
TUM
TECHNISCHE UNIVERSITÄT MÜNCHEN
INSTITUT FÜR INFORMATIK

 

Technischer
Technische Universität MünchenInstitut für InformatikBericht

Ralf Vogler

TUM-I142

Verifying Regular Safety Properties of C
Programs Using the Static Analyzer
Goblint



Acknowledgments

The research leading to these results has received funding from the ARTEMIS Joint Under-
taking under grant agreement n° 269335 and from the German Science Foundation (DFG).

i





Abstract

The thesis starts by introducing basic concepts of program analysis and gives an overview
of the program analyzer Goblint, which is developed at the chair using OCaml. Goblint is
a static analyzer for multi-threaded C programs focused on data race detection.

The main part describes the development of a specification language which can be used
to verify regular safety properties of C programs. The work is based on Goblint as a frame-
work for the analyses. Verification of file handle usage serves as an example for comparing
a manual implementation with the developed specification language.

Finally other possible use cases for the specification language and its limitations are
examined.

iii





Contents

Acknowledgments i

Abstract iii

List of Figures vii

List of Tables ix

Listings xi

1. Introduction 1

2. Theory and Goblint 3
2.1. Program analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Complete lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Operational semantics and abstract interpretation . . . . . . . . . . . . . . . 4
2.4. Soundness vs. precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5. Goblint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. Verifying correct usage of file handles 13
3.1. Common problems using files . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2. Concrete and abstract semantics . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3. A domain for representing file handle usage . . . . . . . . . . . . . . . . . . 17
3.4. An analysis for checking file handle usage . . . . . . . . . . . . . . . . . . . . 20

4. A specification language for regular safety properties 23
4.1. Representing the state of properties using automata . . . . . . . . . . . . . . 23
4.2. A domain for representing the state of properties . . . . . . . . . . . . . . . . 25
4.3. Specification format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4. Specification parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5. Making the specification more concise . . . . . . . . . . . . . . . . . . . . . . 28

5. Example use cases 29
5.1. File handles redux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2. Dynamic memory allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6. A web frontend 35

7. Conclusion and future work 37

v



Contents

Appendix 41

A. Setup 41

B. Usage 43
B.1. Command-line options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
B.2. Generating a control flow graph . . . . . . . . . . . . . . . . . . . . . . . . . . 43
B.3. Using the implemented analyses . . . . . . . . . . . . . . . . . . . . . . . . . 44

B.3.1. File handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.3.2. Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography 45

vi



List of Figures

1.1. Screenshot of Goblint’s Eclipse plug-in [3] . . . . . . . . . . . . . . . . . . . . 2

2.1. Flat lattice [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Control flow graphs with branching . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Description relation between concrete and abstract paths [11] . . . . . . . . 7
2.4. Control flow graph with multiple procedures . . . . . . . . . . . . . . . . . . 8
2.5. Components used by Goblint [13] . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1. Automaton for optimistic file handle usage . . . . . . . . . . . . . . . . . . . 31
5.2. Automaton for dynamic memory allocation with malloc and free . . . . . 34

6.1. A web frontend for Goblint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2. Warnings after changing one character . . . . . . . . . . . . . . . . . . . . . . 36
6.3. Web frontend controls for C-files . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii





List of Tables

1.1. Lines of code: Windows [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Lines of code: Unix [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3.1. Possible modes for opening a file [6] . . . . . . . . . . . . . . . . . . . . . . . 15

5.1. Functions for dynamic memory allocation [6] . . . . . . . . . . . . . . . . . . 32

ix





Listings

3.1. Append text to file. Everything fine? . . . . . . . . . . . . . . . . . . . . . . . 13
3.2. Success check for fopen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3. Missing fopen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4. A reason for closing files: flushing . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5. Missing fclose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6. Wrong open mode: writing to a read-only file . . . . . . . . . . . . . . . . . . 15
3.7. Type of the file handle domain . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8. Location of warning when using custom function for opening files . . . . . 19
3.9. Infinitely growing location stack . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10. Mutually recursive functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1. Type of the specification domain . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2. A very small specification for file handles . . . . . . . . . . . . . . . . . . . . 26

5.1. An optimistic specification for file handle usage . . . . . . . . . . . . . . . . 29
5.2. Check for return value of fopen . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3. An example program using dynamic memory allocation with malloc and

free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4. A specification for dynamic memory allocation with malloc and free . . . 33

xi





1. Introduction

Testing code can be cumbersome and time-consuming. High code coverage lowers the
chance that errors may go undetected, but there is no guarantee. This is especially true for
multi-threaded programs. So called data races can be very hard to find and to reproduce.

Definition 1.1 (Data race) Different threads of a program access the same shared memory loca-
tion, and at least one thread writes to it.

With the increase in size and complexity of software projects and their source code, it
gets more important to automatize the testing process as much as possible. An example
of how fast the source lines of code in modern operating systems have been increasing
can be seen in tables 1.1 and 1.2. Although the numbers may not be precise, they give an
intuition.

Year Operating System SLOC (Million)
1993 Windows NT 3.1 4-5
1994 Windows NT 3.5 7-8
1996 Windows NT 4.0 11-12
2000 Windows 2000 >29
2001 Windows XP 45
2003 Windows Server 2003 50

Table 1.1.: Lines of code: Windows [2]

Operating System SLOC (Million)
Debian 2.2 55-59
Debian 5.0 324
OpenSolaris 9.7
FreeBSS 8.8
Mac OS X 10.4 86
Linux kernel 2.6.0 5.2
Linux kernel 2.6.35 13.5
Linux kernel 3.6 15.9

Table 1.2.: Lines of code: Unix [2]

One way of testing is to execute the program. This is called dynamic analysis. In order
to be effective, the program has to be analyzed with enough different test inputs. The
goal is to find errors by running the program on inputs that are likely to produce them.
The problem with that is, that the absence of errors can not be proven and some could
remain undetected. There are many examples for what insufficient testing might lead to; a
prominent one is the self-destruction of the Ariane 5 rocket [5].

Goblint does sound, static analysis, which uses abstract interpretation to approximate
the semantics of a program. Static means that it is able to approximate the run-time behav-
ior of the program without having to execute it. Sound means that the absence of errors
- in contrast to dynamic analysis - can be proven. This is especially important for the ver-
ification of properties in safety-critical applications like medical software or software for
planes, launchers, reactors and so on.

The main use case for Goblint is race detection in multi-threaded C programs. Although
C is more and more replaced by higher level languages like Java and C#, it is still one of
the most widely used programming languages and is dominant in implementing system

1



1. Introduction

software (e.g. Linux kernel) and in embedded applications. With the rise of multi-core
architectures, multi-threading has also become more important.

Goblint has been tested on parts of the Linux kernel and is sufficiently efficient to be
used for race-detection of multi-threaded programs up to about 25 thousand lines of code
[13, 1].

In addition to XML, JSON and HTML output, there is an Eclipse plug-in that displays
the results of the analysis in a view and adds warning markers for places in the code where
a data race might occur. A screenshot can be seen in Figure 1.1.

Information on how to setup Goblint can be found in Chapter A or on its homepage1.

Figure 1.1.: Screenshot of Goblint’s Eclipse plug-in [3]

1http://goblint.in.tum.de

2

http://goblint.in.tum.de


2. Theory and Goblint

2.1. Program analysis

The goal of program analysis is to gain knowledge about certain properties of a program,
which is useful for testing, verification and program optimization. This can be done in two
ways: by observing its execution which is referred to as dynamic analysis or by analyzing
its code which is called static analysis.

dynamic analysis Testing is normally done with a range of different inputs. The inputs
are chosen so that as much of the code as possible is executed. This is measured as
code coverage. Testing every possible combination might take very long, so that choos-
ing the input classes is essential for the effectiveness of the test and might require
some experience. Parameters that can not be chosen, like how threads are scheduled
by the operating system, make it difficult to test for race conditions. Also, the act of
testing itself could influence the system in a way that problems only occur when not
testing.

This approach has several disadvantages: effort of writing good test suites, errors
can remain undiscovered and their absence can not be proven. The advantage is that
it only finds true errors. The run-time of the analysis is directly proportional to the
execution time of the program.

static analysis The source code of the program, or something derived from it, is analyzed
without being executed. The simplest form is to look for certain patterns in the code,
which is not very flexible and mostly used to check style or coding conventions.

