor does not enforce any filter. Untrusted TPAs run in an unprivileged cell called
DomU on top of a IFC-unaware middleware. Unlike Dom0, DomU is constrained by the

119

5 Prototypical Evaluation and Discussion

hypervisor and cannot directly contact the on-board network. Instead, Xen implements
a virtual bridge filtering all traffic between DomU and Dom0. Only messages between
the Dedicated TPA Service and DomU are authorized.

The actual IFC enforcement is performed by the Dedicated TPA Service. This service
enforces the DIFC rules and consists of several functions redirecting messages towards
DomU and messages from DomU. For messages to DomU, this service extracts the DIFC
label. If the cell is blank, i. e., did not previously receive any message, it labels the cell
according to the secrecy tag of the message and forwards it to DomU (i. e., via DLA),
otherwise it only forwards a message, if its secrecy label matches the label of the cell
(i. e., via the enforcement of the partial order ≺). For messages from DomU, it labels
the message according to the cell DIFC label. By default this service does not enforce
any rule on integrity labels. It labels messages from DomU with the integrity tag of the
cell, i. e., with an untrusted integrity label.

For this implementation, the 4.2 version of Xen is used and the DomU runs a Debian
6.0 OS with 256 MB of allocated RAM. The hypervisor solution was chosen due to
its availability and simplicity of usage. However, a similar integration of the dedicated
service could have also been performed for a microkernel architecture [91]. A future
extension of the hypervisor solution could be to make the middleware DomU-aware.
The middleware of the Dedicated TPA Service could monitor several statistics of DomU
(e. g., memory and CPU usage) thanks to an adapted XenServer [41] API and inform
the intrusion detection mechanisms of any TPA misbehavior.

5.4.2 DDFT Engine

The implementation of the DDFT-based IFC approach makes use of a custom version of
the libdft engine [98]. libdft relies on the Intel’s Pin [114] for DBI, i.e., in order to inject
custom code into an unmodified binary during runtime and enforce predefined policies.
In addition, this tool provides an implementation of the shadow memory allowing its
efficient management and for predefined machine instructions and systems call to track
data flows and propagate some taints accordingly. It also raises warnings or stops the
runtime in case of unauthorized behavior and provides better performance in comparison
of several other DDFT frameworks [156].

The libdft library which is attached as a Pin tool during execution is initially composed
of a “main” routine libdft-dta.c and of core files like libdft-core.c and tagmap.c.
Originally libdft provides a binary tainting, i. e., one byte of memory being tainted by
one bit of shadow memory. But the expressiveness of libdft got extended in order to
fit the STL-based tainting approach, i. e., one byte of memory being tainted by 4 bits,
and now expresses all combinations of the STL taxonomy. These modifications concern
mostly the core mechanisms of libdft. The second set of modifications concerns more the
function call monitoring, which is performed in the “main” component of the engine.
These extensions/modifications are better described in regard to the source file where
they were performed:

120

C
ha
pt
er

5

5.4 Monitoring & Controlling the TPA

• tagmap.c specifies the whole tagmap management. The tagmap or shadow me-
mory is the core data structure of libdft and is initialized as a bitmap, which keeps
the taint information for the virtual address space of a process, e. g., the TPA.
The main modifications concern increasing the size of the bitmap, adapting each
function tagging a specific portion of bitmap (e. g., taint one, 2, 3, 4, 5, 6, 7, 8 or
N bytes) with a specific STL value.

• libdft-core.c implements the whole taint propagation logic between registers
and memory locations. It uses the tagmap defined earlier and its management
functions. The bigger modifications of the tool consist in changing the binary
taint propagation into a 4-bit taint propagation. Each taint map of each register
has been extended and can be copied to the next map, when the Pin tool detects
that the data of a register are copied to another one.

• libdft-dta.c provides the implementation of all security policies enforced when a
system call (e. g., standard I/O) or a machine instruction is detected. The machine
instructions are mainly concerning the jmp and ret call. Their instrumentation
allows to check whether tainted data are jumping in a predefined critical section
or whether they are performing a register assertion, i. e., writing new data over a
register. Pin also provides hooks that allow to catch some system calls based on
their IDs. A system-call-specific policy can be apply, e. g., taint or untaint a me-
mory location. This functionality got extended in order to differentiate keyboard
inputs from file inputs based on their system call ID. In order to provide more
granularity of enforcement, the custom libdft directly instruments the functions
within the middleware and can stop the TPA execution, if anything goes against
one of its policies. As a consequence, when the TPA accesses a file, the argument of
fopen() are checked to verify if the TPA is allowed to access it in writing and/or
in reading. When the TPA reads from a file with fread, the received buffer is
immediately tainted according to the file sensitivity. When the TPA writes into a
file, libdft makes sure that the taint of the data matches the taint of the file. When
the TPA receives some data through a socket with read() for a TCP connection,
libdft directly extracts the STL taint and directly taints the payload location. Fi-
nally when the TPA sends data with write(), the TPA middleware serializes the
header with some dummy taints. But before being sent, libdft intercepts the call
and injects an appropriate STL taint.

5.4.3 TPA monitoring evaluation

This section provides the performance results of 3 test scenarios making use of secure
TPA monitoring techniques. These scenarios characterize 3 situations relevant to in-
vestigate: (1) the Client–Server scenario in order to determine the impact of DDFT
on a simple bidirectional communication, (2) the CE device–Proxy–HU–TPA scenario

121

5 Prototypical Evaluation and Discussion

Figure 5.5: Throughput and bandwidth performance of the Client–Server scenario. Mea-
sures are provided for several message sizes. The buffer sizes of the messages
are specified by the X-axis. Throughput measures are shown by the clustered
columns with their Y-axis on the left and commented with (1) in the legend.
Bandwidth measures are given by the lines with markers with their Y-axis
on the right and commented with (2) in the legend.

to compare the pure DIFC-based and DIFC/DDFT-based approaches, and (3) the CE
device–Proxy–TPA scenario to evaluate the DDFT monitoring for TPA-based C2X com-
munications. The DDFT performance is dependent on the amount of data processed. As
a consequence, the bandwidth and throughput results for various message sizes may be
also interesting to investigate. Each scenario is described as follows: a) the experiment,
b) a graph of the achieved throughput and bandwidth averages, c) a table presenting
the normalized throughput averages independent of any buffer size consideration.

5.4.3.1 Client–Server Scenario

This simple scenario stages a client sending a request to a server which plays the TPA

role and waits for an answer. The request consists of a buffer of 30 bytes including

122

C
ha
pt
er

5

5.4 Monitoring & Controlling the TPA

Table 5.3: Normalized throughput performance of the Client–Server scenario. Factor (i),
(ii), (iii) and (iv) take respectively (1), (2), (3) and (4) as reference.

Null (1) Enc. (2) Nullpin (3) libdft.v1 (4) libdft.v2 (5)

Factor (i) 1 0.51 0.44 0.34 0.29

Factor (ii) - 1 0.87 0.67 0.58

Factor (iii) - - 1 0.77 0.67

Factor (iv) - - - 1 0.87

a header with STL taint and a payload of 2 integers setting the size and type of the
answer. The answer is computed by integrating the 2 integers of the request into a
table of the requested size. The answer message is therefore about 22 + N bytes, with
N being the requested length and 22 being the message header size. This experience
aims at stressing both middleware and DDFT mechanisms, i. e., taint propagation and
system call instrumentation.

The measurements have been performed for different security situations and various
sizes of exchanged messages: (1) blank considers communications without security, (2)
Enc. adds the encryption to the communication link, i. e., IPsec, (3) Nullpin character-
izes the case where the server runs through Pin, but without any DDFT policy enforced,
this measurement provides the performance offset of the DBI framework, (4) libdft.v1
presents the server monitored by the original version of libdft, i. e., with binary tainting
and custom system call instrumentation, (5) libdft.v2 is similar to the previous case but
the monitoring is done with a libdft with STL-based tainting. The last two cases allow to
measure the impact of the libdft library but also to compare their tainting mechanisms.
The results can be found in Figure 5.5 and their normalized averages in Table 5.3.

Interpretation: Table 5.3 shows that the encryption is responsible for the most sig-
nificant performance decrease. The addition of the Pin tool adds another layer of latency
to the system (∼13% of decrease). After each instruction, Pin verifies if there is no po-
licy to enforce and compiles on-the-fly the code to run until the next policy check. The
performance decrease induced by the DDFT engine is then due to the instrumentation
of the network system call and the taint propagation mechanisms. An increase of the
number of taints increases the performance degradation by 13%. Unlike the original
libdft, the custom libdft overwrites the taint value in the shadow memory, instead of just
flipping taint bits. Despite the relatively bad performance of the DDFT (34% and 29%),
the impact of the DDFT is relatively constant for payload under 128 bytes. The system
can still achieve a similar performance to CAN [132] with the Ethernet/IP flexibility.

123

5 Prototypical Evaluation and Discussion

Figure 5.6: Throughput and bandwidth performance of the CE device–Proxy–HU–TPA

scenario. Measures are provided for several message sizes. The buffer sizes
of the messages are specified by the X-axis. Throughput measures are shown
by the clustered columns with their Y-axis on the left and commented with
(1) in the legend. Bandwidth measures are given by the lines with markers
with their Y-axis on the right and commented with (2) in the legend.

124

C
ha
pt
er

5

5.4 Monitoring & Controlling the TPA

Table 5.4: Normalized throughput performance of the CE device–Proxy–HU–TPA sce-
nario. Factor (i), (ii) and (iii) take respectively (1), (2) and (3) as reference.

Null (1) Enc. (2) Xen/DIFC/Enc. (3) DDFT/DIFC/Enc. (4)

Factor (i) 1 0.57 0.55 0.43

Factor (ii) - 1 0.96 0.75

Factor (iii) - - 1 0.78

5.4.3.2 CE Device–Proxy–HU–TPA Scenario

This scenario features a CE device sending messages to a TPA and expecting an answer.
The message first goes through the proxy, where it gets extended with a DIFC label.
On the on-board network, the inbound message then travels until the HU and gets
processed either by a dedicated service of the HU or a DIFC/DDFT interface before
being forwarded to the TPA. The message structure is similar to the case Client–Server.
The answer includes like previously an integer table, whose size was defined by the
inbound call. The answer takes finally the same inversed path. The TPA runs on the
HU computer, either in a Xen cell or monitored by DDFT or running freely on the HU
if not specified.

The measure averages of Figure 5.6 have been computed for several security configura-
tions: (1) for blank communications, (2) for encrypted communications, i. e., SSL/TLS
for the link CE device–Proxy and IPsec for the link Proxy–HU, (3) for encrypted commu-
nications with enforcement of DIFC-policies on the Proxy–HU link and the TPA running
in a Xen cell, and (4) for encrypted communications with enforcement of DIFC-policies
on the Proxy–HU link and the TPA being monitored by DDFT. These experiments
determine the impact of each security feature for a complex use case and also allow to
compare the performance of two IFC approaches. The normalized throughput averages
of each security configuration can be found in Table 5.4.

Interpretation: For this use case, the normalized impacts of the different security
features are actually constant and independent of any buffer size. Like previously, the
impact of the encryption is significant. The case (3) shows a very small impact of the
DIFC enforcement when compared to the mode (2) (∼4% of degradation). After, the
impact due to the DDFT (4) is quite substantial: in average 25% of degradation in
comparison to the mode (2). However this setup is not really realistic. With DDFT
a TPA and a CE device would directly communicate without any intermediary service.
This example is about comparing two IFC approaches for the same setup. Based on
the results, the Xen/DIFC-based approach provides better performance with up to 500
call/sec and 1500kBit/sec.

125

5 Prototypical Evaluation and Discussion

Figure 5.7: Throughput and bandwidth performance of the CE device–Proxy–TPA sce-
nario. Measures are provided for several message sizes. The buffer sizes of
the messages are specified by the X-axis. Throughput measures are shown
by the clustered columns with their Y-axis on the left and commented with
(1) in the legend. Bandwidth measures are given by the lines with markers
with their Y-axis on the right and commented with (2) in the legend.

126

C
ha
pt
er

5

5.5 Discussion

Table 5.5: Normalized throughput performance of the CE device–Proxy–TPA scenario.
Factor (i) and (ii) take respectively (1) and (2) as reference.

