
Institut für Informatik
Technische Universität München

Usability Oriented
Visualization Techniques for
3D Navigation Map Display

Mikael Vaaraniemi

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. J. Schlichter
Prüfer der Dissertation: 1. Univ.-Prof. Dr. R. Westermann

2. Univ.-Prof. Dr. J. Döllner, Universität Potsdam

Die Dissertation wurde am 19.3.2014 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 21.4.2014 angenommen.

Abstract

This thesis presents concepts and techniques that enhance considerably the perception
and recognition, visual association, and rendering efficiency of navigation map display.
These contributions aim at improving the usability of 3D maps as used in navigation
systems and spatial information browsing.

The performance of low-end graphical processing units (GPUs) is growing fast [Voi12]:
over the next few years, the average GPU performance will increase exponentially and
enable high-quality visualization on handheld and embedded devices. At the same time,
the market of geographic data is increasing in terms of availability, coverage, precision
and semantics. This includes on one hand static data, e.g., freely available and highly
detailed vector maps such as OpenStreetMap, which depicts streets, 3D buildings, and
land cover usage, and on the other hand dynamic data, e.g., gas prices, local weather,
real-time traffic information, or public transportation schedules. In the domain of nav-
igation systems, these trends allow us to present an increasing amount of information
and to create high-quality map-based 3D visualization, called in the following “3D
maps”. However, the increasing amount of visual information, especially in 3D maps,
creates many new problems that hinder usability for navigation systems and spatial in-
formation browsing purposes.

First of all, the perception and recognition of map elements becomes more difficult,
as individual map elements, such as labels or roads, can easily become occluded, e.g.,
by 3D buildings models. With a freely moving camera, the tracking of labels becomes
difficult. Moreover, they can easily overlap each other and hence, become unreadable.
Second, it is difficult to maintain a visual association between elements. For example,
roads provided as 2D polyline should not disappear below 3D terrain. Labels, floating
in the 3D world, should easily be associated to their respective map element, e.g., a
road. Finally, 3D buildings and roads created from vector maps should match their
respective counterpart in the underlying orthoimage, e.g., an aerial or satellite image.

i

ii

In addition to these visual issues, a 3D map decreases the overall system performance as
complex textured geometries are drawn, such as 3D buildings and terrain. In the context
of navigations systems, maps consist of several semantic layers, e.g., 3D terrain, 3D
buildings, roads, labels, and orthoimages. Today’s application and systems typically
improve the visualization of a single layer and fail to consider the interdependency
between multiple layers; in order to improve the usability in a holistic way, it is essential
to consider every layer. Finally, most approaches are designed for powerful desktop
GPUs and do not necessarily provide interactive performance on embedded or handheld
devices.

In this thesis, we propose a set of techniques for rendering 3D maps targeted to enhance
the usability of 3D maps for navigation purposes.

• First, we will present a technique for rendering cartographic roads with rounded
caps on terrain. In its first implementation, a geometric approach enables an effi-
cient rendering of roads onto low to medium-resolution terrain. The second im-
plementation uses shadow-volumes and enables an artifact-free draping of roads
on high-resolution terrain.

• As second contribution, we introduce a temporal coherent labeling to enable the
tracking of labels over the course of navigation. It uses a force-based approach to
resolve the collision of labels, while maintaining temporally smooth movements.
Additionally, we propose techniques to increase the readability of textual labels
and analyze label placement strategies in respect to a 3D geovirtual environment.

• The third part of this thesis presents several concepts to enhance the visibility of
elements in 3D maps. In a case study, we show how the visibility of labels and
roads occluded by 3D buildings can be improved. Two promising approaches
were chosen for further evaluation: glowing roads, which allow roads to shine
through their occlude, and transparency aura, which creates a transparency region
around the label in the occluding object.

• The last contribution of this thesis is the procedural generation of orthoimages
using real geographic data. A neural network, i.e., a multilayer perceptron, learns
automatically the mapping of geographic input to a single color. At runtime,
the mapping is evaluated to create a synthetic texture that serves as surrogate for
satellite images. Finally, procedural details are added: vegetation is simulated,
buildings and fields are procedurally generated and snow is seeded.

iii

All approaches are implemented into a research prototype. We show the performance
increase through benchmarks, validate the improved recognition of map elements through
user studies and illustrate the enhanced appearance with screenshots.

This thesis laid out the foundation for improving 3D maps for navigation systems and
applications. Each presented technique can be applied to its respective domain. How-
ever, only by enhancing all aspects, specifically the recognition and perception (read-
ability, visibility), visual association (relationship, temporal coherence), and rendering
performance, we can significantly improve the display of 3D maps. All in all, the con-
tributions allow the implementation of systems and applications for 3D maps with an
improved usability and effectiveness of information display.

Zusammenfassung

In dieser Arbeit werden neue Verfahren vorgestellt, um die Erkennung, die bildliche
Verbindung und die Darstellungseffizienz von Kartenelementen, bspw. Straßen, Be-
schriftungen und Satellitenbilder, zu verbessern. Die vorgestellten Verfahren ermögli-
chen die Verbesserung der Benutzerfreundlichkeit von 3D-Karten zu Navigations- und
Informationszwecken.

In den nächsten Jahren wird die durchschnittliche Leistung von eingebetteten strom-
sparenden Grafikkarten (Graphical Processing Units, GPUs) exponentiell wachsen und
somit hochwertige Visualisierungen auf tragbaren und eingebetteten Geräten ermög-
lichen. Zugleich stehen mehr und mehr geografische Daten zur Verfügung: Einerseits
statische Daten wie OpenStreetMap, eine frei verfügbare und sehr detaillierte Vektor-
karte, die Straßen, 3D-Gebäude und Landnutzungsdaten speichert. Andererseits stehen
auch dynamische Daten, bspw. Tankstellenpreise, Wetter oder Verkehrsinformationen
zur Verfügung. Im Bereich der Navigationssysteme erlauben uns diese Trends die Prä-
sentation einer zunehmend größeren Menge an Informationen und die Erstellung hoch-
wertiger 3D-Kartenvisualisierungen.

Diese zunehmende Menge an dargestellten Informationen bringt jedoch eine Vielzahl
neuer Probleme mit sich, welche die Benutzerfreundlichkeit für Navigations- und Infor-
mationszwecke erschweren. Zunächst wird die Erkennung von Kartenelementen schwie-
riger, da einzelne Elemente, wie Beschriftungen oder Straßen, leicht von davorlie-
genden 3D-Elementen verdeckt werden können, z. B. von 3D-Gebäuden. Zusätzlich
gestaltet sich mit einer frei beweglichen Kamera die Verfolgung von Beschriftungen
schwierig. Einzelne Schriftzüge können sich leicht überlappen und somit unlesbar wer-
den. Zweitens ist es schwierig, eine bildliche Verbindung zwischen zusammengehö-
rigen Kartenelementen aufrechtzuerhalten. Straßen werden aus einer Vektorkarte als
2D-Linienzug geladen und dargestellt und sollten nicht unter dem 3D-Geländemodell
verschwinden. Beschriftungen, die in der virtuellen 3D-Welt platziert werden, sollten

v

vi

ihrem jeweiligen Kartenelement einfach zugeordnet werden, bspw. ihrer zugehörigen
Straße. Schließlich sollten aus Vektorkarten gewonnene 3D-Gebäude und Straßen mit
ihrem jeweiligen Pendant in dem darunterliegenden Orthofoto, bspw. einer Luft- oder
Satellitenaufnahme, übereinstimmen. Neben diesen visuellen Themen stellt eine 3D-
Kartendarstellung neue Herausforderungen an die Leistung eines Systems, unter ande-
rem bei der Anzeige von 3D-Gebäuden und eines hoch aufgelösten Geländemodells.
Thematische Karten bestehen aus mehreren semantischen Schichten, z.B. Orthofotos,
3D-Geländemodellen, Straßen, 3D-Gebäuden und Beschriftungen. In aller Regel be-
trachten bestehende Verfahren nur eine einzige solche Schicht. Es ist jedoch essentiell,
jede sichtbare Schicht zu behandeln, um die Benutzerfreundlichkeit in Ihrer Gesamt-
heit zu verbessern. Des Weiteren sind die meisten bestehenden Ansätze nur für lei-
stungsstarke GPUs entwickelt worden und in aller Regel ungeeignet für stromsparende
eingebettete Systeme.

In dieser Arbeit werden mehrere Ansätze vorgestellt, um die Benutzerfreundlichkeit
von 3D-Karten zu Navigations- und Informationszwecken zu verbessern.

• Im ersten Teil dieser Arbeit werden zwei Verfahren zur Abbildung von kartogra-
phischen Straßen mit abgerundeten Kappen auf 3D-Geländemodellen beschrie-
ben. Der erste Ansatz, der geometrische Ansatz, ermöglicht eine effiziente Dar-
stellung von Straßen auf Geländemodellen mit niedriger bis mittlerer Auflösung.
Der zweite Ansatz, der Shadow-Volume Ansatz, ermöglicht eine fehlerfreie Ab-
bildung von Straßen auf hochauflösenden Geländemodellen.

• Im zweiten Teil dieser Arbeit werden Verfahren zur Ermöglichung einer zeitlich
kohärenten Beschriftung von 3D-Karten vorgestellt. Dies erlaubt die Verfolgung
von Beschriftungen während einer Navigation, bspw. wenn die virtuelle Kame-
ra die aktuell geplante Route verfolgt. Das in dieser Arbeit vorgestellte Verfah-
ren nutzt einen kräftebasierten Ansatz, um auftretende Kollisionen zwischen Be-
schriftungen sanft aufzulösen. Außerdem werden Techniken vorgeschlagen um
die Lesbarkeit von Textbeschriftungen zu steigern. Schließlich werden mögliche
Strategien zur Beschriftungsplatzierung in virtuellen 3D-Welten analysiert.

• Der dritte Teil dieser Arbeit stellt Konzepte vor, um die Sichtbarkeit von verdeck-
ten Elementen in 3D-Karten zu erhöhen. Als Fallstudie wird die Sichtbarkeit von
Beschriftungen und Straßen, die von 3D-Gebäuden verdeckt wurden, verbessert.
Zwei vielversprechende Ansätze wurden zur weiteren Auswertung gewählt: das

vii

erstes Konzept, leuchtende Straßen, deutet Straßen durch das davorliegende Ob-
jekt an. Das zweite Konzept, die transparente Aura, erschafft eine transparente
Fläche im davorliegenden Objekt, um die Beschriftungen erscheinen zu lassen.

• Der letzte Teil dieser Arbeit präsentiert ein Verfahren zur prozeduralen Generie-
rung von Orthofotos mit Hilfe realer geografischer Daten. Ein neuronales Netz,
ein mehrschichtiges Perzeptron, lernt automatisch die Zuordnung von geographi-
schen Eingangsdaten zu einer Ausgangsfarbe. Zur Laufzeit wird diese Zuordnung
ausgewertet, um eine synthetische Textur zu erstellen. Schließlich werden pro-
zedurale Details hinzugefügt: es wird Vegetation simuliert, Gebäude und Felder
werden prozedural erstellt und Schnee wird auf Bergen gesät. Das entstandene
künstliche Bild kann stellvertretend für eine Satelliten- oder Luftaufnahme ver-
wendet werden.

Alle präsentierten Verfahren wurden in einem Forschungsprototyp implementiert. Die
Leistungssteigerung werden durch Messungen gezeigt, die verbesserte Erkennung von
Kartenelementen durch Nutzerstudien bestätigt und die qualitativ verbesserte Darstel-
lung durch Screenshots belegt.

In dieser Arbeit wird der Grundstein zur Verbesserung der Benutzerfreundlichkeit von
3D-Karten zu Navigations- und Informationszwecken gelegt. Jedes vorgestellte Verfah-
ren kann in seinem respektiven Anwendungsbereich eingesetzt werden. Jedoch führt
nur die Verbesserung mehrerer Schlüsselaspekte, insbesondere der Erkennung (Les-
barkeit, Sichtbarkeit), der bildlichen Verbindung (Beziehung, zeitliche Kohärenz) und
der Darstellungseffizienz, zu einer deutlichen Verbesserung der Darstellung von 3D-
Karten. Die Kombination der vorgestellten Verfahren ermöglicht die Entwicklung von
Systemen und Anwendungen für 3D-Karten mit einer deutlich verbesserten Benutzer-
freundlichkeit und Effektivität der Informationsdarstellung.

Acknowledgments

I am most grateful to my Ph.D. supervisor, Rüdiger Westermann, for actively supervis-
ing my thesis all these years with his constructive feedback and interesting discussions.
Thank you for giving me the possibility to do research in this area. Moreover, your
support enabled me to attend international conferences, which gave me insight into the
many facets of the scientific community. I am very thankful to my second Ph.D. super-
visor, Jürgen Döllner, for the active feedback and all the constructive and fresh ideas
from a cartographic and GIS point-of-view.

I am most thankful to my direct superior, Robert Hein, for his long patience and for
giving me the opportunity and enough freedom to write my Ph.D. thesis in his group
at BMW Research. This would not have been possible without your support. I would
like to express my gratitude to Philipp Promesberger for the implementation of the map
viewer framework and for all the long discussions, criticism and tips throughout the
thesis. Many thanks to my fellow colleagues, Klaas Klasing and Andreas Hackelöer,
for their very contructives reviews and advices. Moreover, I am most grateful to all
fellow friends who pursued or are still pursuing their own Ph.D., Roland Bader, Thomas
Mangel, Max Graf, Benno Schweiger, Olga Birth and Alexandre Bouard. They gave
me all the support, criticism and pushes I needed to finish this thesis. Thanks to all my
former or current colleagues: Christian Spies, Michael Karg, Klaus Goffart, Markus
Strassberger, Axel Jansen, Dominik Gusenbauer, Isabella Szottka, Hendrik Schweppe,
Martin Schäfer, Lutz Ehnert, Andrea Binter and Daniel Niehues.

I am grateful for the continuous feedback from Christopher Roelle from our user ex-
perience team while designing the labeling techniques. I would also like to thank all
my former students: Michael Genau for the first force-based labeling approach, Tim
Oppermann for the first synthetic orthoimages, Johannes Treitz for textured overlays
on DTMs, and Matthias Winkler for implementing the first prototype for label filtering.
Many thanks to my student and co-author Martin Freidank for the hard work on the
3D city labels paper. I would like to thank Marco Matt for preparing and conducting

ix

x

the expert and user studies at our research labs. I am very grateful to my co-authors,
Aick in der Au and Florian Jarmer, for their respective work on the implementation of
the synthetic orthoimages and the first essay on a scientific publication. Moreover, my
thank goes to Alexander Mellich and Heiko Achilles for their design lead and creating
the orthoimage texture atlas.

A big thank you to my co-author, Marc Treib, for all the excellent input, reviews, and
support he gave me throughout this thesis. The short trip with him to the WSCG con-
ference in Plzen̂ will be remembered. I would also like to thank Christian Dick, Kai
Bürger, Shuntin Cao, Stefan Auer and Roland Fraedrich from the Technische Univer-
sität München for all the long and interesting discussions we had during coffee breaks.
Many thanks to Tobias Schafhitzel, Ralf Botchen and Martin Falk from the University
of Stuttgart for giving me a first insight into scientific work and starting my idea to
pursue a Ph.D. thesis.

A warm and whole-hearted thank you to Evamaria Prager for just being there for me.

It goes without saying that I am most thankful to my father, mother, and sister for the
best support of all.

Contents

Abstract i

Zusammenfassung v

Acknowledgments ix

1 Introduction 1
1.1 Problems . 2
1.2 Contributions . 3
1.3 Publications . 5

2 Fundamentals 7
2.1 Geographic Information Systems . 7

2.1.1 Geographical Object . 7
2.1.2 Data Models . 8
2.1.3 OpenStreetMap . 11
2.1.4 Web Services for Geodata . 11

2.2 Real-Time Rendering . 13
2.2.1 Rendering Pipeline . 16
2.2.2 The OpenGL API . 18

2.3 Evolution of Map Visualization . 20
2.3.1 3D Map Viewers for Virtual Globes 20
2.3.2 Map Viewers for Digital Automotive Navigation Systems . . . 22
2.3.3 Cartographic Map Visualization Techniques 26

3 High-Quality Cartographic Roads on High-Resolution DEMs 27
3.1 Introduction . 28
3.2 Related Work . 29

xi

xii CONTENTS

3.3 Cartographic Roads . 31
3.4 Geometric Approach . 33
3.5 Shadow Volume Approach . 34

3.5.1 Intersection . 35
3.5.2 Numerical Precision . 36

3.6 Implementation Details . 37
3.6.1 Geometry Clipping . 37
3.6.2 Geometry Z-Offset . 38
3.6.3 Cartographic Rendering . 38

3.7 Results . 40
3.8 Conclusions . 43

4 Temporally Coherent Real-Time Labeling of Dynamic Scenes 45
4.1 Introduction . 46
4.2 Related Work . 47
4.3 Preliminary Study . 50

4.3.1 Study Design . 50
4.3.2 Results . 50
4.3.3 Design Principles . 51

4.4 Force-Based Labeling . 52
4.4.1 Motivation . 52
4.4.2 Features . 53
4.4.3 Initial Placement . 54
4.4.4 Collision . 54
4.4.5 Forces and Movement . 57
4.4.6 Acceleration . 59

4.5 Implementation . 59
4.5.1 Parallelization . 59
4.5.2 Rendering Textual Annotations 60
4.5.3 Enhancements . 61

4.6 Results . 62
4.6.1 Scalability . 62
4.6.2 Concluding Expert Study . 63
4.6.3 Cartographic Principles . 65

4.7 Conclusions . 66

CONTENTS xiii

5 Enhancing the Visibility of Labels in 3D Navigation Maps 67
5.1 Introduction . 68
5.2 Labeling Techniques . 69

5.2.1 World-Space and Screen-Space Labels 69
5.2.2 External and Internal Labels in 3D Worlds 69
5.2.3 Summary . 70

5.3 Concepts . 71
5.3.1 Baseline . 71
5.3.2 Cutaways . 71
5.3.3 Transparency Label Aura . 72
5.3.4 Glowing Labels . 73
5.3.5 Glowing Roads . 73

5.4 Expert Study . 74
5.4.1 Study design . 74
5.4.2 Discussion . 74
5.4.3 Results . 76

5.5 Implementation . 76
5.5.1 Transparency Label Aura . 77
5.5.2 Glowing Streets . 77

5.6 Results . 78
5.6.1 Benchmark . 78
5.6.2 User Study . 81

5.7 Conclusions . 84

6 Procedural Generation of Orthoimages with Real Geographic Data 85
6.1 Introduction . 86
6.2 Related Work . 87
6.3 Overview . 89

6.3.1 System . 90
6.4 Geographic Data Sources . 92
6.5 Pre-processing of Geographic Data 94
6.6 Generation of Synthetic Orthoimages 96

6.6.1 Neural Network Architecture and Training 97
6.6.2 Neural Network Execution on the GPU 99

6.7 Detail Generation . 101
6.7.1 Vegetation Simulation . 101

xiv CONTENTS

6.7.2 Field Generation . 102
6.7.3 Urban Rendering . 105
6.7.4 Relief shading . 106
6.7.5 Multi-Resolution . 106
6.7.6 Editor . 107

6.8 Results . 107
6.8.1 Comparison . 107
6.8.2 Benchmark . 108

6.9 Conclusions . 112

7 Summary, Conclusions, and Outlook 115
7.1 Summary . 115
7.2 Discussion . 116
7.3 Future Work . 119

Bibliography 125

Chapter 1

Introduction

Navigation systems have become ubiquitous in recent years. Integrated into a multitude
of devices, they can be found in portable devices, cars, smartphones, tablets, and even
virtual reality glasses, such as Google Glasses. They help the user to navigate in and
to unknown destinations by different means, including planning a route to a destination
(route planning), computing the current location (positioning), guiding through voice
(guidance) and showing a map of the environment (map viewer). The main task of a
map viewer is the visual representation of internal navigation states: the current posi-
tion, the planned route and guidance hints. Moreover, displaying a map enhances the
user’s relative spatial orientation: Where is his/her location in respect to other streets,
cities and important locations?
As increasingly more geographic data become freely available, we can enrich such
maps with more visual information. For instance, OpenStreetMap [Ope] provides us
world-wide vector data for rendering roads, building footprints and Points-of-Interest.
CORINE [Eur00] gives us land-cover data and SRTM [FRCCD+07] provides 3D ter-
rain information. Furthermore, we can add dynamic data such as gas prices, weather,
real-time traffic information, and public transportation schedules.
This leads us to the second task of a map viewer, popularized for example by Google
Maps, namely spatial information browsing. For this task, a plethora of choices is
currently available, ranging from Bing Maps, Apple’s iOS Maps and Nokia Maps to
virtual earth explorers like Google Earth (Chapter 2.3). Integrated into smartphones,
these browsers allow location-based services to display their respective dynamic data.
For instance, Yelp and Foursquare present restaurant and bar recommendations, while
Waze displays its community created map.
In parallel, the performance of graphical processing units (GPUs) in systems on a
chip (SoC) is rising exponentially, e.g., with the Nvidia Tegra SoCs and PowerVR

1

2 CHAPTER 1. INTRODUCTION

SGX GPUs. Furthermore, the latest iterations of computer graphics standards, such as
OpenGL ES 3.0, introduce advanced features to the embedded world, including depth
and floating point textures, multiple render targets, and full-precision shader opera-
tions [Lip13]. With these developments, computer graphics on embedded devices will
leap, in the coming years, from simple shaded graphics using a fixed-function pipeline
to fully-fledged, shader-powered engines. At first glance, this trend allows us to create
advanced map representations, enhancing the overall appearance with a higher screen
resolution, more details and better lighting models to create a photorealistic or high-
quality non-photorealistic rendering (NPR). Moreover, with the increased processing
power, we can jump from a 2D to 3D map representation, namely a virtual globe with a
digital elevation model (DEM) and 3D buildings to create a more faithful representation
of the world. This allows users to recognize objects from the real world more easily
in the digital map. Therefore, it augments their ability for spatial orientation and they
can map the navigation guidance to the surrounding world. Such state-of-the-art 3D
maps are present in current portable navigation software (e.g., Sanyo, Apple, Garmin,
Navigon, Bosch and Falk) and automotive navigation systems (e.g., Audi, BMW).

1.1 Problems

However, the increasing amount of visual information, especially represented in a 3D
map, creates many new problems, hindering usability for navigation and spatial infor-
mation browsing purposes.
In 3D maps, the perception and recognition (or readability) of information is difficult
to design and guarantee compared to their 2D counterparts. The inherent perspec-
tive transformation creates conflicting goals: it helps spatial orientation yet hinders the
recognition of elements, given that they get smaller when they are further away. Fur-
thermore, as occlusion occurs, the visibility of objects is hindered, e.g., when buildings
hide labels and roads. As the camera moves freely, collisions between labels are fre-
quent and cannot be avoided with pre-computation, as it is usually done for 2D maps.
Finally, both occlusion and 3D movement make the tracking of map elements more
difficult. This increases the amount of time in which an element, e.g., a label, can be
recognized and read.
After recognition, the second most important aspect relates to the visual association of
an element to its feature. Labels should be easy to associate with their corresponding
features, e.g., a road. Moreover, roads, land-cover and 3D buildings from vector maps
should match their respective counterparts in the underlying orthoimage. Finally, roads

1.2. CONTRIBUTIONS 3

should match the DEM to avoid them disappearing in mountains or floating in the
air. All current navigation systems and GIS, e.g., Google Earth, exhibit problems in
resolving these aforementioned issues.
With increasingly more information to be processed, 3D maps require an efficient ren-
dering of elements. In large cities, such as Tokyo or London, it is necessary to render
complex road networks together with thousands of buildings, while also placing hun-
dreds of annotations in real-time. Finally, we want high-quality rendering of DEM and
3D cities with features such as anti-aliasing and ambient occlusion; however, creating
such a rendering represents an even greater challenge on embedded hardware. While
current systems use Level-of-Detail approaches, smaller viewing frustums and addi-
tional fog to reduce the performance hit, these techniques impede our primary goals,
namely the visibility and recognition of map elements.

1.2 Contributions

To tackle the aforementioned problems, we propose a set of techniques, each of which
solves distinct weaknesses of current map viewers in order to increase the overall us-
ability of 3D maps.

In Chapter 3, we introduce the cartographic rendering of roads onto terrain. Similar
to paper maps, such rendering creates a clear and uncluttered representation to allow a
quick recognition of roads and their properties; it requires runtime scaling of the road’s
width, dark outlines, vivid colors and rounded caps at both ends. Accordingly, we will
present two high-performance GPU-based solutions fulfilling these requirements. The
first implementation enables an efficient rendering of roads with a geometric approach.
The road from a vector database is sent as polyline to the GPU and inflated to rect-
angles in the geometry shader. Subsequently, based on the resulting rectangles, the
rounded caps are evaluated analytically in the fragment shader. The second implemen-
tation extends the shadow-volume algorithm to project roads with rounded caps. First,
we extrude the polyline of the road along the nadir. Then, we generate a stencil mask
by computing the screen-space intersection between the created polyhedra and the ter-
rain geometry. With this mask, we render single colored fullscreen rectangles for every
road class. This method is independent of the terrain rendering algorithm and creates
a per-pixel exact and artifact-free projection onto any DEM. We perform benchmarks,
determining that our geometric approach works best on low- to medium-resolution ter-
rain, while the shadow-volume approach scales best on high-resolution terrain. Finally,

4 CHAPTER 1. INTRODUCTION

we depict the resulting image quality improvements with screenshots.

In Chapter 4, we introduce a temporally coherent labeling approach, which com-
putes an annotation layout in real-time and resolves collisions between labels using
a force-based approach. This solution creates temporally smooth movements and en-
ables an easy tracking of labels over the course of a navigation, i.e., when the camera
follows the currently planned route. Forces allow the flexible definition of runtime be-
haviors, whereby labels can move freely (e.g., POIs), circle around their point feature
(e.g., cities) or slide along their line feature (e.g., roads). Additionally, we propose
techniques to fulfill the cartographic principles defined by Imhof [Imh75], which in-
clude readability, visual association and classification. Finally, two benchmarks show
how the GPU-based implementation can create layouts for several thousand labels in
real-time. An expert study confirms the enhancements achieved by our algorithm with
respect to visual association and readability.

In Chapter 5, we introduce several concepts to enhance the visibility of occluded el-
ements in 3D maps. As a case study, we improve the visibility of labels and roads
occluded by 3D buildings. The conducted expert study establishes two concepts for
further evaluation, chose predominantly because they retain a visual association to the
related object, e.g., the label to the road. The first method, called glowing roads, lets
roads shine through their occlude, whereas the second method, called transparency
aura, creates a transparency region around the label in the occluding object. For both
methods, we present a GPU-based implementation. A concluding user study validates
the usability improvement, with both approaches performing significantly better com-
pared to our baseline of simply drawing labels over occluding objects. Indeed, they
acquire the focus of the user (recognition) while keeping the context intact (visual as-
sociation).

In Chapter 6, we introduce the procedural generation of orthoimages using real geo-
graphic data. In a pre-processing step, a neural network, i.e., a multilayer perceptron,
learns the mapping of geographic input to a single color from a real satellite image.
At runtime, the mapping is evaluated for every pixel to create a surrogate of an or-
thoimage. Because the geographic input has a limited resolution, procedural details
are added, with vegetation simulated, crops procedurally generated, and snow seeded
on mountain tops. Finally, roads and buildings from a vector database are rendered on
top. We compare the resulting images with real orthoimages, i.e., satellite images. The
procedural images are free of occluding artifacts, e.g., clouds and shadows. Moreover,
they have a coherent coloration and do not exhibit tiling problems. Finally, they match
all overlaid renderings created with the same vector database, e.g., cartographic roads,

1.3. PUBLICATIONS 5

3D buildings and land-cover areas.
We conclude this thesis in Chapter 7 with a brief summary of all contributions, be-
fore presenting a juxtaposition of all aspects covered by this thesis. We classify the
improvements into separate domains: recognition (e.g., enhanced readability and visi-
bility), visual association (e.g., better matching and relationship), temporal coherence
(e.g., enhanced tracking) and rendering efficiency. Finally, we show promising direc-
tions for future research work.

1.3 Publications

This thesis is partly based on the following peer-reviewed research papers (listed in
chronological order):

• Lothar Stolz, Holger Endt, Mikael Vaaraniemi, Daniel Zehe, and Walter Stechele.
“Energy consumption of Graphic Processing Units with respect to automotive
use-cases”. In: Proceedings of the International Conference on Energy Aware
Computing. ICEAC. IEEE. 2010, pp. 1–4. ISBN: 978-1-4244-8273-3 [SEVZS10]

• Mikael Vaaraniemi, Marc Treib, and Rüdiger Westermann. “High-Quality Carto-
graphic Roads on High-Resolution DEMs”. In: Journal of WSCG 19.2 (2011),
pp. 41–48. ISSN: 1213-6972 [VTW11]

• Mikael Vaaraniemi, Marc Treib, and Rüdiger Westermann. “Temporally Co-
herent Real-Time Labeling of Dynamic Scenes”. In: Proceedings of the 3rd
International Conference on Computing for Geospatial Research and Applica-
tions. COM.Geo ’12. ACM, 2012, 17:1–17:10. ISBN: 978-1-4503-1113-7. DOI:
10.1145/2345316.2345337 [VTW12]

• Mikael Vaaraniemi, Martin Freidank, and Rüdiger Westermann. “Enhancing the
Visibility of Labels in 3D Navigation Maps”. In: Progress and New Trends in 3D
Geoinformation Sciences. Lecture Notes in Geoinformation and Cartography.
Springer, 2012, pp. 23–40. ISBN: 978-3-642-29792-2. DOI: 10.1007/978-
3-642-29793-9_2 [VFW12]

http://dx.doi.org/10.1145/2345316.2345337
http://dx.doi.org/10.1007/978-3-642-29793-9_2
http://dx.doi.org/10.1007/978-3-642-29793-9_2

6 CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals

2.1 Geographic Information Systems

A geographic information system (GIS) is a location-based information system model-
ing the real world. It digitally captures, stores, manages, analyzes and presents location-
based datasets as alpha-numerical or graphical output [Lan06, Chapter 9]. Relating
objects to a geographical position within a reference system creates a geographical ob-
ject. Usually, we use geographical coordinates, i.e., latitude and longitude, to specify
its position on the surface of the earth.

“A GIS is a computer-based system to aid in the collection, maintenance,
storage, analysis, output, and distribution of spatial data and information” [Bol07,
Chapter 1]

2.1.1 Geographical Object

A geographic object is the fundamental unit of a GIS. It represents a unique entity of
the earth which is physically, geometrically or thematically limited [RJK03]. Norbert
de Lange defines geographical objects as follow: Geographical objects are spacial el-
ements which exhibit geometrical, topological and temporal properties in addition to
their semantic information [Lan06, p. 181].
As such, geographic objects are an abstraction of reality. The produced representation
of the real world is a digital model with a defined precision. Geographical objects can be
classified into points, lines, and areas features, and solid figures [Imh75]. For example,
point features can define border stones or Points-of-Interest, line features can represent
water pipelines or roads, area features displays municipal areas or land-cover and solid
figures represent 3D buildings or trees. This feature-based classification defines one

7

8 CHAPTER 2. FUNDAMENTALS

possible organization of geographic data (refer to thematic layers in Section 2.1.2).
Another approach consists in an object-oriented model, i.e., general objects can be
derived into specialized objects. A child object (e.g., a motorway) would inherit its
attributes from a base object (e.g., a road) [Lan06, p.160]. For managing, processing
and visualizing these objects we must create appropriate structures, called data models.

2.1.2 Data Models

A data model is the abstraction, representation and organization of real-world ele-
ments [Kap01]. Therein, the geometry, topology, semantic and relationship of real
objects has to be abstracted enough to generate a corresponding data model represen-
tation [Ble 0]. This allows us to map reality to data structures for computational and
visualization purposes in a GIS.
On a higher level, we organize geographical objects using two fundamental principles:
within a layer or within an object-oriented model. On a lower level, we differentiate
between a raster-based and vector-based model.

Thematic Layer Concept

The thematic layer concept originates from cartography, where mapmakers created
transparencies that could be overlaid on a light table. Hence, by combining differ-
ent layers, they could create their desired information density in an analog map. This
concept represents the default form of data organization within a GIS. It follows a top-
down approach to create a thematic sorting of all geographic input information. Each
layer represents a distinct data theme consisting of a collection of common geographic
elements, e.g., a road network, a digital elevation model or urban areas (Fig. 2.1).
Thematic layers have several key advantages. First, they represent an intuitive way
to organize and view data in a GIS. Second, errors occurring in a layer only have a
local impact. Finally, they are efficient resource-wise, because only requested layers
are processed and visualized.

Vector, Raster and Hybrid Data Models

The thematic layer concept creates a high-level organization of data. However, we need
lower-level models to organize data within a layer, e.g., how to store and organize the
data of the road network layer. These are called geometrical-topological data models.

2.1. GEOGRAPHIC INFORMATION SYSTEMS 9

Figure 2.1: Thematic Layers organize the geographical data into distinct themes. In this image,
Points-of-Interest, orthoimages, elevation data and water bodies represent distinct layers.

The following section describes two fundamental models: the vector data model and
the field-based raster data model.

Vector Data Model. Vector data models represent information as points, lines and
polygons (see [Bar05] and Fig. 2.2). In a GIS, the OGC and ISO committees define
these basic geometrical elements as Simple Features (see ISO 19125 [Iso]). This model
discretizes the geometry of real world elements. All geographic elements of the vector
data model are based on point coordinates, e.g., latitude and longitude. The topological
relationship is stored explicitly [Lan06], e.g., which points create a line or an area.
Using further attributes, we define the thematic relationship, e.g., whether a line is a
road. Therefore, the vector data model is also called the georelational data model (see
[Bar05, p.64]).

Figure 2.2: Basic elements from the vector data model called Simple Features [Iso]: (left) Point
features, e.g., Point-of-Interest. (middle) Line features, e.g., roads. (right) Polygon features,
e.g., land-cover.

This model presents several advantages (see [Buc97]). Geographical data can be rep-
resented with its originally captured resolution. In a cartographic representation, the
graphical output is usually more aesthetically pleasing. Also, simple geometrical el-
ements can usually be very efficiently encoded into vector data, e.g., a road network.
Topology is easily stored and enables efficient topological operations, e.g., network
analysis. However, continuous data, e.g., temperature or elevation data, is not effec-
tively stored in vector form. Furthermore, the complexity of data operations is propor-
tional to the number of simple features present.

10 CHAPTER 2. FUNDAMENTALS

Field-based Data Model. The field-based model partitions the theme of the geo-
graphic input surface into homogeneous areas (cells). The form and size of these cells
can be defined freely. However, as a whole, they should cover the entire input surface
(see [Bar05, p.62ff]). Therefore, each cell explicitly stores georeferenced thematic in-
formation (Fig. 2.3). An example for the field-based concept is the DEM, wherein each
cell represents the averaged height inside the covered input surface.

Thematic

Information

Input

Surface

Figure 2.3: The field-based data model (based on [Bar05]) partitions the input space into ho-
mogeneous cells, e.g., pixels. Each cell stores thematic information, e.g., its averaged altitude.