A more powerful approach is abstract interpretation (originally proposed by Cousot
and Cousot [4]), which tries to derive semantics from the code. The problem is that
there is no general and effective method to do so. The analysis could possibly not
terminate, which is why sometimes the semantics has to be approximated in order
to avoid non-termination. In general, the analysis can be accelerated with the cost of
getting less precise.

For a sound analysis this means that it would find more errors than there actually are
in the program, i.e. it overestimates. The advantage is that it will find all real errors.
So if it does not find any errors, the program is guaranteed to be error-free.

A disadvantage is that the analysis could need much more time and memory than
the execution of the program, so that subsystems have to be analyzed separately in
order to remain within acceptable boundaries.

3



2. Theory and Goblint

2.2. Complete lattices

An important component for static analysis through abstract interpretation are complete
lattices, which will be used as abstract domains later on.

Definition 2.1 (Partial order) A set D and a binary relation v⊆ D× D which is reflexive, anti-
symmetric and transitive.

Definition 2.2 ((Least) upper bound) An element d ∈ D is called upper bound of a subset X ⊆
D if x w d for all x ∈ X . It is called least upper bound

⊔
X if it is an upper bound and d w y for

every upper bound y of X .

Definition 2.3 (Complete lattice) A partial order where every subset X ⊆ D has a least upper
bound

⊔
X ∈ D.

The counterpart to the least upper bound is the greatest lower bound. They are also called join
and meet, respectively written as

⊔
X and

d
X for a set X .

A lattice is called bounded if it has a greatest and a least element, which are referred to as
top (>) and bottom (⊥).

Every complete lattice has

• a least element ⊥ =
⊔
∅ ∈ D

• a greatest element > =
⊔
D ∈ D.

For example, D = Z with the relation "=" is not a complete lattice since it has no least
upper bound or greatest lower bound. However, the lattice = Z∪{⊥,>}with "=" (shown
in Figure 2.1) is complete. A lattice of this form is called flat.

Figure 2.1.: Flat lattice [11]

2.3. Operational semantics and abstract interpretation

C programs consist of a finite set of proceduresProc, including the main procedure (main ∈
Proc), which is executed first.

A control flow graph Gp for a procedure p ∈ Proc is a tuple (Np, Ep, ep, rp):

• Np is the finite set of nodes, which represent program points

• Ep is the finite set of edges, which represent steps of computation

4



2.3. Operational semantics and abstract interpretation

• ep ∈ Np is the start node, which represents the entry point

• rp ∈ Np is the end node, which represents the return point

An edge from node u to v with a label lab is defined as (u, lab, v). For tests, the edge label
Pos(e) is used for the branch where the expression e evaluates to true and Neg(e) for
the branch where it evaluates to false. This notion is also used for representing loops as
shown in Figure 2.2.

1 if(x){
2 a();
3 }else{
4 b();
5 }

1

4 2

5

Neg(x) Pos(x)

b() a()

1 while(x){
2 a();
3 }

1

3 2

Neg(x) Pos(x)

a()

1 for(int i=0; i<42; i++){
2 a();
3 }

1

1’

3 2

1”

int i=0

Neg(i<42) Pos(i<42)

a()i++

Figure 2.2.: Control flow graphs with branching

A path π is a sequence of edges. Computations follow paths in the graph and transform
the current state s ∈ S. Every edge k = (u, lab, v) defines a partial transformation

JkK = JlabK : S → S (2.1)

of the state. This is called the concrete effect of the edge.
The result of the computation of a path π = k1π1 on a state s is defined as

Jk1π1K s = Jπ1K (Jk1K s) (2.2)

and the result for the empty path π = ε as

JεK s = s. (2.3)

5



2. Theory and Goblint

The concrete semantics then specifies the type of state and the transfer functions for edges.
Since we are interested in the state at a given program point and there might be multiple
paths leading to that point, we have to consider all the paths, which results in a powerset
of possible states. This means that we are looking for a mapping

σ : N → 2S . (2.4)

This is called the collecting semantics, which contains all the possible states at program
points N . Analyses like constant propagation can be used to improve the precision by
excluding paths (e.g. branches that can never be taken).

However, cycles in the control flow graph might lead to infinitely many paths, which is
why the collecting semantics can not be computed in general.

Abstract interpretation To solve this problem, the concrete semantics is soundly approx-
imated by the abstract semantics, consisting of a domain D which has to be a complete
lattice, and abstract transfer functions which have to be monotonic. As monotonic func-
tions on a complete lattice which satisfies the ascending chain condition are guaranteed to
converge to a least fixed point, computability is gained at the cost of precision.

A concrete state s ∈ S is described by an abstract state d ∈ D if both are in the description
relation ∆ ⊆ S × D:

s ∆ d (2.5)

If a concrete state s ∈ S is described by d1 ∈ D, it is also described by a greater d2 ∈ D:

s ∆ d1 ∧ d1 v d2 =⇒ s ∆ d2 (2.6)

A concretization function γ : D→ 2S is used to map an abstract state to all the concrete states
it simulates:

γ d = {s | s ∆ d} (2.7)

It holds that a concretized abstract state is always described by the original and that the
concretization of an abstracted concrete state will be a super set of the original:

s ∈ γ d =⇒ s ∆ d (2.8)
s ∆ d =⇒ s ⊂ γ d (2.9)

The abstract effect of an edge k is

JkK] = JlabK] : D→ D (2.10)

and must always simulate the concrete effect, i.e.

s ∆ d =⇒ (JkK s) ∆ (JkK] d) (2.11)

Paths are defined analog to concrete paths. Since the abstract effect for edges keeps up the
description relation, it also holds that

s ∆ d =⇒ (JπK s) ∆ (JπK] d) (2.12)

s ∆ d =⇒ (JπK s) ∈ γ(JπK] d) (2.13)

6



2.3. Operational semantics and abstract interpretation

s1 s2

d1 d2

JπK

JπK]

∆ ∆

Figure 2.3.: Description relation between concrete and abstract paths [11]

which is illustrated in Figure 2.3.
Although the above is enough to guarantee safe abstraction, it might not be optimal.

Analogously to the concretization function γ, there is an abstraction function α : 2S → D:

α S = d ∈ D. ∀s ∈ S. s ∆ d (2.14)

The monotonic abstraction and concretization functions form a Galois connection between
concrete and abstract states:

2S
γ

�
α

D (2.15)

Defining the abstract semantics such that

JkK] d = α {JkK s | s ∈ γ d} (2.16)

guarantees not only safe, but also optimal abstraction.

Computability and solving The collecting semantics is abstracted by the so called Merge
Over all Paths (MOP) solution: for a point v, start point start and start state d0 ∈ D it is
defined as

I∗[v] =
⊔
{JπK] d0 | π : start→∗ v}. (2.17)

Instead of this join over an possibly infinite set, a constraint system is used to guarantee
computability. Since the abstract state is a complete lattice and the transformations are
monotonic, the Knaster-Tarski theorem states that the set of fixed points must also be a
complete lattice, which implies the existence of a least/greatest fixed point (complete lat-
tices can not be empty). This solution is computable if the complete lattice has finite height
or if it does not contain infinite strictly ascending chains. Under these premises the con-
straint system will always converge to a least fixed point solution that is an upper bound
for the MOP solution [8, 7].

The constraint system for a start point start and start state d0 ∈ D is set up as

I[start] w d0 (2.18)

I[v] w JkK] (I[u]) ∀k = (u, _, v) ∈ E (2.19)

7



2. Theory and Goblint

and can be solved using various iteration schemes. A solution of the constraint system
then approximates the MOP solution:

I[v] w I∗[v] ∀v ∈ N (2.20)

If all effects of edges f = JkK] are distributive, i.e.

f(
⊔
X) =

⊔
{f(x) | x ∈ X} ∀∅ 6= X ⊆ D (2.21)

the two solutions are even equal [9]:

I[v] = I∗[v] ∀v ∈ N (2.22)

Interprocedural While these concepts work fine intraprocedurally, programs with mul-
tiple procedures need special attention. For simplification we assume that variables are
uniquely named and parameters and return values are handled as assignments to global
variables. A procedure p has exactly one definition void p(){...} and can be called via
p(). We introduce call edges from a call site to the start of the procedure definition and
return edges from the return point to the point after the call site. Figure 2.4 shows such a
combined graph of multiple procedures.

