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Thesis Abstract – Marc-Oliver Pahl

Distributed Smart Space Orchestration

Spaces in which humans live are increasingly enriched by sensors and actuators. Ex-

amples are heating, ventilation, air-conditioning, lighting, or access control. Many of

the devices involved are equipped with network interfaces. This ability for remote con-

trol gives the possibility to connect and orchestrate all networked devices in a space.

However, many of the available interfaces form functional, vendor, or spatial silos not

allowing for full interconnectivity, thereby preventing comprehensive orchestration of

smart spaces.

A fundamental open challenge of pervasive computing research is to design a suitable

programming abstraction that structures and facilitates the development of pervasive

computing application at large, and that can be used in the real world. By analyzing

different research areas, the thesis identifies requirements that have to be fulfilled by

a suitable programming abstraction. A state of the art analysis shows the missing of

a suitable concept.

A novel middleware paradigm, called µ-middleware is introduced. It provides the

functionality of a context-provisioning middleware, and it enables direct coupling of

so-called smart space services. The resulting abstraction is called Virtual State Layer

(VSL).

The VSL uses context models as abstract interfaces to services. To facilitate the

creation of context models a hybrid meta model is introduced. Context models are

shared over a so-called Context Model Repository (CMR). The VSL and all of its

services use a fixed interface of 13 methods. This implements interface compatibility

between all services in a smart space. The ability of inter service communication, the

sharing of abstract service interfaces, and the use of fixed methods to access services

implement a service oriented architecture.

A major challenge in the above described scenario is overcoming the silos. So-called

portability is implemented by introducing a crowdsourced, self-managing convergence

mechanism for context models in the CMR. The described design implements a dy-

namically extensible, self-managing collaborative ontology for smart spaces.

To demonstrate the simplicity and the power of the introduced VSL programming

abstraction, a pendant to the App economy for smartphones is introduced. The use

of the VSL as basis for the solution allows the implementation of a security-by-design

concept.

Foundation services to connect devices with the VSL, and to implement diverse perva-

sive computing scenarios are introduced. A quantitative analysis shows the scalability

of the presented solution. A qualitative user study shows the real world usability of

the solution.

The presented concepts complement the hardware maker culture that is emerging

in 2014 with tools that enable the emergence of a software maker culture for smart

spaces. With a real world emergence of such a culture, ubiquitous computing would

finally become reality.
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1. Introduction

Simplicity does not precede complexity, but follows it.

Epigrams on programming [Per82], Alan Perlis, American computer

scientist, (1922 - 1990), 1st Turing award winner 1966.

In 1991, Mark Weiser formulated the vision of “ubiquitous computing” [Wei91]. In

his vision, computing is woven into everyday’s fabric, meaning that computing is

possible nearly everywhere, and part of many aspects of life. Ubiquitous computing

can be divided into the evolutionary steps distributed computing, mobile computing,

and pervasive computing (Ch. 2).

Distributed computing and mobile computing are reality today: cloud computing is

a recent manifestation of the distributed computing paradigm (Sec. 4.3). The use of

smartphones is daily routine for many people in many countries in 2014 (Sec. 2.3).

Smartphones allow mobile computation (Apps, Sec. 3.10), and mobile access to the

Internet (Sec. 2.3.1).

Pervasive computing is only in parts reality in 2014. Smart Devices that allow sensing

and actuating (parts of) the real world remotely via software are available off-the-shelf

(Sec. 3.2). However, the systems are often isolated in silos which prevents using them

for implementing pervasive computing scenarios (Sec. 3.3.1).

A fundamental open research question (Sec. 2.5.1) that has direct impact on the

practical implementation of pervasive computing in the real world is: how should a

–so far missing– programming abstraction be designed to enable the implementation

of pervasive computing scenarios in the real world.

This thesis proposes an answer to the question, and shows how the proposed pro-

gramming abstraction can be used to implement the technical foundation for an App

economy for Smart Spaces.

A goal of this thesis is enabling the shift from “programming environments to pro-

gramming environments” [Abo12], shifting the complexity from the technical aspects

of implementing pervasive computing scenarios towards the logic behind the scenarios.
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1.1 Objectives of the Thesis

The challenge described before can be reformulated to, providing an abstraction that

is so simple-to-use and at the same time so powerful that it allows developers to focus

on solving their pervasive computing problems instead of having to deal with technical

problems.

To reach this goal, the overall objective of this thesis is to

<O.0> Design a programming abstraction for Smart Spaces that structures and faci-

litates the development of pervasive computing applications at large, and that

can be used in the real world.

Fundamental tasks for implementing pervasive computing scenarios with software are

monitoring sensors, and controlling actuators according to workflows that implement

high-level goals. This allows splitting the overall objective <O.0> into four subsidiary

objectives.

To implement pervasive computing scenarios with software (Sec. 2.4.1), it is necessary

to provide software interfaces to the Smart Devices that can be found in Smart Spaces.

Services that provide such interfaces are called adaptation services in this thesis. The

first subsidiary goal for the programming abstraction is to

<O.1> Structure and facilitate the development of so-called adaptation services.

The services that implement the logic of pervasive computing scenarios are called

orchestration services in this thesis (Sec. 2.4.1), leading to the second goal for the

programming abstraction, to

<O.2> Structure and facilitate the development of orchestration services.

As Sec. 4.5 shows (Sec. 3.13.2), solutions for the objectives <O.1> and <O.2> exist in

the research community, and outside research labs in 2014 (e.g. professional Building

Automation Systems (BASs), Sec. 3.2.1). However, they fail (Ch. 4) to solve the

remaining parts of <O.0>.

Pervasive computing aims to pervade many aspects of daily life with computing

(Sec. 2.1). This involves diverse scenarios. The attribute “at large” of <O.0> ex-

presses that the programming abstraction should

<O.3> Support diverse pervasive computing scenarios and not only few use cases.

Finally, pervasive computing needs to be deployed in the real world to become reality

outside research labs and prototypes. The goal, usability in the real world, in the

overall objective <O.0> can be specified as aim to

<O.4> Design a programming abstraction that can be used by regular users for imple-

menting pervasive computing in the(ir) real world, and not only by researchers

in laboratories. This includes empowering users to develop their own programs

that implement their desired pervasive computing scenarios (Sec. 2.5.2).
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1.2 Methodology

The thesis starts with an analysis of the implementation of ubiquitous computing in

2014 (Ch. 2). It identifies the missing of a suitable programming abstraction for

pervasive computing (<O.0>).

For specifying the attribute “suitable”, requirements are analyzed in Ch. 3. The

result are 50 requirements that have to be solved to reach the objectives of the thesis.

To confirm the relevance of the identified requirements, and to ensure that no solution

exists that solves the requirements, relevant state of the art is analyzed in Ch. 4.

The analysis shows that other researchers, and the commercial solutions that are on

the market consider the requirements relevant. The state of the art solves only parts

of the requirements. It typically focuses on aspects that belong to the adaptation

of Smart Devices (<O.1>), and to the implementation of orchestration workflows

(<O.2>).

Then the VSL programming abstraction is designed in Ch. 5. A mapping of re-

quirements and solutions is directly provided via markers in the text, and at the side

of the text. The programming abstraction solves most of the requirements. Some

requirements are implementations specific and therefore covered in Ch. 6, or do not

have to be solved by the programming abstraction as they can be solved using the

programming abstraction (Ch. 7).

To show the feasibility of the concept, an implementation of the programming

abstraction as autonomous Peer-to-Peer (P2P) system is provided in Ch. 6. With this

chapter all requirements but the provisioning of an App store are fulfilled.

The usability of the implementation of the programming abstraction, and the fea-

sibility of pervasive computing in the real world with the provided components are

demonstrated in Ch. 7. With the DS2OS, the technically necessary components for

implementing an App economy for Smart Spaces are introduced. The implementa-

tion of DS2OS demonstrates how the VSL programming abstraction structures and

facilitates the development of pervasive computing services. In addition, DS2OS in-

troduces the technical infrastructure that is needed for a real world deployment of the

solution. All identified requirements are fulfilled at this point of the thesis. Another

comparison to the state of the art highlights the differences between the new approach

and the existing work.

To demonstrate the real world usability of the proposed approach, implementations

for services that are fundamental for implementing pervasive computing scenarios are

introduced in Ch. 8. The chapter demonstrates how the VSL programming abstraction

facilitates the implementation of representative software components.

For an independent confirmation of the real world usability, a quantitative, and

a qualitative evaluation of the solution are presented in Ch. 9. The quantitative

measurement in a testbed assesses the suitability of the programming abstraction

for implementing time critical scenarios. This assessment is relevant for the practical

real world usability of the presented solution. The scalability is assessed as it is

relevant for a real world use of the presented solution in large scenarios. A user

study is conducted to confirm the suitability of the VSL programming abstraction

for enabling users to implement their own pervasive computing scenarios in software.

Fig. 1.1 shows the structure of the thesis.
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1.3 Major Contributions

This thesis has several contributions. The most important ones are listed at the

beginning of each chapter where they are introduced.

The major contribution of this thesis is a novel programming abstraction for pervasive

computing. It is called Virtual State Layer (VSL). It comprises several novelties as

described in Ch. 5, and summarized in the abstract at the beginning of that chapter.

The most important concepts of the VSL are

• the use of context models as abstract service interfaces (Sec. 5.4.1),

• Virtual Context (Sec. 5.4.2),

• a dynamically extensible, self-managing collaborative ontology (Sec. 5.2.18) that

is extended to a crowdsourced ontology in Ch. 7 (Sec. 7.4),

• the separation of service logic and service state (Sec. 5.6.5), and

• a hybrid meta model that is used for context modeling in the VSL (Sec. 5.2).

The use of context models as abstract service interfaces structures and facilitates the

creation and composition of Smart Space services.

Virtual Context enables direct coupling of services over a descriptive (context) inter-

face. The introduction of this novel concept enables the transparent dynamic func-

tional extension of a middleware that implements the VSL programming abstraction.

The collaborative ontology implements a crowdsourced standardization of abstract

service interfaces. Such standardization is required for providing interface portability.

Interface portability enables services to run in different Smart Spaces and not only in

the Smart Space, they were designed for as it is typically the case in 2014.

The separation of service logic and service state structures and facilitates services. It

reduces the code size as common functionality can be provided by the VSL and does

not have to be implemented in services. It allows focusing on the service logic instead

of implementation details (Sec. 1).

The hybrid meta model enables user-based collaborative creation of the VSL ontology.

It combines simplicity, expressiveness, and performant processing.

The major side-contributions of this thesis are listed in the following. They are or-

dered by their relevance for implementing pervasive computing in the real world. All

contributions are novel.

• a novel middleware paradigm that is called µ-middleware and enables dynamic

transparent extension with “core functionality” (Sec. 6.2),

• a security concept for software orchestrated Smart Spaces (Sec. 2.4.1) that en-

ables the provisioning of security-by-design (Sec. 5.5, Sec. 6.5, Sec. 7.3),

• the design of the technical components that enable the impleentation of an App

economy for Smart Spaces (Ch. 7),

• a concept for automated integration of Smart Devices into software orchestrated

Smart Spaces (Sec. 8.3.1),
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• a concept for autonomous management of context on different levels of abstrac-

tion (Sec. 8.3.2),

• a coupling mechanism between distributed VSL operated Smart Spaces that gives

local access control for functionality that is transparently available in a remote

site (Sec. 8.3.4),

• a generic user interface that can be used for accessing all functionality of a VSL

Smart Space (Sec. 8.3.5),

• a set of building blocks that enable the implementation of complex pervasive

computing scenarios with simple Event-Condition-Action (ECA) rules (Sec. 8.4),

and

• teaching material that teaches students about Smart Space Software Orchestra-

tion (Ch. 9).

• A requirements analysis for a suitable programming abstraction for future Smart

Spaces (Ch. 3).

• A survey of existing state of the art pervasive computing middleware that ex-

ceeds existing surveys (table 4.1).

• A combined reference architecture for existing pervasive computing middleware

(Fig. 4.3).
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1.3.1 Chapter Summaries

Fig. 1.1 shows the structure of the thesis that is briefly described in this section.

Different to the description of the methodology in Sec. 1.2 this section focuses pri-

marily on the content of the chapters and not their purpose. As described in Sec. 1.4,

each chapter has a short and a longer summary on its first page. Following the short

summaries are printed.

Chapter 2 (Ubiquitous Computing) puts this work into the context of ubiquitous compu-

ting, and provides a high-level analysis of the implementation of its parts in

2014. It is shown that ubiquitous computing research comprises distributed

computing, mobile computing and pervasive computing. While the distributed

computing and mobile computing parts of the ubiquitous computing vision are

reality in 2014, pervasive computing is only reality in limited domains, or re-

search prototypes.

Heterogeneity of Smart Devices, and the missing of a suitable programming

abstraction are identified as inhibitors for a implementation of pervasive com-

puting in the real world.

It is discussed that user-participation is desired for the development of services

that implement pervasive computing scenarios.

The terms Smart Space, Smart Device, Smart Space Orchestration, and context

are defined. As pervasive computing comprises several sub domains, this work

is put into context to Internet of Things (IoT), Cyber-Physical System (CPS),

and Ambient Intelligence (AmI). Context-aware computing is introduced as ba-

sic paradigm behind pervasive computing.

Chapter 3 (Analysis) analyzes requirements on implementing Smart Space Orchestration

in the real world. Knowing the requirements is relevant for the design of a suit-

able programming abstraction as most requirements have to be supported by

the abstraction directly (Ch. 5).

In a bottom-up, and a top-down analysis the problem space is structured.

Bottom-up, Smart Devices from different domains, solutions for bridging hetero-

geneity, middleware, and µ-kernel operating system design are analyzed. Top-

down, psychology, AI, autonomic management, Service Oriented Architecture

(SOA), and context modeling are analyzed. The App economy is analyzed as a

successful example of the recent implementation of a subdomain of ubiquitous

computing in the real world.

The analyzed fields give background for the design of the VSL programming

abstraction in Ch. 5ff.

The 50 identified requirements are summarized and discussed in Sec. 3.11ff.

Chapter 4 (State of the Art) starts with an analysis of distributed user-based software

development, virtualization as basic paradigm of cloud computing, network ma-

nagement, and building management.

The main part of this chapter analyzes relevant state of the art pervasive com-

puting middleware. The selection is based on different surveys. The assessment

criteria are also based on several surveys and extended with the requirements

from Ch. 3.

Chapter 5 (The Virtual State Layer Programming Abstraction) introduces the VSL pro-

gramming abstraction. It is based on the context-provisioning middleware con-

cept.
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A hybrid meta model is presented. It is used for creating context models that

are shared over a global Context Model Repository (CMR) that becomes a

self-managed collaborative ontology. A collaborative automated convergence

mechanism for context models is introduced. The context models are used to

offer context storage for services over a fixed Application Programming Interface

(API) with 13 methods.

Via a novel concept, called Virtual Nodes, it becomes possible to use context

models as abstract service interfaces. This enables a SOA of Smart Space ser-

vices.

It is shown how the programming abstraction implements distribution trans-

parency and autonomy, and how it fosters portability of services and security-

by-design.

Chapter 6 (The Virtual State Layer µ-Middleware) introduces the µ-middleware concept.

An implementation of the VSL programming abstraction as distributed, self-

managing P2P system is presented.

Programming language specific connectors are introduced as concept for sup-

porting developers.

Implementation details of the basic services that were introduced in Sec. 5.7 are

given for illustrating the advantages of the µ-middleware design.

Chapter 7 (The Distributed Smart Space Orchestration System) introduces the DS2OS

framework. DS2OS consists of different VSL services plus an App store. To-

gether they provide the technical foundation for an App economy for Smart

Spaces (Sec. 3.10).

All components of DS2OS besides the Smart Space Store (S2Store), the App

store for Smart Spaces, are implemented as regular VSL services to demonstrate

the advantages of the programming abstraction.

DS2OS provides autonomous service management within a site, and service

deployment from the central S2Store.

Different mechanisms that support crowdsourced development, and real world

deployment of Smart Space services are introduced. The collaborative conver-

gence mechanism from Ch. 5 is extended to a crowdsourced convergence mecha-

nism.

A fully distributed, simple-to-use security concept for Smart Space services is

introduced.

DS2OS is assessed using the criteria from the state of the art analysis (Sec. 4.5).

Chapter 8 (Services) demonstrates how the VSL programming abstraction facilitates the

implementation of services. Implementations of six relevant service classes

demonstrate the practical use of the VSL programming abstraction.

As additional structuring element for Java services, a service template is intro-

duced.

It is shown how the VSL abstraction allows automated integration of Smart De-

vices, automated correlation of context on different levels of abstraction, remote

access, generic user interfaces, and the implementation of complex scenarios

using simple-to-configure ECA rules.
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Chapter 9 (Evaluation) evaluates the VSL quantitatively and qualitatively.

The latency of service coupling over the VSL is measured using the two coupling

mechanisms, value change notification and Virtual Context.

The scalability of the VSL is evaluated in a large testbed, and a smaller one

that can be expected to be closer to future real-world deployments. The self-

management overhead of the VSL is evaluated.

A user study is presented that shows the real world usability of the VSL.

Chapter 10 (Conclusions & Future Directions) concludes the thesis and provides an outlook

how the future development of the presented solution could be, and how the

research will be continued.

1.4 Document Structure

Fig. 1.1 shows the structure of the thesis.

The objectives of this thesis (Sec. 1.1) are marked with the sign <O.0>. Ch. 2 and

Ch. 3 identify requirements that are marked with the sign <R.1>. In the chapters

Ch. 5ff the fulfillment of a requirement is marked in the text and at the margin next

to the text by showing the respective requirement identifier (<R.1>). <R.1>

Each of the following chapters starts with a short summary, key results, key contribu-

tions, a list of the identified requirements (<R.1>) that are addressed in the chapter

(where applicable), and a longer summary of the chapter. They are marked as follows:

Summary This is the executive summary of the chapter.

Important terms are introduced in definitions:

Definition Definition

Definitions are identified by the shown special formatting.

The listings in this thesis are only labeled when they are referenced later. This is done

intentionally, not to disturb the reader as the chapters 5ff contain several listings on

some pages.

At the end of the document, an index, a glossary, and an acronym list are provided.
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2. Ubiquitous Computing

Bringing computers into the home won’t change either one, but

may revitalize the corner saloon.

Epigrams on programming [Per82], Alan Perlis, American computer

scientist, (1922 - 1990), 1st Turing award winner 1966.

Short Summary The chapter puts this work into the context of ubiquitous computing,

and provides a high-level analysis of the implementation of its parts in 2014. It is

shown that ubiquitous computing research comprises distributed computing, mobile

computing and pervasive computing. While the distributed computing and mobile

computing parts of the ubiquitous computing vision are reality in 2014, pervasive

computing is only reality in limited domains, or research prototypes.

Heterogeneity of Smart Devices, and the missing of a suitable programming abstrac-

tion are identified as inhibitors for a implementation of pervasive computing in the

real world.

It is discussed that user-participation is desired for the development of services that

implement pervasive computing scenarios.

The terms Smart Space, Smart Device, Smart Space Orchestration, and context

are defined. As pervasive computing comprises several sub domains, this work is put

into context to Internet of Things (IoT), Cyber-Physical System (CPS), and Ambient

Intelligence (AmI). Context-aware computing is introduced as basic paradigm behind

pervasive computing.

Key Results Pervasive computing is the missing building block for the implementation

of ubiquitous computing. Devices and networking technology are available. Only the

software is missing.

The missing of a suitable programming abstraction for pervasive computing is iden-

tified as key challenge by researchers, and by the market.

User-participation is desirable when creating software for Smart Spaces.
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Key Contributions The missing of a suitable programming abstraction for pervasive

computing is identified as major open challenge for pervasive computing to become

the third generation of computing.

Summary The vision of ubiquitous computing is introduced (Sec. 2.1). Ubiquitous

computing can be decomposed into distributed computing, mobile computing, and

pervasive computing (Sec. 2.1.1). The temporal and systematical correlation between

the three computing paradigms is shown.

The implementation of the three paradigms in 2014 is analyzed using the three criteria

(1) devices, (2) software, and (3) network which Weiser introduced as assessment

criteria in his 1991 article.

Distributed computing is briefly introduced as its technology was available already in

1991 and it still is (Sec. 2.2).

Mobile computing is analyzed in detail as its devices and networking technology are

part of the hardware base for pervasive computing and as such relevant for this

work (Sec. 2.3). Mobile computing technology is used to connect pervasive systems.

Mobile devices are suitable user interfaces for pervasive computing, and can be used

as sensors or actuators. Network, devices, and software of mobile computing are

reality for a broad audience in 2014.

For pervasive computing the devices and the networking technology are available

in 2014 (Sec. 2.4). The implementation of Smart Space Orchestration lacks an

abstraction that provides a unified system view to the heterogeneous and distributed

hardware of Smart Spaces.

The missing of a suitable programming abstraction for pervasive computing is iden-

tified as key challenge by the research community (Sec. 2.5), and by the market

(Sec. 2.4.4). It is the topic of this thesis (<O.0>).

User-participation is desirable when creating software for Smart Spaces (Sec. 2.5.2).

IoT, CPS, and ambient intelligence are used to describe research that focuses on

different aspects of pervasive computing (Sec. 2.6). Context-aware computing is the

software paradigm behind pervasive computing applications (Sec. 2.6.4).
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2.1 The Vision

Mark Weiser coined the term“ubiquitous computing ”in 1991 as head of the Computer

science laboratory at the Xerox Palo Alto Research Center (PARC) [Wei91, Wei93].

He describes ubiquitous computing as a paradigm that “takes into account the human

world and allows the computers themselves to vanish into the background” [Wei91].

See Fig. 2.1.

UBIQUITOUS COMPU11NG begins to emerge in the form of live 
boards that replace chaUtboards as weIJ as in other devices at 
the Xerox Palo Allo Research Center. Computer sdentJslS 
gather around a live board for discussion . BulJdlng boards 

and Integrating them with other tools has helped researchers 
understand better the eventual shape of ubiquJtous comput· 
Ing. In coQjuncdon with active badges. live boards can cus· 
tomlze the infonnation they display. 

SctEN1lnc AMl:RJCAN Seprember 1991 95 

Figure 2.1: Ubiquitous computing at Xerox PARC in 1991. In the background is a so-called board

that is used with a pen. The men in the foreground on the right use so-called tabs. [Wei91]

Weiser envisions human-centric interaction with computers that happens always and

everywhere in the background. Technologies should “weave themselves into the fabric

of everyday life”. This contrasts the machine-centric human-computer interaction

that dominated in 1991 (Sec. 2.5). Weiser uses the term “embodied virtuality” for

describing the interaction of computers with the reality outside their“electronic shells”

[Wei91].

Weiser formulates three technical requirements for the implementation of ubiquitous

computing [Wei91]:

1. “cheap, low-power computers that include equally convenient displays,

2. software for ubiquitous applications, and

3. a network that ties everything together”

The 1991 paper [Wei91] and the 1993 paper [Wei93] introduce prototypical solutions

for all three challenges. The prototypes became reality until 2014.

The man on the bottom and the man on the right of Fig. 2.1 use so-called PARC

tabs. Tabs are reality as tablet computers in 2014, e.g. in form of the Apple iPad1

that was released in 2010.

Weiser describes two application scenarios, an office scenario [Wei93], and a home sce-

nario [Wei91]. The office scenario introduces tools for Computer Supported Cooper-

ative Work (CSCW). An example for a commercial CSCW tool is Adobe Connect2 in

1http://www.apple.com/ipad/
2http://www.adobe.com/products/adobeconnect.html

http://www.apple.com/ipad/
http://www.adobe.com/products/adobeconnect.html
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2014. The office scenario contains so-called active badges for tracking entities. Radio

identifiers are commercially available as Radio Frequency IDentification (RFID) tags

and regularly used for tracking goods in 2014 [VD10, ISO08, YZYN08] (Sec. 2.6.1).

For the home scenario, Weiser describes the awakening of a character, called Sal, in

an ubiquitous computing world in the future. In this vision, computing interacts with

the physical environment [Wei91]. Sal is informed about events in the environment.

Her alarm clock is coupled with the coffee machine.

The vision of computers that interact with people’s regular environments (“everyday’s

fabric”) is not reality in 2014 [BLM+11, DMA+10, KFKC12, MH12, ABI12] (Sec. 2.4).

Sec. 3 shows that the software basis for such pervasive computing is still missing.

Concerning the networking technology, the paper presents infrared technology for

wireless networks. Such networks are regularly available in 2014 and in many use

cases replaced by (longer range) radio-based network technology (e.g. WiFi, mobile

phone networks) (Sec. 2.3).

2.1.1 Dividing the Vision

Weiser’s vision can be decomposed into distributed computing, mobile computing,

and pervasive computing [LY02a, SM03, Sat01]:

• Distributed computing was already reality when Weiser formulated his vision in

1991. It focuses on different aspects of providing services on distributed hosts

(Sec. 2.2).

• Mobile computing focuses on providing ubiquitous access to computing resources

(Sec. 2.3).

• Pervasive computing focuses on the augmentation of men’s daily life with com-

puters (Sec. 2.4).

Low High

Low

High

Level of Embeddedness

Level of

Mobility

Ubiquitous

Computing

Pervasive

Computing

Distributed

Computing

Mobile

Computing

Figure 2.2: Dimensions of ubiquitous computing according to [LY02a, SM03, Sat01].

Fig. 2.2 shows the connection of the three sub fields of ubiquitous computing in terms

of embeddedness and mobility. Distributed computing provides a low level of embed-

dedness and mobility. Mobile computing provides a high level of mobility. Pervasive

computing provides a high level of embeddedness. The implementation of ubiquitous

computing requires all three parts to become reality (Fig. 2.4). Following, the im-

plementation of the three dimensions in 2014 is assessed according to Weiser’s three

requirements on hardware, software, and network.
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2.2 Distributed Computing

“A distributed system is a collection of independent computers that appears to its

users as a single coherent system.” [Tan04]. Software that provides a so-called unified

system view is called middleware. Middleware is introduced in Sec. 3.4. Networked

computing systems were already reality in 1991, they are ubiquitous in 2014 (Sec. 4.3,

Sec. 3.2).

2.2.1 Devices, Network, and Software

Most computers have a network interface in 2014. Regular computers can be used as

part of a distributed system. Devices for distributed computing are available in 2014.

Ethernet over copper or fiber is the predominant networking standard for distributed

computing in 2014 [SRV08]. Networking technology for distributed computing are

available in 2014.

Cloud computing is a recent software paradigm for distributed computing (Sec. 4.3).

It drives many popular web services that are available over the Internet (Sec. 2.3.3).

Various middleware for implementing distributed systems with distributed hardware

is available in 2014 (Ch. 4). Software for distributed computing are available in 2014.

2.2.2 Assessment

Using Weiser’s criteria (1) devices, (2) network, and (3) software, distributed compu-

ting is reality in 2014 as it was in 1991.
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2.3 Mobile Computing

Mobile computing describes the shift from fixed workstations with specific purposes to

the mobile use of computing resources [LY02a]. Heterogeneous ways of data processing

and transmission, a high level of mobility, and large-scale services and infrastructures

are characteristic for mobile computing [LY02b].

Mobile computing technology is available and a part of many people’s daily lives in

2014. The following analysis shows that Weiser’s requirements for (1) devices, (2)

software, and (3) network are fulfilled for mobile computing and that the technology

is commonly used in 2014. As the network is fundamental for mobile computing it is

presented before the analysis of devices and software.

2.3.1 Network

Wireless networking technology progressed since Weiser’s paper. The success of the

Internet [vEF12] led to demand-for, and the invention-of various network access tech-

nologies. For Personal Area Networks (PANs) (∼10m) technologies like IEEE 802.15.4

(including ZigBee), or IEEE 802.15.1 (Bluetooth) are specified. For Local Area Net-

works (LANs) (∼150m) wireless Ethernet is specified as IEEE 802.11{a,b,g,n}. For

Metropolitan Area Networks (MANs) (<50km) IEEE 802.16 (including WiMAX) is

specified. For Wide Area Networks (WANs) (<150km) cellular networks provide mo-

bile access. Ubiquitous wireless broadband Internet access is reality in many areas in

2014 (Fig. 2.3).

Especially cellular networks are interesting for (ubiquitous) mobile access to the com-

puting resources of the Internet as they do not require near-by infrastructure. Cel-

lular networks make broadband Internet access at high bandwidth and low latency

[BCL12, ITU11] ubiquitous via technologies such as third generation (3G) Universal

Mobile Telecommunications System (UMTS), or fourth generation (4G) Long-Term

Evolution (LTE) networks [Cis12].

According to [ITU13] there are more mobile phones than the world’s population in

2013. About 75% of the population in the developed world have a subscription to

mobile broadband in 2013 (30% of the world’s overall population) [ITU13]. Internet

access is a major reason for subscribing to mobile broadband [WM10]. About 77% of

the population of the developed world are actively using the Internet in 2013 (39% of

the world population) [ITU13]. Via cellular networks, the Internet is an ubiquitously

accessible resource in areas that are covered with a mobile signal. Since 2007 (release

of the iPhone) the access to the global network via mobile devices has grown contin-

uously. The raise of mobile data traffic is expected to continue growing exponentially

[Cis12, ITU11].

Most parts of Europe and Northern America are covered with mobile signals. Fig. 2.3

shows the mobile signal coverage as it is measured by users. The actual coverage can

be expected to be higher as the samples are sparse in many regions. Combined with

satellite phones the mobile network coverage can be expected to be high in many parts

of the world. Mobile access to the global Internet is available and daily routine for

many people in 2014 [vE13, Cis12, ITU11].



2.3. Mobile Computing 19

Figure 2.3: World coverage with cellular signal measured via crowdsourcing (excluding satellite

coverage). The signal strength is indicated by the colors (red=strong – blue=weak). Created on Aug

23, 2013 with data from http://opensignal.com/.

2.3.2 Devices

Different device classes for mobile computing exist in 2014, including tablets, smart-

phones, ultrabooks, and laptops. Smartphones and the development of the cellular

broadband networks are important enablers for real world mobile computing [WM10].

The amount of mobile connected devices per user is expected to be two or more for

a quarter of the mobile users until 2016 [Cis12, HLH+11] (Sec. 2.5.1). The sales of

mobile computing devices including smartphones, and tablets are significantly higher

than those of fixed PCs in 2013 [MTC+13, RvdM13, VSCK11, HLH+11, Wan09].

People are actively using mobile computing and invest in the technology.

The German Online Study [vEF12], a yearly representative survey in Germany, shows

that the access to the Internet via smartphones has grown from 8% in 2010 to 22%

in Germany in 2012 to 41% in 2013 [vE13]. In the second quarter of 2013 more

smartphones than other mobile phones were sold world wide showing that mobile

Internet access is a world wide trend [vdMR13, Cis12, MW12].

Mobile devices are available and their use is daily routine for many people in 2014.

2.3.3 Software

As mobile runtime environment, laptops allow mobile computing since the 1970s

[KG77]. A big amount of software is available for laptops. They run software from

stationary desktop computers while providing mobility.

“Full”mobile computing in the sense that people have their computing devices at hand

emerged with the development of smartphones and the App economy (Sec. 3.10) since

2008. An important success factor for the first commercially successful smartphone,

the Apple iPhone, was the access to the regular Internet in 2007. Until 2007, the

smartphone Operating Systems (OSs) of Apple’s competitors typically provided access

http://opensignal.com/
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to adapted World Wide Web (WWW) pages only using the Wireless Application

Protocol (WAP) profile [WM10].

The resources offered by mobile devices are constantly growing. Mobile phones are

almost as powerful as desktop PCs some years ago. Cloud computing (Sec. 4.3) and

low-latency high-bandwidth access networks provide mobile devices with access to a

powerful computation back-end [FLR13]. Web sites like Google, Facebook, Youtube,

Yahoo, Baidu, Wikipedia, Twitter, or Amazon are applications that run directly in the

Internet. All named applications are heavily used [Ale13]. In 2012 the Internet was

mostly used to extend the resources of smartphones for videos, music, social media,

web traffic, and email [Cis12].

Applications that run directly on a smartphone are called Apps. Apps often do not re-

quire an Internet connection. In combination with mobile devices such as smartphones

Apps enable mobile computing everywhere for regular users (Sec. 3.10).

In 2008, the Apple App store opened for third party developers. This enabled crowd-

sourced software development for smartphones (Sec. 3.10). A whole new economy

for software development emerged with billions of Apps and downloads [PMC+12,

VSCK11]. Apps are an important decision criterion for smartphone buyers [Eri12].

This shows the acceptance and broad use of mobile computing software.

Software applications for mobile devices are available and used daily by many people

in 2014.

2.3.4 Assessment

Solutions that address Weiser’s challenges [Wei91] for (1) devices, (2) software, and

(3) network exist and are widely used. Mobile computing is reality in 2014.
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2.4 Pervasive Computing

This thesis is about the implementation of pervasive computing in the real world.

Pervasive computing focuses on the penetration of human environments with compu-

ting technology. Typical tasks are monitoring and controlling environments via Smart

Devices [LY02b, Woo09, SM03].

Fig. 2.4 shows the inclusion of distributed computing, and mobile computing in per-

vasive computing. The innermost part of the figure is a computer as basic entity for

computing. When a computer is embedded in a device that serves more purposes than

being a computer, it is called embedded system [VD10].

By adding networking support the computer becomes a distributed system. Adding

mobility support (e.g. wireless communication technology and portability), it becomes

a mobile system.

Networking

Support

Computer

(Embedded System)

Distributed System

Mobility

Support

Mobile System

Pervasiveness

Support

Pervasive System/ Smart Device

Middleware Support

Pervasive Computing/ Smart Space

SvcSvc Svc

Figure 2.4: Parts of pervasive computing illustrating the relationship between distributed mobile and

pervasive computing. The visualization combines information from [SM03, Sat01].

Sensors and actuators enable computing devices to interact with their physical envi-

ronment. This is called pervasiveness support. A networked computing device with

pervasiveness support is a pervasive system. It is called Smart Device in this thesis.

Networking support is required for Smart Devices [Tan04, III98, Sat01].

As discussed in Sec. 3.2, mobility support is not required for Smart Devices. Mobility

support is interesting for accessing pervasive functionality in a space remotely, e.g. for

controlling the heaters of a building remotely. Via the described ubiquitous Internet

connection (Sec. 2.3) this can happen from many places with the solutions presented

in Ch. 8.

For making distributed Smart Devices accessible, middleware is used (Sec. 3.4). Middle-

ware facilitates the access to computing resources of a distributed system as described

in Sec. 2.2. The main contribution of this thesis is a novel class of middleware that is

called µ-middleware (Sec. 6.2). It facilitates the access to distributed Smart Devices.

Using the middleware as platform, services (Svc) can implement pervasive computing

scenarios for implementing pervasive computing. A physical space that contains the

described functional entities is called Smart Space in this document.

Pervasive computing is the topic of this document. Sec. 2.4.1 defines several important

terms that are used throughout this document. The terms can also be found in the

glossary at the end of the document. More terms are defined when needed.
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The implementation of pervasive computing in 2014 is assessed according to Weiser’s

criteria in the order hardware, network, and software. This order is chosen as the

former two are reality in 2014, while the software is not. A more detailed analysis of

the current implementation state of pervasive computing follows in Ch. 3.

2.4.1 Definitions–Smart Space, Smart Device, Smart Space

Orchestration

The terms Smart Space, Smart Device, Smart Space Orchestration, and context are not

clearly defined in literature. Their intended meaning in the context of this document

is defined here.

Definition Smart Space

(Real world) spaces that contain Smart Devices and support Smart Space

Software Orchestration are called Smart Spaces.

Another term for Smart Space [CD05, KKR+13, HWN10, BSG12] is intelligent envi-

ronment [Coe98, Kru09].

Definition Smart Device

A Smart Device is an embedded system with pervasiveness support via

sensors or actuators, and networking support that enables remote con-

trol.

An alternative name for a Smart Device is pervasive system [SM03, Kru09].

Definition Smart Space (Software) Orchestration

The novel term Smart Space Software Orchestration describes the ma-

nagement of Smart Devices via software. For better readability the term

Smart Space Orchestration will be used as synonym to Smart Space

Software Orchestration in this document. Smart Space Orchestration

typically has a goal that it reaches by orchestrating multiple Smart De-

vices.

Smart Space Orchestration of Smart Devices allows dynamic composition of existing

hardware to reach a certain goal such as saving energy (Sec. 2.4.4) [Ber96, HIM05a,

RCKZ12, DMA+12, DHKT+13, SHB10]. The term orchestration is used similar to the

web service context (Sec. 3.8). A conductor performs a composition by orchestrating

his orchestra consisting of musicians playing their instrument. Similar, a software

service reaches a Pervasive Computing goal in a Smart Space by orchestrating the

(adaptation) services (Sec . 8.3.1) that manage their Smart Devices.

In Ch. 6 of this thesis, a middleware is presented that enables Smart Space Orchestra-

tion. It enables services to orchestrate distributed Smart Devices via unified abstract

interfaces. See Svc in Fig. 2.4.
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Definition Context

Context (from Latin con-texere, to weave together) is information that

is relevant for an entity to reach its goal.

In this document, the term context is used to describe the virtual repre-

sentation of information that is relevant for a service to implement Smart

Space Orchestration (virtual object in Fig. 3.12). Such context represen-

tation is typically structured by so-called context models (Sec. 3.9).

The previous definition connects the term context with services as services are in the

focus of Smart Space Orchestration. In other literature, context has different dimen-

sions including computing context, physical context, time context, or user context

[ST94, YZYN08, Dey01, HIR02, BCQS07, CK00, BCFF12]

2.4.2 Devices

Smart Devices are the interface between physical environments and software (Sec. 3.2).

They define which interaction with the environment can be managed by software.

In professionally used environments (e.g. office buildings), Smart Devices are available

for application domains such as Heating, Ventilation, Air-Conditioning (HVAC), light-

ing, or security in 2014. Devices in so-called Building Automation Systems (BASs)

typically communicate over standardized protocols such as X10, KNX, LonTalk, or

BACnet [KNSN05, KFKC12, BLM+11] (Sec. 3.2.1).

Professional BASs are often too expensive and too complex for private households

[KNSN05, BLM+11]. Smart Devices for sensing and actuating physical environments

are available for consumers as embedded systems off-the-shelf at affordable prices in

2014 [CD12, DMA+12, BLM+11]. They typically offer remote control functionality for

various purposes including electrical power, heating thermostats, light switches, pre-

sence sensors, or computer equipment. Consumer devices are typically controlled via

vendor proprietary protocols or web interfaces that can both be accessed remotely

using Hyper Text Transfer Protocol (HTTP) over Transmission Control Protocol

(TCP)/ Internet Protocol (IP) over wired or wireless Ethernet for instance (Sec. 3.2.2).

Besides buying off-the-shelf hardware, it is possible to built so-called Do-It-Yourself

(DIY) customized hardware with standard parts in 2014. Platforms such as the Ar-

duino project [Ban08] enable the remote control of various kinds of sensors and actu-

ators over a network (Sec. 3.2.3).

Smart Devices use heterogeneous communication protocols. The resulting hetero-

geneity in the device access is a problem for implementing Smart Space Orchestration

with existing hardware. The heterogeneity makes it difficult to integrate devices in

complex scenarios. For reasons discussed in Sec. 3.3.1, so-called silos of vendors or

functional domains emerged [DHKT+13, DMA+12].

Smart Devices for various purposes in the professional and in the consumer domain

are available in 2014.

2.4.3 Network

Physical network connectivity between Smart Devices and computers that run services

is necessary for Smart Space Orchestration. Smart Devices can be connected over
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wired or wireless connections (see Sec. 2.3.1). Networking technology for connecting

pervasive systems is available in 2014 (Sec. 2.3.1, Sec. 2.2).

The emergence of Smart Spaces is likely to happen by retrofitting existing spaces with

new Smart Devices. Networking technology for retrofitting spaces into Smart Spaces

is available on the market in 2014 with wireless technology (Sec. 2.3.1) and com-

munication technology that uses existing cables such as Power Line Communication

(PLC).

In Weiser’s article the term “network” probably covers not only physical connectivity

but also syntactic connectivity and semantic connectivity [Wei91]. As mentioned in

Sec. 2.4.2 and analyzed more in depth in Sec. 3.3.1, heterogeneity is an inherent

property of Smart Devices (Sec. 4.4.2).

Technology for connecting Smart Devices is available and used daily by many people

in 2014. However, solutions for bridging heterogeneity on the semantic level is re-

quired for implementing pervasive computing with diverse Smart Devices (Sec. 3.3.5,

Sec. 5.6.3).

Providing interoperability, and portability of services from heterogeneous Smart De-

vices are a key challenge that is addressed in this thesis (Sec. 5.6.3).

2.4.4 Software

Smart Space Orchestration allows dynamic reconfiguration and flexible interaction

with existing hardware [KKR+13, Ber96, HIM05a, CD12]. In software orchestrated

Smart Spaces, software implements the pervasive computing scenarios.

In 1991, Mark Weiser described a scenario where a person (Sal) wakes up and diffe-

rent systems (e.g. the coffee machine) interact to assist her starting the day [Wei91]

(Sec. 2.1). Implementing the described scenario is possible but challenging in 2014

(Ch. 3).

In research projects many use cases with a complexity similar to or higher than that in

the scenario Weiser describes were implemented in the past [SM03, Har03]. Domains

that were interesting for research projects [KKR+13, HWN10, Abo12, WL05] include

health care and well-being [KD07, WL05], e-Learning and campus life [HKLC08,

AM00], tourism and traveling [CKKC07], office and other business applications [CPC+04,

WL05], security and safety [BCG12, MH12, KKK06, WL05], energy saving [Dar10,

WN07, PNKC13, WL05], advertising and e-commerce [SM10, WL05], entertainment

[APV06, DMA+12], user convenience [HMEZ+05, CD07, Hel05, WL05], gaming [BHLM02],

and social community applications [ERS10, GPJB07].

Typically, the described research projects implement their solutions as specialized

software that works with exactly the hardware used in the project’s laboratory envi-

ronment. The resulting software does often not support the implementation of other

use cases (Sec. 4.5.2). Designing software for project-specific scenarios is time intense

for each project, and inflexible as the resulting diverse middleware systems can often

neither be reused nor transferred into real environments [KSSR05].

The successful implementation of diverse pervasive computing scenarios in research

projects shows the feasibility and the power of Smart Space Orchestration [Kru09].

For many of the use cases that are presented in the cited research projects, standard

hardware can be used for implementing the scenarios in 2014.
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In real world private households the situation is similar to the one of the research

projects (Sec. 3.2.2). Enthusiastic DIY hackers build customized hardware-/ software-

setups for their specific hardware and application use cases that run inside their en-

vironments and cannot be transferred to other environments [BLM+11, MH12].

There are not many automated private households in 2013 [TPR+12, BLM+11] but

analysts see high demand and the need for new solutions as “no company is able to

provide all the parts, so telecom, cable, security, and utility providers are all looking to

smart devices vendors, managed software providers, local installation specialists, and

others to support the broad rollout of home automation services” [ABI12].

Silo solutions for professionally used buildings, research projects, and enthusiastic

home owners show that Smart Space Orchestration can be implemented with standard

components in 2014 [Abo12, BD07].

2.4.5 Assessment

Solutions that address Weiser’s challenges [Wei91] for (1) devices, (2) software, and

(3) network exist for pervasive computing. Because of the missing software support,

and the high complexity, pervasive computing is only used in limited domains by a

limited amount of people. The situation of pervasive computing in 2014 is analyzed

in detail in Ch. 3.

The key problem for Smart Space Orchestration in 2014 is the missing software de-

velopment support for overcoming the existing diversity of Smart Devices (<O.0>).

Portable services cannot be created as a common layer of abstraction is missing. This

thesis introduces such a layer (Ch. 5, Ch. 6) and shows how it can be used for imple-

menting Smart Space Orchestration in the real world (Ch. 7, Ch. 8, Ch. 9).
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2.5 Revisiting the Vision – A Science Perspective

The conference for ubiquitous computing (UbiComp) and the conference for pervasive

computing (PerCom) are the main conferences in the area of ubiquitous computing

in 2014. At the 2012 UbiComp, two papers about the state of ubiquitous computing

research 20 years after Weiser’s vision were presented [Abo12, DM12]. They show the

relevance of the problems that are addressed in this thesis for the science community.

The first paper [Abo12] (Sec. 2.5.1) is about the need for a suitable programming

abstraction that pushes the technical challenges of implementing pervasive computing

in the background and the applications in the foreground.

The second paper [DM12] (Sec. 2.5.2) is about pervasive computing strongly lacking

user participation. The authors criticize that pervasive computing technology and its

applications are created by few people and imposed on the rest of the world.

2.5.1 Celebrating an intellectual disappearing act

Gregory Abowd is a computer scientist and ubiquitous computing pioneer at Georgia

Institute of Technology, Atlanta. He revisited Weiser’s vision from a historic perspec-

tive on the evolution of computing in his article “What next, Ubicomp? Celebrating

an intellectual disappearing act” [Abo12].

Abowd states that ubiquitous computing is about to become the third computing gen-

eration after mainframe computing, and personal computing [Abo12, Kru09]. Similar

to the short analysis from Sec. 2.4, his conclusion is that –though ubiquitous com-

puting has matured over the years– a powerful simple-to-use interface is “unfinished

business” [Abo12].

Abowd characterizes the advent of a computing generation with a focus shift in peo-

ple’s attention. A computing generation is considered as implemented when its tech-

nology shifts into the background and is taken for granted. For that to happen, a

powerful simple-to-use abstraction is essential.

Picking Apple’s HyperCard as an important enabler for personal computing, Abowd

puts a Wikipedia quote into his article that could also be used to express the goal of

this thesis by replacing Hypercard with the Virtual State Layer (VSL) programming

abstraction: “Many people who thought they would never be able to program a computer

started using HyperCard for all sorts of automation and prototyping tasks” [Abo12].

This leads to the first requirement on a programming abstraction for pervasive com-

puting:

<R.1> Simplicity-to-use is required for a programming abstraction for pervasive com-

putings.

A Little History of Computing

Abowd’s article contains a summary of past computing generations and their charac-

teristic properties. Such a review can help identifying trends. Following, the review

from the paper is extended with additional material from other reviews [Abo12, Kru09,
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Figure 2.5: Ubiquitous computing as third generation of computing. The middle shows representative

technology of each generation. The bottom shows the cardinality of the relation human:device, and

the location where computing happens.

CD07]. The analysis focuses on the devices that are the user interfaces of each gen-

eration, the typical usage pattern of the technology in the cardinality of the relation

human:device, and the location where the computing happens.

Fig. 2.5 shows the evolution of computing from the 1960s to 2014 and beyond. The top

part of the figure shows the timeline. The circles mark the advent of a technology. The

first generation of computing are mainframes. The second generation of computing

are personal computers. The third generation is ubiquitous computing according to

Abowd [Abo12].

Sec. 2.4 and Sec. 2.3 show the divisibility of ubiquitous computing into mobile com-

puting and pervasive computing. The sub areas are shown at the top. As discussed

in Sec. 2.3, mobile computing is reality in 2014. The implementation of pervasive

computing is still an open challenge (Sec. 2.4).

The beginning of computing is in the 1960s. The first computing generation is charac-

terized by mainframe computers that are located in computing centers and operated

by many people that do time sharing (*:1).

The second generation is personal computing. It starts in the 1980s and is character-

ized by personal computers that are operated in offices or homes. Operators typically

have a dedicated computer or share it with few others (e.g. family, 1:1). Personal

computers are taken for granted by a broad audience and used regularly for creating

diverse applications.

The first part of the third generation of computing starts around 2000 with different

mobile communication technologies being deployed [ITU11]. An important techno-

logical advance towards mobile computing is the introduction of the iPhone and the

App economy in 2008 (Sec. 3.10). It brings diverse applications for mobile computing

to a broad audience.

Characteristic for mobile computing are portable computing devices with ubiquitous

connection to the Internet. The relation between human operators and devices is
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typically one-to-many (1:*). Many people possess multiple devices [ITU11, Cis12].

Mobile computing happens everywhere. Mobile devices are typical personal devices.

Smartphones are taken for granted by a broad audience and used regularly for creating

diverse applications in 2014 [vE13, ITU13].

The introduction of multi-user operating system functionality on mobile devices starts

a shift from the one-to-many interaction paradigm towards shared use (many-to-many,

*:*). Multiple operators share multiple devices. In 2014, multi-user supporting de-

vices are typically personal devices such as tablet computers that are shared, e.g. by

all family members. With the impelementation of pervasive computing, it can be

expected that User Interfaces (UIs) become available in the ambiance (ambient com-

puting). As an example, public interactive displays [JPSM13] are shown on the right

of Fig. 2.5. Pervasive computing (or ambient intelligence, Sec. 2.6.3) is not reality in

2014 yet (Sec. 2.4). The current state of the implementation is analyzed in Ch. 3 and

Ch. 4.

Fig. 2.5 shows a trend of disappearance concerning computing hardware – from filling

entire rooms in 1960s to ambient intelligence in the future (Sec. 2.6.3).

The ratio between users and devices evolves from many-to-one (*:1) over one-to-one

(1:1), and one-to-many (1:*) towards many users sharing many devices (many-to-

many, *:*) in the ambiance.

The location of computing changes from device-and-location-bound, over device-bound-

and-location-unbound (mobile computing, Sec. 2.3) in 2014, towards device-and-location-

unbound in the future with public personalized computing interfaces in the ambiance.

The described trend towards many-to-many usage, and computing devices in the

ambiance introduce new requirements that a suitable programming abstraction for

future software orchestrated Smart Spaces should support:

<R.2> Multi-user support should be provided by a programming abstraction as

shared use of hardware is expected to become a regular usage pattern.

<R.3> Self-management of ambient components must be supported by an abstrac-

tion. The ubiquity of ambient devices in the future requires self-management to

handle complexity and to make the technology usable by non experts.

2.5.2 UbiComp’s Colonial Impulse

Paul Dourish is a computer scientist and anthropologist at the University of Cali-

fornia, Irvine. Scott Mainwaring is an ethnographer at Intel. While Abowd gives

a technology-centric review, Dourish and Mainwaring review ubiquitous computing

from a user perspective. They criticize “UbiComp’s Colonial Impulse” in their paper

[DM12].

Dourish and Mainwaring claim that ubiquitous computing research colonializes the

world. They compare the research with the behavior of the British empire that im-

posed its habits to its colonies. Ubiquitous computing research acts similar: few re-

searchers define possible applications of the pervasive computing technology for many

future users.

The authors postulate the liberalization of ubiquitous computing research and deve-

lopment by introducing participatory elements. They claim that the users know best
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what they want and they should not be influenced by tools or paradigms that limit

the creativity. This adds the following requirements to the design of a programming

abstraction for pervasive computing:

<R.4> Support of user participation in the development of pervasive computing.

In addition to supporting user-based development, the authors see the necessity to

openly consider perspectives from many more domains than it currently happens

in pervasive computing research. The requirements analysis in Ch. 3 of this thesis

considers a broader perspective than it is usually found in literature (Sec. 3.1.2).

2.5.3 Conclusion

Weiser’s article starts, “The most profound technologies are those that disappear. They

weave themselves into the fabric of everyday life.” [Wei91]. Abowd uses this assess-

ment criterion as an identification mark of a computing generation [Abo12]. That

a technology disappeared can be noticed when it fades into the background as peo-

ple are simply using it without explicitly noticing the existence of the technology.

This happened for mainframe computing, personal computing, and more recently for

mobile computing.

Experts from different fields share the assessment that from a technical point of view,

ubiquitous computing is reality in 2014 (Sec. 2.4). The fundamental problem for the

implementation of pervasive computing in 2014 is the missing of a suitable program-

ming abstraction for enabling users to simply use pervasive computing technology

[Abo12, Kru09, BD07, CD07].

The creation of such a programming abstraction is the topic of this thesis (<O.0>).
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2.6 Related Terminology

The terms Internet of Things (IoT), Cyber-Physical System (CPS), and ambient in-

telligence are used for describing research in pervasive computing. Though all terms

describe pervasive computing, their focus diverges. The terms are briefly introduced

for orientation.

Context is fundamental for pervasive computing. Context-aware computing is the

computation paradigm behind pervasive computing that is applied in this thesis.

Context-aware computing is therefore briefly introduced at the end of this section.

2.6.1 Internet of Things (IoT)

The term Internet of Things (IoT) describes the implementation of pervasive com-

puting using a device-centric perspective. The goal of Internet of Things (IoT) is

connecting every object in the world over a network. Objects should form spon-

taneous networks with their neighbors and exchange information [ITU05]. Internet

technology is used for communication in the IoT [YZYN08]. Relevant technologies

are Web Services (WSs) (Sec. 3.8), or the Representational State Transfer (REST)

paradigm for stateless resource access [Fie02].

Central challenges in the IoT are the identification and tracking of objects and the

collection and processing of data from the connected objects. Typical objects are

people, consumables, or medication. A key technology that is used in IoT scenarios

are RFID tags. RFID tags are passive elements that can be used to exchange data

with objects [ITU05, YZYN08]. They are primarily used to identify and track objects.

RFID tags are the modern implementation of active badges (Sec. 2.4).

For obtaining information about the environment of objects, sensor networks and

robots are used in the IoT vision. IoT aims to embed its technology into every object

[ITU05].

The IoT vision follows a bottom-up strategy from devices to applications (Sec. 3.1.2).

This work provides a middleware (paradigm) that is complemented by IoT research

(Sec. 2.6.5). IoT devices typically use standardized Internet technology for communi-

cation. This simplifies interfacing them (Sec. 3.3.2, Sec. 8.3.1).

2.6.2 Cyber-Physical Systems (CPS)

Cyber-Physical System (CPS) research focuses on the integration of physical processes

with (remote) computation. Smart Devices are coupled with (remote) services that

manage them in software [BCG12, DDMS12, RI10, Chu10, Lee06].

While IoT research focuses on devices, Cyber-Physical System (CPS) research focuses

on software-based management of devices. Using software for management allows to

change the control logic of hardware devices dynamically. In addition, it allows to

shift control logic from Smart Devices into a remote backbone that is connected via

a network [Lee06, DDMS12]. This allows the execution of computationally intense

control logic that could not run on a resource limited Smart Device. In addition,

remote software control allows to couple multiple Smart Devices [DDMS12, BCG12].

The middleware (paradigm) that is introduced in this thesis (Sec. 5) can be used as

platform to implement CPSs.
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2.6.3 Ambient Intelligence

IoT and CPS have their focus on device hardware. Ambient Intelligence (AmI) focuses

on the applications that emerge in Smart Spaces. AmI research addresses users and

the user experience with pervasive computing environments (Smart Spaces) [AHS01,

HA02].

2.6.4 Context-Aware Computing

Services that implement pervasive computing scenarios typically acquire context to

fulfill their goals (Sec. 3.6). As described in Sec. 2.4.1, context is information that is

relevant for services to fulfill their goals. Information about a physical environment

can be sensed via Smart Devices and then be used as context for a service.

A computing system is context-aware when it is aware of the context in which it runs

[SAW94]. Pervasive computing is inherently context-aware computing. To create

context-aware computing applications, context has to be retrieved and processed.

Different tasks of context-aware computing are identified in the different layers of

Fig. 2.6 [KKR+13, HIM05a].

Smart Devices are on the lowest layer. They interact with their environment over

sensors and actuators. Data is retrieved from the Smart Devices (data retrieval), and

transformed into context information (context processing). The resulting context is

stored and exchanged (context management). As support for services (applications), a

decision support layer can provide functionality to infer information from the available

context, e.g. by applying first order logic (Sec. 4.5.2). Compare to Sec. 8.3.2.

Applications

Decision Support

Context Management

Context Processing

Data Retrieval

Sensors/ Actuators

Figure 2.6: Layered design of context-aware systems according to [KKR+13, HIM05a].

Many middleware for pervasive computing covers all or most of the layers between

the applications and the sensors and actuators in Fig. 2.6 (Sec. 4.5).

The context-awareness of a computer system can be classified in three stages [KKR+13,

BCFF12]:

• Context-based adaption is supported, when services can query context syn-

chronously on-demand.
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• Context-aware adaption is supported, when services can react to asynchronously

diffused context events.

• Situation-aware adaption is supported, when primitive contexts can be ag-

gregated, high-level context is created via reasoning, and can be used as decision

basis for services.

The VSL programming abstraction that is introduced in Sec. 5 supports all three

levels of context-awareness (Sec. 5.3.2, Sec. 8.3.2).

Major tasks of context-aware computing are context modeling, context management,

and context reasoning [KKR+13, YZYN08]. This thesis focuses on the first two as-

pects, and allows to add context reasoning via regular services (Sec. 8.3.2, Sec. 5.7.3,

Sec. 6.2).

The following requirement for reaching the overall objective <O.0> of this thesis

emerges:

<R.5> Context-awareness support must be provided by a suitable programming

abstraction for pervasive computing since pervasive computing is inherently

context-aware computing.

The requirement is further specified in Sec. 3.6.4.

2.6.5 Related Terminology Conclusion

Different terms describe different aspects of pervasive computing. All terms typically

cover the entire pervasive computing domain but they have different focus.
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Figure 2.7: Positioning of this work in the context of the presented different aspects of pervasive

computing research.

Fig. 2.7 shows the positioning of this work in the context of the described research

areas. The middleware that is introduced in this work can use the devices that are in

the focus of IoT. It provides a basis for CPS with their focus on orchestrating devices

via (exchangeable) software. For ambient intelligence applications this work provides

a basis that can be used for a rapid implementation and implementation of pervasive

computing workflows.

Pervasive computing is inherently context-aware computing which makes context-

awareness support a fundamental requirement for a suitable programming abstraction

for pervasive computing (<R.5>).
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2.7 Chapter Conclusion

Ubiquitous computing comprises distributed computing, mobile computing, and per-

vasive computing. Distributed computing and mobile computing are reality for a

broad audience in 2014.

The evolution of Distributed computing and mobile computing is ongoing as massively

scaling distributed systems (Sec. 4.3), or growing bandwidth in network transmissions

over wireless3 or wired links show. But solutions that answer Weiser’s challenges for

devices, software, and network are part of people’s daily lives for these two subareas

of ubiquitous computing.

This is not the case for pervasive computing. Smart Devices, and networking technol-

ogy exist and are available for many purposes in regular shops off-the-shelf in 2014.

The highest deployment rates of BAS is in professional buildings [CJ08, BLM+11].

However, most spaces are not smart in 2014 as they are not orchestrated by soft-

ware as a whole. The potential of the existing Building Automation System (BAS)

installations is typically not exhausted. Pervasive computing scenarios that integrate

different application domains are seldom.

The heterogeneity of the communication interfaces offered by the available Smart

Devices results in complexity of remotely controlling diverse devices. This complexity

is a key problem for the implementation of Smart Spaces in 2014 (Sec. 2.5, Sec. 2.4).

It is possible to develop software that implements pervasive computing scenarios in

2014. Implementations of limited scenarios in professional environments (BAS), in

prototypical Smart Spaces of research projects, and in the homes of enthusiastic DIY

users exist.

A suitable programming abstraction for Smart Space Orchestration is missing to

implement pervasive computing as third generation of computing (Sec. 2.5). The

availability of such an abstraction would allow pushing the technical challenges of

implementing pervasive computing into the background. The technical hurdles are

currently preventing a real world implementation of pervasive computing.

User participation in the development of pervasive computing scenarios and technol-

ogy is required to foster innovation and to enable pervasive computing in the real

world.

3http://grouper.ieee.org/groups/802/11/Reports/802.11 Timelines.htm

http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm
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Everything should be built top-down, except the first time.

Epigrams on programming [Per82], Alan Perlis, American computer

scientist, (1922 - 1990), 1st Turing award winner 1966.

Short Summary This chapter analyzes requirements on real world Smart Space Soft-

ware Orchestration. Knowing the requirements is relevant for the design of a suitable

programming abstraction as most requirements have to be supported by the abstrac-

tion directly (Ch. 5).

In a bottom-up, and a top-down analysis the problem space is structured. Bottom-up,

Smart Devices from different domains, solutions for bridging heterogeneity, middle-

ware, and µ-kernel operating system design are analyzed. Top-down, psychology,

Artificial Intelligence (AI), autonomic management, Service Oriented Architecture

(SOA), and context modeling are analyzed. The App economy is analyzed as a suc-

cessful example of the recent implementation of a subdomain of ubiquitous computing

in the real world.

The analyzed fields give background for the design of the Virtual State Layer (VSL)

programming abstraction in Ch. 5ff.

The 50 identified requirements are summarized and discussed in Sec. 3.11ff.

Key Results Sec. 3.12 contains a list with a brief description of all identified require-

ments.

Fig. 3.15 graphically maps the requirements to the objectives of this thesis.

Sec. 3.13.2 discusses the requirements in the context of their fulfillment in the state

of the art.

The seven layers that are typically found in literature to describe context-aware com-

puting in Smart Spaces (Fig. 2.6) can be reduced to four domains.

Smart Devices inherently use heterogeneous communication protocols. Using one

protocol for all devices is not desired.

The goals of this thesis complement Do-It-Yourself (DIY) hardware making. To-

gether, both empower users to entirely implement their pervasive computing scena-

rios.
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Abstract interfaces have to be provided to implement interface portability. Standard-

ization is required for implementing interface portability. Established standardization

processes are not suitable for software orchestrated Smart Spaces. A suitable stan-

dardization process for Smart Spaces is missing.

Middleware is a suitable concept for designing a programming abstraction for Smart

Spaces. It helps providing interface portability and execution environment portability.

A suitable programming abstraction for Smart Spaces should support all inter-service

communication modes to enable the implementation of diverse pervasive computing

scenarios.

Dynamic extensibility is required. The µ-kernel approach shows how it can be imple-

mented in operating systems.

Declarative interfaces are more intuitive than procedural interfaces. Humans are

familiar to the concepts of abstraction and modularization.

Finite State Machine (FSM) that model state transitions can be used to model

intelligent behavior in computer programs. Event-Condition-Action (ECA) rules are

a simple form for expressing plans. Autonomy can be reached by applying methods

of AI.

The Web Service (WS) architecture is not sufficient as programming abstraction for

future Smart Spaces.

A suitable meta model that enables user-based ontologies creation for Smart

Spaces is missing.

Crowdsourcing could help fostering the emergence of Smart Space Orches-

tration in the real world.

Security-by-design is required to enable running third party services in software

orchestrated Smart Spaces.

The state of the art is unlikely to be suitable for a real world deployment as it does

not take enough requirements into account.

Key Contributions A requirements analysis that exceeds the literature [HIM05a,

EBM05, HR06, BDR07, Kjæ07, CD07, HSK09, GGS09, Kru09, SHB10, BBH+10,

Pos11, CD12, BCFF12, RCKZ12, KKR+13] is provided.

Summary This chapter analyzes requirements on real world Software Orchestration

in Smart Spaces. Knowing them is relevant for the design of a suitable programming

abstraction as most requirements have to be supported by the abstraction directly.

The chapter starts with an introduction of top-down and bottom-up information

processing methodologies (Sec. 3.1.1). The problem field Smart Space Orchestration

is structured into seven layers (Sec. 3.1.2). The seven layers that are typically found

in literature to describe context-aware computing in Smart Spaces (Fig. 2.6) can be

reduced to four domains. This reduces the complexity.

The bottom-up analysis starts with Smart Devices and their inherently heterogeneous

communication protocols (Sec. 3.2). It analyzes Smart Devices from the professional

domain and the home domain.

DIY hardware making is introduced (Sec. 3.2.3). The goals of this thesis complement

DIY hardware making. Together, both empower users to implement comprehensive

pervasive computing scenarios.
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The future of Smart Device hardware is discussed. It is identified as suitable execution

platform for Smart Space Orchestration (Sec. 3.2.4).

Reasons for the inherency of Smart Device communication protocol heterogeneity are

analyzed (Sec. 3.3). The suitability of classic standardization processes is analyzed

(Sec. 3.3.2). Standardization is required for implementing interface portability.

Established standardization processes are not suitable for software orchestrated Smart

Spaces. A suitable standardization process for Smart Spaces is missing.

Topology locations for bridging heterogeneity are discussed (Sec. 3.3.3). “In-the-

middle” is identified as best location. Different solutions and problems for bridging

heterogeneous communication protocols are discussed (Sec. 3.3.4).

Middleware is introduced as concept to bridge heterogeneity (Sec. 3.4). Middleware

is a suitable concept for designing a programming abstraction for Smart Spaces.

It helps providing interface portability and execution environment portability. A

suitable programming abstraction for Smart Spaces should support all inter-service

communication modes to enable the implementation of diverse pervasive computing

scenarios. Dynamic extensibility is required. The µ-kernel approach shows how it

can be implemented in operating systems (sec. 3.4.4).

The top-down analysis starts with human psychology (Sec. 3.5). It introduces the

observed behavior of the human mind, and structured thinking. Declarative interfaces

are identified as being more intuitive than procedural interfaces. The concepts of

abstraction and modularization are familiar to humans.

Looking at AI (Sec. 3.6), FSMs that model state transitions can be used to model

intelligent behavior in computer programs. ECA rules are a simple form for expressing

plans. Autonomy can be reached by applying methods of AI.

Autonomic computing is introduced at the example of autonomic management that

applies AI principles (Sec. 3.7). SOA (Sec. 3.8) and context modeling (Sec. 3.9) are

introduced. A suitable meta model that enables user-based ontologies creation

for Smart Spaces is identified as missing.

Success factors of the App economy that enabled the real world implementation of

mobile computing are introduced (Sec. 3.10). Crowdsourcing could help fostering

the emergence of Smart Space Orchestration in the real world. Security-by-

design is required to enable running third party services in software orches-

trated Smart Spaces.

The 50 identified requirements are summarized and discussed in Sec. 3.11ff. Sec. 3.12

contains a list with a brief description of all identified requirements. Fig. 3.15 graph-

ically maps the requirements to the objectives of this thesis. Sec. 3.13.2 discusses

the requirements in the context of their fulfillment in the state of the art. The state

of the art is unlikely to be suitable for a real world deployment as it does not take

enough requirements into account.
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3.1 Top-Down and Bottom-Up Analysis

Pervasive computing touches many research areas as it is defined by a vision (see

Sec. 2.1) unlike other research domains that are based on technical problems, and

have a body of results that is built over time [BD07]. This chapter contains the main

part of the requirements analysis of this thesis. The diversity of pervasive computing

makes the task of analyzing requirements for the design of a suitable programming

abstraction for pervasive computing [Abo12] at large complex (<O.3>) [DM12, CD12,

Abo12, Kru09].

Following the introducing quote by Alan Perlis, this entire thesis is structured bottom-

up starting with a requirements analysis of different parts of the problem space. This

chapter identifies requirements for Smart Space Software Orchestration as basis for

the design of the Virtual State Layer (VSL) programming abstraction in Ch. 5.

The two viewpoints bottom-up and top-down are applied several times in this chapter

as methodologies to look at a problem from two opposite sides. Sec. 3.1.1 introduces

the terminology. Sec. 3.1.2 provides an analysis of the problem space that determines

the space of the main analysis that is done in the remainder of this chapter (Sec. 3.2ff).

The chapter has four parts:

• Part I–A contains a bottom-up analysis from Smart Devices up the software layer

4 in Fig. 3.1. The part is structured bottom-up internally.

• Part I–B provides a top-down analysis from human developers to the software

layer 4 in Fig. 3.1.

• Part I–C contains a case study about the App economy that is an important

enabler for the real world implementation of mobile computing (Sec. 2.3.3).

• Part I–D summarizes and structures the requirements that are identified in this

chapter.

The main contribution of this thesis is the VSL programming abstraction (Ch. 5)

that is situated on layer (4) of Fig. 3.1. The services on the layers (3) and (3a)

are intended to be created by third party developers following the request for user-

empowerment in Sec. 2.5.2. Ch. 8 introduces services on the layers 3 and 3a to

illustrate how the VSL programming abstraction supports developers in the creation

of diverse services (<O.3>). Assuming that the humans at the top of Fig. 3.1 are

developers, the approach of this chapter with its bottom-up and top-down analysis is

visualized in the figure.

3.1.1 Top-Down and Bottom-Up Information Processing

As described in the introduction (Sec. 3.1), a top-down analysis and a bottom-up

analysis are used as strategies for structuring the analysis in this chapter. The

terms top-down and bottom-up describe two general information processing princi-

ples [EHS10, JL93, BPR99]. Both strategies are relevant for achieving the goal of this

thesis: facilitating the development of services that implement pervasive computing

scenarios.
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Top-Down

Solving a problem top-down means applying a deductive process. Deduction means

looking at a problem as a whole first, and partitioning it into layered sub-modules

that solve parts of the problem then. Each resulting layer of abstraction regards the

functionality of its underlying layers as a so-called black box. The term black box

describes that only the interface not the internal details of the underlay module are

relevant for using it (Sec. 3.8). Synonyms for top-down are analysis or decomposition

[EHS10].

Top-down information processing emphasizes high-level planning and is based on an-

alyzing a problem as a whole. Looking at problems from an abstract point of view

and then going into details is similar to the information processing that happens in

the human mind (Sec. 3.5) and therefore intuitive [JL93].

Bottom-Up

Bottom-up problem solving strategies follow the opposite, inductive approach. They

start with the parts and assemble them to more complex solutions. Synonyms for a

bottom-up design process are synthesis or composition.

A major advantage of a bottom-up approach is that it fosters the reuse of basic parts

for implementing different complex workflows. New functionality can be assembled

from existing parts [EHS10].

Software Design

Top-down and bottom-up strategies apply to software design as particular form of in-

formation processing. The top-down approach was successfully introduced to software

design by Harlan Mills and Nikolaus Wirth at IBM in the 1970s [EHS10, Wir71].

A goal of the VSL programming abstraction is to facilitate the implementation of

complex pervasive computing workflows in software (<O.0>). Enabling a top-down

development process with the programming abstraction supports this goal. Ideally, a

programming abstraction for Smart Spaces supports hiding details such as how Smart

Devices are connected, and which device-specific communication interfaces they offer

(Sec. 3.3.2, Sec. 3.4, Sec. 3.8).

A major advantage of a bottom-up software design is the reusability of components.

Reusing components lowers the complexity of software development. It reduces the

required lines of code of Smart Space services since functionality that was developed

(and tested) before is reused. At the same time it makes software more robust. Reused

components are typically better tested than single-use components as they are part

of diverse other services.

A combination of the high level of abstraction of the top-down methodology with the

reusability of the bottom-up approach is desirable. Both is considered for the VSL

programming abstraction. The former is reflected by providing abstract interfaces

(Sec. 3.3.2) and self-management (Sec. 5.6.2, Sec. 6.4). The latter is reflected by

providing a Service Oriented Architecture (SOA) (Sec. 3.8).
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3.1.2 Structuring Smart Space Orchestration

Design a programming abstraction that structures and facilitates the development of

services for Smart Spaces requires an understanding of the problem domain. Smart

Space Orchestration can be structured into different functional layers.

Fig. 3.1 shows seven functional layers when the right part of the figure that connects

the layers is ignored. The layers are introduced bottom-up.
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Figure 3.1: Functional view (seven layers) and domain view (four rings) on Smart Space Orchestra-

tion.

The bottom layer (1) shows physical phenomena. As described in Sec. 2.4.2, and

analyzed in detail in Sec. 3.2, Smart Devices are used as interface between the physical

world and the virtual world.

The virtual world contains the software for Smart Space Orchestration. Layer 3 of

Fig. 3.1 shows services for device adaptation. They are called adaptation services in

this thesis. They connect Smart Devices with their virtual interfaces in layer 4. The

virtual interfaces (4) are the software representation of the Smart Devices. They are

used by the services on layer 3a to implement pervasive computing scenarios.

To take the humans in a future Smart Space into the control loop, services on layer 3a

offer User Interfaces (UIs). Such UIs can be accessed by devices such as smartphones

(2a) as described in Ch. 2. The top layer (1a) are the humans that give high-level

orchestration goals to the services on layer 3a over their interfaces.

Fig. 3.1 is similar to Fig. 2.6 that can be found in the literature. The analysis in

Ch. 4 shows that the decision support (Fig. 2.6) is typically part of the middleware

(layer 4 in Fig. 3.1) in state of the art pervasive computing middleware designs. The

same applies to the context processing layer in Fig. 2.6. The purpose of layer 3 in

Fig. 3.1 is data retrieval in the literature. The purpose of layer 3a in Fig. 3.1 is

hosting applications.

The middleware that is presented in this thesis in Ch. 5 and Ch. 6 does not follow

this approach. It provides only context management in layer 4 of Fig. 3.1. Context

processing is provided in layer 3 (Sec. 8.3.1), and decision support is provided in layer

3a (Sec. 8.3.2). See Fig. 5.1.
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Connecting the Layers

The objective of this thesis is designing a programming abstraction that structures

and facilitates the development of pervasive computing applications (<O.0>). The

focus of this work is consequently on the layers 3, 4, and 3a of Fig. 3.1.

Looking at Smart Space Orchestration from a top-down and a bottom-up view, pair-

wise similarities between the seven functional layers become visible. See Fig. 3.1 on

the left. The layers 1 and 1a contain entities of the physical world. The layers 2 and

2a contain computing devices that act as interfaces between the physical environment

on the outside and its virtual representation in the software domain in the innermost

area.

The layers 3 and 3a contain software services that adapt between the specific interfaces

that are used on layer 2 and layer 2a and the abstract interfaces that are used on layer

4. Layer 3 contains adaptation service towards the sensor and actuator hardware.

Layer 3a contains orchestration services, user interface services, and other software

services that help implementing pervasive computing scenarios (Ch. 8). The core

layer (4) manages the virtual world as abstract representation of the physical world.

It provides the context for services (Sec. 2.6.4).

The described understanding results in a domain view on Fig. 3.1. The four domains

{(1,1a) physical world, (2,2a) computing hardware, (3,3a) services, (4) common ab-

straction} are indicated by the rings, the colors, and the pairwise naming of the layers.

This domain view reduces the complexity of Smart Space Orchestration. The seven

layers from the functional view that can be found in literature (Fig. 2.6) collapse into

four rings in the domain view.

The outer two domains (1, 2) are reality in 2014. Domain (1, 1a) is the reality.

Devices in the domain (2, 2a) are available off-the-shelf for consumers (Ch. 2). A

suitable abstraction on layer 4 that structures and facilitates the creation of services

in the surrounding domain is missing (Sec. 2.7, <O.0>). This thesis focuses on the

software side of Smart Space orchestration. The domains (3,3a) and (4) are assessed

in this chapter.

This thesis shows advantages of collapsing the layers 3 and 3a. This explicit step is

not done by the assessed middleware designs (Sec. 4.5). Instead, device adaptation

functionality (3) and applications (3a) are treated separately. The combined reference

architecture in Fig. 4.5.16 that combines the aspects of all assessed middleware designs

from Ch. 4 reflects this separation.

Treating services for device adaptation (3) and services that implement pervasive com-

puting workflows in the same way reduces the complexity for service developers. The

same mechanisms of layer 4 can be used to implement both service categories. Treat-

ing all services equally in terms of the used programming abstractions, developers can

implement drivers for Smart Devices using the same programming interface they use

to implement orchestration workflows.

The advantages of treating the layers 3 and 3a identically from a programming point

of view lead to the requirement:

<R.6> Device-adaptation services and other services should not be treated separately

but have a role-independent unified interface.
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Level of Abstraction

The level of abstraction in Fig. 3.1 raises from the bottom layer to the top layer in

the functional perspective with the seven layers. Sensors and actuators collect and

change properties of the physical world on a concrete level (bottom layer). Humans

give high-level input (top layer).

In the domain view, the level of abstraction raises from the outer ring to the inside as

the entities on the outer rings are concrete while the software domain in the middle

is virtual and contains abstract interfaces.
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3.2 Smart Devices

Smart Devices are the interface between the physical world and the virtual world

(Fig. 3.1). The hardware that is available in a Smart Space defines which information

can be sensed from a physical environment, and which properties of the space can be

altered by software via actuation.

Smart Devices are used in diverse application domains in 2014 including smart grid,

industrial automation, smart cities and urban networks, home automation, building

automation, structural health monitoring, or container tracking [VD10, ITU05].

As described in Sec. 2.4, various devices for Smart Spaces are available off-the-shelf

in 2014 [BD07, Abo12, Kru09, BLM+11]. For reasons analyzed in Sec. 3.3.1 Smart

Devices use heterogeneous communication protocols. Heterogeneity in the communi-

cation protocols is a major reason for the complexity of Smart Space Orchestration

today [BLM+11, MH12, DLG07, KFKC12].

To give a better understanding of device heterogeneity and existing use cases for

Smart Spaces, the professional building automation domain (Sec. 3.2.1) and the home

automation domain (Sec. 3.2.2) are analyzed in this section. The analysis is structured

in

• installation environment, showing where Smart Spaces exist already,

• typical scenarios, giving ideas for pervasive computing scenarios,

• organization of the systems giving ideas for structuring Smart Space Orchestra-

tion in general,

• device control interfaces, showing existing heterogeneous interfaces on layer 2 of

Fig. 3.1,

• a discussion about the interoperability that is needed for Smart Space Orches-

tration,

• standardization efforts in the domain, that foster interoperability, and

• available interfaces to the domain that help integrating it into future software

orchestrated Smart Spaces.

Technology for Do-It-Yourself (DIY) development of Smart Devices is introduced.

Finally, possible directions for future Smart Devices are described. They show that

Smart Devices could become the backbone for future Smart Space Software Orches-

tration.

The technical terms and protocols that are introduced in this section are not relevant

in the remainder of this document. They are introduced to give an overview of the

terminology that is used in the assessed domains. They should enable the reader to

study literature from the domain more easily.

3.2.1 Building Automation

The term building automation comprises the orchestration, mechanization, and data

aggregation of Smart Devices in buildings. The systems used for automation of pro-

fessional buildings are called Building Automation Systems (BASs). Other names

for BAS with partially different focus are Facility Management System (FMS), Buil-

ding Management System (BMS), Energy Management System (EMS), or Intelligent

Building System (IBS) [VD10, p.361].
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BAS are relevant for the orchestration of Smart Spaces as they contain Smart De-

vices that are deployed in existing buildings. Smart Devices for professional use have

typically standardized interfaces. This facilitates their integration in software that

implements pervasive computing scenarios (see Sec. 8.3.1).

Installation Environment

Professional BASs are deployed in commercial buildings such as public buildings in-

cluding universities, and hospitals, or private buildings including the hospitality sector

or manufacturing. The targeted market for BAS systems are buildings with sizes above

100K square feet [VD10, p.361].

Typical Scenarios

The installation of Smart Devices in workplaces is typically driven by productivity

concerns [Hin99]. Scenarios and use cases for building automation include [VD10,

WL05, KNSN05, SIE13, RLT11]

• occupancy and shutdown to configure Smart Devices of rooms according to

their occupancy,

• energy management to optimize the energy consumption of building systems

during occupancy,

• demand response for interactive optimization of the energy consumption of

multiple buildings in cooperation with an energy provider,

• fire and smoke abatement with support of BASs (especially the ventilation

systems), and

• evacuation with support of BASs for informing occupants of a building via an

intercom system to evacuate for instance.

The scenarios comprise diverse application domains and building subsystems of a buil-

ding [HLM+97, DHKT+13, CJ08]: energy saving (e.g. load balancing, natural ven-

tilation, daylighting), comfort (e.g. Heating, Ventilation, Air-Conditioning (HVAC),

lighting, workstation and workgroup design for improved spatial, thermal, acoustic,

visual, and air quality), safety (e.g. fire alarms), security (e.g. access control), and

accounting (e.g. presence detection).

Organizational View

BASs can be structured on three layers [WS97, SIE13]:

• Management level: operation and monitoring, evaluation, management.

• Automation level: control and room automation.

• Field level: sensors and actuators.

This section focuses on solutions for the lower two layers, automation level and field

level. The market dominant solution for the management level is introduced in

Sec. 4.4.2.
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Device Control Interfaces

After pneumatics (1950s), and electric circuits (1960s), microprocessors were included

into the control loops of Smart Devices for building automation in the 1970s. The

microcontrollers are called Programmable Logic Controllers (PLCs). The concept of

using them for automation is called Direct Digital Control (DDC). With so-called

Supervisory Control And Data Acquisition (SCADA), supervisory systems for the dis-

tributed DDCs were introduced as Central Control and Monitoring Systems (CCMS)

[WS97, KNSN05]. They implement the layered structure that was introduced before.

Different communication protocols are used on the automation level over different

network topologies such as bus, point-to-point, star, or ring. BAS communication

protocols are often domain-specific protocols. They are used for specific purposes

such as lighting (Digital Addressable Lighting Interface (DALI)) or meter reading

(M-Bus). Following, some protocols are named. The identifiers in brackets denote

standards that define the technology. Technologies without identifiers in brackets are

de-facto standards (Sec. 3.3.2). Frequently used protocols are [KNSN05, KFKC12,

BLM+11, WS97, VD10, MHH09, TK10]:

EIA-485 (American National Standards Institute (ANSI)/TIA/EIA-485), 1-wire, M-

Bus, Johnson Controls Metasys N2, DALI (International Electrotechnical Commission

(IEC)60929, IEC62386) over twisted pair, Ethernet (IEEE802.3) over different physi-

cal media, and IEEE802.11 and IEEE802.15.4 [CGH+02, Ega05a] for wireless commu-

nication, Modbus (e.g. over EIA-485 or Ethernet), KNX (EN 50090, ISO/IEC 14543)

over different media, LON often run over twisted pair (ISO/IEC 14908) Building

Automation Control network (BACnet) (American Society of Heating, Refrigerating

and Air Conditioning Engineers (ASHRAE)/ANSI Standard 135, International Or-

ganization for Standardization (ISO)16484-5) over different media (Sec. 3.3.4). The

enumeration of the media gives an impression of the heterogeneity of the different

protocols.

Interoperability

Smart Devices of different application domains named before such as lighting control

and metering are typically not connected. Historically motivated, different BASs still

use dedicated control networks [CJ08]. Smart Devices of different application domains

form silos [KFKC12, DHKT+13, BPR99, CJ08, SJR11, TKDHC13, KNSN05, RLT11,

PNKC13].

Standardization

Professional BAS are typically standardized [SIE13, CJ08, KNSN05]. Few companies

dominate the market (market shares given in parenthesis) [CJ08]: Johnson Controls

(15%), Siemens (14%), Honeywell (12%), Trane (7%), Tyco Fire and Security (6%),

United Technologies (4%), Yamatake (4%), Novar (3%), General Electrics Industrial

(3%), Bosch Security Systems (2%). The limited amount of relevant companies en-

ables a standardization process as described in Sec. 3.3.2 to be successful.

The use of standardized technology in professional buildings facilitates the integration

of different protocols (see above) for comprehensive management (Sec. 4.4.2). Because

of standardized communication protocols, software that manages Smart Devices is
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automatically portable as vendor diversity is hidden behind the standardized interfaces

of the Smart Devices [SIE13, CJ08, BPR99]. For connecting different BAS domains

on the management layer (see before), still more standardization is needed as the

introduction of BACnet in Sec. 4.4.2 shows. It connects so far separate functional

domains.

Interfacing the Building Automation Domain

To allow the remote control via applications outside the BAS domain, some BAS

controllers expose additional management interfaces. An example for such an interface

is Open Building Information Exchange (oBIX) [OAS13]. It is getting developed and

standardized within Organization for the Advancement of Structured Information

Standards (OASIS).

Open Building Information Exchange (oBIX) is a Representational State Transfer

(REST) [Fie02] interface to BASs. It is implemented as Web Service (WS) using the

communication protocol Service Oriented Architecture Protocol (SOAP) over Hyper

Text Transfer Protocol (HTTP) over standard Internet Protocol (IP). The REST

operations are read (object), write (object), invoke (function), delete (object). So-

called watches implement event-based communication. A client can add subscriptions

to watches. Clients have to poll their watches periodically for event “notification”.

The typical approach for creating interfaces between a specialized domain (BAS)

and other domains is providing gateways. Such protocol gateways interface domain-

specific communication protocols and offer a subset of the available functionality over

domain-external interfaces (Fig. 8.2). Gateways often contain hardware and software

for the entire domain-specific protocol stack (Fig. 3.3), starting from the hardware

interface to the syntactic and semantic interpretation of domain-specific protocol data

[MTMT06, MRA10, PRL10, TMKP02, OAS13].

Sec. 4.4.2 introduces BACnet which is the most widely used standard on the mana-

gement layer. BACnet also supports WS interfaces [NSY08, Fel00].

Existing gateways facilitate the integration of heterogeneous BAS domains into soft-

ware orchestrated Smart Spaces. BAS gateways can be integrated identical to Smart

Devices in Fig. 3.1 via adaptation services. A difference is that not a single device

but an entire BAS domain is connected over an adaptation service (Sec. 8.3.1) in this

case.

Conclusion

BASs are relevant for the implementation of pervasive computing scenarios as they

provide interfaces to properties of physical environments that are already deployed

in buildings [CJ08, KNSN05, KFKC12, HLM+97]. Use cases of the BAS domain

can benefit from an integration with functionality outside the BAS domain and vice

versa. Few major vendors and the resulting high degree of standardization (Sec. 3.3.2)

facilitate the integration of BASs into software orchestrated Smart Spaces.

To allow remote control and interaction with services outside the BAS domain, existing

gateways that offer access to a subset of the BAS functionality via Internet protocols

can be used. Such gateways facilitate the remote access to the BAS domain as they

typically use standardized Internet protocols as second (non BAS domain-specific)

interface (Sec. 8.3.1).
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3.2.2 Home Automation

BASs for the professional market (Sec. 3.2.1) are typically too expensive for home

users. The implementations of the professional scenarios often target large buildings

[VD10, CJ08, TKDHC13]. Those use cases that are not specific for professional buil-

dings such as energy saving or security are interesting for the home domain as well.

Home automation systems can be grouped into three categories:

• high-prized systems that are installed by professionals,

• medium- and low-prized systems that are intalled by home owners themselves,

and

• DIY systems that are built by skilled home owners themselves.

High-end home control solutions cost between $20 000 and $100 000. Installations

of such systems can be found in expensive homes in the USA for instance [VD10].

The products cover not only a subset of the scenarios that are covered by professional

BASs but also new domains such as entertainment. High-end solutions are typically

installed and maintained by experts similar to the professional BASs.

Few vendors share the market of high-priced home automation. Though protocols

different from professional BAS are used (see below), the situation can be compared

to that of professional BASs. Standardization mechanisms are applied (Sec. 3.3.2).

In the medium-, and low-prized segment, vendor proprietary solutions for domains

such as heating or lighting are available [EG01]. Such solutions often allow self-

installation by home owners. They typically do not follow standards (Sec. 3.3.1).

Solutions for retrofitting existing buildings are available too. They typically consist of

Smart Devices that only need to be plugged into a power socket and communicate over

wireless or Power Line Communication (PLC). For making entities without a power

socket such as windows smart, battery powered sensors that communicate wirelessly

with other components of the same vendor can often be bought [MTMT06, BLM+11,

MH12].

As third possibility for implementing smart homes, there is a DIY scene of enthusi-

astic hobbyists that build their own systems [BLM+11, MH12]. Tutorials on the web

and the availability of technical building blocks facilitate the creation of DIY Smart

Devices in 2014. DIY hardware making is introduced in detail in Sec. 3.2.3.

Installation Environment

Typical installation environments for home automation technology are spaces that

are not primarily used for work but for the spare time. As described before, Smart

Devices at different price ranges exist for home automation [BLM+11, MH12, RLT11,

AKOSS+11]. Single components such as power plugs or heating thermostats that

allow remote control via Internet cost about $50 in 20144. With different products for

different purposes, home automation deployments are not bound to a certain space

size [VD10].

4http://www.conrad.de/

http://www.conrad.de/
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Typical Scenarios

Security and comfort are major driving forces for consumers to buy home automation

hardware. Typical use cases for home automation are [VD10, SRT00, Har03, KOA+99,

BLM+11, MH12, RLT11]:

• lighting control, to control the lights in a space,

• safety and security, including intrusion detections and access control for pro-

viding actual and perceived security,

• comfort and convenience, including entertainment device control, lighting

control, energy conservation, access control, and safety and security,

• energy management, to optimize the energy consumption of a space (e.g.

house, flat) via controlling the lighting, or Heating, Ventilation, Air-Conditioning

(HVAC) systems,

• remote management, to control systems like the heating from remote for

enhancing comfort and security, and

• Ambient Assisted Living (AAL), for supporting independent aging and

remote care.

Homes are buildings. Therefore all use cases described for professional building au-

tomation apply to homes too. Some use cases are not so important for homes today

such as accounting or evacuation. As described, homes automation comprises ad-

ditional functional domains compared to professional building automation such as

entertainment, or medical support.

Organizational View

The organization of BASs in homes is typically hierarchical, similar to the professions

BASs (Sec. 3.2.1). In the entertainment domain, and for Smart Devices that are sold

independently from combined solutions, flat topologies are common [GBRB12].

Often home automation devices are isolated and not part of larger systems. Examples

are power plugs that can be controlled via a web interface that they offer (see below).

Device Control Interfaces

Smart Devices that are not integrated with other Smart Devices into larger automa-

tion systems often use standard Internet protocols such as Ethernet, IP, Transmis-

sion Control Protocol (TCP), and HTTP. This protocol stack (Sec. 3.3.4) is used by

many of the devices that are available for homes [KBY+12, RLT11, Spi03, MTMT06,

MRA10, TMK+03].

For Smart Devices that are coupled for fulfilling a combined goal such as the lighting

management of a building, there are several standardized communication protocols for

home automation. They are used for similar scenarios to professional BASs but they

use different protocols. Examples are X10 over Power Line Communication (PLC),

CEBus over different media, LonWorks (ANSI/EIA 709.1, ENV 13154-2) over different
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media, KNX (ISO/ IEC 14543-3, ANSI/ ASHRAE 135) over different media, Ether-

net (IEEE802.3) over different physical media, and IEEE802.11 and IEEE802.15.4

[CGH+02] for wireless communication [ND00, SRT00, KNSN05, RLT11, MHH09].

The enumeration of the media gives an impression of the heterogeneity of the diffe-

rent protocols.

Home automation comprises domains that are different from the domains addressed

by professional BASs. An example is the integration of multimedia devices into home

automation. For such integration protocols such as Universal Plug aNd Play (UPNP),

and Jini Is Not Initials (JINI) are used that provide features for auto-configuration

[MRA10, KY12, GBRB12].

Professional buildings are typically installed and managed by experts [KNSN05]. In

the home, especially when retrofitting a home space, experts are not always available

[EG01]. Self-management plays an important role for the emergence of Smart Spaces

in the home domain (Sec. 2.5.1, <R.3>). It often enables self-installation by home

owners.

Interoperability

Home automation comprises more functional domains than professional building au-

tomation (Sec. 3.2.1). In addition to building-related functionality, domains such as

entertainment are relevant. Different domains typically form silos [KBY+12, RLT11,

Spi03, MTMT06, MRA10, TMK+03].

Functional domain silos exist similar to the professional domain with different proto-

cols (see above). In addition, vendor silos exist in home automation. The diversity

of functional domains (e.g. entertainment, surveillance, comfort), and the diversity

of vendors make standardization difficult (Sec. 3.3.2). See Sec. 3.3.1 for a discussion

about heterogeneity.

Standardization

When few vendors dominate a market, it is more likely that standardized (Sec. 3.3.2)

communication protocols emerge. In the home automation sector, BAS and enter-

tainment are example domains where such a situation can be observed.

Smart Devices of smaller vendors, and for more specialized purposes than lighting or

switching electronic consumers typically use proprietary communication protocols for

reasons analyzed in Sec. 3.3.1 [KBY+12]. This leads to vendor silos.

Like in the professional building automation, functional silos exist in the home

automation domain. The integration of more functional domains in home automation

than in professional building automation results in increased heterogeneity.

The overall degree of standardization is lower in the home automation domain than

in the professional domain for reasons analyzed in Sec. 3.3.2.

Interfacing the Building Automation Domain

In home automation often gateways exist that offer web interfaces for remote con-

trol. Such interfaces bridge between domains that run automation-domain-specific

communication protocols and the Personal Computer (PC) world [ND00, SRT00].
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The success of smartphones (Sec. 2.3) fostered the deployment of web gateways. The

success of the App economy encourages hardware vendors to offer smartphone Apps

as added value to their products. To interface a vendor’s Smart Devices from a

smartphone, web gateways are required. Even though such gateways may not have

been intended to be used as gateways into closed proprietary silos, they can fulfill this

purpose for Smart Space Orchestration.

As they are often designed for interaction with smartphone Apps, such vendor gate-

ways typically use standard Internet technology such as HTTP REST interfaces. Us-

ing such standardized technology facilitates the integration of home automation Smart

Devices into software orchestrated Smart Spaces (Sec. 8.3.1).

Before vendors deployed web gateways to the vendor silos and functional silos, such

functionality had to be built by researchers (Sec. 4.5) or skilled home enthusiasts

for implementing Smart Space Orchestration [Spi03, MTMT06, MRA10, TMK+03,

Mat10].

Conclusion

Home automation extends the professional building automation domain by integrating

new functional domains such as entertainment. From a Smart Space perspective, this

allows software to interact in more ways with the physical environment.

In areas where few vendors dominate the market, standardized technology is used.

More functional domains lead to more functional silos. More vendors for diverse

available automation solutions lead to additional vendor silos.

For many standardized communication protocols, gateways towards Internet proto-

cols exist. Through the success of smartphones, vendors offer web gateways to their

formerly closed silos. Such gateways can be used for remote controlling devices to

implement Smart Space Orchestration.

3.2.3 Open-Source Hardware

The implementation of pervasive computing scenarios in ubiquitous computing re-

search often comprises the creation of customized hardware [AKOSS+11, SBK+11,

TPR+12, AGG10, SRN+08]. Real world deployments also often require such cus-

tomized hardware [BLM+11, MH12, TPR+12].

A Do-It-Yourself (DIY) or maker culture emerged over the past years [Abo12, TWDT13].

With its tutorials and hardware building blocks (see below), it enables not only experts

but also skilled technical enthusiasts to build their own hardware. As an example, in

the user study that is presented in Sec. 9.6, all 14 participating students managed to

build their own complex Smart Device (Fig. 9.22).

Arduino

An important hardware development platform for Smart Devices in 2014 is the Ar-

duino project5. The Arduino project started in 2005 at the Interaction Design In-

stitute Ivrea in Italy where one of the founders of Arduino wanted to create a cheap

platform for teaching his students about embedded systems [Ban08].

5http://www.arduino.cc

http://www.arduino.cc
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The Arduino platform is an embedded system with different digital and analogue

inputs and outputs. It can be used to connect non-smart (Sec. 2.4.1) sensors and

actuators to build Smart Devices (Fig. 9.22). Different so-called shields are available

that can be used to add different communication interfaces to an Arduino board.

Examples are an Ethernet shield, or an IEEE802.11 shield. The system is based on

an Atmel Reduced Instruction Set Computer (RISC) Central Processing Unit (CPU).

The Arduino is an open-source hardware. The hardware layout is available and can

freely be reused. The sharing of the hardware layout led to the availability of very

cheap ( 9$) hardware clones6. The Arduino platform is well suitable for the creation

of DIY Smart Devices with its low price in combination with the relatively low (<4W)

power consumption, and the ability to run self-compiled programs.

Conclusion

Fig. 9.2 and Fig. 9.22 show Smart Devices based on the Arduino platform that were

built for the evaluation of this thesis’ results (Ch. 9). They show the practical reality

of the DIY maker culture in 2014.

The ability to build customized Smart Devices is important for fostering the emergence

of future Smart Spaces. It enables technically skilled users to create the hardware

they want to have in their Smart Spaces (Sec. 2.5.2). DIY hardware fosters the

implementation of diverse pervasive computing scenarios (<O.3>).

The objective of this thesis, to create the basis for DIY software development for Smart

Space Orchestration complements the DIY maker culture. Together they empower

users to freely implement the pervasive computing scenarios they want (Sec. 2.5.2).

3.2.4 Future Smart Devices

The evolution of devices for BASs comprises pneumatic control in the 1950s, elec-

tromechanical control in the 1960s, PLCs in the 1970s, and since the 1980s distributed

DDC [WL05] (Sec. 3.2.1). The mass production of microprocessors lowered their price.

This made it attractive to use Smart Devices for building automation.

Reasons for using specialized microprocessors instead of standard instruction set mi-

croprocessors are lower prices, and lower energy consumption. It can be expected

that microprocessors get more energy efficient and cheaper in the future. The devel-

opments on the smartphones market show this tendency already. This makes it likely

that future controllers for BASs contain standard RISC or Complex Instruction Set

Computer (CISC) processors [Wan09].