Null (1) Enc. (2) DDFT/Enc. (3)

Factor (i) 1 0.57 0.47

Factor (ii) - 1 0.83

5.4.3.3 CE Device–Proxy–TPA Scenario

This last scenario features “direct” communications between CE device and TPA, with-
out any intermediary service of the HU. This scenario can only be performed with
DDFT. A CE device sends to the TPA a message similar to the two previous cases and
expects the same kind of answer. The messages go through the proxy, where they get
extended by a STL taint. The answer messages take the exact same inverted path.

Like the previous scenarios, the measurements were performed for different security
configurations: (1) for blank communications, (2) for encrypted communications, i. e.,
SSL/TLS for the outside IPsec for the inside, and (3) for encrypted communications
with enforcement of STL-policies on the Proxy and the TPA being monitored by DDFT.
The results can be found in Figure 5.7 and their normalized averages in Table 5.5.

Interpretation: The impacts of the different security features are not surprising and
quite similar to what was seen for the last scenario: the encryption and DDFT impacts
are significant. But the experiment interest comes actually from the real values of the
achieved performance. First, the throughput averages of the measurements (3) stay
constant and independent from the buffer size at around 530 calls/sec. In comparison
to the measurements (3) of the previous scenario, the throughput values given by the
measurements (3) are between 3% (for buffer of 32 bytes) and 38% (for buffer of 512
bytes) higher and therefore achieve a higher bandwidth as well. As conclusion, this
last scenario can be considered as the most suitable for direct and TPA-based C2X
communications.

5.5 Discussion

This section provides a discussion about implementing security and especially IFC me-
thods at the middleware level and its evaluation. The discussion is segmented in four
parts: first (1) about the development of security within the automotive middleware,
then (2) about the measured middleware performance, after (3) about IFC recommen-
dations, i. e., which IFC approach to adopt for which use cases, and finally (4) about
some limitations of this evaluation.

127

5 Prototypical Evaluation and Discussion

Security Middleware Development: Developing security at the middleware layer
fits the requirements of Section 5.1. The definition of security interfaces directly in the
IDL-based file confirms that a small security team can have an overall but relatively
abstract view of the car security and still to be able to define all security interfaces,
i. e., required mechanism, security enforcement and decision points. In addition, this ap-
proach showed to be suitable for systems experiencing demanding testing phases. The
automatic generation of a secure stub code and code compartmentalization between se-
cure middleware and application allows to quickly modify the IDL-based file, regenerate
the stub without modifying the application logic, re-compile and re-flash the ECU.

Result Analysis & Discussion: The first goal of this chapter was to implement
a functional proof-of-concept. While the prototype achieves to implement the concepts
presented in Chapters 3 and 4, its evaluation only consists in a first step towards proper
validation. For example, this work does not test the suitability of the system for safety-
critical mechanisms. In addition to performance benchmarks, further tests should be
performed to test the system reactivity and robustness.

Based on these performance results, it can be determined that the usage of security
protocols is responsible for the most significant performance penalty. This decrease can
however be alleviated by the use of the cryptographic hardware acceleration of adapted
HSMs. Nonetheless, the usage of security protocols is necessary. No performance gain
should be obtained by letting some communications unprotected and as a consequence
easy to attack through eavesdropping and packet injection techniques.

After, DIFC-based mechanisms and TPA monitoring techniques are also responsible
for a second and significant performance decrease, which may not be suitable for all in-
car use cases. However when evaluating security for new technologies, the focus should
not only be on the performance loss induced by the addition of security but also on
the measured values. For all evaluated scenarios and with a “full” security package, the
secure middleware showed to provide a high throughput and modest bandwidth, i. e.,
more than 950 calls/sec and 2,3 Mbits/sec for on-board scenarios and 450 calls/sec and
2,1 Mbits/sec for C2X scenarios.

Then, it seems clear that middleware-based techniques will not be used for pure info-
tainment purposes, which generally require a very big bandwidth, e.g., audio/video or
picture transport. For these use cases, Ethernet-based protocols were recommended and
allow to save the latency induced by the IP header. As a consequence, the middleware
should not be directly compared to the MOST technology, but rather to buses used for
control data like CAN. Although these results showed a bandwidth higher than with
CAN-based systems, the panel of tested buffer sizes was limited due to some implemen-
tation reasons. The C-based middleware used in this work was optimized for relatively
small packet and could only process dynamic arrays containing 512 bytes of information.
Next versions will also be optimized for bigger buffers and may even perform better.

Additional results not reported here but performed with the same setup and security
middleware have already been showing better bandwidth performances with larger static

128

C
ha
pt
er

5

5.5 Discussion

arrays (1 kByte) but with poor throughput. The scenario client–server with security
(Encryption and DIFC) could reach 5,9 Mbits/second and confirms the improvement
potential of middleware-based solutions. With the same use of static big arrays, the
scenarios CE device–proxy–HU–TPA with DIFC & isolation and CE device–proxy–TPA

with DDFT could reach respectively 2,9 Mbits/sec and 4,9 Mbits/sec. The implementa-
tion can therefore be considered as suitable for use cases requiring relatively important
bandwidth, e. g., car customization, control of cabin features, retrieval of car statistics.

IFC Recommendations Chapter 4 demonstrated that DDFT was providing high
flexibility and fine-grained security enforcement and was a more suitable and secure so-
lution than the DIFC/XEN-based one. However some benchmarks tend to show that
isolation and DIFC may have better performance for some C2X cases. Besides, whereas
the complexity of an application does not influence the performance of an isolated envi-
ronment, the performance of a big application gets greatly impacted when using DDFT.
Tests performed with libdft for bigger applications like a web-browser [98] or a MP3-
player [156] showed more significant latency (up to 28 times slower). As a consequence,
complex TPA or whole untrusted OS requiring the information of a unique user should
use DIFC/isolation-based approach. Otherwise, applications requiring multiple inputs
from different sensitivity should be monitored with fine-grained DDFT techniques. But
for an optimal performance of the DDFT approach, the TPAs should remain light and
simple and maximize the use of “trusted”, i.e., non-monitored, libraries.

Additional Limitations: First, the hardware of these experiments was previously
and partly used for the evaluation of the original C-based middleware extended by this
work [179]. However it cannot account for the performance of a secure middleware
installed on a resource-limited platform. It only gives an idea about performance for use
cases involving relatively powerful platforms like the HU, the proxy and a CE device,
which nonetheless represent a significant part of the use cases for infotainment and
control data.

Finally, all measurements were performed in a small 2-to-3-node network involving
very simple applications in order to maximize the middleware stressing. However, the
car is a system of systems involving a plethora of technologies that were not tested here.
A proper and final validation of the secure and IFC-based middleware should include
the evaluation of real-car applications in “real-world” situations, e. g., in larger on-board
networks generating more “noise” traffic.

About the Use Case of Section 2.3.3: The main question of this use case is about
the monitoring method of the “my Driving Coach” TPA. Considering the diversity of
inputs, a DDFT seems to be preferable from a pure security point of view. Besides, the
TPA is not involved in any time-critical use case, seems relatively simple and light and
does not require to run in a specific runtime environment, e. g., like Android. Therefore
this TPA should be efficiently monitored by DDFT.

129

5 Prototypical Evaluation and Discussion

5.6 Summary

This chapter presented the implementation and functional evaluation of a security proof-
of-concept including (1) an IP-based DIFC-enabled middleware Etch (2) its associated
communication proxy and (3) methods for the enforcement of two IFC approaches,
namely DIFC/TPA isolation and DIFC/DDFT.

In addition to enhance the security standards of the on-board network, the security
middleware provides performances similar to actual automotive bus technology for con-
trol data like CAN. When tested for C2X scenarios, the security middleware, proxy and
TPA monitoring mechanisms showed to fulfill the needs of use cases requiring a relatively
big bandwidth (2,3 Kbits/sec) and a high throughput (∼ 450 calls/sec). Recommenda-
tions about which IFC solution to use have been proposed as well: DIFC/TPA-isolation
for large applications and “untrusted” OS used by a unique user and DIFC/DDFT for
lighter applications requiring multiple inputs from different sensitivity.

More than just evaluating the security framework in some particular scenarios, this
chapter demonstrated the suitability of implementing security directly at the middleware
layer. The IDL-based definition of all security interfaces and the automatic code genera-
tion of the policy decision and enforcement points fit particularly the modular approach
of the software development and the iterative testing process of the automotive world.

130

C
ha
pt
er

6

Chapter 6
Conclusion and Outlook

This Chapter closes this thesis. The contributions and results are summarized and the
conclusions are given in Section 6.1. Finally, an outlook on remaining problems and
implications that arose from this work are provided in Section 6.2.

6.1 Summary and Conclusion

For this thesis, several concepts and methods for middleware-based security on future
on-board networks were developed. First, the current car architecture as well as its
evolution were analyzed in Chapter 2. This phase allowed to identify several necessary
key factors for securing forthcoming on-board architectures. The rest of this section
proposes to summarize the contributions of this thesis and to highlight how they answer
the goals and requirements announced in Chapters 1 and 2.

Security middleware architecture The arrival of Ethernet and IP into cars
arises several questions. Of course, the future on-board applications will benefit from the
augmented bandwidth and security possibilities. Mature security protocols guaranteeing
authentication and encryption will be indeed instantly applicable. But even if it will
immediately prevent attackers to eavesdrop any communication or insert a new on-board
ECU, it will not be sufficient to solve all automotive security and privacy issues.

The middleware plays a central role in the communication management and is also
suitable to abstract the security interfaces. This thesis presents a middleware architec-
ture allowing a consistent on-board security management at several levels of the commu-
nication stack and of the resource access. Presented as an extension, this architecture
does not depend on a specific middleware implementation.

Regarding the security goal, middleware-based security cannot protect alone against
all security attacks of Section 2.3. But thanks to concrete mechanisms leveraging future
automotive HSMs and automating the establishment of secure communication channels,
the middleware provides a secure way to define a distributed access control within the
car and may solve the remaining security issues. At a local level, secure coding practices

131

6 Conclusion and Outlook

limit the risk of security exploits resulting from stack pointer overwriting attacks. But
most important, the middleware allows to automate the policy management, setup and
enforcement. These enforcement and decision points consist of abstract interfaces allow-
ing to recognize exchanged data as being damaging for the system integrity or as being
confidential and can invoke security mechanisms handling them in a proper manner.
The rules defining these integrity and confidentiality considerations are defined in the
next contributions.

Regarding the functionality goal, the security middleware provides better performance
than CAN, but worse than MOST and still allows its application layer to fulfill its mission
for safety feature and data control (Requirement 1 in Section 2.4). The middleware
modularization enables flexibility of use and provides three security versions that can
be adapted to the ECU capacity (Requirement 2). Additionally, its configuration partly
static, partly dynamic allows to optimize the settings for car startup-delay and power-
saving (Requirements 3 and 4).

Regarding the engineering goal, the automatic generation of secure communication
stub and of security enforcement code allows an efficient and consistent software deploy-
ment, easy to correct, verify and maintain (Requirement 6). This flexibility allows to
manage the security code all along the car life span independently of the application
running above (Requirements 7 and 8).

Security communication proxy The customizable and non-regulated nature
of CE devices and other online services also raises numerous security concerns about
how information may impact the car or the driver. The security proxy, proposed in
this thesis, is located on the edge of the network just under the car Multi-Platform
Antenna (MPA) and aims at mitigating the C2X risks. The approach basically consists
in decoupling all C2X communications. External communication partners are unaware
of it, may use a wide range of communication protocols and are not required to follow
any security guideline (Requirement 7). In order to qualify these partners and the
communication situations, a taxonomy was developed and quantify their Security &
Trust Level (STL). Internally, a unique secure middleware-based protocol is used. The
proxy enforces domain- and IFC-based filtering on the whole C2X traffic, evaluates on-
the-fly the STL of the inbound traffic and therefore supports the car integrity protection.
The STL information is carried internally via a middleware-based in-band protocol and
allows every ECU to take holistic security decisions as for processing a received message.
Inversely, the proxy enforces on outbound traffic filter rules stopping all confidentiality
attacks. Finally the centralization of all C2X communications around the proxy and its
MPA allows a flexible integration of new standards and STL update (Requirement 5).