1 #include <stdio.h>
2

3 int x;
4

5 void f(){
6 x++;
7 }
8

9 void g(){
10 f();
11 }
12

13 void main(){
14 x = 0;
15 f();
16 g();
17 printf("%i", x);
18 }

1

2

3

4

5

1f

2f

1g

2g

x=0 f() x++

return

return

f()

return

g()

printf("%i", x)

Figure 2.4.: Control flow graph with multiple procedures

The problem now is that not all paths are valid, i.e. some paths would be considered for
the solution despite not being possible executions of the program. This happens because
we do not ensure that function calls return to the right place. In the example, there is only
one valid path (1-2-1f-2f-3-1g-1f-2f-2g-4-5), but we would consider infinitely many paths
because of the cycle (3-1g-1f-2f-3).

8



2.4. Soundness vs. precision

An interprocedural flow graph G∗, as defined in [12], solves this problem by only al-
lowing so called interprocedurally valid paths (IVP(G∗)). It is defined as (N∗, E∗, emain)
where emain is the entry point of the program.

An interprocedurally valid path π ∈ IVP(G∗) can be determined by its call-string cs(π),
which is the subsequence of edges that have not been returned yet. Both can be inductively
defined on the length of π:

• if π = ε then π ∈ IVP(G∗) and cs(π) = ε

• if π = π′k and ς = cs(π′) then π ∈ IVP(G∗) iff π′ ∈ IVP(G∗) and one of the following
holds:

k is neither a call nor a return edge. cs(π) = ς .

k is a call edge. cs(π) = ςk.

k is a return edge, ς is of the form ς ′k′ and k corresponds to the call edge k′.
cs(π) = ς ′.

The domain is then augmented by this information and the transfer functions for call
and return edges modified to ignore invalid edges based on it. Therefore all paths over
edges from E∗ are guaranteed to be valid.

Although Goblint uses a different approach, this concept of interprocedural paths is used
in the following, since it allows to apply the same methods for both settings.

2.4. Soundness vs. precision

Since the program behavior is merely over- or under-approximated, one has to differenti-
ate between information that may or must be true. Although this applies to all domains,
we take may- and must-sets as an example since they are used later on in the implemented
analysis. Both domains with their corresponding join operation and the meaning of the
empty set are described below.

Must-set Property must be true for all elements, but not all elements with the property
must be in the set. t = ∩, ∅ = >.

May-set Property may be true or not for each element, but all elements for which it is true
must be in the set. t = ∪, ∅ = ⊥.

If the sets contain elements we want to warn about, then the difference is

Must-set Precision: every warning is an error, but the program may still have other errors.

May-set Soundness: there might be false positives, but if there are no warnings, then the
program is error-free.

To summarize: the must-set is precise but maybe unsound and the may-set is sound but
maybe not very precise.

9



2. Theory and Goblint

2.5. Goblint

Overview Goblint uses a recursive demand-driven solver, i.e. constraints get evaluated
recursively once they are needed. Results can be shared between different analyses using
a query system.

For interprocedural analysis global invariants are used to collect side-effects of functions.
These invariants are then used for all calls.

The results can be formatted as XML, JSON or HTML. The XML-output can be displayed
in Eclipse via plugin. CIL is used for processing input files and generating a control flow
graph (see Figure 2.5).

Figure 2.5.: Components used by Goblint [13]

CIL CIL stands for C Intermediate Language and is an infrastructure for C program anal-
ysis and transformation [10]. It is used to generate a high-level representation of the input
C program by doing a a source-to-source transformation that simplifies valid C programs
into core constructs with very clean semantics. CIL’s output can be displayed by invoking
Goblint with the option --set justcil true. It is able to process ANSI-C programs and
also programs using Microsoft C or GNU C extensions. Modules for control flow graphs,
data flow and some analyses are also included.

Query system Analyses in Goblint can be run on demand, i.e. the constraints need only
be evaluated once a value is needed. All the analyses are combined into a master analysis.

Among others the query system can be used to get information about

• expression evaluation

• expression equality

• pointer analysis

• reachability

• locksets

Expression evaluation and points-to information will be used later on in the implementa-
tion.

10



2.5. Goblint

Domains Since complete lattices are needed for termination, all domains must offer func-
tions for ≤,t,u,⊥,>. Custom functions for widening and narrowing can be specified to
make the constraint system converge faster.

Basic data structures like sets and maps are already available for use as domains. Since
CIL values can not be used directly, there are also domains for representing C constructs
like structures, arrays, L-values and so on.

Analyses For implementing an analysis the following transfer functions have to be de-
fined and are called by the master analysis. The used domain is D and D.t its type.
The types lval (L-value), exp (expression), fundec (function declaration) and varinfo
(variable) come from CIL.

assign (lval:lval) (rval:exp)
Assignment of an expression rval to a L-value lval.

branch (exp:exp) (tv:bool)
Enter a branch where the condition exp is either true or false, depending on tv.

body (f:fundec)
Called when the body of a function is entered.

return (exp:exp option) (f:fundec)
Called once a function returns, exp contains the expression if one is returned.

enter (lval: lval option) (f:varinfo) (args:exp list)
Enter a function f with arguments args and the returned value optionally being
saved to lval.

combine (lval:lval option) fexp (f:varinfo) (args:exp list) (au:D.t)
Leave a function f and combine the updated domain au with the context of the call
site. Counterpart to enter.

special (lval: lval option) (f:varinfo) (arglist:exp list)
Called for functions that are not defined in the program.

Functions: enter and combine As mentioned in Section 2.3 Goblint uses a different ap-
proach than interprocedurally valid paths; instead, it represents program executions as
computation forests.

For all calls (x, f(), y) ∈ Ep to a function f with start node ef and return node rf inside
a procedure p ∈ Proc, we set up the constraints

σ[ef ] v enter σ[x] (2.23)
σ[y] v combine (σ[x], σ[rf ]) (2.24)

Depending on the analysis, enter and combine can then be defined accordingly. For a
simple value analysis without escaping of variables, they might be

enter d = d|Globals (2.25)
combine (d1, d2) = (d1|Locals)⊕ (d2|Globals) (2.26)

11



2. Theory and Goblint

which means that enter only keeps the global variables in the domain and combinemerges
the locals from the call-site with the globals from the return point of the function.

Since Goblint uses calling contexts (denoted as a below) to differentiate between function
calls at a node, the real constraints are different, but the idea is similar:

σ[ef , a] v a (2.27)
σ[y, a] v combine (σ[x, a], σ[rf , enter σ[x]]) (2.28)

The context helps to improve precision since a call to f with context a ∈ D will be treated
separately from a call with context b 6= a.

In summary the result of this approach is similar to that of interprocedurally valid paths:
enter and combine make sure that functions return to their call-site and the context distin-
guishes different calls.

12



3. Verifying correct usage of file handles

3.1. Common problems using files

The following examples for common problems served as a guideline for the implementa-
tion and contain comments starting with // WARN: that indicate where warnings would
be output.

Listing 3.1 shows opening a file log.txt and appending the line "Testing..." to it. At the
end the file is closed.

1 #include <stdio.h>
2

3 int main(){
4 FILE *fp;
5 fp = fopen("log.txt", "a");
6 fprintf(fp, "Testing...\n"); // log something
7 fclose(fp);
8 // do important things
9 }

Listing 3.1: Append text to file. Everything fine?

Opening files This might seem fine, since the file will be created if it does not exist, but
what happens if the file can not be written to? If the file exists but we do not have write
access, running the code will result in a segmentation fault at fprintf. We forgot to check
the result of fopen, which returns a null pointer if the file could not be opened successfully.
Accessing a file that does not exist for reading also results in a segmentation fault.

This case is handled by the manual implementation and can also be checked using the
specification language. For this example warnings should be issued that the file handle
might not be open after line 5.

A corrected version could look like Listing 3.2.

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main(){
5 FILE *fp;
6 fp = fopen("log.txt", "a");
7 if(fp){
8 printf("file opened");
9 fprintf(fp, "Testing...\n");

10 fclose(fp);
11 }else{
12 perror("failed to open file");

13



3. Verifying correct usage of file handles

13 return EXIT_FAILURE;
14 }
15 return EXIT_SUCCESS;
16 }

Listing 3.2: Success check for fopen

For the sake of brevity a success check is omitted in the following examples and it is as-
sumed that the file could be opened without errors. The specification version can be easily
adjusted to conform to this by just replacing a few states, whereas the manual implemen-
tation would always warn about maybe unopened file handles, unless the option ana.file
.optimistic is set to true, in which case the analysis will assume opening files never
fails (see Section B.3 on how to set options). Listing 3.3 shows what happens if the file han-
dle was not opened before using it. Dereferencing an uninitialized pointer is undefined
behavior, but when running the program, this usually leads to a segmentation fault.