DIY hardware (Sec. 3.2.3) shows that it is possible to create affordable Smart Devices

with embedded microprocessors that support a standard instruction set in 2014. The

Intel Galileo project is such an architecture that uses a 32-bit CISC processor7. The

use of standard instruction set microprocessors allows to run standard software pro-

grams on the used processors. The standardization of the instruction set results in

portability of services (Sec. 5.6.3).

6http://www.indiegogo.com/projects/9-arduino-compatible-starter-kit-anyone-can-learn-electronics
7http://www.intel.com/content/www/us/en/do-it-yourself/galileo-maker-quark-board.html

http://www.indiegogo.com/projects/9-arduino-compatible-starter-kit-anyone-can-learn-electronics
http://www.intel.com/content/www/us/en/do-it-yourself/galileo-maker-quark-board.html
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Smart Space Orchestration is implemented by coupling many services (Sec. 2.4.1,

Ch. 8). The use of standard instruction set microprocessors allows services for future

Smart Space Orchestration to run directly on Smart Devices.

Smart Devices have to be deployed in future Smart Spaces to interface the physical

environment. The possibility of running additional services on those then existing

Smart Devices makes adding Smart Space Orchestration to such spaces cost neutral

and energy neutral.

The software that is developed in this thesis (Ch. 6, Ch. 7, Ch. 8) is designed to

support distributed execution on resource-limited devices.

3.2.5 Conclusion

Networked Smart Devices for diverse purposes are available on the market in 2014.

Smart Devices typically form functional silos and vendor silos [Lee06, BLM+11,

MH12, DDMS12].

Bridging the Smart Device diversity is a fundamental challenge for Smart Space Or-

chestration (<O.1>, Sec. 4.5). Available gateways that bridge from domain-specific

communication protocols to Internet protocols can facilitate this integration (Sec. 8.3.1).

The possibility to create DIY Smart Devices allows users to develop their own Smart

Device hardware. The ability to create DIY hardware complements the goals of this

thesis to enable users to develop their own software services, and to implement and

share pervasive computing scenarios for their Smart Spaces (<O.3>, <O.4>).

Numerous pervasive computing scenarios for professional and private use of buildings

exist (<O.3>).

The use of standard instruction set CPUs in Smart Devices makes it possible using

them as run time environment for Smart Space Orchestration. This could foster the

emergence of Smart Spaces in the real world. It lowers the necessary investment in

hardware for running orchestration services, and it lowers the running costs in form

of energy used by the necessary systems for Smart Space Orchestration.

To support running on diverse hardware of future Smart Spaces:

<R.7> Portability of the implementation of the programming abstraction itself

must be supported.
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3.3 Overcoming Heterogeneity

Smart Devices are available for a broad range of sensing and actuation functionalities

[KNSN05, BLM+11, MH12]. Sec. 3.2 shows that the diversity of Smart Devices does

not only cover their functionality but also their interfaces. Interface heterogeneity

covers the physical interfaces of Smart Devices and their software interfaces.

Pervasive computing scenarios typically integrate formerly separate functional do-

mains. Smart Space Orchestration requires interfacing diverse Smart Devices to im-

plement the necessary workflows to reach an orchestration goal. An example is coup-

ling schedules for a meeting room with the Smart Device in the room to configure the

HVAC systems, the lighting, or the network automatically based on the information

from the calendar.

Heterogeneity in the interfaces of Smart Devices makes Smart Space Orchestration

complex [SHB10, CD07, MRA10, EG01]. It is the main reason for introducing perva-

sive computing middleware (Sec. 4.5). This section analyzes reasons for heterogeneity,

classifies heterogeneity, and presents existing solutions to overcome heterogeneity.

3.3.1 Inherency of Heterogeneity

Heterogeneity makes Smart Space Orchestration complex [SHB10, CD07, MRA10,

EG01]. It is inherent to Smart Devices for different reasons including market tactics,

differences between functional domains, and technical reasons.

Market Tactical Heterogeneity

Vendors typically aim preserving their market shares. Incompatibility with com-

petitors forces customers to stick with one vendor if they want their products to

interoperate [Pos11, WS97] (walled garden).

A typical way to overcome market tactical heterogeneity is standardization. Sec. 3.3.2

discusses difficulties of harmonizing the communication interfaces of Smart Devices

via standardization.

Domain-Specific Heterogeneity

Smart Devices cover diverse functional domains. Sec. 3.2 introduced some examples.

Different functional domains require different functions to be offered over the interfaces

of Smart Devices.

So-called Domain-Specific Languages (DSLs) aim providing an optimal representa-

tion for information that is relevant for a specific domain [MH05, CFK+13, LST13,

BCG12]. For different DSLs, different communication protocols are optimal.

Therefore it makes sense for vendors to use different communication protocols de-

pending on the domain a Smart Device covers [WS97].
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Technology-Specific Heterogeneity

According to the diverse functionalities they offer, Smart Devices have to fulfill dif-

ferent technical requirements. They are installed in heterogeneous environments that

make different hardware designs an optimal choice.

For retrofitting existing spaces into Smart Spaces, technology that does not require

changes at the cabling of a space is attractive [BLM+11, HWN10, CSG07]. For some

environments, energy harvesting Smart Devices that communicate over a wireless link

are optimal. They do not require cabling and typically have a long life-time. In other

cases, Smart Device plugs that communicate over PLC are the optimal devices to be

installed [KNSN05].

Different properties of a communication protocol are optimal for different installation

conditions including wireless/ wired, high/ low bandwidth, high/ low latency, or high/

low reliability [PD11, SWW+02, Nyq24, Sha01]. The differing requirements of the

used hardware and their installation make it technically necessary to use different

communication protocols for different Smart Device hardware.

The mass production of hardware communication chips that support standardized

protocols such as IEEE802.15.4 for wireless communication, or Ethernet for wired

communication help channeling low-level heterogeneity [KNSN05, Ega05b]. Such

communication chips are used by many vendors. The standardization of the physical

communication interfaces allows bridging communication protocol heterogeneities in

software [GJ86]. Sec. 3.3.4 introduces how messages from distributed Smart Devices

can be routed to hosts running adaptation services. Standardization on the proto-

col layers below the application layer (Fig. 3.3) helps implementing Smart Device

adaptation in software (Sec. 8.3.1).

Conclusion

The communication interfaces of Smart Devices are heterogeneous for market tac-

tic, domain-specific, and technology-specific reasons. While the first reason could be

overcome with a suitable standardization process (Sec. 7.4), the latter reasons for

heterogeneity are inherent to the diversity of functional domains and physical spaces

that are covered by pervasive computing scenarios.

For interfacing the full functionality that is available in a functional domain, and to

allow the use of the technology that fits best for the installation environment, the

use of a single communication protocol for all Smart Devices is not optimal (Sec. 3.3,

Sec. 4.4.2).

3.3.2 Standardization

Standardization is a process to overcome heterogeneity. It is mainly relevant for this

work concerning the diversity of communication protocols that are used by Smart

Devices (Sec. 3.2).

The term standard has different connotations depending on its use. Technology stan-

dards are “specifications that developers and manufacturers of the technology follow”

[RC96]. This definition targets interoperability [Com96]. To enable interoperability,

standards typically specify interfaces not implementations [RC96].
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Standards “determine the technology that will implement the Information Society, and

consequently the way in which industry, users, consumers and administrations will

benefit from it. They play an important role in cooperation and competition between

companies, are a key element for the effectiveness of the Single Market and are essen-

tial for [. . . ] competitiveness” [Com96]. This second definition targets the economic

power that standards have on markets.

Standards channel research and development in their domain. If patented tech-

nology is involved in a standard, the necessary license fee can prevent companies

from producing standard conform products. This may keep them out of a market

[Grø09, Hil13, YLY05]. Via the described market channeling, standardization has

impact on innovations [Grø09]. It fosters the development of interoperable solutions

following the standardized directions.

Standards can be classified into [RC96, ITU05]:

• Formal standards that are defined by standardization organizations. An ex-

ample is the Institute of Electrical and Electronics Engineers (IEEE).

• Public specifications that are published by consortia. An example is the

Internet Engineering Task Force (IETF).

• De-facto standards that are typically developed by few (companies) and

adapted by many. Operating systems are examples for de-facto standardiza-

tion.

Standardization is typically driven by companies. Standardization processes are typi-

cally not suitable for involving regular users into the standardization activity [JPW98,

ITU05].

The creation of a formal standard consists of different phases, shown in the standard

life cycle in Fig. 3.2 [JPW98, Car95].
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Product/ 
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Figure 3.2: A standard life cycle adapted from [JPW98, Car95].

The standardization process can be slow as it has different steps, and as participating

bodies –which are typically companies– can have diverging needs, requirements, and

experience [JPW98, JPW01]. The standardization process of the ISO / IEC shows the

duration of a formal standardization process. It consists of the following five stages.

The time of each stage is given in parenthesis [II12]:
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• Proposal Stage: acceptance of a proposal (3 month).

• Preparatory Stage: preparation of a working draft.

• Committee Stage: development and acceptance of a committee draft (4-12

month).

• Enquiry Stage: development and acceptance of a enquiry draft (3-9 month).

• Approval Stage: approval of the final draft (5 month).

• Publication Stage: publication of international standard (2 month).

As indicated in parenthesis, each stage takes between two and twelve month. This

results in a minimum standardization time of eleven month and a maximum time of

31 month (>2,5y) plus the preparation time for the working draft [II12].

Conclusion

Standardization of technology used in Smart Devices helps reducing the heterogeneity

(Sec. 3.2). One standard communication protocol for all Smart Devices is not desired

as technical reasons such as protocol expressiveness for a domain (DSL), and adaption

to the requirements of an environment require different protocols (Sec. 3.3.1).

Limiting the protocol diversity per 〈domain, environment condition〉 pairs would be

desired and useful. The application domains, and the environmental conditions that

are relevant for pervasive computing are diverse. Standardization of all combinations

would require many standardization processes.

The amount of standardization processes and the amount of participating parties (e.g.

vendors) can be expected to make formal standardization a long and difficult process.

The low speed of formal standardization is likely to prevent innovation in future Smart

Spaces (see Sec. 3.2.3).

Formal standardization is unsuitable for future Smart Devices to the necessary extent.

The standardization of communication technology that is used as building blocks in

Smart Devices is important to make the diversity of Smart Devices manageable.

Public specifications are relevant for Smart Devices for defining standard representa-

tions for information for instance. Similar to the formal standardization, the diversity

of Smart Devices makes it difficult to implement a homogenization at large via public

specifications.

De-facto standards are unlikely to be successful for Smart Devices as too many vendors

produce devices in too many functional domains.

The time and the money that standardization costs can have negative impact on the

price of Smart Devices. Higher prices that are caused by standardization can be

expected to slow the implementation of pervasive computing in the real world signifi-

cantly down [RS00]. The lack of user involvement in the standardization processes is

unlikely to reflect the diversity of pervasive computing (Sec. 2.5.2) [DM12, Hin99].

Though the existing processes are expected to be usable only to a limited extent, the

necessary portability requires a standardization of abstract interfaces on layer 4 of

Fig. 3.1 (Sec. 5.6.3):

<R.8> Logical portability of services must be supported by offering abstract inter-

faces to Smart Devices.
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3.3.3 Bridging Heterogeneity

Pervasive computing combines functionality from different domains to enable domain-

comprehensive orchestration workflows (Sec. 2.4). For technical and functional diver-

sity, and market tactical reasons Smart Device communication protocols are hetero-

geneous (Sec. 3.3.1). Implementing pervasive computing scenarios requires bridging

the communication protocol heterogeneity.

Fig. 3.1 shows different layers that are relevant for applying Smart Space Orchestration

to Smart Spaces. There are three possible functional layers in the architecture where

heterogeneity could be handled:

• In the orchestration services (layer 3a in Fig. 3.1).

• “In-the-middle” (layer 3 and 4 in Fig. 3.1). The quotation marks denote that

this is not necessarily a middleware but neither the orchestration services nor

the Smart Devices.

• Within the Smart Devices (layer 2 in Fig. 3.1)

This section discusses advantages and disadvantages of each position. Table 3.1 sum-

marizes advantages on the left and drawbacks on the right.

In the Orchestration Services

Without middleware support, the heterogeneity in Smart Device communication pro-

tocols has to be bridged in the orchestration services. This approach is followed by re-

search projects that focus on the implementation of specific use cases [CPW99, BPR99,

DAS01] and in DIY Smart Space installations [BLM+11, MH12, TPR+12, RS00].

An advantage of this approach is that it prevents unintended information loss. Such

loss can happen when using multiple protocols with different expressiveness for trans-

porting information between Smart Devices and adaptation services (Sec. 3.3.4). As

the communication protocol of the Smart Device is used in this approach, the de-

scribed loss does not happen. The Smart Devices remain unchanged in this approach,

allowing to use unmodified (off-the-shelf) devices.

The major disadvantage of bridging heterogeneity in orchestration services is the lack

of portability and extensibility. Only the devices that are preconfigured to an orches-

tration service can be used8. The resulting orchestration service is not portable as it is

coupled with specific devices. Supporting fixed Smart Device communication protocol

functionality limits the extensibility as Smart Devices that use other communication

protocols cannot be interfaced.

Implementing Smart Device adaptation functionality in orchestration services intro-

duces complexity and leads to code redundancy. Complexity is unwanted as it makes

the service development difficult. Especially the processing of different protocol se-

mantics results in complex code. It increases the risk of introducing bugs in the

8Even if an implementation supports device discovery, which is typically not the case, only devices

that were known at compile time of a service can be used.
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In the orchestration services (layer 3a n Fig. 3.1)

+ Controlled information loss (de-

vice format used).

+ Smart Devices remain un-

changed (one protocol).

- No portability.

- No extensibility.

- Complex service code (multiple

protocols).

- High code redundancy.

- No Smart Device access arbitra-

tion.

“In-the-middle” (layer 3 and 4 in Fig. 3.1)

+ Simple services (one protocol).

+ Simple devices (one protocol).

+ Low code redundancy in the sys-

tem (one gateway per protocol

can be enough).

+ Centralized Smart Device access

arbitration.

(+) Portability (when supported).

(+) Extensibility (when supported).

- Possibly transparent information

loss.

Within the Smart Devices (layer 2 in Fig. 3.1)

+ Simple services (one protocol).

+ Controlled information loss (ser-

vice format used).

+ Centralized device access arbi-

tration.

- Complex device software (multi-

ple protocols).

- Often infeasible with available

resources.

- Portability.

- Extensibility.

Table 3.1: Advantages and drawbacks of bridging heterogeneity on different functional layers in

Fig. 3.1.
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program code since more Lines Of Codes (LOCs) are needed to implement a functio-

nality. Code redundancy is introduced as every service that wants to access a Smart

Device has to implement corresponding driver functionality9 [DAS01].

Finally the Smart Device access is not arbitrated. When multiple orchestration ser-

vices access a Smart Device simultaneously this is likely to cause problems as Smart

Devices are typically not designed for concurrent access by multiple services.

“In-the-Middle”

Bridging Smart Device communication protocol heterogeneity can happen “in-the-

middle” (layer 3 and 4 in Fig. 3.1) by introducing abstract interfaces to Smart De-

vices [Sat01, KKR+13, HMEZ+05, MRA10, MTMT06]. This approach allows using

unmodified off-the-shelf Smart Devices.

An advantage of this approach is that Smart Devices and orchestration services remain

simple as they have to use a single interface only. The adaptation is handled in the

middle. The same adaptation code can be reused for multiple services. The code

can arbiter the access to a Smart Device. Depending on the implementation, this

approach can introduce portability and extensibility [KFKC12]. For portability it is

necessary to provide an instance independent discovery mechanism for Smart Devices

(Sec. 5.2.13, <R.8>). For extensibility it is necessary to enable adding support for new

Smart Devices dynamically (Sec. 5.2.8, <R.43>).

A drawback of bridging“in-the-middle”is that a possible information loss (Sec. 3.3.4) is

transparent for orchestration services and Smart Devices since it happens transparent

to both “in-the-middle” (<R.9>). If the Smart Device’s communication protocol is

more expressive than that used by a service, the software “in-th-middle” must strip

the semantics that cannot be expressed in the other protocol and transparently add it

again on communication the other way round. If the stripped semantics are important,

the entity in the domain with less expressiveness cannot act in a suitable way.

Within the Smart Devices

The properties of supporting multiple communication protocols within a Smart Device

are symmetric to those of supporting heterogeneity in the orchestration services.

It has the advantage that orchestration services remain simple. A possible information

loss can be handled on the Smart Devices. As the protocol adaptation happens on the

Smart Devices, they have all context about the used communication protocols and

their restrictions. This enables them to communicate their data in an optimal way.

Access to Smart Devices can be arbitrated on the device.

The major drawback of bridging protocol heterogeneity on the Smart Devices is that

it makes the software on the devices complex. This is not desired as it raises the

error potential. It is also often impossible as Smart Devices are typically the most

resource limited entities in a Smart Space (Sec. 3.2). Running different protocol stacks

in parallel often exceeds a Smart Device’s resources.

9The use of code libraries simplifies this task but the heterogeneity of such libraries still introduces

complexity.
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The portability (<R.8>) of this approach is limited as Smart Devices can typically

only support a limited amount of communication protocols. Supporting new proto-

cols requires updating the code on the Smart Device, which is typically not possible

(Sec. 2.6.2). Because of the described limitation of resources and the problems with

distributing new code on deployed devices, bridging heterogeneity within Smart De-

vices is not promising.

Conclusion

Bridging heterogeneity on the edges of the communication process –in the orchestra-

tion services or the Smart Devices– allows to control possible information loss that

is introduced when translating between information representations with different ex-

pressiveness (Sec. 3.3.4). But the additional complexity, the missing portability, and

the missing extensibility are major drawbacks.

Bridging heterogeneity “in the middle” only has the major drawback that the infor-

mation loss happens where least knowledge about the requirements of the application

domain and the context of a Smart Device is available.

Because of the discussed advantages, this thesis proposes to bridge communication

protocol heterogeneity in layer 3 of Fig. 3.1, and to provide abstract interfaces to Smart

Devices on layer 4. To overcome the drawback of information loss that can occur by

bridging heterogeneity “in-the-middle”, the following requirement is introduced:

<R.9> Information loss should be prevented or handled in an explicit way so that

the orchestration services are aware of the loss.

Portability of services (<R.8>) and extensibility with adaptation services (<R.43>) for

supporting new Smart Devices (<R.23>) –ideally at run time– are desired for Smart

Space Orchestration. Both require support by the system architecture [KFKC12,

DAS01, DMA+12].

3.3.4 Protocol Conversion

Different Smart Device communication protocols are optimal for different purposes

(Sec. 3.3.1). This thesis proposes to connect unmodified Smart Devices via services

as shown in Fig. 3.1 on layer 3. This approach has the advantage that existing Smart

Devices can be used “out-of-the-box” [Lee06] (Sec. 3.3.3).

This section discusses how Smart Devices can be connected to the adaptation services,

and how a conversion between two communication protocols can be implemented.

The ISO/OSI and TCP/IP Protocol Stacks

The problem of connecting computer systems over heterogeneous communication pro-

tocols exists since the early days of the Internet [Zim80]. The name Open Systems

Interconnection (OSI) for the ISO/ Open Systems Interconnection (OSI) protocol

stack refers to openness of the standard. The openness allows all communication

systems that follow the standard to interconnect.
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The ISO/ OSI protocol stack is the conceptual basis for diverse communication pro-

tocols. Its general mechanism for providing interoperability between different com-

munication protocols is introduced. It is relevant for connecting Smart Devices with

their adaptation services (Sec. 8.3.1), and to connect the distributed components of

the VSL middleware solution in a future Smart Space.IEEE TRANSACTIONS ON  COMMUNICATIONS, VOL. COM-28,  NO. 4, APRIL 1980 

Fig. 13.  The seven layers OS1 architecture. 

intermediate nodes) is the last function  to  be  performed in 
order to  provide the  totality  of  the  transport service. Thus, 
the  upper  layer in the transport-service part  of  the  architec- 
ture is the Transport Layer, sitting  on  top  of  the  Network Layer. 
This Transport Layer relieves higher layer  entities  from  any 
concern  with  the  transportation  of  data  between  them. 

5) In  order  to  bind/unbind  distributed activities into a 
logical relationship that  controls  the  data exchange with 
respect to  synchronization  and  structure,  the need for a 
dedicated  layer  has  been  identified. So the  application  of 
principles 3 and 4 leads to  the  establishment  of  thesession 
Layer which is on  top  of  the  Transport Layer. 

6) The remaining set  of general interest  functions are those 
related to representation  and  manipulation  of  structured 
data  for  the  benefit  of  application programs. Application 
of principles 3 and 4 leads t o  identification  of a Presentation 
Layer on  top  of  the Session Layer. 

7) Finally,  there  are  applications consisting of  application 
processes which  perform  information processing. A portion 
of  these  application processes and  the  protocols  by  which 
they  communicate comprise the Application  Layer as the 
highest layer  of  the  architecture. 

The resulting architecture  with seven layers, illustrated  in 
Fig. 13  obeys principles  1 and 2 .  

A more  detailed  definition  of each of  the seven layers 
identified above is given in the following  sections, starting 
from  the  top  with  the  application  layer described in  Section 
VI-C1) down to the physical  layer  described in  Section VI-C7). 

C. Overview of the Seven Layers of the OSI Architecture 

1) The Application  Layer: This is the highest layer  in  the 
OS1 Architecture.  Protocols  of  this  layer  directly serve the  end 
user by providing the  distributed  information service appro- 
priate to  an  application, to its  management,  and to  system 
management. Management of  Open  Systems  Interconnection 
comprises those  functions required to initiate,  maintain, 
terminate,  and record data  concerning  the  establishment  of 
connections  for  data  transfer  among  application processes. 
The  other layers exist  only to support  this  layer. 

An application is composed of cooperating application 
processes which  intercommunicate according to  application 
layer  protocols.  Application processes  are the  ultimate  source 
and  sink  for  data  exchanged. 

A portion  of  an  application process is manifested in the 
application layer as the  execution  of  application  protocol 
(i.e., application  entity).  The rest of the  application process 

is considered beyond  the scope  of the  present layered model. 
Applications or  application processes may be of any  kind 
(manual, computerized,  industrial,  or physical). 

2 )  The  Presentation Layer: The  purpose  of  the  Presentation 
Layer is to  provide the set  of services which  may be selected 
by  the Application Layer to enable it  to  interpret  the meaning 
of the  data exchanged. These services are  for the management 
of  the  entry exchange,  display, and  control of structured 
data. 

The  presentation service is location-independent  and is 
considered to  be  on  top of the Session Layer which provides 
the service of linking  a  pair of  presentation  entities. 

It is through  the use of services provided by  the Presenta- 
tion Layer that applications  in  an Open  Systems  Intercon- 
nection  environment  can  communicate  without  unacceptable 
costs  in interface variability, transformations,  or  application 
modification. 

3) The Session Layer: The  purpose  of  the Session Layer is 
to assist in the  support of the  interactions between, cooperating 
presentation  entities.  To  do  this,  the Session Layer  provides 
services which  are classified into  the following two categories. 

a) Binding two  presentation  entities  into a relationship 
and  unbinding  them. This is called session administration 
service. 

b)  Control  of  data exchange, delimiting,  and  syn- 
chronizing data  operations  between  two  presentation  entities. 
This is called session dialogue service. 

To  implement  the transfer of  data  between  presentation 
entities,  the Session Layer may  employ  the services provided 
by  the  Transport Layer. 

4) The Transport Layer: The  Transport Layer  exists to  pro- 
vide a universal transport service in association with  the  under- 
lying services provided by lower  layers. 

The  Transport Layer  provides transparent  transfer  of  data 
between session entities.  The  Transport Layer relieves these 
session entities  from  any  concern  with  the  detailed  way in 
which reliable and cost-effective transfer  of  data is achieved. 

The  Transport Layer is required to optimize  the use of 
available communications services to  provide the  performance 
required for  each  connection  between session entities  at a 
minimum  cost. 

5 )  The Network  Layer: The  Network Layer  provides func- 
tional  and  procedural means to exchange network service 
data  units  between  two  transport  entities over a network 
connection.  It provides transport  entities  with  independence 
from  routing  and switching considerations. 

6 )  The Data  Link  Layer: The  purpose  of  the  Data link Layer 
is to  provide the  functional  and  procedural  means to establish, 
maintain,  and release data  links  between  network  entities. 

7) The Physical Layer: The Physical  Layer  provides mech- 
anical,  electrical, functional,  and  procedural characteristics 
to  establish, maintain,  and release physical connections (e.g., 
data circuits) between  data  link  entities. 

VII. OS1 PROTOCOLS DEVELOPMENTS 

The  model  of OS1 Archtecture defines the services pro- 
vided by  each  layer to the  next higher layer,  and  offers  con- 
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Figure 3.3: Left: the OSI architecture (original figure from [Zim80]); right: the TCP/ IP stack.

Fig. 3.3 shows the ISO/ OSI protocol stack. It introduces the principles of a protocol

stack. Each of the shown layers implements different functionality. The interfaces

between the layers are standardized. The dashed arrows show logical communication

between the corresponding protocol implementations at the sender and the receiver

site. The protocol message is identical on both ends of each arrow. The physical

communication only happens in the lowest layer [PD11].

The OSI protocol stack [Zim80] is designed in a way that allows simple replacement

of protocols in each layer [GJ86]. See Fig. 3.3. This is possible as each layer of the

protocol provides full encapsulation which means that it can be regarded as black box

by all other layers. This includes that the payload that enters the protocol instance

on the sender side will leave the protocol instance on the receiver side of the protocol

stack identically [GJ86].

The right side of Fig. 3.3 shows the TCP/ IP stack. This stack is used in the Internet

in 2014. It works as described for the left stack only with fewer layers.

The described layered communication is relevant for this thesis as it allows to trans-

parently connect Smart Devices using different communication technologies (Fig. 8.2).

The protocol message that is sent by a Smart Device is on the highest layer.

The center of the ISO/ OSI figure (Fig. 3.3 left) shows the processing of the encap-

sulation of the message on two additional nodes (routing). In this process so-called

protocol gateways can be used to transparently exchange the used protocols –e.g.

between the two inner nodes. The use of Ethernet on the bottom layer could be ex-

changed with Token Ring for instance. This makes the connection of Smart Devices

that use Internet communication protocols flexible.

Technology for bridging between different protocol standards on the layers below the

application layer (top) exist in 2014. Various research exists that covers this problem

in detail and provides solutions [Oku86, Lam88, BGRB11, GJ86, SL89]. They can be

used for this task.

The VSL middleware that is introduced in this thesis uses IP for communication

(Ch. 5). The described existence of technology for transparent bridging between im-

plementations of the different layers in the protocol stack allows a flexible distribution

of the VSL components in a Smart Space.
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The transparent bridging of heterogeneity in the lower layers of the protocol stack

removes the complexity of connecting Smart Devices to their adaptation services

(Sec. 8.3.1). The same advantage applies to connecting the distributed components

of the VSL (Sec. 6). The property of the bridging that it is transparent for the

application layer preserves encryption on the application layer that is introduced in

Sec. 6.5.

Syntax and Semantics

The previously described mechanisms can be used to provide connectivity between

the application layers (top layer in Fig. 3.3) of two communicating hosts (e.g. Smart

Device–adaptation service). Such connectivity is assumed as given in the remainder

of this section.

For providing portability (Sec. 5.6.3) it is necessary to provide a common interface on

layer 4 in Fig. 3.1 (Sec. 5.3.1). The adaptation services on layer 3 in the figure typically

adapt the heterogeneous communication protocols that are used by Smart Devices.

From the perspective of a developer of an adaptation service that provides an abstract

interface to a Smart Device, the protocol heterogeneity on the application layer is

relevant. It can be structured into syntax heterogeneity and semantic heterogeneity

(Sec. 8.3.1).

The syntax of a protocol message defines how the information it transports is struc-

tured [RN95, Hoa78, GJ86, Pos11]. The semantic of a protocol message defines the

meaning of the transported information representation (Sec. 3.9) [RN95, Hoa78, GJ86,

Pos11].

Syntax Conversion

Vendor silo lead to the situation that different vendors transport information from

similar sensors in different protocols (Sec. 3.3.1). Such heterogeneity is often syntactic

[KNSN05, MH12, BLM+11]). Translating between two communication protocols with

different syntax and a common semantic can typically be done without information

loss [GJ86, BRa09, BGRB11, GBRB12].

Heterogeneity in communication protocols that is imposed by technical requirements

is often structural, concerning the syntax [SWW+02]. In the broader sense, syntax

heterogeneity also covers using compression in protocols as this operation can be re-

versed without loss. Compression can be attractive for saving bandwidth in reliable

communication channels. Redundancy can be attractive for decreasing loss in unreli-

able communication channels.

Semantic Conversion

Different functional domains typically use different semantics (Sec. 3.3.1). Translat-

ing between two communication protocols that provide differing expressiveness leads

to loss [RN95, Hoa78, GJ86, Pos11, BGRB11, GBRB12]. Two Smart Devices with

the same temperature sensor could provide temperature information with different

precision over their different protocols for instance. Transforming messages from the

protocol that allows to express more precision (high expressiveness) into the protocol
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that is less expressive introduces loss. Transforming between a protocol that is built

for exchanging video streams and a protocol that is built for reading sensor values is

typically accompanied by loss, or it is impossible.

A more abstract example are two different DSLs that use different concepts. One DSL

could know the concepts {mother, father, daughter, son} while the other only knows

the concept {human, animal}. A translation from the former DSL to the second could

be done via using ontologies (Sec. 3.9). It would introduce loss of precision [Mar10,

SLP04, BBH+10]. The backwards transformation is impossible without additional

information.

Multi-Protocol Conversion

As described before, each protocol conversion possibly introduces loss. This hap-

pens when conversion happens between two protocols with varying expressiveness.

The approach that is followed in this thesis is to introduce a single common layer

of abstraction (layer 4 in Fig. 3.1). This allows to eliminate the information loss

(Sec. 5.2.15).

In literature a different approach can be found. It provides interoperability between

multiple protocols by implementing multi-protocol conversions. Similar to a “ba-

belfish” [Ada79], each communication partner can communicate in its own commu-

nication protocol. Gateways translate pairwise between protocols in a transparent

way. Typically multi-protocol gateways act as proxy for all available functionality of

one domains in another domain to make the conversion transparent [Che04, LM05,

HPJP06, NPD+07].

The major problem with this approach is the transparent introduction of loss (Sec. 3.3.3).

Either the functionality that is offered in a foreign domain is limited to the common

semantic subset of both domains, or the behavior of control actions that are sent to

the proxy are not clearly defined. Such a solution is not suitable for implementing

dependable (<R.30>), self-managing (<R.3>) Smart Space Orchestration in future

Smart Spaces.

In Sec. 8.3.4, the described proxy concept is used to provide a lossless integration of

functionality from one Smart Space into another Smart Space.

Conclusion

Mechanisms to transport protocol messages from Smart Devices to adaptation services

over different communication protocols exist. The presented protocol stack (Fig. 3.3)

that is used in this work provides IP connectivity between distributed hosts over

different underlying protocols and media.

The inherency of Smart Device heterogeneity (Sec. 3.3.1) leads to heterogeneity in the

syntax and the semantic of messages that are exchanged between adaptation services

and different Smart Devices. Syntactic heterogeneity can typically be bridged in a

lossless way while bridging semantic heterogeneity typically introduces loss.

Providing multi-protocol gateways is no solution for implementing Smart Space Or-

chestration as it either limits the usable functionality, or it introduces transparent

loss. The latter violates the requirements of designing a programming abstraction

that allows to implementing a dependable (<R.30>) and self-managing (<R.3>) sys-

tem.
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3.3.5 Conclusion

Future Smart Devices use heterogeneous communication protocols for technical and

market-tactical reasons (Sec. 3.3.1). The heterogeneity has to be handled by the

programming abstraction to provide portability of services (<R.8>).

Standardization of abstract interfaces is required to provide portability:

<R.10> A programming abstraction for Smart Spaces must support standardization

of abstract interfaces to Smart Space functionality in a suitable way.

Existing standardization methods are not suitable for the Smart Space domain with

its high diversity. It is not designed for the high amount of stakeholders that needs

to participate and the amount of necessary standardization processes (Sec. 3.3.2).

Heterogeneity is best bridged in the middle between services that implement perva-

sive computing scenarios, and Smart Devices. The problem that emerges from this

approach is transparent information loss.

Mechanisms to connect entities over heterogeneous physical links and communication

protocols exist. On the application layer syntax heterogeneity can typically be bridged

in a lossless way. Different semantic expressiveness introduces loss when converting

between two protocols. Therefore multi-protocol gateways are discarded as solution

for future Smart Space Orchestration. Instead a single conversion to a common ab-

straction (layer 4 in Fig. 3.1) is implemented in this thesis (Ch. 5).
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3.4 Middleware as Concept to Overcome Hetero-

geneity and Distribution

The goal of middleware is providing a unified system view on a distributed system

[TVS02, CD05, ACKM04]. A unified system view hides the complexity that comes

with the distribution and the heterogeneity of computing nodes that should be con-

nected to a system. To implement a unified system view, middleware provides different

functionality including [TVS02]:

• Access transparency to hide differences in data representations and the way

resources are accessed.

• Location transparency to hide the location of a resource.

• Migration transparency to hide that resources may move to different loca-

tions.

• Relocation transparency to hide the relocation of resources that are in use.

• Replication transparency to hide if resources are replicated.

• Concurrency transparency to hide the shared use of resources.

• Failure transparency to hide failure and recovery of resources.

• Persistence transparency to hide if resources are in memory or on disk.

Widely used examples for middleware are Common Object Request Broker (CORBA)

and Distributed Component Object Model (DCOM) [TVS02, CD05].

Smart Spaces are distributed systems with possibly high heterogeneity (Sec. 3.2).

A unified system view facilitates the creation of services for Smart Spaces (<O.0>).

Therefore the VSL programming abstraction that is introduced in this thesis provides

the described functionality of a middleware (Ch. 5).

3.4.1 Comunication Modes

Communication between distributed nodes is fundamental in distributed systems for

providing a unified system view. Services that communicate over a middleware can

be coupled in different modes depending on the support of the middleware.

Communication between distributed entities can be structured using the dimensions

temporal and referential coupling [CLZ00, Tan04]. Table 3.2 gives an overview of

different communication modes.

Referential Coupling

Referential coupling describes if the communication partners know each other’s iden-

tity and location [FHA99]. Entities have a referential coupling when communication

addresses the communication partners directly. It requires sharing a name space of

identifiers between the communication partners. When the communication is anony-

mous it is named referentially uncoupled or loosely coupled.

Loose coupling in general means that the identity and location of a communication

partner must not be known and that it is not necessary that the communication

partners exist at the same time [FHA99].



70 3. Analysis
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Table 3.2: Communication modes structured by referential and temporal coupling combining data

from [Tan04, CLZ00].

Temporal Coupling

The term temporal coupling describes that communication partners must exist at the

same time to communicate. Entities are temporally coupled when their communi-

cation is synchronous. They are temporally uncoupled when their communication is

asynchronous. From the point of view of a programmer using synchronous coupling

results in blocking calls. Using asynchronous coupling of distributed methods results

in non-blocking calls.

3.4.2 Interaction Paradigms

The different communication modes are implemented by different interaction methods.

Remote Procedure Call (RPC)

Remote Procedure Call (RPC) is a mechanism to invoke procedures on a remote host

[BN84]. A RPC typically requires referential synchronous coupling. Procedures get

locally invoked on a so-called client stub, the parameters get marshalled, sent to the

remote host, the procedure gets invoked on the remote host via the server stub. The

answer gets marshalled, sent back, and locally delivered. The remote interaction is

transparent for the calling service.

The interfaces of the client and server stubs are typically defined using an Interface

Definition Language (IDL) to describe the abstract interfaces [Tan04].

RPCs communication is referentially and temporally coupled (synchronous).

Remote Method Invocation (RMI)

Remote Method Invocation (RMI) is the equivalent to RPC in the Object Oriented

Programming (OOP) world. The client stub offers the methods of a remote object.

The remote object is accessed via the server stub. Similar to the RPC case, remotely

accessed objects reside on one machine only [Tan04].

RMI communication is referentially and temporally coupled (synchronous).
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Message-Passing

In a message passing architecture distributed processes communicate by exchanging

messages. Instead of RPC or RMI message passing does not directly invoke predefined

methods remotely but pass messages between distributed entities. Middleware that

uses message passing as communication principle is called Message Oriented Middle-

ware (MOM) [ACKM04].

RPC and RMI are synchronous communication techniques. Remote methods are

invoked on remote processes/ objects. The result of an operation is immediately

returned to the remote caller. The interfaces that are offered by the stubs are defined

on the client and the server. Messages abstract from functional interfaces. They can

transport generic content. The use of message passing does imply a certain processing

on the machine receiving the message.

Message passing implements referential and temporal (synchronous) coupling.

Message-Queuing

The message-passing paradigm can be used for asynchronous interaction by introduc-

ing message queues. In a MOM with message queues, messages can be queued at the

sender and/ or the receiver for asynchronous processing. [ACKM04]

Message queuing implements referentially coupled and temporally uncoupled (asyn-

chronous) communication.

Publish-Subscribe

In a publish-subscribe interaction model the communication partners have the roles

publisher and subscriber. A publisher publishes information over a bus or a middle-

ware.

Subscriber receive published information based on subscriptions. A subscription is

characterized via criteria a published information has to meet. For example in a

topic-based publish subscribe system the topic is a criterion subscribers can identify

their interest with [ACKM04, TVS06].

A publish-subscribe system implements referentially decoupled synchronous communi-

cation. A publisher is unaware of potential receivers. Information is received based on

subscriptions by receivers if they are online at the time of its dissemination [EFGK03].

Publish-subscribe implements referentially uncoupled and temporally coupled com-

munication.

Blackboard Systems

A blackboard implements a shared memory on a higher level of abstraction. The term

was coined in the context of Artificial Intelligence (AI) systems (Sec. 3.6). Partici-

pating processes (e.g. software agents) read and write information on a shared data

structure that is called blackboard [Nil98, HR88, CLZ00]. A blackboard is used for

communication between processes similar to a shared memory in multi-processor sys-

tems [TVS02].
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Blackboards can be implemented in different ways. Tuple spaces are an example for

an implementation of the blackboard communication pattern (see “generative com-

munication” below).

A blackboard implements referentially and temporally uncoupled communication (loose

coupling) [Bro91a].

Generative Communication

Generative communication is implemented by so-called tuple spaces. By implementing

generative communication, processes create communication records, so-called tuples,

and store them on a shared space [BFK+11]. A tuple space is an implementation of

the blackboard communication pattern.

The motivation for tuple spaces was creating a mechanism for loosely coupled processes

[FHA99]. The loose coupling includes time and space. Tuples are stored on the shared

tuple space that exists independently of services. Therefore it is not necessary that

producer and consumers of a tuple are running at the same time.

A tuple space offers the functions out to put new tuples into a space, in to take a

tuple from a space, and read to obtain a copy of a tuple leaving the tuple in the space

[EFGK03]. Services can subscribe to objects by indicating which type of tuple they

are waiting for, identified by the types of data it contains. Subscribing services get

notified when a tuple matching the previously registered criteria becomes available.

Tuples are stored in a (persistent) tuple space making them available until they get

consumed via a service calling the take operation. A tuple space is a shared persistent

storage between all participating processes.

Tuple spaces are associative storages as tuples are identified by their types and not by

their addresses. The tuple space routes tuples between participating entities. Tuple

space communication partners do not have to know about each other. Addressing of

tuples is based on content. The structure of tuples is stored in so-called templates.

Producers produce tuples and put them into the tuple space. Consumers can search

tuples based on the templates [FHA99, Gel85].

The tuple space concept was introduced with the Linda system in 1985 [Gel85]. Since

then the concept was adapted for different application domains [BFK+11]. Examples

are JavaSpaces and Linda In Mobile Environments (LIME). JavaSpaces is a Java im-

plementation of the tuple space concept [FHA99]. LIME [MPR01] takes into account

the mobility of nodes. Mobile tuple spaces are merged whenever mobile nodes come

into contact.

Generative communication implements referentially and temporally uncoupled com-

munication (loose coupling).

Information Bus

The authors of [OPSS94] describe an information bus. It extends the tuple space com-

munication concept by using objects instead of pure data records and type identifiers

(subjects) for identifying relevant entries instead of full type signatures. This results

in higher performance as only specific object fields have to be considered to handle

subscribtions and tuple access.
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Subjects describe functional nodes. Information bus objects can inherit from each

other. The operations of the information bus are similar to the ones of the tuple

space: get/ set, publish/ subscribe.

An information bus implements referentially and temporally uncoupled communica-

tion (loose coupling).

3.4.3 Two Dimensions of Portability

Middleware is typically running on top of one or many distributed Operating Systems

(OSs) providing access to distributed heterogeneous computing resources [TVS02,

CD05, ACKM04]. This aspect of middleware is relevant for future Smart Spaces to

implement a distributed run time environment for services (Sec. 7.2).

As second use, the middleware concept can be applied on a higher level of abstraction

in software orchestrated Smart Spaces. A suitable middleware for Smart Spaces sup-

ports providing a unified view on the (distributed) heterogeneous Smart Devices that

are used by services to implement pervasive computing scenarios. A unified system

view is required to facilitate the software development, and for enabling the indepen-

dence of service implementations from concrete Smart Device instances (Sec. 4.5).

Both aspects are called portability. The former aspect of portability is addressed

by the requirements <R.7> and <R.45> (Sec. 6.3.1).

The latter aspect is addressed by requirement <R.8> (Sec. 5.6.3). It is typically

implemented by providing abstract interfaces that are used by services to access func-

tionality.

3.4.4 µ-Kernels

The Operating Systems (OSs) that are widely used in 2014 (Windows, Linux, Mac

OS X) are typically not regarded as middleware in the classical sense as they do not

provide a unified system view on distributed resources [TVS02, CD05, ACKM04].

Instead, middleware is running on top of one or many OSs to provide access to

distributed computing resources. But OSs serve the second purpose described in

Sec. 3.4.3 by providing unified interfaces to hardware via device drivers. They pro-

vide interface portability (<R.8>).

Pervasive computing middleware takes the role of an OS for Smart Space orchestration

services. Therefore the acronym of the framework that is presented in this thesis

in Ch. 7, Distributed Smart Space Orchestration System (DS2OS), also stands for

Distributed Smart Space Operating System.

Early operating systems were monolithic, running all OS components like device

drivers, and file system in the kernel. An advantage of this approach is that it is

efficient by not requiring context switches between kernel mode and user mode for

accessing peripheral hardware. A disadvantage of the solution is that it does not scale

for adding heterogeneous peripherals. Drivers for all devices have to be included in

the fixed monolithic kernel [GG92].

As a solution to the problem, µ-kernels emerged in the early 1980s [RR81, ABB+86]. A

µ-kernel only contains the fundamental elements of an OS like Inter Process Commu-

nication (IPC), memory management, and scheduling. Device drivers are dynamically

added to a µ-kernel at run time.
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The advantage of flexible extensibility comes at the drawback of µ-kernels possi-

bly being less resource efficient than monolithic kernels since context switches are

necessary between drivers in user space and the kernel that runs in kernel space

[Tan01, RR81, ABB+86, GG92].

In modern operating systems, the core functionality of the OS can be extended via

libraries [BGJR92, EK95]. DirectX is an example for such a library that extends

Microsoft Windows with multimedia functionality.

The state of the art analysis in Sec. 4.5 shows that pervasive computing middleware

that is available today follows a monolithic design as it is not extensible (Fig. 4.3).

Middleware that is not especially designed for general use –which includes most

middleware that was designed for research projects– contains the Smart Device drivers

in the (monolithic) middleware kernel.

The core functionality of existing pervasive computing middleware cannot be extended

by user-provided services in any of the assessed middleware designs (Sec. 4.5). The

VSL programming abstraction that is introduced in this thesis (Sec. 5) enables exten-

sibility of the middleware kernel (Sec. 6.2).

3.4.5 Conclusion

Middleware hides the complexity of a distributed system from the services using it.

This is required for a programming abstraction for future Smart Spaces:

<R.11> A suitable programming abstraction for future Smart Spaces must support

distribution of data sources and of run time environments.

From this section the following transparency requirements emerge:

<R.12> Access transparency to hide what is accessed.

<R.13> Location transparency to hide the location of an accessed service.

<R.14> Migration transparency to hide the migration of an accessed service.

<R.15> Relocation transparency to hide that a service is currently getting moved.

<R.16> Concurrency transparency to hide the shared use of a service.

<R.17> Failure transparency to hide the failure and the recovery of services.

<R.18> Persistence transparency to hide if a service operates on memory or on disk.

Concerning the supported communication modes, the diversity of pervasive computing

requires the support of different modes (Sec. 5.4.3):

<R.19> Direct communication support for time and security critical applications.

<R.20> Mailbox communication support for security critical applications.

<R.21> Publish-subscribe communication support for time but not security criti-

cal applications.
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<R.22> Generative communication support for time and security uncritical appli-

cations.

As monolithic system architectures fail providing enough flexibility to add Smart

Device support and to extend the support functionality that is available for Smart

Space service programmers:

<R.23> Dynamic extensibility with device drivers and support functionality

must be supported by the programming abstraction.
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3.5 Human Psychology

Chew, if only you could see what I’ve seen with your eyes!

Blade Runner by Ridley Scott (1982), based on “Do Androids Dream of

Electric Sheep?” by Philip K. Dick (1968).

The goal of this thesis is providing an intuitive Application Programming Interface

(API) for Smart Space Orchestration (<O.0>). To understand what might be intuitive

to humans, background in cognitive science is given in this section. It motivates why

the chosen design of the programming abstraction for Smart Space Orchestration

does not introduce a new layer of complexity, but helps reducing the complexity by

offering abstractions that are familiar to humans. Psychology helps identifying a

suitable abstraction to represent the physical world in software (layer 4 in Fig. 3.1).

3.5.1 Understanding the Human Mind

Psychology has different theories to explain intelligent behavior. Until 1960 behavio-

rism was the dominant approach to explain intelligent behavior [RN95]. Behaviorists

explain the brain with processes that are determined only by their external inputs,

the stimulus, and a response.

Since 1960 an information-processing view dominates psychology [RN95, JL93]. AI

research (Sec. 3.6) helps understanding the functionality of the human mind. Com-

puter programs are written that reason according to hypothesis’ of psychologists. The

outcome of such emulated brain functionality is compared with the observable behav-

ior of humans. This method helps understanding how the human brain may work

[JL93].

Stimulus-response behavior can be emulated with computer programs. So-called re-

active behavior can be expressed with Event-Condition-Action (ECA) rules. A typical

example of reactive behavior is a thermostat that reacts to temperature out of a defined

range with simple actions (Fig. 3.10).

A concurrent approach to behaviorism is cognitive psychology. Cognitive psychology

introduces internal reasoning. It can be characterized with the following three steps

[RN95]:

1. a stimulus gets translated into an internal representation,

2. internal representations get manipulated by cognitive processes to derive new

internal representations,

3. the new internal representations are translated back to actions.

3.5.2 Memory

Basic knowledge about the work of the human memory is important for the choice of an

intuitive representation of the reality when designing a programming abstraction for

Smart Spaces. A representation that is close to the reality humans perceive facilitates

the understanding-of, and the interaction-with a programming abstraction [Dét02].



80 3. Analysis

Abstraction seems to be an important tool of the human brain to store and retrieve

information [JL93]. Gestalt psychology illustrates how natural it is for humans to

match new information to known abstract patterns. As a result of this processing,

humans are likely to perceive a (known) whole thing instead of its (possibly unknown)

parts. The whole is an abstract concept compared to the concrete parts. An example

is shown in Fig. 3.4. The observed phenomenon motivates the top-down approach

that was introduced in Sec. 3.1.1.

Figure 3.4: Humans are likely perceiving a whole (triangle) instead of its parts (only three circles

are shown).

Frames

Marvin Lee Minsky, Turing award winner 1969, and a co-founder of the Massachusetts

Institute of Technology (MIT) AI laboratory, describes human intelligence in his 1974

paper [Min74] with the frames concept. Frames are the abstract essence of the envi-

ronment humans perceive. A frame for a room could be that it has four walls, a floor,

and a ceiling for instance. Minsky writes, “A Frame is a collection of questions to be

asked about a hypothetical situation: it specifies issues to be raised and methods to be

used in dealing with them.” [Min74].

Human reasoning is described as identifying transitions between frames. Actions

are identified by associating perceived and abstracted environmental states with the

frames that are stored in the human brain. Minsky describes in his article that the

same process also happens when humans perceive environmental state only theoreti-

cally, e.g. by reading about it.

3.5.3 Structured Thinking

Structuring perceptions by applying abstraction is natural for humans when thinking.

The human language in its spoken and written form structures human thinking. With

their work on formal languages, Noam Chomsky and Marcel-Paul Schürzenberger pro-

vided an explanation how humans can learn and use languages [Cho56]. Formulating,

and thereby structuring thoughts (including tasks), is daily routine for humans. Struc-

turing information is a technique to learn and memorize things [JL93, RN95].

Adapting to new things that are similar to known things is easier than learning en-

tirely new things for humans. Working on abstractions and manipulating symbols are

common tasks for humans. Computers process abstract symbols. Such information

processing is familiar to humans as the processing in the human brain seems to follow

similar patterns [JL93]. Thinking about tasks in an abstract way instead of defining

all the details is convenient for humans (Sec. 3.1.1) [Woo09, p.38].

3.5.4 Planning: The Human Decision Process

Newell and Simons founded the theory that people solve problems via heuristic search

through a problem space [Ohl12, NSS58]. In their theory, so-called planning is the



3.5. Human Psychology 81

identification of paths that lead from an initial state to a goal as shown in Fig. 3.5

[JL93].

The process of planning starts with a set of desired properties. It consists of trying

to devise a plan that leads from an initial state to a state with the desired properties.

The ability to plan ahead is a fundamental property of human beings [GN87].

Initial
State

State
1

. . . State
N-1 Goal

Figure 3.5: A plan to reach a goal according to Newell and Simons, adapted from [JL93].

Possible actions to reach a goal are stored as workflows in the human mind, similar to

computer programs. In this analogy, planning is the process of selecting the computer

program to reach the goal. Applying a concrete initial state to think possible workflows

through is similar to configuring the variables of a computer program.

The process of identifying ways to reach the goal (Fig. 3.5) can be deductive or

inductive. It is based on known things (Sec. 3.1.1). Humans solve problems by

correlating new problems to known mental images and remembered actions [Pri97].

Frames (Sec. 3.5.2) are a concept for such mental images.

The decision process of Newell and Simons has three components, the mental repre-

sentation of the problem, the goal, and a set of actions. When deciding about which

actions to take, humans evaluate different solution paths withdrawing paths that do

not lead to the goal and weighting the successful alternatives. Humans are able to

think through different alternatives without actively doing them and can decide about

their strategy by evaluating the projected outcomes (Sec 3.5.2) [Ohl12].

If a chain of planned actions (Fig. 3.5) cannot be carried out, e.g. as things such

as physical tools are missing, sub-plans can be introduced. A sub-plan could be to

acquire a missing thing, e.g. getting a physical tool like a hammer. After finishing

a sub-plan, the original plan is continued [JL93]. Complex human behavior can be

described as goal-driven and hierarchically organized [Ohl12, Woo09].

3.5.5 Conclusion

Computer programs and the way the human brain works are closely related. Many of

the observed behaviors of humans can be modeled with computer programs. Uncon-

sciously, humans automatically seem to do something similar to creating and running

programs on their minds. As a result, Smart Space Orchestration as process of imple-

menting software to orchestrate Smart Spaces can be intuitive to humans when the

used abstraction is close to manual orchestration of a space.

Humans plan actions by setting a goal and identifying a path to reach that goal from

a set of actions they know or can deduce. Humans are able to plan things in thoughts

without physical input. Having an abstraction that is close to human perceivable

reality helps humans to act on the abstraction instead of acting in the real world

which is done when writing software.
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As shown in Fig. 3.5 the steps towards a goal are states. Abstraction is a basic

tool humans use to memorize. Frames are a concept for explaining how humans

may remember states. A usual way for humans to access knowledge is association.

Humans associate things they perceive with things they know already to activate their

knowledge about them [JL93]. See Fig. 3.4.

For designing an intuitive programming abstraction it should

<R.24> offer a descriptive knowledge representation that represents states (e.g.

frames) not procedural knowledge (actions).

The human mind automatically creates abstractions of different levels. To correspond

with this property, a programming abstraction for Smart Spaces should:

<R.25> Foster interaction between services on different levels of abstraction.

Humans solve problems by combining known activities to reach a superior goal. Hu-

mans are used to build complex things out of less complex parts [JL93]. This leads

to the requirement:

<R.26> To reflect human problem solving, a suitable programming abstraction should

support modularization to allow partitioning complex problems into smaller

building blocks [Par72].

Writing programs is conceptually close to the human thinking process [JL93]. With

the right tools it is easy for humans to learn programming [Ahl76, Can76, Gol76,

KG77, Cho56, Kay96, Pap05]. Providing interfaces to various programming languages

and programming models (e.g. visual programming [Kay90, Kay96, WHI97]) facili-

tates the creation of Smart Space Orchestration services. Therefore the developed

programming abstraction should:

<R.27> Support multiple programming languages for the implementation of ser-

vices.

This requirement is extended in Sec. 3.10.5.
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3.6 Artificial Intelligence

You wouldn’t know that because I didn’t, when I created you.

Tron Legacy, written by Adam Horowitz, Edward Kitsis (2010).

Artificial Intelligence (AI) tries to understand intelligent behavior, and to make ar-

tifacts behave as-intelligent-as, or more intelligent than humans [Nil98, Bro91b]. AI

has touching points with different scientific fields. It combines understandings from

philosophy, mathematics, psychology, and computer engineering. It overlaps with

linguistics in computational linguistics and natural language processing [RN95].

Sec. 3.5 introduced how AI helps understanding intelligent human behavior. This

section focuses on the creation of programs that implement intelligent behavior.

The given background in AI is intended to provide basic understanding about the

feasibility-of, and the requirements-for an implementation of autonomous functiona-

lity (Sec. 3.7). Autonomous functionality is important for Smart Space Orchestra-

tion as it supports developing manageable and dependable software systems (<R.3>,

<R.30>).

A suitable programming abstraction for Smart Space Orchestration targets providing

an abstraction on top of the Smart Device hardware that is used as interface between

software and the physical world (layer 4 in Fig. 3.1). A background in AI helps design-

ing the programming abstraction in a way that facilitates the creation of intelligent

services without introducing unnecessary limitations (<O.3>).

Following, models for implementing intelligent functionality are presented.

3.6.1 Intelligent Behavior

Intelligent behavior includes perception, reasoning, learning, communicating, and act-

ing in complex environments [Nil98, Bro91b]. A top-down approach to make artifacts

intelligent is based on Newell and Simons theory [NSS58] that intelligent behavior can

be modeled by writing computer programs. Knowledge about a domain is represented

as declarative sentences (compare to frames in Sec. 3.5.2). Declarative sentences rep-

resent knowledge explicitly in contrast to procedural knowledge that represents know-

ledge implicitly stored in programs [Nil90] (<R.24>).

Intelligent behavior emerges via reasoning over knowledge [McC58]. Intelligence is

decomposed into functional information processing modules that are combined to

implement complex behavior [Bro90] (<R.26>). Situated automata are a method for

creating low-level circuitry from high-level specifications [Nil98, KR90]. See the top

and center part of Fig. 3.6.

A bottom-up approach tries building elementary functions of intelligent life forms

into machines. A basic building block is sensing of signals [Nil98, Bro91b]. In his

robots, Brooks builds functional units for basic behaviors like forward, or turn

and composes them to create intelligent behavior [Bro86]. Intelligence emerges by

connecting different behaviors and self-evolution of systems [Bro90]. Via subsump-

tion of different Finite State Machine (FSM) complex behavior can be implemented

[Bro90, Bro91b]. This leads to the requirement that composition should be supported

to allow the creation of complex functionality from less complex components (<R.26>).
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Neuronal networks are a method to implement a (possibly self-learning) evolutionary

bottom-up approach [Nil98]. See top and center of Fig. 3.6.

Symbol System Hypothesis

Situated Automata/ FSM

Physical Grounding Hypothesis

(Complex) Reality

Complex Reasoning

high abstraction

low abstraction

Figure 3.6: Different approaches to implement AI in order of their degree of abstraction from the

physical world [Nil90, Bro90].

Fig. 3.6 shows the top-down and the bottom-up approach. Their level of abstraction

over a sensed information is indicated on the right. Both approaches use situated

automata [RK90]/ FSMs as tool to implement intelligent functionality in programs.

Support for FSM in a programming abstraction facilitates the implementation of

intelligent behavior in future Smart Spaces. Such support is provided by offering

state-based context management (<R.5>).

3.6.2 Reasoning

Acquiring context about an environment representing its current state is an important

task for AI. The process of giving meaning to acquired information is called reasoning

[Kom00]. Methodology for reasoning includes the application of neuronal networks,

heuristics, or logic on beliefs.

Reasoning can be used to provide context on different levels of abstraction (<R.25>).

Intelligent agents in AI or Smart Space services can reason about facts that are avail-

able in the knowledge base (Sec. 3.9) to create new knowledge (Sec. 8.3.2). This

fosters a modular information processing (Sec. 3.6.5, <R.26>).

3.6.3 Believe-Desire-Intention (BDI)

The Believe-Desire-Intention (BDI) software model is a model for reasoning agents

that was developed in the 1980s [GPP+98]. It corresponds to the human planning

process (Sec. 3.5.4). The model is relevant for the design of a suitable programming

abstraction for Smart Spaces as it describes basic processing steps for implementing

intelligent behavior in software. It can be applied for developing services that imple-

ment ambient intelligence in future software orchestrated Smart Spaces (Sec. 2.6.3,

Sec. 3.7).

Fig. 3.7 shows different processing steps that structure the implementation of intel-

ligent behavior. An intelligent agent senses events from the environment and gener-

ates beliefs that are stored in the beliefset. Beliefs represent knowledge of the world
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Figure 3.7: Believe-Desire-Intention model.

[GPP+98]. The purpose of an agent is achieving its desires that are stored as goals.

To change the reality so that the beliefset and the goals match, an agent has intentions

that result in plans to be executed. Intelligent agents deliberate by deciding which

state they want to achieve and store this intention [Woo09, p.66]. The execution of

the plan that helps reaching the intention generates events that can be sensed and the

control loop begins again (Sec. 3.7).

The BDI model is criticized that it does not fit well for systems that must learn and

adapt their behavior [GPP+98] dynamically. However many tasks in future Smart

Spaces can be expected to be static enough for applying the BDI model (Sec. 3.7).

The BDI model can be used to identify, which information is necessary for imple-

menting autonomous behavior in software. Following the analysis of the functionality

of the human memory (Sec. 3.5.2), it shows that necessary context can be stored as

state (declarative knowledge) [GPP+98]. Supporting the storing and exchange of state

facilitates the creation of intelligent behavior as desired in this thesis (<O.0>). This

is a relevant insight for the design of the abstraction on layer 4 in Fig. 3.1 (<R.24>).

3.6.4 Planning

Plans are the manifestation of workflows to reach certain goals. Services that imple-

ment planning tasks are called orchestration services in this thesis. In AI the process

of planning and executing a plan can be described as shown in Fig. 3.8.

The input to a planning process is an expected current initial state σ, a goal designator

ρ, a set of possible actions Γ, and a decision function Ω that correlates the former

three and decides which action γ to take. The action γ is sent to an executor that tries

to transform the currently observed initial state of the real world i into the desired

state g [GN87].

<R.5> To support the implementation of artificial intelligence, the VSL programming

abstraction should support virtual state management, also-called context

management for facilitating context reasoning (Sec. 2.6.4).
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Figure 3.8: Planning and Execution in AI [GN87].

The representation of state is always an abstraction. It is a fundamental challenge

finding a context representation that is expressive enough not to limit the possibilities

of software to implement plans [Bro91a].

<R.28> The context representation of the VSL programming abstraction must have high

expressiveness.

At the same time the expressive context abstraction should be simple-to-use (<O.4>)

[Bro91a]:

<R.29> The VSL programming abstraction must have a simple-to-use context ab-

straction.

Reacting appropriately to dynamic changes with plans is difficult [AC90]. The chal-

lenges come with the complexity of entities and the amount of possible operations

[KR90]. Sec. 8.3.1 shows how the presented architecture can be used to connect Smart

Devices autonomously with their representation in a knowledge base (Sec. 3.9).

Reactive Behavior

Reactive behavior is a simple form of intelligent behavior. It implements the behavior-

istic viewpoint of actions that depends on available input at a certain time (Sec. 3.5.1).

Policies are a representation of reactive behavior. Fig. 3.9 shows the components of an

ECA policy. The event set defines the necessary input of a policy rule. The condition

set defines, which criteria the event set must match so that the policy applies. The

action set defines the plans to be executed as reactive behavior [DBB+88, GJ91].

Event Set Condition Set Action Set

Policy Rule

Event Set Condition Set Action Set

Figure 3.9: Components of a policy.

Advantages of reactive behavior are simplicity, low computational complexity, robust-

ness against failure, and elegance [Woo09]. This makes a reactive design attractive
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not only for beginning programmers but also for experts as it is simple to implement,

which lowers the risk of programming errors.

Purely reactive designs have several limitations [Woo09]:

• Being stateless, purely reactive services lack context (<R.5>).

• Reactive services typically take only local information into account as it is dif-

ficult to obtain non-local information only by applying rules (<R.13>).

• A methodology to describe and define interactions between services is missing

(<R.24>, <R.32>).

• The dynamics of multiple layers of reactive services that interact with each other

becomes quickly complex and hard to understand (<R.26>, <R.36>, <R.32>,

<R.34>, <R.24>).

If the identified limitations could be overcome, reactive services would fulfill the pro-

perties of being simple-to-use, and at the same time powerful. This would make them

a suitable candidate architecture for Smart Space services (<O.0>). The mapping to

challenges in the parentheses shows that a programming abstraction that fulfills the

requirements, identified in this thesis, would allow to model complex behavior with

simple reactive services.

The most challenging points are the methodology to describe and define service inter-

actions, and the complexity of multi-layer service composition. Both are solved by the

use of context models as abstract service interfaces in this work (Sec. 5.4.1). Sec. 8.4

presents an example that shows how the introduced VSL programming abstraction

overcomes the limitations.

3.6.5 Modular Design

A typical method when designing AI is decomposing problems into sub problems to

reduce the complexity of planning tasks [KR90] (<R.26>). The resulting modules

that implement intelligent behavior can be distributed (Sec. 3.4) [Gas88, Woo09].

A separation of perception from action is a standard use case for such a decomposition

[KR90]. Sec. 3.7 introduces such a separation more in detail.

3.6.6 Conclusion

The methodology and many results of the AI research can directly be applied for

creating of services for Smart Spaces. A suitable tool for implementing intelligent

behavior are automata. They are the common denominator of the top-down approach

and the bottom-up approach in AI. Reasoning via automata is used to generate higher

level knowledge (Sec. 8.3.2, Sec. 3.9).

The BDI model provides an architecture to structure autonomous behavior. It is

an artificial implementation of the human planing process (Sec. 3.5.4). As shown in

Fig. 3.7, the different stages of the processing need context. A suitable program-

ming abstraction for implementing intelligent behavior should support developers in

acquiring, storing, and processing context (<R.5>).
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Reactive behavior can be implemented via ECA rules following the BDI model. It

implements simple autonomous behavior. Modeling functionality for Smart Space

Orchestration via reactive behavior, expressed in rules, is desirable as it is simple.

The identified limitations of ECA rules make reactive behavior often unsuitable for

implementing complex tasks. This thesis shows how the limitations can be overcome

by providing an API that enables expressing complex tasks in simple rules (Sec. 8.4).

Modularization of functionality is a method that is used in AI to reduce complexity

(<R.26>).
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3.7 Autonomic Management

The term autonomic computing describes computation algorithms that use autonomy

as central paradigm for implementing complex functionality [LTW01]. A combination

of autonomous components that follow a common goal is called Complex Adaptive

System (CAS). A real-world example for a CAS is a sports team that plays together

without permanent advise by a coach. CAS have different properties [LTW01]. They

are

• autonomous as their individual components act independently without a cen-

tral controller,

• emergent as the behavior that emerges from the interplay of the entities is not

predefined in the entities,

• adaptive, or context-aware as the individual components can change their be-

havior based on context changes,

• self-organizing as the other behaviors are achieved from within the system

and not via external control.

A real world example for a CAS is the Internet.

3.7.1 Self-*

Autonomic management of computer systems was introduced by IBM in 2001 [KC03,

GC03, HM08]. Autonomic management focuses on applying autonomic computing

methods for facilitating the management of complex systems [KC03]. Concerning

management, the self-organization (above) is called self-management.

Self-management comprises self-* properties such as [KC03]:

1. Self-configuration: Components of a system configure themselves automati-

cally based on high-level goals.

2. Self-optimization: A system monitors its own performance and efficiency and

permanently tries optimizing them.

3. Self-healing: A system detects, diagnoses, and repairs software and hardware

problems.

4. Self-protection: A system detects attacks and cascading failures, counteracts

and tries to predict and prevent such situations.

3.7.2 Monitor-Analyze-Plan-Execute (MAPE)

The methods of AI are fundamental for implementing autonomic computing. The

autonomic computing implementation of the Believe-Desire-Intention (BDI) model

(Sec. 3.6.3, Fig. 3.7) is called Monitor-Analyze-Plan-Execute (MAPE) cycle. Context

(Knowledge) is relevant for processing current events. To express this importance, the
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Figure 3.10: Components of a Monitor-Analyze-Plan-Execute-Knowledge (MAPE-K) cycle.

acronym is sometimes extended to Monitor-Analyze-Plan-Execute-Knowledge (MAPE-

K) e [KC03, HM08, MALP12, HMEZ+05]. A Monitor-Analyze-Plan-Execute-Knowledge

(MAPE-K) cycle is shown in Fig. 3.10.

The figure shows an autonomic element that consists of an autonomic manager and a

managed element. A managed element typically offers information (sensor) and allows

changes (actuator). In case of a Smart Space, a managed entity can be a Smart Device

that monitors parts of the physical environment via sensors and that can change the

physical environment via actuators. The example for a managed entity on the left of

Fig. 3.10 is a heater. It contains a temperature sensor, and a valve as actuator.

The autonomic manager interfaces the managed entity via the Monitor (M) com-

ponent for obtaining information and the Execute (E) component for changing the

state of the managed entity. When information is obtained, it is further processed

in the Analyze (A) module. In the example the raw sensor value is converted into a

meaningful format (Sec. 3.6.2).

Based on the Knowledge the system Plans (P) its actions. Changes are implemented

by Executing (E) a change request on the managed element.

The level of abstraction is typically higher in the upper (yellow) components of

Fig. 3.10 as the Analyze and the Plan modules process, and implement high-level

goals that are given to the autonomic element from outside (configuration change at

the top of Fig. 3.10).

The gray sliced arrows indicate that the left and the right side of an autonomic man-

ager are not necessarily coupled. New sensor data can be reflected into the knowledge

base of an element without the Planner. A Planner can be triggered by events inde-

pendent of the Analyze module (e.g. external trigger).

External information is relevant for an autonomic element to receive high-level goals,

and to obtain knowledge from other elements that is relevant for any of the compo-

nents of the autonomic manager (Sec. 8.3.1). The configuration change at the top of
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Fig. 3.10 shows an interaction with the autonomic element from outside by accessing

the knowledge of the autonomic manager. Typical operations for access from remote

are obtaining data about the autonomic element or changing its high-level goals.

3.7.3 Degrees of Autonomy

The degree of autonomy can be described with the following categories from manual

to autonomic [GC03]:

1. Manual: Manual administration.

2. Managed: Management tools aggregate and pre-evaluate management data.

People act.

3. Predictive: The management systems monitor and correlate data from dis-

tributed system components and gives recommendations. People act.

4. Adaptive: The management system monitors and correlates data and acts.

People manage and control the compliance with high-level goals.

5. Autonomic: All system components are dynamically managed by business

rules or policies. People focus on high-level goals.

The last two levels (4, 5) provide flexible adaptivity at low costs, and resilience

[GC03]. Flexible adaptivity is relevant for Smart Spaces as Smart Devices can be

added, removed, and reconfigured dynamically (Software Orchestration). Resilience

is important as Smart Spaces need to be dependable since they provide fundamental

interaction with humans in their physical environments (Sec. 2.6.2).

3.7.4 Dependability

Autonomic management was introduced to make complex system dependable [KC03,

HM08, MALP12, HMEZ+05]. A so-called dependable system provides different pro-

perties, including [AL86, TVS02]

• high availability, which describes that a system is available at any point in

time with high probability,

• reliability, which describes that a system operates without failure, and

• maintainability, which describes how simple it is to recover a system after

errors; autonomic recovery provides best maintainability (see 5 in Sec. 3.7.3).

Dependability is important for software orchestrated Smart Spaces as Smart Spaces

directly or indirectly interfere with humans and other creatures (Sec. 2.6.2) [BCG12,

DDMS12, RI10, Chu10, Lee06].
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3.7.5 Conclusion

Autonomic management is relevant for the implementation of pervasive computing in

the real world. It helps reducing the complexity that emerges from the diversity of

hardware and software in Smart Spaces.

Fostering service autonomy (<R.33>) helps facilitating the development of services

for Smart Spaces (Sec. 3.8). The MAPE-K loop provides a general architecture for

implementing reactive and proactive behavior in autonomous components. Reactive

behavior attempts to implement counter measurements when an undesired state is ob-

served. Proactive behavior attempts to prevent undesired states by applying counter

measurements before such a state occurs [Str04].

The managed entity and the autonomic manager can be distributed. This is shown

in the layers 2 and 3 of Fig. 3.1. Adaptation services that connect Smart Devices

with the software domain can be implemented using the MAPE-K structure that is

introduced in this section (Sec. 8.3.1).

Autonomic management is relevant for designing a middleware for pervasive com-

puting to implement dependability. Dependability is a fundamental requirement for

software orchestrated Smart Spaces. A suitable programming abstraction for Smart

Spaces must be dependable, and foster the dependability of Smart Space services.

The following requirement emerges:

<R.30> A middleware for pervasive computing must be implemented as dependable

system.



3.8. Service Oriented Architectures (SOA) 93

3.8 Service Oriented Architectures (SOA)

The goal of this thesis is structuring and facilitating the development of software for

software-orchestrated Smart Spaces. Sec. 3.5 identified modularization as requirement

to reach the goal (<R.26>). A software architecture that implements modularization

is a Service Oriented Architecture (SOA) [ACKM04, VVE09, Erl05].

A SOA divides complex functionality into smaller modules that each solve parts of

a bigger problem [Erl05]. It provides mechanisms to automatically combine indepen-

dently implemented logical units. Such modules are called services in a SOA.

Properties of a SOA are dynamic service discovery, composition, and interoperability

[SWS07]. Services are offered and can be used remotely to mash up more complex

services by reusing existing functionality.

The following key aspects of service-orientation [Erl05] map directly to requirements

for reaching the objective <O.0> of this work:

<R.31> Loose coupling of services: loose coupling describes that services are inde-

pendent of each other, allowing to bind to different services at run time.

<R.32> Service contracts: a service contract is an abstract description of the functio-

nality of a service.

<R.33> Service autonomy: a service is autonomous when it implements functionality

independent of other services.

<R.34> Service abstraction: abstraction describes that services hide everything but

the service contracts from the outside world.

<R.35> Service reusability: service reusability describes the support of using one ser-

vice for implementing multiple more complex services. A SOA fosters reusabil-

ity by modularizing functionality into services and enforcing abstract interfaces

(service contracts).

<R.36> Service composability: composability describes the ability to mash complex

functionality by coordinating and assembling multiple services (Sec. 3.8.1).

<R.37> Service statelessness: statelessness describes that services should ideally not

store any activity related state by themselves.

<R.38> Service discoverability: discoverability describes that services must be re-

trievable over discovery mechanisms.

3.8.1 Service Interaction

The terms orchestration and choreography are used to describe the hierarchical coup-

ling of services in a SOA [PTDL07].
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Orchestration

The term orchestration describes composing different services into a coherent whole

[ACKM04, PTDL07].It describes composing existing services and their workflows to

more complex services / workflows in a SOA. The composed orchestration workflows

that emerge from the composition can cover multiple domains [Erl05].

A language that is used to represent orchestration workflows is WS-Business Process

Execution Language (BPEL).

Choreography

Choreography describes the process of coordinating different orchestration workflows

to enable collaboration. It is one level of abstraction above orchestration. A task

of choreography is preventing conflicts between orchestration services, e.g. when two

services follow opposing goals [Erl05, PTDL07].

Smart Space Orchestration

In a SOA, orchestration combines different services. Choreography combines different

orchestration services.

In Sec. 2.4.1 the term Smart Space Orchestration was introduced to describe the

orchestration of services in software orchestrated Smart Spaces. The use of the

term orchestration implies that two management layers are introduced. This the-

sis shows that Smart Space Orchestration is not limited to two layers. Orchestration

services can orchestrate orchestration services that orchestrate orchestration services

(e.g. Sec. 8.3.2). Therefore only the term orchestration is used for Smart Spaces in

this thesis. It covers the aspects of both, orchestration and choreography, from the

SOA vocabulary.

3.8.2 Web Services (WS)

Web Services (WSs) implement the SOA principle for Machine-to-Machine (M2M)

communication. The WS architecture is standardized by the World Wide Web Con-

sortium (W3C) [BHM+04, ACKM04, VVE09].

Organization Model

The term Web Service (WS) is used for a service. Abstract service interfaces are spec-

ified in the Web Service Description Language (WSDL). For implementing portability

abstract service interfaces are published to a service registry. An implementation of a

service registry is Universal Description Discovery and Integration (UDDI). The com-

munication between services happens using the Service Oriented Architecture Protocol

(SOAP). Fig. 3.11 shows major architectural components of the WS architecture.
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Figure 3.11: Organizational Model of WS; adapted from [Erl05].

Information Model

The interfaces of web services are described in the WSDL using Extensible Markup

Language (XML). A WSDL service specification consists of an abstract and a concrete

part. The abstract part defines types, messages, operations, and port types. The

concrete part defines bindings to concrete protocols and data types, and services and

their ports [BHM+04, ACKM04].

XML schema defines the types used in the WSDL and the types and payload for the

SOAP messages. It allows to validate the content of the abstract interface specifica-

tions and the messages which makes the technology more robust [Erl05].

Validation of abstract service interfaces is required in a suitable programming abstrac-

tion for Smart Spaces:

<R.39> Abstract interface validation support is needed to enhance the robustness

of software using a programming abstraction.

Communication Model

SOAP is used for communication between different WSs. SOAP transports XML con-

tent. In general the acronym has the meaning Service Oriented Architecture Protocol.

In the case of using RPC it also stands for Simple Object Access Protocol (SOAP)

[BHM+04].

The structure of SOAP messages is similar to that of Hyper Text Markup Language

(HTML) messages. It consists of a header for meta information, and a body for the

message payload.

SOAP is specified over multiple protocols including HTTP, Simple Mail Transfer

Protocol (SMTP), and File Transfer Protocol (FTP) [BHM+04, ACKM04].

3.8.3 Conclusion

The SOA paradigm helps structuring and facilitating the implementation of com-

plex functionality via modularization. This makes SOA a suitable architecture for a

programming abstraction for Smart Spaces (<O.0>).
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WSs are a frequently used implementation of the SOA paradigm. WS use function

signatures as abstract interfaces. Services expose their individual method signatures

in their abstract WSDL interface. The resulting diversity of interfaces introduces

complexity for developers. They have to call diverse functions over varying interfaces

to reuse and compose existing services. Increased complexity violates requirement

<R.1>.

Sec. 3.5 and Sec. 3.6 identified descriptive interfaces to Smart Space functionality as

most suitable for Smart Space Orchestration of Smart Spaces (<R.24>). The function-

based WS service interfaces do not fulfill this requirement.

No support for context-aware computing (Sec. 2.6.4) is provided by WS.

As described above, the WS architecture provides support for limited protocols for

inter-service communication. This limits the possible communication modes that are

supported by the WS programming abstraction (<R.19>, <R.21>, <R.20>, <R.22>).

The WS architecture depends on central components such as the UDDI or mail servers

for communication over Simple Network Management Protocol (SNMP). This de-

creases the dependability (<R.30>) and the scalability (<R.50>) of the system.

The identified shortcomings make the WS architecture unsuitable as programming

abstraction for future Smart Space Orchestration.
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3.9 Context Modeling

As described in Sec. 2.6.4, and further motivated in Sec. 3.5 and Sec. 3.6, context

processing is fundamental for implementing Smart Space Orchestration. This section

introduces methods to represent context.

A context representation puts real world context into a structured form. This is

shown between “real world object” and “VSL context node” in Fig. 3.12. Providing a

structured representation raises the level of abstraction which facilitates the creation

of orchestration services.

Context representations can be used to exchange information between services in

software orchestrated Smart Spaces. Inter-service communication is implemented as

exchange of (structured) context in this thesis. Using standardized context repre-

sentations as coupling element between services results in service portability (<R.8>).

The heterogeneity of instances gets hidden by the standardized context representation

they share. Smart Devices that share a common context representation, such as one

context interface for different types of lamps, are an example (Fig. 5.5).

Context modeling is the process of designing abstract models for context. So-called

context models provide an abstract structure for the context a Smart Devices provides.

Different kinds of context models exist, including key-value models, markup scheme

models, object oriented models, and logic based models such as ontologies [KKR+13,

SLP04, BBH+10, BCFF12].

VSL Meta Model

VSL Context Models

VSL Context (Nodes)Real World Object Virtual Object

Domain Ontology Context Models

Upper Ontology Meta Model

Analysis 
(Descriptive)

Design 
(Conceptional)VSLabstract

concrete

Instance

Model

Meta Model

Legend: Correspondence Entity Inheritance (“is-a”) Uses

Figure 3.12: Context related terminology; extended graphic based on [AZW06].

Fig. 3.12 puts context-related terminology in relation. The level of abstraction raises

from the bottom to the top of the figure as indicated on the left. The low layer

contains instances, the middle layer models, and the upper layer meta models that are

used for creating models.

The left stack comprises terminology to describe the real world. On the lowest layer

are real world objects. Their properties can be structured using so-called domain

ontologies (Sec. 3.9.1). An ontology formally describes the entities that can be present

in the real world. Upper ontologies contain domain comprehensive concepts. An

upper ontology may define a “car” as entity with four wheels for instance. An ontology

created by car enthusiasts may add diverse specific attributes to the concept“car”. An

ontology created by socker fans may not add such rich details to the upper ontology

concept “car” in their domain-specific ontology.
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The right stack shows the concepts that are used to represent the descriptions of the

left stack. In object oriented terminology the right stack shows the abstract classes

and the left stack the instances. The concepts on the right can be used to represent

the entities on the left in software.

The conceptual representation of a real world object is a virtual object. Domain ontolo-

gies can be described with context models. The structure of context models is defined

by meta models.

As shown in Fig. 3.12 upper ontologies and meta models are abstractions of domain

models and context models but they do not correspond to each other. Context models

are used to describe upper ontologies.

The middle stack shows the terminology that is used in this thesis. As this thesis

introduces a programming abstraction, it provides concepts. Sec. 7.4 shows how the

provided concepts can be used to implement a dynamically-extensible crowdsourced

ontology for Smart Spaces.

Following, the concept ontology is introduced in detail. Then, different meta models

for creating context models are assessed in terms of their suitability for modeling

context in future Smart Spaces.

3.9.1 Ontologies

The term ontology originates in philosophy. It typically describes an explicit speci-

fication of a conceptualization [GN87, Gru93, AZW06]. The VSL programming ab-

straction that is introduced in this thesis (Ch. 5) is based on an ontology that is

instantiated as virtual representation of properties of physical Smart Spaces (layer 4

in Fig. 3.1).

Sec. 3.3.3 identified the importance of the expressiveness of an abstract interface

for Smart Space functionality (<R.28>). Context representations can be categorized

into different classes. To understand the meaning of expressiveness, different classes

and their expressiveness are briefly introduced from the least expressive to the most

expressive [RN95, Pos11].

• Controlled Vocabulary: A controlled vocabulary consists of a collection of

terms that have a defined meaning. To describe context with a controlled vo-

cabulary only the terms of the controlled vocabulary are used.

• Taxonomy: A taxonomy adds the concept of parent-child relationship to con-

trolled vocabularies.

• Thesaurus: A thesaurus extends the concept of the taxonomy with associa-

tions. Terms cannot only be subordered (taxonomy) but also related in a the-

saurus.

• Formal Ontology Formal ontologies allow to represent different relationships

between entities. The formal representation of relationships allows to apply for-

mal logic to reason about context (Sec. 3.6.2). The domain ontology in Fig. 3.12

is a formal ontology.

• Upper Ontology An upper ontology is an ontology that describes –typically

domain comprehensive– concepts that are used in domain ontologies [AZW06].
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3.9.2 Meta Models

A meta model defines the structure that is used to create context models. Meta models

are used by context model designers to create context models. The context models

represent entities of an ontology. See Fig. 3.12.

Meta models define the expressiveness of context models. Each context model in an

ontology uses the same meta model. Only what can be expressed with the meta model

can be expressed in an context model.

This section analyzes different meta models according to different criteria based on

typical representatives of each class. The selection of the meta models and the selection

of the assessment criteria is based on different surveys [KKR+13, SLP04, BBH+10,

BCQS07].

The first set of requirements for a suitable meta model is human related. It describes

the usability of a meta model for a human designer of context models:

• Comprehensibility describes how simple a meta model makes it for human con-

text model designers to transfer a subset of the real world into its formal re-

presentation (context model). The term comprehensibility is used to describe

the complexity of the concepts offered by a meta model. An example is that a

meta model only supports representing hierarchical relationships between mod-

eled entities.

This is relevant for the simplicity-to-use (<R.1>, <R.29>).

• Complexity describes how simple it is technically for human designers to transfer

a subset of the real world into the context model. The complexity is defined

by the formal structure of a meta model. As an example, the use of a complex

syntax to express a relationship introduces complexity.

A simple-to-understand concept can be implemented in a technically complex

way (Sec. 3.9.6).

This is relevant for the simplicity-to-use (<R.1>, <R.29>).

• Collaborative design describes if the context models that form the ontology can

be created collaboratively, and shared between context model designers for reuse.

This is relevant for the user participation (<R.4>, <R.48>).

The next set of properties is related to the expressiveness of a meta model and the

dynamic extensibility (diversity support):

• Supported relations describe the diversity of relations between real world objects

that can be expressed using the meta model (Sec. 3.9.1).

This is relevant for the expressiveness of the abstraction (<R.28>).

• Timeliness expresses, if a meta model supports versioning of context, e.g. by

offering properties that support versioning of context. Timeliness support is

relevant for providing historic context in Smart Space instances.

It supports context-aware computing (<R.5>) by simplifying the provisioning

of context versioning with a programming abstraction (<R.1>). It facilitates

the context access by providing a unified mechanism to access historic context

(<R.29>).
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• Dynamic extensibility describes the level of support for dynamic extension of

context models at run time. This is relevant for software orchestrated Smart

Spaces as new Smart Devices can be expected to be added dynamically. Smart

Devices that provide context that was formerly not known in a Smart Space

requires adding new context models or extending existing context models (at

runtime).

This is relevant for the dynamic extensibility (<R.23>).

The last set of assessment criteria is related to efficient processing by machines

(machine related):

• Reasoning support describes the level of support, a meta model provides for

automated reasoning (Sec. 3.6).

This is relevant for enabling autonomous functionality (<R.3>).

• Distributed processing describes if context can be processed by distributed enti-

ties simultaneously.

This is relevant for implementing distribution support (<R.11>).

• Syntax validation describes if the syntax of a meta model supports automated

validation of context models.

This is relevant for enhancing the dependability (<R.30>), the security (<R.49>),

and the simplicity-to-use (<R.1>, <R.29>).

• Semantic validation describes if the semantics of a context model can be formally

validated.

This is relevant for enhancing the dependability (<R.30>), the security (<R.49>),

and the simplicity-to-use (<R.1>, <R.29>).

• Efficient parsing describes how efficient context models that use the meta model

can be parsed.

This is relevant for the scalability of the entire system (<R.50>).

Table 3.3 summarizes the following assessment.

3.9.3 Key-Value Models

Key-value models use tuples of keys and values. Programs without explicit data

structures typically use key-value pairs in form of regular variables to represent their

data. The key is the name of the variable. So-called cookies of a web browser that

can be used to store the state of a world wide web connection also use key-value pairs

as data structure. Key-value models are use case, and implementation specific. They

have no abstract structure that could be used to create context models.

Human Related

Without explicit structure the comprehensibility of key-value models is low. No con-

ceptual representation of the real world exists (-). The complexity of key-value models

is low as they consist of simple tuples that are accessed via their key (++). Without

explicit structure, key-value models do not support collaborative design (-).
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Human Related:

– Comprehensibility - + + ++ ++

– Low Complexity ++ + ++ - ++

– Collaborative Design - (+) - - ++

Diversity Support:

– Supported Relations - + + ++ ++

– Timeliness - (+) (+) (+) ++

– Dynamic Extensibility - (+) - - ++

Machine Related:

– Reasoning Support - + + ++ ++

– Distributed Processing (+) - (+) ++

– Syntax Validation ++ ++ ++ ++

– Semantic Validation + + ++ ++

– Efficient Parsing ++ + + - ++

Table 3.3: Properties of different meta models [KKR+13, SLP04, BBH+10, BCQS07] compared with

the VSL meta model. + = high, - = low, = significantly depending on implementation, (+) =

basic support provided
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Diversity Support

Without context models there is no diversity support (-).

Machine Related

As key-value models have no abstract structure, generic reasoning approaches [BBH+10]

cannot be applied (-). Distributed processing support depends on the implementa-

tion. Typically it is not provided, e.g. local program data. The validation support

depends on the specific use case and implementation. Therefore no assessment is

done. The parsing of key-value models is highly efficient as they are very simple

(++). [KKR+13, SLP04, BBH+10, BCQS07]

3.9.4 Markup Scheme Models

Markup scheme models use hierarchical data structures of markup tags with attributes

and values. Markup tags are typically recursively defined by other markup tags. Often

subclasses of the Standard Generic Markup Language (SGML) such as XML are

used as markup language (listing 3.1). Another example is the Resource Description

Framework (RDF) [BG04].

Human Related

SGML based markup schemes are human readable. Their hierarchical structure is well

understandable by humans (Sec. 3.5). The support for modeling real world objects

is limited as markup schemes typically do not provide real-world related semantics

(+). Markup schemes use a –typically simple-to-understand– syntax that can become

complex via nesting and support for numerous attributes (+). The loose coupling of

models in a markup scheme allows collaborative creation of context models if mecha-

nisms like a Context Model Repository (CMR) are provided. Therefore the plus is

only in parenthesis.

Diversity Support

The expressiveness of a concrete markup is implementation specific. In general a

markup scheme is flexible concerning the content that gets modeled. This includes

the general ability to model any dependencies. As described above, markup schemes

support the concept of type relationships (+).

Timeliness support is not provided by the meta model but it is supported via extending

the attributes of a markup. If programs implement corresponding semantics, a markup

scheme can express timeliness. Therefore the plus is in parenthesis.

For implementing dynamic extensibility, software that uses markup scheme models

has to provide support accordingly (+).
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Machine Related

Having an explicit representation is the basis for reasoning. Markup schemes support

reasoning about type relationships via the meta model (+).

The self-containment of instances of markup scheme based models enables distributed

processing, if the software that implements markup-based context models supports it

(+).

Markup schemes are designed for syntax (++) validation. Markup Schemes typically

support data types and inheritance which allows basic semantic validation (+). With

growing size of a scheme the processing efficiency decreases. As only inheritance has

to be resolved which happens typically at instantiation time, the overall performance

of markup scheme-based context models is high (+) [KKR+13].

3.9.5 Object Oriented Models

Object oriented models represent context as objects. They support object oriented

design functionality such as inheritance, encapsulation, and abstract data types. An

example is the object representation of context in Java Agent Development Environ-

ment (JADE) [BCG07].

Human Related

Object orientation follows principles that are intuitive for humans (Sec. 3.5). The

concept does not provide domain-specific support for the creation of context models

(+). The intuitive concept facilitates the creation of context models using it. Object

orientation has low complexity as concept for context modeling (++). An object

instance typically “lives” on one machine. This makes collaborative design of context

models difficult (-). The dynamic extensibility via sharing of abstract classes may

enable it if support functionality in form of a CMR would be provided.

Diversity Support

Object oriented models support inheritance allowing to express type relationships and

composition by including objects into other objects (+).

By creating new objects for new versions of context, timeliness could be implemented.

Object orientation enables timeliness but it does not provide specific support functio-

nality (-)

Dynamic extensibility has to be supported by the software that uses object oriented

models. Typically the structure of an object is fixed (-).

Machine Related

Like markup-based models, instances of object oriented models provide a defined

structure. It enables reasoning. In addition, inheritance is part of object oriented

design which allows dependencies to be taken into account when reasoning (+).
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Distributed processing of context model instances is typically not possible with object

oriented models as instances run on one machine at the same time only (-).

Syntax validity is typically inherently checked when instantiating an object to use it

(++). As the inheritance mechanism is part of object oriented design, dependency

semantics can be validated (+). As objects are usually handled by object oriented

programming languages their processing is efficient in this context (+). [KKR+13,

SLP04, BBH+10, BCQS07]

3.9.6 Logic Based Models

Logic based models express relations between entities in a form that allows automated

reasoning [ZM03, HIR02, AY03]. An example for logic based models are formal on-

tologies (see below).

Human Related

Logic is a familiar concept for humans (Sec. 3.5). The human brain builds structures

similar to ontologies to model the reality and its relationships. Therefore they are

well usable to represent entities of the physical world (++).

To design logic based models, designers have to follow formalisms that define a specific

ontology. Those formalisms are typically complex (listing 3.1). Ontologies represent

different relations between entities. Those relationships are also called predicates. Via

its meta model, an ontology introduces predefined categories for relationships that are

difficult to extend. The complexity of ontologies increases quickly when many aspects

are to be modeled. Typically experts are required to create ontologies (-) [KKR+13].

Collaboration support for the design of logic based abstractions is an open research

topic [HJ02, KA06, LST13]. A major problem is the convergence to a common model

(-) (Sec. 3.3.2, Sec. 5.6.4).

Diversity Support

Logic based models typically support different concepts for expressing dependencies

such as inheritance, association, or location (++).

Logic based modelings enables timeliness as it typically uses markup for representing

context but it does not provide specific support functionality for context versioning

(+).

The dynamic extensibility of logic based models typically requires exchanging the

entire model, e.g. the entire ontology (e.g. Sec. 4.5.9). Adding new context models

at run time is typically not possible. The context models are typically defined before

instances are created, and their structure cannot be changed at run time. Logic based

models do typically not support dynamic changes at run time (-).

Machine Related

The foundation in formal logic provides the best reasoning support of all assessed

meta models. Reasoning can be implemented by applying formal logic such as the

λ-calculus [Lan64] (++).
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The low dynamics, and the being well-defined of logical expressions support dis-

tributed processing (+). The parenthesis are added as an implementation must sup-

port such distributed access.

The syntactic and semantic validity of logic formulas can be proved (++). The com-

plexity of relationships that can be mapped into ontologies makes the parsing of

ontologies complex. Dependencies typically have to be resolved at run time (-). The

complexity of real world ontologies makes their processing by machines inefficient

[KKR+13, SLP04, BBH+10, BCQS07].

Web Ontology Language

An example for ontology based models is the Web Ontology Language (OWL) [HPSvH03,

ZM03, ZM03, HIR02, AY03]. OWL is standardized by the W3C. OWL can be repre-

sented using RDF or XML [ACKM04].

An example10 for the XML representation of an ontology in OWL is shown in list-

ing 3.1.

1 <owlx:Class owlx:name=" WineDescriptor" owlx:complete ="false" />

2

3 <owlx:Class owlx:name=" WineColor" owlx:complete ="false">

4 <owlx:Class owlx:name ="# WineDescriptor" />

5 </owlx:Class >

6

7 <owlx:ObjectProperty owlx:name=" hasWineDescriptor">

8 <owlx:domain owlx:class="Wine" />

9 <owlx:range owlx:class=" WineDescriptor" />

10 </owlx:ObjectProperty >

11

12 <owlx:ObjectProperty owlx:name=" hasColor">

13 <owlx:range owlx:class=" WineColor" />

14 </owlx:ObjectProperty >

15

16 <owlx:SubPropertyOf owlx:sub=" hasColor">

17 <owlx:ObjectProperty owlx:name=" hasWineDescriptor" />

18 </owlx:SubPropertyOf >

Listing 3.1: Example representation of an entity in OWL XML.

Typically, tools such as graphical editors are used to interact with ontologies. List-

ing 3.1 shows that the representation of an ontology is complex. This makes the use

of OWL by non-experts difficult which conflicts with the real world usability that

objective <O.4> demands.

VSL

The VSL meta model is introduced in this thesis. Its properties are discussed in detail

in Sec. 5.2.19.

3.9.7 Conclusion

Context modeling is a fundamental task for context-aware computing. A meta model

defines the expressiveness of context models. Context models are used to represent

domain ontologies.

10http://www.w3.org/TR/owl-xmlsyntax/apd-example.html

http://www.w3.org/TR/owl-xmlsyntax/apd-example.html
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Key-value models are simple-to-understand. Markup models represent hierarchies and

type-relationships. They introduce syntax validation. Object oriented models support

inheritance. Before storing a new value into a field of an object, a programming

language typically validates given values according to the defined types of the corre-

sponding fields in the object.

Ontologies provide most support for implementing intelligent behavior. The complex-

ity, the missing support for collaborative design, the lack of dynamic extensibility, and

the parsing inefficiency for large ontologies make them unsuitable as meta model for

future Smart Space Orchestration.

The analysis of requirements for a suitable meta model shows that none of the assessed

approaches is suitable as meta model for future Smart Space Software Orchestration:

<R.40> A meta model with suitable properties as shown in table 3.3 is required

to support scalable, and intuitively understandable and usable context-aware

computing.

The major points are:

<R.41> Low complexity in the meta model is required for enabling user-based deve-

lopment.

<R.42> Collaboration support is required to support user-based development, for

fostering user involvement, and to distribute the workload that emerges when

all Smart Devices of future Smart Spaces need context models.

<R.43> Dynamic extensibility of an ontology with context models at run time must

be supported to enable adding new Smart Devices.

<R.44> Context validation is required to minimize the error potential, enhancing the

dependability of Smart Space Orchestration.

This thesis introduces a novel meta model that implements a hybrid approach of the

presented meta models (Sec. 5.2).
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3.10 Use Case: App Economy

Smartphones are an important factor for making mobile computing ubiquitous [ITU13,

ITU11, Cis12, MTC+13, CD07]. As described in Sec. 2.4.4, smartphones fostered the

commercial success of wireless broadband, and the sales of mobile devices. In both

areas the commercial success fostered innovation.

While at the beginning, mobile Internet was the major success factor for smartphones

[WM10], the availability of Apps is becoming an important selling point for smart-

phones [vE13, VSCK11]. Apps are the software services of smartphones. They can

be deployed dynamically to smartphones and add functionality to existing devices.

The term App economy is used to describe the technical mechanisms and the com-

mercial ecosystem that emerged around Apps for smartphones since 2008 [VSCK11,

GWB10, LY10, Kim10]. Fig. 3.13 shows the building blocks of the App economy

[TTP11, Kim10, GWB10, TH10, MG10].
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Figure 3.13: Building blocks of the App economy.

The left side of Fig. 3.13 shows a smartphone. The smartphone runs an Operating

System (OS) that offers abstract interfaces to its peripherals (Sec. 3.10.1), and to com-

mon software components such as the address book. Using fixed interfaces provides

portability (Sec. 3.10.3). Software developers are supported by so-called Software De-

velopment Kits (SDKs) that facilitate the access to OS functionality (Sec. 3.10.5).

The SDK is used to develop Apps.

A central component of the App economy is the App store (Sec. 3.10.4). It provides

diverse functionality including a software repository that is used to distribute Apps.

Each smartphone has a locally running instance of the App store. It manages the

life-cycle of an App in cooperation with the smartphone OS.

As shown on the right, Apps are developed by distributed developers in the App

economy [TTP11, Kim10, GWB10].

The presentation in this section follows a bottom-up approach starting with the hard-

ware of, and the software on the device. Then the App store and different development

strategies are presented.