Automotive Decentralized Information Flow Control (DIFC) model Se-
curing the communications between two on-board platforms thanks to authentication
and encryption is essential, but a security model for function access and data manage-
ment is still required. This thesis proposes to solve this point with a formal authorization
model based on DIFC. Function invocations and data exchanges are abstracted as in-

132

C
ha
pt
er

6

6.1 Summary and Conclusion

formation flows. The control over these flows is enforced distributedly at the on-board
middleware layer and on the proxy when these flows are entering or leaving the car.
The security here relies on methods for labeling the asset to protect, e. g., a function, an
application, a database, an exchanged message.

This model focuses both on the integrity and confidentiality of the asset. Instead
of enforcing a specific rule for each asset, only two types of policies are necessary, the
policy decisions are based on conditions on labels. This model is multipurpose and allows
security-consistent and controlled data exchanges between ECUs. As a consequence, the
access to critical functions depends on the integrity level of the sender and limits the
attack capacity of an attacker. Regarding the confidentiality attacks, confidentiality
labels allow services and proxy to be aware of the data sensitivity and to eliminate the
risk related to information leak. At a functional level, DIFC has been demonstrated to
add an acceptable latency with performance similar to CAN (Requirement 1).

Additionally, DIFC enables a secure integration of Third-Party Applications (TPAs)
and external communications partners. Nonetheless, DIFC requires in addition an isola-
tion environment to contain the TPA like XEN and to monitor its I/Os. Like the proxy,
this TPA integration allows TPAs to be security-unaware and therefore to simplify their
development (Requirement 7)

Automotive Dynamic Data Flow Tracking (DDFT) techniques A deeper
and more dynamic TPA integration requires higher security standards in order to protect
the car integrity and the information it contains. This thesis proposes to leverage DDFT
techniques to secure this use case and its communications. First, when well configured,
DDFT eliminates the risk of attacks based on stack pointer overwriting. Then all along
the execution, the engine taints TPA inputs according to their STL sensitivity, follows
their propagation and can determine the output sensitivity. In addition to control the
file access, it enables a real security coupling over the middleware. Via dynamic binary
instrumentation, TPAs can only access part of the API and of the on-board resources.
This “whitelisting” prevents direct integrity attacks on critical assets. Regarding the
confidentiality, the DDFT engine extracts the STL information of any network input
and injects a STL into all outputs. Direct communications between TPAs and external
environment are filtered based on their STL at the proxy level. For communications
occurring between a TPA and an on-board function, an interface on the function side
enables a coupling between STL- and DIFC-based enforcements. While having shown
some limitations in term of performance, the DDFT techniques are still suitable for light
TPAs, which are supposed to be mostly infotainment oriented and not taking part in
any time-critical use case. Like the proxy and the DIFC approach, DDFT allows TPAs

to be security-unaware and simplifies their development (Requirement 7).

Conclusion In conclusion, this thesis investigated how to secure the on-board
network via its middleware and for this purpose, presented a security architecture com-
bining different information flow control techniques that enhance the on-board security
management. All contributions provide solutions to protect the car integrity, to elimi-

133

6 Conclusion and Outlook

nate the risk of information leaks and fulfill the security goal set for this thesis. Then
at a functional and engineering level, this security architecture fulfills all requirements
of Section 2.4 (Requirements 2, 3 and 4 could only quantitatively be evaluated).

Regarding the IFC approaches, several architectures were assessed 1) a pure DIFC
version, 2) a STL/DDFT version and finally 3) a DIFC/DDFT version. While the
second lacks formal verification and ease of maintenance, the first and third only differs
by the way they integrate TPAs. No clear recommendation could be made; the two
approaches are complementary. The integration of a full TPA execution environment
will benefit from the pure DIFC approach and a XEN-based isolation, whereas a TPA

directly installed on a critical part of an ECU will have to be fully controlled by DDFT
techniques. While potentially performing worse, the DDFT-monitored TPA will at least
benefit from more flexibility and from a more fine-grained security control.

6.2 Outlook and Implications

Real-world implementation This thesis only partly addresses the implementa-
tion of the proposed middleware-based security architecture. Even if the authorization
models presented in Chapter 4 were fully implemented and integrated in an automotive
IP-based middleware, only parts of the Security Middleware Extension (SME) archi-
tecture of Chapter 3 were implemented. The modules for intrusion detection, crypto-
services and key management are still missing. Further implementation of the SME and
integration with a HSM should be also performed.

Then, the proof-of-concept presented in Chapter 5 mostly makes use of a light version
of the automotive middleware Etch and was tested for relevant but limited situations
in a quite small network. Besides, the requirement for resource-limited platforms was
also only considered qualitatively. Further validation would require to test the secu-
rity architecture with other versions of the middleware in real conditions, e. g., with
automotive-specific platforms and in bigger networks producing more noise traffic.

Migration strategy Ethernet/IP-based communications provide reliable bases
for automotive innovation and holistic security. Current automotive platforms are com-
plex systems, perform well and represent significant financial investments. Developing a
fully Ethernet-based E/E architecture for the next-coming car generation (i. e., for in a
few years) does not seem realistic. As a consequence, a gradual transition to Ethernet/IP
in cars is planned to start in 2018 and foresees the cohabitation with other traditional
bus technologies [157]. While providing a smooth migration, this cohabitation may let
part of the on-board architecture unprotected. New and complementary security mecha-
nisms will be required for both non-IP- and IP-enabled systems in order to detect ongoing
attacks and avoid critical functionalities to get compromised. At a functional level, seve-
ral standardization committees for automotive Ethernet and IP-based middleware were
already started. The security ones should follow soon.

Drivers & security-awareness This thesis specified for every policy who de-

134

6.2 Outlook and Implications

fines it and for every security decision whether it is dynamically or statically evaluated.
Considering the car functional requirements, a significant number of them are statically
coded within the middleware and defined by the car manufacturer. However, for more
flexibility some cases may require the intervention of a user, e. g., the driver, who may
deliberately give to an online service the access to her private information. In the pre-
sented framework, these actions require the driver to declassify her information or to
include the online service in a privileged list of the proxy. This work considers such
cases but did not elaborate on the mechanisms enabling them, e. g., pop-up windows
or customization menus. An additional concern regards the display of security-related
information, i. e., how to efficiently and safely inform the driver that she is taking an
important security decision. Such display should be easily understandable by the driver
and not disturb her driving.

Conclusion This brief outlook shows that additional security aspects are still to
be investigated. Finally the next and last remark here concerns the potential impact of
the security concepts presented in this thesis. Whereas these middleware-based security
mechanisms were developed and assessed for the automotive purpose, the middleware
layer shows enough flexibility to be adapted depending on relevant use cases and poten-
tial threats. Thus it is realistic to think that such concepts can be extended to other
domains presenting demanding security and functional requirements, like trains, planes
or smart buildings.

135

Acronyms

2G Second Generation of Mobile Telecommunication Technology

3G Third Generation of Mobile Telecommunication Technology

4G Fourth Generation of Mobile Telecommunication Technology

A/V Audio/Video

ABS Anti-lock Braking System

ACL Access Control List

ADAS Advanced Driver Assistance and Safety

AES Advanced Encryption Standard

AMM Authentication Management Module

API Application Programming Interface

ASIL ISO 26262 - Automotive Safety Integrity Level

ASN.1 Abstract Syntax Notation One

AVB Audio Video Bridging

BCM Brake Control Unit

BYOD Bring Your Own Device

C2X Car-to-X

CAN Controller Area Network

CE Consumer Electronic

CPU Central Processing Unit

CSM Crypto-Service Module

137

Acronyms

CUID Car User IDentity

DBI Dynamic Binary Instrumentation

DES Data Encryption Standard

DDFT Dynamic Data Flow Tracking

DIFC Decentralized Information Flow Control

DLA Dynamic Label Assignment

DoS Denial of Service

DTLS Datagram Transport Layer Security

E/E Electrical/Electronic

EAP Extensible Authentication Protocol

ECC Elliptic Curve Cryptography

ECU Electronic Control Unit

ESC Electronic Stability Control

EU European Union

EVITA E-safety Vehicle Intrusion proTected Applications

FC Filter Chain

FSM Fail Safe Mode

GPS Global Positioning System

GSM Global System for Mobile

HDCP High-bandwidth Digital Content Protection

HMAC Hash Message Authentication Code

HSFZ High Speed Fahrzeugzugang

HSM Hardware Secure Module

HTTP HyperText Transfer Protocol

HU Head Unit

138

I/O Input/Output

IDL Interface Definition Language

IDM Intrusion Detection Module

IDS Intrusion Detection System

IFC Information Flow Control

IKEv2 Internet Key Exchange version 2

IP Internet Protocol

IPC Inter-Process Communication

IPsec Internet Protocol security

ISO International Organization for Standardization

IT Information Technology

JNI Java Native Interface

JVM Java Virtual Machine

KMM Key Management Module

LHW Local Hazard Warning

LIN Local Interconnect network

LTE 4G Long Term Evolution

MAC Message Authentication Code

MPA Multi-Platform Antenna

MOST Media Oriented Systems Transport

NAT Network Address Translation

NFS Network File System

OBD On-Board Diagnostics

OS Operating System

OSI Open Systems Interconnection

139

Acronyms

OSS Open Source Software

PCM Powertrain Control Module

PKI Public Key Infrastructure

PM Policy Manager

PMM Policy Management Module

POJ Place Of Jurisdiction

POSIX Portable Operating System Interface

QoS Quality of Service

RC4 Rivest Cipher 4

ROP Return-Oriented Programming

RPC Remote Procedure Call

RSA Ron Rivest, Adi Shamir and Leonard Adleman encryption

RSE Rear Seat Entertainment

RSU Road-Side Unit

SAL Security Abstraction Layer

SCM Secure Channel Module

SD Service Discovery

SEIS Sicherheit in Eingebetteten IP-basierten Systemen

SHA-1 Secure Hash Algorithm 1

SHE Secure Hardware Extension

SL Security Level

SME Security Middleware Extension

SPF Single Point of Failure

SQL Structured Query Language

SSL Secure Socket Layer

140

TLS Transport Layer Security

STL Security & Trust Level

TCP Transport Control Protocol

TL Trust Level

TP Third-Party

TPA Third-Party Application

TPM Trusted Platform Module

TPMS Tire Pressure Monitoring Sensor

UDP User Datagram Protocol

USB Universal Serial Bus

VPN Virtual Private Network

VM Virtual Machine

VLAN Virtual Local Area Network

VSS Vehicle Speed Sensor

Wi-Fi Wireless Fidelity

WEP Wired Equivalent Privacy

WMA Windows Media Audio

WPA Wi-Fi Protected Access

XACML eXtensible Access Control Markup Language

XSS Cross-Site Scripting

141

Bibliography

[1] IEEE Standard for Information technology– Local and metropolitan area
networks– Specific requirements– Part 11: Wireless LAN Medium Access Con-
trol (MAC) and Physical Layer (PHY) Specifications, Amendment 6: Wireless
Access in Vehicular Environments. IEEE Std 802.11p-2010 , pages 1–51, 2010.

[2] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz. Extensible Au-
thentication Protocol (EAP). RFC 3748 (Proposed Standard), June 2004. Updated
by RFC 5247. [Online]. Available: http://www.ietf.org/rfc/rfc3748.txt [Ac-
cessed: 22/08/2013].

[3] J. Al-Jaroodi and A. Al-Dhaheri. Security Issues of Service-Oriented Middleware.
International Journal of Computer Science and Security Networking, 11(1):153–
160, 2011.

[4] Aleph One. Smashing The Stack For Fun And Profit. Phrack, 7(49), 1996.

[5] Apache Etch. Apache Etch Downloads. Software release. [Online]. Available:
http://etch.apache.org/downloads.html [Accessed: 22/08/2013].

[6] Apple. Bonjour Overview. Apple documentation, 2012. [Online]. Avail-
able: https://developer.apple.com/library/mac/documentation/Cocoa/

Conceptual/NetServices/Introduction.html [Accessed: 22/08/2013].

[7] Aramis Project. Automotive, Railway and Avionics Multicore Systems. Website.
[Online]. Available: http://www.projekt-aramis.de/ [Accessed: 22/08/2013].

[8] M. Attariyan and J. Flinn. Automating Configuration Troubleshooting with Dy-
namic Information Flow Analysis. In Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation: OSDI ’10, pages 237–250,
2010.

[9] AUTOSAR. Specification of UDP Network Management. Technical Report V2.0.0
R4.0 Rev 3, AUTOSAR Standard, 2011.