1 #include <stdio.h>
2

3 FILE *fp;
4

5 int main(){
6 fprintf(fp, "Testing...\n"); // WARN: writing to unopened file

handle fp
7 fclose(fp); // WARN: closeing unopened file handle fp
8 }

Listing 3.3: Missing fopen

Closing files Not closing files is not necessarily an error since file handles are closed at
the end of the program anyway, but it is bad practice and might lead to unwanted behavior.
Imagine a program that is done writing important information to a file but does not close
it. What happens if the program gets stuck in calculations or on user input and other
programs want to use the file? See Listing 3.4 for example. Without the call to fclose,
the written content might not be flushed until the program terminates. Starting with some
content in the file resulted in an empty file at the point of user input.

1 #include <stdio.h>
2

3 FILE *fp;
4

5 int main(){
6 char text[20];
7 fp = fopen("test.txt", "w");
8 fprintf(fp, "Testing...");
9 // fclose();

10 printf("enter some text: ");
11 fgets(text, sizeof text, stdin);
12 printf("text = \"%s\"\n", text);
13 }

14



3.1. Common problems using files

Listing 3.4: A reason for closing files: flushing

Listing 3.5 has comments for warnings that would be issued. There is a warning where
the file was opened and a summary of unclosed files at the end of the program.

1 #include <stdio.h>
2

3 FILE *fp;
4

5 int main(){
6 fp = fopen("test.txt", "a"); // WARN: file is never closed
7 fprintf(fp, "Testing...\n");
8 } // WARN: unclosed files: fp

Listing 3.5: Missing fclose

Open mode Writing to a file which is opened read-only as demonstrated in Listing 3.6
is another problem. Bugs of this kind might be hard to find, since this executes without
errors - there is just nothing written to the file. Analogously, reading from a file that is
opened write-only is the same as reading an empty file.

1 #include <stdio.h>
2

3 FILE *fp;
4

5 int main(){
6 fp = fopen("test.txt", "r");
7 fprintf(fp, "Testing...\n"); // WARN: writing to read-only file

handle fp
8 fclose(fp);
9 }

Listing 3.6: Wrong open mode: writing to a read-only file

Table 3.1 lists the modes in which a file can be opened. To open a file in binary mode the
character ‘b’ is appended to the mode string or inserted before ‘+’, e.g. ‘rb’, ‘r+b’ or ‘rb+’.
So ‘r’ and ‘rb’ are the only modes that do not support write operations. All the modes that
contain ‘r’ need the file to exist prior to the call.

Mode Description
r reading
w writing (truncate or create file)
a appending (start at end or create file)
r+ reading and writing (start at beginning)
w+ reading and writing (truncate or create file)
a+ reading and writing (start at end or create file)

Table 3.1.: Possible modes for opening a file [6]

Other functions like fscanf, fputc, fgetc, fwrite, fread are not shown here, since the
problems are similar to fprintf.

15



3. Verifying correct usage of file handles

3.2. Concrete and abstract semantics

For the concrete semantics we are only interested in the effects of statements on file han-
dles. Other parts of the semantics are intentionally left undefined. File handles are L-
values pointing to a structure FILE which keeps information about the file descriptor, the
stream position, a pointer to the stream’s buffer and some status flags. We differentiate
between the states

• unopened (pointer not initialized)

• opened a file in a specific mode

• could not open (NULL pointer is returned)

• closed

The type of the concrete state is then

S′ : Lval → (File ∗Mode) ∪ {Error ,Closed} (3.1)
S : S′ ∗Other (3.2)

where S′ is a mapping from L-values to the states opened, error or closed. A L-value is
unopened if it is not mapped. The types File and Mode are strings. Other represents the
semantics of everything other than file handles and can be used for evaluating expressions.

The FILE structure is only supposed to be accessed by functions defined in stdio.h or
wchar.h. Since there are many functions for reading and writing files, only fscanf and
fprintf are shown here as an example.

For the open mode we define the predicates (with L(regex ) being the set generated by
the regular expression regex )

readwrite(m) = m ∈ L([rwa] (\+ | \+b | b\+)) (3.3)
readable(m) = readwrite(m) ∨m ∈ {r, rb} (3.4)
writable(m) = readwrite(m) ∨m ∈ L([wa] b?) (3.5)
unkown(m) = ¬readable(m) ∧ ¬writable(m) (3.6)

The transfer function is overloaded depending on the state it operates on. We assume
that for o : Other everything is well defined, so that we can use JeK o to evaluate an
expression e and need not worry about capturing side effects for other states. That means
we do not need to modify Other in the transfer function on S since this is done separately.

In the following we define the transfer function for file handles on the concrete state
(s, o) : S which yields a set of new states 2S . The only case where we return a set with
more than one element is fopen: the result is either a state where the file was successfully
opened or a state where it was not.

Expressions that are evaluated in Other can be arbitrarily complex, e.g. the last case
Jp1 = p2K also includes statements like p1++, p1-=3, p[0].file=fun()+1 and so on.

Side effects that we are interested in are denoted after the state.

16



3.3. A domain for representing file handle usage

Jp = fopen(f, m)K (s, o) = {(s⊕ {JpK o 7→ (JfK o, JmK o)}, o), (s, o)}
Jfclose(p)K (s, o) = {(s⊕ {JpK o 7→ Closed}, o)}

Jfprintf(p, args)K (s, o) = {(s, o)}

and


something written if s(JpK o) = (f,m) ∧ writable(m)
nothing written if s(JpK o) = (f,m) ∧ ¬writable(m)

∨ s(JpK o) = Closed
segmentation fault if s(JpK o) = Error
undefined else

Jfscanf(p, args)K (s, o) = {(s, o)}

and


something read if s(JpK o) = (f,m) ∧ readable(m)
nothing read if s(JpK o) = (f,m) ∧ ¬readable(m)

∨ s(JpK o) = Closed
segmentation fault if s(JpK o) = Error
undefined else

Jp1 = p2K (s, o) =
{(s⊕ {Jp1K o 7→ x}, o)} if (Jp2K o, x) ∈ s
{(s	 {Jp1K o 7→ y}, o)} if (Jp2K o, x) /∈ s ∧ (Jp1K o, y) ∈ s
{(s, o)} else

All other statements are assumed to not affect the state of file handles or affect it in a way
that is not relevant for us, e.g. changing the position indicator inside the file with fseek or
similar functions.

Theory Remembering the interprocedural flow graph G∗ = (N∗, E∗, emain) we are now
looking for a function

σ : N∗ → 2S (3.7)

that gives us the set of possible states for a program point. That means that for every valid
path π ∈ IVP(G∗) from emain to some n ∈ N∗ and start state s0 the concrete state must be
included in the set:

σ[n] ⊇ {JπK s0} ∀n ∈ N∗, π = (emain, _, _)...(_, _, n) ∈ IVP(G∗) (3.8)

To describe concrete values s ∈ 2S , we introduce a domain with abstract values d ∈ D
and a description relation ∆ with

s ∆ d1 ∧ d1 v d2 =⇒ s ∆ d2 (3.9)

3.3. A domain for representing file handle usage

Since it should be possible to track multiple file handles, we choose our domain D to be a a
map M from L-values K to another domain V. The bottom value for M is the empty map.
The domain V represents one file handle. Listing 3.7 shows how its type t is defined.

17



3. Verifying correct usage of file handles

1 type loc = location list
2 type mode = Read | Write
3 type state = Open of string*mode | Closed | Error
4 type record = { key: Lval.CilLval.t; loc: loc; state: state }
5 type t = record Set.t * record Set.t (* must, may *)

Listing 3.7: Type of the file handle domain

t is a tuple consisting of a must- and a may-set of records.

record contains the L-value that was used as a key, the location stack and the state.

state can be Open(filename, mode), Closed or Error.

mode can be Read if the file is opened read-only or Write for all other modes.

loc is a stack of locations from the latest assignment down to the use of the stdio-function.