3.10.1 Smartphone Hardware

Smartphones are Smart Devices. Their sensors include an accelerometer, a compass,

a microphone, and a camera. Their actuators include a flash, a loudspeaker, and

a monitor. Additional peripherals can be connected over wired or wireless connec-

tors. Smartphones have a network interface and can be controlled remotely with the

corresponding Apps.
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Like Smart Devices, Smartphones hardware changes from specialized hardware (e.g.

main processors) towards standard PC hardware [Wan09, VSCK11, SWG13, PK10].

This enables running standard PC programs on smartphones as the same CISC is

used (Sec. 3.2.4).

3.10.2 Analogy Smartphone – Smart Space

Smartphones are chosen for this case study for two reasons. First, they are Smart

Devices that can be reconfigured via software. Second, they are spatially limited

Smart Spaces themselves. The first aspect is described in Sec. 3.10.1.

Considering each peripheral (Sec. 3.10.1) as heterogeneous Smart Device, a smart-

phone is a physical space that contains Smart Devices – a Smart Space (Sec. 2.4.1).

The Smart Devices are connected to the smartphone OS that orchestrates them via

Apps. A smartphone implements Smart Space Orchestration.

The analogy of smartphones being Smart Spaces explains why it is relevant looking

at the successful development of mobile computing from a smartphone perspective to

identify possible strategies for Smart Spaces. Smart Spaces are at a similar evolution-

ary step smartphones were at the introduction of the Apple iPhone in 2007 [WM10]:

smartphone hardware was available before, only the enabler for software development

and the software were missing. Sec. 2.4 describes the same situation for Smart Spaces

in 2014.

3.10.3 Smartphone Operating Systems

Like an operating system of a PC, the OS of a smartphone provides execution-

platform portability between different hardware platforms running the operating sys-

tem (<R.45>). All Apps that are programmed for one OS can typically run on all

systems that run the OS [Tan01].

Smartphone OSs provide standardized interfaces to the peripherals that are described

in Sec. 3.10.1 [Goo]. This results in interface portability of heterogeneous peripheral

hardware such as camera modules from different vendors (<R.8>).

There are three major operating systems for smartphones in 2014, Apple iOS, Google

Android, and Microsoft Windows Phone 7 in order of their popularity for developers

[VSCK11]. Table. 3.4 shows properties of the three systems that are most relevant

for this work. The format of the execution binary indicates if an App can run on

heterogeneous hardware. The programming language, the availability of an Integrated

Development Environment (IDE), and the availability of an SDK indicate the devel-

oper support that the platform offers.

Apple iOS runs native binaries. It uses Objective-C as programming language. A

SDK and the IDE Xcode are provided.

Google Android runs Java bytecode. It uses Java as programming language. A SDK

and the IDE Eclipse are provided.

Microsoft Windows Phone 7 runs .net bytecode. It can be created using any .net

programming language. A SDK and the IDE Visual Studio are provided.
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Apple iOS native Objective-C XCode X

Google Android Java Java Eclipse X

Windows Phone 7 .net .net-* Visual Studio X

DS2OS Java Java Eclipse X

Table 3.4: Properties of different smartphone operating systems.

For comparison, the last row shows the properties of the DS2OS framework that

implements the technical components of an App economy for Smart Spaces (Ch. 7).

Looking at table 3.4 shows that all operating systems that run on heterogeneous hard-

ware platforms use interpreted bytecode for execution binaries [CGR11, VSCK11].

The advantage of interpreted code is that the execution binaries can run on hetero-

geneous hardware platforms without change, only by adapting the interpreter. This

advantage comes at the price of reduced performance [GM95]. Apple’s hardware plat-

form is homogeneous as Apple controls it. This allows using native binaries that do

not have to be interpreted for execution.

The hardware in future Smart Spaces is likely to be heterogeneous (Sec. 3.2). To

enable the sharing of Smart Space services,

<R.45> Portable service executables are required to enable running the same binary

on the heterogeneous hardware platforms of future Smart Spaces.

The choice of the programming language determines the comfort that developers have

when developing Apps for a platform. All programming languages in table 3.4 are suit-

able for all levels of programmer from beginners to experts [GM95, GR11, MG10]. The

third column shows that all solutions facilitate programming by offering IDEs. The

last column shows that all solutions support programmers with a SDK (Sec. 3.10.5)

that typically consists of support material such as development templates (Sec. 8.2),

and documentation [MG10, PMC+12, VSCK11].

3.10.4 App Store

An App store acts as software repository and market platform for Apps. In the de-

scribed platforms (Sec. 3.10.3), the App store has an interface that is running locally on

a smartphone. This interface is used to download Apps from the repository (Fig. 7.5)

[VSCK11, GWB10, LY10, Kim10].

The most successful App store in 2014 is the Apple App store that was opened in 2008,

followed by the Google Play Store that opened in 2010 [SZWN11, TTP11]. Within

the first half year after opening, 300 million Apps had been downloaded [LY10]. Until
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October 2013, 60 billion downloads from the Apple App store happened and more

than 1 million Apps are available 11

This shows that adding features via software is attractive for users. In 2014, the

availability of Apps is a decisive factor for a smartphone [Kim10, vEF12, LY10, Ant11,

TTP11, Eri12]. For making pervasive computing ubiquitous, a distribution mechanism

for Smart Space services is required:

<R.46> An App store with Simple access is required to enable real world pervasive

computing.

3.10.5 Software Development Kit (SDK)

So-called Software Development Kit (SDK) of smartphone OSs provide developers

with tools that enable and facilitate the development of software for the supported

platform. An SDK typically includes [MG10, GR11, TTP11, GWB10, LY10]:

• API libraries that allow accessing the hardware and software that is available

through the OS.

• An emulator that allows testing software without having to install it on the

hardware (e.g. smartphone).

• Example programs, and supportive material for learning the development for the

platform.

The API libraries are required to implement portable access to the smartphone pe-

ripherals (<R.8>). The emulator facilitates the development. It allows testing and

debugging software before deploying it to the target platform. An emulator typically

offers better debugging support than the target device [TH10, MG10, GR11, App13,

VSCK11, GWB10].

The diversity of Smart Devices in real world Smart Spaces makes offering emula-

tors important for implementing Smart Space Orchestration. Emulators allow de-

veloping software without owning a device, facilitate testing, and enable testing of

diverse scenarios before deploying a Smart Space service. Emulator support can be

expected to enhance the dependability and security of software orchestrated Smart

Spaces (Sec. 8.3.3, Sec. 7.4).

<R.47> A suitable programming abstraction for future Smart Spaces should support the

testing of services with emulators.

As SDKs facilitate the development of software for a platform, requirement <R.27>

can be extended:

<R.27> The availability of a SDK for user friendly programming languages with an IDE

support developers.

11http://www.theverge.com/2013/10/22/4866302/apple-announces-1-million-apps-in-the-app-store.

http://www.theverge.com/2013/10/22/4866302/apple-announces-1-million-apps-in-the-app-store.


3.10. Use Case: App Economy 113

3.10.6 Crowdsourcing

The term crowdsourcing describes a competitive process of cooperative work. The

competitive aspects comes via incentives such as direct (sales) and indirect (adver-

tisement) monetary payment, honor, or other forms of perceived rewards. The com-

petition leads to innovation and quality assurance [BCPR09].

App stores allow crowdsourced development. They attract many developers [PMC+12,

KK10]. In 2012 more than one million people were developing Apps. The top 1500

developers had an average revenue per App between $2000 and $4000 per month

[PMC+12].

Different revenue models exist including paid Apps where the store owner typically

keeps 30% of the revenue, and free Apps that show advertisements. The advertise-

ments are added via the API of the smartphone OS SDK. The advertisements to be

shown are typically provided by the App store operator. App developers are often

paid per showed advertisement [PMC+12, Kim10, GWB10, YYC10, LY10].

<R.48> Crowdsourced development fosters innovation and can enhance the quality

of software via its competitive mechanisms.

3.10.7 Quality Assurance

A major difference between the Apple App store and the Google Play Store is that the

Apple store is gated. This means that Apple reviews Apps before publishing them

while Google is publishing all Apps and removing malicious Apps when malicious

behavior is noticed or reported [But11, App10, SFK+10].

The former results in a higher overall quality while the latter approach scales better.

In 2011 no successful mechanisms to provide scalable quality assurance were known

[But11, SZWN11]. In Sec. 7.4 a candidate for such a mechanism is proposed that is

based on crowdsourcing [BCPR09] and automated feedback collection.

Bug tracking is reported as the biggest challenge by App developers [PMC+12]. For

high real world usability bug tracking is required for implementing <R.48>. The

solution that is introduced in Sec. 7.4 contains automated feedback mechanisms that

foster bug detection. The methods discussed in Sec. 5.5.6 can help identifying and

preventing bugs.

3.10.8 Security

The opening of a platform for third party Apps makes it necessary to provide security

mechanisms to secure users, software, and devices from malicious or defective Apps.

Sandboxing

Running third party Apps requires mechanisms to secure the OS and Apps from unau-

thorized access at run time. The same applies between different Apps. As solution for

this problem, iOS, Android, and Windows Phone 7 run applications within sandboxes

that cage Apps [BBS+10, SM13, SFK+10, App13, App12].

The use of Java provides sandboxing functionality in the DS2OS system that is intro-

duced in Ch. 7.
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Code Signing

The installation of third-party Apps makes it necessary to identify Apps before in-

stalling them to prevent the installation of unauthorized Apps. Apps signing by the

App store ensures that an App went through the security mechanisms of the App

store (Sec. 3.10.8), and that it was not altered. For this purpose, Apps are signed by

the App stores. The signature of an App is validated automatically by the OS before

installing it on a smartphone [SFK+10, App12].

The same mechanism is applied when developers upload their Apps to an App store.

A store typically only accepts code that is signed with the developer’s private key.

The described mechanism ensures that the identity and the integrity of an App can

be guaranteed [SM13, App12].

A similar solution for signing services is proposed for Smart Spaces in Sec. 7.3.

Access Control

Smartphones and their Apps collect private data including the user’s location, device

usage, contacts, and calendar entries. This makes it necessary to protect user privacy

by protecting the user’s data from unauthorized access. As solution, the smartphone

operating systems uses role-based access control and encryption as mechanisms [SM13,

App13, App12, NKZ10].

The data access of an App is per default restricted to the data it created. To get more

access, the user is asked to give permission based on roles such as “The App wants to

access your address book.”. Typically if the user grants access via the simple option

“yes”, the App can always access the address book unless this right is revoked in the

phone’s settings.

The amount of smartphone OS built-in features, and supported peripherals is limited

(Sec. 3.10.1). For managing the access to the known entities, access permissions lists

are available in the smartphone UI (Fig. 7.5) that show Apps that are granted access

to data from software or hardware components (e.g. Global Positioning System (GPS)

location) [NKZ10, App12, SM13]. Sec. 7.3.3 presents how the same mechanism can

be used in Smart Spaces supporting their distribution and increased complexity.

For protecting data in case of a hardware theft, data on disk can be encrypted [App12,

SFK+10]. Encryption can also be applied for Smart Space data (Sec. 5.5.5).

Security for Smart Spaces

The brief description of the security architecture of the App economy shows that

security and privacy features can be successfully enforced for third party Apps when

they are built into the OS. As the OS is the execution platform for Apps, it can impose

security and privacy features to Apps in a transparent way. The term “security-by-

design” is used to describe that security is provided from ground up, independent of

the mechanisms that are implemented in the software (App) that is using a system.

Smart Spaces contain a diversity (<O.3>) of devices and use cases. They are dis-

tributed. Smart Space Orchestration typically happens invisible in the background.

Users are not as aware of the ambient orchestration as they are of using Apps on
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the smartphone, which they hold in the hand. This makes providing security and

protecting privacy more challenging in Smart Spaces than in smartphones [CD05].

Smart Spaces will inevitably collect more privacy-relevant data of user’s and their

environments [MHDM09]. This leads to the requirement:

<R.49> Mechanisms for providing security-by-design must be supported by a pro-

gramming abstraction for Smart Spaces.

3.10.9 Conclusion (Difference Smartphone – Smart Space)

Smartphones and Smart Space are similar in several aspects (Sec. 3.10.2). Therefore,

looking at the use case App economy helps understanding relevant success factors for

a software-driven technology to become mainstream.

The diversity and the distribution of use cases and participating entities, and the

orchestration of entities that are operating in the background as embedded devices

(Sec. 3.3.1) make Smart Spaces a more complex environment than smartphones.

Peripheral Diversity

The peripherals of smartphones are limited in their amount, and in their diversity.

This allows the integration of fixed abstract interfaces to peripherals smartphone OSs

(Sec. 3.10.1). As the peripherals of a smartphone are known in advance, suitable

device drivers can be tested and added to a smartphone OS before shipping a new

device. Smartphone OSs follow a monolithic approach (Sec. 3.4.4) having the drivers

as part of the OS [But11].

The possibility to dynamically adding support for new Smart Devices is a major

challenge in Smart Spaces [KFKC12, DHJT+10, Kru09] (<R.23>, <R.43>, <R.8>,

<R.6>). It is not necessary in the App economy.

Peripheral Distribution

A second fundamental difference is that the peripherals and the execution platform

of smartphones are not distributed. Handling distribution is a major challenge

for a programming abstraction for Smart Spaces (<R.13>, <R.14>, <R.15>, <R.7>,

<R.49>).

Invisibility of Smart Devices

A third difference is that the software in Smart Spaces will often run in the background

out of the users direct attention. This is challenging in different aspects including

software deployment, expected dependability, and self-management (<R.3>).

Distribution of the Execution Environments

A fourth challenge that is relevant in Smart Spaces but not on smartphones is the dis-

tribution of the execution environments. Smartphones Apps typically run on a single

device, or in a managed cloud back-end (Sec. 4.3). Smart Spaces instead are likely to

consist of distributed heterogeneous hosts. This requires more complex mechanisms

for implementing a Smart Space service management (Sec. 7.2.4).
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Portability

The analysis of the App economy introduced a third dimension for portability:

<R.45> Portable service executables are required to enable running the same binary

on the heterogeneous hardware platforms of future Smart Spaces.

The portability of the OS itself that is required for Smart Spaces was already intro-

duced with requirement

<R.7> Portability of the implementation of the programming abstraction itself

must be supported.

The portability from specific peripherals was introduced before with the requirement:

<R.8> Logical portability of services must be supported by offering abstract inter-

faces to Smart Devices.

As described in Sec. 3.10.3, smartphone OSs provide fixed support for the peripherals

described in Sec. 3.10.1. Other peripherals can only be supported by providing driver

code in Apps which is not desired for Smart Spaces as discussed in Sec. 3.3.3.

Scalability

Smartphones are a fixed execution environment, Smart Spaces are a dynamically

changing execution environment (Sec. 3.10.2.

Smartphones cannot provide scalability as their resources are fixed. Applications can

only scale by offloading computation into the cloud (Sec. 4.3).

By adding or changing hardware components of Smart Spaces, providing scalability

is enabled. To provide scalability, suitable software support is needed:

<R.50> A suitable programming abstraction for Smart Spaces must support scalability.

The described scalability is relevant for the implementation of a suitable program-

ming abstraction for pervasive computing (Sec. 5.9), and for service implementations

(Sec. 7.6.2).

With DS2OS, this thesis shows how the mechanisms of the App economy can be

transferred to Smart Space Orchestration, and how resulting additional challenges of

the Smart Space domain can be solved.
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3.11 Summary of the Analysis

Pervasive computing is not reality in 2014 (Sec. 2.4). A bottom-up (part I–A) and a

top-down (part I–B) analysis of different domains were presented in this chapter. They

identified 50 requirements that prevent the implementation of pervasive computing

in real life. The high amount of requirements illustrates the difficulty of finding a

suitable programming abstraction for pervasive computing (<O.0>).

The remainder of this chapter summarizes the requirements analysis results. This is

done for making the relation between the requirements better understandable, and to

recapture them in the context of this thesis’ objective. To make them better manage-

able and understandable, Sec. 3.13 clusters the requirements into seven domains (see

Fig. 3.14). To provide another structure, the requirements are also clustered to the

thesis objectives they are related to (see Fig. 3.15).

The chapter started with an analysis of a future Smart Space topology. It revealed

that the seven layers of context-aware Smart Space Software Orchestration that can

typically be found in literature (Sec. 2.6.4) can be merged to four domains. This

reduces the overall complexity. For the software layers (3,4,3a) in Fig. 3.1 this results

into two domains, the “virtual world” that provides abstract interfaces, and services.

Services adapt Smart Devices to the abstract interfaces, or implement orchestration

workflows by using the abstract interfaces (Ch. 8).

Bottom-up (part I–A), Smart Device are the interfaces between the physical world

and the virtual world (Fig. 3.1). They define what can be sensed and actuated via

software. Sec. 3.2 analyzed Smart Devices in the professional (Sec. 3.2.1), and in

the home domain (Sec. 3.2.2). It was shown that diverse Smart Devices are avail-

able in 2014. Interface heterogeneity was identified as a major challenge for software

orchestrated Smart Spaces.

The DIY maker culture for Smart Devices was introduced (Sec. 3.2.3). It shows the

possibility for users to create their own Smart Devices as basis for diverse perva-

sive computing scenarios. DIY hardware making complements the goal of this thesis,

to enable user-based software development for software orchestrated Smart Spaces

(<O.0>). If this thesis reaches its goal, users are enabled (and empowered, Sec. 2.5.2)

to create all components of their future software orchestrated Smart Spaces on their

own.

Projecting the development of Smart Devices into the future (Sec. 3.2.4), it was dis-

cussed that Smart Devices are likely to become a suitable execution platform for

software in future Smart Spaces.

The inherency of interface heterogeneity was discussed (Sec. 3.3.1). It is a major

challenge for providing portability of services in future Smart Spaces. The discussion

showed that using a single communication protocol for all Smart Devices is not desired.

As existing methodology to overcome heterogeneity, classical standardization was ana-

lyzed. The diversity of domains and vendors makes all assessed approaches unsuitable

for standardizing the abstract interfaces to Smart Devices. A convergence of abstract

interfaces is necessary to provide service portability (Sec. 5.6.4).

The three possibilities to bridge protocol heterogeneity, in the service, “in-the-middle”,

and on the Smart Devices were discussed (Sec. 3.3). The result is that bridging “in-

the-middle” has most advantages. To implement it, methods to bridge heterogeneity
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were analyzed. Diverging expressiveness of communication protocols was identified

as major cause for undesired transparent information loss. The existing principle of

multi-protocol translation was analyzed and considered unsuitable for future software

orchestrated Smart Spaces.

The dual applicability of the middleware paradigm for providing interface portability

towards services, and for providing portability from heterogeneous execution environ-

ments was introduced (Sec. 3.4). Different modes of inter-service communication were

discussed. All are relevant for the implementation of diverse pervasive computing sce-

narios (<O.3>).

The comparison between monolithic kernels and µ-kernel operating systems showed

the advantages of dynamic extensibility. Pervasive computing middleware should be

extendable with services for purposes such as adaptation of Smart Devices and or-

chestration, and services that add functionality to the middleware core for supporting

service developers. Such extension can be additional context search functionality for

instance.

The top-down analysis (part I–B) started with the human mind (Sec. 3.5). It was

shown that humans apply abstraction principles for generating descriptive knowledge.

Problem solving can be described as identifying paths between so-called frames that

represent states in the human mind (Sec. 3.5.4). A goal-oriented planning process

seems more intuitive for humans than a procedural description of problem solving.

AI was analyzed as software implementation of intelligence (Sec. 3.6). FSMs are

typically used to implement intelligent behavior. ECA rules were identified as simple-

to-use, and often suitable method to represent Smart Space Orchestration tasks. Mod-

ularization was identified as important tool to structure complex tasks.

With autonomic management, a practical application of intelligent behavior for man-

aging distributed entities was introduced (Sec. 3.7). Autonomy was identified as im-

portant principle for lowering complexity and increasing dependability.

Service orientation was introduced as a relevant method to modularize functionality

(Sec. 3.8). The functionality of the WS implementation of the SOA principle was

identified as not sufficient for Software Orchestration in future Smart Spaces.

Context modeling was introduced (Sec. 3.9). Ontologies were identified as most suit-

able concept for representing context in future Smart Spaces. The analysis of diverse

meta models showed that no suitable meta model for Smart Spaces exists (table 3.3).

Finally, the App economy as successful example for the real world implementation of

mobile computing was analyzed in part I–C. The analysis shows that Smart Spaces

in 2014 are in a comparable situation to smartphones in 2007.

3.12 Requirements List

The analysis section (Ch. 3) identified 50 requirements for implementing Smart Space

Orchestration in the real world. Supporting the requirements is required to reach the

objectives of this thesis (<O.0>, <O.1>, <O.2>, <O.3>, <O.4>). The requirements

were identified by analyzing different research fields.

To give an overview on the requirements they are briefly summarized in the order they

were identified before. Requirements that belong together are indented. They are not



3.12. Requirements List 121

summarized to one requirement to maintain the diverse aspects that are relevant

for designing a suitable programming abstraction. Ch. 5ff shows that the indented

requirements are solved with different methods.

A one page list of the requirements can be found in the appendix in Sec. A.1.

<R.1> Simplicity-to-use is an overall requirement. A simple-to-use programming ab-

straction is needed to shift the focus from implementing pervasive computing

scenarios to implementing pervasive computing scenarios [Abo12]. The goal is

to provide an abstraction that allows shifting the intellectual effort from the

technical burden of implementation to focusing on the logic of pervasive com-

puting scenarios.

<R.2> Multi-user support is needed to reflect the expected shared use of ambient com-

puting resources.

<R.3> Self-management is needed to lower the complexity, to make ambient compo-

nents usable for non experts, and to enhance the dependability of software or-

chestrated Smart Spaces.

<R.4> User participation is desired to empower users to implement the pervasive com-

puting scenarios they have in mind. In addition, it is required to scale software

development with the amount of services that are required in software orches-

trated Smart Spaces (Ch. 8). User participation is supported by different other

requirements, including <R.1>, <R.3>, <R.40>, <R.39>, <R.47>, <R.46>.

<R.5> Context-awareness support is required as processing context is a fundamental

activity that all Smart Space services have to implement. Providing support for

this functionality in the programming abstraction facilitates the development of

services.

<R.6> Role-independent unified interfaces to all services (Ch. 8) facilitate the develop-

ment of services. Unified interfaces are simpler to learn and use than heteroge-

neous interfaces. Unified interfaces enable modularization as all services use the

same (compatible) interfaces.

Portability has different dimensions that are relevant for this work:

<R.7> Portability of the implementation of the programming abstraction is neces-

sary to enable its use on heterogeneous computing nodes (Sec. 3.2.4).

<R.8> Interface portability describes the implementation of “standardized” inter-

faces for common functionality. This requirement includes unified inter-

faces (<R.6>), and standardization (<R.10>).

<R.9> Information loss happens when information is converted between representations

with different expressiveness. To support diverse pervasive computing scenarios,

and to enable dependable Smart Space Orchestration, it must be prevented or

made explicit so that it can be considered by software.

<R.10> Standardization is needed to overcome heterogeneity of interfaces to services

that connect Smart Devices, or provide other functionality. Requirement <R.6>

focuses on the mechanisms that are used to access functionality of a service. This

requirement focuses on the functionality that is offered over the interface, e.g.

using one interface for the functionality “lamp” only (Sec. 5.6.4).
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<R.11> With their spatial extent, Smart Spaces are inherently distributed which leads

to the requirement of distribution support.

<R.12> Access transparency is needed to hide how a resource is accessed (<R.6>)

and how its data are represented (<R.10>).

<R.13> Location transparency is needed to provide portability (<R.7>) in a dis-

tributed system via hiding the location of a resource.

<R.14> Migration transparency is needed to hide when software services change

their execution environments within software orchestrated Smart Spaces.

<R.15> Relocation transparency is needed to make the access to services that are

getting moved transparent.

<R.16> Concurrency transparency is needed to provide shared access to services in

a transparent way.

<R.17> Failure transparency is needed to hide failure and recovery of resources.

<R.18> Persistence transparency hides how information is obtained (e.g. disk, mem-

ory, database, service).

Communication Modes

<R.19> Direct communication support is needed for time and security critical in-

formation exchange between entities in Smart Spaces.

<R.20> Mailbox communication support is needed for security critical information

exchange between entities in Smart Spaces.

<R.21> Publish-subscribe communication support is needed for time but not security

critical information exchange between entities in Smart Spaces.

<R.22> Generative communication support is needed for time and security uncriti-

cal information exchange between entities in Smart Spaces.

<R.23> Dynamic extensibility must be supported at runtime by a programming abstrac-

tion for dynamically adding support for new Smart Devices, and for functionality

that supports the implementation of pervasive computing scenarios.

<R.24> A descriptive knowledge representation should be used to represent functionality

as it is more intuitive for humans than a procedural knowledge representation.

<R.25> Interaction on different levels of abstraction helps structuring orchestration

workflows. Supporting it makes developing Smart Space service more intuitive

for humans.

<R.26> Modularization support must be provided to structure problem solving in Smart

Spaces. Modularization support reflects the natural problem solving process of

humans: partitioning complex problems into manageable small ones.

<R.27> The support of multiple programming languages with SDKs and IDEs facilitates

the software development process. It enhances the usability of Smart Space

Orchestration in future Smart Spaces by supporting the tools that are best

suitable for solving a certain problem with the programming abstractions.

<R.28> A high expressiveness of a context representation helps to minimize information

loss when converting information from and into other representations (<R.9>).

The context representation defines which information can be used by services.

High expressiveness enables the implementation of diverse scenarios.
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<R.29> A simple-to-use context abstraction facilitates the development of Smart Space

services. For programming abstractions that offer context-awareness support

(<R.5>) this is a sub requirement of <R.1>.

<R.30> Systems that implement Smart Space Orchestration must be dependable (Sec. 2.6.2).

<R.31> Loose coupling of services is needed to implement dynamic binding of services

at run time. This allows to implement pervasive computing scenarios via mod-

ular components (<R.26>). Loose coupling of services can be implemented by

fulfilling the following requirements.

<R.32> Service contracts are needed to implement encapsulation. They are the

abstract interfaces of services (<R.33>, <R.34>).

<R.33> Service autonomy is needed to encapsulate functionality.

<R.34> Service abstraction is the second part of encapsulation. It is required to

implement information hidings.

<R.35> Service reusability is needed for fostering modularization (<R.26>). It is

implemented by encapsulation.

<R.36> Service composability is needed for fostering modularization (<R.26>). Pro-

viding unified interfaces results in composability (<R.6>).

<R.37> Service statelessness describes the separation of programming logic and

data. It helps facilitating the development of services and it facilitates the

migration of services (<R.14>, <R.15>).

<R.38> Service discoverability is needed to implement dynamic composition of ser-

vices (<R.36>) at run time (<R.23>).

<R.39> Abstract interface validation support helps enhancing the dependability of a so-

lution for Smart Space Orchestration (<R.30>, <R.49>).

<R.40> A Meta model with suitable properties as shown in table 3.3 is required to sup-

port scalable, and intuitive context-aware computing (<R.5>, <R.9>, <R.28>,

<R.29>). Suitability includes:

<R.41> Low complexity in the meta model is required to facilitate the development

of context models. It enables user participation in the context modeling

process (<R.4>).

<R.42> Collaboration support in the creation of context models is needed for fos-

tering user participation (<R.4>), and to provide the necessary scalability

of the process to support the high amount of Smart Devices.

<R.43> Dynamic extensibility of the context models at run time is needed to add

new context at run time. This is required to represent new functiona-

lity that becomes available in a Smart Space via adding Smart Devices or

services.

<R.44> Context validation enhances the dependability of a software orchestrated

Smart Space. It helps preventing errors (<R.49>). It supports user parti-

cipation by providing immediate feedback (<R.4>).

<R.45> Portable service executables are needed to run executables on heterogeneous

hosts. This requirement is introduced by enabling to run third parts services in

Smart Spaces. It completes the portability requirements <R.7>, and <R.8>.
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<R.47> The support of emulators facilitates the development of services and fosters

user participation (<R.4>). It can be used to enhance the dependability of

Smart Space software via extensive testing of services in an emulator. It allows

emulating complex Smart Space setups.

<R.46> The availability of an App store is needed for managing the distribution of ser-

vices to Smart Spaces. It is required for supporting user-based development via

exchanging services between Smart Spaces (<R.4>). It is required for crowd-

sourcing (<R.48>).

<R.48> Crowdsourced development is needed to attract users in the development of ser-

vices for software orchestrated Smart Spaces. It fosters a broad developer basis

for developing the high amount of services that is required for implementing

future Smart Space Orchestration.

<R.49> Security-by-design provides security in Smart Space software without developers

having to implement it. This is needed as an important part of self-management

(<R.3>) to implement a dependable system (<R.30>). Security-by-design is a

requirement for user participation in the development of Smart Space services

(<R.4>).

<R.50> Scalability is required for real-world use. The diversity of pervasive computing

scenarios and Smart Devices require managing the big amount of context and

services.

3.13 Mapping of Requirements to Objectives

This chapter is divided into a bottom-up and a top-down analysis. It is structured by

analyzing different scientific domains. This section provides the mapping of the identi-

fied requirements to the thesis objectives (Sec. 1.1). Those of the 50 requirements that

belong together (Sec. 3.12) are combined in a single circle for better understanding,

and for saving space.

The high-level assessment of the state of the art in Sec. 3.13.2 and the detailed analysis

in Sec. 4.5 confirm the necessity for a detailed requirements analysis that was done

in this chapter. Existing surveys do not cover such a broad range of requirements

(Sec. 4.5.1). A reason for a more narrow view is that none of the assessed research

middleware is designed for real world use. The following assessment of the solutions

and the more detailed analysis in Sec. 4.5 show that existing middleware covers only

a subset of the identified requirements.

3.13.1 Legend

Fig. 3.15 clusters the identified requirements to the four objectives Smart Device

adaptation support (<O.1>), orchestration workflow implementation support (<O.2>),

diversity support (<O.3>), and real world usability (<O.4>).

Additional to the clustering, the requirements are associated with the three functional

domains service interface related, context interface related, and additional support

functionality. Fig. 3.14 shows the functional domains and the symbols that are used
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legend
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Figure 3.14: Legend to the requirements mindmap Fig. 3.15. The basic functional domains are on

the right. The nodes on the left are combinations for requirements that belong to multiple domains.

to classify requirements that belong to multiple functional domains. It is the legend

to Fig. 3.15.

Service interface related functionality is shown in yellow and has a symbol on the top

left when combined with other functional domains. Context interface related has the

color green and its symbol on the bottom right in case of combination with other

functionality. Additional support functionality is shown in golden color. It has its

symbol on the top right.

Fig. 3.15 shows that most of the requirements belong to more than one functional

domain. That indicates that a mechanism that fulfills a requirement has impact on

multiple functional domains. The design of the programming abstraction in Ch. 5 and

its implementation in Ch. 6 show how the service interface and the context interface

domain can be merged. Fig. 3.15 motivates this step. In each of the resulting require-

ment rings the service interface related requirements are shown next to the context

interface related requirements. In between both groups are shared requirements of

the two and between the two. As can be seen, many requirements are shared between

the two functional domains.

The connecting lines in the flower of requirement <O.4> on the right from requirement

<R.26>, modularization support, and requirement <R.5>, context-awareness support,

show related requirements. Both are superior requirements that comprise the con-

nected children.
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3.13.2 Assessment of the Fulfillment of the Requirements

The assessment of the state of the art in Sec. 4.5 shows that existing middleware for

pervasive computing focuses on Smart Device adaptation (<O.1>), and support for

orchestration workflow implementation (<O.2>).

The requirements that are associated with diversity support (<O.3>) are rarely sup-

ported. Most of the requirements that were identified in this chapter are associated

with real-world usability (<O.4>). The discussion below and the state of the art ana-

lysis in Sec. 4.5 show that those requirements are typically not fulfilled by existing

pervasive computing middleware.

The available support by pervasive computing middleware decreases clockwise with

the increase of the number of the objective in Fig. 3.15. Most of the requirements that

were identified in this chapter are associated with the objectives <O.3> and <O.4>.

This could be an explanation, why pervasive computing is still missing a suitable

programming abstraction for real world use (<O.0>, Sec. 2.5).

In the remainder of this section this high-level assessment is discussed more in detail.

The discussion is structured by the thesis’ objectives and their associated functional

requirements in Fig. 3.15. Sec. 4.5 analyzes the state of the art structured per middle-

ware.

Detailed Analysis

Fig. 3.15 shows the mapping of the requirements that were identified in this chapter

(Sec. 3.12) to the thesis’ objectives (Sec. 1.1). Following, all requirements from the

figure are explained in the context of the objective they are assigned to.

Additionally the fulfillment of each requirement in the state of the art is described on

a high level. This assessment is not done in form of a table as the requirements are too

numerous. Instead a more detailed state of the art analysis with fewer criteria that

are matched with existing surveys is presented in Sec. 4.5. Fig. 4.2 shows a mapping

of the requirements to the functional domains that are used in the survey.

The services that implement Smart Device adaptation are called adaptation services

in this work. Services that implement orchestration workflows are called orchestration

services. Different service classes are introduced in Sec. 8.3.

Smart Device Adaptation

Smart device adaptation describes the ability of a middleware to connect Smart De-

vices.

Distribution support (<R.11>) is needed to make access to distributed Smart De-

vices transparent for orchestration services. Such support is provided by most related

middleware designs (Sec. 4.5).

Context-awareness support (<R.5>) is required to implement pervasive computing

services. Most of the related work supports context management. The degree of the

support is varying. Most related work does not use explicit context models (Sec. 3.9).

Interface portability (<R.8>) expresses the ability to run a service in different Smart

Space instances. Interface portability requires providing abstract interfaces to services
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that are identical in all Smart Space instances. In addition it requires a discovery

mechanism for instances of the interface in a concrete Smart Space.

Abstract interfaces to functionality in Smart Spaces are only provided by few solu-

tions. Discovery mechanisms are provided by a subset of them. None of the assessed

middleware designs provides mechanisms to share abstract service interfaces. This

would be necessary to allow distributed developers to program against an interface.

Standardization (<R.10>) is required to implement unified abstract interfaces to di-

verse (Smart Device) functionality in a Smart Space. The same functionality should

be accessible via the same interface (e.g. “lamp”) independent of the implementation

(Sec. 3.3.2). None of the assessed related middleware offers standardization mecha-

nisms.

Self-management (<R.3>) is required to manage the complexity that emerges from

Smart Space Software Orchestration. All assessed middleware is self-managing.

Adaptation services convert between device-specific interfaces and abstract interface.

This can lead to information loss (<R.9>). Only one of the assessed middleware

designs (PACE, Sec. 4.5.11) considers such loss.

Orchestration Workflow Implementation

Orchestration workflow implementation support describes the support of a middleware

to develop orchestration services.

Portability of services (<R.8>) is needed to enable the reuse and the sharing of orches-

tration services. Only one of the assessed middleware designs (One.World, Sec. 4.5.13)

enables such reuse. The rest supports orchestration services only as context consumer.

This is problematic as it prevents modularization.

Standardization (<R.10>) is needed for unifying the abstract interfaces to services

(Sec. 3.3.2). The assessed middleware designs (Sec. 4.5) do not offer abstract interfaces

to services and standardization methods.

Self-management of services (<R.3>) is provided by self-contained services. As ser-

vices communicate typically not with each other they are self-contained.

Context-awareness support (<R.5>) is inherently needed to implement orchestration

services (Sec. 2.6.4). Most assessed middleware (Sec. 4.5) support access to context

repositories that are either stored in the implementation of a service or –in few cases–

in the middleware.

Diversity Support

Diversity support describes the support of a middleware for diverse scenarios and

Smart Devices.

Role-independent unified interface (<R.6>) simplify the implementation of services

and foster modularization. Only one assessed related middleware implements such

unification of the interface (One.World, Sec. 4.5.13).

Loose coupling of services (<R.31> - <R.38>) supports mash ups of complex functio-

nality from simpler modules. In particular it facilitates the implementation of services
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that interact with diverse domains as it allows to use existing services from those do-

mains. Service coupling and discovery are not supported by most existing solutions.

The support of different communication modes for inter-service communication (<R.19>-

<R.22>) is required as different use cases require different coupling. Only six of the

assessed middleware designs (Sec. 4.5) allow free communication between services.

The rest only allows vertical communication with adaptation services. None of the

assessed middleware supports all modes.

Multi-user support (<R.2>) will be required for diverse future pervasive computing

scenarios (Sec. 2.5). None of the assessed middleware frameworks (Sec. 4.5) explicitly

addresses multi-user support.

The possibility to interact with the environment on different levels of abstraction

(<R.25>) facilitates the implementation of pervasive computing scenarios. Though

some of the assessed middleware frameworks include hierarchical context process-

ing, the concept of offering context on different levels of abstraction is not provided

(Sec. 4.5).

High context expressiveness (<R.28>) is relevant for being able to meet the require-

ments of the diverse domains that are affected by pervasive computing. Expressiveness

is not a topic that is addressed explicitly in the assessed related work (Sec. 4.5). Only

one of the assessed middleware designs (PACE, Sec. 4.5.11) considers loss (<R.9>).

Implementation portability of a middleware (<R.7>) is important to allow using a

programming abstraction and its implementation in diverse environments. Some of

the related work is implemented in Java which leads to portability. None of the

related work explicitly addresses portability to support diverse run time environments

explicitly.

User participation (<R.4>) is desired to foster the implementation of user-driven per-

vasive computing scenarios (Sec. 2.5). In addition it is required to implement support

for diverse Smart Devices and scenarios. Only one related work (OPEN, Sec. 4.5.12)

provides support for user-based development, and this middleware does not support

the implementation of user-based services with other mechanisms than logic rules.

Another one discusses providing it (HomeOS, Sec. 4.5.5)

Standardization (<R.10>) is needed to enable interface portability. It is necessary for

implementing diverse scenarios with diverse devices in a way that allows services to

be used in multiple Smart Spaces with diverse hardware. Only OPEN (Sec. 4.5.12)

and SOCAM (Sec. 4.5.9) support a convergence of context models. Both implement

the approach of standardization by experts. As discussed in Sec. 3.3.2 this approach

is not flexible enough for real world Smart Spaces.

Dynamic extensibility at run time is required for context (<R.43>), and for services

(<R.23>) that are used in a Smart Space. Most of the reviewed middleware (Sec. 4.5)

supports dynamic extension. Without sharing of abstract interface or context models

the the possible extensions is of little use as services have to be coupled explicitly.

Scalability (<R.50>) becomes relevant in real world use of Smart Space Orchestration.

Such use includes simultaneous interaction of different use cases that require support

for different Smart Devices and that are connected via different services. The assessed

middleware designs (Sec. 4.5) do not focus on scalability though most solutions scale

to some extent.
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Real World Usability

Real world usability concerns the deployment of a solution in the real world which

implies diverse Smart Devices, diverse pervasive computing scenarios, diverse users,

and diverse developers.

Role-independent unified interfaces to services (<R.6>) are fundamental for the deve-

lopment of services for Smart Spaces. They are the basis for modularization enabling

service reuse and service mash up. Role-independent unified interfaces support pro-

grammers. Learning the use of a programming abstraction is facilitated by using

identical concepts for creating adaptation services, orchestration services, and other

services (Sec. 8.3). Only one assessed solution is offering such interface (One.World,

Sec. 4.5.13).

Modularization helps structuring the complexity of programs (Sec. 3.8), and it is a con-

cept humans are familiar with (Sec. 3.5). Therefore modularization support (<R.26>)

with its facets (<R.32> - <R.38>) is needed for real world deployments. Several as-

sessed middleware frameworks (Sec. 4.5) partly provide modularization support. None

of the existing solutions makes extensive use of it by allowing developers to mash up

complex services by reusing existing services that other users created.

Standardization of interfaces is necessary to enable interface portability concerning

different devices with similar functionality. Only when the abstract interfaces of such

devices are converged, services can access the functionality each of the devices pro-

vides, independent if it is from its vendor (Sec. 5.6.4). Only two related works offer

standardized interfaces by using context models that are maintained by experts (SO-

CAM Sec. 4.5.9, OPEN Sec. 4.5.12). This approach does not scale for future Smart

Spaces.

Context-awareness support is needed as context is the base for pervasive computing

services. To be shareable, context models must be provided (<R.24>) using a suitable

meta model (<R.40>). Both, the context models (<R.29>) and the meta model

(<R.41>) must be simple-to-use. Simplicity includes that a context model can easily

be understood, and that a simple interface to access context repositories is provided.

Only two of the reviewed state of the art middleware designs (SOCAM Sec. 4.5.9,

OPEN Sec. 4.5.12) use explicit context models. In both cases experts are maintaining

the context models.

Transparency (<R.12> - <R.18>) is needed to hide the distribution and heterogeneity

of software entities in Smart Spaces (Sec. 3.4). Most reviewed middleware provides

transparency.

Portable service executables (<R.45>) enable portability of services between hetero-

geneous execution environments. Portability is required for real world deployment as

hardware in Smart Spaces is likely heterogeneous (Sec. 3.2.4). Support for heteroge-

neous computing architectures and OSs is not explicitly considered by the assessed

middleware implementations (Sec. 4.5). Most solutions are portable as they are im-

plemented in Java, or in a scripting language. Both run interpreted code which leads

to portability.

The availability of an SDK (<R.27>), and support for emulators (<R.47>) are relevant

for facilitating the development of Smart Space services. Several of the assessed

solutions provide programming container for implementing services. They can be
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considered as part of an SDK. Detailed documentation and emulator environments

miss for all assessed solutions.

An App store (<R.46>) as repository for software, and as interface between developers

and users is required to share and distribute services as it happens in the App economy

in 2014 (Sec. 3.10). Only one assessed solution (OPEN, Sec. 4.5.12) provides a working

solution. However, OPEN only allows sharing rules since its services are logic rules.

This facilitates the work of an App store, and it makes the solution unsuitable for

general real worlduse. The HomeOS developers state the requirement for an App

store but do not provide a solution.

Dependability (<R.30>) of software orchestrated Smart Spaces is required for several

reasons including safety (Sec. 2.6.2), and a user shift compared to current prototypes.

The emergence of Smart Spaces will lead to a shift of the users from technically

skilled makers [BLM+11] towards regular customers potentially without deep technical

understanding, but with high expectations on the reliability of a system at the same

time. Dependability is not explicitly handled by the assessed middleware systems.

Self-management is needed to provide dependability (sec. 3.7). It makes the com-

plexity of diverse hardware and software systems in future Smart Spaces manageable.

All assessed solutions (Sec. 4.5) provide self-management of the middleware platform.

Few of the assessed middleware designs manages services locally. Only OPEN ma-

nages the deployment of its ECA-rule-based services into Smart Spaces. None of the

solutions addresses self-management of context models.

Security-by-design is required for user-based software development in Smart Spaces.

“Security-by-design” expresses that security is automatically handled without devel-

opers having to take explicit care. None of the assessed solutions (Sec. 4.5) provides

security-by-design. Some of the solutions include authentication and access control.

Validation support for abstract interfaces of services (<R.39>), context models, and

ideally for service implementations is required for providing dependable Smart Space

Orchestration. Failing services and broken context models can compromise the de-

pendability of the entire software infrastructure of future Smart Spaces. The literature

about the assessed middleware designs does not explicitly discuss validation. The so-

lutions that use context models typically use markup based context models. They

automatically allow basic validation (Sec. 3.9). Services and their abstract interfaces

are not validated in the assessed solutions.

Distribution support (<R.11>) of the middleware platform and of services is required

for high scalability, and dependability. Distribution support for the context mana-

gement is required to enable collaborative development of context models, and to

implement standardization. Half of the assessed solutions (Sec. 4.5) are designed as

distributed systems, or allow the execution of distributed services. Only Aura pro-

vides mechanisms to monitor and control services at run time. None of the solutions

provides support for collaborative authoring of context models.

Dynamic extensibility of a middleware with services at run time (<R.23>) is required

for real world deployment. It can be expected that the operating systems for future

software orchestrated Smart Spaces are permanently running. Only with dynamic

extensibility, support for new Smart Devices and pervasive computing scenarios can

be added. Most assessed middleware platforms can be extended with services.

Dynamic extensibility of context models (<R.43>) is required to reflect dynamic con-

text changes in a Smart Space (e.g. adding new entities). None of the assessed so-
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lutions uses a dynamically extensible ontology. OPEN (Sec. 4.5.12) and SOCAM

(Sec. 4.5.9) use extensible ontologies that is maintained by experts. From the litera-

ture it is not clear if this ontology can be exchanged in Smart Space instances at run

time.

Simplicity-to-use (<R.1>) is required for real world deployments. All platforms are

self-managing which facilitates the operation of the platforms.

A simple API facilitates software development, enabling user-based development. A

fixed APIs is a simple interface. Those middleware designs that support context

management use fixed APIs. But they do typically not support service coupling.

The context models of the assessed solutions are managed manually. This solution is

not simple enough for real world deployment.

Collaborative user-based development (<R.4>, <R.48>, <R.42>) is needed for different

reasons as described before. It helps implementing diverse services for adapting Smart

Devices, and diverse pervasive computing scenarios. This enables users to implement

their ideas (Sec. 2.5). It makes the required software development scale with the high

demand on software service for software-orchestrated Smart Spaces. Only two of the

assessed solutions (OPEN 4.5.12, HomeOS, Sec. 4.5.5) foster user-based development.

In OPEN only ECA-rule-based services are supported. In HomeOS only the idea is

communicated.

Finally, scalability (<R.50>) of all components is required for a real world deployment.

Within their limited functional support, most of the assessed solutions scale (Sec. 4.5).

Self-organizing distributed solutions with context models that can efficiently be parsed

scale best.

3.14 Chapter Conclusion

This section (Ch. 3) identified 50 requirements for real world deployment of per-

vasive computing for Smart Space Orchestration. Sec. 3.11 summarized the find-

ings. Sec. 3.12 mapped the identified requirements to the objectives of this thesis.

Sec. 3.13.2 discussed the fulfillment of the objectives by the state of the art on an ab-

stract level. The following chapter contains a more detailed state of the art analysis

that confirms the described viewpoint.
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4. State of the Art

It would appear that we have reached the limits of what it is

possible to achieve with computer technology, although one

should be careful with such statements, as they tend to sound

pretty silly in 5 years.

John von Neumann, Hungarian born American Mathematician, (1903 -

1959).

Short Summary The chapter starts with an analysis of distributed user-based software

development, virtualization as basic paradigm of cloud computing, network manage-

ment, and building management.

The main part of this chapter analyzes relevant state of the art pervasive computing

middleware. The selection is based on different surveys. The assessment criteria are

also based on several surveys and extended with the requirements from Ch. 3.

Key Results Crowdsourced development of software for Smart Spaces is possible in

2014.

The encapsulation of software in containers facilitates their management.

Using fixed interfaces to access information simplifies the access and results in inter-

face compatibility.

Solutions for network management and building automation are unsuitable for direct

use as basis for software orchestrated Smart Spaces. Neither the data models nor

the interaction methods they offer are sufficient to support the implementation of

diverse pervasive computing scenarios.

The requirements that were identified in Sec. 3.12 are considered relevant in the

research community. Different existing middleware designs solve different subsets of

the requirements. Pervasive computing middleware typically provides functionality

for service management, or context management.

Most middleware provides partial solutions for the adaptation of Smart Devices

(<O.1>), and for the creation of orchestration services (<O.2>). Diversity support

(<O.3>), and real world deployment support (<O.4>) are typically missing.
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A fundamental problem of existing pervasive computing middleware is that it creates

middleware silos that result in missing interoperability between services that imple-

ment pervasive computing scenarios in different domains. Additional missing aspects

are a convergence mechanism for service interfaces and context models, missing sup-

port for user-based development, missing scalability, missing security, and missing

mechanisms for global service deployment and management.

A comprehensive middleware that combines the features of the existing middleware

is missing in 2014.

Key Contributions A survey of state of the art pervasive computing middleware is

presented. It exceeds the surveys from literature [HIM05a, EBM05, HR06, BDR07,

Kjæ07, CD07, HSK09, GGS09, Kru09, SHB10, BBH+10, Pos11, CD12, BCFF12,

RCKZ12, KKR+13] in the amount of assessment criteria, and the combination of

solutions that are assessed.

Summary The chapter starts with an analysis of distributed user-based software de-

velopment (Sec. 4.2). It shows that such development is likely to be possible for

Smart Spaces in 2014.

Then cloud computing mechanisms that support service portability on heterogeneous

hardware are presented (Sec. 4.3). It is shown that encapsulation of services provides

flexibility in the use of resources, and security as it limits the interaction between

software to a defined interface. Virtualization is presented as general concept to

implement portability (Sec. 5.6.3).

Network management systems are analyzed in terms of their suitability for Smart

Space Orchestration (Sec. 4.4). At the example of the Simple Network Management

Protocol (SNMP) it is shown how a descriptive representation of management infor-

mation can be implemented. The analysis concludes that the methods of network

management are partially suitable for Smart Spaces. The strictly hierarchic design

and the used data models are too complex for crowdsourced development.

The analysis of the most widely used solution for building management, Building

Automation Control network (BACnet), shows how interoperability can be enforced

by standardizing limited functionality as interoperable interface.

The main part of this chapter is the analysis of relevant state of the art pervasive

computing middleware (Sec. 4.5). It is shown that most existing pervasive computing

middleware provides partial solutions for the adaptation of Smart Devices (<O.1>),

and for the creation of orchestration services (<O.2>). Diversity support (<O.3>),

and real world deployment support (<O.4>) are typically missing.

Based on existing surveys, 13 relevant middleware designs are selected. They are

assessed according to 16 criteria from the domains system design, context mana-

gement, service management, and real world deployment support (Sec. 4.5.2). A

mapping of the assessment criteria to the requirements from Sec. 3.12 is presented

(Fig. 4.2). The assessment results are summarized in table 4.1.

A combined reference model is presented (Sec. 4.5.16). It provides a combined

overview of functionality that is provided by all existing state of the art pervasive

computing middleware together. It is used as basis for comparison of the novel
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Distributed Smart Space Orchestration System (DS2OS) design with the existing

designs in Sec. 7.7.2.
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4.1 Introduction

Different research areas are relevant for a real world implementation of pervasive

computing as discussed in Ch. 3. This thesis focuses on the software side of the

problem space. It targets the design of a reference architecture for enabling Smart

Space Orchestration (Sec. 2.4.1).

Solutions for parts of the requirements that are summarized in Ch. 3.12 exist in

different areas of computing. The chapter starts with a brief presentation of the 2014

state of the art in distributed user-based software development, portable resource-usage,

and the management of embedded systems. The main contribution of this chapter is

an analysis of the most relevant state of the art pervasive computing middleware.

4.2 Distributed User-Based Software Development

Distributed user-based software development, and sharing of software exist from the

beginning of computing in the 1960s [LT03, DWJG02]. GNU/Linux is probably the

best known example for a software that is released as so-called Open Source Software

(OSS). In 2014 there are diverse websites that support the development and sharing of

OSS. Examples such as GitHub12 or Sourceforge13 host millions of users and software

projects.

Definition Crowdsourced Software Development

The term crowdsourced (software) development is used to describe dis-

tributed user-based software development in this document. In contrast

to user-based development, crowdsourced development typically com-

prises competitive elements (Sec. 3.10).

The success of the App economy is based on crowdsourced development (Sec. 3.10).

In 2012 more than 1 000 000 users developed Apps for smartphones [PMC+12]. At the

beginning of 2013, about 800 000 Apps were available in the Apple App store. 20 bil-

lion Apps were downloaded in 201214. This success shows the importance of software

distribution mechanisms that are simple-to-use by non-experts (<R.46>, Ch. 7).

For maintaining the described software, so-called software packages consisting of a

software and additional metadata are typically stored in central well-known reposi-

tories. The distribution of software happens via (semi-) automated installation and

update mechanisms that are usable by non experts [MBdC+06, App13, Goo].

Conclusion

The brief discussion shows that crowdsourced development is possible in 2014. Skilled

developers, and infrastructure components for enabling crowdsourced development de-

velopment exist (e.g. central software repositories). Different studies acknowledge the

existence of skilled and enthusiastic Do-It-Yourself (DIY) developers in the pervasive

12https://github.com/
13http://sourceforge.net/
14http://www.apple.com/pr/library/2013/01/07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.

html

https://github.com/
http://sourceforge.net/
http://www.apple.com/pr/library/2013/01/07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html
http://www.apple.com/pr/library/2013/01/07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html


140 4. State of the Art

computing domain [BLM+11, MH12]. As expressed in <R.46>, besides a suitable

programming abstraction for Smart Spaces (<O.0>), a suitable development and dis-

tribution mechanism for services for Smart Spaces is missing in 2014.

Sec. 2.4 and Sec. 2.5 discuss the relevance of crowdsourced development for pervasive

computing [DM12, TWDT13, Fis98, Abo12, NMMA13]. Sec. 7 introduces Smart

Space service development support and distribution mechanisms based on the Virtual

State Layer (VSL) programming abstraction that is introduced in this thesis (Ch. 5).

4.3 Portable Resource-Usage

Large scale distributed computing is implemented as so-called cloud computing in

2014. Cloud computing enables the flexible use of distributed resources for executing

computation tasks. The used resources are typically in the Internet, e.g. Amazon EC2/

S315, Microsoft Azure16, HP Cloud Services17, Rackspace OpenCloud18 [ASZ+10,

LTM+11, VVE09, RCL09]

Cloud computing typically uses virtualization for providing services [ASZ+10]. In the

context of cloud computing, virtualization describes the emulation of abstract system

interfaces. Emulated interfaces (e.g. of a certain hardware) are offered to software

components that run on top of them [TVS06].

A concrete example is providing a container, called Virtual Machine (VM), that em-

ulates the components of an entire Personal Computer (PC). Having VMs that offers

emulated PC interfaces to software allows to run regular operating systems in them

(paravirtualization). This can be used for running multiple operating systems in con-

trolled environments on one physical host for instance.

Cloud computing encapsulates software behind controlled interfaces. Such caging

within well-defined interfaces can help enhancing the security of systems executing

the VMs as it provides clearly defined and controllable interfaces to software. The

freedom of the software is effectively limited by the externally enforced interfaces.

By introducing an emulated abstract interface between hardware and software, pa-

ravirtualization provides portability from physical hardware. The emulated software

interfaces become the coupling point between the software and hardware and not the

underlying hardware specific interfaces of a system. The encapsulation of software in

containers allows migrating it between different physical machines [VVE09, LTM+11].

Having encapsulated services helps optimizing the resource usage and helps providing

scalability in cloud computing.

Conclusion

Virtualization allows running the same application container (VM) on heterogeneous

hardware. This is attractive for running software components in future Smart Spaces

on heterogeneous hardware (Sec. 3.2.4). In this thesis, Java is used to provide the

described portability from the underlying hardware platform (Sec. 6.3.1).

15http://aws.amazon.com/ec2/
16http://windowsazure.com/
17http://hpcloud.com
18http://www.rackspace.com/open-cloud/

http://aws.amazon.com/ec2/
http://windowsazure.com/
http://hpcloud.com
http://www.rackspace.com/open-cloud/
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In the context of cloud computing, virtualization is used to migrate software between

computing hosts [VVE09, LTM+11]. This is attractive for optimizing the resource us-

age in Smart Spaces. Sec. 7.2.4 presents basic mechanisms for migrating Smart Space

services. As future research, migration techniques that exist for cloud computing

already could be applied to the system presented in Sec. 7.

Virtualization is also relevant for future Smart Spaces as a general concept. The en-

capsulation of services behind defined interfaces is interesting to enhance the security

and dependability of future Smart Spaces (Sec. 5.5.6).

Smart Spaces contain distributed heterogeneous Smart Devices (Sec. 3.2). A virtu-

alization of Smart Devices would provide portability from the heterogeneity of the

device interfaces. This thesis implements such a solution for virtualization of Smart

Device interfaces. It allows to provide standardized virtual interfaces to different

Smart Devices.

An example for heterogeneous Smart Devices are lamps of different vendors with het-

erogeneous interfaces. Via the presented solution (Ch. 5), they get the same virtual

interface (Sec. 5.6.4). It can be used by software services to access the common func-

tionality. This provides portability, uncoupling Smart Space services from concrete

Smart Device interfaces (Sec. 5.6.3).

4.4 Management of Distributed Embedded Systems

As described in Sec. 3.7, complex computing systems require management. Software-

based management solutions exist for different computing systems in 2014 including

network elements and Building Automation Systems (BASs).

Network elements are systems that keep computer networks running such as switches,

or routers. Network management is a known task since the time before the Internet

became a commercial success ([Cer88], 1988). Looking at solutions developed for

this domain is relevant for Smart Space Orchestration as computer networks are a

major part of Smart Spaces, and as managing network elements shares aspects with

managing Smart Devices. Network management solutions are built by experts for

their own problems, giving an insight what software experts consider good practice.

Looking at management for BAS is relevant as BASs contain important components

for software orchestrated Smart Spaces (Sec. 3.2).

4.4.1 Network Management

Network management manages network elements. Network management tasks include

monitoring and controlling network elements with the goal of implementing effective

and efficient operation of a managed system and its entities according to certain goals

[hAN99].

For efficient implementation of network management, open interfaces are desired. An

interface is called open if it provides interoperability with other systems. This can

be implemented by using standard technology, and publishing interface specifications

[TVS06, hAN99]. As few vendors dominate the market for network elements, a de-

facto standardization (Sec. 3.3.2) of such interfaces exists in 2014.
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The typical organizational model of a Network Management System (NMS) is shown

in Fig. 4.1 [KS94]. A managed resource such as a network element is shown on the

left. It is typically a hardware device. The management interface is implemented

by a software agent (agent). An agent either runs on the managed component or on

an external device that is connected to the managed resource. An agent typically

provides management information about the managed resource via a Managed Infor-

mation Base (MIB). The MIB provides information about the managed resource in

a structured way. The managed resource together with the agent is called Managed

Object (MO). In the context of Smart Spaces it would be called a Smart Device in

this work (Sec. 2.4.1).

The high level network management logic is usually situated on a manager that runs

on a device that is external to the managed resource. It can have a user interface to

enable users to communicate management goals or to monitor the system. Fig. 4.1

shows that a hierarchical management is implemented from the left to the right as

only neighboring components are communicating.

In the presentation of the ubiquitous computing middleware state of the art in Sec. 4.5

such a strictly hierarchical management approach is called vertical design. A vertical

design includes that components on one level of abstraction do not communicate with

each other but only with higher or lower level components. The opposite approach

where components within a layer (e.g. managers) communicate with each other is

called horizontal design.

Agent
Managed Resource

MIB

Managed Object

Managed Resource
Manager User Interface

Figure 4.1: Abstract Organizational Model for Network Management Architectures.

Typical Network Management Systems

Many Network Management System (NMS) share common properties that are de-

scribed next [KS94, hAN99, Sch08]. The Simple Network Management Protocol

(SNMP) is used as a widespread and representative example in this paragraph (RFC3411-

3418) [HPW02].

NMSs typically use a descriptive hierarchical structure to represent the manageable

properties of Managed Objects (MOs). Sometimes the data model allows inheritance

(e.g. Open Systems Interconnection (OSI) management). SNMP does not allow in-

heritance. Listing 4.1 shows the representation of a SNMP MIB in Abstract Syntax

Notation One (ASN.1).

1 BGP4 -MIB DEFINITIONS ::= BEGIN

2

3 IMPORTS
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4 MODULE -IDENTITY , OBJECT -TYPE , NOTIFICATION -TYPE ,

5 IpAddress , Integer32 , Counter32 , Gauge32

6 FROM SNMPv2 -SMI

7 mib -2

8 FROM RFC1213 -MIB;

9

10 bgp MODULE -IDENTITY

11 LAST -UPDATED "9405050000Z"

12 ORGANIZATION "IETF BGP Working Group"

13 CONTACT -INFO

14 ...

15 bgpLocalAs OBJECT -TYPE

16 SYNTAX INTEGER (0..65535)

17 MAX -ACCESS read -only

18 STATUS current

19 DESCRIPTION "The local autonomous system number

."

20 ::= { bgp 2 }

21 ...

22 bgpBackwardTransition NOTIFICATION -TYPE

23 OBJECTS { bgpPeerLastError ,

24 bgpPeerState }

25 STATUS current

26 DESCRIPTION "The BGPBackwardTransition Event is

generated

27 when the BGP FSM moves from a higher

numbered

28 state to a lower numbered state."

29 ::= { bgpTraps 2 }

30

31 END

Listing 4.1: Representation of a Border Gateway Protocol (BGP)4 MIB.

The typical organization of a NMS is vertical as described above. It consists of few

managers that manage all distributed MOs. SNMP follows this scheme.

The major operation of a NMS is the retrieval or manipulation of states from the

MOs. The methods that are used to access the information on the MOs are typically

fixed. This is reflected by the MIB component in Fig. 4.1. Since a MIB has a structure

similar to a database with keys and values (listing 4.1), a management interface with

fixed functions can be used to access MIBs.

SNMP uses the operations get to query the value of a specified variable, getNext

to traverse a MIB, set to change the value of a specified variable, and trap for

asynchronous reports from an agent to a manager.

For providing portability, the structure of the information in the MIBs is defined

via standardization [RM90]. Listing 4.1 shows such a definition for a specific router.

NMS typically use the regular standardization process discussed in Sec. 3.3.2. This is

possible as the relevant properties of network elements are rather static, and as few

vendors are producing the specialized equipment.

Conclusion

Using a fixed interface with few methods to access information is attractive for access-

ing Smart Devices as it is simple-to-use (<R.1>). The solution proposed in this thesis

also uses a fixed interface but it gives access to more dynamic information (Ch. 5).
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Using a fixed interface, the structure of the accessed information becomes important.

The structure must be standardized to enable portability. The implementation of a

standardization process for the structure of the MIBs is not applicable to Smart De-

vices. Since many vendors are producing Smart Devices the described standardization

process is unlikely to succeed within acceptable time (Sec. 3.3.2). The functionality of

Smart Devices is too diverse which would require a large amount of standardization

processes running permanently (Sec. 3.3.2). This seems infeasible as it requires time,

personnel, and money.

Data models [PS03] are used to describe the structure of the MIBs. The data models

that are used by major NMS solutions on the market in 2014 are suitable for experts.

This includes SNMP (listing 4.1), IBM Tivoli [TBEJ08], Distributed Management

Task Force (DMTF) Desktop Management Interface (DMI)/ Management Informa-

tion Format (MIF) [Dis], and Web-Based Enterprise Management (WBEM) Common

Information Model (CIM)/ Managed Object Format (MOF) [Dis]. For non-experts it

is difficult to use them.

As described in Sec. 5.2, this thesis proposes a user-based creation of the data models

of Smart Spaces (called context models). For the discussed reasons the data models

of NMSs are not suitable for Smart Space Orchestration.

The strictly vertical design of typical NMSs is not flexible enough for the implementa-

tion of diverse pervasive computing scenarios (<O.3>). It does not provide sufficient

support for the development of complex orchestration services to implement complex

pervasive computing scenarios (<O.4>).

4.4.2 Building Management

As described in Sec. 3.2.1 most abstract management layer of a BASs is the manage-

ment level. A relevant enabler for building automation management is the Building

Automation Control network (BACnet) protocol [ASH95, TK10, MHH09, KFKC12].

BACnet is a standardized communication protocol to exchange information between

entities in BAS. To conform with the BACnet standard, an entity (e.g. a Smart Device)

must offer so-called objects with defined properties. A BACnet object property could

be a temperature. Properties offer so-called services. To be readable, a property must

offer a ReadProperty service. A call of a ReadProperty service returns the value of the

object property.

To use BACnet, an entity sends a BACnet message and waits for a response. BAC-

net implements a horizontal management structure. The protocol allows to discover

objects via network broadcast. Objects of a searched type respond and can be used.

The data model of BACnet is fixed. BACnet has 25 standardized object types includ-

ing binary input and output, number, scheduling, trending, or alarming. Vendors can

get a vendor ID to define their own proprietary additional objects. BACnet does not

provide standardization mechanisms for such additional objects [Sno03, KNSN05].

Building automation management with BACnet can be implemented by writing ap-

plications that communicate using the BACnet protocol. Its standardization allows

communication with all compliant devices. BACnet facilitates the creation of such

services by providing portability from the heterogeneous Smart Device interfaces.
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Conclusion

BACnet is designed as system of peers that communicate. A distributed system

where the participating communication partners are equally functioning as client and

server is called Peer-to-Peer (P2P) system [TVS06]. The P2P design suits not only

for building automation but also for the implementation of general pervasive compu-

ting scenarios. The VSL middleware, which is introduced in this thesis (Sec. 6), is

implemented as P2P system (Sec. 6.3).

BACnet provides a basic communication abstraction that overcomes the heterogeneity

of device protocols (Sec. 3.2). This is fundamental for Smart Space Orchestration as

well since it enables portability of services (Sec. 5.6.3).

Using BACnet as enabler for pervasive computing scenarios in future Smart Spaces

is problematic. A first problem is that no concept or support for standardizing addi-

tional device objects is available. The diversity of Smart Devices that is relevant for

pervasive computing (Sec. 2.4) requires a significant amount of objects to be defined

and standardized to maintain the interoperability (Sec. 5.6.4).

A second problem of using BACnet as basis for Smart Space orchestration is that the

system provides limited support for service developers. Processing protocol messages

makes it complex and difficult for non experts to develop BACnet services. Services

are intended to implement pervasive computing scenarios in software orchestrated

Smart Spaces. Though limiting the complexity that is introduced by the protocol

heterogeneity of the devices, the remaining complexity is too high for user-based

software development that is targeted by this work (Sec. 4.2, <O.4>).

The most fundamental problem that makes the BACnet approach unsuitable as basis

for Smart Space Orchestration is the functional limitation of the interface. A property

of a certain type always has a fixed data type. Standardized objects have a fixed

format. To enable portability, information can only be represented in a predefined

(standardized) way. This limitation is not a problem for BACnet. Providing a fixed

interface for a defined set of functionality offered by Smart Devices in a building is

the key to interoperability in BACnet [BN91, ASH95, TK10, MHH09, KFKC12].

A drawback of this approach is the limited support for custom functionality. For the

diversity of pervasive computing scenarios and Smart Devices limitation is a problem

(<O.3>). The limitation to one protocol for an application domain (one BACnet

object type for a certain functionality) can be expected to lead to information loss as

discussed in Sec. 3.3.3.

Using a single protocol for all devices is too limiting for the diversity of pervasive com-

puting scenarios and Smart Devices. Therefore this thesis introduces a dynamically

extensible type system that supports multi-inheritance (Sec. 5.2).

4.5 Pervasive Computing Middleware

An indicator for the seniority of pervasive computing research [Abo12, DM12] is

the availability of surveys that review different pervasive computing middleware ap-

proaches that emerged over the years. At the same time, the availability of such

surveys shows that the search for a suitable programming abstraction (<O.0>) for

pervasive computing is still ongoing [Abo12].
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Concerning the requirements in Fig. 3.15, typical pervasive computing middleware

solves Smart Device adaptation for (some) devices (<O.1>), and provides support

for orchestration workflow implementations in the supported domain (<O.2>). It

provides domain- or workflow-specific support functionality (see 4 in Fig. 4.3).

A problem with such specific functionality is that it typically does not provide suffi-

cient support for diverse pervasive computing scenarios (<O.3>):

• If support for diverse Smart Devices cannot be added to a middleware, the

possibilities of Smart Space Orchestration are limited (Sec. 3.2).

• If domain- or use-case-specific functionality is supported by a middleware this

often limits the way developers program their services [EBDN02, KKR+13].

An example for domain- or use-case-specific functionality in a middleware is an inter-

face to parameterize given rules that do certain actions (e.g. Sec. 4.5.11).

Developers are likely to use such rules as they offer a comfortable interface to imple-

ment functionality. If adequate mechanisms for implementing functionality are only

provided for one way of programming, it is likely that developers follow this predefined

way. As discussed in Sec. 2.5 this opposes the goal to enable diverse implementations

of pervasive computing scenarios.

If a middleware is built around domain- or use-case-specific functionality it inhibits

the implementation of pervasive computing scenarios from other domains in the worst

case [EBDN02, KKR+13].

The term µ-middleware is introduced in this thesis in Sec. 6.2 to describe if a middle-

ware contains domain- or workflow-specific functionality or not. A middleware is

called µ-middleware if it does not contain workflow-specific functionality, but it pro-

vides dynamic extensibility with workflow-specific functionality.

Having domain- or workflow-specific middleware does not provide sufficient support

for diversity (<O.3>). Instead it lifts the heterogeneity on a higher level of abstrac-

tion. With typical state of the art pervasive computing middleware, the middleware

becomes a silo on a higher level of abstraction.

Typically, a middleware that was designed for the health domain cannot interact with

a middleware for the entertainment domain. It overcomes the heterogeneity of the

Smart Devices but it becomes a silo itself by supporting a certain domain.

Middleware silos complicate the shared use of Smart Devices for different purposes

since devices are typically connected to one middleware only. They inhibit the imple-

mentation of domain comprehensive pervasive computing scenarios (<O.3>).

For real world usability diverse properties have to be fulfilled including usability

(<R.1>), scalability (<R.50>), dependability (<R.30>), and security (<R.49>).

Scalability is often not given because of central components that may become a bottle-

neck, implementations of the context repository that do not scale with large amounts

of context, and meta models that are resource intensive to parse.

Real world dependability is not an issue as the solutions are only used within controlled

environments. Security and privacy are typically not taken into account.

User-based development (<R.4>) is typically not supported by research middleware.

The meta models (Sec. 3.9) and their Application Programming Interfaces (APIs) are
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often complicated. The resulting complexity of services can be expected to lower their

dependability and security.

Real world usability (<O.4>) is typically out of scope for research project middleware

designs.

The section is structured into two parts. The first part surveys relevant middleware

from the past years (Sec. 4.5.1). The second part introduces a reference architec-

ture that combines all major features of the surveyed middleware designs as common

classifying denominator (Sec. 4.5.16).

The related work is presented mainly for three reasons,

• to show the relevance of the problems handled in this thesis for the research

community,

• to identify shortcomings of the existing work in relation to the identified require-

ments (Sec. 3.12), and

• to compare the existing work with the VSL programming abstraction that is

introduced in this thesis (Ch. 5) and the Distributed Smart Space Orchestration

System (DS2OS) framework that extends the VSL with service management

functionality (Ch. 7).

4.5.1 Assessment Criteria

The selection of the middleware that is assessed in this section is based on the surveys

[HIM05a, EBM05, HR06, BDR07, Kjæ07, CD07, HSK09, GGS09, Kru09, SHB10,

BBH+10, Pos11, CD12, BCFF12, RCKZ12, KKR+13]. The surveys do not cover

all requirements that are identified in Sec. 3.12. Therefore this section combines

assessment criteria from the different surveys and adds some additional parameters

from the requirements. The amount of assessed pervasive computing middleware

solutions and applied assessment criteria exceeds that of the referenced surveys.

The assessment criteria are explained below. Fig. 4.2 shows a mapping of the 50

requirements that are identified in Sec. 3.12 to the assessment groups used in this

survey.

The added criteria are Fixed Service API, µ-middleware, and Support for user-based

development. The listed criteria are mainly relevant for diversity support (<O.3>) and

real world deployment (<O.4>). That they are not in the focus of existing surveys

shows that those objectives are not well covered by pervasive computing middleware

so far as described before (Sec. 4.5). In addition it shows that the relevance of the

criteria seems new for the research community.

The state of the art middleware can be clustered into two groups:

• Service management middleware focuses on services and their composition.

• Context management middleware focuses on context provisioning.

The presentation of the state of the art in Sec. 4.5.2 starts with service-centered

approaches and ends with context-centered approaches. Table 4.1 summarized the

assessment results.
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The last entry of table 4.1 is the DS2OS middleware framework. This thesis introduces

a novel kind of pervasive computing middleware, the VSL (Ch. 5, Ch. 6). The VSL is a

context-provisioning middleware with elements for direct inter-service communication.

The DS2OS framework is implemented using the VSL (Ch. 7). It adds functionality

for service management to the VSL. DS2OS contains the VSL as central component.

DS2OS provides a hybrid of the functionality typically provided by Service manage-

ment middleware and Context management middleware. Therefore the state of the

art pervasive computing middleware is compared to DS2OS as superset of the VSL

in the following. The assessment of DS2OS according to the criteria presented next

can be found in Sec. 7.7.1.

Assessment Criteria

The pervasive computing middleware designs are assessed according to the following

criteria that reflect the essence of the criteria from the different surveys.

After the description of each criterion a mapping to the most correlated requirements

that were identified in the analysis section (Ch. 3) is given in parenthesis. The mapping

shows that each survey identified a subset of the criteria identified in this work.

The assessment criteria are structures into the four groups system design, context

management, service management, and real world deployment support. Fig. 4.2 shows

the mapping of the requirements from Ch. 3.12 to the assessment groups.

The following criteria are related to the system design of a middleware:

• System Architecture. The middleware architecture can be a central server

(c), a central server that coordinates distributed components (c+), and P2P

with distributed components that act as clients and server (p2p). (<R.11>)

• Communication Technology. The communication technology section con-

tains information about the way system components are communicating in the

middleware design. Options are RPC for Remote Procedure Call (RPC), RMI

for Remote Method Invocation (RMI), web for Hyper Text Transfer Proto-

col (HTTP) based communication, CORBA for Common Object Request Broker

(CORBA), OSGI for Open System gateway Initiative (OSGI), and o for other

technology. (<R.11>)

• System Organization. The system organization can be v for a vertical de-

sign, with vertical communication over layers and different components within

one layer (see Fig. 2.6) typically not cooperating, and h for horizontal design

where components are typically objects that encapsulate partial functionality

and collaborate via horizontal communication within a layer. A combination

of both designs (vh) means that the system implements a vertical design but

components on one layer can communicate. (<R.11>)

The following criteria are related to the management of context:

• Context Model & Representations. The context model and its represen-

tation (Sec. 3.9) can be markup scheme based (m), object oriented (o), and

ontology based (Ont). Ont expresses that additional relationships to type-based

inheritance can be expressed with the meta model (Sec. 3.9). Several middleware

designs do not have an explicit context model. (<R.40>)
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• Extensible Smart Devices support describes if support for diverse Smart

Devices can be added to the system, or if the set of supported Smart Devices is

fixed. (<R.23>, <R.42>)

• Dynamic creation of context models describes if context models can be

added to the system or if they are fixed. This is relevant for orchestration

services as it defines which information can be exchanged via context over the

middleware. For adaptation services it is relevant as it defines which Smart

Device properties can be represented as context. (<R.23>, <R.40>, <R.42>,

<R.43>)

• Support for context convergence describes if the middleware provides me-

chanisms to converge/ standardize context models (Sec. 3.3.2). This is relevant

for the portability of services. Only when Smart Devices have unified (converged,

standardized) interfaces, services can run in different Smart Spaces with diffe-

rent instances of Smart Devices that provide similar functionality (e.g. light).

(<R.6>, <R.10>, <R.8>, <R.40>, <R.42>)

• Support for Semantic Extensibility describes if the semantics that the sys-

tem supports (e.g. dependencies) can be added to the middleware dynamically

or if it is fixed. (<R.23>, <R.40>, <R.42>, <R.43>)

• Support for historic context describes if historic context versions are stored

and can be obtained via the middleware. (<R.28>, <R.40>)

The following criteria are related to the service management :

• Fixed service API describes if services can use a fixed API to exchange in-

formation, or if functionality in services is interfaced via varying function calls.

(<R.6>, <R.26>)

• Inter-service communication identifies if services can communicate with

each other directly or over the middleware. Inter-service communication is the

basis for a modular software design when developing applications (Sec. 3.8).

The communication modes (Sec. 3.4) of the inter-service communication can

be d for direct (synchronous, referentially coupled), m for message based (ref-

erentially coupled), p for group based (synchronous, referentially uncoupled),

and g for generative (asynchronous, referentially uncoupled). (<R.23>, <R.26>,

<R.25>, <R.31> - <R.38>, <R.19>, <R.20>, <R.21>, <R.22>)

• µ-middleware describes if the middleware only provides basic, use case inde-

pendent functionality or if it provides use case specific support functionality.

In addition it describes if the functionality of the middleware can be dynami-

cally extended via adding services at run time. See Sec. 6.2, Sec. 4.5. (<R.23>,

<R.26>)

• Service management describes if the middleware framework provides func-

tionality to manage services. This includes deployment, monitoring, and opti-

mization of services at run time. (<R.3>, <R.23>)

The following criteria are relevant for the real world usability and deployment of a

solution:
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• Scalability refers to the ability of a middleware to scale with a big amount

services resulting in a big amount of context data where context is managed.

(<R.11>, <R.50>)

• Security identifies if the solution provides security mechanisms such as authen-

tication, authorization, or encryption. Validation of context models, abstract

interfaces to services, and services is also relevant for securing future Smart

Spaces. (<R.39>, <R.44>, <R.30>, <R.3>, <R.49>)

• Support for user-based development describes if the middleware frame-

work is designed to support users in the implementation of pervasive computing

scenarios. Such support comprises software services that implement pervasive

computing scenarios, and services that adapt Smart Device. The term “user”

refers to people that are typically neither domain experts nor programming

experts. (<R.1>, <R.3>, <R.4>, <R.24>, <R.26>, <R.27>, <R.29>, <R.41>,

<R.42>, <R.47>, <R.46>, <R.48>, <R.30>)

Fig. 4.2 shows a mapping between the requirements that were identified in Ch. 3 and

the four domains that are used for assessing of the state of the art.

Structure

In the following 13 middleware designs are presented. The selection is based on the

surveys [HIM05a, EBM05, HR06, BDR07, Kjæ07, CD07, HSK09, GGS09, Kru09,

SHB10, BBH+10, Pos11, CD12, BCFF12, RCKZ12, KKR+13].

First typical middleware as it was developed for many research projects in the past

is presented. Such middleware is tailored to a specific scenario and can hardly be

reused.

The presentation of generic middleware designs begins with middleware that focuses

on service management, then middleware that focuses on context management is pre-

sented. Service management and context management are the typical tasks of perva-

sive computing middleware.

Each middleware is presented following the same structure:

• A short description of the general properties such as the motivation, and the

general functionality of a pervasive computing middleware is given.

• System Design discusses the aspects concerning the system design as described

above.

• Context Management discusses the aspects concerning the context manage-

ment as described above.

• Service Management discusses the aspects concerning the service manage-

ment as described above.

• Real World Deployment Support discusses the aspects concerning the real

world usability and deployment of a solution as described above.

• The paragraph comparison to DS2OS discusses major difference to the DS2OS

middleware framework.

Table 4.1 shows the results of the state of the art analysises. Though shown on

the bottom of the table already, the assessment of the DS2OS framework follows in

Sec. 7.7.1.
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4.5.2 Typical Pervasive Computing Middleware

Many middleware solutions exist that were developed for specific problems in specific

domains since 1991. Such middleware is characterized by providing high usability for

the specific scenario it was developed for and typically no reusability for other use

cases.

As an example, a middleware for creating tour guides is assessed as it was selected

as relevant middleware in the survey [KKR+13]. It is representative for the described

class of middleware that solves a specific problem. More examples can be found in

[EBM05, BDR07, KKR+13, RCKZ12].

The assessed middleware is the Context-Awareness Sub-Structure (CASS) [PF04].

It provides support for creating tour guides. CASS aims to provide a solution for

context management that facilitates the development of context-aware applications

on resource limited devices such as hand-held computers.

The application domain requires the correlation of different states to present informa-

tion to a user based on the correlation. Consequently the CASS middleware supports

this functionality. The provided example is an inference from a rain sensor repor-

ting “wet”, a brightness sensor reporting “dull”, and a temperature sensor reporting

“cold”. CASS supports reasoning about this context via defining conditions and ac-

tions. The result of the described context constellation is the recommendation of an

indoor activity by a tour guide service in the example.

System Design

The system is based on a central server. The organization is vertical. Services act as

clients that use the functionality offered by the middleware.

Context Management

The context management happens in a database. There are no context models.

Though not described, the paper suggests to have historic context.

Service Management

Services are not managed. They act as consumers of the context that is managed by

the middleware

Real World Deployment Support

Due to its limited functionality the system scales with the performance of the database.

The centralized architecture limits the possible performance.

No security mechanisms are provided.

User-based development for the specific workflow that was described above is included.

Other use cases are not supported. No sharing mechanisms for services are provided.



152 4. State of the Art

A
ss
es
sm

en
t

C
ri
te
ri
a

S
y
st

em

D
es

ig
n

<
R

.1
>

S
im

p
li
ci

ty
-

to
-u

se

<
R

.2
>

M
u

lt
i-

u
se

r

su
p
p

o
rt

<
R

.3
>

S
el

f-

m
a
n

a
g
em

en
t

<
R

.8
>

In
te

rf
a
ce

p
o
rt

a
b
il
it

y

<
R

.1
1
>

d
is

tr
i-

b
u
ti

o
n

su
p
p

o
rt

<
R

.1
2
>

-

<
R

.1
8
>

T
ra

n
s-

p
a
re

n
cy

<
R

.1
9
>

-

<
R

.2
2
>

C
o
m

m
u
-

n
ic

a
ti

o
n

M
o
d
es

<
R

.2
4
>

D
es

cr
ip

ti
v
e

k
n

o
w

le
d
g
e

re
p
re

se
n
-

ta
ti

o
n

<
R

.2
5
>

D
iff

er
en

t

le
v
el

s
o
f

a
b
st

ra
ct

io
n

<
R

.2
6
>

M
o
d
u

la
r-

iz
a
ti

o
n

su
p
p

o
rt

<
R

.2
7
>

m
u
lt

ip
le

p
ro

g
ra

m
-

m
in

g

la
n
g
u

a
g
es

<
R

.4
7
>

E
m

u
la

to
r

su
p
p

o
rt<
R

.4
6
>

A
p

p
st

o
re

<
R

.4
8
>

C
ro

w
d
-

so
u
rc

in
g

<
R

.3
0
>

D
ep

en
d

-

a
b
il
it

y

<
R

.4
9
>

S
ec

u
ri

ty
<

R
.5

0
>

S
ca

la
b
il
it

y

C
o
n
te

x
t

M
a
n
a
g
em

en
t

<
R

.1
>

S
im

p
li
ci

ty
-

to
-u

se

<
R

.2
>

M
u

lt
i-

u
se

r

su
p
p

o
rt

<
R

.3
>

S
el

f-

m
a
n
a
g
em

en
t

<
R

.4
>

U
se

r
p
a
r-

ti
ci

p
a
ti

o
n

<
R

.5
>

C
o
n
te

x
t-

a
w

a
re

n
es

s

su
p
p

o
rt

<
R

.1
0
>

S
ta

n
d
a
rd

-

iz
a
ti

o
n

<
R

.9
>

In
fo

rm
a
-

ti
o
n

lo
ss

h
a
n

d
li
n
g

<
R

.1
1
>

D
is

tr
i-

b
u
ti

o
n

su
p
p

o
rt

<
R

.2
5
>

D
iff

er
en

t

le
v
el

s
o
f

a
b
st

ra
ct

io
n

<
R

.2
6
>

M
o
d
u

la
r-

iz
a
ti

o
n

su
p
p

o
rt

<
R

.2
8
>

h
ig

h

ex
p

re
s-

si
v
en

es
s

<
R

.2
9
>

si
m

p
li
ci

ty
-

to
-u

se

co
n
te

x
t

<
R

.4
0
>

S
u
it

a
b
le

m
et

a

m
o
d

el<
R

.4
9
>

S
ec

u
ri

ty
-

b
y
-d

es
ig

n

<
R

.5
0
>

sc
a
la

b
il
it

y

S
er

v
ic

e

M
a
n
a
g
em

en
t

<
R

.2
>

M
u

lt
i-

u
se

r

su
p
p

o
rt

<
R

.3
>

S
el

f-

m
a
n

a
g
em

en
t

<
R

.6
>

U
n

ifi
ed

in
te

rf
a
ce

s

<
R

.1
0
>

S
ta

n
d

a
rd

-

iz
a
ti

o
n

<
R

.8
>

L
o
g
ic

a
l

se
rv

ic
e

p
o
rt

a
b
il
it

y

<
R

.2
3
>

R
u

n
ti

m
e

ex
te

n
-

si
b
il
it

y

<
R

.1
1
>

D
is

tr
i-

b
u
ti

o
n

su
p
p

o
rt

<
R

.2
9
>

S
im

p
le

-

to
-u

se

co
n
te

x
t

<
R

.4
5
>

In
te

rp
re

te
d

co
d

e

<
R

.4
9
>

S
ec

u
ri

ty
-

b
y
-d

es
ig

n

<
R

.5
0
>

sc
a
la

b
il
it

y

R
ea

l
W

o
rl

d

D
ep

lo
y
m

en
t

<
R

.1
>

S
im

p
li
ci

ty
-

to
-u

se

<
R

.3
>

S
el

f-

m
a
n

a
g
em

en
t

<
R

.4
>

U
se

r
p
a
r-

ti
ci

p
a
ti

o
n

<
R

.5
>

C
o
n
te

x
t-

a
w

a
re

n
es

s

su
p
p

o
rt

<
R

.2
4
>

D
es

cr
ip

ti
v
e

k
n

o
w

le
d

g
e

re
p
re

se
n
-

ta
ti

o
n

<
R

.2
5
>

D
iff

er
en

t

le
v
el

s
o
f

a
b
st

ra
ct

io
n

<
R

.2
6
>

M
o
d
u

la
r-

iz
a
ti

o
n

su
p
p

o
rt

<
R

.2
7
>

m
u
lt

ip
le

p
ro

g
ra

m
-

m
in

g

la
n
g
u

a
g
es

<
R

.2
8
>

h
ig

h

ex
p

re
s-

si
v
en

es
s

<
R

.2
9
>

si
m

p
li
ci

ty
-

to
-u

se

co
n
te

x
t

<
R

.4
0
>

S
u
it

a
b

le

m
et

a

m
o
d

el

<
R

.4
7
>

E
m

u
la

to
r

su
p
p

o
rt

<
R

.4
6
>

A
p

p
st

o
re

<
R

.4
8
>

C
ro

w
d

-

so
u
rc

in
g

<
R

.8
>

,

<
R

.1
0
>

In
te

rf
a
ce

co
n
v
er

-

g
en

ce<
R

.4
9
>

S
ec

u
ri

ty

<
R

.5
0
>

S
ca

la
b
il
it

y

F
ig

u
re

4
.2

:
M

a
p
p

in
g

b
et

w
ee

n
th

e
re

q
u
ir

em
en

ts
fr

o
m

C
h
.

3
a
n
d

th
e

fu
n

ct
io

n
a
l

a
re

a
s

th
a
t

a
re

u
se

d
fo

r
th

e
a
ss

es
sm

en
t

o
f

th
e

st
a
te

o
f

th
e

a
rt

.



4.5. Pervasive Computing Middleware 153

M
id

d
le

w
a
re

/
P

ro
je

c
t

S
y
st

e
m

D
e
si

g
n

C
o
n
te

x
t

M
a
n
a
g
e
m

e
n
t

S
e
rv

ic
e

M
a
n
a
g
e
m

e
n
t

W
o
rl

d

SystemArchitecture¶

CommunicationTechnology‡

SystemOrganization§

ContextMetaModel†

ExtensibleSmartDevicesupp.∗

Dyn.CreationofCntxtModels∗

SupportforContextConvergence∗

SemanticExtensibility∗

SupportforHistoricCtxt∗

FixedServiceAPI∗

Inter-ServiceCommunication‖

µ-middleware∗

ServiceManagement∗

Scalability∗

Security∗

Supp.forUser-BasedDevelopm.∗

T
y
p
ic

a
l

m
id

d
le

w
a
re

c
v

-
(X

)
-

-
-

(X
)

X
-

-
-

(X
)

-
(-

)

G
a
ia

O
S

[R
H

C
+

0
2
]

c
+

C
O

R
B

A
,

R
P

C
v

(M
)

(fi
le

s)
X

-
-

-
(-

)
-

d
p

-
(X

)
(X

)
(X

)
(X

)

A
u
ra

[S
G

0
3
]

c
+

(*
)

h
M

-
-

-
-

-
(X

)
d

-
(X

)
(X

)
(X

)
-

H
o
m

e
O

S
[D

M
A

+
1
2
]

c
o

v
-

X
-

-
-

-
-

-
(X

)
-

X
X

C
O

R
T

E
X

[S
W

S
+

0
4
]

p
2
p

o
h

(M
)

(X
)

(-
)

-
(X

)
-

X
p

-
-

X
(-

)
-

B
O

S
S

[T
K

D
H

C
1
3
]

p
2
p

w
e
b

v
M

X
(X

)
-

-
(X

)
-

-
(X

)
-

(X
)

(X
)

(X
)

C
o
n
te

x
t

T
o
o
lk

it
[D

S
F
A

9
9
]

p
2
p

w
e
b

v
(M

)
X

-
-

-
(X

)
(X

)
-

(X
)

-
(X

)
-

(X
)

S
O

C
A

M
[G

P
Z

0
5
]

c
+

R
M

I,
O

S
G

I
h

O
n
t

X
(X

)
(X

)
X

(-
)

X
-

-
(X

)
-

-
(X

)

J
C

A
F

[B
a
r0

5
]

p
2
p

R
M

I
h

o
o
,

O
n
t

X
((
X

))
-

-
((
X

))
X

p
g

(X
)

(X
)

(X
)

(X
)

(X
)

P
A

C
E

[H
I0

4
]

c
+

R
M

I,
(*

)
v
h

o
o
,

O
n
t

X
(X

)
-

-
(-

)
(X

)
p
g

-
-

(X
)

(X
)

(X
)

O
P

E
N

[G
Z

I1
0
]

c
(w

e
b
)

v
O

n
t

X
X

(X
)

(X
)

(-
)

X
-

-
X

-
-

X

O
n
e
.W

o
rl

d
[G

D
L

M
0
4
]

p
2
p

o
v
h

(M
)

X
(X

)
-

-
-

X
m

(X
)

(X
)

-
(X

)
(X

)

A
C

E
[Z

P
O

W
1
1
]

v
O

n
t

(X
)

-
-

-
X

(X
)

-

D
S
2
O
S

p
2
p

R
P

C
,

(*
)

v
h

M
,

o
o
,

O
n
t

X
X

X
X

X
X

d
m

p
g

X
X

X
X

X

=
n
o
t

a
p
p
li
c
a
b
le

o
r

u
n
k
n
o
w
n
,
i.
e
.

n
o
t

d
is
c
u
s
s
e
d

in
a
v
a
il
a
b
le

li
t
e
r
a
t
u
r
e
.

‡
w
e
b
=

w
e
b

b
a
s
e
d
;
R
P
C
=

R
e
m

o
t
e
P
r
o
c
e
d
u
r
e
C
a
ll
s
;
R
M

I=
R
e
m

o
t
e
M

e
t
h
o
d

In
v
o
c
a
t
io

n
;
C
O

R
B
A
=

C
o
m

m
o
n

O
b
je

c
t
R
e
q
u
e
s
t
B
r
o
k
e
r
A
r
c
h
it
e
c
t
u
r
e
;
O

S
G

I=
O

S
G

i
b
a
s
e
d
;
o
=

o
t
h
e
r
;
*
=

v
a
r
io

u
s

in
t
e
r
fa

c
e
s

c
a
n

b
e

g
e
n
e
r
a
t
e
d
.

§
v
=

v
e
r
t
ic

a
l
d
e
s
ig

n
,
h
=

h
o
r
iz

o
n
t
a
l
d
e
s
ig

n
.

¶
c
=

C
e
n
t
r
a
l
S
e
r
v
e
r
,
c
+

=
C
e
n
t
r
a
l
S
e
r
v
e
r

w
it
h

D
is
t
r
ib

u
t
e
d

C
o
m

p
o
n
e
n
t
s
,
p
2
p
=

P
e
e
r
-t

o
-P

e
e
r

†
m

=
M

a
r
k
u
p

S
c
h
e
m

e
;
o
o

=
O

b
je

c
t

O
r
ie

n
t
e
d
;
o
n
t

=
O

n
t
o
lo

g
y

∗
X

=
s
u
p
p
o
r
t
;
(
X

)
=

li
m

it
e
d

s
u
p
p
o
r
t
;
(
-)

=
n
o

s
u
p
p
o
r
t

b
u
t

c
o
u
ld

b
e

e
a
s
il
y

a
d
d
e
d
;
-=

n
o

s
u
p
p
o
r
t
.

‖
d
=

d
ir
e
c
t
;
m

=
m

e
s
s
a
g
e

b
a
s
e
d
;
p
=

g
r
o
u
p

b
a
s
e
d
;
g
=

g
e
n
e
r
a
t
iv

e
;
s
e
e

S
e
c
.
3
.4

.

T
a
b

le
4
.1

:
C

o
m

p
a
ri

so
n

o
f

d
iff

er
en

t
u

b
iq

u
it

o
u

s
co

m
p

u
ti

n
g

m
id

d
le

w
a
re

.



154 4. State of the Art

Comparison to DS2OS

Like most of the related work presented here, DS2OS aims to provide a middleware

that is usable for implementing diverse pervasive computing scenarios. CASS does

not fulfill this property.

4.5.3 Gaia OS

The Gaia project [RC00, RKC01, RHC+02, Rom02] shares the goal with this thesis,

to provide a suitable software infrastructure for developing ubiquitous computing

applications [RHC+02]. The Smart Spaces that are operated by Gaia are called active

spaces.

Gaia associates services with users in their user virtual space that moves with the user.

Gaia provides the operating system basis for a multi-agent system where software

agents coexist with users to support them.

System Design

Gaia is implemented on top of CORBA that uses RPC, and it allows direct RPC

between services for communication. The authors mention that it could as well be

implemented using Service Oriented Architecture Protocol (SOAP) and RMI.

Gaia uses a layered design of coexisting core services that are accessed vertically by

services.

Context Management

Gaia provides context management over its context file system. It does not have a

formal context model. Context is typed. Context of the same type is aggregated to

the same virtual directory in the context file system [HC03b].

Gaia allows to associate context to files as additional meta data [RHC+02, HC03b,

HC03a]. Context is accessed via hierarchically structured file names in a file system

directory tree. As the used file names are not restricted, diverse context can be

addressed.

Convergence support for context models is not provided by Gaia. No meta model

that could be semantically extended is used. The file meta data consists of key-value

pairs.

From the literature it is not clear if context is versioned. As a file system is used as

basis, this feature may depend on the file system of the used Operating System (OS).

No special functions to access historic context are described for Gaia.

Service Management

The access to the Gaia context file system is done via fixed functions. Services can

offer any kind of interface.

Services can communicate using event based asynchronous mailbox communication

(p) or synchronous direct communication (d) based on RPC [RHC+02].
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Gaia includes in its kernel a space repository service, an event manager service, a

context file system, a presence service, and a context service [RHC+02]. Therefore it

is not a µ-middleware (Sec. 6.2).

Gaia provides local resource management for services and devices [RHC+02].

Real World Deployment Support

Gaia is a distributed system and uses the file system as base. Therefore it scales. Gaia

has central components that reduce the scalability.

Gaia supports the collection and processing of error reports about software and hard-

ware failures which enhances the reliability of Gaia operated active spaces [RHC+02].

Gaia is designed to support user-based development but it does not provide mecha-

nisms to share software over a repository [RC00, RHC+02]

Comparison to DS2OS

The central entities of Gaia are services that move with the user and are mapped to

locally available resources. The central entity of DS2OS is context that stays with

a Smart Space while users move in and out. The arrival or departure of users may

trigger the start of specific software in DS2OS similar to Gaia (Sec. 5.6.6).

4.5.4 Aura

Aura [SG03, SG02, GSSS02] provides automatic configuration and reconfiguration of

software in ubiquitous computing environments according to a user’s tasks and intents.

Aura contains a component for resource monitoring and application adaptation (Odyssey).

It provides a file storage back-end (Coda), and it manages remote execution of software

(Spectra).

Though not explicitly listed in the table, another research project follows a similar

goal. The Seamless Service Composition (SeSCo) as part of the Pervasive Information

Community Organization (PICO) implements components for managing and enabling

the composition of existing services (e.g. a word processor) [KKS05, KSD+03, KK07].

System Design

Aura consists of different components that can run on distributed machines. Aura is

built to support diverse communication protocols to address heterogeneity. Functio-

nality is implemented by orchestrating different existing services on distributed hosts.

Therefore, a horizontal design is implemented.

Aura consists of the Prism task manager that manages services that belong to a

user, the Context Observer that provides information about the physical context, the

Environment Manager that provides gateways to the environment, and Suppliers that

act as building blocks (e.g. text editing, video playing) for implementing Aura services.

In Aura, services communicate over so-called ports that implement direct communi-

cation (d).



156 4. State of the Art

Prism moves tasks that are associated with a user when it learns via the Context

Observer that a user moved to another physical environment. The Suppliers provide

abstract interfaces to services. They hide the heterogeneity of the orchestrated appli-

cation, e.g. using the editor xemacs in one space and the editor Microsoft Word over

the same editor programming interface in another environment.