143

http://www.ietf.org/rfc/rfc3748.txt
http://etch.apache.org/downloads.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/NetServices/Introduction.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/NetServices/Introduction.html
http://www.projekt-aramis.de/

Bibliography

[10] S. Axelsson. Intrusion Detection Systems: A Survey and Taxonomy. Techni-
cal Report 99-15, Department of Computer Engineering, Chalmers University of
Technology, Göteborg, Sweden, 2000.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In Proceedings of the
nineteenth ACM symposium on Operating systems principles: SOSP ’03, pages
164–177, New York, NY, USA, 2003. ACM.

[12] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Mathematical Foun-
dations. Technical Report MTR-2547, Vol. 1, MITRE Corporation, Bedford, MA,
USA, 1973.

[13] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of
the 2005 USENIX conference on USENIX annual technical conference: USENIX
ATC’05, pages 41–41, Berkeley, CA, USA, 2005. USENIX Association.

[14] L. L. Bello. The Case for Ethernet in Automotive Communications. SIGBED
Review, 8(4):7–15, Dec. 2011.

[15] I. Bente, G. Dreo, B. Hellmann, S. Heuser, J. Vieweg, J. von Helden, and J. West-
huis. Towards Permission-based Attestation for the Android Platform. In Pro-
ceedings of the 4th international conference on Trust and trustworthy computing:
TRUST’11, pages 108–115, Berlin, Heidelberg, 2011. Springer-Verlag.

[16] R. Bharadwaj, M. Born, and R. Schreiner. Secure Middleware for Defence Appli-
cations. Journal for Military Communications, pages 18–1–18–6, 2006.

[17] Biba. Integrity Considerations for Secure Computer Systems. MITRE Corpora-
tion’s, Technical Report ESD-TR 76-372, 1977.

[18] N. Bißmeyer, H. Stübing, M. Mattheß, J. Stotz, J. Schütte, M. Gerlach, and
F. Friederici. simTD Security Architecture: Deployment of a Security and Pri-
vacy Architecture in Field Operational Tests. In Proceedings of the 7th Embedded
Security in Cars Conference: ESCAR ’09, November 2009.

[19] Black Hat. Black Hat convention. Conference Website. [Online]. Available: http:
//www.blackhat.com/ [Accessed: 22/08/2013].

[20] BMW AG. Navigation System Professional. Website. [Online]. Avail-
able: http://www.bmw.com/com/en/insights/technology/technology_guide/
articles/navigation_system.html [Accessed: 22/08/2013].

[21] E. Bonnert. IDF: Atom-Kraft für BMW und Mercedes. Internet ar-
ticle, 2009. [Online]. Available: http://www.heise.de/ct/meldung/

144

http://www.blackhat.com/
http://www.blackhat.com/
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/navigation_system.html
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/navigation_system.html
http://www.heise.de/ct/meldung/IDF-Atom-Kraft-fuer-BMW-und-Mercedes-789844.html
http://www.heise.de/ct/meldung/IDF-Atom-Kraft-fuer-BMW-und-Mercedes-789844.html

Bibliography

IDF-Atom-Kraft-fuer-BMW-und-Mercedes-789844.html [Accessed:
22/08/2013].

[22] A. Bouard. Development of a Security Automotive Middlware, Etch. Master’s
thesis, TELECOM ParisTech/EURECOM, 2010.

[23] A. Bouard, D. Burgkhardt, and C. Eckert. Middleware-based Security for Hyper-
connected Applications in Future In-Car Networks. EAI Endorsed Transactions
on Mobile Communications and Applications, 13(3), 12 2013.

[24] A. Bouard, B. Glas, A. Jentzsch, A. Kiening, T. Kittel, F. Stadler, and B. Weyl.
Driving Middleware Towards a Secure IP-based Future. In Proceedings of the 10th
Embedded Security in Cars Conference: ESCAR ’12, 2012.

[25] A. Bouard, B. Glas, A. Jentzsch, A. Kiening, T. Kittel, F. Stadler, and B. Weyl.
SEIS AP4.3: Sicherheit auf Ebene der Applikation und ihrer Middleware. Tech-
nical Report TUM-I1215, SEIS Project, 2012. [Online]. Available: http://

mediatum.ub.tum.de/?id=1114356 [Accessed: 22/08/2013].

[26] A. Bouard, M. Graf, and D. Burgkhardt. Middleware-Based Security and Pri-
vacy for In-car Integration of Third-Party Applications. In C. Fernández-Gago,
F. Martinelli, S. Pearson, and I. Agudo, editors, Proceedings of the 7th IFIP WG
11.11 International Conference on Trust Management: IFIP TM ’13, pages 17–32.
Springer Berlin Heidelberg, 2013.

[27] A. Bouard, J. Schanda, D. Herrscher, and C. Eckert. Automotive Proxy-based
Security Architecture for CE Device Integration. In C. Borcea, P. Bellavista,
C. Giannelli, T. Magedanz, and F. Schreiner, editors, Proceedings of the 5th In-
ternational Conference on Mobile Wireless Middleware, Operating Systems, and
Applications: MOBILWARE ’12, volume 65, pages 62–76. Springer Berlin Heidel-
berg, 2013.

[28] A. Bouard, H. Schweppe, B. Weyl, and C. Eckert. Leveraging In-Car Security
by Combining Information Flow Monitoring Techniques. In Proceedings of the
2nd International Conference on Advances in Vehicular Systems Technologies and
Applications: VEHICULAR ’13. ThinkMind, 2013.

[29] A. Bouard, B. Weyl, and C. Eckert. Practical Information-flow Aware Middleware
for In-car Communication. In Proceedings of the 2013 ACM Workshop on Security,
Privacy Dependability for Cyber Vehicles: CyCar ’13, pages 3–8, New York, NY,
USA, 2013. ACM.

[30] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards Automatic
Generation of Vulnerability-Based Signatures. In Proceedings of the 2006 IEEE

145

http://www.heise.de/ct/meldung/IDF-Atom-Kraft-fuer-BMW-und-Mercedes-789844.html
http://www.heise.de/ct/meldung/IDF-Atom-Kraft-fuer-BMW-und-Mercedes-789844.html
http://mediatum.ub.tum.de/?id=1114356
http://mediatum.ub.tum.de/?id=1114356

Bibliography

Symposium on Security and Privacy: SP ’06, pages 2–16, Washington, DC, USA,
2006. IEEE Computer Society.

[31] O. Bubeck, J. Gramm, M. Ihle, J. Shokrollahi, R. Szerwinski, and M. Emele. A
Hardware Security Module for Engine Control Units. In Proceedings of the 9th
Embedded Security in Cars Conference: ESCAR ’11, 2011.

[32] S. Bunzel. AUTOSAR - the Standardized Software Architecture. Informatik Spek-
trum, 34(1):79–83, 2011.

[33] CAN-CIA. CAN Specifications. Website. [Online]. Available: http://www.

can-cia.org [Accessed: 22/08/2013].

[34] R. N. Charette. This Car Runs on Code. IEEE Spectrum, 2009.
[Online]. Available: http://spectrum.ieee.org/green-tech/advanced-cars/

this-car-runs-on-code [Accessed: 22/08/2013].

[35] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, and T. Kohno. Comprehensive Experimen-
tal Analyses of Automotive Attack Surfaces. In Proceedings of the 20th USENIX
conference on Security: SEC ’11, pages 6–6, Berkeley, CA, USA, 2011. USENIX
Association.

[36] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. TaintTrace: Efficient Flow Tracing
with Dynamic Binary Rewriting. In Proceedings of the 11th IEEE Symposium
on Computers and Communications: ISCC ’06, pages 749–754, Washington, DC,
USA, 2006. IEEE Computer Society.

[37] S. Chong and A. C. Myers. Decentralized Robustness. In Proceedings of the
19th IEEE Computer Security Foundations Workshop: CSFW ’06, pages 242–256,
Washington, DC, USA, 2006. IEEE Computer Society.

[38] S. Chong, K. Vikram, and A. C. Myers. SIF: Enforcing Confidentiality and In-
tegrity in Web Applications. In Proceedings of 16th USENIX Security Symposium
on USENIX Security Symposium: SEC ’07, pages 1:1–1:16, Berkeley, CA, USA,
2007. USENIX Association.

[39] M. L. Chávez, C. H. Rosete, and F. Rodŕıguez-Henŕıquez. Achieving Confidential-
ity Security Service for CAN. In Proceedings of the 15th International Conference
on Electronics, Communications and Computers CONIELECOMP 2005, pages
166–170, Washington, DC, USA, 2005. IEEE Computer Society.

[40] Cisco. NAC appliance - Clean Access Manager Installation and Con-
figuration Guide, Release 4.9. Cisco documentation. [Online]. Avail-
able: http://www.cisco.com/en/US/docs/security/nac/appliance/release_
notes/492/492rn.html [Accessed: 22/08/2013].

146

http://www.can-cia.org
http://www.can-cia.org
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
http://www.cisco.com/en/US/docs/security/nac/appliance/release_notes/492/492rn.html
http://www.cisco.com/en/US/docs/security/nac/appliance/release_notes/492/492rn.html

Bibliography

[41] Citrix. XenServer Software Development Kit Guide - Release 5.5.0 Update 2. Citrix
documentation. [Online]. Available: http://docs.vmd.citrix.com/XenServer/

5.5.0/1.0/en_gb/sdk.html [Accessed: 22/08/2013].

[42] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model checking. MIT Press,
Cambridge, MA, USA, 1999.

[43] J. Clause, W. Li, and A. Orso. Dytan: a Generic Dynamic Taint Analysis Frame-
work. In Proceedings of the 2007 International Symposium on Software Testing
and Analysis: ISSTA ’07, pages 196–206, New York, NY, USA, 2007. ACM.

[44] L. A. Cutillo, R. Molva, and T. Strufe. On the Security and Feasibility of Safebook
: a Distributed privacy-preserving online social network. In Proceedings of the
6th International Summer School on Privacy and Identity Management for Life,
PrimeLife/IFIP AICT 320, 2010.

[45] M. Dalton, H. Kannan, and C. Kozyrakis. Real-World Buffer Overflow Protec-
tion for Userspace and Kernelspace. In USENIX Security Symposium: USENIX
Security ’08, pages 395–410, 2008.

[46] B. Davis and H. Chen. DBTaint: Cross-Application Information Flow Tracking
via Databases. In Proceedings of the 2010 USENIX conference on Web applica-
tion development: WebApps’10, pages 12–12, Berkeley, CA, USA, 2010. USENIX
Association.

[47] K.-O. Detken, H. S. Fhom, R. Sethmann, and G. Diederich. Leveraging Trusted
Network Connect for Secure Connection of Mobile Devices to Corporate Networks.
In A. Pont, G. Pujolle, and S. V. Raghavan, editors, Communications: Wireless in
Developing Countries and Networks of the Future - 3rd IFIP TC 6 International
Conference, WCITD 2010 and IFIP TC 6 International Conference, NF 2010,
Held as Part of WCC 2010, volume 327, pages 158–169. Springer, 2010.

[48] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Ver-
sion 1.2. RFC 5246 (Proposed Standard), Aug. 2008. Updated by RFCs 5746,
5878, 6176. [Online]. Available: http://www.ietf.org/rfc/rfc5246.txt [Ac-
cessed: 22/08/2013].

[49] K. Dietrich. Automotive Security in the Internet of Things and Services
(IoTS). Presentation slides (ESCAR ’12), 2012. [Online]. Available:
https//www.escar.info/fileadmin/Datastore/2012_escar-Vortraege/

Dieterich_Bosch_Keynote_Presentation.pdf [Accessed: 22/08/2013].

[50] D. Dolev and A. C. Yao. On the Security of Public Key Protocols. Technical
report, Stanford University, Stanford, CA, USA, 1981.

147

http://docs.vmd.citrix.com/XenServer/5.5.0/1.0/en_gb/sdk.html
http://docs.vmd.citrix.com/XenServer/5.5.0/1.0/en_gb/sdk.html
http://www.ietf.org/rfc/rfc5246.txt
https//www.escar.info/fileadmin/Datastore/2012_escar-Vortraege/Dieterich_Bosch_Keynote_Presentation.pdf
https//www.escar.info/fileadmin/Datastore/2012_escar-Vortraege/Dieterich_Bosch_Keynote_Presentation.pdf

Bibliography

[51] K. Edwards, V. Bellotti, A. K. Dey, and M. Newman. Stuck in the Middle: The
Challenges of User-Centered Design and Evaluation for Middleware. In Proceedings
of the 2003 Conference on Human Factors in Computing Systems: CHI ’03, 2003.