Filename and location stack are not needed do determine the correct state but instrumen-
talization to get more helpful warning messages.

Each key must have at most one state but may have at least one state. In other words: the
must-set starts with one element and can only shrink to zero elements; the may-set also
starts with one element and can only grow. Although the must-set could be replaced by a
more efficient type, it is easier to work with sets for both.

Assume the must-set is empty and the may-set contains multiple elements. Even if the
correct state is not known, these alternatives can be used to answer questions about the
state during the analysis.

As an example let the may-set contain records with the states Open(..., Read) and
Open(..., Write). In this case it is safe to say that the file is opened - if it is writable on
the other hand is unknown. Another example: if all states are Closed but with different
locations, it is safe to say that the file is closed.

Since an empty may-set would never occur, we can use it to encode the case where we
have no knowledge anymore and the state could be anything (e.g. after an unsupported
operation like pointer arithmetic). For a file handle M[k] with key k we therefore define

M[k] = ⊥ ⇔ k /∈M (3.10)
M[k] = > ⇔M[k] = (∅, ∅). (3.11)

The ordering and the join operation for two values (a, b) and (c, d) are defined as

(a, b) ≤ (c, d)⇔ c ⊂ a ∧ b ⊂ d (3.12)
(a, b) t (c, d) = (a ∩ c, b ∪ d). (3.13)

The location stack is kept because the location of the stdio-function might not always be
the location where the warning should be issued. Listing 3.8 defines a custom function for
opening files. The warnings should be placed at the call to this function instead of at the
call to fopen.

18



3.3. A domain for representing file handle usage

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 FILE* myfopen(char* filename){
5 FILE *fp;
6 fp = fopen(filename, "a");
7 if(fp == NULL){
8 printf("Error opening file");
9 exit(EXIT_FAILURE);

10 }else{
11 return fp;
12 }
13 }
14

15 int main(){
16 FILE *fp1;
17 FILE *fp2;
18 fp1 = myfopen("test1.txt");
19 fp2 = myfopen("test2.txt"); // WARN: file is never closed
20

21 fprintf(fp1, "Testing...\n");
22 fclose(fp1);
23 fprintf(fp2, "Testing...\n");
24 // fclose(fp2);
25 } // WARN: unclosed files: fp2

Listing 3.8: Location of warning when using custom function for opening files

Termination However, using a normal stack could lead to infinite strictly ascending
chains as shown in Listing 3.9. Once the uninitialized variable b contains 0, the file will
be opened. This normally happens pretty fast before overflowing the call stack. So the
program runs fine, but the analysis would get stuck with an ever growing location stack.
To avoid this, the location stack behaves like an ordered set, i.e. if a location is already
contained in the stack, it will not be pushed.

1 #include <stdio.h>
2

3 FILE* myfopen(char* filename){
4 int b;
5 if(b)
6 return myfopen(filename);
7 else
8 return fopen(filename, "a");
9 }

10

11 int main(){
12 FILE *fp;
13 fp = myfopen("test.txt");
14 fprintf(fp, "Testing...\n");
15 fclose(fp);

19



3. Verifying correct usage of file handles

16 }

Listing 3.9: Infinitely growing location stack

In Listing 3.10 it is not the call stack, but the filename that might escalate. The analysis
is not precise enough to know that test-odd.txt must be opened but it will end up
with a may-set containing both filenames. This is acceptable since it still knows that the
file handle must be open, the problem however is that this could lead to infinite strictly
ascending chains if the number of possible filenames is unbounded. This is avoided by
the fact that only string literals can be used for filenames - any operation on the string
will make it >. Since there can only be finitely many string literals in the source code,
termination is not jeopardized.

However there is the possibility that strings are manipulated in memory or by external
functions, in which case the value for the filename could be incorrect. Since filenames
are currently not displayed in warnings and it does not violate soundness, this is just an
inconvenience.

1 #include <stdio.h>
2

3 FILE* myfopen2(int i);
4 FILE* myfopen1(int i){
5 if(i>0)
6 return myfopen2(i-1);
7 else
8 return fopen("test-even.txt", "a");
9 }

10 FILE* myfopen2(int i){
11 if(i>0)
12 return myfopen1(i-1);
13 else
14 return fopen("test-odd.txt", "a");
15 }
16

17 int main(){
18 FILE *fp1;
19 fp1 = myfopen1(5);
20 fprintf(fp1, "Testing...\n");
21 fclose(fp1);
22 }

Listing 3.10: Mutually recursive functions

3.4. An analysis for checking file handle usage

The analysis uses the following transfer functions, which are called by the framework, in
order to transform the abstract state for different statements and issue warnings according
to the side effects specified in the concrete semantics.

assign (lval:lval) (rval:exp)

20



3.4. An analysis for checking file handle usage

Warn about changed file pointer if lval ∈ D and set the entry to >. To improve pre-
cision aliasing of file pointers was implemented for simple cases (join of two aliases
still yields >).

branch (exp:exp) (tv:bool)
Used to handle error-case of fopen. If exp compares an L-value lval with an in-
teger and the expression can be transformed into lval==0 with tv being true, then
change the state to Error.

return (exp:exp option) (f:fundec)
If the returning function is main, print out a summary of unclosed files if there are
any. If a L-value is returned, save it as a special entry return_var in the domain.
Finally remove all non-escaping formals and locals of the function from the domain.

enter (lval: lval option) (f:varinfo) (args:exp list)
Save the current location to the location stack if the function is not main. Only keep
globals and variables that are reachable from args in the domain for f.

combine (lval:lval option) fexp (f:varinfo) (args:exp list) (au:D.t)
Pop the top element from the location stack. Add all entries from the updated do-
main au to the local domain. If return_val is set and there is an lval which is
assigned to, save the entry return_val points to with lval as a new key in the
domain.

special (lval: lval option) (f:varinfo) (arglist:exp list)
Add the current location to the location stack. Issue warnings and/or modify do-
main depending on lval and the called function.

The implementation of these functions constitutes the abstract effects JkK] d on d ∈ D for
all statements k. For example

Jp1 = p2K] d = assign p1 p2 (3.14)

As the effects resemble those specified in the concrete semantics, most of the work is done
in special. Analogously to Other in the concrete semantics, the implementation relies on
the query system to get may-point-to information and to evaluate expressions.

The analysis is sound if the abstract effects describe the concrete effects correctly for all
edges k:

s ∆ d =⇒ JkK s ∆ JkK] d (3.15)

Since the transitions between states of file handles are treated the same as in the concrete
semantics, the analysis is sound for the states and issued warnings. Filenames, although
not used, might be unsound.

21





4. A specification language for regular safety
properties

4.1. Representing the state of properties using automata

Our goal is to abstract the semantics of a program in order to verify properties given by a
specification. The behavior of a system can be described using state diagrams, consisting
of a finite number of states and transitions between those states. Such state diagrams can
be formalized by so called finite state machines or finite automata. The transitions can be
deterministic (at most one transition for each state and input) or nondeterministic (multi-
ple possible next states for each state and input). Both deterministic finite automata (DFA)
and nondeterministic finite automata (NFA) are usually defined by a 5-tuple (S,Σ, δ, s0, F ),
consisting of

• a finite set of states (S)

• a finite set of input symbols called the alphabet (Σ)

• a transition function (δ : S × Σ→ S)

• a start state (s0 ∈ S)

• a set of accept states (F ⊆ S).

The automaton then accepts a stringw = a1a2...an over the alphabet Σ if there is a sequence
of states r0, r1, ..., rn in S with

• r0 = s0

• ri+1 = δ(ri, ai+1), for i = 0, ..., n− 1

• rn ∈ F .

Such an automaton can either accept or not accept a given input. In our case this would
require us to construct an automaton for every property we want to warn about. For each
input we would do the transitions for all automata and every time an automaton reaches
an end state, we would issue the corresponding warning and reset the automaton. Since
we are only interested in the warnings this is not the best approach.

A better suited solution for our purpose is a finite state transducer, which has two tapes:
one for input and one for output. For defining the output function, there are two possibil-
ities:

• a Moore machine determines the output values by its current state,

23



4. A specification language for regular safety properties

• a Mealy machine determines the output values by its current state and the current
input.

The Mealy machine was chosen as a better fit for the specification since it is more flexible
and avoids introducing intermediate states that are used solely for output. Furthermore
it keeps the number of states low (n2 vs. n possible output values for n states), which is
good for visualization.