Raster Data Model. In GIS, the raster data model is used to represent continuous
data over space. It is a specialization of the field-based model. The input surface is
divided into equally sized areas, usually a quadratic cell, i.e., pixel. For example, every
cell stores the ambient temperature or the averaged height. The size of the cells defines
the perceivable data resolution (see [Bar05, p.64f]).

The raster data model has several advantages (see [Buc97]). In comparison to the vector
model, the geographic coordinates are not explicitly stored. If the geographic location
and extend of the entire grid is defined, the position of every pixel is implicit in the
layout of the grid. Moreover, the theme (e.g., the temperature) is given implicitly and
not explicitly like in the vector model. Hence, data processing and analysis is usually
quite simple to perform. It is perfectly suited for continuous data. However, the cell size
determines the resolution for processing and visualizing the data. Hence, it is difficult
to adequately represent linear geographical elements, i.e., simple features. Usually,
storing this data at a high precision comes at the expense of a very high storage cost.

2.1. GEOGRAPHIC INFORMATION SYSTEMS 11

Summary

The vector data model is based on basic elements. This makes it very efficient storage-
wise. For example, a line is stored as start and end point. All points in-between are
defined implicitly by its topology. However, the geographic surface is usually not cov-
ered completely. But we can define very precisely the form and position of geographical
objects. The main disadvantage of the raster model is the deformation of the geometri-
cal input involved in the storage into a grid. For example, curves can become heavily
aliased (jagged, staircase effect). Increasing the resolution diminishes this unwanted
effect. However, this involves higher storage costs. Another advantage of the vector
model is the simple coordinate transformation. In comparison, the raster model makes
it easy to find neighbors and to apply image-based algorithms (see [Bar05, p.68f]).
Finally, the raster model has a very simple and distinct element: a pixel.

2.1.3 OpenStreetMap

The OpenStreetMap project started in 2004 and is a prime example of Volunteered
Geographic Information (VGI). It is a collaborative project that aims to create a freely
available digital map of the whole world [Ope]. The map is either hand-drawn in graph-
ical editors or generated from sensed geographic data, e.g. GPS traces from portable
navigation devices. The vector-based OpenStreetMap data model is derived from GDF.
The amount and quality of the digitized geographic data are steadily increasing, to the
extent that the map is now widely recognized as being comparable in quality to com-
mercial providers [NZZ11], e.g., Nokia and TomTom. Active regions such as urban
areas often exhibit a higher level of detail than commercial alternatives. In contrast,
rural and poorer areas lack coverage [Hak10]. However, similar to Wikipedia, the qual-
ity of the collaborative map depends on the corrections provided by the community.
Nevertheless, OpenStreetMap is used in many open-source and commercial products,
e.g., Apple Maps, Wikipedia, Foursquare, Skobbler Navigation or Flickr.

2.1.4 Web Services for Geodata

In the last decade, the Open Geospatial Consortium (OGC) standardized several web
services for accessing and visualizing geographic data. Web Map Service (WMS)
[LB06] is a protocol for serving georeferenced 2D map images over the Internet. For
each WMS request, the server generates single static images from a GIS database for
a spatial region in the form of PNG, GIF or JPEG images. In 2010, the OGC pub-
lished the Web Map Tile Service (WMTS) [JMJ10] protocol that serves predefined

12 CHAPTER 2. FUNDAMENTALS

(a) (b)

(c) (d)

Figure 2.4: Comparison of OpenStreetMap (a) and web-based viewers using commercial map
data: (b) Bing Maps, (c) Yahoo Maps and (d) Google Maps.

georeferenced 2D map tiles. In contrast to WMS, the client of a WMTS stitches the
tiles to a seamless 2D map. This allows the server to pre-render and cache the tiles,
hence increasing the performance when handling simultaneous requests. As a seman-
tic counterpart to WMS, the Web Feature Service (WFS) [Vre05] allows querying
and retrieving the definition of geographic objects inside the requested bounding re-
gion. Moreover, the WFS-T standard defines transaction requests to allow the creation,
deletion and update of geographic features stored on a server.
Currently, the transmission and display of 3D scenes over web-based services is an
ongoing effort. Two alternatives are currently reviewed by the OGC to create a common
base for service interfaces: The OGC draft of the Web 3D Service (W3DS) [AS10]
defines a protocol to stream 3D scenes, such as textured 3D geometry, to its clients.
The rendering of these 3D scenes is done on the client side. In contrast, the Web
View Service (WVS) [Hag10] renders images of 3D geovirtual environments on the
server side. This allows thin clients, i.e., smartphones and tables, to display rich 3D
environments, e.g., virtual 3D city models [JK13].

2.2. REAL-TIME RENDERING 13

2.2 Real-Time Rendering

Rendering virtual 3D environments such as a geovirtual world of a GIS is a challenging
task. We have to define a virtual camera, light sources, and place geographic objects
into a virtual 3D scene. These scenes are usually defined with geometrical primitives,
i.e., lines, triangles, and polygons. Various techniques exist to generate 2D raster im-
age representations out of such 3D scenes. Prominent approaches are ray tracing and
rasterization. Currently, interactive computer graphics can be achieved for both ap-
proaches. However, only rasterization can be easily computed by commodity GPU
hardware. This enables 3D map visualizations on desktop PCs and embedded SoCs,
e.g., for navigational purposes in automotive systems.

Mainframes. In the mid-1970s, calligraphic vector displays (Fig. 2.5(a)) for 3D
scenes started to appear, e.g., the Line Drawing System-1 [Eva69] and Picture Sys-
tem 1 [Eva74] from Evans & Sutherlands. They incorporated hardware chips to accel-
erate the computation of matrices. This enabled them to draw large wireframe models
in 3D and manipulate them in real-time. They were mainly used in the military for
flight simulations or in chemistry to visualize large molecules.

Workstations. In the 1980s, raster displays became dominant as they could generate
line renderings faster and in higher quality (Fig. 2.5(b)). Silicon Graphics Inc. (SGI)
created the first geometry engine: matrix transformations, clipping and mapping to
output device coordinates were accelerated in hardware [Cla82].

(a) (b)

Figure 2.5: (a) Vector display: the image is composed of drawn lines (courtesy of Don Cooke).
(b) Raster display: the image is composed of a rectangular grid of colored pixels.

Consumer Hardware. GPUs started to become an affordable main-stream product
when the need for more realistic and interactive 3D games emerged. The first gener-
ations were called computer graphics accelerators, e.g., the NV1 from Nvidia which
accelerates in hardware the computation of quadratics. Multiple new GPUs emerged,

14 CHAPTER 2. FUNDAMENTALS

e.g., Nvidia Riva 128 (NV3) or 3DFx Voodoo. These accelerated the rendering and
shading of triangles for the description of 3D scenes. Every generation of GPUs had
more and more parts to accelerate the computation of 3D graphics, i.e., computing the
3D graphics pipeline. For instance, the Nvidia GeForce 256 released in 1999 intro-
duced the T&L unit which computed transformation and Blinn-Phong per-vertex light-
ing [Bli77] in hardware. On the one hand, the processing power of GPUs started to rise
exponentially. On the other hand, the flexibility of GPUs and their corresponding API,
e.g., DirectX and OpenGL, increased. This resulted in the first programmable GPU: the
Nvidia GeForce 3, introduced in 2001. It allowed manually controlling the transforma-
tion, lighting and texturing of rendered vertices by uploading a small program onto the
GPU – the shader. Later on, these shaders would evolve and equip programmers with
an almost full control over the 3D graphics pipeline.

The GPU: a massively parallel processor. The following nomenclature is based
on Fatahalian [Fat10]. Nowadays, the GPU has become a massively parallel proces-
sor, i.e., a stream processor (see [NVI09]). It favors data processing rather than data
caching and flow control [NVIly]. Thus, it is tailored for highest throughput at the cost
of a higher latency. It consists of hundreds of Arithmetic and Logic Units (ALUs) 1,
which are organized into computing cores 2 (Fig. 2.6). These cores have a small shared
memory and one or more schedulers 3. The shared memory allows the communication
between ALUs and can be used for fast data access. In addition, GPUs have a large on-
chip memory, called video RAM (VRAM), currently ranging between 1GB and 16GB
(2013). Multiple ALUs of a core are processing in parallel a single instruction stream 4.
They run step-by-step through this stream and apply a single instruction onto multiple
datasets (SIMD), e.g., a MAD operation (multiply & add) onto a 32 bit width field.
If the execution is delayed by a complex operation, e.g., when accessing buffers like
textures, the scheduler of the computing cores hides latencies by switching the task,
i.e., the processed instruction stream and the computing ALUs.

This enables the GPU not only to process 3D computer graphics but also highly parallel,
general purpose algorithms such as raycasting a high-resolution 3D terrain on the GPU
(Fig. 2.7). To help with this task, several computational APIs were created: CUDA
which is designed for Nvidia GPUs and OpenCL which is platform independent and
specified by the Khronos Group.

1ALU ≈ Nvidia CUDA core & AMD stream processor
2Computing cores ≈ Nvidia Multiprocessors & AMD SIMD-Engine
3Scheduler ≈ Nvidia warp scheduler
4Instruction Stream ≈ Nvidia warp & AMD wavefront

2.2. REAL-TIME RENDERING 15

Video
Memory

Computing Core

Shared Memory

Scheduler & Dispatcher

ALU ALU ALU ALU

Cache

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

Computing Core

Shared Memory

Scheduler & Dispatcher

ALU ALU ALU ALU

Cache

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

Computing Core

Shared Memory

Scheduler & Dispatcher

ALU ALU ALU ALU

Cache

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

Figure 2.6: Example of a modern GPU architecture. The GPU is composed of several comput-
ing cores (gray). Each core processes with their ALUs (green), a shared memory (blue) and a
cache (red) a single instruction stream in parallel (SIMD). Buffers, e.g., textures, are stored in
the main video memory (blue). For faster access they can loaded into the shared memory.

Figure 2.7: The GPU as a general purpose and highly parallel processor: raycasting the
heightmap of a large and high-resolution 3D terrain with CUDA and DirectX [DKW09].

GPU Algorithms. A batch of ALUs processes in parallel the same instruction
stream. If a single of these ALUs takes a diverging path all other ALUs have to wait.
Hence, complex conditional computations should be avoided in GPU algorithms. Fur-
thermore, the computing cores prefers local coherent memory fetches. This enables
the memory controller to group these fetches into a single memory access. Finally,
if an instruction is dependent on a complex operation, e.g., fetching a filtered texture,
pipeline stalls could occur. However, to hide such latency the GPU supports massive
interleaving: the scheduler of the computing cores switches for the processing batch of
ALUs their active instruction stream.

16 CHAPTER 2. FUNDAMENTALS

2.2.1 Rendering Pipeline

The graphics pipeline depicted in Fig. 2.8 describes how a GPU assembles a 2D im-
age from a 3D scene. The virtual camera defines a viewing frustum looking into the 3D
scene. This scene contains primitives which are described by 3D positions, i.e., vertices
in world-space, the coordinate system of the scene (Fig. 2.8, left). Through transforma-
tion and rasterization of these primitives (Fig. 2.8, middle), the GPU generates a series
of pixels filling the 2D screen in window-space, the coordinate system of the screen
(Fig. 2.8, right). The pipeline is composed of distinct steps depicted in Fig. 2.9, with
each step being processed in a highly parallel manner. For further details, refer to the
OpenGL Specification 3.2 [SA09] and the OpenGL Programming Guide [Shr+09].

Computer Graphics Pipeline

Object Coordinates Eye Coordinates,
Clip Coordinates

Screen Space or
Window Coordinates

Shaded Fragments Shaded Vertices Primitives Fragments Vertices Framebuffer

1
2 3

4

5 6
7

Vertex Pull &
Vertex Shader

Primitive
Assembly

Rasterizer
Fragment

Shader
Fragment Post-

Processing

Figure 2.8: Computer graphics pipeline: (left) Primitives consisting of vertices are read, trans-
formed and projected. (middle) The rasterizer converts primitives into fragments. (right) These
are processed by the fragment shader, e.g., into colored pixels.

Vertex Puller. Before submitting data to the GPU, we define its interpretation, e.g.,
the primitive type, i.e., point, line, triangle, triangle- or line-strips. This definition is
done with a high-level API like the OpenGL or DirectX API on the CPU. The data is
usually stored as a Vertex Buffer Object (VBO) with indexed vertex data. The vertex
puller takes this data as input and passes it to the vertex processing stage.

Vertex Processing: Vertex Shader. After the vertex attributes are pulled, a vertex
shader processes this data. This stage is fully programmable and computations occur
per-vertex. A single vertex is taken as input and a modified vertex is output. Usually, the

2.2. REAL-TIME RENDERING 17

Geometry Shader

Fragment Shader

Vertex Puller

Vertex Shader

Rasterizer

Fragment Post-Processing

Vertex Post-Processing

Primitive Assembly

C
o

m
p

u
te

r
G

ra
p

h
ic

s
P

ip
el

in
e

3D Positions of Primitives

Pixels in Framebuffer

Processed Positions

Transform Feedback

Figure 2.9: Computer graphics pipeline as specified by OpenGL 3.2 [SA09]. Green stages are
processed by a fixed-function unit which is only partly configurable. Blue stages are completely
programmable, e.g., with a GLSL shader. Streaming out the results of the vertex processing with
transform feedback is optional.

modelview and projection computation are done in this shader program. They project
the 3D positions (vertices) from object-space to clip-space.

Primitive Processing: Geometry Shader. The geometry shader stage is an optional
stage which is fully-programmable. It allows per-primitive computations with optional
adjacency information. It takes as input a single primitive, e.g., a triangle, and can
output up to n primitives, hence, it can remove or create new primitives. This stage
outputs points, line- or triangle- strips. Usually, the geometry shader is used to amplify
each primitive by a fixed amount of geometry, e.g., for particle effects.

Primitive Assembly. This stage converts points, line-strips and triangle-strips to
single primitives, i.e., points, lines or triangles. Optionally, we can stream out the
results of this stage. This is called transform feedback and is used to record for each
primitive all vertex attributes to buffer objects. These buffers can be used as input for

18 CHAPTER 2. FUNDAMENTALS

the next rendering pass or to read back results to the application. Optionally, we can
discard further processing of the graphics pipeline.

Vertex Post-Processing. Afterward, clipping of the primitives to the viewing frustum
occurs. Then, for each coordinate in clip-space, perspective division and a viewport
transformation is applied (for more details, refer to [Shr+09]). This results in primitives
with window-space coordinates, i.e., pixel coordinates.

Rasterizer Stage. The rasterizer converts primitives into fragments, i.e., points lo-
cated in a 2D screen space storing attributes like color and depth. These attributes are
interpolates from vertex attributes over the surface of the primitive. Each generated
fragment will invoke the fragment shader kernel.

Fragment Processing: Fragment Shader. The fragment processing is a fully pro-
grammable stage which is executed per-fragment. It takes as input a fragment with
its 2D window-space position, its depth and linearly interpolated vertex attributes.
Typically, the fragment shader generates color values using texture-mapping and per-
fragment lighting. Optionally, it can completely discard a fragment or change a frag-
ment’s depth.

Per-Fragment Post-Processing. Finally, the stencil and depth-test occur. Typically,
the former enables to limit the rendering area with a mask. The latter applies a config-
urable depth-test. Usually, it checks if the written fragment is occluded by pixels inside
the existing depth-buffer. Then, we can apply blending operations which are config-
urable from the API-side. The results are written to the frame buffer, i.e., a 2D screen
(Fig. 2.8, right), or an off-screen target for further processing, i.e., a 2D image.

2.2.2 The OpenGL API

OpenGL is a cross-language, cross-platform programming interface (API) for rendering
2D and 3D computer graphics. It is widely used on professional workstations, embed-
ded systems and handheld devices. Typically, a GPU achieves hardware-accelerated
rendering of OpenGL scenes. It was released in 1992 by Silicon Graphics Inc. and is
currently managed by the consortium Khronos Group. OpenGL ES defines a stripped
down version of the desktop OpenGL API. It is mainly used on embedded devices, e.g.,
on smartphones and navigation devices. Following a brief description of the evolution
of both APIs, a comparison of OpenGL and OpenGL ES can be found in Table 2.2.2.

2.2. REAL-TIME RENDERING 19

OpenGL. Released in 2008, OpenGL 3.0 introduced with GLSL fully-programmable
vertex and fragment shader. OpenGL 3.2 was released in August 2009 and added the
optional geometry shader stage. This version of the OpenGL API will be used through-
out this thesis for the implementation of our GPU algorithms.

OpenGL ES. OpenGL ES 2.0 was publicly released in March 2007 and made GLSL
shader programming mandatory. OpenGL ES 3.0 was released in August 2012 and
was derived from OpenGL 3.0 [Lip13]. The main difference is the missing geometry
shader.

Version Vertex & Fragment Shader Geometry Shader Transform Feedback Depth Textures

OpenGL 3.2 yes yes yes yes

OpenGL ES 3.0 yes no yes yes

OpenGL ES 2.0 yes no no no

Table 2.1: Comparison of the available features of OpenGL and OpenGL ES.

All presented algorithms can be processed without the geometry shader, hence, can be
run on embedded hardware supporting OpenGL ES 3.0. The cartographic roads pre-
sented in Chapter 3 use depth textures and vertex, fragment and geometry shaders. The
force-based labeling approach from Chapter 4 uses vertex shaders and transform feed-
back. The visibility enhancements for city labels in Chapter 5 use vertex and fragment
shaders and depth-textures. Finally, the procedural orthoimages from Chapter 6 are
created using fragment shaders.

20 CHAPTER 2. FUNDAMENTALS

2.3 Evolution of Map Visualization

In 1998, Al Gore envisioned a “Digital Earth” featuring a multi-resolution 3D visual-
ization of the earth [Gor98]. Scientists, policy-makers and children alike would be able
to navigate through time and space. It would enable them to find, display and under-
stand vast amounts of georeferenced physical and social information. Today, most of
the elements of this vision are accessible [GGABB+12], e.g., with the 3D map viewer
Google Earth, which has been downloaded over a billion times. In the following sec-
tion, we will first present, with selected examples, the evolution of 3D map viewers in
GIS. Then, we will show the history of automotive navigation systems and focus on the
evolution of their respective map viewer.

2.3.1 3D Map Viewers for Virtual Globes

Starting from 2000, the increased availability of 3D graphics cards in standard PCs
accelerated the development of 3D map viewers.

Google Earth. EarthViewer 3D from Keyhole was publicly presented at the SIG-
GRAPH 2001 conference [And01]. It allows seamless zooming from earth, seen from
outer-space, to a city’s neighborhood (Fig. 2.10(a)). It features low-resolution satellite
imagery 5, a DEM, labels, roads and POIs. Furthermore, Keyhole developed the Key-
hole Markup Language (KML) to describe georeferenced vector or raster data. KML
became an international standard of the Open Geospatial Consortium in 2008 [Ogc]. It
has since become a vastly used format, e.g., for scientific uses, and has contributed to
the popularity of Google Earth [BC11]. After the acquisition of Keyhole by Google, the
map viewer was released 2005 as freely available software named Google Earth version
3.0. On top of the former EarthViewer features, it displays gray, extruded 3D footprints
for selected US cities. Version 4.0 (2007) introduced whole cities as a photo-realistic
textured 3D city model. Version 5.0 (2009) displays bathymetry and historical satellite
imagery, which in turn made a further step towards the Digital Earth vision [Gor98].
Finally, in version 6.0, 3D trees are seeded according to land-cover information. Since
its beginning, Google Earth has become the most popular viewer for geographic data
exploration (Fig. 2.10(b)).

5≈ 1 km horizontal resolution

2.3. EVOLUTION OF MAP VISUALIZATION 21

(a) (b)

Figure 2.10: 3D visualization of the Coit Tower, USA, with (a) Keyhole EarthViewer (2002)
and (b) Google Earth 5.0 (2010). Notice the low-resolution satellite imagery and DEM, and the
missing 3D city model in 2002.

NASA World Wind. In 2004, NASA released with World Wind an open-source
alternative to Google Earth (Fig. 2.11(a)). It uses public domain data and displays DEM
(SRTM, ASTER), landmarks, country borders, road networks (OpenStreetMap) and
freely available satellite imagery (Blue Marble, Land Sat 7). It is highly customizable:
the user can easily add information layers defined by WMS and include add-ons to
display e.g., POIs and high-resolution imagery.

ArcGIS. ArcGIS is a commercial application suite created by ESRI. It is the es-
tablished software for scientific GIS processing and visualization. Released in 1999,
ArcView GIS 3 allows to display limited 3D scenes (e.g., a TIN) using the ArcView
3D Analyst Extension. ArcGIS 9.0 (2003) features ArcGlobe to visualize continuous
data over the globe [Env04]. It supports the 3D visualization of raster, terrain and
vector datasets. Vector data, i.e., point, line, polygon and 3D objects, can be mapped
accordingly onto the DEM (Fig. 2.11(b)).

Further Examples. Further well-known map viewers are Nokia’s HERE maps, Mi-
crosoft Bing Maps (Virtual Earth) and Autodesk InfraWorks.

Current Trends. Over the last decades, GIS have been expensive and reserved
as tools for scientific experts. Nowadays, map viewers for virtual globes have made
the exploration of worldwide geographic data ubiquitous. In 2008, Elvidge states that
“Thanks to virtual globes, the number of people who are viewing, exploring and pro-
ducing geospatial data is heading from the thousands to the millions and on towards the
billions.” [ET08] We use them in navigation systems, for education or news purposes
and for a whole range of location-based services.

22 CHAPTER 2. FUNDAMENTALS

(a) (b)

Figure 2.11: (a) NASA World Wind displaying Blue Marble satellite imagery. (b) ESRI Arc-
Globe visualizing population density encoded to colored 3D bars.

The following trends emerge: First, map viewers for virtual globes can be started on
every device using web-based technologies such as WebGL, JavaScript and HTML5
(see e.g., OpenWebGlobe [CNL12] and Cesium [SOCRP+13]). Second, one of the next
challenges is the fusion of street level data with global data, e.g., street view images,
3D city models and high-resolution satellite imagery. Finally, crowd-based approaches,
which were for a long time seen as a holy grail for data acquisition, are slowly being
replaced by enhanced automatic methods to create a more uniform representation, e.g.,
for continuous 3D landscapes.

2.3.2 Map Viewers for Digital Automotive Navigation Systems

The first digital automotive navigation system called Etak the Navigator was introduced
in 1985 [Eis85]. Depicted in Fig. 2.12(a), it featured a green vector display showing
the road network and the car’s current position (CCP). These digital maps were stored
as vector data (refer to Section 2.1.2) onto cassette tapes. The positioning of the driver
was done with a dead-reckoning approach [ZH86]. The TravTek system followed 1992
and was used in Oldsmobile rental cars [Mat92]. Its usage was limited to Florida but it
already displayed 2D colored maps. These included POIs (yellow pages) and real-time
traffic information. For navigation it showed the current route, a destination symbol
(Fig. 2.12(b)) and guidance arrows (Fig. 2.12(c)). However, it did not display land-
cover information, e.g., woods and seas. Then, similar after-sales systems started to
appear, e.g., the Guidestar in 1994. Released in 1996, Sony’s NVX-F160 featured
more detailed land-cover with sea and wood areas.
In 2000, the United States made a more accurate GPS signal available for civilian use.

2.3. EVOLUTION OF MAP VISUALIZATION 23

(a) (b) (c)

Figure 2.12: (a) Etak Navigator (1985), the first digital automotive navigation system displayed
the road network and the current position (courtesy of Don Cooke). (b,c) TravTek (1992),
introduced a colored map, the current route, POIs, real-time traffic. (b) displays the route map
and (c) the guidance map. (note: colored figures are not available)

This enhanced the positioning precision in the map and boosted the development of
navigation systems. In the year 2002, the Destinator 2 from PowerLOC Technologies
for PocketPC was released [Bur02]. It was the first system to display a 2.5D 6 birds-
eye-view (Fig. 2.13(a)). However, street names and land-cover were missing in the
2.5D mode. This was remedied the same year by the TomTom Navigator 2 [Bur03]
(Fig. 2.13(b)). Then in 2004, the Kenwood HDV-910 [Nav04] introduced satellite im-
agery in selected regions (Fig. 2.13(c)). It stored about 60GB of images using a lossless
compression. Their color tone was dynamically changed to match the current seasonal
sky [Lev04].

(a) (b) (c)

Figure 2.13: (a) Destinator 2 from PowerLOC Technologies (2002) is the first system to display
a 2.5D birds-eye-view map. (b) TomTom Navigator 2 (2002) enhances the 2.5D view with land-
cover and POIs. (c) Kenwood HDD navigation HDV-910 (2004) introduces satellite imagery.

62.5D: perspective projection of a tilted 2D map

24 CHAPTER 2. FUNDAMENTALS

In the year 2007, the Samsung STT-D370 for the Korean market created the first
3D navigation system to display photo realistic city maps (Fig. 2.14(a)). 2008, the
Nav’n Go iGO8 7 featured photo realistic 3D landmarks, buildings and a DEM [RJ08]
(Fig. 2.14(b)). In the 3D birds-eye-view, the 3D objects are made transparent if they
occlude the view onto the current position. The same year, these features were also in-
troduced by Audi in the MMI Navigation Plus and by BMW in the iDrive Professional
Navigation system.

(a) (b)

Figure 2.14: (a) Samsung STT-D370 (2007) for Korea was the first to display photo realistic
3D city maps. (b) Clarion Map 780 (2008) introduced 3D landmarks, buildings and a DEM.

In 2009, the Navigon 8410 introduced photo realistic 3D cities to the European mar-
ket [Nav09]. It featured textured buildings, roads with marked lanes and details like
trees (Fig. 2.15(a)). However, most included building textures are generic with only few
matching facades. Finally, 2011 Audi integrated Google Earth into their cars [Qua09].
The satellite and DEM data are streamed at runtime from Google’s back-end server.
If an Internet connection is available and fast enough, this enables high resolution im-
agery for the entire world. The CCP, route and road network is overlaid onto the DEM
of Google Earth using KML (Fig. 2.15(b)).

Current Trends. Navigation software for mobile phones are replacing personal nav-
igation devices (PND) and are becoming an (almost) free commodity, e.g., with Google
Navigation, HERE Navigation and Skobbler. Pre-integrated solutions in cars only cre-
ate an advantage through a tight integration with the vehicle infrastructure. For exam-
ple, the visualization can be expanded into the growing amount of on-board displays,
e.g., the windshield, dashboard and instrument cluster (Fig. 2.16). A tightly integrated
navigation system can display imminent information in the windshield and the next
maneuvers can be shown in the instrument cluster. Finally, information helping the

7Nav’n Go iGO8 was also integrated into the Clarion MAP780/680 [Cla08] navigation systems.

2.3. EVOLUTION OF MAP VISUALIZATION 25

(a) (b)

Figure 2.15: (a) Navigon 8410 features complete 3D city models for the European and US
market. (b) Audi A8 streams high-resolution satellite imagery from Google’s back-end server
(courtesy of AUDI AG).

orientation of the driver can be shown in the central display, e.g., on the dashboard.
Therein, visualization of real-time map information is becoming a reality, e.g., through
the fusion of mobile phone and car data acting as probes for real-time traffic informa-
tion [WB08]. As such, map viewers are real-time browsers of georeferenced informa-
tion. This application becomes even more important with electric cars, as checking the
driving range and finding the next power source becomes a vital asset.

Figure 2.16: Fully integrated displays in modern cars assist the driver to perform interactive
tasks [TBK06]. (top) The Head-Up-Display in the windshield helps performing the primary
task, i.e., driving. (bottom left) The instrument cluster assists secondary tasks, e.g., activating
turning signals or displaying guidance information. (bottom right) The dashboard assists tertiary
tasks, i.e., entertainment, orientation or information, e.g., searching POIs.

26 CHAPTER 2. FUNDAMENTALS

2.3.3 Cartographic Map Visualization Techniques

Images of rendered 3D worlds can become too complex for navigation and spatial infor-
mation browsing tasks, e.g. when displaying virtual photorealistic 3D city models. The
visual complexity can be reduced by multiple measures: simplification and generaliza-
tion, a cartographic rendering, focus+context techniques, and selection and filtering of
features.

Generalization and Simplification. Single features of the world can be rendered
with cartographic techniques, i.e. symbolization, generalization of the geometry and/or
the corresponding textures [PSTD12]. A geometric simplification could involve the
cell-based generalization of 3D city models [GD08b; GD09] and replacing photorealis-
tic trees with coarse surrogates or even symbols. Furthermore, the road network could
be simplified to create easily understandable destination maps [KABSC10]. A tex-
ture simplification technique could be achieved by simplifying orthoimages [SKD10],
rendering forests as symbols [STKD12] or through a cartographic rendering of water
surfaces [SKTD13].

Cartographic Rendering. These approaches can be combined to simplify the over-
all look and create a simplified rendering style of the 3D geovirtual world, i.e. a carto-
graphic visualization. This is achieved e.g. with a stroke-based rendering of terrain [BS-
DSW04], a cartographic rendering of landmarks [EPK05] or a non-photorealistic ren-
dering (NPR) of 3D city models [DBNK05; DB05]. Such a rendering style helps to
acquire the attention of users [SD04] and improves navigation tasks [PC08].

Focus+Context. On top of a cartographic visualization, focusing techniques could
be applied to direct the user’s focus of attention on important features. This can be
achieved through the use of information lenses [Döl05], route zooming [QWCWC09],
detail lenses [BMWW14], 3D city generalization lenses [TGBD08], a selective Depth-
of-Field effect, and general highlighting techniques [TBPJ10]. Further focus+context
techniques can be found in Chapter 5.3.

Selection and Filtering. Finally, an intelligent filtering of features visible in the
3D world could drastically reduce the cognitive load. Based on the current context,
important 3D landmarks [GD08a], labels, and POIs could be selected. The selection
process could be further enhanced by a recommender system.

Chapter 3

High-Quality Cartographic Roads on
High-Resolution DEMs

Figure 3.1: Cartographic rendering of roads in Vorarlberg, Austria, and in Munich, Germany.

The efficient and high quality rendering of complex road networks—given as vector
data—and high-resolution digital elevation models (DEMs) poses a significant problem
in 3D geographic information systems. As in paper maps, a cartographic representation
of roads with rounded caps and accentuated clearly distinguishable colors is desirable.
On the other hand, advances in the technology of remote sensing have led to an ex-
plosion of the size and resolution of DEMs, making the integration of cartographic
roads very challenging. In this work we investigate techniques for integrating such
roads into a terrain renderer capable of handling high-resolution datasets. We evaluate
the suitability of existing methods for draping vector data onto DEMs, and we adapt
two methods for the rendering of cartographic roads by adding analytically computed
rounded caps at the ends of road segments. We compare both approaches with respect
to performance and quality, and we outline application areas in which either approach
is preferable.

27

28 CHAPTER 3. CARTOGRAPHIC ROADS ON DEMS

3.1 Introduction

Figure 3.2: Cartographic rendering of road maps using vivid colors and dark edges to achieve
a high visual contrast to the underlying terrain.

Geographic Information Systems (GIS) store, analyze and visualize geo-referenced
data (see Section 2.1). Road networks, land usage regions and selected points of in-
terest are usually stored as vector data (see Section 2.1.2). In urban planning, cartogra-
phy, and for navigation purposes, the visualization of roads on digital terrain models
plays an important role [Döl05]. GIS engines should be able to handle and display such
vector data efficiently and at high quality. A bare and uncluttered visualization as in
paper maps is desirable. This cartographic representation of roads requires vivid col-
ors, dark edges, rounded caps and runtime scaling of road width [Kra00; RMMKG95].
Dynamic scaling allows the perception of roads at every distance. In a cartographic
rendering, roads are tinted using vivid colors to distinguish them from the underlying
terrain. Associating different colors to each type of road induces an automatic cogni-
tive grouping of similar roads [Kra00]. In addition, dark edges around roads add visual
contrast [RMMKG95]. Examples of such cartographic representations are shown in
Fig. 3.2(a) and 3.2(b). An additional aspect of a cartographic representation are rounded
caps at each road segment. This avoids the appearance of cracks between segments and
makes the visualization more appealing by introducing smooth endings and avoiding
undesirable angular corners.

Another important information layer in GIS is the digital elevation model (DEM). It is
usually given as raster data defining a 2.5D height map (see Section 2.1.2). Since the
resolution and size of these DEMs are increasing rapidly, rendering approaches must
be capable of dealing with TBs of data and gigantic sets of primitives that have to be
displayed at high frame rates. To cope with these requirements, visualization tech-
niques employ adaptive Level-of-Detail (LOD) surface triangulations [LKRHF+96]
and data compression, combined with sophisticated streaming and pre-fetching strate-

3.2. RELATED WORK 29

gies [DSW09]. In such scenarios, the combined visualization of roads and a high-
resolution DEM in a single visualization engine becomes a challenging task.
The main contribution is a method for rendering cartographic roads with rounded caps
on high-resolution DEMs. We extend existing vector draping methods by introducing
the possibility to compute caps analytically, thus avoiding an explicit triangulation. In
this way we achieve a high-quality appearance without increasing the number of geo-
metric primitives to be rendered. Furthermore, we introduce screen-space road outlines,
runtime width scaling, and correct treatment of road intersections.

We have integrated our method into a tile-based terrain rendering engine. During pre-
processing, this engine builds an multiresolution pyramid for both the DEM and the
orthoimage. It then partitions each level into square tiles, creating a quad tree. Each tile
stores a Triangulated Irregular Network (TIN) representation of the DEM along with
the orthoimage During runtime, tiles are chosen based on a maximum allowed screen-
space error. In combination, this enables interactive 3D browsing of high-resolution
terrain data with superimposed cartographic roads.

3.2 Related Work

Terrain Rendering. Terrain rendering approaches using rasterization have been
studied extensively over the last years. They employ the GPU to render large sets
of polygonal primitives, and they differ mainly in the hierarchical height field represen-
tation used. There is a vast body of literature related to this field and a comprehensive
review is beyond the scope of this thesis. However, Pajarola and Gobbetti [PG07]
discuss the basic principles underlying such techniques and provide many useful algo-
rithmic and implementation-specific details. A thorough discussion of terrain rendering
issues that are specifically related to high resolution fields is given in [DSW09].

Vector Data. The mapping of vector data on DEMs is an active research subject.
The existing methods can be broadly classified into geometry-based, texture-based and
shadow volume-based approaches.

Geometry-based. These methods generate and render separate primitives for the
vector data. As the sampling frequency of the vector data generally does not match
the triangulation of the underlying terrain, an adaption to the terrain triangulation and
its LOD scheme is necessary. Because of this pre-process, geometry-based algorithms

30 CHAPTER 3. CARTOGRAPHIC ROADS ON DEMS

are strongly tied to the terrain rendering system and usually only allow static vector
data [ARJ06; SGK05; WKWRF03].