[52] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler,
D. Mazières, F. Kaashoek, and R. Morris. Labels and Event Processes in the
Asbestos Operating System. In Proceedings of the 20th ACM symposium on Op-
erating systems principles: SOSP ’05, pages 17–30, New York, NY, USA, 2005.
ACM.

[53] M.-A. Elliott. The Future of Connected Cars. Internet article, 2011. [On-
line]. Available: http://mashable.com/2011/02/26/connected-car/ [Accessed:
22/08/2013].

[54] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. TaintDroid: an Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proceedings of the 9th USENIX conference on
Operating systems design and implementation: OSDI’10, pages 1–6, Berkeley, CA,
USA, 2010. USENIX Association.

[55] escrypt. Efficient Public Key Infrastructure (PKI) So-
lutions for Embedded Systems, 2012. [Online]. Avail-
able: https://www.escrypt.com/company/single-news/detail/

efficient-public-key-infrastructure-pki-solutions-for-embedded-systems/

[Accessed: 22/08/2013].

[56] A. Etch. Etch Homepage. Website, 2013. [Online]. Available: http://etch.

apache.org/ [Accessed: 22/08/2013].

[57] EVITA Project. E-safety Vehicle Intrusion proTected Applications. Website. [On-
line]. Available: http://evita-project.org/ [Accessed: 22/08/2013].

[58] Facebook. Facebook Homepage. Website. [Online]. Available: http://www.

facebook.com [Accessed: 22/08/2013].

[59] FlexRay-Consortium. FlexRay specification Electrical Physical Layer. Website.
[Online]. Available: http://tge.cmaisonneuve.qc.ca/barbaud/R%C3%A9f%C3%

A9rences%20techniques/Protocoles%20%C3%A0%20tranches%20de%20temps/

FlexRay_Electrical_Physical_Layer_Specification_V2.1_Rev.B.pdf [Ac-
cessed: 22/08/2013].

[60] Ford. Ford SYNC Support. Website. [Online]. Available: http://www.ford.com/
technology/sync/ [Accessed: 22/08/2013].

148

http://mashable.com/2011/02/26/connected-car/
https://www.escrypt.com/company/single-news/detail/efficient-public-key-infrastructure-pki-solutions-for-embedded-systems/
https://www.escrypt.com/company/single-news/detail/efficient-public-key-infrastructure-pki-solutions-for-embedded-systems/
http://etch.apache.org/
http://etch.apache.org/
http://evita-project.org/
http://www.facebook.com
http://www.facebook.com
http://tge.cmaisonneuve.qc.ca/barbaud/R%C3%A9f%C3%A9rences%20techniques/Protocoles%20%C3%A0%20tranches%20de%20temps/FlexRay_Electrical_Physical_Layer_Specification_V2.1_Rev.B.pdf
http://tge.cmaisonneuve.qc.ca/barbaud/R%C3%A9f%C3%A9rences%20techniques/Protocoles%20%C3%A0%20tranches%20de%20temps/FlexRay_Electrical_Physical_Layer_Specification_V2.1_Rev.B.pdf
http://tge.cmaisonneuve.qc.ca/barbaud/R%C3%A9f%C3%A9rences%20techniques/Protocoles%20%C3%A0%20tranches%20de%20temps/FlexRay_Electrical_Physical_Layer_Specification_V2.1_Rev.B.pdf
http://www.ford.com/technology/sync/
http://www.ford.com/technology/sync/

Bibliography

[61] Fujitsu Semiconductor Europe. Fujitsu Announces Power-
ful MCU with Secure Hardware Extension (SHE) for Automo-
tive Instrument Clusters. Fujitsu press release, 2012. [On-
line]. Available: http://www.fujitsu.com/emea/news/pr/fseu-en_

20121129-1044-fujitsu-mcu-secure-hardware-extension-atlas-l.html

[Accessed: 22/08/2013].

[62] T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection Based Archi-
tecture for Intrusion Detection. In Proceedings of the 10th Annual Network and
Distributed System Security Symposium : NDSS ’03, 2003.

[63] M. Glass, D. Herrscher, H. Meier, M. Piastowski, and P. Shoo. SEIS - Security
in Embedded IP-based Systems. ATZelektronik Worldwide, 2010-01, pages 36–40,
2010.

[64] M. G. Graff and K. R. van Wyk. Secure Coding - Principles and Practices: Design-
ing and Implementing Secure Applications. O’Reilly Media, Newton, MA, USA,
2003.

[65] A. Groll and C. Ruland. Secure and Authentic Communication on Existing In-
Vehicle Networks. In In Proceedings of the 2009 IEEE Intelligent Vehicles Sym-
posium: IV ’09, pages 1093–1097, 2009.

[66] A. Gutowska. Research in Online Trust: Trust Taxonomy as A Multi-Dimensional
Model. Technical report, School of Computing and Information Technology, Uni-
versity of Wolverhampton, 2007.

[67] V. Haldar, D. Chandra, and M. Franz. Practical, Dynamic Information-flow for
Virtual Machines. Technical report, Department of Information and Computer
Scien, University of California, 2005.

[68] M. Henning and M. Spruiell. Choosing Middleware: Why Performance and
Scalability do (and do not) Matter. White paper, 2011. [Online]. Avail-
able: http://www.zeroc.com/articles/IcePerformanceWhitePaper.pdf [Ac-
cessed: 22/08/2013].

[69] K. Hess. The Top 5 Trends in Mobile and BYOD Security. In-
ternet article, 2013. [Online]. Available: http://www.zdnet.com/

the-top-five-trends-in-mobile-and-byod-security-7000014226/ [Ac-
cessed: 22/08/2013].

[70] B. Hicks, S. Rueda, T. Jaeger, and P. McDaniel. From Trusted to Secure: Build-
ing and Executing Applications that Enforce System Security. In Proceedings of
the 2007 USENIX conference on USENIX annual technical conference: USENIX
ATC’07, pages 16:1–16:14, Berkeley, CA, USA, 2007. USENIX Association.

149

http://www.fujitsu.com/emea/news/pr/fseu-en_20121129-1044-fujitsu-mcu-secure-hardware-extension-atlas-l.html
http://www.fujitsu.com/emea/news/pr/fseu-en_20121129-1044-fujitsu-mcu-secure-hardware-extension-atlas-l.html
http://www.zeroc.com/articles/IcePerformanceWhitePaper.pdf
http://www.zdnet.com/the-top-five-trends-in-mobile-and-byod-security-7000014226/
http://www.zdnet.com/the-top-five-trends-in-mobile-and-byod-security-7000014226/

Bibliography

[71] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic Updating of Information-
Flow Policies. In Proceedings of the Foundations of Computer Security Workshop,
2005.

[72] T. Hoppe, S. Kiltz, and J. Dittman. Sniffing/Replay Attacks on CAN Buses: A
Simulated Attack on the Electric Window Lift Classified Using an Adapted CERT
Taxonomy. In In Proceedings of the 2nd Workshop on Embedded Systems Security:
WESS ’07, 2007.

[73] T. Hoppe, S. Kiltz, and J. Dittmann. Adaptive Dynamic Reaction to Automotive
IT Security Incidents Using Multimedia Car Environment. In M. Rak, A. Abra-
ham, and V. Casola, editors, Proccedings of the 4th International Conference on
Information Assurance and Security: IAS ’08, pages 295–298. IEEE Computer
Society, 2008.

[74] T. Hoppe, S. Kiltz, and J. Dittmann. Adaptive Dynamic Reaction to Automotive
IT Security Incidents Using Multimedia Car Environment. In Proccedings of the
4th International Conference on Information Assurance and Security: IAS ’08,
pages 295–298, 2008.

[75] T. Hoppe, S. Kiltz, and J. Dittmann. Security Threats to Automotive CAN Net-
works - Practical Examples and Selected Short-Term Countermeasures. In Pro-
ceedings of the 27th international conference on Computer Safety, Reliability, and
Security: SAFECOMP ’08, pages 235–248, Berlin, Heidelberg, 2008. Springer-
Verlag.

[76] T. Hoppe, S. Kiltz, and J. Dittmann. Applying Intrusion Detection to Automotive
it - Early Insights and Remaining Challenges. Journal of Information Assurance
and Security, 4(6):226–235, 2009.

[77] T. Hoppe, S. Kiltz, and J. Dittmann. Automotive IT-Security as a Challenge:
Basic Attacks from the Black Box Perspective on the Example of Privacy Threats.
In B. Buth, G. Rabe, and T. Seyfarth, editors, Proceedings of the 27th interna-
tional conference on Computer Safety, Reliability, and Security: SAFECOMP ’09,
volume 5775, pages 145–158, Berlin, Heidelberg, 2009. Springer-Verlag.

[78] J. D. Howard and T. A. Longstaff. A Common Language for Computer Security
Incidents. Technical Report SAND98-8667, Sandia National Laboratories, Albu-
querque, CA, USA, 1998.

[79] M. Howard and D. Leblanc. Writing Secure Code. Microsoft Press, Redmond,
WA, USA, 2001.

[80] M. Huebler. Bmw Connected Drive - Case Study: The Connected
Driving Experience. Presentation slides, 2012. [Online]. Available:

150

Bibliography

http://www.apps-world.net/europe/images/stories/presentation2012/

dev-d2-1550-michael-huebler-bmw.pdf [Accessed: 22/08/2013].

[81] M. S. Idrees and Y. Roudier. Effective and Efficient Security Policy Engines for
Automotive On-board Networks. In Proceedigns of the 4th International Work-
shop on Communications Technologies for Vehicles: Nets4 Cars/Nets4 Trains ’12,
2012.

[82] IEEE. IEEE 1003.1-2001 Standard for IEEE Information Technology - Portable
Operationg System Interface (POSIX(R)). IEEE proposed standard, 2001.
[Online]. Available: http://standards.ieee.org/findstds/standard/1003.

1-2001.html [Accessed: 22/08/2013].

[83] IEEE 802.1 Working Group. 802.1AE - Media Access Control (MAC) Secu-
rity. Website, 2006. [Online]. Available: http://www.ieee802.org/1/pages/

802.1ae.html [Accessed: 22/08/2013].

[84] IEEE 802.1 Working Group. 802.1AS - Timing and Synchronization. Website,
2010. [Online]. Available: http://www.ieee802.org/1/pages/802.1as.html

[Accessed: 22/08/2013].

[85] IEEE 802.1 Working Group. Audio/Video Bridging Task Group. Website, 2012.
[Online]. Available: http://www.ieee802.org/1/pages/avbridges.html [Ac-
cessed: 22/08/2013].

[86] IEEE Standards Association. IEEE 1722 - Layer 2 Transport Protocol Working
Group for Time-sensitive Streams. Website, 2011. [Online]. Available: http:

//grouper.ieee.org/groups/1722/ [Accessed: 22/08/2013].

[87] IEEE Standards Association - WG802.1 - Higher Layer LAN Protocols Work-
ing Group. 802.1X-2010 - IEEE Standard for Local and metropolitan
area networks–Port-Based Network Access Control. IEEE proposed stan-
dard. [Online]. Available: http://standards.ieee.org/findstds/standard/

802.1X-2010.html [Accessed: 22/08/2013].

[88] A. Ingram. BMW i3 Smartphone App Previews The Future. Internet arti-
cle, 2012. [Online]. Available: http://www.motorauthority.com/news/1071265_
bmw-i3-smartphone-app-previews-the-future [Accessed: 22/08/2013].

[89] Inova Semiconductors GmbH. APIX2 - Automotive Pixel Link. Website. [On-
line]. Available: http://www.inova-semiconductors.de/en/products_apix2.

html [Accessed: 22/08/2013].

[90] A. Iqbal, N. Sadeque, and R. I. Mutia. An Overview of Microkernel, Hypervi-
sor and Microvisor Virtualization Approaches for Embedded Systems. Technical
report, Department of IET, Lund University, 2010.