Compared to a finite automaton a Mealy machine is a 6-tuple (S, s0,Σ,Λ, T,G), consist-
ing of

• a finite set of states (S)

• a start state (s0 ∈ S)

• a finite set called the input alphabet (Σ)

• a finite set called the output alphabet (Λ)

• a transition function (T : S × Σ→ S)

• an output function (G : S × Σ→ Λ).

The transition and output functions can be coalesced into a single function (T ′ : S × Σ →
S × Λ), which is meant when referring to transitions from now on. A transition, which
corresponds to an edge in the graph, therefore consists of an input and an output value.

For the specification we use a Mealy machine where

• the states define the properties (e.g. file handle is open or closed),

• the input alphabet consists of the statements of the program,

• the output alphabet consists of the warnings and the empty element ε to avoid out-
put.

Using concrete statements for the transitions would not be very flexible, which is why
constraints are used instead. The constraints for each state form an extra automaton and
work similar to pattern matching in functional languages: they can contain identifiers for
binding values and wildcards for matching everything. Once a constraint matches the
input statement, the transition is taken. For string constants regular expressions are also
supported. This allows a very concise specification of alternatives.

Theory Next we will examine how the Mealy machine relates to concrete and abstract
semantics of the specification.

First let T , G and T ′ be defined for paths:

T (s, εΣ) = s (4.1)
T (s, kπ′) = T (T (s, k), π′) (4.2)
G(s, εΣ) = ∅ (4.3)

G(s, k1k2π
′) = G(s, k1) ∪G(T (s, k2), π′) (4.4)

T ′(s, π) = (T (s, π), G(s, π)) (4.5)

24



4.2. A domain for representing the state of properties

Furthermore we expect them to work on edges k ∈ E∗, in which case they just use the
label lab.

That means that the concrete state at the end of a path is a tuple with the current state
of the Mealy machine and a set of outputs that happened along the path. Each output has
its own location derived from the edge where it happened. We keep a set in order to be
able to consolidate the outputs of different paths at the end of the program, which is only
needed in case of multiple returns.

Given an interprocedural flow graphG∗ = (N∗, E∗, emain) and a Mealy machine (S, s0,Σ =
E∗,Λ, T,G), the collecting semantics for a node v ∈ N∗ is then

I ′[v] =
⋃
{JπK (s0, ∅) | π : emain →∗ v} (4.6)

where

JπK (s, o) = (s′, o ∪ o′) with (s′, o′) = T ′(s, π). (4.7)

Since this solution can not be computed in general, we define abstract semantics used
for the MOP solution

I∗[v] =
⊔
{JπK] (d0, ∅) | π : emain →∗ v} (4.8)

which is approximated by the solution of a constraint system that can be computed:

I[start] w (d0, ∅) (4.9)

I[v] w JlabK] (I[u]) ∀(u, lab, v) ∈ E∗ (4.10)

More concretely we can set up constraints for σ′ : N∗ → 2S for abstracting T , and ω′ :

N∗ → 22Λ for abstracting G:

σ′[v] w
⊔

s∈σ′[u]

{T (s, lab)} ∀(u, lab, v) ∈ E∗ (4.11)

ω′[v] w
⊔

s∈σ′[u]

{G(s, lab)} ∀(u, lab, v) ∈ E∗ (4.12)

The abstract state of the actual implementation is different because it uses must- and
may-sets for states and it prints most warnings directly, but the idea is similar.

Both domain and analysis can be seen as generalized versions of those used in Chapter 3.
Next we will describe the domain; the implementation details of the analysis are omitted.

4.2. A domain for representing the state of properties

Properties refer to an object - this could be the whole program or something inside the
program, which can be addressed by a L-value. For the file handles this was a L-value at
a certain position in the checked statements and allowed to differentiate between multiple
handles. Apart from L-values from statements, special keys are used to guarantee that the
state is always assigned to some key. One such special key is used for global constraints,

25



4. A specification language for regular safety properties

i.e. constraints that define no key. This could be used to verify that one function is always
called before the other globally. One could also implement other special keys, e.g. to refer
to the current function or thread.

The domain for the specification therefore is very similar to the domain for file handles.
It consists of a map M with L-values as a key and a domain V for its values. V is a tuple of
must- and may-set, each containing records with a key, location stack and state (see Listing
4.1).

1 type state = string
2 type record = {key: Lval.CilLval.t; loc: location list; state: state}
3 type t = record Set.t * record Set.t (* must, may *)

Listing 4.1: Type of the specification domain

The main difference is that the state is a string instead of a sum type, which means that it
is not fixed at compile-time but comes from the specification file at run-time.

4.3. Specification format

A specification file contains three types of definitions:

• warnings, consisting of an identifier and text

• edges, consisting of a start state, optional outputs, optional forwarding, an end state
and a constraint

• state groups, consisting of a name for the group and a list of states (currently only
used to specify end states).

Definitions are separated by line breaks and can be interleaved since the whole file is
parsed and split into a list of warnings and a list of edges. Empty lines and C-style com-
ments are ignored.

Listing 4.2 gives a feel for the syntax using a small example for file handles. The type
and amount of whitespace for separation is not important.

1 // warnings
2 w1 "file handle is not saved"
3 w2 "closeing unopened file handle"
4

5 // edges
6 a -w1> a fopen(_)
7 a -w2> a fclose($fp)
8 a -> b $fp = fopen(_)
9 ...

Listing 4.2: A very small specification for file handles

The semantics and extensions to the syntax are described below.

warnings Multiple warnings can be specified like this: a -w1,w2,w3> b c() in which
case w1, w2 and w3 will be output if the automaton is in state a and the constraint c
matches.

26



4.4. Specification parser

states The states S of the Mealy machine are implicitly defined by the start and end states
used by edges.

start state The start state of the first transition defines the start state of the automaton.

end states End states are an extension that allows to warn about certain states at the
end of the program. They are specified as a list end: a, b, c. At the end of the
program the warnings with the identifiers !end and !end@return are issued for
all states that are not marked as an end state. The difference between the two is the
location for the warning: !end places it at the location for that state, !end@return
places it at the return points of the main function. For the latter $ can be used as a
placeholder for the list of keys.

wildcard An edge with _ as a constraint matches everything. Wildcards can also be used
inside expressions.

forwarding Edges with a two-headed arrow like ->> (or -w1,w2>> etc.) are forwarding
edges, which will continue matching the same statement for the target state.

4.4. Specification parser

A simplified version of the grammar for parsing the specification is shown below in a
modified Backus-Naur-Form where the symbols ∗,+, ? are used as in regular expressions.
The implementation is based on the lexer and parser generators ocamllex and ocamlyacc.
Tokens - despite being defined in the lexer file - are interspersed in the grammar below.
Single- and multi-line comments are supported and already filtered out by the lexer.

〈file〉 ::= 〈definition〉 EOL /* definitions are seperated by line breaks */
| 〈definition〉 EOF
| EOL /* end of line */
| EOF /* end of file */

〈word〉 ::= [_0-9a-zA-Z]

〈identifier〉 ::= [_a-zA-Z] 〈word〉* /* e.g. foo, _foo, _1, but not 1a */

〈ws〉 ::= [ \t] /* whitespace: space or tab */

〈string〉 ::= ... /* single- or double-quoted, backslash escapes */

〈node〉 ::= 〈word〉 〈ws〉+ 〈string〉

〈edge〉 ::= 〈word〉 〈ws〉* ‘-’ (〈word〉 (‘,’ 〈word〉)*)? ‘>’? ‘>’ 〈ws〉* 〈word〉 〈ws〉+

〈definition〉 ::= 〈node〉
| 〈edge〉 〈stmt〉

〈stmt〉 ::= 〈var〉 ‘=’ 〈expr〉
| 〈expr〉

27



4. A specification language for regular safety properties

〈key〉 ::= ‘$’ 〈word〉

〈var〉 ::= 〈key〉
| 〈identifier〉

〈regex〉 ::= ‘r’ 〈string〉

〈arguments〉 ::= 〈expr〉
| 〈arguments〉 ‘,’ 〈expr〉

〈binop〉 ::= ‘<’
| ‘>’
| ‘==’
| ‘!=’
| ‘<=’
| ‘>=’
| ‘+’
| ‘-’
| ‘*’
| ‘/’

〈expr〉 ::= ‘(’ 〈expr〉 ‘)’
| 〈regex〉
| 〈string〉
| 〈bool〉 /* true or false */
| 〈var〉
| 〈identifier〉 ‘(’ 〈arguments〉 ‘)’ /* function call */
| ‘_’ /* wildcard */
| 〈expr〉 〈binop〉 〈expr〉

The grammar used for the implementation also evaluates numerical expressions and com-
parisons as far as possible. This has been omitted above for clarity.