Instances of one of the described types (Context Observer, Suppliers, etc.) have fixed

APIs.

Context Management

The abstract interfaces to services are described via Extensible Markup Language

(XML) markup.

No details about the Context Observer and its context model are given. Context

representation is not in the focus of Aura.

As distributed system, Aura scales. The use of one instance of the central components

per Smart Space [SG03] might be limiting the scalability.

Service Management

The Prism task manager manages all tasks that belong to a user. It orchestrates

the services that are associated with the Suppliers. Services in Aura orchestrate

applications not Smart Devices.

Suppliers use a fixed API. Capabilities of the managed applications are mapped to

so-called task layouts. Following its task-oriented paradigm, Aura allows to connect

services by specifying a graph of relations. The Aura Environment Manager tries to

interconnect the specified services according to such a graph, e.g. speech recognition

> language translation > speech synthesis. This service connection is transparent

for the services that get connected. Services are not aware of being inter-connected

allowing the use of standard software (e.g. Microsoft Word).

Aura only allows to create applications in the limited range that is defined by the ser-

vice composition. It allows configuration and executes all necessary tasks. Therefore

it is not a µ-middleware.

Aura manages its orchestration services at run time. Deployment or dissemination

mechanisms are not presented in the literature.

Real World Deployment Support

Though not described in the context of the presented functionality, the underlying

file system primitives allow encryption of data and the communication that is used to

exchange them [GSSS02]. This could be used to provide privacy and access control.

In the limited scope of defining simple orchestration workflows on the connected ap-

plications, experts can create Aura services.
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Comparison to DS2OS

Aura facilitates the orchestration of computer programs while DS2OS can be used to

orchestrate all entities including physical environments, and software.

The principal entity of Aura is a user task while the principal entity of DS2OS is the

context of an entity that is independent of the tasks that create it. Aura is activity

based, DS2OS is state based.

Aura migrates services with users. Services are bound to users. In DS2OS, services

are bound to the Smart Space. Users move in and out a space which changes the

context of the Smart Space. The services remain in the Smart Space and typically do

not leave it with users.

4.5.5 HomeOS

HomeOS [DMA+12, DMA+10] focuses on home environments. It unifies the interfaces

of distributed heterogeneous devices in homes, and protects the access to and use of

them. The focus is on entertainment. The system is developed at Microsoft and

follows the architecture of a Microsoft PC OS.

HomeOS mentions the concept of an App store (Home store) to be required for future

home automation (<R.46>).

System Design

HomeOS runs on a single host and offers access to distributed peripherals via locally

running device drivers.

The system is designed for vertical communication following the PC OS analogy.

HomeOS is implemented in C#.

Context Management

HomeOS does not manage context of a Smart Space. It only manages access rules

that define device access policies (see below). New devices can be connected via device

drivers. The communication happens via system calls in the OS.

Service Management

The abstract interfaces of HomeOS drivers are not unified. Drivers can expose diverse

function signatures. Inter-service communication is not intended. HomeOS only pro-

vides connectivity and access control which makes it a µ-middleware.

Though no implementation details are presented in the literature, the Home store

concept can be expected to provide functionality to deploy HomeOS Apps into homes.

In the described concept, it checks the compatibility with the available devices and

does quality assurance of services.
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Real World Deployment Support

HomeOS scales with the resources of the PC it is running on. Those resources are

limited by the hardware configuration and the running applications.

HomeOS secures the access to drivers via datalog rules [AG89] that model entities

and time. Access to entities is controlled based on capabilities that can be delegated

to applications at run time. Validation of software happens with the mechanisms of

the .net programming framework that can be used over the Visual Studio Integrated

Development Environment (IDE).

HomeOS facilitates the access to distributed devices for experts that are used to write

applications for PCs. The use of C# and .net facilitates the creation of applications

in the different programming languages that belong to the .net-family.

Comparison to DS2OS

In contrast to DS2OS, HomeOS does not provide context management and runs only

on a single PC. HomeOS manages device access while DS2OS provides an infrastruc-

ture for implementing diverse scenarios with diverse entities in software and hardware

in future Smart Spaces.

4.5.6 CORTEX

The CORTEX (CO-operating Real-time senTient objects: architecture and EXperi-

mental evaluation) [SWS+04] middleware facilitates the implementation of a dynamic

context overlay of consumers and producers that communicate over multicast via

publish-subscribe. The project is motivated by the use case of car-to-car communica-

tion.

CORTEX provides sensor fusion (sensor data aggregation) and inference. It focuses

on Quality of Service (QoS) for real-time interaction. A CORTEX system consists

of distributed software components that couple in an ad hoc way. The distributed

components that produce and consume context are called sentient objects.

System Design

CORTEX is designed as P2P system that uses a multicast based publish-subscribe me-

chanism for communication. Sentient objects spontaneously connect and implement

intelligence bottom-up.

Context Management

CORTEX uses a publish-subscribe mechanism based on locality and on groups to

disseminate current context events. CORTEX does not provide context repository

functionality.

Context is represented in XML. The meta model is a generic XML profile. Context

model are not mentioned in the literature.



4.5. Pervasive Computing Middleware 159

Service Management

CORTEX scales as all sentient objects are autonomous.

Sentient objects use the publish-subscribe event bus as fixed interface for inter-process

communication (p). With its inference and sensor fusion functionality CORTEX is

not a µ-middleware.

Services are not managed. They group dynamically in an ad-hoc way.

Real World Deployment Support

No security features are discussed in literature.

Though developer support is given via so-called component frameworks, the middle-

ware targets expert developers.

Comparison to DS2OS

The design goals of CORTEX and DS2OS are orthogonal. CORTEX focuses on real-

time ad hoc context exchange in mobile environments for sharing current information

via services created by experts.

DS2OS focuses on providing current and past context in less dynamic environments,

service interaction, convergence, and user-based development.

4.5.7 Building Operating System Services (BOSS)

The Building Operating System Services (BOSS) [TKDHC13, KFKC12, DHKT+13]

targets the automation of professional buildings (Sec. 3.2.1). The use case of the

project is saving energy.

BOSS creates an abstraction on top of the Smart Devices of professionally used buil-

dings (Sec. 3.2.1) to enable the portability of orchestration services.

System Design

BOSS is implemented as layered system with distributed components for different

functionality (e.g. transactions, context storage). It implements a vertical architec-

ture.

The BOSS middleware provides authentication, and so-called transaction managers

that control the Smart Device access. It provides so-called time series services that

act as context repository for selected data.

The system is implemented in Python and C. It uses web technology for communica-

tion (JavaScript Object Notation (JSON) over HTTP).
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Context Management

BOSS uses different context models on different layers of abstraction. On the lowest

layer, the Hardware Presentation Layer, an XML based markup is used. The tech-

nology used to interface hardware is an open-source project called sMAP. All driver

services inherit from a basic interface.

On the above Hardware Abstraction Layer, spatial and functional relations of Smart

Devices are stored as a directed graph of objects. BOSS uses types, attributes, func-

tional relation, and spatial relation as primary context to select context (Sec. 5.2.12).

Context models are not published to a directory. Therefore there is no explicit conver-

gence. The use of the drivers as aggregation point for similar functionality implements

an implicit convergence process.

The BOSS meta model supports fixed semantics with spatial and functional relation-

ships. The abstract interfaces of the drivers are not fixed and can be extended. The

abstract interfaces are only implicitly specified within the driver implementations. No

explicit abstract service interfaces are specified.

A history service can explicitly be associated with a context source. It provides

context versioning for that source. BOSS does not automatically version context.

Service Management

BOSS uses a function-based interface (e.g. get_speed();) to access device functio-

nality. Only the interface to the time series services is fixed.

There is no inter-service communication. BOSS only provides basic functionality that

is related to context management but it does not provide extensibility of the core

functionality via services. BOSS is partly (only basic functionality) a µ-middleware.

No functionality for managing services is provided.

Real World Deployment Support

BOSS scales as it is distributed and as it uses a markup-based context representation.

Though no details are given in the literature, BOSS is described to provide access

control.

Writing orchestration services for professionally used buildings is facilitated by BOSS

but requires expert knowledge. No infrastructure for sharing services between spaces

is presented.

Comparison to DS2OS

In contrast to DS2OS, BOSS does not provide inter-service communication with its

vertical design. The sMAP drivers implement a de-facto standardization of Smart

Device interfaces. No explicit convergence processes are provided.

BOSS follows a mash up approach for implementing its middleware functionality.

Distributed isolated services are connected to a whole. This is similar to BACnet
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(Sec. 4.4.2). DS2OS provides all necessary middleware functionality in distributed

peers.

The BOSS approach could lead to problems for larger systems as central components

could be overloaded or, if distributed, synchronization could become a relevant issue.

In addition the distribution of core functionality in distinct modules requires multi-

ple components and multiple communication paths to be secured. These issues are

solved with the DS2OS design of distributed peers that synchronize autonomously

and encapsulate all middleware functionality (Sec. 6.4).

Context models do not have an exposed meaning in BOSS which limits the reusability

and the convergence of abstract interfaces to Smart Devices. Services cannot be

coupled or reused to mash up complex functionality in BOSS.

4.5.8 Context Toolkit

Context Toolkit [DSFA99] is one of the first middleware designs for facilitating the

creation of context-aware services that implement pervasive computing scenarios. It

provides an object-oriented architecture to support rapid prototyping of context-aware

applications.

A major contribution of the work is that it identifies the advantage of separating

sensor context acquisition from the application logic by using a unified interface for

the Widgets that interface diverse Smart Devices.

The separation of service logic from service state facilitates the creation of orches-

tration services and enables portability via exchanging information only via context

and offering a uniform interface to access the context. Services that provide abstract

interfaces to Smart Devices are called context widgets in Context Toolkit.

System Design

Context Toolkit is implemented in Java. It supports distributed context widgets on a

central host [DSFA99].

Communication is implemented in XML over HTTP using polling and notifications.

Context Management

Context Toolkit widgets act as repositories for their context. Context Toolkit supports

interpretation and aggregation of context in the middleware.

Interpretation is used to transform context between different representations (Sec. 3.3).

Aggregation is used to collect information about an entity from different, possibly dis-

tributed, widgets.

Widgets can interface drivers for Smart Devices. Context Toolkit does not use an

explicit context model. Context is versioned in the Widgets.
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Service Management

All services inherit from a so-called BaseObject. This makes them interface compat-

ible. There is no inter-service communication.

Context Toolkit provides interpreters and aggregators that provide interface trans-

parency and location transparency. Context Toolkit provides only basic functionality

for context access. It does not provide extensibility of the core functionality via ser-

vices making it partly (only basic functionality) a µ-middleware.

Services are not managed by Context Toolkit.

Real World Deployment Support

Context Toolkit scales as the components can be run on distributed hosts. The use of

aggregators for collecting all context that is related to an entity may lead to bottlenecks

when a big amount of context is available.

Security and privacy are identified as relevant but methods to provide them are not

implemented.

Context Toolkit facilitates the implementation of pervasive computing scenarios for

experts. Services are not managed.

Comparison to DS2OS

Published in 1999, Context Toolkit shares several relevant design considerations with

DS2OS that are not considered for many middleware designs that emerged after 1999.

Like Context Toolkit, the VSL supports the principle to couple entities over their

exposed context (Sec. 5.3.2). Like Context Toolkit, the VSL propagates a separation

of service logic from service state to facilitate the implementation of Smart Space

services (Sec. 5.6.5).

Major differences are:

Context Toolkit does not use explicit context models.

Context Toolkit separates between adaptation services (context widgets) and orches-

tration services (applications) which DS2OS does not do (Sec. 3.1.2).

Inter-service communication between orchestration services is not supported in Con-

text Toolkit.

4.5.9 Service-Oriented Context-Aware Middleware (SOCAM)

The Service-Oriented Context-Aware Middleware (SOCAM) [GPZ05] aims to support

the building and rapid prototyping of context-aware services.

SOCAM divides pervasive computing into different context domains (ontologies) such

as vehicle, or home. The central concept of SOCAM is that context moves with the

user through different domains.

Each SOCAM domain has specific context models. The models of the upper ontology

(Sec. 3.9) are shared between the domains providing basic interoperability.
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System Design

SOCAM consists of one centralized context databases per domain, and distributed

context providers and context consumers.

SOCAM is implemented in Java for supporting heterogeneous platforms. For commu-

nication RMI is used. The SOCAM components are implemented as OSGI bundles.

The SOCAM design is layered with the database in the middle, the context providers

at the bottom, and context consumers at the top.

Context Management

SOCAM uses Web Ontology Language (OWL) with Resource Description Framework

(RDF) (Sec. 3.9) for representing context in the form Predicate(subject, value), e.g.

Location(John, bathroom).

The SOCAM ontology is divided into two parts (Sec. 3.9). The upper ontology that

contains general concepts, and different domain-specific lower level ontologies. Only

the upper ontology is shared between all domains.

Context models can be dynamically created and bound at run time. The upper

ontology is the common denominator between all domains and acts as standardization

for a subset of the context of a domain. No further sharing or convergence mechanisms

for ontologies are provided.

The use of OWL allows extending the meta model with additional semantics. After

a change, the meta model must be exchanged in all SOCAM spaces.

No API functions to access historic context are presented in the paper.

Service Management

SOCAM provides a service locating service that allows services to discover each other

(probably based on identifiers).

The functional interface consists of a fixed API with the functionality to query, add,

delete or modify context.

The SOCAM core contains rule-based first order logic reasoning capabilities therefore

it is not a µ-middleware.

Real World Deployment Support

The authors divide the context representation into an upper and a lower ontology for

enhancing performance of the ontology processing. However, the processing of OWL

ontologies does not scale with larger ontologies (Sec. 3.9) [KKR+13].

No security or privacy features are introduced.

The creation of user-based orchestration services is facilitated via configuring the

reasoner with logic expressions that lead to actions similar to the DS2OS trigger

service presented in Sec. 8.4.1. The creation of the ontologies needs expert knowledge.

Though the ontologies can be locally extended, convergence mechanisms are missing.
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Comparison to DS2OS

In contrast to DS2OS, SOCAM separates between context providers and context

consumers. User-based services are context consumers that do not communicate with

each other. Context providers are part of the middleware layer. In DS2OS all services

are outside the middleware. They can produce and consume context, and use it for

communication with each other.

With the distinct ontology domains that only share a small subset of semantics via the

upper ontology (Sec. 3.9), SOCAM lifts the diversity problem of pervasive computing

on a higher level of abstraction by creating isolated domains in the ontology layer

(Sec. 4.5). DS2OS instead has only one ontology that is created collaboratively and

that comprises all domains (Sec. 5.2.8).

4.5.10 Java Context Awareness Framework (JCAF)

The Java Context Awareness Framework (JCAF) [Bar05] faces the problem that most

existing pervasive computing middleware designs only lift the heterogeneity of the

Smart Devices to the middleware layer (middleware silos, Sec. 4.5). The paper de-

scribes the phenomenon as emergence of dedicated domain-specific context-awareness

sub-systems. JCAF aims to provide a framework that is generic enough to be usable

for different domains.

System Design

JCAF is implemented in Java as P2P system. JCAF services are distributed. Services

are implemented as Java objects that communicate with each other over RMI.

Context Management

JCAF has no specific context storage by itself. Context is stored in the distributed

services. For context discovery the standard RMI registry is used. JCAF provides

a fixed ContextService interface. Between services, a topic-based (event) publish-

subscribe architecture is implemented via JCAF.

Context is represented as Java Objects which allows the use of inheritance. Addi-

tional relations such as located in can be modeled. JCAF implements an object-based

ontology.

Each JCAF service can implement its own context model. This allows to add and

remove contexts dynamically at run time. There is no shared directory for context

models and therefore no support for convergence. The JCAF meta model is fixed.

In a use case that is described in the paper, a history module was implemented that

provides access to historic events. As the JCAF architecture does not act as context

provider itself, it enables historic context via services but it does not provide it.

Service Management

JCAF implements a Service Oriented Architecture (SOA) (Sec. 3.8). Services are

implemented in so-called EntityContainers that provide the JCAF functionality.
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JCAF provides a fixed API to access context. Context can be exchanged via group

based (p) and generative communication (g). The JCAF architecture does not provide

use case-specific functionality. The core functionality can not be extended via services

making JCAF partly (only basic functionality) a µ-middleware.

JCAF uses the Java RMI service registry as directory for services to find each other.

Service executables are not managed by the system.

Real World Deployment Support

As fully distributed system, JCAF scales. Only the RMI registry could become a

bottleneck with many services.

JCAF provides mechanisms for access control and authentication via certificates. En-

cryption and code signing are not supported (Sec. 7.3).

User-based development is supported via the EntityContainers. The mechanisms

are comfortable for experts but probably too complicated for beginners. No sharing

mechanisms are provided.

Comparison to DS2OS

The goals of JCAF and DS2OS are similar. A major difference is that DS2OS se-

parates the context from the logic of services while JCAF encapsulates both in the

EntityContainers.

An additional important difference is that DS2OS provides context management in-

cluding context storage. This takes complexity away from service developers.

4.5.11 Pervasive Autonomic Context-aware Environments (PACE)

The Pervasive Autonomic Context-aware Environments (PACE) middleware [HIM05a,

HI04] aims to facilitate the prototyping of context-aware applications. PACE consists

of the six layers shown in Fig. 2.6.

It provides direct support for applications that use branching as method to make a

context-dependent choice among a set of alternatives, and triggering as asynchronous

event-based method to trigger actions on transitions of context states based on Event-

Condition-Action (ECA) rules.

System Design

PACE is built as a central [HI04] or independent distributed [HIM05a] context repo-

sitories.

The central version uses Java RMI and offers a web interface that can be used via XML

commands over HTTP. The distributed version uses a publish-subscribe content-based

message routing scheme.

As shown in Fig. 2.6, PACE uses a layered design, supports events, and allows hori-

zontal communication over context and the mechanisms of the routing scheme.
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Context Management

The center of PACE is the context repository. It represents context as relation tuples

[HIM05b]. An example for a relationship tuple is “Person is located at Location”.

Context information is stored in a relational database.

Context models can dynamically be added by services at run time. PACE does not

have a Context Model Repository (CMR) (Sec. 5.2.8) and does not support conver-

gence therefore. The PACE meta model cannot be extended with additional semantics

[HIM05b].

No API for querying historic context is presented in the literature.

Service Management

The possibility to use the context repository for inter-service communication results

in a fixed API. Direct communication over the message broker [SA97] also has a

fixed API but the subscription topics are not shared over a repository. This makes it

necessary that services know the subscription topics in advance.

Inter-service communication is not directed. Via triggering, synchronous communica-

tion can be implemented (g). Via storing context, asynchronous communication can

be implemented (p).

With the support for the branching and triggering workflows, PACE is not a µ-

middleware.

Real World Deployment Support

PACE exists as centralized and distributed version (see above). In the distributed

version the system scalability is only limited by the scalability of the used publish-

subscribe message broker [SA97].

A PACE schema compiler validates context models before instantiation. PACE pro-

vides access control based on preferences that express situations in which information

should be revealed [HIM05a]. Authentication and further access control are not pro-

vided.

Support for different programming languages is conceptually provided. A Java pro-

gramming toolkit is provided that facilitates PACE application development. The

sharing of services is not supported.

Comparison to DS2OS

Like PACE, DS2OS provides mechanisms to validate context models (Sec. 5.5.6).

In contrast to DS2OS, PACE does not offer a CMR. This makes the (re-)use of context

between services difficult.

In contrast to DS2OS, PACE separates between adaptation services interfaces, middle-

ware services interfaces, and orchestration services interfaces. This complicates crowd-

sourced development and flexible coupling of functionality (Sec. 5.4.1, <R.6>).
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4.5.12 OPEN

OPEN [GZI10] targets rapid prototyping, sharing, and personalization of context-

aware applications. The project aims to support a diverse group of developers with

different skill levels.

Orchestration services in OPEN are represented as ECA rules (Sec. 3.6.4). According

to the skill level of developers, ECA rules can be created (expert developer), combined

(medium developer), or parameterized (beginner developer).

System Design

The OPEN middleware and all user services run on a central server. OPEN imple-

ments a vertical design. All services run inside the middleware not requiring addi-

tional communication. Services can be developed and managed on the server over a

web interface.

Context Management

OPEN uses an OWL ontology as context model (Sec. 3.9). OPEN context models are

stored and disseminated from a central repository to distributed Smart Spaces. An

OPEN Smart Space contains a central context repository that is implemented as one

database.

The context models of the ontology, and the upper ontology are maintained by experts.

Smart Devices are connected via so-called Wrappers that are maintained by experts

like the context models. Via automated updates of the local ontologies, context models

are dynamically added.

Via the experts, context models are converged. Extensions of the OPEN meta model

may be possible via the central distribution mechanism like the context models. The

paper does not provide such information. There is no information about context

versioning.

Service Management

OPEN ECA rules can be designed and configured via a unified web interface. The

syntax is fixed.

Services are pure consumers of context that is available in the system. There is no

inter-service communication. The middleware contains the entire execution of services.

OPEN is the opposite of a µ-middleware.

Via a shared repository, developers and users can exchange their rules. OPEN provides

full management of the rules.

Real World Deployment Support

Via the central database and the use of OWL ontologies OPEN does not scale.

Security is not addressed by OPEN.

As described in the introductory text, OPEN provides different mechanisms that foster

user-based development.
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Comparison to DS2OS

Compared to the previously introduced middleware, OPEN is the first approach that

targets real world developers. Like OPEN, DS2OS targets a heterogeneous group of

developers and crowdsourced development (Sec. 7.4). Both provide mechanisms for

deploying services to Smart Spaces (Sec. 7.2.6).

A fundamental difference is that services are ECA rules in OPEN. This limitation

facilitates the described tasks. DS2OS manages the development and distribution of

regular Java services. OPEN targets a small user and developer group while DS2OS

targets world-scale (Sec. 7.5).

OPEN orchestration services consist of ECA rules only. This limitation is not suitable

for implementing diverse pervasive computing scenarios. However, ECA rules are

simple to parameterize. The functionality of DS2OS exceeds that of OPEN, enabling

the implementation of complex pervasive computing scenarios with simple ECA rules

(Sec. 8.4.4).

4.5.13 One.World

One.World [Gri04, GDLM04] targets the use case of a laboratory environment where

data should be shared, and guest researchers come and go. Its design goals are sup-

porting context change handling in applications, ad hoc composition of services, and

file sharing between applications and devices.

One.World encapsulates services in self-contained Environments that contain a service

executable and its data. The framework manages the discovery and migration of

services.

Context changes are not handled transparently for services. Instead, services should

be created in a way that makes them explicitly adapt to environment changes (e.g.

migration) by rediscovering resource bindings using the One.World directory service

for instance.

System Design

One.World is implemented in Java. Communication happens via asynchronous events.

A proprietary message format over a Transmission Control Protocol (TCP) connection

is used to exchange information between distributed hosts.

The interaction with the One.World middleware is vertical but the middleware runs

distributed on multiple hosts which also leads to horizontal communication for context

exchange in the middleware.

Context Management

One.World uses self-describing tuples to represent context. Tuples are implemented

as Java objects. No explicit context model representation is used.

One.World synchronizes context between Environments that share the same name-

space. Context search is supported via data types and values.
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Adaptation services that support new Smart Devices can be added at run time. They

can be found if their type is known to other services. There is no explicit mechanism

for versioning context tuples.

The meta model is fixed and supports typing.

Service Management

One.World uses a fixed API with few methods. Inter-service communication happens

over events that are represented in tuples that are exchanged over a fixed API messages

(m).

Services are encapsulated in so-called Environments that contain the executable and

the tuple storage of a service. Resources can be discovered via their descriptors that

are registered on a central discovery server.

Services can be composed via nesting and via exchanging events between Environ-

ments. Event handlers of remote services can be identified using the directory.

One.World only provides basic context handling functionality but the core cannot be

extended via services. One.World is partly (only basic functionality, no extensibility)

a µ-middleware.

Service migration is supported by moving Environments to another host. This is

facilitated as an Environment comprises the entire service state (Sec. 4.3). Bindings

to other resources are deleted on migration. A (global) service repository is not part

of One.World.

Real World Deployment Support

The implementation experience with DS2OS shows that Java objects do not scale with

large contexts. This was the reason for basing the VSL on a database (Sec. 6.3.5).

The directory service (see above) could become a bottleneck.

One.World uses implicit mechanisms to protect context from unauthorized access.

Storing contexts in the Environments automatically protects context against access

from outside. Via using the same namespace for distributed Environments, context

sharing can be implemented in a controlled way.

Context is only protected against readout from applications running outside One.World

by Java. Communication is not encrypted.

The chosen abstraction simplifies the development of services. The missing of an

explicit context model and of abstract interfaces that describe the functionality of

services make the solution not transparent enough for real-world use. No infrastruc-

ture for sharing services is provided.

Comparison to DS2OS

Like DS2OS, One.World explicitly separates between application logic and data and

provides full service encapsulation (Sec. 5.6.5).

Major differences are that One.World does not have explicit context models, that

it does not provide context management, and that it does not support synchronous

communication between services.



170 4. State of the Art

4.5.14 Application Context Engine (ACE)

The Application Context Engine (ACE) [ZPOW11] externalizes reasoning logic for

acquiring desired context from services and puts this functionality into a middleware-

addon.

Services describe their context acquisition logic in OWL (Sec. 3.9) and pass the RDF

description (Sec. 3.9.6) to the ACE that validates given constraints when starting and

stopping a service and applies the given logic during the run time of the service.

ACE does not contain a context-provisioning middleware. Instead it is intended to

run on top of different of the presented middleware frameworks.

Though below it is described how ACE could complement a µ-middleware as a service,

the motivation of ACE is that the provided functionality is missing in the existing

middleware kernels.

This motivation of the authors illustrates the identified trend of existing pervasive

computing middleware to create middleware silos (Sec. 4.5). The sparse population of

the µ-middleware row in table 4.1 shows that many designs follow this silo approach.

See Sec. 6.2 for a discussion.

System Design

ACE acts as preprocessor between a service implementation and a context-provisioning

middleware. It handles the context acquisition and pre-evaluation of context for ser-

vices.

Context Management

ACE does not manage context but uses context that is managed by its underlying

middleware. ACE instances can run independently. As ACE uses an OWL ontology

it provides limited scalability.

Service Management

ACE constraints are specified in OWL using a fixed meta model.

Real World Deployment Support

An ACE instance can be started for each service on distributed hosts as it acts as a

building block for a service developer. Therefore it scales.

ACE is positioned between a service implementation and a context-provisioning middle-

ware. This position in the middle may introduce security problems as the component

is external to a service and external to the middleware. ACE provides limited service

management by checking the constraints of a service during its life-time. ACE does

not provide additional security or privacy.

The complexity of the constraint specifications in OWL make it difficult to use for

non experts.
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Comparison to DS2OS

ACE could be run as a filter service in DS2OS that provides the described functionality

(Sec. 8.4.1). It could become a valuable building block for DS2OS services.

The presented examples for expressing the ACE constraints are too complex for user-

based development. In addition, the assumption for DS2OS services is that their

constraints on context acquisition may change over their lifetime. This is not reflected

in ACE design where the context acquisition rules are initialized at service start time.

4.5.15 Distributed Smart Space Orchestration System (DS2OS)

The DS2OS middleware framework is evaluated in Sec. 7.7.

4.5.16 Combined State of the Art Reference Model

Combining the main features of all assessed middleware, a combined reference mo-

del is introduced. Different reference models for pervasive computing middleware are

presented in the surveys [RCKZ12, BCFF12, KKR+13]. Fig. 4.3 shows a combina-

tion of the existing reference models and additional functional components that were

identified in the state of the art analysis (Sec. 4.5.2). It is explained in the following

text. The numbers in brackets refer to the numbers in the figure.
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Figure 4.3: A combined reference model for the state of the art with aspects from [RCKZ12, BCFF12,

KKR+13].

Middleware that provides service management (1), typically offers a subset of the func-

tionalities: service discovery, service composition, service handoff for mobile services,

service migration, and a service repository. Managed services are in all assessed cases

orchestration services that implement application logic. Management for adaptation

services that interface Smart Devices is not provided by the assessed solutions.

Middleware that provides context management (2) typically offers a subset of the func-

tionalities: context reasoning, context modeling, context storage, context aggregation,

and context collection.
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In case of a distributed design, context dissemination, and context routing are addi-

tional tasks for a middleware (3). Several of the presented solutions provide workflow-

specific support functionality (4) that is expected to be used as a building block for

developing services.

Context is produced by context producers (5). Typical context providers are adapta-

tion services that connect Smart Devices to the middleware (Sec. 8.3.1). In several

middleware architectures context provider are part of the middleware. The orches-

tration services that implement the pervasive computing scenarios are illustrated as

yellow services at the top of Fig. 4.3 (context consumer) (6). Often they act as con-

sumer of context only.

The shown functionality is typically provided by monolithic components in case of a

vertical design. In a horizontal design the functionality is typically distributed over

multiple modules.

If services can communicate with each other this often happens as shown at the top

of Fig. 4.3 between the context consumer and the other service. In some architectures

inter-service communication happens over the middleware either via special commu-

nication mechanisms, or using context for exchange in the combined role of context

producers and context consumers for bidirectional communication.

Though not shown on the picture, security is relevant for all components for a real

world deployment. The assessment in table 4.1 illustrates that about half of the

existing solutions provide at least some security features.

To illustrate the differences between the existing middleware designs and DS2OS, the

colors, elements, and numbers of Fig. 4.3 are used to illustrate the architecture of

DS2OS in Fig. 7.6 in Sec. 7.7.2.

4.5.17 Discussion of the Assessment Result

The results of the assessment that are summarized in table 4.1 are discussed going

through the assessment criteria from left to right in the table, following their order

introduced in Sec. 4.5.1.

Concerning the system architecture, centralized systems have scalability problems for

large amounts of services and context. P2P architectures scale better.

The used communication technology has influence on the developer’s freedom of choo-

sing a programming language to implement their services. It determines the require-

ments on implementing additional components for communication at the developer

side, and required components in the network (e.g. directory server). Systems that

can be adapted to multiple communication technologies offer most freedom.

A vertical system organization in layers structures the functionality that is needed

to implement pervasive computing. A horizontal design is more challenging but it

provides better scalability.

The context meta model has influence on the performance of a middleware system.

Complex context models such as ontologies need more resources to be processed than

simple context models that are based on markup schemes (Sec. 3.9). The reason are

dependencies that have to be resolved to interpret ontologies. The meta model defines
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the expressiveness of context models. It defines what can be represented (e.g. type

relations, location relations, functional relations).

Most solutions provide extensible support for Smart Devices but many solutions do not

use explicit context models, or abstract service interfaces. This is problematic as the

interfaces define how the abstraction of a Smart Devices can be accessed by services.

Service developers have to know the context models or abstract service interfaces of

services that connect devices for being able to use the corresponding Smart Devices.

Only OPEN (Sec. 4.5.12) and SOCAM (Sec. 4.5.9) support a convergence of context

models. Both implement the approach of standardization by experts. As discussed in

Sec. 3.3.2, the used classical standardization mechanisms do not scale with the high

amount of context models that are needed for real world pervasive computing. A

standardization by a small group of people does not meet the requirements of future

Smart Spaces.

An extension of the meta model raises the level of expressiveness of context models

(Sec. 3.9). Only SOCAM implements meta model extensibility. It is based on re-

placing the meta model with an updated version. This mechanism results in a major

change of the ontology of a Smart Space that is difficult to communicate to developers.

It is also not dynamic as all meta model in all spaces have to be exchanged to offer

the new semantics. This is unlikely to scale.

The availability of historic context is important to allow services to learn from the

past. Functionality that archives all context is not available in the assessed solutions.

However, it could be added to most solutions without major design changes.

The use of a fixed API for services facilitates their development. It allows services

to use the middleware functionality, or to communicate with each other (e.g. over

context) in a unified way. As described for Context Toolkit (Sec. 4.5.8), using context

for information exchange simplifies the inter-service communication (Sec. 5.3.1). In

addition it inherently makes all services interface compatible which fosters reuse and

mash up in a SOA (Sec. 5.6.6).

A problem of using context for coupling services is that it implements asynchronous

and static communication via generative or mailbox communication (Sec. 3.4.1). Only

context that was put into the context repository can be read. This introduces latency.

Only some of the middleware designs support inter-service communication. The lack

of inter-service communication prevents modularization and reuse of functionality for

other services.

Different inter-service communication modes have different properties as described in

Sec. 3.4.1. Temporally coupled mechanisms require all communication partners to

exist at the same time, and to process communication messages immediately. The

latency of direct coupling is low. Temporally uncoupled communication implements

looser coupling and temporal independence of communication partners for the price

of higher latency (see Sec. 9.3).

Referential coupling has implications on the security of communication and on the

level of control of an interaction. In Smart Spaces it can be relevant specifying who is

the receiver of a communication message. The exchanged information could be sen-

sitive (e.g. safety, privacy). The support for different communication modes impacts

the possibility to implement diverse pervasive computing scenarios (Sec. 5.4.3).
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A fundamental problem of existing middleware is that it is not a µ-middleware. It

offers use-case-specific or workflow-specific support functionality. As discussed in

Sec. 4.5, such functionality can prevent the implementation of pervasive computing

scenarios that were not planned when the support functionality was added. Providing

workflow-specific support has negative implications on the application design [DM12]

(Sec. 2.5).

Only three of the analyzed middleware designs do not offer functionality that in-

terferes with the implementation of services. But those middleware designs cannot

be extended with core functionality which makes service development unnecessarily

complex (Sec. 6.2).

Service management is implemented locally by several middleware designs. The term

Smart Space Orchestration (Sec. 2.4.1) describes that functionality of pervasive com-

puting scenarios is implemented in software services. For distributing the implemen-

tations of the scenarios, a distribution mechanism is needed.

Only OPEN (Sec. 4.5.12) provides a global distribution mechanism for services. OPEN

only supports ECA rules as services. This limitation facilitates the service distribu-

tion. HomeOS does not provide a solution but discusses the distribution of more

complex service programs.

Smart Space Orchestration in combination with the demand of ubiquitous computing –

to be ubiquitous– requires a pervasive computing middleware to scale. The assessment

shows that most solutions have either central components, or use a meta model that

need compute intense processing. Both decreases the scalability.

Most assessed solutions provide few security mechanisms. Functionality for authenti-

cation of communicating components as basis for access controls is typically missing.

The same applies to encryption that can protect from eavesdropping or theft via

parties that get physical access to the communication or storage infrastructure.

Only PACE (Sec. 4.5.11), and ACE (Sec. 4.5.14) support the validation of context.

Such validation can help to increase the dependability and security of services that

use a middleware (Sec. 5.5.6).

User-based development is partly supported by all solutions that allow extension with

services. Simple-to-use concepts that support developers with different skills, and tools

that support the development are typically missing. HomeOS and OPEN provide

most developer support of the assessed solutions concerning real world use. Large

scale service deployment mechanisms are only discussed in these two works.

HomeOS (Sec. 4.5.5) uses the .net framework for development. This introduces a

comfortable IDE that can be used to develop services for HomeOS.

OPEN (Sec. 4.5.12) is the only solution that addresses developers with different skills.

For the highly limited use case of representing services as ECA rules, different levels

of developers are supported by offering different interfaces.

4.5.18 Middleware Assessment Conclusion

The requirements from Sec. 3.12 are used as basis for the assessment of the state

of the art pervasive computing middleware. They overlap with assessment criteria
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from different pervasive computing middleware surveys. The assessment shows the

relevance of the criteria for the research community.

The presented survey exceeds existing surveys by including service management and

context management middleware, and by assessing both with the same extended set of

criteria. A joint analysis helps identifying shortcomings and the sum of supported fea-

tures more clearly. Besides the shortcomings several interesting aspects are identified

in the different middleware designs.

Analyzing the state of the art identifies the missing of a middleware that solves the

overall objective of this thesis (<O.0>). Most existing solutions focus on connecting

(selected) Smart Devices (<O.1>), and facilitating the creation of (certain) orchestra-

tion services. Diversity support (<O.3>), and real world deployment support (<O.4>)

are typically missing. Distributed in the state of the art, Several promising solutions

for parts of the requirements (Sec. 3.12) exist. A comprehensive solution is missing

in 2014.

DS2OS offers such a comprehensive solution as shown in the remainder of this thesis.

The most relevant parallels and differences between a related work and DS2OS are

discussed in each middleware assessment as last paragraph.

4.6 Chapter Conclusion

With the right tools, crowdsourced software development for Smart Spaces is possible

in 2014 (Sec. 4.2).

Virtualization of interfaces enables portability (Sec. 4.3). This is relevant for making

the software of future Smart Spaces independent from specific hardware platforms.

The virtualization concept is important for making future Smart Space services in-

dependent from the heterogeneous Smart Device interfaces (Sec. 3.3.1). Sec. 5.6.3

discusses portability in detail.

A descriptive representation of management information and access via a fixed API

facilitate the management of complex systems (Sec. 4.4). Standardization is needed

to provide interoperability (Sec. 3.3.2).

The assessment of the 13 middleware designs shows that most middleware provides

partial solutions for the adaptation of Smart Devices (<O.1>), and for the creation of

orchestration services (<O.2>). Diversity support (<O.3>), and real world deployment

support (<O.4>) are typically missing.

Middleware silos are the fundamental problem of current pervasive computing middle-

ware. They prevent the implementation of diverse scenarios. The missing of suitable

standardization mechanisms for abstract interfaces in Smart Spaces is a problem as

it inhibits portability.

Existing middleware solutions typically do not provide sufficient support fo user-based

development. The offered development interfaces are too complex for non experts.

This includes the creation of context models. Current solutions often do not scale.

They lack sufficient security mechanisms, and do not provide mechanisms for dis-

tributing software to Smart Spaces.

The functionality of all assessed middleware can be combined as done in Fig. 4.5.16.

The combined reference model shows the sum of functionalities that are distributed
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among the existing solutions. A middleware that combines all aspects was not found

in literature. Even if it existed it would still have shortcomings as discussed in this

section.

The remainder of this work shows how a single pervasive computing middleware frame-

work can offer all functionality. To compare the differences to existing approaches,

all elements of Fig. 4.5.16 are shown again in Fig. 7.6 in Sec. 7.7.2. The assessment

criteria that were applied to the state of the art are applied to the solution that is

presented in this thesis in Sec. 7.7.1. The entries of the last row of table 4.1 are

discussed in that chapter.
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5. The Virtual State Layer

Programming Abstraction

A language that doesn’t affect the way you think about

programming, is not worth knowing.

Epigrams on programming [Per82], Alan Perlis, American computer

scientist, (1922 - 1990), 1st Turing award winner 1966.

Short Summary The chapter introduces the Virtual State Layer (VSL) programming

abstraction. It is based on the context-provisioning middleware concept.

A hybrid meta model is presented. It is used for creating context models that are

shared over a global Context Model Repository (CMR) that becomes a self-managed

collaborative ontology. A collaborative automated convergence mechanism for con-

text models is introduced. The context models are used to offer context storage for

services over a fixed Application Programming Interface (API) with 13 methods.

Via a novel concept, called Virtual Nodes, it becomes possible to use context models

as abstract service interfaces. This enables a Service Oriented Architecture (SOA)

of Smart Space services.

It is shown how the programming abstraction implements distribution transparency

and autonomy, and how it fosters portability of services and security-by-design.

Key Results Most of the requirements from Sec. 3.12 are fulfilled by the programming

abstraction.

A hybrid meta model is developed that combines the positive aspects of key-value

pairs, markup schemes, object oriented models, and logic based models. It is used

as basis for creating a self-managing collaborative ontology for Smart Spaces.

The novel concept of Virtual Context is introduced. It enables the use of context

models as abstract service interfaces. This makes all concepts presented for context

management usable for inter-service communication reducing the complexity of the

problem space, and enabling new features such as security-by-design.
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It is shown how the context-awareness support of the VSL allows to separate service

logic from service state which facilitates the development of Smart Spaces services,

and enhances their dependability.

Key Contributions The concept Virtual Context is introduced. It allows transparent

direct coupling of services over a descriptive data structure. It is the key for dynamic

transparent extension of core functionality of the programming abstraction, and for

implementing a SOA of Smart Space services.

A dynamically extensible, self-managing collaborative ontology is introduced. It ex-

ceeds existing approaches for collaborative ontologies [HJ02, KA06, LST13] as it

is self-managing meaning that it maintains its integrity, and it provides automated

convergence mechanisms.

The dual use of context models for structuring context, and as abstract service

interfaces (see below) makes the VSL ontology in the Context Model Repository

(CMR) not only a self-converging ontology, but also a collaborative standardization

mechanism for abstract service interfaces. This is a novel approach for implementing

interface portability that is needed as basis for creating services that can run in

different Smart Spaces.

A hybrid meta model that combines the desired properties from table 3.3 is in-

troduced. Its major advantages are simplicity-to-use via supporting object oriented

principles, high expressiveness, and fast processing via self-containment.

The use of context for inter-service communication is introduced. It allows using

context models as abstract service interfaces. Such an approach was only proposed to

a smaller scale by two existing solutions, Context Toolkit (Sec. 4.5.8), and One.World

(Sec. 4.5.13).

Using context models as abstract service interfaces reduces the complexity as only

one abstract data structure has to be maintained. At the same time it introduces

the features of context modeling to the creation of abstract service interfaces. The

hybrid VSL context model features include inheritance and validation. The use of an

explicit descriptive data structure for coupling services structures and facilitates the

development of services, and enable mash ups. It allows handling context sharing

and access control outside of services lowering their complexity and increasing the

security.

A concept for providing security-by-design is introduced. The use of context and

Virtual Context enables coupling services using the VSL programming abstraction

only. The resulting coupling over the middleware allows the enforcement of access

control and encryption.

A strict separation of service state and service logic is proposed. Only One.World

(Sec. 4.5.13) proposes such a separation [GDH01]. The concept that is described in

this chapter exceeds the One.World concept. The separation structures and facilitates

the development of services, and the coupling of services. It enables generative

coupling between services (Sec. 3.4.1, services do not have to run for communication).

Challenges Addressed <R.1> Simplicity-to-use, <R.2> Multi-user support, <R.3>

Self-management, <R.4> User participation, <R.5> Context-awareness support, <R.6>

Role-independent unified interfaces, <R.10> Standardization, <R.9> Information loss

prevention, <R.8> Portability of services, <R.11> Distribution support, <R.12> Ac-
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cess transparency, <R.13> Location transparency, <R.14> Migration transparency,

<R.15> Relocation transparency, <R.16> Concurrency transparency, <R.17> Fail-

ure transparency, <R.18> Persistence transparency, <R.19> Direct communication

support, <R.20> Mailbox communication support, <R.21> Publish-subscribe com-

munication support, <R.22> Generative communication support, <R.23> Dynamic

extensibility, <R.24> Descriptive knowledge representation, <R.25> Interaction on

different levels of abstraction, <R.26> Modularization support, <R.28> High expres-

siveness context representation. <R.29> Simple-to-use context abstraction, <R.30>

Dependability, <R.31> Loose coupling of services, <R.32> Service contracts, <R.33>

Service autonomy, <R.34> Service abstraction, <R.35> Service reusability, <R.36>

Service composability, <R.37> Service statelessness, <R.38> Service discoverability,

<R.39> Abstract interface validation, <R.40> Suitable meta model, <R.41> Low

complexity meta model, <R.42> Collaboration support context models, <R.43> Dy-

namic extensibility context models at run time, <R.44> Context validation, <R.47>

Emulator support, <R.48> Crowdsourced development, <R.49> Security-by-design,

<R.50> Scalability

Summary The chapter starts showing the embedding of the VSL programming ab-

straction in the real world (Sec. 5.1.1), and a discussion of the key innovations of

the VSL (Sec. 5.1.2).

Then the hybrid meta model of the VSL programming abstraction is introduced

(Sec. 5.2). It combines features from key-value pairs, markup schemes, object ori-

ented models, and logic based models. The VSL meta model knows three basic data

types, and the concepts subtyping and composition. The hybrid properties enable

context validation.

Types are used as primary context by the VSL. It implements a locator-id split that

enables service portability (Sec. 5.2.13). Context instances can be identified based

on their type identifier independent of their instance addresses (locator).

Next the API for context access is introduced (Sec. 5.3). It consists of 13 fixed

functions, supports transactions, and implements access controls.

Then Virtual Context is introduced in Sec. 5.3.4 as a novel concept that combines

the structuring properties of a static context model with the dynamics of service

function implementations.

Next the VSL service interface is presented (Sec. 5.4). It uses context models as

abstract service interfaces implementing a SOA (Sec. 5.4.4).

How the VSL programming abstraction supports security-by-design for context access

and inter-service communication is presented in Sec. 5.5.

Next, the properties of the programming abstraction are analyzed (Sec. 5.6). They

are distribution transparency (Sec. 5.6.1), autonomy (Sec. 5.6.2), portability support

(Sec. 5.6.3), collaborative convergence support (Sec. 5.6.4), the structuring of ser-

vice implementations via the separation of logic and state (Sec. 5.6.5), support for

functionality emulators (Sec. 5.6.7), and support for formal modeling (Sec. 5.5.6).

Sec. 5.7 shows how the VSL uses its own Virtual Context mechanism to provide

functionality. The implementation of the distribution of context models within a

VSL overlay (Sec. 5.7.1), and the implementation of the type search (Sec. 5.7.2) are

presented.

Virtual Context can be used to add diverse support functionality (see Fig. 4.3) to the

VSL (Sec. 5.7.3). The presented example is a dynamic extension of the VSL context



182 5. The Virtual State Layer Programming Abstraction

with primary contexts which is a fundamental operation for a context-provisioning

middleware. The example demonstrates the flexibility and power of the VSL pro-

gramming abstraction.

Finally the practical use of the VSL programming abstraction is demonstrated at an

example service (Sec. 5.8).
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5.1 Introduction

This chapter contains the main contribution of this thesis, the Virtual State Layer

(VSL) programming abstraction that comprises:

• A dynamically extensible meta model that is used to define context models.

• A dynamically extensible global collaborative self-managing ontology.

• Globally shared abstract service interfaces.

• The separation of logic and state in service implementations.

• A novel concept called Virtual Context that allows to use (descriptive) context

models for directly coupling services.

A possible implementation of the programming abstraction is introduced with the

Virtual State Layer (VSL) µ-middleware in Ch. 6. Additional functionality such as

service management and real-world deployment support are introduced on top of the

VSL µ-middleware using the VSL programming abstraction in Sec. 7.

In the remainder of this thesis, the term VSL is typically used to describe the con-

ceptual layer that contains the knowledge base of a Smart Space instance.

5.1.1 Embedding of the VSL in the Real World

Sec. 3.1.2 structured the problem space pervasive computing into seven layers of ab-

straction and four functional rings in Fig. 3.1. Fig. 5.1 shows the embedding of the

VSL programming abstraction in this topology.
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Figure 5.1: Context Management Architecture of the VSL with Logic Layers.

The functionality of the layers was described in Sec. 3.1.2 and is summarized on the

left of Fig. 5.1. For basic understanding of the architecture, the VSL entities shown

in Fig. 5.1 are briefly introduced.
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To overcome the distribution and the heterogeneity of computing hardware in Smart

Spaces (Sec. 3.2.4), the VSL programming abstraction is designed as middleware

(Sec. 3.4).

Since the implementation of pervasive computing scenarios typically requires the pro-

cessing of context, the VSL is a context-provisioning middleware. Its purpose is

providing all kinds of services (Sec. 8.3) in the service domain (Fig. 5.1) with the

context they need to reach their goals (Sec. 3.6.3).

The VSL is designed as fully distributed system of peers that are called Knowledge

Agents (KAs) (Sec. 5.6.1, Fig. 5.4). A Knowledge Agent (KA) is shown in the center

of Fig. 5.1. The function of a KA is managing context that belongs to services.

Managing context includes providing context repositories for services, and retrieving

context from other KA peers.

The arrows show the interaction between the VSL KAs and services. The VSL offers

a fixed Application Programming Interface (API) to access context that allows to

synchronously access context in the context repository via get and set, and to asyn-

chronously get notified on context changes that were subscribed before (Sec. 5.3.1).

A special functionality of the VSL is so-called Virtual Context that is shown on the

right (get/ set Virtual Node). Virtual Context is described in detail in Sec. 5.4.

Abstraction

Fig. 5.1 can be read from a functional point of view and from a domain point of view

as described in Sec. 3.1.2.

From a functional point of view the level of abstraction raises from the bottom to top

layer in Fig. 5.119. Smart Devices typically expect concrete orders such as“state[7]=1”

while people are likely to give their software-orchestrated Smart Spaces instructions

on a high degree of abstraction such as “I want to feel good”.

In the domain perspective, the highest degree of abstraction is reached in the context

repository of the VSL in the center of the figure as it has the greatest distance to the

physical world in the outer layer.

Therefore the “Level of Abstraction” arrow ends in the middle of Fig. 5.1. In the

shown length it represents the domain view. The reader may mentally elongate it to

read the first interpretation.

5.1.2 Novelty of the Approach

The VSL programming abstraction introduces four new concepts:

1. A hybrid meta model that is simple, efficient to parse, and expressive.

2. A collaborative self-managing ontology.

3. The dual use of context models, first as concept to structure context represen-

tations, and second as abstract interfaces to services.

19As written in Sec. 3.1.2, the layered view becomes visible when removing the circle connections

on the rights of the figure.
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4. Virtual Context as concept that allows to use context models as abstract service

interfaces.

None of the four concepts is implemented in any of the assessed middleware designs.

As context management is a task that is not common to middleware in general but

especially important for context-provisioning middlewares [KKR+13], it is likely that

the four mechanisms and their described combination are novel for middleware in

general.

The hybrid meta model combines properties from key-value-pairs, markup, object

orientation, and ontology to implement a simple-to-use and highly expressive context

model. VSL context models can be extended with semantics at run time.

A hybrid meta model and the semantic extensibility at run time are typically not

provided by state of the art context modeling techniques [BBH+10]. Probably both

aspects are novel as they are implemented by combining static and dynamic elements

(instances & instantiation, context models & Virtual Context) which is not a typical

proceeding in the context modeling community.

Providing state management (context management) as basic functionality of the VSL

programming abstraction enables a full separation of service logic from service state.

State can be stored in the VSL instead of using data structures within service im-

plementations. This work shows advantages of such a separation. The structure of

service state in the VSL context repositories is defined via context models. Using the

context repositories for storing service state enforces the creation of context models

as structure of the state space that can be used by services.

The VSL programming abstraction requires VSL context models to be shared over

a global Context Model Repository (CMR). The presented mechanisms manage the

integrity and the distribution of context models. A collaborative standardization me-

chanism is introduced. It is extended in Sec. 7.4.3. The combination of the presented

mechanisms implements a self-managed ontology. As the CMR is open for submissions

of new context models, it implements a collaborative ontology.

The collaborative creation of ontologies is an open resource topic in 2014 [LST13,

KA06, HJ02]. Similar approaches to the presented self-managing ontologies could not

be found in literature.

The VSL introduces a dual use of context models as unified interface to static context,

and to dynamic services. Using one interface for both reduces the complexity of

context access and inter-service communication to the invocation of 13 fixed methods.

In addition to the simplification for developers, the unified interface result in inherent

service composability. With the 13 methods any two VSL services can be coupled.

Via the described dual use, the definition of context models is identical to the defi-

nition of abstract service interfaces. VSL context models are shared over the global

CMR. Thereby the abstract interfaces of services are shared resulting in a service

interface directory. In combination with the fixed methods to access service functio-

nality this fosters reuse. Though the use and sharing of abstract service interfaces is

known from the Service Oriented Architectures (SOAs) paradigm, the combination

with context models and the implemented enforcement of a global sharing of abstract

service interfaces are novel.

The term Virtual Context describes context that is created on-demand in a trans-

parent way for services accessing it. From an API perspective, Virtual Context can
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be compared to dynamic websites that get generated dynamically by programs based

on Representational State Transfer (REST) requests. Applying such a technology to

application context is novel. It enables the use of context models as abstract service

interfaces for direct and indirect coupling of services. This lowers the complexity of

a solution for Smart Space Orchestration significantly as it consolidates the require-

ments on the development of context models and abstract service interfaces.

The power of the four novel concepts is shown in Sec. 7, and Sec. 8. The usability

study (Sec. 9.6) supports the assumption that the presented design implements a

simple-to-use and powerful programming abstraction (<O.0>).

5.2 The Hybrid VSL Meta Model

The longer you look at an object, the more abstract it becomes,

and, ironically, the more real.

Lucian Freud, British painter, (1922 - 2011).

The dynamically extensible VSL meta model is the core of the VSL. Fig. 3.12 illus-

trates the correlation between meta model, context model, and virtual object. In the

remainder of this document, the term context will be used instead of virtual object as

it is shorter, and as the presented design is situated in the virtual world where context

is always represented as virtual object.

Table 3.3 summarizes strengths and weaknesses of different meta models as result of

their analysis in Sec. 3.9.

Major advantages of the different approaches are:

• Key-value pairs are simple to use, to understand, and to process.

• Markup schemes provide structure, add types, metadata, and the possibility for

validation.

• Object oriented models support inheritance which facilitates the creation of con-

text models (Sec. 3.9), and they automatically represent dependencies via in-

heritance relationships.

• Logic based models allow to express more relations than the previous, they allow

to validate semantics, and they allow the inference of new context via applying

logic rules.

From the top to the bottom of the list the expressiveness increases which is desired,

and the complexity increases which is not desired.

Expressiveness means here that diverse relationships of a context information such as

functional or spatial relationships can be expressed explicitly when creating context

models using the respective meta modeling approach.

Complexity affects the usability (<O.4>) and the computational complexity that is

needed to process context models that follow a specific meta modeling approach.
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Expressiveness and complexity have been assessed for existing meta models in Sec. 3.9,

and for existing pervasive computing middleware in Sec. 4.5. Detailed differences

between the meta models can be seen in table 3.3.

Following, the VSL meta model is introduced. Its design goal is combining the positive

aspects of the different meta modeling approachs that were presented in Sec. 3.9 while:

• keeping the complexity so low that user-based development becomes possible,

• enabling collaborative creation of context models,

• supporting timeliness for making historic contexts accessible,

• introducing dynamic extensibility not only for supporting the adding of new

context models at run time but also by supporting to add new semantics,

• providing high expressiveness for supporting a reasoning process that infers new

context from existing context,

• allowing distributed processing,

• providing a syntax that can be validated,

• supporting semantic validation, and

• enabling efficient parsing.

For a more detailed discussion of the properties and an assessment of existing meta

modeling approachs see Sec. 3.9.

The methodology that is applied in the following is the creation of a hybrid meta

model by combining existing meta modeling techniques.

5.2.1 Tuples

The VSL meta model consists of tuples that comprise a value and the following meta-

data (see Fig. 5.2):

• Type information that defines the type of the tuple value and its function.

• Reader Identifiers that are used for read access control.

• Writer Identifiers that are used for write access control.

• Subscriber Identifiers that are used for handling notifications.

• A version number that allows to access historic values.

• A time stamp that gives information when the tuple value was set.

The tuple can be represented as 〈address, typeIDs, readerIDs,writerIDs,
subscriberIDs, versionNr, timestamp〉.
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5.2.2 Hierarchical Addressing

The VSL uses a hierarchical addressing scheme to identify the tuples in the context

repositories (Sec. 5.2.1). The addressing scheme is comparable to typical file system

addressing:

1 /grandParent/parent/child

The VSL addressing puts the tuples into a hierarchical structure. Humans are famil-

iar with the concept of hierarchical structuring context (Sec. 3.5). This familiarity

facilitates the use of the proposed concepts (<R.29>).<R.29>

A logical tree structure of VSL tuples emerges. The tree structure allows to express

containment. An address smartDevice/lightSensor/irradiance expresses that a

Smart Device contains a sensor that provides a lightValue. See Fig. 5.2.

The hierarchical addressing implements composition. Context gets aggregated under a

common prefix/ namespace (Sec. 5.2.3)/ subtree (Sec. 5.2.7). Hierarchical addressing

gives composition semantics to the VSL context models (Sec. 5.2.18).

The described aggregation has the intended side-effect that it makes different levels

of abstraction accessible from the most general on the left (smartDevice) to more

specific entities being identified later in the address with the last entry being the most

specific (irradiance), e.g. /smartSpace/smartDevice/module/sensor (<R.25>).<R.25>

5.2.3 Namespaces

The hierarchical addressing (Sec. 5.2.2) results in a logical tree structure of context

nodes. This automatically structures the namespace.

The addressing scheme is applied for context nodes in context repositories and context

model, and for the identification of the context model in the shared CMR.

If two context node subtrees have identical subnode addresses but the parent nodes’

addresses are different, each node in a subtree can be identified by a unique address.

Each subtree implements its own namespace.

Using the example context model from listing 5.1, an instance of the model with the

address /device7/lamp23 can be distinguished from another instance of the same

model at address /device42/lamp23 as both are in different namespaces (device7,

device42).

VSL context nodes are always addressed via the Identifier (ID) of the KA they are

stored at followed by their relative address in this KA’s context repository. Both are

site-locally unique. Each VSL Smart Space has a unique ID (Sec. 5.5). The hierar-

chical combination of the three elements leads to a globally unique address of each

context node that is stored in the VSL. An example is /mySmartSpaceID/myAgen-

tID/device42/lamp23.

On the CMR (Sec. 5.2.8), the address scheme separates the address space into disjoint

sub branches. This organizes the context models in the repository and simplifies

finding (<R.1>) them which is relevant for reuse (Sec. 5.4.1).<R.1>

The hierarchical addressing scheme helps structuring context nodes (<R.29>), and<R.29>

context models in the CMR.



5.2. The Hybrid VSL Meta Model 189

5.2.4 Key-Value Pair Properties

The VSL addressing introduces only a logical hierarchy. The underlying data does

not necessarily have a hierarchical structure with dependencies such as tree structure.

Using a hierarchical data structure would require special access (e.g. tree traversal)

introducing computational complexity. Using only a logical hierarchy results in fast

processing all context data (〈address, value〉) is self-contained. In contrast to an

ontology (Sec. 3.9.1), no dependencies have to be resolved for accessing context. This

makes the processing of context fast (<R.50>). <R.50>

Instances of VSL context nodes can be accessed like key-value pairs. The key is the

address and the returned value is the value of the tuple. This results in low complexity

for using context in services (<R.29>). <R.29>

5.2.5 Markup Scheme Properties

The VSL context node trees are represented via markup. In the current implementa-

tion of the VSL (Ch. 6), Extensible Markup Language (XML) is used. Therefore the

following examples are in XML for illustration of the usability.

All other markup languages could be used if they support naming entities, and as-

sociating properties. The additional properties represent tuple metadata (Sec. 5.2.1)

and a fixed set of restrictions that are be described in Sec. 5.2.10.

Listing 5.1 shows a context model for an entity that has two child nodes. The three

dots identify that the type is usually part of a longer namespace (Sec. 5.2.3) that is

not printed as it is irrelevant for the example.

1 <deviceA >

2 <lamp23 type =".../ lamp"></lamp23 >

3 <lamp42 type =".../ lamp"></lamp42 >

4 </deviceA >

Listing 5.1: XML representation of the VSL context model of a deviceA

Listing 5.1 shows that the XML tags are used for naming (see listing 5.1) and not for

typing. If they would be used for typing, the markup would be:

1 <lamp name=" lamp23"></lamp >

Using tags for naming and not for typing is done for two reasons. First it is closer to

the VSL addressing scheme (Sec. 5.2.2) which is expected to facilitate the understand-

ing of the meta model (<R.29>, <R.41>). Second, the VSL uses multi-inheritance <R.29>

<R.41>
(Sec. 5.2.11) which results in multiple data types per node. Using multiple types as

tag name is impractical.

The use of a markup scheme allows to represent containment (Sec. 5.2.2), and typing

(Sec. 5.2.9) with low complexity. As the attributes (e.g. type) of VSL nodes are fixed

(Sec. 5.2.1, Sec. 5.2.10) syntax validation (<R.44>) is enabled (Sec. 5.2.14). This <R.44>

reduces the risk of errors which enhances the dependability (<R.30>) and the security
<R.30>(<R.49>) that the VSL meta model provides.

<R.49>
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5.2.6 Context Model

Context models are templates for representing properties of the physical world in the

virtual world (Sec. 3.9). See Fig. 3.1 and Fig. 3.12.

The VSL uses trees of VSL nodes as context model. See Fig. 5.2. Represented in

markup, listing 5.1 could be a VSL context model for instance.

Trees as descriptive concept to describe properties are a simple concept that is ex-

pected to be simple-to-understand by humans (<R.24>, <R.29>). This increases the<R.24>

<R.29>
usability of the VSL context abstraction enabling user participation (<R.4>), and

<R.4>

crowdsourcing (<R.48>) of the creation of context models by supporting different

<R.48>

levels of expertise at the user side including non-experts.

5.2.7 Knowledge, Trees, and Repositories

The terms knowledge, knowledge tree, knowledge base, and Knowledge Object Register

are used in the remainder of this work. Therefore their intended meaning is introduced.

Definition Knowledge

The term knowledge is used to describe instances of context nodes in this

work.

Definition Knowledge Tree

All instances of context models that are stored in a VSL context reposi-

tory are called knowledge tree in this work.

Definition Knowledge Base

The term knowledge base can be found in literature. It describes the

conjunction of all knowledge trees of a VSL instance.

Definition Knowledge (Object) Repository

The VSL context repositories that contain the instances of VSL con-

text nodes are also-called Knowledge Object Repository (KOR) or shorter

knowledge repository in this thesis.

5.2.8 Context Model Repository

The VSL uses a Context Model Repository (CMR) to share context models (see

Fig. 5.2). All VSL context models that should be usable in multiple Smart Spaces

must be uploaded to the global CMR. All context models that are instantiated in a

local context repository are loaded from the CMR (Fig. A.1).

The CMR is open to the public for read and write. Sec. 5.7.1 describes the CMR

implementation in detail. Everyone can submit context models that can directly be

instantiated in all VSL Smart Spaces (Sec. 5.7.1, <R.43>). The CMR ensures that<R.43>
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each submitted context model has a unique name that is called ModelID.

The ModelIDs that identify the context models use the VSL addressing schemes for

naming (Sec. 5.2.2). The hierarchical naming introduces namespaces (Sec. 5.2.3). The

use of namespaces structures the CMR which facilitates reuse, collaboration (<R.42>, <R.42>

<R.48>), and standardization (<R.10>). Standardization is facilitated as the use of
<R.48>

<R.10>

namespaces helps finding existing context models and reusing them (e.g. lamp).

Context models are automatically versioned by enforcing the use of unique names.

Each version of a context model must have a new identifier. A numeric suffix can be

added to the model identifier for instance: /light/lamp, /light/lamp2,/light/lamp3,

etc.

In combination with the service management that is presented as part of the Dis-

tributed Smart Space Orchestration System (DS2OS) framework in Sec. 7.2, a crowd-

sourced standardization (<R.10>) of context models is implemented via crowdsourced <R.10>

convergence (Sec. 7.4.3).

Having a central global repository ensures that the VSL instances of all Smart Spaces

use identical context models. The availability of context models in the global CMR

enables developers to identify and reuse context models (Sec. 5.2.18).

5.2.9 Dual Role of Types

Types have a dual use in the VSL.

• Identification of the data type of the value of a context node (e.g. /basic/number,

Sec. 5.2.10).

• Identification of the functionality of a context node (naming) by pointing to

the ModelID of a context model in the CMR that is associated with a certain

functionality (e.g. lamp).

The data type adds semantics that can be automatically processed by the computer.

It allows the validation of values via the VSL, e.g. by automatically validating if a

value is within the given restrictions of a context node’s data type (Sec. 5.2.14). The

functionality identifier adds semantics for human developers.

Sec. 5.2.18 introduces the functionality used for typing in the VSL.

5.2.10 Basic Data Types

The VSL meta model knows three basic data types: text, number, and list. The three

data types have each different fixed restrictions that are used by the VSL to automa-

tically validate (<R.44>, <R.49>) the value of a tuple (Sec. 5.2.14). See table 5.1 for <R.44>

<R.49>
the restrictions.

The basic data type text represents any text and has a regular expression as restriction

for its value. The XML representation of an instance of the VSL basic data type text

with the default restrictions is as follows:

1 <myText type ="/ basic/text" regularExpression ="">

2 string value

3 </text >
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Data type restrictions description

text regular expression The data type text can be used to represent

texts.

number
upper bound

lower bound
The data type number can be used to rep-

resent integers.

list

minimum entries

maximum entries

allowed ModelIDs

The data type list can be used to represent

lists of elements. It is the only type that

allows to extend a context model with addi-

tional context nodes within the restrictions

of the list.

Table 5.1: The three basic data types of the VSL meta model.

The basic data type number represents integers and has a lower bound and an upper

bound as restrictions for its value. The XML representation of an instance of the VSL

basic data type number with the default restrictions is as follows:

1 <myNumber type ="/ basic/number" lowerBound ="" upperBound ="">

2 23

3 </myNumber >

A number contains an integer value out of Z in the VSL. Other number types can be

composed from /basic/number (Sec. 5.2.11), e.g.

1 <fraction >

2 <numerator type ="/ basic/number"></numerator >

3 <denominator type ="/ basic/number"></denominator >

4 </fraction >

The basic data type list represents lists. While with the other basic data types only

the values change at run time, the list enables changes on the context structure at

run time. A service can add and remove list entries within the limits of the restric-

tions. A list has an allowed types restriction that contains a comma separated list of

ModelIDs, a minimumEntries restriction that contains a positive integer that restricts

the minimum amount of entries, and a maximumEntries restriction that contains a

positive integer that restricts the maximum amount of list entries.

At instantiation time at least minimumEntries entries of the list have to be given,

or it cannot be initialized. Entities can only be deleted from a list when at least

minimumEntries entries remain. Entities can only be added to a list when it does not

contain maximumEntries entries yet. Lists are controlled via Virtual Context nodes

for accessing and deleting entries (Sec. 5.3.2).

The XML representation of an instance of the VSL basic data type list with the default

restrictions and two list nodes is shown in listing 5.2:

1 <myList type ="/ basic/list" allowedTypes =""

2 minimumEntries ="0"

3 maximumEntries ="">

4 <elements >

5 element1/element2

6 <element1 type ="/ basic/text">
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7 foo

8 </element1 >

9 <element2 type ="/ basic/number">

10 42

11 </element2 >

12 </elements >

13 </myList >

Listing 5.2: An instance of the basic data type list

As described in Sec. 5.4, context models are instantiated only at the start of services

for different reasons. For context nodes of type text or number only the value can be

changed at run time. The list is a generative type that can be used to dynamically

extend a context model according to the list restrictions at run time. To store context

that changes dynamically (e.g. a list of missed calls), nodes in the context model can

be typed as list. See Sec. 5.3.2.

5.2.11 Object Oriented Properties

Object oriented software design is close to the functionality that can be observed

of the human mind (Sec. 3.5). As shown next, besides the good understandability

for humans, object orientation helps reducing the complexity of context modeling

(<R.41>, <R.29>). <R.41>

<R.29>The VSL supports inheritance. VSL inheritance means that context models can cause

the instantiation of other context models by using the other context model’s ModelID

as type identifier in their definition.

As object oriented concepts, the VSL meta model supports inheritance for subtyping

and composition during the modeling and the instantiation of models.

As described before (Sec. 5.2.4), the VSL context repositories do not store objects but

only tuples as this is more efficient for processing and distributed processing (Sec. 4.5).

Subtyping

VSL context models can derive basic data types and existing context models in the

CMR.

Subtyping is implemented by narrowing the restriction of an existing basic data type

(Sec. 5.2.10) or a derived type that has a context model in the CMR. The following

boolean is defined as subtype of /basic/number:

1 <boolean type ="/ basic/number" lowerBound ="0" upperBound ="1">

2 0

3 </boolean >

The listing shows that context models can have values.

As described before (Sec. 5.2.9), types are used to give semantics to the value of a

tuple for machines and humans. A typical operation for adding semantics for humans

is naming. It happens by giving an existing type a new name:

1 <isOn type ="/ derived/boolean">0</isOn >
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The resulting derived type isOn could be used as subnode of a “lamp” context model

for instance (listing 5.1, Fig. 5.2):

1 <lamp >

2 <isOn type ="../ isOn">0</isOn >

3 </lamp >

The relevance of naming becomes more clear in the context of the locator-id split that

is implemented by the VSL (Sec. 5.2.13).

Composition

New context models can be composed from existing context models in the CMR.

Listing 5.1 and Fig. 5.2 show an example where the new type with the ModelID

deviceA contains a node of type lamp. VSL context models are typically composed

of multiple nodes of other types.

Knowledge Agent

device7

lamp23

...

Node Attributes:	

Types	

ReaderIDs	

WriterIDs	

SubscriberIDs	

VersionNr	

Timestamp
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Type: 
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deviceA

Figure 5.2: The VSL meta model with the global CMR and a local KA that contains a knowledge

tree. The arrows show the instantiation of a context model with the ModelID deviceA that contains

a node of a context model with the ModelID lamp23 that automatically gets instantiated with the

instantiation of deviceA.

On instantiation of a context model from the CMR to a VSL instance the name of

the parent node of the context model is changed to an instance name in the local

knowledge repository (e.g. device7 in Fig. 5.2).

The VSL ensures that the instance name of the root node (device7) of a context

model that gets instantiated is unique. As each knowledge repository has a unique

identifier and as each VSL operated Smart Space has a unique identifier, the full

address of each VSL context node is world wide unique. See Sec. 5.2.2.

Keeping the names of the subnodes that are contained inside a context model un-

changed is necessary to enable services to use relative addressing inside an instance of

a context model once they have identified the root node of the context model instance.

See Sec. 5.2.13. Having identified the root node myRoot of an instance of the type de-

viceA for instance, it is clear from the context model that is shown in listing 5.1 that

the lamps can be reached under the addresses myRoot/lamp23, and myRoot/lamp42.

Multi-Inheritance

As types identify functionality in the VSL context models, multi-inheritance is nec-

essary for representing entities that provide different functionality. Multi-inheritance
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describes that a context node in a context model can inherit from multiple exiting

types (context models) that are identified by their ModelIDs.

A context model to a Smart Device that contains a light that can be dimmed, and

that can blink could be defined as:

1 <fancyLamp type =".../ dimmableLight ,.../ blinkingLight ,.../ lamp">

2 </fancyLamp >

The VSL inherits all context models that are associated with the ModelIDs starting

with the context model identified by the rightmost modelID. Values and restrictions

are overridden when new values are given in the derivation chain. In listing 5.2.11,

“. . . /lamp”is initialized first, overridden by“. . . /blinkingLight”properties, again over-

ridden by “. . . /dimmableLight” properties. In addition possible additional nodes that

are present in the later initialized context models are added in the model instance.

The example from the listing above is already the entire context model definition of

the model fancyLamp as all properties are inherited. This gives an impression how

inheritance simplifies the creation of context models (<R.29>, <R.4>). <R.29>

<R.4>The given multiple inherited ModelIDs make it possible to identify all different func-

tionality that is associated with the different ModelIDs. This property is called sub-

type polymorphism. For a service that accesses the fancyLamp as a .../lamp it is

transparent that the fancyLamp has more context to offer. See Sec. 5.2.13.

Functional Diversity

multi-inheritance allows services to access the fancyLamp as .../dimmableLight,

.../blinkingLight, .../lamp, and .../fancyLamp. Different functionality provides

different levels of abstraction, e.g. a lamp can be switched on and off, a dimmableLamp

adds a finer granularity by additionally allowing dimming. This allows to implement

transparent access to context on different levels of abstraction (<R.25>), e.g. <R.25>

1 type=" veryAbstract ,moreConcrete ,rawData"

Via multi-inheritance, compatibility of Smart Devices can be reached. The adaptation

service that gives access to the fancy lamp via the context model fancyLamp makes

the device access possible for all services that can interact with functionality of at

least one of the inherited types.

This implements portability (<R.8>) as a service that operates lamps can now run <R.8>

in an environment that only contains fancy lamps. Via the multi-inheritance the

difference is transparent to the service.

Data Type Diversity

The VSL does not use interrelated objects for representing context but self-contained

tuples. It implements object oriented functionality during the instantiation of context

models. All inheritance dependencies are resolved at instantiation time, resulting in

self-contained tuples as context model instances.

Using self-contained context model instances that have all dependencies resolved at

instantiation time results in fast processing of VSL context models (<R.50>) as no <R.50>
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dependencies have to be resolved when accessing data (Sec. 5.2.14). Self-containment

is implemented by making the inheritance chain of each context node explicit during

instantiation.

Allowing multiple types for context nodes is needed to identify the inheritance chain

of a type back to a basic data type (see subtyping). The definition of the boolean

type above shows the explicit derivation chain that goes back to the basic data type

/basic/number (type="/basic/number"). After instantiation the type field contains

"/derived/boolean,/basic/number".

The isOn type introduces another derivation step:

1 <isOnInstance type =".../ isOn ,/ derived/boolean ,/basic/number"

2 lowerBound ="0" upperBound ="1">1</ isOnInstance >

All VSL context nodes that can carry values must have a basic data type text or

number at the end of their inheritance chain (Sec. 5.2.10). Inner nodes of a context

model do not necessarily carry values as they can represent aggregation only.

Rooting all data types for values in only two basic data types enables services that can

interpret the two basic data types to interpret the basic semantics of all VSL context

nodes. A service that can interpret /basic/number can interact with the isOn type

above as a number. A service that can interpret /derived/boolean can interact with

the isOn type above as a boolean. A service that can interpret isOn can interact with

the isOn type above as a value describing the on-state of a device.

From a data type-perspective, the most abstract data type is given on the left of the

inheritance chain. To the right the types in the chain get more specific ending at a

basic data type (Sec. 5.2.10).

From a functional point of view it is the other way round with the richest semantic

type on the left, and the most generic semantic type (no specific semantics) on the

right with the basic data type. Therefore services that want to interpret the semantics

of a VSL context node should parse the derivation chain from left to right until they

find the first data-type they understand.

The explanation shows how the use of the explicit inheritance chain enables the trans-

parent interaction with VSL context nodes on different levels of abstraction (<R.25>).<R.25>

As shown in Sec. 8.3.5, the described properties of the inheritance chain mechanism

allow to implement generic services that can display all values in a space.

Rooting each VSL context node that can have a value to a basic data type is also

relevant for validating context values before storing them in the VSL as described in

Sec. 5.2.14.

Inheritance Example

To illustrate how inheritance structures and facilitates the creation of context models,

some examples from the perspective of a developer that uses the VSL are given.

Following a context model “ipv4Address” is shown:

1 <ipv4Address >

2 <a type ="/ basic/number" lowerBound ="0" upperBound ="255" >0 </a>

3 <b type ="/ basic/number" lowerBound ="0" upperBound ="255" >0 </b>
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4 <c type ="/ basic/number" lowerBound ="0" upperBound ="255" >0 </c>

5 <d type ="/ basic/number" lowerBound ="0" upperBound ="255" >0 </d>

6 </ipv4Address >

This model could now be reused in another context model, e.g. as ipv4Address of

the network interface of a Personal Computer (PC):

1 <networkInterface >

2 <myIpv4 type =".../ ipv4Address"></myIpv4 >

3 ...

4 </networkInterface >

Via inheritance, context models can assign values to the properties of the inher-

ited context model as shown in the following example where the before defined type

“networkInterface” is inherited:

1 <myNIC type =".../ networkInterface">

2 <myIpv4 >

3 <a>10</a>

4 <b>23</b>

5 <c>42</c>

6 <d>65</d>

7 </myIpv4 >

8 ...

9 </myNIC >

An instance of the context model “myNIC” in a knowledge repository under the name

myNIC would contain the following data:

1 <myNIC type =".../ networkInterface">

2 <myIpv4 type =".../ ipv4Address">

3 <a type ="/ basic/number" lowerBound ="0" upperBound ="255" >10 </a>

4 <b type ="/ basic/number" lowerBound ="0" upperBound ="255" >23 </b>

5 <c type ="/ basic/number" lowerBound ="0" upperBound ="255" >42 </c>

6 <d type ="/ basic/number" lowerBound ="0" upperBound ="255" >65 </d>

7 </myIpv4 >

8 ...

9 </myNIC >

The following listing shows a real world example for a Smart Device that was built

during the user study (Sec. 9.6) by participants:

1 <smartDevice >

2 <temperature type ="/ ilab/temperature"></temperature >

3 <button type ="/ ilab/button"></button >

4 <ledRed type ="/ ilab/led"></ledRed >

5 <ledYellow type ="/ ilab/led"></ledYellow >

6 <ledGreen type ="/ ilab/led"></ledGreen >

7 <ledOnBoard type ="/ ilab/led"></ledOnBoard >

8 <lightSensor type ="/ ilab/lightSensor">

9 </lightSensor >

10 <timer0 type ="/ ilab/triggerTimer"></timer0 >

11 <timer1 type ="/ ilab/triggerTimer"></timer1 >

12 <vTimer0 type ="/ ilab/vTimer"></vTimer0 >

13 <vTimer1 type ="/ ilab/vTimer"></vTimer1 >

14 </smartDevice >

Though no explanation of the functionality of the Smart Device is given, the example

shows how self-descriptive VSL context models can be.

In addition, the three last listings show how inheritance reduces the complexity of

VSL context models (<R.29>) as the complexity is added automatically by the VSL <R.29>



198 5. The Virtual State Layer Programming Abstraction

on context model instantiation via resolving the inherited types. All composed and

subtyped context models are loaded from the CMR and initialized with the given

values from right to left.

This is the instantiated version of the “smartDevice” context model shown above:

1 <mySmartDevice type ="/ ilab/smartDevice" version ="0" timeStamp

="2014 -02 -10 19:16:20.223" access ="rw">

2 <mySmartDevice type ="/ ilab/smartDevice" version ="0" timeStamp

="2014 -02 -10 19:16:20.223" access ="rw">

3 <button type ="/ ilab/button ,/basic/number" version ="0" timeStamp

="2014 -02 -10 19:16:20.277" access ="rw">

4 </button >

5 <ledGreen type ="/ ilab/led ,/ilab/isOn ,/ derived/boolean ,/basic/number"

version ="0" timeStamp ="2014 -02 -10 19:16:20.439" access ="rw">

6 0

7 <desired type ="/ ilab/isOn ,/ derived/boolean ,/basic/number" version

="0" timeStamp ="2014 -02 -10 19:16:20.472" access ="rw">

8 0

9 </desired >

10 </ledGreen >

11 <ledOnBoard type ="/ ilab/led ,/ilab/isOn ,/ derived/boolean ,/basic/

number" version ="0" timeStamp ="2014 -02 -10 19:16:20.5" access ="rw

">

12 0

13 <desired type ="/ ilab/isOn ,/ derived/boolean ,/basic/number" version

="0" timeStamp ="2014 -02 -10 19:16:20.532" access ="rw">

14 0

15 </desired >

16 </ledOnBoard >

17 <ledRed type ="/ ilab/led ,/ilab/isOn ,/ derived/boolean ,/basic/number"

version ="0" timeStamp ="2014 -02 -10 19:16:20.3" access ="rw">

18 0

19 <desired type ="/ ilab/isOn ,/ derived/boolean ,/basic/number" version

="0" timeStamp ="2014 -02 -10 19:16:20.337" access ="rw">

20 0

21 </desired >

22 </ledRed >

23 <ledYellow type ="/ ilab/led ,/ilab/isOn ,/ derived/boolean ,/basic/number

" version ="0" timeStamp ="2014 -02 -10 19:16:20.366" access ="rw">

24 0

25 <desired type ="/ ilab/isOn ,/ derived/boolean ,/basic/number" version

="0" timeStamp ="2014 -02 -10 19:16:20.402" access ="rw">

26 0

27 </desired >

28 </ledYellow >

29 <lightSensor type ="/ ilab/lightSensor ,/basic/number" version ="0"

timeStamp ="2014 -02 -10 19:16:20.559" access ="rw">

30 </lightSensor >

31 <temperature type ="/ ilab/temperature ,/basic/number" version ="0"

timeStamp ="2014 -02 -10 19:16:20.238" access ="rw">

32 </temperature >

33 <timer0 type ="/ ilab/triggerTimer ,/ilab/timer ,/basic/number" version

="0" timeStamp ="2014 -02 -10 19:16:20.577" access ="rw">

34 <desired type ="/ ilab/timer ,/basic/number" version ="0" timeStamp

="2014 -02 -10 19:16:20.599" access ="rw">

35 </desired >

36 </timer0 >

37 <timer1 type ="/ ilab/triggerTimer ,/ilab/timer ,/basic/number" version

="0" timeStamp ="2014 -02 -10 19:16:20.647" access ="rw">

38 <desired type ="/ ilab/timer ,/basic/number" version ="0" timeStamp

="2014 -02 -10 19:16:20.677" access ="rw">



5.2. The Hybrid VSL Meta Model 199

39 </desired >

40 </timer1 >

41 <vTimer0 type ="/ ilab/vTimer ,/basic/number" version ="0" timeStamp

="2014 -02 -10 19:16:20.71" access ="rw">

42 </vTimer0 >

43 <vTimer1 type ="/ ilab/vTimer ,/basic/number" version ="0" timeStamp

="2014 -02 -10 19:16:20.736" access ="rw">

44 </vTimer1 >

45 </mySmartDevice >

5.2.12 Types as Primary Context

The term primary context describes the context that is used as key to select context

[BBH+10] (Sec. 5.2.4). The primary context of the VSL are the types that are repre-

sented by the ModelIDs in the CMR. Therefore, the VSL meta model supports types

as explicit metadata.

The VSL offers functionality to search for instance addresses based on the ModelID

of a context model. See Sec. 5.2.13 and Sec. 5.7.2.

Via the extensibility of the VSL meta model, additional primary contexts such as

location can be added at run time. See Sec. 5.7.3, Sec. 6.6.4.

5.2.13 Locator-Id Split

The name of a resource indicates what we seek, an address

indicates where it is, and a route tells us how to get there.

John F. Shoch (1950-) [Sho78], American computer scientist and venture

capitalist, contributor to PARC Universal Protocol (PUP), a predecessor

of Transmission Control Protocol (TCP)/ Internet Protocol (IP).

The use of VSL types as primary context (Sec. 5.2.12) results in a locator-id split

[JST+09, BFK+11]. The locator of a VSL context node is its VSL address. It is

globally unique as described in Sec. 5.2.2. A VSL context node is identified by each

of its types.

Locator-id split means that locating instances of context models in the knowledge base

of a VSL Smart Space happens independent of the site-specific instance identifiers.

As seen in the examples above and illustrated in Fig. 5.2, instances of context models

in context repositories can have any address as instance identifier. The possibility to

search for types enables portability (<R.8>). It allows to develop services that identify <R.8>

service functionality, offered by context nodes, based on the ModelIDs of the context

models (identifier, ID) independent of concrete Smart Space node instance addresses

(locator).

The lower red dotted arrow in Fig. 5.2 shows the instantiation of a context model

deviceA in a local VSL context repository. While the instance gets an instance

specific name (device7), its type remains deviceA.

Services that want to access context of type deviceA can retrieve the instance address

device7 via a VSL search for the type deviceA (Sec. 5.2.12, Sec. 5.7.2). This splits
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the locator device7 from the identifier deviceA, making it possible to identify context

nodes independent of their instance names (locator).

The use of the CMR for sharing context models (Sec. 5.2.8), and the dual use of types,

for identifying functionality and data type of a context node (Sec. 5.2.9), enable service

portability. They allow service developers to identify functionality they want to use

for implementing pervasive computing scenarios independently of concrete devices or

Smart Space instances.

5.2.14 Context Validation

The VSL meta model is designed to foster validation of syntax and semantics.

As described in Sec. 5.2.5 and Sec. 3.9, syntax validation is typically enabled by the

use of a markup scheme for defining context models. The use of XML in the prototype

allows such validation (<R.44>).<R.44>

Context Model Validation

Via the described properties of the VSL meta model with multi-inheritance, and the

rooting of all data types that contain values in two basic data types (text, number),

all context models that are submitted to the CMR can be formally validated for being

well defined applying the methods described next.

To ensure the integrity of all context models (<R.49>) that are stored in the CMR,<R.49>

only well defined context models that derive and compose existing context models

correctly are stored in the CMR and can be used in local VSL instances.

The described mechanisms ensure the integrity of all context models in the CMR.

Automatic context model validation is the basis for opening the CMR for dynamic

extension with new context models (Sec. 5.2.18).

Derived Data Type Validation

The validation of a VSL type requires the execution of code that does the validation.

Such code is called validator. The KAs that implement the VSL contain basic data

type validators for the three basic data types (text, number, list). They can validate

the described restrictions (Sec. 5.2.10).

With the basic data type validators, all subtypes of a basic data type can be validated

as they can only narrow the defined restrictions (see table 5.1). All nodes in VSL

context models that can store values must be derived from a basic data type by

definition. Therefore all context values that are stored in the VSL can be validated

according to the restrictions given for the basic data types (<R.49>).<R.49>

To validate if a VSL type derives another VSL type correctly, it has to be checked,

if the restrictions are narrowed and not widened. The restrictions for a number type

can be checked for validity by validating that the new restrictions are valid with

the current restrictions of the type that gets derived. The validation, if a regular

expression narrows another regular expression for a text type, can typically not be

done as the problem has non-polynomial complexity [MS72].
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Semantic Validation of Composed Types

Typically context nodes in a context model will not be isolated but composed to

represent context together. The correlation of context nodes cannot be validated with

the basic data type validators as they only validate isolated nodes.

The entire inheritance chain is contained in each VSL context node including purely

aggregating nodes that do not have a value themselves (e.g. deviceA in listing 5.1).

Type-specific validators can be selected based on the ModelIDs in the type chain.

Type-specific validators are programs that can either be dynamically linked to a KA

at run time or be added via the µ-middleware property of the VSL (Sec. 6.2).

An example for correlated context nodes is an IP address with its corresponding

subnet identifier. The validity of the IP address is defined by the subnet identifier.

Via the basic data type validator for number the validity of the IP address and that

of the subnet identifier can be checked independently. But as both are correlated it

could be desired to provide a validator for the composed type.

Having the inheritance chain of each VSL node, such type-specific validator can be

identified by traversing the derivation chain of a context node from left (most func-

tionality specific) to right (least functionality specific). Following this order, the first

identified existing type-specific validator is applied. The described process implements

dynamically extensible semantic validation (<R.23>). The end of each derivation is a <R.23>

basic data type. Therefore, a validator is found for each context node.

Though the VSL meta model allows such validation, it was not implemented and

tested so far. Depending on the implementation it may not slow down the processing

of the VSL context models instances significantly. At the same time it would add

additional security for VSL context operations since context changes to invalid values

would automatically be rejected (<R.49>). <R.49>

Context Value Validation

All instances of VSL nodes that contain data must be derived from the basic data

types text or number (Sec. 5.2.10, Sec. 5.2.11).

As described before, the CMR is designed to contain valid context models only. This

facilitates the instantiation of context nodes. When loading the context models in

the node’s inheritance chain, the models can simply be instantiated one after another

from right to left, overriding all values and restrictions. No –possibly computation-

intense– validation is required as it was done when checking-in the context model at

the CMR (<R.50>). <R.50>

The result of the context model instantiation via the VSL is a self-contained knowledge

tree. All (inherited) properties are present in the instance. This reduces the effort

for the validation of any VSL context node to applying the basic data type validators

with the given restrictions of the instance.

The validation of values using the basic data type validators scales as the basic data

type is always the last type in the inheritance chain of a node, and as the restrictions

are fixed and directly available at a node (Sec. 5.2.10, <R.50>). <R.50>

Each value that is stored in the VSL is checked for validity as described and re-

jected when the validity is not given. As the validation happens automatically it is
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simple-to-use (<R.29>). As it cannot be circumvented it introduces security-by-design <R.29>

(<R.49>). This ensures the integrity of all values in VSL knowledge base according<R.49>

to the restrictions given by the basic data types (<R.49>).
<R.49>

5.2.15 Expressiveness

With the given basic data types all data that can be expressed on a digital processing

unit can be represented by putting its binary representation in a text node such as

1 <blob type ="/ basic/text" regularExpression ="[01]*" > </blob >

The above definition of a VSL data type blob (binary large object) proofs the state-

ment (<R.28>). However, such a representation of data seems not useful as it renders<R.28>

the purpose of context models, to introduce semantics, void.

The hierarchical context reasoning (Sec. 5.6.6, Sec. 8.3.2) demonstrates how the VSL

programming abstraction allows different levels of abstraction (<R.25>) being repre-<R.25>

sented and linked automatically via advanced reasoning services.

When using a cascade of services that automatically create context on different levels

of abstractions (Sec. 5.4.3), it makes sense to store raw data as described above.

Services that know the semantics of the raw data can access them via the VSL,

avoiding information loss that could be introduced by transforming the data into

another representation. Other services can access the context representation on the

abstraction level they need (Sec. 5.2.11, see Fig. 8.4, Sec. 8.3.2).

5.2.16 Dynamic Semantic Extension of the VSL Meta Model

The VSL meta model can be dynamically extended with semantics at run time.

Understanding the implementation of this feature requires understanding of the VSL

service interface. Thus, this feature is explained in Sec. 5.7.3.

5.2.17 Virtual Context

The VSL provides a novel mechanism that is called Virtual Context. It extends the

VSL meta model with a fourth type that is called Virtual Node. It allows direct

coupling of services using context nodes.

Understanding the implementation of this feature requires understanding of the VSL

service interface. Thus, this feature is explained in Sec. 5.3.4.

5.2.18 A Self-Managing Dynamically Extensible Collaborative

Ontology

The instantiation of context models in a VSL context repository happens by instan-

tiating context models that are stored in the CMR20. As described in Sec. 5.6.5, the

VSL programming abstraction fosters the use of one context model per service.

20Via the caching that is described in Sec. 5.7.1 context models can also be deployed locally for

testing without uploading them to the CMR. For sharing context models, the CMR should be used

as it manages the distribution of context models.
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The instantiation over the CMR forces developers to publish their context models if

they want to share their services. Publishing context models is requirement for reusing

them which is fostered by the VSL (Sec. 7.4.3).

As context models must be uploaded to the CMR for instantiation in Smart Spaces,

the content of the CMR defines what can be represented in a VSL Smart Space. The

VSL types (Sec. 5.2.9) represent inheritance relationships (“is-a”). The hierarchical

addressing (Sec. 5.2.2) represents composition relationships (“has-a”). Additional de-

pendency semantics can be added (Sec. 5.7.3). The described properties make the

CMR an ontology for Smart Spaces.

Collaboration is implemented by accepting submissions from everyone, and by foster-

ing reuse of existing context models to create new ones (<R.42>). <R.42>

New context models in the CMR can immediately be instantiated in VSL Smart

Spaces as described in Sec. 5.7.1. This implements dynamic extensibility (<R.43>). <R.43>

The automated validation of context models submissions at the CMR (Sec. 5.2.14)

ensures the integrity of the CMR. If non-existent context models are referenced, or

restrictions are violated, a context model is rejected and not disseminated over the

CMR.

The collaborative standardization mechanisms that are described in Sec. 5.6.4, and

Sec. 7.4.3 work autonomously. They result in a self-managing convergence of context

models.

The deployment of context models into Smart Spaces works autonomously.

As a result, the CMR implements a self-managing ontology (<R.3>). <R.3>

5.2.19 Assessment of the new Hybrid Meta Model

Sec. 5.2 gave a brief summary about the advantages of different meta modeling ap-

proaches that were assessed in Sec. 3.9. Table 3.3 summarizes the approaches more

in detail. The last column of the table is the assessment of the VSL meta model.

Following the ratings in the table are discussed according to the criteria given in

Sec. 3.9. After each criterion the rating from table 3.3 is given, e.g. (++). They

follow directly from the design of the VSL context model as hybrid of the existing

approaches.

Human Related

The comprehensibility (++) of the VSL meta model is as high as typical logic based

meta models. It can express subtyping and composition relationships that can easily

be understood by humans (Sec. 5.2.11).

The complexity (++) is low as the VSL meta model uses a simple markup (Sec. 5.2.5)

that is close to the hierarchical addressing schemes (Sec. 5.2.2). At the same time it

supports object oriented design (Sec. 5.2.11).

Collaboration (++) is supported via the CMR for sharing (Sec. 5.2.8), the use of

namespaces for structuring (Sec. 5.2.3), and the possibility for crowdsourced conver-

gence (Sec. 5.6.4).
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Diversity Support

The VSL meta model represents dependencies (++). Subtyping (“is-a”) and composi-

tion (“has-a”) dependencies between contexts can be expressed directly with the meta

model (Sec. 5.2.11). In addition, semantic relations can be added dynamically at run

time (Sec. 5.7.3).

Timeliness (++) is supported via automated context versioning (Sec. 5.2.1, Sec. 5.3.2).

Dynamic extensibility (++) of the VSL ontology is implemented by adding context

models to the CMR (Sec. 5.2.8), and extending instantiated context models via the list

nodes (Sec. 5.2.10). Semantic extension can be implemented via additional primary

contexts (Sec. 5.7.3).

Machine Related

Reasoning support (++) is given by the implemented ontology for Smart Spaces,

and the sharing of context models (Sec. 5.2.18). Via the semantic extensibility with

additional search providers, building blocks for reasoning can be added at run time

(Sec. 5.7.3).

Distributed processing (++) is implemented by the self-containment of the VSL con-

text nodes (Sec. 5.2.11), and the access control metadata (Sec. 5.2.1). It is supported

by the distribution transparency that is implemented via the programming abstraction

(Sec. 5.6.1).

Syntax validation (++) is implemented via the use of markup for representing context

models which implies an underlying structure that allows validation (Sec. 5.2.5).

Semantic validation (++) is implemented for data types via rooting all VSL types

of context nodes that can carry values in the basic data types text and list. Via the

ontology, additional semantics can be validated by applying logic (Sec. 5.2.14).

The self-containment of each context node as tuple with direct access over its instance

address implements efficient parsing (++) (Sec. 5.2.11).

Conclusion

The VSL meta model fulfills the requirements for being a suitable meta model accord-

ing to the criteria from Sec. 3.9 (<R.40>).<R.40>
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5.3 The VSL Context Interface

58. Fools ignore complexity. Pragmatists suffer it. Some can

avoid it, geniuses remove it.

Epigrams on programming [Per82], Alan Perlis, American computer

scientist, (1922 - 1990), 1st Turing award winner 1966.

The VSL programming abstraction is implementation agnostic. The implementation

is hidden behind the functional VSL interface that is presented in this section. As

described in Sec. 3.2.4, the hardware that runs the software that provides the VSL

programming abstraction for services is expected to be distributed. Therefore the

programming abstraction is designed to be usable as distributed system though having

a single computing node is sufficient.

The VSL is implemented as Peer-to-Peer (P2P) system as presented in Ch. 6. In

this context, the VSL implements a context overlay on top of distributed computing

nodes.

Knowledge Agent

Context 
Repository

Context Manager

Adaptation

ActuatorSensor

Adaptation Adaptation

subscribe notify
getset

Service UI Service Service Service

subscribe notify
getset

get/ set  
Virtual Node

function call 
logical connection

Figure 5.3: Context Management Architecture of the VSL.

The entities that implement the VSL are called Knowledge Agents (KAs). Fig. 5.3

shows a KA and its main components. From the perspective of a service developer,

the VSL is a context provider that provides a context repository and context routing

(see quote in Sec. 5.2.13) for services.

The functional entities of a KA that are shown in Fig. 5.3 are the context manager and

the context repository. The context manager provides the functional interface that is

introduced in this section. The context repository stores context for services.
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5.3.1 VSL Application Programming Interface

Simplicity is the ultimate sophistication.

Anselm, The Recognitions (1955) p. 457, William Gaddis, American

novelist, (1922-1998).

The API of a KA consists of 13 fixed methods that can be grouped into the functional

domains context access, access control, and Virtual Context. The presented interface is

used for accessing context that is stored on a KA, and for inter-service communication.

It is the only interface that is used by services to access functionality that is provided

over the VSL in a Smart Space.

Using a fixed interface simplifies context interaction (<R.29>). Using a unified inter-<R.29>

face removes the artificial separation between orchestration services and adaptation

services that is introduced by the state of the art pervasive computing middleware

(Sec. 4.5, <R.6>). It supports the portability of services as all services use the same<R.6>

functional interface (<R.8>), and it enforces service composability as all services are
<R.8>

inherently interface compatible (<R.36>).

<R.36>

Context Access

The following API functions are used by services to access context via a KA. The

functionality is described in detail in Sec. 5.3.2.

• get [nodeAddress] returns the context at the specified address.

• set [nodeAddress] [value] changes the context at the specified address.