151

http://www.apps-world.net/europe/images/stories/presentation2012/dev-d2-1550-michael-huebler-bmw.pdf
http://www.apps-world.net/europe/images/stories/presentation2012/dev-d2-1550-michael-huebler-bmw.pdf
http://standards.ieee.org/findstds/standard/1003.1-2001.html
http://standards.ieee.org/findstds/standard/1003.1-2001.html
http://www.ieee802.org/1/pages/802.1ae.html
http://www.ieee802.org/1/pages/802.1ae.html
http://www.ieee802.org/1/pages/802.1as.html
http://www.ieee802.org/1/pages/avbridges.html
http://grouper.ieee.org/groups/1722/
http://grouper.ieee.org/groups/1722/
http://standards.ieee.org/findstds/standard/802.1X-2010.html
http://standards.ieee.org/findstds/standard/802.1X-2010.html
http://www.motorauthority.com/news/1071265_bmw-i3-smartphone-app-previews-the-future
http://www.motorauthority.com/news/1071265_bmw-i3-smartphone-app-previews-the-future
http://www.inova-semiconductors.de/en/products_apix2.html
http://www.inova-semiconductors.de/en/products_apix2.html

Bibliography

[91] A. Iqbal, N. Sadeque, and R. I. Mutia. An Overview of Microkernel, Hypervi-
sor and Microvisor Virtualization Approaches for Embedded Systems. White pa-
per, 2010. [Online]. Available: www.eit.lth.se/fileadmin/eit/project/142/

virtApproaches.pdf [Accessed: 22/08/2013].

[92] ISO. ISO/IEC 27002:2005 – Information Technology – Security Techniques – Code
of Practice for Infoarmation Security Management. International Organization for
Standardization, Geneva, Switzerland, 2005.

[93] ISO. ISO/IEC 15408:2009 – Information Technology – Security Techniques – Eval-
uaiton Criteria for IT Security. International Organization for Standardization,
Geneva, Switzerland, 2009.

[94] ISO. ISO 26262:2011 – Road vehicles – Functional safety. International Organi-
zation for Standardization, Geneva, Switzerland, 2011.

[95] ISO. ISO/IEC 15443:2012 – Information Technology – Security Techniques – A
Framework for Security Assurance. International Organization for Standardiza-
tion, Geneva, Switzerland, 2012.

[96] V. Issarny, M. Caporuscio, and N. Georgantas. A Perspective on the Future of
Middleware-based Software Engineering. In Proceedings of the Workshop on the
Future of Software Engineering : FOSE ’07, pages 244–258, 2007.

[97] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. Internet Key Exchange Pro-
tocol Version 2 (IKEv2). RFC 5996 (Proposed Standard), Sept. 2010. Updated
by RFC 5998. [Online]. Available: http://www.ietf.org/rfc/rfc5996.txt [Ac-
cessed: 22/08/2013].

[98] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. libdft: Practical
Dynamic Data Flow Tracking for Commodity Systems. In Proceedings of the 8th
ACM SIGPLAN/SIGOPS conference on Virtual Execution Environments: VEE
’12, pages 121–132, New York, NY, USA, 2012. ACM.

[99] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC 4301
(Proposed Standard), Dec. 2005. Updated by RFC 6040. [Online]. Available:
http://www.ietf.org/rfc/rfc4301.txt [Accessed: 22/08/2013].

[100] T. Kivinen. Minimal IKEv2 draft-ietf-lwig-ikev2-minimal-00.txt. Technical report,
Internet Engineering Task Force (IETF). [Online]. Available: http://tools.

ietf.org/html/draft-ietf-lwig-ikev2-minimal-00 [Accessed: 22/08/2013].

[101] N. Koblitz. Elliptic Curve Cryptosystems. Journal of Mathematics of Computa-
tion, 48(177):203–209, 1987.

152

www.eit.lth.se/fileadmin/eit/project/142/virtApproaches.pdf
www.eit.lth.se/fileadmin/eit/project/142/virtApproaches.pdf
http://www.ietf.org/rfc/rfc5996.txt
http://www.ietf.org/rfc/rfc4301.txt
http://tools.ietf.org/html/draft-ietf-lwig-ikev2-minimal-00
http://tools.ietf.org/html/draft-ietf-lwig-ikev2-minimal-00

Bibliography

[102] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experimental Security
Analysis of a Modern Automobile. In Proceedings of the 2010 IEEE Symposium
on Security and Privacy: SP ’10, pages 447–462, Washington, DC, USA, 2010.
IEEE Computer Society.

[103] C. Krauß, F. Stumpf, and C. Eckert. Detecting Node Compromise in Hybrid
Wireless Sensor Networks Using Attestation Techniques. In Proceedings of the
4th European Workshop on Security and Privacy in Ad hoc and Sensor Networks:
ESAS ’07, volume 4572 of Lecture Notes in Computer Science, pages 203–217.
Springer-Verlag, 2007.

[104] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler, and R. Mor-
ris. Information Flow Control for Standard OS Abstractions. SIGOPS Operating
System Review, 41(6):321–334, 2007.

[105] B. W. Lampson. A Note on the Confinement Problem. Communications of the
ACM, 16(10):613–615, Oct. 1973.

[106] A. Lang, J. Dittmann, S. Kiltz, and T. Hoppe. Future Perspectives: The Car and
Its IP-Address - A Potential Safety and Security Risk Assessment. In F. Sagli-
etti and N. Oster, editors, Proceedings of the 26th international conference on
Computer Safety, Reliability, and Security: SAFECOMP ’07, volume 4680, pages
40–53. Springer, 2007.

[107] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter. L4Android:
a Generic Operating System Framework for Secure Smartphones. In Proceedings
of the 1st ACM workshop on Security and Privacy in Smartphones and Mobile
Devices: SPSM ’11, pages 39–50, New York, NY, USA, 2011. ACM.

[108] U. Larson, D. K. Nilsson, and E. Jonsson. An Approach to Specification-based
Attack Detection for In-Vehicle Networks. In In Proceedings of the IEEE Intelligent
Vehicles Symposium: IV ’08, 2008.

[109] H.-T. Lim, L. Völker, and D. Herrscher. Challenges in a Future IP/ethernet-based
In-car Network for Real-time Applications. In Proceedings of the 2011 Design
Automation Conference: DAC ’11, pages 7–12, 2011.

[110] LIN-Consortium. LIN Specifiction Package Rev. 2.1. LIN documentation, 2006.
[Online]. Available: http://www.lin-subbus.org [Accessed: 22/08/2013].

[111] T. C. Ling and et al. Baker & McKenzie - Global Privacy Handbook. International
Association for Contract and Commercial Management (IACCM), Ridgefield, CT,
USA, 2012.

153

http://www.lin-subbus.org

Bibliography

[112] Linux Programmer’s Manual. SELSECT(2) Man page. Online documentation,
2012. [Online]. Available: http://man7.org/linux/man-pages/man2/select.

2.html [Accessed: 22/08/2013].

[113] D. C. P. LLC. High-Bandwidth Digital Content Protection System. Technical
Report Revision 1.4, Digital Content Protection LLC, 2009.

[114] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation: PLDI ’05, pages 190–200,
New York, NY, USA, 2005. ACM.

[115] Z. Lutz. Renault ebuts R-Link, an in-dash Android system with app market. Inter-
net Article, 2011. [Online]. Available: http://www.engadget.com/2011/12/09/

renault-debuts-r-link-an-in-dash-android-system-with-app-market/

[Accessed: 22/08/2013].

[116] R. C. Mayer, J. H. Davis, and F. D. Schoorman. An Integrative Model of Organi-
zational Trust. The Academy of Management Review, 20(3):709–734, 1995.

[117] B. McCarty. SELinux: NSA’s Open Source Security Enhanced Linux. O’Reilly
Media, Newton, MA, USA, 2004.

[118] G. McGraw. Software Security: Building Security In. In Proceedings of 17th
International Symposium on Software Reliability Engineering: ISSRE ’06., page 6,
2006.

[119] R. McMillan. ’War Texting’ Lets Hackers Unlock Car Doors via SMS. Internet
article, 2011. [Online]. Available: http://www.pcworld.com/article/236678/

War_Texting_Lets_Hackers_Unlock_Car_Doors_via_SMS.html [Accessed:
22/08/2013].

[120] C. Mecklenbrauker, A. Molisch, J. Karedal, F. Tufvesson, A. Paier, L. Bernado,
T. Zemen, O. Klemp, and N. Czink. Vehicular Channel Characterization and
Its Implications for Wireless System Design and Performance. Proceedings of the
IEEE, 99(7):1189–1212, 2011.

[121] C. F. Mecklenbräuker, A. F. Molisch, J. Karedal, F. Tufvesson, A. Paier,
L. Bernadó, T. Zemen, O. Klemp, and N. Czink. Vehicular Channel Characteriza-
tion and Its Implications for Wireless System Design and Performance. Proceedings
of the IEEE, 99(7):1189–1212, 2011.

154

http://man7.org/linux/man-pages/man2/select.2.html
http://man7.org/linux/man-pages/man2/select.2.html
http://www.engadget.com/2011/12/09/renault-debuts-r-link-an-in-dash-android-system-with-app-market/
http://www.engadget.com/2011/12/09/renault-debuts-r-link-an-in-dash-android-system-with-app-market/
http://www.pcworld.com/article/236678/War_Texting_Lets_Hackers_Unlock_Car_Doors_via_SMS.html
http://www.pcworld.com/article/236678/War_Texting_Lets_Hackers_Unlock_Car_Doors_via_SMS.html

Bibliography

[122] M. Migliavacca, I. Papagiannis, D. M. Eyers, B. Shand, J. Bacon, and P. Pietzuch.
DEFCON: High-Performance Event Processing with Information Security. In Pro-
ceedings of the 2010 USENIX conference on USENIX annual technical conference:
USENIX ATC’10, pages 1–1, Berkeley, CA, USA, 2010. USENIX Association.

[123] V. S. Miller. Use of Elliptic Curves in Cryptography. In Lecture notes in computer
sciences; 218 on Advances in cryptology: CRYPTO ’85, pages 417–426, New York,
NY, USA, 1986. Springer-Verlag New York, Inc.

[124] A. Monot, N. Navet, F. Simonot, and B. Bavoux. Multicore Scheduling in Au-
tomotive ECUs. In Proceedings of the Conference Embedded Real Time Software
and Systems: ERTSS ’10, 2010.

[125] MOST-Cooperation. MOST Homepage. Webstire. [Online]. Available: http:

//www.mostnet.de [Accessed: 22/08/2013].

[126] T. Murphy. BYOD and Top 5 Network Security Threat for 2012. Pre-
sentation slides, 2012. [Online]. Available: http://www.slideshare.net/

BradfordNetworks/byod-and-top-5-network-security-threats-for-2012

[Accessed: 22/08/2013].

[127] D. Muthukumaran, A. Sawani, J. Schiffman, B. M. Jung, and T. Jaeger. Measuring
Integrity on Mobile Phone Systems. In Proceedings of the 13th ACM symposium
on Access control models and technologies: SACMAT ’08, pages 155–164, New
York, NY, USA, 2008. ACM.

[128] A. C. Myers. JFlow: Practical Mostly-static Information Flow Control. In Pro-
ceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages: POPL ’99, pages 228–241, New York, NY, USA, 1999. ACM.

[129] A. C. Myers, S. Chong, N. Nystrom, L. Zheng, and S. Zdancewic. Jif: Java Infor-
mation Flow. Softare release available at http://www.cs.cornell.edu/jif/.

[130] A. C. Myers and B. Liskov. A Decentralized Model for Information Flow Control.
The SIGOPS Operating System Review, 31(5):129–142, 1997.

[131] S. Mysore, B. Mazloom, B. Agrawal, and T. Sherwood. Understanding and Vi-
sualizing Full Systems with Data Flow Tomography. In Proceedings of the 13th
International Conference on Architectural Support for Programming Languages
and Operating Systems: ASPLOS ’08, pages 211–221, New York, NY, USA, 2008.
ACM.

[132] National Instruments. CAN Physical Layer Standards: High-Speed
vs. Low-Speed/Fault-Tolerant CAN. National Instrument documentation,
2002. [Online]. Available: http://digital.ni.com/public.nsf/allkb/

84210794086E9C0886256C1C006BE6AE [Accessed: 22/08/2013].