4.5. Making the specification more concise

Even for something rather small like the file handle example, the automaton can become
very big and hard to read for humans.

In order to avoid redundant parts, forwarding is supported. Forwarding edges are dis-
played as dotted lines in the generated graphs and can also contain constraints. If such an
edge is taken, the current input is again evaluated in the target state.

Another feature are wildcards. In each state pattern matching is done on the constraints
and the transistion of the first matching constraint is taken. Wildcards can be used any-
where, e.g. as a function argument or as a last constraint which always matches.

28



5. Example use cases

5.1. File handles redux

Listing 5.1 shows a specification for file handles like implemented in Chapter 3. It is opti-
mistic about fopen, i.e. there are no warnings for missing success checks.

1 w1 "file handle is not saved!"
2 w2 "closeing unopened file handle $"
3 w3 "writing to unopened file handle $"
4 w4 "writing to read-only file handle $"
5 w5 "closeing already closed file handle $"
6 w6 "writing to closed file handle $"
7 w7 "overwriting still opened file handle $"
8 w8 "unrecognized file open mode for file handle $"
9

10 1 -w1> 1 fopen(_)
11 1 -w2> 1 fclose($fp)
12 1 -w3> 1 fprintf($fp, _)
13

14 1 -> open_read $fp = fopen(_, "r")
15 1 -> open_write $fp = fopen(_, r"[wa]") // regex, see

OCaml doc for details
16 1 -w8> 1 $fp = fopen(_, _)
17

18 open_read -w4> open_read fprintf($fp, _)
19

20 open_read -w7>> 1 $fp = fopen(_, _)
21 open_write -w7>> 1 $fp = fopen(_, _)
22

23 open_read -> closed fclose($fp)
24 open_write -> closed fclose($fp)
25

26 closed -w5> closed fclose($fp)
27 closed -w6> closed fprintf($fp, _)
28 closed ->> 1 _ // let state 1 handle the rest
29

30 // setup which states are end states
31 end: 1, closed
32 // warning for all entries that are not in an end state
33 !end "file is never closed"
34 !end@return "unclosed files: $"

Listing 5.1: An optimistic specification for file handle usage

29



5. Example use cases

The resulting graph can be seen in Figure 5.1. While it might be helpful for visualizing
relations between states, it fails to encompass the order of constraints, which is relevant
for pattern matching.

To make the graph less terse, the warnings of reflexive edges (all but w7) are displayed
separately and thought to have implicit back edges.

30



5.1. File handles redux

Fi
gu

re
5.

1.
:A

ut
om

at
on

fo
r

op
ti

m
is

ti
c

fil
e

ha
nd

le
us

ag
e

31



5. Example use cases

To make the analysis aware of possibly failing open operations, we have to extend it
as shown in Listing 5.2, where branch(exp, b) serves as a special function to split the
analysis. For every start node that should be split there must be two definitions with the
same expression exp, different target nodes and b set to true and false respectively.

1 ...
2 // go to unchecked states first
3 1 -> u_open_read $fp = fopen(_, "r")
4 1 -> u_open_write $fp = fopen(_, r"[wa]") // regex, see

OCaml doc for details
5 1 -w8> 1 $fp = fopen(_, _)
6

7 // define possible branches
8 u_open_read -> 1 branch($fp==0, true)
9 u_open_read -> open_read branch($fp==0, false)

10 u_open_write -> 1 branch($fp==0, true)
11 u_open_write -> open_write branch($fp==0, false)
12 ...

Listing 5.2: Check for return value of fopen

5.2. Dynamic memory allocation

Besides statically and automatically managed memory, C offers dynamically allocated
memory to allow data structures whose size can be set at run-time and to give more flexi-
bility of their lifetime to the programmer. While automatically managed variables are kept
on the stack, dynamically allocated memory is kept in the heap and accessed via pointers.

Table 5.1 lists the functions for dynamic memory allocation defined in stdlib.h. The
allocation functions return a pointer to allocated space or a null pointer if allocation failed.
Proper usage of these functions is critical: first allocate memory, handle potential error,

Function Description
void *malloc(size_t size) allocates size bytes
void *realloc(void *ptr, size_t size) changes size of memory block, be-

haves like malloc if ptr is a null
pointer

void *calloc(size_t nmemb, size_t size) allocates space for an array of
nmemb objects, each of size and
initialize to all bits zero

void free(void *ptr) deallocates space, no action for null
pointer

Table 5.1.: Functions for dynamic memory allocation [6]

work with the memory and finally free the memory. Although there are only a few func-
tions involved, dynamic memory allocation is a common source of bugs:

32



5.2. Dynamic memory allocation

Missing success check The allocation functions are not guaranteed to succeed (e.g. no
more memory available to process). Usage of the returned null pointer in case of an
error leads to a segemntation fault.

Memory leaks Allocated memory that is not freed can no longer be used by the program,
which wastes resources and can escalate to the point where every allocation fails
because no more memory is left.

Double free Freeing already freed memory crashes the program with a double free error
due to memory corruption.

Use of dangling pointers Dereferencing of a null pointer always leads to a segmentation
fault because it has neither read nor write permissions. Using other dangling point-
ers (e.g. not allocated or already freed memory) is undefined behavior which may
result in a segmentation fault or more subtle errors during further run-time of the
program.

Listing 5.3 shows an example program and Listing 5.4 a specification for the correct
usage of malloc (other allocation functions similar) and free. See Figure 5.2 for its graph.
This is only sound as long as there are no other external functions used for allocating or
freeing memory!

1 #include <stdlib.h>
2 #include <stdio.h>
3

4 int main(){
5 int *ip;
6 //*ip = 5; // write: segfault
7 //printf("%i", *ip); // read: segfault
8 ip = malloc(sizeof(int)); // allocate memory
9 if(ip == NULL) return 1; // success check

10

11 *ip = 5; // work with memory
12

13 free(ip); // free memory
14 //free(ip); // crash: double free or corruption
15 *ip = 5; // undefined but no crash
16 printf("%i", *ip); // undefined but prints 5
17 ip = NULL; // make sure the pointer is not used anymore
18 //*ip = 5; // segfault
19 }

Listing 5.3: An example program using dynamic memory allocation with malloc and free

1 w1 "pointer is not saved [leak]"
2 w2 "freeing unallocated pointer $ [segfault?]"
3 w3 "writing to unallocated pointer $ [segfault?]"
4 w4 "overwriting unfreed pointer $ [leak]"
5

6 1 -w1> 1 malloc(_)
7 1 -w2> 1 free($p)

33



5. Example use cases

8 1 -w3> 1 *$p = _
9 1 -> u_alloc $p = malloc(_)

10

11 u_alloc -> 1 branch($p==0, true)
12 u_alloc -> alloc branch($p==0, false)
13

14 alloc -w4> alloc $p = malloc(_)
15 alloc -> freed free($p)
16

17 freed ->> 1 _ // let state 1 handle the rest
18

19 // setup which states are end states
20 end: 1, freed
21 // warning for all entries that are not in an end state
22 !end "pointer is never freed"
23 !end@return "unfreed pointers: $"

Listing 5.4: A specification for dynamic memory allocation with malloc and free

Figure 5.2.: Automaton for dynamic memory allocation with malloc and free

34



6. A web frontend

Although Goblint can be used entirely on the command line and also offers HTML output,
a more integrated workflow for development and testing is preferable. A screenshot of the
developed web frontend is shown in Figure 6.1. The main focus is on allowing easy use

Figure 6.1.: A web frontend for Goblint

of the two developed analyses, but it can also be used for others.
On the left the local file system can be traversed and files can be selected. The editor on

the left contains the selected C-file, the one on the right the specification file. Below the
C-file editor there are options for the currently selected analysis. There are two presets:
file for file handle analysis and spec for the specification analysis. The right half of the user
interface is only shown if spec is selected.

The output window below the options is used for Goblint, compiler warnings and the
output when running the program. Together with the prompt below it can also be used as
a simple shell.