Texture-based Approaches. Texturing techniques map the vector data onto a DEM
in two steps: first, the data is rendered into offscreen textures either at runtime or in
a pre-process. Afterwards, these textures are overlaid onto the terrain using texture
mapping [DBH00]. This approach does not produce any aliasing artifacts thanks to
hardware-supported texture filtering. Additionally, these methods are independent of
the underlying terrain triangulation algorithms.
Static texturing methods provide high performance, but do not allow runtime changes
of rendering parameters. Further problems occur at large zoom factors, as only lim-
ited resolution textures can be pre-computed—there is an inherent tradeoff between the
memory requirements and the obtainable quality [DBH00]. Therefore, Kersting and
Döllner [KD02] combine this approach with on-demand texture pyramids: associat-
ing each quadtree region with an equally sized texture allows on-the-fly generation of
appropriate textures. Dynamic vector data can be visualized if these textures are cre-
ated in each frame. However, this severely impacts performance, as many render target
switches are needed. To overcome this, Schneider et al. [SGK05] introduce an approach
using a single reparameterized texture for the vector data, analogously to perspective
shadow mapping (PSM) [SD02]. As in PSM, some aliasing artifacts occur.
Bruneton and Neyret [BN08] present an approach that adapts the terrain heightfield to
constraints imposed by the vector data (e.g., to enforce locally planar roads). Their
method works only on regular meshes and would be difficult to generalize to our TIN-
based terrain system. It is also not feasible for high-resolution terrain data. Addition-
ally, an adaption of the heightfield is only necessary if the terrain resolution is insuffi-
cient to resolve such constraints, or if real-time editing is desired.

Shadow volume-based Approach. This approach, recently introduced by Schnei-
der and Klein [SK07], uses the stencil shadow volume algorithm to create pixel-exact
draping of vector data onto terrain models. A stencil mask is created by extruding poly-
gons along the nadir and computing the screen-space intersection between the created
polyhedra and the terrain geometry. Using this mask, a single colored fullscreen quad
is drawn. For each color, a separate stencil mask has to be generated. However, as the
number of different vector data colors is typically small, this is not a major problem.
The approach does not require any pre-computations and is thus completely indepen-
dent of the terrain rendering algorithm. A similar approach was introduces by Ohlarik
and Cozzi [OC11]. Instead of creating volumes, they create triangle walls by extruding

3.3. CARTOGRAPHIC ROADS 31

the polyline. In the fragment shader, they use the depth and silhouette of the DEM to
generate one pixel-width lines projected onto the terrain.

Parametrized surfaces. Large numbers of similar primitives can be rendered ef-
ficiently using analytic methods. The main goal is to reduce bandwidth requirements
when displaying a large amount of similar elements. Splatting objects to quadrangular
approximations and solving their raycasting equation enables GPU-accelerated visual-
ization of glyphs. By using parametrized surfaces, implicit surfaces are generated. For
instance, tensor fields can be visualized by ellipsoids [Gum03], solving intersection and
shading equations on the GPU. Finally, an implicit generation of hyperstreamlines is
done by using a GPU-based sphere tracing with oriented ellipsoids [RBEHE06].

Our goal is to render cartographic roads on a high-resolution DEM. Continuous road
scaling is a prerequisite, which makes texture-based approaches unsuitable. Likewise,
a runtime triangulation of roads to match the DEM is not feasible, so most existing
geometry-based approaches are not usable in our case. We chose to use the shadow vol-
ume approach, as it does not require a pre-process and thus allows for runtime scaling
of roads. It also provides pixel-exact projections. As a simpler and faster alternative, we
also investigate a geometry-based approach where we adapt only the road centerlines
to the DEM, so road scaling remains possible.

3.3 Cartographic Roads

In GIS, roads are usually stored as vector data, i.e., as a collection of 2D polylines.
One possibility to visualize such data is to convert the vector data into geometric prim-
itives that are rendered on top of the terrain. However, a naive extrusion of each line
segment to a quad results in the appearance of cracks between segments. The higher
the curvature of a polyline, the more these cracks become visible. Two pragmatic so-
lutions exist: filling the holes with additional triangles (Fig. 3.3(a)) or connecting the
corners of adjacent quads (Fig. 3.3(b)). Both solutions are only possible if adjacency
information is available. In real datasets, however, this information is commonly in-
complete. Fig. 3.4 shows an example from a real dataset where one continuous road is
represented by several individual polylines, resulting in cracks between adjacent road
segments where the polylines meet. We therefore choose a robust and elegant solution,
which draws caps to avoid the appearance of cracks (Fig. 3.3(c)) and does not require
adjacency information.

32 CHAPTER 3. CARTOGRAPHIC ROADS ON DEMS

(a) Extra triangle (b) Moving corners (c) Rounded caps

Figure 3.3: Methods for removing cracks between quads.

(a) Cracks (b) Fixed with caps

Figure 3.4: Cracks occur because of missing adjacency information.

In addition to filling cracks, this approach generates visually pleasant smooth road end-
ings (Fig. 3.5, top). It also naturally handles sharp turns in a road (Fig. 3.5, bottom).
Many major navigation systems visualize roads using rounded caps, for example in
Nokia Maps, Apple Maps, Google Maps, Navigon and TomTom. It has become a de-
facto standard technique when rendering cartographic roads [Nds]. A naive method for

(a) No rounded caps

(b) With rounded caps

Figure 3.5: Quality improvement with rounded caps.

rendering caps is the triangulation of a half-circle, leading to a large number of addi-
tional triangles per segment. Furthermore, the discrete triangulation becomes visible at
large zoom factors. In the following sections, we present two methods that allow using
perfectly round caps while avoiding an increase of the triangle count.

3.4. GEOMETRIC APPROACH 33

3.4 Geometric Approach

Our first method renders cartographic roads using a geometry-based approach. From
the initial polyline representation of a road, we individually process each line segment
defined by successive vertices. In a pre-process, these lines are clipped against the
terrain mesh in 2D, inserting additional vertices at each intersection (Fig. 3.6). For
more details on this pre-process, see Section 3.6.1.

(a) Incorrect mapping of a road
(gray vertices); problematic ar-
eas are marked by spirals

(b) Correct mapping of the road us-
ing additional vertices (red)

(c) Top-down view with additional
vertices

Figure 3.6: Geometry-based mapping of roads onto a terrain mesh.

To render rounded caps, we do not explicitly triangulate half-circles at the beginning
and the end of each road segment. Instead, we render a single quad encompassing an
entire road segment and evaluate the caps analytically in a shader program [Gum03]
(Fig. 3.7).

(a) Line segment i (b) Generated quad (c) Analytical caps

Figure 3.7: Analytical evaluation of rounded caps on a base quadrilateral.

We use the endpoints Pi and Pi+1 of each line segment and the tangent~ti to generate a
quad encompassing both capped ends (Fig. 3.7(a) and (b)). From the tangent vector~ti =
(ti,x, ti,y) we obtain the normal~n as

~n = (−ti,y, ti,x).

34 CHAPTER 3. CARTOGRAPHIC ROADS ON DEMS

With~ti,~n, and the road width w, we compute the two displacement vectors

~t ′ = 0.5 ·w ·~ti , ~n ′ = 0.5 ·w ·~n.

With these, we finally compute the four corners

Qi0 = Pi +~n ′−~t ′ , Qi1 = Pi−~n ′−~t ′ ,

Qi2 = Pi+1 +~n ′ +~t ′ , Qi3 = Pi+1−~n ′+~t ′.

The caps are cut out of the generated quad in a pixel shader. We create a normalized
local coordinate system inside both caps [RBEHE06], which allows determining those
fragments of a quad that are outside the cap and have to be discarded (Fig. 3.7(c)).
Given points P0, P1, the ratio h between their distance d = P0P1 and the cap radius w

2 is
given by

h =
w

(d +2 · w
2)

=
w

d +w
.

Equipped with h, we generate the local coordinates inside the caps with

xcap =
|x|−1

h
+1 , ycap = |y|.

If xcap > 0, the fragment lies inside the cap area (the red area in Fig. 3.7(c)). If x2
cap +

y2
cap > 1.0, it is outside of the half circle that builds the cap, and is discarded.

3.5 Shadow Volume Approach

Our second algorithm is an extension of the shadow volume-based approach introduced
by Schneider and Klein [SK07]. We extrude the road geometry along the nadir and
apply a stencil shadow volume algorithm [Cro77; Hei91]. Thus, we compute the in-
tersections between the extruded roads with the terrain geometry, resulting in per-pixel
accurate projections onto the terrain. Similar to the approach described in Section 3.4,
we extend this algorithm by adding analytic rounded caps. We enlarge the geometry
of each line segment to encompass the caps, and construct a local coordinate system
that allows us to determine the fragments lying inside or outside the cap area. In the
inside area, we analytically evaluate the caps via an intersection test between a ray and
a cylinder and compute the depth value of the intersection point to be used during the
depth test.

3.5. SHADOW VOLUME APPROACH 35

3.5.1 Intersection

From the camera position O, the fragment position F , and the view direction~v = (F−
O)/ |F−O| we construct the view ray R = O+ t~v. Given such a ray, the intersection of
the ray with the cylinder spanned by the cap can be computed. Because the cylinder is
always aligned with the z axis (the nadir), we can replace the 3D ray-cylinder test by
a 2D ray-circle test in the xy plane (Fig. 3.8). A circle with center C and radius r is
defined by the equation

(X−C)2 = r2.

Inserting the ray R into this equation with~c := O−C yields

((O+ t~v)−C)2 = (~c+ t~v)2 = r2.

Expanding this results in the quadratic equation

(~v ·~v) t2 +2 (~v ·~c) t +(~c ·~c− r2) = 0.

Solving for t gives the discriminant

d = 4 (~v ·~c)2−4 (~v ·~v) (~c ·~c− r2).

If d ≤ 0, there is none or only a single solution to the quadratic equation. This means
that the ray does not hit the cap at all, or just grazes it. In this case, we discard the
fragment. Otherwise, we get

t1/2 =
−2 (~v ·~c) ±

√
d

2 (~v ·~v)
.

For front faces, min(t1, t2) is the correct solution, for back faces it is max(t1, t2).

So far, we have assumed that the road geometry is extruded toward infinity to generate
the shadow volumes. Since this is wasteful in terms of rasterization fill rate, we consider
the height field for limiting the extent of the shadow volumes. Assuming the terrain
being partitioned into tiles, it is sufficient to extrude each line segment only within the
extent of the bounding box of the tile it belongs to. Therefore, the intersection algorithm
has to be extended to handle the top and bottom sides of the extruded polyhedron: If the
2D distance between F and C is smaller than the cap radius (which can only happen for
fragments belonging to the top or bottom side), F already gives the final intersection.

36 CHAPTER 3. CARTOGRAPHIC ROADS ON DEMS

3.5.2 Numerical Precision

The algorithm as presented so far suffers from problems caused by limited numerical
precision. One such problematic situation is depicted in Fig. 3.8: The intersection be-
tween each ray and the cylinder is computed twice, once for the front face of the bound-
ing box (corresponding to F0 in the figure) and once for the back face (corresponding
to F1). The ray direction is computed as F0−O and F1−O, respectively. Because of
small perturbations in F0 and F1, which are caused by the limited precision of the in-
terpolation hardware, one of the intersection tests may report an intersection while the
other one does not. This results in inconsistent output causing visible artifacts.

Figure 3.8: Numerically problematic ray-circle intersection.

In order to achieve consistent results, we compute both intersections in the same shader
invocation: We render the geometry with front face culling enabled, and analytically
compute the entry point into the bounding box of the extruded road. We then compute
both intersections between the ray and the road as described above. This results in two
depth values z0, z1 that need to be compared to the terrain depth zt . We therefore replace
the regular depth test with a custom two-sided test: zt is read from a texture created as
a secondary render target during the terrain rendering pass. If z0 < zt < z1, then the
road volume intersects the terrain geometry; otherwise, we discard the fragment. Two
beneficial side effects of this approach are that only half the amount of geometry needs
to be rasterized compared to the naive approach, and that in contrast to the original
shadow volume algorithm it does not require the rendering of full-screen quads to color
the intersections.

3.6. IMPLEMENTATION DETAILS 37

3.6 Implementation Details

In our proposed GIS engine, we visualize vector data from the OpenStreetMap project
[Ope] (Chapter 2.1.3). Road networks are stored as a collection of polylines. Each
polyline has a functional road class (FRC) [Tal96], defining a distinct width and color.
For efficient data management at runtime, we partition the vector data into quadtree
tiles, similar to the terrain data. Inside each tile, roads are stored sorted by their FRC.

3.6.1 Geometry Clipping

To avoid an incorrect mapping of roads onto the DEM in the geometric approach as
in Fig. 3.6(a), we apply a pre-process where the centerline of each road segment is
clipped against the terrain mesh in 2D. Additional vertices are inserted at each inter-
section (Fig. 3.6(c)). However, finding the exit point of a line in a triangle by line-line
intersection tests with the triangle edges provides poor numerical stability. We therefore
perform these calculations in barycentric coordinates as illustrated in Fig. 3.9.

Figure 3.9: Computing line – triangle edge intersections.

We trace a line from point P along the normalized vector~v in the triangle defined by the
vertices T0, T1 and T2. The change in the barycentric coordinate λ2 of P with respect to
T2 is given by the signed distance moved along ~a0 divided by the distance d0 of T2 from
~e0, where ~a0 is a normalized vector perpendicular to ~e0 and pointing inside the triangle.
When moving along ~v, this becomes (~a0 ·~v)/d0. If this value is larger than zero, ~v is
pointing away from ~e0 and we skip this edge. Otherwise, the maximum distance x0 we
can move along~v before we hit ~e0 is given by

x0 =
λ2d0

~a0 ·~v
.

This can be done analogously for the other edges to compute x1 and x2; the smallest of
these provides the actual exit point where an additional vertex is inserted.

38 CHAPTER 3. CARTOGRAPHIC ROADS ON DEMS

3.6.2 Geometry Z-Offset

Even after adapting the roads to the terrain, z-fighting artifacts occur when using the
geometric rendering approach (Fig. 3.10). Most of these artifacts can be resolved by
an additional scaling of the vertices Pi in view space. The vertex transformation thus
becomes

proj(Pi) = Pi ·W ·V · (1−α) ·P,

where W, V and P are the world, view, and projection matrices, respectively, and α is
a small value > 0 (we used 0.02). In contrast to an offset in world space, this approach
does not cause roads to hover when viewed from up close.

(a) Artifacts where roads intersect with triangu-
lated terrain

(b) Resolving artifacts by z-offset

Figure 3.10: Z-fighting between roads and the terrain geometry.

3.6.3 Cartographic Rendering

Scaling. In cartographic rendering, roads should be visible at all zoom levels. There-
fore, while zooming out our system scales the roads’ widths continuously. The scaling
factor is determined by the distance to the viewer. To avoid that roads close to the
viewer become too wide, we only scale roads that are further away from the user than
a given distance threshold (Fig. 3.11).

Intersections. At crossroads or junctions, multiple roads of potentially different
FRCs overlap, resulting in visible artifacts caused by additive blending. To resolve this
problem, we draw roads into an offscreen render target without blending, in increasing
order of importance.
The same approach allows for an easy integration of multi-colored roads by drawing a
road multiple times with different widths and colors. This increases the geometry count

3.6. IMPLEMENTATION DETAILS 39

(a) No scaling (b) Constant scaling (c) Distance-based scaling

Figure 3.11: Scaling of road width. Without scaling, distant roads become too narrow (left).
A constant scale makes close roads too wide (middle). Distance-based width scaling gives
satisfactory results (right).

proportionally to the number of colors, but since typically only a few important roads
use multiple colors, this is acceptable. Fig. 3.12 demonstrates the correct handling of
intersections of roads with different FRCs, including a two-color motorway.

Figure 3.12: Correct handling of road intersections.

Outlines. To distinguish cartographic roads from the underlying terrain, we add dark
edges around roads to increase contrast [RMMKG95]. To detect edges in screen space,
we use a 3× 3 or 5× 5 kernel to find the local maximum road intensity αmax around
each fragment. The road intensity is the road opacity for pixels which are covered
by a road, and 0 otherwise. The difference αmax−αcurrent defines the resulting edge
intensity. Fig. 3.13 demonstrates the increase in visibility achieved by using outlines
around roads.

40 CHAPTER 3. CARTOGRAPHIC ROADS ON DEMS

(a) Without outlines (b) With outlines

Figure 3.13: Improving visibility by using dark outlines.

3.7 Results

We have tested the proposed algorithms using three high-resolution datasets:

• A DEM of the US State of Utah, covering an area of about 276,000 km2 at a
geometric resolution of 5 m. The road dataset contains about 6,839,000 vertices
(216 MB).

• A DEM of Bavaria in Germany, covering an area of about 70,500 km2 at a ge-
ometric resolution of up to 80 cm. The road dataset contains about 5,697,000
vertices (151 MB).

• A DEM of the Vorarlberg region in Austria, covering an area of about 4,760 km2

at a geometric resolution of 1 m. The road dataset contains about 213,000 vertices
(7 MB).

The size of the terrain data including orthoimages is around 1 TB per dataset. We
therefore use an out-of-core visualization system capable of handling arbitrarily large
datasets. The pre-processing step for the geometric approach (see Section 3.6.1) in-
creased the size of the road data by about a factor of ten in all tested cases. Note that
for the shadow volume approach, this step is not required.

Performance. All performance measurements were taken at a display resolution of
1600×1200 on a PC with Windows Vista, a 2.66 GHz Intel Core 2 Quad CPU, 8 GB
of RAM and an ATI Radeon HD 5870 GPU (driver version 10.6). The results can be
seen in the following Fig. 3.14.

The graph in Fig. 3.14(a) shows the frame rate during a recorded flight over the medium-
resolution DEM of Utah at an average speed of about 1750 m/s. When rendering ge-
ometric roads (GEO), the maximum (average) performance drop is about 30% (26%)

3.7. RESULTS 41

0

100

200

300

400

FPS

0 100 200 300 400 500
Time (s)

SV, no caps
SV, capsNo roads GEO, caps

GEO, no caps

(a) Performance - Utah.

0

50

100

150

200

250

300

FPS

0 50 100 150 200 250 300
Time (s)

SV, no caps
SV, capsNo roads GEO, caps

GEO, no caps

(b) Performance - Bavaria.

Figure 3.14: Benchmark of GEO and SV in the medium-resolution DEM of Utah and the
high-resolution dataset of Bavaria.

compared to rendering the terrain without roads. The highest performance impact oc-
curs over Salt Lake City (far right in the graph). This area contains a dense road network
and only a small amount of terrain geometry, as buildings are not included in the height
field. The additional rendering of rounded caps does not significantly influence the per-
formance.
For shadow volume-based roads (SV), the maximum (average) performance drop is
around 40% (35%) without and 55% (42%) with rounded caps. Breaking the numbers
down to the sole rendering of roads, SV with caps is about 1.4 times as expensive as
without caps.
The visual quality produced by both techniques is identical at most locations in Utah.
Therefore, GEO is preferable because of its higher performance.

Fig. 3.14(b) shows the frame rates during a flight over the high-resolution dataset of
Bavaria at an average speed of about 950 m/s. In this scenario, the performance of all
approaches is very close; the average cost is between 33% and 43%. Even though GEO
often requires many more triangles (up to about 3 million) than SV (≤ 1M) because of
the adaption to the terrain mesh (which itself uses up to about 35M triangles), GEO is
still slightly faster. Thus, the GPU is more limited by shading computations than by
the geometry throughput. However, GEO can often not provide an adequate mapping
on such high-resolution terrain data (Fig. 3.15). Therefore, SV is preferable for such
fine-grained DEMs.

The Vorarlberg dataset has a similar geometric resolution as the Bavaria dataset, but
the road network is much more sparse. Regardless of which algorithm is chosen for
rendering roads, the highest performance impact amounts to only 15%. However, as in
Bavaria, GEO cannot provide adequate quality.

42 CHAPTER 3. CARTOGRAPHIC ROADS ON DEMS

(a) Geometric (b) Shadow volume (c) wireframe

Figure 3.15: Comparison of our draping algorithms on high-resolution terrain.

Matching. We should note that in many situations the vector dataset did not exactly
match the terrain data, i.e., there was a certain offset between the vector data roads and
roads in the orthoimages. These problems frequently occur in cities or forests, where
even a slight offset causes a road to be projected onto a building or a tree. GEO fails
to produce any reasonable results in this case (Fig. 3.16(a)); SV produces a technically
correct but not very useful projection (Fig. 3.16(b)). This is a problem of the data rather
than the draping algorithm. An additional pre-processing step could match the vector
data to the terrain and its orthoimages.

(a) Geometric (b) Shadow volume

Figure 3.16: Artifacts caused by a mismatch between terrain and vector data.

Comparison. Our method presents a marked improvement over several commercial
GIS systems. For example, Google Earth 6.2 uses a simple geometric approach without
adaption to the terrain and therefore does not achieve a correct projection of roads onto
the DEM. It also does not provide correct road intersections and does not support multi-
color roads or outlines. ArcGIS 10.0 rasterizes vector data into textures which are
overlaid onto the terrain, similar to the orthoimages. This results in a correct projection
and correct behavior at road intersections. However, a dynamic scaling of road widths
is not possible, and multi-color roads or outlines are not supported.

3.8. CONCLUSIONS 43

3.8 Conclusions

We have proposed and evaluated two approaches for rendering high-quality carto-
graphic roads with rounded caps on high-resolution 3D terrain models. Both can be
used on hardware platforms supporting Direct3D 10 or OpenGL 3.2. We have shown
that a geometry-based approach provides high performance and good quality for low-
to medium-resolution terrain datasets. However, it requires a moderately complex pre-
processing step, and it cannot provide an adequate visual quality with high-resolution
terrain data. It is therefore a reasonable choice for low-end hardware, e.g., on mobile
devices, where rendering of high-resolution terrain data is not feasible.
The shadow volume algorithm enables pixel-exact rendering of cartographic roads on
3D terrain. It is more expensive at runtime than the geometry-based approach; however,
the rendering of high-resolution terrain remains the larger part. In low-resolution ter-
rain datasets, on the other hand, its relative performance impact is large. The algorithm
is easy to integrate into existing terrain rendering engines, as no adaption of roads to
the terrain is required. It also extends naturally to polygonal vector data.
In further research, we plan to evaluate the use of tessellation shaders for the creation
of geometric caps on Direct3D 11 or OpenGL 4.0 capable hardware.

44 CHAPTER 3. CARTOGRAPHIC ROADS ON DEMS

Chapter 4

Temporally Coherent Real-Time
Labeling of Dynamic Scenes

(a) Annotation of a large graph network. (b) Labeling a GIS in Geneva, Switzerland.

Figure 4.1: Real-time labeling of 2D (left), 3D (right) scenes using our force-based approach.

The augmentation of objects by textual annotations provides a powerful means for vi-
sual data exploration. Especially in interactive scenarios, where the view on the objects
and, thus, the preferred placement of annotations changes continually, efficient label-
ing procedures are required. As identified by a preliminary study, these procedures
have to consider a number of requirements for achieving an optimal readability, e.g.,
cartographic principles, visual association and temporal coherence. We present a force-
based labeling algorithm for 2D and 3D scenes, which can compute the placements of
annotations at very high speed and fulfills the identified requirements. The efficient la-
beling of several hundred annotations is achieved by computing their layout in parallel
on the GPU. This allows for a real-time and collision-free arrangement of both dynami-
cally changing and static information. We demonstrate that our method supports a large
variety of applications, e.g., geographical information systems, automotive navigation
systems, and scientific or information visualization systems. We conclude this chapter,
with an expert study which confirms the enhancements brought by our algorithm with
respect to visual association and readability.

45

46 CHAPTER 4. TEMPORALLY COHERENT LABELING

4.1 Introduction

Information can be represented by images and textual annotations. Images give a quick
overview and portray data intuitively. In contrast, textual annotations have to be actively
read. However, they can precisely describe objects with selected information. Combin-
ing both types creates a very powerful tool for data exploration. These principles are
used in the fields of information visualization and visual analytics. Therein, abstract
data is often described by textual annotations. For instance, graphs with up to several
hundred nodes have to be labeled (see Figs. 4.1(a) and 4.9). Another area of research
focuses on geographic information systems (GIS) (see Section 2.1). These systems vi-
sualize geospatial data such as road networks, demographic data, and their annotations
(see Figs. 4.1(b) and 4.6(b)). An example is our proposed map viewer framework in-
troduced in Chapter 3 which renders cartographic roads on high-resolution DEM. Such
systems, especially when used on large-scale display systems, must be able to provide
interactive visual exploration of geospatial data with a very high number of annota-
tions. Since in such 3D (or 2.5D) applications the camera can be moved freely, the use
of unconstrained labels and the pre-processing of every possible layout constellation
to avoid collisions is impractical [Mot07]. More and more such applications have to
cope with dynamic content, requiring placements of labels without prior knowledge,
e.g., when loading KML files into Google Earth. Therefore, real-time computation of
annotation layouts is becoming an ever important requirement in interactive data ex-
ploration. Besides interactivity, additional requirements such as Imhof’s cartographic
principles [Imh75] have to be considered to improve the visual analysis process. Ad-
hering to these principles, including readability, visual association, and classification,
is extremely challenging and demands for a proper integration of the respective func-
tionality into label placement algorithms, e.g., support for scalable rotated labels with
priorities. In addition, only a stable and consistent (similar to [BDY06]), as well as
temporally coherent layout, where labels do not jitter, appear suddenly, or move unex-
pectedly, lets users easily track annotations in a complex scene. Labels should make
slow-paced, smooth transitions to minimize distraction. Therefore, on top of the afore-
mentioned requirements, the maintenance of a frame-coherent presentation is another
major concern underlying our developments. In many applications the demand for a
temporally coherent layout even supersedes the requirement for an optimal position in
every frame.

4.2. RELATED WORK 47

Based on our intended application areas and a preliminary study (see Section 4.3), we
define the following goals:

• Real-time labeling of point, line and area features

• Runtime placement of new labels

• Scalability to up to several hundreds of labels

• Temporal coherence and stability of the labeling layout

• Consideration of Imhof’s cartographic rules, e.g., readability,
visual association and classification

• Support for rotated and scaled labels with priorities

Most existing real-time approaches follow the first two rules but do not scale well with
the number of labels, have problems maintaining temporal coherence, and do not rig-
orously adhere to common cartographic rules (see Section 4.2).
The major contribution is an efficient algorithm for creating a temporally coherent la-
beling of 3D or 2.5D objects and scenes. Our algorithm is specifically tailored to the
massively parallel multi-threading architecture of graphics processing units (GPUs).
Every label collision is detected with the separating axis theorem computed in parallel
on the GPU. Collisions between labels are resolved with a force-based approach thus
creating smooth changing label positions. In this way we can create layouts for several
hundred annotations in real-time. Furthermore, our method supports scaled and rotated
annotations.

4.2 Related Work

Cartographic principles. Imhof [Imh75] names legibility and the graphical asso-
ciation of a label with its feature as characteristics of good lettering. Furthermore, he
emphasizes the importance of minimal map disturbance, good label distribution, as
well as fonts which indicate the spatial properties of features and their classification.
He divides the labeling problem into three categories: labeling point features, line fea-
tures and area features. For each category certain cartographic principles apply. Yoeli’s
four-position model [Yoe72] depicted in Fig. 4.3(a) ranks each possible position of a
label around a point feature according to its degree of intuitive association. He already
mentions the semi-automatic labeling of point features. Its computational complexity is

48 CHAPTER 4. TEMPORALLY COHERENT LABELING

NP-complete [MS91]. Christensen et al. [CMS95] introduce the point-feature-labeling-
problem (PFLP) and prove that it is NP-hard. Thus, heuristics are needed to label maps
with a huge number of features. A broad range of strategies has been developed, for in-
stance exhaustive rule-based, genetic, force-based or greedy approaches. A collection
of related papers can be found in the bibliography by Wolff and Strijk [WS12].

Force-based. A force-based approach was first presented by Hirsch [Hir82]. He uses
a gradient-driven heuristic to label point features. Labels are placed on a circle around
their corresponding features. To resolve conflicts, vectors between overlapping labels
are computed based on the intersection area. As a single label can collide with multiple
other annotations, the sum of all its vectors guides its movement, thus improving the
global labeling layout. Feigenbaum [Fei94] describes a similar method to automatically
annotate point features. He resolves collisions and places labels close to their anchor
by a force-based approach. Attractive forces pull labels to their point feature, while re-
pelling forces push labels away from other features. Thus, step by step, the map layout
converges towards a final labeling state through a gradient descent method. Ebner et
al. [EKW03; EKW05] enhance this approach by simulated annealing. Consequently,
local minima which usually prevail in greedy force-based methods can be avoided.
Similar to the approaches of Hirsch and Feigenbaum, this technique approximates the
intricate form of a label’s lettering by an axis-aligned rectangle. A hybrid approach is
presented by Stadler et al. [SSB06]. They obtain an initial placement with the help of
image processing. Then, iterative forces improve the chosen labeling positions. They
note that force-based approaches achieve a clear label distribution and thus an aesthetic
layout. However, this method does not allow for real-time placement of labels.

2D Real-time. Full interaction with 2D GIS environments, which includes panning
and zooming, requires dynamic map labeling. In the last decade, several real-time
algorithms for 2D maps have appeared. They divide the labeling problem into a pre--
processing and an interactive real-time phase [BDY06; Mot07; PGP03; YCL05]. In
the former, a conflict graph is generated which stores every possible conflict between
labels at every possible scale. At runtime, relevant labeling positions are chosen based
on the pre-computed graph. Unfortunately, all these approaches only work for a top-
down view and require uniformly sized, axis-aligned labels. Recently, real-time label-
ing of 2D maps without pre-processing has been achieved by Luboschick et al. [LSC08;
CLS09]. They divide the available screen space into a uniform grid wherein “conflict
particles” indicate if a region (cell) is occupied. Choosing a labeling position then be-
comes a search for free cells. This approach uses existing position-models [Yoe72]

4.2. RELATED WORK 49

sequentially to determine the first valid position. By using particles, this method can
freely define obstacles and is not restricted to axis-aligned annotations. The layout is
computed from scratch every frame. Temporal coherence is achieved by interpolating
the resulting positions. However, during animation, occlusion of labels can occur. In
this approach, most of Imhof’s cartographic principles [Imh75] are not addressed, even
though positioning models are used.

3D Real-time. Bell et al. present a real-time approach for labeling a 3D virtual
world [BFH01]. They introduce the notion of temporal continuity in a lettering. This
avoids popping of annotations while panning or zooming the map. Labels are projected
from 3D world space into 2D screen space. Placement is done by iterating through
a set of rectangles describing unoccupied screen space. Thus, the performance of this
method does not scale well and labels can only be approximated by axis-aligned rectan-
gles. A simpler approach from Maass and Döllner [MD06b] splits the screen space into
disjoint vertical slots. Therein, labels are stacked sorted by their distance to the viewer.
A line connects a feature and its label visually. A bold font with a halo makes textual
annotations easily readable. However, this approach creates dense clusters of labels
and long connecting lines. Thus, visual association becomes impossible. Several ap-
proaches deal with the labeling of single 3D objects for illustration purposes [AHS05].
Göetzelmann et al. [GHS06] describe an algorithm which uses distance fields to com-
pute ideal labeling positions and employ agents to preserve temporal coherency. Un-
fortunately, during camera movements labels are hidden and jittering occurs. Stein and
Décoret [SD08] present a GPU-based real-time approach for labeling a 3D scenery. To
compensate the drawbacks of their greedy approach, an Appolonius diagram defines
the label placement order. Similar to Stadler et al. [SSB06], they use image processing
to determine the initial positions. Unfortunately, only up to 20 labels can be placed
at interactive frame rates. Furthermore, during navigation, jittering and harsh changes
in labeling positions occur. Finally, a real-time approach for annotation of virtual re-
ality environments is described by Pick et al. [PHWTPK10]. They choose the initial
position of a label by voxelizing the corresponding object, extracting a medial line and
choosing the closest point on this line to the object’s center of gravity. Unfortunately,
this can lead to collisions at placement and thus unstable layouts. To resolve conflicts
at runtime, they first compute a visibility volume from an object’s axis-aligned bound-
ing box. The intersection between these volumes on directed 2D planes creates a force
vector which depends on the penetration depth. This force is applied at runtime on the
involved labels. However, real-time labeling can only be achieved for 20-40 annota-
tions.

50 CHAPTER 4. TEMPORALLY COHERENT LABELING

Summary. None of the presented approaches satisfy all the requirements stated in
Section 4.1. Several real-time algorithms suffer from visual frame-to-frame disconti-
nuities and create too much movement in the labeling layout [MD06b; SD08]. Others
only follow a minor set of Imhof’s cartographic principles [CLS09; LSC08; MD06b]
or exhibit an unstructured layout [CLS09; MD06b; PHWTPK10]. The performance of
some approaches does not scale well [BFH01; SD08; PHWTPK10]. Finally, some al-
gorithms only allow axis-aligned annotations [BFH01; Mot07; MD06b; PGP03; SD08;
PHWTPK10].

4.3 Preliminary Study

A good readability is one of the most important goal of our approach. In order to define
design principles, we conducted a preliminary expert study at our research facility. As
a representative application, we chose the labeling of a GIS with 3D-terrain overlaid
by orthoimages and a road network. We interviewed one psychologist, who has been
working as a researcher in the human-machine interaction (HMI) design field for over
two decades, four engineers, three of which work as project leaders for navigation
components, the fourth is developing HMI concepts, and a sixth expert who has worked
for over a decade as a visual designer.

4.3.1 Study Design

In an interview of approximately one hour we presented different labeling concepts
(Fig. 4.2), all adhering to Imhof’s cartographic principles [Imh75], and we provided the
following questionnaire to the experts. First, we asked whether the size of a label should
change with respect to its depth position in a 3D landscape. Second, we surveyed how
to annotate point features (e.g., cities): using the four-position model, centered above
their anchor, or circling around its feature. Finally, we questioned the best strategy to
label line features (e.g., streets): horizontally (Fig. 4.2(a)), as rotated straight labels
(Fig. 4.2(b)), or by following the line features (Fig. 4.2(c)).

4.3.2 Results

Depth Scaling. This concept categorizes the subjects into two groups. The first
group (with 4 of 6 candidates) stated that depth scaling helped spatial perception in the
3D landscape. The second group (2 of 6) stated it is acceptable if textual annotations
remain readable.

4.3. PRELIMINARY STUDY 51

(a) Horizontal annotations. (b) Straight, screen space rotated an-
notations.

(c) Annotations following the roads
curvature.

Figure 4.2: Static images for the conducted expert study: each concept shows a different anno-
tation style.

Annotation of Point Features. First, we asked which point labeling concept is
appropriate. The majority (4 of 6) stated that a consistent approach was the most im-
portant property. Three of the candidates suggested that the labeling concept should
create a clear layout and give a good overview of the situation. Finally, one of them
chose the 4-position model as the best concept because it incorporated all these stated
requirements.

Annotation of Line Features. The concept of horizontally placed labels again splits
the candidates into two groups. The first group (4 of 6) qualified it as very readable
but with a higher search and visual association time. The second group (2 of 6) did
not like this kind of placement. One stated reason was that a horizontal label could
occlude neighboring features. The concept of straight, rotated annotations was selected
as the best alternative by almost every subject (5 of 6) as it provides a good compro-
mise between readability and visual association to the line feature. In the last concept,
annotations follow the curvature of the corresponding line. The majority (5 of 6) liked
the appearance, but questioned if it would remain readable under special circumstances,
e.g., roads with tight turns. Furthermore, this group stated that this concept helps un-
derstanding the layout of a road. Some of them (3 of 6) indicated the good visual
association. Finally, some (2 of 6) said that they did not see much difference compared
to straight annotations.