155

http://www.mostnet.de
http://www.mostnet.de
http://www.slideshare.net/BradfordNetworks/byod-and-top-5-network-security-threats-for-2012
http://www.slideshare.net/BradfordNetworks/byod-and-top-5-network-security-threats-for-2012
http://www.cs.cornell.edu/jif/
http://digital.ni.com/public.nsf/allkb/84210794086E9C0886256C1C006BE6AE
http://digital.ni.com/public.nsf/allkb/84210794086E9C0886256C1C006BE6AE

Bibliography

[133] M. Nauman, S. Khan, X. Zhang, and J.-P. Seifert. Beyond Kernel-level Integrity
Measurement: Enabling Remote Attestation for the Android Platform. In Pro-
ceedings of the 3rd international conference on Trust and trustworthy computing:
TRUST’10, pages 1–15, Berlin, Heidelberg, 2010. Springer-Verlag.

[134] N. Navet, A. Monot, B. Bavoux, and F. Simonot-Lion. Multi-source and Multicore
Automotive ECUs - OS Protection Mechanisms and Scheduling. In Proceedings
of the 2010 IEEE International Symposium on Industrial Electronics: ISIE ’10,
pages 3734–3741, 2010.

[135] N. Nethercote and J. Seward. Valgrind: a Framework for Heavyweight Dynamic
Binary Instrumentation. In Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation: PLDI ’07, pages 89–100,
New York, NY, USA, 2007. ACM.

[136] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic Detection,
Analysis, and Signature Generation of Exploits on Commodity Software. In Pro-
ceedings of the 12th Annual Network and Distributed System Security Symposium
: NDSS ’05, 2005.

[137] D. K. Nilsson, U. Larson, and E. Jonsson. Efficient In-Vehicle Delayed Data Au-
thentication Based on Compound Message Authentication Codes. In Proceedings
of the 68th IEEE Conference on Vehicular Technology: VTC ’08-Fall, pages 1–5,
2008.

[138] Object Management Group. Real-time CORBA Specification. OMG docu-
mentation, 2005. [Online]. Available: http://www.ois.com/images/stories/

ois/real-time%20corba%20specification%2005-01-04%20jan%202005.pdf

[Accessed: 22/08/2013].

[139] H. Oguma, A. Yoshioka, M. Nishikawa, R. Shigetomi, A. Otsuka, and H. Imai.
New Attestation Based Security Architecture for In-Vehicle Communication. In
Proceedings of the 2008 IEE GLOBECOM Conference: GLOBECOM ’08, pages
1909–1914, 2008.

[140] OPEN Alliance. OPEN Alliance Special Interest Group. Website. [Online]. Avail-
able: http://www.opensig.org/ [Accessed: 22/08/2013].

[141] Oracle. Java Native Interface. Java SE documentation, 2011. [Online]. Avail-
able: http://docs.oracle.com/javase/6/docs/technotes/guides/jni/ [Ac-
cessed: 22/08/2013].

[142] O. Organization. eXtensible Access Control Markup Language (XACML) Version
3.0. Technical report, OASIS Standards, 2013.

156

http://www.ois.com/images/stories/ois/real-time%20corba%20specification%2005-01-04%20jan%202005.pdf
http://www.ois.com/images/stories/ois/real-time%20corba%20specification%2005-01-04%20jan%202005.pdf
http://www.opensig.org/
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/

Bibliography

[143] Oversee Project. Open Vehicular Secure Platform. Website. [Online]. Available:
https://www.oversee-project.com/index.php?id=2 [Accessed: 22/08/2013].

[144] J. Pleumann. Really Fast Android: AMG Performance Media. Presentation
slides (Droidcon ’12), 2012. [Online]. Available: http://de.slideshare.net/

droidcon/really-fast-android [Accessed: 22/08/2013].

[145] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos. Paranoid Android:
Versatile Protection for Smartphones. In Proceedings of the 26th Annual Computer
Security Applications Conference: ACSAC ’10, pages 347–356, New York, NY,
USA, 2010. ACM.

[146] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an Emulator for Fingerprinting
Zero-day Attacks for Advertised Honeypots with Automatic Signature Genera-
tion. In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006: EuroSys ’06, pages 15–27, New York, NY, USA, 2006.
ACM.

[147] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (INTERNET STAN-
DARD), Oct. 1985. Updated by RFCs 2228, 2640, 2773, 3659, 5797.

[148] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. LIFT: A Low-Overhead
Practical Information Flow Tracking System for Detecting Security Attacks. In
Proceedings of the 39th Annual IEEE/ACM International Symposium on Microar-
chitecture: MICRO ’06, pages 135–148, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[149] A. Ramachandran, Y. Mundada, M. Tariq, and N. Feamster. Securing Enterprise
Networks Using Traffic Tainting. Special Interest Group on Data Communication,
2008.

[150] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Version 1.2.
RFC 6347 (Proposed Standard), Jan. 2012. [Online]. Available: http://www.

ietf.org/rfc/rfc6347.txt [Accessed: 22/08/2013].

[151] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–
126, 1978.

[152] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser, W. Trappe,
and I. Seskar. Security and Privacy Vulnerabilities of In-car Wireless Networks: a
Tire Pressure Monitoring System Case Study. In Proceedings of the 19th USENIX
conference on Security: USENIX Security ’10, pages 21–21, Berkeley, CA, USA,
2010. USENIX Association.

157

https://www.oversee-project.com/index.php?id=2
http://de.slideshare.net/droidcon/really-fast-android
http://de.slideshare.net/droidcon/really-fast-android
http://www.ietf.org/rfc/rfc6347.txt
http://www.ietf.org/rfc/rfc6347.txt

Bibliography

[153] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel. Laminar:
Practical Fine-grained Decentralized Information Flow Control. SIGPLAN No-
tices, 44(6):63–74, 2009.

[154] F. Sagstetter, M. Lukasiewycz, S. Steinhorst, M. Wolf, A. Bouard, W. R. Harris,
S. Jha, T. Peyrin, A. Poschmann, and S. Chakraborty. Security Challenges in
Automotive Hardware/Software Architecture Design. In Proceedings of the 16th

International Confernece on Design, Automation and Test in Europe: DATE ’13,
pages 458–463, 2013.

[155] K. Sampigethaya, R. Poovendran, and L. Bushnell. Security of Fu-
ture E-enabled Aircraft Ad-hoc Network. White paper, 2008. [Online].
Available: http://www.ee.washington.edu/research/nsl/papers/atio-08.

pdf [Accessed: 22/08/2013].

[156] H. Schweppe and Y. Roudier. Security and Privacy for In-vehicle Networks. In
Proceedings of the 1st IEEE SECON International Workshop on Vehicular Com-
munications, Sensing, and Computing: VCSC ’12, 2012.

[157] P. Schönenberg. Introduction of Ethernet. Presentation slides (6th Vec-
tor Congress), 2012. [Online]. Available: http://www.vector.com/portal/

medien/cmc/events/commercial_events/VectorCongress_2012/VeCo12_8_

NewBusSysstems_1_Schoenenberg_Lecture.pdf [Accessed: 22/08/2013].

[158] scut, team teso. Exploiting Format String Vulnerabilities. Technical Report version
1.2, Stanford Crypto Group, 2001.

[159] SeVeCom project. Secure Vehicle Communications. Website. [Online]. Available:
http://www.sevecom.org/ [Accessed: 22/08/2013].

[160] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the
Effectiveness of Address-space Randomization. In Proceedings of the 11th ACM
conference on Computer and communications security: CCS ’04, pages 298–307,
New York, NY, USA, 2004. ACM.

[161] V. Shankar, G. Urban, and F. Sultan. Online Trust: a Stakeholder Perspective,
Concepts, Implications, and Future Directions. Journal of Strategic Information
Systems, 11(3-4):325–344, 2002.

[162] S. Shepler, M. Eisler, and D. Noveck. Network File System (NFS) Version 4 Minor
Version 1 Protocol. RFC 5661 (Proposed Standard), Jan. 2010.

[163] simTD project. Sichere Intelligente Mobilität Testfeld Deutschland. Website. [On-
line]. Available: http://www.simtd.org/ [Accessed: 22/08/2013].

158

http://www.ee.washington.edu/research/nsl/papers/atio-08.pdf
http://www.ee.washington.edu/research/nsl/papers/atio-08.pdf
http://www.vector.com/portal/medien/cmc/events/commercial_events/VectorCongress_2012/VeCo12_8_NewBusSysstems_1_Schoenenberg_Lecture.pdf
http://www.vector.com/portal/medien/cmc/events/commercial_events/VectorCongress_2012/VeCo12_8_NewBusSysstems_1_Schoenenberg_Lecture.pdf
http://www.vector.com/portal/medien/cmc/events/commercial_events/VectorCongress_2012/VeCo12_8_NewBusSysstems_1_Schoenenberg_Lecture.pdf
http://www.sevecom.org/
http://www.simtd.org/

Bibliography

[164] E. Slivka. Apple Pulls Russian SMS Spam App from App Store.
Internet article, 2012. [Online]. Available: http://www.macrumors.

com/2012/07/05/apple-pulls-russian-sms-spam-app-from-app-store/ [Ac-
cessed: 22/08/2013].

[165] Symantec. SSL Certificates from Symantec Powered by VeriSign. Website, 2013.
[Online]. Available: http://www.verisign.com/ [Accessed: 22/08/2013].

[166] A. Tajeddine, A. Kayssi, and A. Chehab. A Privacy-Preserving Trust Model for
VANETs. In Proceedings of the 10th IEEE International Conference on Computer
and Information Technology: CIT ’10, pages 832–837, 2010.

[167] H. Teso. Aircraft Hacking - Practical Aero Series - In Materials of the 2013 Hack
In The Box conference. Presentation slides, 2013. [Online]. Available: http:

//conference.hitb.org/hitbsecconf2013ams/materials/D1T1%20-%20Hugo%

20Teso%20-%20Aircraft%20Hacking%20-%20Practical%20Aero%20Series.pdf

[Accessed: 22/08/2013].

[168] N. Thanthry, M. Ali, and R. Pendse. Security, Internet Connectivity and Aircraft
Data Networks. In Proceedings of the 39th International Carnahan Conference on
Security Technology: CCST ’05, pages 251–255, 2005.

[169] Trusted Computing Group. Trusted Platform Module (TPM) Summary. White pa-
per. [Online]. Available: http://www.trustedcomputinggroup.org/resources/
trusted_platform_module_tpm_summary [Accessed: 22/08/2013].

[170] S. Tse and S. Zdancewic. Run-time Principals in Information-flow Type Systems.
ACM Transactions on Programming Languages and Systems, 30(1), 2007.

[171] US Department of Defense. Trusted Computer System Evaluation Criteria (Orange
Book), 1983.

[172] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome,
G. A. Reis, M. Vachharajani, and D. I. August. RIFLE: an Architectural Frame-
work for User-Centric Information-Flow Security. In Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitecture: MICRO ’04, pages
243–254, Washington, DC, USA, 2004. IEEE Computer Society.

[173] L. Völker and M. Schöller. Secure TLS: Preventing DoS Attacks with Lower
Layer Authentication. In Proceedings of the 15th Fachtagung Kommunikation in
Verteilten Systemen: KiVS ’07, pages 237–248, 2007.

[174] L. Walchshaeusl, R. Lindl, K. Vogel, and T. Tatschke. Detection of Road Users in
Fused Sensor Data Streams for Collision Mitigation. In J. Valldorf and W. Gessner,
editors, Proceedings of the 10th International Forum on Advanced Microsystems

159

http://www.macrumors.com/2012/07/05/apple-pulls-russian-sms-spam-app-from-app-store/
http://www.macrumors.com/2012/07/05/apple-pulls-russian-sms-spam-app-from-app-store/
http://www.verisign.com/
http://conference.hitb.org/hitbsecconf2013ams/materials/D1T1%20-%20Hugo%20Teso%20-%20Aircraft%20Hacking%20-%20Practical%20Aero%20Series.pdf
http://conference.hitb.org/hitbsecconf2013ams/materials/D1T1%20-%20Hugo%20Teso%20-%20Aircraft%20Hacking%20-%20Practical%20Aero%20Series.pdf
http://conference.hitb.org/hitbsecconf2013ams/materials/D1T1%20-%20Hugo%20Teso%20-%20Aircraft%20Hacking%20-%20Practical%20Aero%20Series.pdf
http://www.trustedcomputinggroup.org/resources/trusted_platform_module_tpm_summary
http://www.trustedcomputinggroup.org/resources/trusted_platform_module_tpm_summary

Bibliography

for Automotive Applications: AMAA ’06, pages 53–65, Berlin, Germany, 2006.
VDI/VDE/IT.