Warnings are displayed directly inside the editor: those that must be true are red, those
that may be true are orange (see Figure 6.2). The specification is visualized below the
editor as a graph. Both the warnings and the graph update when typing inside the editor.
This allows to conveniently develop specifications and play around.

Both editors offer basic file controls as shown in Figure 6.3. The first two button groups

35



6. A web frontend

Figure 6.2.: Warnings after changing one character

exist in both editors. From left to right: new file, save, rename, delete, revert to version
in git, fullscreen. Further button groups can be added for each editor. In this case specific
for C-files: rerun the analysis (also happens upon typing), compile and run the program
in a temporary directory, open an image of the control flow graph, open Goblint’s HTML
output.

Figure 6.3.: Web frontend controls for C-files

36



7. Conclusion and future work

The thesis started by introducing the basic concepts of abstract interpretation as used by
the static analyzer Goblint. On top of this framework we first developed an analysis to ver-
ify proper usage of file handles, which then served as a starting point for the development
of a generalized analysis that could do the same using a custom specification language.
Regular properties can be verified with this language by describing an automaton with
constraints and warnings on transitions between states. The specification language was
then used to redo the manually implemented file handle analysis and verify basic dynamic
memory allocation. Finally a web frontend was developed that helps with the creation of
specification files by detecting errors and live visualization of the automaton. It also allows
a test-driven approach as the result of the analysis is updated on each modification.

As a comparison: the specification for file handles is 42 lines, while the manual imple-
mentation is 642 lines. The specification code however is about 1159 lines.

Concerning limitations, one has to keep in mind that the programmer has full memory
access in C programs. This leaves two possibilities when designing a specification:

1. assume that the analyzed state is not influenced by other means than specified (e.g.
no other functions or direct memory manipulation) or

2. go to an error state for every unknown operation, which is only feasible if the set of
valid statements is very small.

Therefore further work could be done in order to extend the specifications so that e.g.
the file handle analysis takes into account all the functions from stdio.h.

Combining multiple analyses into one specification file is possible, yet a modular solu-
tion which allows to give a list of specification files would be better suited.

Currently only statements with functions and assignments can be verified with the spec-
ification. Although this is enough for the most common API usage problems, the query
system offers much more information which could be incorporated (e.g. values of expres-
sions).

Another obvious limitation is that only regular safety properties can be verified. Count-
ing semaphores and recursive mutexes could not be handled since there is no way of keep-
ing track of the count. Therefore supporting non-regular safety properties (e.g. by using
push down automata) would be a useful extension.

37





Appendix

39





A. Setup

Install opam1, then do

1 opam install ocamlfind camomile batteries cil xml-light

to install the latest versions of the dependencies for the current user.
After that you can build goblint:

1 git clone https://github.com/vogler/analyzer.git
2 cd analyzer
3 make

If something goes wrong, take a look at scripts/travis-ci.sh for an example setup
or try the versions listed in INSTALL.

Alternatively you can use your system’s package manager to install the dependencies
globally or use scripts/install_script.sh to build everything from source without
affecting any existing OCaml installation.

Virtual machine A ready-to-use virtual machine can be started and connected to using
Vagrant 2:

1 vagrant up # download and provision VM
2 vagrant ssh # connect over ssh
3 sudo su - # change to root
4 cd analyzer # goblint is ready here

Web frontend In order to setup the web frontend, make sure Node.js3 is installed and
do:

1 git submodule update --init --recursive # fetch code
2 cd webapp
3 sudo npm install -g coffee-script nodemon bower # install those

globally if not already installed (nodemon and bower are optional)
4 npm install # locally install node and bower dependencies

Then run it using coffee server.coffee or nodemon server.coffee for automatic
reloading during development.

A JavaScript version can be compiled using coffee -c server.coffee.

1http://opam.ocamlpro.com/
2http://www.vagrantup.com/
3http://nodejs.org/

41

http://opam.ocamlpro.com/
http://www.vagrantup.com/
http://nodejs.org/




B. Usage

B.1. Command-line options

1 Usage: goblint [options] source-files
2 Options
3 -v Prints more status information.
4 -o <file> Prints the output to file.
5 -I <dir> Add include directory.
6 -IK <dir> Add kernel include directory.
7

8 --help Prints this text
9 --version Print out current version information.

10

11 --conf <file> Merge the configuration from the <file
>.

12 --writeconf <file> Write the effective configuration to <
file>

13 --set <jpath> <jvalue> Set a configuration variable <jpath> to
the specified <jvalue>.

14 --sets <jpath> <string> Set a configuration variable <jpath> to
the string.

15 --enable <jpath> Set a configuration variable <jpath> to
true.

16 --disable <jpath> Set a configuration variable <jpath> to
false.

17

18 --print_options Print out commonly used configuration
variables.

19 --print_all_options Print out all configuration variables.
20

21 A <jvalue> is a string from the JSON language where single-quotes (’)
are used instead of double-quotes (").

22

23 A <jpath> is a path in a json structure. E.g. ’field.another_field
[42]’;

24 in addition to the normal syntax you can use ’field[+]’ append to an
array.

B.2. Generating a control flow graph

In order to generate a control flow graph for the program test.c, do the following:

1 ./goblint --set justcfg true test.c

43



B. Usage

2 dot -Tpng cfg.dot -o cfg.png

B.3. Using the implemented analyses

B.3.1. File handles

To use the file analysis on test.c with HTML output in ./result:

1 ./goblint --sets ana.activated[0][+] file --sets result html test.c

The analysis can be configured to be optimistic about opening files. If this option is set to
true, calls to fopen will be assumed to never fail:

1 ./goblint --sets ana.activated[0][+] file --set ana.file.optimistic
true --sets result html test.c

B.3.2. Specification

To use the spec analysis on test.c with specification file test.spec:

1 ./goblint --sets ana.activated[0][+] spec --sets ana.spec.file test.
spec --sets result html test.c

Parser The specification parser can be built and tested independent of Goblint. The fol-
lowing script compiles the parser and runs it on specification file $spec. On failure, it
starts the parser again in REPL-mode for debugging.

1 bin=src/mainspec.native
2 spec=${1-"src/spec/file.spec"}
3 ocamlbuild -yaccflag -v -X webapp -no-links -use-ocamlfind $bin \
4 && (./_build/$bin $spec \
5 || (echo "$spec failed, running interactive now...";
6 rlwrap ./_build/$bin
7 )
8 )

Graph The parser saves a graph representing the specification to result/graph.dot
by default (see src/spec/specUtil.ml). To generate an image, the following could be
used:

1 dot -Tpng result/graph.dot -o graph.png

44



Bibliography

[1] Goblint: Path-sensitive data race analysis, volume 30, 2009.

[2] Source lines of code. http://en.wikipedia.org/wiki/Source_lines_of_
code, 2011.

[3] The Goblint Analyzer. http://goblint.in.tum.de/, 2011.

[4] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In Pro-
ceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM.

[5] Mark Dowson. The ariane 5 software failure. SIGSOFT Softw. Eng. Notes, 22:84–,
March 1997.

[6] ISO. ISO/IEC 9899:2011 Information technology — Programming languages — C. Inter-
national Organization for Standardization, Geneva, Switzerland, December 2011.

[7] John B. Kam and Jeffrey D. Ullman. Global data flow analysis and iterative algo-
rithms. J. ACM, 23(1):158–171, January 1976.

[8] John B Kam and Jeffrey D Ullman. Monotone data flow analysis frameworks. Acta
Informatica, 7(3):305–317, 1977.

[9] Gary A. Kildall. A unified approach to global program optimization. In Proceedings
of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, POPL ’73, pages 194–206, New York, NY, USA, 1973. ACM.

[10] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. Cil:
Intermediate language and tools for analysis and transformation of c programs. In
Proceedings of the 11th International Conference on Compiler Construction, CC ’02, pages
213–228, London, UK, 2002. Springer-Verlag.

[11] H. Seidl, R. Wilhelm, and S. Hack. Übersetzerbau 3: Analyse und Transformation. Über-
setzerbau. Springer, 2009.

[12] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis,
chapter 7, pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[13] Vesal Vojdani. Static Data Race Analysis of Heap-Manipulating C Programs. PhD thesis,
University of Tartu., December 2010.

45

http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Source_lines_of_code
http://goblint.in.tum.de/