4.3.3 Design Principles

The first conclusion of our study is that scaling annotations by their depth helps spatial
perception in a 3D landscape. However, the scale factor should not go below a certain
minimum to maintain readable labels. Hence, the first requirement for the layouting
algorithm is freely scalable annotations. Second, labeling point features should create
a clear layout and give a good overview of the situation. Therefore, we choose the

52 CHAPTER 4. TEMPORALLY COHERENT LABELING

four-position model because of its clear and consistent labeling. The best compromise
between readability and visual association in most situations are provided with straight,
rotated labels. Only at very steep angles, where the readability would be compromised
significantly, we switch to horizontal labels. Thus, we concluded on the support for
rotated annotations as our last requirement.

1

 p'i

(a) Horizontal point annota-
tions: The four-position
model [Yoe72] defines can-
didate positions ranked by
their degree of intuitiveness,
e.g., viewers associate most
easily a label with its point
feature p′i, if it is placed in the
top right corner.

1

p'
i

(b) Horizontal line annotations: To
label line features at their anchor
p′i we can choose between one
of three candidate positions.

1
i

p'

 is'

(c) Rotated line annotations: Three
candidate positions for labeling
line features along the projected
segment s′i. The first candidate
position is above p′i, the second
candidate is on the right side and
the third on the left side.

Figure 4.3: Initial placement of annotations.

4.4 Force-Based Labeling

In this section, we introduce our force-based, real-time labeling approach for dynamic
scenes. By providing a temporally coherent layout, at the same time considering the
additional requirements identified in the expert study, optimal readability of annotations
is enforced in an interactive environment. However, achieving this for a huge number
of labels is extremely challenging, since at runtime initial label positions have to be
computed (see Section 4.4.3), collisions have to be detected (see Section 4.4.4), and
these collision have to be resolved in a temporally coherent manner (see Section 4.4.5).

4.4.1 Motivation

According to Chen et al. [CPB04], naive search tasks are completed in less time when
labels are displayed in screen space. Hence, to achieve an optimal readability and

4.4. FORCE-BASED LABELING 53

a more efficient visual exploration we handle the entire layouting in screen space.
It is worth noting that this strategy also facilitates an efficient computation of con-
flict situation between different labels [BFH01; LSC08; SD08]. Textual labels and
icons are represented by 2D object-oriented bounding boxes (OOBBs) to accelerate the
computation of possible collisions via the separating axis theorem [SE02] (see Sec-
tion 4.4.4). Furthermore, OOBBs enable us to efficiently approximate rotated labels
needed for line aligned annotations. For the initial placement of point features, we use
the four-position model (see Section 4.4.3). As shown in our preliminary study, and
also stated by Yoeli [Yoe72], this model helps creating a visual association between
a feature and its annotation. While browsing through annotated datasets, the addition
and removal of labels changes the optimal labeling layout, such that in every frame
a completely new arrangement might be required to again achieve optimality. These
frame-to-frame changes lead to jittering effects and abrupt re-layouting in several ex-
isting approaches [LSC08; SD08]. Therefore, we do not create a discrete optimum
arrangement in each frame. Instead, the current layout is always based on the labeling
result of the previous frame. This is achieved by using a force-based approach which
only allows continuous changes to the layout and thus, creates a temporally coherent
labeling. Additionally, this results in an appropriate label distribution and avoids clus-
tering [SSB06] (see also Imhof’s cartographic principles [Imh75]).

4.4.2 Features

Following the definition of Imhof [Imh75], 2D/3D scenes contain point features (e.g.,
graph nodes, Points-of-Interest), line features (e.g., graph edges, streets), and area fea-
tures (e.g., graph regions, land cover). Point features can be depicted by icons or hor-
izontal labels (Fig. 4.3(a)). Line features can either be labeled horizontally for better
readability (Fig. 4.3(b)) or using rotated text following a line segment to create a better
visual association (Fig. 4.3(c)). The labels of area features are always drawn horizon-
tally (Fig. 4.3(a)). When loading feature datasets, we first have to compute their label-
ing positions. Horizontal labels for point features use the feature’s world coordinate
ppoint as the labeling anchor. Line features with horizontal annotations use the poly-
line’s center pline as the anchor. For a line feature with rotated text, we determine the
longest straight segment sline = (pline0, pline1). Finally, for an area feature we compute
and store its barycenter parea.

54 CHAPTER 4. TEMPORALLY COHERENT LABELING

4.4.3 Initial Placement

The initial placement of labels consists of choosing a position in screen space when a
label first appears. The priorities of labels determine the order of their initial placement.
First, we compute the screen space position p′i by projecting the 3D world coordinate
pi of a feature’s anchor point. Based on the projected coordinate and the label’s size,
we then create an OOBB approximation.
As concluded from our expert study in Section 4.3.3, we use the four-position model to
label point features. For each of the four candidates k we compute the corresponding
OOBB Ck using a screen space offset oi

(k) from the projected position p′i (Fig. 4.3(a)).
The same is done for area features, using the projected barycenter as the anchor. To
consistently place line features, we compute three offset OOBBs Ck from p′i. Depend-
ing on the current view angle, the candidate OOBBs are either placed horizontally
(Fig. 4.3(b)) or along the projected segment s′i (Fig. 4.3(c)). Each of these candidates
k with OOBB C(i)

k of the currently processed label i are tested for collision against the
OOBB C(j) of every already placed label j (see Section 4.4.4). If multiple candidate
OOBBs C(i)

k are collision free, we choose the position with the best visual association
as described by Yoeli [Yoe72]. If there is no free position, we do not add the label i.
A timer is started and the initial placement is re-evaluated after the timer expires. To
comply with the requirement of a temporal coherent layout from Section 4.1, the new
label i is smoothly alpha-blended into the layout.
As the placement is ordered by importance, the most relevant annotations are placed
in the layout first. Less important labels are filtered out. Enforcing their placement
would lead to problems such as collision and clustering. Collision would create rapid
movements during conflict resolution, and it would lead to several unreadable labels as
stated by Wolff [Wol99; DKSW02, p. 3-4]. Finally, the resulting clusters would make
visual association and reading difficult (see Noyes [Noy80] and Imhof [Imh75]). These
points would contradict our goal to follow Imhof’s cartographic rules [Imh75].

4.4.4 Collision

We use a unified approach to layout the labels of all feature categories. Thus, we can
involve all feature types to compose the final layout. First, we project all computed
positions ppoint , pline, parea, pline0 and pline1 from 3D world space to 2D screen space,
resulting in the projected coordinates p′point , p′line, and p′area, and a projected segment
s′line = (p′line0

, p′line1
) (normalized ŝ′line). Second, we generate an OOBB encompassing

each label. Finally, we compute pair-wise screen space conflicts between all visible

4.4. FORCE-BASED LABELING 55

r

p'
i

oi

(a) Circling annotations: At run-
time, a label i with offset oi
can circle around its point fea-
ture p′i. A spring keeps the la-
bel at a distance r from p′i.

oi

i
p'

ai

(b) Free annotations: At runtime,
a label i can freely move
away from its optimum posi-
tion p′i + ai. When no force
is acting, the spring reposi-
tions the label from p′i + oi to
p′i +ai.

d

p'
i

is'

oi

(c) Line annotations: At runtime,
the label follows the projected
screen space segment s′i. A
spring positions the label at a
distance d from the line s′i.

Figure 4.4: Force-based resolution of collisions.

OOBBs. Implementation details are discussed in Section 4.5. Every OOBB intersec-
tion causes the creation of a force vector fcollision which aims to resolve the collision
(Fig. 4.5).

collisionf+

collisionf-

Figure 4.5: Collision dependent force vector fcollision.

Collisions between OOBBs are computed using the separating axis theorem [Got00;
SE02]. It states that if two boxes do not overlap, there must be an axis which separates
their projections. First, we normalize the edge vectors of an OOBB with corners C =

{c0,c1,c2,c3} to unit length and get the set of normalized axes â. Then, we project all
its corners C onto every normalized axis. The result is the following interval I:

I = [imin, imax] = [min{â · ci ∈C},max{â · ci ∈C}] (4.1)

There is no collision between two OOBBs C(n) and C(k) if there exists a normalized
axis â in which the respective intervals I(n) and I(k) do not overlap. Thus, there is no

56 CHAPTER 4. TEMPORALLY COHERENT LABELING

collision if for δ
(n,k)
0 := i(n)min− i(k)max and δ

(n,k)
1 := i(k)min− i(n)max:

δ0 > 0 ∨ δ1 > 0 (4.2)

To normalize the difference vector δ = (δ0,δ1)
T to [−1,+1], we calculate the width in

relation to the current projection axis as

w = −(δ0 +δ1) (4.3)

g = 2 · (δ

w
+0.5). (4.4)

Finally, we have to invert the vector to compute the final force with magnitude |f| ∈
[0,1]. Thus, the magnitude of the resulting force scales with the amount of overlap:

f(n,k) =

g · (1
|gy| −1) if |gy

gx
|> 1

g · (1
|gx| −1) else

(4.5)

Analogously to Hirsch [Hir82], we accumulate all collision forces f(i,k) (i 6= k) for every
visible label i, resulting in a label’s overall repulsion force

f(i)collision = ∑
k

f(i,k) for i 6= k (4.6)

(a) Annotation layout created by Google Earth: not
enough labels are placed, most labels cannot be read
properly and camera movement makes labels jitter.

(b) Labeling of a road network in a GIS. In this figure,
we define a large buffer zone around the labels to
enhance readability and visual association.

Figure 4.6: Comparison of annotation layouts created by Google Earth (left) and using our
real-time labeling approach (right). Lettering (color, size, font) and temporal coherence directly
impacts the readability and visual association of annotations.

4.4. FORCE-BASED LABELING 57

4.4.5 Forces and Movement

After calculating the collision forces f(i)collision for every visible label i, we resolve con-
flicts using a force-based approach. This enables the flexible definition of each label’s
reaction to its surrounding environment. At timestep t every visible label i stores its
current screen space offset oi from the projected position p′i, and its velocity vi. First,
we compute the total force f(i)total acting on the label i. It is composed of several forces,
depending on the type of the annotation. In the following, several possible annotation
behaviors are introduced: a free annotation, a line annotation and a circle annotation
behavior.

Free Annotation. A free label i is positioned by an optional offset ai from its pro-
jected anchor p′i (Fig. 4.4(b)). When a collision with force fcollision occurs, it can be re-
pelled in any direction to an offset oi. Its new screen space position becomes p′i+ai+oi,
and an attracting force f f eature pulls the label back to its original position p′i +ai. This
force f f eature is modeled as a spring with the constant k1 as in Hooke’s law:

f(i)f eature =−k1 ·oi (4.7)

Finally, we introduce a friction force f f riction to stabilize the force-based system. Based
on the current velocity vi and a friction coefficient c, we get

f(i)f riction =−c ·vi (4.8)

The total force acting on a free annotation i thus becomes

f(i)total = f(i)collision + f(i)f eature + f(i)f riction (4.9)

Line Annotation. At runtime, labels for line features can follow a straight segment
si in screen space. This is achieved by adding two stiff springs which create the forces
fnormal and ftangent . fnormal pushes the label displaced by dreal0 from its optimum dis-
tance doptimum along the normal back onto the line. ftangent attracts the label along the
line back onto its anchor. Using the projected and normalized line segment ŝ′i, the offset
oi and the line equation p = p′i + t ŝ′i, we compute the nearest point pnearest on the line

58 CHAPTER 4. TEMPORALLY COHERENT LABELING

using

pnearest0 = p′i + t ŝ′i with t =
oi · ŝ′i
|ŝ′i|2

(4.10)

dreal0 = ||pnearest0, p′i +oi|| (4.11)

Using the normal ŝ′normal = (−ŝ′iy, ŝ′ix)
T , the spring constant k2 and the displacement

(dreal0−doptimum), we compute

f(i)normal =−k2 · (dreal0−doptimum0) · ŝ
′
normal (4.12)

The spring force ftangent with the constant k3, pulling the label back to its center position,
is computed analogously.

pnearest1 = p′line + t ŝ′normal with t =
oi · ŝ′normal
|ŝ′normal|2

(4.13)

dreal1 = ||pnearest1, p′i +oi|| (4.14)

ftangent =−k3 ·dreal1 · ŝ
′
i (4.15)

The total force acting on a line annotation i thus becomes

f(i)total = f(i)collision + f(i)normal + f(i)tangent + f(i)f riction (4.16)

Circle Annotation. Similar to Hirsch [Hir82], we introduce an annotation which
circles around its anchor. We define a spring with force fcircle keeping the label on a
radius r around the projected anchor p′i. Using the distance |oi| between the current po-
sition and the anchor, the displacement from the equilibrium is (|oi|− r). The restoring
force fcircle with the spring constant k4 and the normalized offset direction ôi is

f(i)circle =−k4 · (|oi|− r) · ôi (4.17)

The total force for a circle annotation thus becomes

f(i)total = f(i)collision + f(i)circle + f(i)f riction (4.18)

4.5. IMPLEMENTATION 59

4.4.6 Acceleration

We define a virtual mass mi for each label i. Its value is determined by the label’s
importance. The current acceleration ai is computed using Newton’s second law of
motion:

ai = f(i)total/mi (4.19)

Each label i has a screen space offset oi at time t. The time difference between con-
secutive frames is given by ∆t. We obtain the new velocity v′i and the offset o′i at time
t +∆t from Euler’s integration method:

v′i = vi +ai ·∆t (4.20)

o′i = oi +v′i ·∆t (4.21)

4.5 Implementation

We integrate this labeling algorithm into our map viewer presented in Chapter 3, which
renders cartographic roads and high-resolution DEM. To achieve real-time labeling, we
need an efficient computation and resolution of conflicts between labels. We therefore
use the GPU for parallel processing of these tasks. Additionally, by using the GPU, we
ease the central processing unit (CPU) utilization. As a consequence, the CPU is free to
aid in loading, filtering and selection of annotations. The current implementation was
done in C/C++, uses OpenGL 3.0 and GLSL.

The initial placement of labels is a sequential problem, as we do not want to place
multiple labels on the same free spot. To minimize the computational load, this task is
split over consecutive frames. In every frame we place a fixed number of annotations.

4.5.1 Parallelization

Every label is an independent entity, similar to a particle. Its properties include the
current screen space offset, the velocity, the dimension and the mass. These are stored
in a global texture buffer object (TBO). First, we use a GPU kernel to project all anchors
of visible labels to screen space. Then, using each label’s current offset oi and its
dimensions, we write updated OOBB corners in a TBO. In the second step, a GPU
kernel computes the collision between every label pair (n,k) using the separating axis
theorem (see Section 4.4.4). This results in a 2D buffer containing force vectors. A
cell in row n, column k contains the force f(n,k)collision created by the collision between the

60 CHAPTER 4. TEMPORALLY COHERENT LABELING

OOBBs n and k (see Table 4.1). To determine the final force f(i)collision acting on a single
label i, we use a line-wise reduction operation.

Label i ID 1 ID 2 ID 3 f(i)collision

ID 1 x (0.0, 0.0) (0.5, 0.0) (0.5, 0.0)

ID 2 (0.0, 0.0) x (0.1, 0.3) (0.1, 0.3)

ID 3 (0.5, 0.0) (-0.1, -0.3) x (0.4, -0.3)

Table 4.1: Pairwise collision creates force f(n,k)collision . Accumulation gives a global collision force
f(i)collision acting on a label i.

Finally, as described in subsection 4.4.5, we resolve conflicts by applying the force
f(i)total onto its respective label i. The computation of f(i)total and the necessary Euler step
for moving the offset oi of a label is done on the GPU. Unfortunately, the precision of
Euler’s method is strongly tied to ∆t. Large values lead to an unstable layout. Thus,
labels are subject to harsh position changes. Implementing the fourth order Runge-
Kutta method did not lead to significantly better results. In the end, clamping the final
acceleration value ai was enough to achieve stability. This leads to continuously moving
labels and thus temporal coherent labeling.

4.5.2 Rendering Textual Annotations

After we have determined the current screen position of visible annotations, we render
them in a standard way using texture mapped text [Kil97]. However, annotations can
surface over complex colored background (Fig. 4.7). Therefore, to achieve a good
legibility, we need to carefully choose the font’s appearance.

• As stated by Philipps et al. [PNA77], choosing large-sized types helps legibility.
Character height can be determined using Smith’s bond rule [Smi79].

• Lower case labels with a large initial capital are more easily found in a map than
labels in capital letters only [Phi79].

• As stated by Subbaram [Sub04], a typeface designed for screen display should be
selected to improve legibility, e.g., Georgia or Verdana.

• A sans-serif typeface is preferred for displaying labels on digital displays [Sub04].
This is not mandatory, as there is still a debate over this matter.

• Finally, to save screen space, the chosen typeface should be narrow.

4.5. IMPLEMENTATION 61

To improve readability, we introduce further techniques: We add a dark outline to the
font to increase the contrast to the background [RMMKG95] (Fig. 4.7(a)). A halo
around the text clears the space around the label and makes it more readable [O’B10]
(Fig. 4.7(c)).

(a) Blank. (b) Dark edge. (c) Halo.

Figure 4.7: Techniques for increasing the readability of annotations. The best readability is
achieved by adding an outline and a halo around the label.

4.5.3 Enhancements

To further stabilize the labeling layout, we implement the following enhancements.

Enhanced OOBBs. Changing the view in a scene with a tight labeling layout creates
a lot of movement. We remedy this by implementing two improvements: First, we
slightly increase the size of the OOBB encompassing each label to create a buffer zone.
Second, we define an even larger zone around visible labels where no new annotations
can be placed. The latter improvement greatly stabilizes the labeling layout, but has to
be used cautiously to avoid filtering out important labels.

Speed-based removal. To further stabilize the layout, we remove labels that would
otherwise be moving at very high speed. We also remove labels where the different
forces acting on them cancel each other out to a large degree, indicating that the label is
constricted from multiple sides. The removed labels are inserted again after a given time
if there is room for them. These actions help to meet our requirements from Section 4.1,
where we stated that labels should make only slow-paced, smooth transitions.

62 CHAPTER 4. TEMPORALLY COHERENT LABELING

0

10

20

30

40

0 500 1000 1500 2000

M
ili

se
co

nd
s

Number of Labels

Total Collision Placement Other

(a) Benchmark on low-class hardware: Intel Core
2 Duo 1.6 GHz, 4 GB RAM, Nvidia GeForce
8600M GT (256 MB).

0

2

4

6

8

10

0 500 1000 1500 2000

M
ili

se
co

nd
s

Number of Labels

Total Collision Placement Other

(b) Benchmark on lower medium-class hardware: In-
tel Core 2 Quad 2.66 GHz, 4 GB RAM, Nvidia
GeForce 8800GTS (512 MB).

Figure 4.8: Benchmarks of our force-based approach. The plot shows synced timings for
the layout computation steps: total labeling time (black), collision computation and resolution
(violet), placement of new labels (green) and the overhead generated by other steps (gray). The
computation of layouts for several hundred labels remains interactive on every hardware.

4.6 Results

In this section, we analyze our force-based labeling approach with respect to scalability
and cartographic principles.

4.6.1 Scalability

We evaluated the performance on two platforms:

• low-class hardware: Intel Core 2 Duo 1.6 GHz, 4 GB RAM, Nvidia GeForce 8600M
GT (256 MB)

• lower medium-class hardware: Intel Core 2 Quad 2.66 GHz, 4 GB RAM, Nvidia
GeForce 8800GTS 512 (512 MB)

We measured how the timings scale in respect to the number of labels (Fig. 4.8). After
each step we synced the GPU calls to the CPU (glFinish) to measure the total GPU
processing time. We benchmarked the placement of new labels, collision computation
and resolving conflicts using forces.
The creation of GPU buffers, updating the dataset, and the readback from GPU to CPU
generates a constant overhead of 2 ms on low-class hardware (1 ms on middle class).
The total time for up to 512 features is nearly constant and stays below 5.5 ms on low-
class hardware (below 2.5 ms on middle class). Starting from 512 labels, collision takes
more than 50% of the total time. With a realistic time budget of 10 ms for real-time
labeling, we achieve interactive frame rates for up to 1024 labels on low-class hardware
(2048 labels on middle class). Also, without syncing the GPU to the CPU, the layout
computation time becomes 10% to 25% faster.

4.6. RESULTS 63

A better scalability to display a much higher number of labels (>2048) can be achieved
by limiting the collision search space to the label’s neighborhood. It would require to
partition all labels in screen space, e.g., with a uniform grid or a quadtree. This was not
deemed necessary in our current applications, as we display at most several hundred
labels.

Figure 4.9: Labeling of a protein interaction network. Reducing the buffer zone around the
labels to a minimum enables the placement of a huge number of labels, at the cost of a more
difficult visual association.

4.6.2 Concluding Expert Study

Based on our prototype implementation, we performed a concluding expert study. We
invited the same experts as in Section 4.3 into our research facility. Our goal was to
validate the domain experts’ first recommendations and our subsequent choices.

Study Design

In a similar manner to our past study, the interview lasted one hour and we chose the
labeling of a GIS as a representative application. Supported by our real-time prototype,
we first ask if the four-position model for labeling point features is appropriate in cre-
ating a consistent and clear layout. Second, we ask if its application helps associating
the label to its feature. As stated in Section 4.3, when labels are at steep angles, we
switch from line-aligned (straight, rotated) to a horizontal annotation of line features.
We analyze the annotation of both approaches with respect to readability and visual as-

64 CHAPTER 4. TEMPORALLY COHERENT LABELING

sociation. We query if the scaling of labels based on their depth creates a better spatial
perception. We also study if labels are still readable despite their scaling. We compare
our force-based resolution of collisions to the labeling in Google Earth (v6.1.0.5001).
In their approach, when collisions occur, labels are removed and replaced in the layout.
Also, we check if our solution creates too much movement. To conclude the study, we
ask if they approve our force-based approach for real-world scenarios.

Results of the Study

Annotation of Point Features. Almost all (5 of 6) experts liked the 4-position-
model used for cities. The last expert suggested that switching positions 2 and 4
(Fig. 4.3(a)) would create a better model. Four subjects said its application creates
a consistent labeling layout. In their opinion, the labels are easily associated to the
corresponding point features. One expert stated that the visual association is difficult
when too many labels are on the screen at once. Another expert mentioned that the
association depends on the viewing angle.

Annotation of Line Features. Roads with horizontal and line-aligned labels could
be easily read by all experts. The majority (5 of 6) stated that horizontal annotations
allowed an easy visual association. In contrast, only half of the experts could associate
line-aligned labels to their corresponding feature. Of these three experts, two noted
a difficult association for labels further away from the viewer. Of the other half, one
person mentioned that aligned labels hide the underlying road.

Depth Scaling of Annotations. All candidates stated that scaling labels depending
on their depth helps spatial perception and that all labels are still easily readable.

Comparison. Every expert deemed our labeling approach superior to Google Earth.
Three of them disliked the suddenly disappearing labels. They described the approach
as confusing and agitated.

Force-Based Collision Resolution. All experts were pleased by the alpha blend-
ing of labels. The majority of the experts (5 of 6) liked the smoothly changing label
positions and were not distracted by moving labels. One stated reason was the aes-
thetics and two liked the calm layout. The remaining expert described the force-based
method as a gimmick. He also mentioned that the labels following a line create too
much movement.

4.6. RESULTS 65

Discussion

Depth scaling was unanimously accepted because spatial perception was improved
while all labels remained readable. The acceptance of the 4-position model was even
higher than in our preliminary study. Horizontal labels for line features were deter-
mined to be easily readable and were also rated higher than before. However, two
experts rejected the idea of line-aligned labels and two others mentioned cases where
it fails. In total, almost all experts approved of the application of our force-based ap-
proach for real-world scenarios.

4.6.3 Cartographic Principles

One important requirement from Section 4.1 was to follow Imhof’s cartographic rules.
The following section analyzes our approach in respect to these rules.

Legibility. is enhanced in our approach by maximizing the contrast to the labels
background with a dark outline and a halo. Furthermore, a stable temporal layout helps
the user keep track of the annotations. As seen in Fig. 4.6 coloring and size of has to be
carefully chosen.

Visual Association. is achieved by defining an attractive force, pushing the label
back to its feature. In our GIS application, appropriate color encoding was chosen to
relate the annotation to the corresponding feature, e.g., a road. The absence of connect-
ing lines between the anchor and their annotation creates a direct association. However,
when displaying a group of similar labels, association is still difficult.

Map obstruction. by annotations depends on the number and size of annotations. To
ensure that important features stay visible, forbidden areas could be defined as separate
OOBB regions. This method could easily be integrated into our approach.

Spatial extent of a feature. is only shown by its classification, e.g., big cities with
large font. As concluded from our expert study, deformation of labels to indicate spatial
extend would decrease legibility and is therefore not supported.

A good distribution without clusters. is achieved by our force based approach. We
introduced an additional buffer around all labels to create less clustering. However, an
intelligent selection and filtering of annotations is mandatory.

66 CHAPTER 4. TEMPORALLY COHERENT LABELING

4.7 Conclusions

In this chapter, we have presented a real-time force-based labeling approach. It allows
the flexible definition of forces to create appropriate layouts. We have presented several
force behaviors for labeling point, line and area features. Our method follows Imhof’s
cartographic principles. Classification of labels is done by font scaling, coloring and
by choosing appropriate anchor icons. Visual association is achieved by an appropri-
ate color encoding, distance-dependent scaling and by defining attractive forces pulling
the label back to its anchor. Almost all of our domain experts approve the force-based
approach. Every expert deems it superior to Google Earth, where labels disappear at
collision. They like our smooth transitions, the excellent readability and the good vi-
sual association. This is achieved with a temporal coherent layout which enables the
user to keep track of annotations during visual exploration. As the entire method uses
parallel GPU computations, we achieve excellent performance scalability. On medium-
class hardware, our approach can layout up to 2000 annotations in real-time, consuming
about 10 ms per frame. This enables the labeling of vast information graphs, GIS on
powerwalls, and even allows real-time layout computation on embedded hardware, e.g.,
for automotive navigation systems. Furthermore, as no pre-computation is necessary,
it is possible to include dynamic and online annotations. Hence, our force-based ap-
proach can be applied to a broad range of applications such as GIS and scientific and
information visualization. In further research, we plan to develop more intelligent se-
lection and filtering techniques. Also, in the following Chapter 5, we will evaluate the
management and visualization of occluded labels in 3D cities.

Chapter 5

Enhancing the Visibility of Labels in
3D Navigation Maps

(a) Transparency label aura: the labels blend out occluding 3D objects

(b) Glowing roads: the roads shine through occluding 3D objects

Figure 5.1: The selected approaches preserve visibility of textual labels in a 3D world

The visibility of relevant labels in navigation systems is critical for orientation in un-
known environments However, labels can quickly become occluded, e.g., road names
might be hidden by 3D-buildings, and consequently, the visual association between a
label and its referencing feature is lost. We introduce five concepts which guarantee
the visibility of occluded labels in 3D navigation maps. Based on the findings of a
pre-study, we have determined and implemented the two most promising approaches.
The first method uses a transparent aura to let the label shine through occluding objects.
The second method lets the feature, e.g., the roads, glow through the 3D environment,
thus re-establishing the visual association. Both methods leave the 3D world intact,
preserve visual association, retain the label’s readability, and run at interactive rates.
A concluding user study validates our approaches for automotive navigation. Com-
pared to our baseline – simply drawing labels over occluding objects – both approaches
perform significantly better.

67

68 CHAPTER 5. LABELS IN 3D NAVIGATION MAPS

5.1 Introduction

Automotive navigation devices started appearing in the mid-80s. The first commer-
cially available device, the Etak Navigator introduced in 1986, guided drivers with an
annotated 2D map and guidance arrows to their destination [Thi06]. Since then, textual
annotations in maps have been helping the driver navigate through unknown environ-
ments. They are essential for the exploration of navigation maps. The visualization
has improved gradually and nowadays, 3D navigation maps have become omnipresent.
Several competing companies, like Sygic or Navigon, include terrain and 3D city mod-
els in their latest navigation devices. In these systems, labels are usually rendered over
occluding 3D elements, e.g., road names over buildings. This approach makes them
easily readable, but the visual association to their corresponding feature is lost. As
labels appear in front of occluding objects, depth perception is hindered and spatial
orientation becomes difficult. As our primary goal is to preserve the visibility of labels
in 3D navigation maps. Hence, deduced from cartographic rules by Imhof [Imh75]
and our expert study from Section 5.4, we define the following rules for labeling 3D
navigation maps:

• All labels should be readable, even occluded labels

• The visual association between the label and its feature should be guaranteed

• Labels should not occlude other labels or important features

• Depth cues of the 3D world should be preserved

• Labels should support spatial orientation

Our main contribution are two approaches fulfilling these rules and, consequently, en-
hancing the visibility of occluded labels in 3D navigation maps. The first approach
creates a transparency aura around every label and lets labels shine through occluding
objects (Fig. 5.1(a)). The second method lets the referenced features, e.g., the roads,
glow through the 3D environment, thus creating a visual association (Fig. 5.1(b)). Both
methods leave the 3D world intact, preserve visual association and retain the labels’
readability. We integrate both methods into our map viewer framework. The car-
tographic roads (Chapter 3) and force-based labels (Chapter 4) serve as basis. We
measure that both approaches run at interactive frame rates. Finally, we validate the
enhancements of these approaches in a user study.

5.2. LABELING TECHNIQUES 69

5.2 Labeling Techniques

5.2.1 World-Space and Screen-Space Labels

Annotations can be placed in World-Space (WS) or in Screen-Space (SS) into the 3D
world. SS labels (or 2D labels) are placed parallel to the screen (Fig. 5.2(a), 5.2(b)).
They can be thought as being part of a Head-Up-Display (HUD), overlaid over the 3D
scene. WS labels (or 3D labels) are part of the 3D world (Fig. 5.2(c), 5.2(d)). As such,
they are transformed by the perspective projection. Chen et al. [CPB04] compare both
types of labels. They show that SS labels are better for naive search tasks in densely
packed scenes. Also, they are easy to read because they are always facing the viewer.
In contrast, as WS labels are part of the 3D scene, they exhibit occlusion problems and
can be very difficult to read, e.g., when they follow the object’s curvature. However,
because they provide strong association cues, they improve the visual association to the
referenced feature [Gol09]. Polys et al. [PKB05] evaluate both techniques and state,
that even tough WS provides tight coupling, SS performs better across all tested tasks.

(a) External SS label with a triangle anchor

Haupts
traß

e

(b) Internal SS label following the road

(c) Internal WS label placed upright (d) Internal WS label laid onto the road

Figure 5.2: World-Space (WS) and Screen-Space (SS) labeling used in our approaches.

5.2.2 External and Internal Labels in 3D Worlds

External Labels. Fekete and Plaisant [FP99] introduce external labels to annotate
dense sets of points. Connected with an anchor (e.g., a line or a triangle), they are dis-
played beside (or outside) the referenced objects (Fig. 5.2(a)). Hence, they do not hide
the referenced object. Because they are primarily displayed as SS labels they are also
easy to read. External labels are mainly used for annotation of single 3D objects, e.g.,

70 CHAPTER 5. LABELS IN 3D NAVIGATION MAPS

in scientific illustrations [HAS04; AHS05]. However, Maass and Döllner [MD06b] use
external labels to annotate virtual landscapes. Their approach creates dense clusters
of labels and long connecting lines which makes visual association nearly impossible.
Stein et al. [SD08] compute the placement of external SS labels in a 3D world with an
optimization algorithm. To determine the visibility of a label, a sphere is placed at the
3D position of the anchor. Its percentage of occlusion determines the transparency of
the label. If the sphere is fully occluded, the feature is not labeled. All these approaches
use greedy algorithms to compute an optimum placement for annotations. The com-
puted positions are connected with the referenced object with an anchor line. This
connection makes the visual association more difficult compared to a placement di-
rectly beside the object. Additionally, as shown by Maass et al. [MJD07], using anchor
lines might impair depth perception.

Internal Labels. Internal labels are spatially bound to an object. This allows for
a direct visual association to the referenced object (Fig. 5.2(b)). For instance, Maass
and Döllner [MD06a] annotate 3D buildings intuitively with billboards in WS. They
introduce an approach to annotate line features in WS [MD07]. They determine the
placement of labels on the fly using sample points. But, changing the view results in
different label placements and thus in a temporally incoherent layout. They present an
approach to integrate labels directly onto the hulls of 3D buildings by taking their shape
into account [MD08]. This creates internal WS labels which are part of the world. In
general, internal labels depict the visual extent of an object. Ropinski et al. [RPRH07]
and Cipriano and Gleicher [CG08] introduce internal WS labels to annotate e.g., med-
ical illustrations. However, these labels hide parts of the referenced object and their
readability depends on distortion and the viewing angle.

Hybrids. Bell et al. [BFH01] and Götzelmann et al. [GAHS05; GHS06] present
similar hybrid approaches, which use internal and external labels. Bell et al. annotate
virtual 3D cities while Götzelmann et al. annotate scientific illustrations. External la-
bels with anchor lines are used when the viewer is far away. When the viewer gets
closer and the objects’ dimensions allow it, they use internal labels. In contrast, Google
Earth [Goo11] uses SS external labels for cities and WS internal labels for streets. This
makes street names difficult to read at low viewing angles.

5.2.3 Summary

None of the presented approaches satisfy our stated goals in Section 5.1. In particular,
the goal to preserve readability of labels which are being occluded in a 3D world. The

5.3. CONCEPTS 71

computations of most SS layouting algorithms are done solely in screen space. They do
not take into account the occlusion between labels and a 3D scene. SS approaches to
annotate scientific illustrations place external labels around single objects, hence, are
not affected by occlusion problems [HAS04; AHS05; GAHS05; GHS06]. Most SS
approaches for labeling 3D worlds ignore occlusion problem by rendering labels over
the scene (similar to a HUD) [MD06b; Goo11]. Only newer SS algorithms take the
visibility of the anchor into account [SD08]. On the other hand, internal WS approaches
try to find visible positions for labels at runtime [MD06a; MD07; MD08]. However, if
unsuccessful, the object remains unlabeled.

5.3 Concepts

In this section we introduce several concepts which assure the visibility and thus pre-
serve the readability of labels occluded by objects of the 3D world.

5.3.1 Baseline

The first concept we introduce represents our baseline. It consists of drawing the labels
over the 3D world (Fig. 5.3). Hence, all occlusion created by objects from the 3D
world is ignored. We chose it as a baseline, because it is a straightforward solution for
resolving occlusion problems. Also, it is used in almost all existing navigation systems,
e.g., Sygic GPS Navigation [Syg12] and Google Earth [Goo11].

Figure 5.3: Baseline: drawing labels over the 3D world in bird’s eye with SS (left) and snail
view with WS labeling (right).

5.3.2 Cutaways

Our second concept is cutaways (Fig. 5.4). This method is inspired by 2D magic lenses
which were first introduced by Bier et al. [BSPBD93]. These lenses highlight focus
regions by modifying their representation. One such approach Bier et al. depicts, is
the wireframe representation inside the focus region. Viega et al. [VCWP96] extend

72 CHAPTER 5. LABELS IN 3D NAVIGATION MAPS

these to 3D environments with flat and volumetric lenses. Coffin and Höllerer [CH06]
introduce perspective cutaways for 3D scenes. The resulting holes are rendered with
the correct perspective as if they were cut in the occluding object. Our approach is very
similar to the perspective cutaways. Every label creates a focus region which cuts away
all occluding objects in a perspectively correct manner.