• subscribe [nodeAddress] [callBack] subscribes the context subtree that starts

at the specified node address. On changes of a context node within the context

subtree all subscribers are notified via their specified callback functions.

• unsubscribe [nodeAddress] unsubscribes an existing subscription on the con-

text subtree that starts at the specified address.

• lockSubtree [parentAddress] [callBack] locks a VSL subtree for exclusive use.

The callback is called when a lock times out before being unlocked.

• unlockSubtree [parentAddress] unlocks a VSL subtree from exclusive use and

commits all changes in the unlocked subtree since the locking.

• revertSubtree [parentAddress] unlocks a VSL subtree from exclusive use and

withdraws all changes in the unlocked subtree since the locking.

The get and set operations are used to retrieve and change context in the VSL

(Sec. 5.3.2).

The functions subscribe and unsubscribe are used to subscribe for notifications via

callback on the changes of a context node or the subtree the context node is the root

of (Sec. 5.3.2).

The functions lockSubtree, unlockSubtree, and revertSubtree are used for imple-

menting transactions (Sec. 5.3.2).
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Access Control

To access the VSL, services must authenticate at a KA via certificates. See Sec. 5.3.3.

The following API functions are used by services to authenticate at a KA:

• registerService [localName] [serviceCertificate] associates a service with a KA

enabling context access via the API.

• unregisterService uncouples a service from a KA.

• addCertificate [shortName] [certificate] adds another identity passed via the

certificate to a service using the identifier shortName.

• removeCertificate [shortName] removes the additional identity that is iden-

tified by the specified shortName from a service.

A service registers at a KA with its unique certificate (Sec. 5.5). Services can dyna-

mically register during the run time of a KA (<R.23>). After successful authentication <R.23>

via a service certificate the context model that is associated with a service (Sec. 5.4.1)

is instantiated in the context repository of the authenticating KA in the service’s sub-

tree (Sec. 5.2.3). The localName is combined with the service name (Sec. 5.5.1) for

creating a service instance specific namespace.

The addCertificate and removeCertificate functions are used to delegate the

rights of another certificate, e.g. that of a user, temporarily to a service (Sec. 5.3.3).

The shortName is used as identifier for removing the certificate later again, e.g. when

a user logs off. This allows to create services with multi-user support (<R.2>). <R.2>

Virtual Context

The following API functions are used by services to register Virtual Context at a KA.

See Sec. 5.3.4.

• registerVirtualNode [nodeAddress] [callBack] registers a Virtual Node call-

back on the VSL node that is specified by the address.

• unregisterVirtualNode [nodeAddress] removes the link to a callback-function

from the VSL node that is specified by the address.

registerVirtualNode and unregisterVirtualNode are used to register Virtual Node

callbacks in the VSL (Sec. 5.3.4).

5.3.2 Context Access

The VSL provides context management for services (Sec. 5.6.5, <R.5>). This section <R.5>

details the API that is offered by the VSL programming abstraction to access context.
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Addressing

Context nodes in the context repositories of the KAs that build the VSL can be

accessed via hierarchical addresses as described in Sec. 5.2.2. Each KA has a unique ID

inside a VSL operated Smart Space. Each service has a unique namespace (Sec. 5.2.3)

in the context repository of the KA it authenticates at.

If a service has the ID serviceId in its serviceCertificate (Sec. 5.3.3), the call

registerService myFirstInstance <serviceCertificate> on a KA with the ID

agentId assigns the following unique address space on the KA’s context repository to

the service:

1 /agentId/serviceId/myFirstInstance

Get/ Set

Context is exchanged as String with a KA. Entire context subtrees can be retrieved

and set using the presented markup representation (Sec. 5.2.5). Using the same re-

presentation is done for consistency to simplify21 the use of the VSL (<R.29>).<R.29>

Using the described addresses, context nodes with meta data can be queried as in the

following example:

1 system@agent_mop: / % get /agent_mop/mySmartDevice/ledRed

2

3 <ledRed type ="/ ilab/led ,/ilab/isOn ,/ derived/boolean ,/basic/number"

version ="7" timeStamp ="2014 -02 -12 17:45:16.516" access ="rw">

4 <![CDATA [0]]>

5 <desired type ="/ ilab/isOn ,/ derived/boolean ,/basic/number" version

="0" timeStamp ="2014 -02 -12 17:44:31.992" access ="rw">

6 </desired >

7 </ledRed >

To obtain only the value of a context node, the functional suffix /value can be added

to an address:

1 system@agent_mop: / % get /agent_mop/mySmartDevice/ledRed/value

2

3 0

To obtain the entire subtree that originates at a given address, the functional suffix

/* can be added:

1 system@agent_mop: / % get /agent_mop/mySmartDevice/ledRed /*

2

3 <ledRed type ="/ ilab/led ,/ilab/isOn ,/ derived/boolean ,/basic/number"

version ="7" timeStamp ="2014 -02 -12 17:45:16.516" access ="rw">

4 <![CDATA [0]]>

5 <desired type ="/ ilab/isOn ,/ derived/boolean ,/basic/number" version

="0" timeStamp ="2014 -02 -12 17:44:31.992" access ="rw">

6 <![CDATA [0]]>

7 </desired >

8 </ledRed >

Historic versions of context nodes can be addressed by adding the version number as

functional suffix at the end of an address. Timeliness support (<R.40>) is implemented<R.40>

21Via native connectors the returned context nodes can be transformed into suitable entities of the

programming language such as Java objects for further facilitating the use of the VSL. See Sec. 6.3.3.
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by versioning of context nodes. which is important for creating pervasive computing

scenarios (Sec. 3.9, Sec. 4.5). The following listing shows a context instance with

version information (version and timeStamp properties of the opening tags).

1 system@agent_mop: / % get /agent_mop/mySmartDevice/ledRed /3

2 <ledRed type ="/ ilab/led ,/ilab/isOn ,/ derived/boolean ,/basic/number"

version ="3" timeStamp ="2014 -02 -12 17:44:59.102" access ="rw">

3 <![CDATA [1]]>

4 <desired type ="/ ilab/isOn ,/ derived/boolean ,/basic/number" version

="0" timeStamp ="2014 -02 -12 17:44:31.992" access ="rw">

5 </desired >

6 </ledRed >

The functional suffix is only evaluated when no node with the same address exists.

If a node with name myNode/value exists, its value can be queried via the address

myNode/value/value. This allows to use all names that are valid in the used markup

scheme as node names, such as “myNode/value”. (Sec. 5.2.5).

Subscriptions

The VSL supports subscriptions on its context nodes. Authenticated services can

subscribe a context node if their serviceID has read access or write accesses to the

node (Sec. 5.3.3). To remain self-contained, the serviceIDs subscribed services are

stored in the subscriberID metadata of a context node (Sec. 5.2.1).

If an accessible (serviceID) context node or one of its subnodes changes, a service

has access to, the KA calls the registered callback in the corresponding service. The

callback is registered via the subscribe API function. Using the Java connector

(Sec. 6.3.3), the abstract interface shown in listing 5.3 has to be implemented.

1 public interface ISubscriber {

2 void notificationCallback(String address);

3 }

Listing 5.3: The ISubscriptionHandler interface that is used to implement notification

callbacks in the prototype.

As can be seen in listing 5.3 the address is passed to the callback and not the new

value. Not passing the value is done for three reasons:

• The operations in a service that follow a notification may require more context

than just the value that would not have been disseminated in a value-based

notification broadcast, and that can be queried more efficiently via the API.

• The interest by the subscribers in retrieving the actual value might be sparse,

and sending node values that are bigger than node addresses leads to unwanted

overhead (<R.50>). <R.50>

• Explicitly sending notifications gives control over the dissemination (<R.49>). <R.49>

Passing the address is necessary as subscribers of a parent node should be informed

which child changed.

As described in Sec. 5.2.11, the hierarchy of the VSL information model reflects diffe-

rent degrees of abstraction (Sec. 5.2.2). Subscribing on a specific depth in the address
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hierarchy makes a subscriber automatically keep track of changes on all subordinate

levels.

Via the described mechanism the granularity of subscriptions can be controlled by

subscribing on nodes of different hierarchy levels that result from the hierarchical

addressing (Sec. 5.2.3). A service that is interested in a single leave value could

subscribe the leaf. A service that is interested to be notified of changes in an aggregate

can subscribe on an inner node of the VSL (<R.25>).<R.25>

The passing of the address that changed to the callback function in a service allows

to register the same callback for multiple context nodes. By evaluating the passed

address, the handler can change its behavior. As an example, the same notification

handler that prints an alert on a node value change can be registered to all nodes where

this functionality should apply. Though the same function is registered as callback

for all nodes then, it can behave differently based on the address the KA passes.

This turned out to reduce the implementation complexity of services in practical use

(<R.1>).<R.1>

Transactions

As described in Sec. 5.2, context models typically contain nodes with semantically

correlated data. The correlation can require atomic change of nodes in one or multiple

subtrees.

As an example the IP address and its subnet from Sec. 5.2.14 are used again. An

adaptation service (Sec. 8.3.1) that controls the network interface of a host subscribes

the parent node of the different addresses that specify the network interface configura-

tion. If it starts reconfiguring the interface at the first change notification it receives,

the network interface might become unreachable as the combination of IP and subnet

mask may be invalid before all changes are done. The example is especially prob-

lematic if the interface of an unattended Smart Device is managed by the adaptation

interface and the misconfiguration makes the entire device unreachable.

As solution to the described problems, the VSL supports transactions via the locking

of subtrees. Services that have access to a node can lock the entire subtree below

the node for a certain time. While holding a lock, a service can obtain other locks to

implement a transaction over multiple subtrees.

Notifications about changes are only sent out to other serviceIDs than the locker’s

serviceID when a lock is released. This enables a service to change multiple context

nodes before other services get notified or can access context nodes in a locked subtree.

To prevent starvation, locks time out. To be notified of a lock time-out, a locking

service has to provide a callback that is called when the lock times out before being

released via an unlockSubtree call. A timeout leads to a rollback of the locked

subtree of the context repository. If a service wants to abort the changes, it can call

the revertSubtree method that sets the entire subtree to the state it had when the

lock was acquired.

The lock mechanism implements a form of distributed transaction. Transactions are

typically characterized by the Atomic Consistent Isolated Durable (ACID) properties

[TVS06, FHA99]:
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• Atomicity means that a transaction happens indivisibly. A VSL lock prevents all

but the locking service to access a locked subtree. Notifications to all processes

but the locking one are only sent when the lock is released. The locking process

gets its notifications immediately. If a lock is not committed all actions are

rolled back. The described features implement indivisibility.

• Consistency means that a transaction does not violate a system’s invariants. As

VSL transactions consist of calls to regular VSL commands this requirement is

fulfilled.

• Isolation means that concurrent transactions do not interfere with each other.

This is guaranteed as subtrees can only be locked by one service at a time. As

subtrees are based on the hierarchical address space, different subtrees cannot

overlap. The context repositories is divided into disjoint subtrees (Sec. 5.2.2).

Different locks are on different subtrees and do not interfere with each other.

Only the current locker can lock and commit subtrees of a locked tree. This

is useful to refine / narrow locks. When a parent transaction is committed,

possible child transactions remain open and even be withdrawn later. In such a

case only the notifications of the context nodes that are now outside the subtree

that remains locked are disseminated.

• Durability means that changes are permanent on commit. VSL operations are

write through. For rollback a log with rollback actions is created that is executed

when a transaction does not get committed before a timeout. The lock is released

only after the rollback in this case. When a KA crashes before a transaction is

done, it automatically rollbacks the entire transaction when coming up again.

This is possible as the rollback log is always written before doing a change. This

enhances durability even on KA failures.

As the ACID properties are fulfilled, the lock mechanism of the VSL implements

transactions.

Orchestration services may require multiple nodes in distributed context repositories

to be changed together. As the VSL provides location transparency via its API

this can be done by transparently acquiring locks on different KAs. If a service

implementation ensures that none of the locks expired via callback before the last

lock is released (e.g. by timely renewing of locks), distributed ACID is implemented.

List Access

The list is the only generative type that allows services to add context nodes to an

instance of their corresponding context model (Sec. 5.6.5) at run time. It allows

dynamic extensibility of context model instances (<R.23>). As the API in Sec. 5.3.1 <R.23>

shows, there are no function calls to manage lists. Instead, the VSL uses its own

Virtual Context mechanism (Sec. 5.3.4) to implement interaction with the basic data

type list.

An instance of list is shown in listing 5.2. The context model is shown in listing 5.4.

1 <list allowedTypes ="" minimumEntries ="0" maximumEntries ="">

2 <!-- [listAddress/addNodeAt /[ position (set 0 for beginning , size+1

for end)]
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3 [modelID] --> <addNodeAt type ="/ system/list/addNodeAt"></addNodeAt

>

4 <!-- [listAddress/deleteNodeAt [listPosition] -->

5 <deleteNodeAt type ="/ system/list/deleteNodeAt"></deleteNodeAt >

6 <elements type ="/ system/list/elements"></elements >

7 </list >

Listing 5.4: Context model of the basic data type list

As the comments show, context nodes can be added to a VSL list by calling the

address:

1 [listAddress ]/ addNodeAt /[ position (set 0 for beginning , size+1 for

end)] [modelID]

An example call is set myList/addNodeAt/0 /basic/text which adds a context

node of type /basic/text at the beginning of the list.

Nodes can be removed from a list position via:

1 [listAddress ]/ deleteNodeAt [listPosition]

An example call is set myList/deleteNodeAt 1 which deletes the first context node

in the list that was added at the previous example. On deletion of a node, all subse-

quent nodes are automatically consolidated. If a node with the current number 6 gets

deleted, all following nodes are decreased in their number. As the number locators of

the nodes are discovered using the size attribute of the list, or the locator-id- split,

the shift in the numbering is not a problem. Prior to deletion the entire list is locked

(see transactions) to prevent concurrent access.

Nodes can be accessed by calling get or set on the position of the desired node:

1 set [listAddress ]/1 [value]

2 get [listAddress ]/1

An example call is:

1 system@agent_mop: /agent_mop % set listAddress /1 "hello world!"

2

3 system@agent_mop: /agent_mop % get listAddress /1

4 <efpr2u5elkr4o7uph5i07r25ijb type ="/ basic/text" version ="1"

timeStamp ="2014 -02 -12 20:26:20.116" access ="rw">

5 <![CDATA[hello world!]]>

6 </efpr2u5elkr4o7uph5i07r25ijb >

7

8 system@agent_mop: /agent_mop % get listAddress /1/ value

9 hello world!

10

11 system@agent_mop: /agent_mop % get listAddress/size/value

12 1

The listing shows that the setting of a value creates a new context node with a random

name. The logic of the VSL list provides the number of available nodes (last line of

the listing) and allows to access all list elements via their serial number.

5.3.3 Access Control

Services authenticate at the VSL when establishing a connection to their KA by

mutually exchanging certificates. Sec. 5.5 describes the security architecture of the
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VSL in detail. A service certificate contains multiple accessIDs that are delegated to

the service by a user on installing the service on her Smart Space (Sec. 7.3).

The VSL provides access control by comparing accessIDs from service certificates

with the IDs that are stored in the metadata of each context node (Sec. 5.2.1). The

readerIDs are evaluated for get requests, the WriterIDs for set requests. A context

node can be accessed by a requesting service if at least one of its accessIDs from the

service certificate (see below) is available in the corresponding ID list of the node.

Each context node stores its access rights making it fully independent of other nodes.

The self-containment happens in accordance with the key-value properties of the meta

model described in Sec. 5.2.4. Having all data that belong to a context node in its

metadata allows fast processing (<R.50>), and it makes the access control independent <R.50>

of external entities which enhances the dependability of the VSL (<R.30>), e.g. in case
<R.30>

of partitioning of the VSL (Sec. 5.6.1).

The ID “*” is used to define public access. If it is present in the corresponding access

ID list of a context node, any ID can be used to access the node.

The access rights are stored in the context models in the CMR and copied into the

context repository of the KA a service registers to when the corresponding context

model (Sec. 5.4.1) gets instantiated. The access rights cannot be changed at run time

for security reasons (Sec. 5.5).

The following listing shows the model of the lamp from Sec. 5.2.11 with public read ac-

cess and public write access to the desired node that is used to inform the autonomous

control cycle of an adaptation service of a desired state change (Sec. 8.3.1).

1 <lamp reader ="*">

2 <isOn type ="../ isOn" reader ="*">

3 0

4 <desired type ="../ isOn" reader ="*" writer ="*">

5 0

6 </desired >

7 </isOn >

8 </lamp >

The accessIDs of a service are stored in its service certificate (see Sec. 5.5). For

implementing diverse pervasive computing scenarios, it is required to change the access

rights of a service dynamically at run time, e.g. for multi-user support (<R.2>) <R.2>

Via the addCertificate and the removeCertificate methods it is possible to del-

egate additional accessIDs to a service by presenting additional certificates such as

user certificates. An example for such rights delegation is shown with the generic user

interface service (Sec. 8.3.5) which has only basic access rights in the service certificate

that get extended via user certificates when users with certain rights log on.

The described access control mechanism is transparent for services. This makes it

simple-to-use (<R.29>, <R.1>). In addition it prevents service developers from not <R.29>

<R.1>
using it (<R.49>).

<R.49>
The role of the described access control in the security architecture of the VSL becomes

more clear in combination with the explanations in Sec. 5.5, Sec. 6.5, and Sec. 7.3.
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5.3.4 Virtual Context

Virtual Context is the central functionality of the VSL that makes it fundamentally

different from the assessed state of the art (Sec. 4.5). Virtual Context combines the

mostly static structure of the VSL context models with the dynamic functionality of

services.

VSL context nodes can have four types as described in Sec. 5.2:

• Text nodes store textual values.

• Number nodes store numerical values.

• List nodes store elements of other types and are the only nodes that allow to

change the structure of a context model at run time.

• Composite nodes contain other nodes but no value.

Via multi-inheritance different node types such as composite and number can be com-

bined to create an inner VSL node that can store a value.

The listed node types are called regular nodes as they are regularly served by the VSL

context repositories via the KAs as described in Sec. 5.3.2.

Definition Regular Node

The term regular node is used for all context nodes that are stored in,

and served by the context repositories of the KAs that span the VSL.

Regular nodes are similar to a distributed database. In the prototype implementation,

a database is used as back-end for regular nodes on each KA which provides scalability

(<R.50>) and persistence which enhances the dependability (<R.30>) on failure as the<R.50>

<R.30>
context remains available when a KA is restarted (Sec. 6.3.5).

A difference to existing distributed databases is the connection of the database back-

end with the VSL meta model. Different to typical databases, the VSL supports

hierarchical structuring, inheritance, validation, and the dynamic extension and use

of data types at run time as described in Sec. 5.2.

Regular nodes implement asynchronous communication and loose coupling (<R.31>)<R.31>

between services via stored context and subscriptions. The VSL manages regular

nodes autonomously including security and context retrieval (Sec. 6.3).

Virtual Nodes

Virtual Nodes are the fifth and last predefined node type of the VSL.

Definition Virtual Node

The term Virtual Node is used for VSL nodes that provide context via

a function callback into a service.
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Virtual Nodes can be compared to dynamic web pages that are not permanently stored

as static pages but get dynamically generated on request based on the parameters that

are given in the URL22.

Virtual Nodes do not store values in the VSL context repository. Instead they register

a callback on a VSL node that gets called by the KA when the node is accessed. See

Fig. 5.3 on the right. As a result, the availability of a Virtual Node value depends on

the availability of the corresponding service that serves the value via the registered

callback.

Virtual Nodes implement synchronous communication. The VSL manages the context

routing (<R.1>) and provides basic access control (Sec. 5.3.3, <R.49>) to Virtual <R.1>

<R.49>
Nodes by invoking the callback only when the ID of the accessing entity is allowed to

read (get request) or write (set request).

Accessing Virtual Nodes is transparent for requesting services as the regular 13 VSL

API methods (Sec. 5.3.1) are used to access regular nodes and Virtual Nodes. Fig. 5.3

shows the access to Virtual Nodes via the regular VSL API on the right. Each of

the shown accesses from services could be to a regular node or a Virtual Node as it

is transparent for services. On the top right and the bottom left, the major API

functionality for services is shown.

Virtual Context implements access transparency (<R.12>) and persistence transparency <R.12>

(<R.18>). Via the type /system/virtual in their inheritance chain, Virtual Nodes
<R.18>

can be identified if required.

For implementing transparent access, the callbacks of Virtual Nodes must provide im-

plementations for the methods that can be called on a regular node. In the prototype

implementation, the abstract Java interface of a Virtual Node callback is as follows:

1 public interface IVirtualNodeHandler {

2 String get(final String address , final String readerIDs);

3

4 void set(final String address , final String value , final String

writerIDs);

5

6 void subscribe(final String address , final String subscriberID ,

7 String subscriptionCallbackAddress);

8

9 void unsubscribe(final String address , final String

subscriberIDs);

10

11 void lockSubtree(final String address , final String lockerID ,

12 final String abortCallbackAddress);

13

14 void unlockSubtree(final String address , final String lockerID);

15

16 void revertSubtree(final String address , final String lockerID);

17 }

Listing 5.5: The IVirtualNodeHandler interface that is used to implement Virtual Nodes in the

prototype

The callback function is registered by a service at its KA with the API function

registerVirtualNode [nodeAddress] [callback]. The KA routes all requests to

a node that is declared virtual to the callback. The same happens for requests on

22e.g. http://pahl.de/?site= contact&subject=I+like+your+thesis

http://pahl.de/?site=__contact&subject=I+like+your+thesis
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subnodes of a Virtual Node that are not specified in the context model as described

next. The answer to the callback is routed back through the VSL to the caller. This

makes it transparent to the receiver if the request was handled by the KA or by a

service via callback.

Virtual Subtrees

As can be seen in listing 5.5, all method signatures contain the VSL address that was

requested. It is passed to the callback as the VSL does not only forward requests to

the VSL address of the Virtual Node (Sec. 5.2.2) but also requests on addresses of

subnodes of a Virtual Node that are not specified in the context model. This extends

the Virtual Node concept as it implements Virtual Subtrees.

Specifying all context nodes in the context model has the advantage that the available

subnodes are specified, and can be looked up by developers over the CMR. This fosters

the reuse of a service.

Not specifying all subnodes and using the described Virtual Subtree mechanism gives

more flexibility as described next. Requests to subnodes of a Virtual Node that are

not specified in the context model are routed to the registered callback. This enables

passing parameters to the callback function, e.g. by using the addressing schemes of

the VSL. More details about Virtual Subtrees are introduced in Sec. 5.4.2 after the

introduction of the abstract service interfaces.

The power of this novel mechanism is demonstrated in the remainder of this thesis with

the CMR (5.7.1), the type search (5.7.2), and the location search provider (Sec. 6.6.4)

as an example of meta model extensibility (Sec. 5.7.3).
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5.4 The VSL Service Interface

Show me your code and conceal your data structures, and I

shall continue to be mystified. Show me your data structures,

and I won’t usually need your code; it’ll be obvious.

Eric Raymond, American Open-Source Advocate, (*1957); adaptation of

a quote from Fred Brooks, American Computer Scientist, (*1931), Turing

Award 1999, The Mythical Man-Month, Chapter 9.

The VSL uses the API described in Sec. 5.3.1 for inter-service communication. All ser-

vices access the VSL via the 13 fixed methods presented in Sec. 5.3.1. All services use

the VSL for inter-service communication. Therefore the service interface was already

presented in Sec. 5.3. This section explains its use as inter-service communication in

detail.

Via its regular nodes, the VSL provides context storage for services, supporting

context-awareness (<R.5>). The VSL context repositories can be used for exchanging <R.5>

information between services. Via the subscriptions (Sec. 5.3.2), coupling between

services can be implemented over context.

Via the novel Virtual Context mechanism, context that is available as procedural

knowledge –generated by functions– becomes accessible as descriptive knowledge over

the Virtual Nodes. The availability of descriptive knowledge facilitates the use of the

context abstraction (Sec. 3.5, <R.24>). <R.24>

5.4.1 Context Models as Abstract Service Interfaces

Using the VSL, services can be coupled over regular nodes and Virtual Nodes. Services

can be coupled over regular nodes using subscriptions (Sec. 5.3.2). The novel coup-

ling mechanism over Virtual Nodes uses context models to directly couple services

(Sec. 5.3.4).

The VSL context that is used for inter-service communication is structured by context

models. The VSL uses context models as abstract service interfaces.

The use of a single mechanism, and a single representation for context models, and

abstract service interfaces reduces the complexity of Smart Space orchestration signif-

icantly. It consolidates the problem domains context modeling and abstract interface

design that are typically separated in the state of the art (Sec. 4.5) to one problem

domain (Sec. 3.12).

The creation of context models is rooted in the reality as formal ontologies are a

formalization of parts of the physical reality. The design of abstract service interfaces

instead is rooted in the creation of programs. The latter is typically further away from

the reality of non-programmers than the former. The step of unifying the two tasks

facilitates the creation of abstract service interfaces as they automatically emerge with

describing (<R.24>) the reality in context models. <R.24>

The creation of context models is supported by the VSL meta model (Sec. 5.2). Via the

described dual use of context models the meta model support applies to the design of

abstract service interfaces facilitating their creation, and providing validation support

(<R.39>). In addition the inheritance features of the VSL meta model become usable <R.39>
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when designing abstract service interfaces, making it a modular task (<R.26>).
<R.26>

The described functionality of the CMR (Sec. 5.2.8) fosters crowdsourcing as it en-

ables the sharing of abstract service interfaces (<R.48>). Shared interfaces, and fixed<R.48>

methods to access services foster composition (<R.36>) and reuse (<R.35>) of VSL
<R.36>

<R.35>

services.

Combined with the separation of service logic from service state, and the requirement

to declare the layout of the service state as context model in the CMR, the creation of

abstract service interfaces is enforced (<R.32>) via the dual use of context models. In<R.32>

addition, full encapsulation of service functionality behind the abstract interfaces is

implemented (<R.34>). The data access happens over the decoupled (regular node)<R.34>

or coupled (Virtual Context) declarative interface.

The context discovery mechanism of the VSL automatically provides a service dis-

covery mechanism over the VSL (<R.38>) by using types to implement a locator-id<R.38>

split (Sec. 5.2.13). A service instance can be discovered searching for the type of its

context model.

Generating Service Stubs

Context models originate in the real world as described above. This makes their

creation often simpler for developers than the creation of an abstract interface [Dét02].

A purpose of abstract service interfaces is structuring a program. Though the abstract

service interfaces of the VSL can be originated in the real world they automatically

provide structure to the service that implements the interface.

The context model of a service can be interpreted as an Interface Definition Language

(IDL) as it defines the VSL interface to the service. Interface Definition Language

(IDL) definitions in Common Object Request Broker (CORBA) can be used to gener-

ate implementation stubs. The same can be done with VSL context model. Generating

methods for the management of each context node in the model automatically struc-

tures a VSL service. By providing the logic behind the context nodes, a developer

can implement a service. See Sec. 8.2.

The brief explanation above shows how the use of context models as abstract service

interfaces facilitates the creation of services as the previously unconnected steps of

context modeling and abstract interface design are combined. This fosters crowd-

sourced development (<R.48>).<R.48>

5.4.2 Virtual Context Revisited

The meaning of Virtual Context for the VSL programming abstraction becomes more

clear knowing about the dual use of VSL context model as representation scheme for

parts of the real world, and as abstract service interface.

The previously described inter-service communication over regular VSL nodes imple-

ments asynchronous coupling between services. Virtual Nodes implement synchronous

coupling between services as requesting them results in direct callbacks into services

(Sec. 5.3.4).
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Virtual Subtrees can be used to implement synchronous coupling between services and

passing parameters. Assuming a Virtual Node is registered at the address /myAgen-

t/myService/myVirtualNode and has no children in its context model, parameters

can be passed as follows:

1 get /myAgent/myService/myVirtualNode/parameter1/parameter2/

parameter3 /...

Using the regular VSL address separator “/” makes it transparent to a caller that the

semantic of the address parts are parameters for a service23.

Examples for the use of the described parameter passing technique are the services

that are introduced in Sec. 5.7, which provide basic VSL functionality such as the

context search.

5.4.3 Communication Modes

The VSL meta model implements a hybrid of existing context modeling techniques

(Sec. 5.2). The described VSL inter-service communication implements a hybrid of

different coordination modes. See Sec. 3.4.1.

The diversity of pervasive computing use cases requires the VSL to offer all commu-

nication modes shown in table 3.2.

Table 5.2 maps the different coordination modes that were introduced in Sec. 3.4.1 to

requirements of pervasive computing workflows.

Temporal

coupled uncoupled
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time & security critical

video / audio transmission

security critical

sensor value dissemination to a defined group

u
n
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time critical

clock signal dissemination

time & security uncritical

ambient information

Table 5.2: Match of Smart Space requirements to the different coordination modes of table 3.2.

The table shows that referential coupling matches with requirements on security (“who

gets the information?”) and with the selection (“who is interested in the informa-

tion?”). Temporal coupling matches with the requirement of short response time.

An example that needs temporal and referential coupling is the surveillance of a space

via video or audio streams.

An example for temporally uncoupled and referentially coupled communication is sen-

sor value dissemination to a defined group of other services.

23It is also possible to use arbitrary character in an address such as get "/myAgent/mySer-

vice/myVirtualNode/hello world$23?parameter7=42" but such an address is not transparent for

other services.
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An example that requires temporal coupling but no referential coupling is the dis-

semination of security uncritical information such as a clock signal that should be

published to services of a Smart Space.

No temporal and referential coupling is required for the exchange of security uncritical

information. An (Sec. 8.3.2) that provides the time of the day out of the set {morning,

noon, afternoon, evening, night} could be an example for such a service.

Via regular nodes temporally uncoupled (asynchronous) coordination is implemented

(<R.20>, <R.22>). Via Virtual Nodes temporally coupled (synchronous) coordination

is implemented (<R.19>, <R.21>). Via the VSL access control (Sec. 5.3.3), by set-

ting accessIDs referential coupling , and by setting the accessIDs to “*” referentially<R.19> <R.20>

uncoupled coordination can be implemented.
<R.21> <R.22>

When using regular VSL nodes, the access control of the VSL nodes is entirely handled

by the VSL. It is transparent for a service. It simply changes a context node. The VSL

provides access to the accessIDs that are permitted, and it sends notification to the

subset of those IDs that subscribed the context node or one of its parents (Sec. 5.3.2).

The subscriptions implement temporal coupling but they are asynchronous from the

perspective of a context providing service as it only sets a context value in the VSL.

From the perspective of a subscribing service, Subscriptions implement temporal coup-

ling but as the notifications are not used for disseminating the value, it is less strict

than the Virtual Context coupling. The evaluation in Sec. 9.3 shows and evaluates

differences between the coupling via notifications and Virtual Nodes.

5.4.4 Service Oriented Architecture

Via the described design, each VSL service that allows reuse needs a context model.

Context models are associated with service over the ModelID that is stored in the

certificate of a service (Sec. 5.5). When a service registers at the VSL (Sec. 5.3.1), its

corresponding context model is automatically instantiated in the context repository

of the KA it registered at. As described above, this makes the service discoverable in

the VSL. Services that do not provide any context use an empty context model.

As the criteria for loose-coupling of services are fulfilled, and as the CMR acts as

directory for abstract service interfaces, the VSL implements a SOA (<R.31>):<R.31>

• With the context models as abstract service interfaces, service contracts are

implemented (<R.32>).<R.32>

• Service autonomy (<R.33>) is implemented as each service runs independently<R.33>

from other services. Services can have dependencies. When all dependencies to

other services are fulfilled, a service can run. Using context models as abstract

service interfaces, resolving a dependency is equivalent to checking the avail-

ability of a data type in a VSL instance. If some dependencies are not fulfilled,

running a VSL service is possible. However, a service can typically not serve its

purpose in such a case as necessar input is missing (e.g. cascaded reasoning in

Sec. 5.4.3).

• Service abstraction (<R.34>) is automatically implemented via the context mo-<R.34>

dels.
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• Service reusability (<R.35>) is enabled via the sharing, the abstract service<R.35>

interfaces over the CMR, and the sharing of services over the Smart Space Store

(S2Store) (Sec. 7.2.6).

• Service composability (<R.36>) is given via the use of the fixed API. <R.36>

• Service statelessness (<R.37>) is implemented via the separation of service logic <R.37>

from service state (Sec. 5.6.5)

• Service discoverability (<R.38>) is implemented via the locator-id split of the <R.38>

VSL meta model (Sec. 5.2.13) that allows to identify context model instances

and thereby services based on their ModelID.

In addition, comprehensive abstract interface validation (<R.39>) is implemented via <R.39>

the validation of the context models (Sec. 5.2.14).
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5.5 Security-by-Design

This section introduces the security architectures of the VSL (Sec. 5.5). Additional

elements of the DS2OS security architecture that is presented in Sec. 7.3 complement

the presented features for real world deployment with crowdsourced development.

Smart Spaces that are orchestrated by software (Sec. 2.4.1), e.g. via the VSL, im-

plement Cyber-Physical Systems (CPSs) that allow software to interact with the

physical environment of humans (Sec. 2.6.2). Smart Spaces need to be secured

[BCG12, DDMS12, CD12, Lan01, TPR+12]. Major reasons are security, safety, and

privacy protection. This section highlights how the VSL programming abstraction

implements security-by-design for services.

Via Virtual Context (Sec. 5.3.4) all coupling between software entities in Smart Spaces

can be handled over the VSL middleware. The position of the VSL middleware in the

middle of each context access and inter-service communication automatically enforces

the security policies of the VSL as it must be used for communication.

The term security-by-design <R.49> expresses that the described VSL security me-<R.49>

chanisms are automatically applied to services without service developers having to

add special code.

5.5.1 Identification

The VSL is designed to be fully distributed. To reflect the distribution (Sec. 5.6.1)

and the autonomy (5.6.2) of the computing nodes that run the KAs that span the

VSL, certificates are used as secure containers for data.

Each VSL site acts as Certification Authority (CA) that can issue locally valid cer-

tificates. To do so, each VSL site has a public-private key pair (Kpub(V SLsite)/

Kpriv(V SLsite)). It has a Site Local Certificate Authority (SLCA). Connecting the

Site Local Certificate Authoritys (SLCAs) hierarchically via a global CA could be

done to implement trust between VSL sites but as described in Sec. 8.3.4, connectiv-

ity based on explicit trust is proposed in this work.

Each software entity that communicates with the VSL needs a locally signed certificate

to connect to a KA (Sec. 5.3.1). A VSL certificate for a software entity A contains:

• A unique name.

• A public key of A, Kpub(A).

• The readerIDs and writerIDs that A has (Sec. 5.3.1).

• A validity period that defines the beginning and the end of the validity of the

certificate.

• The ModelID that identifies the context model that belongs to A.

• A cryptographic hash over the context model.

• The public key of the VSL site, Kpub(V SLsite).
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Each certificate is signed with the private key of the VSL site, Kpriv(V SLsite). As

the certificate of each entity contains the Kpub(V SLsite), each entity can verify the

integrity of the information in a foreign certificate locally using the public key from

its own certificate without accessing a central entity.

The unique name is used for the namespace of the entity in the context repository

(Sec. 5.3.1, Sec. 6.4.1).

Kpub(A) can be used to encrypt data for A. This is used for disseminating new keys

when re-keying in the VSL µ-middleware implementation for instance (Sec. 6.5.6).

The readerIDs and writerIDs are used for access control as described in Sec. 5.3.2.

For referring to both the term accessID is used in the remainder of this document.

By storing them in the certificate, a service cannot change them without the SLCA.

Sec. 7.3 describes how the certificates can be used to implement user aware access

control in future Smart Spaces.

The validity period is relevant for distributed revocation. Revocation is necessary to

remove unwanted certificates (e.g. service removed, certificate compromised). It is

required that the clocks of all KAs are synchronized to make certificates expire when

their validity period is over. The clock synchronization is implemented by the VSL

implementation via the regular alive pings (Sec. 6.5.1). As invalid certificates are not

renewed by the SLCA, this implements a distributed revocation. Sec. 7.3 describes a

possible automated certificate renewal process.

The ModelID identifies the context model that gets instantiated when a service gets

started. The context model defines not only the layout of the context storage a service

can use and its abstract interface (Sec. 5.2.9) but it also defines the access rights to

the context nodes of a service (Sec. 5.3.3). Having the ModelID and the cryptographic

hash over the context model in the certificate validates the correspondence to a certain

context model and its integrity.

VSL Site

SLCA

KA

svc

KA

svc

Knowledge Agent

Services

Logical Communication

SLCA Site-Local Certificate Authority

cert Service Certificate	

(locally signed)

12
svccert

Figure 5.4: All software entities in a VSL site have a certificate that is signed by the site and used

for distributed authentication.

Fig. 5.4 shows that a new service has to be equipped with a certificate before it can

register at a KA (1, 2). The figure shows that all entities have a certificate that is

issued by the SLCA. The colors indicate that the content of each certificate is different.

The red circle illustrates that all are signed with the same key from the SLCA.



224 5. The Virtual State Layer Programming Abstraction

Fig. 7.3 shows the described security mechanism in the interplay with the other com-

ponents of DS2OS. It shows how the presented mechanism allows the implementation

of a trust chain from the developer of a service to the computing host in a VSL site

that runs the service, and how the user can set the access rights explicitly with the

described scheme.

5.5.2 Authentication

The described certificates are used for authentication of entities that interact with the

VSL.

Knowledge Agents

Each KA has a certificate. To implement the VSL as a protected domain, KAs

authenticate mutually when establishing a connection. The communication between

KAs is encrypted. See Fig. 5.4.

Services

Each VSL service has a certificate as it is required for registering to a KA. Such

identification anchor is needed to allow secure use of services that are deployed from

outside and shared by distributed developers (<R.4>, <R.48>). Services authenticate<R.4>

<R.48>
mutually with a KA when establishing a connection. The communication between

services and KAs can be encrypted. As both are typically running on the same

physical machine this may not be necessary if this machine is trusted. Unencrypted

communication typically introduces a security risk. See Fig. 5.4.

Other Entities

Users or other entities can have certificates. Such certificates can be used to temporally

add access rights to services (Sec. 5.3.3). See Fig. 5.4.

5.5.3 Authorization

The access rights are stored as part of a context model in the CMR as described

in Sec. 5.3.3. Defining “writer="cameraAccess"” restricts the right access to ser-

vices that have the accessID cameraAccess in the writerIDs of their certificate.

“reader="*"” gives public read access to a context node.

The authorization happens based on the accessIDs (readerIDs, writerIDs) of the cer-

tificates as described in Sec. 5.3.3. The access control scheme is applied to context

access and inter-service communication.

The VSL access control mechanisms apply for service coupling when context change

notifications are used (Sec. 5.3.2), and when Virtual Nodes are used (Sec. 5.3.4). In

case of Virtual Context, services can also handle their access control based on the

accessIDs that are passed over the callback24 (Sec. 5.3.4).

24In such case, the VSL access rights would be set to “*”.
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5.5.4 Rights Delegation

To implement multi-user support (<R.2>) services can temporarily be delegated ad- <R.2>

ditional rights. Sec. 5.3.1 describes the API functionality. Sec. 8.3.5 gives an example

for the use of the functionality to delegate additional rights to an Graphical User

Interface (GUI) service via user certificates. The service has only few rights to access

context. When a user logs on, it inherits the user rights and can display the user all

context, it has access to.

5.5.5 Confidentiality

To ensure the privacy of data on the physical storage, the use of encryption in the

tuple store of the context repository in each KA is recommended e.g. as proposed in

[App12].

5.5.6 Service Dependability

As Smart Spaces are Cyber-Physical System (CPS) (Sec. 2.6.2), it is required that they

provide safety and security [BCG12, DDMS12, CD12, Lan01, TPR+12, Kub68, Asi50,

Cla93]. To implement pervasive computing scenarios, Smart Space Orchestration

(Sec. 2.4.1) with user developed services (<R.4>, <R.48>) is enabled via the presented

VSL programming abstraction.

Though the VSL structures and facilitates the development and interplay of services

in future Smart Spaces, a VSL operated Smart Space with multiple autonomously

interacting services will be a complex system. Emulators (5.6.7) enable the testing of

functionality in simulations. Testing can help increasing the dependability of services.

The validation mechanisms of the VSL meta model (Sec. 5.2.14) apply to the appli-

cation state of services that is stored and routed by the VSL (5.4.1). This enhances

the dependability of services.

As third point, the use of state (context) for interaction between services fosters

applying formal methods to model VSL Smart Spaces. Formal models of VSL services

and their interplay can be used to apply methods for formal validation, to check if an

intended behavior occurs, and formal verification, to check if an observed behavior is

within a specification, to parts of the emerging software system. Though out of scope

of this thesis, following this path may allow certify service functionality in future VSL

Smart Spaces (Sec. 10.4).

To illustrate how the use of explicit state for communication between Smart Space

services fosters formal modeling, some starting points are given next.

Hoare-Floyd logic

Using context as service interface makes the input and output of service procedures

explicit as it must be represented as descriptive knowledge (Sec. 5.4).

Applying Hoare-Floyd logic is a method to validate program functionality by adding

and checking invariants for sub functionality [Hoa69, Flo67]. Using the VSL context

models facilitates the formulation and the checking of such invariants. The invariants
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can simply be formulated as expected values or value ranges for context nodes in the

current VSL state.

Hoare-Floyd logic is a possibility to validate service functionality [Hoa69, Hoa78].

Applying it to VSL services is simplified by the central use of context models.

Automata

As written in Sec. 3.6, automata are a suitable formalism for developing Artificial

Intelligence (AI). The described use of explicit context for exchange between VSL

services fosters the modeling of services as formal automatons.

Services can be expressed as labeled transition systems. The states of the state transi-

tion system are the possible configurations a service interface / context model instance

can have. For labeled transition systems and especially their more restricted form De-

terministic Finite Automaton (DFA) formal verification methods exist [CES83].

A more concrete example is given next.

Modeling a Software Orchestrated Smart Space

VSL Smart Spaces run multiple services that follow different goals (Sec. 3.6.3). Each

service can be seen as a so-called agent that aims to fulfill its goals. As a result,

formal modeling techniques for multi-agent-systems apply. The following formalism

is adapted from [Woo09].

The state of a VSL Smart Space at a given time is defined by the union of all context

repositories, the knowledge base. The knowledge base can be formalized as set E of

context nodes e:

E = {e, e′, . . .} (5.1)

The functionality of service can be expressed as set of transitions (STran) between

states of context nodes:

STran = {α, α′, . . .} (5.2)

A run, r, of a service can be expressed as:

r : e0
α0−→ e1

α1−→ . . . αn−2−−−→ en−1
αn−1−−−→ en (5.3)

Services in a space can transform the environmental state independent of each other.

Let R(E,STran) be the set of all finite runs r. RSTran ⊂ R be the subset of R that

ends with an action and RE ⊂ R be the subset of R that ends with an environmental

state. Ending with an environmental state means that a service finishes and set all

values it intended to change in the VSL.

The effects of a service can be expressed as subset of the power set of E 25 (℘E) as

shown in the following state transforming function RSTran :

τ : RSTran −→ X,X ⊆ ℘E (5.4)

If τ(r) = ∅, r ∈ RST ran the system has ended as there are no successor states defined.

25The power set consists of tuples of all possible combinations of allowed states in E
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With the introduced formal descriptions a VSL Smart Space can be described as:

Env = 〈E, e0, τ〉 (5.5)

e0 is the starting state of the environment. In case of the VSL, this state is reached

when the context models of all services are instantiated but no service was running

yet.

Services can be defined as entities that transform between environmental states, re-

sulting in a specific run over states in E (RE):

Svc : RE −→ Tran (5.6)

The run of a service (RE) can now be defined as sequence (e0, α0, e1, α1, e2 . . .) if:

1. e0 is the initial state of Env.

2. α0 = Svc(e0).

3. ∀u > 0, eu ∈ τ((e0, α0, . . . , αu−1)) and αu = Svc((e0, α0, . . . , eu)).

A purely reactive service (Sec. 3.6.4) can be modeled as:

Svc : E −→ Tran (5.7)

The difference to the general service definition 5.6 is that the reactive service is not

considering the history of the environment but only acting based on the current state.

An example for a reactive service is a heater control:

Svc(e) =

{
heater on if e = temperature too low

heater off otherwise
(5.8)

For more details see [Woo09]. Difference to the modeling of multi-agent systems that

is shown in the book, the VSL programming abstraction does not require the creation

of a model in addition to the services. Instead with the use of context models as

abstract service interfaces the current state of all services in the VSL (eq. 5.1) is

explicitly available and can directly be used. This facilitates the modeling.

Via the timeliness support of the VSL (Sec. 5.2.1, Sec. 5.3.2) there is no differentiation

between historic context and current context as the historic context remains available.

As a result, reactive services can transparently use historic context for querying older

values of a context node.

The unified descriptive VSL interface may facilitate the validation of service functio-

nality. Analyzing and using the emerging possibilities is future work.

Conclusion

The VSL programming abstraction bases services on the formal structure of their

context models. This enables the application of additional formal methods to increase

the dependability (<R.30>) of VSL operated Smart Spaces. <R.30>
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5.6 Resulting Properties

This section describes how the presented VSL programming abstraction implements

distribution transparency (Sec. 5.6.1), autonomy (Sec. 5.6.2), portability (Sec. 5.6.3),

and collaborative convergence (Sec. 5.6.4).

The section closes with a discussion how the VSL programming abstraction structures

the creation of Smart Space services (Sec. 5.6.5).

5.6.1 Distribution Transparency

The VSL is designed as distributed system (<R.11>). This design is chosen to provide<R.11>

scalability (Sec. 9.4, Sec. 4.5), and to make use of the distributed resources of future

Smart Spaces (Sec. 3.2.4).

The VSL implements a unified system view (Sec. 3.4) on the virtual representation of

a Smart Space by providing transparency for services:

• Access transparency (<R.12>) is provided via the context models (Sec. 5.2) that<R.12>

are also used as abstract service interfaces (Sec. 5.4), the fixed functional inter-

face (Sec. 5.3.1), and the autonomous context management that is implemented

via the KA peers (Sec. 6.4).

• Location transparency (<R.13>) is implemented as the VSL routes requests<R.13>

(Sec. 5.3.2) transparently between distributed KAs (Sec. 6.4) that handle re-

quests either via their context repository, or via executing a callback into a

service (Sec. 5.3.4).

• Migration transparency (<R.13>) is implemented via the locator-id split (Sec. 5.2.13)<R.13>

that allows to retrieve services independent of their location on a certain KA.

Further details are given in Sec. 5.2.13.

• Relocation transparency (<R.15>) is supported by the VSL programming ab-<R.15>

straction via Virtual Context that can be used to implement transparent for-

warding of requests from one context address to another context address (new

service location). More details are given in Sec. 7.2.4.

• Concurrency transparency (<R.16>) is implemented by the VSL for access to<R.16>

regular nodes via the context repositories. Using the VSL to exchange states

of a service (e.g. from a Smart Device via an adaptation service, Sec. 8.3.1)

automatically decouples the access to the state of the Smart Device from the

Smart Device and from its service. In practical use, regular context nodes are

suitable for implementing most pervasive computing scenarios.

In case of Virtual Context (Sec. 5.3.4), the service callback must be programmed

to provide Concurrency transparency.

• Failure transparency (<R.17>) is implemented by decoupling services from their<R.17>

state. The VSL context of a service exists independent of the service. This

makes service failures transparent with regard to the context exchange.

In case of Virtual Context (Sec. 5.3.4), service failure is not transparent. How-

ever, when a service manager (Sec. 7.2.3) brings a failed service up again, it can
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be reached over its original bindings to Virtual Nodes in the VSL. This imple-

ments at least failure tolerance.

Via the persistence functionality of the used database back-end (Sec. 6.3.5) in

the implementation, failure tolerance can be implemented for the KAs as well.

• Persistence transparency (<R.18>) is provided via the unified API (Sec. 5.3.1) <R.18>

that hides the origin of context values. For a requester it is transparent, if a

context value is served from the context repository of a KA, or if is dynamically

generated via a service and returned (Virtual Context).

Fulfilling the described properties results in distribution support (<R.11>). Sec. 6.4 <R.11>

describes how the described properties are reached autonomously.

5.6.2 Autonomy

The infrastructure in a Smart Space Back-End is heterogeneous and distributed

(Sec. 3.2.4). This leads to different properties of communication links and resources

on computation nodes. It cannot be expected that the underlay of computing nodes,

consisting of the actual connections between the nodes, and their hardware, is de-

pendable.

For providing a high level of autonomy, the VSL implements a fully distributed design.

Central components are avoided as they are critical for the scalability of the system,

and for its operation. Concerning the VSL as middleware, partitioning of computing

nodes that span the VSL via their KAs can make central components unreachable for

one or several of the emerging partitions. This makes a fully distributed design even

more important.

The VSL is designed to make each computing node autonomously operable (<R.3>). <R.3>

In particular, the following aspects are relevant for the autonomy:

• The VSL meta model implements a data structure of self-contained tuples that

only have dependencies during instantiation (Sec. 5.2).

• The inter-service communication uses the local KA as communication endpoint

that forwards requests and can handle partitioning for services (Sec. 5.4).

• The security architecture of the VSL is based on certificates that can be verified

by each KA locally (Sec. 5.5).

• The CMR service (Sec. 5.7.1) implements a decoupling from the central CMR

by caching and serving context models from its cache. This allows to instantiate

cached context models even when the CMR is not reachable.

The same principle is applicable to each KA. It can cache all locally instantiated

context models. The local caching allows to reinstantiate context models locally

without connection to the CMR service. This is especially interesting for the

basic data type list, and for starting new instances of existing services on a

host.

Different caching strategies [Tan01] can be optimal depending on the available

resources (e.g. Least Recently Used (LRU)). They determine how independent a

VSL site is from the global CMR, and how independent a KA is from the CMR

service.
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The functionality that is provided by the VSL programming abstraction is fully trans-

parent for services. It is hidden behind the fixed API (Sec. 5.3.1), and the context

models (Sec. 5.2.8).

5.6.3 Portability Support

Portability of services is a fundamental challenge for Smart Space Orchestration.

Portability enables services to run in diverse Smart Spaces (Sec. 4.5, [KFKC12,

DHK11, DMA+12]). Portability also means that the same application-executable

can run on different machines [Ber96, TVS06].

Services that implement pervasive computing scenarios typically have dependencies.

Portability has different meanings in this thesis:

1. In relation to Smart Device instances, portability refers to the independence of

services from concrete Smart Device instances. It can be implemented by adding

a layer of abstraction between a service and a device. In an Operating System

(OS) this layer is typically called device driver. In the VSL this role is taken by

the adaptation services (Sec. 8.3.1). The VSL context models are the abstract

service interfaces that implement the decoupling (Sec. 5.4.1).

2. In relation to other services, portability describes that a service that depends on

other services is independent of concrete implementations of the other service.

This concerns the abstract service interfaces in particular. The VSL context

models are the abstract service interfaces that implement the decoupling.

3. In relation to the middleware, portability means that a service is not pinned

to a certain middleware because of the particular support functionality it offers

(Sec. 4.5). This point becomes more clear in Sec. 6.2.

4. In relation to service executables, Portability refers to the ability to run the

executable on diverse hardware architectures with diverse OSs. The need for

this aspect of portability is expressed by <R.45>.

The VSL programming abstraction solves the first three challenges. They are referred

to as requirement <R.8>.

The first three challenges are mostly relevant for supporting diverse Smart Devices

(<O.1>) and for supporting the creation of diverse orchestration services that imple-

ment pervasive computing scenarios (<O.2>, <O.3>).

Service portability in relation to Smart Devices and other services follows directly from

the programming abstraction as it is centered around abstract interfaces (Sec. 5.4.1),

and as it provides a locator-id-split (Sec. 5.2.13).

Part of this portability is that the abstract interfaces are converged to implement stan-

dardization. Sec. 5.6.4 describes such a convergence can be implemented. Sec. 7.4.3

extends the approach from Sec. 5.6.4 for real world usability.

The third aspect, the independence from middleware-specific support functionality

becomes more clear in Sec. 6.2.

Summarizing the interface portability (<R.8>) is provided by the VSL as follows:<R.8>
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1. The VSL implements a type-based locator-id-split (Sec. 5.2.13).

2. As each service needs a VSL context models, each service automatically provides

an abstract interfaces (Sec. 5.4.1).

3. The context models are published over the global CMR (Sec. 5.7.1). The CMR

becomes part of the S2Store in DS2OS (Sec. 7.2.6).

4. DS2OS provides crowdsourced mechanisms for convergence of contexts in the

CMR (Sec. 5.6.4, Sec. 7.4.3).

The combination of the described mechanisms fosters real world interface portability

of services (<R.8>, Sec. 6.2). <R.8>

The fourth aspect of portability, portability in relation to the executables, is imple-

mentation specific and not of conceptual nature. It is therefore solved in Sec. 6.3.2

and Sec. 7.2.1.

5.6.4 Support for Collaborative Convergence

As described in Sec. 4.5, to provide service portability in real world deployments,

standardization of abstract interfaces is required. If the abstract service interfaces are

not standardized, the heterogeneity of the Smart Devices is lifted to a higher level of

abstraction only. Service interoperability is not provided.

Device

Abstract Interface 1 2 3 4 5 5 5
4

4

4

4

4 4 4

1 2 3 4 5 6 7

Figure 5.5: Without standardization heterogeneity is only lifted to a higher level of abstraction.

Fig. 5.5 illustrates the problem. Each lamp 1-4 has a different abstract interface.

Services that support the lamp 3 cannot use the same abstract interface (labeled “3”)

to address lamp 2 for instance. Instead they have to use the interface labeled “2”. As

result, a service that is compatible with the abstract interface 3 cannot interact in a

Smart Space that only contains lamps of the types 1, 2, 4, 5, 6, or 7.

As discussed in Sec. 3.3.2, classical standardization approaches are not suitable for

the convergence of abstract interfaces in Smart Spaces. Reasons include the high

amount of interfaces to be standardized and the time it takes to go through a classical

standardization process (Fig. 3.2).

The coupling between context models and abstract service interfaces in the VSL pro-

gramming abstractions provides a solution (<R.10>). To make use of portability, <R.10>

services must be shared between Smart Spaces. To do so, a repository is needed

that provides similar functionality for Smart Spaces like the App store for smart-

phones (<R.46>). The Smart Space equivalent to the App store that is presented in

this work as part of the DS2OS framework in Sec. 7.2.6 is called Smart Space Store

(S2Store).
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Having the S2Store it becomes possible to correlate the used ModelIDs from the service

certificates (Sec. 5.5) with the available context models in the CMR (Sec. 5.2.8).

Statistics on how many services use a specific context model can be provided. The

design of the S2Store in Sec. 7.2.6 uses the described and several additional metrics

to create such a statistic.

Having a statistic of the popularity of a model, it is likely that service developers in

a crowdsourced development scenario (<R.48>) use this popularity to decide, which

context models they want to support in their service implementation. Most popular

context models are likely to be supported in most Smart Spaces in the world. This

results in a higher reach for a service as it can run in more Smart Spaces.

In the example in Fig. 5.5, lamp 5-7 use the most popular context model 5. As de-

scribed above, the assumption for the proposed collaborative standardization is that

the market will push context model 5 for adaptation services and orchestration ser-

vices. A service implementation that interacts with the state of a lamp represented

in the structure of context model 5 can run in Smart Spaces with lamps of the types

5, 6, or 7.

See Sec. 7.2.6 for an extended collaborative standardization strategy that requires more

components of DS2OS.

5.6.5 Separation of Logic and State

Memory and imagination are but two words for the same thing.

Leviathan, Thomas Hobbes, British Philosopher, (1588 - 1679).

The VSL is a persistent versioning storage for service state. Its use allows to separate

service logic from service state. This facilitates the creation of services (<R.1>) as<R.1>

developers can focus on the logic of their services using the VSL over its unified API

for keeping state [GDH01, GDLM04, DAS01].

The VSL allows separating service logic from service state. Service developers do not

have to implement functionality to store state. They can create stateless services that

use the VSL for managing their own and remote state of other services. The VSL

allows transparent sharing of state with other services by setting the access rights

(Sec. 5.3.3) accordingly (<R.1>). Besides freeing developers from providing functio-<R.1>

nality for sharing context, using the VSL for this purpose implements transparent

access control (Sec. 5.3.3) contributing to security-by-design (<R.49>).<R.49>

Externalizing the service state from a service makes its context independent of the

service. The context that is used by other services is entirely managed by the context

repository of the KA. This enables providing service context even when a service is not

running while guaranteeing the specified access conditions (Sec. 5.5). Historic context

remains available even after a service is shut down. Such functionality is typically not

provided by the state of the art solutions where context is coupled to the lifetime of

services (Sec. 4.5).

The experience with the VSL prototype shows that the resulting programs are simpler

and shorter than programs that have to implement state management (Sec. 5.8). The

code complexity and the amount of code are reduced. This lowers the risk for acciden-

tal implementation errors. It increases the security (<R.49>) and the dependability<R.49>
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(<R.30>) of VSL services.
<R.30>

With the described separation of service logic from service state, VSL service imple-

mentations become stateless as they store all state as context in the VSL (<R.37>). <R.37>

A stateless service design simplifies service management significantly as described in

Sec. 7.2.

5.6.6 Modularization Support

The described four modes for coupling services (Sec. 5.4.3) foster the modularization

of services (<R.26>). Via notifications and Virtual Nodes services can be cascaded as <R.26>

shown in Fig. 5.6.

KA

Context Repository

Context Manager

KA

Context Repository

Context Manager

Se
rv
ic
e

notify, get virtual set

Se
rv
ic
e

Se
rv
ic
e

Se
rv
ic
e

Se
rv
ic
e

Se
rv
ic
e

virtual set

regular VSL node virtual VSL node set notify, get virtual set

Figure 5.6: Different services are cascaded via subscriptions on regular VSL nodes, and via Virtual

Nodes.

The coupling points between the shown services are explicit via the use of the context

models. When each service changes the level of abstraction between its input and

output, the example service cascade from Fig. 5.6 leads to the availability of different

levels of abstraction in the VSL context repository.

Via the coupling, the different levels of context abstraction are not only provided

but also coupled. Using a bidirectional coupling, changes on any level of abstraction

are automatically reflected to the other levels of abstraction via the other services.

Each service only has to contain logic to deduce knowledge (context) from one level

of abstraction to another.

This is similar to the natural structuring of tasks to solve problems that humans do

(Sec. 3.5, <R.25>). The principle is also similar to a protocol stack as it is used in <R.25>

computer networks (Fig. 3.3). For each of the services it is transparent that other

services preprocessed the context before.

Modularization facilitates the creation of complex functionality by creating or reusing

services that act as building block for complex functionality. The inherent interface

compatibility of all services (<R.6>) enables the composability of services (<R.36>). <R.6>

<R.36>
The sharing of context models fosters it. See Sec. 5.6.3.

As the VSL manages context autonomously (Sec. 5.6.2), it is fully transparent for

services that the cascade shown in Fig. 5.6 spans multiple distributed KAs. Sec. 8.3.2

provides a concrete example for service cascading via so-called Advanced Reasoning

Services (ARSs).
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5.6.7 Emulator Support

Almost all creativity involves purposeful play.

Abraham Harold Maslow (1908 - 1970), American psychologist.

The VSL uses context models as abstract service interface (Sec. 5.4.1). Smart Devices

are connected via adaptation services to the VSL (Fig. 5.1, Sec. 8.3.1). This leads

to service abstraction, hiding all service details behind the interface (context model,

Sec. 5.4.4).

The previously described properties facilitate the development of emulators. It allows

to use the original context models / abstract service interfaces for emulating func-

tionality such as Smart Devices (<R.47>). An example is the office emulator that is<R.47>

introduced in Sec. 8.3.3.

As described in the quote above, and in Sec. 3.10, the availability of emulators is

relevant for real world software development for Smart Spaces. Trying things out and

experiencing the effects of actions are important methods that help humans to learn

[PPB+04, Pap05].

In the future, it could become good practice for vendors of Smart Devices to offer an

emulator for their devices to enable software developers to create and test software

for the device without owning it [EBDN02]. See Sec. 10.4.
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5.7 Basic VSL Services

The VSL uses Virtual Context (Sec. 5.3.4) to provide its own functionality.

This section introduces two basic services. The CMR service provides the interface

of a VSL site to the global CMR (Sec. 5.7.1). The type search is used for discovering

context node locators based on their type identifier (Sec. 5.7.2).

The design of the two basic services shows how the VSL meta model can be extended

with new semantics dynamically at run time. This is further described in Sec. 5.7.3.

5.7.1 CMR Service

The Context Model Repository (CMR) is the global repository for context models

(Sec. 5.2.8). Each service has a context model (Sec. 5.4.1). For instantiating context

models, they have to be loaded from the CMR.

The VSL instantiates the context model of a service when the service registers (Sec. 5.3.1).

As described in Sec. 5.2.11, the context models are only needed for creating new nodes

as VSL context is self-contained (Sec. 5.6.2). The only type that needs to instantiate

new nodes at run time is the list (Sec. 5.3.2).

To retrieve context models, the CMR service is used. It implements a caching proxy

for CMR access. The CMR service uses the following context model:

1 <model type ="/ basic/text" reader ="*"></model >

Listing 5.6: The context model /system/cmr.

The proxy registers the root node of the context model as Virtual Node. As the

VSL implements distribution transparency (Sec. 5.6.1), all KAs can search for the

location of the CMR service by searching for a node of type /system/cmr (Sec. 5.4.4,

Sec. 5.7.2).

To obtain a model, the Virtual Subtree property of Virtual Context is used. It allows

to address any node in the subtree after a Virtual Node (Sec. 5.3.4). To load the

context model of type /basic/text, the following command is executed on a KA:

1 get /agent_mop/cmr/basic/text

All address parts after the Virtual Node (/agent_mop/cmr) are interpreted as ModelID

by the CMR service. In the above request the parameter is /basic/text and the

content of the context model is retrieved from the global CMR and returned as value

of the Virtual Node.

As the ModelIDs of the context models in the CMR are unique (Sec. 5.2.3), context

models can be cached by the CMR service and by any KA resulting in desired inde-

pendence from external services that becomes relevant when a VSL overlay becomes

partitioned. See Sec. 5.6.2.

See Sec. A.2 for an Unified Modeling Language (UML) diagram of the described

functionality.
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5.7.2 Type Search

The type search implements the locator-id split of the VSL context (Sec. 5.2.13,

<R.8>). The type search is used for identifying instance locators of context nodes <R.8>

to a given type identifier.

The type search uses Virtual Context in the same way, the CMR service does (Sec. 5.7.1).

The only difference is that the type search gets mounted in the knowledge tree in a

special, well known, subtree /search under the ID type.

The type search uses a special context model that is generic for all search provider

service. It is shown in listing 5.7. It provides a text that contains a list of instance

locators. By intention, it is identical to the /system/cmr context model shown in

listing 5.6.

VSL types have the dual purpose of identifying the corresponding basic data type

and of typing the functional semantics (Sec. 5.2.9). The two types (context models)

shown in listing 5.6 and listing 5.7 fulfill the second purpose.

1 <model type ="/ basic/text" reader ="*"></get >

2 </model >

Listing 5.7: The context model /system/searchProvider.

To search for the CMR service the following command can be issued:

1 get /search/type /?/ system/cmr

Everything after the Virtual Node /search/type is interpreted as parameter. The

question mark is used as separator. Before the “?” a subtree address can be passed to

restrict the search to a certain subtree such as“/agent5/secrets”. The data after the

question mark is interpreted as VSL type identifier. The result of the search for /sys-

tem/cmr is the instance address (/agent_mop/cmr in the example from Sec. 5.7.1).

5.7.3 Dynamic Semantic Extension of the VSL Meta Model

Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.

Ludwig Josef Johann Wittgenstein

Austrian-British philosopher, (1889 - 1951)

The VSL meta model that was introduced in Sec. 5.2 allows to express subtyping

(“is-a”) and composition (“has-a”) of types in the context model via multi-inheritance

and hierarchical addressing.

The basis of the VSL meta model are key-value pairs (Sec. 5.2.4). In combination

with the composition mechanism (Sec. 5.2.11), it is possible to add additional context

–which includes additional metadata– to context models. Such additional metadata

can express additional semantics, such as the location of a context node:

1 <binaryWithGeoLocation type ="/ derived/binary">

2 <myGeoLocation type ="/ derived/geolocation"></myGeoLocation >

3 </binaryWithGeoLocation >

Via the multi-inheritance (Sec. 5.2.11), such additional metadata can be added to all

nodes by inheriting from another model such as hasGeoLocation:
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1 <hasGeoLocation >

2 <myGeoLocation type ="/ derived/geolocation"></myGeoLocation >

3 </hasGeoLocation >

This adds the myGeoLocation context to all nodes that inherit from the context model

hasGeoLocation, e.g.

1 <binaryWithGeoLocation type=" hasGeoLocation ,/ derived/binary">

2 </binaryWithGeoLocation >

Though this way a geolocation can be expressed using the VSL meta model, the

geolocation has no semantics support from the VSL. It cannot be used as primary

context in semantic queries to identify context nodes (Sec. 5.2.12).

Each service that wants to make use of the geolocation context can make a query get

/search/type/derived/geolocation that results in all locators of nodes that have a

geolocation context in their context model. Then it could select relevant nodes based

on the functional type by running a second query for a type and intersecting both

results for instance. Though possible, this design introduces complexity in services

that the VSL programming abstraction aims to prevent (<O.0>).

The type search (Sec. 5.7.2) shows how semantic query functionality can be provided

to services by offering a search provider. By creating a new search provider typeAt-

Location, the VSL can be extended with another primary context, location.

Such a search provider could for instance return all node instances of a given type in a

certain spatial area, e.g. get /search/typeAtLocation/livingRoom/?/basic/number

would return all nodes of /basic/number in the area that is defined as livingRoom

in the search provider26.

As back-end of the location search provider, a cache of the location information from

the distributed nodes could be used to make the search faster. The abstract implemen-

tation would be as described for the typeSearch in Sec. 5.7.2. Details of a concrete

implementation are given in Sec. 6.6.4.

Like the location search provider different semantics can be added to the VSL making

it semantically extensible at run time (<R.28>). <R.28>

Implicit vs. Explicit Semantic Extension

Though adding additional context nodes to context models is possible as described,

this is impractical for real use extensions of the VSL semantics. It requires changes of

the models in the CMR. The versioning of context models in the CMR (Sec. 5.2.8),

and the anchoring of context model in service certificates (Sec. 5.5) make this approach

difficult to use in real world environments. It would require changing all services that

use a context model as only the new version of the model will contain the additional

information.

Adding an additional search provider without changing the context models is sufficient

for extending the VSL semantics implicitly. This is practically feasible in real world

deployments as it does not require changes on services. Using the location search

26/?/ and /!/ are used in the example as separators to allow multiple loca-

tions or multiple types to be passed, e.g. get /search/typeAtLocation/livin-

gRoom/!/bathRoom/?/basic/number/!/basic/text.
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provider as example, it is sufficient that it knows locations, e.g. by maintaining a

database. The location information does not have to be explicitly present in the

context models of entities (services) that have a location.

The explicit semantic extension by adding additional context to context models suits

better to the self-contained design of the VSL (Sec. 5.6.2). The implicit semantic ex-

tension suits better to the transparency and the dynamic extensibility. See Sec. 6.6.4.
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5.8 VSL Service Elegance

You recognize elegant code when you print it on a T-shirt and

it looks good!

Answer to the question what elegant code is, Michael Sperber (*1971),

functional programming enthusiast, T-shirt fan, and great teacher, during

an introductory lecture to computer science at Universität Tübingen in

2000.

The described service API facilitates the creation of services (<R.1>). Context dis- <R.1>

semination is entirely handled in the VSL and does not have to be implemented in

services. As practical demonstration of the developer support, the implementation of

a VSL service that obtains information from an OS shell, and provides it as context

to other services is presented.

The fixed VSL API was introduced in Sec. 5.3.1. After registering, mainly the get

and set method are needed to implement service logic.

The example shows how the provided VSL programming abstraction enables the cre-

ation of structured service implementation code that is typically short as the context

management functionality is provided by the VSL.

A service for reading the amount of currently logged in users from the shell and

providing it over the VSL can be implemented as follows:

1 package org.ds2os.services.loggedInUsers;

2 import java.io.BufferedReader;

3 import java.io.IOException;

4 import java.io.InputStreamReader;

5 import java.util.regex.Matcher;

6 import java.util.regex.Pattern;

7 import org.ds2os.connector.Connector;

8 import org.ds2os.exceptions.VslException;

9

10 public class LoggedInUsers {

11 private final Connector c;

12

13 public LoggedInUsers () throws VslException , IOException ,

InterruptedException {

14 c = new Connector ();

15 c.registerService (" myLoggedInUsersService", "

loggedInUsersService.crt");

16 Pattern pattern = Pattern

17 .compile ("([:0 -9]+) \\s+up\\s+(.*?) ,\\s+([0 -9]+)

users?,\\s+load averages ?: ([0 -9]+\\.[0 -9][0 -9])

,?\\s+([0 -9]+\\.[0 -9][0 -9]) ,?\\s

+([0 -9]+\\.[0 -9][0 -9]) ");

18 Process p;

19 while (true) {

20 p = Runtime.getRuntime ().exec(" uptime ");

21 p.waitFor ();

22 BufferedReader in = new BufferedReader(new

InputStreamReader(p.getInputStream ()));

23 String line = in.readLine ();

24 Matcher matcher = pattern.matcher(line);

25 matcher.find();

26 String users = matcher.group (3);

27 c.set(c.getKORSubtree () + "/ usersLoggedIn", users);

28 Thread.sleep (5000);
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29 }

30 }

31

32 public static void main(String [] args) throws VslException ,

IOException , InterruptedException {

33 LoggedInUsers myService = new LoggedInUsers ();

34 }

35 }

Listing 5.8: Minimalistic implementation of a VSL service that obtains the amount of currently

logged in users from the shell and provides it in the VSL (listing of the entire source code).

The corresponding VSL context model that defines the structure of the context storage

of the service and the abstract interface to the service is as follows:

1 <loggedInUsersService >

2 <usersLoggedIn reader ="*" type ="/ derived/usersLoggedIn "</

usersLoggedIn >

3 </loggedInUsersService >

The star indicates that the value is publicly readable.

The definition of the inherited context model (Sec. 5.2.6) is as follows:

1 <usersLoggedIn type ="/ basic/number"></usersLoggedIn >

The resulting instance of the context in the VSL is:

1 system@agent_mop: /agent_mop/myLoggedInUsersService % get

usersLoggedIn /*

2 <usersLoggedIn type ="/ basic/number" version ="75" timeStamp

="2014 -01 -22 20:15:22.741" access ="rw">

3 <![CDATA [3]]>

4 </usersLoggedIn >

5 system@agent_mop: /agent_mop/myLoggedInUsersService %

The version number 75 indicates, that the value was updated 75 times. A look at the

code shows that the implementation updates it every 5 seconds.

The shown code example gives an impression how elegant it is implementing Smart

Space services using the presented VSL programming abstraction. Following the initial

quote, elegance is used to express that the VSL programming abstraction helps to

reduce the lines of code significantly by providing a level of abstraction that simplifies

the implementation of pervasive computing services while not introducing limiting

constraints.

The example also shows the simplicity of the VSL meta model, the context access

API (<R.29>), and –as they are the same– the simplicity of the VSL service API<R.29>

(<R.1>). The interaction with the VSL –including the initialization of the connector
<R.1>

(Sec. 6.3.3)– needs only four lines of code (14,15,27). The rest of the program is

application logic.

The used connector provides the VSL methods as Java methods. Sec. 6.3.3 shows

how support for different programming languages can be provided by the VSL imple-

mentation.

Ch. 6 describes the back-end functionality of the KAs that enables the coding sim-

plification shown in the listings. Sec. 6.6 and Sec. 8 show more examples for services

including services that use Virtual Context.
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5.9 Chapter Conclusion

The VSL programming model acts as enabler for software-orchestrated Smart Spaces.

It allows the required shift from implementing pervasive computing scenarios to im-

plementing pervasive computing scenarios (<R.1>, Sec. 2.5, [Abo12]).

The VSL meta model (Sec. 5.2) combines the expressiveness of logic-based context

modeling approachs with the verifiability of markup-based modeling, and the pro-

cessing efficiency of key-value pairs. In addition it enhances the dependability of

services in VSL Smart Spaces as it includes and enables several ways of syntactic and

semantic context validation.

Using context models as abstract service interfaces (Sec. 5.4) reduces the complexity

of Smart Space Orchestration while increasing the dependability. The complexity is

decreased as the descriptive interfaces enforce full encapsulation of services, structure

services, and implement inherent interface compatibility. The novel concept Virtual

Context (Sec. 5.3.4) enables the use of context models as abstract service interface for

all four coordination modes of inter-service communication (see table 5.2).

Separating the API (context access) from the offered functionality of services (context

models) makes all services inherently compatible in the function call API. Separating

the service logic from the service state (Sec. 5.6.5) facilitates VSL service development

by structuring services.

Using the Context Model Repository (CMR) (Sec. 5.2.8) as open global central in-

stance for collecting and disseminating context models implements a dynamically

extensible collaborative ontology. It is self-managing as it maintains its integrity

by versioning context models, structuring them into namespaces, and automatically

validating new context models before storing them.

Using types as primary context implements a locator-id split that enables portability

of services (Sec. 5.2.13). The sharing of context models over the CMR, and the

possibility to emulate functionality foster the creation of portable services.

The implementation of the VSL programming abstraction as middleware, and its use

for all kinds of service interaction enable the implementation of security features as

security-by-design (Sec. 5.5). Security-by-design does not rely on the implementa-

tion of security features on the service site but implement basic security including

authentication and authorization inherently via the programming abstraction.

Together the described parts foster modularization and reuse of services. The exam-

ples of the basic VSL services search and CMR service shows how the introduced VSL

programming abstraction enables transparent extensibility at run time with diverse

functionality such as additional semantics.

Though most of the presented aspects are new in their interplay, the major novel

concepts that were introduced in this chapter are the hybrid meta model, the collabo-

rative self-managing ontology, the dual use of context models as element to structure

context and as abstract service interfaces, and Virtual Context as enabler for the

dynamic extensibility of the VSL at run time.

As indicated on the overview page at the beginning of the chapter, the VSL provides

solutions to almost all of the requirements that were identified in Sec. 3.12. The

only open requirements are portability of the VSL implementation (<R.7>), support
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for multiple programming languages to implement services (<R.27>), portability of

service implementations (<R.8>), and the availability of an App store (<R.46>).

The former three requirements are implementation specific and therefore introduced

in Ch. 6. The App store is not directly related to the VSL but to service management

that is introduced with DS2OS in chapter 7.

The requirements emerged from the objectives of the thesis. A mapping which re-

quirement supports which objective most is shown in Fig. 3.15.

The real-world support (<O.4>) is mostly supported by the simplicity of the pro-

gramming abstraction, its distribution that implements scalability, its autonomy that

reduces the complexity, and the diverse security features that supports dependability.

The diversity of use cases is mostly supported by the openness and the dynamic

extensibility of the programming abstraction.

Not separating between orchestration services (<O.2>) and adaptation services (<O.1>)

make the structuring and facilitating elements of the programming abstraction apply

to both. The major structuring element of the VSL are the context models that de-

fine the abstract service interfaces, and the structure of the state storage of services.

Major facilitating elements are the consistent use of concepts at multiple points in

the design (e.g. the hierarchical structuring), and the meta model. The autonomous

features of the VSL support developers and users in their software-orchestrated Smart

Spaces.

All together the overall goal of designing a programming abstraction for Smart Spaces

that structures and facilitates the development of pervasive computing applications at

large, and that can be used in the real world (<O.0>) is fulfilled.

The following two chapters –especially chapter 7– illustrate how the presented pro-

gramming abstraction can be used to add extending functionality so that all func-

tionality offered by the assessed middleware (Sec. 4.5) is supported such as service

management.



6. The Virtual State Layer

µ-Middleware

The paper claims that the VSL/DS2OS approach provides

”similar or better support for scenarios other middleware was

especially designed for.” This is a bold claim that is not at all

substantiated. Were it true, this would be revolutionary.

Anonymous reviewer, level “expert”, 2013, to a paper handed in for the

conference PerCom2014.

Short Summary The chapter introduces the µ-middleware concept.

An implementation of the Virtual State Layer (VSL) programming abstraction as

distributed, self-managing Peer-to-Peer (P2P) system is presented.

Programming language specific connectors are introduced as concept for supporting

developers.

Implementation details of the basic services that were introduced in Sec. 5.7 are given

for illustrating the advantages of the µ-middleware design.

Key Results The VSL programming abstraction implements a novel type of pervasive

computing middleware that is called µ-middleware. The VSL implementation is fully

distributed and autonomous. The combination of distribution and autonomy leads

to scalability. The autonomy enhances the dependability and the security of the VSL

implementation. High interoperability of the VSL is reached by using standardized

technology for implementing the communication and security features. The usabil-

ity of the implementation is enhanced by providing programming language specific

connectors.

Key Contributions The concept µ-middleware is introduced. It enables the seamless

integration of functionality into a middleware, resulting in dynamic extensibility at

run time.
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Challenges Addressed <R.3> Self-management, <R.4> User participation, <R.8>

Logical portability of services, <R.7> Portability VSL implementation, <R.11> Dis-

tribution support, <R.23> Dynamic extensibility, <R.27> Support of multiple pro-

gramming languages, <R.30> Dependability, <R.45> Portable service executables,

<R.48> Crowdsourced development, <R.49> Security-by-design, <R.50> Scalability

Summary The chapter starts with the introduction of the µ-middleware concept that

emerges from the VSL programming abstraction. The term µ-middleware is used to

describe that only fundamental, non domain-specific functionality is provided in a

middleware core that can be transparently extended via services at run time.

The VSL µ-middleware is implemented in Java as system of distributed Knowledge

Agent (KA) peers. Using Java, context models as abstract service interface, and

implementing a µ-middleware, results in portability. It is supported by the openness of

the implementation resulting from the use of standardized communication methods.

The VSL implementation is designed modular, which allows exchanging components

for supporting different transport mechanisms, or storage mechanisms. It applies the

separation of service logic from service state that was proposed in Sec. 5.6.5.

The VSL is implemented as fully autonomous system. It manages the connections to

services, and provides full context management including context routing and context

discovery between distributed KA peers.

Using X.509 certificates, encryption, and the access control from Sec. 5.3.3, the VSL

implementation provides diverse security-by-design elements.

The implementation details of the basic services from Sec. 5.7 illustrate the µ-

middleware properties by demonstrating dynamic transparent extension at run time.

In addition they show how the VSL programming abstraction shortens, structures,

and facilitates the implementation of VSL services.
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6.1 Introduction

Ch. 5 introduced the Virtual State Layer (VSL) programming abstraction. Though

examples from the following Java-based prototype implementation are used to illus-

trate the concepts, the VSL is designed independent of a specific implementation.

The VSL programming abstraction provides basic context management. Additional

functionality can be added at run time. The VSL can be implemented and used as a

distributed system or as a centralized system.

This chapter introduces the prototype implementation of the VSL as self-managing

Peer-to-Peer (P2P) system. The implementation shows the feasibility of the concept.

It is used for the evaluation of the suitability of the VSL as programming abstraction

for Smart Spaces in Ch. 9.

Following, an implementation for the VSL concepts from Ch. 5 is introduced. As

the VSL programming abstraction only provides basic functionality, the resulting

VSL middleware provides less functionality than several of the assessed middleware

solutions from Sec. 4.5. However, diverse functionality including the features provided

by the assessed middleware can be dynamically added at run time via Virtual Context

as described in Sec. 5.3.4. Sec. 7 describes such add-ons. To describe the resulting

concept of an extensible core the term µ-middleware is introduced.

6.2 µ-Middleware

La perfection est atteinte non quand il ne reste rien à ajouter,

mais quand il ne reste rien à enlever.

Antoine-Marie-Roger de Saint-Exupery (1900-1944), French aristocrat,

writer, poet, and pioneering aviator.

As discussed in Sec. 4.5 and summarized in Sec. 4.5.18 and table 4.1, a fundamental

problem of existing pervasive computing middleware is that it offers only a fixed

functionality.

Some of the assessed middleware (Sec. 4.5) provides support functionality for specific

workflows. Such support functionality can be used as building block by developers

to implement services in the corresponding domain. Examples for such functionality

are the ACE middleware add-on (Sec. 4.5.14) or the Event-Condition-Action (ECA)-

rule-based development of services of OPEN (Sec. 4.5.12). Workflow-specific support

functionality is important to facilitate the development of services (<O.4>).

It is problematic to provide support functionality within a middleware. While support-

ing the workflows it was designed for, specific functionality can impede the implemen-

tation of other workflows. The least impediment is imposing preferences to developers

by facilitating certain implementations. This can influence the way, developers imple-

ment functionality, restricting the creative process of software development since the

diversity of pervasive computing requires diverse solutions (Sec. 2.5, [DM12, Hin99]).

In the worst case, a given middleware functionality prevents the implementation of

certain pervasive computing scenarios as their required functionality cannot be im-

plemented with the given middleware base. Typically existing pervasive computing
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middleware complicates the implementation of workflows, it was not designed for, as

designated mechanisms of the middleware have to be circumvented.

Other assessed middleware does not provide supportive building blocks (e.g. BOSS,

Sec. 4.5.7). Leaving the implementation of workflow-specific functionality entirely to

orchestration service developers (Sec. 8.3) complicates the service development. In

addition, it leads to other problems such as redundancy since all services that need a

certain functionality have to implement it (Sec. 3.3).

Pervasive computing middleware provides an abstraction on top of the Smart Device

hardware in Smart Spaces. It implements interface portability of services by making

them independent of concrete hardware instances (<R.8>). An operating system

provides an abstraction on top of the peripheral hardware of a computer (<R.8>) and

a run time environment (<R.45>).

Typical pervasive computing middleware in 2014 can be compared to early operating

systems that were monolithic. As described in Sec. 3.4.4, a monolithic operating

system has all functionality statically compiled into the kernel. It cannot be changed

or extended at run time. Only the fixed kernel functionality can be used to implement

services.

In the early 1980s µ-kernels emerged. They provide a minimum amount of functiona-

lity in the Operating System (OS) core, the kernel, and can be extended by services

outside the kernel [RR81, ABB+86]. Among other advantages, the µ-kernel approach

allows dynamic reconfiguration of an OS (e.g. device drivers, new file systems) via

modular extensibility according to the needs of an application [GG92].

The VSL design enables the transformation of pervasive computing middleware from

a monolithic core architecture to a modular system. In reminiscence to the develop-

ment of operating systems, following the idea that pervasive computing is the next

generation of computing (Sec. 2.5), the term µ-middleware is introduced to describe

the new architecture.

Definition µ-middleware

A µ-middleware is a middleware that provides only fundamental, non

domain-specific functionality, and that supports transparent extension

with functionality at run time via regular services.

As described in Sec. 2.6.4, a fundamental task when implementing pervasive com-

puting services is acquiring and processing context. Managing context is done by

context-provisioning middleware. Therefore the VSL is a context provisioning µ-

middleware.

To enable dynamic extension at run time, the VSL uses Virtual Context (Sec. 5.3.4).

Virtual Context can be accessed transparently like regular context but it is served

dynamically via callbacks into services and not via context repositories.

Virtual Context is accessed transparently by other services. Services that expose

Virtual Context can be connected to the VSL at run time. Both properties together

implement the transparency and dynamic extensibility of the VSL at run time which

makes it a µ-middleware according to the definition given above.

The VSL’s described µ-middleware properties enable adding support functionality,

which is statically provided in other pervasive computing middleware designs, dyna-

mically at run time. The VSL can be extended by adding services that implement
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the desired functionality. By using unified interfaces to all services, the VSL inte-

grates such extensions seamlessly, independent if they provide “core functionality” or

not (Sec. 5.7.3). The basic services (Sec. 6.6) confirm this. They implement “core

functionality” such as the type search, and they are implemented as VSL services.

Different to the existing middleware with statically built-in support functionality,

support functionality from different application domains can dynamically be added

to the VSL. This makes the VSL a middleware that can be used in different domains

which leads to function compatibility between the domains.

Sec. 5.6.4 discussed the problem of lifting heterogeneity from the device layer to a

higher level of abstraction based on abstract service interfaces. A solution is the

introduction of crowdsourced convergence (Sec. 5.6.4).

Portability has multiple dimensions as described in Sec. 5.6.3. The above described

dimension of portability decouples services logically from device-specific interfaces

(<R.8>). When using a middleware this first aspect of portability includes offering

a middleware interface that is identical and usable in heterogeneous environments.

A second aspect is enabling the execution of service executables on heterogeneous

hardware (<R.45>, Sec. 6.3.1). Existing pervasive computing middleware typically

solves the first aspect in its scope. The second aspect can be solved with existing

technology such as Java (Sec. 6.3.1, Sec. 3.10).

Having the challenges of implementing portability solved in the dimensions described

before, another aspect of portability emerges. The heterogeneity problem occurs again

on the next level of abstraction: between different middleware for different use cases.

Different pervasive computing middleware is typically incompatible (Sec. 4.5). So-

called middleware silos exist.

Many existing pervasive computing middleware is designed for a specific use case

(Sec. 4.5.2). Services that run on one middleware are not portable to another middle-

ware. The different interfaces, and the missing support functionality prevent services

from running on other middleware, preventing interaction with services that run on

other middleware. Such interaction between scenarios is required to foster the imple-

mentation of divers pervasive computing scenarios (<O.3>).

µ-middleware resolves the problems that were identified and described by the term

middleware silo. A µ-middleware design comprises a common core that can dynami-

cally be extended with domain-specific functionality. Sharing the same µ-middleware

core, enables interoperability of different pervasive computing domains and scenarios.

Services from all scenarios can communicate over the common µ-middleware.

6.3 System Architecture

In pioneer days they used oxen for heavy pulling, and when one

ox couldn’t budge a log, they didn’t try to grow a larger ox. We

shouldn’t be trying for bigger computers, but for more systems

of computers.

Grace Hopper, American computer scientist, (1906-1992)

The VSL is implemented as Peer-to-Peer (P2P) system. It consists of distributed

peers that are called Knowledge Agents (KAs). The Knowledge Agents (KAs) peers
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autonomously provide and manage the context repositories and the other VSL me-

chanisms that were introduced in the last chapter. Fig. 6.1 maps the concepts from

Fig. 5.3 to a system architecture.

The figure shows four computing hosts in a VSL site. Each host runs a KA (1). The

design as distributed system of peers results in scalability of the VSL implementation

(<R.50>). The performance of the system can be enhanced by adding more computing<R.50>

nodes that host KA peers. As described in Sec. 6.4.4, by running services on different

hosts, the VSL context is automatically distributed among the peers. If different

services access different context on different KAs, the load gets automatically balanced

between the hosts .

Different services (yellow) are running as clients logically on top of the KAs (green).

A classification of different service categories is given in Sec. 8. A special service is

the CMR service (2) that provides the connectivity of the VSL site with the Context

Model Repository (CMR) (Sec. 5.7.1, Sec. 6.6.1).

The Context Model Repository (CMR) (3, Sec. 5.2.8) is provided on a central server

outside the VSL site. It stores the context models and implements the ontology of

VSL Smart Spaces (Sec. 5.2.18, Sec. 6.6.1).

The following implementation uses the Internet Protocol (IP) as communication pro-

tocol between the KAs. This choice fits to the described development of Smart Devices

towards standard Personal Computer (PC) designs (“all IP”, Sec. 3.2.4).

6.3.1 Portability of VSL and Services

Smart Spaces consist of heterogeneous computing environments (Sec. 3.2.4). Portabil-

ity of the middleware is required (<R.7>) to allow context exchange between hetero-

geneous hosts that run instances of the middleware. Portability includes two aspects

here. First it means that the implementation of the VSL is running on heterogeneous

computing nodes with different OSs as described here. Second it means that the VSL

implementation uses standard interfaces so that it can be exchanged without having

to change services (Sec. 6.3.2).

Portability of services is required if services should run on different hosts (<R.45>,

Sec 5.6.3). Computing hosts typically run an OS that provides an abstract interface

to the basic hardware such as Central Processing Unit (CPU) or memory [Tan01].

It is the run time environment for application software. Though it is possible to use

services that run only in a specific environment (e.g. Unix OS) for orchestrating Smart

Spaces, sharing services between different hosting environments requires services in a

format that allows to run them on different platforms including embedded systems

with diverse hardware architectures and OSs.

The Java programming language [GM95] provides an environment that allows to run

the same service executable on heterogeneous hardware. Java programs are compiled

into Java bytecode that is interpreted for execution. The use of an intermediate

platform-independent format for executables results in portability. System-specific

run time environments, called Java Virtual Machine (JVM), are available for diverse

platforms that execute the bytecode.

The goals of the Java programming language fit to the goal to foster user-based collab-

orative, crowdsourced, development of services for Smart Spaces. Relevant properties

are the following ones [GM95]:



6.3. System Architecture 249

S2
St

or
e

Se
rv

ic
es

V
SL

 O
ve

rl
ay

H
ar

dw
ar

e 
	


U
nd

er
la

y

Se
rv

ic
es

Lo
gi

ca
l C

on
ne

ct
iv

ity

Ph
ys

ic
al

 C
on

ne
ct

iv
ity

Kn
ow

le
dg

e 
Ag

en
t

Adaptation Service

Advanced Reasoning

Orchestration

User Interface

...

A
ct

ua
to

r
Se

ns
or

V
SL

-o
pe

ra
te

d 
Sm

ar
t 

Sp
ac

e
G

lo
ba

l

C
on

te
xt

 M
od

el
 

R
ep

os
ito

ry

CMR2

3

1

F
ig

u
re

6
.1

:
S

y
st

em
v
ie

w
o
n

th
e

V
ir

tu
a
l

S
ta

te
L

a
y
er

.



250 6. The Virtual State Layer µ-Middleware

• Simple, Object-Oriented, and Familiar : Java is designed to support program-

ming beginners (<R.4>).<R.4>

• Robust and Secure: Java validates software at compile and run time. It pro-

vides automated memory management. This lowers the error potential during

development, and it protects the hosts, Java applications are executed on, at

run time (<R.49>).<R.49>

• Architecture Neutral and Portable: Java is designed to make programs exe-

cutable with the same bytecode on different hardware platforms (<R.7>, <R.45>).<R.7>

<R.45> • High Performance: Though it is interpreting code to run it, Java aims to provide

high speed. For further optimization it is possible to translate Java bytecode

into native code [HCJG97, HGH96]. By using Java, the described feature allows

optimizing VSL service performance only by recompiling them. This makes the

use of Java for implementing VSL services flexible and performant (<R.50>).<R.50>

• Interpreted, Threaded, and Dynamic: The interpretation allows fast develop-

ment and debugging, multi-threading support allows to make use of available

hardware resources (e.g. CPU, RAM), and the dynamic binding of libraries sup-

ports flexible extensions (<R.3> <R.23>).<R.3>

<R.23> In addition, existing libraries for many applications such as interfacing the protocol

stacks of Building Automation System (BAS) are available27. This facilitates the

development of VSL adaptation services.

For the discussed reasons Java is used for implementing the VSL and for implementing

VSL services in the prototype implementation described in this thesis.

Though Java is chosen for the prototype, the programming language neutral design

of the VSL interface (Sec. 6.3.2) enables the interfacing of the KAs by services via

different programming languages (Sec. 6.3.3).

6.3.2 KA Service Interface

The interface of the KAs is implemented via Extensible Markup Language (XML)-

Remote Procedure Call (RPC). XML-RPC uses XML over Hyper Text Transfer Pro-

tocol (HTTP) for communication. The resulting interface is OS and programming

language independent. It can be used to exchange information between KA and ser-

vice implementations in different programming languages.

Calling the get method (Sec. 5.3.1) of a KA via XML-RPC can be done as follows:

1 <?xml version ="1.0"? >

2 <methodCall >

3 <methodName >get </methodName >

4 <params >

5 <param >

6 <value >

7 <string >/ agent_mop/mySmartDevice/ledRed/value </string >

8 </value >

9 </param >

10 </params >

11 </methodCall >

27An example for a library that interfaces a network management protocol (Sec. 4.4) is http:

//www.snmp4j.org/ that interfaces the Simple Network Management Protocol (SNMP).

http://www.snmp4j.org/
http://www.snmp4j.org/
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Following the example from Sec. 5.3.2 a possible answer is:

1 <?xml version ="1.0"? >

2 <methodResponse >

3 <params >

4 <param >

5 <value ><string >0</string ></value >

6 </param >

7 </params >

8 </methodResponse >

By using the described programming language independent interface, VSL services

can be implemented in different programming languages such as Java or Python

(<R.27>). This is relevant for supporting different existing programming commu- <R.27>

nities for enabling users of one programming language to use it with the VSL. In

addition, different programming languages suit better to solve certain problems.

The use of XML-RPC in combination with the fixed API (Sec. 5.3) and the sharing of

context models over the CMR make the VSL µ-middleware an open system, combining

interoperability, portability, and the use of open communication protocols. Openness

supports portability of services (<R.8>, <R.45>). <R.8>

<R.45>The VSL interface consists of 13 fixed functions (Sec. 5.3.1). XML-RPC is used as

standardized mechanism. Both enable the automatic generation of connectors from

the VSL interface definition (e.g. in an Interface Definition Language (IDL), Sec. 5.4.1,

Sec. 3.4). This enhances the usability significantly, and it reduces coding errors in the

implementation of connectors as it is done automatically.

The implementation of the described automatic generation of connector code is future

work.

6.3.3 Programming Language-Specific VSL Connectors

Though the use of XML-RPC (Sec. 6.3.2) allows to communicate with a KA from

different programming languages, using native interfaces in a programming language

facilitates the development. Providing native interfaces to the KAs in different pro-

gramming languages is done by so-called VSL connectors.

A VSL connector provides a native interface to a programming language and com-

municates with the KA using the described XML-RPC mechanism (Sec. 6.3.2). By

offering VSL connectors to different programming languages programmers can flexibly

choose their programming language to implement VSL services.

Programming is an activity that is close to human thinking [JL93] (Sec. 3.5). It is

easy for humans to learn programming when using the right tools [MHP00, Ahl76,

Can76, Gol76, KG77, Cho56, Kay96, Pap05]. The chosen approach, to use connectors,

makes it possible to offer native support for diverse programming languages including

simple to learn languages such as visual programming languages [WHI97, Kay90,

Kay96] (<R.27>, <R.4>). Only the connectors not the KAs have to be adapted to <R.27>

<R.4>
the programming language, a service developer wants to use.

A wide choice of programming languages is also relevant for advanced programmers

to support the diversity of pervasive computing scenarios to be implemented. Diffe-

rent programming languages fit better for solving different problems [MHP00, KG77,

Abo12] (<O.3>).
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The prototypical implementation provides a Java connector that offers the following

abstract interface for service programmers:

1 public interface IConnector {

2 String get(String address);

3 void set(String address , String value);

4

5 void subscribe(String address , ISubscriber subscriber);

6 void unsubscribe(String address , ISubscriber subscriber);

7

8 void startTransaction(String address , ITransactionAbortHandler);

9 void commitTransaction(String address);

10 void abortTransaction(String address);

11

12 String registerService(String localName , String

serviceCertificate);

13 void unregisterService ();

14 String addCertificate(String shortName , String

additionalCertificate);

15 void removeCertificate(String shortName);

16

17

18 String registerVirtualNode(String address , IVirtualNodeHandler

virtualNodeHandler);

19 String unregisterVirtualNode(String address);

20

21 String getKORSubtree ();

22 String getModel(String modelID);

23 }

Listing 6.1: Abstract interface of the Java connector. All methods throw exceptions that are

not shown for better readability.

Listing 6.1 shows a direct mapping of the methods from the VSL Application Program-

ming Interface (API) (Sec. 5.3.1) to Java methods. The commands getKORSubtree()

and getModel() are additional support methods (“syntactic sugar”) of the connector

that result in the previously described VSL calls for implementing the functionality.

The getKORSubtree() method returns the subtree that is assigned to the service on

registration. The getModel() method can be used to retrieve context models from

the CMR (Sec. 6.6.1) 28.

Via the connectors also other protocols can be interfaced. e.g. connections via XMPP

[SA11] to KAs can be implemented. Though the fixed methods of the VSL API

facilitate such interfacing of other protocols it was not done yet and is future work.

For real world use security of such protocols must be taken into account.

6.3.4 Transports

The VSL implementation needs two classes of messages to be exchanged between the

KAs to implement a VSL overlay. Multicast messages are used to synchronize the

distributed KAs (Sec. 6.4.9). Unicast messages are used to exchange context between

specific KAs (Sec. 6.4.6).