[175] D. Warne. Intel Atom-based car stereos coming. Internet article, 2009. [Online].
Available: http://www.apcmag.com/intel-atom-based-car-stereos-coming.

htm [Accessed: 22/08/2013].

[176] K. Weckemann. Herausforderungen in der Kommunikationsabstraktion (Mid-
dleware). Presentation slides (final event of the SEIS project), 2011. [Online].
Available: http://www.strategiekreis-elektromobilitaet.de/public/

projekte/seis/das-sichere-ip-basierte-fahrzeugbordnetz/pdfs/TP3_

Vortrag1.pdf [Accessed: 22/08/2013].

[177] K. Weckemann, D. Herrscher, A. Camek, P. C. G. Grotewold, oliver Hartkopp,
P. Heinrich, C. Helmholz, M. Mandersheid, H. Meier, A. Kern, M. Kicherer,
L. Völker, and M. Pfannenstein. SEIS AP 3.1: Grundlagen, Funktionsinterak-
tion und Migrationstrategie. Technical report, SEIS Project, 2011.

[178] K. Weckemann, H.-T. Lim, and D. Herrscher. Practical Experiences on a Com-
munication Middleware for IP-based In-car Networks. In Proceedings of the 5th
International Conference on COMmunication System softWAre and middlewaRE:
COMSWARE ’11, page 12, 2011.

[179] K. Weckemann, F. Satzger, L. Stolz, D. Herrscher, and C. Linnhoff-Popien. Lessons
from a Minimal Middleware for IP-based In-car Communication. In Proceedings
of the IEEE Intelligent Vehicles Symposium: IVS ’12, pages 686–691, 2012.

[180] B. Weyl, M. Graf, and A. Bouard. Smart Apps in einem vernetzten (auto)mobilen
Umfeld: IT-Security und Privacy. In S. Verclas and C. Linnhoff-Popien, editors,
Smart Mobile Apps, Xpert.press, pages 43–58. Springer Berlin Heidelberg, 2012.

[181] B. Weyl, M. Wolf, F. Zweers, T. Gendrullis, M. S. Idrees, H. Schweppe, and
Y. Roudier. D3.2: Secure On-board Architecture Specifications. Technical report,
EVITA Project, 2010.

[182] B. Weyl, M. Wolf, F. Zweers, T. Gendrullis, M. S. Idrees, H. Schweppe, and
Y. Roudier. D3.2: Secure On-board Architecture Specifications. Technical report,
EVITA Project, 2010.

[183] J. White, B. Dougherty, R. E. Schantz, D. C. Schmidt, A. A. Porter, and A. Cor-
saro. R&D Challenges and Solutions for Highly Complex Distributed Systems: a
Middleware Perspective. Journal of Internet Services and Applications, 3(1):5–13,
2012.

160

http://www.apcmag.com/intel-atom-based-car-stereos-coming.htm
http://www.apcmag.com/intel-atom-based-car-stereos-coming.htm
http://www.strategiekreis-elektromobilitaet.de/public/projekte/seis/das-sichere-ip-basierte-fahrzeugbordnetz/pdfs/TP3_Vortrag1.pdf
http://www.strategiekreis-elektromobilitaet.de/public/projekte/seis/das-sichere-ip-basierte-fahrzeugbordnetz/pdfs/TP3_Vortrag1.pdf
http://www.strategiekreis-elektromobilitaet.de/public/projekte/seis/das-sichere-ip-basierte-fahrzeugbordnetz/pdfs/TP3_Vortrag1.pdf

Bibliography

[184] W. Wiewesiek. SHE - Data Security for Automotive Embedded Systems. Pre-
sentation slides (Workshop on Cryptography and Embedded Security Embedded
World), 2012. [Online]. Available: https://www.escrypt.com/fileadmin/

escrypt/pdf/WEB_Secure_Hardware_Extension_Wiewesiek.pdf [Accessed:
22/08/2013].

[185] N. Williams. Internet Draft – IPsec Channels: Connection Latching, draft-ietf-
btns-connection-latching-00.txt. Technical report, Internet Engineering Task Force
(IETF), 2009.

[186] M. Wolf, A. Weimerskirch, C. Paar, and M. Bluetooth. Security in Automotive
Bus Systems. In Proceedings of the Workshop on Embedded Security in Cars:
ESCAR ’04, 2004.

[187] L. Xie, X. Zhang, J.-P. Seifert, and S. Zhu. pBMDS: a Behavior-based Malware
Detection System for Cellphone Devices. In Proceedings of the 3rd ACM conference
on Wireless network security: WiSec ’10, pages 37–48, New York, NY, USA, 2010.
ACM.

[188] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Capturing
System-wide Information Flow for Malware Detection and Analysis. In Proceedings
of the 14th ACM conference on Computer and communications security: CCS ’07,
pages 116–127, New York, NY, USA, 2007. ACM.

[189] A. Zavou, G. Portokalidis, and A. D. Keromytis. Taint-exchange: a Generic System
for Cross-process and Cross-host Taint Tracking. In Proceedings of the 6th Inter-
national workshop on Advances in information and computer security: IWSEC
’11, pages 113–128, Berlin, Heidelberg, 2011. Springer-Verlag.

[190] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making Information
Flow Explicit in HiStar. In Proceedings of the 7th USENIX Symposium on Oper-
ating Systems Design and Implementation: OSDI ’06, pages 19–19, Berkeley, CA,
USA, 2006. USENIX Association.

[191] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Securing Distributed Systems
with Information Flow Control. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation: NSDI’08, pages 293–308, Berke-
ley, CA, USA, 2008. USENIX Association.

[192] Q. Zhang, J. McCullough, J. Ma, N. Schear, M. Vrable, A. Vahdat, A. C. Snoeren,
G. M. Voelker, and S. Savage. Neon: System Support for Derived Data Manage-
ment. In Proceedings of the 6th ACM SIGPLAN/SIGOPS conference on Virtual
Execution Environments: VEE ’10, pages 63–74, 2010.

161

https://www.escrypt.com/fileadmin/escrypt/pdf/WEB_Secure_Hardware_Extension_Wiewesiek.pdf
https://www.escrypt.com/fileadmin/escrypt/pdf/WEB_Secure_Hardware_Extension_Wiewesiek.pdf

A Appendix

A.1 Numerical values of Figure 5.5

Buffer Throughput Bandwidth

size (bit) (call/sec) (kbit/sec)

(1) (2) (3) (4) (5) (1bis) (2bis) (3bis) (4bis) (5bis)

32 1987 1093 931 767 633 509 280 238 196 162

64 1984 1057 948 682 635 1016 541 485 349 325

128 1987 996 935 665 640 2035 1020 957 671 655

256 1865 920 706 674 479 3820 1884 1446 1380 981

512 1651 778 695 473 430 6762 3187 2847 1937 1761

A.2 Numerical values of Figure 5.6

Buffer Throughput Bandwidth

size (bit) (call/sec) (kbit/sec)

(1) (2) (3) (4) (1bis) (2bis) (3bis) (4bis)

32 914 520 507 395 234 133 130 101

64 865 487 468 363 443 250 240 186

128 777 442 426 328 795 452 437 336

256 776 438 424 329 1589 897 868 674

512 700 392 377 300 2867 1607 1543 1229

163

A Appendix

A.3 Numerical values of Figure 5.7

Buffer Throughput Bandwidth

size (bit) (call/sec) (kbit/sec)

(1) (2) (3) (1bis) (2bis) (3bis)

32 1201 639 525 308 163 134

64 1163 643 537 595 329 275

128 1114 642 525 1141 657 537

256 1073 629 519 2197 1289 1063

512 986 625 523 4039 2560 2142

164

Curriculum Vitae

Personal Details

Alexandre Bouard
born April 20th, 1987 in Clamart, France

PhD

10/2010 – 09/2013 BMW Research and Technology, Munich, Germany
Technische Unitersität München (TUM), Munich, Germany
IT Security Group,
Prof. Dr. Claudia Eckert

Topic “Middleware-based Security for Future In-Car Networks”

Studies

09/2007 – 09/2010 TELECOM ParisTech, Paris, France
Master’s Degree in Engineering
- Specialization Area: Computer Science
- Master Thesis: “Development of an Automotive Security
Middleware, Etch”

09/2008 – 09/2010 EURECOM, Sophia Antipolis, France
Research Institute related to TELECOM ParisTech
- Specialization Area: Communication System Security

09/2005 – 07/2007 Classes Préparatoires in lycée du Parc, Lyon, France
- Specialization Area: Mathematics, Physics, Chemistry

165

Curriculum Vitae

Experience

11/2013 – now BMW AG, Munich, Germany
- Project Manager/Electromobility domain

10/2010 – 09/2013 BMW Research and Technology, Munich, Germany
- Internship, Software development
- Master thesis

Miscellaneous

Education Lycée Saint Exupéry, Lyon, France (1998 - 2005)

Languages French (native language)
English (business fluent)
German (business fluent)

München, August 29, 2014

166

	Abstract
	Zusammenfassung
	Résumé
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Goals & Approach
	1.3 Contributions
	1.4 Outline

	2 Automotive On-board Architecture and Investigated Scenarios
	2.1 About Today's Car
	2.1.1 On-board communications
	2.1.2 C2X communications
	2.1.3 Security Research

	2.2 About Tomorrow's Car
	2.2.1 The Future On-board Network
	2.2.2 The Future On-board Communication Protocols
	2.2.3 Securing the Future On-board Communication Protocols
	2.2.4 The Future Multi-platform Antenna

	2.3 Security Threats and Risk Analysis
	2.3.1 The Attackers
	2.3.2 Their Motivations
	2.3.3 The Threats That Can Be Leveraged
	2.3.4 The Attacker Model

	2.4 Automotive Functional Requirements
	2.5 Summary

	3 Automotive IP-based Security Architecture
	3.1 Middleware Security
	3.1.1 Automotive Middleware
	3.1.2 Security Middleware Extension (SME)
	3.1.3 Functional Use Case and SME Management

	3.2 Security Communication Proxy
	3.2.1 Towards Secure Automotive Proxy-Middleware
	3.2.2 Information Flow Control, a First Approach
	3.2.3 Extending the SME for a Security Communication Proxy
	3.2.4 Security & Trust Level (STL) Taxonomy

	3.3 Middleware and Security Discussion
	3.3.1 About the SME Architecture
	3.3.2 About the Security Proxy Architecture
	3.3.3 About the STL approach
	3.3.4 Security Gains

	3.4 Summary

	4 Information Flow Control in Cars
	4.1 Decentralized Information Flow Control (DIFC)
	4.1.1 DIFC Related Work
	4.1.2 DIFC Model
	4.1.3 DIFC-enabled Middleware
	4.1.4 Discussion
	4.1.5 Conclusion

	4.2 Dynamic Data Flow Tracking (DDFT)
	4.2.1 DDFT Related Work
	4.2.2 Tracking and Controlling the Execution via DDFT
	4.2.3 Middleware-based propagation of DDFT taints
	4.2.4 Discussion
	4.2.5 Conclusion

	4.3 Combining DIFC/DDFT
	4.3.1 DIFC/DDFT-enabled Middleware
	4.3.2 Discussion
	4.3.3 Conclusion

	4.4 Summary

	5 Prototypical Evaluation and Discussion
	5.1 Evaluation Methodology
	5.1.1 Functional Evaluation of a Secure Runtime
	5.1.2 Testing Environment
	5.1.3 Engineering-driven Middleware Development and Setup

	5.2 Middleware
	5.2.1 Etch Middleware
	5.2.2 Performance Results & Interpretation

	5.3 Security Communication Proxy
	5.3.1 Etch Proxy
	5.3.2 Performance Results & Interpretation

	5.4 Monitoring & Controlling the TPA
	5.4.1 Isolation and Virtualization
	5.4.2 DDFT Engine
	5.4.3 TPA monitoring evaluation

	5.5 Discussion
	5.6 Summary

	6 Conclusion and Outlook
	6.1 Summary and Conclusion
	6.2 Outlook and Implications

	Acronyms
	Bibliography
	A Appendix
	A.1 Numerical values of Figure 5.5
	A.2 Numerical values of Figure 5.6
	A.3 Numerical values of Figure 5.7

	Curriculum Vitae