Figure 5.4: Cutaways: labels create perspective cut aways in occluding objects of the 3D world
in bird’s eye with WS (left) and snail’s view with SS labeling (right).

5.3.3 Transparency Label Aura

The next concept creates a smoothly blended transparency aura around the labels. It is
similar to Krüger et al. [KSW06] interactive focus+context method called ClearView.
Their approach is directly inspired by magic lenses. They create a semi-transparent
area around the focus region while the remaining parts stay opaque to preserve context
information. Elmqvist et al. [EAT07] evaluate such x-ray vision and state that it leads to
faster and better object discovery. Analogously, we define in our concept a transparency
region around the label (similar to a focus area). All objects of the 3D world lying in
front of this region become transparent. This x-ray vision lets the user read every label.
Because we define the region to be larger than the label, the referenced feature (e.g.,
the road) can be seen partially. This preserves the context of the focus region. Hence,
the visual association to the referenced feature is retained.

Figure 5.5: Transparency label aura: labels create a transparent region in the occluding objects
in bird’s eye with SS (left) and snail’s view with WS labeling (right).

5.3. CONCEPTS 73

5.3.4 Glowing Labels

In our third concept we let labels glow through occluding objects (Fig. 5.6). This
method is inspired by augmented reality (AR) applications. Kalkofen et al. [KMS07;
KMS09] present an approach to augment real objects with context+focus information.
This helps recreate the spatial relationship between reality and virtual information. We
note that this approach is used in almost all isometric strategy PC games, e.g., Com-
mand & Conquer, Age of Empires. Units being hidden by structures (e.g., buildings)
are usually tinted with a different color. Similarly, we tint the occluded parts of labels
with a color distinct from the surrounding world.

Figure 5.6: Glowing labels: labels are glowing through the 3D world with a distinct color in
bird’s eye with SS (left) and snail’s view with WS labeling (right).

5.3.5 Glowing Roads

The baseline concept makes the labels visible but thereby loses the visual association
to its referenced feature, e.g., the road. Our fourth concept tries to solve this problem
by adding glowing roads to the baseline. Again, in a similar fashion to the approaches
by Kalkofen et al., we let the occluded parts of the roads shine through the 3D world
(Fig. 5.7). This method recreates the missing context of the labels.

Figure 5.7: Glowing roads: roads are glowing through the 3D world in bird’s eye with SS (left)
and snail’s view with WS labeling (right).

74 CHAPTER 5. LABELS IN 3D NAVIGATION MAPS

5.4 Expert Study

We conducted an initial expert study. Our goal was to determine which of the in-
troduced concepts fulfills our rules for labeling a 3D navigation map (stated in sec-
tion 5.1). Also, we wanted to form an opinion about the usability and aesthetics of each
method from our domain experts. Besides, the preferred labeling space (SS or WS)
was surveyed. Two engineers working for over five years on automotive navigation
were chosen as experts. Also, as further subjects, we selected three research engineers
working on human machine interaction systems.

5.4.1 Study design

We presented the four concepts introduced in Section 5.3: cutaways (Fig. 5.4), transpar-
ent label aura (Fig. 5.5), glowing labels (Fig. 5.6) and glowing streets (Fig. 5.7). Each
concept was compared to our baseline: rendering labels over the 3D scene (Fig. 5.3).

Movies. Movement is an important aspect which greatly affects the way a 3D con-
cept is perceived. Animation can cause occlusion and creates an important depth cue:
the motion parallax. Hence, to improve the value of our study, we chose to create
animated sequences lasting 20 to 30 seconds. Each movie was shown with SS- and
WS-labeling. We presented each movie with the same flight path in two perspectives: a
snail view closer to the ground and a bird’s eye view. All these combinations culminated
to sixteen different animated sequences. To each subject we showed these concepts in a
fixed order as they are introduced in Section 5.3. In an ensuing discussion, we queried
all statements and asked for a ranking of the presented concepts (Fig. 5.8).

Conceptual Details. We selected a light violet color for the glowing labels (Fig. 5.6).
Usually, such a color is not present in a 3D navigation visualization, yet it still remains
an aesthetically pleasing color. The hidden parts of the glowing road concept are drawn
slightly blurred in a light green color, similar to HUD designs (Fig. 5.7). Still images
from the presented movies can be seen from in Fig. 5.4 to 5.7.

5.4.2 Discussion

In both views, glowing streets was ranked highest. 4 of 6 experts chose this as the best
approach in both perspectives (bird and snail). Two experts stated that this concept
improves orientation. Another expert liked how the glowing roads improve readability
by creating an enhanced contrast to the background. One expert criticized the chosen

5.4. EXPERT STUDY 75

(a) Bird’s eye.

(b) Snail’s view.

Figure 5.8: Ranking of our concepts according to our six experts. Each concept was presented
as a short movie. The concept glowing roads ranks first in both viewing perspectives

color and suggested to continue the road in its original color. Finally, the last expert
described this approach as being too colorful.

The second place is shared between the concept transparency label aura and our base-
line. The former performs well in the snail’s view, where labels are frequently hidden
by 3D buildings. Our baseline sufficed in bird’s eye view where occlusion plays a minor
role and the spatial relationship is not needed.

Generally, the concept glowing labels was not approved and always ranked last. Three
experts stated that the label seemed lost in the world and the coloring makes the visual
association even more difficult. Two different experts did not approve that occluded
parts should be marked with a different color. Finally, two experts criticized the color
as being too vivid and distracting.

76 CHAPTER 5. LABELS IN 3D NAVIGATION MAPS

Our last concept, cutaways, was quickly dismissed by all experts, because it introduces
too much animation. Every movement leads to new cut outs in the 3D buildings, thus
removing parts of the world. When a lot of labels are present, the 3D world falls more
and more apart.
When deciding which labeling space was best, 5 of 6 experts voted SS in bird’s eye and
5 of 6 experts voted WS in snail’s view. All but one expert agreed that in snail’s view
WS labeling was better despite the restricted readability.

5.4.3 Results

Concepts. As a first consequence, we dismiss two approaches: glowing labels and
cutaways. In the experts’ opinion, the disadvantages of the glowing labels concept
(e.g., unaesthetic, bad visual association) outweigh the readability improvements. Cut-
aways introduce too much movement and destroy huge parts of the 3D world.

Visual association. Displaying the referenced feature besides the label is an impor-
tant requirement for our implementation. One expert liked the transparency aura mainly
because he was seeing the referenced road. The glowing labels ranked last because the
association to the road becomes lost. In contrast, the concept glowing road recreates
this reference.

Labeling technique. The last conclusion we draw, is the need to combine both SS
and WS labeling in a 3D navigation. We choose SS in bird’s eye and WS in snail’s
view. In snail’s view the WS labels fits into the world’s 3D space. In the bird’s eye we
hover at higher altitudes in which the world flattens. Therein, the better readability of
2D SS labels outweigh the deteriorated spatial relationship.

5.5 Implementation

We implemented the selected concepts into our map viewer framework (Chapter 3).

Details. In this system, the central processing unit (CPU) helps loading and prepar-
ing data for rendering. To ease the CPU load, both approaches run on the graphics
processing unit (GPU) using shader programs. The cartographic roads are rendered
with the geometric approach from Chapter 3. However, we render extruded building
footprints and disable the visualization of the DEM.

5.5. IMPLEMENTATION 77

Labels. Labels are rendered using our force-based labeling approach introduced in
Chapter 4. As determined in the expert study in the previous section, we use SS in
bird’s and WS in snail’s view. We define snail’s view to be active (1) when the angle
between the camera look-to vector and the world’s plane normal is big enough (similar
to [LTD11]) and (2) when we are close enough to the ground.

5.5.1 Transparency Label Aura

In this concept, occluding parts of the buildings are faded out.

Overview. Our implementation consists of four steps. First, every building oc-
cluding a label is drawn into an offscreen buffer. In the second step, the entire set of
buildings are again rendered offscreen. However, this time, we discard all fragments
located in front of the occluded label – similar to an inverse depth test. In the third
step, we combine these buffers to create a transparent aura around the label. Finally,
we composite the result into the existing 3D world.

Implementation. The first rendering pass is trivial: we create an offscreen buffer and
render all occluding 3D buildings into it. The second pass performs our inverse depth
test in a fragment shader on the GPU. For this step, we need a texture (buffer) containing
the depth information of all labels. We approximate each label with an object-oriented
bounding-box (OOBB). And, because our experts stated in Section 5.4.3 that the ref-
erenced objects should be seen, we slightly enlarge the bounding-box of each label.
Then, we render all OOBBs of every visible label into a depth-only offscreen buffer.
Finally, all buildings are drawn. In the fragment shader we compare the incoming depth
value (of our buildings) zbuilding with the depth value of our OOBBs (our labels) zlabel .
If zlabel > zbuilding the building occludes the label and we can discard this fragment. For
the third step, we create a smooth blending in the transparency aura by rendering the
OOBBs with a gradient texture. Finally, using this fullscreen alpha mask, we composite
the results of the prior steps and render it over the current scene.

5.5.2 Glowing Streets

In this concept, all occluded parts of the roads are glowing over the 3D world.

Overview. The implementation consists of two steps. First, we detect which parts
of the roads are being occluded. These parts are drawn with a selected color (e.g., light
green). Then, optionally, a blurring filter is applied. Finally, the result is composited
over the existing 3D world and all labels are rendered.

78 CHAPTER 5. LABELS IN 3D NAVIGATION MAPS

building occluding labels cut buildings

transparency mask
for labels

building with transparency aura

result with transparency aura result without transparency aura

1.
 S

te
p

2.
 S

te
p

3.
 S

te
p

4.
 S

te
p

label depth buffer

Render normal &
occluding buildings

Combine with
transparency mask

Composite into
3D world

Figure 5.9: GPU implementation of the transparency label aura approach.

Implementation. Initially, we need the depth values of all rendered 3D buildings
zbuilding and roads zroad . Then, a fragment shader compares both depth values: If
zbuilding < zroad , then the road is occluded and has to be drawn as a glowing road. If
the glowing road is drawn with a single color, we simply output a constant color to an
offscreen buffer. If we render the roads in their original color we first have to fetch this
color. The resulting buffer can be smoothed with a blur shader and finally, composited
with the existing 3D world. After these steps, all labels are drawn on top with a disabled
depth test.

5.6 Results

5.6.1 Benchmark

We benchmarked the approaches transparency aura and glowing roads integrated into
our map viewer framework. Our goal was to evaluate the performance scalability and
suitability for real-world scenarios.

Configuration. The evaluation was done on an Intel Core 2 Duo E8400 3 Ghz
CPU with 4GB RAM and Windows XP SP3. The GPU was a Nvidia Quadro FX 580

5.6. RESULTS 79

Z-test

original road color

Coloring and/or
desaturation

Optional: Blurring

Compositing:
alpha-blending

original 3D world

1.
 S

te
p

2.
 S

te
p

depth of roads

depth of 3D buildings

Figure 5.10: Implementation of the glowing roads approach: each step represents a shader pass.

(driver v275.89). To reduce the impact of data loading we preloaded all the needed data.
Our performance measurement were done with a flight over a 3D city with roads, 3D
buildings and labels. Fig. 5.12 shows the resulting performance graph during a flight of
20 seconds. We compare the baseline with the transparency aura and two variants of the
glowing roads: using a single color and using the original road color. We measured the
frame rate for low 1024x768 (Fig. 5.12, top) and high resolution 1680x1050 (Fig. 5.12,
bottom). During this run we tracked the number of buildings, road meshes and labels
(Fig. 5.12, middle).

Results. At low resolution (1024x768) our new approaches behave similar to the
baseline. Compared to our baseline, they incur a performance drop between 10-30%.
The average performance decrease for every approach and for two resolutions can be
seen in table 5.1. Our approaches are fillrate bound. At approximately twice the frag-
ments (0.8 MP to 1.8 MP) we have a 50% performance decrease for every approach.
Also, the increased number of 3D buildings, roads and labels do not impact the framer-
ate as much as the increase in resolution (Fig.5.12, middle).

80 CHAPTER 5. LABELS IN 3D NAVIGATION MAPS

Figure 5.11: Comparison of the implemented approaches in bird’s eye with World-Space la-
beling: baseline (top), glowing roads (middle) and transparency label auras (bottom). As con-
cluded from a conducted user study, the last two methods increase attractiveness and usability
compared to the baseline.

5.6. RESULTS 81

approach frame rate

1024x768 diff 1680x1050 diff resolution impact

baseline 110 fps – 59 fps – -46%

transparency label aura 82 fps -25% 43 fps -27% -47%

glowing roads (single color) 90 fps -18% 46 fps -22% -49%

glowing roads (road’s color) 84 fps -24% 42 fps -29% -50%

Table 5.1: Average performance of the implemented concepts and frame rate decrease (drop)
compared to the baseline. Also, we list the performance impact when changing the resolution
from 1024x768 to 1680x1050. We determine that both approaches are fillrate bound.

5.6.2 User Study

Our goal was to evaluate the usability, attractiveness and novelty of our approaches.

Participants. We conducted an user study lasting 20 minutes with 24 persons aged
between 17-45 consisting of 20 men and four women. About one third worked in the
GIS domain. There were 9 students, 12 engineers, two programmers and one manager.
Everyone had experience with commercial 3D navigation systems.

Study Design. These candidates tested the fully working prototypes of our baseline
and the two implemented concepts: transparency label aura and glowing roads. In the
first part of our evaluation, every subject flew three times the same 30 second lasting
route through a 3D city. First, the baseline approach was active. Then, both new
methods were shown in a changing order. After every flight the candidates had to
fill out an AttrakDiff questionnaire (Fig. 5.13). In the second part of the study, we let
the subjects choose manually between all three concepts during a flight of two minutes.
Finally, they completed a second informal questionnaire (Fig. 5.14).

AttrakDiff. After experiencing the prototype, every candidate completed the At-
trakDiff questionnaire from Hassenzahl et al. [HBK03; HBK14]. They had to choose
repeatedly between two different statements, e.g., attractive vs dull. These pairs were
given by the AttrakDiff questionnaire to measure the perceived hedonic quality (HQ)
and pragmatic quality (PQ). PQ is an indicator of the perceived usability of our con-
cepts. HQ is divided into identity (HQ-I) and stimulation (HQ-S): HQ-I describes the
user’s identification, HQ-S defines the novelty of the tested concept. Finally, the ques-
tionnaire measures the overall attractiveness (ATT)

82 CHAPTER 5. LABELS IN 3D NAVIGATION MAPS

0

30

60

90

120

0

10000

20000

30000

40000

Number of buildings

Number of roads

Number of labels

0

60

120

180

240

300

Fr
am

er
at

e
(f

p
s) Baseline

Transparency Aura

Glowing Roads (single color)

Glowing Roads (road's color)

0

30

60

90

120

150

Fr
am

er
at

e
(f

p
s)

Time (s)

Baseline

Transparency Aura

Glowing Roads (single color)

Glowing Roads (road's color)

1024x768

1680x1050

Figure 5.12: Benchmark of the GPU implementation: both approaches are fillrate-bound.

Results

Fig. 5.13(a) presents the averaged results of the AttrakDiff questionnaire. Compared to
our baseline (orange), both approaches increase significantly every quality aspect and
the overall attractiveness. The boxes in Fig. 5.13(b) indicate the overall classification
in HQ and PQ. Therein, a placement in the top-right quadrant defines a very desired
product. The size of the light boxes indicate the variability of the answers. In our
case, the small box size of the baseline (orange) and glowing roads (blue) indicates a
consistent opinion. In contrast, answers about the transparency aura (red) display more
variation. In both figures, glowing roads (blue) achieve the best usability impact (PQ)
and attractiveness (ATT). Overall, this validates the ranking of our experts from our
pre-study.

5.6. RESULTS 83

-3

-2

-1

0

1

2

3

PQ HQ-I HQ-S ATT

A
v
e
ra
g
e

(a) Averaged values of the perceived qualities of the
presented concepts.

Baseline

Glowing roads

Transparency aura

too self-
oriented

self-
oriented

treasured

activity-
oriented

neutral

dispensable
too

activity-
oriented

he
do

ni
c

qu
al

ity
 (

H
Q

)

pragmatic quality (PQ)

(b) Quality classification of the concepts and variabil-
ity of the given answers.

Figure 5.13: Resulting AttrakDiff questionnaire from our conducted user study. PQ describes
the perceived pragmatic quality (≈ usability), HQ-I the hedonic quality based on identity
(≈ user’s identification), HQ-S the hedonic quality provided through stimulation (≈ innova-
tive) and ATT describes the concepts overall attractiveness. Compared to our baseline, both our
presented approaches improve significantly the HQ, PQ and attractiveness.

Informal Questionnaire. Fig. 5.14 depicts the results of our second questionnaire.
The majority state that the application of both approaches create an advantage com-
pared to our baseline, create a better orientation and are aesthetically pleasing. The
glowing roads display a higher distraction and are less calm than the transparency la-
bel aura. Our subjects would more likely use these approaches in a GIS than in a car.
Overall, the proposed methods are perceived as a significant improvement compared to
the baseline: 86% see transparency label aura and 77% glowing roads as enhancement.

Figure 5.14: Informal questionnaire answered by our 24 test candidates. The proposed methods
are perceived as a significant improvement compared to the baseline.

84 CHAPTER 5. LABELS IN 3D NAVIGATION MAPS

Figure 5.15: Comparison of transparency label aura (left) and single colored glowing roads
(right). Both figures are in bird’s eye viewing space with WS labeling.

5.7 Conclusions

In this chapter, we have presented two new approaches, glowing roads and transparency
label aura, which preserve the readability of occluded labels in 3D navigation maps
while maintaining the reference to their corresponding object. We have described a
prototypical implementation of both methods on the GPU running at interactive fram-
erates. Our profiling has shown that these implementations are fillrate-bound. In a
following user study including 24 subjects we compared them to our baseline: simply
rendering all labels over the world, as done e.g., by Google Earth and almost every
commercial navigation system. We have revealed that both our methods innovate and
improve significantly the usability and overall attractiveness. Over 86% deem the ap-
proach glowing road better than our baseline. In further research, we plan to evaluate
these approaches in real-world scenario, e.g., while driving through a city. Further-
more, a combination of both concepts could create new approaches, e.g., transparent
road auras.

Chapter 6

Procedural Generation of Orthoimages
with Real Geographic Data

Figure 6.1: Generated synthetic orthoimages used in our map viewer framework.

Orthophotos are omnipresent in digital earth viewers. Yet, in all publicly known ap-
plications, they are completely static, have pre-baked lighting and exhibit artifacts like
clouds, color variations and shadows. High-resolution images are expensive, are not al-
ways available and, without processing, do not match geographic databases like Open-
StreetMap. To overcome these limitations, we propose a system for generating on-
demand synthetic orthoimages based on real geographic data, such as land cover and
climate zones. At runtime, we fuse the input using a neural network, a multilayer
perceptron, into photorealistic images. When zooming in and the resolution of the ge-
ographic input does not suffice, we enhance the imagery with procedurally generated
details. For this end, we simulate vegetation and generate crops. Then, using a geo-
graphic vector map, we overlay road networks and cities. At any scale, the generation
of a 1MPixel image takes less than 2 seconds. Our system includes an editor which
allows the interactive modification of the resulting images. Generated in real-time or
stored in a pre-compiled database, our images can be used in applications ranging from
geographic information systems and geo-location services to navigation systems and
flight simulators.

85

86 CHAPTER 6. GENERATION OF ORTHOIMAGES

6.1 Introduction

Orthographic aerial and satellite images (orthoimages) are omnipresent in digital maps
and geographic information systems (GIS) (see Section 2.1). In a photorealistic 2D map
(e.g., Google Maps or Bing Maps), they help the user to get a quick overview of an area
of interest. Projected on 3D terrain, they create a highly expressive and intuitive means
for visual exploration, as the user can quickly recognize landmarks. The acquisition,
orthorectification and preparation of orthoimages is a long and expensive process. For
this reason, such imagery is not always available, is often outdated and only available
in low-resolution. Furthermore, orthoimages are static: the captured season, lighting
conditions, color, and visible objects are difficult to change. As a consequence, many
existing aerial images contain artifacts such as shown in Fig. 6.2: various tiling effects,
occlusion through clouds, and differently colored regions. And, even if most orthoim-
ages are taken at noon, pre-baked lighting conditions and shadows are captured. Finally,
in a GIS, orthoimages usually do not match with overlaid geographic data such as the
road network, the digital elevation model (DEM) or city models. An example can be
found in Chapter 3, where the cartographic roads of our map viewer do not match the
underlying orthoimages (Fig. 3.2).

Figure 6.2: Graphical artifacts in Google Maps: different seasons (green), visible tiling (red),
occlusion through clouds (yellow), pre-baked shadows (blue) and differently tinted regions.

In recent years, detailed geographic data, such as [Eur00; AGRBL+07], has become
freely available for the whole world (see Section 6.4). Such data enables, at no addi-

6.2. RELATED WORK 87

tional cost, the generation of high-resolution orthoimages for any region and including
full appearance control. Hence, generated images tackle all described problems of real
images and create homogeneous orthoimages without artifacts. In particular, once ap-
proaches for generating such images are available, orthoimages can be produced in a
very cost-effective way. However, existing approaches cannot generate world-wide re-
gions, handle real geographic input and create convincing photorealistic results at once.
Our main contribution is a system to generate synthetic orthoimages based on real geo-
graphic input data. At runtime and for all scales, the heterogeneous input is fused with a
multilayer perceptron into photorealistic images. When the resolution of the geographic
input does not suffice while zooming in, we enhance the imagery: we procedurally
generate crops and simulate vegetation. On top, we render road networks and cities.
Additionally, our system provides an editor for modifying the artificial orthoimages in-
teractively by painting into the geographical input layer, e.g., land cover. Finally, we
can largely modify the appearance, create different seasons and lighting conditions. Our
approach uses geographic data, like climate zones, land cover, DEMs, bathymetry, road
network, soil characteristics and tree cover as input. For training the neural network,
we use freely available low-resolution satellite images, e.g., Blue Marble [SVSSH05].
The synthetically generated images finally allow deploying, without cost, world-wide
orthoimages in any application. This approach enables the high-quality draping of 3D
terrain with artificial orthoimages. It can be used for the visualization of GIS simula-
tions and for texturing procedurally generated worlds, e.g., in movies and games.

6.2 Related Work

The generation of photorealistic ground textures was mainly researched for the textur-
ing of 3D terrains.

Online generation. Texture splatting, as introduced by Bloom [Blo00], was one of
the first attempts to generate in real-time terrain textures. His method uses the alpha
channel to control the composition of textures. The blending has to be manually defined
by artists and does not take any natural phenomena into account.
Corpes [Cor01] presents proto-textures, a technique that computes a weighting of each
texture based on the elevation and slope of a DEM. This enables real-time texturing
of 3D terrains, with snow at high altitudes and rocks at steep angles. However, as
only DEM properties are taken as input, it only generates a coarse representation of a
real landscape. Proto-texturing is a very popular technique and is still used in recent

88 CHAPTER 6. GENERATION OF ORTHOIMAGES

games [Spl11] and to visualize procedural terrain generation [SBW06; DS04].
Andersson [And07] combines these methods in the Frostbite game engine. The proto-
textures can be visually configured with a graph-based authoring tool. Non-procedural
content created by artists is mapped onto the terrain using texture splatting and stored
efficiently using a sparse quadtree representation.
By using additional natural properties, Dachsbacher et al. [DBS06] improve proto-
texturing and achieve a photorealistic appearance. Their approach maps properties
generated from simulations, like rainfall, sun exposure and temperature, to materials.
The mapping coefficients are estimated from real orthophotos. Experts are needed for
the simulation of the geographic properties. Hence, this approach is difficult to gener-
alize and only small regions can be automatically generated. Also, they can only create
images for higher altitudes which lack details like trees, crops, urban regions and road
networks.

Offline generation. Premoẑe et al. [PTS99] present an approach to render seasonal
alpine terrains. Using a DEM and an orthoimage as input, they classify the surface
into feature types, e.g., snow, pine, and cliff. This is used to remove shadows and
existing shading effects, to add 3D vegetation and to simulate a seasonal snow cover.
The resulting picture still displays large parts of the original orthoimage. Thus, the
approach is highly dependent on the input image and the overall appearance cannot
be changed easily. Also, they only focus on alpine terrain and cannot reproduce other
regions.
Roupé and Johansson [RJ09] use land cover data to enhance aerial images with textur-
ing details. From CAD drawings they create color-coded images which select the ap-
propriate fine-grained texture at runtime. However, natural properties are disregarded
and only eight distinct materials can be encoded with their approach.
A procedural world generation tool for military training games was introduced by Sme-
lik et al. [STKB10]. The user sketches the desired ecotopes described by a terrain type
(e.g., desert, mountain or hills) and an elevation range. Then, he draws polygons on
top to place forests and roads. The generation classifies the world into distinct layers:
earth, water, vegetation, road and urban. The corresponding 3D terrain in the earth
layer is procedurally created with two multi-fractal Perlin noise fields. The vegetation
layer is generated using Deussen’s algorithm [DHLMP+98], which simulates compe-
tition between plants. Without urban layers the generation of a 64 km2 surface takes
approximately 3 minutes [SKTB09], thus making it unsuitable for the generation of
large areas. At this rate, it would take approximately one year to generate an area with
the size of Europe. Furthermore, texturing of the terrain is only roughly defined by

6.3. OVERVIEW 89

ecotopes and creates uniformly colored patches. Finally, it has only limited support for
land cover and different climate zones are not considered.

Commercial programs. The commercial terrain generator GeoControl 2 [Ros12]
achieves texturing by selective surface shaders. They can be controlled by heightmap
properties by defining an elevation, orientation, slope or roughness range. However,
real land cover data cannot be imported and the texture size is limited to 40962 pixels.
Therefore, creation of plausible synthetic orthoimages for even moderately large areas
is not possible.
Terragen 2 [FMMG12] generates 3D terrains by letting users create node networks.
Nodes represent procedural noise generators, filters and layered surface materials, e.g.,
grass. However, the appearance of materials can only be controlled by the altitude and
slope of the heightmap.
The Large 3D Terrain Generator (L3DT) [Tor12] lets users sketch a design map com-
posed of cells. Similarly to Smelik [STKB10], every cell stores high-level properties,
e.g., altitude, peak, terrace, erosion and a climate profile. These properties control the
procedural generation of the heightmap and the corresponding attribute map. The latter
stores land types and is created by scoring every existing land type of the climate pro-
file for every pixel of the map. The scoring is based on the altitude, gradient, curvature,
water level and salinity. L3DT creates convincing natural landscapes for lower scales
but cannot generate crops, vegetation and urban areas.

Summary. Most existing approaches generate orthoimages by taking only the eleva-
tion, slope and roughness into account [Cor01; DS04; SBW06; And07; Spl11; Ros12;
FMMG12]. This works for a quick and acceptable terrain texturing but does not cre-
ate realistic orthoimages. Including land cover data is an important asset and is rarely
supported [DBS06; STKB10; Tor12]. Dachsbacher et al. use more geographic input
but need complex simulated data. And, the method of Smelik et al. is too slow for
real-time generation. Also, existing approaches focus mainly on the generation of nat-
ural landscapes, but large portions of the earth’s surface are covered with semi-natural
and built-up areas. Finally, not a single one of the presented approaches can create
world-wide orthoimages.

6.3 Overview

Our goal is the generation of artificial orthoimages for the entire world using real ge-
ographic data. To achieve this, we need a mapping from the given input to a color for

90 CHAPTER 6. GENERATION OF ORTHOIMAGES

every geographic position. However, the manual creation of such mapping, or rulesets,
for the entire world would not be possible: capturing even a small subset of all the
details of the earth’s surface would be a very tedious and error prone process. With the
incorporation of more and more rules the probability of side effects increases requiring
even more rules and exceptions to be included.
To overcome these limitations, we automate this process and use a machine learn-
ing approach: a neural network or, more specifically, a multilayer perceptron (MLP,
see [RHW86]). Through training, it finds the relationships between the geographic
input data and a real, low-resolution satellite image. Once the rules are found we
can generate artificial imagery at arbitrary scales during runtime if (1) the geographic
data is available at the given scale and (2) the generated ruleset covers the entire vari-
ability of the given input data. However, below the resolution of the geographic data
(∼ 102 m/pixel), this approach cannot generate sufficient visual details. Hence, we add
further procedural content such as field parcels and vegetation. On top, we render street
networks and building footprints,

6.3.1 System

First, our system learns the mapping from the geographic input to single colors using
a MLP (Fig. 6.3). As the whole raw geographic input data is too large to fit into main
memory, we use an out-of-core approach: a quadtree subdivides the input of the entire
world into a multi-resolution tile pyramid (Fig. 6.4). At runtime, we stream these tiles
into our neural network to generate a basic orthoimage layer (Fig. 6.5). Finally, we
enhance the resulting image with procedural details (Fig. 6.6).

Pre-processing: neural network training. First, we need to learn a mapping from
the geographic data to a single color. We take the raw data and compute input vectors
for our neural network. Using low-resolution satellite images we feed the network
(Fig. 6.3) with training samples. Then, by taking samples across the globe, we generate
a single set of network weights for the whole world. The resulting weights are stored
in a file.

Pre-processing of the raw geographic data. To execute the neural network at run-
time, it needs geographic raster data for every position: DEMs, land cover, tree cover,
soil characteristics, and climate (Fig. 6.4, orange databases). We sample this data and
project it onto a 2D plane using a Mercator projection. Every input category is written
into its own distinct layer of raster data. Then, it is processed into the quadtree scheme,
compressed and stored into a hierarchical spatial database (Fig. 6.4, violet database).

6.3. OVERVIEW 91

Storage of
Weights

Training Samples

Multilayer
Perceptron

PRE-PROCESSING: NEURAL NETWORK TRAINING.

Land
Cover

Soil
Clima

te

Low-Resolution
Satellite Images

Raw Geographic
Input Data

Network
Weights

In
p

u
t

V
ec

to
rs

Tree
Cover

Figure 6.3: In a pre-processing step we generate weights for the execution of the neural net-
work, a multilayer perceptron, at runtime.

PRE-PROCESSING.

Generated Quadtree
Tiles

Raw Geographic
Input Data

Compression,
Storage

Projection, Interpolation,
Scrambling, Correction

 Geographic
Database

DEM Soil

Climate

Compressed Hierarchical
Geographic Data

Land
Cover

Tree
Cover

Pre-processor

Figure 6.4: Pre-processing of raw geographic data into a hierarchical database.

Real-time neural network execution. At runtime, visible tiles are streamed from
the hierarchical database to the main memory. Then, using land cover, elevation, cli-
mate zones, soil data, and tree cover we generate appropriate input vectors on the CPU.
Using the pre-computed network weights, the MLP is executed in parallel on the GPU.
This enables a quick generation of a basic artificial orthoimage (Fig. 6.5, green box).

Real-time procedural enhancement. At higher zoom levels, the resolution of the
geographic input data does not suffice. Therein, e.g., forest and crops, are only coarsely
approximated by their overall shape. Hence, to create a realistic appearance, we have

92 CHAPTER 6. GENERATION OF ORTHOIMAGES

 Geographic
Database

Network
Weights

REAL-TIME: NEURAL NETWORK EXECUTION.

Basic
Artificial

Ortho-image

Generate input
Vectors Stream Tiles Land Cover

Climate

Soil

Tree Cover

Multilayer
Perceptron

Figure 6.5: Runtime execution of the neural network using the streamed geographic data.

to enhance the basic orthoimage with procedural details (Fig. 6.6).

Agricultural
Areas

 Geographic
Database

REAL-TIME: PROCEDURAL ENHANCEMENT.

Final
Artificial

Ortho-image

Street
Network

Buildings Vegetation
Relief
Map

Basic
Artificial

Ortho-image

Land Cover DEM Navigation

Stream Tiles

Figure 6.6: Procedural enhancement of the basic orthoimage.

6.4 Geographic Data Sources

Low-resolution orthoimage. For neural network training, an orthoimage with con-
sistent colors over the entire globe is required. It should exhibit none of the arti-
facts shown in Fig. 6.2. The NASA Blue Marble Next Generation images (BMNG)
from Stöckli et al. [SVSSH05] provide such properties up to a spatial resolution of
500 m. Such global monthly images allow the generation of different seasonal settings
as shown in Fig. 6.21(g) and in the accompanying video.

6.4. GEOGRAPHIC DATA SOURCES 93

(a) Basic ground layer. (b) Procedural fields. (c) Roads and water. (d) Simulated vegetation.

Figure 6.7: Enhancement with generated and procedural details of the basic orthoimage result-
ing from the neural network.

Land cover. These data products describe physical materials covering the surface of
the earth, therefore having the most impact on the resulting artificial orthoimages. We
combine several sources to achieve the best spatial resolution and information content
for any given region (see Table 6.1). In the future, we would like to incorporate ad-
ditional high-resolution land cover data products from other regions. However, to our
knowledge, such data is not freely available for larger areas.

Name m/px Classes Coverage

Global Land Cover by National Mapping
Organizations (GLCNMO) [TBABTS+08] 1000 20 Global
ESA GlobCover [AGRBL+07] 300 23 Global
CORINE Land Cover [Eur00] 100 44 Europe
National Land Cover Data (NLCD) [HDFCH+07] 30 16 USA
GeoBase [Geo09] 30 45 Canada

Table 6.1: Comparison of freely available land cover data products.

Digital Elevation Model (DEM). We gain elevation data from two sources: ocean
bathymetry and terrain data with a resolution of one arc-minute from ETOPO1 [AE09],
and terrain data from a DEM based on void free SRTM data. The elevation data is used
for shading terrain, coastlines and shallow water.

Climate zones. The climate classification according to Köppen and Geiger [KG23]
is based on the analysis of many measurable climatic variables (e.g., temperature, pre-
cipitation, and humidity) and the fact that vegetation is a very good indicator for many
climatic elements. In return, such classifications have a great impact on the artifi-
cial orthoimage generation. We use the updated climate classification from Peel et
al. [PFM07], which is only available at ∼ 10 km/pixel.

Soil characteristics. Climate data and soil characteristics are dependent on a variety
of factors, e.g., temperature, precipitation, soil texture, fertility, tillage. Using them as

94 CHAPTER 6. GENERATION OF ORTHOIMAGES

input for our neural network injects complex compound information about the ecosys-
tem that would otherwise be virtually impossible to map to a color. We use four of the
seven-layer Global Gridded Surfaces of Selected Soil Characteristics [Glo00] dataset:
(1) Soil carbon density (2) Soil field capacity (3) Soil profile available water capacity
(4) Soil thermal capacity. All chosen layers describe the underlying material, i.e., dif-
ferent rock types, clay, sand in different ways. For further details, we refer to Brady
and Weil [BW+01].

Tree cover. For satellite image generation, as well as vegetation simulation, we use
tree cover data from Defries et al. [DHTJL00]. To limit the size of the input database,
we chose to use only the global broadleaf and global coniferous tree cover percentages
and ignore evergreen/deciduous tree cover classifications because those categories are
included in the land cover datasets.