The prototype contains a transport class that handles the message exchange. This

makes the transport exchangeable to use different underlying protocols (<R.7>). The<R.7>

28This can be interesting for services that load additional parameters via other context models

than their own by using the CMR as central context storage for instance.
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current implementation uses plain XML messages that are sent via Transmission Con-

trol Protocol (TCP) stream for the unicast communication and via User Datagram

Protocol (UDP) IP multicast for the messages that should reach all KAs.

The use of standardized communication protocols provides compatibility between dif-

ferent VSL implementations as another aspect of portability (Sec. 5.6.3, <R.7>). <R.7>

6.3.5 Database Back-End

As described in Sec. 5.2.1, VSL context consists of tuples with fixed metadata. Each

tuple in a context repository on a KA is self-contained as relationships to other context

nodes are only logically introduced via the hierarchical addressing (Sec. 5.2.2), and

via the VSL types (Sec. 5.2.9). All dependencies are resolved during instantiation

(Sec. 5.2.11).

To implement persistence, VSL tuples are stored in a database. The tuple address is

used as key to access the database. The KA connects to the database via the abstract

Java Database Connectivity (JDBC) interface. The use of an abstract interface allows

to exchange the database for supporting heterogeneous systems (<R.7>). The proto- <R.7>

type uses HyperSQL DataBase29 (HSQLDB) as database implementation. Depending

on the resources that are to be used on a computing host different implementations

for storing the context tuples can be optimal.

Using a database as back-end automatically provides scalability, Atomic Consistent

Isolated Durable (ACID) (Sec. 5.3.2), concurrency transparency, and multi-platform

support for persisting VSL tuples [BD99].

Each KA uses an isolated database as storage back-end. The VSL implements a

distributed database via the distributed KAs. A difference to existing distributed

databases is the connection of the database back-end with the VSL meta model.

Different to a database, the VSL supports hierarchical structuring, inheritance, vali-

dation, and the dynamic extension and use of data types at run time as described in

Sec. 5.2. Virtual Context is a concept that is typically not found in existing database

implementations.

6.3.6 Separation of Logic and State

Sec. 5.6.5 proposed a separation of service logic from service state for structuring the

service development. Such separation is applied in the implementation of the KA

peers. State of node-local services is stored directly in the local context repository.

The experience with the design and the implementation of the KA identified the

following (subjective) advantages in developing software (<R.1>): <R.1>

• Using the local context repository for storing state unifies the access to state as

the fixed VSL API is used. This facilitates the context access.

• Using a context repository outside a service implementation facilitates the shar-

ing of context between different service implementation modules for modular

services. In addition, it allows to couple distributed services in a structured

way.

29http://hsqldb.org/

http://hsqldb.org/
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• The state of a service is made explicit via using a context model. This structures

the software design as it makes the process of creating data structures explicit.

• Having most state at a central place (context repository) that can be accessed

from outside the running application allows to monitor and debug an application.

All four aspects are desired effects of applying the VSL programming abstraction.

They facilitate the development of services using the VSL programming abstraction

significantly (<R.1>). The resulting support for developers that is implemented by<R.1>

the VSL programing abstraction fosters user participation in the development process

(<R.4>).<R.4>

The described positive effects are confirmed by the outcome of the user study in

Sec. 9.6.

6.4 Self-Organization

The VSL provides its functionality fully autonomously (<R.3>). This is necessary as<R.3>

• Smart Devices in Smart Spaces are typically unattended (Sec. 2.4, Sec. 3.2)

[Pos11],

• typical Smart Spaces will not be maintained by experts [BLM+11, MH12, Dou03,

TPR+12], and

• the complexity of Smart Spaces is difficult to manage by humans [Kru09, Pos11,

CD12, Abo12].

This section introduces different mechanisms of the KAs that implement autonomy.

6.4.1 Service Registration

Services must register at a KA to access the VSL via the API (Sec. 5.3.1, Sec. 6.3.3).

The service registration consists of the following steps based on the service certificate

(Sec. 5.5.1, Sec. 6.5) that a service presents:

1. The service certificate is validated using the public key of the VSL site that is

part of the KA’s own certificate.

2. The serviceID is generated by concatenating the name from the certificate and

the local name that is passed with the registration method.

3. The registration binding record is created as described below.

4. If the local context repository contains context under the serviceID it is used.

Connecting a service to its existing context implements persistent state over the

run time of a service. If no context exists the context model is instantiated as

follows:

(a) The context model that is identified by the ModelID which is part of the

service certificate is loaded from the CMR (Sec. 5.2.8) via the CMR service

(Sec. 5.7.1).
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(b) The integrity of the context model is validated using the hash from the

certificate. This is important as the context model contains the access

rights for external services.

(c) If valid, the model is locally instantiated under the address /agentID/ser-

viceID.

Registration Binding

If the service certificate that a registering service presents is valid, the KA stores a

mapping as shown in Fig. 6.1.

Service ID readerIDs writerIDs Transport binding public key expiration time

Table 6.1: The binding record of a service in a KA.

The data from the mapping is taken from the certificate (Sec. 5.5.1):

• The serviceID is the concatenation of the service name with the local name.

• The readerIDs and writerIDs are taken from the certificate.

• The transport binding contains the IP address, and the port number that are

used to communicate with the service.

• The public key is the one from the certificate.

• The expiration time is taken from the certificate.

The readerIDs are used for get requests and the writerIDs for set requests. See

Sec. 6.5 and Sec. 5.5.

The KA checks periodically if service binding records are expired and closes the con-

nections of those services that have expired bindings. As the service certificate is

typically invalid at that time, a service cannot re-register until it has a new valid

certificate (Sec. 7.2).

6.4.2 Context Storage

The KAs use a tuple storage in form of a database as persistent storage back-end

(Sec. 6.3.5). The primary key to access the storage is the context node address

(Sec. 5.2.2).

Each KA uses its own storage back-end. As the use of the JDBC interface allows to

exchange the storage back-end by using the same interface, it is possible to run KAs

with different storage back-ends within the same VSL overlay.

The logical structure of context is independent of its storage since it follows the VSL

meta model (Sec. 5.2). Its self-containment allows to use different storage back-ends

such as plain files in directories.

The implemented locator-id split (Sec. 5.2.13) uses type identifiers for identifying

context tuples. This requires having a fast search for types. In the presented VSL

prototype the context database is used for executing the type search.
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If the used storage back-end is slow, it makes sense to use a second data structure (e.g.

a hash map) only for the type search for speed up. This was not done in the prototype

as using a single data structure for storing all VSL tuple-related information reduces

the complexity of the KA implementation. Low complexity is desired.

The context access happens via the methods of the VSL API (Sec. 5.3.1). See Fig. 6.2.

6.4.3 Virtual Context Node Handling

Requests to Virtual Context nodes result in callbacks into services (Sec. 5.3.4). Virtual

Nodes can be registered from a service using the API (Sec. 5.3.1, Sec. 6.3.3).

As described in Sec. 6.3.6, the KAs use their context repositories for storing their own

state. The mapping between a service and its Virtual Nodes is maintained via adding

the following context to a VSL node:

1 <serviceId type ="/ system/serviceId ,/basic/text" version ="1"

timeStamp ="2014 -02 -19 10:51:18.251" access ="rw">

2 <![CDATA[/ agent_mop/client:cmr]]>

3 </serviceId >

Listing 6.2: Virtual Node callback binding in a VSL context node.

The listing shows the mapping of the CMR service (Sec. 5.7.1, Sec. 6.6.1). The

mapping is indirect over the local service Identifier (ID). The communication happens

via XML-RPC to the TCP port, a service is registered with. It is resolved via the

service binding record (Fig. 6.1, Sec. 6.4.1).

The indirect mapping is used to decouple the registration binding (TCP port) from

the routing entry in the VSL (agent ID). When a service registers again (e.g. after

failure), only the registration binding has to be changed (Sec. 6.4.1). The information

in the Virtual Nodes remains valid.

The context access happens transparently via the methods of the VSL API (Sec. 5.3.1)

as described in Sec. 5.3.4. See Fig. 6.2.

The VSL provides the entire routing for inter-process communication. In addition it

can be used to provide basic access control (Sec. 5.5). This simplifies the development

of VSL services (<R.1>) as the described functionality does not have to be handled<R.1>

in the service implementation.

6.4.4 Context Distribution

The context of a service is always stored at the KA it is connected to. The local context

principle is applied to optimize the resulting context access pattern that emerges from

the separation of service state from service logic.

The separation of service state from service logic (Sec. 5.6.5) results in frequent access

from stateful services to their state. Such access can typically be handled best locally

as the direct connection between a service and its KA implements the shortest latency

and the highest bandwidth compared to connections with more hops (e.g. to other

KAs, Sec. 9.3). This is in particular the case when a service and its KA run on the

same machine which is the intended use case (Sec. 7.2).
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The performance of the context access is better on a local KA than on a remote KA.

The evaluation shows that an additional hop adds about 30ms additional latency in

the test setup (Sec. 9.3.4). In heterogeneous and slow networks the negative impact

will be stronger (Sec. 3.2.4). In such cases distributing the same context on multiple

KAs would have positive impact on the performance of the context access and the

dependability of the VSL. But it would have negative impact on the complexity of

the system as it would require synchronization of distributed instances of the same

context nodes.

The assumption that the backbone of future Smart Spaces will be an IP domain

(Sec. 6.3) in combination with the distributed context discovery (Sec. 6.4.6) leads to a

maximum distance of one KA for accessing any context inside a VSL site. Requested

context is either stored directly on the KA, a service is registered to, or its KA can

directly reach the KA with the context.

The maximum distance to access context is one. As a result, additional latency

and possible bandwidth limitations only apply once. When context requests would

be routed through multiple KAs, latency and bandwidth limitation would affect the

context exchange multiple times. Therefore context caching is not implemented in

the described KA prototype. Sec. 6.4.5 discusses context caching.

Context is discovered locally using the shared directories that contain the structure

of the entire VSL knowledge base (Sec. 6.4.6). The KA that provides the context is

directly contacted. See Fig. 6.2 for an example with two services connected to two

KAs.

In case, both services are connected to the same KA, context is available locally and

no second KA is involved. The resulting sequence diagram is similar to that shown

in Fig. 6.2. Only agent1 can be removed and the arrow marking the request from

service1 goes directly to agent2. The reply arrow goes directly to service1.

Virtual Context must always be served via the KA that maintains the mapping to the

service callback (Sec. 5.3.4, Sec. 6.3.6). This is shown in the lower part of Fig. 6.2.

6.4.5 Context Caching

Each context node version in the VSL has a Globally Unique IDentifier (GUID).

It consists of the elements /VslSiteId/agentId/serviceId/contextNodeAddress-

es/versionNr. This allows to cache VSL context transparently.

The design of the VSL with self-contained tuples (Sec. 5.2) facilitates caching. All

metadata including the access permissions would automatically be synchronized and

applied without changes on the existing implementation (<R.49>). <R.49>

A KA could cache locally accessed context nodes making their retrieval for local ser-

vices faster. In addition the availability of context copies could be published regularly

as described in Sec. 6.4.6.

Context caching would enhance the resilience of the VSL overlay as context could be

replicated and remain available not only on service failure but also on failure of KAs.

The existing VSL prototype implementation allows adding the described caching with-

out major changes. However, this was not done yet for context consistency reasons.

Context caching could lead to the situation that services retrieve cached context while
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service1 agent1 agent2 service2

request

requested node existing?

yes

request

available + rights okay?

yes

reply

reply

Regular NodeRegular Node requesting data from a regular node

request

requested node existing?

yes

request

available + virtual + rights okay?

yes

request

reply

reply

reply

Virtual NodeVirtual Node requesting data from a virtual node

Figure 6.2: Requesting VSL context over regular and virtual nodes.
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newer context is available. Such a situation is transparent for a context requester as

the cached copy is identical with the original context node and requested with the

same method. As a result, the requester cannot know that newer context is available.

As each context node contains a timestamp in its context meta data, a cached copy

is valid. However, it possibly contains not the most recent context. The requester

cannot know when the last value update on the context happened. It could assume

(wrongly) that a retrieved cached context is the newest version. Additional markers

for cached copies could be a solution for this problem. Context caching is a topic of

future research.

Context caching could enhance the resilience of the VSL further and is a topic for

future development.

6.4.6 Context Discovery

Context can be accessed using the hierarchical addresses introduced in Sec. 5.2.2 as

locators. For implementing interface portability (<R.8>) the locators can be resolved

via the primary context (Sec. 5.2.12), the VSL type as described in Sec. 5.2.13.

The distribution (context storage) and lookup (context discovery) of data are funda-

mental challenges of P2P systems [RFH+01, GEBF04, KLL+97].

Distributed Hash Table

A typical solution for data distribution and lookup in a P2P system is a Distributed

Hash Table (DHT). A Distributed Hash Table (DHT) distributes data to peers based

on a hash that is typically built over the meta data of the data object that should

be stored (e.g. name) [RFH+01, GEBF04, KLL+97]. In case of the VSL suitable

metadata would be the type as it is used for searching context. Knowing the meta

data, peers can apply the hash function to determine the peer that would contain the

data. This peer (or multiple peers) can be contacted then to ask for the existence of

data and their retrieval.

The DHT principle is most efficient when the connections between the peers have

low latency. The computing infrastructure of future Smart Spaces is heterogeneous

(Sec. 3.3.1). This includes the computing resources and the network connectivity. As

a result, retrieving data from KAs that have a network connection with high delay or

high error rate will be slow. In a typical DHT with equal distribution of data between

peers such resource-based criteria would not be taken into account.

As described in Sec. 5.3 and Sec. 5.4 the VSL programming model fosters a separation

of application logic and application state when implementing services. As a result

services are likely to access their state (context) frequently. The use of a DHT would

distribute a service’s data on distributed KA. This introduces additional latency.

Assuming a uniform distribution of context and requests, the KA with the worst

connectivity to the VSL impact the expected latency of context access by a service

which is undesired as it slows services down.

The combination of a heterogeneous infrastructure that cannot guarantee fast data

exchange between peers, and the frequent local access to certain context by services

make a DHT unsuitable as distribution and discovery mechanism for the VSL.
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Shared Directories

Instead of implementing a DHT, the described VSL implementation uses the locality

principle of storing all context only directly at the KA a service is connected to. This

is described in Sec. 6.4.4 and Sec. 6.4.5.

The discovery of context in a VSL site happens based on the VSL types (Sec. 5.2.13).

A possibility for implementing context discovery would be to query all KAs of a site.

For the described heterogeneity reasons (see above), this approach is not chosen.

Instead, all KAs synchronize the node structure of their context repositories periodi-

cally (Sec. 6.4.7). The context values are not synchronized for the reasons discussed

in Sec. 6.4.5, and for scalability reasons as the context values may be large (<R.50>).<R.50>

The access permissions are synchronized as the search uses them to return only results

a service can access with its current accessIDs (Sec. 5.5). As shown in Fig. 6.2 access

control is handled at the KA that holds the requested context values. For facilitating

the use (<R.1>), and for securing the information which context is available (e.g. as<R.1>

anti-burglar-service, <R.49>) the search is designed as described not to reveal context
<R.49>

nodes that cannot be accessed.

As all KAs have the structure of the entire VSL site locally via the described synchro-

nization (Sec. 6.4.7), context discovery happens locally via lookup in the local context

repository. This makes the frequent operation of context search fast (<R.50>).<R.50>

The type search is implemented using Virtual Context as shown in Sec. 6.6.3.

6.4.7 Context Repository Structure Synchronization

For discovering each other and for synchronizing the context repository node struc-

tures of the distributed KA peers, periodical alive pings are exchanged between KAs

using the multicast transport (Sec. 6.3.4).

An alive ping contains an ID that identifies the current version of the context reposi-

tory of the sender. In addition, it contains all updates on the context node structure

that were done in the context repository of the sender since the last alive ping was

sent.

A structure update is adding or removing context nodes. It is not exchanging context

values. Context values are only stored at the KA, a service is connected do. The

receivers of an alive ping store the context node structure of the remote KA. The

local copy of the sender’s context repository structure is called remote Knowledge

Object Repository (KOR).

If a node structure update is sent with an alive ping, it contains the expected versionID

of the local copy of the sender’s context repository structure. This versionID is used

by a receiving KA to check, if the incremental update can be applied, or if a full

update has to be requested from the KA the alive ping originates at.

The expected versionID is sent to ensure that the update is applicable and that no

update was missed. If the local versionID of the remote KOR is higher or equal

than the expected versionID from the update and the communicated versionID after

applying the update is higher than the local versionID, the update is applied and

the local versionID is set to the versionID from the alive ping. If the communicated
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versionID after applying the update is lower than the corresponding local versionID

the remote KOR update is discarded as the local version is newer.

In case all KAs receive all alive pings, the structures of the remote KORs are always

synchronized. See upper part of Fig. 6.3. In case no structure changes happen on a

KA only the current versionID is disseminated. As shown in the figure, this is the

typical case as changes on the context repositories only happen when new services are

added, services are removed, or list entries are changed (Sec. 5.2.10).

The lower part of Fig. 6.3 shows the loss of an alive ping that results in a missed

context repository structure update. Depending on the current configuration, an agent

tolerates n alive pings with a versionID that does not match the local versionID of

the remote KOR. Then an explicit update is requested.

The answer is sent via the multicast mechanism again as other KAs may have missed

the lost alive ping update as well. Since duplicate alive pings are discarded receiving

an older update has no impact on a KA. After successfully applying the structure

update on all KAs the context repository structure is synchronized on all KAs again

resulting in the right search results.

If a KA misses alive ping updates, its remote KOR is not synchronized anymore.

However, this only affects the search capabilities as the context access happens in-

dependent of the described methods. The tolerance of missed updates enhances the

dependability of the VSL implementation (<R.30>). <R.30>

6.4.8 Agent Discovery

The VSL overlay is spanned by the distributed KA peers. In addition to the syn-

chronization of the remote KORs for the search (Sec. 6.4.6) the alive ping mechanism

(Sec. 6.4.7) is used for agent discovery. When an agent is started it begins sending

periodic alive pings. All other KAs in the same IP domain receive the alive ping

(Sec. 6.3).

Like a service each KA has a certificate for authentication. The agent certificate

contains the ID of a KA. All KAs that are synchronized to a VSL overlay (Sec. 6.4.9)

know each other’s IDs.

The KA IDs are ordered. When a KA wants to join an existing KA overlay, the KA

of the overlay with the next existing KA ID above the one of the new KA acts as

authenticator for the new KA. When it receives the alive ping of the new KA it sends

an authentication offer to the new KA. See top part of Fig. 6.4.

Then both KAs authenticate mutually using the public keys from their own certificates

to validate the received agent certificate (Sec. 5.5). See middle part of Fig. 6.4. Similar

to the service authentication (Sec. 6.4.1), a binding record for the new KA is created

as shown in Fig. 6.2.

AgentID versionID transportBindings time to live certificate expiration public key

Table 6.2: The binding record of another agent in a KA.

The agentID is the ID of the new KA. The versionID contains the current local

versionID of the remote KOR – the structure of the context repository on the KA. The
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agent1 agent2 agent3 agent4

alive ping (v9)

alive ping with update from v9 to v20

alive ping (v20)

alive ping with update from v20 to v22

alive ping (v22)

No LossNo Loss normal dissemination in case of no loss

alive ping with update from v22 to v23

locally agent1:v22?

no, 13!
alive ping (v23)

locally agent1:v23?

no, 13!
alive ping (v23)

locally agent1:v23?
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alive ping with update from v13 to v23

alive ping (v23)

alive ping (v23)

update from v23 to v42

alive ping (v42)
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Figure 6.3: Periodical context repository structure updates (alive pings) from agent1.
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agent15 agent10 agent20 agent30
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&& (I am responsible)
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DiscoveryDiscovery discovering the authenticating agent

[cert15]

certificate verification

verified
[cert20, Ksym]

certificate verification

verified

AuthenticationAuthentication mutual authentication

agent list

knowledge directory

SynchronizationSynchronization

update from v0 to v5

alive ping (v5)

Figure 6.4: Authentication of a new KA “agent15” with a running VSL instance.
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transportBinding contains the IP and port mappings to the communication interfaces

of the remote KA. The time to live is used to determine if a KA is still reachable

(Sec. 6.4.9).

The certificate expiration time is the time when the certificate of the corresponding

KA expires and it has to be excluded from the VSL overlay (Sec. 6.4.1). The public

key is the public key from the agent certificate that can be used to send encrypted

information specifically to that agent.

If valid, the authenticator sends the new KA the list of other KAs and the context

repository structures of all KAs in the overlay. As result, the new KA is synchronized

with the VSL overlay.

The described initial handshake between KA is also used to synchronize the clock of

the authenticated KA with the official time of the VSL. This is important to implement

the distributed certificate revocation that is based on the validity timestamps in the

certificates of KAs and services (Sec. 5.5).

To update all other KAs, the new KA sends an initial alive ping that updates all

repositories for remote context structures in all KAs. Then the new KA is regularly

part of the VSL overlay and sends regular context repository structure updates as

described in Sec. 6.4.7.

To secure the process, all communication between KAs is encrypted using the sym-

metrical key Ksym. See center of Fig. 6.4. This allows all KAs to add the information

from the new KA sent in its initial alive ping. The authenticity of this information is

given as the new KA can only know the symmetrical key Ksym after authentication.

The described mechanism implement a scalable KA discovery and integration (<R.50>).<R.50>

6.4.9 Agent Synchronization

The KA synchronization happens via the periodic alive pings (Sec. 6.4.7). Each time

an alive ping is received, the time to live in the binding record of the corresponding

KA is updated.

If the time to live is up or the expiration time has come, the binding record and the

local context repository structure of the KA are deleted. This removes it from the

overlay.

6.4.10 Self-Management

To assess the autonomy of a system its self-management properties are often used

[KC03, MALP12]. They include self-configuration, self-healing, self-optimization, and

self-protection. The following assessment shows that the VSL design implements self-

management (<R.3>).<R.3>

Self-management is fundamental for real-world usability (<O.4>). It enhances the

dependability (<R.30>) and the security (<R.49>) of the VSL.<R.30>

<R.49>
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Self-Configuration

The VSL implementation is self-configuring as new KAs and new services are auto-

matically integrated.

Self-Healing

The VSL implementation is self-healing as it consists of peers that permanently re-

organize. Based on the alive pings the topology is periodically updated. In case of

a partitioning or failures of KAs the changes are automatically reflected. The same

applies when two formerly separate VSL overlays join.

Self-Optimization

The VSL implementation is self-optimizing as it removes unreachable context structure

information and records about unreachable KAs.

Self-Protection

Via the security features that are described in Sec. 6.5 the VSL implementation is

self-protecting.

6.5 Security

Diverse VSL security properties are described in Sec. 5.5. Following implementation-

specific details are given in the same order like in Sec. 5.5. In addition the communi-

cation security that is implementation specific is introduced in Sec. 6.5.6.

As the described security mechanisms are self-managing they implement security-by-

design from the perspective of a service (<R.49>). <R.49>

The VSL implementation uses Advanced Encryption Standard (AES) [oT01] for sym-

metric encryption, and RSA [RSA78] for asymmetric encryption.

6.5.1 Identification

As format for the certificates the structure of the X.509 standard [CSF+08] is used.

The additional information described in Sec. 5.5 is stored in X.509 v3 extensions. The

hierarchical structure of a X.509 public key infrastructure is not used. Instead each

VSL site acts as its own Certification Authority (CA) as described in Sec. 5.5.1.

The distributed revocation of certificates that is based on their validity period (Sec. 5.5.1)

is supported by using the alive pings for synchronization of the time that is used in a

VSL overlay (Sec. 6.4.8).

Holding the expiry timestamp in the agent binding records (Fig. 6.2, Sec. 6.4.8) and

the service binding records (Fig. 6.1, Sec. 6.4.1) ensures that entities without a valid

certificate are excluded during runtime. This is important as it can be expected

that entities in VSL Smart Spaces are running for a long time. Pervasive computing

is supposed to “happen” all time in the background and not only within a limited

timeframe.
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6.5.2 Authentication

The authentication happens as described in Sec. 5.5 via the X.509 certificates.

6.5.3 Authorization

The authorization happens as described in Sec. 5.5. The access rights of services are

stored in the service binding records of the KAs at run time. This is shown in Fig 6.1,

and described in Sec. 6.4.1.

The access permissions are stored in the context models. Authorization happens by

matching the two. The authorization applies to regular context and Virtual Context

in the same way (Sec. 5.5).

6.5.4 Rights Delegation

The rights delegation happens as described in Sec. 5.5. Additional certificates are

directly stored in the service binding records as additional rows with the shortName

as suffix (Sec. 5.3.1).

6.5.5 Confidentiality

The data in the database is not encrypted in the current implementation. It is planned

to use a chained keying approach with site-local group keys that are mapped to the

accessIDs in the certificate and added to it. The feasibility of such an approach is

shown in [App12, WOW08].

6.5.6 Communication Security

To prevent eavesdropping the communication between KAs is symmetrically encrypted

with a shared key Ksym (Fig. 6.4 center) that is exchanged with new KAs during the

initial pairing (Sec. 6.4.8, <R.49>). Each KA has a service certificate. It is used for<R.49>

mutual authentication between the KAs during the initial paring. Certificates are ex-

ternally added to the software components. Ch. 7 introduces an automated workflow

for managing VSL service certificates.

The encryption can be disabled for debugging purposes.

Periodical re-keying

Periodical re-keying happens to make sure that agents which previously had access

but do not have a valid certificate anymore are unable to access the VSL. For the

re-keying asymmetric encryption is used.

The KA with the highest ID in the agent binding record list sends the re-keying

message. The key to decrypt the new group key is encrypted once with each of the

public keys that are currently valid. The message is distributed via multicast like an

alive ping.
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The use of the public keys enables only KAs with valid certificates (Sec. 6.4.8) to

decrypt and use the new group key. All keys and expiry timestamps that are needed

to create the re-keying message are part of the agent binding record list making the

process scale (Fig. 6.2, Sec. 6.4.8, <R.50>). <R.50>

6.6 Basic VSL Services

Ch. 5 introduced the CMR (Sec. 5.2.8), the CMR service (Sec. 5.7.1), the type search

(Sec. 5.7.2), and the semantic extensibility at the example of the location search

provider (Sec. 5.7.3). This section presents some implementation details.

6.6.1 Context Model Repository

The Context Model Repository (CMR) is the global repository for context models

that implements the collaborative ontology (Sec. 5.2.18). See Fig. 6.1.

The CMR implements the functionality described in Sec. 5.2.8. It is implemented

as regular website on a regular web server. Context models can be downloaded via

HTTP. New context model can be submitted via web form. Context models are stored

as plain XML files.

The implementation as website on a regular web server allows to apply existing load

balancing techniques [GJP10]. The addressing of the VSL context model matches

with that of Unified Resource Locators (URLs) facilitating the implementation and

simplifying the use (Sec. 5.2.3, <R.1>). <R.1>

As context models have Globally Unique IDentifiers (GUIDs) and new context model

versions must have new IDs, the distribution and caching of the CMR is enabled.

All described features make the only central component of the VSL programming

abstraction scale (<R.50>). <R.50>

6.6.2 CMR Service

As described in Sec. 5.7.1 and shown in Fig. 6.1, the CMR service provides access to

the CMR for all KAs of a VSL site.

The connection to the CMR is implemented via HTTP socket connections. The

caching is implemented by storing the obtained XML files locally on disk. The same

caching strategy is applied in the distributed KAs.

After initialization of the CMR service, the following context is stored in the VSL

managing the request handling to the Virtual Node callback:

1 <cmr type ="/ system/cmr ,/ system/virtualNode"

2 version ="0" timeStamp ="2014 -02 -14 21:23:24.014" access ="rw">

3 <serviceId type ="/ system/serviceId ,/basic/text" version ="1"

4 timeStamp ="2014 -02 -14 21:23:24.945" access ="rw">

5 <![CDATA[/ agent_mop/client:cmr]]>

6 </serviceId >

7 </cmr >

Listing 6.3: Virtual Node callback binding as it is represented in the VSL and used internally

by KAs.
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The callback for the Virtual Node is identical to that shown in listing 6.4. Only the

return statement calls the class that loads the context model from the local cache or

the CMR in case of a cache miss.

Fig. A.1 in Sec. A.2 shows the different caches that can be used for instantiating a

context model.

6.6.3 Type Search

The type search (Sec. 5.7.2) that identifies context node locators based on a given

context node type identifier directly uses the database back-end for querying all node

addresses a service has access to that are of the searched type as described in Sec. 6.4.2.

The search functionality is implemented as Virtual Node callback as shown in list-

ing 6.4. The binding to the Virtual Node callback is stored analog to listing 6.3.

1 @Override

2 public String get(final String address , final String readerID) {

3 String parameter = address.substring(myKnowledgeRoot.length ());

4 String startAddress = getStartAddress( parameter );

5 String modelId = getModelId( parameter );

6 return kor.getAccessibleAddressesOfType(startAddress , readerID ,

modelId);

7 }

Listing 6.4: Virtual Node callback implementation of the type-based VSL search.

The third line of listing 6.4 shows the extraction of the parameter from the passed

address. In the fourth and fifth line the two parts of the parameter are identified using

the "?" as split character as described in Sec. 5.7.2.

6.6.4 Location Search

The location search provider enables a locator-id split based on locations as described

in Sec. 5.7.3. It can be combined with the type based locator-id split, e.g. get

/search/typeAtLocation/livingRoom/?/basic/number.

Sec. 5.7.3 discussed advantages and disadvantages of an implicit version (requires con-

text model extension), and an explicit version that does not require context model

extensions. Both were implemented as prototype. The implicit version uses its own

database back-end. The explicit version also uses a database that is periodically pop-

ulated by a search over all context models instances to make the search for locations

faster.

The implicit version is currently used as it does not require any changes on context

models in the CMR. As Smart Devices typically will not have the ability to locate

themselves within a Smart Space, the location search provider is coupled with the

generic user interface that is presented in Sec. 8.3.5.

The coupling allows setting locations of VSL services via drag and drop. New services

such as an adaptation service for a lamp (Sec. 8.3.1) can be moved to the physical

position of the controlled lamp on a map. The location that is determined in the

described way is stored in the database of the location search provider.
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6.7 Chapter Conclusion

The chapter introduced the concept of µ-middleware that enables the use of one

middleware for diverse use cases (Sec. 6.2). The µ-middleware properties of the VSL

implementation follow directly from the VSL programming abstraction.

As the assessment of the state of the art in Sec. 4.5 that is summarized in table 4.1

shows, none of the existing pervasive computing middleware is a µ-middleware. Most

solutions cannot be extended at all and provide fixed core functionality instead. The

solutions that can be extended do not offer this feature in a transparent way. Es-

pecially they do not provide service discovery. None of the assessed solutions offers

Virtual Context since it is a novel concept that is introduced in this work. As the im-

plementation shows, the dynamic extensibility is based on Virtual Context. Chapter 7

will show more extensions to the VSL µ-middleware.

This chapter showed how the VSL can be implemented as autonomous system that

manages itself (Sec. 6.4). The key functionalities presented are the agent and context

synchronization (Sec. 6.4.9, Sec. 6.4.7), and the security features (Sec. 6.5).

From a scalability perspective the full distribution is most relevant (Sec. 6.3).

From a developer perspective (<R.1>, <R.4>, <R.48>) the openness of the imple-

mentation and the availability of native connectors are important (Sec. 6.3.2).

As indicated on the overview page at the beginning of the chapter, the VSL imple-

mentation provides solutions to almost all of the remaining requirements that were

identified in chapter 3.12 and not solved in Ch. 5 already.

Portability of the VSL implementation (<R.7>) is implemented by using Java and

open communication standards. Support for multiple programming languages to im-

plement services (<R.27>) is implemented by the open interfaces and by providing

connectors to different programming languages. Portability of service implementations

(<R.8>) is implemented when Java is used.

The only open requirement is the availability of an App store (<R.46>). The Smart

Space Store (S2Store) that is presented in chapter 7 takes this role. In addition,

the next chapter introduces µ-middleware extensions for service management as this

functionality is missing compared to the combined reference model shown in Fig. 4.3

so far.
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7. The Distributed Smart Space

Orchestration System

The developer community is multiplying from the hardcore

developers that may be 10m people to over 100m people around

the planet writing apps, and the chance to do more and profit

economically is growing.

Steve Ballmer (*1956), Chief Executive Officer, Microsoft, in a talk at

BUILD developers conference 2011.

Short Summary This chapter introduces the Distributed Smart Space Orchestration

System (DS2OS) framework. DS2OS consists of different Virtual State Layer (VSL)

services plus an App store. Together they provide the technical foundation for an

App economy for Smart Spaces (Sec. 3.10).

All components of DS2OS besides the Smart Space Store (S2Store), and the App

store for Smart Spaces, are implemented as regular VSL services. Making us of its own

features for implementing core functionality illustrates the power of the programming

abstraction.

DS2OS provides autonomous service management within a site, and service deploy-

ment from the central S2Store.

Different mechanisms that support crowdsourced development, and real world de-

ployment of Smart Space services are introduced. The collaborative convergence

mechanism from Ch. 5 is extended to a crowdsourced convergence mechanism.

A fully distributed, simple-to-use security concept for Smart Space services is intro-

duced.

DS2OS is assessed using the criteria from the state of the art analysis (Sec. 4.5).

Key Results The µ-middleware property of the VSL (Sec. 6.2) allows the extension

with functionality that other pervasive computing middleware designs offer dynami-

cally via services at run time.

The VSL programming abstraction simplifies the creation of complex services.
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Self-management in the back-end makes it possible to provide an intuitive interface

to software orchestrated Smart Spaces.

Crowdsourced convergence is introduced as novel mechanism for collaborative stan-

dardization.

Key Contributions The technical basis of an App economy for Smart Spaces is intro-

duced. None of the components exists for Smart Spaces in 2014.

A crowdsourced convergence mechanism for the Smart Space ontology is introduced.

It improves the convergence of the approach that was introduced in Ch. 5, and

makes it more suitable for real world deployment. It exceeds existing approaches for

collaborative ontologies from literature [HJ02, KA06, LST13].

A crowdsourced convergence mechanism for Smart Space services is introduced. It

implements a self-managing quality assurance mechanism.

A fully distributed simple-to-use security concept for software orchestrated Smart

Spaces is introduced. It includes distributed revocation of access rights, and a crowd-

sourced convergence mechanism for access identifiers. The concept exceeds existing

approaches [CD05, KRM+07, Lac09, AO04, CD07].

A service management framework with local and global components is introduced.

A concept for an App store with adapted mechanisms for Smart Space services is

introduced.

Challenges Addressed <R.1> Simplicity-to-use, <R.3> Self-management, <R.4> User

participation, <R.8> Interface portability of services, <R.23> Dynamic extensibility,

<R.26> Modularization support, <R.30> Dependability, <R.45> Portable service ex-

ecutables, <R.46> App store, <R.48> Crowdsourced development, <R.49> Security-

by-design, <R.50> Scalability.

Summary The Distributed Smart Space Orchestration System (DS2OS) framework

is introduced that consists of the VSL µ-middleware, the Smart Space Service ma-

nagement (S2S) service management architecture, and the S2Store (Sec. 7.2).

The chapter starts with a comparison of the requirements of service management in

Smart Spaces with App management in the App economy (Sec. 7.1.1).

Next, the hierarchical architecture of DS2OS with the Run Time Environment (RTE)

(Sec. 7.2.1), the Service Hosting Environment (SHE) (Sec. 7.2.2), the Node Local

Service Manager (NLSM) (Sec. 7.2.3), and the Site Local Service Manager (SLSM)

(Sec. 7.2.4) is introduced. The different components and their functionality are

described. Then the format of DS2OS service packages is presented (Sec. 7.2.5)

before the introduction of the S2Store (Sec. 7.2.6).

The self-managing security architecture of DS2OS is introduced that complements

the security architecture of the VSL (Sec. 5.5).

Next the crowdsourced convergence mechanisms that are provided by DS2OS are

introduced (Sec. 7.4). They provide convergence of context models, access groups,

and service executables.

The functionality of DS2OS is illustrated at the example of a service life-cycle

(Sec. 7.5).
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Finally DS2OS is assessed according to the criteria that were applied for the state of

the art analysis in Sec. 4.5 (Sec. 7.7).
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7.1 Introduction

This chapter introduces the Distributed Smart Space Orchestration System (DS2OS).

Distributed Smart Space Orchestration System (DS2OS) is implemented using the

Virtual State Layer (VSL) programming abstraction. It adds functionality for ser-

vice management within a VSL site, a global App store called Smart Space Store

(S2Store) for VSL service distribution, and further support for crowdsourced software

development including crowdsourced convergence.

The DS2OS components are implemented as regular VSL services. Its major design

elements are presented to illustrate how the VSL programming abstraction facilitates

the implementation of complex functionality. It also shows that the VSL µ-middleware

offers all functionality required to implement diverse Smart Space scenarios in its core.

It is shown how things that are considered missing in the µ-middleware core can be

added and accessed transparently (Fig. 4.3, Sec. 6.2).

DS2OS comprises three building blocks:

• The Virtual State Layer (VSL) µ-middleware that acts as distributed operating

system within a Smart Space.

• The Smart Space Service management (S2S) service management framework

that manages VSL services.

• The Smart Space Store (S2Store) that manages services globally, and that sup-

ports crowdsourced software development.

At the time this document is written, DS2OS is not fully implemented. The feasibility

of the concept follows directly from the use of the VSL as shown in this chapter.

The Service Hosting Environment (SHE) (Sec. 7.2.2) is a fundamental component for

autonomous management of services that is not implemented as VSL service. It is

implemented as prototype.

7.1.1 Comparison to the App Economy

In Sec. 3.10 the App economy was presented as an important success factor for the

real world deployment of mobile computing (Sec. 2.3). It is a successful example for

fostering crowdsourced development.

Using the VSL programming abstraction (Ch. 5) and its implementation as VSL µ-

middleware (Ch. 6), DS2OS provides an infrastructure that enables an App economy

for Smart Spaces. A VSL Smart Space that runs the DS2OS framework is called

DS2OS Smart Space, or DS2OS site. The VSL corresponds to the kernel of a Dis-

tributed Smart Space Operating System (which is an intended second reading of the

acronym DS2OS). Two major differences between the VSL and a smartphone Oper-

ating Systems (OSs) are:

• The VSL provides a unified system view on the distributed entities of a Smart

Space via its context-based interface (Ch. 5, Ch. 6).

• The VSL can be extended dynamically and transparently with adaptation ser-

vices that act as device drivers for Smart Devices. This extensibility covers

the additional diversity of Smart Spaces concerning the available peripherals

(Sec. 3.10).
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A middleware targets providing a unified system view (Sec. 3.4). The VSL imple-

ments the required abstraction over the distribution of nodes with its distributed

design, and its self-management properties (Ch. 6). The dynamic extensibility and

the transparency are implemented by the µ-middleware properties (Sec. 6.2), in par-

ticular the locator-id split (Sec. 5.2.13) and the type search (Sec. 5.7.2). They allow

to discover the abstract context interfaces of new services dynamically at run time.

The Smart Space Service management (S2S) provides App management mechanisms

within a DS2OS site. Its Site Local Service Manager (SLSM) (Sec. 7.2.4) corresponds

to the App managing App store component that runs on smartphones. Its SHE

corresponds to the smartphone OS itself. It enables to execute services. Different

to smartphone App managers, the S2S provides service management functionality for

the distributed computing hosts of future Smart Spaces.

The S2Store (see below) takes the role of a smartphone App store. Different to a

smartphone App store, the S2Store provides not only management of service executa-

bles, but also context model management, and crowdsourced convergence for service

implementations and context models (Sec. 7.4).

7.2 Service Management

Like the VSL µ-middleware, DS2OS operates distributed and fully autonomously

(Sec. 6.4, Sec. 7.6.1). This implements scalability (<R.50>) and allows the combined<R.50>

use of the available distributed computing resources in future Smart Spaces as Smart

Space Orchestration backbone (Sec. 3.2.4). In addition, the self-managing compo-

nents (Sec. 7.6.1) make the complexity of Smart Spaces with their distributed, often

unattended Smart Devices manageable (Sec. 3.2).

The usability of DS2OS is comparable to that of a smartphone App store (Sec. 7.6.4).

Since App stores enable non experts to deploy Apps to their smartphones, DS2OS

enables non experts to deploy VSL services to future Smart Spaces. A good usability

is a fundamental requirement for real world usability of pervasive computing (<O.4>)

[Abo12, BLM+11, MH12, TPR+12].

DS2OS implements hierarchical management with the following architecture compo-

nents that are shown in Fig. 7.1:

• Run Time Environment (RTE): The Run Time Environment (RTE) is the

execution environment that runs VSL service executables.

• Service Hosting Environment (SHE): The SHE provides low-level service

management functionality on a computing node. It allows to control and mon-

itor service executables that run in the RTE.

• Node Local Service Manager (NLSM): The Node Local Service Manager

(NLSM) provides node-local service management functionality. It starts, stops,

pauses, and monitors all VSL services on a computing node.

• Site Local Service Manager (SLSM): The SLSM manages all NLSMs. It

provides site-local service management. The SLSM optimizes the resource us-

age in a DS2OS site according to different metrics such as load balancing or

resilience.
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• Smart Space Store (S2Store): The S2Store comprises the Context Model

Repository (CMR) and implements a repository for services. It collects and

publishes statistics from distributed DS2OS sites. It implements a crowdsourced

convergence of context models and DS2OS services.

Fig. 7.1 shows the relationship between the entities. On the top left the service

management hierarchy is shown with the SLSM that manages the site, an NLSM that

manages a computing node, and a service. A different view on the hierarchy is shown

in Fig. 7.2.

All components of the service management implementation except the S2Store and

the SHE are implemented as regular VSL services. The VSL is not modified for im-

plementing DS2OS. Service management is added as-a-service using the µ-middleware

property of the VSL (Sec. 6.2).

The VSL connector (Sec. 6.3.3) is extended with functionality for service management.

The interface to the additional functionality is made available via Virtual Nodes over

an additional context model that gets instantiated when a service that uses the DS2OS

connector is started.

The added functionality allows to start, stop, and pause services (Sec. 7.2.2) and to

transfer their context (Sec. 7.2.4). See Fig. 7.1 “DS2OS connector”. The state pause

means that a service is started but it does not change any of its context. This state

is used for update, migration, and replication of services (Sec. 7.2.4).

Following, the different components of DS2OS are introduced in more detail. Java is

chosen for their prototypical implementation (Sec. 7.2.1). The presented concepts are

independent of the used format of the service executables. This allows implementing

DS2OS in different programming languages.

7.2.1 Run Time Environment

The Run Time Environment (RTE) provides the execution environment for service

executables.

As described in Sec. 6.3.1, Java is a run time environment that provides portability

(Sec. 5.6.3) to run VSL service executables on heterogeneous computing nodes. It

provides a unified abstraction on top of different hardware architectures and different

OSs. Therefore Java is used as run time environment for implementing the DS2OS

prototype. Any other framework with similar properties such as .net could have been

chosen as well.

As described in Sec. 6.3.3 it would also be possible to implement DS2OS services in

another programming language, e.g. a scripting language like Python. Java is chosen

for the prototype since it is deployed on smartphones [VSCK11, But11], and on other

appliances within Smart Spaces already [The12, KBY+12, FMF+12]. The existing

deployments show the suitability of Java for the targeted hardware platforms

7.2.2 Service Hosting Environment

The Service Hosting Environment (SHE) adds Smart Space Orchestration capability

to the RTE. It provides the low-level service management functionality to start and

stop service executables.
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The SHE prototype is based on Open System gateway Initiative (OSGI), a Java

framework that allows to start and stop services as so-called bundles [The12]. The

OSGI bundles are implemented using iPOJO30. iPOJO allows developers to implement

services as Plain Old Java Objects (POJOs) without having to care about OSGI-

specific details.

The result of using iPOJO is that service developers can develop regular Java appli-

cations, while the DS2OS connector (Sec. 7.2) wraps the OSGI functionality that is

needed for the node local low-level control of service executables. This simplifies the

development of DS2OS services (<R.1>). <R.1>

7.2.3 Node-Local Service Manager

The Node Local Service Manager (NLSM) manages all services on a computing node.

It controls (start, stop, pause, migrate context) and monitors services using the func-

tionality provided by the SHE and the DS2OS connector. The NLSM reflects change

requests that it receives from the SLSM such as starting new services or requesting

locally running services to migrate their context to another Knowledge Agent (KA)

as they are about to be migrated there.

The major functional goal of an NLSM is keeping all services on the computing node

it manages running. Services are delegated to managed computing nodes by the

SLSM (Sec. 7.2.4). Another functionality of an NLSM is providing monitoring data

about each service it manages. To reach the goals, the NLSM checks periodically if all

services are up via the SHE. If a service that should be up is down, it tries to restart it.

In case of an error it reports to the SLSM. The NLSM monitors different parameters

of a service including the Central Processing Unit (CPU)-usage, the Random Access

Memory (RAM)-usage, the disk-usage, and run time errors.

The NLSM is a regular DS2OS service. Following the separation of service logic

from service state (Sec. 5.6.5), the NLSM service stores its state in the VSL. This

allows to restart the NLSM without loosing its current state. In combination with

the functionality of the SHE always to restart the NLSM on failure, this enhances the

dependability of the NLSM as node-local management component (<R.30>). <R.30>

The NLSM uses the VSL for communication with the SLSM. The communication

includes receiving service executables and commands from the SLSM. Using the VSL

simplifies the NLSM implementation as connectivity (Sec. 6.4.8) and security (Sec. 6.5)

are handled by the VSL.

To illustrate the use of the VSL programming abstraction, some implementation de-

tails are presented. Data about all locally managed services is stored as a VSL list

(Sec. 5.2.10) in the context model of the NLSM. Listing 7.1 shows parts of the con-

text model of the NLSM service. The list of running services is stored in the context

subtree runningServices using the context model shown in listing 7.2 for the service

records.

1 <nlsm >

2 <overallServicesRunning type =".../ nlsm/servicesRunning">

3 0

4 </overallServicesRunning >

5 <cpuAvailable type =".../ nlsm/cpuValue">

30http://felix.apache.org/site/apache-felix-ipojo.html

http://felix.apache.org/site/apache-felix-ipojo.html
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6 0

7 </cpuAvailable >

8 <currentCpuUsed type =".../ nlsm/cpuValue">

9 0

10 </currentCpuUsed >

11 ...

12 <runningServices type ="../ nlsm/listOfServices">

13 </runningServices >

14 ...

15 </nlsm >

Listing 7.1: Parts of the context model of the NLSM.

The meta data of a service has the structure shown in listing 7.2. Each service record

in the list contains another list for recording error reports.

1 <serviceRunTimeData > ...

2 <currentCpuUsed type =".../ nlsm/cpuValue">

3 0

4 </currentCpuUsed >

5 ...

6 <errorEvents type ="../ nlsm/listOfErrorEvents">

7 </errorEvents >

8 ...

9 </serviceRunTimeData >

Listing 7.2: Parts of the context model of a service that is managed by the NLSM. The entries

of the runningServices node of the NLSM context model are of the shown type.

The NLSM runs autonomously. It receives its high-level goals from the SLSM, e.g.

service executables to run on its managed computing node. The operation of a NLSM

is not affected if a partitioning of the VSL makes the SLSM unreachable (Sec. 5.6.1). A

partitioning of the VSL could happen if network connections to a KA are interrupted

for instance. If the SLSM, and the NLSM cannot communicate, the only difference

for an NLSM is that it does not receive new goals until the SLSM can reach it again.

With its local goals the NLSM continues keeping the local services running providing

dependability of services (<R.30>).<R.30>

7.2.4 Site-Local Service Manager

The Site Local Service Manager (SLSM) provides the functionality for site-local service

and resource management. It manages all services within a DS2OS site. Like the

NLSM the SLSM is implemented as regular DS2OS service.

The SLSM coordinates the NLSMs on the distributed computing nodes. It provides

the interface of a DS2OS site to the S2Store. The SLSM maintains a list of all services

that are currently running within a DS2OS. Following, different functionality of the

SLSM is introduced.

Service Repository

The SLSM acts as site-local repository for DS2OS services. It stores all service pack-

ages (Sec. 7.2.5) that are downloaded from the S2Store into the DS2OS site. See

Sec. 7.2.6 and Sec. 7.5.
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Service Deployment

The SLSM decides on which computing host of a site a service should be deployed.

Then it sends the service to the NLSM on the chosen computing node. It uses the

VSL for transfer of the service package (Sec. 7.2.5). The NLSM offers a Virtual Node

in its context model for that purpose (Sec. 5.3.4). After receiving the service and

the command to do so, the NLSM starts and manages its new service autonomously.

During operation it provides statistics about the new service for the SLSM (see below).

Different optimization strategies can be implemented. The prototype implements

simple load balancing by sending a service always to the computing node that has

most free resources according to the requirements of a service (e.g. CPU, RAM, Hard

Disk Drive (HDD)). The SLSM collects load statistics of the available computing

nodes regularly from the distributed NLSMs as basis for decisions.

Using the VSL type search (Sec. 5.7.2) for identifying currently available NLSMs

(.../nlsm, see listing 7.1), the SLSM automatically adapts to changes in the Smart

Space backbone. Using the VSL mechanisms implements self-management (<R.3>) <R.3>

and enhances the dependability of the S2S (<R.30>).
<R.30>

Service Migration

The separation of service logic from service state allows to restart services without

loosing their state. This becomes possible as the service state is stored independently

from the service logic in the corresponding KA (Sec. 5.6.5). This VSL feature simplifies

migrating services (<R.1>). <R.1>

Code migration describes the process of moving programs between machines [TVS02].

So-called weak mobility describes the ability to move the code segment of an appli-

cation. It can require some initialization. So-called strong mobility means that the

execution segment can be transferred as well. Strong mobility enables to run an

application in the same state after migrating it.

For services that separate logic and state as proposed in Sec. 5.6.5 the execution

segment is stored as context in the VSL. Since the VSL context can be moved as

described next, DS2OS offers strong mobility for services that manage their state

only in the VSL. Strong mobility of services leads to flexibility in a site’s resource

management. Services can dynamically be moved to other computing hosts. This can

be used to implement a scalable system (<R.50>). <R.50>

An extended DS2OS VSL connector (Sec. 6.3.3) offers the possibility to transfer the

current context of a service on another KA where a copy of the service is installed.

The source of the migration is called originator in the following. The context transfer

is done via a Virtual Node that is automatically provided by the DS2OS connector.

A connector is compiled or linked into a service. As part of the service, it has the VSL

identity of that service. The corresponding access rights allow it to access all context

on behalf of its service and send it to the corresponding connector of the service copy

independent from the service implementation. The connector of the copy adds the

received context to the context repository in the KA on the new computing host.

For migration, a copy of a service is started on another computing node in paused state

(Sec. 7.2.2). Then the originating connector is asked to transfer its current context
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(service state) to the copy. Before transferring the context, the originating NLSM

pauses the service to prevent additional changes that would lead to inconsistencies

between the context repositories.

After the context transfer is done the service copy, the copy is started. Consequently,

it uses the transferred state in the context repository. In case of a stateless service

implementation, this results in the copy being in exactly the same state, the migrated

service was before migration. The original service is stopped. All context nodes on

the originating KA are marked read-only. The historic context remains available. In

case, a service is started on the original node later again, the initialization of the

context model overwrites the access permissions re-enabling write access on those

context nodes that had write access before the migration.

Via the locator-id split (Sec. 5.2.13) other services automatically discover the new

location of the migrated service.

To minimize the downtime of a service further the pause state can be prevented as

follows. This could be interesting in case of large amount of context to be transferred

from the originator and low downtime requirements.

The originating service connector can transfer its service’s state while it is running.

But it must log additional changes from when the transfer happened. When the

service copy signals that it is ready, the originating service can pause, transfer the

remaining changes since the first migration, and start the copy.

For keeping a service reachable on its original location, a proxy can be started on

the originating host. This is interesting to cover the time until other services that

access context of the migrated service do a rediscovery via the type search. The

VSL programming abstraction simplifies the creation of generic proxies via its Virtual

Context (<R.1>). A proxy registers all context nodes of the originating service as<R.1>

Virtual Nodes and forwards all requests to the new location of the service. This is

similar to port forwarding in operating systems [RR81].

Migration is controlled by the SLSM.

Service Replication

Service replication works similar to service migration. A difference is that the original

service is not paused, and the copy is not started after a context transfer. Instead the

context is transferred between the participating service copies periodically. Because of

the periodical synchronization, a service copy that is running on another host can do

a failover on the last synchronized state. It is only started, when the original service

fails.

Service replication is interesting in case of computing node failures. It can be used

to enhance the dependability of DS2OS services (<R.30>). A pure service failure can<R.30>

often be handled by simply restarting a service. This is done automatically by the

NLSM. This autonomic strategy complements the described service replication.

Service Update

The SLSM periodically checks the S2Store for updates of the locally installed DS2OS

services. If an update is available it downloads the new service package and initializes
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it via the distributed NLSMs on all computing nodes within its managed local site

(Sec. 7.3). Then it sends the new service package to all NLSMs that are running the

service. The NLSMs try to start the new service in paused state. As the new service

version typically has the same serviceID in its service certificate (Sec. 5.5.1, Sec. 7.3),

it connects to the context of the older service version automatically.

If the starting works the old version is paused and the new one is set to started state.

If no error occurs the old version is stopped and removed. If an error occurs the old

version is started again and the new version is removed and the SLSM is informed.

This implements a self-managed update process (<R.3>). <R.3>

DS2OS Update

The described service update mechanism can be used to update the DS2OS compo-

nents themselves, not only external services. Fig. 7.6 shows that the KAs could run

on top of the SHE. If DS2OS is run as service containers, the platform itself can be

updated as described before for regular services that run on top of the platform.

While a KA is down its context repository is not available for services. Therefore the

NLSM pauses all services first. Then it runs an update process that is independent

of VSL context for updating the KA executable. The failure handling can be imple-

mented as described before. In case of the updated version not running properly, the

previous version of the KA can be started again. As the context repository is stored in

a local database (Sec. 6.3.5) the new KA can directly serve the existing context after

start. It runs in the same state, its previous version was when the update started.

The same can be done with the NLSM, the SLSM, and even the SHE. It is only re-

quires to have an update mechanism that is independent of other DS2OS components

implemented on each node. It updates the SHE and restarts the old version in case

of a failure.

This implements a self-managed update process of the framework itself (<R.3>), mak- <R.3>

ing it simple to use DS2OS (<R.1>). In addition it enhances the security of the system
<R.1>

as even the system components can be updated automatically (<R.49>).

<R.49>

Statistics Collection

The SLSM periodically collects statistics from the computing nodes that run an

NLSM. The collected data include:

• Overall resource usage on the computing node (e.g. CPU, RAM, HDD).

• Resource usage per service.

• Error statistics per service (e.g. service failures).

The SLSM uses the statistics for local optimization (see below) and it communicates

aggregated anonymized statistics to the S2Store when the site owner allows that. The

statistics that are sent to the S2Store are used for the crowdsourced convergence –

primarily the usage statistics– and as feedback to the developers –primarily the error

reports (Sec. 7.4).
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Optimization Strategies

To change the available resource optimization strategies only the SLSM service has

to be exchanged or re-parameterized as the other components only provide basic

functionality. As described in Sec. 6.3.6, a re-parametrization can be done via changing

the VSL context.

As proof of concept a simple strategy is implemented in the prototype that deploys

services always to the host with the least load. It migrates services when a fixed

percentage of load is reached on a computing node. Other strategies such as taking

into account dependencies between services make sense and are future work.

7.2.5 DS2OS Service Package

A DS2OS service package consists of

• The service certificate (Sec. 5.5.1).

• A service manifest with additional meta data.

• The service executable.

DS2OS service packages are implemented as compressed ZIP containers.

Service Certificate

The service certificate (Sec. 5.5.1) is extended with a hash over the service manifest

that allows to verify the integrity of the manifest.

Service Manifests

The service manifest contains information that is relevant for service management.

The integrity of the service manifest is protected by the signed hash as part of the

extended service certificate. A DS2OS service manifest contains:

• The unique name of the service.

• {Required, conflicting, obsoleting} context models [MBdC+06].

• Computational resource requirements.

• Resilience requirements.

• Version number.

• DeveloperID.

• A cryptographic hash over the service executable.

The unique name is used as mapping to the service certificate.

The required context models describe dependencies to context models that must exist

within a DS2OS site for the service to operate. An example is a service that im-

plements functionality to switch lamps and that has no use if no context model of

type lamp is available (Sec. 7.5). The described DS2OS architecture enables the auto-

mated deployment of depending services making a DS2OS site dynamically extensible

(<R.23>).<R.23>
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As the VSL uses context models as abstract service interfaces, dependencies to context

models are dependencies to services (Sec. 5.4.1). As adaptation services (Sec. 8.3.1)

connect Smart Devices to the VSL, context model dependencies also express depen-

dencies to Smart Devices (e.g. lamps).

The conflicting context models represent conflicts with other services, e.g. an always-

heat-up service may conflict with an always-cool-down service. Conflicts are considered

by the SLSM before deploying a service to a NLSM.

The obsoleting context models are used to express that a service update requires not

only the change of the service executable but also the change of the context model

that belongs to the service.

The computational resource requirements express the resources a service needs for

running. They include CPU, RAM, or storage and are intended to be taken into

account by the SLSM in its optimization strategy (Sec. 7.2.4).

The resilience requirements are to be taken into account by the SLSM in its optimiza-

tion strategy (Sec. 7.2.4). They influence how many replica of a service are started

and on which computation node it is deployed Sec. 7.2.4).

The version number is used by the update mechanism (Sec. 7.2.4) to determine if a

newer version of an installed service is available.

The developerID is used to identify the origin of a service. It is used for making the

feedback of a service available to its developers for instance (Sec. 7.4.5).

The cryptographic hash over the service executable is used by the SLSM and the

NLSMs before starting a service to verify the integrity of the service executable.

Service Executable

As format of the service executable the Java ARchive (JAR) format is used in the

prototype.

7.2.6 Smart Space Store

The sharing of context models via the CMR (Sec. 5.7.1) is necessary for developers

to create portable (Sec. 5.6.3) services. In combination with the simplicity of the

VSL programming abstraction it implements a Service Oriented Architecture (SOA)

enabling crowdsourced development (Sec. 5.4.4).

The portability of DS2OS services is relevant for end-users as it enables running the

same DS2OS service in different DS2OS sites. In the previous chapter it was shown

how the VSL provides portability (Sec. 5.6.3, Sec. 6.2, Sec. 6.3.1).

The VSL-based portability enables the creation of a DS2OS service distribution in-

frastructure. Such an infrastructure is relevant for end-users as it allows a simple

installation of services in Smart Spaces (Sec. 7.6.4). It is also relevant for developers

as it allows to create service mash ups via expressing requirements to other context

models (services). Such requirements can be resolved by the SLSM when a user in-

stalls a new service (Sec. 7.6.4). The S2Store acts as service repository for service

distribution.
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For end-users context models are transparent. They are only used by services inter-

nally to implement their functionality. End-users are typically more interested in the

functionality that is offered for their Smart Space by a service than in the back-end of

that service [BLM+11, MH12, TPR+12]. But for the development and the portability

of services context models are fundamental (Sec. 5.6.4).

The S2Store is the central entity all SLSMs are connected to. The S2Store contains

the CMR in DS2OS. Like the CMR (Sec. 6.6.1) it is implemented using regular web

server technology enabling the use of known load balancing techniques [GJP10] to

make the central component scale (<R.50>).<R.50>
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SHE

NLSM
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svc

svcsvc

svc

svc

SLSM Site-Local Service Manager

NLSM Node-Local Service Manager

SHE Service Hosting Environment

svc Service

D
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O
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Si
te

Logical Connection

Figure 7.2: Topology between the App Store and the DS2OS sites.

Fig. 7.2 shows the relation between DS2OS services that run in a DS2OS site and the

S2Store.

The blue arrow shows the propagation of service updates. Initiated by the SLSM, a

new service packages is loaded from the S2Store. It is initialized by the SLSM using

the permissions, the user gave to the previous version of the service before. Then is is

transferred to all NLSMs that manage the service locally on the distributed computing

node inside a Smart Space.

The other way round usage statistics and failure reports are collected from the NLSMs.

They are aggregated by the SLSM in each DS2OS Smart Space. Depending on the

permissions given by the site owner, the aggregated reports are sent to the S2Store.

The connection between the S2Store and the SLSM happens via Hyper Text Transfer

Protocol (HTTP). The same transport mechanism is used for transferring context

models from the CMR to the site-local CMR service (Sec. 6.6.2).

The DS2OS S2Store has the following main functionality:

• Repository for service packageses.
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• Context Model Repository (CMR).

• Collector of statistics about services.

• Security anchor for services.

Repository for Service Packages

The S2Store implements a versioning repository of service packages (Sec. 7.2.5). The

versioning is done as some versions of a service may be compatible with some context

models while others are not. Service compatibility is determined by the interfaces of

services that are defined in their context models.

Context models define the availability of functionality in a Smart Space. Some versions

of a service may be suitable for some Smart Spaces while others are not. Offering all

versions of a service results in the highest compatibility to the diverse DS2OS Smart

Spaces. Locally resolvable dependencies are identified by the locally available VSL

data types (context models) in a DS2OS Smart Space. Depending on a match of

the available services and the required dependencies, expressed in the context model

dependencies, the most suitable version of a service in the S2Store is chosen.

Context Model Repository

The S2Store contains the CMR. The service repository functionality and the CMR

require a scalable secure infrastructure that is reachable at a well-known location from

all DS2OS sites. Combining them brings synergies as only one infrastructure has to

be maintained.

Another reason for the combination is that the functionality of the CMR and the

S2Store service repository interrelate as shown in Sec. 7.4.

Statistics Collector

The S2Store collects usage and error statistics from the distributed DS2OS Smart

Spaces. This is relevant for the crowdsourced convergence (Sec. 7.4.3), and as feedback

for developers (Sec. 7.4.2).

Security Anchor

Like the smartphone App stores the S2Store secures the integrity of services as de-

scribed in Sec. 7.3.

7.3 Security

DS2OS provides a self-managing security architecture (<R.49>). <R.49>

Existing App stores typically sign their Apps for ensuring their integrity [App12,

And]. They also use developer certificates as described next. As smartphones are not

distributed, the presented security architecture within a DS2OS site is novel compared

to the App economy.
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Sec. 5.5 and Sec. 6.5 introduced the security architecture of the VSL that is based

on certificates. The DS2OS security architecture explains how the service certificates

can be used in a real world deployment.

The following description of the mechanisms gives an overview on the concept. It

illustrates how the VSL programming abstraction facilitates the creation of a self-

managing security infrastructure for Smart Space services. A detailed security analysis

of the approach is part of future work. The concept is presented as security is relevant

for a real world deployment of DS2OS [CDB+12, BCG12, CD12, DDMS12].

The presentation of service packages in Sec. 7.2.5 introduced two security relevant

supplements to the VSL service certificates: manifests and an additional record in the

service certificate that protects the integrity of its corresponding manifest.

Fig. 7.3 shows an extended version of the security architecture of the VSL shown in

Fig. 5.4. Instead of one site multiple sites are shown. Each has a different Site Local

Certificate Authority (SLCA) (Sec. 5.5) and uses a different key to sign its certificates

as indicated by the colored keys. The S2Store also has its own public-private key-pair.

The figure shows that each service has its own certificate (different colors). Inside a

DS2OS site, each certificate is signed with the DS2OS site key. As the public key

of the site is part of the certificate each entity has, this allows all distributed hosts

to verify all site-locally issued certificates (Sec. 5.5). Different to Fig. 5.4, the SLCA

is now a regular DS2OS service. This is needed for automated certificate renewal as

described in Sec. 7.3.5.

The big stick person in the DS2OS site in the center illustrates how the described

security architecture enables end-users to specify the access rights of their services.

The goal is giving full control to the users (Sec. 7.6.4) while being fully distributed

(Sec. 7.3.3).

7.3.1 VSL Access Control

The security concept of the VSL is based on certificates that contain the accessIDs

for read and write access of a service (Sec. 5.5, Sec. 6.5). The access control of the

KAs uses those values for granting access to context. The accessIDs are protected

against change by the signature of the local site. Changes to the content of service

certificates can only be made by the SLCA.

7.3.2 Three Different Signatures

DS2OS uses three different classes of certificates:

• Site certificates are used to securely store metadata to services as described

before.

• The store certificate is used to protect the integrity of service executables, their

meta datas, and the context models that come from the S2Store.

• Developer certificates are used by developers to protect their data when submit-

ting DS2OS services to the store. They also have the purpose of non-repudiation,

ensuring that a submited service really comes from a certain developer.
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The key pairs for the site certificates are generated within a DS2OS site. The key of

the site-local SLCA acts as trust anchor for the certificates within a site as described

in Sec. 5.5 and Sec. 6.5.

The key pair of the S2Store that is used for creating the store certificates is fixed. The

public key must be configured at each SLSM. It is used to verify the integrity of the

data that comes from the store.

The key pairs for the developer certificates are generated at each developer’s site. The

public key is uploaded to the S2Store on registration. It is used to verify the integrity

of the data that comes from a developer. The certificate identifies a submitted service

as belonging to a developer (non-repudiation).

The described keying scheme allows to protect DS2OS services during their entire

life-cycle (Sec. 7.5). The service life-cycle comprises the development at a developer’s

site, the S2Store, and a DS2OS site with its SLSM and NLSMs that manage the

service locally. The signed hash of the manifest protects the manifest against tamper.

The hash over the service executable that is protected in the manifest protects the

executable against change.

7.3.3 Access Rights Setting

The access rights for services are critical within a DS2OS site. They determine which

context a service can access.

As described in Sec. 5.5 the accessIDs within a site certificate of a service determine

the access rights of a service. The access rights that are needed to access context

nodes are stored within the context models (Sec. 5.5).

Access Groups

For smartphones the amount of peripherals, and thereby the amount of decision pos-

sibilities about what an App can access, are limited (Sec. 3.10). Fig. 7.5 shows the

available categories of an Apple iPhone that runs iOS 7.

For Smart Spaces there are diverse possibilities for defining such access control groups.

The proposed approach of DS2OS is collaborative, and user-based. It is connected to

the CMR (Sec. 5.2.8).

Developers can choose identifiers for access groups they want to use in their context

models freely. They upload them together with a human understandable description

to the S2Store. The S2Store acts as directory for access groups. Via the context

models, developers can look up which access groups the context models they want to

access use. The access group Identifiers (IDs) used in the relevant context models,

a developer wants to interface in its service, determine, which access group IDs the

service needs.

As shown in the center of Fig. 7.3, when installing a new service, the user is asked

to grant the access rights for a service. Those rights were added by the developer

as described in the last paragraph. The accessIDs from the service certificate that

comes from the S2Store are presented to the user together with their explanatory

descriptions that gets loaded from the S2Store’s access group repository.
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Based-on the description corresponding to the accessIDs from the service certificate,

the user decides, which access she wants to grant and which not31. As support, the

SLCA could show which decisions were taken before or what other users chose for

instance32.

After checking the integrity of the service package (Sec. 7.3.7), and after asking the

user for setting the access rights, the SLSM sends the service certificate and the

user decision to the SLCA. The SLCA issues a new service certificate based on the

certificate from the store. It includes only those accessIDs that were confirmed by the

user. This site-local certificate is used by the S2S service management within a site.

It is sent back to the SLCA and replaces locally the service certificate from the store.

The original certificate from the store remains in the SLCA for enabling the user to

change the access rights later. Similar to the iOS screen shown on the right in Fig. 7.5,

the user can see the current access rights she set for a service and change them. A

change in the access rights needs a change in the certificate. It is automatically applied

as described for the certificate renewal process in Sec. 7.3.5.

The site-local certificates contain only the current access rights that were set by the

user. They are used by the services to register to a KA. This implements a centralized

access control that scales as the set access rights are verified and applied on each KA

independently without contacting a central component.

7.3.4 Distributed Revocation

The VSL uses a decentralized approach for verifying service certificates as described in

Sec. 5.5. The advantage of this approach are its scalability, and that it provides high

dependability. The solution is tolerant to partitioning in the VSL overlay (Sec. 6.5).

The drawback of using a fully distributed approach is that it makes revocation difficult.

In an X.509 infrastructure, revocation lists are distributed from a central server and

used for revocation [CSF+08].

Such a centralized approach is not chosen in DS2OS for scalability and dependability

reasons. Instead the fact that the certificates are locally issued and can locally be

renewed is used for setting short validity periods in certificates. When the validity

period of a service certificate has expired, a service cannot use the VSL anymore as

described in Sec. 6.5. This implements a distributed time-based revocation.

The alive pings are used for synchronizing the VSL time as described in Sec. 6.4.9.

This supports timely exclusion of services with invalid certificates on all KAs.

DS2OS implements an automated certificate renewal process that is described in

Sec. 7.3.5. As it does not require user intervention to renew its certificates, short

validity periods can be configured (e.g. days) resulting in a timely exclusion of un-

wanted services.

7.3.5 Automated Certificate Renewal

The only required user intervention in the DS2OS security process is setting the desired

access rights when installing a new service.

31This is an incentive for developers to write good descriptions.
32Such mechanisms could enhance the security (majority recommendation) and the usability (rec-

ommendations).
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When starting a service, the NLSM stores the end of the validity of the certificate of

a service similar to the KA (Sec. 6.4.1, Fig. 6.1). At a configured period before that

date the NLSM sends the current service certificate to the SLSM.

If the service was not removed by the user, the SLSM requests a new certificate from

the SLCA using the current access rights (Sec. 7.3.3). Then the new service certificate

is sent back to the NLSM that replaces the old certificate with the new one. When the

service re-registers at the KA it uses the new certificate. This results in an automated

certificate renewal.

7.3.6 Access Rights Change

The user can change the access rights at any time via a user interface similar to the

one shown in Fig. 7.5 on the right. In case of a change of the access rights of a

service in the SLCA, the SLCA sends a new certificate with the new access rights to

all NLSMs that run the service and asks them to restart the services to reflect the

access rights changes.

Updating the access rights may not be successful, e.g. as some NLSMs could not be

reached. In such a case, the unchanged, then wrong access rights remain set on those

nodes until the service certificates of the services on the node expire (Sec. 7.3.4).

7.3.7 Integrity Check

The described security scheme protects the integrity of the context model, a service

uses, of the service manifest, and of the service executable.

The service certificate protects the integrity of the service manifest with its hash over

the manifest (Sec. 7.2.5). Via the hash of the modelID and the content of the context

model it protects the integrity of the context model (Sec. 5.5). The manifest protects

the integrity of the service executable by containing a hash of it.

Before starting a service, the NLSM validates all three, service certificate, context

model, and service executable.

7.4 Crowdsourcing

It is the user who should parametrize procedures, not their

creators.

Epigrams on programming [Per82], Alan Perlis, American computer

scientist, (1922 - 1990), 1st Turing award winner 1966.

A motivation for the design of the VSL programming abstraction was to facilitate the

creation of services for Smart Spaces. Creating Smart Space services should become

simple enough to enable distributed user-based, crowdsourced software development

(<O.0>, <R.1>, <R.4>, <R.48>).

Ch. 5 introduced the VSL programming abstraction and Ch. 6 presented its imple-

mentation as autonomous system. Both facilitates the development of Smart Space
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services. The DS2OS framework complements the effort by providing a mechanism

for securely distributing DS2OS services to distributed DS2OS sites.

In addition DS2OS provides mechanisms that implement a crowdsourced convergence

of services, of context models, and of access groups. The convergence of all three is

relevant for portability (Sec. 5.6.3, 3.3.2), and for a good usability of the programming

abstraction (<R.1>, <R.46>).

Two major reasons for crowdsourced development are the diversity of Smart Devices

(<O.1>) and the diversity of pervasive computing scenarios (<O.2>).

The diversity of Smart Devices describes that many Smart Devices are attractive for

implementing pervasive computing scenarios. The diversity includes Do-It-Yourself

(DIY) devices (Sec. 3.2.3). All those devices need adaptation services (Sec. 8.3.1) for

being usable over the VSL.

As discussed in Sec. 3.3, it is unlikely that vendors or other relatively small groups of

people are able to provide the required amount of adaptation services. Crowdsourcing

is an approach that scales [NMMA13, BCPR09] (<R.50>). <R.50>

The diversity of pervasive computing scenarios is known from smartphone Apps that

are diverse. Different programmers develop them, introducing their diverse creativity.

Sec. 2.5 discussed the creative potential that users have which can be used by enabling

crowdsourced development. Enabling crowdsourced development empowers the users

to implement their pervasive computing scenarios.

A fundamental problem of crowdsourcing are the varying quality of the results, and

the emerging diversity [NMMA13, GZ13, BCPR09].

The varying quality of the contributions is often based on the varying skills of crowd-

sourced developers. Automated quality control mechanisms such as the validation

mechanisms that are implemented for the VSL meta model (Sec. 5.2.14), and those

that are proposed for services (Sec. 5.5.6) can help enhancing the quality. Providing

a simple-to-use development environment can help to enhance the software quality

[NMMA13, GZ13, BCPR09].

The emerging diversity of software is wanted for supporting diverse use cases. For ab-

stract interfaces to Smart Devices it is not desired as it hinders portability (Sec. 5.6.4,

<R.8>, Sec. 5.6.3). To have unified interfaces (context models) for identical functio- <R.8>

nality, standardization is needed.

As discussed in Sec. 3.3.2, typical standardization processes are unsuitable for the

described distributed crowdsourced development mainly because of the distribution,

the divergence of the participating entities, the time they take, and the high amount

of context models that have to be standardized.

As solution to raise the quality of software, to converge context models, and to con-

verge access groups, a crowdsourced convergence mechanism that is based on the

S2Store is introduced in this section.

7.4.1 Feedback Collection

To enable the crowdsourced convergence, the S2Store collects automatically generated

and personally given feedback from DS2OS sites and users as follows:
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• Service download statistics are collected.

• Service usage statistics such as the amount of time a service was running in a

site are collected from the distributed DS2OS sites via the SLSMs if the user

agrees.

• Service error reports are collected from the distributed DS2OS sites via the

SLSMs if the user agrees.

• User ratings about services can be sent to the S2Store.

• Developer ratings about context models in the CMR in the S2Store can be given

by developers.

In addition the context models that are used by services are correlated with the

popularity of the services to infer a popularity of context models.

All statistics are publicly available for users and developers.

7.4.2 Crowdsourced Service Convergence

Smartphone App stores typically create different statistics based on the amount of

downloads and the user ratings33. Such statistics help guiding users as they emphasize

popular, and apparently good Apps. This enhances the software quality indirectly as

developers aim to get good ratings (e.g. to sell more) [BCPR09, NMMA13].

In DS2OS, The mechanism of smartphone App stores are adapted for reflecting the

higher diversity of Smart Spaces.

One important adaption is filtering existing ratings according to the configuration of

a specific Smart Space. Only ratings to those services are shown that can run inside

the Smart Space, e.g. because of dependencies to other services that are installed or

missing.

Another important adaptation refers to quality assurance mechanisms. For a good

software quality, service testing and the collection of bug reports on service failures are

important. The diversity of Smart Spaces (Sec. 3.2) makes it difficult to run sufficient

service tests as each Smart Space configuration is likely to be unique. Emulators can

help (Sec. 5.6.7) but still it is difficult to test all Smart Space configurations [BJMS12].

Therefore, DS2OS proposes to collect automated error statistics about services in

DS2OS spaces if the user agrees. The distributed SLSMs can file statistics about the

status of all locally running DS2OS services to the S2Store. Such statistics include

the uptime of a service, the amount of instances running, and errors that happened.

This exchange of usage data is described in Sec. 7.2.4.

Developers can use the reports from the participating distributed Smart Space in-

stances for improving their software (Sec. 7.4.5). If the site owner agrees, the configu-

ration of a DS2OS Smart Space is sent as feedback with the crash report. It consists

of the identifiers of the available context models. Having this information, developers

can test and improve their services in the real context where the error occurred by

rebuilding the topology, or by emulating it. If emulators for the reported context

33http://www.apple.com/itunes/charts/free-apps/, https://play.google.com/store/apps/top?hl=

en

http://www.apple.com/itunes/charts/free-apps/
https://play.google.com/store/apps/top?hl=en
https://play.google.com/store/apps/top?hl=en
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models are available they can be used to simulate the original environment where the

crash happened (Sec. 5.6.7). The use of context models makes it transparent to the

service to be tested, if the other services are emulated or real.

In addition to the use as direct developer feedback, collecting the error statistics and

usage statistics can help providing users with feedback about the reliability and the

use of a service which can be used to conclude about the quality and usefulness of a

service.

A combination of ratings is expected to support an indirect crowdsourced quality

assurance by providing an incentive for developers to develop services that get good

subjective ratings by the users, and objective ratings by the automatically collected

run time statistics.

It can be combined with the quality approval techniques that are applied by the

current big App stores:

• Manual approval of Apps in the case of Apple [App10].

• Automated tests and reactions to complaints in the case of Google [Goo].

7.4.3 Crowdsourced Context Model Convergence

The convergence of context models is essential for pervasive computing with the VSL

as it defines the interoperability of services and thereby the possibilities of service de-

velopers to implement their desired pervasive computing scenarios (Sec. 5.6.4, <R.8>,

Sec. 5.6.3).

As described in Sec. 5.6.4, it is desired to have ideally one context model per device

class (e.g. lamp). At the same time, polymorphism is desired as it enables interfacing

the same service via different interfaces (see listing 5.2.11). Polymorphism is enabled

by multi-inheritance in the VSL (Sec. 5.2.11). Multi-inheritance makes it possible to

extend existing context models while remaining compatible with the original interface.

The targeted distributed, user-based development can be expected to result in diver-

gence of context models as reinventing the wheel is a typical phenomenon in software

development. It is unlikely that convergence of context models emerges automatically

[BCPR09]. As an incentive for convergence, the S2Store correlates the popularity

of services with their exposed and used context models (Sec. 7.4.2). The result is a

rating of the popularity of context models. Grouping to certain purposes, such as

“lighting”, helps finding the relevant statistics on the most popular context models

when implementing a new adaptation service for a lamp (Sec. 8.3.1).

If a high amount context models, e.g. 4200, exist for a lamp, probably only few of

them are used in a significant amount of services installed and running in real Smart

Spaces. The reason is that the context models directly correlate with the functionality

in a DS2OS site. Rarely available functionality is not so attractive for developers as

functionality that can be found and used in many Smart Spaces. In the example

of the lamp, a high rating of a certain context model expresses that a service that

interfaces this context model is likely able to control lamps in real Smart Spaces. If

a context model with low popularity is used, the probability to discover adaptation

services within a real Smart Space that use such a context model, and therefore allow

controlling a real lamp, is low.
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Via the public statistics, developers can identify which lamp context models are often

used and currently most used in running DS2OS services. It is likely that service

developers will choose more popular context models for their implementations as that

results in more users being able to run the service in their DS2OS space.

If most services support the lamp23 context model, it is likely that writing an adapta-

tion service using the context model lamp23 will be most useful as it can be used with

most available services. The other way round, a service for implementing blinking

lights should support lamp23 to be interoperable with most lamps in DS2OS Smart

Spaces.

The described mechanism implements a crowdsourced convergence of context models.

As the context models are the abstract interfaces of DS2OS services, it implements a

convergence of abstract interfaces at the same time.

The described CMR is self-managing. The automated deployment of DS2OS services

(Sec. 7.2) enables the automated resolving of service dependencies at installation time

(Sec. 7.2.5). Both fosters the modular design of DS2OS services (<R.26>).<R.26>

7.4.4 Crowdsourced Access Group Convergence

The DS2OS access group identifiers (Sec. 7.3.3) are used in the service certificates and

the context models. A ranking of the popularity of access group identifiers can be

made using the above statistics, and evaluating their popularity in service certificates

and context models in the S2Store.

As with the context models, it seems likely that developers of a new context model

will support suitable available access group identifiers as they are known to other

developers and used by their services already. Using the same access group identi-

fiers for similar functionality exposed by different services results in compatibility. It

enhances the probability that a new service is used as it is compatible with a high

amount of existing services. This compatibility enables user to install the new service

in their Smart Spaces. From a user perspective this is highly desired as it reduces the

complexity of the access rights assignment process when existing groups are reused

(Sec. 7.3.3).

7.4.5 Developer Feedback

Via the publicly available statistics, developers get feedback on popular context mo-

dels and on the popularity of their DS2OS services. In addition, error reports are

made available to developers for their applications. By monitoring deployed service

instances, the participating DS2OS sites become a distributed testbed. The testbed

continuously collects debugging information about running services [BJMS12].

The described mechanisms support developers in enhancing their software.

7.5 Life-Cycle of a DS2OS Service

To demonstrate the described functionality of the DS2OS framework, the life-cycle of

a DS2OS service is described at the example of a developer A who develops an orches-

tration service, and a developer B who develops an adaptation service (Sec. 8.3.1).
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The examples show the self-management functionality (<R.3>) from the perspective<R.3>

of developers and users. It simplifies using the S2Store (<R.46>). Fig. 7.4 gives an <R.46>

overview of the presented DS2OS functionality with a focus on the crowdsourcing

elements.

Development

Developer A wants to develop a lightsOff DS2OS service that searches for lamps in

a DS2OS site and switches them off. Such a service could be useful in combination

with a lastOneLeavesTheHouse service that indicates that nobody is in the DS2OS

orchestrated Smart Space anymore.

The developer looks in the S2Store statistics which is the most popular context model

for a lamp and identifies lamp23. She writes her service:

1 import org.ds2os.connector.Connector;

2 import org.ds2os.exceptions.VslException;

3

4 public class LightsOff {

5 private final Connector c;

6

7 public LightsOff () throws VslException {

8 c = new Connector ();

9 c.registerService (" lightsOff", "lightsOff.crt");

10 for (String nextLightInstanceAddress :

11 c.getNodesOfType ("/", ".../ lamp23 ")){

12 c.set(nextLightInstanceAddress +’/isOn/desired ’, 0);

13 }

14

15 public static void main(String [] args) throws VslException {

16 LightsOff mylightsOffInstance = new LightsOff ();

17 }

18 }

Listing 7.3: A DS2OS service that switches all lamps of type lamp23 off.

Listing 7.5 contains the entire code that provides the described functionality using the

VSL. It illustrates how the VSL programming abstraction facilitates the development

of Smart Space services (<R.1>, Ch. 8). <R.1>

The developer creates the service manifest (Sec. 7.2.5) that requests access for the

group lamp23access34 that is used in the lamp23 context model:

1 <lamp23 >

2 <isOn type =".../ isOn42" reader =" lamp23access">

3 0

4 <desired reader =" lamp23access" writer =" lamp23access">

5 0

6 </desired >

7 </isOn >

8 </lamp23 >

Listing 7.4: VSL context model lamp23.

Next, the developer creates the service certificate using her developer key (see Fig. 7.3)

and creates a ZIP container35. Last she uploads the resulting service package to the

S2Store together with the context model of the lightsOff service:

34As expressed with the name, the access group lamp23access arbiters the access to instances of

lamp23.
35When implemented, developer tools will be provided for this process.
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1 <lightsOff >

2 <allOff type ="../ lightsOffSwitch" writer =" lamp23access">

3 0

4 <desired reader =" lamp23access" writer =" lamp23access">

5 0

6 </desired >

7 </allOff >

8 </lightsOff >

Listing 7.5: VSL context model lightsOff.

Listing 7.5 shows that the access rights for the new service are identical to those of

lamp23. This makes sense as the service provides additional functionality for the users

of this context model. In the DS2OS site on the left in Fig. 7.4, an instance of the

lightsOff service is shown.

Developer B wants to develop an adaptation service (VSL Smart Device driver,

Sec. 8.3.1) for a self-made Smart Device “device7 ” that offers different functionality

including a temperature sensor (Sec. 9.6.4). First he creates the context model using

existing context models from the CMR.

The center of Fig. 7.4 graphically shows how the context model for device7 inherits

different existing types that are defined as context models in the CMR and identified

by their modelIDs. The object oriented methods composition (1), and subtyping (2)

are shown as described in Sec. 5.2.

Then developer B develops the corresponding adaptation service, adapt7 as described

in Sec. 8.3.1. He creates the service certificate and the service manifest that link the

adapt7 executable with the context model device7 (3). He includes the security

mechanisms described in Sec. 7.3. Finally he uploads the resulting adapt7 service

package (Sec. 7.2.5) to the S2Store.

At the S2Store

The S2Store receives the service packages and the context models. It verifies both

using the public keys of the developers that are stored in the S2Store. The CMR

validates the context models (Sec. 5.2.14) before storing.

After a successful validation, the service certificates are signed with the S2Store’s

public key. The services and the context models are stored. They can be obtained

from the S2Store now.

Deployment to a DS2OS Site

A user finds the tutorial to build his own device7 in the Internet, builds the device,

and looks for the adaptation service in the S2Store. As the S2Store interface recom-

mends the lightsOff service, the user clicks on install for both services on the SLSM

interface (Sec. 7.6.4).

The SLSM loads the service packages (Sec. 7.2.5) from the S2Store using a HTTP

connection. It verifies the service certificates with the store’s public key that it has

preconfigured. Then it presents the requested accessIDs (Sec. 5.5.1) to the user.

The user allows the access to the lamp23access group for the lightsOff service with

a click. The adapt7 service does not require access permissions. The SLSM sends the
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service certificates and the user’s access rights decision to the SLCA that creates a

locally signed service certificate, and sends it back to the SLSM (Sec. 7.3.3, Fig. 7.3).

The S2Store keeps track of the downloaded services as equired for the crowdsourced

convergence (Sec. 7.4). See (5) in Fig. 7.4.

Starting the new Services

To start the new services, the user simply clicks on the play button next to the

services in his list of installed services in his SLSM user interface (Sec. 7.6.4). The

SLSM applies its placement strategy using the statistics it collected via the NLSMs

from the distributed computing nodes.

It decides to deploy the lightsOff service to the computing node node42. It sends the

service package including the site-local service certificate to the NLSM running on

node42 (Sec. 7.2.4). The adapt7 service is placed on the same node.

The NLSM verifies the integrity of the service certificates with the site’s public key

from its own service certificate. Then it verifies the service manifests with the hash in

the service certificates. Finally it verifies the service executables via the hash values

in the service manifests. Then it starts the lightsOff service and the adapt7 service

via the SHE (Sec. 7.2.3).

The lightsOff service registers at the KA on node42. The KA obtains the context

model lightsOff shown in listing 7.5 via the CMR service (Sec. 6.6.2). It checks

the integrity of the context model36 via the signed hash in the service certificate and

loads it into the local context repository under the address /node42/lightsOff/x as

shown in Fig. 7.4. The same happens for the context model device7 for the adapt7

service. Its context repository gets the address /node42/adapt7/a.

Now both services are running and can be used. Fig. 7.4 shows the situation in the

DS2OS site on the left. For better readability, the details of the VSL as distributed

KAs are not shown (Fig. 7.1). Instead, the VSL is shown from a service’s perspective,

as ambient context overlay with a unified interface.

Running the new Services

During the run time of the services other services can discover the instances by search-

ing for the type “lightsOff” (listing 7.5) for the lightsOff service, and the type

“device7” for the adapt7 services.

As described before, the results of the queries will be “/node42/lightsOff/x”, and

“/node42/adapt7/a” in the example. Other services can invoke the lightsOff service

by calling the VSL function:

1 set /node42/lightsOff/x/allOff/desired 1

After the trigger is set, the lightsOff service searches for lamp23 instances

1 get /search/type /?/.../ lamp23

36The hash is over the self-contained context model that has all dependencies resolved already.

This is done to ensure that a loaded context model (e.g. /derived/boolean) is not manipulated.
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Assuming the instance addresses are /node82/lampAdaptMe7/d, /node82/lampAdaptMe1/p,

/node50/lampAdaptMe6/c, /node47/lampAdaptMe3/w, and /node79/lampAdaptMe5/m

it issues the following commands to switch the lamps off:

1 set /node82/lampAdaptMe7/d/isOn/desired 0

2 set /node82/lampAdaptMe1/p/isOn/desired 0

3 set /node50/lampAdaptMe6/c/isOn/desired 0

4 set /node47/lampAdaptMe3/w/isOn/desired 0

5 set /node79/lampAdaptMe5/m/isOn/desired 0

The autonomic adaptation services reflect the desired value to the reality then (Sec. 8.3.1),

and the lamps are switched off.

The temperature from the device7 can be obtained by issuing:

1 get /node42/adapt7/a/temperature/tempOut

Monitoring

Services are monitored while they run by the NLSM. The SLSM periodically collects

reports from the NLSMs and sends them to the S2Store if the site owner allows this

(Sec. 7.2.6). See Fig. 7.2 and Fig. 7.1.

Other DS2OS sites that are running the services contribute feedback according to

their configuration too. This is shown at the bottom center of Fig. 7.4 (6).

Feedback

Liking the lightsOff service, the user gives a five star rating and a nice comment at the

S2Store via the SLSM interface (Sec. 7.6.4). The user experiences has some problems

using the adapt7 service. Therefore, it gets a four star rating.

Error reports from the distributed DS2OS sites are sent to the developers automati-

cally if the user agrees.

The S2Store receives different information about locally running services from partic-

ipating SLSM instances in distributed Smart Spaces. From all received, the S2Store

computes different statistics about the services, including the most used and liked

context models, access identifiers, and services. The statistics are made available to

users and developers as described in Sec. 7.4.1.

The statistics are symbolically shown on the right of Fig. 7.4. The shown three star

rating of the adapt7 service could follow from a metric that combines different of the

collected feedback values, including the four star user rating given above.

Update

Developer A uploads an update of the lightsOff service to the S2Store. The new

version is automatically detected by the SLSM based on the version number in the

service manifest. Depending on the configuration of the DS2OS Smart Space, the

update is automatically installed as described in Sec. 7.2.4, or the user is notified

about its availability and can install the new version manually.
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7.6 Resulting Properties

This section discusses the properties autonomy, dependability, scalability, and usability

of the presented DS2OS framework.

7.6.1 Autonomy

The S2S service management framework is fully self-managing (<R.3>):<R.3>

• The SLSM applies its optimization strategies autonomously (Sec. 7.2.4).

• The NLSM manages all node-local services autonomously (Sec. 7.2.3).

• The security is self-managing as described in Sec. 7.3.

The user can control the SLSM by installing new services, managing the access rights

of services, and starting and stopping services. For those operations, user interfaces

similar to those shown in Sec. 7.6.4 are sufficient. For more experienced users more ad-

vanced interfaces could be interesting, e.g. for showing the current load of computing

nodes.

7.6.2 Scalability

DS2OS is designed as scalable architecture (<R.50>). It operates fully distributed.<R.50>

The SLSM distributes services to the distributed NLSMs that operate autonomously

(Sec. 7.2.3).

The SLSM caches all locally installed services. This makes it partly independent of

the S2Store similar to the caching strategy of the context models (Sec. 6.6.2).

The SLSM and the SLCA are potential bottlenecks. The load of the SLSM depends

on the amount of NLSMs, and on the optimization strategies it implements. The

hierarchical delegation of management between the SLSM, the NLSM, and the SHE

improves the scalability. The SLCA is only needed for issuing and renewing service

certificates (Sec. 7.3). Its load can be expected to be low.

The S2Store is implemented as a regular web server which makes known optimization

strategies applicable [GJP10].

Via the load balancing strategies that are implemented by the SLSM the scalability

of services can be improved. Services that need lots of resources can be migrated to

computing nodes that offer such resources. The specification of resource requirements

in the service manifests provides a mechanism to communicate such needs.

Via the described mechanisms, DS2OS provides scalability (<R.50>).<R.50>

7.6.3 Dependability

Different features enhance the dependability of DS2OS (<R.30>). The most important<R.30>

ones are:
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• The NLSMs manage all services on their computing node independent of the

availability of other components (Sec. 7.2.3).

• The SLSM uses the type search for discovering NLSMs at run time (Sec. 5.7.2).

The use of the underlying locator-id split (Sec. 5.2.13) makes topology changes

in the VSL transparent to the SLSM and other services.

• The SLSM pulls information from the NLSM, implementing a monitoring of the

state of the VSL.

• The certificate-based authorization works fully distributed. It is independent of

the availability of DS2OS components (Sec. 6.5).

• All services that build the DS2OS framework act autonomously (Sec. 7.6.1).

The previous features enhance the dependability of the DS2OS backbone. Services

are continuously monitored via the NLSMs and the SLSM. This allows to run counter

measurements in case of service failures, e.g. by restarting the failed service. This

dependability of services at run time. The early migration (Sec. 7.2.4) of services

according to the requirements in the service manifest and the optimization strategies

of the SLSM enhance the dependability further. They prevent that computation nodes

get overloaded.

The feedback mechanisms of the hierarchical service management (Sec. 7.4.1) in com-

bination with the validation mechanisms of the VSL (Sec. 5.2.14) are expected to

enhance the quality of service implementations. Such automated mechanisms support

crowdsourced development as they support each developer automatically (<R.48>). <R.48>

The described DS2OS mechanisms enhance the dependability of software orchestrated

Smart Spaces (<R.30>). <R.30>

7.6.4 Usability

As described in Sec. 7.6.1, DS2OS is self-managing. This is necessary to enable real

world use by non experts (<O.4>). Following, a simple end-user interface is presented

that could foster real world deployment of DS2OS Smart Spaces (<R.1>). It shows <R.1>

how the S2Store is simple-to-use (<R.46>).
<R.46>

With the methods that were introduced in this chapter, an interface that is as simple

as the interface of a smartphone can be implemented to control a Smart Space. As

DS2OS is not implemented in its entirety, screenshots of an Apple iPhone running

iOS 7 are used to illustrate a possible user interface for DS2OS.

Fig. 7.5 shows the user interface of iOS 7. The left screenshot shows the local App

manager (Sec. 7.1.1) that is used to browse the App store.

DS2OS can offer such a presentation to browse DS2OS services. Smart Spaces are

more complicated than smartphones. They have (more) service dependencies (Sec. 7.2.5).

Therefore the S2Store interface must take into account, which context is available in

the Smart Space of the current user. The available context models represent which

services are already running in the Smart Space instance. Indirectly it also represents,

which hardware is available (e.g. a lamp).
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Figure 7.5: User interface of iOS7 for browsing Apps from the App store (left), selecting an access

category (center), and granting access rights to Apps (right).

Missing dependencies can often be automatically resolved by installing additional

services that provide the missing context. When this is not possible, e.g. as hardware

is missing, the S2Store interface can propose to users to buy missing hardware, e.g.

controllable lamps. Such proposals could act as an enabler for a Smart Device industry

(Sec. 10.4).

The interface on the left can be used to start and stop services, or to monitor the state

of services within a DS2OS site. For that purpose, a simple play and pause button

could be added. Pressing it would communicate to the SLSM to run a service.

The second screen shows the access rights categories. As described in Sec. 7.3.3, a

similar list can be shown for DS2OS Smart Spaces as the SLSM knows about all

services it deployed to the NLSMs and about their access groups. Next to each

access group the explanatory text from the S2Store can be shown for making users

understand the corresponding right.

The third screen shows the Apps that asked for permission for a certain access group,

and their current access rights. This screen could also show the current expiry dates

of the DS2OS service certificates to inform the user until when the rights are granted

at most (Sec. 7.3.4). A change in the access rights can be reflected to a service as

described in Sec. 7.3.6.

This chapter showed why such a simple interface is sufficient for future Smart Spaces.

As the same interface apparently works on smartphones [vE13], it can be expected

that it is usable by non expert users in Smart Spaces as well (<R.1>, <R.46>).<R.1>

<R.46> The usability from the perspective of a developer was outlined in Sec. 7.5. This entire

thesis is about supporting developers by structuring and facilitating the development

of services that implement pervasive computing scenarios.

7.7 Assessment

In Sec. 4.5 different state of the art pervasive computing middleware was assessed.

The assessment criteria of Sec. 4.5.1 are used in this section to assess the DS2OS

middleware framework. The result of the assessment is shown in table. 4.1.
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7.7.1 Evaluation of DS2OS

The Distributed Smart Space Orchestration System (DS2OS) aims to foster the im-

plementation of pervasive computing in the real world. To reach the goal, it offers

functionality to structure and facilitate the development of pervasive computing ap-

plications at large (<O.0>).

DS2OS is based on the VSL programming abstraction that enables the transparent

coupling of distributed services via context models (Sec. 5.4).

System Design & Architecture

DS2OS consists of

• the self-managing VSL µ-middleware (Ch. 6),

• the S2S service management framework (Sec. 7.2), and

• the S2Store (Sec. 7.2.6) that comprises the CMR (Sec. 5.2.8), a repository for

service executables, and as information exchange platform between developers

and users (Sec. 7.4).