6.5 Pre-processing of Geographic Data

The pre-processing step (the compiler) generates a hierarchical database by reprojecting
and partitioning the raw input data (presented in the previous section) into a quadtree.
All inputs are reprojected to Spherical Mercator (EPSG code 3857). We kept the com-
piler output as close to the original data as possible, to allow enough flexibility during
the rendering process, in which further corrections are applied.

Land cover unification. To combine the strengths of the different land cover data
products, we merge them into one super land cover dataset. One challenge in this
unification process is the mapping of land cover types, since each data product uses
different classification schemes. For example, global data products do not distinguish
between different urban categories due to their limited resolution. On the other hand,
a European land cover has no class types, e.g., for mangroves, but distinguishes 11
different categories for artificial surfaces. We include all categories of the sources and
merge obviously redundant categories. This results in our final super land cover dataset
with 62 distinct types.

Coastline correction. Coastlines are corrected in the soil and climate layers by
using a high-resolution land mask (binary distinction between land and water bodies)
generated from [SVSSH05], or [Eur00] where available. This is necessary to prevent
artifacts originating from low resolution soil and climate layers. First, we remove land
pixels, for which the continent mask contains water areas. Then, using morphological

6.5. PRE-PROCESSING OF GEOGRAPHIC DATA 95

PRE-PROCESSING: LAND COVER UNIFICATION.

Su
p

er
 L

an
d

 C
o

ve
r

User input
Editor

Land Cover World
GLCNMO

Land Cover World
ESA GlobCover

Land Cover Local
EU/US/CAD

Geographic
Vector Map

Correction

Runtime

Multilayer
Perceptron

Procedural
Enhancement

Figure 6.8: Land cover unification: to combine the strengths of different land cover datasets, we
create a super land cover set. We include all types and merge redundant categories. At runtime
this database is used for execution of the multilayer perceptron and generation of procedural
content.

operations, land pixels are dilated in the source layers until land-water coherency with
the land mask is reached.

Scrambling. Another pre-processing operation, that we call scrambling, is the pixel
diffusion of low-resolution categorical data (climate and soil characteristics) which can-
not be interpolated. The scrambling algorithm swaps neighboring pixels iteratively if
they belong to the landmass. This diffusion process ensures a smooth transition be-
tween adjacent categories as shown in Fig. 6.9.

Figure 6.9: Climate zones in Southern Australia (left), scrambled version that allows a smooth
transition between different zones (right).

The database produced contains rasterized georeferenced tiles, each containing ten dis-
joint, congruent data layers (land cover, climate, bathymetry, elevation, 4×soil char-
acteristics, tree cover needleleaf, tree cover broadleaf). The overall size per level of

96 CHAPTER 6. GENERATION OF ORTHOIMAGES

detail is given in Table 6.2. Higher detail levels above level eight are only generated for
densely populated territories.

LOD #Tiles Width [pixel] DB Size Compr. size Compr. ratio

0 1 256 0.96 MB 0.2 MB 79%
1 4 512 3.75 MB 0.7 MB 82%
2 16 1024 15 MB 2.4 MB 84%
3 64 2048 60 MB 8.4 MB 86%
4 256 4096 240 MB 29 MB 88%
5 1024 8192 960 MB 102 MB 89%
6 4096 16384 3.75 GB 346 MB 91%
7 16384 32768 15 GB 1.14 GB 92%
8 65536 65536 60 GB 3.86 GB 94%
9 ∼ 3x105 ∼ 1x105 240 GB 12.6 GB 95%
10 ∼ 1x106 ∼ 3x105 960 GB n.a. n.a.
11 ∼ 4x106 ∼ 5x105 3.75 TB n.a. n.a.
12 ∼ 2x107 ∼ 1x106 15 TB n.a. n.a.
13 ∼ 7x107 ∼ 2x106 60 TB n.a. n.a.

Table 6.2: Statistics of a database containing all rasterized geographic input layer for a world-
wide generation of orthoimages.

6.6 Generation of Synthetic Orthoimages

To generate basic artificial orthoimages we use a simple multilayer perceptron (MLP)
[RHW86] with one hidden layer. Such computational models are weighted directed
graphs that connect nodes from the input to artificial neurons in the hidden layer and
from there to the output layer. Their ability to act as non-linear function approximators
allows to learn the mapping between geographic inputs and R,G,B color components
on a per-pixel basis.
Other machine learning algorithms, e.g., support vector machines (SVM) [Vap99; CV95],
can be applied to create such rulesets. SVMs deliver better generalization performance
than MLPs, because they optimize a convex function in a higher dimensional space than
the dimension of the input vectors. This approach ensures the computation of a global
minimum, whereas any backpropagation training algorithm on MLPs cannot guaran-
tee the finding of an optimal solution in every case. However, as shown by LeCun et
al. [LJBBC+95] and from our own experiments, the execution of SVMs (i.e., calcu-
lating f (x) for a learned function f), requires much more computing resources than

6.6. GENERATION OF SYNTHETIC ORTHOIMAGES 97

MLPs. These performance considerations are of great importance, because the algo-
rithm is executed in real-time for every pixel of a given map section. As we will see later
in Section 6.6.2, our presented method can be easily implemented on current graphics
hardware, as network execution boils down to only a few matrix multiplications.

Figure 6.10: Successive refinement of the network by adding more and more geographic input
data: elevation and climate zones (top), land cover (middle), soil and tree cover (bottom). Land
cover has the biggest influence on the resulting synthetic image.

6.6.1 Neural Network Architecture and Training

Encoding of input vectors. Geographic input data is encoded into one input vector
for each pixel. However, slope and bathymetry information is not fed into the MLP,
because the network would learn unnecessary features (i.e., lighting information, ocean
shading) from the satellite image. Instead, we add relief and ocean bathymetry shading
at runtime, to allow more control over lighting conditions and general appearance.
The number of input nodes should be kept at a minimum, not only due to performance

98 CHAPTER 6. GENERATION OF ORTHOIMAGES

issues: the more input dimensions a MLP has, the higher the decline of regression
performance compared to the theoretical limit, as shown by Kohonen et al. [KBC88].
If the number of inputs reaches an order of magnitude of ∼ 104, image quality vastly
reduces, as wrong color tones occur for some category combinations.

Geographic input data can be distinguished regarding its dimensionality: elevation and
percentage tree cover can be encoded into one node, while class-based data, e.g., land
cover, soil and climate, is multi-dimensional. Consider the following simple example
where a land cover map consists of three categories: water bodies, forests, and agricul-
tural areas map with ascending values. Encoding land cover into a single node would
suggest that certain combinations (here: water bodies and forests, forests and agricul-
tural areas) are closer to each other than other combinations. On the other hand, in a
vectorial encoding each category has an equal distance to all other categories. There-
fore, we need one input node for each category (see Table 6.3). However, such an
encoding increases the number of input nodes significantly. But, for each pixel location
only one category per input type can be active, e.g., one specific land cover category, or
one climate zone. Therefore, the number of simultaneously active nodes per input type
can be kept at a minimum, which results in sparse vectors. This property is later used
for optimizing the runtime network execution.

All class-based input types (i.e., land cover, climate and soil characteristics) can acti-
vate more inputs depending on the category values in their distinct pixel neighborhood.
Such activation schemes allow a smoother transition between categories. We allow two
activations per type: one activation for a category at the pixel location, and one activa-
tion for a category which occurs in the direct neighborhood of this location. Fig. 6.10
shows the successive refinement of the MLP by adding more and more geographic
types.

Input nodes [n] Type

1 elevation
62 land cover
30 climate
13 soil carbon density
13x3 {field, water, thermal} capacity
1 treecover needleleaf
1 treecover broadleaf
147 total

Table 6.3: MLP input vector encoding from geographic input data.

6.6. GENERATION OF SYNTHETIC ORTHOIMAGES 99

Network architecture and training. The architecture of our network is outlined
as follows. The fully connected MLP has one hidden layer with a sigmoid transfer
function. The number of hidden neurons is equal to the number of input nodes which
allow a simple network execution on the GPU as we will describe in Section 6.6.2.
Neurons from the hidden layer are connected to the three R,G,B output neurons and
use a linear transfer function. A linear activation gives better results, because of the lin-
ear relationship between R,G,B color intensities. On the other hand, MLPs gain their
power to compute non-linear, nontrivial problems from non-linear transfer functions.
Hence we use a sigmoid transfer function in the hidden layer but any other non-linear
smooth and differentiable function could be used. One hidden layer is sufficient for
most regression problems, because the linear combination of multiple sigmoid func-
tions can represent any continuous function as shown by Cybenko [Cyb89]. The MLP
requires more hidden layers only for modeling function discontinuities. Experiments
with other color representations (e.g., HSV or HSB) did not deliver better results. Net-
work training was done by using the Fast Artificial Neural Network Library (FANN)
from Nissen [Nis03]. It uses the improved resilient backpropagation training algorithm
from Igel and Hüsken [IH03], a variant of Riedmiller and Brauns [RB93] RPROP train-
ing algorithm.

In the training phase, we take samples generated from a probability map of the earth’s
surface. The map, derived from land cover data, ensures the acquisition of underrep-
resented land cover categories and samples homogeneous regions like marine waters,
poles and deserts less often. The number of training epochs is a crucial factor: if too few
epochs are taken the network is not able to learn all rules. Too many training epochs,
reduce the generalization performance of the MLP, which results in poor image quality,
e.g., wrong color tones occurring in some regions. In our system a training phase with
40 epochs with ∼ 105 samples gave the best results.

6.6.2 Neural Network Execution on the GPU

Our network has n = 147 input nodes and the same amount of neurons in its hidden
layer. For both layers we have to solve

~a0 = ~b0 +~ijw0 (6.1)

~a1 = (sig(~a01) , . . . ,sig(~a0n)) (6.2)

~a2 = ~b1 +~a1w1 (6.3)

100 CHAPTER 6. GENERATION OF ORTHOIMAGES

where~b are the bias vectors for each layer,~ij the input vector for a given pixel j and
w the weight matrices of the MLP. The first weight matrix w0 stores n×n connections
from every input node to every neuron in the hidden layer and w1 stores n× 3 con-
nections from the hidden layer to the three output neurons. In total we would require
n2+3n multiply-add (MAD) instructions and n2 operations for calculating the sigmoid
activation function sig(t) = 1

1+e−x .

Weights

B
ias

C
lim

ate

So
il layers

Tree
 C

o
ver

Lan
d

 C
o

ver

STEP 1.
i0

2m

Max
Texture

Size

b0, w0

2m + 1

2m

X Intermediate Result

2m

Max Texture Size

=

a0

R

G

B

Weights

B
ias

STEP 2.

a0

b1, w1

2m + 1

3

X

Resulting Color Buffer

3

Max Texture Size
=

a1

Intermediate
Result

2m

Max Texture Size

Figure 6.11: Neural network execution on the GPU.

We can decrease the number of operations in the first layer, because at most two neu-
rons are simultaneously active for each geographic input type. Then we require only
n2m+ 3n MADs and n2m sigmoid operations where m = 9 is the number of different
geographic input types. This is done by compressing the input vectors: every entry
contains (1) the index to the active input neuron and (2) its weight, zero entries are
omitted.

The GPU data layout is shown in Fig.6.11. Multiple input vectors are uploaded as float
texture in this compressed manner. A shader then executes the matrix multiplications
and writes results back into a floating point render target. The resulting render target is

6.7. DETAIL GENERATION 101

then used in a second pass that computes the basic artificial orthoimage.

6.7 Detail Generation

The generation of images with a neural network is highly dependent on the resolution
of the geographic input data. However, it only delivers enough visual details up to 100-
300 m per pixel (see Section 6.4). To deliver photorealistic images beyond the input’s
limits, we add vegetation, crops, roads and cities on-top of the basic orthoimage layer
(Fig. 6.7).

6.7.1 Vegetation Simulation

We add vegetation, like trees and shrubs, by simulating the growth of plant entities
and rendering the results using billboards. Our simulation is inspired by a simplified
version of plant population dynamics created by Deussen et al. [DHLMP+98]: single
plants are defined as circles, and local competition starts when two circles intersect. The
competitive ability of a plant is computed by the current water concentration levels, the
preference for wet/dry areas, and its relative size (ratio of maximum and current size).
Growth rate, maximum size and the number of new seeds is defined by the plant’s
species.

(a) DEM as input. (b) Simulation results. (c) Rendering.

Figure 6.12: Competitive simulation of plants.

We introduce for each species a tree limit based on altitude (timber line). This goes
beyond the simulation approach of Deussen et al. As in real nature, no tree of a certain
species will ever grow above this line because of inadequate growth conditions. Addi-
tionally, we define a transition zone where the growth rate linearly decreases to zero.
As a second improvement, we create from our geographic sources a vegetation mask

102 CHAPTER 6. GENERATION OF ORTHOIMAGES

which defines where new plants are seeded. Land cover data defines seeding areas
including broadleaf, needleleaf and mixed forests, scrubs, parks, and areas with other
vegetation. The geographical vector map defines non-seeding areas like road networks,
building footprints, and water bodies.

Simulation. After placing entities of each species during the initialization, we per-
form for each simulation step the following actions: 1. Increase plant’s size by its
growth rate, the plant dies if it exceeds its maximum size. 2. Add a defined number
of new entities in its vicinity. 3. If a plant’s circle intersects other plants: compare the
competitive ability with neighboring plants and let the weakest plant die in each com-
parison. With sufficient simulation steps (Fig. 6.12(b)), segregation of plants between
wet and dry areas emerges.

Implementation. As input we take a DEM [FRCCD+07], the available water ca-
pacity map [Glo00] and parameters describing the species and simulation settings. Ac-
cording to the definition found in [Hol09; AH84], we set the tree limit at 1800 m and
the transition zone ranges to 500-700 m. To accelerate the comparison between neigh-
boring entities, we partition the simulation world with a uniform grid. The grid size
should be chosen in such a way that all entities who influence each other are in the
same cell or neighboring cells. Since our objective is a rapid image generation, the
vegetation simulation is only done for a few steps (i.e., 20). Furthermore, the simula-
tion only seeds few plants as representatives. We render every tree representative as
a textured billboard (Fig. 6.7(b)). In a texture atlas, we store textures with different
densities of trees. Then, recreate the correct density, we sample the tree cover map and
choose the appropriate texture. For further variation, we change slightly the rotation,
hue and lightness at random.

6.7.2 Field Generation

In most countries, agricultural crops encompass large areas. Hence, the artificial gen-
eration of crops becomes important for compositing realistic orthoimages. As the ap-
pearance of crops changes every season, a procedural generation does not affect the
resemblance to the real world.
As input, we take a raster image with land cover information. Row-by-row, we deter-
mine the outline of the agricultural land cover and generate silhouette points. We then
generate a low-resolution rectangular grid and place it over the silhouette (Fig. 6.14,
left). The grid is adapted iteratively towards the silhouette (Fig. 6.14, middle) in a few

6.7. DETAIL GENERATION 103

Figure 6.13: Resulting procedural vegetation.

SUBDIVISION. ADAPTION. OUTLINE.

Figure 6.14: Generation of procedural fields: we adapt a low-resolution grid to the shape of the
field and subdivide the cells if they contain agricultural areas.

iterations (i.e., 10). We determine which grid cells contain agricultural areas and sub-
divide them (Fig. 6.14, right), until a given area threshold is reached (i.e., 0.01-2 km2).
When the final subdivision is achieved, we generate vertices and texture coordinates.

Road network. The road network influences greatly the appearance of crops: crops
are divided by roads and they usually follow the roads’ curvature. To take this into
account, we align the grid along the major roads using an angle histogram. Then,
below a defined threshold, we snap grid points to the road network. Finally, we divide
field parcels with overlapping roads (Fig. 6.16).

Random walk. To create variety and a more realistic appearance, the fields are

104 CHAPTER 6. GENERATION OF ORTHOIMAGES

Figure 6.15: Resulting procedural fields.

(a) Without alignment. (b) With alignment.

Figure 6.16: The procedural fields are aligned to major roads.

rendered using a texture atlas. Crop types are stored in the texture atlas according to
their type and appearance. However, a uniform selection of the different textures could
still result in repeating patterns. To remove such patterns, we introduce an approach to
select textures from the atlas using a random walk (Fig. 6.17).
First, we initialize the selection range as sliding window. From 0..n entries in the
texture atlas it can select m at the atlas offset o (selection range is [o,o+m]). Now let o
to be controlled by a simple one-dimensional random walk (Fig. 6.17(a)). The random
walk Sk is defined by summing up independent random variables Z0,Z1, ..Zk where each
variable is either −1 or 1 with a 50% probability. The expected translation distance or
standard variation grows with the number of performed iteration steps and is

√
k for k

steps. We further have to define an upper and lower limit for Sk. Then we rescale the
result to our desired range for o of [0..n/2]. The width or range in which our random
walk operates gives us some control over the change rate how rapidly the distributions
change in our simulation. Smaller widths result in quicker distribution changes.

6.7. DETAIL GENERATION 105

Sk

k

o

(a) Random walk Sk to select o.

B A

m = 4

Texture Atlas

n = 8

o = 2

(b) Selection of a texture.

Figure 6.17: To reduce the appearance of patterns, we select fields in a texture atlas with a
random walk approach.

To cover only agricultural land cover areas, we create a stencil mask and render the
subdivided fields over our orthoimage.

6.7.3 Urban Rendering

Most man-made structures are present in geographic vector maps, which are used, e.g.,
in navigation systems. A good example of such a database can be seen with Open-
StreetMap [Ope] (Chapter 2.1.3). Hence, urban structures do not need to be procedu-
rally generated and can be drawn directly.

Road network. The road network is stored as a series of 2D polylines in the ge-
ographical vector map. Every polyline stores a functional road class (FRC) attribute
to specify the road’s functional importance. In a similar fashion to Vaaraniemi et
al. [VTW11], we expand each segment of the polyline to quads. The road’s FRC maps
the quad’s vertices to corresponding texture coordinates in a texture atlas. Finally, we
render all expanded and textured quads, from least to most important FRC, over the
orthoimage (Fig. 6.7(c)).

Building footprints. In geographical vector maps the footprints of buildings are
stored as 2D polygons with a given height. Because we render orthorectified images,
we are only interested in the building’s roof. Therefore, we render every building as
a flat textured polygon with slightly randomized colors. The result can be seen in
Fig. 6.18. To enhance the resulting image we re-create the shadows of the buildings:
we add a preliminary pass where all buildings are slightly offset and rendered in black.

106 CHAPTER 6. GENERATION OF ORTHOIMAGES

(a)

(b)

Figure 6.18: Rendering footprints of buildings from the vector database: (a) New York City
and (b) Berlin. We achieve convincing results with textured roofs, slight color variations and
casting shadows from the buildings.

6.7.4 Relief shading

Optionally, if we do not have dynamic lighting in our target system, we can pre-bake a
global lighting into the generated images. We incorporate the analytical relief shading
from Jenny [Jen01]. It adds further realism in mountainous regions where some faces
are exposed to sunlight while other faces are in shadow (Fig. 6.21(b)).

6.7.5 Multi-Resolution

Our approach uses two distinct systems: the multilayer perceptron for creating the
basic layer and the detail enhancement rendered on top. The details are not always
rendered over the basic layer and are only added when we reach 100-300 m/pixel. We

6.8. RESULTS 107

employ several strategies to assure a consistent coloring whenever we are zooming in,
and, thus, are switching through the levels of the quadtree. First, the super land cover
introduced in Section 6.4 ensures that all land cover databases are unified across all
levels. Second, to ensure consistency when switching approaches, the main coloring
of the procedural elements is determined by sampling the result of the MLP. Small
variations are introduced by changing randomly the hue and luminance of the color.
However, to ensure that the averaged resulting colors still create the color from the
MLP, we always change colors pair-wise. If one color gets an increased hue, the other
color gets an according decreased hue. An example of zooming in into the Alps is given
in Fig. 6.19.

6.7.6 Editor

Our system includes an interactive editor: using the mouse, we can paint directly into
layers of the input data, e.g., land cover, which consequently modifies the resulting
orthoimage. We can easily generate new mountains, add crops, create new seas and
enlarge forests. After the user finishes painting, the changes are written to a temporary
database.

6.8 Results

We now compare real and synthetic orthoimages and analyze the system’s performance.

6.8.1 Comparison

In Fig. 6.20, we compare synthetic orthoimages generated from our system (left) and
real satellite (or aerial) images (right). At the world scale in Fig. 6.20(a), we can mainly
discern different soil details in desert regions like the Sahara in Africa or in Australia.
Also, even with scrambling, the harsh borders of the climate zones are still apparent
in the synthetic image of Africa. The second main difference are the mountainous
regions, e.g., in Fig. 6.20(b). Our approach uses low resolution DEM with a horizontal
resolution of 90m which makes it difficult to capture smaller features like erosion. The
synthetic image of Singapore in Fig. 6.20(c) shows no artifacts, e.g., clouds, which
are apparent in the Google Maps image. The last comparison shots show that apart
from color differences, the synthetic image of the region of southern Bavaria is well
reproduced.

108 CHAPTER 6. GENERATION OF ORTHOIMAGES

6.8.2 Benchmark

All performance measurements were taken on a Laptop with Windows 7 SP1, a 2.7
GHz Intel Core i7 Quad CPU, 16 GB of RAM and an Nvidia Quadro 4000M (driver
v.296.70). We benchmarked the execution of the neural network for the generation of
the basic layer of an orthoimage. As the computation of the MLP is a parallel task,
it can be efficiently computed on a GPU. Leaving out the zero-input vectors reduces
greatly the computational requirements.

CPU [s] GPU [s]

1 thread 8 threads uncompressed compressed

3.64 0.77 0.95 0.2

Table 6.4: Time taken in seconds for the generation of an 512x512 orthoimage. Comparison of
CPU generation and GPU generation with and without compression of the input vectors.

6.8. RESULTS 109

Figure 6.19: Multi-resolution rendering: we zoom into the Austrian Alps and maintain a con-
sisting coloring of the synthetic orthoimages over all scales.

110 CHAPTER 6. GENERATION OF ORTHOIMAGES

(a) World: Synthetic image (left), Blue Marble satellite image (right).

(b) Lago di Garda, Italy: Synthetic image (left), Google Maps image (right).

(c) Singapore: Synthetic image (left), Google Maps image (right).

(d) Southern Bavaria, Germany: Synthetic image (left), Google Maps image (right).

Figure 6.20: Comparison of our synthetic images (left) and real satellite or aerial images (right).

6.8. RESULTS 111

(a) Central Europe.

(b) Alps, Europe. (c) Northern Spain.

(d) Caribbean. (e) Munich, Germany.

(f) Central Europe at night. (g) World generated from NASA Blue Marble April im-
ages.

Figure 6.21: Synthetic orthoimages generated at runtime by our system.

112 CHAPTER 6. GENERATION OF ORTHOIMAGES

6.9 Conclusions

We have presented an approach to generate on-demand synthetic orthoimages. Instead
of creating a complex set of rules, the mapping of geographic input to a color is deter-
mined through machine learning. The computation of a neural network, more specifi-
cally a multilayer perceptron, creates the basic artificial orthoimage layer. To overcome
the limited resolution of the geographic input we procedurally add details. First, we
generate fields by subdivision and select crop textures using a random walk method.
This reduces repeating patterns and creates a more natural appearance. Then, we sim-
ulate vegetation growth, render road network and buildings footprints. Most of the
computations of this system are done on the GPU. With a compression of the input
vectors, the execution of the MLP on the GPU becomes highly efficient. Compared to
a single-core CPU, it accelerates the computation by a factor of 18. However, our ap-
proach only delivers convincing results up to ∼ 19m/pixel. Beyond this, further work
is needed to create detailed and realistic texture sets. For instance, more features of
the vector map could be used: the OpenStreetMap database even captures single trees,
fences and traffic lights. But, the rendering of the road network and building footprints
are highly dependent on the geographic vector map. To overcome a bad coverage, we
could procedurally create cities and roads for non-critical applications, e.g., with ap-
proaches like [PM01; CEWMZ08]. Moving more computational load onto the GPU,
e.g., the vegetation simulation, could provide performance improvements. However,
reducing the bandwidth bottleneck from CPU to GPU would provide the biggest im-
provements. A simplification of the weighting network could provide the key to faster
computations. The editing of orthoimages could be improved. Together with the pro-
cedural generation of cities, it could enable real urban planning applications. Finally,
the procedural parts of our approach create similar looking results all over the world.
Regional features, with different textures and parameters, would provide a greater and
more realistic variety. Additionally, real-time weather data could be used to enhance
the generation and create convincing results. SRTM, the raw heightmap source we
are using as DEM, has a horizontal resolution of 90 m [FRCCD+07]. Creating or-
thoimages with a higher per-pixel resolution results in flat and unsharp lighting, thus in
not-realistic looking images. However, DEMs with more details are too expensive and
are not always available. To overcome this limitation, techniques presented by Brosz et
al. [BSS07] that automatically extract high-resolution details from existing models or
multi-fractals and apply them on the low-resolution data are needed.

6.9. CONCLUSIONS 113

Acknowledgments

We wish to thank the following organizations for their respective geographic products:
Blue Marble: Next Generation was produced by Reto Stöckli, NASA Earth Obser-
vatory (NASA Goddard Space Flight Center); GLCNMO by Geospatial Information
Authority of Japan, Chiba University and collaborating organizations; GlobCover 2009
map: c© ESA 2010 and UCLouvain; CORINE Land Cover 2000 Seamless Vector Data
(CLC2000): c© European Environment Agency; CORINE Land Cover 2006 Seamless
Vector Data (CLC2006): c© European Environment Agency; US National Land Cover
Database NLCD2006 by U.S. Geological Survey (USGS) Earth Resources Observa-
tion and Science (EROS) Center; Canadian land cover: Land Cover, circa 2000-Vector,
GeoBase Natural Resources Canada, Earth Sciences Sector, Centre for Topographic
Information; NASA GLOBAL GRIDDED SURFACES OF SELECTED SOIL CHAR-
ACTERISTICS (IGBP-DIS) from Oak Ridge National Laboratory (ORNL); AVHRR
Continuous Fields Tree Cover University of Maryland, Department of Geography;
ETOPO1 – Bathymetry from The National Geophysical Data Center (NGDC) and Na-
tional Oceanic & Atmospheric Administration (NOAA); and the Köppen Geiger Cli-
mate Classification from Oak Ridge National Laboratory.

114 CHAPTER 6. GENERATION OF ORTHOIMAGES

Chapter 7

Summary, Conclusions, and Outlook

The usability of navigation and spatial information browsing systems depends on a
number of factors. First, the semantic quality of the information is directly related to
the availability and resolution of the input geographic data. Second, input controls such
as tactile buttons, touch screens or gesture controls, have an impact on the interaction
between the user and the system. Third, the physical properties of the screen influence
the visibility of the represented information. Finally, the rendering quality of geovirtual
environments is critical because it represents an intuitive and direct feedback. As such,
improving rendering techniques is a key aspect in improving the usability.

This thesis has addressed the challenge of improving the usability of 3D maps for nav-
igation and spatial information browsing purposes. This was tackled with novel GPU-
based algorithms for the cartography and usability-oriented rendering of features in 3D
maps.

7.1 Summary

In Chapter 3, we introduced the rendering of cartographic roads onto a high-resolution
Digital Elevation Model (DEM). We implemented two GPU methods to render such
roads: a geometric approach for low to medium-resolution DEM and a high-quality
approach for high-resolution DEMs. With screenshots we presented their artifact-free
projection onto high-resolution DEMs. Finally, we showed that both methods perform
extremely well, with both approaches achieving over 50 fps on consumer grade hard-
ware, such as an ATI Radeon 5870 GPU.
In Chapter 4, we presented a temporally coherent, force-based labeling approach for
dynamic 2D and 3D scenes. Based on the results of an expert study, we created an

115

116 CHAPTER 7. SUMMARY, CONCLUSIONS, AND OUTLOOK

algorithm that places and resolves collisions between labels at runtime. The GPU-
based approach handles these calculations with up to 2000 labels in real-time. In a
concluding expert study, almost all participants approved the application of our method
in real-world scenarios, such as navigation tasks.
In Chapter 5, we proposed concepts to enhance the visibility of labels in occluded 3D
scenes, e.g., cities. We selected two approaches, glowing roads and transparency label
aura, and described a GPU implementation for both concepts. A conducted benchmark
showed that they run in real-time on low-class hardware. Finally, we validated them
in a user study, within which these concepts significantly innovated and improved the
usability and overall attractiveness of existing methods.
In Chapter 6, we presented an approach to create on-demand synthetic orthoimages,
generated through a two-step approach. First, the colors of the base layer from the
geographic input are determined. This mapping is generated in a pre-computation step
through a machine learning approach, with its evaluation conducted at runtime with
a GPU method. Second, limited geographic resolution of the input is overcome by
adding procedural details, e.g., canopy, roads, trees, crops, and cities. With screenshots,
we proved that these images exhibit an artifact-free appearance and demonstrated their
strong resemblance to real satellite images.

Applications. The presented set of techniques cannot only be applied to navigation
systems, but also to a variety of applications domains such as geospatial systems, web
mapping, etc. The cartographic roads can be used in Geographic Information Systems
(GIS) and virtual globes. The force-based labeling approach can be used every time
labels are used in virtual 3D environments, e.g., GIS, navigation systems, scientific
exploration, and games. The visibility enhancements can be used whenever features in
a virtual 3D environment are occluded. Finally, the synthetic orthoimages can be used
in a wide variety of scenarios, e.g., flight simulators, navigation systems, games as well
as for urban and landscape planning.

7.2 Discussion

Using 3D maps for navigation and spatial information browsing cannot be justified or
even becomes senseless if the visibility and readability of relevant information is not
given. We tackled this problem by considering cartographic rules and simple visual
constraints. Based on Imhof’s cartographic rules, we defined at set of criteria relevant
for 3D maps: (a) the recognition and readability of features; (b) visual association of re-

7.2. DISCUSSION 117

lated features; (c) maintaining temporal coherence; and (d) a high rendering efficiency.
The combination of all these factors enhances the usability of 3D maps for navigation
and spatial information browsing purposes. In the following section, we position our
contributions with respect to these criteria. An overview of this juxtaposition is detailed
in Fig. 7.1.

Contribu)on	 Recogni)on,	
Readability	

Visual	 Associa)on	 Temporal	
Coherence	

Efficient	
Rendering	

Chapter	 3:	
Cartographic	 Roads	
	

Cartographic	
roads:	 vivid	
colors,	 outlines,	
bigger	 than	 real	

Perfect	 projec9on	 onto	
terrain	

(a)	 Dynamic	 scaling	
(b)	 Smooth	 alpha-‐
blending	 over	 LODs	

Efficient	 GPU	 approach	
for	 	 dynamic	 roads	
with	 rounded-‐caps	

Chapter	 4:	
Force-‐Based	 Labels	

(a)	 Halos	
(b)	 Outline	
(c)	 Shadows	

(a)	 Diff.	 posi9on-‐models	
(b)	 Color-‐encoding	 	
(c)	 Label	 following	 roads	 	
(d)	 Depth-‐based	 scaling	

Smooth	 force-‐based	
movements	

Efficient	 placement,	
collision	 &	 force	
computa9on	 on	 GPU	

Chapter	 5:	
3D	 City	 Labels	

Visible	 labels:	 	 	
not	 occluded	

Enhanced	 associa9on	
(label	 &	 feature)	 with	
both	 approaches	

Yes	 (approaches	 are	
implicitly	 temporal	
coherent)	

GPU	 approach	

Chapter	 6:	
Synthe)c	 Orthoimages	

Ar9fact-‐free	
images	
	

Features	 of	 orthoimages	
match	 elements	 from	
vector	 database,	 e.g.	
roads	 and	 buildings.	

Enhanced:	 every	
LOD	 has	 same	
colors	 &	 features	

GPU	 computa9on	 of	
neural	 network	

Figure 7.1: Overview of key aspects discussed in this thesis. Every contribution is positioned
with respect to a set of criteria relevant to 3D maps: recognition and perception, readability,
visual association, temporal coherence and an efficient rendering. Combining all these factors
enhances the usability of 3D maps for navigation and spatial information browsing purposes.

Recognition, Readability, Visibility. A cartographic representation breaks with
photorealism. Its goal is an information generalization and abstraction, leading to en-
hanced visibility, e.g., through simplification and by creating more contrast between
elements. We enhanced the recognition of roads and labels with such a representation.
We provided a definition of cartographic roads, including rounded caps at the end of
roads, vivid colors, dynamic scaling of their width, and dark outlines. Subsequently, we
introduced two methods that maintain the visibility and thus the readability of occluded
labels in 3D maps of cities. Compared to usual approaches, they still maintain the refer-

118 CHAPTER 7. SUMMARY, CONCLUSIONS, AND OUTLOOK

ence to their corresponding object. Finally, because the synthetic orthoimages present
no graphical artifacts, e.g., shadows from clouds, changing seasons or low resolution,
features can be more easily recognized compared to satellite imagery.

Visual Association. We enhanced the projection of cartographic roads onto the
DEM; hence, they can be more easily related to the underlying 3D terrain surface. Color
encoding of labels strengthens the association to their corresponding feature. Moreover,
given that road annotations follow the road, they can be easily matched to their respec-
tive roads. Furthermore, our labeling method follows Imhof’s cartographic principles,
e.g., visual association and classification of similar elements. In virtual maps of 3D
city models, both contributions increase the visual association of labels compared to
the baseline. Finally, compared to real satellite images, features within our synthetic
orthoimages match corresponding features in the vector database; for instance, a photo-
realistic road that is present in the orthoimage matches its overlaid cartographic coun-
terpart. This drastically enhances the visual association. Therefore, the perception of
navigation-relevant features is not reduced owing to the aforementioned contributions.

Temporal Coherence. We achieved a temporal coherent visualization for our carto-
graphic roads with two key properties: seamless Level-of-Detail switches and dynam-
ically changeable road widths. For labels, the force-based labeling approach allows
for smooth movements between colliding labels. Finally, the synthetic orthoimages en-
able seamless zoom-ins, which can be achieved because this approach creates similar
homogeneous images for every zoom level.

Rendering Efficiency. Only an interactive rendering of all elements creates an over-
all smooth and temporally coherent rendering. We presented two approaches for ren-
dering high-quality cartographic roads on high-resolution DEM in real-time. Moreover,
the force-based labeling algorithm can resolve collisions for several thousand labels in
real-time. Labels in 3D cities are made visible with this GPU-based approach. Fi-
nally, we accelerated the creation of synthetic orthoimages with a GPU evaluation of
the neural network.

7.3. FUTURE WORK 119

7.3 Future Work

The GPU algorithms presented in this thesis were created with embedded SoCs (System
on Chips) in mind. However, it is necessary to undertake a real performance evaluation
on actual embedded platforms. In particular, the effects of different hardware architec-
tures, i.e., deferred tile engine or traditional forward rendering, on the efficiency of the
algorithms should be analyzed.
Approaches for several layers of a GIS were created, i.e., orthoimages, roads, and la-
bels. The more layers are displayed in a GIS and the more information that each layer
carries, the more features have to be rendered. Therefore, enhanced techniques for in-
formation hiding are required. At first, an intelligent filtering of features is crucial, e.g.,
the prioritization and selection of labels. Moreover, an adaptive filtering of the roads
can also help. When zooming out from dense areas, such as the city of Tokyo, minor
roads can be left out earlier than major roads. Furthermore, a recommender system
can adaptively select important map features, pre-selecting important Point-of-Interest
(POIs), labels, or even 3D buildings. Moreover, given that it lessens the cognitive load,
a simplification of individual elements can drastically help, e.g., generating POI stacks
and merging neighboring 3D buildings to obtain simpler geometry.
Finally, the presented system as a whole should be validated, including being tested in
different scenarios: in driving, exploration, and search tasks. Each of these scenarios
requires a different focus+context and thus, a distinct representation. This will again
provide hints for further research areas.

120 CHAPTER 7. SUMMARY, CONCLUSIONS, AND OUTLOOK

Abbreviations

AR Augmented Reality
ALU Arithmetic Logic Unit
API Application Programming Interface
ATT Overall Attractiveness (AttrakDiff)
BMNG NASA Blue Marble Next Generation
CLC Coordination of Information on the Environment Land Cover
CCP Car’s Current Position
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DEM Digital Elevation Model
DTM Digital Terrain Model
ESA European Space Agency
FANN Fast Artificial Neural Network Library
FRC Functional Road Class
GIS Geographic Information System
GLSL OpenGL Shading Language
GPS Global Positioning System
GPU Graphics Processing Unit
HMI Human-Machine Interaction
HQ Hedonic Quality (AttrakDiff)
HUD Head-Up Display
ISO International Organization for Standardization
KML Keyhole Markup Language
LOD Level-of-Detail
MAD Multiply Add
MLP Multilayer Perceptron
MP Megapixel
NASA National Aeronautics and Space Administration

121

122 CHAPTER 7. SUMMARY, CONCLUSIONS, AND OUTLOOK

NGDC National Geophysical Data Center
NOAA National Oceanic and Atmospheric Administration
NPR Non-Photorealistic Rendering
OGC Open Geospatial Consortium
OOBB Object-Oriented Bounding Box
OSM OpenStreetMap
OpenGL Open Graphics Library
PND Personal Navigation Device
POI Point-of-Interest
PQ Pragmatic Quality (AttrakDiff)
PSM Perspective Shadow Mapping
SGI Silicon Graphics Inc.
SIMD Single Instruction, Multiple Data
SoC System on a Chip
SRTM Shuttle Radar Topography Mission
SS Screen-Space
SVM Support Vector Machine
RAM Random-Access Memory
VBO Vertex Buffer Object
VGI Volunteered Geographic Information
VRAM Video Random-Access Memory
WMS Web Map Service
TBO Texture Buffer Object
TIN Triangle Irregular Network
TMC Traffic Message Channel
W3DS Web 3D Service
WFS Web Feature Service
WFS-T Transactional Web Feature Service
WMS Web Map Service
WMTS Web Map Tile Service
WVS Web View Service
WGS World Geodetic System
WS World-Space

Curriculum Vitae
Dipl.Inf. Mikael Vaaraniemi
Schulstraße 22
80634 Munich, Germany

Tel. +49 (0)160 - 2705183
E-mail mikael@vaaraniemi.eu

Professional Experience

Jan 2012 - Now
Munich, Germany

Project Manager, BMW Research and Technology GmbH
. Management of a software project (budget, persons, goals)
. Direction of a team with up to 9 persons (freelancers, students)
. Design of a map renderer engine, e.g. API, hierarchical databases,
data management, streaming and efficient rendering.
. Design and implementation of key algorithms: street, terrain,
satellite imagery, land-cover rendering and label placement

Apr 2009 - Dec 2011
Munich, Germany

Ph.D. student, BMW Research and Technology GmbH
Topic: “Usability Enhancement of 3D Navigation Maps”
Languages: C/C++, OpenGL 3.2/ES 2.0, GLSL, Qt 4
Platform: Linux, Windows

Nov 2008 - Jan 2009
Munich, Germany

Freelancer, Jambit GmbH
Languages: C/C++, OpenGL, OpenSceneGraph
. Development of a map renderer prototype
. Consultant for 3D rendering algorithms

Feb 2008 - Aug 2008
Munich, Germany

Diploma thesis, BMW Research and Technology GmbH
Topic: “Very Detailed Navigation Maps on 3D Terrain Models”
Languages: C/C++, OpenGL/GLSL, SDL
Platform: Linux / Windows
. Conception and implementation of a map renderer prototype

Mar 2006 - May 2008
Stuttgart, Germany

Student assistant, University of Stuttgart
Visual analysis of time-dependent flow data sets
Languages: C/C++, Qt 3, OpenGL/GLSL
Platform: Linux (32/64-bit) / Windows
. Implementation of a cross-platform vis. of turbulent flow

124 CHAPTER 7. SUMMARY, CONCLUSIONS, AND OUTLOOK

Education
Oct 2001 - Mar 2009
Stuttgart, Germany

Computer science studies at the University of Stuttgart
Diploma: Dipl. Inf. (Master of Sciences)
Core subjects:
. Computer graphics and visualization
. Distributed systems

Sep 1997 - Jul 2001
Buc (Paris), France

Academic high school at Lycée Franco-Allemand
Diploma: Bilingual Abitur, Baccalauréat (high-school graduation)

Publications

• Lothar Stolz, Holger Endt, Mikael Vaaraniemi, Daniel Zehe, and Walter Stechele.
“Energy consumption of Graphic Processing Units with respect to automotive
use-cases”. In: Proceedings of the International Conference on Energy Aware
Computing. ICEAC. IEEE. 2010, pp. 1–4. ISBN: 978-1-4244-8273-3 [SEVZS10]

• Tobias Schafhitzel, Kudret Baysal, Mikael Vaaraniemi, Ulrich Rist, and Daniel
Weiskopf. “Visualizing the Evolution and Interaction of Vortices and Shear Lay-
ers in Time-Dependent 3D Flow”. In: IEEE Transactions on Visualization and
Computer Graphics 17.4 (Apr. 2011), pp. 412–425. ISSN: 1077-2626. DOI:
10.1109/TVCG.2010.65 [SBVRW11]

• Mikael Vaaraniemi, Marc Treib, and Rüdiger Westermann. “High-Quality Carto-
graphic Roads on High-Resolution DEMs”. In: Journal of WSCG 19.2 (2011),
pp. 41–48. ISSN: 1213-6972 [VTW11]

• Mikael Vaaraniemi, Marc Treib, and Rüdiger Westermann. “Temporally Co-
herent Real-Time Labeling of Dynamic Scenes”. In: Proceedings of the 3rd
International Conference on Computing for Geospatial Research and Applica-
tions. COM.Geo ’12. ACM, 2012, 17:1–17:10. ISBN: 978-1-4503-1113-7. DOI:
10.1145/2345316.2345337 [VTW12]

• Mikael Vaaraniemi, Martin Freidank, and Rüdiger Westermann. “Enhancing the
Visibility of Labels in 3D Navigation Maps”. In: Progress and New Trends in 3D
Geoinformation Sciences. Lecture Notes in Geoinformation and Cartography.
Springer, 2012, pp. 23–40. ISBN: 978-3-642-29792-2. DOI: 10.1007/978-
3-642-29793-9_2 [VFW12]

http://dx.doi.org/10.1109/TVCG.2010.65
http://dx.doi.org/10.1145/2345316.2345337
http://dx.doi.org/10.1007/978-3-642-29793-9_2
http://dx.doi.org/10.1007/978-3-642-29793-9_2

Bibliography

[AE09] Christopher Amante and Barry W. Eakins. “ETOPO1 1 Arc-Minute Global

Relief Model: Procedures, Data Sources and Analysis”. In: NOAA Technical

Memorandum NESDIS NGDC 24 (2009).

[AGRBL+07] Olivier Arino, Dorit Gross, Franck Ranera, Ludovic Bourg, Marc Leroy, et

al. “GlobCover: ESA service for global land cover from MERIS”. In: Pro-

ceedings of the International Geoscience and Remote Sensing Symposium.

IGARSS. IEEE. 2007, pp. 2412–2415. ISBN: 978-1-4244-1211-2. DOI: 10.

1109/IGARSS.2007.4423328.

[AH84] Stephen F. Arno and Ramona P. Hammerley. Timberline: Mountain and Arctic

Forest Frontiers. Mountaineers Books, 1984. ISBN: 978-0898860856.

[AHS05] Kamran Ali, Knut Hartmann, and Thomas Strothotte. “Label layout for inter-

active 3D illustrations”. In: Journal of the WSCG 13.1 (2005), pp. 1–8.

[And01] Kirsten Andersen. Keyhole EarthViewer Wins Golden Lasso Award in Web3D

RoundUP at SIGGRAPH 2001. (Accessed 2014/02/02). 2001. URL: http:

//spatialnews.geocomm.com/dailynews/2001/aug/31/

keyhole.html.

[And07] Johan Andersson. “Terrain rendering in frostbite using procedural shader

splatting”. In: ACM SIGGRAPH 2007 courses. SIGGRAPH ’07. ACM,

2007, pp. 38–58. ISBN: 978-1-4503-1823-5. DOI: 10.1145/1281500.

1281668.

[ARJ06] Anupam Agrawal, M. Radhakrishna, and R.C. Joshi. “Geometry-based map-

ping and rendering of vector data over LOD phototextured 3D terrain models”.

In: Proceedings of the WSCG Conference. UNION Agency — Science Press,

2006, pp. 787–804.

[AS10] Thomas H. Kolbe Arne Schilling. Draft for Candidate OpenGIS Web 3D Ser-

vice (W3DS) Interface Standard. Version 0.4.0. OGC 09-104r1. Open Geospa-

tial Consortium Inc., 2010.

125

http://dx.doi.org/10.1109/IGARSS.2007.4423328
http://dx.doi.org/10.1109/IGARSS.2007.4423328
http://spatialnews.geocomm.com/dailynews/2001/aug/31/keyhole.html
http://spatialnews.geocomm.com/dailynews/2001/aug/31/keyhole.html
http://spatialnews.geocomm.com/dailynews/2001/aug/31/keyhole.html
http://dx.doi.org/10.1145/1281500.1281668
http://dx.doi.org/10.1145/1281500.1281668

126 BIBLIOGRAPHY

[Bar05] Norbert Bartelme. Geoinformatik : Modelle, Strukturen, Funktionen. 4th.

Springer, 2005. ISBN: 978-3540202547.

[BC11] John E. Bailey and Aijun Chen. “The role of Virtual Globes in geoscience”.

In: Computers & Geosciences 37.1 (2011), pp. 1–2.

[BDY06] Ken Been, Eli Daiches, and Chee Yap. “Dynamic map labeling”. In: IEEE

Transactions on Visualization and Computer Graphics. TVCG 12.5 (2006),

pp. 773–780. ISSN: 1077-2626.

[BFH01] Blaine Bell, Steven Feiner, and Tobias Höllerer. “View management for vir-

tual and augmented reality”. In: Proceedings of the 14th annual ACM sym-

posium on User interface software and technology. UIST ’01. ACM. 2001,

pp. 101–110. ISBN: 1-58113-438-X. DOI: 10.1145/502348.502363.

[Ble 0] Heiko Blechschmied. Vorlesung Graphische Informationssysteme. WS 07/08.

[Bli77] James F. Blinn. “Models of light reflection for computer synthesized pic-

tures”. In: Proceedings of the 4th annual conference on Computer graphics

and interactive techniques. SIGGRAPH ’77. ACM, 1977, pp. 192–198. DOI:

10.1145/563858.563893.

[Blo00] Charles Bloom. Terrain Texture Compositing by Blending in the Frame-Buffer

(aka "Splatting" Textures). (Accessed 2014/02/02). 2000. URL: http://

www.cbloom.com/3d/techdocs/splatting.txt.

[BMWW14] Michael Birsak, Przemyslaw Musialski, Peter Wonka, and Michael Wimmer.

“Automatic Generation of Tourist Brochures”. In: Computer Graphics Forum

(Proceedings of EUROGRAPHICS 2014) 33.2 (Apr. 2014), to appear.

[BN08] Eric Bruneton and Fabrice Neyret. “Real-Time Rendering and Editing of

Vector-based Terrains”. In: Computer Graphics Forum. Vol. 27. 2. Wiley On-

line Library, 2008, pp. 311–320. DOI: 10.1111/j.1467-8659.2008.

01128.x.

[Bol07] Paul Bolstad. GIS Fundamentals: A First Text on Geographic Information

Systems. 3rd. Eider Press, 2007. ISBN: 978-0971764729.

[BSDSW04] Kevin Buchin, Mario Costa Sousa, Jürgen Döllner, Faramarz Samavati, and

Maike Walther. “Illustrating Terrains using Direction of Slope and Light-

ing”. In: Proceedings of the 4th ICA Mountain Carthography Workshop. 2004,

pp. 259–269.

http://dx.doi.org/10.1145/502348.502363
http://dx.doi.org/10.1145/563858.563893
http://www.cbloom.com/3d/techdocs/splatting.txt
http://www.cbloom.com/3d/techdocs/splatting.txt
http://dx.doi.org/10.1111/j.1467-8659.2008.01128.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01128.x

BIBLIOGRAPHY 127

[BSPBD93] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D.

Derose. “Toolglass and magic lenses: The see-through interface”. In: Pro-

ceedings of the 20th annual conference on Computer graphics and interactive

technique. SIGGRAPH ’93. Anaheim, CA: ACM, 1993, pp. 73–80. ISBN: 0-

89791-601-8. DOI: 10.1145/166117.166126.

[BSS07] John Brosz, Faramarz F. Samavati, and Mario Costa Sousa. “Terrain Synthesis

By-Example”. In: Communications in Computer and Information Science 4

(2007), pp. 58–77. DOI: 10.1007/978-3-540-75274-5_4.

[Buc97] David J. Buckey. Introduction to GIS: Spatial Data Models. Innovative GIS

Solutions, Inc., 1997.

[Bur02] Dave Burrows. Destinator 2 Review. (Accessed 2014/02/02). 2002. URL:

http://www.pocketgpsworld.com/destinator2review.php.

[Bur03] Dave Burrows. TomTom Navigator 2 Review. (Accessed 2014/02/02). 2003.

URL: http://www.pocketgpsworld.com/tomtomnavigator2.

php.

[BW+01] Nyle C. Brady, Ray R. Weil, et al. The Nature and Properties of Soils. 13th.

Prentice Hall, 2001. ISBN: 978-0130167637.

[CEWMZ08] Guoning Chen, Gregory Esch, Peter Wonka, Pascal Müller, and Eugene

Zhang. “Interactive procedural street modeling”. In: Proceedings of the 35th

annual conference on Computer graphics and interactive technique. Vol. 27.

SIGGRAPH ’08 3. ACM, 2008, 103:1–103:10. ISBN: 978-1-4503-0112-1.

DOI: 10.1145/1399504.1360702.

[CG08] Gregory Cipriano and Michael Gleicher. “Text scaffolds for effective surface

labeling”. In: IEEE Transactions on Visualization and Computer Graphics.

TVCG 14.6 (2008), pp. 1675–1682.

[CH06] Chris Coffin and Tobias Höllerer. “Interactive Perspective Cut-Away Views

for General 3D Scenes”. In: Proceedings of the IEEE Symposium on 3D User

Interfaces. 3DUI 2006. IEEE. 2006, pp. 25–28. ISBN: 1-4244-0225-5. DOI:

10.1109/VR.2006.88.

[Cla08] Clarion. Clarion MAP780. (Accessed 2014/02/02). 2008. URL: http://

www . clarion . com / gb / en / products / 2008 / navigation /

navigation/MAP780/gb-en-product-pf_1172387297431.

html.

http://dx.doi.org/10.1145/166117.166126
http://dx.doi.org/10.1007/978-3-540-75274-5_4
http://www.pocketgpsworld.com/destinator2review.php
http://www.pocketgpsworld.com/tomtomnavigator2.php
http://www.pocketgpsworld.com/tomtomnavigator2.php
http://dx.doi.org/10.1145/1399504.1360702
http://dx.doi.org/10.1109/VR.2006.88
http://www.clarion.com/gb/en/products/2008/navigation/navigation/MAP780/gb-en-product-pf_1172387297431.html
http://www.clarion.com/gb/en/products/2008/navigation/navigation/MAP780/gb-en-product-pf_1172387297431.html
http://www.clarion.com/gb/en/products/2008/navigation/navigation/MAP780/gb-en-product-pf_1172387297431.html
http://www.clarion.com/gb/en/products/2008/navigation/navigation/MAP780/gb-en-product-pf_1172387297431.html

128 BIBLIOGRAPHY

[Cla82] James H. Clark. “The Geometry Engine: A VLSI Geometry System for

Graphics”. In: Proceedings of the 9th annual conference on Computer graph-

ics and interactive techniques. SIGGRAPH ’82. ACM, 1982, pp. 127–133.

ISBN: 0-89791-076-1. DOI: 10.1145/800064.801272.

[CLS09] Hilko Cords, Martin Luboschik, and Heidrun Schumann. “Floating Labels:

Improving Dynamics of Interactive Labeling Approaches”. In: Proceedings

of Computer Graphics, Visualization, Computer Vision and Image Processing.

CGVCVIP ’09. 2009, pp. 235–238. ISBN: 978-972-8924-84-3.

[CMS95] Jon Christensen, Joe Marks, and Stuart Shieber. “An empirical study of algo-

rithms for point-feature label placement”. In: ACM Transactions on Graphics.

TOG 14.3 (1995), pp. 203–232. ISSN: 0730-0301. DOI: 10.1145/212332.

212334.

[CNL12] Martin Christen, Stephan Nebiker, and Benjamin Loesch. “Web-Based Large-

Scale 3D-Geovisualisation Using WebGL: The OpenWebGlobe Project”. In:

International Journal of 3-D Information Modeling. IJ3DIM 1.3 (2012),

pp. 16–25.

[Cor01] Glenn Corpes. “Procedural Landscapes”. In: Proceedings of the Game Devel-

oper Conference. GDC 2001. 2001.

[CPB04] Jian Chen, Pardha S. Pyla, and Doug A. Bowman. “Testbed Evaluation of

Navigation and Text Display Techniques in an Information-Rich Virtual En-

vironment”. In: Proceedings of the IEEE Virtual Reality Conference. VR ’04.

IEEE, 2004, pp. 289–. ISBN: 0-7803-8415-6. DOI: 10.1109/VR.2004.

28.

[Cro77] Franklin C. Crow. “Shadow algorithms for computer graphics”. In: Proceed-

ings of the 4th annual conference on Computer graphics and interactive tech-

niques. Vol. 11. SIGGRAPH ’77 2. ACM, 1977, pp. 242–248. DOI: 10.

1145/965141.563901.

[CV95] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”. In: Ma-

chine Learning 20 (3 1995), pp. 273–297. ISSN: 0885-6125. DOI: 10.1007/

BF00994018.

[Cyb89] George Cybenko. “Approximation by superpositions of a sigmoidal function”.

In: Mathematics of Control, Signals, and Systems. MCSS 2 (4 1989), pp. 303–

314. ISSN: 0932-4194. DOI: 10.1007/BF02551274.

[DB05] Jürgen Döllner and Henrik Buchholz. “Non-Photorealism in 3D Geovirtual

Environments”. In: Proceedings of AutoCarto. 2005, pp. 1–14.

http://dx.doi.org/10.1145/800064.801272
http://dx.doi.org/10.1145/212332.212334
http://dx.doi.org/10.1145/212332.212334
http://dx.doi.org/10.1109/VR.2004.28
http://dx.doi.org/10.1109/VR.2004.28
http://dx.doi.org/10.1145/965141.563901
http://dx.doi.org/10.1145/965141.563901
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF02551274

BIBLIOGRAPHY 129

[DBH00] Jürgen Döllner, Konstantin Baumman, and Klaus Hinrichs. “Texturing tech-

niques for terrain visualization”. In: Proceedings of the conference on Visu-

alization. VIS ’00. IEEE, 2000, pp. 227–234. ISBN: 1-58113-309-X. DOI:

10.1109/VISUAL.2000.885699.

[DBNK05] Jürgen Döllner, Henrik Buchholz, Marc Nienhaus, and Florian Kirsch. “Illus-

trative Visualization of 3D City Models”. In: Visualization and Data Analysis.

Vol. 5669. Proceedings of the SPIE. International Society for Optical Engine

(SPIE), 2005, pp. 42–51.

[DBS06] Carsten Dachsbacher, Tobias Bolch, and Marc Stamminger. “Procedural Re-

production of Terrain Textures with Geographic Data”. In: Proceedings of

Vision Modeling and Visualization. VMV 2006. IOS Press. 2006. ISBN: 3-

89838-081-5.

[DHLMP+98] Oliver Deussen, Pat Hanrahan, Bernd Lintermann, Radomír Měch, Matt

Pharr, et al. “Realistic modeling and rendering of plant ecosystems”. In: Pro-

ceedings of the 25th annual conference on Computer graphics and interactive

techniques. SIGGRAPH ’98. ACM. 1998, pp. 275–286. ISBN: 0-89791-999-

8. DOI: 10.1145/280814.280898.

[DHTJL00] R. S. Defries, M. C. Hansen, J. R. G. Townshend, A. C. Janetos, and T. R.

Loveland. “A new global 1-km dataset of percentage tree cover derived from

remote sensing”. In: Global Change Biology 6.2 (2000), pp. 247–254.

[DKSW02] Steven Van Dijk, Marc Van Kreveld, Tycho Strijk, and Alexander Wolff. “To-

wards an evaluation of quality for names placement methods”. In: Interna-

tional Journal of Geographical Information Science 16.7 (2002), pp. 641–

661. ISSN: 1365-8816.

[DKW09] Christian Dick, Jens Krüger, and Rüdiger Westermann. “GPU Ray-Casting

for Scalable Terrain Rendering”. In: Proceedings of Eurographics. Vol. 50.

Eurographics Association. 2009, pp. 43–50.

[DS04] Carsten Dachsbacher and Marc Stamminger. “Rendering Procedural Terrain

by Geometry Image Warping”. In: Proceedings of the 15th Eurographics con-

ference on Rendering Techniques. EGSR’04. Eurographics Association, 2004,

pp. 103–110. ISBN: 3-905673-12-6. DOI: 10.2312/EGWR/EGSR04/103-

110.

[DSW09] Christian Dick, Jens Schneider, and Rüdiger Westermann. “Efficient Geom-

etry Compression for GPU-based Decoding in Realtime Terrain Rendering”.

In: Computer Graphics Forum 28.1 (2009), pp. 67–83.

http://dx.doi.org/10.1109/VISUAL.2000.885699
http://dx.doi.org/10.1145/280814.280898
http://dx.doi.org/10.2312/EGWR/EGSR04/103-110
http://dx.doi.org/10.2312/EGWR/EGSR04/103-110

130 BIBLIOGRAPHY

[Döl05] Jürgen Döllner. Exploring Geovisualization. Geovisualization and real-time

3D computer graphics. Elsevier, 2005. Chap. 16, pp. 325–343. ISBN: 978-0-

08-044531-1.

[EAT07] Niklas Elmqvist, Ulf Assarsson, and Philippas Tsigas. “Employing Dynamic

Transparency for 3D Occlusion Management: Design Issues and Evaluation”.

In: Proceedings of the 11th IFIP TC13 International Conference on Human-

Computer Interaction. Vol. 4662. INTERACT 2007. Springer, 2007, pp. 532–

545.

[Eis85] Steve Eisenberg. “ETAK always knows where it’s at”. In: The Milwaukee

Journal (1985).

[EKW03] Dietmar Ebner, Gunnar W. Klau, and René Weiskircher. Force-based label

number maximization. Tech. rep. TR-186-1-03-02. Vienna University of Tech-

nology, 2003.

[EKW05] Dietmar Ebner, Gunnar W. Klau, and René Weiskircher. “Label Number Max-

imization in the Slider Model”. In: Lecture Notes in Computer Science 3383

(2005), pp. 144–154. DOI: 10.1007/978-3-540-31843-9_16.

[EPK05] Birgit Elias, Volker Paelke, and Sascha Kuhnt. “Concepts for the cartographic

visualization of landmarks”. In: Location Based Services & Telecartography-

Proceedings of the Symposium. 2005, pp. 1149–1155.

[ET08] Chris Elvidge and Ben Tuttle. “How virtual globes are revolutionizing earth

observation data access and integration”. In: The International Archives of

the Photogrammetry, Remote Sensing and Spatial Information Sciences 37

(2008), pp. 137–139. DOI: 10.1.1.150.5982.

[Fat10] Kayvon Fatahalian. “From Shader Code to a Teraflop: How GPU Shader

Cores Work”. In: ACM SIGGRAPH 2010 Courses. SIGGRAPH ’10. ACM,

2010.

[Fei94] Mitchell Feigenbaum. Method and apparatus for automatically generat-

ing symbol images against a background image without collision utilizing

distance-dependent attractive and repulsive forces in a computer simulation.

US Patent 5,355,314. 1994.

[FMMG12] Matt Fairclough, Jo Meder, John McLusky, and Oshyan Greene. Terragen

2 (v2.4). (Accessed 2012/04/15). Planetside Software. 2012. URL: http:

//www.planetside.co.uk/.

http://dx.doi.org/10.1007/978-3-540-31843-9_16
http://dx.doi.org/10.1.1.150.5982
http://www.planetside.co.uk/
http://www.planetside.co.uk/

BIBLIOGRAPHY 131

[FP99] Jean-Daniel Fekete and Catherine Plaisant. “Excentric labeling: Dynamic

neighborhood labeling for data visualization”. In: Proceedings of the SIGCHI

conference on Human factors in computing systems: the CHI is the limit.

CHI ’99. ACM. 1999, pp. 512–519. ISBN: 0-201-48559-1. DOI: 10.1145/

302979.303148.

[FRCCD+07] T. G. Farr, P. A. Rosen, E. Caro, R. Crippen, R. Duren, et al. “The Shuttle

Radar Topography Mission”. In: Reviews of Geophysics 45, RG2004 (May

2007), p. 2004. DOI: 10.1029/2005RG000183.

[GAHS05] Timo Götzelmann, Kamran Ali, Knut Hartmann, and Thomas Strothotte.

“Adaptive labeling for illustrations”. In: Proceedings of the 13th Pacific Con-

ference on Computer Graphics and Applications. PG 2005. 2005, pp. 64–66.

[GD08a] Tassilo Glander and Jürgen Döllner. “Automated cell based generalization of

virtual 3D city models with dynamic landmark highlighting”. In: Proceedings

of the 11th ICA Workshop on Generalization and Multiple Representation.

2008.

[GD08b] Tassilo Glander and Jürgen Döllner. “Techniques for Generalizing Building

Geometry of Complex Virtual 3D City Models”. In: Advances in 3D Geoinfor-

mation Systems. Lecture Notes in Geoinformation and Cartography. Springer,

2008, pp. 381–400.

[GD09] Tassilo Glander and Jürgen Döllner. “Abstract representations for interactive

visualization of virtual 3D city models”. In: Computers, Environment and Ur-

ban Systems 33.5 (2009), pp. 375–387.

[GGABB+12] Michael F. Goodchild, Huadong Guo, Alessandro Annoni, Ling Bian, Kees

de Bie, et al. “Next-generation Digital Earth”. In: Proceedings of the Na-

tional Academy of Sciences. Vol. 109. 28. National Academy Sciences, 2012,

pp. 11088–11094. DOI: 10.1073/pnas.1202383109.

[GHS06] Timo Götzelmann, Knut Hartmann, and Thomas Strothotte. “Agent-based an-

notation of interactive 3D visualizations”. In: Proceedings of the 6th Interna-

tional Symposium of Smart Graphics. Vol. 4073. SG 2006. Springer. 2006,

pp. 24–35.

[Gol09] E. Bruce Goldstein. Sensation and perception. 8th. Wadsworth Publishing

Company, 2009. ISBN: 978-0495601494.

[Gor98] Albert Gore. “The Digital Earth: Understanding our planet in the 21st cen-

tury”. In: Australian surveyor 43.2 (1998), pp. 89–91.

http://dx.doi.org/10.1145/302979.303148
http://dx.doi.org/10.1145/302979.303148
http://dx.doi.org/10.1029/2005RG000183
http://dx.doi.org/10.1073/pnas.1202383109

132 BIBLIOGRAPHY

[Got00] Stefan Gottschalk. “Collision Queries using Oriented Bounding Boxes”. PhD

thesis. University of North Carolina at Chapel Hill, 2000. ISBN: 0-493-01573-

6.

[Gum03] Stefan Gumhold. “Splatting illuminated ellipsoids with depth correction”. In:

Proceedings of the 8th International Fall Workshop on Vision, Modelling and

Visualization. VMV 2003. Aka GmbH, 2003, pp. 245–252.

[Hag10] Benjamin Hagedorn. OpenGIS Web View Service (WVS) Discussion Paper.

Version 0.3.0. OGC 09-166r2. Open Geospatial Consortium Inc., 2010.

[Hak10] Mordechai Haklay. “How good is volunteered geographical information? A

comparative study of OpenStreetMap and Ordnance Survey datasets”. In: En-

vironment and Planning B: Planning & design 37.4 (2010), pp. 682–703.

[HAS04] Knut Hartmann, Kamran Ali, and Thomas Strothotte. “Floating labels: Apply-

ing dynamic potential fields for label layout”. In: Proceedings of the 4th Inter-

national Symposium on Smart Graphics. SG 2004. Springer. 2004, pp. 101–

113.

[HBK03] Marc Hassenzahl, Michael Burmester, and Franz Koller. “AttrakDiff: Ein

Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer

Qualität”. In: Mensch & Computer. 2003, pp. 187–196.

[HBK14] Marc Hassenzahl, Michael Burmester, and Franz Koller. AttrakDiff (tm). (Ac-

cessed 2014/02/02). 2014. URL: http://attrakdiff.de/sience-

en.html.

[HDFCH+07] Collin Homer, Jon Dewitz, Joyce Fry, Michael Coan, Nazmul Hossain, et al.

“Completion of the 2001 National Land Cover Database for the Conterminous

United States”. In: Photogrammetric Engineering and Remote Sensing 73.4

(2007), pp. 337–341.

[Hei91] Tim Heidmann. “Real Shadows, Real Time”. In: IRIS Universe 18 (1991),

pp. 28–31.

[Hir82] Stephen A. Hirsch. “An algorithm for automatic name placement around

point data”. In: Cartography and Geographic Information Science 9.1 (1982),

pp. 5–17. ISSN: 1523-0406.

[Hol09] Friedrich-Karl Holtmeier. Mountain Timberlines Ecology, Patchiness, and Dy-

namics. 2nd. Vol. 36. Advances in Global Change Research. Springer, 2009.

ISBN: 978-1-4020-9704-1.

[IH03] Christian Igel and Michael Hüsken. “Empirical Evaluation of the Improved

Rprop Learning Algorithms”. In: Neurocomputing 50 (2003), pp. 105–123.

http://attrakdiff.de/sience-en.html
http://attrakdiff.de/sience-en.html

BIBLIOGRAPHY 133

[Imh75] Eduard Imhof. “Positioning names on maps”. In: The American Cartographer

2.2 (1975), pp. 128–144.

[Iso] Geographic information – Simple Feature Access – Part 1: Common Archi-

tecture. ISO 19125-1. ISO, Geneva, Switzerland, 2004.

[Jen01] Bernhard Jenny. “An Interactive Approach to Analytical Relief Shading”. In:

Cartographica: The International Journal for Geographic Information and

Geovisualization 38 (1 2001), pp. 67–75. DOI: 10.3138/F722-0825-

3142-HW05.

[JK13] Jürgen Döllner Jan Klimke Benjamin Hagedorn. “Scalable Multi-Platform

Distribution of Spatial 3D Contents”. In: Proceedings of the 8th 3D GeoInfo

Conference & WG II/2 Workshop. Vol. II-2/W1. ISPRS Annals. 2013,

pp. 193–200.

[JMJ10] Keith Pomakis Joan Masó and Núria Julià. OpenGIS Web Map Tile Ser-

vice (WMTS) Implementation Standard. Version 1.0.0. OGC 07-057r7. Open

Geospatial Consortium Inc., 2010.

[KABSC10] Johannes Kopf, Maneesh Agrawala, David Bargeron, David Salesin, and

Michael Cohen. “Automatic Generation of Destination Maps”. In: ACM SIG-

GRAPH Asia 2010 Papers. SIGGRAPH ASIA ’10. ACM, 2010, 158:1–

158:12. ISBN: 978-1-4503-0439-9. DOI: 10.1145/1866158.1866184.

[Kap01] Martin Kappas. Das Geographische Seminar. Westermann Schulbuch Verlag,

2001. ISBN: 978-3141603392.

[KBC88] Teuvo Kohonen, Gyorgy Barna, and Ronald Chrisley. “Statistical pattern

recognition with neural networks: benchmarking studies”. In: Proceedings of

the IEEE International Conference on Neural Networks. Vol. 1. IEEE. 1988,

pp. 61–68. DOI: 10.1109/ICNN.1988.23829.

[KD02] Oliver Kersting and Jürgen Döllner. “Interactive 3D visualization of vector

data in GIS”. In: Proceedings of the 10th ACM international symposium on

Advances in geographic information systems. GIS ’02. ACM, 2002, pp. 107–

112. ISBN: 1-58113-591-2. DOI: 10.1145/585147.585170.

[KG23] Wladimir Peter Köppen and Rudolf Geiger. Klimakarte der Erde. Justus

Perthes, 1923.

[Kil97] Mark Kilgard. A Simple OpenGL-based API for Texture Mapped Text. (Ac-

cessed 2014/02/02). 1997. URL: ftp : / / ftp . sgi . com / opengl /

contrib/mjk/tips/TexFont/TexFont.html.

http://dx.doi.org/10.3138/F722-0825-3142-HW05
http://dx.doi.org/10.3138/F722-0825-3142-HW05
http://dx.doi.org/10.1145/1866158.1866184
http://dx.doi.org/10.1109/ICNN.1988.23829
http://dx.doi.org/10.1145/585147.585170
ftp://ftp.sgi.com/opengl/contrib/mjk/tips/TexFont/TexFont.html
ftp://ftp.sgi.com/opengl/contrib/mjk/tips/TexFont/TexFont.html

134 BIBLIOGRAPHY

[KMS07] Denis Kalkofen, Erick Mendez, and Dieter Schmalstieg. “Interactive focus

and context visualization for augmented reality”. In: Proceedings of the 6th

IEEE and ACM International Symposium on Mixed and Augmented Reality.

ISMAR 2007. IEEE. 2007, pp. 191–200. ISBN: 978-1-4244-1749-0. DOI: 10.

1109/ISMAR.2007.4538846.

[KMS09] Denis Kalkofen, Erick Mendez, and Dieter Schmalstieg. “Comprehensible vi-

sualization for augmented reality”. In: IEEE Transactions on Visualization

and Computer Graphics. TVCG 15.2 (2009), pp. 193–204. ISSN: 1077-2626.

DOI: 10.1109/TVCG.2008.96.

[Kra00] Menno-Jan Kraak. Web Cartography: Developments and Prospects. Carto-

graphic Principles. 1st. CRC Press, 2000, pp. 53–71. ISBN: 978-0748408696.

[KSW06] Jens Krüger, Jens Schneider, and Rüdiger Westermann. “Clearview: An inter-

active context preserving hotspot visualization technique”. In: IEEE Transac-

tions on Visualization and Computer Graphics. TVCG 12.5 (2006), pp. 941–

948.

[Lan06] Norbert de Lange. Geoinformatik: in Theorie und Praxis. 2nd. Springer, 2006.