The VSL middleware consists of distributed peers, the Knowledge Agents (KAs). The

KAs use Extensible Markup Language (XML)-Remote Procedure Call (RPC) and

HTTP for communication (Sec. 6.3.2). Via so-called connectors other communication

protocols can be interfaced (Sec. 6.3.3).

The VSL is implemented in Java (Sec. 6.3.1). Java allows the execution of the KAs

on heterogeneous computing hosts.

The VSL is implemented as a system of distributed peers, the KAs. They provide

distributed context repositories and manage context transparently and autonomously

(Sec. 6.4). The VSL provides a vertical organization with horizontal communication

between the distributed KA peers of the middleware (Ch. 5).

Context Management

The VSL implements a hybrid meta model (Sec. 5.2). It consists of self-contained tu-

ples that are logically structured to trees. During the instantiation of context models,

the VSL meta model supports object oriented principles (multi-inheritance). Context

models are represented in the XML markup language.

DS2OS does not differentiate between services (Sec. 5.4). All kinds of services can be

added and removed at run time – including those services that connect Smart Devices

to the VSL (Sec. 6.2, Sec. 8.3.1). DS2OS uses a Context Model Repository (CMR) for

distributing context models. The CMR is open for submissions allowing the dynamic

extension at run time (Sec. 7.2.6).

DS2OS provides crowdsourced convergence mechanisms for context models (Sec. 7.4).

Via the VSL concept Virtual Context, the semantics of the VSL can be extended

dynamically at run time (e.g. with location dependencies, Sec. 5.7.3).

The VSL puts historic context automatically under version control (Sec. 5.3.2).
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Service Management

The KA provide a fixed Application Programming Interface (API) of 13 commands

(Sec. 5.3.1). Using a fixed API is possible as the VSL uses context models as abstract

service interfaces (Sec. 5.4.1).

All DS2OS services communicate over the VSL using its fixed API. This makes all

DS2OS services inherently interface compatible and composable (Sec. 5.4.4).

The VSL supports all forms of inter-process communication. Direct communication is

supported via Virtual Nodes. Message-based-, group-, and generative communication

are supported via regular context nodes (Sec. 5.4.3).

The VSL only provides fundamental context management and inter-service commu-

nication mechanisms including context storage, context routing, access control, and

encryption. In contrast to all related work (Sec. 4.5), the VSL can be dynamically

extended. Functionality can be added at run time in a way that makes it transparent

to services whether a functionality is provided by the VSL or a service. This makes

the VSL a µ-middleware (Sec. 6.2).

DS2OS provides autonomous service-management including the provisioning of ser-

vices from the S2Store to a local Smart Space, service authentication, the placing and

deployment of services on available distributed computing nodes, and resource usage

optimization via service migration (Sec. 7.2.4).

Real World Deployment Support

The VSL and DS2OS are fully distributed and partition tolerant (Sec. 6.3). Context

tupleses are self-contained (Sec. 5.2.4). In contrast to typical ontologies (Sec. 3.9.1),

this allows a fast context processing.

The single central component of DS2OS, the S2Store, is only needed to deploy new

services. It is implemented as web sites which allows applying existing mechanisms to

ensure scalability [GJP10] (7.2.6). In addition, DS2OS sites apply caching for services

and context models making them independent from the S2Store (Sec. 6.6.2). This

makes DS2OS scale. The SLSM and the SLCA could be distributed in a DS2OS site.

As discussed in Sec. 7.6.2, they are designed to scale.

DS2OS provides several security mechanisms that are based on certificates. The

integrity of services and context models can be verified at any point of the life-cycle

of a service [? ], from the developer to the computing node that uses them (Sec. 7.3).

Communication in the Peer-to-Peer (P2P) network is encrypted (Sec. 6.5).

In addition, context models and context values are validated using the VSL type

system (Sec. 5.2.14).

DS2OS supports user-based development with several mechanisms including the fol-

lowing. The VSL programming abstraction, implemented in the KAs, offers a fixed

API of 13 functions (Sec. 5.3). The service interfaces are descriptive (5.4). Context

models support modularization (Sec. 5.2.11). Modularization of services is fostered

via the VSL SOA (Sec. 5.4.4). Bug tracking is facilitated by the automated validation

of context (Sec. 5.2.14), and different feedback mechanisms for developers that the

S2Store offers (Sec. 7.4.1). DS2OS operates autonomously (Sec. 7.6.1).
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7.7.2 Comparison to the Combined Reference Model

The µ-middleware property of the VSL (Sec. 6.2) results in a design of DS2OS that is

fundamentally different to the designs of the state of the art. The pervasive compu-

ting middleware that was assessed in Sec. 4.5 could be represented by the combined

reference architecture that is shown in Fig. 4.3.

The combined reference model from Sec. 4.5 is unsuitable for DS2OS as its VSL

middleware part only contains basic functionality (µ-middleware). Therefore the func-

tionality that is shown in Fig. 4.3 is transferred to the model of the DS2OS architecture

that is shown in Fig. 7.6. For comparability, the numbers, the terms, and the colors

are identical in the two figures.
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Figure 7.6: The architecture of DS2OS using the components, colors, and numbers from the combined

reference architecture in Fig. 4.3 for comparison.

Following the µ-middleware-based DS2OS model is presented. Differences to the

combined reference architecture are discussed (Fig. 4.3).

Context Management

The VSL middleware on the left of Fig. 7.6 provides the functionality for context

storage (2), context dissemination (3), and context routing (3) (Ch. 5, Ch. 6). For

deploying context models from the CMR to a DS2OS site, the CMR service is used

(Sec. 6.6.2).

In addition to the functionality that is typically offered by a context-provisioning

middleware, the VSL provides the functionality for service discovery (1) (Sec. 6.7),

and service composition (1) (Sec. 5.4.3).

The service discovery (4) is identical to the context discovery (3) as the VSL uses

context models a abstract service interfaces (Sec. 5.4.1). The context modeling (2)

is moved into the S2Store (Sec. 5.2.8). Service composition is implemented by using

the VSL for inter-service communication (Sec. 5.4). The CMR acts as directory for

abstract service interfaces that can be used for composition (Sec. 7.5).
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Service Management

The service management functionality is distributed. The basis is a component that

implements an additional middleware layer, the SHE (Sec. 7.2.2). Besides the VSL,

the DS2OS framework participates in service composition. The service certificates in

the S2Store contain the access groups that are distributed over the S2Store (Sec. 7.2.5).

They define which services can couple (Sec. 5.5).

The functionality for service hand-off (1), and service migration (1) are handled co-

operatively by the SLSM and the NLSMs services (Sec. 7.2.4).

Service monitoring (1) is done by the NLSMs and propagated to the SLSM, and the

S2Store (Fig. 7.2, Sec. 7.2.3).

The service repository (1) is in the S2Store. The SLSM acts as local repository for all

installed services of a DS2OS site (Sec. 7.2.4).

Additional Functionality

The functionality for context reasoning (2) (Sec. 5.6.6), context aggregation (2), and

context collection (2) is moved from the middleware in the combined reference model

into DS2OS services in Fig. 7.6 (Ch. 8).

All DS2OS services are context producer (5) and context consumer (6) as context is

used for inter-service communication (Sec. 5.4.1).

Potential service support functionality (4) is moved into DS2OS services. This includes

services that extend the semantics of the VSL (Sec. 5.7.3).

7.8 Chapter Conclusion

The DS2OS framework implements distributed service management. Sec. 7.5 summa-

rizes the major functionality at the example of a service life cycle.

The VSL is mainly a context-provisioning middleware. DS2OS shows how it can be

used to implement most of the functionality provided by the assessed service managing

middleware (Sec. 4.5). See Sec. 7.7.

DS2OS illustrates how the µ-middleware property of the VSL allows transparent ex-

tension. The VSL can be extended with services to provide the functionality of the

state-of-the-art pervasive computing middleware.

The chapter shows how the VSL programming abstraction facilitates the creation of

a distributed service management framework. Though the described services provide

complex functionality (Sec. 7.2), the implementation of each is typically a few hundred

lines of code (listing 7.5).

Such code compactification is only enabled by the use of the VSL programming ab-

straction that allows developers to focus on the logic while the VSL manages the state

and the context exchange (Sec. 5.6.5).

Besides demonstrating the use of the VSL programming abstraction, DS2OS provides

relevant functionality for real world deployment of pervasive computing. As described
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in Sec. 7.6, the presented solution is fully autonomous (Sec. 7.6.1), provides security

(Sec. 7.3), scalability (Sec. 7.6.2), and dependability (Sec. 7.6.3).

It supports strong mobility of services, and it supports request forwarding via proxies

resulting in seamless context delivery from the perspective of a context consumer

(Sec. 7.2.4).

The introduced collaborative access groups and the convergence mechanism for con-

text models, services, and access groups are probably novel as they could not be found

in literature (Sec. 7.3.3, Sec. 7.4).

The collaborative convergence mechanisms Sec. 7.4) complement the collaborative

standardization that was presented in Sec. 5.6.4. The added metrics support the

convergence. It is fundamentally important to provide portability via convergence of

abstract interfaces.

Without a convergence of the context model (abstract service interfaces) the hetero-

geneity of Smart Devices is only lifted up to a higher layer of abstraction as discussed

in Sec. 5.6.4.

Sec. 7.6.4 gives an impression how the end-user interface of a DS2OS Smart Space may

look like in the future. This chapter showed how DS2OS hides the complexity from

the end-user. As the same interfaces proved their usability on smartphones [vE13], it

is likely that such interfaces make pervasive computing usable in the real world.

Another outcome of the chapter is that the VSL programming abstraction simpli-

fies the development of complex services for Smart Spaces significantly. This can

be expected to enhance the dependability of future DS2OS operated Smart Spaces

(<R.30>). The dependability includes security (<R.49>, Sec. 7.3).

The presented DS2OS framework provides the technical basis for an App economy

for Smart Space (table 3.4). The App economy for smartphones that implemented

real world ubiquity of mobile computing. DS2OS shows that a similar concept is

possible despite the increased complexity of Smart Spaces compared to smartphones

(Sec. 3.10.9).
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8. Smart Space Services

A programming language is low level when its programs require

attention to the irrelevant.

Epigrams on programming [Per82], Alan Perlis, American computer

scientist, (1922 - 1990), 1st Turing award winner 1966.

Short Summary This chapter demonstrates how the Virtual State Layer (VSL) pro-

gramming abstraction facilitates the implementation of services. Implementations of

six relevant service classes demonstrate the practical use of the VSL programming

abstraction.

As additional structuring element for Java services, a service template is introduced.

It is shown how the VSL abstraction allows automated integration of Smart Devices,

automated correlation of context on different levels of abstraction, remote access,

generic user interfaces, and the implementation of complex scenarios using simple-

to-configure Event-Condition-Action (ECA) rules.

Key Results The VSL programming abstraction structures and facilitates the creation

of services for Smart Spaces.

Smart Devices can automatically be integrated into VSL operated Smart Spaces.

Cascaded services can be used for transparently connecting context on different levels

of abstraction.

Remote access with full local control can be implemented using the VSL coupling

and security mechanisms.

The VSL abstraction enables the use of a single generic interface for accessing all

functionality in a software orchestrated Smart Space.

Using the VSL with the presented mechanisms enables the implementation of complex

pervasive computing scenarios with the simple mechanism ECA rules.

Key Contributions A concept for automated integration of new Smart Devices into

a software orchestrated Smart Space is introduced. It includes automated context

model generation, and collaborative creation of adaptation services.
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An architecture for automated creation of context on different levels of abstraction

is introduced.

A fully transparent service coupling mechanism between Smart Spaces that gives

local control about the remote access is introduced.

An interface with multi-user support that can be used to access all functionality

within a Smart Space in a uniform way is introduced. The VSL architecture enables

offering such an interface that can be used by all Smart Space services as it can be

customized.

Building blocks that enable the implementation of complex pervasive computing

scenarios with simple ECA rules are introduced.

Challenges Addressed <R.1> Simplicity-to-use, <R.2> Multi-user support, <R.4>

User participation, <R.9> Information loss prevention, <R.23> Dynamic extensibil-

ity, <R.26> Modularization support, <R.30> Dependability, <R.37> Service state-

lessness, <R.43> Dynamic extensibility, <R.47> Emulator support, <R.49> Security-

by-design, <R.50> Scalability.

Summary This chapter shows how the VSL programming abstraction facilitates the

implementation of diverse classes of services in real world scenarios.

The chapter starts with the introduction of a service template that can be used

to structure the implementation of Distributed Smart Space Orchestration System

(DS2OS) services. It shows the practical use of the VSL programming abstraction

for implementing services in Java.

Then examples from six different service classes are introduced to illustrate the sup-

port for diverse scenarios that is provided by the VSL.

It is shown how the connection of Smart Device to the VSL is supported by adaptation

services. In addition, it is shown how their modular design enables a crowdsourced

creation of drivers for formerly unsupported hardware.

At the example of an advanced reasoning service it is shown how the VSL supports

the creation of context on different levels of abstraction, and how this facilitates the

development of service and enhances their inter-operability.

The full encapsulation of services behind their abstract service interfaces (context

models) enables the creation of transparent emulators. This is introduced.

The connection of two DS2OS Smart Spaces is introduced.

A generic user interface that can be used for all services in a DS2OS space is pre-

sented.

Finally it is shown how the use of a descriptive abstraction fosters the implementation

of complex functionality without programming by parameterizing ECA rules.
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8.1 Introduction

The Virtual State Layer (VSL) programming abstraction uses context models to struc-

ture the interaction between Smart Space services. The mandatory use of a structured

interface helps structuring services. In Sec. 5.6.5 a separation of service logic from

service state was proposed. It helps facilitating services further as it allows developers

to focus on the logic of the pervasive computing scenarios they have in mind while

the VSL handles the necessary context storage and context brokering functionality.

The Distributed Smart Space Orchestration System (DS2OS) provides mechanisms

for managing services within a Smart Space (Smart Space Service management (S2S)),

and to distribute services to Smart Spaces (Smart Space Store (S2Store)). It provides

an infrastructure for crowdsourced development (Sec. 7.4).

This chapter introduces best practices in DS2OS service development, and several

example services that are relevant for real world deployment (<O.4>). First a service

template is introduced that provides programmers with a structure for modulariz-

ing their services. Then a classification of Smart Space services is given. It helps

modularizing Smart Space functionality into different services.

The service classification is illustrated at the example of different services that show

how the VSL programming abstraction facilitates the creation of applications with

diverse functionality. As the VSL fosters a Service Oriented Architecture (SOA)

(Sec. 5.4.4), an example for implementing complex services via service mash ups is

given. The example shows how the use of a descriptive interface (context models)

enables the use of the simple mechanism Event-Condition-Action (ECA) (Sec. 3.6.4)

to implement complex functionality.

8.2 Wiring and Logic

The VSL programming abstraction offers two mechanisms for service coupling:

• Subscriptions.

• Virtual Nodes.

Both are handled via callbacks. The abstract interface of the subscription callback is

shown in listing 5.3. The abstract interface of the Virtual Node callback is shown in

listing 5.5.

The context model of a service can be compared to the header file in the C program-

ming language. It provides the abstract service interface.

The next functionality a VSL service needs is the initialization of the service. It

consists of registering at a Knowledge Agent (KA) and registering the callbacks.

The third functional part of a DS2OS service is the application logic.

Fig. 8.1 proposes a modularization of program code into the functional areas described

above. The connector provides the Java interface to the VSL. See listing 6.1.

The ServiceWiring.java class is intended to contain the initialization functionality

described above (listing 8.1). It calls the connector method to register the service,

and it registers the callbacks. The body of the callbacks points to the ServiceHan-

dler.java class that contains the application logic (listing 8.2).
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Figure 8.1: The service template that was used for the user study.

Greet and Tickle Service

The aim of this chapter is illustrating the practical use of the VSL programming

abstraction. Therefore an example is shown.

The presented service is called greet and tickle since it offers this functionality. It in-

troduces developers to the VSL Application Programming Interface (API) (Sec. 5.3.1).

The service offers the following context nodes:

1 <demoService type ="/ services/template/demoService ,/basic/container ,/

system/service" version ="0" timeStamp ="2014 -02 -24 14:19:02.653"

access ="rw">

2 <greet type ="/ basic/text ,/ system/virtualNode" version ="0"

timeStamp ="2014 -02 -24 14:19:02.688" access ="rw" />

3 <isLaughing type ="/ derived/boolean ,/basic/number" version ="1"

timeStamp ="2014 -02 -24 14:19:02.878" access ="rw" />

4 <tickle type ="/ derived/boolean ,/basic/number" version ="0"

timeStamp ="2014 -02 -24 14:19:02.705" access ="rw" />

5 </demoService >

Setting the Virtual Node greet node by issuing set greet Marc-Oliver, the Java

console outputs “Hi Marc-Oliver!”. Using Virtual Subtrees (set greet/Marc-Oliver

VSL) two greetings are returned in the Java console:

1 Hi Marc -Oliver!

2 Hi VSL!

Calling a get on the Virtual Subtree returns the value in the VSL console37:

1 system@agent_mop: /agent_mop/demoService % get greet/Marc -Oliver

2 Hi Marc -Oliver!

Setting the tickle node, the service begins laughing in the Java console as specified

in the notification callback (lines 22-35 in listing 8.2):

1 HaHaHaHa ...

2 HaHaHaHa ...

3 HaHaHaHa ...

4 HaHaHaHa ...

5 HaHaHaHa ...

6 HaHaHaHa ...

37The VSL console is like a shell. It is implemented as VSL service and returns the answers to the

VSL to the user instead of processing it.
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7 HaHaHaHa ...

8 HaHaHaHa ...

9 HaHaHaHa ...

10 HaHaHaHa ...

While it is laughing, the context node isLaughing returns 1 (TRUE). The rest of the

time it returns 0 (FALSE) in the VSL shell:

1 system@agent_mop: /agent_mop/demoService % set tickle 1

2 Setting data ...

3 system@agent_mop: /agent_mop/demoService % get isLaughing/value

4 1

5 system@agent_mop: /agent_mop/demoService % get isLaughing/value

6 0

With the described functionality, the greet and tickle service gives an introduction

into VSL programming. It introduces the concepts subscriptions, Virtual Context,

and regular context node access. In addition it shows how to register at a KA.

Listing 8.1 shows the wiring part of the service. Lines 2-11 register the service at the

KA. Lines 13-22 register a notification callback on the context node tickle. Lines

24-30 are a helper function that extracts the suffix of a Virtual Node address in the

Virtual Node callback (Sec. 5.4.2). Lines 32-48 register the Virtual Node callback on

the context node greet. The rest of the code starts the service.

1 public class ServiceTemplate {

2 public ServiceTemplate () {

3 try {

4 c = new Connector ();

5 c.registerService(myServiceIdentifier ,

myServiceCertificate);

6 myKnowledgeRoot = c.getKORSubtree ();

7 h = new ServiceTemplateHandler(c, myKnowledgeRoot);

8 } catch (Exception e) {

9 e.printStackTrace ();

10 }

11 }

12

13 public void registerSubscriptions () throws VslException {

14 c.subscribe(myKnowledgeRoot + "/ tickle", new ISubscriber () {

15 @Override

16 public void notificationCallback(String address) {

17 if (c.get(myKnowledgeRoot + "/ tickle/value").equals

("1")) {

18 h.tickleHandler ();

19 }

20 }

21 });

22 }

23

24 private String getSuffix(String addressPrefix , String

fullAddress) {

25 String suffix = "";

26 if (addressPrefix.length () < fullAddress.length ()) {

27 suffix = fullAddress.substring(addressPrefix.length ());

28 }

29 return suffix;

30 }

31

32 public void registerVirtualNodeHandlers () throws VslException {
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33 c.registerVirtualNode(myKnowledgeRoot + "/greet", new

IVirtualNodeHandler () {

34 @Override

35 public void set(String address , String value , String

writerID) {

36 String suffix = getSuffix(myKnowledgeRoot + "/greet

/", address);

37 if (! suffix.isEmpty ()) {

38 h.greetConsole(suffix);

39 }

40 h.greetConsole(value);

41 }

42

43 @Override

44 public String get(String address , String readerID) {

45 return h.greetBack(getSuffix(myKnowledgeRoot + "/

greet/", address));

46 }

47 });

48 }

49

50 public void shutdown () {

51 LOGGER.info(" Shutting down ...");

52 c.shutdown ();

53 }

54

55 public static void main(String [] args) {

56 ServiceTemplate s = new ServiceTemplate ();

57 try {

58 s.registerSubscriptions ();

59 s.registerVirtualNodeHandlers ();

60 } catch (VslException e1) {

61 LOGGER.error("We caught an error: {}", e1.

getLocalizedMessage ());

62 e1.printStackTrace ();

63 }

64 // We will just wait here until the user sends us a "q" [

return]

65 [...]

66 s.shutdown ();

67 }

68 }

Listing 8.1: The ”wiring” of the greet and tickle service.

Listing 8.2 shows the application logic of the greet and tickle service.

Lines 2-6 collect a link to the connector and the root node of the service in the context

repository of the KA (Sec. 5.3.1). Both are passed from the wiring for simplifying

the access in the logic class. Line 5 initializes the isLaughing context node.

The Virtual Node handlers in lines 8-14 directly implement the intended logic that

does not require further VSL interaction as the parameters are extracted in the wiring

class (lines 32-48 in listing 8.1).

Lines 16-19 implement the logic behind the notification callback. They start the

thread that is implemented in lines 22-35. The tickle thread sets the context node

isLaughing to 1. Then it does the laughing as shown above (listing 8.2). When it is

done, it sets the context node isLaughing to 0.

1 public class ServiceTemplateHandler implements Runnable {
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2 public ServiceTemplateHandler(Connector c, String

myKnowledgeRoot) throws VslException {

3 this.c = c;

4 this.myKnowledgeRoot = myKnowledgeRoot;

5 c.set(myKnowledgeRoot + "/ isLaughing", "0");

6 }

7

8 public String greetBack(String name) {

9 return "Hi " + name + "!";

10 }

11

12 public void greetConsole(String name) {

13 System.out.println ("Hi " + name + "!");

14 }

15

16 public void tickleHandler () throws InterruptedException ,

AgentCommunicationException ,

17 AgentErrorException {

18 new Thread(this).start();

19 }

20

21 @Override

22 public void run() {

23 try {

24 c.set(myKnowledgeRoot + "/ isLaughing", "1");

25 c.set(myKnowledgeRoot + "/ tickle", "0");

26 for (int i = 10; i > 0; i--) {

27 System.out.println (" HaHaHaHa ...");

28 Thread.sleep (1000);

29 }

30 c.set(myKnowledgeRoot + "/ isLaughing", "0");

31 } catch (Exception e) {

32 LOGGER.error(e.getLocalizedMessage ());

33 e.printStackTrace ();

34 }

35 }

36 }

Listing 8.2: The logic of the greet and tickle service.

The greet and tickle service gives an impression how the VSL programming abstrac-

tion is practically used. Via the transparency that the VSL provides (Sec. 5.6.1),

implementing functionality by mashing up distributed services works the same way.

The VSL makes the distribution transparent.

The only functionality not shown yet is the search. It can be invoked as described in

Sec. 5.7.2. Running the command in the VSL shell returns:

1 system@agent_mop: /agent_mop % get /search/type /?/ services/template/

demoService

2 Result for type /services/template/demoService in address /

3 1 /agent_mop/demoService

The Java connector function (Sec. 6.3.3) returns a Java list. The returned addresses

are the unique addresses of the context nodes of the type /services/template/de-

moService. They can directly be used in the get and set methods to retrieve and

change context nodes.

Access rights are directly set in the context model and the service certificate (Sec. 5.5).

Therefore this section presented all necessary knowledge about the VSL programming

abstraction from the point of view of a developer.
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The two code listings show how the separation between wiring and application logic

provides additional structure and facilitates the software development.

8.3 Service Classes

To illustrate the practical use of the VSL programming abstraction, example services

of the following functionality classes are introduced:

• Adaptation services connect Smart Devices to the VSL.

• Advanced Reasoning Services (ARSs) infer new context from existing VSL con-

text.

• Emulator services emulate the behavior of a service, e.g. an adaptation service

that interfaces a Smart Device.

• Remote Access Services (RASs) provide access to functionality in a remote

DS2OS site.

• User interface services provide a User Interface (UI) for DS2OS services.

• Primary context providers extend the semantics that can be used to identify

context nodes.

The VSL programming abstraction does not differentiate between service classes. All

services are equal. When using the VSL, a differentiation between functionality hap-

pens only based on a service’s context model (=abstract service interface) (Sec. 5.2.9,

e.g. lamp23).

The VSL programming abstraction fosters modularization (Sec. 5.4.4). The identified

classes can be used as guideline for programmers to separate functionality into different

services to foster reuse (Sec. 8.4, Sec. 7.4.3).

An example for modularization is given next with the adaptation services. One service

contains the basic reflection of low-level state between Smart Devices and the VSL,

and the other part contains the logic that is needed to create higher-level context.

8.3.1 Adaptation Services

Control of an undertaking consists of seeing that everything is

being carried out in accordance with the plan which has been

adapted, the orders which have been given, and the principles

which have been laid down.

Henri Fayol, French mining engineer, 1841-1925

Connecting Smart Devices to the VSL is a fundamental requirement to implement

Smart Space Orchestration with DS2OS (Sec. 2.4.2). Sec. 3.3.3 discussed that the

Smart Devices heterogeneity is best bridged in-the-middle between the orchestration

service and the Smart Device.
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As problem transparent loss of information was identified. Sec. 5.2.15 and Sec. 5.6.6

showed how such a loss can be prevented by offering different levels of abstraction of

context through the VSL. Sec. 8.3.2 shows an example.

The encapsulation of services that is provided by the VSL (Sec. 5.4.4) requires so-

called adaptation services that connect Smart Device with the VSL to be autono-

mous. Sec. 3.7 introduced a structure for the autonomic management of entities. The

Monitor-Analyze-Plan-Execute-Knowledge (MAPE-K) structure is used to implement

a generic adaptation service. The presented generic adaptation service can be used as

foundation for creating adaptation services for Smart Devices.
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Figure 8.2: Embedding of adaptation services in the DS2OS architecture.

Fig. 8.2 shows a DS2OS Smart Space topology with the VSL in the center. The

domain marked by (1) identifies the Smart Devices in form of sensors and actuators.

Domain (2) is a device-specific protocol domain (Sec. 3.2). As described in Sec. 3.3.5,

Smart Devices often offer gateways towards the Internet (e.g. for remote access via

smartphones). Such a gateway is shown as (2a) on the left.

The protocol that is offered by such a vendor-gateway can be diverse again (2). Some-

times it can be necessary to tunnel it (3) to the computing node running the corre-

sponding adaptation service. An example for such a tunnel is running a device-specific

communication protocol over a standard technology such as Internet Protocol (IP).

The communication with the device ends at the adaptation service (4). It implements

the conversion between the proprietary information exchange with a Smart Device

and context model that represents the information of the device in the VSL. The

adaptation is bidirectional. Changes on the device are reflected into the VSL and

changes in the VSL are reflected on the device via the adaptation service.

To get informed about changes in the VSL, an adaptation service can for instance

register for notifications on the root node of its context model, or offer Virtual Nodes

(Sec. 8.2).

Direct interaction between orchestration services and Smart Devices does not happen.

The communication always goes through the adaptation service. This allows the

adaptation service to arbiter the device access (Sec. 3.3). The arbitration is not

limited to pure serialization of parallel device access from different services. By using

regular context nodes such access is automatically handled by the VSL. It can also

include applying logic such as “fulfilling the change request gradually saves lots of
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energy”, or “from the previous changes it can be expected that this change request is

undone very soon”.

The upper right of Fig. 8.2 shows an example operation. The real world phenomenon

“irradiance” is measured by a sensor as 3.24V via a photo sensor. This information is

encoded in a communication protocol and sent-to or pulled-by an adaptation service.

The adaptation service contains logic to reverse the transformation from the real world

phenomenon into a measured sample. Ideally it can reconstruct the phenomenon

which is an irradiance of 120 W
m2 in the example.

As described in the Sections 5.2.15, 5.6.6, and 8.3.2, it can also store the 3.24V and

another service can apply the transformation from 3.24V to 120 W
m2 . For minimizing

the information loss (<R.9>) it should store the 3.24V as additional context in the

VSL in any case (Sec. 5.2.15). See (6) in Fig. 8.3.

A Generic Adaptation Service

Fig. 8.3 shows details of a possible architecture of an adaptation service. The center

of the architecture (4) is the MAPE-K loop (Sec. 3.7).

The plan module (P) decides how changes in the VSL should be reflected to the Smart

Device. It contains the decision logic. The execute module (E) sends the commands

that reflect the decision of the planner to the Smart Device.

The monitor module (M) receives or collects information from the Smart Device.

The analyze module (A) transforms the information from the Smart Device into VSL

context.
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Figure 8.3: Architecture of a Generic Smart Gateway.

To establish a feedback loop between a service that wants a change, and the autono-

mous adaptation service, additional context nodes are added to the context models

of a service that provides autonomous adaptation. This use of context models is in-

dependent of the functionality provided by the VSL programming abstraction. The

additional nodes are handled like any other VSL node. Their semantic comes with

the use in services.

1 <timer1 type ="/ ilab/triggerTimer ,/ilab/timer ,/basic/number" version

="0"

2 timeStamp ="2014 -02 -25 16:50:42.884" access ="r">

3 <desired type ="/ ilab/timer ,/basic/number" version ="0"

4 timeStamp ="2014 -02 -25 16:50:42.941" access ="rw" />

5 </timer1 >

Listing 8.3: A context node with a desired subnode.
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Listing 8.3 shows the instance of a context nodes that has a desired subnode. The

field access shows that /timer1 is read-only. It contains the current state of the

timer. The /timer1/desired node can be written. It contains the state, the timer

should have.

If the /timer1/desired node is different from its parent /timer1, a change request is

issued and the planner (P) gets active. After a change of the state of the Smart Device

that is represented by the context node, the analyzer (A) changes the corresponding

node. This is the node /timer1 in the example. This loop tells the service that

changed the desired node when a change request is reflected. Fig. 9.3 in Sec. 9.3.2

shows the node relationship graphically.

The simplest form of an adaptation service is reflecting VSL changes to the Smart

Device and vice versa without additional reasoning. Such behavior is sufficient if

another service adds the reasoning logic (Sec. 5.6.6). Interfacing the particularities of

a Smart Device protocol is fundamental for interfacing formerly unsupported device.

If an adaptation service with such basic functionality is available over the S2Store,

other developers can develop the reasoning logic and add it via another service (6)

(Sec. 7.4).

The availability of the described basic adaptation is relevant to provide support for

diverse heterogeneous Smart Devices (Sec. 2.4.2). The adaptation has to be done for

each Smart Device that should become usable for Smart Space Orchestration via the

VSL. If a suitable adaptation service is available in the S2Store, it can directly be

used. The selection based on a fingerprint is described below.

The decoupling from the abstract logic facilitates the creation of adaptation services

as described next. In addition, the modularization allows to reuse the additional logic

for multiple adaptation services, e.g. a lamp23 that uses protocol23 and a lamp42 that

uses protocol42.

The functionality of the generic adaptation service is transforming VSL context changes

into commands for a Smart Device and to reflect the state of a Smart Device to the

VSL.

Fig. 8.3 shows the decoupling of the functionality into a generic part (4) that can be

parameterized (7), and a device-specific part (2). The device-specific part is called

protocol adapter (2). Its task is transforming device-specific information into an inter-

mediate format that is used by the Monitor-Analyze-Plan-Execute (MAPE) in (4).

The MAPE takes the intermediate information and transforms it into VSL context via

a simple mapping. In a prototype implementation the parametrization of the MAPE

is a lookup table with regular expressions. Writing a protocol adapter and the entries

of the lookup table is sufficient to enable the generic adaptation service to interface

a new Smart Device. This is expected to facilitate the creation of adaptation services

and thereby the VSL support of diverse Smart Devices (<O.3>, <O.4>).

Automated Smart Device Integration

The fingerprint (3) illustrates another feature that was prototyped: the automatic dis-

covery of new devices. For devices that use a known protocol, the generic adaptation

service can be extended to integrate new devices autonomously.
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When it discovers a new device, it tries to fingerprint it. Via the fingerprint a suitable

configuration for the MAPE of the generic adaptation service can be loaded from the

S2Store, it can be configured, and the new device is usable via the VSL.

Other adaptation services that do not follow the described generic scheme can also be

automatically installed from the S2Store. The fingerprinting service can ask the Site

Local Service Manager (SLSM) to install a certain adaptation service for the newly

discovered device from the store. If the user enables the feature, this can happen fully

automatically. Smart Devices that can be integrated with the described mechanism

do not require manual setup by their buyers besides connecting the device to the

network, the new device discovery service runs in.

Further investigation of this feature is future work.

Automated Context Model Generation

For protocols that have a similar context representation to the VSL this step can be

taken further. Such a protocol is the Simple Network Management Protocol (SNMP)

protocol [Har11]. In case of SNMP, a prototype was implemented that discovers new

SNMP devices, crawls their context model, and creates a VSL context model automa-

tically. It uploads the resulting context model to the VSL for additional modifications

by other developers. The described method generates adaptation services for formerly

unsupported devices automatically. This is possible as the methods of the SNMP

protocol are fixed.

Such automated integration is promising as it allows the automated integration of

formerly unknown devices and their formerly unknown context models into the VSL.

The support of divers Smart Devices is an important requirement for the real world

penetration of pervasive computing (<O.4>).

The investigation of techniques for automated integration of new devices into the VSL

by automatically generating suitable adaptation services is future work.

The presented mechanisms support user-based and crowdsourced development of

adaptation services (<R.4>, <R.48>).<R.4>

<R.48>

8.3.2 Advanced Reasoning Services

One can’t proceed from the informal to the formal by formal

means.

Epigrams on programming [Per82], Alan Perlis, American computer

scientist, (1922 - 1990), 1st Turing award winner 1966.

Looking at the human mind in Sec. 3.5 identified the availability of context on different

levels of abstraction as supportive for humans to plan tasks (<R.25> <R.28>). VSL

subscriptions (Sec. 5.3.2) can be used to couple context representations on different

levels of abstraction with each other. See Fig. 5.6 in Sec. 5.6.6.

A benefit of such coupling is that services become inter-operable on different levels

of abstraction. An example is shown in Fig. 8.4. The service on the left can only
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interface the context sunshine. It could not interact with the shown sensor without

the coupling of a so-called Advanced Reasoning Service (ARS).

Offering context on different levels of abstraction facilitates the development of ser-

vices. In the example, the functionality “is the sun shining?” is transparently pro-

vided. A developer does not have to care about it and can simply use the higher level

context. This simplifies the implementation of the service on the top left. Via DS2OS

it is sufficient that a developer specifies a dependency to the sunshine context model in

the service manifest. The SLSM automatically proposes suitable services to the user

on installation of the service if it has locally unresolved dependencies (Sec. 7.4.3).

Advanced Reasoning Services (ARSs) acquire context from the VSL, reason on it,

and publish new context in the VSL. An example is shown in Fig. 8.4. An adaptation

service gets the measurement of 3.24V and –as it knows the properties of the photo

sensor– inverts the transformation from an irradiance into a current that was done on

the sensor38.
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Figure 8.4: Automatic correlation of different levels of context abstraction via advanced reasoning

services using the VSL programming abstraction.

Using the context from the adaptation service and possibly other context such as

location or other sensor readings (not shown in the figure), the ARS on the top right

infers that it is sunny.

To couple updates of all levels of abstraction in the context representation (context

nodes), the subscription feature of the VSL (Sec. 5.3.2) is used. The ARS subscribes

the VSL context node that stores the value from the adaptation service. When it

changes, the VSL notifies the ARS of the change. The ARS reads the new context

38This process can be modularized so that the adaptation service only stores 3.24V and an ARS

that knows the properties of the sensor transforms the raw data into 120W/m2 as described in

Sec. 8.3.1.
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value, reasons about it, and updates the higher level context accordingly. This imple-

ments a coupling between different levels of abstraction in the context repository as

shown in Fig. 5.6 in Sec. 5.6.6.

The described coupling also works top-down. A change on a higher level of context

abstraction leads to a change of lower level context. If the context node that is

subscribed by the adaptation service (lowest level of abstraction) changes, the service

automatically tries to reflect the change to the actuator (Sec. 8.3.1). That the change

was initiated on a higher level of abstraction is transparent to the adaptation service.

Via the implemented VSL coupling of services over context nodes (Sec. 5.4), this

coupling can be used in a fully transparent way. At the same time, the coupling

can also be looked up by inspecting the subscriber identifier lists of all participating

nodes. This may be of interest for services to know if a context node contains primary

information or if it is derived (Sec. 5.2.15).

For implementing a synchronous coupling, Virtual Context (Sec. 5.4.2) can be used to

chain different advanced reasoning services. In this case, a request on a Virtual Node

on a high level of abstraction automatically leads to subsequent synchronous requests

on the subsequent advanced reasoning services and finally on the adaptation service.

Reasoning Process

Reasoning can be done via different methods [KKR+13, BBH+10] including proba-

bilistic models such as Hidden Markov Models, or Conditional Random Fields [KHC10],

Finite State Machines (FSMs) (Sec. 3.6), rule-based reasoning e.g. with policies (Sec. 3.6.4),

or description logic (Sec. 3.9).

Fig. 8.5 shows different levels of abstraction. They can be coupled via the VSL as

described. The picture in Fig. 8.4 and the formalization in Fig. 8.5 show similar

things. In the picture an adaptation service creates a primitive context. It gets further

reasoned via one or multiple ARSs. The ARSs provide different levels of abstraction.

In the reference model in Fig. 8.5 ARSs are situated in the labeled box at the top.

They provide context on the upper abstraction levels mid-level context to high-level

context.

As described in Sec. 8.3.1, the VSL design allows to implement the steps below the

box too. Depending on what a Smart Device communicates, all steps from the raw

sensor data to the low-level context can be implemented with ARSs.

The coupling of services implies that all steps of abstraction have a representation in

the VSL. Starting the VSL based processing at the raw data solves the problem of

information loss (<R.9>) as more precise data than the raw data is not available for<R.9>

electronic processing [Sha48, Nyq24] (Sec. 5.2.15).

8.3.3 Emulator Services

Sec. 5.6.7 described how the use of context and Virtual Context for information ex-

change between services in VSL Smart Spaces fosters the development and use of

emulators (<R.47>). The section also described that providing emulators can foster<R.47>

Smart Device sales as it enables developers to create orchestration services without
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inference. Adapted from [KKR+13].
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possessing a hardware. The resulting services support provides an incentive for other

users to buy a hardware. Sec. 5.5.6 emphasized the relevance of emulators for testing.

Both benefits of emulators are detailed in this section.

Using context as interface for services has the advantage that service states are limited

by the exposed context nodes and their data types. This helps validating the behavior

of a service as described in Sec. 5.5.6, and it facilitates the creation of emulators for

services.

Everything in DS2OS is a service. Smart Devices are connected via adaptation services

(Sec. 8.3.1) to their virtual representation as instance of their context model in the

VSL. This makes it possible to emulate a Smart Device by interacting with the context

model instance accordingly.

As an emulator service uses the original VSL context model the emulation is fully

transparent to other services.

The possibility to emulate Smart Devices is important for developers as it allows to

develop and test services without using the real hardware. This makes it possible to

emulate the orchestration of Smart Devices without having to buy them [EBDN02].

Emulators foster crowdsourced development as they allow development without hard-

ware investment (<R.48>).<R.48>

Software Development Kits (SDKs) for smartphones typically allow to run Apps in

an emulator in 2014 [App13, Goo]. Using the emulator for testing reduces the de-

velopment time as testing is faster than loading an App on a device first [GR11].

Smart Spaces are more complex than smartphones with their distributed and diverse

Smart Devices (Sec. 3.10). Trying things out and experiencing the effects of actions

are important methods that help humans to learn [PPB+04, Pap05].

Large installations and the interplay of different Smart Devices can be tested with

emulators. As each future Smart Space can be expected to contain different sensing

and actuation possibilities, this is relevant since developers can impossibly have all

possible configurations at hand. Such testing fosters the dependability (<R.30>) and<R.30>

the security (<R.49>) of DS2OS services.
<R.49>

Emulators are required as developer support (<R.1>).
<R.1>

Typical emulated Smart Space environments could be provided as test environments

to developers. Such environments could also be used for automated tests of the func-

tionality of new services before publishing them over the S2Store (Sec. 7.4, Sec. 7.4).

Fig. 8.6 shows an emulator on the monitor in the back. It was developed for a

demonstration of the VSL. A window, a heater, and a personal computer are emulated.

The physical devices in the setup are a light (front left), a light (back on top of the

screen), a fan (back on top of the screen), and a switch that is on the table and hidden

by the people but reflected in the screen below the hand.

The emulation is transparent to DS2OS services. The touch screen in the center runs

the graphical user interface service that is introduced in Sec. 8.3.5. It allows to interact

with all physical and emulated Smart Devices the same way (transparency).

For fostering the support of new device classes, it could be interesting for hardware

manufacturers to provide emulators to their devices in an early stage of the product

development already to have services that can use the new product on the market

already when the product is released. See Sec. 10.4.
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Figure 8.6: A mixed demonstration setup of a DS2OS Smart Space consisting of emulated and real

Smart Devices as shown at Technische Universität München (TUM) Tag der offenen Tür 2011. The

photo shows Deniz Ugurlu in the back, who contibuted in programming the KAs prototype, and

Ursula Eschbach, the public relations manager of the TUM computer science department, in the

front.

8.3.4 Remote Space Access

For sharing sensor data, or other information such as learned optimization strategies

[PNKC13], it might be interesting to connect distributed DS2OS Smart Spaces. This

can be done via a Remote Access Service (RAS).

The design is similar to the one described for service proxies in Sec. 7.2.4. A RAS acts

as proxy for functionality that is available in another Smart Space. It makes remote

functionality locally available in a transparent way.

Functionality is represented by context models in the VSL (Sec. 5.4.1). To provide

context from a remote DS2OS site, a RAS is started in the local DS2OS site and

another instance is started in the remote DS2OS site. Both are connected independent

of the VSL. This can happen via any connection such as a Virtual Private Network

(VPN) tunnel running an Hyper Text Transfer Protocol (HTTP) connection.

Both RASs run as regular DS2OS services which keeps all security properties of DS2OS

intact, including the access rights setting mechanism. The user can dynamically

change the access rights of the RASs as described in Sec. 7.3. This gives local control

over the functionality that can be accessed from the remote site.

Both RASs register the context models of the remote context they want to make

locally available in the VSL. To do so, their own context models contain a list that

allows nodes of any type to be added (Sec. 5.2.10). When a new context model is

registered it is added as new subtree in the list.

Providing the context models allows interfacing the remote functionality locally. For

providing the functionality, both RASs register all context nodes as Virtual Nodes

and forward requests to the remote site via their connection. According to the (dy-

namically changeable) access rights, the remote RAS has in the remote DS2OS site,

a request is carried out. The result is sent back and returned transparently to the
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service that accessed the context of the RAS in its DS2OS site. This results in a

transparent provisioning of remote context within a DS2OS site.

By using the original context models, a RAS is a transparent context provider and

context consumer39. Fig. 7.3 shows a connection between two RASs with the gray

dotted lines.

8.3.5 Web-Based Graphical User Interface

Smart Spaces need User Interfaces (UIs) to enable their users to provide (high-level)

goals to their software orchestrated spaces. The diverse silo-systems that are present in

spaces today (Sec. 3.2) have typically each a different User Interface (UI). Consistent

UIs are preferable to heterogeneous interfaces as they provide better usability [MN90,

Opp02].

The VSL programming abstraction enables the creation of a single UI for all services

within a DS2OS site. Enabler are the multi-inheritance of the VSL meta model

(Sec. 5.2.11) and the rights delegation that is possible via the VSL API (Sec. 5.3.1)

The use of descriptive context as interface to all functionality of a DS2OS Smart Space

allows the representation as state in the interface. The inheritance of all data types

from three basic data types allows to provide a generic interface that can present all

context that is available in the VSL.

Context Representation

The context validation in Sec. 5.2.14 is based on the fact that the restrictions of

all context nodes with values are defined by the basic data types. The UI uses the

same property by providing interaction elements for the three basic data types text,

number, and list. This allows to represent all available VSL context.

The upper context subnodes of the left open context user interface in Fig. 8.7 show

basic renderings that are automatically available as the nodes are of type /basic/num-

ber. The bottom nodes and the nodes in the right context menu have custom render-

ings.

Sec. 5.2.14 proposed the introduction of custom validators that get selected by travers-

ing the inheritance chain from the type with most semantics (left) to the type with

least semantics (right). The UI uses the same mechanism for selecting custom ren-

derers. The interface looks for the first type from the left it finds a renderer for.

The availability of a renderer on a more semantically rich level (left) allows to render

the same value with more semantics as shown with the buttons in Fig. 8.7 that render

context nodes of type isOn.

The custom renderers can be provided via context models over the S2Store. In the

prototype they are based on Hyper Text Markup Language (HTML) and regular ex-

pressions. The intention of this design is that developer additionally provide renderer

for their services in addition to the other data when submitting services to the S2Store

(Sec. 7.5).

39All VSL mechanisms including security and discovery remain regularly working by this approach.
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The ability to use the standard UI for their services frees developers from most of

the work that is involved when developing a UI. The unification facilitates the use for

end-users, and it facilitates the development of DS2OS services (<R.1>). <R.1>

As renderer can be added to the interface service at run time, this implements a

modular (<R.26>), and dynamically extensible (<R.23>) UI. <R.26>

<R.23>

Context Access

The API of the VSL allows to delegate rights to services (Sec. 5.3.1). The UI service

has only basic access rights in its service certificate.

When a user logs-on the rights get extended via the user certificate40. The log-on

process and the temporal rights delegation implement multi-user support (<R.2>). <R.2>

As VSL functionality they implement security-by-design (<R.49>) for the interface
<R.49>

service.

The interface is stateless (<R.37>) as it loads all data on request with the current <R.37>

access rights. Always the newest data is shown according to the current rights that

can be narrow (e.g. not logged on) or broad (e.g. logged on as administrator).

Interface Design

To make the UI for Smart Spaces intuitive, a spatial interface is implemented in this

service. The implementation is based on Open Layers41, an open source JavaScript

library for displaying map data in web browsers. Open Layers supports all major

map providers in the web, Google42, Microsoft43, and OpenStreeMap44. It allows to

display map data, satellite images, and custom overlays.

Fig. 8.7 shows the interface. It is usable like other map services in the web. On the

right, the menu to select the view and the presented data is opened. Currently the

satellite map of the TUM computer science department is shown.

The screenshot shows that the map interface has a custom overlay added. It provides

the floor plan of the building. This allows to locate entities in rooms. Map providers

do not offer spatial information of that granularity in 2014. The interface allows to

load custom images such as scanned floor plans. In a real world deployment users

could also draw their room plans if they do not have professional floor plans from

their architects like in the case of the shown building.

Via the search provider (Sec. 6.6.4), location information is provided for VSL context

nodes. The upper three nodes in the left displayed context UI element show the ge-

olocation of the context node. The uppermost value is the height that is not provided

in the example.

The interface can be used to position context nodes that are symbolized by the markers

on the map. If a user brings a new device or installs a new functionality that has

40In the prototype the user certificates are stored in a central service and protected by a password.

The log-on acquires the user’s certificate from that service and adds it to the UI service.
41http://openlayers.org/
42https://maps.google.com/
43http://www.bing.com/maps/
44http://www.openstreetmap.org/

http://openlayers.org/
https://maps.google.com/
http://www.bing.com/maps/
http://www.openstreetmap.org/
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Figure 8.7: Interface screenshot of the of the map-based UI service.

geolocation properties, a new marker appears on the map and can be positioned via

drag&drop. The interface submits the coordinates of the position the user chooses to

the search provider (Sec. 6.6.4) that stores them so that the position is associated to

the node for all users.
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Figure 8.8: Architecture of the web-based UI service.

Fig. 8.8 shows the architecture of the described UI service. It is implemented as

regular DS2OS service that provides the UI as website. To secure the log-on and

the Smart Space data, the connection is protected via Secure Hyper Text Transfer

Protocol (HTTPS). If no user is logged in, only publicly accessible context nodes can

be browsed on the map (Fig. 8.7).

Using web technology allows diverse devices such as smartphones, tablets, Personal

Computers (PCs), and probably many future devices to access the UI service without

having to install additional software to a web browser. Fig. 8.6 shows the interface

on the touchscreen.
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8.3.6 Primary Context Provider

Primary context providers are a VSL extension for semantic queries (<R.43>). Pri- <R.43>

mary context providers can be retrieved over their modelID. Semantic queries over the

available context information in the VSL knowledge base are an important tool for

implementing advanced reasoning and orchestration functionality [BBH+10, HIM05a,

RCKZ12].

The µ-middleware property of the VSL allows the dynamic extension with additional

primary context providers (Sec. 5.7.3). The location search was presented in Sec. 5.7.2

and Sec. 6.6.3.

Primary context providers extend the /system/searchProvider model for their con-

text model (listing 5.7). They register their root node as Virtual Node and provide an

implementation for the get method as shown in listing 6.4 or listing 8.1 lines 44-46.

Dependency Search Provider

As an example for the extensibility, dependency information between entities can be

added as primary context to the VSL. The BOSS middleware that was presented as

an existing solution in Sec. 4.5.7 provides such dependency information as primary

context. In BOSS, dependency information is represented as a graph. Having such a

graph, a dependency search provider can be added to the VSL at run time as described

above.

The implementation is similar to the implementation of the location search shown in

listing 6.4. Queries can be issued as follows:

1 system@agent_mop: / % get /search/dependencies/agent_mop/lamp32

2 Result for dependencies of node /agent_mop/lamp32

3 1 /agent_mop/powerSupply42

8.4 Complex Functionality via Simple Service Mash

Up

The trigger service that is introduced below is an example how the VSL abstrac-

tion structures and facilitates the implementation of pervasive computing scenarios

(<O.2>) in the real world (<O.4>). The unified transparent context access that is

implemented by the VSL allows the creation of diverse scenarios (<O.3>) over the

borders of the domain silos that exist in 2014 (Sec. 3.3.1, Sec. 6.2) via simple Event-

Condition-Action (ECA) rules.

The presented mechanisms support user-based and crowdsourced development of per-

vasive computing scenarios (<R.4>, <R.48>). <R.4>

<R.48>

8.4.1 Trigger Service

The trigger service implements the evaluation of ECA rules (Sec. 3.6.4). Its context

model has two VSL lists (Sec. 5.2.10). The first list contains the conditions, the second
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list contains the actions. Using lists as data structure allows the dynamic definition

of ECA rules at run time.

To implement the event notification, the trigger service automatically subscribes for

change notifications on all nodes in the condition set.

VSL context nodes are always derived from the basic data types text or number. Their

fixed restrictions enable the validation of the conditions and actions of the trigger

service on submission. This enhances the dependability of the service (<R.30>).<R.30>

The restrictions define the valid range for the right side of a condition argument. For

the following context node instance:

1 <mySpace >

2 <luminosityOutside7 type ="... ,/ basic/number" minimumValue ="0" />

3 </mySpace >

/mySpace/luminosityOutside7/value > 5000 would be a valid condition as the

type of /mySpace/luminosityOutside7 is inherited from /basic/number. /myS-

pace/luminosityOutside7/value == hot would be invalid.

The VSL typing is also applied to check the validity of the actions in advance. The

actions are value assignments in the VSL programming abstraction.

The trigger service provides a simple boolean algebra with the operations not (!),

and (&), or (|), grouping (“(“,”)”) to define the evaluation order, and simple calcu-

lation (+,-,*,/). All described operations can be implemented via graphical direct

manipulation which simplifies the use (<R.1>).<R.1>

The generic DS2OS Graphical User Interface (GUI) can be used to configure triggers

(Fig. 8.7).

For triggering periodic events, the trigger service can be coupled with a timer service.

Such a service is described next.

8.4.2 Timer Service

The timer service implements timer triggers. It can be used for creating periodic

events with the trigger service for instance.

The timer service offers Virtual Nodes that trigger a notification when their event

happens. Usage the timer service is subscribing on a Virtual Node in the service’s

Virtual Subtree and waiting for the notification (Sec. 5.4.2).

An example node is mySpace/timer/periodic/every/seconds/42. On subscription

of the node, the timer service creates a timer and sends a notification to its subscribers

every time the timer is up. When all subscribers unsubscribed the timer is deleted.

Another example is the node mySpace/timer/once/datetime/14/02/2014/13/52/10

that sends a notification on February 14, 2014 at 13:52:10.

The example shows how the Virtual Node can be used to pass parameters. Depending

on the passed parameter, new timers are created in the service. An example for the

asynchronous coupling of the timer service and the trigger service is the sunshine

service that is introduced next.
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8.4.3 Sunshine Service

The VSL programming abstraction enables the implementation of complex behavior

via the mash up of simple services. The sunshine service gives an example.

The sunshine service is an ARS that periodically infers the knowledge if the sun is

shining. It is implemented as parametrization of the trigger service. Table 8.1 shows

the condition and the actions.

condition set

/mySpace/timer/periodic/every/minutes/5

action set

/myAddressSpace/isSunshine =

& /mySpace/irradianceEntrance > 120

& /mySpace/irradianceBackyard > 120

& /mySpace/irradianceRooftop > 120

Table 8.1: Sunshine service implemented with the trigger service.

The service is triggered by the timer service every five minutes. As action it decides

based on the current readings from three preconfigured sensors if the sun is shining

and sets the value of the context node /mySpace/timer/periodic/every/minutes/5

accordingly 45.

A topology view on the example is shown in Fig. 8.2. The sensor on the right next to

the light symbol measures the irradiance, the adaptation service on the gateway (4)

saves the information in the VSL (5). Fig. 8.3 shows the positioning of the sunshine

service as advanced reasoning service (6) on the right.

The result, if the sun is shining, can be used as regular context by other services as

described in Sec. 8.3.2. The sunshine service encapsulates the complexity to determine

if the sun is shining. It offers the new context that is on a higher level of abstraction

than the sensor readings, and the timer.

8.4.4 Event Condition Action

As described in Sec. 3.6.4, ECA rules are a concept that can easily be understood by

humans and that suits to express the logic of context-aware services [GZI10]. With

the presented VSL programming abstraction, the limitations for the use of ECA rules

for implementing complex orchestration workflows are eliminated. See Sec. 3.6.4 for

a list of the identified limitations.

• The lack of context is solved by the fixed function interface of the VSL that

allows to access all context in a uniform way, making all context that a service

has access to retrievable in a transparent uniform way (Sec. 5.3.2).

45Though the value of 120 W/m2 that is used by the World Meteorological Organization to deter-

mine sunshine (http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-104 TECO-2010/

P3 25 Vuerich Italy.pdf) seems too scientific for real world usage, it could be determined by Smart

Spaces users by looking at the current sensor values on a sunny day for instance.

http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-104_TECO-2010/P3_25_Vuerich_Italy.pdf
http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-104_TECO-2010/P3_25_Vuerich_Italy.pdf
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The versioning of the VSL provides historic context using the regular address-

ing scheme (Sec. 5.3.2).

The Virtual Nodes give access to dynamic context that can be created on

demand (Sec. 5.3.4).

• The restriction of not being able to access non-local context is eliminated by

the VSLs location transparency that allows to access context in a uniform way

independent of its storage location (Sec. 5.6.1).

• The dual use of the context models as knowledge description and as abstract

interfaces to services allows to describe and define interactions between ser-

vices by changing states in the VSL (Sec. 5.4.1).

• The complexity of multiple layers of reactive services that interact

with each other is simplified by the strict service encapsulation. It is enforced

by the context model as well-defined interface, and the statelessness of services

(Sec. 5.4.4). The VSL makes it transparent to services if the origin of a fact in

the VSL is generated by another ECA service or any other service such as an

adaptation service. This hides complexity.

As shown on the example of the sunshine service and analyzed in this paragraph, the

VSL programming abstraction allows to implement complex functionality by using

simple mechanisms such as ECA (Sec. 3.6.4). Structuring and facilitating the creation

of services that implement pervasive computing scenarios is a major goal of this work

(<O.0>).

8.5 Chapter Conclusion

The main purpose of this chapter is giving a practical overview on the usability of the

VSL programming abstraction.

The greet and tickle service shows the simplicity of programs that results from using

the VSL. The six service classes were chosen to give an overview on how the VSL

facilitates the development of services from different functional areas. Besides being

examples, the presented services provide fundamental functionality for the implemen-

tation of pervasive computing in the real world (<O.4>).

The modularization of the adaptation service shows how little background in program-

ming is needed to create an adaptation stub that can be used to interface devices that

end-users have in their spaces. The automatic discovery of devices, and the automated

generation of adaptation service are probably novel in the presented way.

The advanced reasoning service example shows how the VSL programming abstraction

fosters the creation and coupling of context on different levels of abstraction. This

facilitates the use in services, and it makes services compatible as the providing of

new context nodes is identical to the process of interface adaption since the context

models of the VSL are its abstract service interfaces.

The emulator service section showed how the VSL programming abstraction fosters

the implementation of emulators. They are important for creative exploring, testing,

and to foster the business with Smart Device hardware.
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The coupling of DS2OS spaces is attractive for sharing functionality such as spe-

cialized devices (e.g. wind sensor), or knowledge (e.g. learned energy consumption

optimization schemes). The remote access service shows how such functionality can

seamlessly be integrated into the VSL. This is enabled by the interface model of the

VSL programming abstraction.

The web-based user interface makes use of the VSL type hierarchy. It provides a

starting point for the relevant problem how user interfaces for future Smart Spaces

can be designed. Offering such a unified interface for all services is probably a novel

approach.

The primary context provider service shows the extensibility of the µ-middleware

design in all functional areas including the core functionality of locating context based

on diverse semantic identifiers. Such functionality cannot be found in the state of the

art (Sec. 4.5).

The mash up finally shows the power of the descriptive abstraction that is provided

by the VSL. It allows to implement complex functionality without programming by

the simple coupling via ECA rules that can be parametrized.

The introduced services illustrate and provide fundamental functionality for future

Smart Spaces. They illustrate the simplification on the process of implementing per-

vasive computing scenarios that is introduced with the VSL programming abstrac-

tion.
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9. Evaluation

There are two ways to write error-free programs; only the third

one works.

Epigrams on programming [Per82], Alan Perlis, American computer

scientist, (1922 - 1990), 1st Turing award winner 1966.

Short Summary The chapter evaluates the Virtual State Layer (VSL) quantitatively

and qualitatively.

The latency of service coupling over the VSL is measured using the two coupling

mechanisms, value change notification and Virtual Context.

The scalability of the VSL is evaluated in a large testbed, and a smaller one that

can be expected to be closer to future real-world deployments. The self-management

overhead of the VSL is evaluated.

A user study is presented that shows the real world usability of the VSL.

Key Results The VSL programming abstraction allows the implementation of service

functionality that is perceived interactive by users. This is the case for simultaneous

access by multiple services at the same time. The VSL implementation scales. The

Knowledge Agent (KA) synchronization mechanism scales and is dependable. The

VSL programming abstraction is simple-to-use in real world. The VSL enables the

implementation of complex pervasive computing scenarios in a structured way within

a short time.

Challenges Addressed <R.1> Simplicity-to-use, <R.3> Self-management, <R.4> User

participation, <R.5> Context-awareness support, <R.40> Meta model with suit-

able properties, <R.29> Simple-to-use context abstraction, <R.30> Dependability,

<R.49> Security-by-design, <R.50> Scalability.
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Summary The chapter evaluates the VSL in different dimensions.

First the hardware setup is introduced (Sec. 9.2). Then the reproducibility of the

measurement results is discussed (Sec. 9.2.2).

The latency of service coupling over the VSL is measured using the two coupling

mechanisms, value change notification and Virtual Context. A first measurement

compares the latency of the two mechanisms for manipulating the state of a physical

Smart Device (Sec. 9.3.3). For obtaining absolute latencies, a second measurement

with an emulator (Sec. 8.3.3) is done (Sec. 9.3.4). Next the effect of different

notification delays is evaluated (Sec. 9.3.5).

The scalability of the VSL is shown in a larger testbed. The first setup measures

latency and throughput of up to 1600 simultaneous requests to one service on one

KA (Sec. 9.4.3). A second measurement gives more details over the range between

one and 226 simultaneous requests to one service on one KA (Sec. 9.4.4).

A last measurement evaluates self-management overhead of the VSL by inspecting

the synchronization of KAs (Sec. 9.5).

A user study is presented to show the real world usability of the VSL (Sec. 9.6). It

is quantitatively (Sec. 9.6.5) and qualitatively evaluated (Sec. 9.6.6). As part of the

regular curriculum at Technische Universität München, the study material teaches

computer science students about Smart Space Orchestration.
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9.1 Introduction

This section evaluates the Virtual State Layer (VSL) in different dimensions.

First the delay of service interaction over the VSL is measured (Sec. 9.3). It is relevant

as pervasive computing scenarios can have timing requirements. The two coupling

mechanisms of the VSL, subscriptions on node value changes, and Virtual Context

are compared. The measurement includes a real world scenario with communication

to a Smart Device, and the interaction with an emulator (Sec. 8.3.3).

Then the scalability of the VSL is measured (Sec. 9.4). A first measurement evaluates

if the VSL implementation can handle a high amount of simultaneous requests (1600

requests) against a single service on a single Knowledge Agent (KA). A second scenario

measures the range between one and 226 simultaneous requests with higher resolution.

As the VSL is designed as Peer-to-Peer (P2P) system, this access pattern is more

likely to happen within future Smart Spaces as the load is expected to be distributed

between different independent KAs with distributed services (Sec. 6.3).

Another measurement evaluates the synchronization behavior of the VSL (Sec. 9.5).

This is important to see which management overhead in traffic and processing the

self-management of the KAs creates. It shows the convergence time of a VSL instance

via self-organization.

To assess the real world usability of the VSL programming abstraction, a user study

is conducted (Sec. 9.6). It aims to confirm the simplicity-to-use, and the real world

usability of the VSL programming abstraction as basis for the proposed distributed

user-based, crowdsourced development (Sec. 7.4).

All tests are implemented as regular Distributed Smart Space Orchestration System

(DS2OS) services. The VSL KAs are not modified.

9.2 Hardware Setup

For comparability of the results, all measurements presented in this chapter were done

in the same testbed. The testbed consists of six so-called isles with six computers per

isle. Each computer is equipped with an Intel Quad Core-i5 2.5Ghz processor, 4GB

of main memory, 128GB solid state disk storage and 1Gbit/s Ethernet interfaces.

To enable user interaction for conducting the user study (Sec. 9.6), each isle is equipped

with monitors and keyboards as shown in Fig. 9.1. Each of the shown monitors

and keyboards can directly control three computers using a Keyboard-Video-Monitor

(KVM) switch. All six computers in an isle are reachable via Secure SHell (SSH) for

remote control.

All participating PCs are connected over switches for the measurements forming one

layer 2 segment. The network interfaces of the computers are configured to the same

Internet Protocol (IP) subnet (Sec. 6.3).

9.2.1 Smart Device

To test the interaction with future Smart Devices (Sec. 3.2.3), a Do-It-Yourself (DIY)

Smart Device based on the Arduino platform [Ban08] is constructed. This Arduino
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DIY Smart Device

PC1

PC2

PC3 PC6

PC5

PC4

Figure 9.1: Setup of one isle for the user study.

Mega 2560 is equipped with an Ethernet shield that allows 100Mbit/s network con-

nections for remote access. See Fig. 9.2.

The Arduino is programmed to allow remote control of all connected peripherals. For

the latency measurements (see Sec. 9.3), two remotely settable timers are implemented

on the device.

Figure 9.2: The Arduino-based Smart Device that is used for some of the measurements.

9.2.2 Reproducibility

In the science community there is ongoing discussion about the reproducibility of

measurement results [BBDR+13].

The following measurements are reproducible. The identical measurements that were

carried out to obtain the shown results are in a smaller scale (less participating hosts,

less iterations) part of the user study (Sec. 9.6).

Eight students confirmed the measured results in four independent teams in late 2013/

early 2014 during the study (Sec. 9.6.4). In a pre-study, six students in three teams

confirmed similar results in summer 2013.

9.2.3 Generalizability of the Results

In DS2OS, Orchestration workflows are implemented by coupling services with each

other. Therefore the latency that is introduced by coupling services pairwise can be

used as building block to compute the latency that can be expected when coupling

services over the VSL. Services are either coupled over a shared KA or over two

connected KAs.

DS2OS KAs are directly connected in an IP subnet (Sec. 9.2). Resulting from this

topology the maximum distance between any two DS2OS services is at most one hop.
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Either the other service runs on the same host (0 hops) and they share the KA, or it

runs on another computing node (1 hop, two connected KAs). At most two KAs are

involved, the KA of the accessing service and that of the accessed service.

Therefore measuring the latencies between two services is representative to a setup

with N services that are connected in a chain (Sec. 5.6.6). N services would only

involve N pairwise service interactions. The results in Fig. 9.5 are thus representative

for the communication of any two services within a DS2OS site.

In the test setup a 1 GBps network is used. The communication delay between two

hosts can be neglected since it is about 8∗102Bit
109Bit s = 8 ∗ 10−7s = 0.8µs for 100 Byte

packet size. DS2OS packets that transport small values have about this size.

As described in Sec. 3.2, the networks within buildings are heterogeneous and have

different characteristics. For a 1 MBps connection the communication delay be-

comes more relevant but is still small: 8∗102Bit
106Bit s = 8 ∗ 10−4s = 0.8ms. For slow

communication lines such as building buses of about 10 KBps (see Sec. 3.2.1) the

communication delay becomes a relevant factor for the overall delay with about
8∗102Bit
104Bit s = 8 ∗ 10−1s = 800ms communication delay.

These values have to be added to the measured delay values for getting comparable

values for topologies where distributed KAs are connected over slower networks. Con-

sidering the technological advance (Sec. 3.2.4) it can be assumed that KAs in future

Smart Spaces will run on Smart Devices that are at least connected over 1MBps.

The peripherals that are connected via adaptation services can be connected over

slower links. This is relevant for the delay towards the Smart Device measured in

Sec. 9.3.3. In that measurement the Arduino DIY device is connected with 100MBps.

9.2.4 Complex Orchestration Scenario

Besides creating the measurement results, the test services that were implemented

for doing the following measurements are an example for a complex orchestration

scenario. They show how the VSL programming abstraction structures and facilitates

such scenarios.

The implementation of each test took only few days including the debugging. All

Java classes that were written are below 300 lines for the latency measurements, and

below 500 lines for the scalability measurements. This shows that VSL services can

implement complex functionality with few Lines Of Codes (LOCs). The experience

with the test shows the practical benefit of the separation of service logic from service

state, and from inter-service communication (Sec. 5.6.5).

Listing 9.1 shows the debug output of the fully automated measurement run for ob-

taining the results in Sec. 9.3.3.

1 grml@pc1 ~% java -jar latencyToDeviceMeasurer.jar

2 07:07:27.355 [I] [DssosGlobals ] Config read from /home/grml/ds2os/config.

txt

3 07:07:27.362 [I] [StreamServer ] Socket bound to /127.0.0.1:16610

4 07:07:27.363 [I] [StreamServer ] Socket bound to /0:0:0:0:0:0:0:1:16610

5 07:07:27.375 [I] [NetInterfaces ] Available interfaces:

6 eth -man (eth -man) @ /fe80 :0:0:0: be5f:f4ff:fe4a :486c%2 /192.168.6.1

7 lo (lo) @ /0:0:0:0:0:0:0:1%1 /127.0.0.1

8
9 07:07:27.375 [I] [NetInterfaces ] Using configured interface: eth -man

10 07:07:27.512 [I] [Connector ] Connector ’system2DeviceMeasure ’ registered
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11 with local agent ’pc6.1’ @ ipv4: /127.0.0.1 ipv6: null , tcp port: 6666

12 07:07:27.513[I] [LatencyToDevice] Collecting 10000 samples.

13 07:07:27.544 [I] [LatencyToDevice] Using /pc6.2/ smartGW/timer0 as timer0.

14 07:07:27.545 [I] [LatencyToDevice] Using /pc6.2/ smartGW/timer1 as timer1.

15 07:07:27.576 [I] [LatencyToDevice] Using /pc6.2/ smartGW/vTimer0 as vTimer0.

16 07:07:27.576 [I] [LatencyToDevice] Using /pc6.2/ smartGW/vTimer1 as vTimer1.

17 Appending log to 1387174047659 _latency2device.log...

Listing 9.1: Console output of the invocation of the latencyToDeviceMeasurer service as example

for a practical use of a DS2OS service

Line 3 and 4 of listing 9.1 show the binding to stream sockets on the IPv4 and IPv6

addresses of the local host that are used for communication with the KA. The lines

9-11 show the binding to the locally running KA on port 6666. Lines 13-16 show the

search results (instance addresses) for the VSL data type /ilab/triggerTimer for

the regular VSL nodes and /ilab/vTimer for the Virtual Nodes.
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9.3 Latency Between Services

Je crois qu’ils font ça pour remplir le temps, tout simplement.

Mais le temps est trop large, il ne se laisse pas remplir. Tout ce

qu’on y plonge s’amollit et s’étire.

Jean-Paul Sartre, French philosopher, (1905-1980),

“La Nausée” (1938)

DS2OS is used to connect services in Smart Spaces. As shown in Sec. 8 and Sec. 9.6,

the VSL programming abstraction facilitates the creation of services for Smart Spaces.

The mechanisms of the VSL introduce delays to the inter-service communication that

is needed to implement pervasive computing scenarios. This delay cannot be prevented

as the implementation of the scenarios without DS2OS is difficult. However, the

measured delays are low enough to implement diverse pervasive computing scenarios

(<O.3>). An implementation of the KAs that focuses on low latency can be expected

to lower the measured delay significantly as our focus in the prototype was not on low

latency.

As shown in Sec. 3.2.1, Building Automation Systems (BASs) typically handle time-

critical applications on the field level, or the automation level. For DS2OS this ap-

proach is recommended too. It results in a coupling of time-critical Smart Devices

using protocols that give timing guarantees.

The VSL can be coupled with activities on the field level by reflecting the actions

happening on that layer into the VSL. This is a typical task for adaptation services

(Sec. 8.3.1). For non time-critical applications it is recommended to handle functio-

nality over the VSL as this enables flexible Smart Space Orchestration (Sec. 2.4.1).

Following, the prototypical implementation of the VSL µ-middleware is evaluated

in different scenarios. The functionality of the VSL is fixed (Sec. 5.3.1). In the

following measurements, the set and get operations of the Application Programming

Interface (API) are tested. They are the basis for inter-service communication over

the VSL. The evaluation of the basic interaction mechanisms makes the results of the

measurements applicable to diverse services that are composed of them.

Use Case

Examples for a time-critical operations are interactive services. A goal of an interac-

tive service is offering users the impression that services are reactive as they respond

within small latency boundaries.

An example is a switch that is pressed by a user to switch a light on. For implementing

Smart Space Orchestration, the physical switch and the light can be coupled with an

adaptation service each. One adaptation service reflects state changes of the switch

into the VSL, the other adaptation service reflects changes in the VSL to the light

(Sec. 8.3.1). Fig. 8.6 shows such a hardware setup at our demo day.

Via Smart Space Orchestration, diverse actions can be linked. The pressing of a hard-

ware button becomes a software event that can be coupled with diverse actions46.

46The following video shows a virtual office demo that connects several actions with a switch using

the VSL: https://youtu.be/jHByqMn6WCE.

https://youtu.be/jHByqMn6WCE
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Using the VSL for coupling real world entities introduces access control (Sec. 5.5).

Via the coupling through the adaptation services VSL access rights are checked au-

tomatically. Only after reasoning about the button-press-event of the switch in an

Advanced Reasoning Service (ARS) (Sec. 8.3.2), certain lamps could be switched on

(Sec. 7.5). In this software-orchestration use case, the latency of the VSL contributes

to the overall delay the user experiences between pressing the switch and seeing the

light.

The results of this measurement show that it is possible to implement Smart Space

Orchestration over the VSL with a delay that appears interactive or responsive to

users. Criteria for such impression are introduced in Sec. 9.3.1.

9.3.1 Assessment Criteria

For being able to assess the measured delay values, it is important to know which

delays are acceptable for users. The answer depends on the previous experiences of

users and the use cases [SP05, EWCS96]. When typing a text on a PC, a delay

up to 100ms is not noticeable. A delay up to 160ms is not noted negatively in the

studies presented in [SP05]. In telesurgery, operations are reported to be well feasible

up to a delay of 500ms [FLC+00]. For loading web sites, a delay of about 600ms is

reported as short in the literature [JSB00]. Delays of more than 2sec are perceived as

non-interactive [EWCS96, SP05].

The authors of [PBSZ13] made a study with the switch scenario, described above

(Sec. 9.3). They report that delays up to 300ms were almost not recognized by the

participants of the study in 2013. Delays from 500ms to 1000ms were recognized but

accepted. Delays above 2200ms were not acceptable for the users.

Summarizing, delays below 100ms can be considered as not noticeable. Delays up to

300ms are still perceived very interactive. Delays from 500ms-1s are tolerable.

In the result plots shown in this chapter the delay range between 100ms and 300ms

is colored for highlighting the ideal delay boundaries.

9.3.2 Setup

Fig. 9.3 shows the setup of this measurement. It consists of two distributed machines

(PC1, PC2). Each machine runs one KA. The KAs span the VSL. On the right, an

Arduino-based Smart Device is shown (Sec. 9.2).

Two timers (timer_0, timer_1) are implemented on the Smart Device. When the set

function of a timer is called, it stores the current time since the start of the Smart

Device in milliseconds. The get function returns the stored time.

Using a Smart Device, this setup goes beyond the pure measurement between services.

The constellation with a Smart Device is chosen as it reflects a typical use case: a

Smart Device is used as output or input for an orchestration workflow in a future

Smart Space. At the same time the communication with a physical device introduces

additional latency. It is relevant for the user-experienced delay (Sec. 9.3) and therefore

measured. Two measurements are done, one with the Smart Device, and one without

it. The second measurement shows the delays of pure service coupling.
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Figure 9.3: Setup of the Latency-Between-Services measurement.

Each host runs an identical instance of a so-called measurement service that does the

measurement (measurer1, measurer2). The shown adaptation service (adaptation,

Fig. 9.3) contains the logic to call the timer functionality of the Smart Device described

before.

The context model of the adaptation service offers three nodes for coupling: vTimer0,

timer1, and timer1/desired. See Fig. 9.3.

timer0 uses a coupling via a Virtual Node (Sec. 5.3.4). Issuing a set on it results

in set of timer0 on the Smart Device. A get request returns the current value of

timer0 by requesting it from the Smart Device.

timer1, and timer1/desired are regular VSL nodes. They are used for service

coupling over subscriptions (Sec. 5.3.2). Listing 8.3 shows an instance of timer1 and

its subnode timer1/desired in the VSL. A change of timer1/desired results in a

notification callback in the adaptation service. The notification callback function calls

the set function for timer1 on the device.

Calling the set function for a timer on the Smart Device returns the new timer value.

The returned value is stored in the context node /timer1 as it reflects the current state

of timer_0 on the Smart Device. The described behavior implements an autonomous

control loop as described in Sec. 8.3.1.

The software setup consists of the following steps:

• The adaptation service registers at KA2.

• The context model smartDevice is instantiated in the context repository of KA2

(Sec. 5.3.1).

• The adaptation service registers a Virtual Node callback on the context node

/timer0 (Sec. 5.3.4).

• The adaptation service registers a notification callback on the context node

/timer1/desired (Sec. 5.3.2).

• Depending on the measurement scenario (see below), measurer1 or measurer2

searches for the location of the context model instance that is identified by the

type smartDevice to get its VSL address.
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• The participating measurement service registers a notification callback on the

context node /timer1.

• The test is run.

In this measurement the delta between setting both timers is of interest (see Fig. 9.5).

It shows the time difference between controlling a device via a Virtual Node (syn-

chronous coupling, timer0) and via the VSL notification mechanism (asynchronous

coupling, timer1). The measured difference is shown as (6)-(1) in Fig. 9.4.

Each test is run 10000 times. Via the registered notification callback the measurement

service is informed when a test round is over and it can start the next one. This is

shown in Fig. 9.4.

Two measurement scenarios are implemented. The first scenario measures the delay

to a Smart Device as described above. The second measurement scenario runs an

emulator (Sec. 8.3.3) of the Smart Device on PC2. The use of an emulator removes

the additional delay that the communication to the Smart Device adds to the two set

calls in the first measurement. In addition it allows to measure the absolute delays

of the two different set calls as the times of the two Personal Computers (PCs) are

synchronized. The Smart Device in the first scenario only allows to measure relative

delays as it has its own time base.

Two runs are done in each scenario. In the first run both services are connected to the

same KA. In the second run the measurement service and the adaptation service run

on different hosts as shown in Fig. 9.3. The difference between the two runs shows

the latency that is added by the introduction of a second KA. The result shows the

latency of coupling services on distributed hosts ( 36ms).

9.3.3 Measurement I: Service - Service - Device

This measurement has two main goals. The first is comparing the latency of the two

VSL coupling mechanisms. The second goal is measuring the time a VSL operation

takes until it returns from the perspective of the measurement service.

Figure 9.4 shows the time-sequence diagram of this scenario. The figure shows the

run where the service and the measurement service are connected to different KAs on

distributed computing hosts. By removing the left KA and connecting the communi-

cation lines, the diagram shows the time-sequence when only one KA is involved.

The delay measurements (1)-(5) are done by the measurement service. The delay

between the two set operations to the Smart Device (6) is measured on the Arduino

and collected by the measurement service with two get requests on /timer0 and

/timer1 of the adaptation service at the start of the time periods (4) and (5).

The measurement is structured into four phases as shown in fig. 9.4 on the right.

Phase I measures the execution delay of a set on the Virtual Node timer0. The set

message of the service is routed via the left KA and the right KA into the Virtual

Node callback of the measurement service. The service callback sets the value on the

device. As shown in Fig. 9.4 in the time span marked with 1 on the left, the set

command on a Virtual Node only returns when the value is set on the device.

Phase II measures the execution delay of a set on the timer1/desired VSL node.

As shown in the diagram, the set command on a regular VSL node returns when
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Figure 9.4: Time-sequence diagram of the Latency-Between-Services measurement.

the value is set on the destination KA (2). The processing continuous asynchronously

coupled. The value change notification of the node timer1/desired is sent to the

measurement service. The measurement service requests the changed value via get

from the KA, sets the timer on the device, and receives the new timer value from the

device. This new value is then stored into the local VSL node timer1.

As the measurement service subscribes the timer1 node, it receives a notification when

the measurement service updated the value. This coupling implements the feedback

loop between the distributed services. It is an example for the intended interaction

with an autonomous adaptation service (Sec. 8.3.1). The sum of the delays (2) and

(3) is the time it takes until the service has the confirmation that the set operation

was executed via the asynchronous coupling. In case of the synchronous coupling this

information is available after the time span (1).

A typical service routine would only wait for time (2), until the set returns as the

measurement services are designed to work autonomously and therefore independent

of the service. If a service developer wants to implement a feedback loop in case of the

asynchronous coupling, it can subscribe the context node that reflects the current state

of an entity as described above. When the autonomic adaptation service (Sec. 3.7)

reflects its changes to the device, it receives the feedback, reflects it to the VSL context

model, and the change requesting service gets informed over its subscription. This

implements a feedback loop between the hardware and the calling service.

In phase III, the Virtual Node coupling is used to query the value of timer0 directly

from the device via executing a get on the node timer0. The measured time (4)

shows the time of this operation.

In phase IV, the regular VSL node that contains the updated value is queried. The

time span (5) shows the latency of this operation.
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Each measurement was executed 10000 times for reducing the impact of outliers,

and for increasing the statistic significance of the sample. Additionally the test was

repeated by four student teams independently with a lower sample size as described

in Sec. 9.2.2. The lower sample size was chosen not to make the students wait too

long for the results as their focus was on the evaluation of the measurement. The

student results confirm the shown plot (Sec. 9.6.4).

Hypothesis

From the design of the VSL mechanisms (Ch. 5) and the time-sequence diagram

(Fig. 9.4) it can be expected that a blocking call of the set command takes longer to

return for a Virtual Node (1) than for a regular VSL node (2) on the caller site (left).

The same applies for the get requests (4), (5).

The reason for the expected higher delay of the access to Virtual Nodes is that it

requires the lookup of the corresponding service, the invocation of the callback through

the connector (Sec. 6.4.3), and the access to the Smart Device.

The call of set/ get on a Virtual Node results in a callback into the measurement

service and from there to the Smart Device. The call of set/ get on a regular node

ends in the destination KA.

It can be expected that the set on the Virtual Node arrives faster on the Smart Device

than the set that the asynchronous notification mechanism of the VSL “(6)-(1)” (time

span (6) - time span (1)). The second measurement scenario (Sec. 9.3.4) measures

the absolute times each set operation takes. The first mechanism only evaluates the

difference between the two mechanisms.

Result

Figure 9.5 shows the delay measurement results for the different delays shown in

Fig. 9.4. The prefix “v” (vget, vset) is used in the label on the x-axis to express that

the operation accessed a Virtual Node.

Explanation of the Result Boxplot

The red boxplots (left) show the delays when both services are coupled over a shared

KA (KA2). The blue boxplots (right) show the delays when both services are coupled

over two different KAs (KA1 and KA2, see Fig. 9.3).

Each boxplot contains 99.9% of the samples within the ends of the two whisker bars

(9990 samples) [WK12]. The dots show the remaining 0.1% outliers (10 samples). The

lower whisker bar shows the first quartile of the measured samples, the box contains

the second and third quartile. The line in the box is the median. The second quartile

is below the median, the third quartile above it. The line is plotted at the median of

the 99.9% used samples. The upper whisker bar contains the fourth quartile.

The red line between two boxplots shows the mean of each measurement. The lower

horizontal line shows the mean of the left boxplot. The upper horizontal line shows

the mean of the right boxplot. The printed value on the bottom is the value of the

left mean rounded to a full number. The rounded mean of the right samples is printed
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Figure 9.5: Delay Measurement Result of the 1st Measurement: Service <-> KA (<-> KA) <->

Service <-> Smart Device.

over the top line. The upended value is the rounded value of the difference between

the mean of the right boxplot and the mean of the left boxplot. The gray number that

is printed upended with a little distance over the upper value is the delta between the

right and the left mean rounded to 2 decimal places.

Interpretation of the Results

The measurement confirms the hypothesis: at the caller, the asynchronous coupling

returns faster for set (2) and get (5) than the synchronous coupling (1), (4). This

means that a single threaded service can continue with its operation sooner in case of

asynchronous coupling.

In the asynchronous coupling case, notifications are only sent periodically by the

KAs. This is done to aggregate all notifications for a receiver for a certain time to

save bandwidth. VSL notifications contain the address that changed and not the value

(Sec, 5.3.2). Therefore, it is not necessary to send out multiple notifications within

a shorter period of time. To obtain a value, a notification receiver will automatically

query the newest value.

For the measurement the notification periodicity was set to 60ms. It can be configured

in the configuration of the KA. The third measurement in Sec. 9.3.5 shows the effect

of configuring different notification delays.

The plots in this chapter, in particular Fig. 9.8, show that the notification mechanism

influences the resulting delays for executing the KA API functions. The time-sequence

diagram (Fig. 9.4) illustrates that when setting a timer on the Smart Device via asyn-

chronous coupling, additional delay occurs compared to the Virtual Node coupling.

The resulting set chain on the regular node contains two notification intervals in the

measured interval (2)+(3).

Interval (2)+(3) in Fig. 9.4 contains all necessary operations in the asynchronous

coupling case until the service on the left knows that the set operation arrived at
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the device. As expected from the time-sequence diagram, the time span (2)+(3) is

significantly longer than (1).

Comparing the set on a Virtual Node with the same functionality implemented over

asynchronous coupling is interesting to compare the different latencies of implement-

ing a feedback loop using the two mechanisms. However, blocking waiting on the

notification in the asynchronous coupling is not good programming style. It is or-

thogonal to the programming methodology of asynchronous coupling of autonomous

services. The caller would typically either assume that the request succeeds and con-

tinue with its operation at the end of (2), or register a notification callback on the

current value of timer1 to get an asynchronous notification as done here.

The last row of Fig. 9.4 shows the difference between triggering two different timers on

the device (Sec. 9.2). The delta value is calculated as the subtraction of the delays (6)

and (1) in Fig. 9.4. This is done to have the resulting delay that would occur when

both set commands would have been executed synchronously. The measurement

service implementation is linear. It only issues the set on timer1/desired, when the

set on timer0 returned (Fig. 9.4). This results in a start delay of (1) for the regular

set operation. For a valid result, the assumption is that the clocks on the sender and

on the smart device run synchronously.

The measurement confirms that with the asynchronous coupling it takes about 111ms

longer until an operation arrives on the destination Smart Device. The plotted shorter

delays in the first quartile can be explained with high values in the delay (1) going

along with regular or fast operations in (2) and (3) until the value is set on the device.

The over-proportional high value of (1) reduces the delta value ((6)-(1)) significantly

in such cases. Looking at the measured samples confirmed this hypothesis.

The differences between the red and the blue boxes show, how much overhead is

added when KA1 is introduced that has to send messages to KA2 which is running

the measurement service. The measured additional delay is around 36ms at 1 GBps

speed of the communication network between the nodes.

A notification delay of above 200ms in the third column ((2)+(3)) indicates that the

operations that happen on the destination KA take more than 100ms so that the

notification interval 100ms after the first notification is missed. This assumption is

supported by the measured delays for get and set operations on the local KA (red).

The operations in the delay phases (2) + (3) are set, notify, get, setting the value

on the device, set, notify. Their expected latencies are shown in Fig. 9.4. The delay

of the notification is measured in Sec. 9.3.5.

The measurement shows that local get and set operations on a VSL node take 35ms

average. The Virtual Node operations take 78ms each. The added delay for a remote

access to another KA is about 36ms.

9.3.4 Measurement II: Service - Service - Device Simulator

Setup Modifications

In the previous measurement the one-way delay of the two set operations cannot be

measured as the clocks on the Smart Device and on the host running the measure-

ment service are not synchronized. Therefore the setup is modified for the second
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measurement scenario by replacing the Smart Device with an emulator that runs on

PC2.

All processes on PC2 have access to the same clock. The time is therefore synchronized

for all services on this machine. For the distributed measurement, where the services

run on distributed machines, the Network Time Protocol (NTP) is used to synchronize

the hosts as shown in Fig. 9.6.

PC2PC1

1

2 6set

set

notify

get

GatewayService KA KA

phase I

phase II

Emulator

NTP

3

…

Virtual Node

Figure 9.6: Time-sequence diagram for confirming the estimated one-way delay.

The goals of this second measurement are to measure the one-way delay that it takes

when a service invokes something in another service, and to find out how much delay

is caused by the communication to the Smart Device.

Hypothesis

All VSL operations that are used in the measurement are symmetric, meaning that

the time until a request reaches its destination should be about half of the time until it

returns at the measurement service ( (1)
2 , (2)+(3)

2 ). A significant change of the measured

latency shown in Fig. 9.5 is not expected by exchanging the Smart Device with the

emulator. The Smart Device is locally connected via Transmission Control Protocol

(TCP) resulting in a low delay (Sec. 9.2.3).

Result

Fig. 9.7 shows the results of the second measurement.

The measured delays for accessing regular VSL nodes are similar to the first measure-

ment (see Fig. 9.5). The access to the Virtual Nodes is about 10ms faster than in the

case with an actual device (Fig. 9.5). This shows that the additional latency that is

introduced by accessing the physical Smart Device (see Sec. 9.2.1) is about 10ms.

On the right two new result columns are added compared to Fig. 9.5. They show the

one-way delay when accessing (set) a Virtual Node (labeled “vset”), and when setting
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Figure 9.7: Delay Measurement Result of the second Measurement: Service <-> KA (<-> KA) <->

Service <-> Smart Device Emulator.

a regular VSL node value. The second measured delay (“set-1w”) includes the set of

the VSL node, the notification, and the retrieval of the node value with a get call.

The one-way set delay for the set on the Virtual Node confirms the hypothesis that

it takes approximately half of the time until the set operation returns to the caller

(1) for reaching the destination. The last row shows that even when using the slower

asynchronous coupling mechanism via the VSL notifications it is possible to provide

a user with good reactivity (Sec. 9.3.1).

The latency that is introduced by the notification mechanism depends on the config-

ured notification interval. In the previous measurements, this interval is set to 60ms

which is the default value. The reason for this choice is explained in Sec. 9.3.5. To

assess the impact of this interval, the following measurement III is done.

9.3.5 Measurement III: NotificationDelay

The difference in communicating a value to a service via a set on a Virtual Node

(denoted as vset) and via a set on a regular VSL node is that in the former case the

value is sent to the service directly while in the latter the service receives a notification

and retrieves the value then. As the service has to retrieve the value, the latency for

the retrieval is always added in the asynchronous case.

In addition to the retrieval time, a notification delay is added in the asynchronous

coupling case. The VSL sends notifications periodically only in fixed intervals. This is

done to save bandwidth and Central Processing Unit (CPU) time (Sec. 9.3.3). During

each interval all notifications are aggregated per user and sent out as aggregated

message. The former saves network bandwidth when many changes are done within

short time which is the case when a parent node is subscribed and many children are

changed. The latter saves bandwidth as the message header has to be sent only once

for all aggregated notifications, and it saves CPU time as only one message has to be

processed at the sender and at the receiver.
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The notification delay depends on the amount of VSL context repository structure

changes, and the periodicity that is configured as notification interval on a KA. The

trade-offs for the notification interval are low latency, when the interval is small, versus

higher saving in bandwidth and CPU time when the interval is big.

To identify the influence of the notification periodicity on the overall delay of a set,

a third measurement is done with different notification delays configured.

Setup Modifications

The setup is identical with measurement II (Sec. 9.3.4). The network delays and the

KA processing delay are known to be around 36ms from the previous measurements

(Fig. 9.5, Fig. 9.7). Therefore only a local measurement is done.

The notification delays in the KA are changed from 10ms to 100ms in steps of 10ms.

Each setting is run 10000 times for collecting samples.

Hypothesis

The lower bound of the result is expected to be around half of the time the set

operation takes to return plus the time it takes to retrieve the value. Taking the

mean values from Fig. 9.7 this sum is 17ms+35ms=52ms.

In addition, a KA has to look up the subscriberIDs in the metadata of the context

node (Sec. 5.2.1), get the callback binding via the connector address of the service

(Sec. 6.4.1), and send the callback call to the connector of the service. The measure-

ment will show how long this approximately takes.

As the measurement distribution should be uniform, adding 10ms of delay is expected

to increase the measured overall average delay around 5ms. Some notification are

expected to be sent without delay. Others are expected to have up to 9.99ms delay.

Result

Fig. 9.8 shows the one-way set delay for different notification delays.

The plotted delays contain the one-way delay for a set request, a notification, the

two-way delay of the get on the node to obtain the value, and the tasks for the

notification that are described in the hypothesis above.

Inside the whiskers 99.9% of the samples are plotted as in the other figures. Each bar

comprises 10000 measurement samples. At 10ms delay that operations take around

125ms. Assuming an equal distribution of the 10000 samples, 5ms can be expected as

average added delay (mean of the probabilities of when an event happens within the

added 10ms interval). Removing the 5ms average delay, the operations take 120ms

without notification delay. Subtracting the 52ms from the hypothesis, 68ms remain.

The 68ms are probably the time it takes the KA to look up the subscribers and send

the notifications.

A 10ms increase of the notification interval leads to an increase of the measured delay

mean of about 5ms. This indicates that the samples are equally distributed. The

growth is almost linear.
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Figure 9.8: Delay measurement result of the third measurement: Service to Service One-Way-Delay

at Different Notification Intervals with one KA.

For 10ms configured notification delay, only 10 outliers are above the 200ms inter-

activity boundary (Sec. 9.3.1). At 100ms configured notification delay, 75% of the

samples are within the 200ms boundary. The mean delay of all shown delays is be-

tween 100ms and 200ms resulting in an interactive user experience. Even the worst

case samples at 100ms notification delay are within the 300ms interactivity boundary

(Sec. 9.3.1).

The step between 50ms and 60ms is exceptionally small. This value was confirmed

in a second measurement with 10000 samples. As 60ms provide a good compromise

between delay, and computational and network load (see above), 60ms are set as

default notification delay in the KAs and used in the other measurements.

9.3.6 Latency Measurements Conclusion

The results of the measurement I with the Smart Device (Fig. 9.5), and the measure-

ment II with the Smart Device emulator (Fig. 9.7) show that applying the evaluation

criteria given in Sec. 9.3.1, the prototypical implementation of DS2OS offers latencies

that are low enough to be perceived as highly interactive by humans.

The measurement results confirm that the asynchronous coupling returns faster to

the caller in both cases, set and get. The advantage of the asynchronous coupling,

that the VSL takes care of storing and providing the context, comes at the cost of

increased latency until a value arrives at the destination service. The one-way delay

of a VSL set combined with the notification and a get on the changed value is bigger

than the delay of a set on a Virtual Node (Sec. 9.3.4).

The results show that using the set on Virtual Nodes allows coupling up to four

services using one KA to remain below the 300ms boundary (Sec. 9.3.1). This result

is relevant for cascaded services that were described in Sec. 5.6.6 for instance. Up to

three services can be coupled over two different KAs with a resulting delay around
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300ms. As described in Sec. 9.2.3, a coupling over two KAs reflects the coupling of

any two distributed services in a VSL site (with equal network connections).

Measurement II shows that even with the slower asynchronous coupling, it is possible

to reach one-way latencies between 100ms and 200ms as shown in Fig. 9.8.

The measurements show that the prototypical implementation of the VSL allows

an interactive user experience according to the criteria from the literature given in

Sec. 9.3.1. Optimal values below 200ms could typically be measured. The 300ms

perception boundary was only not met in rare outliers for all tested operations.
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9.4 Scalability Measurements

Petit poisson deviendra grand.

Jean de La Fontaine, French fabulist, (1621-1695), “Le petit Poisson et le

Pêcheur”, Fables, V., 3

The latency measurements done in Sec. 9.3 are relevant for determining the delay that

can be expected when coupling services over the VSL. The result provides information

about the degree of perceived interactivity that can be reached when implementing

pervasive computing scenarios using DS2OS.

Another factor that is important for real-world deployments of DS2OS is scalability.

Future Smart Space can be expected to consist of multiple distributed nodes run-

ning many services (Sec. 3.2.4). To handle a big amount of computing nodes and

services, DS2OS must scale. The service management functionality of DS2OS is fully

distributed and as such not expected to become a performance bottleneck as each

node is managing its services locally, coordinated by the Site Local Service Manager

(SLSM) (Sec. 7.2).

A critical factor for scalability is the performance of the VSL under high load as it is

the basis for all services, providing the connectivity, data exchange, and data storage.

The goal of this test scenario is evaluating the performance of a VSL deployment. It

consists of multiple computation nodes that run multiple services under high load.

Instances of VSL context models consist of self-contained tuples (Sec. 5.2). The back-

end of the implementation is a scaling database (Sec. 6.3.5). Therefore the amount of

context that is stored in a VSL instance is not expected to influence the performance

significantly. Primarily the amount of parallel accesses to context is expected to limit

the VSL performance. Therefore it is measured in this section.

The VSL context synchronization provides overhead (Sec. 6.4.4). Sec. 9.5 shows

that the implemented context synchronization mechanism uses incremental updates.

Therefore not the mount of context but the amount of changes determines the over-

head that is needed to provide the implemented VSL type search functionality. In

this test, the context is not changing after the initialization phase. Therefore the

synchronization overhead between the KAs is low.

As before, the term “vget” is used to describe a VSL get API operation on a Virtual

Node. The term “vset” is used to describe a VSL set API operation on a Virtual

Node (Sec. 5.3.1).

9.4.1 Assessment Criteria

The most important assessment criterion from the perspective of a service is the

latency per request on the client. It determines the delay each service experiences.

For this latency, the criteria described in Sec. 9.3.1 apply.

The overall throughput in handled requests is interesting as it gives information about

how a VSL KA node behaves under high load. If the measured throughput remains

at an upper level and does not decrease significantly when more load is added, this

indicates a high dependability of the VSL under high load.
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9.4.2 Setup

Fig. 9.9 shows the setup for this measurement. The topology consists of 36 machines

that are connected over 1 GBit/ s Ethernet forming one IP subnet that is switched

over two Gigabit switches per isle as described in Sec. 9.2.

Three different service roles are involved: a control service, a server service, and many

client services. The control service manages the measurement. It triggers the different

measurement runs on the measurement clients and the measurement server, and it

collects the log data. The server service is the service that is accessed by the client

services. It answers the set and get requests on the regular and Virtual Nodes of

the VSL. The client services access the server service and measure the latency during

a measurement run. For a test, a start time is communicated to all participating

measurement services. At that time all services start accessing the measurement

server simultaneously.