ISBN: 978-3540282914.

[LB06] Jeff de La Beaujardiere. OpenGIS Web Map Service (WMS) Implementation

Specification. Version 1.3.0. OGC 06-042. Open Geospatial Consortium Inc.,

2006.

[Lev04] Isaac Levanon. FlyOver 2nd generation Visual MAPTM Technology fuel Ken-

wood new Theater Navi. (Accessed 2014/02/02). 2004. URL: http://www.

silicomventures.com/newsletter_3_04/flyover.htm.

[Lip13] Benj Lipchak, ed. OpenGL ES. Specification. Version 3.0.3. The Khronos

Group Inc., 2013.

[LJBBC+95] Yann LeCun, L.D. Jackel, L. Bottou, A. Brunot, C. Cortes, et al. “Comparison

of Learning Algorithms for Handwritten Digit Recognition”. In: Proceedings

of the International conference on artificial neural networks. Vol. 60. 1995,

pp. 53–60.

[LKRHF+96] Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hodges, Nick

Faust, et al. “Real-time, continuous level of detail rendering of height fields”.

In: Proceedings of the 23rd annual conference on Computer graphics and

interactive techniques. SIGGRAPH ’96. ACM, 1996, pp. 109–118. ISBN: 0-

89791-746-4. DOI: 10.1145/237170.237217.

http://dx.doi.org/10.1109/ISMAR.2007.4538846
http://dx.doi.org/10.1109/ISMAR.2007.4538846
http://dx.doi.org/10.1109/TVCG.2008.96
http://www.silicomventures.com/newsletter_3_04/flyover.htm
http://www.silicomventures.com/newsletter_3_04/flyover.htm
http://dx.doi.org/10.1145/237170.237217

BIBLIOGRAPHY 135

[LSC08] Martin Luboschik, Heidrun Schumann, and Hilko Cords. “Particle-Based La-

beling: Fast Point-Feature Labeling without Obscuring Other Visual Fea-

tures”. In: IEEE Transactions on Visualization and Computer Graphics.

TVCG 14.6 (2008), pp. 1237–1244.

[LTD11] Christine Lehmann, Jonas Trümper, and Jürgen Döllner. “Interactive Areal

Annotations for 3D Treemaps of Large-Scale Software Systems”. In: Proceed-

ings of the Workshop on Geovisualization. GeoViz 2011. CD-ROM. 2011.

[Mat92] Jim Mateja. “Travtek Makes Mission Possible”. In: Chicago Tribune (1992).

[MD06a] Stefan Maass and Jürgen Döllner. “Dynamic annotation of interactive environ-

ments using object-integrated billboards”. In: Proceedings of the 14th Inter-

national Conference in Central Europe on Computer Graphics, Visualization

and Computer Vision. WSCG. 2006, pp. 327–334.

[MD06b] Stefan Maass and Jürgen Döllner. “Efficient view management for dynamic

annotation placement in virtual landscapes”. In: Proceedings of the 6th Inter-

national Symposium on Smart Graphics. Vol. 4073. Lecture Notes in Com-

puter Science. Springer, 2006, pp. 1–12.

[MD07] Stefan Maass and Jürgen Döllner. “Embedded labels for line features in inter-

active 3D virtual environments”. In: Proceedings of the 5th international con-

ference on Computer graphics, virtual reality, visualisation and interaction in

Africa. AFRIGRAPH ’07. ACM. 2007, pp. 53–59. ISBN: 978-1-59593-906-7.

DOI: 10.1145/1294685.1294695.

[MD08] Stefan Maass and Jürgen Döllner. “Seamless integration of labels into inter-

active virtual 3D environments using parameterized hulls”. In: Proceedings

of the 4th Eurographics conference on Computational Aesthetics in Graphics,

Visualization and Imaging. Eurographics Association. 2008, pp. 33–40.

[MJD07] Stefan Maass, Markus Jobst, and Jürgen Döllner. “Depth Cue of Occlusion In-

formation as Criterion for the Quality of Annotation Placement in Perspective

Views”. In: The European Information Society (2007), pp. 473–486.

[Mot07] Kevin Mote. “Fast point-feature label placement for dynamic visualizations”.

In: Information Visualization 6.4 (2007), pp. 249–260. ISSN: 1473-8716.

[MS91] Joe Marks and Stuart Shieber. The Computational Complexity of Carto-

graphic Label Placement. Tech. rep. TR-05-91. Harvard University Center

for Research in Computing Technology, 1991.

http://dx.doi.org/10.1145/1294685.1294695

136 BIBLIOGRAPHY

[Nav04] Naviokun. Review of the Kenwood Theather AV Navigation System HDV-

910/810. (Accessed 2014/02/02). 2004. URL: http://www.naviokun.

com/text/navi_kenwood.text/hdv910_810repo01.html.

[Nav09] Navigon. Navigon 8410. (Accessed 2013/08/08). 2009. URL: http://www.

navigon.com/portal/uk/produkte/navigationssysteme/

navigon-premium/navigon_8410.html.

[Nds] Navigation Data Standard: Compiler Interoperability Specification. Physical

Storage Format Initiative, 2009.

[Nis03] Steffen Nissen. Implementation of a Fast Artificial Neural Network Library

(FANN). Tech. rep. Department of Computer Science University of Copen-

hagen (DIKU), Oct. 2003.

[Noy80] Liza Noyes. “The Positioning of Type on Maps: The Effect of Surrounding

Material on Word Recognition Time”. In: Human Factors: The Journal of

the Human Factors and Ergonomics Society 22.3 (1980), pp. 353–360. ISSN:

0018-7208.

[NVI09] NVIDIA. Fermi: NVIDIA Next Generation CUDA Compute Architecture.

2009. URL: http://www.nvidia.de/content/PDF/fermi_

white _ papers / NVIDIA _ Fermi _ Compute _ Architecture _

Whitepaper.pdf.

[NVIly] NVIDIA. CUDA C Programming Guide. July 2013. URL: http://docs.

nvidia.com/cuda/cuda-c-programming-guide.

[NZZ11] Pascal Neis, Dennis Zielstra, and Alexander Zipf. “The Street Network Evo-

lution of Crowdsourced Maps: OpenStreetMap in Germany 2007–2011”. In:

Future Internet 4.1 (2011), pp. 1–21. ISSN: 1999-5903. DOI: 10.3390/

fi4010001.

[O’B10] Justin O’Beirne. Blog 41Latitude. (Accessed 2010/12/02). 2010. URL: http:

//www.41latitude.com/post/2072504768/google-maps-

label-readability.

[OC11] Deron Ohlarik and Patrick Cozzi. “A screen-space approach to render-

ing polylines on terrain”. In: ACM SIGGRAPH 2011 Posters. SIGGRAPH

’11. ACM, 2011, 68:1–68:1. ISBN: 978-1-4503-0971-4. DOI: 10.1145/

2037715.2037792.

[Ogc] OpenGIS KML 2.2 Encoding Standard. OGC 07-147r2. Open Geospatial Con-

sortium Inc., 2008.

http://www.naviokun.com/text/navi_kenwood.text/hdv910_810repo01.html
http://www.naviokun.com/text/navi_kenwood.text/hdv910_810repo01.html
http://www.navigon.com/portal/uk/produkte/navigationssysteme/navigon-premium/navigon_8410.html
http://www.navigon.com/portal/uk/produkte/navigationssysteme/navigon-premium/navigon_8410.html
http://www.navigon.com/portal/uk/produkte/navigationssysteme/navigon-premium/navigon_8410.html
http://www.nvidia.de/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.de/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.de/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://dx.doi.org/10.3390/fi4010001
http://dx.doi.org/10.3390/fi4010001
http://www.41latitude.com/post/2072504768/google-maps-label-readability
http://www.41latitude.com/post/2072504768/google-maps-label-readability
http://www.41latitude.com/post/2072504768/google-maps-label-readability
http://dx.doi.org/10.1145/2037715.2037792
http://dx.doi.org/10.1145/2037715.2037792

BIBLIOGRAPHY 137

[PC08] Malisa Ana Plesa and William Cartwright. “Evaluating the Effectiveness of

Non-Realistic 3D Maps for Navigation with Mobile Devices”. In: Lecture

Notes in Geoinformation and Cartography (2008), pp. 80–104. DOI: 10 .

1007/978-3-540-37110-6_5.

[PFM07] Murray C. Peel, Brian L. Finlayson, and Thomas A. McMahon. “Updated

world map of the Köppen-Geiger climate classification”. In: Hydrology and

Earth System Sciences 11.5 (2007), pp. 1633–1644. DOI: 10.5194/hess-

11-1633-2007.

[PG07] Renato Pajarola and Enrico Gobbetti. “Survey of semi-regular multiresolu-

tion models for interactive terrain rendering”. In: The Visual Computer 23.8

(2007), pp. 583–605. ISSN: 0178-2789. DOI: 10.1007/s00371-007-

0163-2.

[PGP03] Ingo Petzold, Gerhard Gröger, and Lutz Plümer. “Fast screen map labeling

- data-structures and algorithms”. In: Proceedings of the 23rd International

Cartographic Conference. ICC’ 03. 2003, pp. 288–298.

[Phi79] Richard J. Phillips. “Why is lower case better? Some data from a search task”.

In: Applied Ergonomics 10.4 (1979), pp. 211–214. ISSN: 0003-6870.

[PHWTPK10] Sebastian Pick, Bernd Hentschel, Marc Wolter, Irene Tedjo-Palczynski, and

Torsten Kuhlen. “Automated Positioning of Annotations in Immersive Vir-

tual Environments”. In: Proceedings of the 16th Eurographics conference on

Virtual Environments & Second Joint Virtual Reality. EGVE - JVRC’10. Eu-

rographics Association. 2010, pp. 1–8. ISBN: 978-3-905674-30-9. DOI: 10.

2312/EGVE/JVRC10/001-008.

[PKB05] Nicholas F. Polys, Seonho Kim, and Doug A. Bowman. “Effects of informa-

tion layout, screen size, and field of view on user performance in information-

rich virtual environments”. In: Proceedings of the ACM symposium on Virtual

reality software and technology. VRST ’05. ACM, 2005, pp. 46–55. ISBN:

1-59593-098-1. DOI: 10.1145/1101616.1101626.

[PM01] Yoav I. H. Parish and Pascal Müller. “Procedural modeling of cities”. In: Pro-

ceedings of the 28th annual conference on Computer graphics and interactive

techniques. SIGGRAPH ’01. ACM, 2001, pp. 301–308. ISBN: 1-58113-374-

X. DOI: 10.1145/383259.383292.

[PNA77] Richard J. Phillips, Liza Noyes, and R.J. Audley. “The legibility of type on

maps”. In: Ergonomics 20.6 (1977), pp. 671–682. ISSN: 0014-0139.

http://dx.doi.org/10.1007/978-3-540-37110-6_5
http://dx.doi.org/10.1007/978-3-540-37110-6_5
http://dx.doi.org/10.5194/hess-11-1633-2007
http://dx.doi.org/10.5194/hess-11-1633-2007
http://dx.doi.org/10.1007/s00371-007-0163-2
http://dx.doi.org/10.1007/s00371-007-0163-2
http://dx.doi.org/10.2312/EGVE/JVRC10/001-008
http://dx.doi.org/10.2312/EGVE/JVRC10/001-008
http://dx.doi.org/10.1145/1101616.1101626
http://dx.doi.org/10.1145/383259.383292

138 BIBLIOGRAPHY

[PSTD12] Sebastian Pasewaldt, Amir Semmo, Matthias Trapp, and Jürgen Döllner.

“Towards Comprehensible Digital 3D Maps”. In: Service-Oriented Mapping

2012. SOMAP 2012. Jobstmedia Management Verlag, Wien, 2012, pp. 261–

276.

[PTS99] Simon Premože, William B. Thompson, and Peter Shirley. “Geospecific ren-

dering of alpine terrain”. In: Proceedings of the 10th Eurographics confer-

ence on Rendering. EGWR’99. Eurographics Association, 1999, pp. 107–118.

ISBN: 3-211-83382-X. DOI: 10.2312/EGWR/EGWR99/107-118.

[Qua09] John R. Quain. “New Audi A8 to Come With Google Earth”. In: The New York

Times (2009). URL: http://wheels.blogs.nytimes.com/2009/

12/17/new-audi-a8-to-come-with-google-earth/?_r=0.

[QWCWC09] Huamin Qu, Haomian Wang, Weiwei Cui, Yingcai Wu, and Ming-Yuen Chan.

“Focus+Context Route Zooming and Information Overlay in 3D Urban Envi-

ronments”. In: IEEE Transactions on Visualization and Computer Graphics

15.6 (Nov. 2009), pp. 1547–1554. ISSN: 1077-2626. DOI: 10.1109/TVCG.

2009.144.

[RB93] Martin Riedmiller and Heinrich Braun. “A direct adaptive method for faster

backpropagation learning: the RPROP algorithm”. In: vol. 1. 3. IEEE, 1993,

pp. 586–591. ISBN: 0-7803-0999-5. DOI: 10 . 1109 / ICNN . 1993 .

298623.

[RBEHE06] Guido Reina, Katrin Bidmon, Frank Enders, Peter Hastreiter, and Thomas

Ertl. “GPU-based hyperstreamlines for diffusion tensor imaging”. In: Pro-

ceedings of the 8th Joint Eurographics / IEEE VGTC conference on Visu-

alization. EUROVIS’06. Eurographics Association, 2006, pp. 35–42. ISBN:

3-905673-31-2. DOI: 10.2312/VisSym/EuroVis06/035-042.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel distributed pro-

cessing: explorations in the microstructure of cognition. Vol. 1: Learning

internal representations by error propagation. MIT Press, 1986. Chap. 8,

pp. 318–362. ISBN: 0-262-68053-X.

[RJ08] Erika Frazier Ruchika Jain. Nav N Go Launches Advanced 3D Navigation

Software Nav N Go iGO8. (Accessed 2014/02/02). 2008. URL: http://

www.marketwire.com/press-release/nav-n-go-launches-

advanced - 3d - navigation - software - nav - n - go - igo8 -

north-america-2008-international-808026.htm.

http://dx.doi.org/10.2312/EGWR/EGWR99/107-118
http://wheels.blogs.nytimes.com/2009/12/17/new-audi-a8-to-come-with-google-earth/?_r=0
http://wheels.blogs.nytimes.com/2009/12/17/new-audi-a8-to-come-with-google-earth/?_r=0
http://dx.doi.org/10.1109/TVCG.2009.144
http://dx.doi.org/10.1109/TVCG.2009.144
http://dx.doi.org/10.1109/ICNN.1993.298623
http://dx.doi.org/10.1109/ICNN.1993.298623
http://dx.doi.org/10.2312/VisSym/EuroVis06/035-042
http://www.marketwire.com/press-release/nav-n-go-launches-advanced-3d-navigation-software-nav-n-go-igo8-north-america-2008-international-808026.htm
http://www.marketwire.com/press-release/nav-n-go-launches-advanced-3d-navigation-software-nav-n-go-igo8-north-america-2008-international-808026.htm
http://www.marketwire.com/press-release/nav-n-go-launches-advanced-3d-navigation-software-nav-n-go-igo8-north-america-2008-international-808026.htm
http://www.marketwire.com/press-release/nav-n-go-launches-advanced-3d-navigation-software-nav-n-go-igo8-north-america-2008-international-808026.htm

BIBLIOGRAPHY 139

[RJ09] Mattias Roupé and Mikael Johansson. “Visual quality of the ground in 3D

models: using color-coded images to blend aerial photos with tiled detail-

textures”. In: Proceedings of the 6th International Conference on Computer

Graphics, Virtual Reality, Visualisation and Interaction in Africa. AFRI-

GRAPH ’09. ACM. 2009, pp. 73–79. ISBN: 978-1-60558-428-7. DOI: 10.

1145/1503454.1503468.

[RJK03] Wolfgang Reinhardt, G. Joos, and H. Kuhlmann. Raumbezogene Information-

ssysteme. 1st. Wichmann, 2003. ISBN: 978-3879072941.

[RMMKG95] Arthur H. Robinson, Joel L. Morrison, Phillip C. Muehrcke, A. Jon Kimerling,

and Stephen C. Guptill. Elements of cartography. 6th. John Wiley & Sons Inc,

1995. ISBN: 978-0471555797.

[Ros12] Johannes Rosenberg. GeoControl 2 (build 54). (Accessed 2011/11/14). 2012.

URL: http://www.geocontrol2.com.

[RPRH07] Timo Ropinski, Jörg-Stefan Praßni, Jan Roters, and Klaus Hinrichs. “Inter-

nal labels as shape cues for medical illustration”. In: Proceedings of the 12th

International Fall Workshop on Vision, Modeling, and Visualization. VMV

2007. 2007, pp. 203–212.

[SA09] Mark Segal and Kurt Akeley. The OpenGL Graphics system: A Specification

(Core Profile). Specification. Version 3.2. The Khronos Group Inc., 2009.

[SBVRW11] Tobias Schafhitzel, Kudret Baysal, Mikael Vaaraniemi, Ulrich Rist, and

Daniel Weiskopf. “Visualizing the Evolution and Interaction of Vortices and

Shear Layers in Time-Dependent 3D Flow”. In: IEEE Transactions on Visu-

alization and Computer Graphics 17.4 (Apr. 2011), pp. 412–425. ISSN: 1077-

2626. DOI: 10.1109/TVCG.2010.65.

[SBW06] Jens Schneider, Tobias Boldte, and Rüdiger Westermann. “Real-Time Editing,

Synthesis, and Rendering of Infinite Landscapes on GPUs”. In: Proceedings

of Vision, Modeling and Visualization. VMV 2006. IOS Press. 2006, pp. 145–

152. ISBN: 3-89838-081-5.

[SD02] Marc Stamminger and George Drettakis. “Perspective shadow maps”. In: Pro-

ceedings of the 29th annual conference on Computer graphics and interactive

techniques. SIGGRAPH ’02. ACM, 2002, pp. 557–562. ISBN: 1-58113-521-

1. DOI: 10.1145/566570.566616.

http://dx.doi.org/10.1145/1503454.1503468
http://dx.doi.org/10.1145/1503454.1503468
http://www.geocontrol2.com
http://dx.doi.org/10.1109/TVCG.2010.65
http://dx.doi.org/10.1145/566570.566616

140 BIBLIOGRAPHY

[SD04] Anthony Santella and Doug DeCarlo. “Visual Interest and NPR: An Evalu-

ation and Manifesto”. In: Proceedings of the 3rd International Symposium

on Non-photorealistic Animation and Rendering. NPAR ’04. ACM, 2004,

pp. 71–150. ISBN: 1-58113-887-3. DOI: 10.1145/987657.987669.

[SD08] Thierry Stein and Xavier Décoret. “Dynamic label placement for improved in-

teractive exploration”. In: Proceedings of the 6th international symposium on

Non-photorealistic animation and rendering. NPAR ’08. ACM, 2008, pp. 15–

21. ISBN: 978-1-60558-150-7. DOI: 10.1145/1377980.1377986.

[SE02] Philip Schneider and David H. Eberly. Geometric tools for computer graphics.

1st. The Morgan Kaufmann Series in Computer Graphics. Morgan Kaufmann,

2002, pp. 265–284. ISBN: 1558605940.

[SEVZS10] Lothar Stolz, Holger Endt, Mikael Vaaraniemi, Daniel Zehe, and Walter

Stechele. “Energy consumption of Graphic Processing Units with respect to

automotive use-cases”. In: Proceedings of the International Conference on

Energy Aware Computing. ICEAC. IEEE. 2010, pp. 1–4. ISBN: 978-1-4244-

8273-3.

[SGK05] Martin Schneider, Michael Guthe, and Reinhard Klein. “Real-time Rendering

of Complex Vector Data on 3D Terrain Models”. In: Proceedings of the 11th

International conference on virtual systems and multimedia. VSMM 2005.

ARCHAEOLINGUA, 2005, pp. 573–582. ISBN: 963 8046 63 5.

[Shr+09] Dave Shreiner et al. OpenGL programming guide: the official guide to learn-

ing OpenGL, versions 3.0 and 3.1. 7th. Addison-Wesley Professional, 2009.

ISBN: 978-0321552624.

[SK07] Martin Schneider and Reinhard Klein. “Efficient and Accurate Rendering of

Vector Data on Virtual Landscapes”. In: Journal of WSCG. WSCG’2007 15.1-

3 (Jan. 2007), pp. 59–64. ISSN: 1213-6972.

[SKD10] Amir Semmo, Jan Eric Kyprianidis, and Jürgen Döllner. “Automated Image-

Based Abstraction of Aerial Images”. In: Lecture Notes in Geoinformation

and Cartography (2010), pp. 359–378.

[SKTB09] Ruben Smelik, Klaas Jan de Kraker, Tim Tutenel, and Rafael Bidarra. “A case

study on procedural modeling of geo-typical southern Afghanistan terrain”.

In: Proceedings of the IMAGE Conference. IMAGE Society. 2009, pp. 329–

337.

http://dx.doi.org/10.1145/987657.987669
http://dx.doi.org/10.1145/1377980.1377986

BIBLIOGRAPHY 141

[SKTD13] Amir Semmo, Jan Eric Kyprianidis, Matthias Trapp, and Jürgen Döllner.

“Real-time Rendering of Water Surfaces with Cartography-oriented De-

sign”. In: Proceedings of the Symposium on Computational Aesthetics. CAE

’13. ACM, 2013, pp. 5–14. ISBN: 978-1-4503-2203-4. DOI: 10 . 1145 /

2487276.2487277.

[Smi79] Sidney L. Smith. “Letter size and legibility”. In: Human Factors: The Jour-

nal of the Human Factors and Ergonomics Society 21.6 (1979), pp. 661–670.

ISSN: 0018-7208.

[SOCRP+13] Graham Sellers, Juraj Obert, Patrick Cozzi, Kevin Ring, Emil Persson, et

al. “Rendering massive virtual worlds”. In: ACM SIGGRAPH 2013 Courses.

SIGGRAPH ’13. ACM, 2013, 23:1–23:88. ISBN: 978-1-4503-2339-0. DOI:

10.1145/2504435.2504458.

[SSB06] Georg Stadler, Tibor Steiner, and Jurgen Beiglbock. “A Practical Map Label-

ing Algorithm Utilizing Morphological Image Processing and Force-directed

Methods”. In: Cartography and Geographic Information Science 33.3 (2006),

pp. 207–215. DOI: 10.1559/152304006779077327.

[STKB10] Ruben M. Smelik, Tim Tutenel, Klaas Jan de Kraker, and Rafael Bidarra.

“Declarative terrain modeling for military training games”. In: International

journal of computer games technology (2010), 2:1–2:11. ISSN: 1687-7047.

DOI: 10.1155/2010/360458.

[STKD12] Amir Semmo, Matthias Trapp, Jan Eric Kyprianidis, and Jürgen Döllner. “In-

teractive Visualization of Generalized Virtual 3D City Models Using Level-

of-Abstraction Transitions”. In: Comp. Graph. Forum 31.3pt1 (June 2012),

pp. 885–894. ISSN: 0167-7055. DOI: 10.1111/j.1467-8659.2012.

03081.x.

[Sub04] Venkiteshwar M. Subbaram. “Effect of display and text parameters on reading

performance”. PhD thesis. Ohio State University, Physiological Optics, 2004.

[SVSSH05] Reto Stöckli, Eric Vermote, Nazmi Saleous, Robert Simmon, and David Her-

ring. “The Blue Marble Next Generation - A true color earth dataset including

seasonal dynamics from MODIS”. In: (2005).

[Syg12] Sygic. Sygic GPS Navigation. 2012. URL: http://www.sygic.com/.

[Tal96] Antti Talvitie. Functional Classification of Roads. Transportation Research

Board. Washington, D.C., 1996.

http://dx.doi.org/10.1145/2487276.2487277
http://dx.doi.org/10.1145/2487276.2487277
http://dx.doi.org/10.1145/2504435.2504458
http://dx.doi.org/10.1559/152304006779077327
http://dx.doi.org/10.1155/2010/360458
http://dx.doi.org/10.1111/j.1467-8659.2012.03081.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03081.x
http://www.sygic.com/

142 BIBLIOGRAPHY

[TBABTS+08] R. Tateishia, M.A. Bayaera, H. Al-Bilbisia, J. Tsendayusha, A. Shalabya, et al.

“A New Global Land Cover Map, GLCNMO”. In: Commission VII. Vol. 37.

ISPRS. 2008, pp. 1369–1373.

[TBK06] Marcus Tonnis, Verena Broy, and Gudrun Klinker. “A Survey of Challenges

Related to the Design of 3D User Interfaces for Car Drivers”. In: Proceedings

of the 3D User Interfaces. 3DUI ’06. IEEE, 2006, pp. 127–134. ISBN: 1-4244-

0225-5. DOI: 10.1109/VR.2006.19.

[TBPJ10] Matthias Trapp, Christian Beesk, Sebastian Pasewaldt, and Döllner Jürgen.

“Interactive Rendering Techniques for Highlighting in 3D Geovirtual Envi-

ronments”. In: Proceedings of the 5th 3D GeoInfo Conference. Lecture Notes

in Geoinformation & Cartography. Springer, 2010.

[TGBD08] Matthias Trapp, Tassilo Glander, Henrik Buchholz, and Jürgen Döllner. “3D

Generalization Lenses for Interactive Focus+Context Visualization of Virtual

City Models”. In: Proceedings of the 12th International Conference on In-

formation Visualization. IV’08. IEEE, 2008, pp. 356–361. ISBN: 978-0-7695-

3268-4. DOI: 10.1109/IV.2008.18.

[Thi06] Tristan Thielmann. “" You have reached your destination!" Position, position-

ing and superpositioning of space through car navigation systems”. In: Social

Geography Discussions 2.1 (2006), pp. 27–62.

[Tor12] Aaron Torpy. Large 3D Terrain Generator (L3DT) (v12.03 build 2). (Ac-

cessed 2012/03/24). Bundysoft. 2012. URL: http://www.bundysoft.

com/L3DT.

[Vap99] Vladimir N. Vapnik. The nature of statistical learning theory. 2nd. Informa-

tion Science and Statistics. Springer, 1999. ISBN: 978-0387987804.

[VCWP96] John Viega, Matthew J. Conway, George Williams, and Randy Pausch. “3D

Magic Lenses”. In: Proceedings of the 9th annual ACM symposium on User

interface software and technology. UIST ’96. ACM. 1996, pp. 51–58. ISBN:

0-89791-798-7. DOI: 10.1145/237091.237098.

[VFW12] Mikael Vaaraniemi, Martin Freidank, and Rüdiger Westermann. “Enhancing

the Visibility of Labels in 3D Navigation Maps”. In: Progress and New Trends

in 3D Geoinformation Sciences. Lecture Notes in Geoinformation and Car-

tography. Springer, 2012, pp. 23–40. ISBN: 978-3-642-29792-2. DOI: 10.

1007/978-3-642-29793-9_2.

http://dx.doi.org/10.1109/VR.2006.19
http://dx.doi.org/10.1109/IV.2008.18
http://www.bundysoft.com/L3DT
http://www.bundysoft.com/L3DT
http://dx.doi.org/10.1145/237091.237098
http://dx.doi.org/10.1007/978-3-642-29793-9_2
http://dx.doi.org/10.1007/978-3-642-29793-9_2

BIBLIOGRAPHY 143

[Voi12] Alexandru Voica. The rise of GPU compute. (Accessed 2014/02/02). 2012.

URL: http://withimagination.imgtec.com/index.php/

powervr/the-rise-of-gpu-compute.

[Vre05] Panagotis A. Vretanos. OpenGIS Web Feature Service (WFS) Implementation

Specification. Version 1.1.0. OGC 04-094. Open Geospatial Consortium Inc.,

2005.

[VTW11] Mikael Vaaraniemi, Marc Treib, and Rüdiger Westermann. “High-Quality

Cartographic Roads on High-Resolution DEMs”. In: Journal of WSCG 19.2

(2011), pp. 41–48. ISSN: 1213-6972.

[VTW12] Mikael Vaaraniemi, Marc Treib, and Rüdiger Westermann. “Temporally Co-

herent Real-Time Labeling of Dynamic Scenes”. In: Proceedings of the 3rd

International Conference on Computing for Geospatial Research and Appli-

cations. COM.Geo ’12. ACM, 2012, 17:1–17:10. ISBN: 978-1-4503-1113-7.

DOI: 10.1145/2345316.2345337.

[WB08] Daniel B. Work and Alexandre M. Bayen. “Impacts of the mobile internet on

transportation cyberphysical systems: traffic monitoring using smartphones”.

In: Proceedings of the National Workshop for Research on High-Confidence

Transportation Cyber-Physical Systems: Automotive, Aviation, & Rail. 2008,

pp. 18–20.

[WKWRF03] Zachary Wartell, Eunjung Kang, Tony Wasilewski, William Ribarsky, and

Nickolas Faust. “Rendering vector data over global, multi-resolution 3D ter-

rain”. In: Proceedings of the symposium on Data visualisation. VISSYM ’03.

Eurographics Association, 2003, pp. 213–222. ISBN: 1-58113-698-6.

[Wol99] Alexander Wolff. “Automated label placement in theory and practice”. PhD

thesis. Freie Universität Berlin, Universitätsbibliothek, 1999.

[WS12] Alexander Wolff and Tycho Strijk. The map-labeling bibliography. (Accessed

2014/02/02). 2012. URL: http://i11www.iti.uni-karlsruhe.

de/~awolff/map-labeling/bibliography/.

[YCL05] Missae Yamamoto, Gilberto Camara, and Luiz Antonio Nogueira Lorena.

“Fast point-feature label placement algorithm for real time screen maps”.

In: Proceedings of the 7th Brazilian Symposium on GeoInformatics.

GEOINFO’05. INPE. 2005, pp. 122–138.

[Yoe72] Pinhas Yoeli. “The logic of automated map lettering”. In: The Cartographic

Journal 9.2 (1972), pp. 99–108. ISSN: 0008-7041.

http://withimagination.imgtec.com/index.php/powervr/the-rise-of-gpu-compute
http://withimagination.imgtec.com/index.php/powervr/the-rise-of-gpu-compute
http://dx.doi.org/10.1145/2345316.2345337
http://i11www.iti.uni-karlsruhe.de/~awolff/map-labeling/bibliography/
http://i11www.iti.uni-karlsruhe.de/~awolff/map-labeling/bibliography/

144 BIBLIOGRAPHY

[ZH86] Walter B. Zavoli and Stanley K. Honey. “Map matching augmented dead

reckoning”. In: Proceedings of the 36th IEEE Conference on Vehicular Tech-

nology. Vol. 36. IEEE, 1986, pp. 359–362. DOI: 10.1109/VTC.1986.

1623458.

[Env04] Environmental Systems Research Institute. ArcGIS 9 Documentation: Using

ArcGIS 3D Analyst. ESRI, 2004.

[Eur00] European Environment Agency. CORINE Land Cover. (Accessed

2014/02/02). Commission of the European Communities. 2000. URL:

http : / / www . eea . europa . eu / publications / COR0 -

landcover.

[Eva69] Evans & Sutherlands Computer Coorporation. LDS-1/PDP-10 Display Sys-

tem. Line Drawing System-1 Brochure. digital equipment corporation. 1969.

[Eva74] Evans & Sutherlands Computer Coorporation. The Evans & Sutherlands Pic-

ture System – The interactive, dynamic, 3-D line-drawing system. Technical

Specification Brochure. 1974.

[Geo09] GeoBase Initiative. Land Cover, Circa 2000 - Vector. (Accessed 2014/02/02).

Government of Canada, Natural Resources Canada, Earth Sciences Sector,

Centre for Topographic Information - Sherbrooke. 2009. URL: http://

geobase . ca / geobase / en / data / landcover / csc2000v /

description.html.

[Glo00] Global Soil Data Task Group. “Global Gridded Surfaces of Selected Soil

Characteristics”. In: IGBP-DIS (2000). DOI: 10.3334/ORNLDAAC/569.

[Goo11] Google Inc. Google Earth v6.1.0.5001. (Accessed 2011/12/29). 2011. URL:

http://earth.google.com/.

[Ope] OpenStreetMap Community. OpenStreetMap. (Accessed 2014/02/02). URL:

http://www.openstreetmap.org.

[Spl11] Splash Damage. Quake Wars Editing. (Accessed 2014/02/02). Splash Dam-

age. 2011. URL: http://wiki.splashdamage.com.

http://dx.doi.org/10.1109/VTC.1986.1623458
http://dx.doi.org/10.1109/VTC.1986.1623458
http://www.eea.europa.eu/publications/COR0-landcover
http://www.eea.europa.eu/publications/COR0-landcover
http://geobase.ca/geobase/en/data/landcover/csc2000v/description.html
http://geobase.ca/geobase/en/data/landcover/csc2000v/description.html
http://geobase.ca/geobase/en/data/landcover/csc2000v/description.html
http://dx.doi.org/10.3334/ORNLDAAC/569
http://earth.google.com/
http://www.openstreetmap.org
http://wiki.splashdamage.com

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Problems
	Contributions
	Publications

	Fundamentals
	Geographic Information Systems
	Geographical Object
	Data Models
	OpenStreetMap
	Web Services for Geodata

	Real-Time Rendering
	Rendering Pipeline
	The OpenGL API

	Evolution of Map Visualization
	3D Map Viewers for Virtual Globes
	Map Viewers for Digital Automotive Navigation Systems
	Cartographic Map Visualization Techniques

	High-Quality Cartographic Roads on High-Resolution DEMs
	Introduction
	Related Work
	Cartographic Roads
	Geometric Approach
	Shadow Volume Approach
	Intersection
	Numerical Precision

	Implementation Details
	Geometry Clipping
	Geometry Z-Offset
	Cartographic Rendering

	Results
	Conclusions

	Temporally Coherent Real-Time Labeling of Dynamic Scenes
	Introduction
	Related Work
	Preliminary Study
	Study Design
	Results
	Design Principles

	Force-Based Labeling
	Motivation
	Features
	Initial Placement
	Collision
	Forces and Movement
	Acceleration

	Implementation
	Parallelization
	Rendering Textual Annotations
	Enhancements

	Results
	Scalability
	Concluding Expert Study
	Cartographic Principles

	Conclusions

	Enhancing the Visibility of Labels in 3D Navigation Maps
	Introduction
	Labeling Techniques
	World-Space and Screen-Space Labels
	External and Internal Labels in 3D Worlds
	Summary

	Concepts
	Baseline
	Cutaways
	Transparency Label Aura
	Glowing Labels
	Glowing Roads

	Expert Study
	Study design
	Discussion
	Results

	Implementation
	Transparency Label Aura
	Glowing Streets

	Results
	Benchmark
	User Study

	Conclusions

	Procedural Generation of Orthoimages with Real Geographic Data
	Introduction
	Related Work
	Overview
	System

	Geographic Data Sources
	Pre-processing of Geographic Data
	Generation of Synthetic Orthoimages
	Neural Network Architecture and Training
	Neural Network Execution on the GPU

	Detail Generation
	Vegetation Simulation
	Field Generation
	Urban Rendering
	Relief shading
	Multi-Resolution
	Editor

	Results
	Comparison
	Benchmark

	Conclusions

	Summary, Conclusions, and Outlook
	Summary
	Discussion
	Future Work

	Bibliography