Services are coupled pairwise as in the previous measurement (Sec. 9.3).
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Figure 9.9: Setup of the Scalability Measurement with the VSL context models.

Each machine, named PC1 to PC36, runs a Knowledge Agent (KA). PC1 runs the

control service and the CMR service (Sec. 6.6.2). PC2 runs the server service. PC3-

PC36 run 50 client services each, resulting in 1700 client services distributed on 34

machines that can be used for accessing the server service in parallel.

Context Model

All relevant parameters of each service are exposed as Virtual Nodes over the VSL.

Only the two test nodes for the set and get tests are regular VSL nodes in the server

service as shown in Fig. 9.9 on the right in black. The Virtual Nodes are used to

configure the services47.

47The test showed how exposing the current configuration of a service over the VSL facilitates the

debugging of services (Sec. 5.6.5).
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Control service: The control service context node startAmount is used to set the

starting amount of client services that should be used for the test run. The stepping

context node defines the interval, the control service should step down to zero during

the test. The waitPerClient is the time span the control service should add to the

current time per client service to determine the start time for the measurement that

is communicated to the clients to initiate the measurement.

The amount of collected logs varies with the amount of participating clients per test.

One log is collected per client per test. The minLogs2Collect node defines how many

logs should at least be connected per test round. If less logs are collected the test

round is repeated until this minimum is reached.

The testTrigger is a Boolean variable that tells the control service to start the

measurement. It can be set from outside, e.g. via the console service that was used

throughout this document for showing the content of the context repositories.

The VSL node testMode contains the current test mode identifier out of the set {vset,

set, vget, get}. This variable is queried by each client service when it receives a start

time to find out which test mode it should run at the start time. The remaining-

Clients VSL node contains the Identifiers (IDs) of all participating client services.

It is set to 100 in this test. The testRunsClient contains the amount of continuous

requests, a client service should issue in the next test round.

When a client service finishes its test run, it issues a set with its own serviceID on

the context node remainingClients on the control service to report that it finished.

When all participating client services have indicated that they finished, the control

service can continue with its test workflow. This results in an asynchronous coupling

between the measurement client services and the measurement control service.

Client service: Each client service contains a ping VSL node that returns “pong”

to indicate that the service is still responsive to the requester. The timeOfNextRun

node is used to set and query the currently set start time for the next test run. The

testMode node is used to set and get the test mode ID that is used for the next test

run. The testRunsClient node is used to set and get the amount of continuous

requests that will be issued in the next test run at timeOfNextRun.

The delayLog node returns the delay log data of the client service from the last test

run. The throughputLog node returns the throughput log data of the client service

from the last test run. The latter nodes are used by the measurement control service

to collect the logs from the measurement client services after a run.

The server service contains the four nodes that are used for the four test modes, vGet

for testing the get access to a Virtual Node, get to test the get access to a regular

VSL node, vSet for testing the set access to a Virtual Node, and set to test the set

access to a regular VSL node. The throughputLog node returns the throughput log

data of the server service from the last test run. As the service only uses the VSL, it

can only provide throughput measurement data for the requests on Virtual Nodes as

the regular node requests end up in the VSL and do not reach the service.

A test run consists of synchronized bursts of 100 requests that are sent from all

participating client services in parallel. To synchronize the burst, all machines are

synchronized via NTP as in the previous measurement (Sec. 9.3.4).

During a test the delay of the four operations, set and get on regular and virtual

VSL nodes, is measured on each client service for each of the 100 requests per test
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round. The client services also measure the amount of requests they get through

per second. This throughput is also measured on the server service. As the KA

implementation is not changed for the measurement, only the throughput for the

access to the Virtual Nodes can be monitored as the requests to the regular VSL

nodes are directly handled by the KAs. For getting measurement results for these

accesses, the aggregated throughput of all participating client services is used.

Description of a Test Run

A test run is characterized by the amount of participating clients. Each test run

consists of four rounds for measuring the set and get access to the regular and

virtual nodes of the server service’s exposed context.

To determine the available client services, the control service runs a VSL type search

on the type performanceMeasurement/measurementClient (Sec. 5.7.2). This type

is the type of the context root node of each client (blue in Fig. 9.9). The VSL type

search returns the addresses of all available client service instances.

The control service contains an outer loop that counts down from the startAmount

in intervals of stepping. Inside the loop is another loop that iterates over the four

test modes. Inside those two loops the test rounds are started.

At the beginning of a test round, the control service randomly selects participating

client services. Available client services are identified by a VSL type search. The

selection of services is randomized to emulate random activity inside a DS2OS site.

As they are chosen randomly, it can happen that certain computation nodes have

exceptionally high (many services used) or low load (few services used) during a test

round.

The ping node of each selected service is accessed to check if it is available for the

test. If it is not available, another client service instance is chosen. When the required

amount of participating client service instances is collected, the control service sets

the timeOfNextRun in each client service. Before returning the request, the client

service queries the testMode for the run and the amount of requests to be used in the

next test round (testRunsClient).

The control service informs the server service about the start time of the next test

round. This time is used as relative time 0 in each throughput log file. The server

service confirms its return immediately. It writes its ID to the remainingClients

node. This makes the control service add the server service to the list of services to

collect logs from at the end of the test round.

The value of the context node testMode defines the test. At the timeOfNextRun

all client services issue testRunsClient many sequential requests towards the server

service according to the current test. During the resulting request burst, they collect

the request delay and request throughput statistics. The statistics are logged rela-

tively to the start time of the test round (timeOfNextRun). After finishing with the

configured amount of requests for the test round, each client sends its serviceID to

the remainingClients VSL node of the control service.

When all used client services returned by setting their ID to the remainingClients

Virtual Node, the control service starts collecting the log data from each node that

participated.
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If logs from at least minLogs2Collect client services were collected, the next test

round with the next test mode is run. If not, the test round is repeated with new client

service instances until logs from minLogs2Collect many clients are collected. The

amount of collected logs depends on the amount of participating clients as described

above.

When all test modes are run, the outer loop decrements the amount of participating

clients and the test mode loop starts with the first test mode. When the then decreased

amount of participating clients is below zero, the test ends.

Fig. 9.10 shows the four test rounds in the time-sequence diagram.

PC2PC3..42

1

2

3

4

set

set

get

get

serverclient1

KA

KA

test I

test II

test III

test IV

…

client50

PC1

controlKA
34x

Virtual Node

Virtual Node

Figure 9.10: Setup of the Latency-Between-Services measurement.

Worst-Case Scenario

DS2OS is designed as distributed system to make use of the distributed resources

that are likely to be present in future Smart Spaces. The DS2OS VSL is designed

as distributed system that consists of identical networked KA peers (Sec. 6.3). The

distribution of context and the resulting expected distribution of the parallel context

accesses make the performance of the VSL scale up automatically with adding more

KA peers. Adding a new computing node and running a KA on it results in more

storage, network bandwidth, and computational power for accessing the context.
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The VSL middleware manages the distribution transparently (Sec. 5.6.1). This scaling

applies to the DS2OS service management architecture the same way as each added

physical computing node offers additional computational power to run services in a

transparent way as the management is done by DS2OS.

The test setup of this measurement is a worst-case scenario. It assumes that all client

services are accessing a single server service. This is orthogonal to the described

design of DS2OS as distributed system of peers (Sec. 6.3). While the setup is good

for a stress test of the VSL, it can be expected that a real-world deployment will

be significantly more distributed. Services on distributed KAs are likely to access

each other more distributed. This leads to fewer parallel requests on one KA and

lower delays compared to this test as distributed accesses do not interfere in the VSL

(Sec. 9.4.3).

The result of this test is meaningful for more distributed service access patterns as well

since it shows the performance of a KA (server service) under different parallel loads.

All KAs serve requests independent from each other. Therefore, the expected delay

when using the KA on a certain node primarily depends on the current concurrent

access to this node. Only the load to synchronize between the KAs is additional

overhead (Sec. 6.4.9).

Generalizing, the result of this measurement shows the delay that can be expected

from a service (server service) under a load of n client services that sequentially

access the target service 100 times each. For example, the measurement result for 26

concurrent accesses, shown in this section, is representative for any KA node that has

26 concurrent accesses over a period of 100 requests.

With more KAs in a DS2OS site, the synchronization overhead increases. As described

in Sec. 6.4.9, the overhead is mainly proportional to changes in the VSL and not to the

amount of KA instances running. Besides a hash over its structure, each KA is only

distributing the structure changes in its local Knowledge Object Repository (KOR)

since the last alive ping. Most processing effort for incoming alive pings is required

for reflecting contained structure updates of a remote context repository into the local

KOR. If there are no structure updates contained, the processing of an alive ping is

basically limited to comparing one table entry (Sec. 6.4.9).

The test results with one client service corresponds to the results in the remote setup

in the previous measurement (Sec. 9.3.4). An increased delay compared to in Fig. 9.7

shows how much overhead delay the synchronization of additional KAs introduces.

The client services collect the delays per request as in the latency measurement

(Sec. 9.3). As this experiment consists of 100 consecutive requests per client, the

client services collect the throughput in requests per second from the beginning of the

request burst they send until they received all responses (Fig. 9.12).

The server service collects the throughput in answered requests per second since the

start of a test round. The KA is not changed. Therefore, the server service can

only measure the throughput for the Virtual Node requests. Requests to regular VSL

nodes end up in the KA and not in the server service, not producing any load in it

that could be measured by the service.
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9.4.3 Measurement I: Big Setup

Hypothesis

If the implementation scales, the expected delay measurements will ideally show a

linear growth of the delay with a growing number of concurrent node accesses. While

a linear growth indicates good scalability, an exponential growth indicates a bad

scalability.

The serving of context via Virtual Nodes is expected to perform worse under high

load than the serving of context via regular nodes. The reason is that the used

implementation of the connector is single threaded, allowing to process concurrent

requests only sequentially. In addition, it requires additional look-ups, and a socket

connection from the KA to the service that registered the virtual node (Sec. 6.3.3).

The throughput on the server side is expected to be proportional to the amount

of parallel requests until saturation is reached. It is expected to increase with an

increasing amount of parallel requests until a maximum amount of requests that can

be served in parallel is reached. Ideally it will not decrease from that maximum

throughput value when the load increases further.

For the client the opposite throughput pattern can be expected. With an increas-

ing number of client services that access a server service in parallel, the per-service

throughput is expected to decrease.

Resulting Plots

The data shown on the following plots are explained in Sec. 9.3.3. The resulting

plots for the different kinds of requests are ordered in the same way for the first two

plots. The set operations are on the left side of Fig. 9.11 and Fig. 9.12. The get

operations are on the right side. The access to regular nodes is shown at the top of

the pages, the access to Virtual Nodes is shown on the bottom. This order is chosen

for comparability between the set and get operations.

In the next two plots (Fig. 9.13, Fig. 9.14), the throughput of the aggregated clients

and the server service is compared. Therefore the order is changed, showing the

set requests at the top and the get requests on bottom. The left side shows the

throughput on the server. The right side shows the aggregated throughput of the

clients.

Delay per Client

Fig. 9.11 shows the delay plots. The linear growth indicates that the implementation

scales linear with the amount of participating clients. Each additional client increases

the delay of regular node access by about 1ms. Each additional client increases the

delay of Virtual Node access by about 2.5ms. As described before in this section,

reasons for the increased delay include the single threaded implementation of the

used connector, and the additional computational effort at the KA for identifying the

receiver and invoking the callback.

Sec. 9.3.1 described that a delay of 2s is at the upper limit of delays that can be

perceived as interactive by humans. Fig. 9.11 shows how many parallel requests per
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KA can be handled within a certain timeframe. By adding up the shown delay of

the VSL and the execution time of the application logic of a service, the amount of

parallel operations within a specific timeframe such as the given 2s can be estimated.

For services that use regular nodes and notifications one get and one set operation

can be carried out in about 1s under a load of 400 simultaneous requests per KA

instance. This leaves one second for other operations to remain below the 2s limit

(Sec. 9.3.1). As Virtual Nodes directly deliver their value to a requester via service

callback, 300 parallel requests on a Virtual Node can be handled within 2s.

The sample distribution shows that the tendency in the measurements is towards lower

delays. 25% of the samples are significantly better than the mean value. Analyzing

them could give indications for improving the prototype.

Time outs are represented as dots below the x-axis of the plots (< 1
1000 of the samples).

The gray number above the amount of clients shows the amount of samples that were

taken into account for the plot. The expected amount of samples is the number of

clients multiplied by 100 as each client runs 100 sequential requests per test.

The box including the second and third quartile is narrow. This shows that the

standard deviation of the sample set is low.

Throughput per Client

Fig. 9.12 shows the throughput in requests per second per client. Though it could

be computed as inverse of the delay, the throughput was measured independently to

ensure that the measurement services are sending their requests out continuously and

not sparsely.

Different colors represent different measurements. In the legend, the numbers in

parenthesis next to the amount of participating clients show the amount of collected

samples that were used for the plot. As described in Sec. 9.4.2 the control service

is configured to collect at least 500 samples (minLogs2Collect). When the amount

of collected samples is below 500 another test round is started. In case of 400 client

services this results in 800 samples for instance as each test round collects 400 samples.

The plot confirms that the requests were sent as a bulk, and not sparsely one request

over a longer period. Fig. 9.12 shows that the client throughput is continuously at

a similar level for the access to regular nodes (top). The throughput graph for the

Virtual Nodes shows higher deviations. This could indicate that the single TCP

connection to the single threaded connector is a bottleneck. Further investigation is

future work.

Fig. 9.11 and Fig. 9.12 show the overall time of a measurement round. The measured

throughput values for the 100 requests per client service (Fig. 9.12) are approximately

the inverse of the delay (Fig. 9.11) as expected for continuous probing.

Fig. 9.12 shows a lower boundary. The throughput does not go below this boundary.

This indicates that the implementation can handle a high load of parallel requests.

The low variation between the sample values when saturation is reached confirms a

linear growth of the delay/ a linear decrease of the throughput with a growing amount

of parallel requests.
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Overall System Throughput

The overall system throughput shows the amount of requests one VSL KA can handle

per second.

The four plots in Fig. 9.13, and Fig. 9.14 have a different order than those before.

This is done as the access to the regular VSL nodes (Sec. 5.3.2) cannot be measured in

a service. It is transparently handled by the KA. As the KA was not changed for this

measurement, the aggregated number of client service requests is plotted. To confirm

that the aggregate shows a valid amount of requests, the aggregated throughput from

all clients and the measured throughput for Virtual Node access are plotted next to

each other in Fig. 9.14.

Fig. 9.13 shows the evaluation for regular nodes. As regular nodes are served directly

via the KA, no measurement results are available on the left (server side). The

aggregated client throughput is plotted on the right. It shows that the measurement

server service can continuously serve around 950 requests per second. The different

lengths of the tests follow directly from the previous plots as more overall requests

are sent.

The spikes are probably introduced either by the processing in the network, at the

receiving KA, or in the measurement client. The plot in Fig. 9.14 shows that the

server serves continuously while some clients see a spike.

Fig. 9.14 shows the throughput for the Virtual Node access. As Virtual Node requests

end in the measurement server service, its measured values are plotted on the left.

For comparison the corresponding aggregated measurement client throughput is plot-

ted on the right. It confirms that the aggregated throughput is closely correlated to

the throughput at the measurement server. The comparison confirms that the previ-

ous aggregated plot (Fig. 9.13) is likely showing representative throughput values for

the server.

The delay at the beginning of the aggregated measurement client side shows that

it takes a short time until the answers arrive. It also shows that the clients start

synchronously. The spikes on the aggregated measurement client side show that some

services had irregular answer behavior as described before. That the spikes are not

shown in the left plots expresses that the server continuously serves around 400 Virtual

Node requests per second.

The plots show that the served requests’ delay varies around 400 requests/s with

a growing amount of parallel requests. This could be an indicator that the single

connection to the service for serving the Virtual Node requests via callback (Sec. 5.3.2)

is a limiting factor. This assumption is strengthened by the lower variation that is

shown in Fig. 9.13. In contrast to the current connector implementation (Sec. 6.3.3),

the KAs are multi-threaded and accept multiple parallel TCP connections.

9.4.4 Measurement II: Small Setup

A real-world DS2OS deployment may be smaller than the testbed used for obtaining

the results in Sec. 9.4.3. In this second scalability measurement, the test remains as

described in Sec. 9.4.2 but the size of the testbed is reduced.
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The results of the previous measurement show the behavior of the VSL under high

load. This test examines the delay and throughput with fewer computing nodes in the

lower range (1-226 parallel requests) in more detail. Such a setup can be considered

closer to a real world Smart Space setup. The measurement setup is analog to the

one before. All client services send their requests to one service and one KA only.

Like before, the measurements in this section measure the behavior of a single node

under load. The VSL is designed as system of distributed peers (Sec. 6.3). Using

multiple distributed KA nodes can be expected to provide a significantly higher per-

formance. It will be about the sum of the independent KAs multiplied with their

requests per second.

This measurement shows the performance of a single node. Depending on the access

patterns of services, and the topology of KA nodes, all KAs can be considered inde-

pendent. As a result, each KA can ideally handle the amount of requests/s shown

in Fig. 9.17. Running the experiment against ten distributed measurement server

service will approximately multiply the overall measurable throughput by ten as the

distributed measurement server service are independent and the synchronization over-

head is low (Sec. 9.5).

Setup Modifications

The setup is modified to run within one isle (see Sec. 9.2). Instead of 34 KAs for

hosting client services, only 5 computing nodes are used. See Fig. 9.15.

PC1
PC2..6

server
client1

KA KA…

client50
control

5x

Figure 9.15: Small setup for the Latency-Between-Services measurement.

The server service and the control service run on the same machine and not on separate

ones as in Fig. 9.9. On each KA that hosts client services, 50 services are started as

before. This results in 250 services and 6 KAs running. The KAs synchronize every

30 seconds throughout the test as before (Sec. 9.5).

Hypothesis

Even though the size of the hardware setup is reduced, similar results to the previous

test are expected. The performance is expected to be a bit worse than in the previous

run for the same amount of participating client services as the services are distributed

over fewer computing nodes resulting in statistically more client services sharing the

same KA.

That the server service and the control service run on the same machine is not expected

to cause a significant performance decrease as the control service only receives the

finish signals from the distributed client services during a test run.
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Result

The measurement results start with the delay plots of the four tests, set and get

against regular and Virtual Nodes. See Fig. 9.16. For an explanation of the boxplot

refer to Sec. 9.3.3.

The gray numbers at the bottom of each boxplot show how many samples contributed

to the plot. This number is always around the next multiple of the amount of par-

ticipating client * 100 that is above 50000 (see minLogsToCollect in Sec. 9.4.2), e.g.

226 (clients) * 100 (requests) * 3 (test runs) = 67800 (samples) which is more than

50000 samples.

The black dots at the x-axes represent time outs. Time outs happened in rare cases

as shown. They are handled as outliers in the boxplot as they fall inside the interval

of 1
1000 of samples that was configured as outlier. For calculating the mean the outlier

values are used regularly as 10s which was the TCP socket timeout in the setup.

As expected, the delays for one access are comparable to the results of the performance

measurement (Sec. 9.3). The operation of the server service is comparable to that of

the Smart Device emulator in Sec. 9.3.4. The results to compare with are those for

the remote requests (blue box) in Fig. 9.7.

The plots show that the access to the regular VSL nodes is typically within the 300ms

interactivity boundary (see Sec. 9.3.1) for up to 226 parallel requests. The mean of the

delays is higher for the Virtual Nodes. Up to 100 Virtual Node requests can typically

be handled within 300ms until the requester receives the result.

The gradient of the Virtual Node requests is about double compared to that of the

regular node requests. This could have different reasons as described before.

• Virtual Node handling requires a lookup and a socket connection towards the

connector of a service to be done at a KA.

• The server service communicates with its KA over the regular VSL protocol

messages (Sec. 5.3.1) while the KA accesses its database directly without using

a second socket and packet-based communication internally.

• The server service is only connected via one socket while the KA accepts an

unrestricted amount of parallel socket connections.

• The server service implementation in the test is single-threaded while the KA is

implemented as multi-threaded component with as many independent threads

as cores are available on the system.

That the single threaded implementation of the server service causes the higher delays

is unlikely as the response task is very simple and not expected to create high load.

Most probably the significantly stronger performance decrease of the Virtual Node

access comes from the single-threaded and single socket implementation of the con-

nector that the service uses, and from the additional delay that comes from encoding

end decoding the information for the exchange between the KA and the server service.

The second result set shows the mean throughput in requests per second that each

client service experiences. See Fig. 9.17. The number in brackets in the legend shows

the amount of log files that contributed to the respective line. Again the number is

the next multiple of the participating clients that is over 500. Each log contains 100

requests distributed over the runtime of the test round.



9.4. Scalability Measurements 373

 0

 1
0

0

 2
0

0

 3
0

0

 4
0

0

 5
0

0

 6
0

0

 7
0

0

 1
 2

6
 5

1
 7

6
 1

0
1

 1
2

6
 1

5
1

 1
7

6
 2

0
1

 2
2

6

Delay per request in ms

P
a
ra

lle
l 
se

rv
ic

e
 r

e
q

u
e
st

s

se
t 

R
e
q

u
e
st

s 
[r

e
g

u
la

r:
 9

9
.9

0
%

, 
to

ta
l:
 2

2
6

, 
st

e
p

: 
2

5
]

25.00 ms

6
0
3
0
0

25

2
1

0

2
3

5

27.00 ms

5
2
8
0
0

27

1
8

3

2
1

0

26.00 ms

6
0
4
0
0

26

1
5

7

1
8

3

25.00 ms

5
0
4
0
0

25

1
3

2

1
5

7

26.00 ms
5
0
5
0
0

26

1
0

6

1
3

2
20.00 ms

5
3
2
0
0

20

8
6

1
0

6

7.00 ms

5
1
0
0
0

7

7
9

8
6

5.00 ms

5
2
0
0
0

5

7
4

7
9

9.00 ms

5
0
0
0
0

9

6
5

7
4

6
7
8
0
0

d
iff

er
en

ce
 o

f 
th

e 
m

ea
n
 v

al
u
es

 0

 1
0

0

 2
0

0

 3
0

0

 4
0

0

 5
0

0

 6
0

0

 7
0

0

 1
 2

6
 5

1
 7

6
 1

0
1

 1
2

6
 1

5
1

 1
7

6
 2

0
1

 2
2

6

Delay per request in ms

P
a
ra

lle
l 
se

rv
ic

e
 r

e
q

u
e
st

s

g
e
t 

R
e
q

u
e
st

s 
[r

e
g

u
la

r:
 9

9
.9

0
%

, 
to

ta
l:
 2

2
6

, 
st

e
p

: 
2

5
]

25.00 ms

6
0
3
0
0

25

2
0

2

2
2

7

26.00 ms

5
2
8
0
0

26

1
7

6

2
0

2

24.00 ms

6
0
4
0
0

24

1
5

2

1
7

6

24.00 ms

5
0
4
0
0

24

1
2

8

1
5

2

26.00 ms

5
0
5
0
0

26

1
0

2

1
2

8

17.00 ms

5
3
2
0
0

17

8
5

1
0

2

6.00 ms

5
1
0
0
0

6

7
9

8
5

5.00 ms

5
2
0
0
0

5

7
4

7
9

10.00 ms

5
0
0
0
0

10

6
4

7
4

6
7
8
0
0

d
iff

er
en

ce
 o

f 
th

e 
m

ea
n
 v

al
u
es

 0

 1
0

0

 2
0

0

 3
0

0

 4
0

0

 5
0

0

 6
0

0

 7
0

0

 1
 2

6
 5

1
 7

6
 1

0
1

 1
2

6
 1

5
1

 1
7

6
 2

0
1

 2
2

6

Delay per request in ms

P
a
ra

lle
l 
se

rv
ic

e
 r

e
q

u
e
st

s

v
se

t 
R

e
q

u
e
st

s 
[r

e
g

u
la

r:
 9

9
.9

0
%

, 
to

ta
l:
 2

2
6

, 
st

e
p

: 
2

5
]

59.00 ms

6
0
3
0
0

59

5
0

9

5
6

8

62.00 ms

5
2
8
0
0

62

4
4

7

5
0

9

61.00 ms

6
0
4
0
0

61

3
8

6

4
4

7

65.00 ms

5
0
4
0
0

65

3
2

1

3
8

6

64.00 ms

5
0
5
0
0

64

2
5

7

3
2

1

62.00 ms

5
3
2
0
0

62

1
9

5

2
5

7

60.00 ms

5
1
0
0
0

60

1
3

5

1
9

5

22.00 ms

5
2
0
0
0

22

1
1

3

1
3

5

12.00 ms

5
0
0
0
0

12

1
0

1

1
1

3

6
7
8
0
0

d
iff

er
en

ce
 o

f 
th

e 
m

ea
n
 v

al
u
es

 0

 1
0

0

 2
0

0

 3
0

0

 4
0

0

 5
0

0

 6
0

0

 7
0

0

 1
 2

6
 5

1
 7

6
 1

0
1

 1
2

6
 1

5
1

 1
7

6
 2

0
1

 2
2

6

Delay per request in ms

P
a
ra

lle
l 
se

rv
ic

e
 r

e
q

u
e
st

s

v
g

e
t 

R
e
q

u
e
st

s 
[r

e
g

u
la

r:
 9

9
.9

0
%

, 
to

ta
l:
 2

2
6

, 
st

e
p

: 
2

5
]

68.00 ms

6
0
2
0
0

68

5
0

7

5
7

5

65.00 ms

5
2
8
0
0

65

4
4

2

5
0

7

60.00 ms

6
0
4
0
0

60

3
8

2

4
4

2

61.00 ms

5
0
4
0
0

61

3
2

1

3
8

2

64.00 ms

5
0
5
0
0

64

2
5

7

3
2

1

62.00 ms

5
3
2
0
0

62

1
9

5

2
5

7

60.00 ms

5
1
0
0
0

60

1
3

5

1
9

5

22.00 ms

5
2
0
0
0

22

1
1

3

1
3

5

13.00 ms

5
0
0
0
0

13

1
0

0

1
1

3

6
7
8
0
0

d
iff

er
en

ce
 o

f 
th

e 
m

ea
n
 v

al
u
es

F
ig

u
re

9
.1

6
:

M
ea

n
d

el
a
y

in
m

s
p

er
cl

ie
n
t

o
f

1
0
0

se
q
u

en
ti

a
l

re
q
u
es

ts
se

n
t

fr
o
m

1
..
2
2
6

ra
n

d
o
m

ly
se

le
ct

ed
cl

ie
n
t

se
rv

ic
es

fr
o
m

5
K

A
w

it
h

5
0

se
rv

ic
es

o
n

ea
ch

K
A

.



374 9. Evaluation

Even though measured independently, the throughput is about the inverse of the delay

from Fig. 9.16 as explained in the previous measurement already (Sec. 9.4.3). The

added value of Fig. 9.17 is that it shows the throughput over the time of the entire

100 request burst (see Sec. 9.4.2). As can be seen, the performance remains roughly

constant during the entire time of each burst showing the dependability of the VSL

implementation.

In addition, the plot shows more than the previous one that the lines move closer to

each other with more requests meaning that the throughput converges to a minimum

which is likely to be the maximum of requests the server service can handle in a

second. This becomes more clear in the next plot.

The last plots for this measurement contain the throughput in answered requests per

second during the test round from the perspective of the server service. Fig. 9.18

shows the throughput for the requests on regular VSL nodes. The participating log

files are again listed in brackets. The number on the server side is the multiplier for

the amount of participating client service to reach the numbers in brackets on the

right. This is clear as the server service only creates one log per test while each client

service contributes one log to the measurement. The top entry in the legend shows for

example that the test with 226 client services was run three times resulting in 3*226

= 678. That the number on the right is 677 shows that one client service log was

empty or could not be collected as discussed above.

From the design of DS2OS it is clear that requests to regular nodes are answered by

the VSL directly independent of the server service (Sec. 6.3). Therefore the server

service reports a throughput of zero as expected.

To see how many requests are processed by the VSL KA which hosts the server service,

the aggregated mean throughput of all participating client services is shown on the

right. The plot shows that the KA is able to answer up to 1000 parallel requests

per second as the results in Fig. 9.13 also showed. This limit is reached up from 100

parallel requests. Below 100 parallel requests the destination KA is not the limiting

factor but the sending KAs and their client services.

For the requests towards the Virtual Nodes, the server service can provide throughput

data as shown in the left plots in Fig. 9.19. Even though not necessary for the result,

the aggregated client service throughput values are plotted here as well to show that

the aggregation is showing the situation on the server in Fig. 9.18. As can be seen

the limit for Virtual Node requests is about 400 answered requests per second and

reached up from 50 parallel requests. The reasons why the throughput is lower for

the Virtual Node requests was discussed at the delay plot (Fig. 9.16) above.

9.4.5 Scalability Measurement Conclusion

The stress-test shows that the prototypical implementation of the VSL can practically

host a big amount of services while remaining responsive.

As expected, the design of self-contained tuples (Sec. 5.2.4) in combination with using

a database back-end scales. With the tested prototype implementation up to 1000

requests can be served by a KA per second for regular nodes over the VSL.

The Virtual Node mechanism could probably be improved though it serves about 400

requests already. Likely limiting factors are the use of a single TCP connection and
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the single-threaded connector (Sec. 6.3.3). Further investigation and improvement of

the implementation are future work.

The results from the small testbed show that under conditions that can be expected

to be realistic future DS2OS Smart Spaces, the VSL allows implementing interactive

services (Sec. 9.3.1) when multiple services work in parallel. The case of one measure-

ment service corresponds to the remote KA access measurement shown in Sec. 9.3.

The results are generalizable to setups where many services on different KAs interact

simultaneously as the VSL is implemented as P2P system. The chapter shows that

adding additional KA peers does not result in high management overhead (Sec. 9.5),

but it distributes the load. The measurement results that were obtained during the

measurements can approximately be multiplied with the number of independently

accessed KAs to obtain the overall throughput of a VSL instance (Sec. 9.4.4). Com-

munications between different KAs are only limited by the network bandwidth as they

happen independent from the KAs that do not participate.

The convergence measurement in Sec. 9.5 shows the amount of context that was used

for the test. As described above, the design of the VSL and its implementation in

the KAs make it rather independent of the amount of managed context. The only

relevant factor is the amount of structure changes between two alive pings (Sec. 6.4.9)

as shown next.
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9.5 Agent Convergence

Beautifully synchronized, don’t you agree?

Truman Burbank in ”The Truman Show”, Peter Weir 1998

As described in Sec. 6.4.9, the KAs synchronize by exchanging periodic alive-pings.

This measurement evaluates the synchronization process between 36 independently

started KAs.

Setup

The setup is the same as in the previous measurements (see Sec. 9.4.2). For this

measurement 36 KAs are running on 36 computing nodes. The KAs are started one

after another from PC1.1 to PC6.6 (see Sec. 9.2). All KAs are started independently

and sequentially in groups of 6 KAs (Sec. 9.2). Between the launch of each group

is a slightly longer delay. It is caused by the interactive setup script that requires

a password to be entered for remote login on the physical machine the KA and the

services should be started on.

The test setup “big setup” (Sec. 9.4.3) is reused for this test. As before, 50 services

are started each of the 34 KAs. The remaining two KAs are used for the control

service (PC1.1), and the measurement service (PC1.2). The services are started one

per second 15s after the start of the KA. On one KA the control service is running,

and on one KA the server service is running.

The alive ping interval is set to 30s. After starting 50 services per KA, each context

repository has 11782 structure changes to be propagated to all other agents. The

context repository on the remaining two PCs (PC1.1, PC1.2) have fewer changes as

they provide fewer context. See Fig. 9.9.

Hypothesis

All hosts run the same sequence. They start one service every second after an initial

waiting period of 15s. The alive ping period is set to 30s. It is expected that the plot

will contain steps with a length of 30s until all services are started and all KAs are

synchronized (Sec. 6.4.9).

The update intervals will not be synchronized between all hosts by design as the alive

ping timer is started individually per host. This is done to distribute the alive ping

dissemination in time and not to flood the network from all KAs at the same time.

Bigger step heights express that more updates happen in a time period. When all

KAs start all their local services with the same rate, the height of each step since the

first synchronization is expected to be the same for all KAs. The first synchronization

will happen at 30s. If all KAs synchronize at the first possibility, their initial steps

will have the same height.

After all KAs started all local client services, no changes to their context repositories

should happen anymore. All KAs should be synchronized at some point after that

time. All hosts run the same setup of clients. Therefore the version numbers of all



380 9. Evaluation

remote KORs should be identical after the convergence phase. The version number

for PC1.2 is likely to be low as it only hosts the server service. It is not expected to

change after that service is initialized. There will be no data for PC1.1 as it is hosting

the measurement and it does not have to synchronize with itself.

Result

Fig. 9.20 shows the result of this measurement from the perspective of PC1.1.
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Figure 9.20: KOR synchronization of 36 KAs measured on PC1.1.

The plot shows that many KAs synchronize at the first alive ping exchange that

happens within the time 30s and about 120s on the plot. It depends on the start time

of each KA that is different as described before.

All services start at about 4000 changes. This indicates that all hosts get the same

amount of services running until the first alive ping synchronization. Most of the hosts

do similar progress until the next synchronization about 30s later which is shown in

similar step heights.

Longer step lengths are explainable with different processing delays in the sender or

receiver as the timer tasks are not prioritized. Listing 9.2 confirms this as it shows

that the updates are not arriving and getting processed strictly regular at the receiver.

1 t old new version number

2 64 0 3879

3 102 3879 7271

4 123 7271 8442

5 153 8442 8873

6 183 8873 10128

7 214 10128 11268

8 242 11268 11549

9 272 11549 11782

Listing 9.2: Log for KOR updates from PC1.1. The first column shows the time after start, the

second the old structure version, and the second row the new structure version.

As expected no unplanned updates are visible. All KAs are connected over a high

speed and high bandwidth network (see Sec. 9.2) which makes loss improbable (Sec. 6.4.8).
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The different step heights show that the distributed hosts start their measurement

clients at different pace. This can be caused by the used setup script that uses diffe-

rent delays.

Before 300s all client services are running and the structures of all remote KAs are

synchronized on PC1.1. As can be seen, all remote KAs had the same operations

and run all 1700 services as they all end up at a version number 11782. This is

confirmed by issuing a search on the client services as shown in listing 9.3. It confirms

that 1700 instances of the VSL context model /perfmeasure/measurementClient

are initialized.

1 system@pc1 .1: / % get /search /?/ perfmeasure/measurementClient

2 Result for type /perfmeasure/measurementClient in address pc1

3 1 /pc1.3/ mCl1

4 2 /pc1.3/ mCl10

5 3 /pc1.3/ mCl11

6 [\ ldots]

7 1698 /pc6.6/ mCl7

8 1699 /pc6.6/ mCl8

9 1700 /pc6.6/ mCl9

10 system@pc1 .1: / %

Listing 9.3: Console output of the search for the type /perfmeasure/measurementClient

PC1.2 is synchronized with PC1.1 at around 55sec. It does not have structure updates

on the context repository after that time. Therefore is remains at the same version

throughout the entire test.

9.5.1 Convergence Conclusion

The convergence measurement confirms that the alive ping mechanism leads to a fast

synchronization of the remote KORs (Sec. 6.4.9).

The step heights in Fig. 9.20 show the amount of structure updates that have to be

done by the KA on PC1.1. The measurement confirms that the processing effort

depends on the amount of structure changes per alive ping period.

Structure changes only happen when new services are started on a KA, or when

entities are added to or removed from lists (Sec. 5.2.10). The assumption for this

implementation of KA synchronization is that structure changes are significantly less

frequent than value changes.

The assumed behavior can be seen in the previous measurements in Sec. 9.3 and

Sec. 9.4 where many value changes are done but no structure updates have to be

disseminated. In such case the VSL implementation for synchronization (Sec. 6.4.9)

results in low overhead in network capacity and computation time.
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9.6 User Study

“Think simple” as my old master used to say - meaning reduce

the whole of its parts into the simplest terms, getting back to

first principles.

Frank Lloyd Wright, American architect, (1867 - 1959).

The overall objective of this thesis is to

<O.0> Design a programming abstraction for Smart Spaces that structures and faci-

litates the development of pervasive computing applications at large, and that

can be used in the real world.

Its subsidiary objective <O.4> includes the development of software by users. The

DS2OS framework provides tools for the distribution and the management of software

(Ch. 7). The presented methods are expected to be suitable for a real world imple-

mentation since they are closely oriented at the design of App stores for smartphones,

which proved to work (Sec. 2.3.3).

The major novelty presented in this thesis is the VSL programming abstraction. The

following user study assesses the usability of the programming abstraction.

9.6.1 Setting

The study was done as part of a regular computer science course at Technische Uni-

versität München. As side result of this thesis, the presented content became part of

the regular curriculum of the student education in the described course. The course

material can be found online [Pah14a, Pah14b]. In Sec. A.3 two screenshots of the

course material are shown.

A preliminary study was done in the summer term 2013. The results presented in

this section were collected in winter term 2013/ 2014. The workspace that was used

by the participants is shown in Fig. 9.1. It is explained in Sec. 9.2.

The user study is part of an experiment about Smart Space Orchestration. It consists

of three parts:

• A lecture that gives an introduction into ubiquitous computing and Smart Space

Orchestration.

• An individual theoretical preparation phase that introduces the background.

• A hands-on part that is done in a team of two.

The lecture gives an overview of ubiquitous computing similar to chapter 2 of this

document. It introduces the basic concept of the VSL (Ch. 5), and its implementation

(Ch. 6). It also introduces the proposed modularization of the program code from

Sec. 8.2. Finally it introduces the Arduino platform (Sec. 3.2.3). The lecture took

about one hour.

The theoretical preparation is done individually by the participants. It details content

that was introduced in the lecture. The heterogeneity of Smart Devices (Sec. 3.2)
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is shown. The automation systems HomeOS (Sec. 4.5.5), and BOSS (Sec. 4.5.7) are

briefly introduced. Then programming with the VSL programming abstraction is

introduced by giving the connector interface (listing 6.1), and the abstract interfaces

for the notification callback (listing 5.3) and the Virtual Node callback (listing 5.5).

Finally details about building a DIY Smart Device based on the Arduino platform

are given. This preparation took the participants between one to four hours.

The hands-on part is used for the following assessment. It is described in Sec. 9.6.4.

9.6.2 Design of the Evaluation Tools

The entire course is based on a web-based eLearning system [Pah09]. This system was

extended for the user study. The extension measures the time, participants spend for

doing the parts of the study. The different parts are described in Sec. 9.6.4.

The eLearning system structures content into learning blocks with inline questions

the participants had to answer. The time tracking mechanism registers each time a

learning block is opened and when a question is answered. The tracking happens in

the background without influencing the participants.

9.6.3 Study Group

The user study was done with eight students in four teams. The participants of the

study were computer science master students. One participant was female, seven

participants were male.

The study is not generally representative. The number of participants is low. The

background of participants is biased as they were Computer Science students. Keeping

these limitations in mind, the results concerning the time it took to get familiar with

the system, the time it took for implementing complex tasks, the Lines Of Code (LOC)

of Smart Space Orchestration services, and the individual feedback received give an

impression of the real world usability of the VSL programming abstraction.

The targeted audience of the VSL programming abstraction are enthusiastic hobby

developers. Their pre-knowledge may be similar to that of the study participants

concerning the Java programming background, and the Smart Space Orchestration

background. The participants had background in the used Java programming lan-

guage (Sec. 6.3.1) as shown in Fig. 9.24 (2). The participants did not have significant

background with Smart Spaces as shown in Fig. 9.24 (1).

9.6.4 Course of the User Study

The study consists of twelve parts:

1. The first part is the “Setup”. It shows the setup in Fig. 9.21 that is the targeted

scenario of the hands-on part.

2. The Web-based User Interface part is about setting a VSL up by configuring

the KAs, looking at the agent synchronization via alive pings (Sec. 6.4.9) and

the type search, and looking at the access rights. In this part the web-based User

Interface (UI) (Sec. 8.3.5) is setup.
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3. The third part is “Performance Measurements in a Complex System - the Be-

ginning”. It consists of running the measurement that is described in Sec. 9.4.4.

4. The next part, “Building our own smart device”, consists of building a DIY

Smart Device.

5. Part five is the creation of the code that runs on the Smart Device. It is called

“Writing the Smart Device ”Firmware””.

6. The sixth part is “Planning Your Scenario”. In this part the participants think

about an orchestration scenario they want to implement with their Smart De-

vice.

7. In the part “Collecting the Logs of the First Performance Measurement” the log

files of part three are collected.

8. Part eight is about creating the context model (Sec. 5.2) to the DIY Smart

Device that was created in part four. It includes distributing the model between

different KAs via the CMR service (Sec. 6.6.2).

9. The ninth part is about “Programming DS2OS”. It includes practical explo-

ration of the demo service introduced in Sec. 8.2. The main part is writing

the adaptation service that interfaces the DIY Smart Device interface that was

programmed in part five.

10. Part ten is about“Orchestrating our Smart Device with our Orchestration Logic”.

Introduces ARSs (Sec. 8.3.2) for modularization of functionality. It contains the

implementation of the pervasive computing scenario, the participants invented

in part six.

11. The eleventh part is about “Performance evaluation”. The measurement from

part three is evaluated (Sec. 9.4.4). In addition to the measurement presented in

Sec. 9.4.4 of this thesis, the measurement from Sec. 9.3.3 is done and evaluated.

12. Part twelve gives a summary.

As the course shows, the user study comprises many parts of this work. In addition

to the described study, the user study is used to independently validate the measure-

ment results from before (Sec. 9.3.3, Sec. 9.4.4) and to validate their reproducibility

(Sec. 9.2.2).

The user study is embedded in a lab course and therefore it requires deeper under-

standing of the things that are done. 82 questions that have to be answered during

the study ensure that the participants successfully master the parts described above.

The questions go beyond pure usage of the VSL. Therefore the measured times that

it took the participants to go through a part depend not only on working with the

VSL (mainly part 8-11) but also on the difficulty of the questions.

The questions are listed next. For more details see [Pah14a, Pah14b]. The number

between the hyphens “-1-” at the beginning of a questions shows to which of the parts

described above the question belongs.

1. -1- Give some reasons why it could make sense to distribute the described tasks

over the network.
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PC5	  

PC4	   PC1	  

PC2	  

PC3	  

DHCP	  
Physical	  
Device	  GW	  

Advanced	  
Reasoning	  
Service	  

CMR	  Service	  

OrchestraAon	  
Service	  

AdaptaAon	  
Service	  

Your	  Smart	  
Device	   PC6	  

Web	  UI	  

Figure 9.21: Targeted setup of the user study.

2. -2- What do the lines of the config do? To support your answer paste the relevant

output lines from netstat.

3. -2- What happens when you add ”/*” after agentRegister in the command?

4. -2- Paste the answer packet’s TCP payload text that answers your remote get

request.

5. -2- Paste an alive ping message.

6. -2- How do the agents synchronize their directories?

7. -2- What is the difference between the context subtree (local Knowledge Object

Register, KOR) of the local agent and that of a remote agent?

8. -2- Concerning synchronization, what is the advantage of the observed differen-

tiation?

9. -2- Paste the URL you called and the output. (Please use an XML beautifier

[search the web for an online site doing that] to paste well indented XML into

the text box.)

10. -2- What happened with the context data when you dropped the node?

11. -3- After running the script what is running on each host? Please continue

the list: PC1: a KnowledgeAgent, MeasureControl, and a MeasureServer are

running.

12. -3- How can you query from the VSL shell how many measurement client services

are running? How many services are running?

13. -3- Paste the last five services the search reveals.

14. -3- What does location transparency mean concerning the access to the mea-

surement control service?
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15. -3- From observing the log output of the measurement control service (mcs)

and your knowledge about the variables from above: describe the steps of one

measurement that the mcs does.

16. -4- Why does it make sense to connect the pin 13 directly with the LED and

not with the plus line of the breadboard?

17. -4- Give the formula how to calculate the resistance of the temperature sensor

R2 when the resistor R1, V in and V out are given.

18. -4- Why is the button not changing the LED on every click?

19. -4- Please complete the following list of monitoring points (sense, input) and

control points (actuate, output). Name their direction as ”out” for an actuator

and ”in”for a sensor. Additionally attach a picture of your Smart Device showing

your setup.

20. -5- Paste your configuration lines from the dhcpd.conf.

21. -5- Paste the nmap command line including the grep call and its output.

22. -5- Shortly describe how the feature you just tested could be used to implement

auto discovery of your Smart Devices.

23. -5- What is the use of this code fragment in the button implementation?

24. -5- Why does it make sense to add button state++;? (Hint: Think on asyn-

chronous polling.)

25. -5- What is the relation between PIN OUT COUNT, enum pin id e, and int

pin out table? Is the order of the entries relevant?

26. -5- Paste the output of your @hello call.

27. -5- Please complete the following list of monitoring points (sense, input) and

control points (actuate, output). Name their direction as ”out” for an actuator

and ”in”for a sensor. Additionally attach a picture of your Smart Device showing

your setup.

28. -5- Paste the output of your @hello call.

29. -5- Paste the diff part for the enum pin id e.

30. -5- Paste the diff part for the int pin out table.

31. -5- Paste the diff part for the parserReadGet( void *ptr ) function.

32. -5- Paste the diff part for the parserReadSet( void *ptr ) function.

33. -5- Paste the diff part for the void sendValue( int id ) function.

34. -5- Paste the diff part for the int setValue( void *ptr, int id ) function.

35. -5- Upload your entire Arduino code here.

36. -5- Paste the telnet output of your successful test.

37. -5- Which are advantages of the used protocol design?
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38. -5- Which are disadvantages of the used protocol design?

39. -6- Describe the orchestration workflow that you want to implement in this lab

in your own words first (no code here, see next question...).

40. -6- Specify your intended orchestration workflow in pseudocode. (You will see

your answer later for your implementation again.)

41. -7- Attach the archive with your log data.

42. -8- Paste the model for your smartDevice here.

43. -8- Paste the relevant protocol payload from wireshark (follow stream).

44. -8- Describe what happens from the wireshark observation.

45. -8- What is different? Why?

46. -8- Which are advantages and disadvantages of the observed behavior?

47. -8- How is the Model Repository discovered? (Hint: explore the knowledge tree

of PC3 on PC4.)

48. -8- Execute the discovery commands in the DS2OS shell and paste the command

and its result.

49. -9- Explain the signatures of the methods in the IVirtualNodeHandler interface.

When are the methods called? What do the parameters contain?

50. -9- How is the correlation between the isLaughing node and the tickle node?

51. -9- Compare VirtualNodes and regular VSL nodes. List one advantage and one

disadvantage of each.

52. -9- What does transparent access to data mean?

53. -9- In which dimensions does the VSL provide transparency? What is transpar-

ent to the developer?

54. -9- Paste your subscription wirings (registerSubscriptions()).

55. -9- Paste your Virtual Node wirings (registerVirtualNodeHandlers()).

56. -9- Attach the source code of your SmartGateway wiring java file. (aprox. 25

LOC)

57. -9- Paste the handler code you wrote for your SmartGateway and attach the

source code java file. (approx. 150 LOC)

58. -10- Paste the model of your Advanced Reasoning Service and attach the source

file.

59. -10- Why is it important to use meaningful and unique data types (model

names)?

60. -10- Why is it enough to have a unique type for the parent node of the abstract

interface (model) of a service?

61. -10- Paste the wiring code of your service.
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62. -10- Paste the handler code of your service.

63. -10- Paste the source files of your Advanced Reasoning Service.

64. -10- Why does it make sense writing Advanced Reasoning Services instead of

putting the whole functionality directly into an Orchestration Service?

65. -10- Paste the model for your service and attach the source file.

66. -10- Paste the wiring code of your service.

67. -10- Paste the handler code of your service.

68. -10- Paste the source files of your service.

69. -10- Paste the wiring code of your orchestration service.

70. -10- Paste the handler code of your service.

71. -10- Paste the source files of your Orchestration Service.

72. -10- What is the advantage of introducing a middleware framework like DS2OS?

73. -11- Explain all different elements you see in the boxplot in general (independent

of the concrete measured values). Which element of the plot shows what (e.g.

quantiles)?

74. -11- Upload all resulting plots as PDF and qualitatively describe the observed

result.

75. -11- How is the coupling between what happens on the Arduino and the Laten-

cyToDeviceMeasurer implemented?

76. -11- Match the numbers in the figure with the variables in the code. Make a

list.

77. -11- Which additional delay do you expect in this third measurement?

78. -11- Does the time-diagram (figure TS1, Fig. 9.4) show the measurement from

the perspective of PC2 or PC5. Explain your answer.

79. -11- From PC5: Paste the last 5 lines of your measurement from the log file and

attach the log file with the measured data.

80. -11- From PC2: Paste the last 5 lines of your measurement from the log file and

attach the log file with the measured data.

81. -12- Attach the combined boxplot PDF that gets created by the GNUplot script

above from the data of PC5 and PC2.

82. -12- Describe what you can see on the plots and what is the difference between

them.

Fig. 9.22 shows an example DIY Smart Device that was built by participants dur-

ing the study. The picture illustrates the complexity of the functionality that was

interfaced by the adaptation service the participants developed in the study.

All teams succeeded in all tasks without additional instructions. Listing 9.4 shows

the context model, team2 created for the Smart Device shown in Fig. 9.22.
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1 <smartDevice >

2 <temperature type ="/ ilab/temperature" reader ="*"></ temperature >

3 <button type ="/ ilab/button" reader ="*"></button >

4 <ledRed type ="/ ilab/led" reader ="*">

5 <desired reader ="*" writer ="*"></desired >

6 </ledRed >

7 <ledYellow type ="/ ilab/led" reader ="*">

8 <desired reader ="*" writer ="*"></desired >

9 </ledYellow >

10 <ledGreen type ="/ ilab/led" reader ="*">

11 <desired reader ="*" writer ="*"></desired >

12 </ledGreen >

13 <displayBacklight type ="/ ilab/led" reader ="*">

14 <desired reader ="*" writer ="*"></desired >

15 </displayBacklight >

16 <photo type ="/ ilab/lightSensor" reader ="*"></photo >

17 <heartbeat type ="/ ilab/heartbeat" reader ="*">

18 <desired reader ="*" writer ="*"></desired >

19 </heartbeat >

20 <timer0 type ="/ ilab/triggerTimer" reader ="*">

21 <desired writer ="*"></desired >

22 </timer0 >

23 <timer1 type ="/ ilab/triggerTimer" reader ="*">

24 <desired writer ="*"></desired >

25 </timer1 >

26 <vTimer0 type ="/ ilab/vTimer" reader ="*" writer ="*"></vTimer0 >

27 <vTimer1 type ="/ ilab/vTimer" reader ="*" writer ="*"></vTimer1 >

28 </smartDevice >

Listing 9.4: The context model for the DIY device shown in Fig. 9.22.

The following original code snippets show the notification wiring (listing 9.5, Sec. 5.3.4)

and the Virtual Context wiring (listing 9.6, Sec. 5.3.2) of two teams. The code shows

that the VSL programming abstraction can be understood, and that it allows to write

“elegant” code (Sec. 5.8).

1 ISubscriber desiredCallback = new ISubscriber () {

2 @Override

3 public void notificationCallback(String address) {

4 try {

Figure 9.22: DIY Smart Device that was created by participants during the study.
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5 h.desiredCallback(address);

6 } catch (VslException e) {

7 LOGGER.warn("Error retrieving {}: {}", address ,

8 e.getLocalizedMessage ());

9 e.printStackTrace ();

10 }

11 }

12 };

13

14 c.subscribe(myKnowledgeRoot + "/ ledRed/desired", desiredCallback);

15 c.subscribe(myKnowledgeRoot + "/ ledYellow/desired", desiredCallback)

;

16 c.subscribe(myKnowledgeRoot + "/ ledGreen/desired", desiredCallback);

17 c.subscribe(myKnowledgeRoot + "/ displayBacklight/desired",

18 desiredCallback);

19 c.subscribe(myKnowledgeRoot + "/ heartbeat/desired", desiredCallback)

;

20 c.subscribe(myKnowledgeRoot + "/ timer0/desired", desiredCallback);

21 c.subscribe(myKnowledgeRoot + "/ timer1/desired", desiredCallback);

Listing 9.5: The notification wiring for the context model shown in listing 9.22.

1 public static String [] ids_virt = {" speaker", "vTimer0", "vTimer1 "};

2 public static Map <String , Integer > map = new HashMap <String , Integer

>();

3

4 public void registerVirtualNodeHandlers () throws VslException {

5 for (int i = 0; i < ids_virt.length; i++) {

6 map.put(myKnowledgeRoot + "/" + ids_virt[i], i);

7 c.registerVirtualNode(myKnowledgeRoot + "/" + ids_virt[i],

new IVirtualNodeHandler () {

8 @Override

9 public void set(String address , String value , String

writerID) {

10 // System.out.println (" Setting " + ids_virt[map.get(

address)]);

11 h.set(ids_virt[map.get(address)], new String(value))

;

12 }

13

14 @Override

15 public String get(String address , String readerID) {

16 if (!map.containsKey(address))

17 return ("Could not access value , invalid/unknown

address specified: " + address);

18 return h.get(ids_virt[map.get(address)]);

19 }

20 });

21 }

22 }

Listing 9.6: The Virtual Node wiring of another team.

9.6.5 Quantitative Evaluation

Fig. 9.23 shows the measured times that the eLearning-system logged (Sec. 9.6.2).

The left y-axis shows the minutes that each part took the participants to answer on

all questions and to implement all tasks. It belongs to the colored bars. The x-axis

contains the parts that are introduced in Sec. 9.23. The right y-axis belongs to the

lines. The lines accumulate the overall time.
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Figure 9.23: Absolute (left) and cumulative (right) time four student teams spent working on the

parts given on the x-axis.

The evaluation algorithm is very basic. It assumes that participants work on one part

the long they do not click on another part. The results give a rough idea how long

each part (Sec. 9.6.4) took. The overall evaluated time correlates with the information

the students gave on the feedback sheets. Three times “around 15h” was returned.

The teams were not supervised. They could come into the lab room when they wanted.

They had between three and four weeks to complete all parts. They did not work

continuously.

That the time measurements of team 3 are so much higher than the logged amount

of time of the other teams can be explained by the observed behavior of team 3. The

participants used the possibility not to work continuously but to make pauses during

the study (e.g. for eating or going to lectures). Unluckily for the measurement, they

did not log out for their pauses. This misled the described evaluation algorithm. It

assumes that the team was continuously working while the team was pausing. In

addition, team 3 was going through their answers several times.

The time spent in each part depends on the amount and the difficulty of the questions

of the part. The questions are listed in Sec. 9.23. For creating DS2OS services it is

not necessary to have the deep understanding of the underlying mechanisms that is

required to pass the presented study material [Pah14a, Pah14b].

Therefore the shown times can be seen as an upper boundary that none of the teams

needed to achieve the goal of creating the context model, writing the adaptation

service, or the orchestration service.

At the end of the exercise, each team had their DIY Smart Device running, connected

to the VSL, and created an orchestration workflow. An example workflow that a team

invented is: “We want to use the photo and temperature sensor as well as a button as
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input and some LEDs and a speaker as output. The basic flow is that the 3 traffic light

LEDs show the relative current load during the performance measurement, but only

if the light is turned off in the room. The speaker is used to warn the user when the

temperature rises over a certain threshold, but only if the user has pushed the button

before that either permits the audio feedback or completely denies it.”

The most relevant times are:

Development of. . . Time

Context model (8) 90min

Adaptation service (9) 180min

Orchestration service (10) 120min

Σ 390min = 6.5h

Table 9.1: Upper limits per task from the user study.

It can be expected that it took more time at the beginning (part 8, context model)

to get used to the system.

The authors of One.World (Sec. 4.5.13) also made a user study [GDLM04]. It consists

of programming a text and audio messaging system, and a manager that scans the

system for applications and users. The authors state that these tasks are not “overly

complex” [GDLM04].

In the user study made in this thesis, the participants had to connect a newly devel-

oped DIY Smart Device with a system they did not know before and write a relatively

complex orchestration workflow (see before).

The complexity of the user tasks, and the assessed groups seem comparable between

the One.World study and this study [GDLM04]. The time it took to implement

the tasks described above in One.World is 256h [GDLM04]. The times it took the

participants to do the described tasks (Sec. 9.6.4) was about 6.5h (table 9.1).

If the assumption holds true that the task difficulties are comparable, it shows that the

VSL programming abstraction brings good usability. Even if it is not comparable,

the user study shows that the VSL programming abstraction allows to implement

complex tasks within short time, and with few lines of code.

9.6.6 Qualitative Evaluation

The quantitative analysis gives an impression that all participants succeeded in the

tasks, and that it took not too long. It does not reflect how the users experienced

working with the VSL programming abstraction. To capture this impression, a ques-

tionnaire was filled out by all participants some days after they had done the hands-on

part.

The questions are:

1. How much experience with smart spaces did you have before this lab?
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2. How much experience with Java did you have before this lab?

3. How difficult was it to implement the connectivity of your smart device with

the VSL?

4. How difficult was it to implement the Advanced Reasoning Services?

5. How difficult was it to implement the Orchestration Service that implements

your pervasive computing scenario?

6. How complex to use is the programming abstraction of DS2OS (with the hier-

archically structured context nodes as representation of the real world and as

abstract interfaces to services)?

7. How suitable is DS2OS for orchestrating future smart spaces?

8. How familiar are you with the concepts of DS2OS after the Lab?

9. How suitable is it to use DS2OS for beginners? (e.g. can it be used without

understanding everything entirely? Are the abstractions easy-to-understand?)

The participants could always answer on a scale from 1 to 5. Fig. 9.24 shows the

results. The result at the top is the best possible answer, the result on bottom is the

worst. The size of the circles and the written numbers show how many participants

crossed which value. The connection between the table and the explanatory text be-

low, is represented by the identifiers in parenthesis. The identifier “(q1)” is used in

the following text as link to question number 1 in the enumeration above. The corre-

sponding evaluation in the Fig. 9.24 is marked with the number of the corresponding

question “1”.

2	   4	   1	   1	   2	  

6	   4	   3	   2	   2	   4	   5	   2	  

2	   1	   1	   1	   4	   3	   1	   3	  

3	   3	   2	   1	   1	   2	  

5	   1	  

0	   1	   2	   3	   4	   5	   6	   7	   8	   9	  

Excellent	  

Very	  Good	  

Good	  

Fair	  

Poor	  

Figure 9.24: Subjective impression of the study group.

As the result shows, the participants had almost no background in Smart Space Or-

chestration (q1). At the same time they had very good background in Java (q2). This

matches with the targeted developer group of enthusiastic DIY makers (Sec. 2.5).

The advanced reasoning service (called Smart Gateway in the experiment) is the most

difficult service as it connects the Smart Device to the VSL. It implements bidirec-

tionally reflection of state between the VSL and the DIY Smart Device (Sec. 8.3.1).

Four participants found the task quite simple, three found it difficult, and one found

it okay (q3).
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The Advanced Reasoning Services (ARSs) derive higher-level context (Sec. 8.3.2).

Knowing the system better, the perceived difficulty shifted towards very simple (q4)

which was crossed by two participants.

The orchestration service implements the pervasive computing scenario. Having the

helper services developed, most participants answered to question 5 that it was very

easy to implement the pervasive computing scenario (Sec. 9.6.5 for an example scenario

that was implemented by a team).

Explicitly asked about the usability of the VSL programming abstraction in question

6, most participants answered good with a tendency towards better. For this result it

has to be taken into account that it was the first contact of the participants with the

novel programming model. A hand-written comment here was “When you got into it,

it is quite nice and “easy”, but the first “dive” into the system is quite hard.”.

In addition it has to be considered that the participants created an adaptation service,

ARSs, and an orchestration service, and worked with the UI service. With its diversity,

orchestration of Smart Spaces is complex. Especially when never done before (q1).

This is reflected in the next answer.

Asked for the suitability of the VSL programming abstraction as tool to create software

for future Smart Spaces, most participants answered very good (q7). A hand-written

comment here was“From the lab it seems quite suitable because it provides a nice layer

of abstraction and a very easy to understand api that makes it well suited to create

advanced services.”.

Question 8 asked for the familiarity with the concepts of the VSL programming ab-

straction after having gone through the exercise. Most participants feel very familiar

with the system after this short time. The answer shows that the chosen approach is

apparently experienced as intuitive.

The last question asked for the suitability for beginners (q9). Though the previous

answers show that all participants got along well with the VSL programming abstrac-

tion, they still perceive it difficult to use the system for beginners. This is probably

interrelated with the short discussion above, that Smart Space Orchestration is a

new concept. Users and developers are not used to it yet as it is not reality in 2014

(Sec. 2.4). A suitable programming abstraction for Smart Spaces that structures and

facilitates the development of pervasive computing applications at large, and that can

be used in the real world (<O.0>) is missing (Sec. 2.5).

9.6.7 Conclusion

The user study shows that this thesis’ goal of designing a simple-to-use and powerful

programming abstraction for Smart Space Orchestration was accomplished for the

participants of the study.

The quantitative analysis shows that within 15h a deeper understanding of Smart

Space Orchestration can be created with the VSL programming abstraction. The

program code of the participants shows that the VSL, and combination with the

modularization that is proposed by the service template (Sec. 8.2) structure the pro-

gramming of Smart Spaces. The code shows that the VSL enables the creation of

complex functionality with little code.
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The qualitative analysis shows that the VSL programming abstraction is simple-to-use

and has a good learning curve.

The measurements that were presented in Sec. 9.3 and Sec. 9.4 are partly contained

in the user study. The participants proved the reproducibility of the measurements

(Sec. 9.2.2).

As part of the regular curriculum at Technische Universität München the instruction

material that was used for the study teaches computer science students about Smart

Space Orchestration.

9.7 Chapter Conclusion

This chapter evaluates the VSL from different dimensions.

The delay measurements in Sec. 9.3 show that the VSL programming abstraction al-

lows fast context access. This confirms that the self-contained tuples can be processed

efficiently as expected (Sec. 3.9, <R.40>). <R.40>

Using the VSL, services can be coupled to implement an interactive user experience

(Sec. 9.3.1). Sec. 8.3.2 discusses the relevance of modularization for facilitating deve-

lopment (<R.26>, <R.1>). <R.26>

<R.1>The VSL implementation is not optimized for scalability but the VSL design is. The

test with up to 1600 parallel requests from 34 distributed KAs showes that the imple-

mentation is robust (<R.30>). The amount of participating entities shows that the <R.30>

self-management scales (<R.50>).
<R.50>

As discussed in Sec. 9.4.4, the P2P architecture is chosen to distribute the load. The

second measurement showes that for up to 101 parallel requests per node a coupling

between two services over either regular nodes or Virtual Nodes is possible within the

300ms boundary for very interactive user perception (Sec. 9.3.1).

As this limit relates to a single node and the KA peers are independent, this amount

can be multiplied by the amount of independently interacting KAs (Sec. 9.4.5). This

makes the VSL architecture scale (<R.50>).

The evaluation of the self-management overhead in Sec. 9.5 confirms fast convergence

and low load on the network and the participating KAs via the chosen structure

synchronization approach (Sec. 6.4.9, <R.3>). <R.3>

The user study (Sec. 9.6) shows that the VSL programing abstraction enables in-

tegrating Smart Devices, and implementing diverse pervasive computing scenarios

within short time (<20h, Sec. 9.6.5). The basis of this fast implementation is the

context-awareness support of the VSL (<R.5>). <R.5>

The participants of the user study implemented a complex scenario. They created

a DIY Smart Device first, and integrated it into the VSL. This shows that in 2014

with the available hardware (e.g. Arduino) and the VSL on the software side, a maker

culture for pervasive computing can technically emerge (Sec. 2.5, Sec. 10.4, <R.4>, <R.4>

<R.48>).
<R.48>

The subjective impression of the participants of the user study confirms the simplicity-

to-use of the VSL programming abstraction (Sec. 9.6.6, <R.1>). Especially the sim- <R.1>
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plicity in the use of the central context abstraction is confirmed (<R.29>).
<R.29>

The code that was produced during the user study shows how the VSL programming

abstraction structures and facilitates the implementation of complex scenarios. Better

code fosters service dependability (<R.30>), and helps enhancing the security of Smart<R.30>

Space services (<R.49>).
<R.49>

That the components of the VSL were not modified for any of the tests shows the real

world usability of the approach (<O.4>).
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10. Conclusions & Future Directions

Simplicity is a great virtue but it requires hard work to achieve

it and education to appreciate it. And to make matters worse:

complexity sells better.

Edsger Wybe Dijkstra, Dutch computer scientist, (1930-2002)

From the first moment I came in contact with programming in the 1990s, the act of

developing programs had something magic for me. Programming comprises abstrac-

ting a problem, thinking about a solution, logically formalizing the solution into a

computer program, and refining it until the problem is solved48. Starting a program

makes the logic alive – thoughts become actions in a magic way.

As described in Sec. 2.5, in the 1990s the physical shell of a computer was limiting the

sphere of actions. I remember well, buying my first soundcard, a soundblaster from the

company Creative Labs with an ISA bus. This device is fascinating as it extends the

range of a Personal Computer (PC). Before installing it, program actions were limited

by the screen. With audio the effects of programs were directly coming into my room

– out of the shell into my world. Having audio output was a significant extension of

the range of computer programs into the world of their users. The interaction between

the world inside the computer and the outside user was significantly enhanced for me.

Over the years, I followed the development of computer games. Having computer

games in 2014 that provide high quality video and audio giving an impression very

close to real world footage amazes me. In 2014, head-mounted displays such as the

Oculus Rift49 are about to extend the impression of reality that can be provided

through a computer. The described form of games pulls the human user into the

virtual world that the game creates (Virtual Reality (VR)).

With new devices such as Google glass50, the real world can be augmented with

computing (Augmented Reality (AR)). AR fascinates me as it extends the reality with

computing. While games pull me into their VR, AR pushes computing into my reality.

The described development goes from

48Often a problem becomes more clear in the process as logic abstraction provides better under-

standing, and different access to problems.
49http://en.wikipedia.org/w/index.php?title=Oculus Rift&oldid=597991496
50http://en.wikipedia.org/w/index.php?title=Google Glass&oldid=598804606

http://en.wikipedia.org/w/index.php?title=Oculus_Rift&oldid=597991496
http://en.wikipedia.org/w/index.php?title=Google_Glass&oldid=598804606
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• computer programs that control a limited virtual world that exists inside the PC

screen to

• computer programs that control (theoretically) unlimited virtual worlds that

humans can perceive over many senses to

• computer programs that augment the real world.

Pervasive computing continues this evolution. The presented Virtual State Layer

(VSL) programming abstraction (Ch. 5) and the foundation services (Ch. 8) enable

computer programs to control the real world. The interaction with the real world via

Smart Device sensors and actuators (Ch. 2, Ch. 3) enables Smart Space Orchestration.

The limiting shell of today’s computers is extended. It covers the entire world now.

The operating range of VSL software is only limited by the available distributed Smart

Devices (Sec. 10.4).

Starting a program makes the logic alive – thoughts become actions in a magic way.

This evolutionary step opens up numerous possibilities – and hazards.

I’m afraid. I’m afraid, Dave. Dave, my mind is going. I can feel

it. I can feel it. My mind is going. There is no question about

it. I can feel it. I can feel it. I can feel it. I’m a...fraid. Good

afternoon, gentlemen. I am a HAL 9000 computer. I became

operational at the H.A.L. plant in Urbana, Illinois on the 12th

of January 1992. My instructor was Mr. Langley, and he taught

me to sing a song. If you’d like to hear it I can sing it for you.

Quote from “2001 A Space Odyssey”, Stanley Kubrick, (1928-1999),

American film director, screenwriter, producer, cinematographer, and

editor.
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10.1 Assessment

When we understand knowledge-based systems, it will be as

before- except our finger-tips will have been singed.

Epigrams on programming [Per82], Alan Perlis, American computer

scientist, (1922 - 1990), 1st Turing award winner 1966.

This thesis started with the challenge to provide a programming abstraction that

enables the shift from “programming environments to programming environments”

[Abo12]. The challenge was formalized into objective <O.0> that was divided into

four subordinate objectives. To reach the objectives, 50 requirements were identified.

The fulfillment of the functional requirements was shown in the chapters 5ff with the

markers in the text (<R.1>). Te fulfillment of the requirements leads to a fulfillment <R.1>

of the objectives as shown in Fig. 3.15.

The subjective requirement usability for the VSL programming abstraction was con-

sidered by taking results from psychology into account (Sec. 3.5). The intuitive use

was demonstrated in the chapters 7ff, and assessed via the user study in Sec. 9.6.

The Distributed Smart Space Orchestration System (DS2OS) framework implements

elements from the App economy for smartphones and provides identical usability

(Ch. 7). As the App economy is apparently suitable for real world use from a usability

perspective, DS2OS is too. In particular the simple-to-use service deployment, and

security features were discussed (Ch. 7). The scalability of the VSL was assessed in

Ch. 9.

Ch. 3 showed the feasibility of Smart Space Orchestration with the VSL. The crowd-

sourced standardization process (Sec. 7.4.2) is fundamental for real world deployment

of the solution. It provides interface portability of services. Interface portability en-

ables the execution of one service implementation in different Smart Space instances

without change (Sec. 5.6.3).

This solves objective <O.4>, to

<O.4> Design a programming abstraction that can be used by regular users for imple-

menting pervasive computing in the(ir) real world, and not only by researchers

in laboratories. This includes empowering users to develop their own programs

that implement their desired pervasive computing scenarios (Sec. 2.5.2).

The diversity of pervasive computing use cases is supported by the µ-middleware con-

cept (Sec. 6.2). Its seamless extensibility enables transparent coupling of distributed

services over descriptive interfaces (Sec. 5). The support of divers communication

modes (Sec. 5.4.3) enables the implementation of diverse scenarios. In particular it

allows to provide the functionality of the assessed pervasive computing middleware

solutions from Ch. 4 via regular VSL services. Ch. 7, and Ch. 8 showed how the VSL

programming abstraction facilitates the implementation of such services.

This solves objective <O.3>, to

<O.3> Support diverse pervasive computing scenarios and not only few use cases.
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The VSL programming abstraction does not differentiate between service classes

(Ch. 8). All services use the identical mechanisms and offer the same interfaces.

This allows composing all services in a Service Oriented Architecture (SOA). The re-

sulting modularization of functionality facilitates (Sec. 3.5) the software development.

Existing functionality can be reused to mash up new functionality (Sec. 8.4).

The VSL allows providing coupled interfaces for the same functionality on different

levels of abstraction (Sec. 8.3.2). This facilitates the development of programs as

program logic can be transparently coupled on different levels of abstraction (Sec. 3.5).

The separation of service logic from service state structures VSL services. It allows

sharing context in a controlled way over the VSL middleware independent of services

(generative communication).

The use of a descriptive interface facilitates the development of services as descriptive

knowledge is more intuitive for humans than procedural knowledge (Sec. 3.5). Using

context models as abstract service interfaces provides the inheritance and validation

mechanisms of the VSL meta model (Sec. 5.2). This supports developers in creating

abstract interfaces (e.g. inheritance makes the interface in listing 5.2.11 short). The

(enforced) sharing of context models (abstract service interfaces) over the Context

Model Repository (CMR) enables reuse.

This solves the objectives <O.2>, and <O.1>, to

<O.1> Structure and facilitate the development of so-called adaptation services.

<O.2> Structure and facilitate the development of orchestration services.

Having all the subsidiary objectives solved, the overall goal of the thesis is solved, to

<O.0> Design a programming abstraction for Smart Spaces that structures and faci-

litates the development of pervasive computing applications at large, and that

can be used in the real world.

The differences to the state of the art were addressed in Sec. 4.5. They are summarized

in table 4.1, and in the difference of the existing combined reference architecture in

Fig. 4.3 to the corresponding DS2OS architecture in Fig. 7.6.
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10.2 Conclusion

This thesis introduces a middleware paradigm that is called µ-middleware. It enables

transparent extension of a middleware core with functionality at run time. Charac-

teristic for the VSL is the use of a descriptive data structure as functional interface

for services that can be accessed via fixed methods. This contrasts the typically used

method-signature based service interfaces.

The introduced Virtual Context concept enables the use of static interfaces for dyna-

mically generated content. It enables a direct coupling of services over a descriptive

data structure. As shown in Sec. 5.4.2 with the Virtual Subtrees, the resulting inter-

face can be used like an interface of a functional programming language. A difference

is that the VSL can additionally be used like a distributed database that stores and

provides context. This duality combines the dynamics of a SOA with the context-

awareness support of context provisioning middleware.

A side-effect of using the VSL for service coupling is the enabling of security-by-

design. All communication is controlled by the VSL, either by routing requests to

service callbacks (Sec. 5.4.2), or by entirely serving the requests (Sec. 5.3.2). Security

is important for the implementation of pervasive computing. Security and safety

critical areas in the immediate human surrounding are inevitably touched by the new

technology. The need for security and safety is expressed by the lower quote in the

introductory text to this chapter, and in Sec. 2.6.2.

The introduction of the CMR to share and converge context models (=abstract ser-

vice interfaces) solves a fundamental problem of SOAs and Smart Spaces: it fosters

portability. Introducing crowdsourced methods for implementing a self-convergence of

the resulting ontology provides the necessary scaling standardization.

The introduced hybrid VSL meta model provides the necessary simplicity for enabling

crowdsourced development of context models. The resulting self-containment of con-

text tuples provides the necessary processing efficiency for larger installations, and

devices with limited resources51.

The DS2OS framework could directly be used to create an App economy for Smart

Spaces (Sec. 10.3). Ch. 7 showed how the complexity of Smart Space Orchestration can

be lowered to the complexity that is provided by the App economy in 2014 (Sec. 3.10).

At the same time it showed, how users can be effectively empowered to control the

access to functionality in their Smart Spaces.

Similar to the App economy, DS2OS enables user-based software development. DS2OS

provides an infrastructure for sharing user-developed services. The previously dis-

cussed portability enables running the same service in all VSL-operated Smart Spaces.

The functionality of a service only depends on the locally available VSL context mo-

dels that define the locally available functionality (Sec. 7.5).

Ch. 8 demonstrated the feasibility of the approach for supporting existing or custom

built devices (Sec. 3.2.3). It showed how future User Interfaces (UIs) could look

like. The connectivity of distributed Smart Spaces could become interesting in the

future for sharing hardware (e.g. wind sensor), and experiences (e.g. heating curve)

51The instantiation of a context model can be offloaded from a device. It is transparent for a device

if it receives a fully specified context model, or a context model that requires recursive resolution of

dependencies.
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[PNKC13]. The mash up of functionality (Sec. 8.4) showed how users can implement

complex pervasive computing scenarios only by configuring Event-Condition-Action

(ECA) rules (e.g. via a graphical interface). This empowers users to benefit from the

new functionality without programming their own services.

In 2014, there is an emerging maker culture for Smart Devices (Sec. 2.5.1, Sec. 3.2.3).

With its simple-to-use powerful programming interface, the presented solution fosters

the emergence of a complementing maker culture for software for Smart Spaces. Such

development would result in a real world implementation of pervasive computing,

making the last piece of ubiquitous computing become reality (Ch. 2).
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10.3 Future Directions

Dealing with failure is easy: Work hard to improve. Success is

also easy to handle: You’ve solved the wrong problem. Work

hard to improve.

Epigrams on programming [Per82], Alan Perlis, American computer

scientist, (1922 - 1990), 1st Turing award winner 1966.

Different future directions were already mentioned in the text. The most important

next step is the development and the release of the Smart Space Store (S2Store), and

the Smart Space Service management (S2S) service management infrastructure. Both

activities have started already. The release allows real users to use the technology

and to contribute. Evaluating the results is expected to become interesting research.

In particular the emergence of the crowdsourced ontology is interesting as it does not

come out of the research community like the current approaches but out of the real

world.

More concrete tasks that were mentioned in the text are:

• Automated generation of service stubs for further simplification of the VSL ser-

vice development (Sec. 5.4.1).

• Evaluation of the chances to implement formal service validation (Sec. 5.5.6).

• Evaluation of context caching mechanisms (Sec. 6.4.5). With caching and the

locator-id-split, the VSL implements not only a delay-tolerant network but also

a content-centric network [JST+09]. Results from this research area might be

directly applicable for the caching. In the other direction, the VSL may also be

an interesting implementation of a content-centric network/ information-centric

network.

• Evaluation of the automated connector generation based on an Extensible Markup

Language (XML)-Remote Procedure Call (RPC) Interface Definition Language

(IDL) Sec. 6.3.2.

• Implementation of more optimization strategies in the Site Local Service Man-

ager (SLSM) (Sec 7.2.4).

• Evaluation of the use of applying more migration techniques in the SLSM that

are known from cloud computing (Sec. 4.3).

• Further development of the concept for automated integration of new Smart

Devices (Sec. 8.3.1).

• Further development of the concept for automated generation of adaptation

services for unsupported Smart Devices (Sec. 8.3.1).

• Implementation of a multi-threaded connector that uses multiple connections

to its Knowledge Agent (KA) to make the Virtual Node handling scale better

(Sec. 9.4.3).
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10.4 Towards Smart Spaces

Neo, sooner or later you’re going to implement just as I did that

there’s a difference between knowing the path and walking the

path.

Morpheus, The Matrix, 1999

At the beginning of 2014, Smart Spaces are not part of everyday life. With the solu-

tions that this thesis provides, this may change. This section gives a visionary outlook

how such change may happen. Fig. 10.1 illustrates the envisioned development.

There are no (few) 
Smart Space 
installations

Available devices are not 
inter-operable 
(no portability)

No orchestration 
software market 
exists = few real-
world use cases

Only few people experience the 
benefits of Smart Spaces

Only few people buy the 
available hardware

Little innovation 
happens

Available devices are 
expensive

Devices are 
interoperable

User-based/ crowdsourced 
software development  

is a huge market

Smart Spaces 
emerge

Many 
people buy 
hardware

Many people 
experience the 

benefits of 
Smart Space 
Orchestration

New software and 
hardware gets 

created

Mass market, and direct 
competition make hardware 

prices fall

2014

future

DS2OS
App Store

Model Repository
Convergence

User-Driven
Innovation

Use cases are difficult to 
realize outside labs

Many use cases 
can be realized

Heterogeneous 
(legacy) devices 

can be used

Future

Figure 10.1: The situation of Smart Spaces in 2014 in the outer loop, and the possible development

with the presented DS2OS ecosystem in the inner loop.

In 2030, DS2OS drives many Smart Spaces installations. Following, a review from the

year 2030 back to 2014 is given form the perspective of users, developers, and “the

market”.
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10.4.1 User Perspective 2030

The growing amount of Smart Spaces led to mass production of Smart Devices. Prices

dropped significantly. Almost all available hardware devices are Smart Devices, al-

lowing Smart Space Orchestration.

Millions of Smart Space services are available over the S2Store (Sec. 7.2.6). The crowd-

sourced developer community provides drivers for new devices within days. Users buy

new Smart Devices,

• plug them to their VSL network,

• the device discovery service (Sec. 8.3.1) detects them,

• if a driver is available, it is automatically installed using the SLSM (Sec. 7.2.4),

and the device is usable.

New pervasive computing scenarios can simply be installed by finding them on the

S2Store, and clicking on install in the SLSM interface (Fig. 7.5). The prices of

Smart Space Services are similar to those of smartphone Apps in 2014 around 1$ per

service.

Over the time, meaningful names and descriptions for the access groups in the S2Store

emerged (Sec. 7.3.3). This facilitates setting the access rights. As many VSL services

share the same access groups, the access rights configuration is typically done with

one click as the SLSM suggests the rights based on previous selections.

Via Smart Space Orchestration, the behavior of a Smart Space can be changed by

reconfiguring existing, or installing new Smart Space Services. In combination with

new devices, such as active wallpapers that can display items like monitors did in

2014, the entire type of use of a Smart Space can be changed via software. Such

change is simple and fast. Therefore physical environments are changed frequently.

New usage patterns of physical spaces emerged. Literally the reconfiguration of a

physical environment shifted from the hand to the mind.

10.4.2 Developer Perspective 2030

The market volume for Smart Devices and Smart Space Services is huge. Program-

ming the reality is not science fiction anymore.

The propagation of 3D printers, and the availability of embedded system kits allow

users to invent and create their own Smart Devices at home. More and cheaper

Smart Devices than were produced in total in 2014 are getting produced by users in

their homes. The sharing construction schemes for such Do-It-Yourself (DIY) Smart

Devices is a huge market.

Thousands of new Smart Space Services are uploaded to the S2Stores daily. A crowd-

sourced developer scene emerged similar to the App development scene for smartphone

Apps in 2014.

The simple-to-use Application Programming Interface (API), the convergence mecha-

nisms, and the automated feedback, that acts as bug reporting mechanism, made the

development of high-quality Smart Space Service so simple that even programming

beginners offer DS2OS Smart Space Services.
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Adaptation services for new Smart Devices are typically in the S2Store within hours.

Most often they are available before the devices are sold. Vendors release their inter-

face context models, and corresponding emulators early. This fosters the development

of Smart Space Services that use their new Smart Devices. In turn they can sell more

devices.

The large scale of the market made Smart Space Service development a profitable busi-

ness. At the same time the enabling of crowdsourced development led to a diversity

of use cases that could not be imagined by the research community in 2014.

10.4.3 Market-Economic Perspective 2030

Smart Spaces are a huge business with hardware and software vendors as main actors.

Fig. 10.1 shows how the market situation changed since 2014. The outer development

is explained first, starting with the 2014 arrow on the top left. Then the inner circle

is explained.

Without use cases, only few people invested in Smart Devices in 2014. The deployed

Smart Devices were often incompatible, and only used to implement silo functionality.

The silos complicated the implementation of pervasive computing scenarios in 2014.

The missing of a common abstract interface, an Operating System (OS) for Smart

Spaces, made the reuse of Smart Space Services almost impossible (no portability).

Services could only be used in the Smart Spaces they had especially been developed

for. As a result, only few Smart Spaces existed. Only few people could experience the

benefits of Smart Space Software Orchestration. The situation could be compared to

the beginning of the smartphone era around 2008.

The low market volume kept vendors from investing in the development of Smart

Devices. As is clear now, real innovation only started with enabling users to design,

create, and share pervasive computing scenarios on their own. The maker scene for

hardware and software (Sec. 10.4.2) became a huge and profitable business.

As only few Smart Devices existed in 2014, they were expensive. The high price

prevented even early adapters from buying them.

Then DS2OS was released. What started with a few enthusiasts back in 2014 is

installed almost everywhere today. Via Smart Space Orchestration, the S2Store, and

crowdsourced development, almost all devices inside a Smart Space can be controlled

by DS2OS services. While this is taken for granted today, the work of skilled users

that developed adaptation services for their own Smart Device and shared the services

over theS2Store was very important at the beginning. It enabled non experts that

had the same devices at home to experience Smart Space Orchestration for the first

time.

Millions of scenarios can be installed from the S2Store. As the possibilities of or-

chestrating the environment are huge, many people started developing Smart Space

Services. The S2Store allows users to distribute their Smart Space Services. It ma-

nages the entire life-cycle of a service. In return, a share on the sales revenue of each

service is kept by the S2Store operator – like App stores did in 2014.

The crowdsourced convergence mechanisms led to a self-standardization by the market

(Sec. 7.4). It enabled vendor interoperability in a scalable way (portability).
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The implemented and available use cases attract many consumers. Even people that

do not have a Smart Space at home experience the technology in public spaces. Such

spaces can be controlled by the people that are present in the space over public

interfaces.

Companies and users produce Smart Devices and sell them via the Internet. Many

consumers produce their Smart Devices via their 3D printers at home. The mass pro-

duction led to a significant price drop, making Smart Devices affordable to everyone.

As people experience the benefits of Smart Spaces everywhere, many people buy Smart

Devices resulting in a high penetration of physical spaces. The Smart Device market

is huge. The third computing generation is reality for a long time.
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A.1 Requirements List

Following, a short list of the 50 requirements that were identified in the analysis

section (Ch. 3) is given.

<R.1> Simplicity-to-use of the programming

abstraction, and of the services using

it.

<R.2> Multi-user support.

<R.3> Self-management.

<R.4> User participation in the creation of

software.

<R.5> Context-awareness support.

<R.6> Role-independent unified interfaces,

not distinguish between different ser-

vice roles.

<R.7> Portability of the implementation of

the programming abstraction.

<R.8> Logical portability of services.

<R.9> Information loss prevention.

<R.10> Standardization to overcome hetero-

geneity.

<R.11> Distribution support.

<R.12> Access transparency.

<R.13> Location transparency.

<R.14> Migration transparency.

<R.15> Relocation transparency.

<R.16> Concurrency transparency.

<R.17> Failure transparency.

<R.18> Persistence transparency.

Coordination Modes

<R.19> Direct communication support.

<R.20> Mailbox communication sup-

port.

<R.21> Publish-subscribe communica-

tion support.

<R.22> Generative communication sup-

port.

<R.23> Dynamic extensibility with device

drivers and support functionality.

<R.24> Descriptive knowledge representa-

tion.

<R.25> Interaction on different levels of ab-

straction.

<R.26> Modularization support.

<R.27> The support of multiple programming

languages.

<R.28> High expressiveness of the context re-

presentation.

<R.29> Simple-to-use context abstraction.

<R.30> Dependability.

<R.31> Loose coupling of services.

<R.32> Service contracts.

<R.33> Service autonomy.

<R.34> Service abstraction.

<R.35> Service reusability.

<R.36> Service composability.

<R.37> Service statelessness.

<R.38> Service discoverability.

<R.39> Abstract interface validation support.

<R.40> Meta model with suitable properties.

<R.41> Low complexity in the meta mo-

del.

<R.42> Collaboration support in the

creation of context models.

<R.43> Dynamic extensibility of the

context models at run time.

<R.44> Context validation.

<R.45> Portable service executables.

<R.47> Support of emulators.

<R.46> App store.

<R.48> Crowdsourced development.

<R.49> Security-by-design.

<R.50> Scalability.
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A.2 Cascaded Retrieval of a Context Model

svcA agentA agentB CMR service CMR

add node of type myType

A available in cache?

yes

instantiate myType

done

In CacheIn Cache myType is available in the local agent’s context model cache

add node of type A

get /search/type/?/system/cmr

/agentB/cmr
get /agentB/cmr/myType

get /agentB/cmr/myType

get /agentB/cmr/myType

myType

From local cacheFrom local cache cached. . .

retrieve myType

myType

cache myType

From the CMRFrom the CMR not cached. . .

myType

myType

cache myType

instantiate myType

done

Not In CacheNot In Cache myType is not available in the local agent’s context model cache

Figure A.1: SvcA is instantiating myType on agentA.

Fig. A.1 shows the instantiation of a context model myType via the CMR service as

described in Sec. 5.7.1.

If the requested context model myType is available in the cache of the local Knowledge

Agent (KA) agentA it is instantiated from there (upper part).

If it is not available, the CMR service (Sec. 5.7.1) is searched based on its type (lower

part). If the CMR service has the context model myType in cache it is served from

there. If not, the Context Model Repository (CMR) is contacted, the context model

myType is loaded and locally cached. The KA agentA is also caching the context

model for possible future retrieval as described in Sec. 5.7.1.
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A.3 iLab Exercise for the User Study

Sec. 9.6 describes the user study that was conducted to evaluate the real world us-

ability of the Virtual State Layer (VSL) programming abstraction. The entire study

is based on the eLearning system labsystem [Pah09]. Fig. A.4 and Fig. A.5 show two

screenshots from the instruction material that was provided for the user study in the

labsystem.

Fig. A.4 shows a part of the preparatory material (Sec. 9.6.1). Fig. A.5 shows the

Advanced Reasoning Service (ARS) creation part of the study (Sec. 9.6.4). The screen-

shot shows some of the free text inputs that were answered by the study participants.

The teaching material that was created for the user study of this thesis is now part of

the regular curriculum at Technische Universität München. It teaches future computer

science students every semester about (future) Smart Space Orchestration.

The material is not printed here as it is about 160 pages. To get an idea how to

use the VSL and to try it out, the material can be downloaded as ePub [Pah14b]

Fig. A.2 shows a QR code that can be used to access the material in the epub format

as electronic book.

Figure A.2: QR code to download the epub version of the user study material.

To get an idea how to use the VSL and to try it out, the material can be downloaded

as web site [Pah14a]. Fig. A.3 shows a QR code that can be used to access the material

as web site.

Figure A.3: QR code to download the web version of the user study material.
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Figure A.4: The screenshot shows the study material that was given to the users for their own

preparation in the web-based eLearning system.
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Figure A.5: The screenshot shows the study material that was used for the user study in the web-

based eLearning system.
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[BBS+10] T Bläsing, L Batyuk, A.-D Schmidt, S.A Camtepe, and S Albayrak. An

Android Application Sandbox system for suspicious software detection.

In Malicious and Unwanted Software (MALWARE), 2010 5th Interna-

tional Conference on, pages 55–62, 2010. Cited in section 3.10.8.

[BCFF12] Paolo Bellavista, Antonio Corradi, Mario Fanelli, and Luca Foschini.

A survey of context data distribution for mobile ubiquitous systems.

Computing Surveys (CSUR, 44(4), August 2012. Cited in sections 2.4.1,

2.6.4, 3, 3.9, 4, 4.5.1, 4.5.16, and 4.3.

[BCG07] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. De-

veloping Multi-Agent Systems with JADE. Wiley Series in Agent Tech-

nology, April 2007. Cited in section 3.9.5.
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Glossary

µ-middleware A µ-middleware is a middleware that provides only basic, non domain-

specific functionality, and that supports transparent extension with functionality

via regular services at run time. µ-middleware enables overcoming middleware

silos (see Sec. 4.5, Sec. 6.2).

adaptation service A services that provide software interfaces to Smart Devices are

called adaptation services in this thesis. (see Sec. 8.3.1).

App The term App is the short form of application. It is typically used in the context

of smartphones and the App economy. Apps for Smart Spaces are services that

provide functionality for Smart Spaces. A Smart Space App provides functio-

nality for Smart Space Orchestration (see Sec. 3.10).

App economy The term App economy describes the ecosystem that emerged around

App stores for smartphones. The App economy comprises the App store, the

users, and the developers (see Sec. 3.10).

App store The App store is the repository for smartphone applications that was

introduced by Apple Inc. in 2008 (see Sec. 3.10). The equivalent of an App

store for Smart Spaces is called Smart Space Store (S2Store) in this thesis (see

Sec. 7.1.1).

context Context is information that is relevant for an entity to reach its goal. In

this document, the term context is used to describe the virtual representation

of information that is relevant for a service to implement Smart Space Orches-

tration (virtual object in Fig. 3.12). Such a context representation is typically

structured by so-called context models (see Sec. 3.9, Sec. 2.4.1).

Context Model Repository The Context Model Repository (CMR) contains the

ontology of all Virtual State Layer (VSL) Smart Spaces. An ontology is typically

defined as triple 〈subject, predicate, object〉. Subject and object are context mo-

dels identifiers in the Context Model Repository (CMR). The predicates that

it supports are “derives” and “composes”. The CMR contains the context mo-

dels of all Distributed Smart Space Orchestration System (DS2OS) services (see

Sec. 5.2.8).

crowdsourced software development The term crowdsourced (software) develop-

ment is used to describe distributed user-based software development. In con-

trast to user-based development, crowdsourced development typically comprises

competitive elements (see Sec. 3.10, Sec. 7.4).
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Distributed Smart Space Orchestration System The DS2OS is introduced in

this thesis. It provides the technology required for establishing an App economy

for Smart Spaces. The core of DS2OS is the VSL (see Sec. 7).

knowledge The term knowledge is used to describe instances of context nodes in this

work (see Sec. 5).

Knowledge Agent The VSL is implemented as a system of distributed peers. The

peers are called Knowledge Agents (KAs). All KAs together span the VSL

context overlay. Each DS2OS service connects to exactly one KA that gives

access to the distributed knowledge that is stored in the context nodes of the

overlay (see Sec. 6.3).

knowledge base The term knowledge base describes the conjunction of all know-

ledge trees of a VSL instance (see Sec. 5).

Knowledge Object Repository The VSL context repositories that contain the

instances of VSL context nodes are also-called Knowledge Object Repository

(KOR) or shorter knowledge repository in this thesis. Each KA has one Know-

ledge Object Repository (KOR) (see Sec. 6.3).

knowledge repository The KA context repository that contains the instances of

context models from the CMR is called knowledge repository in this document

(see Sec. 5).

knowledge tree All instances of context models that are stored in a VSL context

repository are called knowledge tree in this work.

Node Local Service Manager The Node Local Service Manager (NLSM) is part

of the Smart Space Service management (S2S) service management of DS2OS.

The NLSM manages the DS2OS services on a computing node. To do so, the

NLSM monitors and controls the status of each service using the Service Hosting

Environment (SHE) interface (see Sec. 7.2.3).

ontology The term ontology originates in philosophy. It typically describes an ex-

plicit specification of a conceptualization [GN87, Gru93, AZW06]. In this work,

the CMR contains an ontology for Smart Spaces (see Sec. 3.9.1, Sec. 5.2.8).

orchestration In this thesis, the term orchestration describes the execution of per-

vasive computing workflows to reach a certain goal. It includes the orchestration

of services such as adaptation services. See Smart Space Orchestration.

orchestration service A service that implements the logic of apervasive computing

scenarios is called orchestration service in this thesis (see Sec. 8.3).

regular node The term regular node is used for all context nodes that are stored

in, and served by the context repositories of the KAs that span the VSL (see

Sec. 5.3.2).

Run Time Environment The Run Time Environment (RTE) is part of the S2S

service management of DS2OS. The RTE runs the Java services in DS2OS. In

the prototype it uses . The RTE is interfaced by the SHE (see Sec. 7.2.1).
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Service Hosting Environment The SHE is part of the S2S service management

of DS2OS. The SHE provides the management interfaces of the RTE. The SHE

is interfaced by the NLSM (see Sec. 7.2.2).

Site Local Certificate Authority The Site Local Certificate Authority (SLCA) is

part of the S2S service management of DS2OS. The SLCA manages the cer-

tificates for services within a DS2OS site. Services certificates are the central

element of the DS2OS security-by-design architecture. It issues and renews ser-

vice certificates automatically. When a new service is installed in a site, it creates

a new locally-signed certificate for the service using the certificate issued by the

S2Store and the rights the user set over the Site Local Service Manager (SLSM)

interface. When the certificate of a service is about to expire, the managing

NLSM contacts the SLCA asking for a certificate renewal (see Sec. 7.3).

Site Local Service Manager The SLSM is part of the S2S service management

of DS2OS. The SLSM manages all services within a DS2OS site. It offers the

interfaces for users to install, start, and stop services. The SLSM delegates the

task to run a service to the NLSMs that run on the distributed computing nodes

(see Sec. 7.2.4).

Smart Device A Smart Device is an embedded system with pervasiveness support

via sensors or actuators, and with networking support that enables remote con-

trol (see Sec. 2.4.1).

Smart Space Spaces that contain Smart Devices and support Smart Space Orches-

tration are called Smart Spaces (see Sec. 2.4.1).

Smart Space Back-End The term Smart Space Back-End is used to describe the

distributed networked hosts that run KAs and span the VSL in a Smart Space.

Smart Space Orchestration The term Smart Space Orchestration describes the

management of Smart Devices in a Smart Space via software. Smart Space

Orchestration typically has a goal, such as saving energy in a space, that it

reaches by orchestrating multiple Smart Devices (see Sec. 2.4.1).

Smart Space Service management The S2S is the service management of DS2OS.

It deploys services in to Smart Spaces, and it manages services within a Smart

Space. The S2S consists of the RTE, the SHE, the NLSM, the SLSM, end the

S2Store (see Sec. 7.2).

Smart Space Software Orchestration See Smart Space Orchestration..

Smart Space Store The S2Store is the App store for Smart Spaces. It is introduced

as part of DS2OS in this thesis (see Sec. 7.2.6).

Software Orchestration See Smart Space Orchestration.

Virtual Context Virtual Context is context that is not served by the VSL context

repository of a KA but instead delivered via a callback into a service that reg-

istered a Virtual Node. Virtual Context enables a direct coupling of services by

using a descriptive data structure. It extends the blackboard communication

pattern (see Sec. 5.3.4).

Virtual Node The term Virtual Node is used for VSL nodes that provide context

via a function callback into a service (see Sec. 5.3.4).
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Virtual State Layer The VSL is the µ-middleware that is developed in this thesis.

It is implemented as Peer-to-Peer (P2P) system of distributed KAs. The VSL

provides a context overlay that enables transparent exchange of context between

services (see Sec. 5).
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